ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
13
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
78
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
93
203
Commit Hash
stringclasses
13 values
36f457be-4d7f-4734-a657-1bf3fcf01002
cpp
tensorflow/tensorflow
spectral_ops
tensorflow/core/ops/spectral_ops.cc
tensorflow/core/ops/spectral_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/numeric_op.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; REGISTER_OP("FFT") .Input("input: Tcomplex") .Output("output: Tcomplex") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRankAtLeast(c, 1); }); REGISTER_OP("IFFT") .Input("input: Tcomplex") .Output("output: Tcomplex") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRankAtLeast(c, 1); }); REGISTER_OP("FFT2D") .Input("input: Tcomplex") .Output("output: Tcomplex") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRankAtLeast(c, 2); }); REGISTER_OP("IFFT2D") .Input("input: Tcomplex") .Output("output: Tcomplex") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRankAtLeast(c, 2); }); REGISTER_OP("FFT3D") .Input("input: Tcomplex") .Output("output: Tcomplex") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRankAtLeast(c, 3); }); REGISTER_OP("IFFT3D") .Input("input: Tcomplex") .Output("output: Tcomplex") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRankAtLeast(c, 3); }); REGISTER_OP("FFTND") .Input("input: Tcomplex") .Input("fft_length: int32") .Input("axes: int32") .Output("output: Tcomplex") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRankAtLeast(c, 1); }); REGISTER_OP("IFFTND") .Input("input: Tcomplex") .Input("fft_length: int32") .Input("axes: int32") .Output("output: Tcomplex") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRankAtLeast(c, 1); }); Status RFFTShape(InferenceContext* c, const bool forward, const int rank) { ShapeHandle out; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), rank, &out)); ShapeHandle unused_shape; DimensionHandle unused_dim; ShapeHandle fft_length_input = c->input(1); TF_RETURN_IF_ERROR(c->WithRank(fft_length_input, 1, &unused_shape)); TF_RETURN_IF_ERROR( c->WithValue(c->Dim(fft_length_input, 0), rank, &unused_dim)); const Tensor* fft_length_tensor = c->input_tensor(1); if (fft_length_tensor == nullptr) { for (int i = 0; i < rank; ++i) { TF_RETURN_IF_ERROR(c->ReplaceDim(out, -rank + i, c->UnknownDim(), &out)); } } else { auto fft_length_as_vec = fft_length_tensor->vec<int32>(); for (int i = 0; i < rank; ++i) { auto dim = forward && i == rank - 1 && fft_length_as_vec(i) != 0 ? fft_length_as_vec(i) / 2 + 1 : fft_length_as_vec(i); TF_RETURN_IF_ERROR(c->ReplaceDim(out, -rank + i, c->MakeDim(dim), &out)); } } c->set_output(0, out); return absl::OkStatus(); } REGISTER_OP("RFFT") .Input("input: Treal") .Input("fft_length: int32") .Output("output: Tcomplex") .Attr("Treal: {float32, float64} = DT_FLOAT") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return RFFTShape(c, true, 1); }); REGISTER_OP("IRFFT") .Input("input: Tcomplex") .Input("fft_length: int32") .Output("output: Treal") .Attr("Treal: {float32, float64} = DT_FLOAT") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return RFFTShape(c, false, 1); }); REGISTER_OP("RFFT2D") .Input("input: Treal") .Input("fft_length: int32") .Output("output: Tcomplex") .Attr("Treal: {float32, float64} = DT_FLOAT") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return RFFTShape(c, true, 2); }); REGISTER_OP("IRFFT2D") .Input("input: Tcomplex") .Input("fft_length: int32") .Output("output: Treal") .Attr("Treal: {float32, float64} = DT_FLOAT") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return RFFTShape(c, false, 2); }); REGISTER_OP("RFFT3D") .Input("input: Treal") .Input("fft_length: int32") .Output("output: Tcomplex") .Attr("Treal: {float32, float64} = DT_FLOAT") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return RFFTShape(c, true, 3); }); REGISTER_OP("IRFFT3D") .Input("input: Tcomplex") .Input("fft_length: int32") .Output("output: Treal") .Attr("Treal: {float32, float64} = DT_FLOAT") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return RFFTShape(c, false, 3); }); REGISTER_OP("RFFTND") .Input("input: Treal") .Input("fft_length: int32") .Input("axes: int32") .Output("output: Tcomplex") .Attr("Treal: {float32, float64} = DT_FLOAT") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRankAtLeast(c, 1); }); REGISTER_OP("IRFFTND") .Input("input: Tcomplex") .Input("fft_length: int32") .Input("axes: int32") .Output("output: Treal") .Attr("Treal: {float32, float64} = DT_FLOAT") .Attr("Tcomplex: {complex64, complex128} = DT_COMPLEX64") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRankAtLeast(c, 1); }); REGISTER_OP("BatchFFT") .Input("input: complex64") .Output("output: complex64") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(15, "Use FFT"); REGISTER_OP("BatchIFFT") .Input("input: complex64") .Output("output: complex64") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(15, "Use IFFT"); REGISTER_OP("BatchFFT2D") .Input("input: complex64") .Output("output: complex64") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(15, "Use FFT2D"); REGISTER_OP("BatchIFFT2D") .Input("input: complex64") .Output("output: complex64") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(15, "Use IFFT2D"); REGISTER_OP("BatchFFT3D") .Input("input: complex64") .Output("output: complex64") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(15, "Use FFT3D"); REGISTER_OP("BatchIFFT3D") .Input("input: complex64") .Output("output: complex64") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(15, "Use IFFT3D"); }
#include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" namespace tensorflow { TEST(MathOpsTest, FFT_ShapeFn) { for (const auto* op_name : {"FFT", "IFFT"}) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?", "in0"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[]"); INFER_OK(op, "[?]", "in0"); INFER_OK(op, "[1]", "in0"); INFER_OK(op, "[1,2,3,4,5,6,7]", "in0"); } for (const auto* op_name : {"FFT2D", "IFFT2D"}) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?", "in0"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); INFER_OK(op, "[?,1]", "in0"); INFER_OK(op, "[1,2]", "in0"); INFER_OK(op, "[1,2,3,4,5,6,7]", "in0"); } for (const auto* op_name : {"FFT3D", "IFFT3D"}) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?", "in0"); INFER_ERROR("Shape must be at least rank 3 but is rank 2", op, "[1,2]"); INFER_OK(op, "[?,1,?]", "in0"); INFER_OK(op, "[1,2,3]", "in0"); INFER_OK(op, "[1,2,3,4,5,6,7]", "in0"); } } TEST(MathOpsTest, RFFT_ShapeFn) { for (const bool forward : {true, false}) { ShapeInferenceTestOp op(forward ? "RFFT" : "IRFFT"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "?;[1]", "?"); INFER_OK(op, "[1];?", "[?]"); INFER_OK(op, "[1];[1]", "[?]"); INFER_OK(op, "[?];[1]", "[?]"); INFER_OK(op, "[1,2,3,4];[1]", "[d0_0,d0_1,d0_2,?]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[1];[1,1]"); INFER_ERROR("Dimension must be 1 but is 2", op, "[1];[2]"); op.input_tensors.resize(2); Tensor fft_length = test::AsTensor<int32>({10}); op.input_tensors[1] = &fft_length; if (forward) { INFER_OK(op, "[?];[1]", "[6]"); INFER_OK(op, "[1];[1]", "[6]"); INFER_OK(op, "[1,1];[1]", "[d0_0,6]"); } else { INFER_OK(op, "[?];[1]", "[10]"); INFER_OK(op, "[1];[1]", "[10]"); INFER_OK(op, "[1,1];[1]", "[d0_0,10]"); } fft_length = test::AsTensor<int32>({11}); if (forward) { INFER_OK(op, "[?];[1]", "[6]"); INFER_OK(op, "[1];[1]", "[6]"); INFER_OK(op, "[1,1];[1]", "[d0_0,6]"); } else { INFER_OK(op, "[?];[1]", "[11]"); INFER_OK(op, "[1];[1]", "[11]"); INFER_OK(op, "[1,1];[1]", "[d0_0,11]"); } fft_length = test::AsTensor<int32>({12}); if (forward) { INFER_OK(op, "[?];[1]", "[7]"); INFER_OK(op, "[1];[1]", "[7]"); INFER_OK(op, "[1,1];[1]", "[d0_0,7]"); } else { INFER_OK(op, "[?];[1]", "[12]"); INFER_OK(op, "[1];[1]", "[12]"); INFER_OK(op, "[1,1];[1]", "[d0_0,12]"); } } for (const bool forward : {true, false}) { ShapeInferenceTestOp op(forward ? "RFFT2D" : "IRFFT2D"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "?;[2]", "?"); INFER_OK(op, "[1,1];?", "[?,?]"); INFER_OK(op, "[1,1];[2]", "[?,?]"); INFER_OK(op, "[?,?];[2]", "[?,?]"); INFER_OK(op, "[1,2,3,4];[2]", "[d0_0,d0_1,?,?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[1,1];[1,1]"); INFER_ERROR("Dimension must be 2 but is 3", op, "[1,1];[3]"); op.input_tensors.resize(2); Tensor fft_length = test::AsTensor<int32>({9, 10}); op.input_tensors[1] = &fft_length; if (forward) { INFER_OK(op, "[?,?];[2]", "[9,6]"); INFER_OK(op, "[1,1];[2]", "[9,6]"); INFER_OK(op, "[1,1,1];[2]", "[d0_0,9,6]"); } else { INFER_OK(op, "[?,?];[2]", "[9,10]"); INFER_OK(op, "[1,1];[2]", "[9,10]"); INFER_OK(op, "[1,1,1];[2]", "[d0_0,9,10]"); } fft_length = test::AsTensor<int32>({10, 11}); if (forward) { INFER_OK(op, "[?,?];[2]", "[10,6]"); INFER_OK(op, "[1,1];[2]", "[10,6]"); INFER_OK(op, "[1,1,1];[2]", "[d0_0,10,6]"); } else { INFER_OK(op, "[?,?];[2]", "[10,11]"); INFER_OK(op, "[1,1];[2]", "[10,11]"); INFER_OK(op, "[1,1,1];[2]", "[d0_0,10,11]"); } fft_length = test::AsTensor<int32>({11, 12}); if (forward) { INFER_OK(op, "[?,?];[2]", "[11,7]"); INFER_OK(op, "[1,1];[2]", "[11,7]"); INFER_OK(op, "[1,1,1];[2]", "[d0_0,11,7]"); } else { INFER_OK(op, "[?,?];[2]", "[11,12]"); INFER_OK(op, "[1,1];[2]", "[11,12]"); INFER_OK(op, "[1,1,1];[2]", "[d0_0,11,12]"); } } for (const bool forward : {true, false}) { ShapeInferenceTestOp op(forward ? "RFFT3D" : "IRFFT3D"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "?;[3]", "?"); INFER_OK(op, "[1,1,1];?", "[?,?,?]"); INFER_OK(op, "[1,1,1];[3]", "[?,?,?]"); INFER_OK(op, "[?,?,?];[3]", "[?,?,?]"); INFER_OK(op, "[1,2,3,4];[3]", "[d0_0,?,?,?]"); INFER_ERROR("Shape must be at least rank 3 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[1,1,1];[1,1]"); INFER_ERROR("Dimension must be 3 but is 4", op, "[1,1,1];[4]"); op.input_tensors.resize(2); Tensor fft_length = test::AsTensor<int32>({10, 11, 12}); op.input_tensors[1] = &fft_length; if (forward) { INFER_OK(op, "[?,?,?];[3]", "[10,11,7]"); INFER_OK(op, "[1,1,1];[3]", "[10,11,7]"); INFER_OK(op, "[1,1,1,1];[3]", "[d0_0,10,11,7]"); } else { INFER_OK(op, "[?,?,?];[3]", "[10,11,12]"); INFER_OK(op, "[1,1,1];[3]", "[10,11,12]"); INFER_OK(op, "[1,1,1,1];[3]", "[d0_0,10,11,12]"); } fft_length = test::AsTensor<int32>({11, 12, 13}); if (forward) { INFER_OK(op, "[?,?,?];[3]", "[11,12,7]"); INFER_OK(op, "[1,1,1];[3]", "[11,12,7]"); INFER_OK(op, "[1,1,1,1];[3]", "[d0_0,11,12,7]"); } else { INFER_OK(op, "[?,?,?];[3]", "[11,12,13]"); INFER_OK(op, "[1,1,1];[3]", "[11,12,13]"); INFER_OK(op, "[1,1,1,1];[3]", "[d0_0,11,12,13]"); } fft_length = test::AsTensor<int32>({12, 13, 14}); if (forward) { INFER_OK(op, "[?,?,?];[3]", "[12,13,8]"); INFER_OK(op, "[1,1,1];[3]", "[12,13,8]"); INFER_OK(op, "[1,1,1,1];[3]", "[d0_0,12,13,8]"); } else { INFER_OK(op, "[?,?,?];[3]", "[12,13,14]"); INFER_OK(op, "[1,1,1];[3]", "[12,13,14]"); INFER_OK(op, "[1,1,1,1];[3]", "[d0_0,12,13,14]"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/spectral_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/spectral_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f4324f89-eb93-434c-987d-d0f5ebdbb8c2
cpp
tensorflow/tensorflow
data_flow_ops
tensorflow/core/ops/data_flow_ops.cc
tensorflow/core/ops/data_flow_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; namespace { Status DequeueManyV2Shape(InferenceContext* c, ShapeHandle n_shape) { auto* t = c->input_handle_shapes_and_types(0); if (t != nullptr && t->size() == c->num_outputs()) { for (int i = 0; i < c->num_outputs(); ++i) { ShapeHandle combined_shape; TF_RETURN_IF_ERROR( c->Concatenate(n_shape, (*t)[i].shape, &combined_shape)); c->set_output(i, combined_shape); } return absl::OkStatus(); } else { return shape_inference::UnknownShape(c); } } } REGISTER_OP("DynamicPartition") .Input("data: T") .Input("partitions: int32") .Output("outputs: num_partitions * T") .Attr("num_partitions: int") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { int64_t num_partitions; TF_RETURN_IF_ERROR(c->GetAttr("num_partitions", &num_partitions)); ShapeHandle data_shape = c->input(0); ShapeHandle partitions_shape = c->input(1); if (!c->RankKnown(partitions_shape)) { return shape_inference::UnknownShape(c); } const int64_t rank = c->Rank(partitions_shape); ShapeHandle unused; TF_RETURN_IF_ERROR( c->MergePrefix(data_shape, partitions_shape, &unused, &unused)); ShapeHandle unknown_dim0 = c->MakeShape({c->UnknownDim()}); ShapeHandle data_suffix_shape; TF_RETURN_IF_ERROR(c->Subshape(data_shape, rank, &data_suffix_shape)); ShapeHandle result_shape; TF_RETURN_IF_ERROR( c->Concatenate(unknown_dim0, data_suffix_shape, &result_shape)); for (int i = 0; i < c->num_outputs(); ++i) { c->set_output(i, result_shape); } return absl::OkStatus(); }); namespace { Status DynamicStitchShapeFunction(InferenceContext* c) { int32_t num_partitions; TF_RETURN_IF_ERROR(c->GetAttr("N", &num_partitions)); bool all_indices_constant = true; int32_t max_index = -1; ShapeHandle extra_shape = c->UnknownShape(); for (int i = 0; i < num_partitions; ++i) { const Tensor* indices_t = c->input_tensor(i); if (indices_t == nullptr) { all_indices_constant = false; } ShapeHandle indices_shape = c->input(i); ShapeHandle data_shape = c->input(i + num_partitions); if (!c->RankKnown(indices_shape)) { continue; } const int64_t indices_rank = c->Rank(indices_shape); ShapeHandle unused; TF_RETURN_IF_ERROR( c->MergePrefix(data_shape, indices_shape, &unused, &unused)); ShapeHandle rest; TF_RETURN_IF_ERROR(c->Subshape(data_shape, indices_rank, &rest)); TF_RETURN_IF_ERROR(c->Merge(extra_shape, rest, &extra_shape)); if (indices_t != nullptr) { const int32* indices = indices_t->flat<int32>().data(); int64_t count = indices_t->NumElements(); for (int64_t i = 0; i < count; ++i) { if (indices[i] > max_index) { max_index = indices[i]; } } } } ShapeHandle output_shape = c->Vector( all_indices_constant ? c->MakeDim(max_index + 1) : c->UnknownDim()); TF_RETURN_IF_ERROR(c->Concatenate(output_shape, extra_shape, &output_shape)); c->set_output(0, output_shape); return absl::OkStatus(); } } REGISTER_OP("DynamicStitch") .Input("indices: N * int32") .Input("data: N * T") .Output("merged: T") .Attr("N : int >= 1") .Attr("T : type") .SetShapeFn(DynamicStitchShapeFunction); REGISTER_OP("ParallelDynamicStitch") .Input("indices: N * int32") .Input("data: N * T") .Output("merged: T") .Attr("N : int >= 1") .Attr("T : type") .SetShapeFn(DynamicStitchShapeFunction); namespace { Status TwoElementVectorInputsAndScalarOutputs(InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_handle; for (int i = 0; i < c->num_inputs(); ++i) { TF_RETURN_IF_ERROR(c->WithRank(c->input(i), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_handle)); } for (int i = 0; i < c->num_outputs(); ++i) { c->set_output(i, c->Scalar()); } return absl::OkStatus(); } Status TwoElementOutput(InferenceContext* c) { c->set_output(0, c->Vector(2)); return absl::OkStatus(); } } REGISTER_OP("RandomShuffleQueue") .Output("handle: Ref(string)") .Attr("component_types: list(type) >= 1") .Attr("shapes: list(shape) >= 0 = []") .Attr("capacity: int = -1") .Attr("min_after_dequeue: int = 0") .Attr("seed: int = 0") .Attr("seed2: int = 0") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("RandomShuffleQueueV2") .Output("handle: resource") .Attr("component_types: list(type) >= 1") .Attr("shapes: list(shape) >= 0 = []") .Attr("capacity: int = -1") .Attr("min_after_dequeue: int = 0") .Attr("seed: int = 0") .Attr("seed2: int = 0") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("FIFOQueue") .Output("handle: Ref(string)") .Attr("component_types: list(type) >= 1") .Attr("shapes: list(shape) >= 0 = []") .Attr("capacity: int = -1") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("FIFOQueueV2") .Output("handle: resource") .Attr("component_types: list(type) >= 1") .Attr("shapes: list(shape) >= 0 = []") .Attr("capacity: int = -1") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("PaddingFIFOQueue") .Output("handle: Ref(string)") .Attr("component_types: list(type) >= 1") .Attr("shapes: list(shape) >= 0 = []") .Attr("capacity: int = -1") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("PaddingFIFOQueueV2") .Output("handle: resource") .Attr("component_types: list(type) >= 1") .Attr("shapes: list(shape) >= 0 = []") .Attr("capacity: int = -1") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("PriorityQueue") .Output("handle: Ref(string)") .Attr("component_types: list(type) >= 0 = []") .Attr("shapes: list(shape) >= 0") .Attr("capacity: int = -1") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("PriorityQueueV2") .Output("handle: resource") .Attr("component_types: list(type) >= 0 = []") .Attr("shapes: list(shape) >= 0") .Attr("capacity: int = -1") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("FakeQueue") .Input("resource: resource") .Output("handle: Ref(string)") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("QueueEnqueue") .Input("handle: Ref(string)") .Input("components: Tcomponents") .Attr("Tcomponents: list(type) >= 1") .Attr("timeout_ms: int = -1") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("QueueEnqueueV2") .Input("handle: resource") .Input("components: Tcomponents") .Attr("Tcomponents: list(type) >= 1") .Attr("timeout_ms: int = -1") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("QueueEnqueueMany") .Input("handle: Ref(string)") .Input("components: Tcomponents") .Attr("Tcomponents: list(type) >= 1") .Attr("timeout_ms: int = -1") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("QueueEnqueueManyV2") .Input("handle: resource") .Input("components: Tcomponents") .Attr("Tcomponents: list(type) >= 1") .Attr("timeout_ms: int = -1") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("QueueDequeue") .Input("handle: Ref(string)") .Output("components: component_types") .Attr("component_types: list(type) >= 1") .Attr("timeout_ms: int = -1") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("QueueDequeueV2") .Input("handle: resource") .Output("components: component_types") .Attr("component_types: list(type) >= 1") .Attr("timeout_ms: int = -1") .SetShapeFn([](InferenceContext* c) { auto* t = c->input_handle_shapes_and_types(0); if (t != nullptr && t->size() == c->num_outputs()) { for (int i = 0; i < c->num_outputs(); ++i) { c->set_output(i, (*t)[i].shape); } return absl::OkStatus(); } else { return shape_inference::UnknownShape(c); } }); REGISTER_OP("QueueDequeueMany") .Input("handle: Ref(string)") .Input("n: int32") .Output("components: component_types") .Attr("component_types: list(type) >= 1") .Attr("timeout_ms: int = -1") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("QueueDequeueManyV2") .Input("handle: resource") .Input("n: int32") .Output("components: component_types") .Attr("component_types: list(type) >= 1") .Attr("timeout_ms: int = -1") .SetShapeFn([](InferenceContext* c) { ShapeHandle n_shape; if (c->input_tensor(1) == nullptr) { n_shape = c->Vector(InferenceContext::kUnknownDim); } else { const int32_t n = c->input_tensor(1)->scalar<int32>()(); if (n < 0) { return errors::InvalidArgument("Input 'n' must be >= 0, but is ", n); } n_shape = c->Vector(n); } return DequeueManyV2Shape(c, n_shape); }); REGISTER_OP("QueueDequeueUpTo") .Input("handle: Ref(string)") .Input("n: int32") .Output("components: component_types") .Attr("component_types: list(type) >= 1") .Attr("timeout_ms: int = -1") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("QueueDequeueUpToV2") .Input("handle: resource") .Input("n: int32") .Output("components: component_types") .Attr("component_types: list(type) >= 1") .Attr("timeout_ms: int = -1") .SetShapeFn([](InferenceContext* c) { return DequeueManyV2Shape(c, c->Vector(InferenceContext::kUnknownDim)); }); REGISTER_OP("QueueClose") .Input("handle: Ref(string)") .SetShapeFn(TwoElementVectorInputsAndScalarOutputs) .Attr("cancel_pending_enqueues: bool = false"); REGISTER_OP("QueueCloseV2") .Input("handle: resource") .SetShapeFn(shape_inference::NoOutputs) .Attr("cancel_pending_enqueues: bool = false"); REGISTER_OP("QueueIsClosed") .Input("handle: Ref(string)") .Output("is_closed: bool") .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("QueueIsClosedV2") .Input("handle: resource") .Output("is_closed: bool") .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("QueueSize") .Input("handle: Ref(string)") .Output("size: int32") .SetShapeFn(TwoElementVectorInputsAndScalarOutputs); REGISTER_OP("QueueSizeV2") .Input("handle: resource") .Output("size: int32") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("AccumulatorNumAccumulated") .Input("handle: Ref(string)") .Output("num_accumulated: int32") .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("AccumulatorSetGlobalStep") .Input("handle: Ref(string)") .Input("new_global_step: int64") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); return absl::OkStatus(); }); REGISTER_OP("ConditionalAccumulator") .Output("handle: Ref(string)") .Attr("dtype: numbertype") .Attr("shape: shape") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("reduction_type: { 'MEAN', 'SUM' } = 'MEAN' ") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { c->set_output(0, c->Vector(2)); return absl::OkStatus(); }); REGISTER_OP("AccumulatorApplyGradient") .Input("handle: Ref(string)") .Input("local_step: int64") .Input("gradient: dtype") .Attr("dtype: numbertype") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); return absl::OkStatus(); }); REGISTER_OP("AccumulatorTakeGradient") .Input("handle: Ref(string)") .Input("num_required: int32") .Output("average: dtype") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); return shape_inference::UnknownShape(c); }) .Attr("dtype: numbertype"); REGISTER_OP("ResourceAccumulatorNumAccumulated") .Input("handle: resource") .Output("num_accumulated: int32") .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("ResourceAccumulatorSetGlobalStep") .Input("handle: resource") .Input("new_global_step: int64") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); return absl::OkStatus(); }); REGISTER_OP("ResourceConditionalAccumulator") .Output("handle: resource") .Attr("dtype: numbertype") .Attr("shape: shape") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("reduction_type: { 'MEAN', 'SUM' } = 'MEAN' ") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { c->set_output(0, c->Vector(2)); return absl::OkStatus(); }); REGISTER_OP("ResourceAccumulatorApplyGradient") .Input("handle: resource") .Input("local_step: int64") .Input("gradient: dtype") .Attr("dtype: numbertype") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); return absl::OkStatus(); }); REGISTER_OP("ResourceAccumulatorTakeGradient") .Input("handle: resource") .Input("num_required: int32") .Output("average: dtype") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); return shape_inference::UnknownShape(c); }) .Attr("dtype: numbertype"); REGISTER_OP("SparseConditionalAccumulator") .Output("handle: Ref(string)") .Attr("dtype: numbertype") .Attr("shape: shape") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("reduction_type: { 'MEAN', 'SUM' } = 'MEAN' ") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { c->set_output(0, c->Vector(2)); return absl::OkStatus(); }); REGISTER_OP("SparseAccumulatorApplyGradient") .Input("handle: Ref(string)") .Input("local_step: int64") .Input("gradient_indices: int64") .Input("gradient_values: dtype") .Input("gradient_shape: int64") .Attr("dtype: numbertype") .Attr("has_known_shape: bool") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); return absl::OkStatus(); }); REGISTER_OP("SparseAccumulatorTakeGradient") .Input("handle: Ref(string)") .Input("num_required: int32") .Output("indices: int64") .Output("values: dtype") .Output("shape: int64") .Attr("dtype: numbertype") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); return shape_inference::UnknownShape(c); }); REGISTER_OP("StackV2") .Input("max_size: int32") .Output("handle: resource") .Attr("elem_type: type") .Attr("stack_name: string = ''") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("StackPushV2") .Input("handle: resource") .Input("elem: T") .Output("output: T") .Attr("T: type") .Attr("swap_memory: bool = false") .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->input(1)); return absl::OkStatus(); }); REGISTER_OP("StackPopV2") .Input("handle: resource") .Output("elem: elem_type") .Attr("elem_type: type") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("StackCloseV2") .Input("handle: resource") .SetShapeFn(TwoElementVectorInputsAndScalarOutputs); REGISTER_OP("Stack") .Output("handle: Ref(string)") .Attr("elem_type: type") .Attr("stack_name: string = ''") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("StackPush") .Input("handle: Ref(string)") .Input("elem: T") .Output("output: T") .Attr("T: type") .Attr("swap_memory: bool = false") .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->input(1)); return absl::OkStatus(); }); REGISTER_OP("StackPop") .Input("handle: Ref(string)") .Output("elem: elem_type") .Attr("elem_type: type") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("StackClose") .Input("handle: Ref(string)") .SetShapeFn(TwoElementVectorInputsAndScalarOutputs); REGISTER_OP("TensorArrayV3") .Input("size: int32") .Attr("dtype: type") .Attr("element_shape: shape = { unknown_rank: true }") .Attr("dynamic_size: bool = false") .Attr("clear_after_read: bool = true") .Attr("identical_element_shapes: bool = false") .Attr("tensor_array_name: string = ''") .Output("handle: resource") .Output("flow: float") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &unused)); c->set_output(0, c->Vector(2)); c->set_output(1, c->Scalar()); bool identical_shapes; TF_RETURN_IF_ERROR( c->GetAttr("identical_element_shapes", &identical_shapes)); DataType t; TF_RETURN_IF_ERROR(c->GetAttr("dtype", &t)); PartialTensorShape p; TF_RETURN_IF_ERROR(c->GetAttr("element_shape", &p)); ShapeHandle s; TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(p, &s)); if (c->FullyDefined(s) || identical_shapes) { c->set_output_handle_shapes_and_types( 0, std::vector<shape_inference::ShapeAndType>{{s, t}}); } return absl::OkStatus(); }); REGISTER_OP("TensorArrayGradV3") .Input("handle: resource") .Input("flow_in: float") .Output("grad_handle: resource") .Output("flow_out: float") .Attr("source: string") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); c->set_output(0, c->Vector(2)); c->set_output(1, c->Scalar()); if (c->input_handle_shapes_and_types(0)) { c->set_output_handle_shapes_and_types( 0, *c->input_handle_shapes_and_types(0)); } return absl::OkStatus(); }); REGISTER_OP("TensorArrayGradWithShape") .Input("handle: resource") .Input("flow_in: float") .Input("shape_to_prepend: int32") .Output("grad_handle: resource") .Output("flow_out: float") .Attr("source: string") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); c->set_output(0, c->Vector(2)); c->set_output(1, c->Scalar()); auto* shape_and_type = c->input_handle_shapes_and_types(0); if (shape_and_type) { auto input_shape = (*shape_and_type)[0].shape; auto dtype = (*shape_and_type)[0].dtype; int64_t prepend_rank = c->Value(c->Dim(c->input(2), 0)); if (c->RankKnown(input_shape) && prepend_rank != InferenceContext::kUnknownDim) { int32_t input_rank = c->Rank(input_shape); std::vector<DimensionHandle> dims; dims.reserve(prepend_rank + input_rank); for (int i = 0; i < prepend_rank; ++i) { dims.push_back(c->UnknownDim()); } for (int i = 0; i < input_rank; ++i) { dims.push_back(c->Dim(input_shape, i)); } c->set_output_handle_shapes_and_types(0, {{c->MakeShape(dims), dtype}}); } else { c->set_output_handle_shapes_and_types(0, {{c->UnknownShape(), dtype}}); } } return absl::OkStatus(); }); REGISTER_OP("TensorArrayWriteV3") .Input("handle: resource") .Input("index: int32") .Input("value: T") .Input("flow_in: float") .Output("flow_out: float") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused)); auto* handle_data = c->input_handle_shapes_and_types(0); if (handle_data != nullptr && !handle_data->empty()) { shape_inference::ShapeAndType shape_and_type = (*handle_data)[0]; ShapeHandle value_shape = c->input(2); TF_RETURN_IF_ERROR( c->Merge(shape_and_type.shape, value_shape, &unused)); } return shape_inference::ScalarShape(c); }); REGISTER_OP("TensorArrayReadV3") .Input("handle: resource") .Input("index: int32") .Input("flow_in: float") .Output("value: dtype") .Attr("dtype: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused)); auto shapes = c->input_handle_shapes_and_types(0); if (shapes != nullptr && !shapes->empty()) { ShapeHandle tensor_shape = shapes->at(0).shape; c->set_output(0, tensor_shape); return absl::OkStatus(); } else { return shape_inference::UnknownShape(c); } }); REGISTER_OP("TensorArrayGatherV3") .Input("handle: resource") .Input("indices: int32") .Input("flow_in: float") .Output("value: dtype") .Attr("dtype: type") .Attr("element_shape: shape = { unknown_rank: true }") .SetShapeFn([](InferenceContext* c) { ShapeHandle indices; ShapeHandle unused; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &indices)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(0), 0), 2, &unused_dim)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused)); auto shapes = c->input_handle_shapes_and_types(0); if (shapes != nullptr && !shapes->empty()) { ShapeHandle tensor_shape = shapes->at(0).shape; ShapeHandle output_shape; TF_RETURN_IF_ERROR( c->Concatenate(indices, tensor_shape, &output_shape)); c->set_output(0, output_shape); return absl::OkStatus(); } else { PartialTensorShape p; TF_RETURN_IF_ERROR(c->GetAttr("element_shape", &p)); ShapeHandle s; TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(p, &s)); ShapeHandle output_shape; TF_RETURN_IF_ERROR(c->Concatenate(indices, s, &output_shape)); c->set_output(0, output_shape); return absl::OkStatus(); } }); REGISTER_OP("TensorArrayScatterV3") .Input("handle: resource") .Input("indices: int32") .Input("value: T") .Input("flow_in: float") .Output("flow_out: float") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle indices; ShapeHandle unused; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &indices)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(0), 0), 2, &unused_dim)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused)); ShapeHandle value_shape; TF_RETURN_IF_ERROR( c->MergePrefix(c->input(2), indices, &value_shape, &indices)); auto shapes = c->input_handle_shapes_and_types(0); if (shapes != nullptr && !shapes->empty()) { ShapeHandle tensor_shape = shapes->at(0).shape; ShapeHandle fed_shape; TF_RETURN_IF_ERROR(c->Subshape(value_shape, 1, &fed_shape)); TF_RETURN_IF_ERROR(c->Merge(tensor_shape, fed_shape, &fed_shape)); } return shape_inference::ScalarShape(c); }); REGISTER_OP("TensorArrayConcatV3") .Input("handle: resource") .Input("flow_in: float") .Output("value: dtype") .Output("lengths: int64") .Attr("dtype: type") .Attr("element_shape_except0: shape = { unknown_rank: true }") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); c->set_output(0, c->UnknownShape()); c->set_output(1, c->Vector(c->UnknownDim())); return absl::OkStatus(); }); REGISTER_OP("TensorArraySplitV3") .Input("handle: resource") .Input("value: T") .Input("lengths: int64") .Input("flow_in: float") .Output("flow_out: float") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused)); return shape_inference::ScalarShape(c); }); REGISTER_OP("TensorArraySizeV3") .Input("handle: resource") .Input("flow_in: float") .Output("size: int32") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); return shape_inference::ScalarShape(c); }); REGISTER_OP("TensorArrayCloseV3") .Input("handle: resource") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); return absl::OkStatus(); }); REGISTER_OP("TensorArray") .Input("size: int32") .Attr("dtype: type") .Attr("dynamic_size: bool = false") .Attr("clear_after_read: bool = true") .Attr("tensor_array_name: string = ''") .Attr("element_shape: shape = { unknown_rank: true }") .Output("handle: Ref(string)") .SetIsStateful() .SetShapeFn(shape_inference::UnknownShape) .Deprecated(16, "Use TensorArrayV3"); REGISTER_OP("TensorArrayV2") .Input("size: int32") .Attr("dtype: type") .Attr("element_shape: shape = { unknown_rank: true }") .Attr("dynamic_size: bool = false") .Attr("clear_after_read: bool = true") .Attr("tensor_array_name: string = ''") .Output("handle: string") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &unused)); c->set_output(0, c->Vector(2)); return absl::OkStatus(); }) .Deprecated(26, "Use TensorArrayV3"); REGISTER_OP("TensorArrayGrad") .Input("handle: string") .Input("flow_in: float") .Output("grad_handle: Ref(string)") .Attr("source: string") .SetIsStateful() .SetShapeFn(shape_inference::UnknownShape) .Deprecated(16, "Use TensorArrayGradV3"); REGISTER_OP("TensorArrayGradV2") .Input("handle: string") .Input("flow_in: float") .Output("grad_handle: string") .Attr("source: string") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); c->set_output(0, c->Vector(2)); return absl::OkStatus(); }) .Deprecated(26, "Use TensorArrayGradV3"); REGISTER_OP("TensorArrayWrite") .Input("handle: Ref(string)") .Input("index: int32") .Input("value: T") .Input("flow_in: float") .Output("flow_out: float") .Attr("T: type") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(16, "Use TensorArrayWriteV3"); REGISTER_OP("TensorArrayWriteV2") .Input("handle: string") .Input("index: int32") .Input("value: T") .Input("flow_in: float") .Output("flow_out: float") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused)); return shape_inference::ScalarShape(c); }) .Deprecated(26, "Use TensorArrayWriteV3"); REGISTER_OP("TensorArrayRead") .Input("handle: Ref(string)") .Input("index: int32") .Input("flow_in: float") .Output("value: dtype") .Attr("dtype: type") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(16, "Use TensorArrayReadV3"); REGISTER_OP("TensorArrayReadV2") .Input("handle: string") .Input("index: int32") .Input("flow_in: float") .Output("value: dtype") .Attr("dtype: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused)); return shape_inference::UnknownShape(c); }) .Deprecated(26, "Use TensorArrayReadV3"); REGISTER_OP("TensorArrayPack") .Input("handle: Ref(string)") .Input("flow_in: float") .Output("value: dtype") .Attr("dtype: type") .Attr("element_shape: shape = { unknown_rank: true }") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(16, "Use TensorArrayGatherV3 with RangeOp"); REGISTER_OP("TensorArrayUnpack") .Input("handle: Ref(string)") .Input("value: T") .Input("flow_in: float") .Output("flow_out: float") .Attr("T: type") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(20, "Use TensorArrayScatterV3 with RangeOp"); REGISTER_OP("TensorArrayGather") .Input("handle: Ref(string)") .Input("indices: int32") .Input("flow_in: float") .Output("value: dtype") .Attr("dtype: type") .Attr("element_shape: shape = { unknown_rank: true }") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(16, "Use TensorArrayGatherV3"); REGISTER_OP("TensorArrayGatherV2") .Input("handle: string") .Input("indices: int32") .Input("flow_in: float") .Output("value: dtype") .Attr("dtype: type") .Attr("element_shape: shape = { unknown_rank: true }") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(0), 0), 2, &unused_dim)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused)); return shape_inference::UnknownShape(c); }) .Deprecated(26, "Use TensorArrayGatherV3"); REGISTER_OP("TensorArrayScatter") .Input("handle: Ref(string)") .Input("indices: int32") .Input("value: T") .Input("flow_in: float") .Output("flow_out: float") .Attr("T: type") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(19, "Use TensorArrayGradV3"); REGISTER_OP("TensorArrayScatterV2") .Input("handle: string") .Input("indices: int32") .Input("value: T") .Input("flow_in: float") .Output("flow_out: float") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(0), 0), 2, &unused_dim)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused)); return shape_inference::ScalarShape(c); }) .Deprecated(26, "Use TensorArrayScatterV3"); REGISTER_OP("TensorArrayConcat") .Input("handle: Ref(string)") .Input("flow_in: float") .Output("value: dtype") .Output("lengths: int64") .Attr("dtype: type") .Attr("element_shape_except0: shape = { unknown_rank: true }") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(16, "Use TensorArrayGradV3"); REGISTER_OP("TensorArrayConcatV2") .Input("handle: string") .Input("flow_in: float") .Output("value: dtype") .Output("lengths: int64") .Attr("dtype: type") .Attr("element_shape_except0: shape = { unknown_rank: true }") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); c->set_output(0, c->UnknownShape()); c->set_output(1, c->Vector(c->UnknownDim())); return absl::OkStatus(); }); REGISTER_OP("TensorArraySplit") .Input("handle: Ref(string)") .Input("value: T") .Input("lengths: int64") .Input("flow_in: float") .Output("flow_out: float") .Attr("T: type") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(16, "Use TensorArraySplitV3"); REGISTER_OP("TensorArraySplitV2") .Input("handle: string") .Input("value: T") .Input("lengths: int64") .Input("flow_in: float") .Output("flow_out: float") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused)); return shape_inference::ScalarShape(c); }) .Deprecated(26, "Use TensorArraySplitV3"); REGISTER_OP("TensorArraySize") .Input("handle: Ref(string)") .Input("flow_in: float") .Output("size: int32") .SetShapeFn(shape_inference::UnknownShape) .Deprecated(16, "Use TensorArraySizeV3"); REGISTER_OP("TensorArraySizeV2") .Input("handle: string") .Input("flow_in: float") .Output("size: int32") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); return shape_inference::ScalarShape(c); }) .Deprecated(26, "Use TensorArraySizeV3"); REGISTER_OP("TensorArrayClose") .Input("handle: Ref(string)") .SetShapeFn([](InferenceContext* c) { return absl::OkStatus(); }) .Deprecated(16, "Use TensorArrayCloseV3"); REGISTER_OP("TensorArrayCloseV2") .Input("handle: string") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); return absl::OkStatus(); }) .Deprecated(26, "Use TensorArrayCloseV3"); REGISTER_OP("Barrier") .SetIsStateful() .Output("handle: Ref(string)") .Attr("component_types: list(type) >= 1") .Attr("shapes: list(shape) >= 0 = []") .Attr("capacity: int = -1") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(TwoElementOutput); REGISTER_OP("BarrierInsertMany") .Input("handle: Ref(string)") .Input("keys: string") .Input("values: T") .Attr("T: type") .Attr("component_index: int") .SetShapeFn([](InferenceContext* c) { ShapeHandle keys = c->input(1); ShapeHandle values = c->input(2); ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); TF_RETURN_IF_ERROR(c->WithRank(keys, 1, &keys)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(values, 1, &values)); TF_RETURN_IF_ERROR(c->Merge(keys, c->Vector(c->Dim(values, 0)), &handle)); return absl::OkStatus(); }); REGISTER_OP("BarrierTakeMany") .Input("handle: Ref(string)") .Input("num_elements: int32") .Output("indices: int64") .Output("keys: string") .Output("values: component_types") .Attr("component_types: list(type) >= 1") .Attr("allow_small_batch: bool = false") .Attr("wait_for_incomplete: bool = false") .Attr("timeout_ms: int = -1") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BarrierClose") .Input("handle: Ref(string)") .SetShapeFn(TwoElementVectorInputsAndScalarOutputs) .Attr("cancel_pending_enqueues: bool = false"); REGISTER_OP("BarrierReadySize") .Input("handle: Ref(string)") .Output("size: int32") .SetShapeFn(TwoElementVectorInputsAndScalarOutputs); REGISTER_OP("BarrierIncompleteSize") .Input("handle: Ref(string)") .Output("size: int32") .SetShapeFn(TwoElementVectorInputsAndScalarOutputs); REGISTER_OP("GetSessionHandle") .Input("value: T") .Output("handle: string") .Attr("T: type") .SetIsStateful() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("GetSessionHandleV2") .Input("value: T") .Output("handle: resource") .Attr("T: type") .SetIsStateful() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("GetSessionTensor") .Input("handle: string") .Output("value: dtype") .Attr("dtype: type") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &unused)); return shape_inference::UnknownShape(c); }); REGISTER_OP("DeleteSessionTensor") .Input("handle: string") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &unused)); return absl::OkStatus(); }); REGISTER_OP("Stage") .Input("values: dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(shape_inference::UnknownShape) .SetIsStateful(); REGISTER_OP("Unstage") .Output("values: dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(shape_inference::UnknownShape) .SetIsStateful(); REGISTER_OP("StagePeek") .Input("index: int32") .Output("values: dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(shape_inference::UnknownShape) .SetIsStateful(); REGISTER_OP("StageSize") .Output("size: int32") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(shape_inference::ScalarShape) .SetIsStateful(); REGISTER_OP("StageClear") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(shape_inference::UnknownShape) .SetIsStateful(); REGISTER_OP("MapStage") .Input("key: int64") .Input("indices: int32") .Input("values: fake_dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("fake_dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::NoOutputs) .SetIsStateful(); REGISTER_OP("MapPeek") .Input("key: int64") .Input("indices: int32") .Output("values: dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::UnknownShape) .SetIsStateful(); REGISTER_OP("MapUnstage") .Input("key: int64") .Input("indices: int32") .Output("values: dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::UnknownShape) .SetIsStateful(); REGISTER_OP("MapUnstageNoKey") .Input("indices: int32") .Output("key: int64") .Output("values: dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::UnknownShape) .SetIsStateful(); REGISTER_OP("MapSize") .Output("size: int32") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::ScalarShape) .SetIsStateful(); REGISTER_OP("MapIncompleteSize") .Output("size: int32") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::ScalarShape) .SetIsStateful(); REGISTER_OP("MapClear") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::NoOutputs) .SetIsStateful(); REGISTER_OP("OrderedMapStage") .Input("key: int64") .Input("indices: int32") .Input("values: fake_dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("fake_dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::NoOutputs) .SetIsStateful(); REGISTER_OP("OrderedMapPeek") .Input("key: int64") .Input("indices: int32") .Output("values: dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::UnknownShape) .SetIsStateful(); REGISTER_OP("OrderedMapUnstage") .Input("key: int64") .Input("indices: int32") .Output("values: dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::UnknownShape) .SetIsStateful(); REGISTER_OP("OrderedMapUnstageNoKey") .Input("indices: int32") .Output("key: int64") .Output("values: dtypes") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::UnknownShape) .SetIsStateful(); REGISTER_OP("OrderedMapSize") .Output("size: int32") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::ScalarShape) .SetIsStateful(); REGISTER_OP("OrderedMapIncompleteSize") .Output("size: int32") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::ScalarShape) .SetIsStateful(); REGISTER_OP("OrderedMapClear") .Attr("capacity: int >= 0 = 0") .Attr("memory_limit: int >= 0 = 0") .Attr("dtypes: list(type)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetShapeFn(tensorflow::shape_inference::NoOutputs) .SetIsStateful(); REGISTER_OP("RecordInput") .Output("records: string") .Attr("file_pattern: string") .Attr("file_random_seed: int = 301") .Attr("file_shuffle_shift_ratio: float = 0") .Attr("file_buffer_size: int = 10000") .Attr("file_parallelism: int = 16") .Attr("batch_size: int = 32") .Attr("compression_type: string = ''") .SetIsStateful() .SetShapeFn(shape_inference::UnknownShape); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(DataFlowOpsTest, LookupTableFind) { ShapeInferenceTestOp op("LookupTableFind"); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[2];[];[]", "?"); INFER_OK(op, "[?];[1,2,3];[]", "?"); INFER_ERROR("Shape must be at most rank 1 but is rank 2", op, "[?];[1,2,3];[1,2]"); } TEST(DataFlowOpsTest, LookupTableInsert) { ShapeInferenceTestOp op("LookupTableInsert"); INFER_OK(op, "?;?;?", ""); INFER_OK(op, "[2];[];[]", ""); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];[1,2,3];[]"); INFER_OK(op, "[2];[1,?,3];[?,2,?]", ""); } TEST(DataFlowOpsTest, LookupTableSize) { ShapeInferenceTestOp op("LookupTableSize"); INFER_OK(op, "?", "[]"); INFER_OK(op, "[2]", "[]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[]"); INFER_ERROR("Dimension must be 2 but is 3", op, "[3]"); } TEST(DataFlowOpsTest, LookupTableExport) { ShapeInferenceTestOp op("LookupTableExport"); INFER_OK(op, "?", "[?];?"); INFER_OK(op, "[2]", "[?];?"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[]"); } TEST(DataFlowOpsTest, InitializeTable) { ShapeInferenceTestOp op("InitializeTable"); INFER_OK(op, "?;?;?", ""); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];[];[]"); INFER_ERROR("Dimension 0 in both shapes must be equal, but are 1 and 2", op, "?;[1];[2]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[2];[1,2];[1,2]"); } TEST(DataFlowOpsTest, InitializeTableFromTextFile) { ShapeInferenceTestOp op("InitializeTableFromTextFile"); INFER_OK(op, "?;?", ""); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[2];[1]"); } TEST(DataFlowOpsTest, DynamicPartition) { ShapeInferenceTestOp op("DynamicPartition"); TF_ASSERT_OK(NodeDefBuilder("test", "DynamicPartition") .Input("data", 0, DT_FLOAT_REF) .Input("indices", 0, DT_INT32) .Attr("num_partitions", 4) .Finalize(&op.node_def)); INFER_OK(op, "?;?", "?;?;?;?"); INFER_OK(op, "[3,4,5];[3,4]", "[?,d0_2];[?,d0_2];[?,d0_2];[?,d0_2]"); TF_ASSERT_OK(NodeDefBuilder("test", "DynamicPartition") .Input("data", 0, DT_FLOAT) .Input("indices", 0, DT_INT32) .Attr("num_partitions", 2) .Finalize(&op.node_def)); INFER_OK(op, "[3,4,5,6];[3,4]", "[?,d0_2,d0_3];[?,d0_2,d0_3]"); INFER_ERROR("Dimensions must be equal, but are 4 and 100", op, "[3,4,5];[3,100]"); } TEST(DataFlowOpsTest, DynamicStitch) { ShapeInferenceTestOp op("DynamicStitch"); TF_ASSERT_OK( NodeDefBuilder("test", "DynamicStitch") .Input({{"indices", 0, DT_INT32}, {"indices_2", 1, DT_INT32}}) .Input({{"data", 0, DT_FLOAT}, {"data_2", 1, DT_FLOAT}}) .Attr("N", 2) .Finalize(&op.node_def)); INFER_ERROR("Dimensions must be equal, but are 10 and 5", op, "[2,3];[5,6];[2,3,4,5];[10,11,4,5]"); INFER_ERROR("Dimension 0 in both shapes must be equal, but are 4 and 13", op, "[2,3];[5,6];[2,3,4,5];[5,6,13,14]"); INFER_OK(op, "[2,3];[5,6];[2,3,4,5];[5,6,4,5]", "[?,d2_2,d2_3]"); Tensor tensor_2 = test::AsTensor<int32>( std::vector<int32>{2, 4, 6, 0, 10, 11}, TensorShape({2, 3})); Tensor tensor_5 = test::AsTensor<int32>( std::vector<int32>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1000, 21, 22, 23, 24, 25, 26, 27, 28, 29}, TensorShape({5, 6})); op.input_tensors.push_back(nullptr); op.input_tensors.push_back(&tensor_5); INFER_OK(op, "[2,3];[5,6];[2,3,4,5];[5,6,4,5]", "[?,d2_2,d2_3]"); op.input_tensors[0] = &tensor_2; op.input_tensors[1] = nullptr; INFER_OK(op, "[2,3];[5,6];[2,3,4,5];[5,6,4,5]", "[?,d2_2,d2_3]"); INFER_OK(op, "[2,3];?;[2,3,4,5];[5,6,4,5]", "[?,d2_2,d2_3]"); op.input_tensors[1] = &tensor_5; INFER_OK(op, "[2,3];[5,6];[2,3,4,5];[5,6,4,5]", "[1001,d2_2,d2_3]"); tensor_2.flat<int32>()(3) = 10000; INFER_OK(op, "[2,3];[5,6];[2,3,4,5];[5,6,4,5]", "[10001,d2_2,d2_3]"); } TEST(DataFlowOpsTest, ParallelDynamicStitch) { ShapeInferenceTestOp op("ParallelDynamicStitch"); TF_ASSERT_OK( NodeDefBuilder("test", "ParallelDynamicStitch") .Input({{"indices", 0, DT_INT32}, {"indices_2", 1, DT_INT32}}) .Input({{"data", 0, DT_FLOAT}, {"data_2", 1, DT_FLOAT}}) .Attr("N", 2) .Finalize(&op.node_def)); INFER_OK(op, "[2,3];[5,6];[2,3,4,5];[5,6,4,5]", "[?,d2_2,d2_3]"); INFER_ERROR("Dimensions must be equal, but are 10 and 5", op, "[2,3];[5,6];[2,3,4,5];[10,11,4,5]"); INFER_ERROR("Dimension 0 in both shapes must be equal, but are 4 and 13", op, "[2,3];[5,6];[2,3,4,5];[5,6,13,14]"); } TEST(DataFlowOpsTest, TensorArrayV3) { ShapeInferenceTestOp op("TensorArrayV3"); TF_ASSERT_OK(NodeDefBuilder("test", "TensorArrayV3") .Input({"size", 0, DT_INT32}) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "[]", "[2];[]"); INFER_OK(op, "?", "[2];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[2]"); } TEST(DataFlowOpsTest, QueueDequeueV2ShapeFn) { ShapeInferenceTestOp op("QueueDequeueV2"); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input("handle", 0, DT_RESOURCE) .Attr("component_types", {DT_FLOAT, DT_INT32}) .Finalize(&op.node_def)); INFER_OK(op, "?", "?;?"); std::vector<ShapeInferenceTestOp::ShapeAndType> shapes_and_types; op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); INFER_OK(op, "?", "?;?"); shapes_and_types.emplace_back("[1,?,3]", DT_FLOAT); INFER_OK(op, "?", "?;?"); shapes_and_types.emplace_back("[?,2]", DT_FLOAT); INFER_OK(op, "?", "[1,?,3];[?,2]"); } TEST(DataFlowOpsTest, QueueDequeueManyV2ShapeFn) { ShapeInferenceTestOp op("QueueDequeueManyV2"); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input("handle", 0, DT_RESOURCE) .Input("n", 0, DT_INT32) .Attr("component_types", {DT_FLOAT, DT_INT32}) .Finalize(&op.node_def)); INFER_OK(op, "?;?", "?;?"); std::vector<ShapeInferenceTestOp::ShapeAndType> shapes_and_types; op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(nullptr); shapes_and_types.emplace_back("[1,?,3]", DT_FLOAT); INFER_OK(op, "?;?", "?;?"); shapes_and_types.emplace_back("[?,2]", DT_FLOAT); INFER_OK(op, "?;?", "[?,1,?,3];[?,?,2]"); Tensor n_tensor = test::AsScalar(12); op.input_tensors.push_back(nullptr); op.input_tensors.push_back(&n_tensor); op.input_resource_handle_shapes_and_types.clear(); shapes_and_types.clear(); INFER_OK(op, "?;?", "?;?"); op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(nullptr); shapes_and_types.emplace_back("[1,?,3]", DT_FLOAT); INFER_OK(op, "?;?", "?;?"); shapes_and_types.emplace_back("[?,2]", DT_FLOAT); INFER_OK(op, "?;?", "[12,1,?,3];[12,?,2]"); n_tensor = test::AsScalar<int32>(-1); INFER_ERROR("must be >= 0", op, "?;?"); } TEST(DataFlowOpsTest, QueueDequeueUpToV2ShapeFn) { for (int pass = 0; pass < 2; ++pass) { ShapeInferenceTestOp op("QueueDequeueUpToV2"); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input("handle", 0, DT_RESOURCE) .Input("n", 0, DT_INT32) .Attr("component_types", {DT_FLOAT, DT_INT32}) .Finalize(&op.node_def)); Tensor n_tensor = test::AsScalar(12); if (pass == 1) { op.input_tensors.push_back(nullptr); op.input_tensors.push_back(&n_tensor); } INFER_OK(op, "?;?", "?;?"); std::vector<ShapeInferenceTestOp::ShapeAndType> shapes_and_types; op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(nullptr); shapes_and_types.emplace_back("[1,?,3]", DT_FLOAT); INFER_OK(op, "?;?", "?;?"); shapes_and_types.emplace_back("[?,2]", DT_FLOAT); INFER_OK(op, "?;?", "[?,1,?,3];[?,?,2]"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/data_flow_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/data_flow_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9d01d5a6-3afb-4951-8c70-dc57dad14950
cpp
tensorflow/tensorflow
nn_grad
tensorflow/c/experimental/gradients/nn_grad.cc
tensorflow/c/experimental/gradients/nn_grad_test.cc
#include "tensorflow/c/experimental/gradients/nn_grad.h" #include "absl/types/span.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/immediate_execution_context.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "tensorflow/c/experimental/ops/array_ops.h" #include "tensorflow/c/experimental/ops/math_ops.h" #include "tensorflow/c/experimental/ops/nn_ops.h" #include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h" #include "tensorflow/core/platform/errors.h" using std::vector; using tensorflow::ops::BiasAddGrad; using tensorflow::ops::ReluGrad; namespace tensorflow { namespace gradients { namespace { class ReluGradientFunction : public GradientFunction { public: explicit ReluGradientFunction(vector<AbstractTensorHandle*> f_outputs) : forward_outputs_(f_outputs) { for (auto output : forward_outputs_) { if (output) { output->Ref(); } } } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* upstream_grad = grad_outputs[0]; AbstractTensorHandle* activations = forward_outputs_[0]; std::string name = "relu_grad"; TF_RETURN_IF_ERROR(ReluGrad(ctx, upstream_grad, activations, &grad_inputs[0], name.c_str())); return absl::OkStatus(); } ~ReluGradientFunction() override { for (auto output : forward_outputs_) { if (output) { output->Unref(); } } } private: vector<AbstractTensorHandle*> forward_outputs_; }; Status BroadcastMul(AbstractContext* ctx, AbstractTensorHandle* vec, AbstractTensorHandle* mat, absl::Span<AbstractTensorHandle*> outputs) { if (!isa<ImmediateExecutionContext>(ctx)) { return errors::Unimplemented( "BroadcastMul is not supported in tracing mode yet."); } auto imm_ctx = dyn_cast<ImmediateExecutionContext>(ctx); AbstractTensorPtr minus_1(imm_ctx->CreateInt32Scalar(-1)); ImmediateTensorHandlePtr dim(imm_ctx->CreateLocalHandle(minus_1.get())); AbstractTensorHandle* expand_dims_outputs; TF_RETURN_IF_ERROR( ops::ExpandDims(ctx, vec, dim.get(), &expand_dims_outputs, "ExpandDims")); TF_RETURN_IF_ERROR( ops::Mul(ctx, expand_dims_outputs, mat, &outputs[0], "Mul")); expand_dims_outputs->Unref(); return absl::OkStatus(); } class SparseSoftmaxCrossEntropyWithLogitsGradientFunction : public GradientFunction { public: explicit SparseSoftmaxCrossEntropyWithLogitsGradientFunction( vector<AbstractTensorHandle*> f_outputs) : forward_outputs_(f_outputs) {} Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { TF_RETURN_IF_ERROR(BroadcastMul( ctx, grad_outputs[0], forward_outputs_[1], grad_inputs.subspan(0, 1))); grad_inputs[1] = nullptr; return absl::OkStatus(); } ~SparseSoftmaxCrossEntropyWithLogitsGradientFunction() override {} private: vector<AbstractTensorHandle*> forward_outputs_; }; class BiasAddGradientFunction : public GradientFunction { public: explicit BiasAddGradientFunction(AttrBuilder f_attrs) : forward_attrs_(f_attrs) {} Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* upstream_grad = grad_outputs[0]; DCHECK(upstream_grad); std::string data_format; TF_RETURN_IF_ERROR(forward_attrs_.Get("data_format", &data_format)); grad_inputs[0] = upstream_grad; grad_inputs[0]->Ref(); std::string name = "bias_add_grad"; TF_RETURN_IF_ERROR(BiasAddGrad(ctx, upstream_grad, &grad_inputs[1], data_format.c_str(), name.c_str())); return absl::OkStatus(); } ~BiasAddGradientFunction() override {} private: AttrBuilder forward_attrs_; }; } GradientFunction* ReluRegisterer(const ForwardOperation& op) { return new ReluGradientFunction(op.outputs); } GradientFunction* SparseSoftmaxCrossEntropyWithLogitsRegisterer( const ForwardOperation& op) { return new SparseSoftmaxCrossEntropyWithLogitsGradientFunction(op.outputs); } GradientFunction* BiasAddRegisterer(const ForwardOperation& op) { return new BiasAddGradientFunction(op.attrs); } } }
#include "tensorflow/c/experimental/gradients/nn_grad.h" #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/c/eager/unified_api_testutil.h" #include "tensorflow/c/experimental/gradients/grad_test_helper.h" #include "tensorflow/c/experimental/gradients/tape/tape_context.h" #include "tensorflow/c/experimental/ops/nn_ops.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/platform/tensor_float_32_utils.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace gradients { namespace internal { namespace { using tensorflow::TF_StatusPtr; Status ReluModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Relu(ctx, inputs[0], &outputs[0], "Relu"); } Status SparseSoftmaxCrossEntropyWithLogitsModel( AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { AbstractTensorHandle* loss; AbstractTensorHandle* backprop; TF_RETURN_IF_ERROR(ops::SparseSoftmaxCrossEntropyWithLogits( ctx, inputs[0], inputs[1], &loss, &backprop, "SparseSoftmaxCrossEntropyWithLogits")); outputs[0] = loss; backprop->Unref(); return absl::OkStatus(); } Status BiasAddModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::BiasAdd(ctx, inputs[0], inputs[1], &outputs[0], "NHWC", "BiasAdd"); } class CppGradients : public ::testing::TestWithParam<std::tuple<const char*, bool, bool>> { protected: void SetUp() override { TF_StatusPtr status(TF_NewStatus()); TF_SetTracingImplementation(std::get<0>(GetParam()), status.get()); status_ = StatusFromTF_Status(status.get()); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); { AbstractContext* ctx_raw = nullptr; status_ = BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); immediate_execution_ctx_.reset(ctx_raw); } enable_tensor_float_32_execution(false); } AbstractContextPtr immediate_execution_ctx_; GradientRegistry registry_; Status status_; public: bool UseMlir() const { return strcmp(std::get<0>(GetParam()), "mlir") == 0; } bool UseFunction() const { return std::get<2>(GetParam()); } }; TEST_P(CppGradients, TestReluGrad) { status_ = registry_.Register("Relu", ReluRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); auto ReluGradModel = BuildGradModel(ReluModel, registry_); float X_vals[] = {1.0f, 2.0f, 3.0f, -5.0f, -4.0f, -3.0f, 2.0f, 10.0f, -1.0f}; int64_t X_dims[] = {3, 3}; AbstractTensorHandlePtr X; { AbstractTensorHandle* X_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), X_vals, X_dims, 2, &X_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); X.reset(X_raw); } ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( ReluModel, ReluGradModel, immediate_execution_ctx_.get(), {X.get()}, UseFunction())); AbstractTensorHandlePtr Y; { AbstractTensorHandle* Y_raw; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 0.0f, &Y_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); Y.reset(Y_raw); } std::vector<AbstractTensorHandle*> outputs(1); status_ = RunModel(ReluGradModel, immediate_execution_ctx_.get(), {Y.get()}, absl::MakeSpan(outputs), UseFunction()); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[0], {0.0f}, {}, 0)); outputs[0]->Unref(); } TEST_P(CppGradients, TestSparseSoftmaxCrossEntropyWithLogitsGrad) { if (UseFunction()) { GTEST_SKIP() << "Can't take gradient of " "SparseSoftmaxCrossEntropyWithLogits in tracing mode."; } float X_vals[] = {1.0f, 2.0f, 3.0f, -5.0f, -4.0f, -3.0f, 2.0f, 0.0f, -1.0f}; int64_t X_dims[] = {3, 3}; AbstractTensorHandlePtr X; { AbstractTensorHandle* X_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), X_vals, X_dims, 2, &X_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); X.reset(X_raw); } int32_t Y_vals[] = {1, 0, 1}; int64_t Y_dims[] = {3}; AbstractTensorHandlePtr Y; { AbstractTensorHandle* Y_raw; status_ = TestTensorHandleWithDims<int32_t, TF_INT32>( immediate_execution_ctx_.get(), Y_vals, Y_dims, 1, &Y_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); Y.reset(Y_raw); } status_ = registry_.Register("SparseSoftmaxCrossEntropyWithLogits", SparseSoftmaxCrossEntropyWithLogitsRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( SparseSoftmaxCrossEntropyWithLogitsModel, BuildGradModel(SparseSoftmaxCrossEntropyWithLogitsModel, registry_), immediate_execution_ctx_.get(), {X.get(), Y.get()}, UseFunction())); } TEST_P(CppGradients, TestBiasAddGrad) { if (UseFunction() && UseMlir()) { GTEST_SKIP() << "SetAttrString has not been implemented yet.\n"; } float A_vals[] = {1.0f, 2.0f, 3.0f, 4.0f}; int64_t A_dims[] = {2, 2}; AbstractTensorHandlePtr A; { AbstractTensorHandle* A_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), A_vals, A_dims, 2, &A_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); A.reset(A_raw); } float Bias_vals[] = {2.0f, 3.0f}; int64_t Bias_dims[] = {2}; AbstractTensorHandlePtr Bias; { AbstractTensorHandle* Bias_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), Bias_vals, Bias_dims, 1, &Bias_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); Bias.reset(Bias_raw); } status_ = registry_.Register("BiasAdd", BiasAddRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( BiasAddModel, BuildGradModel(BiasAddModel, registry_), immediate_execution_ctx_.get(), {A.get(), Bias.get()}, UseFunction())); } #ifdef PLATFORM_GOOGLE INSTANTIATE_TEST_SUITE_P( UnifiedCAPI, CppGradients, ::testing::Combine(::testing::Values("graphdef", "mlir"), ::testing::Values(false), ::testing::Values(true, false))); #else INSTANTIATE_TEST_SUITE_P( UnifiedCAPI, CppGradients, ::testing::Combine(::testing::Values("graphdef", "mlir"), ::testing::Values(false), ::testing::Values(true, false))); #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/gradients/nn_grad.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/gradients/nn_grad_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f04a7bc0-66d1-4061-a1dd-c9111cff0a3a
cpp
tensorflow/tensorflow
tfprof_tensor
tensorflow/core/profiler/internal/tfprof_tensor.cc
tensorflow/core/profiler/internal/tfprof_tensor_test.cc
#include "tensorflow/core/profiler/internal/tfprof_tensor.h" #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" namespace tensorflow { namespace tfprof { void TFProfTensor::Display(string* formatted_str, TFProfTensorProto* tfprof_tensor_pb) { if (formatted_str) { if (formatted_str_.length() >= kTFProfTenosrMaxDisplayLen) { *formatted_str = absl::StrCat(formatted_str_, "...omitted from display\n\n"); } else { *formatted_str = formatted_str_; } } if (tfprof_tensor_pb) { tfprof_tensor_pb->MergeFrom(tfprof_tensor_pb_); } } void TFProfTensor::Build() { tfprof_tensor_pb_.set_dtype(tensor_->dtype()); switch (tensor_->dtype()) { case DataType::DT_FLOAT: case DataType::DT_DOUBLE: { std::vector<double> values_vec; if (tensor_->dtype() == DataType::DT_FLOAT) { GetValueVec<float, double>(&values_vec); } else if (tensor_->dtype() == DataType::DT_DOUBLE) { GetValueVec<double, double>(&values_vec); } BuildOutput<double>(0, 0, values_vec, &tfprof_tensor_pb_); break; } case DataType::DT_INT32: case DataType::DT_INT64: { std::vector<int64_t> values_vec; if (tensor_->dtype() == DataType::DT_INT32) { GetValueVec<int32, int64_t>(&values_vec); } else if (tensor_->dtype() == DataType::DT_INT64) { GetValueVec<int64_t, int64_t>(&values_vec); } BuildOutput<int64_t>(0, 0, values_vec, &tfprof_tensor_pb_); break; } case DataType::DT_STRING: { std::vector<tstring> values_vec; GetValueVec<tstring, tstring>(&values_vec); BuildOutput<tstring>(0, 0, values_vec, &tfprof_tensor_pb_); break; } default: { absl::FPrintF(stderr, "Not Supported type %d\n", tensor_->dtype()); break; } } } } }
#include <memory> #include <utility> #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/internal/tfprof_stats.h" #include "tensorflow/core/profiler/internal/tfprof_utils.h" #include "tensorflow/core/profiler/tfprof_log.pb.h" #include "tensorflow/core/profiler/tfprof_options.h" #include "tensorflow/core/profiler/tfprof_output.pb.h" namespace tensorflow { namespace tfprof { class TFProfTensorTest : public ::testing::Test { protected: TFProfTensorTest() { string graph_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/graph.pbtxt"); std::unique_ptr<tensorflow::GraphDef> graph_pb(new tensorflow::GraphDef()); TF_CHECK_OK( ReadProtoFile(Env::Default(), graph_path, graph_pb.get(), false)); std::unique_ptr<tensorflow::RunMetadata> run_meta_pb; std::unique_ptr<OpLogProto> op_log_pb; string ckpt_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/ckpt"); TF_Status* status = TF_NewStatus(); std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader( new checkpoint::CheckpointReader(ckpt_path, status)); CHECK(TF_GetCode(status) == TF_OK); TF_DeleteStatus(status); tf_stats_ = std::make_unique<TFStats>(std::move(graph_pb), std::move(run_meta_pb), std::move(op_log_pb), std::move(ckpt_reader)); tf_stats_->BuildAllViews(); } std::unique_ptr<TFStats> tf_stats_; }; TEST_F(TFProfTensorTest, Basics) { Options opts(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, "name", {"VariableV2"}, {".*"}, {""}, {".*"}, {""}, false, {"tensor_value"}, "", {}); const GraphNodeProto& root = tf_stats_->ShowGraphNode("scope", opts); EXPECT_EQ(root.children(0).name(), "DW"); EXPECT_GT(root.children(0).tensor_value().value_double_size(), 10); EXPECT_EQ(root.children(1).name(), "DW2"); EXPECT_GT(root.children(1).tensor_value().value_double_size(), 10); EXPECT_EQ(root.children(2).name(), "ScalarW"); EXPECT_EQ(root.children(2).tensor_value().value_double_size(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/tfprof_tensor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/tfprof_tensor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b0170513-7b26-44f8-8167-99ac87528589
cpp
tensorflow/tensorflow
tfprof_stats
tensorflow/core/profiler/internal/tfprof_stats.cc
tensorflow/core/profiler/internal/tfprof_stats_test.cc
#include "tensorflow/core/profiler/internal/tfprof_stats.h" #include <stdio.h> #include <map> #include <memory> #include <utility> #include <vector> #include "absl/strings/numbers.h" #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "tensorflow/core/platform/regexp.h" #include "tensorflow/core/profiler/internal/tfprof_timeline.h" namespace tensorflow { namespace tfprof { namespace { const char* const kProfilePrefix = "Profile:\n"; bool CreateRunMetadataNode(const string& name, NodeDef* def) { if (name == "RecvTensor" || name == "_SOURCE" || name.find("MEMCPY") != name.npos) { return false; } def->set_name(name); def->set_op(name); return true; } } TFStats::TFStats(std::unique_ptr<GraphDef> graph, std::unique_ptr<RunMetadata> run_meta, std::unique_ptr<OpLogProto> op_log, std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader) : has_code_traces_(false), miss_accelerator_stream_(false), ckpt_reader_(std::move(ckpt_reader)) { CHECK(graph) << "Must at least have GraphDef"; AddGraph(std::move(graph)); if (run_meta && run_meta->has_step_stats()) { AddRunMeta(0, std::move(run_meta)); } AddOpLogProto(std::move(op_log)); if (ckpt_reader_) { for (const auto& v : ckpt_reader_->GetVariableToShapeMap()) { auto node = nodes_map_.find(v.first); if (node != nodes_map_.end()) { node->second->AddOpType("_checkpoint_variables"); } } } } TFStats::TFStats(const string& filename, std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader) : has_code_traces_(false), miss_accelerator_stream_(false), ckpt_reader_(std::move(ckpt_reader)) { string str; Status s = ReadFileToString(Env::Default(), filename, &str); if (!s.ok()) { absl::FPrintF(stderr, "Failed to read profile: %s", s.ToString()); return; } ProfileProto profile; if (!profile.ParseFromString(str)) { absl::FPrintF(stderr, "Failed to parse profile\n"); return; } for (const auto& entry : profile.id_to_string()) { id_to_string_[entry.first] = entry.second; } for (const auto& node_pb : profile.nodes()) { std::unique_ptr<TFGraphNode> node( new TFGraphNode(node_pb.second, profile, &id_to_string_, &nodes_map_)); nodes_map_.insert(std::pair<string, std::unique_ptr<TFGraphNode>>( node_pb.second.name(), std::move(node))); } has_code_traces_ = profile.has_trace(); for (int64_t s : profile.steps()) { steps_.insert(s); } } void TFStats::BuildView(const string& cmd) { if (cmd == kCmds[0] && !scope_view_) { scope_view_ = std::make_unique<TFScope>(ckpt_reader_.get()); for (auto it = nodes_map_.begin(); it != nodes_map_.end(); it++) { scope_view_->AddNode(it->second.get()); } scope_view_->Build(); } if (cmd == kCmds[1] && !graph_view_) { graph_view_ = std::make_unique<TFGraph>(ckpt_reader_.get()); for (auto it = nodes_map_.begin(); it != nodes_map_.end(); it++) { graph_view_->AddNode(it->second.get()); } graph_view_->Build(); } if (cmd == kCmds[2] && !code_view_) { code_view_ = std::make_unique<TFCode>(); for (auto it = nodes_map_.begin(); it != nodes_map_.end(); it++) { code_view_->AddNode(it->second.get()); } code_view_->Build(); } if (cmd == kCmds[3] && !op_view_) { op_view_ = std::make_unique<TFOp>(); for (auto it = nodes_map_.begin(); it != nodes_map_.end(); it++) { op_view_->AddNode(it->second.get()); } op_view_->Build(); } } void TFStats::BuildAllViews() { std::vector<string> cmds_str(kCmds, kCmds + sizeof(kCmds) / sizeof(*kCmds)); for (const string& cmd : cmds_str) { BuildView(cmd); } } const GraphNodeProto& TFStats::ShowGraphNode(const string& cmd, const Options& opts) const { if (!Validate(opts)) { return empty_graph_node_; } string prefix = MaybeReportMissingTrace(); prefix += QueryDoc(cmd, opts) + kProfilePrefix; if (cmd == kCmds[0]) { return scope_view_->Show(prefix, opts); } else if (cmd == kCmds[1]) { if (opts.step < 0 && opts.output_type == kOutput[0]) { for (int64_t step : steps_) { Options nopts = opts; nopts.step = step; graph_view_->Show(prefix, nopts); } return empty_graph_node_; } return graph_view_->Show(prefix, opts); } else { absl::FPrintF(stderr, "Unknown command: %s\n", cmd); return empty_graph_node_; } } const MultiGraphNodeProto& TFStats::ShowMultiGraphNode( const string& cmd, const Options& opts) const { if (!Validate(opts)) { return empty_multi_graph_node_; } string prefix = MaybeReportMissingTrace(); prefix += QueryDoc(cmd, opts) + kProfilePrefix; if (cmd == kCmds[2]) { if (!has_code_traces()) { absl::FPrintF(stderr, "No code trace information\n"); return empty_multi_graph_node_; } return code_view_->Show(prefix, opts); } else if (cmd == kCmds[3]) { return op_view_->Show(prefix, opts); } else { absl::FPrintF(stderr, "Unknown command: %s\n", cmd); return empty_multi_graph_node_; } } void TFStats::AddGraph(std::unique_ptr<GraphDef> graph) { std::map<string, const NodeDef*> node_defs; bool node_added = false; for (const NodeDef& node : graph->node()) { if (nodes_map_.find(node.name()) != nodes_map_.end()) { continue; } node_added = true; size_t num_nodes = nodes_map_.size(); nodes_map_[node.name()] = std::make_unique<TFGraphNode>(&node, num_nodes, &nodes_map_); node_defs[node.name()] = &node; } for (auto it = node_defs.begin(); it != node_defs.end(); it++) { TFGraphNode* node = nodes_map_.at(it->first).get(); for (int i = 0; i < it->second->input_size(); ++i) { string node_input = it->second->input(i); int output_idx = 0; auto prefix_pos = node_input.find(':'); if (prefix_pos != node_input.npos) { std::vector<string> input_parts = absl::StrSplit(node_input, ':'); DCHECK(input_parts.size() == 2) << "Unknown NodeDef.input format: " << node_input; node_input = input_parts[0]; DCHECK(absl::SimpleAtoi(input_parts[1], &output_idx)) << "Failed to parse integer: " << output_idx; } if (node_input.substr(0, 1) == "^") { node_input = node_input.substr(1); } node->AddInput(node_input, output_idx, i); } } if (node_added) { graph_view_.reset(nullptr); scope_view_.reset(nullptr); op_view_.reset(nullptr); code_view_.reset(nullptr); } } void TFStats::AddOpLogProto(std::unique_ptr<OpLogProto> op_log) { if (!op_log) { return; } for (const auto& entry : op_log->id_to_string()) { if (id_to_string_.find(entry.first) == id_to_string_.end()) { id_to_string_[entry.first] = entry.second; } } for (const OpLogEntry& entry : op_log->log_entries()) { auto node = nodes_map_.find(entry.name()); if (node == nodes_map_.end()) continue; for (const string& type : entry.types()) { node->second->AddOpType(type); } if (entry.float_ops()) { node->second->AddFloatOps(entry.float_ops()); } if (entry.has_code_def()) { has_code_traces_ = true; node->second->AddCode(entry.code_def(), &id_to_string_); } } } void TFStats::AddRunMeta(int64_t step, std::unique_ptr<RunMetadata> run_meta) { if (!run_meta || !run_meta->has_step_stats()) { absl::FPrintF(stderr, "Invalid RunMetadata for step %d\n", step); return; } if (steps_.find(step) == steps_.end()) { steps_.insert(step); } steps_.insert(step); bool has_gpu_scheduling = false; bool has_gpu_stream = false; for (const auto& dev_stat : run_meta->step_stats().dev_stats()) { string dev = absl::AsciiStrToLower(dev_stat.device()); if (IsPlacedOnAccelerator(dev)) { has_gpu_scheduling = true; if (CountAsAcceleratorTime(dev)) { has_gpu_stream = true; } } for (const NodeExecStats& node_stat : dev_stat.node_stats()) { string name = node_stat.node_name(); auto split_pos = node_stat.node_name().find(':'); if (split_pos != node_stat.node_name().npos) { name = node_stat.node_name().substr(0, split_pos); } auto node = nodes_map_.find(name); if (node == nodes_map_.end()) { NodeDef def; if (CreateRunMetadataNode(name, &def)) { size_t num_nodes = nodes_map_.size(); nodes_map_[name] = std::make_unique<TFGraphNode>(&def, num_nodes, &nodes_map_); nodes_map_.at(name)->AddStepStat(step, dev_stat.device(), node_stat); } } else { covered_nodes_.insert(node->second->id()); node->second->AddStepStat(step, dev_stat.device(), node_stat); } } } if (has_gpu_scheduling && !has_gpu_stream) { miss_accelerator_stream_ = true; } } string TFStats::MaybeReportMissingTrace() const { string report = ""; if (miss_accelerator_stream_) { report += "\n\nFound accelerator operation but misses accelerator " "stream stats!\n\n" "It's likely a gpu tracing issue rather than tf-profiler issue.\n" "If you found your operation missing accelerator time, " "consider to post to [email protected]!\n\n"; } return report; } void TFStats::SerializeToString(string* content) { ProfileProto profile; for (const auto& entry : id_to_string_) { (*profile.mutable_id_to_string())[entry.first] = entry.second; } for (auto it = nodes_map_.begin(); it != nodes_map_.end(); it++) { if (it->second->id() < 0) { continue; } (*profile.mutable_nodes())[it->second->id()].MergeFrom( it->second->ToProto(nodes_map_)); } profile.set_has_trace(has_code_traces_); profile.set_miss_accelerator_stream(miss_accelerator_stream_); for (int64_t s : steps_) { profile.add_steps(s); } *content = profile.SerializeAsString(); } void TFStats::WriteProfile(const string& filename) { string content; SerializeToString(&content); Status s = WriteStringToFile(Env::Default(), filename, content); if (!s.ok()) { absl::FPrintF(stderr, "%s\n", s.ToString()); } } bool TFStats::Validate(const Options& opts) const { if (opts.step >= 0 && steps_.find(opts.step) == steps_.end()) { absl::FPrintF(stderr, "Options -step=%d not found.\nAvailable steps: ", opts.step); for (int64_t s : steps_) { absl::FPrintF(stderr, "%d ", s); } absl::FPrintF(stderr, "\n"); return false; } return true; } void TFStats::AddNodeForTest(int64_t step, std::unique_ptr<TFGraphNode> node) { steps_.insert(step); nodes_map_[node->name()] = std::move(node); } } }
#include "tensorflow/core/profiler/internal/tfprof_stats.h" #include <memory> #include <utility> #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/internal/tfprof_constants.h" #include "tensorflow/core/profiler/internal/tfprof_utils.h" #include "tensorflow/core/profiler/tfprof_log.pb.h" #include "tensorflow/core/profiler/tfprof_options.h" #include "tensorflow/core/profiler/tfprof_output.pb.h" namespace tensorflow { namespace tfprof { class TFProfStatsTest : public ::testing::Test { protected: TFProfStatsTest() { string graph_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/graph.pbtxt"); std::unique_ptr<tensorflow::GraphDef> graph_pb(new tensorflow::GraphDef()); TF_CHECK_OK( ReadProtoFile(Env::Default(), graph_path, graph_pb.get(), false)); std::unique_ptr<tensorflow::RunMetadata> run_meta_pb( new tensorflow::RunMetadata()); string run_meta_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/run_meta"); TF_CHECK_OK( ReadProtoFile(Env::Default(), run_meta_path, run_meta_pb.get(), true)); std::unique_ptr<OpLogProto> op_log_pb(new OpLogProto()); string op_log_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/tfprof_log"); TF_CHECK_OK(ReadBinaryProto(Env::Default(), op_log_path, op_log_pb.get())); string ckpt_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/ckpt"); TF_Status* status = TF_NewStatus(); std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader( new checkpoint::CheckpointReader(ckpt_path, status)); CHECK(TF_GetCode(status) == TF_OK); TF_DeleteStatus(status); tf_stats_ = std::make_unique<TFStats>(std::move(graph_pb), std::move(run_meta_pb), std::move(op_log_pb), std::move(ckpt_reader)); tf_stats_->BuildAllViews(); } string TestToFromProto(const string& cmd, const Options& opts) { string profile_file = io::JoinPath(testing::TmpDir(), "profile"); tf_stats_->WriteProfile(profile_file); TFStats new_stats(profile_file, nullptr); new_stats.BuildAllViews(); return new_stats.ShowGraphNode(cmd, opts).DebugString(); } std::unique_ptr<TFStats> tf_stats_; }; TEST_F(TFProfStatsTest, CustomOpType) { Options opts(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, "name", {kTrainableVarType}, {".*"}, {""}, {".*"}, {""}, false, {"params", "bytes", "micros", "float_ops"}, "", {}); const GraphNodeProto& root = tf_stats_->ShowGraphNode("scope", opts); GraphNodeProto expected; CHECK(protobuf::TextFormat::ParseFromString( "name: \"_TFProfRoot\"\ntotal_exec_micros: 13\ntotal_requested_bytes: " "2560\ntotal_parameters: 451\nchildren {\n name: \"DW\"\n exec_micros: " "2\n requested_bytes: 1280\n parameters: 162\n total_exec_micros: 2\n " " total_requested_bytes: 1280\n total_parameters: 162\n devices: " "\"/job:localhost/replica:0/task:0/gpu:0\"\n cpu_exec_micros: 2\n " "total_cpu_exec_micros: 2\n run_count: 1\n total_run_count: 1\n " "total_definition_count: 1\n peak_bytes: 1280\n residual_bytes: 1280\n " " output_bytes: 1280\n total_peak_bytes: 1280\n total_residual_bytes: " "1280\n total_output_bytes: 1280\n}\nchildren {\n name: \"DW2\"\n " "exec_micros: 11\n requested_bytes: 1280\n parameters: 288\n " "total_exec_micros: 11\n total_requested_bytes: 1280\n " "total_parameters: 288\n devices: " "\"/job:localhost/replica:0/task:0/gpu:0\"\n cpu_exec_micros: 11\n " "total_cpu_exec_micros: 11\n run_count: 1\n total_run_count: 1\n " "total_definition_count: 1\n peak_bytes: 1280\n residual_bytes: 1280\n " " output_bytes: 1280\n total_peak_bytes: 1280\n total_residual_bytes: " "1280\n total_output_bytes: 1280\n}\nchildren {\n name: \"ScalarW\"\n " "parameters: 1\n total_parameters: 1\n total_definition_count: " "1\n}\ntotal_cpu_exec_micros: 13\ntotal_run_count: " "2\ntotal_definition_count: 3\ntotal_peak_bytes: " "2560\ntotal_residual_bytes: 2560\ntotal_output_bytes: 2560\n", &expected)); EXPECT_EQ(expected.DebugString(), root.DebugString()); EXPECT_EQ(root.DebugString(), TestToFromProto("scope", opts)); } TEST_F(TFProfStatsTest, CheckPointOpType) { Options opts(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, "name", {kCkptVarType}, {".*"}, {""}, {".*"}, {""}, false, {"params", "bytes", "micros", "float_ops"}, "", {}); const GraphNodeProto& root = tf_stats_->ShowGraphNode("scope", opts); GraphNodeProto expected; CHECK(protobuf::TextFormat::ParseFromString( "name: \"_TFProfRoot\"\ntotal_exec_micros: 13\ntotal_requested_bytes: " "2560\ntotal_parameters: 451\nchildren {\n name: \"DW\"\n exec_micros: " "2\n requested_bytes: 1280\n parameters: 162\n total_exec_micros: 2\n " " total_requested_bytes: 1280\n total_parameters: 162\n devices: " "\"/job:localhost/replica:0/task:0/gpu:0\"\n cpu_exec_micros: 2\n " "total_cpu_exec_micros: 2\n run_count: 1\n total_run_count: 1\n " "total_definition_count: 1\n peak_bytes: 1280\n residual_bytes: 1280\n " " output_bytes: 1280\n total_peak_bytes: 1280\n total_residual_bytes: " "1280\n total_output_bytes: 1280\n}\nchildren {\n name: \"DW2\"\n " "exec_micros: 11\n requested_bytes: 1280\n parameters: 288\n " "total_exec_micros: 11\n total_requested_bytes: 1280\n " "total_parameters: 288\n devices: " "\"/job:localhost/replica:0/task:0/gpu:0\"\n cpu_exec_micros: 11\n " "total_cpu_exec_micros: 11\n run_count: 1\n total_run_count: 1\n " "total_definition_count: 1\n peak_bytes: 1280\n residual_bytes: 1280\n " " output_bytes: 1280\n total_peak_bytes: 1280\n total_residual_bytes: " "1280\n total_output_bytes: 1280\n}\nchildren {\n name: \"ScalarW\"\n " "parameters: 1\n total_parameters: 1\n total_definition_count: " "1\n}\ntotal_cpu_exec_micros: 13\ntotal_run_count: " "2\ntotal_definition_count: 3\ntotal_peak_bytes: " "2560\ntotal_residual_bytes: 2560\ntotal_output_bytes: 2560\n", &expected)); EXPECT_EQ(expected.DebugString(), root.DebugString()); EXPECT_EQ(root.DebugString(), TestToFromProto("scope", opts)); } TEST_F(TFProfStatsTest, TestGraph) { Options opts(100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, "name", {".*"}, {"DW/Initializer/random_normal/mul"}, {""}, {".*"}, {""}, false, {"params", "bytes", "micros", "float_ops"}, "", {}); const GraphNodeProto& root = tf_stats_->ShowGraphNode("graph", opts); GraphNodeProto expected; CHECK(protobuf::TextFormat::ParseFromString( "name: \"_TFProfRoot\"\ntotal_exec_micros: 4945\ntotal_requested_bytes: " "30464\ntotal_parameters: 451\nchildren {\n name: " "\"DW/Initializer/random_normal/mul\"\n children {\n name: " "\"DW/Initializer/random_normal/RandomStandardNormal\"\n children {\n " " name: \"DW/Initializer/random_normal/shape\"\n " "total_definition_count: 1\n }\n input_shapes {\n key: 0\n " " value {\n dim {\n size: 4\n }\n }\n " "}\n total_definition_count: 2\n }\n children {\n name: " "\"DW/Initializer/random_normal/stddev\"\n total_definition_count: " "1\n }\n input_shapes {\n key: 0\n value {\n dim {\n " "size: 3\n }\n dim {\n size: 3\n }\n dim {\n " " size: 3\n }\n dim {\n size: 6\n }\n }\n " "}\n input_shapes {\n key: 1\n value {\n dim {\n " "size: 1\n }\n }\n }\n total_definition_count: " "4\n}\ntotal_float_ops: 10440\ntotal_accelerator_exec_micros: " "404\ntotal_cpu_exec_micros: 4541\ntotal_run_count: " "6\ntotal_definition_count: 32\ntotal_peak_bytes: " "25856\ntotal_residual_bytes: 3840\ntotal_output_bytes: 4864\n", &expected)); EXPECT_EQ(expected.DebugString(), root.DebugString()); EXPECT_EQ(root.DebugString(), TestToFromProto("graph", opts)); } TEST_F(TFProfStatsTest, TestFloatOps) { Options opts(10, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, "name", {".*"}, {".*"}, {""}, {".*"}, {""}, false, {"float_ops"}, "", {}); const GraphNodeProto& root = tf_stats_->ShowGraphNode("scope", opts); GraphNodeProto expected; CHECK(protobuf::TextFormat::ParseFromString( "name: \"_TFProfRoot\"\ntotal_exec_micros: 4945\ntotal_requested_bytes: " "30464\ntotal_parameters: 451\nchildren {\n name: \"Conv2D\"\n " "exec_micros: 4292\n requested_bytes: 18176\n total_exec_micros: " "4292\n total_requested_bytes: 18176\n devices: " "\"/job:localhost/replica:0/task:0/gpu:0\"\n float_ops: 5832\n " "total_float_ops: 5832\n input_shapes {\n key: 0\n value {\n " "dim {\n size: 2\n }\n dim {\n size: 6\n " "}\n dim {\n size: 6\n }\n dim {\n size: " "3\n }\n }\n }\n input_shapes {\n key: 1\n value {\n " " dim {\n size: 3\n }\n dim {\n size: 3\n " "}\n dim {\n size: 3\n }\n dim {\n size: " "6\n }\n }\n }\n accelerator_exec_micros: 226\n " "cpu_exec_micros: 4066\n total_accelerator_exec_micros: 226\n " "total_cpu_exec_micros: 4066\n run_count: 1\n total_run_count: 1\n " "total_definition_count: 1\n peak_bytes: 14592\n residual_bytes: 768\n " " output_bytes: 768\n total_peak_bytes: 14592\n total_residual_bytes: " "768\n total_output_bytes: 768\n}\nchildren {\n name: \"Conv2D_1\"\n " "exec_micros: 597\n requested_bytes: 9728\n total_exec_micros: 597\n " "total_requested_bytes: 9728\n devices: " "\"/job:localhost/replica:0/task:0/gpu:0\"\n float_ops: 4608\n " "total_float_ops: 4608\n input_shapes {\n key: 0\n value {\n " "dim {\n size: 2\n }\n dim {\n size: 3\n " "}\n dim {\n size: 3\n }\n dim {\n size: " "6\n }\n }\n }\n input_shapes {\n key: 1\n value {\n " " dim {\n size: 2\n }\n dim {\n size: 2\n " "}\n dim {\n size: 6\n }\n dim {\n size: " "12\n }\n }\n }\n accelerator_exec_micros: 178\n " "cpu_exec_micros: 419\n total_accelerator_exec_micros: 178\n " "total_cpu_exec_micros: 419\n run_count: 1\n total_run_count: 1\n " "total_definition_count: 1\n peak_bytes: 8704\n residual_bytes: 512\n " "output_bytes: 512\n total_peak_bytes: 8704\n total_residual_bytes: " "512\n total_output_bytes: 512\n}\ntotal_float_ops: " "10440\ntotal_accelerator_exec_micros: 404\ntotal_cpu_exec_micros: " "4541\ntotal_run_count: 6\ntotal_definition_count: 35\ntotal_peak_bytes: " "25856\ntotal_residual_bytes: 3840\ntotal_output_bytes: 4864\n", &expected)); EXPECT_EQ(expected.DebugString(), root.DebugString()); EXPECT_EQ(root.DebugString(), TestToFromProto("scope", opts)); } TEST_F(TFProfStatsTest, TestAccountShownNameOnly) { Options opts(100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, "name", {".*"}, {".*"}, {""}, {"Conv2D_1"}, {""}, true, {"params"}, "", {}); const GraphNodeProto& root = tf_stats_->ShowGraphNode("scope", opts); GraphNodeProto expected; CHECK(protobuf::TextFormat::ParseFromString( "name: \"_TFProfRoot\"\ntotal_exec_micros: 597\ntotal_requested_bytes: " "9728\nchildren {\n name: \"Conv2D_1\"\n exec_micros: 597\n " "requested_bytes: 9728\n total_exec_micros: 597\n " "total_requested_bytes: 9728\n devices: " "\"/job:localhost/replica:0/task:0/gpu:0\"\n float_ops: 4608\n " "total_float_ops: 4608\n input_shapes {\n key: 0\n value {\n " "dim {\n size: 2\n }\n dim {\n size: 3\n " "}\n dim {\n size: 3\n }\n dim {\n size: " "6\n }\n }\n }\n input_shapes {\n key: 1\n value {\n " " dim {\n size: 2\n }\n dim {\n size: 2\n " "}\n dim {\n size: 6\n }\n dim {\n size: " "12\n }\n }\n }\n accelerator_exec_micros: 178\n " "cpu_exec_micros: 419\n total_accelerator_exec_micros: 178\n " "total_cpu_exec_micros: 419\n run_count: 1\n total_run_count: 1\n " "total_definition_count: 1\n peak_bytes: 8704\n residual_bytes: 512\n " "output_bytes: 512\n total_peak_bytes: 8704\n total_residual_bytes: " "512\n total_output_bytes: 512\n}\ntotal_float_ops: " "4608\ntotal_accelerator_exec_micros: 178\ntotal_cpu_exec_micros: " "419\ntotal_run_count: 1\ntotal_definition_count: 2\ntotal_peak_bytes: " "8704\ntotal_residual_bytes: 512\ntotal_output_bytes: 512\n", &expected)); EXPECT_EQ(expected.DebugString(), root.DebugString()); EXPECT_EQ(root.DebugString(), TestToFromProto("scope", opts)); } TEST_F(TFProfStatsTest, TestShowTensorValue) { Options opts(10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, "name", {".*"}, {".*"}, {""}, {"DW"}, {""}, false, {"tensor_value"}, "", {}); const GraphNodeProto& root = tf_stats_->ShowGraphNode("scope", opts); GraphNodeProto expected; CHECK(protobuf::TextFormat::ParseFromString( "name: \"_TFProfRoot\"\ntotal_exec_micros: 4945\ntotal_requested_bytes: " "30464\ntotal_parameters: 451\nchildren {\n name: \"DW\"\n " "exec_micros: 2\n requested_bytes: 1280\n parameters: 162\n " "total_exec_micros: 2\n total_requested_bytes: 1280\n " "total_parameters: 162\n devices: " "\"/job:localhost/replica:0/task:0/gpu:0\"\n tensor_value {\n dtype: " "DT_FLOAT\n value_double: -0.000534315\n value_double: " "-0.00089602\n value_double: -0.000417239\n value_double: " "0.00041444\n value_double: 0.000780691\n value_double: " "-0.000559057\n value_double: -0.000234623\n value_double: " "0.00013393\n value_double: -0.00187574\n value_double: " "0.000785666\n value_double: 0.000673294\n value_double: " "0.000653368\n value_double: 0.000924489\n value_double: " "-0.000318373\n value_double: -0.000385202\n value_double: " "-7.92661e-05\n value_double: 2.70287e-05\n value_double: " "0.00152302\n value_double: 8.04435e-05\n value_double: " "-0.00058102\n value_double: 0.000244291\n value_double: " "-0.000438045\n value_double: -0.000110199\n value_double: " "0.000731663\n value_double: -0.0012326\n value_double: " "0.00064065\n value_double: -0.00135203\n value_double: " "-6.42784e-05\n value_double: -0.0011857\n value_double: " "-0.000487383\n value_double: 3.41493e-05\n value_double: " "-0.00158447\n value_double: 0.00168448\n value_double: " "0.00160946\n value_double: -0.000600483\n value_double: " "0.000650259\n value_double: -0.00109938\n value_double: " "-0.000842166\n value_double: -0.0022673\n value_double: " "-0.00101941\n value_double: -0.0011169\n value_double: " "-0.0013557\n value_double: -1.46354e-05\n value_double: " "-1.05487e-05\n value_double: -0.00092014\n value_double: " "0.00272874\n value_double: 5.13942e-05\n value_double: " "-0.00223472\n value_double: -0.000250875\n value_double: " "-0.00180747\n value_double: -0.00234714\n value_double: " "-0.00113523\n value_double: -0.00112635\n value_double: " "-0.000843118\n value_double: -6.84256e-05\n value_double: " "0.000243336\n value_double: 0.00119151\n value_double: " "0.00131022\n value_double: 0.000768038\n value_double: " "-8.90095e-05\n value_double: -0.000626427\n value_double: " "-7.0617e-05\n value_double: -0.0021988\n value_double: " "-0.00221544\n value_double: -0.000393118\n value_double: " "0.000159464\n value_double: -0.000874746\n value_double: " "-0.00131239\n value_double: -0.00135747\n value_double: " "-0.00179753\n value_double: -0.00101005\n value_double: " "-0.000107518\n value_double: -0.000616882\n value_double: " "-0.000360923\n value_double: -0.00026896\n value_double: " "-0.000142548\n value_double: 0.000577227\n value_double: " "0.000536027\n value_double: 0.00126907\n value_double: " "-0.00122712\n value_double: -3.60499e-05\n value_double: " "0.000151026\n value_double: 0.00107658\n value_double: " "0.00116475\n value_double: -0.00145312\n value_double: " "0.000233326\n value_double: -0.00020198\n value_double: " "0.00179029\n value_double: 0.00150048\n value_double: " "-0.000884775\n value_double: 0.000409188\n value_double: " "2.97176e-05\n value_double: -0.000506118\n value_double: " "-2.33992e-05\n value_double: -0.00037212\n value_double: " "0.000862773\n value_double: 0.00174046\n value_double: " "-0.000240207\n value_double: 0.000663976\n value_double: " "-0.00134747\n value_double: 0.00115585\n value_double: " "0.000555869\n value_double: 0.00176722\n value_double: " "-0.000518409\n value_double: 0.00101051\n value_double: " "0.000129399\n value_double: -0.000916389\n value_double: " "-0.00137693\n value_double: -0.00152412\n value_double: " "7.32515e-05\n value_double: -0.000190811\n value_double: " "-0.000158692\n value_double: -5.7791e-05\n value_double: " "0.000671785\n value_double: -0.00152924\n value_double: " "0.00117314\n value_double: -0.000384202\n value_double: " "0.00176709\n value_double: -0.000181703\n value_double: " "-0.000460994\n value_double: 0.000643716\n value_double: " "4.76719e-05\n value_double: -0.00101037\n value_double: " "0.00159621\n value_double: 0.00186758\n value_double: " "0.00100001\n value_double: -0.00121831\n value_double: " "0.00132231\n value_double: 0.0013511\n value_double: 0.00106659\n " " value_double: 0.00018091\n value_double: 0.00155925\n " "value_double: 4.26087e-05\n value_double: 0.000243264\n " "value_double: -0.0017202\n value_double: -0.000218897\n " "value_double: 0.00118693\n value_double: 0.00258909\n " "value_double: 0.000641913\n value_double: -0.0013211\n " "value_double: -0.00171943\n value_double: 0.00089151\n " "value_double: -0.00114969\n value_double: -0.000196331\n " "value_double: 0.00109994\n value_double: 0.000302616\n " "value_double: 0.000675812\n value_double: 0.00112222\n " "value_double: 0.000516456\n value_double: 0.00133357\n " "value_double: 0.000298491\n value_double: 0.00145934\n " "value_double: -0.00159102\n value_double: -0.000819061\n " "value_double: 0.000120583\n value_double: 0.0006108\n " "value_double: 0.00124132\n value_double: 0.000764859\n " "value_double: 0.000374641\n value_double: -0.00149603\n " "value_double: -0.000317367\n value_double: -0.000417829\n }\n " "cpu_exec_micros: 2\n total_cpu_exec_micros: 2\n run_count: 1\n " "total_run_count: 1\n total_definition_count: 10\n peak_bytes: 1280\n " "residual_bytes: 1280\n output_bytes: 1280\n total_peak_bytes: 1280\n " "total_residual_bytes: 1280\n total_output_bytes: " "1280\n}\ntotal_float_ops: 10440\ntotal_accelerator_exec_micros: " "404\ntotal_cpu_exec_micros: 4541\ntotal_run_count: " "6\ntotal_definition_count: 35\ntotal_peak_bytes: " "25856\ntotal_residual_bytes: 3840\ntotal_output_bytes: 4864\n", &expected)); EXPECT_EQ(expected.DebugString(), root.DebugString()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/tfprof_stats.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/tfprof_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6cec5175-feab-4687-a71f-6b5f3cebf0c2
cpp
tensorflow/tensorflow
tfprof_timeline
tensorflow/core/profiler/internal/tfprof_timeline.cc
tensorflow/core/profiler/internal/tfprof_timeline_test.cc
#include "tensorflow/core/profiler/internal/tfprof_timeline.h" #include <algorithm> #include <map> #include <memory> #include <set> #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/profiler/internal/tfprof_utils.h" namespace tensorflow { namespace tfprof { namespace { int kMaxDisplayedMemNode = 10; std::string GetTimeDevName(const std::string& dev) { if (dev.find("stream") != dev.npos) { return absl::StrCat("Op execution threads: ", dev); } else { return absl::StrCat("Op scheduling threads: ", dev); } } std::string GetMemoryLaneName(const std::string& dev) { return absl::StrCat("mem usage on:", dev); } } Json::Value ChromeTraceFormatter::CreateEvent(const string& ph, const string& category, const string& name, int64_t pid, int64_t tid, int64_t ts) { Json::Value event(Json::objectValue); event["ph"] = Json::Value(ph); event["cat"] = Json::Value(category); event["name"] = Json::Value(name); event["pid"] = Json::Int64(pid); event["tid"] = Json::Int64(tid); event["ts"] = Json::Int64(ts); return event; } void ChromeTraceFormatter::EmitPID(const string& name, int64_t pid) { Json::Value event(Json::objectValue); event["name"] = Json::Value("process_name"); event["ph"] = Json::Value("M"); event["pid"] = Json::Int64(pid); Json::Value args(Json::objectValue); args["name"] = Json::Value(name); event["args"] = args; metadata_.push_back(event); } void ChromeTraceFormatter::EmitRegion(int64_t ts, int64_t duration, int64_t pid, int64_t tid, const string& category, const string& name, Json::Value args) { Json::Value event = CreateEvent("X", category, name, pid, tid, ts); event["dur"] = Json::Int64(duration); event["args"] = std::move(args); metadata_.push_back(event); } void ChromeTraceFormatter::EmitFlowStart(const string& name, int64_t ts, int64_t pid, int64_t tid, int64_t flow_id) { Json::Value event = CreateEvent("s", "DataFlow", name, pid, tid, ts); event["id"] = Json::Int64(flow_id); events_.push_back(event); } void ChromeTraceFormatter::EmitFlowEnd(const string& name, int64_t ts, int64_t pid, int64_t tid, int64_t flow_id) { Json::Value event = CreateEvent("t", "DataFlow", name, pid, tid, ts); event["id"] = Json::Int64(flow_id); events_.push_back(event); } void ChromeTraceFormatter::EmitCounter( const string& category, const string& name, int64_t pid, int64_t ts, const string& device, int64_t bytes, const std::map<int64_t, std::vector<string>>& tensor_mem) { Json::Value event = CreateEvent("C", category, "Allocated Bytes", pid, 0, ts); Json::Value args(Json::objectValue); args["Allocator Bytes in Use"] = Json::Int64(bytes); event["args"] = args; events_.push_back(event); Json::Value event2 = CreateEvent("C", category, "Top Allocations", pid + 1, 0, ts); Json::Value args2(Json::objectValue); for (int i = 1; i < kMaxDisplayedMemNode; ++i) { args2[absl::StrFormat("Top Allocation %02d", i)] = Json::Value("N/A"); } int count = 0; for (auto it = tensor_mem.rbegin(); it != tensor_mem.rend(); ++it) { for (const string& t : it->second) { if (bytes < it->first || count >= kMaxDisplayedMemNode) { break; } args2[absl::StrFormat("Top Allocation %02d", count)] = Json::Value(absl::StrCat(it->first / 1000000.0, " MB from ", t)); ++count; bytes -= it->first; } } args2[std::string("Not Displayed")] = Json::Value(absl::StrFormat("%.2f MB", bytes / 1000000.0)); event2["args"] = args2; events_.push_back(event2); } string ChromeTraceFormatter::Format() { Json::Value trace; trace["traceEvents"] = Json::Value(Json::arrayValue); for (const Json::Value& v : metadata_) { trace["traceEvents"].append(v); } for (const Json::Value& v : events_) { trace["traceEvents"].append(v); } Json::FastWriter writer; string trace_str = writer.write(trace); if (trace_str.length() > 200 * 1024 * 1024) { absl::FPrintF(stderr, "Trace file is over 200MB. Chrome might not be able to " "display it. Consider to use filters (e.g. -min_micros " "> 1000 or -op_type .*gpu:0.* to reduce the size.\n"); } return trace_str; } void MemoryTracker::TrackNode(int64_t step, const GraphNode* node) { if (!node->Trackable(step)) { return; } Device& dev = devices_[node->node->canonical_device()]; std::map<int64_t, int64_t> allocs; for (const auto& alloc : node->node->allocations(step)) { allocs[alloc.alloc_micros()] += alloc.alloc_bytes(); dev.tracked_allocations[alloc.alloc_micros()] += alloc.alloc_bytes(); } dev.tracked_allocations[0] += node->node->accelerator_persistent_bytes(); allocs[0] += node->node->accelerator_persistent_bytes(); int64_t last = 0; std::map<int64_t, int64_t>& aggregate_allocs = dev.tensor_allocs[node->name()]; for (auto it = allocs.begin(); it != allocs.end(); ++it) { last += it->second; aggregate_allocs[it->first] = last; } for (const auto& bytes_in_use : node->node->allocator_bytes_in_use(step)) { if (bytes_in_use.first <= 0) continue; dev.allocations[bytes_in_use.first] = bytes_in_use.second; } } void Timeline::AllocateTimeNodes(GraphNode* gnode) { if (gnode->Trackable(step_)) { TrackNode(gnode); const TFGraphNode* node = gnode->node; for (const auto& kernel_execs : node->op_execs(step_)) { const string& device = kernel_execs.first; if (process_.find(device) == process_.end()) { int64_t pid = AllocatePID(); process_[device] = std::make_unique<Process>(device, pid); chrome_formatter_.EmitPID(GetTimeDevName(device), pid); } Process* p = process_[device].get(); for (const auto& exec : kernel_execs.second) { int64_t start_micros = exec.first; int64_t exec_micros = exec.second; if (tnodes_[device].find(start_micros) == tnodes_[device].end()) { tnodes_[device][start_micros] = std::make_unique<TimeNode>(p, gnode, start_micros, exec_micros); } } } } for (GraphNode* n : gnode->show_children) { AllocateTimeNodes(n); } } void Timeline::GenerateGraphTimeline(const std::vector<GraphNode*>& gnodes) { for (GraphNode* gnode : gnodes) { AllocateTimeNodes(gnode); } for (auto& process : tnodes_) { if (!IsCanonicalDevice(process.first)) continue; for (auto& tn : process.second) { TimeNode* tnode = tn.second.get(); for (GraphNode* inp : tnode->node->children) { if (!inp->account || !inp->Trackable(step_)) { continue; } for (const auto& execs : inp->node->cpu_execs(step_)) { if (!IsCanonicalDevice(execs.first)) continue; if (process.first == execs.first) { continue; } for (const auto& exec : execs.second) { int64_t start_micros = exec.first; auto cprocess = tnodes_.find(execs.first); if (cprocess == tnodes_.end()) continue; auto ctn = cprocess->second.find(start_micros); if (ctn == cprocess->second.end()) continue; ctn->second->next_tnodes.push_back(tnode); } } } } } AllocateLanes(); absl::FPrintF(stdout, "generating trace file.\n"); int64_t flow_id = 1; for (const auto& process : alloc_nodes_) { for (const auto& lane : process.second) { for (const auto& node : lane.second) { TimeNode* tnode = node.second; Json::Value args(Json::objectValue); args["name"] = Json::Value(tnode->name()); chrome_formatter_.EmitRegion(node.first, tnode->exec_micros, process.first, lane.first, "Op", tnode->name(), args); for (TimeNode* next_tnode : node.second->next_tnodes) { chrome_formatter_.EmitFlowStart( tnode->name() + "_flow", tnode->start_micros + tnode->exec_micros, process.first, lane.first, flow_id); chrome_formatter_.EmitFlowEnd( tnode->name() + "_flow", next_tnode->start_micros, next_tnode->process->pid, next_tnode->tid, flow_id); flow_id += 1; } } } } for (const auto& dev : mem_tracker_.devices()) { if (IsPlacedOnCPU(dev.first)) { continue; } int64_t pid = AllocatePID(); chrome_formatter_.EmitPID(GetMemoryLaneName(dev.first), pid); int64_t pid2 = AllocatePID(); chrome_formatter_.EmitPID(GetMemoryLaneName(dev.first) + " allocations", pid2); const MemoryTracker::Device& device = dev.second; int64_t max_bytes_in_use = 0; int64_t cur_bytes_in_use = 0; int64_t last_point = 0; for (const auto& alloc : device.allocations) { cur_bytes_in_use = alloc.second; max_bytes_in_use = std::max(max_bytes_in_use, cur_bytes_in_use); int64_t ts = alloc.first; if (ts - last_point < 100) continue; last_point = ts; std::map<int64_t, std::vector<string>> tensor_mem; for (const auto& tensor_alloc_it : dev.second.tensor_allocs) { const auto& tensor_alloc = tensor_alloc_it.second; auto it = tensor_alloc.lower_bound(ts); if (it != tensor_alloc.begin()) { --it; } if (it->second > 0) { tensor_mem[it->second].push_back(tensor_alloc_it.first); } } chrome_formatter_.EmitCounter("Memory", "Memory Series", pid, ts, dev.first, cur_bytes_in_use, tensor_mem); } if (IsPlacedOnAccelerator(dev.first)) { absl::FPrintF(stdout, "%s peak memory: %.2f MB\n", dev.first, max_bytes_in_use / 1000000.0); } } OutputTimeline(); } void Timeline::GenerateScopeTimeline(const ScopeNode* node) { std::set<int64_t> visited_depth; EmitTreeNode(node, 0, node->proto().total_exec_micros(), 0, &visited_depth); OutputTimeline(); } void Timeline::GenerateCodeTimeline(const CodeNode* node) { std::set<int64_t> visited_depth; EmitTreeNode(node, 0, node->proto().total_exec_micros(), 0, &visited_depth); OutputTimeline(); } void Timeline::OutputTimeline() { std::string outfile = absl::StrFormat("%s_%d", outfile_, step()); Status s = WriteStringToFile(Env::Default(), outfile, chrome_formatter_.Format()); if (!s.ok()) { absl::FPrintF(stderr, "Failed to write timeline file: %s\nError: %s\n", outfile, s.ToString()); return; } absl::FPrintF(stdout, "\n******************************************************\n"); absl::FPrintF(stdout, "Timeline file is written to %s.\n" "Open a Chrome browser, enter URL chrome: "load the timeline file.", outfile); absl::FPrintF(stdout, "\n******************************************************\n"); fflush(stdout); } void Timeline::AllocateLanes() { for (auto& process : tnodes_) { Process* p = process_[process.first].get(); for (auto& tnode : process.second) { int64_t start_time = tnode.second->start_micros; int64_t end_time = tnode.second->start_micros + tnode.second->exec_micros; int64_t l = -1; for (int64_t i = 0, end = p->lanes.size(); i < end; ++i) { const auto& lane = p->lanes[i]; l = i; for (auto cur_it = lane.rbegin(); cur_it != lane.rend(); ++cur_it) { if (cur_it->second > start_time) { l = -1; break; } if (start_time > cur_it->second) { break; } } if (l >= 0) { break; } } if (l < 0) { l = p->lanes.size(); std::map<int64_t, int64_t> nlane; nlane[start_time] = end_time; p->lanes.push_back(nlane); } else { p->lanes[l][start_time] = end_time; } tnode.second->tid = l; alloc_nodes_[p->pid][l][start_time] = tnode.second.get(); } } } int64_t Timeline::AllocatePID() { int64_t cur_pid = next_pid_; next_pid_ += 1; return cur_pid; } } }
#include <memory> #include <utility> #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/internal/tfprof_constants.h" #include "tensorflow/core/profiler/internal/tfprof_stats.h" #include "tensorflow/core/profiler/internal/tfprof_utils.h" #include "tensorflow/core/profiler/tfprof_log.pb.h" #include "tensorflow/core/profiler/tfprof_options.h" #include "tensorflow/core/profiler/tfprof_output.pb.h" namespace tensorflow { namespace tfprof { class TFProfTimelineTest : public ::testing::Test { protected: TFProfTimelineTest() { string graph_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/graph.pbtxt"); std::unique_ptr<tensorflow::GraphDef> graph_pb(new tensorflow::GraphDef()); TF_CHECK_OK( ReadProtoFile(Env::Default(), graph_path, graph_pb.get(), false)); std::unique_ptr<tensorflow::RunMetadata> run_meta_pb( new tensorflow::RunMetadata()); string run_meta_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/run_meta"); TF_CHECK_OK( ReadProtoFile(Env::Default(), run_meta_path, run_meta_pb.get(), true)); tf_stats_ = std::make_unique<TFStats>( std::move(graph_pb), std::move(run_meta_pb), nullptr, nullptr); tf_stats_->BuildAllViews(); } std::unique_ptr<TFStats> tf_stats_; }; TEST_F(TFProfTimelineTest, GraphView) { string dump_file = io::JoinPath(testing::TmpDir(), "dump"); Options opts(10000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "name", {".*"}, {".*"}, {""}, {".*"}, {""}, false, {"params", "bytes", "micros", "float_ops"}, "timeline", {{"outfile", dump_file}}); tf_stats_->ShowGraphNode("graph", opts); string dump_str; TF_CHECK_OK(ReadFileToString(Env::Default(), dump_file + "_0", &dump_str)); EXPECT_EQ(16556121177519539380ull, Hash64(dump_str)); } TEST_F(TFProfTimelineTest, ScopeView) { string dump_file = io::JoinPath(testing::TmpDir(), "dump"); Options opts(5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "name", {".*"}, {".*"}, {""}, {".*"}, {""}, false, {"params", "bytes", "micros", "float_ops"}, "timeline", {{"outfile", dump_file}}); tf_stats_->ShowGraphNode("scope", opts); string dump_str; TF_CHECK_OK(ReadFileToString(Env::Default(), dump_file + "_0", &dump_str)); EXPECT_EQ(17545174915963890413ull, Hash64(dump_str)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/tfprof_timeline.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/tfprof_timeline_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d5cba145-5a94-41c9-ab9e-482062e3c0d9
cpp
tensorflow/tensorflow
tfprof_show
tensorflow/core/profiler/internal/tfprof_show.cc
tensorflow/core/profiler/internal/tfprof_show_test.cc
#include "tensorflow/core/profiler/internal/tfprof_show.h" #include <memory> #include <set> #include <utility> #include <vector> #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/regexp.h" namespace tensorflow { namespace tfprof { const GraphNodeProto& TFShow::Show(const string& prefix, const Options& opts) { if (opts.output_type == kOutput[0]) { Timeline timeline(opts.step, opts.output_options.at(kTimelineOpts[0])); return ShowInternal(opts, &timeline)->proto(); } else { const ShowNode* ret = ShowInternal(opts, nullptr); if (opts.output_type == kOutput[1]) { absl::PrintF("%s", (prefix + ret->formatted_str)); fflush(stdout); } else if (opts.output_type == kOutput[2]) { Status s = WriteStringToFile(Env::Default(), opts.output_options.at(kFileOpts[0]), prefix + ret->formatted_str); if (!s.ok()) { absl::FPrintF(stderr, "%s\n", s.ToString()); } } else if (opts.output_type == kOutput[3] || opts.output_type == kOutput[4]) { } else { absl::FPrintF(stderr, "Unknown output type: %s\n", opts.output_type); } return ret->proto(); } } bool TFShow::LookUpCheckPoint(const string& name, std::unique_ptr<TFProfTensor>* tensor) { if (name == kTFProfRoot || !ckpt_reader_ || !tensor) { return false; } std::unique_ptr<Tensor> out_tensor; TF_Status* status = TF_NewStatus(); ckpt_reader_->GetTensor(name, &out_tensor, status); if (TF_GetCode(status) != TF_OK) { absl::FPrintF(stderr, "%s\n", TF_Message(status)); TF_DeleteStatus(status); return false; } *tensor = std::make_unique<TFProfTensor>(std::move(out_tensor)); TF_DeleteStatus(status); return true; } bool TFShow::ShouldShow(const ShowNode* node, const Options& opts, int depth) const { if (node->name() == kTFProfRoot) return true; if (node->proto().total_requested_bytes() < opts.min_bytes || node->proto().total_peak_bytes() < opts.min_peak_bytes || node->proto().total_residual_bytes() < opts.min_residual_bytes || node->proto().total_output_bytes() < opts.min_output_bytes || node->proto().total_exec_micros() < opts.min_micros || node->proto().total_accelerator_exec_micros() < opts.min_accelerator_micros || node->proto().total_cpu_exec_micros() < opts.min_cpu_micros || node->proto().parameters() < opts.min_params || node->proto().float_ops() < opts.min_float_ops || node->proto().run_count() < opts.min_occurrence || depth > opts.max_depth || !ShouldShowIfExtra(node, opts, depth)) { return false; } bool show = false; if (opts.show_name_regexes.size() == 1 && opts.show_name_regexes[0] == ".*") { show = true; } else { for (const string& regex : opts.show_name_regexes) { if (RE2::FullMatch(node->name(), regex)) { show = true; break; } } } if (!show) return false; for (const string& regex : opts.hide_name_regexes) { if (RE2::FullMatch(node->name(), regex)) return false; } return true; } bool TFShow::ShouldTrim(const ShowNode* node, const std::vector<string>& regexes) const { for (const string& regex : regexes) { if (RE2::FullMatch(node->name(), regex)) { return true; } } return false; } bool TFShow::ReAccount(ShowNode* node, const Options& opts) { node->ReInit(opts.step); if (opts.account_type_regexes.size() == 1 && opts.account_type_regexes[0] == ".*") { return true; } for (const string& regex : opts.account_type_regexes) { for (const string& type : node->node->op_types()) { if (RE2::FullMatch(type, regex)) { return true; } } } return false; } string TFShow::FormatNodeMemory(ShowNode* node, int64_t bytes, int64_t total_bytes) const { string memory = FormatMemory(total_bytes); if (node->account) { memory = FormatMemory(bytes) + "/" + memory; } else { memory = "--/" + memory; } return memory; } string TFShow::FormatNode(ShowNode* node, const Options& opts) const { std::vector<string> info; if (opts.select.find(kShown[2]) != opts.select.end()) { const string shape = FormatShapes(node->node->shape()); if (!shape.empty()) { info.push_back(shape); } string params = FormatNumber(node->proto().total_parameters()) + " params"; if (node->account) { params = FormatNumber(node->proto().parameters()) + "/" + params; } else { params = "--/" + params; } info.push_back(params); } if (opts.select.find(kShown[3]) != opts.select.end()) { string fops = FormatNumber(node->proto().total_float_ops()) + " flops"; if (node->account) { fops = FormatNumber(node->proto().float_ops()) + "/" + fops; } else { fops = "--/" + fops; } info.push_back(fops); } if (opts.select.find(kShown[0]) != opts.select.end()) { info.push_back(FormatNodeMemory(node, node->proto().requested_bytes(), node->proto().total_requested_bytes())); } if (opts.select.find(kShown[11]) != opts.select.end()) { info.push_back(FormatNodeMemory(node, node->proto().peak_bytes(), node->proto().total_peak_bytes())); } if (opts.select.find(kShown[12]) != opts.select.end()) { info.push_back(FormatNodeMemory(node, node->proto().residual_bytes(), node->proto().total_residual_bytes())); } if (opts.select.find(kShown[13]) != opts.select.end()) { info.push_back(FormatNodeMemory(node, node->proto().output_bytes(), node->proto().total_output_bytes())); } if (opts.select.find(kShown[1]) != opts.select.end()) { info.push_back(FormatTotalExecTime(node, opts)); info.push_back(FormatAcceleratorExecTime(node, opts)); info.push_back(FormatCPUExecTime(node, opts)); } if (opts.select.find(kShown[9]) != opts.select.end() && opts.select.find(kShown[1]) == opts.select.end()) { info.push_back(FormatAcceleratorExecTime(node, opts)); } if (opts.select.find(kShown[10]) != opts.select.end() && opts.select.find(kShown[1]) == opts.select.end()) { info.push_back(FormatCPUExecTime(node, opts)); } if (opts.select.find(kShown[5]) != opts.select.end()) { if (node->proto().devices_size() > 0) { info.push_back(absl::StrJoin(node->proto().devices(), "|")); } } if (opts.select.find(kShown[6]) != opts.select.end()) { const std::set<string>& op_types = node->node->op_types(); info.push_back(absl::StrJoin(op_types, "|")); } if (opts.select.find(kShown[7]) != opts.select.end()) { string run = FormatNumber(node->proto().total_run_count()); if (node->account) { run = FormatNumber(node->proto().run_count()) + "/" + run; } else { run = "--/" + run; } string definition = FormatNumber(node->proto().total_definition_count()); if (node->account) { definition = "1/" + definition; } else { definition = "--/" + definition; } info.push_back(run + "|" + definition); } if (opts.select.find(kShown[8]) != opts.select.end()) { std::vector<string> shape_vec; for (const auto& s : node->node->input_shapes()) { if (s.second.empty()) { shape_vec.push_back(absl::StrFormat("%d:unknown", s.first)); } else { shape_vec.push_back( absl::StrFormat("%d:%s", s.first, absl::StrJoin(s.second, "x"))); } } info.push_back(absl::StrJoin(shape_vec, "|")); } return absl::StrFormat("%s (%s)", node->name(), absl::StrJoin(info, ", ")); } string TFShow::FormatLegend(const Options& opts) const { std::vector<string> legends; if (opts.select.find(kShown[2]) != opts.select.end()) { legends.push_back("# parameters"); } if (opts.select.find(kShown[3]) != opts.select.end()) { legends.push_back("# float_ops"); } if (opts.select.find(kShown[0]) != opts.select.end()) { legends.push_back("requested bytes"); } if (opts.select.find(kShown[11]) != opts.select.end()) { legends.push_back("peak bytes"); } if (opts.select.find(kShown[12]) != opts.select.end()) { legends.push_back("residual bytes"); } if (opts.select.find(kShown[13]) != opts.select.end()) { legends.push_back("output bytes"); } if (opts.select.find(kShown[1]) != opts.select.end()) { legends.push_back("total execution time"); legends.push_back("accelerator execution time"); legends.push_back("cpu execution time"); } if (opts.select.find(kShown[9]) != opts.select.end() && opts.select.find(kShown[1]) == opts.select.end()) { legends.push_back("accelerator execution time"); } if (opts.select.find(kShown[10]) != opts.select.end() && opts.select.find(kShown[1]) == opts.select.end()) { legends.push_back("cpu execution time"); } if (opts.select.find(kShown[5]) != opts.select.end()) { legends.push_back("assigned devices"); } if (opts.select.find(kShown[6]) != opts.select.end()) { legends.push_back("op types"); } if (opts.select.find(kShown[7]) != opts.select.end()) { legends.push_back("op count (run|defined)"); } if (opts.select.find(kShown[8]) != opts.select.end()) { legends.push_back("input shapes"); } return absl::StrFormat("node name | %s\n", absl::StrJoin(legends, " | ")); } } }
#include <memory> #include <utility> #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/internal/tfprof_constants.h" #include "tensorflow/core/profiler/internal/tfprof_stats.h" #include "tensorflow/core/profiler/internal/tfprof_utils.h" #include "tensorflow/core/profiler/tfprof_log.pb.h" #include "tensorflow/core/profiler/tfprof_options.h" #include "tensorflow/core/profiler/tfprof_output.pb.h" namespace tensorflow { namespace tfprof { string CheckAndRemoveDoc(const string& doc) { auto pos = doc.find("Profile:"); CHECK(pos != doc.npos); return doc.substr(pos + 9); } class TFProfShowTest : public ::testing::Test { protected: TFProfShowTest() { string graph_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/graph.pbtxt"); std::unique_ptr<tensorflow::GraphDef> graph_pb(new tensorflow::GraphDef()); TF_CHECK_OK( ReadProtoFile(Env::Default(), graph_path, graph_pb.get(), false)); std::unique_ptr<tensorflow::RunMetadata> run_meta_pb( new tensorflow::RunMetadata()); string run_meta_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/run_meta"); TF_CHECK_OK( ReadProtoFile(Env::Default(), run_meta_path, run_meta_pb.get(), true)); std::unique_ptr<OpLogProto> op_log_pb(new OpLogProto()); string op_log_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/tfprof_log"); TF_CHECK_OK(ReadBinaryProto(Env::Default(), op_log_path, op_log_pb.get())); string ckpt_path = io::JoinPath(testing::TensorFlowSrcRoot(), "core/profiler/internal/testdata/ckpt"); TF_Status* status = TF_NewStatus(); std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader( new checkpoint::CheckpointReader(ckpt_path, status)); CHECK(TF_GetCode(status) == TF_OK); TF_DeleteStatus(status); tf_stats_ = std::make_unique<TFStats>(std::move(graph_pb), std::move(run_meta_pb), std::move(op_log_pb), std::move(ckpt_reader)); tf_stats_->BuildAllViews(); } string TestToFromProto(const string& cmd, const Options& opts, bool show_multi_node = false) { string profile_file = io::JoinPath(testing::TmpDir(), "profile"); tf_stats_->WriteProfile(profile_file); TFStats new_stats(profile_file, nullptr); new_stats.BuildAllViews(); if (show_multi_node) { new_stats.ShowMultiGraphNode(cmd, opts); } else { new_stats.ShowGraphNode(cmd, opts); } string dump_str; TF_CHECK_OK(ReadFileToString(Env::Default(), opts.output_options.at("outfile"), &dump_str)); return dump_str; } std::unique_ptr<TFStats> tf_stats_; }; TEST_F(TFProfShowTest, DumpScopeMode) { string dump_file = io::JoinPath(testing::TmpDir(), "dump"); Options opts( 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, "name", {"VariableV2"}, {".*"}, {""}, {".*"}, {""}, false, {"params", "bytes", "peak_bytes", "residual_bytes", "output_bytes", "micros", "accelerator_micros", "cpu_micros", "float_ops"}, "file", {{"outfile", dump_file}}); tf_stats_->ShowGraphNode("scope", opts); string dump_str; TF_CHECK_OK(ReadFileToString(Env::Default(), dump_file, &dump_str)); EXPECT_EQ( "node name | # parameters | # float_ops | requested bytes | peak bytes | " "residual bytes | output bytes | total execution time | accelerator " "execution time | cpu execution time\n_TFProfRoot (--/451 params, --/0 " "flops, --/2.56KB, --/2.56KB, --/2.56KB, --/2.56KB, --/13us, --/0us, " "--/13us)\n DW (3x3x3x6, 162/162 params, 0/0 flops, 1.28KB/1.28KB, " "1.28KB/1.28KB, 1.28KB/1.28KB, 1.28KB/1.28KB, 2us/2us, 0us/0us, " "2us/2us)\n DW2 (2x2x6x12, 288/288 params, 0/0 flops, 1.28KB/1.28KB, " "1.28KB/1.28KB, 1.28KB/1.28KB, 1.28KB/1.28KB, 11us/11us, 0us/0us, " "11us/11us)\n ScalarW (1, 1/1 params, 0/0 flops, 0B/0B, 0B/0B, 0B/0B, " "0B/0B, 0us/0us, 0us/0us, 0us/0us)\n", CheckAndRemoveDoc(dump_str)); EXPECT_EQ(dump_str, TestToFromProto("scope", opts)); } TEST_F(TFProfShowTest, DumpAcceleratorAndCPUMicros) { string dump_file = io::JoinPath(testing::TmpDir(), "dump"); Options opts(5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, "cpu_micros", {".*"}, {".*"}, {""}, {".*"}, {""}, false, {"accelerator_micros", "cpu_micros"}, "file", {{"outfile", dump_file}}); tf_stats_->ShowGraphNode("scope", opts); string dump_str; TF_CHECK_OK(ReadFileToString(Env::Default(), dump_file, &dump_str)); EXPECT_EQ( "node name | accelerator execution time | cpu execution " "time\n_TFProfRoot (--/404us, --/4.54ms)\n Conv2D (226us/226us, " "4.07ms/4.07ms)\n Conv2D_1 (178us/178us, 419us/419us)\n " "_retval_Conv2D_1_0_0 (0us/0us, 41us/41us)\n DW2 (0us/0us, 11us/11us)\n " " DW2/Assign (0us/0us, 0us/0us)\n DW2/Initializer (0us/0us, " "0us/0us)\n DW2/Initializer/random_normal (0us/0us, 0us/0us)\n " " DW2/Initializer/random_normal/RandomStandardNormal (0us/0us, " "0us/0us)\n DW2/Initializer/random_normal/mean (0us/0us, " "0us/0us)\n DW2/Initializer/random_normal/mul (0us/0us, " "0us/0us)\n DW2/Initializer/random_normal/shape (0us/0us, " "0us/0us)\n DW2/Initializer/random_normal/stddev (0us/0us, " "0us/0us)\n DW2/read (0us/0us, 0us/0us)\n DW (0us/0us, 2us/2us)\n " "DW/Assign (0us/0us, 0us/0us)\n DW/Initializer (0us/0us, 0us/0us)\n " " DW/Initializer/random_normal (0us/0us, 0us/0us)\n " "DW/Initializer/random_normal/RandomStandardNormal (0us/0us, 0us/0us)\n " " DW/Initializer/random_normal/mean (0us/0us, 0us/0us)\n " "DW/Initializer/random_normal/mul (0us/0us, 0us/0us)\n " "DW/Initializer/random_normal/shape (0us/0us, 0us/0us)\n " "DW/Initializer/random_normal/stddev (0us/0us, 0us/0us)\n DW/read " "(0us/0us, 0us/0us)\n zeros (0us/0us, 2us/2us)\n ScalarW (0us/0us, " "0us/0us)\n ScalarW/Assign (0us/0us, 0us/0us)\n " "ScalarW/Initializer (0us/0us, 0us/0us)\n " "ScalarW/Initializer/random_normal (0us/0us, 0us/0us)\n " "ScalarW/Initializer/random_normal/RandomStandardNormal (0us/0us, " "0us/0us)\n ScalarW/Initializer/random_normal/mean (0us/0us, " "0us/0us)\n ScalarW/Initializer/random_normal/mul (0us/0us, " "0us/0us)\n ScalarW/Initializer/random_normal/shape (0us/0us, " "0us/0us)\n ScalarW/Initializer/random_normal/stddev (0us/0us, " "0us/0us)\n ScalarW/read (0us/0us, 0us/0us)\n init (0us/0us, " "0us/0us)\n", CheckAndRemoveDoc(dump_str)); EXPECT_EQ(dump_str, TestToFromProto("scope", opts)); } TEST_F(TFProfShowTest, DumpOpMode) { string dump_file = io::JoinPath(testing::TmpDir(), "dump"); Options opts( 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, "params", {".*"}, {".*"}, {""}, {".*"}, {""}, false, {"params", "bytes", "micros", "float_ops", "occurrence", "input_shapes"}, "file", {{"outfile", dump_file}}); tf_stats_->ShowMultiGraphNode("op", opts); string dump_str; TF_CHECK_OK(ReadFileToString(Env::Default(), dump_file, &dump_str)); EXPECT_EQ( "nodename|requestedbytes|totalexecutiontime|acceleratorexecutiontime|" "cpuexecutiontime|#parameters|#float_ops|opoccurrence(run|defined)|" "inputshapes\nVariableV22.56KB(100.00%,8.40%),13us(100.00%,0.26%),0us(" "100.00%,0.00%),13us(100.00%,0.29%),451params(100.00%,100.00%),0float_" "ops(100.00%,0.00%),2|3\n\ninput_type:\t(run*2|defined*3)\texec_time:" "13us\n\nAdd0B(0.00%,0.00%),0us(99.74%,0.00%),0us(100.00%,0.00%),0us(99." "71%,0.00%),0params(0.00%,0.00%),0float_ops(100.00%,0.00%),0|3\n\ninput_" "type:0:1,\t1:1\t(run*0|defined*1)\texec_time:0us\ninput_type:0:2x2x6x12," "\t1:1\t(run*0|defined*1)\texec_time:0us\ninput_type:0:3x3x3x6,\t1:1\t(" "run*0|defined*1)\texec_time:0us\n\nAssign0B(0.00%,0.00%),0us(99.74%,0." "00%),0us(100.00%,0.00%),0us(99.71%,0.00%),0params(0.00%,0.00%),0float_" "ops(100.00%,0.00%),0|3\n\ninput_type:0:1,\t1:1\t(run*0|defined*1)\texec_" "time:0us\ninput_type:0:2x2x6x12,\t1:2x2x6x12\t(run*0|defined*1)\texec_" "time:0us\ninput_type:0:3x3x3x6,\t1:3x3x3x6\t(run*0|defined*1)\texec_" "time:0us\n\nConst0B(0.00%,0.00%),2us(99.74%,0.04%),0us(100.00%,0.00%)," "2us(99.71%,0.04%),0params(0.00%,0.00%),0float_ops(100.00%,0.00%),1|" "10\n\ninput_type:\t(run*1|defined*10)\texec_time:2us\n\nConv2D27.90KB(" "91.60%,91.60%),4.89ms(99.70%,98.87%),404us(100.00%,100.00%),4.49ms(99." "67%,98.77%),0params(0.00%,0.00%),10.44kfloat_ops(100.00%,100.00%),2|" "2\n\ninput_type:0:2x3x3x6,\t1:2x2x6x12\t(run*1|defined*1)\texec_time:" "597us\ninput_type:0:2x6x6x3,\t1:3x3x3x6\t(run*1|defined*1)\texec_time:4." "29ms\n\nIdentity0B(0.00%,0.00%),0us(0.83%,0.00%),0us(0.00%,0.00%),0us(0." "90%,0.00%),0params(0.00%,0.00%),0float_ops(0.00%,0.00%),0|3\n\ninput_" "type:0:1\t(run*0|defined*1)\texec_time:0us\ninput_type:0:2x2x6x12\t(run*" "0|defined*1)\texec_time:0us\ninput_type:0:3x3x3x6\t(run*0|defined*1)" "\texec_time:0us\n\n", StringReplace(CheckAndRemoveDoc(dump_str), " ", "")); EXPECT_EQ(dump_str, TestToFromProto("op", opts, true)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/tfprof_show.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/tfprof_show_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
67a22cb6-2ba5-40ca-af8d-032bd07077a4
cpp
tensorflow/tensorflow
hardware_type_utils
tensorflow/core/profiler/utils/hardware_type_utils.cc
tensorflow/core/profiler/utils/hardware_type_utils_test.cc
#include "tensorflow/core/profiler/utils/hardware_type_utils.h" #include <algorithm> #include "absl/container/btree_map.h" #include "absl/strings/match.h" #include "xla/tsl/profiler/utils/math_utils.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/hardware_types.pb.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" namespace tensorflow { namespace profiler { namespace { const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_9_0 = { .cuda_core = { .fp64_tflops = 128, .fp32_tflops = 256, .bf16_tflops = 512, .fp16_tflops = 512, .int8_tops = 1024, }, .tensor_core = { .fp64_tflops = 256, .fp32_tflops = 2048, .bf16_tflops = 4096, .fp16_tflops = 4096, .fp8_tflops = 8192, .int8_tops = 8192, }, .has_tensor_core_sparsity_support = true, }; const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_8_9 = { .cuda_core = { .fp64_tflops = 128, .fp32_tflops = 256, .bf16_tflops = 256, .fp16_tflops = 256, .int8_tops = 512, }, .tensor_core = { .fp32_tflops = 512, .bf16_tflops = 1024, .fp16_tflops = 1024, .fp8_tflops = 2048, .int8_tops = 2048, .int4_tops = 4096, }, .has_tensor_core_sparsity_support = true, }; const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_8_6 = { .cuda_core = { .fp64_tflops = 128, .fp32_tflops = 256, .bf16_tflops = 256, .fp16_tflops = 256, .int8_tops = 512, }, .tensor_core = { .fp32_tflops = 256, .bf16_tflops = 512, .fp16_tflops = 1024, .int8_tops = 2048, .int4_tops = 4096, }, .has_tensor_core_sparsity_support = true, }; const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_8_0 = { .cuda_core = { .fp64_tflops = 64, .fp32_tflops = 128, .bf16_tflops = 256, .fp16_tflops = 512, .int8_tops = 512, }, .tensor_core = { .fp64_tflops = 128, .fp32_tflops = 1024, .bf16_tflops = 2048, .fp16_tflops = 2048, .int8_tops = 4096, }, .has_tensor_core_sparsity_support = true, }; const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_7_5 = { .cuda_core = { .fp64_tflops = 64, .fp32_tflops = 128, .fp16_tflops = 256, .int8_tops = 512, }, .tensor_core = { .fp16_tflops = 1024, .int8_tops = 2048, .int4_tops = 4096, }, .has_tensor_core_sparsity_support = false, }; const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_7_0 = { .cuda_core = { .fp64_tflops = 64, .fp32_tflops = 128, .bf16_tflops = 0.0, .fp16_tflops = 256, .int8_tops = 512, }, .tensor_core = { .fp16_tflops = 1024, }, .has_tensor_core_sparsity_support = false, }; const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_6_1 = { .cuda_core = { .fp64_tflops = 8, .fp32_tflops = 256, .fp16_tflops = 4, .int8_tops = 1024, }, .tensor_core = {}, .has_tensor_core_sparsity_support = false, }; const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_6_0 = { .cuda_core = { .fp64_tflops = 64, .fp32_tflops = 128, .fp16_tflops = 256, .int8_tops = 512, }, .tensor_core = {}, .has_tensor_core_sparsity_support = false, }; const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_5_0 = { .cuda_core = { .fp64_tflops = 4, .fp32_tflops = 256, }, .tensor_core = {}, .has_tensor_core_sparsity_support = false, }; const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_3_0 = { .cuda_core = { .fp64_tflops = 128, .fp32_tflops = 384, }, .tensor_core = {}, .has_tensor_core_sparsity_support = false, }; const GpuFlopCapabilities kComputeCap_PerSM_PerCycle_2_0 = { .cuda_core = { .fp64_tflops = 8, .fp32_tflops = 64, }, .tensor_core = {}, .has_tensor_core_sparsity_support = false, }; GpuFlopCapabilities GetNvidiaFlopCapsPerSMPerCycle(int major_comp_cap, int minor_comp_cap) { static const auto& kPerSMFlopCapsTable = *new absl::btree_map<int, GpuFlopCapabilities const*>{ {9000, &kComputeCap_PerSM_PerCycle_9_0}, {8090, &kComputeCap_PerSM_PerCycle_8_9}, {8060, &kComputeCap_PerSM_PerCycle_8_6}, {8000, &kComputeCap_PerSM_PerCycle_8_0}, {7050, &kComputeCap_PerSM_PerCycle_7_5}, {7000, &kComputeCap_PerSM_PerCycle_7_0}, {6010, &kComputeCap_PerSM_PerCycle_6_1}, {6000, &kComputeCap_PerSM_PerCycle_6_0}, {5000, &kComputeCap_PerSM_PerCycle_5_0}, {3000, &kComputeCap_PerSM_PerCycle_3_0}, {2000, &kComputeCap_PerSM_PerCycle_2_0}, }; const int normalized_compute_cap = major_comp_cap * 1000 + minor_comp_cap * 10; GpuFlopCapabilities flops_cap{}; auto it = kPerSMFlopCapsTable.lower_bound(normalized_compute_cap); if (it == kPerSMFlopCapsTable.end()) { LOG(WARNING) << "GPU compute capability " << major_comp_cap << "." << minor_comp_cap << " is too old to support."; } else { flops_cap = *it->second; if (it->first != normalized_compute_cap) { LOG(WARNING) << "GPU compute capability " << major_comp_cap << "." << minor_comp_cap << " is not found. Use the highest compute cap known " << (it->first / 1000) << "." << ((it->first % 1000) / 10) << " instead."; } } return flops_cap; } GpuFlopCapabilities GetGpuFlopCapabilitiesPerSM( const DeviceCapabilities& device_cap) { GpuFlopCapabilities flops_cap{}; if (device_cap.device_vendor() == kDeviceVendorNvidia) { flops_cap = GetNvidiaFlopCapsPerSMPerCycle(device_cap.compute_capability().major(), device_cap.compute_capability().minor()); } else { LOG(WARNING) << "Unsupported device vendor " << device_cap.device_vendor(); } flops_cap.ScaleWith(device_cap.clock_rate_in_ghz()); return flops_cap; } } double GetFlopMaxThroughputPerSM(const DeviceCapabilities& device_cap) { GpuFlopCapabilities sm_flops = GetGpuFlopCapabilitiesPerSM(device_cap); double result = std::max( {sm_flops.cuda_core.fp32_tflops, sm_flops.cuda_core.fp16_tflops, sm_flops.tensor_core.fp32_tflops, sm_flops.tensor_core.fp16_tflops}); VLOG(3) << "GetFlopMaxThroughputPerSM get result: " << result << " GFLOPs"; return result; } double GetSharedMemoryBandwidthPerSM(const DeviceCapabilities& device_cap) { double transaction_byts_per_cycle = device_cap.compute_capability().major() <= 2 ? (32 * 4 / 2) : (32 * 8); double GiBPS = transaction_byts_per_cycle * device_cap.clock_rate_in_ghz(); return tsl::profiler::GigaToUni(GiBPS); } absl::string_view GpuModelName(const DeviceCapabilities& device_cap) { if (device_cap.device_vendor() == kDeviceVendorNvidia) { switch (device_cap.compute_capability().major()) { case 2: return "Nvidia GPU (Fermi)"; case 3: return "Nvidia GPU (Kepler)"; case 5: return "Nvidia GPU (Maxwell)"; case 6: return "Nvidia GPU (Pascal)"; case 7: if (device_cap.compute_capability().minor() < 5) { return "Nvidia GPU (Volta)"; } else { return "Nvidia GPU (Turing)"; } case 8: if (device_cap.compute_capability().minor() < 9) { return "Nvidia GPU (Ampere)"; } else { return "Nvidia GPU (Ada Lovelace)"; } case 9: return "Nvidia GPU (Hopper)"; case 10: return "Nvidia GPU (Blackwell)"; default: return "Nvidia GPU"; } } else if (device_cap.device_vendor() == kDeviceVendorAMD) { switch (device_cap.compute_capability().major()) { case 9: return "AMD GPU - gfx-9XX series"; case 10: return "AMD GPU - gfx-10XX series"; case 11: return "AMD GPU - gfx-11XX series"; default: return "AMD GPU"; } } else { LOG(ERROR) << "Unknown device vendor " << device_cap.device_vendor(); return ""; } } HardwareType ParseHardwareType(absl::string_view device_type) { if (absl::StrContains(device_type, "GPU")) return HardwareType::GPU; if (device_type == "CPU") return HardwareType::CPU_ONLY; if (absl::StrContains(device_type, "TPU")) return HardwareType::TPU; return HardwareType::UNKNOWN_HARDWARE; } bool HasDevice(HardwareType x) { return x > tensorflow::profiler::CPU_ONLY; } } }
#include "tensorflow/core/profiler/utils/hardware_type_utils.h" #include "xla/tsl/profiler/utils/math_utils.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace profiler { namespace { TEST(HardwareTypeUtilsTest, H100PeakComputTFlops) { DeviceCapabilities device_cap; device_cap.set_clock_rate_in_ghz(1.620); device_cap.set_num_cores(114); device_cap.set_memory_size_in_bytes( tsl::profiler::GibiToGiga(tsl::profiler::GigaToUni(80))); device_cap.set_memory_bandwidth(tsl::profiler::GigaToUni(2.04 * 1024)); device_cap.set_device_vendor("Nvidia"); device_cap.mutable_compute_capability()->set_major(9); device_cap.mutable_compute_capability()->set_minor(0); double peak_tflops = GetFlopMaxThroughputPerSM(device_cap) * device_cap.num_cores() / 1000.0; EXPECT_NEAR(peak_tflops, 756, 1.0); } TEST(HardwareTypeUtilsTest, A100PeakComputTFlops) { DeviceCapabilities device_cap; device_cap.set_clock_rate_in_ghz(1.410); device_cap.set_num_cores(108); device_cap.set_memory_size_in_bytes( tsl::profiler::GibiToGiga(tsl::profiler::GigaToUni(80))); device_cap.set_memory_bandwidth(tsl::profiler::GigaToUni(2.04 * 1024)); device_cap.set_device_vendor("Nvidia"); device_cap.mutable_compute_capability()->set_major(8); device_cap.mutable_compute_capability()->set_minor(0); double peak_tflops = GetFlopMaxThroughputPerSM(device_cap) * device_cap.num_cores() / 1000.0; EXPECT_NEAR(peak_tflops, 312, 1.0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/hardware_type_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/hardware_type_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6dd790b3-9fd6-42c8-9057-21d992daec43
cpp
tensorflow/tensorflow
derived_timeline
tensorflow/core/profiler/utils/derived_timeline.cc
tensorflow/core/profiler/utils/derived_timeline_test.cc
#include "tensorflow/core/profiler/utils/derived_timeline.h" #include <algorithm> #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/convert/xla_op_utils.h" #include "xla/tsl/profiler/utils/group_events.h" #include "xla/tsl/profiler/utils/tf_op_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/timespan.h" #include "xla/tsl/profiler/utils/tpu_xplane_utils.h" #include "xla/tsl/profiler/utils/trace_utils.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/util/stats_calculator.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/gpu_event_stats.h" #include "tensorflow/core/profiler/utils/hlo_module_map.h" #include "tensorflow/core/profiler/utils/hlo_proto_map.h" #include "tensorflow/core/profiler/utils/host_offload_utils.h" #include "tensorflow/core/profiler/utils/math_utils.h" #include "tensorflow/core/profiler/utils/trace_utils.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { using tsl::profiler::FindMutableTensorCorePlanes; inline std::string HloModuleEventName(const GpuEventStats& stats) { return stats.program_id ? tsl::profiler::HloModuleNameWithProgramId( stats.hlo_module_name, *stats.program_id) : std::string(stats.hlo_module_name); } inline std::string HloOpEventPrefix(const GpuEventStats& stats) { return stats.program_id ? absl::StrCat(*stats.program_id, "/") : absl::StrCat(stats.hlo_module_name, "/"); } std::vector<XEventMetadata*> GetOrCreateHloOpEventsMetadata( XPlaneBuilder& xplane, const GpuEventStats& stats, const Symbol symbol) { DCHECK(stats.IsXlaOp()); std::vector<XEventMetadata*> hlo_op_events_metadata; hlo_op_events_metadata.reserve(stats.hlo_op_names.size()); std::string hlo_op_event_prefix = HloOpEventPrefix(stats); for (absl::string_view hlo_op_name : stats.hlo_op_names) { XEventMetadata* hlo_op_event_metadata = xplane.GetOrCreateEventMetadata( absl::StrCat(hlo_op_event_prefix, hlo_op_name)); if (hlo_op_event_metadata->display_name().empty()) { hlo_op_event_metadata->set_display_name(std::string(hlo_op_name)); } hlo_op_events_metadata.push_back(hlo_op_event_metadata); if (!symbol.hlo_text.empty()) { XStatsBuilder<XEventMetadata> event_stats(hlo_op_event_metadata, &xplane); event_stats.SetOrAddStatValue(*xplane.GetOrCreateStatMetadata("hlo_text"), symbol.hlo_text); } } return hlo_op_events_metadata; } } void ProcessTfOpEvent(absl::string_view tf_op_full_name, tsl::profiler::Timespan event_span, std::optional<int64_t> group_id, XPlaneBuilder& plane_builder, DerivedXLineBuilder& tf_name_scope_line_builder, DerivedXLineBuilder& tf_op_line_builder) { tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(tf_op_full_name); tsl::profiler::Category category = tf_op.category; if (category == tsl::profiler::Category::kTensorFlow || category == tsl::profiler::Category::kJax) { tf_name_scope_line_builder.ExpandOrAddEvents( plane_builder.GetOrCreateEventsMetadata( tsl::profiler::ParseTfNameScopes(tf_op)), event_span, group_id); } XEventMetadata* tf_op_event_metadata = plane_builder.GetOrCreateEventMetadata(tf_op_full_name); if (tf_op_event_metadata->display_name().empty()) { tf_op_event_metadata->set_display_name(tsl::profiler::TfOpEventName(tf_op)); } tf_op_line_builder.ExpandOrAddEvent(*tf_op_event_metadata, event_span, group_id); } DerivedXEventBuilder::DerivedXEventBuilder(XEventBuilder event, std::optional<int64_t> group_id) : event_(std::move(event)), group_id_(group_id) {} bool DerivedXEventBuilder::ShouldExpand(const XEventMetadata& event_metadata, std::optional<int64_t> group_id) const { return event_.MetadataId() == event_metadata.id() && group_id_ == group_id; } void DerivedXEventBuilder::Expand(tsl::profiler::Timespan event_span) { tsl::profiler::Timespan timespan = event_.GetTimespan(); DCHECK_LE(timespan.begin_ps(), event_span.begin_ps()); timespan.ExpandToInclude(event_span); event_.SetTimespan(timespan); } DerivedXLineBuilder::DerivedXLineBuilder( XPlaneBuilder* plane, int64_t line_id, absl::string_view name, int64_t timestamp_ns, std::vector<DerivedXLineBuilder*> dependent_lines) : group_id_stat_metadata_( plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kGroupId))), correlation_id_metadata_(plane->GetOrCreateStatMetadata( GetStatTypeStr(StatType::kCorrelationId))), cuda_graph_id_metadata_(plane->GetOrCreateStatMetadata( GetStatTypeStr(StatType::kCudaGraphId))), line_(plane->GetOrCreateLine(line_id)), dependent_lines_(std::move(dependent_lines)) { line_.SetName(name); line_.SetTimestampNs(timestamp_ns); } void DerivedXLineBuilder::ExpandOrAddEvent(const XEventMetadata& event_metadata, tsl::profiler::Timespan event_span, std::optional<int64_t> group_id) { ExpandOrAddLevelEvent(event_metadata, event_span, group_id, 0); } void DerivedXLineBuilder::ExpandOrAddEvents( const std::vector<XEventMetadata*>& events_metadata_per_level, tsl::profiler::Timespan event_span, std::optional<int64_t> group_id) { if (events_metadata_per_level.empty()) return; size_t current_nested_level = events_metadata_per_level.size(); for (size_t level = 0; level < current_nested_level; ++level) { ExpandOrAddLevelEvent(*events_metadata_per_level[level], event_span, group_id, level); } ResetLastEvents(current_nested_level); } void DerivedXLineBuilder::ExpandOrAddLevelEvent( const XEventMetadata& event_metadata, tsl::profiler::Timespan event_span, std::optional<int64_t> group_id, int level) { auto& last_event = last_event_by_level_[level]; if (last_event && last_event->ShouldExpand(event_metadata, group_id)) { last_event->Expand(event_span); } else { ResetLastEvents(level); XEventBuilder event = line_.AddEvent(event_metadata); event.SetTimespan(event_span); if (group_id.has_value()) { event.AddStatValue(*group_id_stat_metadata_, *group_id); } last_event.emplace(std::move(event), group_id); } } void DerivedXLineBuilder::AddStatToLevelEvent(int level, const XStatMetadata& metadata, int64_t value) { if (auto it = last_event_by_level_.find(level); it != last_event_by_level_.end() && it->second.has_value()) { it->second->SetOrAddStatValue(metadata, value); } } void DerivedXLineBuilder::AddStatToLevelEvent(int level, const XStatMetadata& metadata, uint64_t value) { if (auto it = last_event_by_level_.find(level); it != last_event_by_level_.end() && it->second.has_value()) { it->second->SetOrAddStatValue(metadata, value); } } void DerivedXLineBuilder::AdjustDurationForTraceViewer(int level) { if (level >= last_event_by_level_.size() || !last_event_by_level_[level]) return; int max_level = level; for (; max_level < last_event_by_level_.size(); ++max_level) { if (!last_event_by_level_[max_level].has_value()) { break; } } --max_level; if (max_level <= level) return; auto& event_on_top_stack = *last_event_by_level_[max_level]; tsl::profiler::Timespan timespan = event_on_top_stack.GetTimespan(); int64_t max_shrink_ns = timespan.duration_ps() / 1000 - 1; int64_t shrink_ns = 0; std::optional<tsl::profiler::Timespan> last_level_timespan; for (int i = level; i <= max_level; ++i) { auto& current_event = *last_event_by_level_[i]; if (shrink_ns < max_shrink_ns && last_level_timespan == current_event.GetTimespan()) { shrink_ns++; } last_level_timespan = current_event.GetTimespan(); if (shrink_ns) { current_event.SetTimespan(tsl::profiler::Timespan::FromEndPoints( last_level_timespan->begin_ps(), last_level_timespan->end_ps() - 1000 * shrink_ns)); } } } void DerivedXLineBuilder::ResetLastEvents(int level) { AdjustDurationForTraceViewer(level); for (int i = level, end = last_event_by_level_.size(); i < end; ++i) { last_event_by_level_[i].reset(); } if (level == 0) { for (DerivedXLineBuilder* line : dependent_lines_) { line->ResetLastEvents(0); } } } void DeriveStepEventsFromGroups( const tsl::profiler::GroupMetadataMap& group_metadata_map, XPlane* device_trace) { XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(device_trace); const XStatMetadata* group_id_stat_metadata = plane_visitor.GetStatMetadataByType(StatType::kGroupId); if (group_id_stat_metadata == nullptr) return; XPlaneBuilder plane_builder(device_trace); int64_t start_timestamp_ns = GetStartTimestampNs(*device_trace); DerivedXLineBuilder steps(&plane_builder, kThreadIdStepInfo, kStepLineName, start_timestamp_ns, {}); for (const XEventVisitor& event_visitor : GetSortedEvents<XEventVisitor>(plane_visitor)) { std::optional<XStatVisitor> group_id_stat = event_visitor.GetStat(StatType::kGroupId, *group_id_stat_metadata); if (group_id_stat.has_value()) { int64_t group_id = group_id_stat->IntValue(); steps.ExpandOrAddEvent( *plane_builder.GetOrCreateEventMetadata(absl::StrCat(group_id)), event_visitor.GetTimespan(), group_id); } } AddGroupMetadataToStepEvents(group_metadata_map, steps.Line()); } void DeriveEventsFromAnnotations(const SymbolResolver& symbol_resolver, XPlane* device_trace) { XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(device_trace); XPlaneBuilder plane_builder(device_trace); int64_t start_timestamp_ns = GetStartTimestampNs(*device_trace); DerivedXLineBuilder tf_ops(&plane_builder, kThreadIdTfOp, kTensorFlowOpLineName, start_timestamp_ns, {}); DerivedXLineBuilder tf_name_scope(&plane_builder, kThreadIdTfNameScope, kTensorFlowNameScopeLineName, start_timestamp_ns, {&tf_ops}); DerivedXLineBuilder hlo_ops(&plane_builder, kThreadIdHloOp, kXlaOpLineName, start_timestamp_ns, {}); DerivedXLineBuilder hlo_modules(&plane_builder, kThreadIdHloModule, kXlaModuleLineName, start_timestamp_ns, {&tf_name_scope, &hlo_ops}); DerivedXLineBuilder source(&plane_builder, kThreadIdSource, kSourceLineName, start_timestamp_ns, {}); for (const XEventVisitor& event : GetSortedEvents<XEventVisitor>(plane_visitor)) { GpuEventStats stats(&event); if (!stats.IsKernel() && !stats.IsCudaGraphExecution()) continue; tsl::profiler::Timespan event_span = event.GetTimespan(); if (!stats.hlo_module_name.empty()) { hlo_modules.ExpandOrAddEvent( *plane_builder.GetOrCreateEventMetadata(HloModuleEventName(stats)), event_span, stats.group_id); } if (stats.IsXlaOp()) { auto symbol = symbol_resolver(stats.program_id, stats.hlo_module_name, stats.hlo_op_names.back()); auto hlo_events_metadata = GetOrCreateHloOpEventsMetadata(plane_builder, stats, symbol); hlo_ops.ExpandOrAddEvents(hlo_events_metadata, event_span, stats.group_id); if (stats.cuda_graph_id_for_inner_node.has_value() && *stats.cuda_graph_id_for_inner_node != 0) { int level = static_cast<int>(hlo_events_metadata.size()) - 1; if (level >= 0) { hlo_ops.AddStatToLevelEvent(level, *hlo_ops.GetCudaGraphIdMetadata(), *stats.cuda_graph_id_for_inner_node); if (stats.correlation_id.has_value()) { hlo_ops.AddStatToLevelEvent(level, *hlo_ops.GetCorrelationIdMetadata(), *stats.correlation_id); } } } if (!symbol.tf_op_name.empty()) { ProcessTfOpEvent(symbol.tf_op_name, event_span, stats.group_id, plane_builder, tf_name_scope, tf_ops); } if (!symbol.source_info.empty()) { source.ExpandOrAddEvent( *plane_builder.GetOrCreateEventMetadata(symbol.source_info), event_span, stats.group_id); } } else if (stats.IsTfOp()) { ProcessTfOpEvent(stats.tf_op_fullname, event_span, stats.group_id, plane_builder, tf_name_scope, tf_ops); } } RemoveEmptyLines(device_trace); } void DeriveEventsFromHostTrace( const XPlane* host_trace, const tsl::profiler::GroupMetadataMap& group_metadata_map, std::vector<XPlane*> device_traces) { struct GroupLaunchInfo { tsl::profiler::Timespan timespan; tsl::Stat<uint64_t> stat; void AddEventTimespan(tsl::profiler::Timespan event_span) { if (stat.count() == 0) { timespan = event_span; } else { timespan.ExpandToInclude(event_span); } stat.UpdateStat(event_span.duration_ps()); } }; using DeviceLaunchInfo = absl::flat_hash_map<int64_t , GroupLaunchInfo>; const int num_devices = device_traces.size(); std::vector<DeviceLaunchInfo> per_device_launch_info(num_devices); XPlaneVisitor host_plane = tsl::profiler::CreateTfXPlaneVisitor(host_trace); host_plane.ForEachLine([&](const XLineVisitor& line) { if (IsDerivedThreadId(line.Id())) return; line.ForEachEvent([&](const XEventVisitor& event) { if (absl::StartsWith(event.Name(), "cu")) return; LaunchEventStats stats(&event); if (stats.group_id.has_value() && stats.IsLaunch() && 0 <= *stats.device_id && *stats.device_id < num_devices) { GroupLaunchInfo& group_launch_info = per_device_launch_info[*stats.device_id][*stats.group_id]; group_launch_info.AddEventTimespan(event.GetTimespan()); } }); }); int64_t host_plane_start = GetStartTimestampNs(*host_trace); for (int i = 0; i < num_devices; ++i) { if (per_device_launch_info[i].empty()) continue; int64_t device_plane_start = GetStartTimestampNs(*device_traces[i]); XPlaneBuilder device_plane(device_traces[i]); const XStatMetadata& group_id_stat_metadata = *device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kGroupId)); const XStatMetadata& num_launches_stat_metadata = *device_plane.GetOrCreateStatMetadata("num_launches"); const XStatMetadata& max_launch_time_us_stat_metadata = *device_plane.GetOrCreateStatMetadata("max_launch_time_us"); const XStatMetadata& avg_launch_time_us_stat_metadata = *device_plane.GetOrCreateStatMetadata("avg_launch_time_us"); XLineBuilder launch_line = device_plane.GetOrCreateLine(kThreadIdKernelLaunch); launch_line.SetName(kKernelLaunchLineName); launch_line.SetTimestampNs(std::min(device_plane_start, host_plane_start)); for (const auto& kv : per_device_launch_info[i]) { int64_t group_id = kv.first; const GroupLaunchInfo& group_info = kv.second; if (const tsl::profiler::GroupMetadata* group_metadata = gtl::FindOrNull(group_metadata_map, group_id)) { XEventBuilder device_event = launch_line.AddEvent(*device_plane.GetOrCreateEventMetadata( absl::StrCat("Launch Stats for ", group_metadata->name))); device_event.SetTimespan(group_info.timespan); device_event.AddStatValue(group_id_stat_metadata, group_id); device_event.AddStatValue(num_launches_stat_metadata, group_info.stat.count()); device_event.AddStatValue( max_launch_time_us_stat_metadata, tsl::profiler::PicoToMicro(group_info.stat.max())); device_event.AddStatValue( avg_launch_time_us_stat_metadata, tsl::profiler::PicoToMicro(group_info.stat.avg())); } } } } void GenerateDerivedTimeLines( const tsl::profiler::GroupMetadataMap& group_metadata_map, XSpace* space) { HloModuleMap hlo_module_map; { HloProtoMap hlo_proto_map; hlo_proto_map.AddHloProtosFromXSpace(*space); for (const auto& [program_id, hlo_proto] : hlo_proto_map) { AddHloProto(hlo_module_map, program_id, *hlo_proto); } } auto symbol_resolver = [&](absl::optional<uint64_t> program_id, absl::string_view hlo_module, absl::string_view hlo_op) -> Symbol { Symbol output; const auto* hlo_instruction = GetHloInstruction(hlo_module_map, program_id, hlo_op); if (hlo_instruction != nullptr) { output.tf_op_name = hlo_instruction->op_full_name(); output.source_info = std::string(hlo_instruction->source_info()); } return output; }; std::vector<XPlane*> device_planes = FindMutablePlanesWithPrefix(space, kGpuPlanePrefix); for (XPlane* plane : device_planes) { DeriveStepEventsFromGroups(group_metadata_map, plane); DeriveEventsFromAnnotations(symbol_resolver, plane); } const XPlane* host_plane = FindPlaneWithName(*space, kHostThreadsPlaneName); if (host_plane) { DeriveEventsFromHostTrace(host_plane, group_metadata_map, device_planes); } for (XPlane* plane : FindMutableTensorCorePlanes(space)) { DeriveLinesFromStats(plane); SortXPlane(plane); } } void DeriveLinesFromStats(XPlane* device_trace) { XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(device_trace); XPlaneBuilder plane_builder(device_trace); int64_t start_timestamp_ns = GetStartTimestampNs(*device_trace); DerivedXLineBuilder tf_ops( &plane_builder, tensorflow::profiler::kThreadIdTfOp, tensorflow::profiler::kTensorFlowOpLineName, start_timestamp_ns, {}); DerivedXLineBuilder tf_name_scope( &plane_builder, tensorflow::profiler::kThreadIdTfNameScope, tensorflow::profiler::kTensorFlowNameScopeLineName, start_timestamp_ns, {&tf_ops}); DerivedXLineBuilder source( &plane_builder, tensorflow::profiler::kThreadIdSource, tensorflow::profiler::kSourceLineName, start_timestamp_ns, {}); HostOffloadEventProcessor host_offload_event_processor(&plane_builder, start_timestamp_ns); for (const XEventVisitor& event : GetSortedEvents<XEventVisitor>(plane_visitor, true)) { tsl::profiler::Timespan event_span = event.GetTimespan(); std::optional<absl::string_view> tf_op_name; std::optional<absl::string_view> source_info; std::optional<uint64_t> group_id; std::optional<uint64_t> is_async; auto for_each_stat = [&](const XStatVisitor& stat) { if (stat.Type() == StatType::kTfOp) { tf_op_name = stat.StrOrRefValue(); } else if (stat.Type() == StatType::kGroupId) { group_id = stat.IntOrUintValue(); } else if (stat.Type() == StatType::kSourceInfo) { source_info = stat.StrOrRefValue(); } else if (stat.Type() == StatType::kIsAsync) { is_async = stat.IntOrUintValue(); } }; event.Metadata().ForEachStat(for_each_stat); event.ForEachStat(for_each_stat); if (is_async && *is_async) continue; if (tf_op_name && !tf_op_name->empty()) { ProcessTfOpEvent(*tf_op_name, event_span, group_id, plane_builder, tf_name_scope, tf_ops); } if (source_info && !source_info->empty()) { source.ExpandOrAddEvent( *plane_builder.GetOrCreateEventMetadata(*source_info), event_span, group_id); } if (host_offload_event_processor.IsHostOffloadOpName(event)) { host_offload_event_processor.ProcessHostOffloadOpEvent(event, group_id); } } RemoveEmptyLines(device_trace); } void DeriveLinesForXlaCpuOps(XPlane* host_trace) { if (host_trace == nullptr || !absl::StartsWith(host_trace->name(), kHostThreadsPlaneName)) return; XPlaneVisitor visitor = tsl::profiler::CreateTfXPlaneVisitor(host_trace); XPlane destination_plane; XPlaneBuilder plane_builder(&destination_plane); int64_t line_id = tsl::profiler::kThreadIdHostXlaRegionStart; visitor.ForEachLine([&](const XLineVisitor& line) { int64_t start_timestamp_ns = line.TimestampNs(); DerivedXLineBuilder tf_ops( &plane_builder, line_id++, absl::StrCat(line.Name(), "-", tensorflow::profiler::kTensorFlowOpLineName), start_timestamp_ns, {}); DerivedXLineBuilder tf_name_scope( &plane_builder, line_id++, absl::StrCat(line.Name(), "-", tensorflow::profiler::kTensorFlowNameScopeLineName), start_timestamp_ns, {&tf_ops}); DerivedXLineBuilder xla_cpu_ops( &plane_builder, line_id++, absl::StrCat(line.Name(), "-", tsl::profiler::kXlaModuleLineName), start_timestamp_ns, {}); line.ForEachEvent([&](const XEventVisitor& event) { std::optional<std::string> hlo_module_name; std::optional<std::string> framework_op_name; event.ForEachStat([&](const XStatVisitor& stat) { if (!stat.Type().has_value()) return; switch (stat.Type().value()) { case StatType::kHloModule: hlo_module_name = stat.StrOrRefValue(); break; case StatType::kTfOp: framework_op_name = stat.StrOrRefValue(); break; } }); if (hlo_module_name.has_value()) { xla_cpu_ops.ExpandOrAddEvent( *plane_builder.GetOrCreateEventMetadata(*hlo_module_name), event.GetTimespan(), std::nullopt); if (framework_op_name.has_value()) { ProcessTfOpEvent(*framework_op_name, event.GetTimespan(), std::nullopt, plane_builder, tf_name_scope, tf_ops); } } }); }); RemoveEmptyLines(&destination_plane); MergePlanes(destination_plane, host_trace); } } }
#include "tensorflow/core/profiler/utils/derived_timeline.h" #include <cstdint> #include <map> #include <optional> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/group_events.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/trace_utils.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { namespace { TEST(DerivedTimelineTest, EmptySpaceTest) { XSpace space; tsl::profiler::GroupMetadataMap group_metadata_map; GenerateDerivedTimeLines(group_metadata_map, &space); EXPECT_EQ(space.planes_size(), 0); } TEST(DerivedTimelineTest, HloModuleNameTest) { const absl::string_view kHloModuleName = "hlo_module"; const absl::string_view kKernelDetails = "kernel_details"; XSpace space; tsl::profiler::GroupMetadataMap group_metadata_map; XPlane* plane = GetOrCreateGpuXPlane(&space, 0); XPlaneBuilder plane_builder(plane); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, "op1", 0, 100, {{StatType::kHloModule, kHloModuleName}, {StatType::kKernelDetails, kKernelDetails}}); CreateXEvent(&plane_builder, &line_builder, "op2", 200, 300, {{StatType::kHloModule, kHloModuleName}, {StatType::kKernelDetails, kKernelDetails}}); GenerateDerivedTimeLines(group_metadata_map, &space); XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(plane); EXPECT_EQ(plane_visitor.NumLines(), 2); plane_visitor.ForEachLine([&](const XLineVisitor& line_visitor) { if (line_visitor.Id() == 0) return; EXPECT_EQ(line_visitor.Id(), kThreadIdHloModule); EXPECT_EQ(line_visitor.NumEvents(), 1); line_visitor.ForEachEvent([&](const XEventVisitor& event_visitor) { EXPECT_EQ(event_visitor.Name(), kHloModuleName); }); }); } TEST(DerivedTimelineTest, NoHloModuleNameTest) { const absl::string_view kKernelDetails = "kernel_details"; const uint64_t kCudaGraphExecId = 1; XSpace space; tsl::profiler::GroupMetadataMap group_metadata_map; XPlane& plane = *GetOrCreateGpuXPlane(&space, 0); XPlaneBuilder plane_builder(&plane); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, "op1", 0, 100, {{StatType::kKernelDetails, kKernelDetails}}); CreateXEvent(&plane_builder, &line_builder, "op2", 200, 300, {{StatType::kKernelDetails, kKernelDetails}}); CreateXEvent(&plane_builder, &line_builder, "op3", 500, 100, {{StatType::kCudaGraphExecId, kCudaGraphExecId}}); GenerateDerivedTimeLines(group_metadata_map, &space); XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(&plane); EXPECT_EQ(plane_visitor.NumLines(), 1); plane_visitor.ForEachLine([&](const XLineVisitor& line_visitor) { if (line_visitor.Id() == 0) return; EXPECT_EQ(line_visitor.Id(), kThreadIdHloModule); EXPECT_EQ(line_visitor.NumEvents(), 0); }); } TEST(DerivedTimelineTest, TfOpLineTest) { const absl::string_view kTfOpName = "mul:Mul"; const absl::string_view kKernelDetails = "kernel_details"; const uint64_t kCudaGraphExecId = 1; XSpace space; tsl::profiler::GroupMetadataMap group_metadata_map; XPlane* plane = GetOrCreateGpuXPlane(&space, 0); XPlaneBuilder plane_builder(plane); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, "op1", 0, 100, {{StatType::kTfOp, kTfOpName}, {StatType::kKernelDetails, kKernelDetails}}); CreateXEvent(&plane_builder, &line_builder, "op2", 200, 300, {{StatType::kTfOp, kTfOpName}, {StatType::kKernelDetails, kKernelDetails}}); CreateXEvent(&plane_builder, &line_builder, "op3", 500, 100, {{StatType::kTfOp, kTfOpName}, {StatType::kCudaGraphExecId, kCudaGraphExecId}}); GenerateDerivedTimeLines(group_metadata_map, &space); XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(plane); EXPECT_EQ(plane_visitor.NumLines(), 2); plane_visitor.ForEachLine([&](const XLineVisitor& line_visitor) { if (line_visitor.Id() == 0) return; EXPECT_EQ(line_visitor.Id(), kThreadIdTfOp); EXPECT_EQ(line_visitor.NumEvents(), 1); line_visitor.ForEachEvent([&](const XEventVisitor& event_visitor) { EXPECT_EQ(event_visitor.Name(), kTfOpName); EXPECT_EQ(event_visitor.OffsetPs(), 0); EXPECT_EQ(event_visitor.DurationPs(), 600); }); }); } TEST(DerivedTimelineTest, DependencyTest) { constexpr int64_t kFirstGroupId = 0; constexpr int64_t kSecondGroupId = 1; const absl::string_view kTfOpName = "mul:Mul"; const absl::string_view kKernelDetails = "kernel_details"; XSpace space; tsl::profiler::GroupMetadataMap group_metadata_map( {{0, {"train 0"}}, {1, {"train 1"}}}); XPlane* plane = GetOrCreateGpuXPlane(&space, 0); XPlaneBuilder plane_builder(plane); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, "op1", 0, 100, {{StatType::kGroupId, kFirstGroupId}, {StatType::kTfOp, kTfOpName}, {StatType::kKernelDetails, kKernelDetails}}); CreateXEvent(&plane_builder, &line_builder, "op2", 200, 300, {{StatType::kGroupId, kSecondGroupId}, {StatType::kTfOp, kTfOpName}, {StatType::kKernelDetails, kKernelDetails}}); GenerateDerivedTimeLines(group_metadata_map, &space); XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(plane); EXPECT_EQ(plane_visitor.NumLines(), 3); plane_visitor.ForEachLine([&](const XLineVisitor& line_visitor) { if (line_visitor.Id() == 0) return; EXPECT_TRUE(line_visitor.Id() == kThreadIdStepInfo || line_visitor.Id() == kThreadIdTfOp); EXPECT_EQ(line_visitor.NumEvents(), 2); }); } TEST(DerivedTimelineTest, TfOpNameScopeTest) { const absl::string_view kTfOpName = "scope1/scope2/mul:Mul"; const absl::string_view kKernelDetails = "kernel_details"; XSpace space; tsl::profiler::GroupMetadataMap group_metadata_map; XPlane* plane = GetOrCreateGpuXPlane(&space, 0); XPlaneBuilder plane_builder(plane); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, "op1", 0, 100, {{StatType::kTfOp, kTfOpName}, {StatType::kKernelDetails, kKernelDetails}}); CreateXEvent(&plane_builder, &line_builder, "op2", 200, 300, {{StatType::kTfOp, kTfOpName}, {StatType::kKernelDetails, kKernelDetails}}); GenerateDerivedTimeLines(group_metadata_map, &space); XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(plane); EXPECT_EQ(plane_visitor.NumLines(), 3); plane_visitor.ForEachLine([&](const XLineVisitor& line_visitor) { int64_t line_id = line_visitor.Id(); if (line_id == 0) { return; } else if (line_id == kThreadIdTfNameScope) { EXPECT_EQ(line_visitor.NumEvents(), 2); line_visitor.ForEachEvent([&](const XEventVisitor& event_visitor) { EXPECT_EQ(event_visitor.OffsetPs(), 0); EXPECT_EQ(event_visitor.DurationPs(), 500); }); } else if (line_id == kThreadIdTfOp) { EXPECT_EQ(line_visitor.NumEvents(), 1); line_visitor.ForEachEvent([&](const XEventVisitor& event_visitor) { EXPECT_EQ(event_visitor.Name(), kTfOpName); EXPECT_EQ(event_visitor.OffsetPs(), 0); EXPECT_EQ(event_visitor.DurationPs(), 500); }); } }); } TEST(DerivedTimelineTest, TfOpNameScopeShrinkTest) { { XSpace space; tsl::profiler::GroupMetadataMap group_metadata_map; XPlane* plane = GetOrCreateGpuXPlane(&space, 0); XPlaneBuilder plane_builder(plane); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, "op1", 0, 10000, {{StatType::kTfOp, "a/b/c/Add:Add"}, {StatType::kKernelDetails, "blah"}}); CreateXEvent( &plane_builder, &line_builder, "op2", 20000, 30000, {{StatType::kTfOp, "a/d/Mul:Mul"}, {StatType::kKernelDetails, "blah"}}); GenerateDerivedTimeLines(group_metadata_map, &space); XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(plane); EXPECT_EQ(plane_visitor.NumLines(), 3); plane_visitor.ForEachLine([&](const XLineVisitor& line_visitor) { int64_t line_id = line_visitor.Id(); if (line_id == 0) { return; } else if (line_id == kThreadIdTfNameScope) { EXPECT_EQ(line_visitor.NumEvents(), 4); std::map<absl::string_view, uint64_t> durations; line_visitor.ForEachEvent([&](const XEventVisitor& event_visitor) { durations[event_visitor.Name()] = event_visitor.DurationPs(); }); EXPECT_EQ(durations["a"], 50000); EXPECT_EQ(durations["b"], 10000); EXPECT_EQ(durations["c"], 9000); EXPECT_EQ(durations["d"], 30000); } }); } { XSpace space; tsl::profiler::GroupMetadataMap group_metadata_map; XPlane* plane = GetOrCreateGpuXPlane(&space, 0); XPlaneBuilder plane_builder(plane); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, "op1", 0, 10000, {{StatType::kTfOp, "a/b/c/d/e/Add:Add"}, {StatType::kKernelDetails, "blah"}}); CreateXEvent(&plane_builder, &line_builder, "op2", 10000, 2000, {{StatType::kTfOp, "a/b/c/d/f/Sub:Sub"}, {StatType::kKernelDetails, "blah"}}); CreateXEvent( &plane_builder, &line_builder, "op3", 20000, 30000, {{StatType::kTfOp, "a/g/Mul:Mul"}, {StatType::kKernelDetails, "blah"}}); GenerateDerivedTimeLines(group_metadata_map, &space); XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(plane); EXPECT_EQ(plane_visitor.NumLines(), 3); plane_visitor.ForEachLine([&](const XLineVisitor& line_visitor) { int64_t line_id = line_visitor.Id(); if (line_id == 0) { return; } else if (line_id == kThreadIdTfNameScope) { EXPECT_EQ(line_visitor.NumEvents(), 7); std::map<absl::string_view, uint64_t> durations; line_visitor.ForEachEvent([&](const XEventVisitor& event_visitor) { durations[event_visitor.Name()] = event_visitor.DurationPs(); }); for (const auto& [name, duration] : durations) { LOG(ERROR) << name << ": " << duration; } EXPECT_EQ(durations["a"], 50000); EXPECT_EQ(durations["b"], 12000); EXPECT_EQ(durations["c"], 11000); EXPECT_EQ(durations["d"], 11000); EXPECT_EQ(durations["e"], 10000); EXPECT_EQ(durations["f"], 1000); EXPECT_EQ(durations["g"], 30000); } }); } } TEST(DerivedTimelineTest, XloOpHasCudaGraphStats) { constexpr absl::string_view kModuleName = "module"; constexpr absl::string_view kHloOpName = "op_level_2"; constexpr absl::string_view kKernelDetails = "kernel_details"; constexpr int64_t kGroupIdValue = 1; constexpr int64_t kCorrelationIdValue = 10000; const uint64_t kCudaGraphIdValue = 20; XSpace space; tsl::profiler::GroupMetadataMap group_metadata_map; XPlane& plane = *GetOrCreateGpuXPlane(&space, 0); XPlaneBuilder plane_builder(&plane); auto line_builder = plane_builder.GetOrCreateLine(0); CreateXEvent(&plane_builder, &line_builder, "op1", 0, 100, {{StatType::kKernelDetails, kKernelDetails}, {StatType::kGroupId, kGroupIdValue}, {StatType::kHloModule, kModuleName}, {StatType::kHloOp, kHloOpName}, {StatType::kCorrelationId, kCorrelationIdValue}, {StatType::kCudaGraphId, kCudaGraphIdValue}}); CreateXEvent(&plane_builder, &line_builder, "op2", 200, 300, {{StatType::kKernelDetails, kKernelDetails}, {StatType::kGroupId, kGroupIdValue}, {StatType::kHloModule, kModuleName}, {StatType::kHloOp, kHloOpName}, {StatType::kCorrelationId, kCorrelationIdValue}, {StatType::kCudaGraphId, kCudaGraphIdValue}}); GenerateDerivedTimeLines(group_metadata_map, &space); size_t num_hlo_op_line = 0; size_t num_events = 0; std::optional<XStatVisitor> correlation_id; std::optional<XStatVisitor> cuda_graph_id; XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(&plane); plane_visitor.ForEachLine([&](const XLineVisitor& line_visitor) { if (line_visitor.Id() == kThreadIdHloOp) { num_hlo_op_line++; if (num_hlo_op_line == 1) { num_events = line_visitor.NumEvents(); line_visitor.ForEachEvent([&](const XEventVisitor& event_visitor) { correlation_id = event_visitor.GetStat(StatType::kCorrelationId); cuda_graph_id = event_visitor.GetStat(StatType::kCudaGraphId); }); } } }); EXPECT_EQ(num_hlo_op_line, 1); EXPECT_EQ(num_events, 1); ASSERT_TRUE(correlation_id.has_value()); EXPECT_EQ(correlation_id->IntValue(), kCorrelationIdValue); ASSERT_TRUE(cuda_graph_id.has_value()); EXPECT_EQ(cuda_graph_id->UintValue(), kCudaGraphIdValue); } TEST(DerivedTimelineTest, DeriveLinesForXlaCpuOps) { XPlane xplane; XPlaneBuilder plane_builder(&xplane); plane_builder.SetName(tsl::profiler::kHostThreadsPlaneName); absl::string_view main_line_name = "main"; auto line_builder = plane_builder.GetOrCreateLine(0); line_builder.SetName(main_line_name); CreateXEvent(&plane_builder, &line_builder, "op1", 0, 100, {{StatType::kHloModule, "Module1"}}); CreateXEvent(&plane_builder, &line_builder, "op2", 200, 400, {{StatType::kHloModule, "Module2"}}); DeriveLinesForXlaCpuOps(&xplane); XPlaneVisitor plane_visitor = tsl::profiler::CreateTfXPlaneVisitor(&xplane); EXPECT_EQ(plane_visitor.NumLines(), 2); plane_visitor.ForEachLine([&](const XLineVisitor& line_visitor) { if (line_visitor.Name() == main_line_name) return; line_visitor.ForEachEvent([&](const XEventVisitor& event_visitor) { if (event_visitor.Name() == "Module1") { EXPECT_EQ(event_visitor.DurationPs(), 100); EXPECT_EQ(event_visitor.OffsetPs(), 0); } else if (event_visitor.Name() == "Module2") { EXPECT_EQ(event_visitor.DurationPs(), 400); EXPECT_EQ(event_visitor.OffsetPs(), 200); } else { FAIL() << "Found Event " << event_visitor.Name(); } }); }); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/derived_timeline.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/derived_timeline_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
49a4e579-c145-4cc7-ada9-64353d57ef67
cpp
tensorflow/tensorflow
xprof_gpu_cost_analysis
tensorflow/core/profiler/utils/xprof_gpu_cost_analysis.cc
tensorflow/core/profiler/utils/xprof_gpu_cost_analysis_test.cc
#include "tensorflow/core/profiler/utils/xprof_gpu_cost_analysis.h" #include <algorithm> #include <cstdint> #include <memory> #include <vector> #include "absl/status/status.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/primitive_util.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_cost_analysis.h" namespace tensorflow { namespace profiler { namespace { std::vector<uint32_t> GetInputBitwidths(const xla::HloInstruction& hlo) { std::vector<uint32_t> input_bitwidths; for (const auto& operand : hlo.operands()) { switch (operand->shape().element_type()) { case xla::PRIMITIVE_TYPE_INVALID: case xla::TUPLE: case xla::OPAQUE_TYPE: case xla::TOKEN: break; default: input_bitwidths.push_back( xla::primitive_util::BitWidth(operand->shape().element_type())); } } return input_bitwidths; } } absl::Status XProfGpuCostAnalysis::Postprocess(const xla::HloInstruction* hlo) { if (hlo == nullptr) { return absl::OkStatus(); } uint32_t flop_rate_adjustment = 1; float model_flops = current_properties_[kFlopsKey]; std::vector<uint32_t> input_bitwidths = GetInputBitwidths(*hlo); if (!input_bitwidths.empty()) { int max_input_bitwidth = *std::max_element(input_bitwidths.begin(), input_bitwidths.end()); if (model_flops) { switch (max_input_bitwidth) { case 8: flop_rate_adjustment = 2; break; case 4: flop_rate_adjustment = 4; break; } } } current_properties_[kDeviceFlopsAdjustment] = model_flops - model_flops / flop_rate_adjustment; return xla::gpu::GpuHloCostAnalysis::Postprocess(hlo); } std::unique_ptr<xla::HloCostAnalysis> XProfGpuCostAnalysis::CreateNestedCostAnalysis() { return std::make_unique<XProfGpuCostAnalysis>(options_); } int64_t XProfGpuCostAnalysis::GetDeviceFlopsAdjustment( const xla::HloInstruction& hlo) { return GetPropertyForHlo(hlo, kDeviceFlopsAdjustment, hlo_properties_); } } }
#include "tensorflow/core/profiler/utils/xprof_gpu_cost_analysis.h" #include <cstdint> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace profiler { class XprofGpuHloCostAnalysisTest : public xla::HloTestBase { xla::HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const xla::Shape& shape) { constexpr int64_t kPointerSize = 8; return xla::ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: xla::HloCostAnalysis::Options options_{ ShapeSizeBytesFunction(), {}, {}, true}; XProfGpuCostAnalysis analysis_{options_}; XprofGpuHloCostAnalysisTest() : xla::HloTestBase() {} }; TEST_F(XprofGpuHloCostAnalysisTest, Fp16GemmNoAdjustment) { absl::string_view hlo_string = R"( HloModule r ENTRY e { arg0 = f16[65536,32800] parameter(0) arg1 = f16[32800,32] parameter(1) gemm = (f16[65536,32], s8[0]) custom-call(arg0, arg1), custom_call_target="__cublas$gemm", backend_config="{ \"gemm_backend_config\": { \"alpha_real\":1, \"beta\":0, \"dot_dimension_numbers\":{ \"lhs_contracting_dimensions\":[\"1\"], \"rhs_contracting_dimensions\":[\"0\"], \"lhs_batch_dimensions\":[], \"rhs_batch_dimensions\":[] }, \"alpha_imag\":0, \"precision_config\":{ \"operand_precision\":[\"DEFAULT\",\"DEFAULT\"] }, \"epilogue\":\"DEFAULT\" } }" ROOT get-tuple-element = f16[65536,32] get-tuple-element((f16[65536,32], s8[0]) gemm), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); xla::HloComputation* comp = module->entry_computation(); const xla::HloInstruction* fp16gemm = comp->GetInstructionWithName("gemm"); int64_t gold_flops = 65536LL * 32800 * 32 * 2; EXPECT_EQ(analysis_.flop_count(*fp16gemm), gold_flops); EXPECT_EQ(analysis_.GetDeviceFlopsAdjustment(*fp16gemm), 0); } TEST_F(XprofGpuHloCostAnalysisTest, S8GemmAdjustment) { absl::string_view hlo_string = R"( HloModule r ENTRY e { arg0 = s8[65536,32800] parameter(0) arg1 = s8[32800,32] parameter(1) gemm = (s32[65536,32], s8[0]) custom-call(arg0, arg1), custom_call_target="__cublas$gemm", backend_config="{ \"gemm_backend_config\": { \"alpha_real\":1, \"beta\":0, \"dot_dimension_numbers\":{ \"lhs_contracting_dimensions\":[\"1\"], \"rhs_contracting_dimensions\":[\"0\"], \"lhs_batch_dimensions\":[], \"rhs_batch_dimensions\":[] }, \"alpha_imag\":0, \"precision_config\":{ \"operand_precision\":[\"DEFAULT\",\"DEFAULT\"] }, \"epilogue\":\"DEFAULT\" } }" ROOT get-tuple-element = s32[65536,32] get-tuple-element((s32[65536,32], s8[0]) gemm), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); xla::HloComputation* comp = module->entry_computation(); const xla::HloInstruction* s8gemm = comp->GetInstructionWithName("gemm"); int64_t gold_flops = 65536LL * 32800 * 32 * 2; EXPECT_EQ(analysis_.flop_count(*s8gemm), gold_flops); EXPECT_EQ(analysis_.GetDeviceFlopsAdjustment(*s8gemm), gold_flops / 2); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/xprof_gpu_cost_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/xprof_gpu_cost_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
944a5e29-2e4e-4401-9e0f-8585788d40e5
cpp
tensorflow/tensorflow
kernel_stats_utils
tensorflow/core/profiler/utils/kernel_stats_utils.cc
tensorflow/core/profiler/utils/kernel_stats_utils_test.cc
#include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include <algorithm> #include <string> #include <tuple> #include <vector> #include "absl/algorithm/container.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/kernel_stats.pb.h" namespace tensorflow { namespace profiler { namespace { const int kMaxNumOfKernels = 1000; constexpr absl::string_view kTensorCoreKernelNamePatterns[] = { "16816", "c1688", "conv1x1", "conv2d_c1_k1", "dgrad_1x1_stride_2x2", "direct_group", "first_layer_wgrad_kernel", "h1688", "h884", "hmma", "i16832", "i8816", "s884", "s1688", "xmma_gemm", "xmma_implicit_gemm", "xmma_sparse_conv", "xmma_sparse_gemm", "xmma_warp_specialized_implicit_gemm"}; } void ParseKernelLaunchParams(absl::string_view xstat_kernel_details, KernelReport* kernel) { const std::vector<absl::string_view> params = absl::StrSplit(xstat_kernel_details, absl::ByAnyChar(" \n")); constexpr uint32 kNumDimensions = 3; for (uint32 dim = 0; dim < kNumDimensions; ++dim) { kernel->add_block_dim(1); kernel->add_grid_dim(1); } for (const auto& param : params) { const std::vector<absl::string_view> key_value = absl::StrSplit(param, ':'); if (key_value.size() != 2) { continue; } absl::string_view key = key_value[0]; absl::string_view value_str = key_value[1]; uint32 value = 0; double pct = 0.0; if (key == "regs" && absl::SimpleAtoi(value_str, &value)) { kernel->set_registers_per_thread(value); } else if (key == "static_shared" && absl::SimpleAtoi(value_str, &value)) { kernel->set_static_shmem_bytes(value); } else if (key == "dynamic_shared" && absl::SimpleAtoi(value_str, &value)) { kernel->set_dynamic_shmem_bytes(value); } else if (key == "block") { const std::vector<absl::string_view>& block = absl::StrSplit(value_str, ','); uint32 tmp[3]; if (block.size() == 3 && absl::SimpleAtoi(block[0], &tmp[0]) && absl::SimpleAtoi(block[1], &tmp[1]) && absl::SimpleAtoi(block[2], &tmp[2])) { std::copy_n(tmp, 3, kernel->mutable_block_dim()->begin()); } } else if (key == "grid") { const std::vector<absl::string_view>& grid = absl::StrSplit(value_str, ','); uint32 tmp[3]; if (grid.size() == 3 && absl::SimpleAtoi(grid[0], &tmp[0]) && absl::SimpleAtoi(grid[1], &tmp[1]) && absl::SimpleAtoi(grid[2], &tmp[2])) { std::copy_n(tmp, 3, kernel->mutable_grid_dim()->begin()); } } else if (key == "occ_pct" && absl::SimpleAtod(value_str, &pct)) { kernel->set_occupancy_pct(pct); } } } bool IsKernelUsingTensorCore(absl::string_view kernel_name) { VLOG(1) << "kernel name: " << kernel_name; for (absl::string_view pattern : kTensorCoreKernelNamePatterns) { if (absl::StrContains(kernel_name, pattern)) { return true; } } return false; } bool IsOpTensorCoreEligible(absl::string_view tf_op_name) { return false || absl::EndsWith(tf_op_name, "Conv2D") || absl::EndsWith(tf_op_name, "Conv2DBackpropFilter") || absl::EndsWith(tf_op_name, "Conv2DBackpropInput") || absl::EndsWith(tf_op_name, "Conv3D") || absl::EndsWith(tf_op_name, "DepthwiseConv2dNative") || absl::EndsWith(tf_op_name, "DepthwiseConv2dNativeBackpropFilter") || absl::EndsWith(tf_op_name, "DepthwiseConv2dNativeBackpropInput") || absl::StrContains(tf_op_name, "BatchMatMul") || absl::EndsWith(tf_op_name, "/MatMul") || absl::EndsWith(tf_op_name, "FusedMatMul") || absl::EndsWith(tf_op_name, "/CudnnRNN") || absl::StrContains(tf_op_name, "CudnnRNNV") || absl::StrContains(tf_op_name, "CudnnRNNForward") || absl::StrContains(tf_op_name, "CudnnRNNBackprop") || absl::EndsWith(tf_op_name, "XlaDot") || absl::EndsWith(tf_op_name, "XlaDotV2"); } bool IsEinsumTensorCoreEligible(absl::string_view equation) { if (equation.empty()) { return false; } const std::vector<absl::string_view> input_output = absl::StrSplit(equation, "->"); if (input_output.size() != 2) { return false; } const std::vector<absl::string_view> lhs_rhs = absl::StrSplit(input_output[0], ','); return lhs_rhs.size() == 2; } bool KernelReportLessThanComparator::operator()(const KernelReport& lhs, const KernelReport& rhs) const { auto lhs_tuple = std::make_tuple( lhs.name(), lhs.grid_dim(0), lhs.grid_dim(1), lhs.grid_dim(2), lhs.block_dim(0), lhs.block_dim(1), lhs.block_dim(2), lhs.registers_per_thread(), lhs.static_shmem_bytes(), lhs.dynamic_shmem_bytes(), lhs.is_kernel_using_tensor_core(), lhs.is_op_tensor_core_eligible(), lhs.op_name()); auto rhs_tuple = std::make_tuple( rhs.name(), rhs.grid_dim(0), rhs.grid_dim(1), rhs.grid_dim(2), rhs.block_dim(0), rhs.block_dim(1), rhs.block_dim(2), rhs.registers_per_thread(), rhs.static_shmem_bytes(), rhs.dynamic_shmem_bytes(), rhs.is_kernel_using_tensor_core(), rhs.is_op_tensor_core_eligible(), rhs.op_name()); return lhs_tuple < rhs_tuple; } bool KernelReportEqualToComparator::operator()(const KernelReport& lhs, const KernelReport& rhs) const { return ( lhs.is_kernel_using_tensor_core() == rhs.is_kernel_using_tensor_core() && lhs.is_op_tensor_core_eligible() == rhs.is_op_tensor_core_eligible() && lhs.block_dim(0) == rhs.block_dim(0) && lhs.block_dim(1) == rhs.block_dim(1) && lhs.block_dim(2) == rhs.block_dim(2) && lhs.grid_dim(0) == rhs.grid_dim(0) && lhs.grid_dim(1) == rhs.grid_dim(1) && lhs.grid_dim(2) == rhs.grid_dim(2) && lhs.registers_per_thread() == rhs.registers_per_thread() && lhs.static_shmem_bytes() == rhs.static_shmem_bytes() && lhs.dynamic_shmem_bytes() == rhs.dynamic_shmem_bytes() && lhs.name() == rhs.name() && lhs.op_name() == rhs.op_name()); } void SortAndKeepTopKDurationKernelReportsInDb(KernelStatsDb* kernel_stats_db) { auto comp = [](const KernelReport& lhs, const KernelReport& rhs) { return lhs.total_duration_ns() > rhs.total_duration_ns() || (lhs.total_duration_ns() == rhs.total_duration_ns() && KernelReportLessThanComparator()(lhs, rhs)); }; if (kernel_stats_db->reports_size() > kMaxNumOfKernels) { std::partial_sort( kernel_stats_db->mutable_reports()->begin(), kernel_stats_db->mutable_reports()->begin() + kMaxNumOfKernels, kernel_stats_db->mutable_reports()->end(), comp); kernel_stats_db->mutable_reports()->erase( kernel_stats_db->mutable_reports()->begin() + kMaxNumOfKernels, kernel_stats_db->mutable_reports()->end()); } else { std::sort(kernel_stats_db->mutable_reports()->begin(), kernel_stats_db->mutable_reports()->end(), comp); } } void CopyTopKDurationKernelReportsToDb(const KernelReportMap& reports, KernelStatsDb* dst) { std::vector<std::pair<const KernelReport*, const KernelReportValue*>> kernels_to_sort; kernels_to_sort.reserve(reports.size()); for (const auto& report_value : reports) { kernels_to_sort.push_back( std::make_pair(&report_value.first, &report_value.second)); } auto comp = [](const std::pair<const KernelReport*, const KernelReportValue*>& lhs, const std::pair<const KernelReport*, const KernelReportValue*>& rhs) { return lhs.second->total_duration_ns > rhs.second->total_duration_ns || (lhs.second->total_duration_ns == rhs.second->total_duration_ns && KernelReportLessThanComparator()(*lhs.first, *rhs.first)); }; if (kernels_to_sort.size() > kMaxNumOfKernels) { absl::c_partial_sort(kernels_to_sort, kernels_to_sort.begin() + kMaxNumOfKernels, comp); } else { absl::c_sort(kernels_to_sort, comp); } int copy_size = std::min(kMaxNumOfKernels, static_cast<int>(kernels_to_sort.size())); for (int i = 0; i < copy_size; i++) { KernelReport* report = dst->add_reports(); *report = *kernels_to_sort[i].first; const KernelReportValue& kernel_value = *kernels_to_sort[i].second; report->set_occurrences(kernel_value.occurrences); report->set_min_duration_ns(kernel_value.min_duration_ns); report->set_max_duration_ns(kernel_value.max_duration_ns); report->set_total_duration_ns(kernel_value.total_duration_ns); } } void InsertOrUpdateKernelReport(const KernelReport& kernel, const KernelReportValue& value, KernelReportMap* dst) { KernelReportValue& element = (*dst)[kernel]; if (element.occurrences == 0) { element = value; } else { element.total_duration_ns += value.total_duration_ns; element.min_duration_ns = std::min(element.min_duration_ns, value.min_duration_ns); element.max_duration_ns = std::max(element.max_duration_ns, value.max_duration_ns); element.occurrences += value.occurrences; } } void MergeKernelReports(const KernelReportMap& reports, KernelReportMap* dst) { for (auto& kernel_value : reports) { InsertOrUpdateKernelReport(kernel_value.first, kernel_value.second, dst); } } KernelStatsByOpName GroupKernelReportsByOpName( const KernelStatsDb& kernel_stats_db) { KernelStatsByOpName op_level_kernel_stats; for (const KernelReport& kernel_report : kernel_stats_db.reports()) { auto ret = op_level_kernel_stats.emplace(kernel_report.op_name(), OpLevelKernelStats()); if (ret.second) { OpLevelKernelStats& stats = ret.first->second; stats.is_op_tensor_core_eligible = kernel_report.is_op_tensor_core_eligible(); stats.total_duration_ns += kernel_report.total_duration_ns(); if (kernel_report.is_kernel_using_tensor_core()) { stats.tensor_core_duration_ns += kernel_report.total_duration_ns(); } } else { OpLevelKernelStats& stats = ret.first->second; DCHECK_EQ(stats.is_op_tensor_core_eligible, kernel_report.is_op_tensor_core_eligible()); stats.total_duration_ns += kernel_report.total_duration_ns(); if (kernel_report.is_kernel_using_tensor_core()) { stats.tensor_core_duration_ns += kernel_report.total_duration_ns(); } } } return op_level_kernel_stats; } } }
#include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include <gmock/gmock.h> #include "xla/backends/profiler/gpu/cupti_collector.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/protobuf/kernel_stats.pb.h" namespace tensorflow { namespace profiler { namespace { using ::testing::FieldsAre; TEST(KernelStatsUtilsTest, TestGroupKernelReportsByOpName) { KernelStatsDb kernel_stats_db; KernelReport* kernel_report_1 = kernel_stats_db.add_reports(); kernel_report_1->set_name("op1_kernel1"); kernel_report_1->set_op_name("op1"); kernel_report_1->set_total_duration_ns(1000); kernel_report_1->set_is_kernel_using_tensor_core(true); kernel_report_1->set_is_op_tensor_core_eligible(true); KernelReport* kernel_report_2 = kernel_stats_db.add_reports(); kernel_report_2->set_name("op1_kernel2"); kernel_report_2->set_op_name("op1"); kernel_report_2->set_total_duration_ns(1000); kernel_report_2->set_is_kernel_using_tensor_core(false); kernel_report_2->set_is_op_tensor_core_eligible(true); KernelReport* kernel_report_3 = kernel_stats_db.add_reports(); kernel_report_3->set_name("op2_kernel1"); kernel_report_3->set_op_name("op2"); kernel_report_3->set_total_duration_ns(100); kernel_report_3->set_is_kernel_using_tensor_core(false); kernel_report_3->set_is_op_tensor_core_eligible(false); KernelStatsByOpName kernel_stats_by_op_name = GroupKernelReportsByOpName(kernel_stats_db); ASSERT_EQ(kernel_stats_by_op_name.size(), 2); auto iter1 = kernel_stats_by_op_name.find("op1"); auto iter2 = kernel_stats_by_op_name.find("op2"); ASSERT_NE(iter1, kernel_stats_by_op_name.end()); ASSERT_NE(iter2, kernel_stats_by_op_name.end()); const OpLevelKernelStats& op1_stats = iter1->second; const OpLevelKernelStats& op2_stats = iter2->second; EXPECT_EQ(op1_stats.is_op_tensor_core_eligible, true); EXPECT_EQ(op1_stats.total_duration_ns, 2000); EXPECT_EQ(op1_stats.tensor_core_duration_ns, 1000); EXPECT_EQ(op2_stats.is_op_tensor_core_eligible, false); EXPECT_EQ(op2_stats.total_duration_ns, 100); EXPECT_EQ(op2_stats.tensor_core_duration_ns, 0); } TEST(KernelStatsUtilsTest, KernelDetailsXStatParser) { xla::profiler::KernelDetails kernel_info; kernel_info.registers_per_thread = 10; kernel_info.static_shared_memory_usage = 128; kernel_info.dynamic_shared_memory_usage = 256; kernel_info.block_x = 32; kernel_info.block_y = 8; kernel_info.block_z = 4; kernel_info.grid_x = 3; kernel_info.grid_y = 2; kernel_info.grid_z = 1; const double occupancy_pct = 50.0; std::string xstat_kernel_details = ToXStat(kernel_info, occupancy_pct); KernelReport kernel; ParseKernelLaunchParams(xstat_kernel_details, &kernel); EXPECT_EQ(kernel.registers_per_thread(), 10); EXPECT_EQ(kernel.static_shmem_bytes(), 128); EXPECT_EQ(kernel.dynamic_shmem_bytes(), 256); EXPECT_EQ(kernel.block_dim()[0], 32); EXPECT_EQ(kernel.block_dim()[1], 8); EXPECT_EQ(kernel.block_dim()[2], 4); EXPECT_EQ(kernel.grid_dim()[0], 3); EXPECT_EQ(kernel.grid_dim()[1], 2); EXPECT_EQ(kernel.grid_dim()[2], 1); } TEST(KernelStatsUtilsTest, KernelDetailsTokenizer) { KernelReport kernel; absl::string_view kernel_details_0 = "odd grid:3,2,1"; ParseKernelLaunchParams(kernel_details_0, &kernel); EXPECT_EQ(kernel.grid_dim()[0], 3); EXPECT_EQ(kernel.grid_dim()[1], 2); EXPECT_EQ(kernel.grid_dim()[2], 1); absl::string_view kernel_details_1 = "block:6,5,4 odd "; ParseKernelLaunchParams(kernel_details_1, &kernel); EXPECT_EQ(kernel.block_dim()[0], 6); EXPECT_EQ(kernel.block_dim()[1], 5); EXPECT_EQ(kernel.block_dim()[2], 4); absl::string_view kernel_details_2 = "block:1,2,3 odd grid:4,5,6"; ParseKernelLaunchParams(kernel_details_2, &kernel); EXPECT_EQ(kernel.block_dim()[0], 1); EXPECT_EQ(kernel.block_dim()[1], 2); EXPECT_EQ(kernel.block_dim()[2], 3); EXPECT_EQ(kernel.grid_dim()[0], 4); EXPECT_EQ(kernel.grid_dim()[1], 5); EXPECT_EQ(kernel.grid_dim()[2], 6); absl::string_view kernel_details_3 = "static_shared:7 dynamic_shared:8"; ParseKernelLaunchParams(kernel_details_3, &kernel); EXPECT_EQ(kernel.static_shmem_bytes(), 7); EXPECT_EQ(kernel.dynamic_shmem_bytes(), 8); } TEST(KernelStatsUtilsTest, TestInsertOrUpdateKernelReport) { KernelReport kr; kr.set_name("op1_kernel1"); kr.set_op_name("op1"); kr.add_block_dim(32); kr.add_block_dim(8); kr.add_block_dim(4); kr.add_grid_dim(3); kr.add_grid_dim(2); kr.add_grid_dim(1); KernelReportValue krv1; krv1.total_duration_ns = 1700; krv1.min_duration_ns = 500; krv1.max_duration_ns = 1200; krv1.occurrences = 2; KernelReportValue krv2; krv2.total_duration_ns = 900; krv2.min_duration_ns = 900; krv2.max_duration_ns = 900; krv2.occurrences = 1; KernelReportMap dst1; InsertOrUpdateKernelReport(kr, krv1, &dst1); InsertOrUpdateKernelReport(kr, krv2, &dst1); EXPECT_THAT(dst1[kr], FieldsAre(2600, 500, 1200, 3)); KernelReportMap dst2; InsertOrUpdateKernelReport(kr, krv2, &dst2); InsertOrUpdateKernelReport(kr, krv1, &dst2); EXPECT_THAT(dst2[kr], FieldsAre(2600, 500, 1200, 3)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/kernel_stats_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/kernel_stats_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a9e152ae-637d-49e9-93dd-dd7bc78b2bd5
cpp
tensorflow/tensorflow
step_intersection
tensorflow/core/profiler/utils/step_intersection.cc
tensorflow/core/profiler/utils/step_intersection_test.cc
#include "tensorflow/core/profiler/utils/step_intersection.h" #include "xla/tsl/profiler/utils/timespan.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace profiler { namespace { tsl::profiler::Timespan StepTimespan(const PerCoreStepInfo& percore_stepinfo) { uint64 min_ps = kuint64max; uint64 max_ps = 0; for (const auto& core_stepinfo : percore_stepinfo.step_info_per_core()) { const auto& stepinfo = core_stepinfo.second; uint64 begin_ps = stepinfo.begin_ps(); uint64 end_ps = begin_ps + stepinfo.duration_ps(); min_ps = std::min(min_ps, begin_ps); max_ps = std::max(max_ps, end_ps); } return (min_ps < max_ps) ? tsl::profiler::Timespan::FromEndPoints(min_ps, max_ps) : tsl::profiler::Timespan(); } tsl::profiler::Timespan AllStepsTimespan(const StepDatabaseResult& step_db) { uint64 min_ps = kuint64max; uint64 max_ps = 0; for (const auto& step : step_db.step_sequence()) { tsl::profiler::Timespan timespan = StepTimespan(step); uint64 begin_ps = timespan.begin_ps(); uint64 end_ps = timespan.end_ps(); min_ps = std::min(min_ps, begin_ps); max_ps = std::max(max_ps, end_ps); } return (min_ps < max_ps) ? tsl::profiler::Timespan::FromEndPoints(min_ps, max_ps) : tsl::profiler::Timespan(); } struct AlignmentInfo { StepsAlignment alignment; double similarity; }; double StepSimilarity(const PerCoreStepInfo& subordinate_step, const PerCoreStepInfo& chief_step) { tsl::profiler::Timespan subordinate_timespan = StepTimespan(subordinate_step); tsl::profiler::Timespan chief_timespan = StepTimespan(chief_step); return chief_timespan.OverlappedDurationPs(subordinate_timespan); } AlignmentInfo ComputeAlignmentInfo(const StepDatabaseResult& subordinate, uint32 subordinate_anchor, const StepDatabaseResult& chief, uint32 chief_anchor) { uint32 pre_anchor_steps = std::min(subordinate_anchor, chief_anchor); uint32 post_anchor_steps = std::min(subordinate.step_sequence_size() - subordinate_anchor, chief.step_sequence_size() - chief_anchor); uint32 alignment_steps = pre_anchor_steps + post_anchor_steps; double similarity = 0; uint32 begin_subordinate_idx = subordinate_anchor - pre_anchor_steps; uint32 begin_chief_idx = chief_anchor - pre_anchor_steps; for (uint32 i = 0; i < alignment_steps; i++) { similarity += StepSimilarity(subordinate.step_sequence(begin_subordinate_idx + i), chief.step_sequence(begin_chief_idx + i)); } StepsAlignment alignment = {begin_subordinate_idx, begin_chief_idx, alignment_steps}; return {alignment, similarity}; } StepsAlignment FindStepsAlignment(const StepDatabaseResult& subordinate, const StepDatabaseResult& chief) { double max_similarity = -1; StepsAlignment alignment = {0, 0, 0}; if (subordinate.step_sequence_size() == 0 || chief.step_sequence_size() == 0) return alignment; for (auto c = 0; c < chief.step_sequence_size(); c++) { AlignmentInfo info = ComputeAlignmentInfo(subordinate, 0, chief, c); if (info.similarity <= max_similarity) continue; max_similarity = info.similarity; alignment = info.alignment; } for (auto s = 1; s < subordinate.step_sequence_size(); s++) { AlignmentInfo info = ComputeAlignmentInfo(subordinate, s, chief, 0); if (info.similarity <= max_similarity) continue; max_similarity = info.similarity; alignment = info.alignment; } return alignment; } std::string StringStepsAlignment(const StepsAlignment& alignment) { return absl::StrCat( "[begin_subordinate_idx: ", alignment.begin_subordinate_idx, ", begin_chief_idx: ", alignment.begin_chief_idx, ", num_steps: ", alignment.num_steps, "]"); } std::string StringDstStepNumbers(const std::vector<uint32>& step_numbers) { std::string str; absl::StrAppend(&str, "["); for (auto i = 0; i < step_numbers.size(); i++) { if (i > 0) absl::StrAppend(&str, ", "); absl::StrAppend(&str, step_numbers[i]); } absl::StrAppend(&str, "]"); return str; } std::string StringSrcToDstIndexMap(uint32 src_first_step_idx, uint32 num_steps) { std::string str; absl::StrAppend(&str, "["); for (auto i = 0; i < num_steps; i++) { if (i > 0) absl::StrAppend(&str, ", "); absl::StrAppend(&str, src_first_step_idx + i, ":", i); } absl::StrAppend(&str, "]"); return str; } } StepIntersection::StepIntersection( uint32 max_steps, const absl::flat_hash_map<uint32, const StepDatabaseResult*>& perhost_stepdb) { empty_intersect_ = false; chief_host_id_ = kuint32max; uint64 min_duration_ps = kuint64max; const StepDatabaseResult* chief_step_db = nullptr; for (const auto& hostid_stepdb : perhost_stepdb) { auto host_id = hostid_stepdb.first; const auto& step_db = hostid_stepdb.second; tsl::profiler::Timespan timespan = AllStepsTimespan(*step_db); if (timespan.duration_ps() < min_duration_ps) { chief_host_id_ = host_id; chief_step_db = step_db; min_duration_ps = timespan.duration_ps(); } } if (chief_host_id_ == kuint32max) { steps_dropped_ = 0; begin_chief_idx_ = 0; end_chief_idx_ = 0; return; } uint32 max_begin_chief_idx = 0; uint32 min_end_chief_idx = kuint32max; for (const auto& hostid_stepdb : perhost_stepdb) { auto host_id = hostid_stepdb.first; const auto& step_db = hostid_stepdb.second; if (host_id == chief_host_id_) { perhost_alignment_[host_id] = { 0, 0, static_cast<uint32>(step_db->step_sequence_size())}; } else { perhost_alignment_[host_id] = FindStepsAlignment(*step_db, *chief_step_db); } uint32 host_begin_chief_idx = perhost_alignment_[host_id].begin_chief_idx; max_begin_chief_idx = std::max(max_begin_chief_idx, host_begin_chief_idx); uint32 host_end_chief_idx = perhost_alignment_[host_id].begin_chief_idx + perhost_alignment_[host_id].num_steps; min_end_chief_idx = std::min(min_end_chief_idx, host_end_chief_idx); } if (max_begin_chief_idx > min_end_chief_idx) { steps_dropped_ = 0; begin_chief_idx_ = 0; end_chief_idx_ = 0; empty_intersect_ = true; return; } begin_chief_idx_ = max_begin_chief_idx; uint32 num_steps = min_end_chief_idx - max_begin_chief_idx; if (num_steps > max_steps) { steps_dropped_ = num_steps - max_steps; end_chief_idx_ = max_begin_chief_idx + max_steps; } else { steps_dropped_ = 0; end_chief_idx_ = min_end_chief_idx; } } std::vector<uint32> StepIntersection::DstStepNumbers() const { std::vector<uint32> result; result.reserve(NumSteps()); for (uint32 i = 0; i < NumSteps(); i++) { result.push_back(i); } return result; } uint32 StepIntersection::FirstStepIndex(uint32 host_id) const { const auto* alignment = gtl::FindOrNull(perhost_alignment_, host_id); if (alignment == nullptr) return 0; DCHECK(alignment->begin_chief_idx <= begin_chief_idx_); uint32 shift = begin_chief_idx_ - alignment->begin_chief_idx; uint32 begin_subordinate_idx = alignment->begin_subordinate_idx + shift; return begin_subordinate_idx; } std::string StepIntersection::DebugString() const { std::string str; absl::StrAppend(&str, "chief host id_: ", chief_host_id_, "\n"); absl::StrAppend(&str, "begin_chief_idx_: ", begin_chief_idx_, ", num_steps: ", NumSteps(), "\n"); absl::StrAppend( &str, "DstStepNumbers(): ", StringDstStepNumbers(DstStepNumbers()), "\n"); std::vector<uint32> host_ids; host_ids.reserve(perhost_alignment_.size()); for (const auto& hostid_alignment : perhost_alignment_) { auto host_id = hostid_alignment.first; host_ids.push_back(host_id); } absl::c_sort(host_ids); absl::StrAppend(&str, "perhost_alignment:\n"); for (const auto host_id : host_ids) { const auto* ptr = gtl::FindOrNull(perhost_alignment_, host_id); if (ptr == nullptr) continue; absl::StrAppend(&str, "host: ", host_id, ", step-alignment: ", StringStepsAlignment(*ptr), "\n"); } absl::StrAppend(&str, "SrcToDstIndexMap():\n"); for (const auto host_id : host_ids) { absl::StrAppend(&str, "host: ", host_id, ", src-to-dst-index-map: ", StringSrcToDstIndexMap(FirstStepIndex(host_id), NumSteps()), "\n"); } return str; } } }
#include "tensorflow/core/profiler/utils/step_intersection.h" #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace profiler { namespace { using PerHostStepDb = absl::flat_hash_map<uint32 , StepDatabaseResult>; constexpr uint64 kStepDurationPs = 2000000000; constexpr uint32 kNumStepsPerHost = 10; constexpr uint64 kStepGapPs = 0; constexpr uint32 kNumCoresPerHost = 8; PerCoreStepInfo CreateOneTestStep(uint32 host_id, uint32 num_steps, uint32 step_idx, uint64 step_begin_ps) { PerCoreStepInfo result; uint32 step_num = step_idx * host_id; result.set_step_num(step_num); StepInfoResult info; info.set_step_num(step_num); if (host_id == 0 && step_idx == (num_steps - 1)) { info.set_duration_ps(kStepDurationPs - 1); } else { info.set_duration_ps(kStepDurationPs); } info.set_begin_ps(step_begin_ps); for (uint32 core_id = 0; core_id < kNumCoresPerHost; core_id++) { (*result.mutable_step_info_per_core())[core_id] = info; } return result; } PerHostStepDb CreateTestSteps(uint32 num_hosts, uint64 shift_ps) { PerHostStepDb result; uint64 first_step_begin_ps = 0; for (uint32 host_id = 0; host_id < num_hosts; host_id++) { StepDatabaseResult step_db; uint64 step_begin_ps = first_step_begin_ps; for (uint32 step_idx = 0; step_idx < kNumStepsPerHost; step_idx++) { *step_db.add_step_sequence() = CreateOneTestStep(host_id, kNumStepsPerHost, step_idx, step_begin_ps); step_begin_ps += (kStepDurationPs + kStepGapPs); } result[host_id] = step_db; first_step_begin_ps += shift_ps; } return result; } PerHostStepDb CreateEmptyIntersectTestSteps() { PerHostStepDb result; uint64 step_begin_ps; uint32 host_id; host_id = 0; step_begin_ps = 0; uint64 host_0_num_steps = 10; StepDatabaseResult step_db_0; for (uint32 step_idx = 0; step_idx < host_0_num_steps; step_idx++) { *step_db_0.add_step_sequence() = CreateOneTestStep(host_id, host_0_num_steps, step_idx, step_begin_ps); step_begin_ps += (kStepDurationPs + kStepGapPs); } result[host_id] = step_db_0; host_id = 1; step_begin_ps = (host_0_num_steps - 2) * (kStepDurationPs + kStepGapPs); uint64 host_1_num_steps = 5; StepDatabaseResult step_db_1; for (uint32 step_idx = 0; step_idx < host_1_num_steps; step_idx++) { *step_db_1.add_step_sequence() = CreateOneTestStep(host_id, host_1_num_steps, step_idx, step_begin_ps); step_begin_ps += (kStepDurationPs + kStepGapPs); } result[host_id] = step_db_1; host_id = 2; step_begin_ps = (host_0_num_steps + host_1_num_steps - 4) * (kStepDurationPs + kStepGapPs); uint64 host_2_num_steps = 10; StepDatabaseResult step_db_2; for (uint32 step_idx = 0; step_idx < host_2_num_steps; step_idx++) { *step_db_2.add_step_sequence() = CreateOneTestStep(host_id, host_2_num_steps, step_idx, step_begin_ps); step_begin_ps += (kStepDurationPs + kStepGapPs); } result[host_id] = step_db_2; return result; } PerHostStepDb CreateNoStep(uint32 num_hosts) { PerHostStepDb result; for (uint32 host_id = 0; host_id < num_hosts; host_id++) { StepDatabaseResult step_db; result[host_id] = step_db; } return result; } absl::flat_hash_map<uint32 , const StepDatabaseResult*> Convert( const PerHostStepDb& perhost_stepdb) { absl::flat_hash_map<uint32 , const StepDatabaseResult*> result; for (const auto& hostid_stepdb : perhost_stepdb) { auto host_id = hostid_stepdb.first; const auto& step_db = hostid_stepdb.second; result[host_id] = &step_db; } return result; } TEST(StepIntersectionTest, EachHostShiftedBy1StepDuration) { uint32 num_hosts = 4; uint64 shift_ps = kStepDurationPs; PerHostStepDb perhost_stepdb = CreateTestSteps(num_hosts, shift_ps); StepIntersection intersection = StepIntersection(kNumStepsPerHost, Convert(perhost_stepdb)); EXPECT_EQ(intersection.StepsDropped(), 0); uint32 dst_num_steps = kNumStepsPerHost - num_hosts + 1; EXPECT_EQ(intersection.NumSteps(), dst_num_steps); uint32 src_first_step_index = intersection.FirstStepIndex(0); EXPECT_EQ(src_first_step_index, num_hosts - 1); std::vector<uint32> dst_step_numbers = intersection.DstStepNumbers(); for (uint32 i = 0; i < dst_num_steps; i++) { EXPECT_EQ(dst_step_numbers[i], i); } } TEST(StepIntersectionTest, ExactlyNoShift) { uint32 num_hosts = 4; uint64 shift_ps = 0; PerHostStepDb perhost_stepdb = CreateTestSteps(num_hosts, shift_ps); StepIntersection intersection = StepIntersection(kNumStepsPerHost, Convert(perhost_stepdb)); EXPECT_EQ(intersection.StepsDropped(), 0); uint32 dst_num_steps = kNumStepsPerHost; EXPECT_EQ(intersection.NumSteps(), dst_num_steps); std::vector<uint32> dst_step_numbers = intersection.DstStepNumbers(); for (uint32 i = 0; i < dst_num_steps; i++) { EXPECT_EQ(dst_step_numbers[i], i); } for (uint32 host_id = 0; host_id < num_hosts; host_id++) { uint32 src_first_step_index = intersection.FirstStepIndex(host_id); EXPECT_EQ(src_first_step_index, 0); } } TEST(StepIntersectionTest, EachHostShiftedByJustABit) { uint32 num_hosts = 4; uint64 shift_ps = 100; PerHostStepDb perhost_stepdb = CreateTestSteps(num_hosts, shift_ps); StepIntersection intersection = StepIntersection(kNumStepsPerHost, Convert(perhost_stepdb)); EXPECT_EQ(intersection.StepsDropped(), 0); uint32 dst_num_steps = kNumStepsPerHost; EXPECT_EQ(intersection.NumSteps(), dst_num_steps); std::vector<uint32> dst_step_numbers = intersection.DstStepNumbers(); for (uint32 i = 0; i < dst_num_steps; i++) { EXPECT_EQ(dst_step_numbers[i], i); } for (uint32 host_id = 0; host_id < num_hosts; host_id++) { uint32 src_first_step_index = intersection.FirstStepIndex(host_id); EXPECT_EQ(src_first_step_index, 0); } } TEST(StepIntersectionTest, SingleHost) { uint32 num_hosts = 1; uint64 shift_ps = 0; PerHostStepDb perhost_stepdb = CreateTestSteps(num_hosts, shift_ps); StepIntersection intersection = StepIntersection(kNumStepsPerHost, Convert(perhost_stepdb)); EXPECT_EQ(intersection.StepsDropped(), 0); uint32 dst_num_steps = kNumStepsPerHost; EXPECT_EQ(intersection.NumSteps(), dst_num_steps); std::vector<uint32> dst_step_numbers = intersection.DstStepNumbers(); for (uint32 i = 0; i < dst_num_steps; i++) { EXPECT_EQ(dst_step_numbers[i], i); } for (uint32 host_id = 0; host_id < num_hosts; host_id++) { uint32 src_first_step_index = intersection.FirstStepIndex(host_id); EXPECT_EQ(src_first_step_index, 0); } } TEST(StepIntersectionTest, WithMaxSteps) { uint32 num_hosts = 4; uint64 shift_ps = 0; uint32 max_steps = 3; PerHostStepDb perhost_stepdb = CreateTestSteps(num_hosts, shift_ps); StepIntersection intersection = StepIntersection(max_steps, Convert(perhost_stepdb)); EXPECT_EQ(intersection.StepsDropped(), kNumStepsPerHost - max_steps); EXPECT_EQ(intersection.NumSteps(), max_steps); } TEST(StepIntersectionTest, NoStep) { uint32 num_hosts = 4; uint32 max_steps = 100; PerHostStepDb perhost_stepdb = CreateNoStep(num_hosts); StepIntersection intersection = StepIntersection(max_steps, Convert(perhost_stepdb)); EXPECT_EQ(intersection.NumSteps(), 0); EXPECT_FALSE(intersection.EmptyIntersect()); } TEST(StepIntersectionTest, EmptyIntersection) { uint32 max_steps = 100; PerHostStepDb perhost_stepdb = CreateEmptyIntersectTestSteps(); StepIntersection intersection = StepIntersection(max_steps, Convert(perhost_stepdb)); EXPECT_EQ(intersection.StepsDropped(), 0); EXPECT_EQ(intersection.NumSteps(), 0); EXPECT_TRUE(intersection.EmptyIntersect()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/step_intersection.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/step_intersection_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e652fd5d-582c-4120-9c12-4a2f60eea061
cpp
tensorflow/tensorflow
op_metrics_db_utils
tensorflow/core/profiler/utils/op_metrics_db_utils.cc
tensorflow/core/profiler/utils/op_metrics_db_utils_test.cc
#include "tensorflow/core/profiler/utils/op_metrics_db_utils.h" #include <algorithm> #include <cstdint> #include <limits> #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/profiler/utils/tf_op_utils.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/utils/math_utils.h" namespace tensorflow { namespace profiler { const absl::string_view kIdle = "IDLE"; const uint32_t kSparseCoreIndexStart = 1000000; namespace { constexpr uint64_t kRootSymbolId = 0; using tsl::profiler::StatType; using tsl::profiler::XEventMetadataVisitor; using tsl::profiler::XStatVisitor; class DeviceTfOpMetricsDbBuilder : public OpMetricsDbBuilder { public: explicit DeviceTfOpMetricsDbBuilder(OpMetricsDb* db) : OpMetricsDbBuilder(db) {} void UpdateTfOpMetricsWithDeviceOpMetrics(absl::string_view tf_op_name, absl::string_view tf_op_type, const OpMetrics& device_op_metrics, uint64_t fingerprint) { OpMetrics* tf_op_metrics = OpMetricsDbBuilder::LookupOrInsertNewOpMetrics( 0, tf_op_name, fingerprint); if (tf_op_metrics->category().empty()) { tf_op_metrics->set_category(tf_op_type == tsl::profiler::kUnknownOp ? "Unknown" : std::string(tf_op_type)); } tf_op_metrics->set_is_eager(device_op_metrics.is_eager()); tf_op_metrics->set_occurrences(std::max(tf_op_metrics->occurrences(), device_op_metrics.occurrences())); tf_op_metrics->set_time_ps(tf_op_metrics->time_ps() + device_op_metrics.time_ps()); tf_op_metrics->set_self_time_ps(tf_op_metrics->self_time_ps() + device_op_metrics.self_time_ps()); tf_op_metrics->set_flops(tf_op_metrics->flops() + device_op_metrics.flops()); tf_op_metrics->set_bytes_accessed(tf_op_metrics->bytes_accessed() + device_op_metrics.bytes_accessed()); } }; struct OpKey { std::optional<uint64_t> program_id; std::optional<uint64_t> symbol_id; }; OpKey GetOpKeyFromHloEventMetadata( const XEventMetadataVisitor& hlo_event_metadata) { OpKey op_key; hlo_event_metadata.ForEachStat([&](const XStatVisitor& stat) { if (stat.Type().has_value()) { switch (static_cast<StatType>(*stat.Type())) { case StatType::kProgramId: op_key.program_id = stat.IntOrUintValue(); break; case StatType::kSymbolId: op_key.symbol_id = stat.IntOrUintValue(); break; default: break; } } }); return op_key; } void SetOpMetadataFromHloEventMetadata( const XEventMetadataVisitor& hlo_event_metadata, OpMetrics* op_metrics) { if (hlo_event_metadata.HasDisplayName()) { op_metrics->set_name(std::string(hlo_event_metadata.DisplayName())); op_metrics->set_long_name(std::string(hlo_event_metadata.Name())); } else { op_metrics->set_name(std::string(hlo_event_metadata.Name())); } hlo_event_metadata.ForEachStat([&](const XStatVisitor& stat) { if (stat.Type().has_value()) { switch (static_cast<StatType>(*stat.Type())) { case StatType::kProgramId: op_metrics->set_hlo_module_id(stat.IntOrUintValue()); break; case StatType::kHloCategory: op_metrics->set_category(std::string(stat.StrOrRefValue())); break; case StatType::kTfOp: op_metrics->set_provenance(std::string(stat.StrOrRefValue())); break; case StatType::kFlops: op_metrics->set_flops(stat.IntOrUintValue()); break; case StatType::kBytesAccessed: op_metrics->set_bytes_accessed(stat.IntOrUintValue()); break; case StatType::kMemoryAccessBreakdown: { tensorflow::profiler::MemoryAccessBreakdown breakdown; const auto& value = stat.BytesValue(); if (breakdown.ParseFromArray(value.data(), value.size())) { *op_metrics->mutable_memory_accessed_breakdown() = breakdown.memory_accessed(); } break; } case StatType::kDeduplicatedName: op_metrics->set_deduplicated_name(std::string(stat.StrOrRefValue())); break; default: break; } } }); hlo_event_metadata.ForEachChild( [&](const XEventMetadataVisitor& child_hlo_event_metadata) { OpMetrics* child = op_metrics->mutable_children()->add_metrics_db(); child->set_occurrences(1); SetOpMetadataFromHloEventMetadata(child_hlo_event_metadata, child); }); } void SetOpMetricsFromHloEvent(const tsl::profiler::XEventVisitor& hlo_event, OpMetrics* op_metrics) { uint64_t duration_ps = hlo_event.DurationPs(); uint64_t min_duration_ps = duration_ps; uint64_t self_duration_ps = duration_ps; uint64_t dma_stall_ps = 0; hlo_event.ForEachStat([&](const XStatVisitor& stat) { if (!stat.Type()) return; switch (static_cast<StatType>(*stat.Type())) { case StatType::kMinDurationPs: min_duration_ps = stat.IntValue(); break; case StatType::kSelfDurationPs: self_duration_ps = stat.IntValue(); break; case StatType::kDmaStallDurationPs: dma_stall_ps = stat.IntValue(); break; default: break; } }); if (op_metrics->occurrences() == 0) { SetOpMetadataFromHloEventMetadata(hlo_event.Metadata(), op_metrics); op_metrics->set_occurrences(hlo_event.NumOccurrences()); op_metrics->set_time_ps(duration_ps); op_metrics->set_min_time_ps(min_duration_ps); op_metrics->set_self_time_ps(self_duration_ps); op_metrics->set_dma_stall_ps(dma_stall_ps); } else { op_metrics->set_occurrences(op_metrics->occurrences() + hlo_event.NumOccurrences()); op_metrics->set_time_ps(op_metrics->time_ps() + duration_ps); op_metrics->set_min_time_ps( std::min<uint64_t>(op_metrics->min_time_ps(), min_duration_ps)); op_metrics->set_self_time_ps(op_metrics->self_time_ps() + self_duration_ps); op_metrics->set_dma_stall_ps(op_metrics->dma_stall_ps() + dma_stall_ps); } } void AdjustFlopsAndBytesAccessed(OpMetrics& op_metrics) { op_metrics.set_flops(op_metrics.flops() * op_metrics.occurrences()); op_metrics.set_bytes_accessed(op_metrics.bytes_accessed() * op_metrics.occurrences()); for (auto& memory_access : *op_metrics.mutable_memory_accessed_breakdown()) { memory_access.set_bytes_accessed(memory_access.bytes_accessed() * op_metrics.occurrences()); } } } OpMetricsDbBuilder::OpMetricsDbBuilder(OpMetricsDb* db) : db_(db) { DCHECK_NE(db_, nullptr); DCHECK_EQ(db_->metrics_db_size(), 0); } OpMetrics* OpMetricsDbBuilder::LookupOrInsertNewOpMetrics( uint64 hlo_module_id, absl::string_view name, uint64_t fingerprint) { OpMetrics*& op_metrics = op_metrics_map_[hlo_module_id][name]; if (op_metrics == nullptr) { op_metrics = db_->add_metrics_db(); op_metrics->set_hlo_module_id(hlo_module_id); op_metrics->set_fingerprint(fingerprint); op_metrics->set_name(name.data(), name.size()); } return op_metrics; } void XEventsOpMetricsDbBuilder::AddOpMetric( const tsl::profiler::XEventVisitor& event) { OpKey key = GetOpKeyFromHloEventMetadata(event.Metadata()); std::optional<XStatVisitor> stat = event.GetStat(StatType::kStepIdleTimePs); if (stat.has_value()) { uint64_t idle_time_ps = stat->IntOrUintValue(); OpMetrics op_metrics; op_metrics.set_self_time_ps(event.DurationPs() - idle_time_ps); op_metrics.set_name("sparse_core_busy_ops"); op_metrics.set_category("sparse_core_busy_ops"); constexpr uint64_t kMaxProgramId = std::numeric_limits<uint64_t>::max(); constexpr uint64_t kMaxSymbolId = std::numeric_limits<uint64_t>::max(); flat_op_metric_[kMaxProgramId][kMaxSymbolId] = op_metrics; SetOpMetricsFromHloEvent(event, &op_metrics); } if (!key.program_id.has_value() || !key.symbol_id.has_value()) return; OpMetricBySymbol& op_metric_by_symbol = flat_op_metric_[key.program_id.value()]; if (key.symbol_id != kRootSymbolId) { OpMetrics& op_metrics = op_metric_by_symbol[key.symbol_id.value()]; SetOpMetricsFromHloEvent(event, &op_metrics); } } OpMetricsDb XEventsOpMetricsDbBuilder::Finalize(uint64_t total_time_ps) { OpMetricsDb db = Finalize(); SetTotalTimePs(db, total_time_ps); AddIdleOp(db); return db; } OpMetricsDb XEventsOpMetricsDbBuilder::Finalize() { OpMetricsDb db; uint64_t total_op_time_ps = 0; for (auto& [program_id, op_metric_by_symbol] : flat_op_metric_) { for (auto& [symbol_id, op_metrics] : op_metric_by_symbol) { AdjustFlopsAndBytesAccessed(op_metrics); total_op_time_ps += op_metrics.self_time_ps(); db.add_metrics_db()->Swap(&op_metrics); } } db.set_total_op_time_ps(total_op_time_ps); return db; } double IdleTimeRatio(const OpMetricsDb& db) { return 1.0 - tsl::profiler::SafeDivide(db.total_op_time_ps(), db.total_time_ps()); } uint64 IdleTimePs(const OpMetricsDb& db) { DCHECK_GE(db.total_time_ps(), db.total_op_time_ps()); return db.total_time_ps() - db.total_op_time_ps(); } void SetIdleOp(uint64_t idle_time_ps, OpMetrics& metrics) { metrics.set_name(std::string(kIdle)); metrics.set_category(std::string(kIdle)); metrics.set_occurrences(0); metrics.set_time_ps(idle_time_ps); metrics.set_self_time_ps(idle_time_ps); } void AddIdleOp(OpMetricsDb& db) { uint64 idle_time_ps = IdleTimePs(db); SetIdleOp(idle_time_ps, *db.add_metrics_db()); } std::optional<double> HostInfeedEnqueueRatio(const OpMetricsDb& db) { if (db.total_host_infeed_enq_start_timestamp_ps_diff() > 0) { return tsl::profiler::SafeDivide( db.total_host_infeed_enq_duration_ps(), db.total_host_infeed_enq_start_timestamp_ps_diff()); } return std::nullopt; } OpMetricsDb CreateTfMetricsDbFromDeviceOpMetricsDb( const OpMetricsDb& device_op_metrics_db, bool with_idle) { OpMetricsDb tf_op_metrics_db; DeviceTfOpMetricsDbBuilder builder(&tf_op_metrics_db); for (const auto& device_op_metrics : device_op_metrics_db.metrics_db()) { if (IsIdleOp(device_op_metrics)) { if (with_idle) { builder.UpdateTfOpMetricsWithDeviceOpMetrics( kIdle, kIdle, device_op_metrics, device_op_metrics.fingerprint()); } } else if (device_op_metrics.provenance().empty()) { builder.UpdateTfOpMetricsWithDeviceOpMetrics( device_op_metrics.name(), tsl::profiler::kUnknownOp, device_op_metrics, device_op_metrics.fingerprint()); } else { tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(device_op_metrics.provenance()); builder.UpdateTfOpMetricsWithDeviceOpMetrics( tf_op.name, tf_op.type, device_op_metrics, device_op_metrics.fingerprint()); } } tf_op_metrics_db.set_total_op_time_ps( device_op_metrics_db.total_op_time_ps()); tf_op_metrics_db.set_total_time_ps( with_idle ? device_op_metrics_db.total_time_ps() : device_op_metrics_db.total_op_time_ps()); return tf_op_metrics_db; } } }
#include "tensorflow/core/profiler/utils/op_metrics_db_utils.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" namespace tensorflow { namespace profiler { namespace { constexpr double kMaxError = 1E-10; TEST(OpMetricsDbTest, IdleTimeRatio) { OpMetricsDb metrics_db_0; metrics_db_0.set_total_time_ps(100000000); metrics_db_0.set_total_op_time_ps(60000000); EXPECT_NEAR(0.4, IdleTimeRatio(metrics_db_0), kMaxError); OpMetricsDb metrics_db_1; metrics_db_1.set_total_time_ps(200000000); metrics_db_1.set_total_op_time_ps(150000000); EXPECT_NEAR(0.25, IdleTimeRatio(metrics_db_1), kMaxError); OpMetricsDb metrics_db_2; metrics_db_1.set_total_time_ps(0); metrics_db_1.set_total_op_time_ps(0); EXPECT_NEAR(1.0, IdleTimeRatio(metrics_db_2), kMaxError); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/op_metrics_db_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/op_metrics_db_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
da8d2664-ab11-4fc3-b0f0-3d232f73b516
cpp
tensorflow/tensorflow
op_stats_to_pod_stats
tensorflow/core/profiler/convert/op_stats_to_pod_stats.cc
tensorflow/core/profiler/convert/op_stats_to_pod_stats_test.cc
#include "tensorflow/core/profiler/convert/op_stats_to_pod_stats.h" #include <algorithm> #include <utility> #include <vector> #include "google/protobuf/any.pb.h" #include "absl/strings/string_view.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/utils/diagnostics.h" #include "tensorflow/core/profiler/utils/event_span.h" #include "tensorflow/core/profiler/utils/math_utils.h" namespace tensorflow { namespace profiler { namespace { PodStatsRecord CreatePodStatsRecord(absl::string_view host_name, const StepInfoResult& step_info) { PodStatsRecord record; GenericStepBreakdown generic; bool success = step_info.step_breakdown().UnpackTo(&generic); DCHECK(success); record.set_host_name(string(host_name)); record.set_step_num(step_info.step_num()); record.set_total_duration_us( tsl::profiler::PicoToMicro(step_info.duration_ps())); auto& step_breakdown_map = *record.mutable_step_breakdown_us(); std::vector<std::pair<uint64, absl::string_view>> metrics; auto add_event = [&](GenericEventType type, std::initializer_list<EventType> event_list) { uint64 ps = 0; for (const auto& event_type : event_list) { ps += gtl::FindWithDefault(generic.type_ps(), event_type, 0); } step_breakdown_map[type] = tsl::profiler::PicoToMicro(ps); metrics.emplace_back(ps, GetGenericEventTypeStr(type)); }; add_event(kDeviceCompute, {DEVICE_COMPUTE_32, DEVICE_COMPUTE_16}); add_event(kDeviceToDevice, {DEVICE_TO_DEVICE, DEVICE_WAIT_DEVICE}); add_event(kDeviceCollectives, {DEVICE_COLLECTIVES}); add_event(kHostCompute, {HOST_COMPUTE}); add_event(kHostPrepare, {HOST_PREPARE}); add_event(kInput, {HOST_WAIT_INPUT, HOST_TO_DEVICE, DEVICE_WAIT_HOST}); add_event(kOutput, {DEVICE_TO_HOST}); add_event(kCompile, {HOST_COMPILE}); add_event(kAllOthers, {UNKNOWN_TIME}); std::sort(metrics.begin(), metrics.end()); record.set_bottleneck(metrics.back().second.data(), metrics.back().second.size()); return record; } } PodStatsDatabase ConvertOpStatsToPodStats(const OpStats& op_stats) { PodStatsDatabase pod_stats_db; const auto& core_id_map = op_stats.core_id_to_details(); for (int i = GenericEventType::kFirstGenericEventType; i <= GenericEventType::kLastGenericEventType; i++) { auto& event = *pod_stats_db.add_step_breakdown_events(); event.set_id(i); absl::string_view type_str = GetGenericEventTypeStr(static_cast<GenericEventType>(i)); event.set_name(type_str.data(), type_str.size()); } for (const auto& step_sequence : op_stats.step_db().step_sequence()) { for (const auto& entry : step_sequence.step_info_per_core()) { if (!core_id_map.contains(entry.first)) { LOG(WARNING) << "core_id_map does not contain " << entry.first; continue; } const CoreDetails& details = core_id_map.at(entry.first); *pod_stats_db.add_pod_stats_record() = CreatePodStatsRecord(details.hostname(), entry.second); } } PopulateStepDiagnostics(op_stats, pod_stats_db.mutable_diagnostics()); return pod_stats_db; } } }
#include "tensorflow/core/profiler/convert/op_stats_to_pod_stats.h" #include "google/protobuf/any.pb.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/diagnostics.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/utils/diagnostics.h" #include "tensorflow/core/profiler/utils/event_span.h" #include "tensorflow/core/profiler/utils/math_utils.h" namespace tensorflow { namespace profiler { namespace { const double kMaxError = 1e-6; constexpr int kStepNum = 2; constexpr int kCoreId = 1001; constexpr int kStepTimePs = 1000; constexpr int kHostComputePs = 50; constexpr int kHostCompilePs = 50; constexpr int kHostToHostPs = 50; constexpr int kHostToDevicePs = 50; constexpr int kHostPreparePs = 50; constexpr int kDeviceCollectivePs = 350; constexpr int kHostWaitInputPs = 50; constexpr int kDeviceToDevicePs = 50; constexpr int kDeviceToHostPs = 50; constexpr int kDeviceCompute32Ps = 50; constexpr int kDeviceCompute16Ps = 50; constexpr int kDeviceWaitDevicePs = 50; constexpr int kDeviceWaitHostPs = 50; constexpr int kUnknownTimePs = 50; static constexpr char kHostname[] = "host:123"; void CreateOpStats(OpStats* op_stats) { PerCoreStepInfo* info = op_stats->mutable_step_db()->add_step_sequence(); info->set_step_num(kStepNum); StepInfoResult& step_info = (*info->mutable_step_info_per_core())[kCoreId]; step_info.set_step_num(kStepNum); step_info.set_duration_ps(kStepTimePs); GenericStepBreakdown breakdown; auto& type_ps = *breakdown.mutable_type_ps(); type_ps[HOST_COMPUTE] = kHostComputePs; type_ps[HOST_COMPILE] = kHostCompilePs; type_ps[HOST_TO_HOST] = kHostToHostPs; type_ps[HOST_TO_DEVICE] = kHostToDevicePs; type_ps[HOST_PREPARE] = kHostPreparePs; type_ps[DEVICE_COLLECTIVES] = kDeviceCollectivePs; type_ps[HOST_WAIT_INPUT] = kHostWaitInputPs; type_ps[DEVICE_TO_DEVICE] = kDeviceToDevicePs; type_ps[DEVICE_TO_HOST] = kDeviceToHostPs; type_ps[DEVICE_COMPUTE_32] = kDeviceCompute32Ps; type_ps[DEVICE_COMPUTE_16] = kDeviceCompute16Ps; type_ps[DEVICE_WAIT_DEVICE] = kDeviceWaitDevicePs; type_ps[DEVICE_WAIT_HOST] = kDeviceWaitHostPs; type_ps[UNKNOWN_TIME] = kUnknownTimePs; step_info.mutable_step_breakdown()->PackFrom(breakdown); CoreDetails& details = (*op_stats->mutable_core_id_to_details())[kCoreId]; details.set_hostname(kHostname); } TEST(OpStatsToPodStats, GpuPodStats) { OpStats op_stats; CreateOpStats(&op_stats); PodStatsDatabase pod_stats_db = ConvertOpStatsToPodStats(op_stats); EXPECT_EQ(1, pod_stats_db.pod_stats_record_size()); const PodStatsRecord& record = pod_stats_db.pod_stats_record(0); EXPECT_EQ(kStepNum, record.step_num()); EXPECT_EQ(kHostname, record.host_name()); EXPECT_NEAR(tsl::profiler::PicoToMicro(kStepTimePs), record.total_duration_us(), kMaxError); const auto& breakdown = record.step_breakdown_us(); EXPECT_NEAR( tsl::profiler::PicoToMicro(kDeviceCompute32Ps + kDeviceCompute16Ps), breakdown.at(kDeviceCompute), kMaxError); EXPECT_NEAR( tsl::profiler::PicoToMicro(kDeviceToDevicePs + kDeviceWaitDevicePs), breakdown.at(kDeviceToDevice), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kDeviceCollectivePs), breakdown.at(kDeviceCollectives), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kHostComputePs), breakdown.at(kHostCompute), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kHostPreparePs), breakdown.at(kHostPrepare), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kHostWaitInputPs + kHostToDevicePs + kDeviceWaitHostPs), breakdown.at(kInput), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kDeviceToHostPs), breakdown.at(kOutput), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kHostCompilePs), breakdown.at(kCompile), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kUnknownTimePs), breakdown.at(kAllOthers), kMaxError); EXPECT_EQ(GetGenericEventTypeStr(kDeviceCollectives), record.bottleneck()); } TEST(OpStatsToPodStats, Diagnostics) { OpStats op_stats; op_stats.mutable_step_db()->set_use_incomplete_step(true); PodStatsDatabase pod_stats_db = ConvertOpStatsToPodStats(op_stats); EXPECT_EQ(1, pod_stats_db.diagnostics().warnings_size()); EXPECT_EQ(kErrorIncompleteStep, pod_stats_db.diagnostics().warnings(0)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/op_stats_to_pod_stats.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/op_stats_to_pod_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
26f2d42c-ee60-46c1-bd75-a32f45db3a9b
cpp
tensorflow/tensorflow
hlo_proto_to_graph_view
tensorflow/core/profiler/convert/hlo_proto_to_graph_view.cc
tensorflow/core/profiler/convert/hlo_proto_to_graph_view_test.cc
#include "tensorflow/core/profiler/convert/hlo_proto_to_graph_view.h" #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_opcode.h" #ifdef PLATFORM_GOOGLE #include "third_party/json/src/json.hpp" #include "tensorflow/compiler/mlir/lite/experimental/google/tooling/google/direct_hlo_to_json_graph_convert.h" #endif #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_graph_dumper.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/profiler/convert/tool_options.h" #include "tensorflow/core/profiler/utils/hlo_module_utils.h" #include "tensorflow/core/profiler/utils/hlo_proto_to_module.h" namespace tensorflow { namespace profiler { namespace { using ::tensorflow::StatusOr; using ::tensorflow::errors::InvalidArgument; using ::xla::HloComputation; using ::xla::HloInstruction; using ::xla::HloModule; using ::xla::HloPrintOptions; using ::xla::HloProto; using ::xla::HloRenderOptions; using ::xla::RenderedGraphFormat; constexpr char kCenterNodeKey[] = "centerNode"; void CleanUpHloModuleForGraphviz(HloModule* hlo_module) { for (HloComputation* computation : hlo_module->computations()) { for (HloInstruction* inst : computation->instructions()) { if (inst->opcode() == xla::HloOpcode::kInfeed) { inst->set_infeed_config(""); } else if (inst->opcode() == xla::HloOpcode::kOutfeed) { inst->set_outfeed_config(""); } } } } std::string GetLayerId(absl::string_view namespace_name) { return absl::StrCat(namespace_name, "___group___"); } #ifdef PLATFORM_GOOGLE void AddCenterNodeMetadata(nlohmann::json& graph_json, std::string id, absl::string_view name, absl::string_view opcode) { nlohmann::json centerGroupNodeAttributes; centerGroupNodeAttributes["name"] = name; centerGroupNodeAttributes["id"] = id; if (!opcode.empty()) { centerGroupNodeAttributes["opcode"] = opcode; } graph_json[0]["subgraphs"][0]["groupNodeAttributes"][kCenterNodeKey] = centerGroupNodeAttributes; } #endif void AddGraphMetadata(std::string& graph_json_str, const HloInstruction& instr) { #ifdef PLATFORM_GOOGLE nlohmann::json graph_json = nlohmann::json::parse(graph_json_str); auto id = instr.opcode() == xla::HloOpcode::kFusion ? GetLayerId(absl::StrCat(instr.parent()->name(), "/", instr.name())) : absl::StrCat(instr.unique_id()); AddCenterNodeMetadata(graph_json, id, instr.name(), HloOpcodeString(instr.opcode())); graph_json_str = graph_json.dump(); #endif } void AddGraphMetadata(std::string& graph_json_str, const HloComputation& comp) { #ifdef PLATFORM_GOOGLE nlohmann::json graph_json = nlohmann::json::parse(graph_json_str); AddCenterNodeMetadata(graph_json, GetLayerId(comp.name()), comp.name(), ""); graph_json_str = graph_json.dump(); #endif } absl::StatusOr<std::string> PlotMe(std::unique_ptr<HloModule> module, const std::string& node_name, int graph_width) { if (node_name.empty()) { return InvalidArgument("node_name should not be empty"); } const HloInstruction* instr = FindInstruction(*module, node_name); const HloComputation* comp = FindComputation(*module, node_name); if (!instr && !comp) { return InvalidArgument( absl::StrCat("Couldn't find HloInstruction or HloComputation named ", node_name, ".")); } absl::StatusOr<std::string> graph_handle; std::string graph_json_str; #ifdef PLATFORM_GOOGLE if (comp) { graph_handle = tooling::visualization_client::HloGraphAdapter(*comp); } else { graph_handle = tooling::visualization_client::HloGraphAdapter(*instr, graph_width); } #endif if (graph_handle.ok()) { VLOG(1) << graph_handle.value(); graph_json_str = graph_handle.value(); if (comp) { AddGraphMetadata(graph_json_str, *comp); } else { AddGraphMetadata(graph_json_str, *instr); } return graph_json_str; } else { LOG(ERROR) << "Unable to render graph: " << graph_handle.status(); } return graph_handle; } absl::StatusOr<std::string> Plot(std::unique_ptr<HloModule> module, const std::string& node_name, int graph_width, const HloRenderOptions& render_options, const RenderedGraphFormat& format) { if (node_name.empty()) { return InvalidArgument("node_name should not be empty"); } const HloInstruction* instr = FindInstruction(*module, node_name); const HloComputation* comp = FindComputation(*module, node_name); if (!instr && !comp) { return InvalidArgument( absl::StrCat("Couldn't find HloInstruction or HloComputation named ", node_name, ".")); } absl::StatusOr<std::string> graph_handle; CleanUpHloModuleForGraphviz(module.get()); if (comp) { graph_handle = RenderGraphView(*comp, "", comp->parent()->config().debug_options(), format, render_options); } else { graph_handle = RenderGraphNeighborhoodAround(*instr, graph_width, format, render_options); } if (graph_handle.ok()) { VLOG(1) << graph_handle.value(); } else { LOG(ERROR) << "Unable to render graph: " << graph_handle.status(); } return graph_handle; } static constexpr char kGraphTypeName[] = "graph"; static constexpr char kShortTxtTypeName[] = "short_txt"; static constexpr char kLongTxtTypeName[] = "long_txt"; static constexpr char kDefaultFormatString[] = "url"; static constexpr int kDefaultWidth = 3; static constexpr int kDefaultShowMetadata = 0; static constexpr int kDefaultMergeFusion = 0; } absl::StatusOr<std::string> GetNodeStyles() { std::vector<xla::HloOpcode> async_op_codes = {xla::HloOpcode::kAsyncStart, xla::HloOpcode::kAsyncUpdate, xla::HloOpcode::kAsyncDone}; std::vector<xla::HloOpcode> brown_op_codes = { xla::HloOpcode::kAllGather, xla::HloOpcode::kAllGatherStart, xla::HloOpcode::kAllGatherDone, xla::HloOpcode::kAllReduce, xla::HloOpcode::kReduceScatter, xla::HloOpcode::kAllReduceStart, xla::HloOpcode::kAllReduceDone, xla::HloOpcode::kAllToAll, xla::HloOpcode::kCollectiveBroadcast, xla::HloOpcode::kCollectivePermute, xla::HloOpcode::kCollectivePermuteStart, xla::HloOpcode::kCollectivePermuteDone, xla::HloOpcode::kInfeed, xla::HloOpcode::kOutfeed, xla::HloOpcode::kPartitionId, xla::HloOpcode::kRecv, xla::HloOpcode::kRecvDone, xla::HloOpcode::kSend, xla::HloOpcode::kSendDone, xla::HloOpcode::kReplicaId}; std::vector<xla::HloOpcode> dark_blue_op_codes = { xla::HloOpcode::kConvolution, xla::HloOpcode::kDot, xla::HloOpcode::kFft, xla::HloOpcode::kTriangularSolve, xla::HloOpcode::kCholesky}; std::vector<xla::HloOpcode> dark_green_op_codes = { xla::HloOpcode::kCall, xla::HloOpcode::kConditional, xla::HloOpcode::kCustomCall, xla::HloOpcode::kWhile}; std::vector<xla::HloOpcode> gray_op_codes = { xla::HloOpcode::kDomain, xla::HloOpcode::kFusion, xla::HloOpcode::kMap, xla::HloOpcode::kGetDimensionSize, xla::HloOpcode::kSetDimensionSize}; std::vector<xla::HloOpcode> green_op_codes = { xla::HloOpcode::kConcatenate, xla::HloOpcode::kDynamicSlice, xla::HloOpcode::kReshape, xla::HloOpcode::kDynamicReshape, xla::HloOpcode::kReverse, xla::HloOpcode::kTranspose, xla::HloOpcode::kCopy, xla::HloOpcode::kCopyStart, xla::HloOpcode::kCopyDone}; std::vector<xla::HloOpcode> orange_op_codes = {xla::HloOpcode::kParameter}; std::vector<xla::HloOpcode> purple_op_codes = { xla::HloOpcode::kBatchNormGrad, xla::HloOpcode::kBatchNormInference, xla::HloOpcode::kBatchNormTraining, xla::HloOpcode::kReduce, xla::HloOpcode::kReduceWindow, xla::HloOpcode::kScatter, xla::HloOpcode::kSelectAndScatter, xla::HloOpcode::kGather}; std::vector<xla::HloOpcode> yellow_op_codes = { xla::HloOpcode::kBroadcast, xla::HloOpcode::kDynamicUpdateSlice}; auto OpCodesToNames = [&](std::vector<xla::HloOpcode> op_codes) -> std::string { std::string op_names = ""; for (const auto& op_code : op_codes) { if (!op_names.empty()) { op_names += ","; } op_names += std::string(xla::HloOpcodeString(op_code)); } return op_names; }; return absl::StrReplaceAll( R"json({ "kBlue": "$asyncOpNames", "kBrown": "$brownOpNames", "kDarkBlue": "$darkBlueOpNames", "kDarkGreen": "$darkGreenOpNames", "kGray": "$grayOpNames", "kGreen": "$greenOpNames", "kOrange": "$orangeOpNames", "kPurple": "$purpleOpNames", "kYellow": "$yellowOpNames" })json", { {"$asyncOpNames", OpCodesToNames(async_op_codes)}, {"$brownOpNames", OpCodesToNames(brown_op_codes)}, {"$darkBlueOpNames", OpCodesToNames(dark_blue_op_codes)}, {"$darkGreenOpNames", OpCodesToNames(dark_green_op_codes)}, {"$grayOpNames", OpCodesToNames(gray_op_codes)}, {"$greenOpNames", OpCodesToNames(green_op_codes)}, {"$orangeOpNames", OpCodesToNames(orange_op_codes)}, {"$purpleOpNames", OpCodesToNames(purple_op_codes)}, {"$yellowOpNames", OpCodesToNames(yellow_op_codes)}, }); } absl::StatusOr<GraphViewerParams> ParseGraphViewerParams( const ToolOptions& options) { GraphViewerParams params; std::optional<std::string> type = GetParam<std::string>(options, "type"); if (!type.has_value()) { return errors::InvalidArgument("Graph viewer must provide a type option."); } if (type == kGraphTypeName) { params.type = type.value(); if (std::optional<std::string> node_name = GetParam<std::string>(options, "node_name")) { params.node_name = node_name.value(); } params.graph_width = GetParamWithDefault<int>(options, "graph_width", kDefaultWidth); params.render_options.show_backend_config = GetParamWithDefault<int>( options, "show_metadata", kDefaultShowMetadata); params.render_options.show_fusion_subcomputations = !GetParamWithDefault<int>(options, "merge_fusion", kDefaultMergeFusion); params.format = GetRenderFormat(GetParamWithDefault<std::string>( options, "format", kDefaultFormatString)); return params; } if (type == kShortTxtTypeName || type == kLongTxtTypeName) { params.type = type.value(); params.verbose = (type == kLongTxtTypeName); params.show_metadata = GetParamWithDefault(options, "show_metadata", kDefaultShowMetadata); return params; } return errors::InvalidArgument("Unknown graph viewer type option: ", type.value()); } xla::RenderedGraphFormat GetRenderFormat(const std::string& format_string) { if (format_string == "html") { return xla::RenderedGraphFormat::kHtml; } else if (format_string == "dot") { return xla::RenderedGraphFormat::kDot; } else if (format_string == "url") { return xla::RenderedGraphFormat::kUrl; } else { LOG(ERROR) << "Invalid graph format argument: " << format_string << ", fallback to default url"; return xla::RenderedGraphFormat::kUrl; } } absl::StatusOr<std::string> ConvertHloProtoToGraph( const HloProto& hlo_proto, const std::string& node_name, int graph_width, const HloRenderOptions& render_options, const RenderedGraphFormat& format) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> hlo_module, ConvertHloProtoToModule(hlo_proto)); return Plot(std::move(hlo_module), node_name, graph_width, render_options, format); } absl::StatusOr<std::string> ConvertHloProtoToMeGraph( const HloProto& hlo_proto, const std::string& node_name, int graph_width) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> hlo_module, ConvertHloProtoToModule(hlo_proto)); return PlotMe(std::move(hlo_module), node_name, graph_width); } absl::StatusOr<std::string> ConvertHloProtoToStringView( const HloProto& hlo_proto, bool verbose, bool metadata) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> hlo_module, ConvertHloProtoToModule(hlo_proto)); HloPrintOptions options; if (!verbose) { options = HloPrintOptions::ShortParsable(); } options.set_print_large_constants(verbose); options.set_print_metadata(metadata); return hlo_module->ToString(options); } std::function<absl::StatusOr<std::string>(absl::string_view)>* url_renderer = nullptr; absl::Status CheckPrecondition(xla::RenderedGraphFormat format) { if (format == xla::RenderedGraphFormat::kUrl && url_renderer == nullptr) { return absl::FailedPreconditionError( "Can't render as URL; no URL renderer was registered."); } return absl::OkStatus(); } absl::StatusOr<std::string> RenderGraphView( const xla::HloComputation& computation, absl::string_view label, const xla::DebugOptions& debug_options, xla::RenderedGraphFormat format, xla::HloRenderOptions hlo_render_options) { auto precheck_status = CheckPrecondition(format); if (!precheck_status.ok()) { return precheck_status; } auto rendered_dot = xla::RenderGraph(computation, label, debug_options, RenderedGraphFormat::kDot, hlo_render_options); if (!rendered_dot.ok()) { return rendered_dot.status(); } return WrapDotInFormat(rendered_dot.value(), format); } absl::StatusOr<std::string> RenderGraphNeighborhoodAround( const xla::HloInstruction& node, int radius, xla::RenderedGraphFormat format, xla::HloRenderOptions hlo_render_options, const absl::flat_hash_set<const xla::HloInstruction*>& boundary) { auto precheck_status = CheckPrecondition(format); if (!precheck_status.ok()) { return precheck_status; } auto rendered_dot = xla::RenderNeighborhoodAround( node, radius, RenderedGraphFormat::kDot, hlo_render_options, boundary); if (!rendered_dot.ok()) { return rendered_dot.status(); } return WrapDotInFormat(rendered_dot.value(), format); } absl::StatusOr<std::string> WrapDotInFormat(std::string dot, xla::RenderedGraphFormat format) { switch (format) { case xla::RenderedGraphFormat::kUrl: if (url_renderer == nullptr) { return absl::InternalError("url_renderer is null"); } return (*url_renderer)(dot); case xla::RenderedGraphFormat::kHtml: return WrapDotInHtml(dot); case xla::RenderedGraphFormat::kDot: return std::string(dot); } } std::string WrapDotInHtml(std::string dot) { return absl::StrReplaceAll(R"html( <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <style type="text/css"> body { height: 100vh; margin: 0; } #graph-container {height:95vh;width:100%;padding:10px;display:block;} #graph-container svg { height: 100% !important; width: 100% !important;} .node, .cluster {cursor:pointer;} .cluster:hover, .node:hover {outline: solid 3px black;} </style> </head> <body> <script src="https: integrity="sha384-LigJPbR3TOfU/Xbb+PjiN1dGJYPweLk7kiGnaMgmxnUmKWaCFKbb5tH6iLlyVhPZ" crossorigin="anonymous"></script> <script src="https: <div id="graph-container"></div> <script> const cssregex = new RegExp('stylesheet=<([^]*)\n>\n', 'gm'); const hpccWasm = window["@hpcc-js/wasm"]; const data = `$DOT`; const results = cssregex.exec(data); let dot_data = data; let css_data = ''; if (results !== null) { css_data = results[1].replace(/\s*data:.*\s*,/,''); css_data = unescape(css_data); dot_data = data.replace(cssregex, ''); } var render_start = performance.now() function add_controls(svg) { var htmlblob = new Blob([document.documentElement.innerHTML], {type: 'text/html'}); var savehtml = document.createElement('a'); savehtml.setAttribute('href', URL.createObjectURL(htmlblob)); savehtml.setAttribute('download', 'graph.html'); savehtml.innerHTML = " [Save HTML+SVG] "; document.body.append(savehtml); var svgblob = new Blob([svg.outerHTML], {type: 'image/svg'}); var savesvg = document.createElement('a'); savesvg.setAttribute('href', URL.createObjectURL(svgblob)); savesvg.setAttribute('download', 'graph.svg'); savesvg.innerHTML = " [Save SVG] "; document.body.append(savesvg); var dotblob = new Blob([data], {type: 'text/dot'}); var savedot = document.createElement('a'); savedot.setAttribute('href', URL.createObjectURL(dotblob)); savedot.setAttribute('download', 'graph.dot'); savedot.innerHTML = " [Save DOT] "; document.body.append(savedot); var render_end = performance.now(); var render_note = document.createElement('div') render_note.innerHTML = 'Rendering took ' + (render_end - render_start).toFixed(2) + "ms." document.body.append(render_note); } const render_callback = svg => { const container = document.getElementById('graph-container') container.innerHTML = `${svg}<style>${css_data}</style>`; const panZoom = svgPanZoom(container.children[0], { zoomEnabled: true, controlIconsEnabled: true, maxZoom: 200, minZoom: 0, }); add_controls(svg); }; hpccWasm.graphviz.layout(dot_data, "svg", "dot").then(render_callback); </script> </body> </html> )html", { {"$DOT", dot}, }); } void RegisterGraphvizURLRenderer( std::function<absl::StatusOr<std::string>(absl::string_view)> renderer) { if (url_renderer != nullptr) { LOG(WARNING) << "Multiple calls to RegisterGraphToURLRenderer. Last call " "wins, but because order of initialization in C++ is " "nondeterministic, this may not be what you want."; } delete url_renderer; url_renderer = new std::function<absl::StatusOr<std::string>(absl::string_view)>( std::move(renderer)); } } }
#include "tensorflow/core/profiler/convert/hlo_proto_to_graph_view.h" #include <string> #include <variant> #include "xla/service/hlo_graph_dumper.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/convert/tool_options.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace profiler { namespace { using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; TEST(GraphViewerParamsTest, GraphType) { ToolOptions options1; options1["type"] = "graph"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params1, ParseGraphViewerParams(options1)); EXPECT_EQ(params1.type, "graph"); EXPECT_EQ(params1.node_name, ""); EXPECT_EQ(params1.graph_width, 3); EXPECT_EQ(params1.render_options.show_backend_config, false); EXPECT_EQ(params1.render_options.show_fusion_subcomputations, true); EXPECT_EQ(params1.format, xla::RenderedGraphFormat::kUrl); ToolOptions options2; options2["type"] = "graph"; options2["node_name"] = "fusion.111"; options2["graph_width"] = 10; options2["show_metadata"] = 1; options2["merge_fusion"] = 1; options2["format"] = "html"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params2, ParseGraphViewerParams(options2)); EXPECT_EQ(params2.type, "graph"); EXPECT_EQ(params2.node_name, "fusion.111"); EXPECT_EQ(params2.graph_width, 10); EXPECT_EQ(params2.render_options.show_backend_config, true); EXPECT_EQ(params2.render_options.show_fusion_subcomputations, false); EXPECT_EQ(params2.format, xla::RenderedGraphFormat::kHtml); } TEST(GraphViewerParamsTest, ShortTxtType) { ToolOptions options1; options1["type"] = "short_txt"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params1, ParseGraphViewerParams(options1)); EXPECT_EQ(params1.type, "short_txt"); EXPECT_EQ(params1.verbose, false); EXPECT_EQ(params1.show_metadata, false); ToolOptions options2; options2["type"] = "short_txt"; options2["show_metadata"] = 1; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params2, ParseGraphViewerParams(options2)); EXPECT_EQ(params2.type, "short_txt"); EXPECT_EQ(params2.verbose, false); EXPECT_EQ(params2.show_metadata, true); } TEST(GraphViewerParamsTest, LongTxtType) { ToolOptions options1; options1["type"] = "long_txt"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params1, ParseGraphViewerParams(options1)); EXPECT_EQ(params1.type, "long_txt"); EXPECT_EQ(params1.verbose, true); EXPECT_EQ(params1.show_metadata, false); ToolOptions options2; options2["type"] = "long_txt"; options2["show_metadata"] = 1; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params2, ParseGraphViewerParams(options2)); EXPECT_EQ(params2.type, "long_txt"); EXPECT_EQ(params2.verbose, true); EXPECT_EQ(params2.show_metadata, true); } TEST(GraphViewerParamsTest, OtherTypes) { ToolOptions options1; EXPECT_THAT(ParseGraphViewerParams(options1), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Graph viewer must provide a type option"))); ToolOptions options2; options2["type"] = "abcd"; EXPECT_THAT(ParseGraphViewerParams(options2), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Unknown graph viewer type option: abcd"))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/hlo_proto_to_graph_view.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/hlo_proto_to_graph_view_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4318bf3e-f2f8-4868-a881-8c5e2a50ffeb
cpp
tensorflow/tensorflow
repository
tensorflow/core/profiler/convert/repository.cc
tensorflow/core/profiler/convert/repository_test.cc
#include "tensorflow/core/profiler/convert/repository.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "xla/tsl/profiler/utils/file_system_utils.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tsl/platform/errors.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { std::string GetHostnameByPath(absl::string_view xspace_path) { std::string_view file_name = tensorflow::io::Basename(xspace_path); absl::ConsumeSuffix(&file_name, ".xplane.pb"); return std::string(file_name); } } absl::StatusOr<SessionSnapshot> SessionSnapshot::Create( std::vector<std::string> xspace_paths, std::optional<std::vector<std::unique_ptr<XSpace>>> xspaces) { if (xspace_paths.empty()) { return errors::InvalidArgument("Can not find XSpace path."); } if (xspaces.has_value()) { if (xspaces->size() != xspace_paths.size()) { return errors::InvalidArgument( "The size of the XSpace paths: ", xspace_paths.size(), " is not equal ", "to the size of the XSpace proto: ", xspaces->size()); } for (size_t i = 0; i < xspace_paths.size(); ++i) { auto host_name = GetHostnameByPath(xspace_paths.at(i)); if (xspaces->at(i)->hostnames_size() > 0 && !host_name.empty()) { if (!absl::StrContains(host_name, xspaces->at(i)->hostnames(0))) { return errors::InvalidArgument( "The hostname of xspace path and preloaded xpace don't match at " "index: ", i, ". \nThe host name of xpace path is ", host_name, " but the host name of preloaded xpace is ", xspaces->at(i)->hostnames(0), "."); } } } } return SessionSnapshot(std::move(xspace_paths), std::move(xspaces)); } absl::StatusOr<std::unique_ptr<XSpace>> SessionSnapshot::GetXSpace( size_t index) const { if (index >= xspace_paths_.size()) { return errors::InvalidArgument("Can not get the ", index, "th XSpace. The total number of XSpace is ", xspace_paths_.size()); } if (xspaces_.has_value()) { if (xspaces_->at(index) == nullptr) { return errors::Internal(""); } return std::move(xspaces_->at(index)); } auto xspace_from_file = std::make_unique<XSpace>(); TF_RETURN_IF_ERROR(tensorflow::ReadBinaryProto(tensorflow::Env::Default(), xspace_paths_.at(index), xspace_from_file.get())); return xspace_from_file; } absl::StatusOr<std::unique_ptr<XSpace>> SessionSnapshot::GetXSpaceByName( absl::string_view name) const { if (auto it = hostname_map_.find(name); it != hostname_map_.end()) { return GetXSpace(it->second); } return errors::InvalidArgument("Can not find the XSpace by name: ", name, ". The total number of XSpace is ", xspace_paths_.size()); } std::string SessionSnapshot::GetHostname(size_t index) const { return GetHostnameByPath(xspace_paths_.at(index)); } std::optional<std::string> SessionSnapshot::GetFilePath( absl::string_view toolname, absl::string_view hostname) const { if (!has_accessible_run_dir_) return std::nullopt; std::string file_name = ""; if (toolname == "trace_viewer@") file_name = absl::StrCat(hostname, ".", "SSTABLE"); if (!file_name.empty()) return tensorflow::io::JoinPath(session_run_dir_, file_name); return std::nullopt; } absl::StatusOr<std::string> SessionSnapshot::GetHostDataFileName( const StoredDataType data_type, const std::string host) const { for (const auto& format : *kHostDataSuffixes) { if (data_type == format.first) return absl::StrCat(host, format.second); } return absl::InternalError(&"Unknown StoredDataType: "[data_type]); } absl::StatusOr<std::optional<std::string>> SessionSnapshot::GetHostDataFilePath( const StoredDataType data_type, const std::string host) const { std::vector<std::string> results; TF_RETURN_IF_ERROR(::tsl::Env::Default()->GetChildren( std::string(GetSessionRunDir()), &results)); TF_ASSIGN_OR_RETURN(std::string filename, GetHostDataFileName(data_type, host)); for (const std::string& path : results) { if (absl::EndsWith(path, filename)) { return ::tsl::profiler::ProfilerJoinPath(GetSessionRunDir(), filename); } } return std::nullopt; } absl::StatusOr<std::pair<bool, std::string>> SessionSnapshot::HasCacheFile( const StoredDataType data_type) const { std::optional<std::string> filepath; TF_ASSIGN_OR_RETURN(filepath, GetHostDataFilePath(data_type, kNoHostIdentifier)); if (filepath) { return std::pair<bool, std::string>(true, std::string()); } TF_ASSIGN_OR_RETURN(filepath, GetHostDataFilePath(data_type, kAllHostsIdentifier)); if (filepath) { return std::pair<bool, std::string>(true, filepath.value()); } return std::pair<bool, std::string>(false, std::string()); } } }
#include "tensorflow/core/profiler/convert/repository.h" #include <memory> #include <optional> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/platform/errors.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { using ::testing::Eq; TEST(Repository, GetHostName) { auto session_snapshot_or = SessionSnapshot::Create({"log/plugins/profile/hostname0.xplane.pb", "log/plugins/profile/hostname1.xplane.pb"}, std::nullopt); TF_CHECK_OK(session_snapshot_or.status()); EXPECT_THAT(session_snapshot_or.value().GetHostname(0), Eq("hostname0")); EXPECT_THAT(session_snapshot_or.value().GetHostname(1), Eq("hostname1")); EXPECT_TRUE(session_snapshot_or.value().HasAccessibleRunDir()); } TEST(Repository, GetHostNameWithPeriods) { auto session_snapshot_or = SessionSnapshot::Create({"log/plugins/profile/127.0.0.1_6009.xplane.pb"}, std::nullopt); TF_CHECK_OK(session_snapshot_or.status()); EXPECT_THAT(session_snapshot_or.value().GetHostname(0), Eq("127.0.0.1_6009")); EXPECT_TRUE(session_snapshot_or.value().HasAccessibleRunDir()); } TEST(Repository, GetSpaceByHostName) { std::vector<std::unique_ptr<XSpace>> xspaces; auto space1 = std::make_unique<XSpace>(); *(space1->add_hostnames()) = "hostname1"; xspaces.push_back(std::move(space1)); auto space0 = std::make_unique<XSpace>(); *(space0->add_hostnames()) = "hostname0"; xspaces.push_back(std::move(space0)); auto session_snapshot_or = SessionSnapshot::Create({"log/plugins/profile/hostname1.xplane.pb", "log/plugins/profile/hostname0.xplane.pb"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); auto xspace0_or = session_snapshot_or.value().GetXSpaceByName("hostname0"); TF_CHECK_OK(xspace0_or.status()); auto xspace1_or = session_snapshot_or.value().GetXSpaceByName("hostname1"); EXPECT_FALSE(session_snapshot_or.value().HasAccessibleRunDir()); TF_CHECK_OK(xspace1_or.status()); EXPECT_THAT(xspace0_or.value()->hostnames(0), Eq("hostname0")); EXPECT_THAT(xspace1_or.value()->hostnames(0), Eq("hostname1")); } TEST(Repository, GetSSTableFile) { auto session_snapshot_or = SessionSnapshot::Create({"log/plugins/profile/hostname0.xplane.pb"}, std::nullopt); TF_CHECK_OK(session_snapshot_or.status()); auto sstable_path = session_snapshot_or.value().GetFilePath("trace_viewer@", "hostname0"); auto not_found_path = session_snapshot_or.value().GetFilePath("memory_viewer", "hostname0"); EXPECT_THAT(sstable_path, Eq("log/plugins/profile/hostname0.SSTABLE")); EXPECT_THAT(not_found_path, Eq(std::nullopt)); } TEST(Repository, GetSSTableFileWithXSpace) { std::vector<std::unique_ptr<XSpace>> xspaces; auto space0 = std::make_unique<XSpace>(); *(space0->add_hostnames()) = "hostname0"; xspaces.push_back(std::move(space0)); auto session_snapshot_or = SessionSnapshot::Create( {"log/plugins/profile/hostname0.xplane.pb"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); auto file_path_init_by_xspace = session_snapshot_or.value().GetFilePath("trace_viewer@", "hostname0"); EXPECT_THAT(file_path_init_by_xspace, Eq(std::nullopt)); } TEST(Repository, MismatchedXSpaceAndPath) { std::vector<std::unique_ptr<XSpace>> xspaces; auto space1 = std::make_unique<XSpace>(); *(space1->add_hostnames()) = "hostname1"; xspaces.push_back(std::move(space1)); auto space0 = std::make_unique<XSpace>(); *(space0->add_hostnames()) = "hostname0"; xspaces.push_back(std::move(space0)); auto session_snapshot_or = SessionSnapshot::Create({"log/plugins/profile/hostname0.xplane.pb", "log/plugins/profile/hostname1.xplane.pb"}, std::move(xspaces)); auto error = R"(The hostname of xspace path and preloaded xpace don't match at index: 0. The host name of xpace path is hostname0 but the host name of preloaded xpace is hostname1.)"; EXPECT_THAT(session_snapshot_or.status(), Eq(errors::InvalidArgument(error))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/repository.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/repository_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c819c062-ecf7-46e5-a83c-b400d4ef4882
cpp
tensorflow/tensorflow
xplane_to_memory_profile
tensorflow/core/profiler/convert/xplane_to_memory_profile.cc
tensorflow/core/profiler/convert/xplane_to_memory_profile_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_memory_profile.h" #include <algorithm> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/profiler/protobuf/memory_profile.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { namespace { constexpr int64_t kInvalidStepId = -1; using IndexMetaPair = std::pair<int64_t , const MemoryActivityMetadata*>; bool IsMemoryAllocation(int64_t event_type) { return event_type == HostEventType::kMemoryAllocation; } bool IsMemoryDeallocation(int64_t event_type) { return event_type == HostEventType::kMemoryDeallocation; } void UpdateProfileSummary(const MemoryAggregationStats& stats, int64_t time_offset_ps, MemoryProfileSummary* summary) { summary->set_peak_bytes_usage_lifetime(stats.peak_bytes_in_use()); MemoryAggregationStats* peak_stats = summary->mutable_peak_stats(); if (stats.stack_reserved_bytes() + stats.heap_allocated_bytes() >= peak_stats->peak_bytes_in_use()) { *peak_stats = stats; peak_stats->set_peak_bytes_in_use(stats.stack_reserved_bytes() + stats.heap_allocated_bytes()); summary->set_peak_stats_time_ps(time_offset_ps); summary->set_memory_capacity(stats.stack_reserved_bytes() + stats.heap_allocated_bytes() + stats.free_memory_bytes()); } } MemoryProfile GenerateMemoryProfile(const XPlane* host_trace) { XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(host_trace); MemoryProfile memory_profile; plane.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { int64_t event_type = event.Type().value_or(HostEventType::kUnknownHostEventType); if (!(IsMemoryAllocation(event_type) || IsMemoryDeallocation(event_type))) { return; } MemoryAggregationStats stats; MemoryActivityMetadata metadata; if (IsMemoryAllocation(event_type)) { metadata.set_memory_activity(ALLOCATION); } else if (IsMemoryDeallocation(event_type)) { metadata.set_memory_activity(DEALLOCATION); } metadata.set_step_id(kInvalidStepId); std::string memory_id; event.ForEachStat([&](const XStatVisitor& stat) { if (!stat.Type().has_value()) return; switch (stat.Type().value()) { case StatType::kIndexOnHost: case StatType::kDeviceOrdinal: memory_id = absl::StrCat(stat.IntValue()); break; case StatType::kAllocatorName: memory_id = std::string(stat.StrOrRefValue()); break; case StatType::kBytesReserved: stats.set_stack_reserved_bytes(stat.IntValue()); break; case StatType::kBytesAllocated: stats.set_heap_allocated_bytes(stat.IntValue()); break; case StatType::kBytesAvailable: stats.set_free_memory_bytes(stat.IntValue()); break; case StatType::kFragmentation: stats.set_fragmentation(stat.DoubleValue()); break; case StatType::kPeakBytesInUse: stats.set_peak_bytes_in_use(stat.IntValue()); break; case StatType::kRequestedBytes: metadata.set_requested_bytes(stat.IntValue()); break; case StatType::kAllocationBytes: metadata.set_allocation_bytes(stat.IntValue()); break; case StatType::kAddress: metadata.set_address(stat.IntValue()); break; case StatType::kTfOp: metadata.set_tf_op_name(std::string(stat.StrOrRefValue())); break; case StatType::kGroupId: metadata.set_step_id(stat.IntValue()); break; case StatType::kRegionType: metadata.set_region_type(std::string(stat.StrOrRefValue())); break; case StatType::kDataType: metadata.set_data_type(tensorflow::DataTypeString( static_cast<tensorflow::DataType>(stat.IntValue()))); break; case StatType::kTensorShapes: metadata.set_tensor_shape(std::string(stat.StrOrRefValue())); break; } }); MemoryProfileSummary* summary = (*memory_profile.mutable_memory_profile_per_allocator())[memory_id] .mutable_profile_summary(); UpdateProfileSummary(stats, event.OffsetPs(), summary); MemoryProfileSnapshot* snapshot = (*memory_profile.mutable_memory_profile_per_allocator())[memory_id] .add_memory_profile_snapshots(); snapshot->set_time_offset_ps(event.OffsetPs()); *snapshot->mutable_aggregation_stats() = std::move(stats); *snapshot->mutable_activity_metadata() = std::move(metadata); }); }); return memory_profile; } void UpdateStepId(PerAllocatorMemoryProfile* memory_profile) { int64_t last_valid_step_id = -1; for (auto& snapshot : *memory_profile->mutable_memory_profile_snapshots()) { DCHECK(snapshot.has_activity_metadata()); if (snapshot.mutable_activity_metadata()->step_id() == kInvalidStepId) { snapshot.mutable_activity_metadata()->set_step_id(last_valid_step_id + 1); } else { last_valid_step_id = snapshot.mutable_activity_metadata()->step_id(); } } } void UpdateDeallocation(PerAllocatorMemoryProfile* memory_profile) { absl::flat_hash_map<uint64 , const MemoryActivityMetadata*> addr_metadata_map; for (auto& snapshot : *memory_profile->mutable_memory_profile_snapshots()) { uint64 address = snapshot.activity_metadata().address(); if (snapshot.activity_metadata().memory_activity() == DEALLOCATION) { if (addr_metadata_map.contains(address)) { const MemoryActivityMetadata* alloc_meta = addr_metadata_map[address]; snapshot.mutable_activity_metadata()->set_tf_op_name( alloc_meta->tf_op_name()); snapshot.mutable_activity_metadata()->set_region_type( alloc_meta->region_type()); snapshot.mutable_activity_metadata()->set_data_type( alloc_meta->data_type()); snapshot.mutable_activity_metadata()->set_tensor_shape( alloc_meta->tensor_shape()); addr_metadata_map.erase(address); } else { VLOG(2) << "Can't find matching memory allocation for this deallocation: " << snapshot.DebugString(); } } else if (!addr_metadata_map.contains(address)) { addr_metadata_map[address] = &snapshot.activity_metadata(); } else { VLOG(2) << "There are two allocations recorded for the same address: " << address << ". The later allocation event is: " << snapshot.DebugString(); } } VLOG(2) << "Number of allocations that cannot find matching dealloctions: " << addr_metadata_map.size(); } int64_t GetPeakMemoryStep(int64_t peak_bytes_profile, const PerAllocatorMemoryProfile* memory_profile) { int64_t peak_bytes_profile_step_id = 0; for (const auto& snapshot : memory_profile->memory_profile_snapshots()) { if (peak_bytes_profile == snapshot.aggregation_stats().heap_allocated_bytes() + snapshot.aggregation_stats().stack_reserved_bytes()) { DCHECK(snapshot.has_activity_metadata()); peak_bytes_profile_step_id = snapshot.activity_metadata().step_id(); } } return peak_bytes_profile_step_id; } struct MetadataComparator { bool operator()(const IndexMetaPair& a, const IndexMetaPair& b) const { const MemoryActivityMetadata* a_meta = a.second; const MemoryActivityMetadata* b_meta = b.second; DCHECK_NE(a_meta, nullptr); DCHECK_NE(b_meta, nullptr); auto lhs = std::make_tuple(-a_meta->allocation_bytes(), -a_meta->requested_bytes(), a_meta->tf_op_name(), a_meta->region_type(), a_meta->data_type(), a_meta->tensor_shape()); auto rhs = std::make_tuple(-b_meta->allocation_bytes(), -b_meta->requested_bytes(), b_meta->tf_op_name(), b_meta->region_type(), b_meta->data_type(), b_meta->tensor_shape()); return lhs < rhs; } }; void InsertSpecialAllocations(int64_t unmapped_allocation_bytes, int64_t step_id, PerAllocatorMemoryProfile* memory_profile, std::vector<IndexMetaPair>* active_allocs) { int index = 0; if (unmapped_allocation_bytes > 0) { MemoryActivityMetadata* special_allocation = memory_profile->add_special_allocations(); special_allocation->set_memory_activity(ALLOCATION); special_allocation->set_requested_bytes(unmapped_allocation_bytes); special_allocation->set_allocation_bytes(unmapped_allocation_bytes); special_allocation->set_address(0); special_allocation->set_tf_op_name("unused preallocated device memory"); special_allocation->set_step_id(step_id); special_allocation->set_region_type("persist/dynamic"); special_allocation->set_data_type( tensorflow::DataTypeString(static_cast<tensorflow::DataType>(0))); special_allocation->set_tensor_shape("unknown"); active_allocs->push_back({--index, special_allocation}); } int64_t stack_bytes = memory_profile->profile_summary().peak_stats().stack_reserved_bytes(); if (stack_bytes > 0) { MemoryActivityMetadata* special_allocation = memory_profile->add_special_allocations(); special_allocation->set_memory_activity(ALLOCATION); special_allocation->set_requested_bytes(stack_bytes); special_allocation->set_allocation_bytes(stack_bytes); special_allocation->set_address(0); special_allocation->set_tf_op_name("stack"); special_allocation->set_step_id(step_id); special_allocation->set_region_type("stack"); special_allocation->set_data_type( tensorflow::DataTypeString(static_cast<tensorflow::DataType>(0))); special_allocation->set_tensor_shape("unknown"); active_allocs->push_back({--index, special_allocation}); } } bool operator==(const IndexMetaPair& a, const IndexMetaPair& b) { const MemoryActivityMetadata* a_meta = a.second; const MemoryActivityMetadata* b_meta = b.second; return a_meta->allocation_bytes() == b_meta->allocation_bytes() && a_meta->requested_bytes() == b_meta->requested_bytes() && a_meta->tf_op_name() == b_meta->tf_op_name() && a_meta->region_type() == b_meta->region_type() && a_meta->data_type() == b_meta->data_type() && a_meta->tensor_shape() == b_meta->tensor_shape(); } void ProcessActiveAllocations(int64_t peak_bytes_profile_step_id, PerAllocatorMemoryProfile* memory_profile) { int64_t unmapped_allocation_bytes = memory_profile->profile_summary().peak_stats().heap_allocated_bytes(); int64_t unmapped_deallocation_bytes = 0; absl::flat_hash_map<int64_t , IndexMetaPair> active_alloc_map; for (int i = 0; i < memory_profile->memory_profile_snapshots_size(); i++) { const auto& snapshot = memory_profile->memory_profile_snapshots().at(i); DCHECK(snapshot.has_activity_metadata()); const MemoryActivityMetadata& metadata = snapshot.activity_metadata(); if (snapshot.time_offset_ps() > memory_profile->profile_summary().peak_stats_time_ps()) break; if (metadata.step_id() != peak_bytes_profile_step_id) continue; if (metadata.memory_activity() == ALLOCATION) { active_alloc_map[metadata.address()] = {i, &metadata}; unmapped_allocation_bytes -= metadata.allocation_bytes(); } else { DCHECK_EQ(metadata.memory_activity(), DEALLOCATION); if (active_alloc_map.contains(metadata.address())) { active_alloc_map.erase(metadata.address()); } else { unmapped_deallocation_bytes += metadata.allocation_bytes(); } unmapped_allocation_bytes += metadata.allocation_bytes(); } } unmapped_allocation_bytes -= unmapped_deallocation_bytes; VLOG(2) << "unmapped_allocation_bytes=" << unmapped_allocation_bytes << ", unmapped_deallocation_bytes=" << unmapped_deallocation_bytes; std::vector<IndexMetaPair> active_allocs; for (const auto& address_and_index_meta : active_alloc_map) { active_allocs.push_back(address_and_index_meta.second); } InsertSpecialAllocations(unmapped_allocation_bytes, peak_bytes_profile_step_id, memory_profile, &active_allocs); std::sort(active_allocs.begin(), active_allocs.end(), MetadataComparator()); for (int i = 0, end = active_allocs.size(); i < end; i++) { ActiveAllocation* allocation = memory_profile->add_active_allocations(); allocation->set_snapshot_index(active_allocs[i].first); if (active_allocs[i].first < 0) { allocation->set_special_index(-active_allocs[i].first - 1); } else { allocation->set_special_index(-1); } allocation->set_num_occurrences(1); const int last_alloc = active_allocs.size() - 1; while (i < last_alloc && active_allocs[i] == active_allocs[i + 1]) { allocation->set_num_occurrences(allocation->num_occurrences() + 1); i++; } } VLOG(2) << "Distinctive active allocation count=" << memory_profile->active_allocations_size(); } void SaveActiveAllocationSnapshots( protobuf::RepeatedPtrField<MemoryProfileSnapshot>* snapshots, protobuf::RepeatedPtrField<ActiveAllocation>* active_allocations) { std::vector<MemoryProfileSnapshot*> samples; for (const auto& allocation : *active_allocations) { auto orig_index = allocation.snapshot_index(); if (orig_index < 0) continue; samples.push_back(&(*snapshots)[orig_index]); } int new_index = 0; for (auto& allocation : *active_allocations) { int64_t origin_index = allocation.snapshot_index(); if (origin_index < 0) continue; allocation.set_snapshot_index(new_index); new_index++; } protobuf::RepeatedPtrField<MemoryProfileSnapshot> new_snapshots; new_snapshots.Reserve(samples.size()); for (const auto& sample : samples) { *new_snapshots.Add() = std::move(*sample); } *snapshots = std::move(new_snapshots); } void SampleMemoryProfileTimeline(int64_t max_num_snapshots, PerAllocatorMemoryProfile* memory_profile) { const protobuf::RepeatedPtrField<MemoryProfileSnapshot>& original_snapshots = memory_profile->memory_profile_snapshots(); protobuf::RepeatedPtrField<MemoryProfileSnapshot>* timeline_snapshots = memory_profile->mutable_sampled_timeline_snapshots(); int64_t snapshot_count = original_snapshots.size(); if (snapshot_count > max_num_snapshots) { auto max_box_filter = [&](int filter_width, int count, int start) { for (int i = 0; i < count; i++) { const MemoryProfileSnapshot* max_snapshot = &original_snapshots[start + filter_width * i]; int64_t max_bytes = max_snapshot->aggregation_stats().heap_allocated_bytes() + max_snapshot->aggregation_stats().stack_reserved_bytes(); for (int index = start + filter_width * i + 1; index < start + filter_width * (i + 1); index++) { int64_t bytes = original_snapshots[index] .aggregation_stats() .heap_allocated_bytes() + original_snapshots[index] .aggregation_stats() .stack_reserved_bytes(); if (bytes > max_bytes) { max_snapshot = &original_snapshots[index]; max_bytes = bytes; } } *timeline_snapshots->Add() = *max_snapshot; } }; int width = snapshot_count / max_num_snapshots; int count1 = max_num_snapshots * (width + 1) - snapshot_count; int count2 = max_num_snapshots - count1; max_box_filter(width, count1, 0); max_box_filter(width + 1, count2, width * count1); } else { *timeline_snapshots = original_snapshots; } } void ProcessMemoryProfileProto(int64_t max_num_snapshots, MemoryProfile* memory_profile) { memory_profile->set_num_hosts(1); for (const auto& id_and_allocator_profile : memory_profile->memory_profile_per_allocator()) { if (!id_and_allocator_profile.second.memory_profile_snapshots().empty()) { memory_profile->add_memory_ids(id_and_allocator_profile.first); } } absl::c_sort(*memory_profile->mutable_memory_ids()); for (auto& id_and_allocator_profile : *memory_profile->mutable_memory_profile_per_allocator()) { PerAllocatorMemoryProfile* allocator_memory_profile = &id_and_allocator_profile.second; protobuf::RepeatedPtrField<MemoryProfileSnapshot>* snapshots = allocator_memory_profile->mutable_memory_profile_snapshots(); absl::c_sort(*snapshots, [](const MemoryProfileSnapshot& a, const MemoryProfileSnapshot& b) { return a.time_offset_ps() < b.time_offset_ps(); }); UpdateStepId(allocator_memory_profile); UpdateDeallocation(allocator_memory_profile); SampleMemoryProfileTimeline(max_num_snapshots, allocator_memory_profile); int64_t peak_step_id = GetPeakMemoryStep(allocator_memory_profile->profile_summary() .peak_stats() .peak_bytes_in_use(), allocator_memory_profile); ProcessActiveAllocations(peak_step_id, allocator_memory_profile); SaveActiveAllocationSnapshots( snapshots, allocator_memory_profile->mutable_active_allocations()); } } template <typename Proto> Status ConvertProtoToJson(const Proto& proto_output, std::string* json_output) { protobuf::util::JsonPrintOptions json_options; json_options.always_print_primitive_fields = true; auto status = protobuf::util::MessageToJsonString(proto_output, json_output, json_options); if (!status.ok()) { auto error_msg = status.message(); return errors::Internal( "Could not convert proto to JSON string: ", absl::string_view(error_msg.data(), error_msg.length())); } return absl::OkStatus(); } } MemoryProfile ConvertXPlaneToMemoryProfile(const XPlane& host_plane, int64_t max_num_snapshots) { MemoryProfile memory_profile = GenerateMemoryProfile(&host_plane); ProcessMemoryProfileProto(max_num_snapshots, &memory_profile); memory_profile.set_version(1); return memory_profile; } Status ConvertXSpaceToMemoryProfileJson(const XSpace& xspace, std::string* json_output) { if (const XPlane* host_plane = FindPlaneWithName(xspace, kHostThreadsPlaneName)) { MemoryProfile memory_profile = ConvertXPlaneToMemoryProfile(*host_plane); TF_RETURN_IF_ERROR(ConvertProtoToJson(memory_profile, json_output)); } return absl::OkStatus(); } } }
#include "tensorflow/core/profiler/convert/xplane_to_memory_profile.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/group_events.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/memory_profile.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" namespace tensorflow { namespace profiler { namespace { TEST(ConvertXPlaneToMemoryProfile, OneAllocatorMultiActivitiesTest) { XSpace space; XPlane* host_plane = GetOrCreateHostXPlane(&space); XPlaneBuilder host_plane_builder(host_plane); host_plane_builder.ReserveLines(1); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &tf_executor_thread, "MemoryAllocation", 40000, 1000, {{StatType::kBytesReserved, int64_t{2000}}, {StatType::kBytesAllocated, int64_t{3000}}, {StatType::kBytesAvailable, int64_t{5000}}, {StatType::kPeakBytesInUse, int64_t{8500}}, {StatType::kRequestedBytes, int64_t{200}}, {StatType::kAllocationBytes, int64_t{256}}, {StatType::kAddress, int64_t{222333}}, {StatType::kStepId, int64_t{-93746}}, {StatType::kDataType, int64_t{1}}, {StatType::kAllocatorName, "GPU_0_bfc"}, {StatType::kTfOp, "foo/bar"}, {StatType::kRegionType, "output"}, {StatType::kTensorShapes, "[3, 3, 512, 512]"}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "MemoryDeallocation", 50000, 1000, {{StatType::kBytesReserved, int64_t{2000}}, {StatType::kBytesAllocated, int64_t{2744}}, {StatType::kBytesAvailable, int64_t{5256}}, {StatType::kPeakBytesInUse, int64_t{8500}}, {StatType::kRequestedBytes, int64_t{200}}, {StatType::kAllocationBytes, int64_t{256}}, {StatType::kAddress, int64_t{222333}}, {StatType::kStepId, int64_t{0}}, {StatType::kDataType, int64_t{0}}, {StatType::kAllocatorName, "GPU_0_bfc"}, {StatType::kRegionType, ""}, {StatType::kTensorShapes, ""}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "MemoryAllocation", 70000, 1000, {{StatType::kBytesReserved, int64_t{2000}}, {StatType::kBytesAllocated, int64_t{5000}}, {StatType::kBytesAvailable, int64_t{3000}}, {StatType::kPeakBytesInUse, int64_t{9500}}, {StatType::kRequestedBytes, int64_t{300}}, {StatType::kAllocationBytes, int64_t{300}}, {StatType::kAddress, int64_t{345678}}, {StatType::kStepId, int64_t{-93746}}, {StatType::kDataType, int64_t{9}}, {StatType::kAllocatorName, "GPU_0_bfc"}, {StatType::kTfOp, "mul_grad/Sum"}, {StatType::kRegionType, "temp"}, {StatType::kTensorShapes, "[1, 2]"}}); tsl::profiler::GroupTfEvents(&space); MemoryProfile memory_profile = ConvertXPlaneToMemoryProfile(*host_plane); EXPECT_EQ(memory_profile.memory_profile_per_allocator().size(), 1); EXPECT_EQ(memory_profile.num_hosts(), 1); EXPECT_EQ(memory_profile.memory_ids_size(), 1); EXPECT_EQ(memory_profile.memory_profile_per_allocator().begin()->first, "GPU_0_bfc"); EXPECT_EQ(memory_profile.version(), 1); const auto& allocator_memory_profile = memory_profile.memory_profile_per_allocator().begin()->second; EXPECT_EQ( allocator_memory_profile.profile_summary().peak_bytes_usage_lifetime(), 9500); EXPECT_EQ(allocator_memory_profile.profile_summary() .peak_stats() .peak_bytes_in_use(), 7000); EXPECT_EQ(allocator_memory_profile.profile_summary().peak_stats_time_ps(), 70000); EXPECT_EQ(allocator_memory_profile.sampled_timeline_snapshots_size(), 3); EXPECT_EQ(allocator_memory_profile.memory_profile_snapshots_size(), 1); EXPECT_EQ(allocator_memory_profile.memory_profile_snapshots() .at(0) .activity_metadata() .tf_op_name(), "mul_grad/Sum"); EXPECT_EQ(allocator_memory_profile.active_allocations_size(), 3); EXPECT_EQ( allocator_memory_profile.active_allocations().at(2).snapshot_index(), 0); EXPECT_EQ(allocator_memory_profile.special_allocations_size(), 2); EXPECT_EQ(allocator_memory_profile.special_allocations().at(1).tf_op_name(), "stack"); EXPECT_EQ( allocator_memory_profile.special_allocations().at(1).allocation_bytes(), 2000); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_memory_profile.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_memory_profile_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
038207ec-d0ae-40ec-acc6-a8a7e593e33f
cpp
tensorflow/tensorflow
xplane_to_kernel_stats_db
tensorflow/core/profiler/convert/xplane_to_kernel_stats_db.cc
tensorflow/core/profiler/convert/xplane_to_kernel_stats_db_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_kernel_stats_db.h" #include <functional> #include <ostream> #include <string> #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/tf_op_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/kernel_stats.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/gpu_event_stats.h" #include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include "tensorflow/core/profiler/utils/trace_utils.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { void ConvertDeviceTraceXPlaneToKernelReports( const XPlane& device_trace, const std::function<void(const GpuEventStats&, KernelReport*)>& on_kernel_fn, KernelReportMap* reports) { XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(&device_trace); plane.ForEachLine([&](const XLineVisitor& line) { if (IsDerivedThreadId(line.Id())) { return; } line.ForEachEvent([&](const XEventVisitor& event) { if (event.DurationNs() == 0) return; KernelReport kernel; GpuEventStats stats(&event); if (!stats.IsKernel()) return; kernel.set_name(std::string(event.Name())); kernel.set_is_kernel_using_tensor_core( IsKernelUsingTensorCore(event.Name())); kernel.set_total_duration_ns(event.DurationNs()); kernel.set_min_duration_ns(event.DurationNs()); kernel.set_max_duration_ns(event.DurationNs()); ParseKernelLaunchParams(stats.kernel_details, &kernel); if (stats.IsTfOp()) { tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(stats.tf_op_fullname); kernel.set_op_name(std::string(tf_op.name)); bool tensor_core_eligible = IsEinsumTensorCoreEligible(stats.equation) || IsOpTensorCoreEligible(kernel.op_name()); if (!tensor_core_eligible && kernel.is_kernel_using_tensor_core()) { VLOG(1) << "Detected new Op using TensorCores: " << kernel.op_name() << std::endl; tensor_core_eligible = true; } kernel.set_is_op_tensor_core_eligible(tensor_core_eligible); } if (on_kernel_fn) { on_kernel_fn(stats, &kernel); } KernelReportValue value; value.total_duration_ns = event.DurationNs(); value.min_duration_ns = event.DurationNs(); value.max_duration_ns = event.DurationNs(); value.occurrences = 1; InsertOrUpdateKernelReport(kernel, value, reports); }); }); } } }
#include "tensorflow/core/profiler/convert/xplane_to_kernel_stats_db.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/kernel_stats.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" namespace tensorflow { namespace profiler { namespace { TEST(ConvertXplaneToKernelStats, MultiKernels) { XSpace space; XPlane* device_trace = space.add_planes(); XPlaneBuilder device_trace_builder(device_trace); device_trace_builder.GetOrCreateLine(0); XLineBuilder line_builder = device_trace_builder.GetOrCreateLine(0); CreateXEvent(&device_trace_builder, &line_builder, "kernel_name_shortest", 10000, 1000, {{StatType::kTfOp, "mul_786"}, {StatType::kKernelDetails, R"MULTI(regs:16 static_shared:0 dynamic_shared:0 grid:1,1,1 block:1,1,1 occ_pct:50.0)MULTI"}, {StatType::kEquation, ""}}); CreateXEvent(&device_trace_builder, &line_builder, "kernel_name_middle", 20000, 2000, {{StatType::kTfOp, "Conv2D"}, {StatType::kKernelDetails, R"MULTI(regs:32 static_shared:0 dynamic_shared:16384 grid:2,1,1 block:32,1,1 occ_pct=13.0)MULTI"}, {StatType::kEquation, ""}}); CreateXEvent(&device_trace_builder, &line_builder, "volta_fp16_s884gemm_fp16_128x128_ldg8_f2f_tn", 30000, 3000, {{StatType::kTfOp, "Einsum_80"}, {StatType::kKernelDetails, R"MULTI(regs:32 static_shared:0 dynamic_shared:16384 grid:3,1,1 block:64,1,1 occ_pct:25.0)MULTI"}, {StatType::kEquation, ""}}); KernelReportMap reports; ConvertDeviceTraceXPlaneToKernelReports(*device_trace, {}, &reports); KernelStatsDb kernel_stats; CopyTopKDurationKernelReportsToDb(reports, &kernel_stats); EXPECT_EQ(kernel_stats.reports_size(), 3); { const auto& kernel = kernel_stats.reports().at(2); EXPECT_EQ(kernel.name(), "kernel_name_shortest"); EXPECT_EQ(kernel.registers_per_thread(), 16); EXPECT_EQ(kernel.static_shmem_bytes(), 0); EXPECT_EQ(kernel.dynamic_shmem_bytes(), 0); EXPECT_EQ(kernel.grid_dim().at(0), 1); EXPECT_EQ(kernel.grid_dim().at(1), 1); EXPECT_EQ(kernel.grid_dim().at(2), 1); EXPECT_EQ(kernel.block_dim().at(0), 1); EXPECT_EQ(kernel.block_dim().at(1), 1); EXPECT_EQ(kernel.block_dim().at(2), 1); EXPECT_EQ(kernel.total_duration_ns(), 1); EXPECT_FALSE(kernel.is_kernel_using_tensor_core()); EXPECT_FALSE(kernel.is_op_tensor_core_eligible()); EXPECT_EQ(kernel.op_name(), "mul_786"); } { const auto& kernel = kernel_stats.reports().at(1); EXPECT_EQ(kernel.name(), "kernel_name_middle"); EXPECT_EQ(kernel.registers_per_thread(), 32); EXPECT_EQ(kernel.static_shmem_bytes(), 0); EXPECT_EQ(kernel.dynamic_shmem_bytes(), 16384); EXPECT_EQ(kernel.grid_dim().at(0), 2); EXPECT_EQ(kernel.grid_dim().at(1), 1); EXPECT_EQ(kernel.grid_dim().at(2), 1); EXPECT_EQ(kernel.block_dim().at(0), 32); EXPECT_EQ(kernel.block_dim().at(1), 1); EXPECT_EQ(kernel.block_dim().at(2), 1); EXPECT_EQ(kernel.total_duration_ns(), 2); EXPECT_FALSE(kernel.is_kernel_using_tensor_core()); EXPECT_TRUE(kernel.is_op_tensor_core_eligible()); EXPECT_EQ(kernel.op_name(), "Conv2D"); } { const auto& kernel = kernel_stats.reports().at(0); EXPECT_EQ(kernel.name(), "volta_fp16_s884gemm_fp16_128x128_ldg8_f2f_tn"); EXPECT_EQ(kernel.registers_per_thread(), 32); EXPECT_EQ(kernel.static_shmem_bytes(), 0); EXPECT_EQ(kernel.dynamic_shmem_bytes(), 16384); EXPECT_EQ(kernel.grid_dim().at(0), 3); EXPECT_EQ(kernel.grid_dim().at(1), 1); EXPECT_EQ(kernel.grid_dim().at(2), 1); EXPECT_EQ(kernel.block_dim().at(0), 64); EXPECT_EQ(kernel.block_dim().at(1), 1); EXPECT_EQ(kernel.block_dim().at(2), 1); EXPECT_EQ(kernel.total_duration_ns(), 3); EXPECT_TRUE(kernel.is_kernel_using_tensor_core()); EXPECT_TRUE(kernel.is_op_tensor_core_eligible()); EXPECT_EQ(kernel.op_name(), "Einsum_80"); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_kernel_stats_db.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_kernel_stats_db_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cf68becf-c51f-4d43-90f6-818835c3a4aa
cpp
tensorflow/tensorflow
hlo_proto_to_memory_visualization_utils
tensorflow/core/profiler/convert/hlo_proto_to_memory_visualization_utils.cc
tensorflow/core/profiler/convert/hlo_proto_to_memory_visualization_utils_test.cc
#include "tensorflow/core/profiler/convert/hlo_proto_to_memory_visualization_utils.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <list> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/layout_util.h" #include "xla/service/hlo.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/profiler/protobuf/memory_viewer_preprocess.pb.h" namespace tensorflow { namespace profiler { namespace { using ::xla::BufferAllocationProto; using ::xla::HeapSimulatorTrace; using ::xla::HloInstructionProto; using ::xla::HloProto; using ::xla::LayoutUtil; using ::xla::LogicalBufferProto; using ::xla::Shape; using ::xla::ShapeUtil; Shape ResolveShapeIndex(const xla::ShapeProto& shape_proto, absl::Span<const int64_t> shape_index) { if (shape_index.empty()) return Shape(shape_proto); int64_t i = shape_index.back(); if (i >= shape_proto.tuple_shapes_size()) { return Shape(shape_proto); } return Shape(shape_proto.tuple_shapes(i)); } std::string ShapeDescription(const Shape& shape) { return ShapeUtil::HumanStringWithLayout(shape); } int64_t ShapeUnpaddedSize(Shape shape) { LayoutUtil::SetToDefaultLayout(&shape); return ShapeUtil::ByteSizeOf(shape, sizeof(void*)); } class BufferAllocationStruct { public: explicit BufferAllocationStruct(const BufferAllocationProto& proto) : buffer_allocation_((proto)) {} bool IsIndefinite() const { return buffer_allocation_.is_thread_local() || buffer_allocation_.is_entry_computation_parameter() || buffer_allocation_.is_constant() || buffer_allocation_.maybe_live_out(); } const BufferAllocationProto& proto() const { return buffer_allocation_; } size_t size() const { return buffer_allocation_.size(); } int64_t color() const { return buffer_allocation_.color(); } int64_t index() const { return buffer_allocation_.index(); } std::optional<int64_t> heap_simulator_trace_id() const { return heap_simulator_trace_id_; } void set_heap_simulator_trace_id(int64_t id) { heap_simulator_trace_id_ = id; } std::string category() const { if (buffer_allocation_.is_entry_computation_parameter()) { return "Parameter"; } else if (buffer_allocation_.maybe_live_out()) { return "Output"; } else if (buffer_allocation_.is_thread_local()) { return "Thread-local"; } else if (buffer_allocation_.is_constant()) { return "Constant"; } else { return "Temporary"; } } std::string description() const { return absl::StrFormat( "buffer_allocation_id:%d\nsize:%d\nbuffer_counts:%d\n", buffer_allocation_.index(), size(), buffer_allocation_.assigned_size()); } private: const BufferAllocationProto& buffer_allocation_; std::optional<int64_t> heap_simulator_trace_id_; }; struct LogicalBufferStruct { LogicalBufferStruct(const LogicalBufferProto& p, const BufferAllocationStruct& b, const ::xla::HloInstructionProto& i, uint64_t offset) : proto(p), buffer_allocation(b), hlo_instruction(i), offset(offset), shape(ResolveShapeIndex(hlo_instruction.shape(), proto.defined_at().shape_index())) {} absl::string_view instruction_name() const { return hlo_instruction.name(); } int64_t color() const { return proto.color(); } size_t size() const { return proto.size(); } size_t unpadded_size() const { return ShapeUnpaddedSize(shape); } int64_t inc() { if (canonical_buffer) return canonical_buffer->inc(); return ++ref_count; } int64_t dec() { if (canonical_buffer) return canonical_buffer->dec(); return --ref_count; } int64_t share_with(LogicalBufferStruct* buffer) { canonical_buffer = buffer; return canonical_buffer->inc(); } LogicalBufferStruct* get_canonical_buffer() { return canonical_buffer ? canonical_buffer->get_canonical_buffer() : this; } std::string GetInstructionNameWithShapeIndex() const { if (proto.defined_at().shape_index().empty()) { return std::string(instruction_name()); } else { return absl::StrCat(instruction_name(), "{", absl::StrJoin(proto.defined_at().shape_index(), ","), "}"); } } std::string description() const { return absl::StrFormat( "buffer_id:%d\nhlo_op:%s\nshape:%s\nsize:%d\nunpadded_size:%d\n" "offset:%d\nspan:(%lld,%lld)", proto.id(), instruction_name(), ShapeDescription(shape), size(), unpadded_size(), offset, span ? span->first : -1, span ? span->second : -1); } const LogicalBufferProto& proto; const BufferAllocationStruct& buffer_allocation; const ::xla::HloInstructionProto& hlo_instruction; uint64_t offset; std::optional<std::pair<uint64_t, uint64_t>> span; xla::Shape shape; int64_t ref_count = 0; LogicalBufferStruct* canonical_buffer = nullptr; }; class HloProtoBufferWrapper { public: explicit HloProtoBufferWrapper(const ::xla::HloProto& hlo_proto) : hlo_proto_(hlo_proto) { Init(); } int64_t GetHeapSimulatorTraceId(const int64_t memory_color) const { int64_t id = GetHeapSimulatorTraceIdFromBufferAllocationIndex(memory_color); if (id != -1) { return id; } return GetHeapSimulatorTraceIdFromEvents(memory_color); } const ::xla::HloProto& GetHloProto() const { return hlo_proto_; } std::vector<const BufferAllocationStruct*> GetBufferAllocations( int64_t memory_color) const { std::vector<const BufferAllocationStruct*> buffer_allocations; for (const auto& iter : id_to_buffer_allocation_) { if (iter.second->proto().color() != memory_color) continue; buffer_allocations.push_back(iter.second.get()); } return buffer_allocations; } LogicalBufferStruct* GetLogicalBuffer(int64_t logical_buffer_id) const { if (!id_to_logical_buffer_.contains(logical_buffer_id)) { LOG(DFATAL) << "logical_buffer_id " << logical_buffer_id << "not found."; return nullptr; } return id_to_logical_buffer_.at(logical_buffer_id).get(); } std::vector<const LogicalBufferStruct*> LogicalBuffersWithIndefiniteLifetime( int64_t memory_color) const { std::vector<const LogicalBufferStruct*> indefinite_logical_buffers; for (const auto& buffer_assignment : GetBufferAllocations(memory_color)) { if (!buffer_assignment->IsIndefinite()) continue; if (buffer_assignment->proto().is_thread_local()) continue; const LogicalBufferStruct* best_logical_buffer = nullptr; size_t best_size = 0; for (const auto& assigned : buffer_assignment->proto().assigned()) { const LogicalBufferStruct* logical_buffer_struct = GetLogicalBuffer(assigned.logical_buffer_id()); if (logical_buffer_struct == nullptr) continue; if (logical_buffer_struct->size() > best_size) { best_size = logical_buffer_struct->size(); best_logical_buffer = logical_buffer_struct; } } if (best_logical_buffer) { indefinite_logical_buffers.push_back(best_logical_buffer); } } return indefinite_logical_buffers; } private: void Init() { absl::flat_hash_map<absl::string_view, const ::xla::HloInstructionProto*> name_to_hlo; absl::flat_hash_map<uint64_t, const ::xla::HloInstructionProto*> unique_id_to_hlo; for (const auto& computation : hlo_proto_.hlo_module().computations()) { for (const auto& instruction : computation.instructions()) { name_to_hlo[instruction.name()] = &instruction; unique_id_to_hlo[instruction.id()] = &instruction; } } absl::flat_hash_map<int64_t, const LogicalBufferProto*> id_to_logical_buffer_proto; for (const auto& logical_buffer : hlo_proto_.buffer_assignment().logical_buffers()) { id_to_logical_buffer_proto[logical_buffer.id()] = &logical_buffer; } for (const auto& buffer_allocation : hlo_proto_.buffer_assignment().buffer_allocations()) { auto& buffer_allocation_s = id_to_buffer_allocation_[buffer_allocation.index()]; buffer_allocation_s = std::make_unique<BufferAllocationStruct>(buffer_allocation); for (const auto& assigned : buffer_allocation.assigned()) { const auto id = assigned.logical_buffer_id(); if (!id_to_logical_buffer_proto.contains(id)) { LOG(DFATAL) << "logical_buffer_id " << id << " not found."; continue; } const auto* logical_buffer = id_to_logical_buffer_proto.at(id); int64_t inst_id = logical_buffer->defined_at().instruction_id(); if (!unique_id_to_hlo.contains(inst_id)) { LOG(DFATAL) << "instruction_id " << inst_id << " not found."; continue; } const auto* instruction = unique_id_to_hlo.at(inst_id); id_to_logical_buffer_[id] = std::make_unique<LogicalBufferStruct>( *logical_buffer, *buffer_allocation_s, *instruction, assigned.offset()); } } const auto& heap_simulator_traces = hlo_proto_.buffer_assignment().heap_simulator_traces(); for (int64_t i = 0; i < heap_simulator_traces.size(); i++) { if (heap_simulator_traces[i].events().empty()) continue; int logical_buffer_id = heap_simulator_traces[i].events(0).buffer_id(); if (!id_to_logical_buffer_.contains(logical_buffer_id)) continue; auto* logical_buffer = id_to_logical_buffer_[logical_buffer_id].get(); auto buffer_allocation_index = logical_buffer->buffer_allocation.index(); id_to_buffer_allocation_[buffer_allocation_index] ->set_heap_simulator_trace_id(i); } } int64_t GetHeapSimulatorTraceIdFromEvents(const int64_t memory_color) const { int64_t best_index = -1; int64_t best_event_count = 0; for (int64_t i = 0; i < hlo_proto_.buffer_assignment().heap_simulator_traces_size(); i++) { const auto& heap_simulator_trace = hlo_proto_.buffer_assignment().heap_simulator_traces(i); int64_t event_count = 0; for (const auto& event : heap_simulator_trace.events()) { if (!id_to_logical_buffer_.contains(event.buffer_id())) { LOG(DFATAL) << "buffer_id " << event.buffer_id() << "not found."; continue; } const auto& logical_buffer = id_to_logical_buffer_.at(event.buffer_id()); if (logical_buffer->color() == memory_color) { event_count++; } } if (event_count > best_event_count) { best_index = i; best_event_count = event_count; } } return best_index; } int64_t GetHeapSimulatorTraceIdFromBufferAllocationIndex( const int64_t memory_color) const { auto buffer_allocations = GetBufferAllocations(memory_color); for (const auto* buffer_allocation : buffer_allocations) { if (buffer_allocation->IsIndefinite()) continue; if (buffer_allocation->heap_simulator_trace_id()) { return *buffer_allocation->heap_simulator_trace_id(); } } return -1; } const ::xla::HloProto& hlo_proto_; absl::flat_hash_map<int64_t, std::unique_ptr<LogicalBufferStruct>> id_to_logical_buffer_; absl::flat_hash_map<int64_t, std::unique_ptr<BufferAllocationStruct>> id_to_buffer_allocation_; }; double BytesToMiB(int64_t bytes) { return static_cast<double>(bytes) / (1ULL << 20); } HeapObject MakeHeapObjectCommon(std::string label, int32_t color, int64_t logical_buffer_id, int64_t logical_buffer_size_bytes, int64_t unpadded_shape_bytes) { HeapObject result; result.set_numbered(color); result.set_label(std::move(label)); result.set_logical_buffer_id(logical_buffer_id); result.set_logical_buffer_size_mib(BytesToMiB(logical_buffer_size_bytes)); result.set_unpadded_shape_mib(BytesToMiB(unpadded_shape_bytes)); return result; } HeapObject MakeHeapObject(const LogicalBufferStruct& logical_buffer, int32_t color) { const HloInstructionProto& hlo_instruction = logical_buffer.hlo_instruction; std::string shape_string = ShapeDescription(logical_buffer.shape); std::string label = absl::StrFormat("%s: %s # %s", logical_buffer.instruction_name(), shape_string, hlo_instruction.metadata().op_name()); HeapObject result = MakeHeapObjectCommon( std::move(label), color, logical_buffer.proto.id(), logical_buffer.size(), logical_buffer.unpadded_size()); result.set_instruction_name( logical_buffer.GetInstructionNameWithShapeIndex()); result.set_group_name(logical_buffer.buffer_allocation.category()); result.set_tf_op_name(hlo_instruction.metadata().op_name()); result.set_shape_string(shape_string); result.set_op_code(hlo_instruction.opcode()); return result; } BufferSpan MakeBufferSpan(int32 start, int32 limit) { BufferSpan result; result.set_start(start); result.set_limit(limit); return result; } void Convert(const xla::BufferAllocationProto_Assigned& assigned, const HloProtoBufferWrapper& wrapper, LogicalBuffer* result) { result->set_id(assigned.logical_buffer_id()), result->set_size_mib(BytesToMiB(assigned.size())); const LogicalBufferStruct* logical_buffer = wrapper.GetLogicalBuffer(assigned.logical_buffer_id()); if (logical_buffer == nullptr) return; result->set_hlo_name(std::string(logical_buffer->instruction_name())); result->mutable_shape_index()->CopyFrom( logical_buffer->proto.defined_at().shape_index()); result->set_shape(ShapeDescription(logical_buffer->shape)); } bool IsReusable(const BufferAllocationProto& buffer_allocation) { return !buffer_allocation.is_thread_local() && !buffer_allocation.is_tuple(); } void Convert(const BufferAllocationProto& proto, const HloProtoBufferWrapper& wrapper, BufferAllocation* result) { result->set_id(proto.index()); result->set_size_mib(BytesToMiB(proto.size())); if (proto.is_entry_computation_parameter()) { result->add_attributes("entry computation parameter"); } if (proto.maybe_live_out()) { result->add_attributes("may-be live out"); } if (IsReusable(proto)) { result->add_attributes("reusable"); } for (const auto& assigned : proto.assigned()) { Convert(assigned, wrapper, result->add_logical_buffers()); } if (!result->logical_buffers().empty()) { std::string common_shape = result->logical_buffers(0).shape(); for (int64_t i = 1; i < result->logical_buffers_size(); ++i) { if (result->logical_buffers(i).shape() != common_shape) { common_shape = ""; break; } } if (!common_shape.empty()) { result->set_common_shape(common_shape); } } } void NoteSpecialAllocations(const HloProtoBufferWrapper& wrapper, int64_t memory_color, int64_t small_buffer_size, PreprocessResult* result) { int64_t entry_parameters_bytes = 0; int64_t non_reusable_bytes = 0; int64_t maybe_live_out_bytes = 0; int64_t total_buffer_allocation_bytes = 0; int64_t indefinite_buffer_allocation_bytes = 0; for (const auto* buffer_allocation_struct : wrapper.GetBufferAllocations(memory_color)) { const auto& buffer_allocation = buffer_allocation_struct->proto(); if (buffer_allocation.is_entry_computation_parameter()) { entry_parameters_bytes += buffer_allocation.size(); } if (!IsReusable(buffer_allocation)) { non_reusable_bytes += buffer_allocation.size(); } if (buffer_allocation.maybe_live_out()) { if (buffer_allocation.size() > small_buffer_size) { VLOG(1) << "Maybe live out buffer allocation: " << buffer_allocation.size() << " bytes :: " << buffer_allocation.ShortDebugString(); } maybe_live_out_bytes += buffer_allocation.size(); } if (buffer_allocation_struct->IsIndefinite()) { indefinite_buffer_allocation_bytes += buffer_allocation.size(); Convert(buffer_allocation, wrapper, result->add_indefinite_lifetimes()); } total_buffer_allocation_bytes += buffer_allocation.size(); } result->set_entry_computation_parameters_mib( BytesToMiB(entry_parameters_bytes)); result->set_non_reusable_mib(BytesToMiB(non_reusable_bytes)); result->set_maybe_live_out_mib(BytesToMiB(maybe_live_out_bytes)); result->set_total_buffer_allocation_mib( BytesToMiB(total_buffer_allocation_bytes)); result->set_indefinite_buffer_allocation_mib( BytesToMiB(indefinite_buffer_allocation_bytes)); } struct HeapSimulatorStats { explicit HeapSimulatorStats(const HloProtoBufferWrapper& wrapper) : wrapper(wrapper) {} void SetSimulatorTraceEventSize(int64_t size) { simulator_trace_event_size = size; } void UpdateOnSimulatorEvent(const HeapSimulatorTrace::Event& event) { heap_size_bytes_timeline.push_back(heap_size_bytes); unpadded_heap_size_bytes_timeline.push_back(unpadded_heap_size_bytes); const LogicalBufferStruct* logical_buffer = wrapper.GetLogicalBuffer(event.buffer_id()); if (logical_buffer == nullptr) return; seen_logical_buffers.insert(logical_buffer); seen_buffer_allocations.insert(&logical_buffer->buffer_allocation.proto()); } void IncreaseMemoryUsage(LogicalBufferStruct* canonical_logical_buffer, bool init_buffer_span) { logical_buffers.push_back(canonical_logical_buffer->proto.id()); heap_size_bytes += canonical_logical_buffer->size(); unpadded_heap_size_bytes += canonical_logical_buffer->unpadded_size(); int64_t prior_peak_heap_size_bytes = peak_heap_size_bytes; peak_heap_size_bytes = std::max(peak_heap_size_bytes, heap_size_bytes); if (prior_peak_heap_size_bytes != peak_heap_size_bytes) { peak_heap_size_position = heap_size_bytes_timeline.size() - 1; peak_unpadded_heap_size_bytes = unpadded_heap_size_bytes; VLOG(1) << absl::StrFormat("New peak heap size on %d :: %d bytes", peak_heap_size_position, peak_heap_size_bytes); peak_logical_buffers = logical_buffers; } if (init_buffer_span) { canonical_logical_buffer->span.emplace( heap_size_bytes_timeline.size() - 1, simulator_trace_event_size - 1); } } Status DecreaseMemoryUsage(LogicalBufferStruct* canonical_logical_buffer) { int64_t canonical_buffer_id = canonical_logical_buffer->proto.id(); logical_buffers.remove(canonical_buffer_id); heap_size_bytes -= canonical_logical_buffer->size(); if (heap_size_bytes < 0) { return errors::InvalidArgument(absl::StrCat( "Heap size should be non-negative, but get: ", heap_size_bytes)); } unpadded_heap_size_bytes -= canonical_logical_buffer->unpadded_size(); if (canonical_logical_buffer->span) { canonical_logical_buffer->span->second = heap_size_bytes_timeline.size() - 1; } return absl::OkStatus(); } Status FinalizeMemoryUsage() { heap_size_bytes_timeline.push_back(heap_size_bytes); unpadded_heap_size_bytes_timeline.push_back(unpadded_heap_size_bytes); if (seen_buffer_allocations.size() != 1) { return errors::InvalidArgument( absl::StrCat("All heap simulation should work out of a single buffer " "allocation, actual seen_buffer_allocations.size():", seen_buffer_allocations.size())); } VLOG(1) << "Found " << peak_logical_buffers.size() << " logical buffers alive at point of peak heap usage."; VLOG(1) << "Peak logical buffers: [" << absl::StrJoin(peak_logical_buffers, ", ") << "]"; return absl::OkStatus(); } int64_t heap_size_bytes = 0; int64_t unpadded_heap_size_bytes = 0; int64_t peak_heap_size_bytes = 0; int64_t peak_unpadded_heap_size_bytes = 0; std::list<int64_t> logical_buffers; std::list<int64_t> peak_logical_buffers; std::vector<int64_t> heap_size_bytes_timeline; std::vector<int64_t> unpadded_heap_size_bytes_timeline; int64_t peak_heap_size_position = 0; absl::flat_hash_set<const LogicalBufferStruct*> seen_logical_buffers; absl::flat_hash_set<const BufferAllocationProto*> seen_buffer_allocations; const HloProtoBufferWrapper& wrapper; int64_t simulator_trace_event_size; }; Status ProcessHeapSimulatorTrace(const HloProtoBufferWrapper& wrapper, const int64_t memory_color, HeapSimulatorStats* stats) { int64_t heap_simulator_trace_id = wrapper.GetHeapSimulatorTraceId(memory_color); if (heap_simulator_trace_id < 0 || heap_simulator_trace_id >= wrapper.GetHloProto() .buffer_assignment() .heap_simulator_traces_size()) { return absl::OkStatus(); } const auto& trace = wrapper.GetHloProto().buffer_assignment().heap_simulator_traces( heap_simulator_trace_id); stats->SetSimulatorTraceEventSize(trace.events_size()); for (const auto& event : trace.events()) { stats->UpdateOnSimulatorEvent(event); LogicalBufferStruct* logical_buffer = wrapper.GetLogicalBuffer(event.buffer_id()); if (logical_buffer == nullptr) { continue; } if (event.kind() == HeapSimulatorTrace::Event::ALLOC) { logical_buffer->inc(); stats->IncreaseMemoryUsage(logical_buffer, true); } else if (event.kind() == HeapSimulatorTrace::Event::FREE) { auto ref_count = logical_buffer->dec(); if (ref_count < 0) { return errors::InvalidArgument(absl::StrCat( "Buffer ", logical_buffer->proto.id(), "is freed multiple times.")); } if (ref_count == 0) { auto& canonical_buffer = *logical_buffer->get_canonical_buffer(); TF_RETURN_IF_ERROR(stats->DecreaseMemoryUsage(&canonical_buffer)); } } else if (event.kind() == HeapSimulatorTrace::Event::SHARE_WITH) { int64_t canonical_buffer_id = event.share_with_canonical_id(); LogicalBufferStruct* canonical_buffer = wrapper.GetLogicalBuffer(canonical_buffer_id); if (canonical_buffer == nullptr) { continue; } auto ref_count = logical_buffer->share_with(canonical_buffer); if (ref_count == 1) { stats->IncreaseMemoryUsage(canonical_buffer, false); } } else { return errors::InvalidArgument( absl::StrCat("Unhandled event kind: ", event.kind())); } } TF_RETURN_IF_ERROR(stats->FinalizeMemoryUsage()); return absl::OkStatus(); } struct PeakUsageSnapshot { PeakUsageSnapshot(const HloProtoBufferWrapper& wrapper, const HeapSimulatorStats& simulator_stats, int64_t small_buffer_size) : wrapper(wrapper), simulator_stats(simulator_stats), small_buffer_size(small_buffer_size) {} void AddHeapObject(const LogicalBufferStruct& logical_buffer) { if (logical_buffer.size() < small_buffer_size) { total_small_buffer_size_bytes += logical_buffer.size(); } else { max_heap_objects.push_back(MakeHeapObject(logical_buffer, colorno++)); } } void FinalizeBufferUsage() { for (const int64_t logical_buffer_id : simulator_stats.peak_logical_buffers) { const LogicalBufferStruct* logical_buffer = wrapper.GetLogicalBuffer(logical_buffer_id); if (logical_buffer == nullptr) return; AddHeapObject(*logical_buffer); } if (total_small_buffer_size_bytes != 0) { max_heap_objects.push_back(MakeHeapObjectCommon( absl::StrFormat("small (<%d bytes)", small_buffer_size), colorno++, -1, total_small_buffer_size_bytes, 0)); } } std::vector<HeapObject> max_heap_objects; int64_t indefinite_memory_usage_bytes = 0; int64_t total_small_buffer_size_bytes = 0; int32_t colorno = 0; const HloProtoBufferWrapper& wrapper; const HeapSimulatorStats& simulator_stats; const int64_t small_buffer_size; }; void CreatePeakUsageSnapshot(const HloProtoBufferWrapper& wrapper, int64_t memory_color, PeakUsageSnapshot* peak_snapshot) { for (const auto* logical_buffer : wrapper.LogicalBuffersWithIndefiniteLifetime(memory_color)) { const auto& buffer_allocation = logical_buffer->buffer_allocation; peak_snapshot->indefinite_memory_usage_bytes += buffer_allocation.size(); peak_snapshot->AddHeapObject(*logical_buffer); } peak_snapshot->FinalizeBufferUsage(); } void ConvertAllocationTimeline(const HloProtoBufferWrapper& wrapper, const HeapSimulatorStats& simulator_stats, const int64_t memory_color, PreprocessResult* result) { const char* lb_colors[] = { "antiquewhite3", "aqua", "aquamarine", "bisque", "blanchedalmond", "blue", "blueviolet", "brown", "burlywood", "cadetblue", "chartreuse", "chocolate", "coral", "cornflowerblue", "crimson", "cyan", "darkblue", "darkcyan", "darkgoldenrod", "darkgray", "darkgreen", "darkkhaki", "darkmagenta", "darkolivegreen", "darkorange", "darkorchid", "darkred", "darksalmon", "darkseagreen", "darkslateblue", "darkslategray", "darkturquoise", "darkviolet", "deeppink", "deepskyblue", "dimgray", "dodgerblue", "firebrick", "floralwhite", "forestgreen", "fuchsia", "gainsboro", "gold", "goldenrod", "green", "greenyellow", "goldenrod", "greenyellow", "honeydew", "hotpink", "indianred", "indigo", "ivory3", "khaki", "lavender", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcoral", "lightcyan", "lightpink", "limegreen", "lightsalmon", "lightseagreen", "lightskyblue", "lime", "magenta", "maroon", "mediumaquamarine", "mediumblue", "mediumorchid", "mediumpurple", "midnightblue", "mediumvioletred", "mistyrose", "moccasin", "olive", "orange", "orangered", "orchid", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "peachpuff", "pink", "plum", "powderblue", "purple", "rebeccapurple", "red", "rosybrown", "royalblue", "salmon", "sandybrown", "seagreen", "seashell", "sienna", "skyblue", "tan", "teal", "turquoise", "tomato", "violet", "violetred", "yellow", }; struct RenderOptions { size_t graph_width = 2048; size_t graph_height = 2048; } render_options; const char* ba_colors[] = { "azure", "beige", "cornsilk", }; int num_lb_colors = sizeof(lb_colors) / sizeof(lb_colors[0]); int num_ba_colors = sizeof(ba_colors) / sizeof(ba_colors[0]); std::vector<size_t> buffer_allocation_offsets; size_t total_y_size = 0; size_t total_x_size = 0; std::vector<std::string> rects; auto buffer_allocations = wrapper.GetBufferAllocations(memory_color); const auto& heap_simulator_traces = wrapper.GetHloProto().buffer_assignment().heap_simulator_traces(); for (const auto& buffer_allocation : buffer_allocations) { if (buffer_allocation->IsIndefinite()) continue; auto heap_simulator_trace_id = buffer_allocation->heap_simulator_trace_id(); if (!heap_simulator_trace_id) continue; buffer_allocation_offsets.push_back(total_y_size); total_y_size += buffer_allocation->size(); if (*heap_simulator_trace_id >= heap_simulator_traces.size()) { LOG(DFATAL) << "heap_simulator_trace_id " << *heap_simulator_trace_id << " out of bounds."; continue; } total_x_size = std::max<size_t>( total_x_size, heap_simulator_traces.at(*heap_simulator_trace_id).events_size()); } if (!total_y_size || !total_x_size) return; double scale_x = static_cast<double>(render_options.graph_width) / total_x_size; double scale_y = static_cast<double>(render_options.graph_height) / total_y_size; int node_id = 0; auto add_rect = [&](size_t x, size_t y, size_t width, size_t height, const string& description, const char* color) { size_t center_x = x + (width >> 1); size_t center_y = y + (height >> 1); int pos_x = center_x * scale_x; int pos_y = center_y * scale_y; int rect_w = width * scale_x; int rect_h = height * scale_y; if (height * scale_y < 0.5) return; rect_h = std::max(rect_h, 1); std::string rect = absl::StrFormat( R"("%d" [tooltip="%s", pos="%d,%d!", width="%d!", height="%d!", color=%s];)", node_id++, description, pos_x, pos_y, rect_w, rect_h, color); rects.push_back(rect); }; int buffer_id = 0; for (const auto& buffer_allocation : buffer_allocations) { if (buffer_allocation->IsIndefinite()) continue; auto buffer_allocation_offset = buffer_allocation_offsets[buffer_id++]; add_rect(0, buffer_allocation_offset, total_x_size, buffer_allocation->size(), buffer_allocation->description(), ba_colors[buffer_id % num_ba_colors]); for (const auto& assigned : buffer_allocation->proto().assigned()) { const LogicalBufferStruct* logical_buffer = wrapper.GetLogicalBuffer(assigned.logical_buffer_id()); if (logical_buffer == nullptr) continue; if (!logical_buffer->span || logical_buffer->canonical_buffer) continue; size_t width = logical_buffer->span->second - logical_buffer->span->first; size_t height = buffer_allocation_offset + logical_buffer->size(); add_rect(logical_buffer->span->first, logical_buffer->offset, width, height, logical_buffer->description(), lb_colors[node_id % num_lb_colors]); } } VLOG(1) << "rects:" << rects.size(); result->set_allocation_timeline( absl::StrFormat("graph G {\n node [shape=box,style=filled];\n %s\n}", absl::StrJoin(rects, "\n"))); } void GeneratePreprocessResult(const HloProtoBufferWrapper& wrapper, const HeapSimulatorStats& simulator_stats, const PeakUsageSnapshot& peak_snapshot, const int64_t memory_color, PreprocessResult* result) { result->set_module_name(wrapper.GetHloProto().hlo_module().name()); result->set_entry_computation_name( wrapper.GetHloProto().hlo_module().entry_computation_name()); std::vector<const HeapObject*> max_heap_by_size; max_heap_by_size.reserve(peak_snapshot.max_heap_objects.size()); for (const auto& object : peak_snapshot.max_heap_objects) { max_heap_by_size.push_back(&object); } std::sort(max_heap_by_size.begin(), max_heap_by_size.end(), [](const HeapObject* a, const HeapObject* b) { return a->logical_buffer_size_mib() > b->logical_buffer_size_mib(); }); std::vector<int> max_heap_to_by_size; max_heap_to_by_size.reserve(max_heap_by_size.size()); for (const auto& object : peak_snapshot.max_heap_objects) { auto it = std::find(max_heap_by_size.begin(), max_heap_by_size.end(), &object); int index = std::distance(max_heap_by_size.begin(), it); max_heap_to_by_size.push_back(index); } std::vector<int> by_size_to_max_heap; for (const auto* object : max_heap_by_size) { int index = object - &peak_snapshot.max_heap_objects[0]; by_size_to_max_heap.push_back(index); } *result->mutable_max_heap() = {peak_snapshot.max_heap_objects.begin(), peak_snapshot.max_heap_objects.end()}; result->mutable_max_heap_by_size()->Reserve(max_heap_by_size.size()); for (const HeapObject* o : max_heap_by_size) { *result->add_max_heap_by_size() = *o; } *result->mutable_max_heap_to_by_size() = {max_heap_to_by_size.begin(), max_heap_to_by_size.end()}; *result->mutable_by_size_to_max_heap() = {by_size_to_max_heap.begin(), by_size_to_max_heap.end()}; size_t timeline_size = simulator_stats.heap_size_bytes_timeline.size(); double add_mib = BytesToMiB(peak_snapshot.indefinite_memory_usage_bytes); result->mutable_heap_sizes()->Reserve(timeline_size); result->mutable_unpadded_heap_sizes()->Reserve(timeline_size); for (size_t i = 0; i < timeline_size; i++) { result->add_heap_sizes( BytesToMiB(simulator_stats.heap_size_bytes_timeline[i]) + add_mib); result->add_unpadded_heap_sizes( BytesToMiB(simulator_stats.unpadded_heap_size_bytes_timeline[i]) + add_mib); } result->set_peak_heap_mib(BytesToMiB(simulator_stats.peak_heap_size_bytes) + add_mib); result->set_peak_unpadded_heap_mib( BytesToMiB(simulator_stats.peak_unpadded_heap_size_bytes) + add_mib); result->set_peak_heap_size_position(simulator_stats.peak_heap_size_position); for (const auto* logical_buffer : simulator_stats.seen_logical_buffers) { if (!logical_buffer->span) continue; (*result->mutable_logical_buffer_spans())[logical_buffer->proto.id()] = MakeBufferSpan(logical_buffer->span->first, logical_buffer->span->second); } NoteSpecialAllocations(wrapper, memory_color, peak_snapshot.small_buffer_size, result); ConvertAllocationTimeline(wrapper, simulator_stats, memory_color, result); } } absl::StatusOr<PreprocessResult> ConvertHloProtoToPreprocessResult( const HloProto& hlo_proto, int64_t small_buffer_size, int64_t memory_color) { HloProtoBufferWrapper wrapper(hlo_proto); HeapSimulatorStats simulator_stats(wrapper); auto status = ProcessHeapSimulatorTrace(wrapper, memory_color, &simulator_stats); if (!status.ok()) { return absl::InvalidArgumentError(absl::StrCat( "Failed to process heap simulator trace: ", status.message())); } PeakUsageSnapshot peak_snapshot(wrapper, simulator_stats, small_buffer_size); CreatePeakUsageSnapshot(wrapper, memory_color, &peak_snapshot); PreprocessResult result; GeneratePreprocessResult(wrapper, simulator_stats, peak_snapshot, memory_color, &result); return result; } } }
#include "tensorflow/core/profiler/convert/hlo_proto_to_memory_visualization_utils.h" #include <string> #include <gmock/gmock.h> #include "absl/strings/str_format.h" #include "xla/service/hlo.pb.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/protobuf/memory_viewer_preprocess.pb.h" #include "tensorflow/core/util/proto/proto_utils.h" namespace tensorflow { namespace profiler { namespace { static constexpr char kHLOBase[] = R"pb( hlo_module { name: "test_module" entry_computation_name: "test_computation" computations { name: "test_computation" instructions { name: "fusion.1" id: 0 shape { tuple_shapes { element_type: U64 } } } instructions { name: "fusion.2" id: 1 shape { tuple_shapes { element_type: U64 } } } } } buffer_assignment { buffer_allocations { index: 0 size: 1048576 color: 0 assigned { logical_buffer_id: 1 offset: 0 size: 524288 } assigned { logical_buffer_id: 2 offset: 524288 size: 524288 } } logical_buffers { id: 1 size: 524288 color: 0 defined_at { instruction_id: 0 shape_index: 0 } } logical_buffers { id: 2 size: 524288 color: 0 defined_at { instruction_id: 1 shape_index: 0 } } heap_simulator_traces { %s } } )pb"; TEST(MemoryViewerTest, TestHeapSimulatorTraceShareWith_1) { static constexpr char kHeapSimulatorTrace[] = R"pb( events { kind: ALLOC buffer_id: 1 } events { kind: SHARE_WITH buffer_id: 2 share_with_canonical_id: 1 } events { kind: FREE buffer_id: 1 } events { kind: FREE buffer_id: 2 } )pb"; std::string hlo_string = absl::StrFormat(kHLOBase, kHeapSimulatorTrace); xla::HloProto hlo_proto; ASSERT_TRUE( proto_utils::ParseTextFormatFromString(hlo_string, &hlo_proto).ok()); TF_ASSERT_OK_AND_ASSIGN( PreprocessResult preprocess_result, ConvertHloProtoToPreprocessResult(hlo_proto, 0)); EXPECT_EQ(preprocess_result.peak_heap_mib(), 0.5); } TEST(MemoryViewerTest, TestHeapSimulatorTraceShareWith_2) { static constexpr char kHeapSimulatorTrace[] = R"pb( events { kind: ALLOC buffer_id: 1 } events { kind: FREE buffer_id: 1 } events { kind: SHARE_WITH buffer_id: 2 share_with_canonical_id: 1 } events { kind: FREE buffer_id: 2 } )pb"; std::string hlo_string = absl::StrFormat(kHLOBase, kHeapSimulatorTrace); xla::HloProto hlo_proto; ASSERT_TRUE( proto_utils::ParseTextFormatFromString(hlo_string, &hlo_proto).ok()); TF_ASSERT_OK_AND_ASSIGN( PreprocessResult preprocess_result, ConvertHloProtoToPreprocessResult(hlo_proto, 0)); EXPECT_EQ(preprocess_result.peak_heap_mib(), 0.5); EXPECT_FALSE(preprocess_result.allocation_timeline().empty()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/hlo_proto_to_memory_visualization_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/hlo_proto_to_memory_visualization_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1624f2bd-0f8b-4ecc-937f-e20454f99463
cpp
tensorflow/tensorflow
xplane_to_op_metrics_db
tensorflow/core/profiler/convert/xplane_to_op_metrics_db.cc
tensorflow/core/profiler/convert/xplane_to_op_metrics_db_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_op_metrics_db.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/profiler/utils/tf_op_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/timespan.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/convert/op_metrics_db_combiner.h" #include "tensorflow/core/profiler/convert/op_stack.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/cost_utils.h" #include "tensorflow/core/profiler/utils/op_metrics_db_utils.h" #include "tensorflow/core/profiler/utils/op_utils.h" #include "tensorflow/core/profiler/utils/trace_utils.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { namespace { constexpr uint64_t kRootSymbolId = 0; enum TfActivityType { kTfOpBegin, kTfOpEnd }; struct TfActivity { uint64 timestamp_ps; uint32 tf_op_id; TfActivityType activity_type; tsl::profiler::TfOp tf_op; bool is_eager; }; struct TfOpInfo { explicit TfOpInfo(uint64 ts) : start_timestamp_ps(ts) {} uint64 start_timestamp_ps; uint64 children_duration_ps = 0; }; void ProcessOneTfActivity(const TfActivity& activity, OpStack<TfOpInfo>* tf_op_stack, TfMetricsDbData* tf_metrics_data) { uint32 tf_op_id = activity.tf_op_id; switch (activity.activity_type) { case kTfOpBegin: { tf_op_stack->Push(tf_op_id, std::make_unique<TfOpInfo>(activity.timestamp_ps)); break; } case kTfOpEnd: { std::unique_ptr<TfOpInfo> info = tf_op_stack->Pop(tf_op_id); if (info == nullptr) { VLOG(1) << "No begin event found for TF activity id=" << tf_op_id << " name=" << activity.tf_op.name << " type=" << activity.tf_op.type; break; } tsl::profiler::Timespan tf_op_span = tsl::profiler::PicoSpan( info->start_timestamp_ps, activity.timestamp_ps); tf_metrics_data->tf_metrics_db_builder.EnterOp( activity.tf_op.name, activity.tf_op.type, activity.is_eager, tf_op_span.duration_ps(), info->children_duration_ps); TfOpInfo* parent_info = tf_op_stack->Top(); if (parent_info != nullptr) { parent_info->children_duration_ps += tf_op_span.duration_ps(); } if (tsl::profiler::IsInfeedEnqueueOp(activity.tf_op.type)) { tf_metrics_data->tf_metrics_db_builder.EnterHostInfeedEnqueue( tf_op_span); } break; } } } void ProcessTfActivities(std::vector<TfActivity>* tf_activities, TfMetricsDbData* tf_metrics_db_data) { if (tf_activities->empty()) return; absl::c_stable_sort(*tf_activities, [](const TfActivity& a, const TfActivity& b) { return a.timestamp_ps < b.timestamp_ps; }); OpStack<TfOpInfo> tf_op_stack; for (const auto& tf_activity : *tf_activities) { ProcessOneTfActivity(tf_activity, &tf_op_stack, tf_metrics_db_data); } SetTotalTimePs( tf_metrics_db_data->tf_metrics_db, tf_activities->back().timestamp_ps - tf_activities->front().timestamp_ps); } void CollectTfActivities( const XLineVisitor& line, const absl::flat_hash_map<int64_t, tsl::profiler::TfOp>& tf_ops, std::vector<TfActivity>* tf_activities) { uint32 tf_op_id = 0; if (IsDerivedThreadId(line.Id())) return; tf_activities->reserve(line.NumEvents() * 2); line.ForEachEvent( [&tf_ops, &tf_op_id, &tf_activities](const XEventVisitor& event) { const tsl::profiler::TfOp* tf_op = gtl::FindOrNull(tf_ops, event.Id()); if (tf_op != nullptr) { ++tf_op_id; bool is_eager = false; if (std::optional<XStatVisitor> stat = event.GetStat(StatType::kIsEager)) { is_eager = stat->IntValue(); } tsl::profiler::Timespan span = event.GetTimespan(); tf_activities->push_back( {span.begin_ps(), tf_op_id, kTfOpBegin, *tf_op, is_eager}); tf_activities->push_back( {span.end_ps(), tf_op_id, kTfOpEnd, *tf_op, is_eager}); } if (auto tf_op_stat = event.GetStat(StatType::kTfOp); tf_op_stat.has_value()) { ++tf_op_id; tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(tf_op_stat->StrOrRefValue()); tsl::profiler::Timespan span = event.GetTimespan(); tf_activities->push_back( {span.begin_ps(), tf_op_id, kTfOpBegin, tf_op, false}); tf_activities->push_back( {span.end_ps(), tf_op_id, kTfOpEnd, tf_op, false}); } }); } } absl::flat_hash_map<int64_t, tsl::profiler::TfOp> CollectTfOpsFromHostThreadsXPlane(const XPlane& host_trace) { absl::flat_hash_map<int64_t, tsl::profiler::TfOp> tf_ops; for (const auto& id_metadata : host_trace.event_metadata()) { const XEventMetadata& metadata = id_metadata.second; tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(metadata.name()); if (tf_op.category != tsl::profiler::Category::kUnknown) { tf_ops.try_emplace(metadata.id(), tf_op); } } return tf_ops; } TfMetricsDbData ConvertHostThreadsXLineToTfMetricsDbData( const XLineVisitor& line, const absl::flat_hash_map<int64_t, tsl::profiler::TfOp>& tf_ops) { TfMetricsDbData tf_metrics_db_data; std::vector<TfActivity> tf_activities; CollectTfActivities(line, tf_ops, &tf_activities); ProcessTfActivities(&tf_activities, &tf_metrics_db_data); return tf_metrics_db_data; } void ConsumeTfMetricsDbData(TfMetricsDbData src, OpMetricsDbCombiner* dst) { AddIdleOp(src.tf_metrics_db); dst->Combine(src.tf_metrics_db, false); src.tf_metrics_db.Clear(); } OpMetricsDb ConvertHostThreadsXPlaneToOpMetricsDb(const XPlane& host_trace) { absl::flat_hash_map<int64_t, tsl::profiler::TfOp> tf_ops = CollectTfOpsFromHostThreadsXPlane(host_trace); OpMetricsDb result; OpMetricsDbCombiner combiner(&result); XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(&host_trace); plane.ForEachLine([&tf_ops, &combiner](const XLineVisitor& line) { ConsumeTfMetricsDbData( ConvertHostThreadsXLineToTfMetricsDbData(line, tf_ops), &combiner); }); return result; } OpMetricsDb ConvertTpuDeviceTraceXPlaneToOpMetricsDb( const XPlane& device_trace) { XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(&device_trace); using OpMetricBySymbol = absl::flat_hash_map<uint64_t, OpMetrics>; XEventsOpMetricsDbBuilder builder; plane.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent( [&](const XEventVisitor& event) { builder.AddOpMetric(event); }); }); return builder.Finalize( plane.GetStat(StatType::kTotalProfileDurationPs)->IntOrUintValue()); } OpMetricsDb ConvertDeviceTraceXPlaneToOpMetricsDb(const XPlane& device_trace) { OpMetricsDb result; DeviceOpMetricsDbBuilder device_op_metrics_db_builder(&result); int64_t first_op_offset_ps = kint64max; int64_t last_op_offset_ps = 0; TfOpRoofLineCostEstimator op_level_cost_estimator; XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(&device_trace); plane.ForEachLine([&](const XLineVisitor& line) { if (IsDerivedThreadId(line.Id())) return; line.ForEachEvent([&](const XEventVisitor& event) { first_op_offset_ps = std::min(first_op_offset_ps, event.OffsetPs()); last_op_offset_ps = std::max(last_op_offset_ps, event.EndOffsetPs()); absl::string_view tf_op_full_name; bool is_eager = false; int64_t program_id = 0; absl::string_view deduplicated_name = ""; event.ForEachStat([&](const XStatVisitor& stat) { if (stat.Type() == StatType::kTfOp) { tf_op_full_name = stat.StrOrRefValue(); } else if (stat.Type() == StatType::kIsEager) { is_eager = stat.IntValue(); } else if (stat.Type() == StatType::kProgramId) { program_id = stat.IntOrUintValue(); } else if (stat.Type() == StatType::kDeduplicatedName) { deduplicated_name = stat.StrOrRefValue(); } }); if (tf_op_full_name.empty()) return; tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(tf_op_full_name); TfOpRoofLineCostEstimator::OpRoofLineStats costs; if (tf_op.category != tsl::profiler::Category::kUnknown) { costs = op_level_cost_estimator.Predict(event); } device_op_metrics_db_builder.EnterOp( program_id, absl::StrCat(tf_op.name, "/", event.Name()), tf_op.type, tf_op_full_name, deduplicated_name, is_eager, 1, event.DurationPs(), 0, costs.flops, costs.bytes_accessed); }); }); SetTotalTimePs( result, last_op_offset_ps ? last_op_offset_ps - first_op_offset_ps : 0); AddIdleOp(result); return result; } } }
#include "tensorflow/core/profiler/convert/xplane_to_op_metrics_db.h" #include <cstdint> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/math_utils.h" #include "tensorflow/core/profiler/utils/op_metrics_db_utils.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" namespace tensorflow { namespace profiler { namespace { #if defined(PLATFORM_GOOGLE) using ::testing::EqualsProto; #endif void AddTensorFlowTpuOpEvent(std::string&& name, std::string&& tf_op_fullname, int64_t start_timestamp_ns, int64_t duration_ns, std::string&& hlo_category, uint64 flops, uint64 bytes_accessed, int64_t occurences, int64_t self_duration, int64_t program_id, int64_t symbol_id, XPlaneBuilder* plane, XLineBuilder* line) { XEventBuilder event = line->AddEvent(*plane->GetOrCreateEventMetadata(name)); event.SetTimestampNs(start_timestamp_ns); event.SetDurationNs(duration_ns); event.SetNumOccurrences(occurences); XStatsBuilder<XEventMetadata> event_metadata( plane->GetOrCreateEventMetadata(name), plane); event_metadata.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), tf_op_fullname); event_metadata.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kHloCategory)), hlo_category); event_metadata.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kFlops)), flops); event_metadata.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kSymbolId)), symbol_id); event_metadata.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kProgramId)), program_id); } void AddTensorFlowOpEvent(std::string&& tf_op_fullname, int64_t start_timestamp_ns, int64_t duration_ns, bool on_device, absl::string_view kernel_name, XPlaneBuilder* plane, XLineBuilder* line) { absl::string_view name = on_device ? kernel_name : tf_op_fullname; XEventBuilder event = line->AddEvent(*plane->GetOrCreateEventMetadata(name)); event.SetTimestampNs(start_timestamp_ns); event.SetDurationNs(duration_ns); if (!on_device) return; event.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), *plane->GetOrCreateStatMetadata(std::move(tf_op_fullname))); } void AddXlaCpuOpEvent(std::string&& hlo_op_name, std::string&& tf_op, int64_t start_timestamp_ns, int64_t duration_ns, XPlaneBuilder* plane, XLineBuilder* line) { XEventBuilder event = line->AddEvent(*plane->GetOrCreateEventMetadata(hlo_op_name)); event.SetTimestampNs(start_timestamp_ns); event.SetDurationNs(duration_ns); event.ParseAndAddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), tf_op); } TEST(ConvertXPlaneToOpMetricsDb, HostOpMetricsDb) { static constexpr char kTfOp1[] = "TfOp1"; static constexpr char kTfOp2[] = "TfOp2"; constexpr int64_t kTfOp1StartNs = 100000; constexpr int64_t kTfOp1DurationNs = 8000; constexpr int64_t kTfOp2StartNs = 110000; constexpr int64_t kTfOp2DurationNs = 10000; XSpace xspace; XPlane* xplane = GetOrCreateHostXPlane(&xspace); XPlaneBuilder host_plane(xplane); XLineBuilder thread1 = host_plane.GetOrCreateLine(10); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kTfOp1StartNs, kTfOp1DurationNs, false, "", &host_plane, &thread1); XLineBuilder thread2 = host_plane.GetOrCreateLine(20); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kTfOp1StartNs, kTfOp1DurationNs, false, "", &host_plane, &thread2); AddTensorFlowOpEvent(absl::StrCat(kTfOp2, ":", kTfOp2), kTfOp2StartNs, kTfOp2DurationNs, false, "", &host_plane, &thread2); OpMetricsDb op_metrics = ConvertHostThreadsXPlaneToOpMetricsDb(*xplane); EXPECT_EQ(3, op_metrics.metrics_db_size()); uint64 total_op_duration = tsl::profiler::NanoToPico(kTfOp1DurationNs * 2 + kTfOp2DurationNs); EXPECT_EQ(total_op_duration, op_metrics.total_op_time_ps()); uint64 total_duration = tsl::profiler::NanoToPico( kTfOp2StartNs - kTfOp1StartNs + kTfOp2DurationNs + kTfOp1DurationNs); EXPECT_EQ(total_duration, op_metrics.total_time_ps()); const OpMetrics& op_1 = op_metrics.metrics_db().at(0); EXPECT_EQ(kTfOp1, op_1.name()); EXPECT_EQ(kTfOp1, op_1.category()); EXPECT_EQ(2, op_1.occurrences()); EXPECT_EQ(tsl::profiler::NanoToPico(kTfOp1DurationNs) * 2, op_1.time_ps()); const OpMetrics& idle = op_metrics.metrics_db().at(1); EXPECT_EQ(kIdle, idle.name()); EXPECT_EQ(kIdle, idle.category()); EXPECT_EQ(tsl::profiler::NanoToPico(2000), idle.time_ps()); const OpMetrics& op_2 = op_metrics.metrics_db().at(2); EXPECT_EQ(kTfOp2, op_2.name()); EXPECT_EQ(kTfOp2, op_2.category()); EXPECT_EQ(1, op_2.occurrences()); EXPECT_EQ(tsl::profiler::NanoToPico(kTfOp2DurationNs), op_2.time_ps()); } TEST(ConvertXPlaneToOpMetricsDb, DeviceOpMetricsDb) { static constexpr char kTfOp1[] = "TfOp1"; static constexpr char kTfOp2[] = "TfOp2"; static constexpr char kKernel1[] = "kernel1"; static constexpr char kKernel2[] = "kernel2"; static constexpr char kKernel3[] = "kernel3"; constexpr int64_t kKernel1StartNs = 100000; constexpr int64_t kKernel1DurationNs = 8000; constexpr int64_t kKernel2StartNs = 110000; constexpr int64_t kKernel2DurationNs = 10000; constexpr int64_t kKernel3StartNs = 120000; constexpr int64_t kKernel3DurationNs = 10000; XSpace xspace; XPlane* xplane = GetOrCreateGpuXPlane(&xspace, 0); XPlaneBuilder device_plane(xplane); XLineBuilder stream1 = device_plane.GetOrCreateLine(10); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel1StartNs, kKernel1DurationNs, true, kKernel1, &device_plane, &stream1); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel2StartNs, kKernel2DurationNs, true, kKernel2, &device_plane, &stream1); XLineBuilder stream2 = device_plane.GetOrCreateLine(20); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel1StartNs, kKernel1DurationNs, true, kKernel1, &device_plane, &stream2); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel2StartNs, kKernel2DurationNs, true, kKernel2, &device_plane, &stream2); AddTensorFlowOpEvent(absl::StrCat(kTfOp2, ":", kTfOp2), kKernel3StartNs, kKernel3DurationNs, true, kKernel3, &device_plane, &stream2); OpMetricsDb op_metrics = ConvertDeviceTraceXPlaneToOpMetricsDb(*xplane); EXPECT_EQ(4, op_metrics.metrics_db_size()); uint64 total_op_duration = tsl::profiler::NanoToPico( kKernel1DurationNs * 2 + kKernel2DurationNs * 2 + kKernel3DurationNs); EXPECT_EQ(total_op_duration, op_metrics.total_op_time_ps()); uint64 total_duration = tsl::profiler::NanoToPico( kKernel3StartNs + kKernel3DurationNs - kKernel1StartNs); EXPECT_EQ(std::max(total_duration, total_op_duration), op_metrics.total_time_ps()); const OpMetrics& op_1 = op_metrics.metrics_db().at(0); EXPECT_EQ(absl::StrCat(kTfOp1, "/", kKernel1), op_1.name()); EXPECT_EQ(kTfOp1, op_1.category()); EXPECT_EQ(2, op_1.occurrences()); EXPECT_EQ(tsl::profiler::NanoToPico(kKernel1DurationNs) * 2, op_1.time_ps()); const OpMetrics& op_2 = op_metrics.metrics_db().at(1); EXPECT_EQ(absl::StrCat(kTfOp1, "/", kKernel2), op_2.name()); EXPECT_EQ(kTfOp1, op_2.category()); EXPECT_EQ(2, op_2.occurrences()); EXPECT_EQ(tsl::profiler::NanoToPico(kKernel2DurationNs) * 2, op_2.time_ps()); const OpMetrics& op_3 = op_metrics.metrics_db().at(2); EXPECT_EQ(absl::StrCat(kTfOp2, "/", kKernel3), op_3.name()); EXPECT_EQ(kTfOp2, op_3.category()); EXPECT_EQ(1, op_3.occurrences()); EXPECT_EQ(tsl::profiler::NanoToPico(kKernel3DurationNs), op_3.time_ps()); const OpMetrics& idle = op_metrics.metrics_db().at(3); EXPECT_EQ(kIdle, idle.name()); EXPECT_EQ(kIdle, idle.category()); EXPECT_EQ(tsl::profiler::NanoToPico(0), idle.time_ps()); } TEST(ConvertXPlaneToOpMetricsDb, TpuDeviceOpMetricsDb) { XSpace xspace; XPlane* xplane = GetOrCreateTpuXPlane(&xspace, 0, "TPU V4", 0, 0); XPlaneBuilder device_plane(xplane); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kTotalProfileDurationPs)), 1000); XLineBuilder stream1 = device_plane.GetOrCreateLine(10); AddTensorFlowTpuOpEvent("MatMul", "while:MatMul", 0, 10, "MatMul", 34, 45, 2, 5, 1, 1, &device_plane, &stream1); OpMetricsDb op_metrics = ConvertTpuDeviceTraceXPlaneToOpMetricsDb(*xplane); #if defined(PLATFORM_GOOGLE) EXPECT_THAT(op_metrics, EqualsProto(R"pb(metrics_db { hlo_module_id: 1 self_time_ps: 10000 flops: 68 occurrences: 2 name: "MatMul" time_ps: 10000 category: "MatMul" provenance: "while:MatMul" min_time_ps: 10000 } metrics_db { name: "IDLE" category: "IDLE" } total_time_ps: 10000 total_op_time_ps: 10000 )pb")); #endif } TEST(ConvertXPlaneToOpMetricsDb, HostXPlaneWithXlaOps) { XPlane xplane; XPlaneBuilder plane(&xplane); XLineBuilder line = plane.GetOrCreateLine(10); AddXlaCpuOpEvent("xla_op", "tf_op", 100000, 8000, &plane, &line); AddXlaCpuOpEvent("xla_op2", "tf_op2", 110000, 10000, &plane, &line); OpMetricsDb op_metrics = ConvertHostThreadsXPlaneToOpMetricsDb(xplane); #if defined(PLATFORM_GOOGLE) EXPECT_THAT(op_metrics, EqualsProto(R"pb(metrics_db { self_time_ps: 8000000 occurrences: 1 name: "tf_op" time_ps: 8000000 } metrics_db { self_time_ps: 10000000 occurrences: 1 name: "tf_op2" time_ps: 10000000 } metrics_db { self_time_ps: 2000000 name: "IDLE" time_ps: 2000000 category: "IDLE" } total_time_ps: 20000000 total_op_time_ps: 18000000 precision_stats {} )pb")); #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_op_metrics_db.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_op_metrics_db_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
404138cb-ac73-4e58-893c-69a8a5dcda55
cpp
tensorflow/tensorflow
dcn_utils
tensorflow/core/profiler/convert/dcn_utils.cc
tensorflow/core/profiler/convert/dcn_utils_test.cc
#include "tensorflow/core/profiler/convert/dcn_utils.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { namespace { using tsl::profiler::MicroToNano; using tsl::profiler::StatType; using tsl::profiler::XEventVisitor; using tsl::profiler::XStatVisitor; DcnMessage CreateDcnMessageFromStats(const XEventVisitor& event_visitor) { DcnMessage dcn_message; event_visitor.ForEachStat([&](const XStatVisitor& stat) { if (!stat.Type()) return; switch (static_cast<StatType>(*stat.Type())) { case StatType::kDcnLabel: { dcn_message.collective_name = stat.ToString(); break; } case StatType::kDcnSourceSliceId: { dcn_message.slice_src = stat.IntValue(); break; } case StatType::kDcnSourcePerSliceDeviceId: { dcn_message.tpu_src = stat.IntValue(); break; } case StatType::kDcnDestinationSliceId: { dcn_message.slice_dst = stat.IntValue(); break; } case StatType::kDcnDestinationPerSliceDeviceId: { dcn_message.tpu_dst = stat.IntValue(); break; } case StatType::kDcnChunk: { dcn_message.chunk_id = stat.IntValue(); break; } case StatType::kDcnLoopIndex: { dcn_message.loop_index_id = stat.IntValue(); break; } case StatType::kPayloadSizeBytes: { dcn_message.size_bytes = stat.IntValue(); break; } case StatType::kDuration: { dcn_message.duration_us = stat.IntOrUintValue(); dcn_message.start_timestamp_ns = event_visitor.TimestampNs() - MicroToNano(dcn_message.duration_us); dcn_message.end_timestamp_ns = event_visitor.TimestampNs(); break; } default: break; } }); return dcn_message; } void SetMessageValidity(DcnMessage& dcn_message) { if (dcn_message.collective_name.empty() || dcn_message.slice_src == -1 || dcn_message.tpu_src == -1 || dcn_message.slice_dst == -1 || dcn_message.tpu_dst == -1 || dcn_message.size_bytes == -1) { dcn_message.validity_info = DCN_MESSAGE_INVALID_BAD_KEY; } else if (dcn_message.duration_us == 0) { dcn_message.validity_info = DCN_MESSAGE_INVALID_CLOCK_SKEW; } else if (dcn_message.slice_src == dcn_message.slice_dst) { dcn_message.validity_info = DCN_MESSAGE_VALID_LOOPBACK; } else { dcn_message.validity_info = DCN_MESSAGE_VALID; } } } DcnMessage GetDcnMessageFromXEvent(const XEventVisitor& event_visitor) { DcnMessage dcn_message = CreateDcnMessageFromStats(event_visitor); SetMessageValidity(dcn_message); return dcn_message; } bool IsDcnEvent(const tsl::profiler::XEventVisitor& event) { return absl::StartsWith(event.Name(), "MegaScale:"); } } }
#include "tensorflow/core/profiler/convert/dcn_utils.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/xplane_builder.h" #include "xla/tsl/profiler/utils/xplane_schema.h" namespace tensorflow { namespace profiler { namespace { using tsl::profiler::kMegaScaleDcnReceive; using tsl::profiler::XEventBuilder; using tsl::profiler::XEventVisitor; using tsl::profiler::XLineBuilder; using tsl::profiler::XPlaneBuilder; using tsl::profiler::XPlaneVisitor; void PopulateXPlane(XPlane &xplane, absl::string_view event_name, int offset, absl::string_view label, int64_t source_slice_id, int64_t source_per_slice_device_id, int64_t destination_slice_id, int64_t destination_per_slice_device_id, int64_t chunk, int64_t loop_index, int64_t payload_size, int64_t duration) { XPlaneBuilder xplane_builder(&xplane); XEventMetadata *event_metadata = xplane_builder.GetOrCreateEventMetadata(1); event_metadata->set_name(std::string(event_name)); XLineBuilder xline_builder = xplane_builder.GetOrCreateLine(0); XEventBuilder event_builder = xline_builder.AddEvent(*event_metadata); event_builder.SetOffsetNs(offset); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_label"), label); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_slice_id"), source_slice_id); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_per_slice_device_id"), source_per_slice_device_id); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_destination_slice_id"), destination_slice_id); event_builder.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( "dcn_destination_per_slice_device_id"), destination_per_slice_device_id); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_chunk"), chunk); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_loop_index"), loop_index); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("duration_us"), duration); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("payload_size_bytes"), payload_size); } TEST(DcnUtilsTest, IsDcnEvent) { XPlane xplane; PopulateXPlane(xplane, kMegaScaleDcnReceive, 0, "test", 0, 0, 0, 0, 0, 0, 0, 0); XLine line = xplane.lines()[0]; XPlaneVisitor xplane_visitor = tsl::profiler::CreateTfXPlaneVisitor(&xplane); XEventVisitor visitor(&xplane_visitor, &line, &line.events()[0]); EXPECT_TRUE(IsDcnEvent(visitor)); } TEST(DcnUtilsTest, IsNotDcnEvent) { XPlane xplane; PopulateXPlane(xplane, "test", 0, "test", 0, 0, 0, 0, 0, 0, 0, 0); XLine line = xplane.lines()[0]; XPlaneVisitor xplane_visitor = tsl::profiler::CreateTfXPlaneVisitor(&xplane); XEventVisitor visitor(&xplane_visitor, &line, &line.events()[0]); EXPECT_FALSE(IsDcnEvent(visitor)); } TEST(DcnUtilsTest, GetDcnMessageFromXEvent) { XPlane xplane; PopulateXPlane(xplane, kMegaScaleDcnReceive, 100000, "all-reduce.273_312", 2, 3, 1, 3, 0, 24, 32768, 50); XPlaneVisitor xplane_visitor = tsl::profiler::CreateTfXPlaneVisitor(&xplane); XEventVisitor visitor(&xplane_visitor, &xplane.lines()[0], &xplane.lines()[0].events()[0]); EXPECT_THAT(GetDcnMessageFromXEvent(visitor), testing::FieldsAre( "all-reduce.273_312", 2, 3, 1, 3, 50000, 100000, 50, 32768, 0, 24, DCN_MESSAGE_VALID)); } TEST(DcnUtilsTest, GetDcnMessageFromXEventLoopBack) { XPlane xplane; PopulateXPlane(xplane, kMegaScaleDcnReceive, 5000000, "all-gather.1234", 2, 3, 2, 1, 4, 40, 1000, 1000); XPlaneVisitor xplane_visitor = tsl::profiler::CreateTfXPlaneVisitor(&xplane); XEventVisitor visitor(&xplane_visitor, &xplane.lines()[0], &xplane.lines()[0].events()[0]); EXPECT_THAT(GetDcnMessageFromXEvent(visitor), testing::FieldsAre( "all-gather.1234", 2, 3, 2, 1, 4000000, 5000000, 1000, 1000, 4, 40, DCN_MESSAGE_VALID_LOOPBACK)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/dcn_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/dcn_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
96adaac4-6e20-4641-ba4a-c5b9cc5e9ff3
cpp
tensorflow/tensorflow
dcn_analysis
tensorflow/core/profiler/convert/dcn_analysis.cc
tensorflow/core/profiler/convert/dcn_analysis_test.cc
#include "tensorflow/core/profiler/convert/dcn_analysis.h" #include <algorithm> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/math_utils.h" #include "xla/tsl/profiler/utils/tpu_xplane_utils.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/convert/dcn_utils.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" namespace tensorflow { namespace profiler { using tsl::profiler::kMaxCollectivesToDisplay; using tsl::profiler::kMegaScaleDcnReceive; using tsl::profiler::LineIdType; using tsl::profiler::MicroToNano; void DcnBurstManager::ResetBurstState() { active_burst_messages_ = 0; straggler_idx_ = 0; active_burst_.num_messages = 0; active_burst_.max_overlapping_messages = 0; active_burst_.start_timestamp_ns = 0; active_burst_.end_timestamp_ns = 0; active_burst_.burst_size_bytes = 0; } void DcnBurstManager::CreateBursts(const TimestampMap& tm_events) { ResetBurstState(); for (const auto& tm_event : tm_events) { if (active_burst_messages_ < 0) { LOG_FIRST_N(WARNING, 10) << "Negative messages in burst, bursts will be incorrect."; } if (active_burst_messages_ == 0) { active_burst_.start_timestamp_ns = tm_event.first; } active_burst_messages_ += tm_event.second->message_diff; if (tm_event.second->message_diff > 0) { active_burst_.num_messages += tm_event.second->message_diff; active_burst_.burst_size_bytes += tm_event.second->size_diff; } else { Straggler straggler = {tm_event.second->duration_ns, tm_event.second->timestamp_ns, tm_event.second->size_diff * (-1), tm_event.second->src_slice_id}; active_burst_.stragglers[straggler_idx_] = straggler; straggler_idx_ = (straggler_idx_ + 1) % kMaxStragglersPerBurst; } active_burst_.max_overlapping_messages = std::max(active_burst_.max_overlapping_messages, static_cast<uint64_t>(active_burst_messages_)); if (active_burst_messages_ == 0) { active_burst_.end_timestamp_ns = tm_event.first; total_latency_ += (active_burst_.end_timestamp_ns - active_burst_.start_timestamp_ns); bursts_.emplace_back(std::move(active_burst_)); ResetBurstState(); } } } DcnEventsProcessor::DcnEventsProcessor(uint32_t num_tpu_tensor_cores, bool is_megacore) : num_tpu_tensor_cores_(num_tpu_tensor_cores), is_megacore_(is_megacore) { registered_dcn_messages_.push_back(kMegaScaleDcnReceive); tpu_collective_ts_map_.resize(num_tpu_tensor_cores_); tpu_collective_bursts_.resize(num_tpu_tensor_cores_); } void DcnEventsProcessor::SetupMessageInfo(const XPlaneVisitor& plane) { plane.ForEachEventMetadata([&](const XEventMetadataVisitor& event_metadata) { if (std::find(registered_dcn_messages_.begin(), registered_dcn_messages_.end(), event_metadata.Name()) != registered_dcn_messages_.end()) { megascale_msg_[event_metadata.Name()] = event_metadata.Id(); } }); } uint32_t DcnEventsProcessor::FindTpuIdx(int tpu) { uint32_t num_tpus = num_tpu_tensor_cores_; if (is_megacore_) { num_tpus /= 2; } uint32_t tpu_idx = tpu % num_tpus; if (is_megacore_) { tpu_idx = tpu_idx * 2; } return tpu_idx; } void DcnEventsProcessor::GenerateTimestampEvents( const DcnMessage& dcn_message) { std::shared_ptr<TimestampEvent> start_event( new TimestampEvent{dcn_message.start_timestamp_ns, 0, 1, dcn_message.size_bytes, dcn_message.slice_src}); std::shared_ptr<TimestampEvent> end_event(new TimestampEvent{ dcn_message.end_timestamp_ns, static_cast<uint64_t>(MicroToNano(dcn_message.duration_us)), -1, -1 * dcn_message.size_bytes, dcn_message.slice_src}); std::pair<uint64_t, std::shared_ptr<TimestampEvent>> start_event_entry = std::make_pair(dcn_message.start_timestamp_ns, start_event); std::pair<uint64_t, std::shared_ptr<TimestampEvent>> end_event_entry = std::make_pair(dcn_message.end_timestamp_ns, end_event); host_ts_map_.insert(start_event_entry); host_ts_map_.insert(end_event_entry); const std::string& collective_name = dcn_message.collective_name; uint32_t tpu_idx = FindTpuIdx(dcn_message.tpu_dst); auto& m = tpu_collective_ts_map_[tpu_idx][collective_name]; m.insert(start_event_entry); m.insert(end_event_entry); } void DcnEventsProcessor::PrintTimestampEvents() { for (const auto& host_ts : host_ts_map_) { LOG(INFO) << host_ts.first << ": " << host_ts.second->timestamp_ns << " " << host_ts.second->duration_ns << " " << host_ts.second->message_diff << " " << host_ts.second->size_diff << " " << host_ts.second->src_slice_id; } for (uint32_t tpu_idx = 0; tpu_idx < num_tpu_tensor_cores_; tpu_idx++) { LOG(INFO) << "TPU: " << tpu_idx; for (const auto& col_id : tpu_collective_ts_map_[tpu_idx]) { LOG(INFO) << col_id.first; for (const auto& tpu_col_ts : tpu_collective_ts_map_[tpu_idx][col_id.first]) { LOG(INFO) << tpu_col_ts.first << ": " << tpu_col_ts.second->timestamp_ns << " " << tpu_col_ts.second->duration_ns << " " << tpu_col_ts.second->message_diff << " " << tpu_col_ts.second->size_diff << " " << tpu_col_ts.second->src_slice_id; } } } } uint32_t DcnEventsProcessor::NumCollectivesQualified( const std::vector<uint64_t>& latencies) { uint32_t num_collectives_qualified = 0; uint32_t max_collectives = kMaxCollectivesToDisplay - 1; for (const auto& lat : latencies) { if (lat < host_dcn_bursts_.TotalLatency() * 0.05) { return num_collectives_qualified; } else if (lat < host_dcn_bursts_.TotalLatency() * 0.2 && num_collectives_qualified >= (max_collectives / 2)) { return num_collectives_qualified; } else if (num_collectives_qualified >= max_collectives) { return num_collectives_qualified; } else { num_collectives_qualified++; } } return latencies.size(); } void DcnEventsProcessor::QualifyCollectives() { for (auto tpu_idx = 0; tpu_idx < num_tpu_tensor_cores_; tpu_idx++) { std::vector<uint64_t> latency_to_order; latency_to_order.reserve(tpu_collective_bursts_[tpu_idx].size()); for (const auto& col_info : tpu_collective_bursts_[tpu_idx]) { latency_to_order.emplace_back(col_info.second.TotalLatency()); } std::sort(latency_to_order.begin(), latency_to_order.end(), std::greater<uint64_t>()); uint32_t num_collectives_qualified = NumCollectivesQualified(latency_to_order); if (num_collectives_qualified > 0) { uint32_t min_latency_to_qualify = latency_to_order[num_collectives_qualified - 1]; uint32_t col_num = 0; for (auto& col_info : tpu_collective_bursts_[tpu_idx]) { if (col_info.second.TotalLatency() >= min_latency_to_qualify) { col_info.second.SetToDisplay(true); if (++col_num == kMaxCollectivesToDisplay - 1) break; } } } } } void DcnEventsProcessor::GenerateBursts() { host_dcn_bursts_.CreateBursts(host_ts_map_); host_dcn_bursts_.SetToDisplay(true); for (auto tpu_idx = 0; tpu_idx < num_tpu_tensor_cores_; tpu_idx++) { for (const auto& col_info : tpu_collective_ts_map_[tpu_idx]) { tpu_collective_bursts_[tpu_idx][col_info.first].CreateBursts( tpu_collective_ts_map_[tpu_idx][col_info.first]); } } QualifyCollectives(); } void DcnEventsProcessor::ProcessReceiveMessages(const XPlaneVisitor& plane) { plane.ForEachLine([&](const XLineVisitor& line) { uint32_t recv_msg_id = megascale_msg_[kMegaScaleDcnReceive]; line.ForEachEvent([&](const XEventVisitor& event) { if (event.Id() == recv_msg_id) { DcnMessage dcn_message = GetDcnMessageFromXEvent(event); if (dcn_message.validity_info == DCN_MESSAGE_VALID) { GenerateTimestampEvents(dcn_message); } received_messages_.emplace_back(std::move(dcn_message)); } }); }); GenerateBursts(); } absl::string_view DcnEventsProcessor::GetBwInfo(bool is_per_tpu, const DcnBurst& burst, float& burst_mean_bw, float& burst_bw_utilization) { absl::string_view bw_level; uint32_t bw_divider = 1; burst_mean_bw = static_cast<float>(burst.burst_size_bytes) / (burst.end_timestamp_ns - burst.start_timestamp_ns); if (is_per_tpu) { bw_divider = num_tpu_tensor_cores_; if (is_megacore_) { bw_divider /= 2; } } if (burst_mean_bw < kLimitLowHostDcnBw / bw_divider) { bw_level = "Low BW"; } else if (burst_mean_bw < kLimitMedHostDcnBw / bw_divider) { bw_level = "Med BW"; } else { bw_level = "High BW"; } burst_bw_utilization = burst_mean_bw / (kMaxHostDcnBw / bw_divider); return bw_level; } void DcnEventsProcessor::AddHostDcnTrafficToXPlane(XPlane* host_xplane) { if (!host_dcn_bursts_.ToDisplay()) return; XPlaneBuilder plane_builder(host_xplane); XLineBuilder line = plane_builder.GetOrCreateLine(LineIdType::kDcnHostTraffic); line.SetNameIfEmpty("DCN Host Bandwidth"); line.SetTimestampNs(0); XStatMetadata* bw_stat_metadata = plane_builder.GetOrCreateStatMetadata("Bandwidth (GBytes/sec)"); XStatMetadata* bw_util_stat_metadata = plane_builder.GetOrCreateStatMetadata("Bandwidth Utilization"); XStatMetadata* num_msg_stat_metadata = plane_builder.GetOrCreateStatMetadata("Total Messages"); XStatMetadata* max_overlap_msg_stat_metadata = plane_builder.GetOrCreateStatMetadata("Max Overlapping Messages"); XStatMetadata* avg_msg_size_stat_metadata = plane_builder.GetOrCreateStatMetadata("Average Message Size (Bytes)"); for (const auto& host_burst : host_dcn_bursts_.GetBursts()) { float burst_mean_bw, bw_utilization; absl::string_view bw_level = GetBwInfo(false, host_burst, burst_mean_bw, bw_utilization); XEventMetadata* event_metadata = plane_builder.GetOrCreateEventMetadata(bw_level); XEventBuilder event = line.AddEvent(*event_metadata); event.SetOffsetNs(host_burst.start_timestamp_ns); event.SetDurationNs(host_burst.end_timestamp_ns - host_burst.start_timestamp_ns); event.ParseAndAddStatValue(*bw_stat_metadata, std::to_string(burst_mean_bw)); event.ParseAndAddStatValue(*bw_util_stat_metadata, std::to_string(bw_utilization)); event.AddStatValue(*num_msg_stat_metadata, host_burst.num_messages); event.AddStatValue(*max_overlap_msg_stat_metadata, host_burst.max_overlapping_messages); uint32_t avg_message_size = host_burst.burst_size_bytes / host_burst.num_messages; event.AddStatValue(*avg_msg_size_stat_metadata, avg_message_size); } } void DcnEventsProcessor::AddUnqualifiedCollectivesToXPlane( XPlaneBuilder& plane_builder, uint32_t tpu_idx) { XLineBuilder line = plane_builder.GetOrCreateLine(LineIdType::kDcnCollectiveTrafficMax); line.SetNameIfEmpty("Remaining collectives"); line.SetTimestampNs(0); for (const auto& col_item : tpu_collective_bursts_[tpu_idx]) { if (col_item.second.ToDisplay()) continue; for (const auto& col_burst : col_item.second.GetBursts()) { XEventMetadata* straggler_event_metadata = plane_builder.GetOrCreateEventMetadata(col_item.first); uint32_t stragglers_processed = 0; XStatMetadata* straggler_src_slice_stat_metadata = plane_builder.GetOrCreateStatMetadata("Source slice"); XStatMetadata* straggler_duration_ns_stat_metadata = plane_builder.GetOrCreateStatMetadata("Duration ns"); XStatMetadata* straggler_send_time_ns_stat_metadata = plane_builder.GetOrCreateStatMetadata("Send timestamp ns"); XStatMetadata* straggler_recv_time_ns_stat_metadata = plane_builder.GetOrCreateStatMetadata("Recv timestamp ns"); for (const auto& straggler : col_burst.stragglers) { XEventBuilder straggler_event = line.AddEvent(*straggler_event_metadata); straggler_event.SetOffsetNs(straggler.end_timestamp_ns - 10000); straggler_event.SetDurationNs(10000); straggler_event.AddStatValue(*straggler_src_slice_stat_metadata, straggler.src_slice_id); straggler_event.AddStatValue(*straggler_duration_ns_stat_metadata, straggler.duration_ns); straggler_event.AddStatValue( *straggler_send_time_ns_stat_metadata, straggler.end_timestamp_ns - straggler.duration_ns); straggler_event.AddStatValue(*straggler_recv_time_ns_stat_metadata, straggler.end_timestamp_ns); if (++stragglers_processed >= col_burst.num_messages) break; } } } } void DcnEventsProcessor::AddQualifiedCollectivesToXPlane( XPlaneBuilder& plane_builder, uint32_t tpu_idx) { uint32_t total_collectives = 0; for (const auto& col_item : tpu_collective_bursts_[tpu_idx]) { if (!col_item.second.ToDisplay()) continue; const std::string& col_name = col_item.first; XLineBuilder line = plane_builder.GetOrCreateLine( LineIdType::kDcnCollectiveTraffic + total_collectives++); line.SetNameIfEmpty(col_name); line.SetTimestampNs(0); XStatMetadata* bw_stat_metadata = plane_builder.GetOrCreateStatMetadata("Bandwidth (GBytes/sec)"); XStatMetadata* bw_util_stat_metadata = plane_builder.GetOrCreateStatMetadata("Bandwidth Utilization"); XStatMetadata* num_msg_stat_metadata = plane_builder.GetOrCreateStatMetadata("Total Messages"); XStatMetadata* max_overlap_msg_stat_metadata = plane_builder.GetOrCreateStatMetadata("Max Overlapping Messages"); XStatMetadata* avg_msg_size_stat_metadata = plane_builder.GetOrCreateStatMetadata("Average Message Size (Bytes)"); XStatMetadata* straggler_details_metadata = plane_builder.GetOrCreateStatMetadata("Straggler info:"); XStatMetadata* straggler_src_slice_stat_metadata = plane_builder.GetOrCreateStatMetadata("Source slice"); XStatMetadata* straggler_duration_ns_stat_metadata = plane_builder.GetOrCreateStatMetadata("Duration ns"); XStatMetadata* straggler_send_time_ns_stat_metadata = plane_builder.GetOrCreateStatMetadata("Send timestamp ns"); XStatMetadata* straggler_recv_time_ns_stat_metadata = plane_builder.GetOrCreateStatMetadata("Recv timestamp ns"); for (const auto& col_burst : col_item.second.GetBursts()) { float burst_mean_bw, bw_utilization; absl::string_view bw_level = GetBwInfo(true, col_burst, burst_mean_bw, bw_utilization); XEventMetadata* event_metadata = plane_builder.GetOrCreateEventMetadata(bw_level); XEventBuilder event = line.AddEvent(*event_metadata); event.SetOffsetNs(col_burst.start_timestamp_ns); event.SetDurationNs(col_burst.end_timestamp_ns - col_burst.start_timestamp_ns); event.ParseAndAddStatValue(*bw_stat_metadata, std::to_string(burst_mean_bw)); event.ParseAndAddStatValue(*bw_util_stat_metadata, std::to_string(bw_utilization)); event.AddStatValue(*num_msg_stat_metadata, col_burst.num_messages); event.AddStatValue(*max_overlap_msg_stat_metadata, col_burst.max_overlapping_messages); event.AddStatValue(*avg_msg_size_stat_metadata, col_burst.burst_size_bytes / col_burst.num_messages); XEventMetadata* straggler_event_metadata = plane_builder.GetOrCreateEventMetadata("Straggler"); uint32_t stragglers_processed = 0; std::string straggler_details = "Stragglers:\n"; for (const auto& straggler : col_burst.stragglers) { if (straggler.end_timestamp_ns == col_burst.end_timestamp_ns) { XEventBuilder straggler_event = line.AddEvent(*straggler_event_metadata); straggler_event.SetOffsetNs(straggler.end_timestamp_ns - straggler.duration_ns); straggler_event.SetDurationNs(straggler.duration_ns); straggler_event.AddStatValue(*straggler_src_slice_stat_metadata, straggler.src_slice_id); straggler_event.AddStatValue(*straggler_duration_ns_stat_metadata, straggler.duration_ns); straggler_event.AddStatValue( *straggler_send_time_ns_stat_metadata, straggler.end_timestamp_ns - straggler.duration_ns); straggler_event.AddStatValue(*straggler_recv_time_ns_stat_metadata, straggler.end_timestamp_ns); } straggler_details += " Src slice: " + std::to_string(straggler.src_slice_id) + " -- Duration (ns): " + std::to_string(straggler.duration_ns) + " -- [Send Timestamp, Recv Timestamp]: [" + std::to_string(straggler.end_timestamp_ns - straggler.duration_ns) + ", " + std::to_string(straggler.end_timestamp_ns) + "]\n"; if (++stragglers_processed >= col_burst.num_messages) break; } event.AddStatValue(*straggler_details_metadata, straggler_details); } } } void DcnEventsProcessor::AddTpuCollectiveDcnTrafficToXPlane( XPlane* device_xplane) { XPlaneBuilder plane_builder(device_xplane); auto tpu = tsl::profiler::GetTensorCoreId(plane_builder.Name()); if (!tpu.has_value()) return; uint32_t tpu_idx = FindTpuIdx(tpu.value()); AddQualifiedCollectivesToXPlane(plane_builder, tpu_idx); AddUnqualifiedCollectivesToXPlane(plane_builder, tpu_idx); } } }
#include "tensorflow/core/profiler/convert/dcn_analysis.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/convert/dcn_utils.h" namespace tensorflow { namespace profiler { namespace { using tensorflow::profiler::DCN_MESSAGE_INVALID_BAD_KEY; using tensorflow::profiler::DCN_MESSAGE_INVALID_CLOCK_SKEW; using tensorflow::profiler::DCN_MESSAGE_VALID; using tensorflow::profiler::DCN_MESSAGE_VALID_LOOPBACK; using tensorflow::profiler::XEventBuilder; using tensorflow::profiler::XEventMetadata; using tensorflow::profiler::XLineBuilder; using tensorflow::profiler::XPlane; using tensorflow::profiler::XPlaneBuilder; using tensorflow::profiler::XPlaneVisitor; using tensorflow::profiler::XSpace; using ::testing::FieldsAre; using tsl::profiler::kMegaScaleDcnReceive; using tsl::profiler::kMegaScaleDcnSend; TEST(DcnAnalysis, SetupMessageInfoTest) { XSpace space; XPlane *host_trace = space.add_planes(); XPlaneBuilder host_trace_builder(host_trace); XEventMetadata *event_metadata_1 = host_trace_builder.GetOrCreateEventMetadata(1); event_metadata_1->set_name(std::string(kMegaScaleDcnReceive)); XEventMetadata *event_metadata_2 = host_trace_builder.GetOrCreateEventMetadata(2); event_metadata_2->set_name(std::string(kMegaScaleDcnSend)); XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(host_trace); DcnEventsProcessor dcn_events_processor( 4, false); dcn_events_processor.SetupMessageInfo(plane); ASSERT_FALSE(dcn_events_processor.HasDcnMessages(kMegaScaleDcnSend)); ASSERT_TRUE(dcn_events_processor.HasDcnMessages(kMegaScaleDcnReceive)); ASSERT_FALSE(dcn_events_processor.HasDcnMessages("Another Message")); ASSERT_EQ(dcn_events_processor.MegaScaleMessageId(kMegaScaleDcnReceive), 1); ASSERT_EQ(dcn_events_processor.MegaScaleMessageId(kMegaScaleDcnSend), std::nullopt); } TEST(DcnAnalysis, CreateMessageTestValidMessages) { XSpace space; XPlane *host_trace = space.add_planes(); XPlaneBuilder xplane_builder(host_trace); XEventMetadata *event_metadata_1 = xplane_builder.GetOrCreateEventMetadata(1); event_metadata_1->set_name(std::string(kMegaScaleDcnReceive)); XLineBuilder xline_builder_0 = xplane_builder.GetOrCreateLine(0); XLineBuilder xline_builder_1 = xplane_builder.GetOrCreateLine(1); XEventBuilder event_builder = xline_builder_0.AddEvent(*event_metadata_1); event_builder.SetOffsetNs(100000); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_label"), "all-reduce.273_312"); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_slice_id"), 2); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_per_slice_device_id"), 3); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_destination_slice_id"), 1); event_builder.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( "dcn_destination_per_slice_device_id"), 3); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_chunk"), 0); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_loop_index"), 24); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("duration_us"), 50); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("payload_size_bytes"), 32768); event_builder = xline_builder_0.AddEvent(*event_metadata_1); event_builder.SetOffsetNs(175000); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_label"), "super-collective.1234"); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_slice_id"), 112); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_per_slice_device_id"), 1); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_destination_slice_id"), 34); event_builder.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( "dcn_destination_per_slice_device_id"), 2); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_chunk"), 4); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_loop_index"), 0); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("duration_us"), 50); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("payload_size_bytes"), 1); event_builder = xline_builder_1.AddEvent(*event_metadata_1); event_builder.SetOffsetNs(150000); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_label"), "super-collective"); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_slice_id"), 9); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_per_slice_device_id"), 3); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_destination_slice_id"), 0); event_builder.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( "dcn_destination_per_slice_device_id"), 0); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("duration_us"), 75); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("payload_size_bytes"), 10); XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(host_trace); DcnEventsProcessor dcn_events_processor(4, false); dcn_events_processor.SetupMessageInfo(plane); dcn_events_processor.ProcessReceiveMessages(plane); ASSERT_EQ(dcn_events_processor.NumReceivedMessages(), 3); EXPECT_THAT(dcn_events_processor.GetMessage(0), FieldsAre("all-reduce.273_312", 2, 3, 1, 3, 50000, 100000, 50, 32768, 0, 24, DCN_MESSAGE_VALID)); EXPECT_THAT(dcn_events_processor.GetMessage(1), FieldsAre("super-collective.1234", 112, 1, 34, 2, 125000, 175000, 50, 1, 4, 0, DCN_MESSAGE_VALID)); EXPECT_THAT( dcn_events_processor.GetMessage(2), FieldsAre("super-collective", 9, 3, 0, 0, 75000, 150000, 75, 10, -1, -1, DCN_MESSAGE_VALID)); TimestampMap host_ts_map = dcn_events_processor.HostTsMap(); ASSERT_EQ(host_ts_map.size(), 6); for (const auto &ts_map_item : host_ts_map) { ASSERT_EQ(ts_map_item.first, ts_map_item.second->timestamp_ns); if (ts_map_item.first == 50000) { ASSERT_EQ(ts_map_item.second->duration_ns, 0); ASSERT_EQ(ts_map_item.second->message_diff, 1); ASSERT_EQ(ts_map_item.second->size_diff, 32768); } else if (ts_map_item.first == 125000) { ASSERT_EQ(ts_map_item.second->duration_ns, 0); ASSERT_EQ(ts_map_item.second->message_diff, 1); ASSERT_EQ(ts_map_item.second->size_diff, 1); } else if (ts_map_item.first == 75000) { ASSERT_EQ(ts_map_item.second->duration_ns, 0); ASSERT_EQ(ts_map_item.second->message_diff, 1); ASSERT_EQ(ts_map_item.second->size_diff, 10); } else if (ts_map_item.first == 100000) { ASSERT_EQ(ts_map_item.second->duration_ns, 50000); ASSERT_EQ(ts_map_item.second->message_diff, -1); ASSERT_EQ(ts_map_item.second->size_diff, -32768); } else if (ts_map_item.first == 175000) { ASSERT_EQ(ts_map_item.second->duration_ns, 50000); ASSERT_EQ(ts_map_item.second->message_diff, -1); ASSERT_EQ(ts_map_item.second->size_diff, -1); } else if (ts_map_item.first == 150000) { ASSERT_EQ(ts_map_item.second->duration_ns, 75000); ASSERT_EQ(ts_map_item.second->message_diff, -1); ASSERT_EQ(ts_map_item.second->size_diff, -10); } else { FAIL() << "Unexpected timestamp entry."; } } const std::vector<DcnBurst> &host_bursts = dcn_events_processor.GetHostBursts(); ASSERT_EQ(host_bursts.size(), 1); ASSERT_EQ(host_bursts[0].num_messages, 3); ASSERT_EQ(host_bursts[0].start_timestamp_ns, 50000); ASSERT_EQ(host_bursts[0].end_timestamp_ns, 175000); ASSERT_EQ(host_bursts[0].burst_size_bytes, 32779); ASSERT_EQ(host_bursts[0].max_overlapping_messages, 2); } TEST(DcnAnalysis, CreateLoopBackMessageTest) { XSpace space; XPlane *host_trace = space.add_planes(); XPlaneBuilder xplane_builder(host_trace); XEventMetadata *event_metadata_1 = xplane_builder.GetOrCreateEventMetadata(1); event_metadata_1->set_name(std::string(kMegaScaleDcnReceive)); XLineBuilder xline_builder = xplane_builder.GetOrCreateLine(0); XEventBuilder event_builder = xline_builder.AddEvent(*event_metadata_1); event_builder.SetOffsetNs(5000000); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_label"), "all-gather.1234"); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_slice_id"), 2); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_per_slice_device_id"), 3); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_destination_slice_id"), 2); event_builder.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( "dcn_destination_per_slice_device_id"), 1); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_chunk"), 4); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_loop_index"), 40); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("duration_us"), 1000); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("payload_size_bytes"), 1000); XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(host_trace); DcnEventsProcessor dcn_events_processor(4, false); dcn_events_processor.SetupMessageInfo(plane); dcn_events_processor.ProcessReceiveMessages(plane); ASSERT_EQ(dcn_events_processor.NumReceivedMessages(), 1); EXPECT_THAT(dcn_events_processor.GetMessage(0), FieldsAre("all-gather.1234", 2, 3, 2, 1, 4000000, 5000000, 1000, 1000, 4, 40, DCN_MESSAGE_VALID_LOOPBACK)); } TEST(DcnAnalysis, CreateZeroDurationMessageTest) { XSpace space; XPlane *host_trace = space.add_planes(); XPlaneBuilder xplane_builder(host_trace); XEventMetadata *event_metadata_1 = xplane_builder.GetOrCreateEventMetadata(1); event_metadata_1->set_name(std::string(kMegaScaleDcnReceive)); XLineBuilder xline_builder = xplane_builder.GetOrCreateLine(0); XEventBuilder event_builder = xline_builder.AddEvent(*event_metadata_1); event_builder.SetOffsetNs(20000); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_label"), "all-reduce.273_312"); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_slice_id"), 2); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_source_per_slice_device_id"), 3); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_destination_slice_id"), 1); event_builder.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( "dcn_destination_per_slice_device_id"), 1); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_chunk"), 0); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("dcn_loop_index"), 25); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("duration_us"), 0); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("payload_size_bytes"), 512); XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(host_trace); DcnEventsProcessor dcn_events_processor(4, false); dcn_events_processor.SetupMessageInfo(plane); dcn_events_processor.ProcessReceiveMessages(plane); EXPECT_THAT( dcn_events_processor.GetMessage(0), FieldsAre("all-reduce.273_312", 2, 3, 1, 1, 20000, 20000, 0, 512, 0, 25, DCN_MESSAGE_INVALID_CLOCK_SKEW)); } TEST(DcnAnalysis, CreateMissingKeyTest) { XSpace space; XPlane *host_trace = space.add_planes(); XPlaneBuilder xplane_builder(host_trace); XEventMetadata *event_metadata_1 = xplane_builder.GetOrCreateEventMetadata(1); event_metadata_1->set_name(std::string(kMegaScaleDcnReceive)); XLineBuilder xline_builder = xplane_builder.GetOrCreateLine(0); XEventBuilder event_builder = xline_builder.AddEvent(*event_metadata_1); event_builder.SetOffsetNs(50000); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("duration_us"), 10); event_builder.AddStatValue( *xplane_builder.GetOrCreateStatMetadata("payload_size_bytes"), 100); XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(host_trace); DcnEventsProcessor dcn_events_processor(4, false); dcn_events_processor.SetupMessageInfo(plane); dcn_events_processor.ProcessReceiveMessages(plane); EXPECT_THAT( dcn_events_processor.GetMessage(0), FieldsAre("", -1, -1, -1, -1, 40000, 50000, 10, 100, -1, -1, DCN_MESSAGE_INVALID_BAD_KEY)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/dcn_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/dcn_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
732385c8-9ae6-42da-980c-ef56b8243f9a
cpp
tensorflow/tensorflow
xplane_to_op_stats
tensorflow/core/profiler/convert/xplane_to_op_stats.cc
tensorflow/core/profiler/convert/xplane_to_op_stats_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_op_stats.h" #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/math_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/tpu_xplane_utils.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "xla/tsl/profiler/utils/xplane_utils.h" #include "tensorflow/core/profiler/convert/op_metrics_db_combiner.h" #include "tensorflow/core/profiler/convert/step_events_to_steps_db.h" #include "tensorflow/core/profiler/convert/xplane_to_kernel_stats_db.h" #include "tensorflow/core/profiler/convert/xplane_to_op_metrics_db.h" #include "tensorflow/core/profiler/convert/xplane_to_step_events.h" #include "tensorflow/core/profiler/protobuf/diagnostics.pb.h" #include "tensorflow/core/profiler/protobuf/hardware_types.pb.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/protobuf/tf_function.pb.h" #include "tensorflow/core/profiler/utils/device_caps_utils.h" #include "tensorflow/core/profiler/utils/event_span.h" #include "tensorflow/core/profiler/utils/hardware_type_utils.h" #include "tensorflow/core/profiler/utils/hlo_proto_map.h" #include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { using tsl::profiler::FindPlanesWithPrefix; using tsl::profiler::FindTensorCorePlanes; std::string Hostname(const XSpace& space) { if (space.hostnames().empty()) return "localhost"; DCHECK_EQ(space.hostnames_size(), 1); const std::string& hostname = space.hostnames(0); return hostname; } } PerfEnv MakePerfEnv(double peak_tera_flops_per_second, std::vector<double> peak_bws) { PerfEnv result; result.set_peak_tera_flops_per_second(peak_tera_flops_per_second); for (const auto bw : peak_bws) { result.add_peak_bws_giga_bytes_per_second(bw); } result.set_ridge_point(tsl::profiler::TeraToGiga(peak_tera_flops_per_second) / peak_bws[MemBwType::MEM_BW_TYPE_HBM_RW]); return result; } PerfEnv GetPerfEnvFromXPlane(const XPlane& device_plane) { DeviceCapabilities cap = GetDeviceCaps(device_plane); if (!absl::StartsWith(device_plane.name(), kTpuPlanePrefix)) { double peak_tera_flops_per_second = cap.num_cores() * tsl::profiler::GigaToTera(GetFlopMaxThroughputPerSM(cap)); double hbm_bw_giga_bytes_per_second = tsl::profiler::UniToGiga(cap.memory_bandwidth()); double shm_giga_bytes_per_second = cap.num_cores() * tsl::profiler::UniToGiga(GetSharedMemoryBandwidthPerSM(cap)); return MakePerfEnv(peak_tera_flops_per_second, {hbm_bw_giga_bytes_per_second, shm_giga_bytes_per_second, shm_giga_bytes_per_second}); } else { XPlaneVisitor visitor = tsl::profiler::CreateTfXPlaneVisitor(&device_plane); auto peak_tera_flops_per_second = visitor.GetStat(StatType::kDevCapPeakTeraflopsPerSecond); auto peak_tera_flops_per_second_val = peak_tera_flops_per_second.has_value() ? peak_tera_flops_per_second->DoubleValue() : 0.0; auto peak_hbm_bw_giga_bytes_per_second = visitor.GetStat(StatType::kDevCapPeakHbmBwGigabytesPerSecond); auto peak_hbm_bw_giga_bytes_per_second_val = peak_hbm_bw_giga_bytes_per_second.has_value() ? peak_hbm_bw_giga_bytes_per_second->DoubleValue() : 0.0; auto peak_sram_rd_bw_giga_bytes_per_second = visitor.GetStat(StatType::kDevCapPeakSramRdBwGigabytesPerSecond); auto peak_sram_rd_bw_giga_bytes_per_second_val = peak_sram_rd_bw_giga_bytes_per_second.has_value() ? peak_sram_rd_bw_giga_bytes_per_second->DoubleValue() : 0.0; auto peak_sram_wr_bw_giga_bytes_per_second = visitor.GetStat(StatType::kDevCapPeakSramWrBwGigabytesPerSecond); auto peak_sram_wr_bw_giga_bytes_per_second_val = peak_sram_wr_bw_giga_bytes_per_second.has_value() ? peak_sram_wr_bw_giga_bytes_per_second->DoubleValue() : 0.0; return MakePerfEnv(peak_tera_flops_per_second_val, {peak_hbm_bw_giga_bytes_per_second_val, peak_sram_rd_bw_giga_bytes_per_second_val, peak_sram_wr_bw_giga_bytes_per_second_val}); } } void SetRunEnvironment(const XSpace& space, RunEnvironment* env) { env->set_host_count(1); env->set_task_count(1); env->mutable_hostnames()->insert({Hostname(space), true}); std::vector<const XPlane*> gpu_planes = FindPlanesWithPrefix(space, kGpuPlanePrefix); if (!gpu_planes.empty()) { absl::string_view gpu_model = GpuModelName(GetDeviceCaps(*gpu_planes.front())); if (!gpu_model.empty()) { env->set_device_type(std::string(gpu_model)); } else { env->set_device_type("GPU"); } env->set_device_core_count(gpu_planes.size()); } else if (std::vector<const XPlane*> tpu_planes = FindTensorCorePlanes(space); !tpu_planes.empty()) { XPlaneVisitor visitor = tsl::profiler::CreateTfXPlaneVisitor(tpu_planes.at(0)); auto xstat = visitor.GetStat(StatType::kDeviceTypeString); if (xstat.has_value()) { env->set_device_type(std::string(xstat->StrOrRefValue())); } env->set_device_core_count(tpu_planes.size()); } else { env->set_device_type("CPU"); env->set_device_core_count(0); } } void PropagateXSpaceDiagnosticsToOpStats(const XSpace& space, OpStats* op_stats) { if (!space.errors().empty()) { absl::flat_hash_set<std::string> unique_errors; unique_errors.insert(space.errors().begin(), space.errors().end()); *op_stats->mutable_diagnostics()->mutable_errors() = {unique_errors.begin(), unique_errors.end()}; } if (!space.warnings().empty()) { absl::flat_hash_set<std::string> unique_warnings; unique_warnings.insert(space.warnings().begin(), space.warnings().end()); *op_stats->mutable_diagnostics()->mutable_warnings() = { unique_warnings.begin(), unique_warnings.end()}; } } void SetProgramIdToNameMap(const HloProtoMap& hlo_proto_map, tensorflow::profiler::OpStats& op_stats) { auto& program_id_to_name_map = *op_stats.mutable_program_id_to_name_map(); for (const auto& [program_id, hlo_proto] : hlo_proto_map) { program_id_to_name_map[program_id] = hlo_proto->hlo_module().name(); } } OpStats ConvertXSpaceToOpStats(const XSpace& space, const OpStatsOptions& options) { OpStats op_stats; StepEvents step_events; PropagateXSpaceDiagnosticsToOpStats(space, &op_stats); OpMetricsDbCombiner op_metrics_db_combiner( op_stats.mutable_device_op_metrics_db()); SetRunEnvironment(space, op_stats.mutable_run_environment()); KernelReportMap reports; std::vector<const XPlane*> device_planes = FindPlanesWithPrefix(space, kTpuPlanePrefix); const bool is_gpu = device_planes.empty(); if (is_gpu) { device_planes = FindPlanesWithPrefix(space, kGpuPlanePrefix); } const bool is_tpu = !is_gpu; for (const XPlane* device_trace : device_planes) { XPlane aggregated_xplane; bool use_aggregated_xplane = false; if (options.generate_op_metrics_db) { if (!op_stats.has_perf_env()) { *op_stats.mutable_perf_env() = GetPerfEnvFromXPlane(*device_trace); } if (!is_tpu) { OpMetricsDb device_op_metrics_db = ConvertDeviceTraceXPlaneToOpMetricsDb(*device_trace); op_metrics_db_combiner.Combine(device_op_metrics_db); } else { AggregateXPlane(*device_trace, aggregated_xplane); use_aggregated_xplane = true; OpMetricsDb device_op_metrics_db = ConvertTpuDeviceTraceXPlaneToOpMetricsDb(aggregated_xplane); op_metrics_db_combiner.Combine(device_op_metrics_db); } } if (options.generate_step_db) { StepEvents device_step_events = ConvertDeviceTraceXPlaneToStepEvents( use_aggregated_xplane ? aggregated_xplane : *device_trace); if (is_tpu) { IntersectCombineStepEvents(device_step_events, &step_events); } else { UnionCombineStepEvents(device_step_events, &step_events); } } if (options.generate_kernel_stats_db) { ConvertDeviceTraceXPlaneToKernelReports(*device_trace, {}, &reports); } } if (options.generate_kernel_stats_db) { CopyTopKDurationKernelReportsToDb(reports, op_stats.mutable_kernel_stats_db()); } bool has_device = !device_planes.empty(); const XPlane* host_plane = FindPlaneWithName(space, kHostThreadsPlaneName); if (host_plane) { if (options.generate_op_metrics_db) { *op_stats.mutable_host_op_metrics_db() = ConvertHostThreadsXPlaneToOpMetricsDb(*host_plane); } if (options.generate_step_db && !has_device) { StepEvents host_step_events = ConvertHostThreadsXPlaneToStepEvents(*host_plane, nullptr); UnionCombineStepEvents(host_step_events, &step_events); } XPlaneVisitor visitor = tsl::profiler::CreateTfXPlaneVisitor(host_plane); auto stat = visitor.GetStat(StatType::kMatrixUnitUtilizationPercent); if (stat.has_value()) { op_stats.mutable_performance_counter_result() ->set_matrix_unit_utilization_percent(stat->DoubleValue()); } } if (options.generate_step_db) { if (is_tpu) { *op_stats.mutable_step_db() = ConvertStepEventsToStepDb( has_device, false, step_events); *op_stats.mutable_device_op_metrics_db()->mutable_precision_stats() = ComputePrecisionStats(step_events); } else { StepEvents nonoverlapped_step_events = ToNonOverlappedStepEvents(step_events); *op_stats.mutable_step_db() = ConvertStepEventsToStepDb( has_device, options.maybe_drop_incomplete_steps, nonoverlapped_step_events); *op_stats.mutable_device_op_metrics_db()->mutable_precision_stats() = ComputePrecisionStats(nonoverlapped_step_events); } } if (!is_tpu) { CoreDetails& details = (*op_stats.mutable_core_id_to_details())[kDefaultGpuLocalCoreId]; details.set_hostname(Hostname(space)); } HloProtoMap hlo_proto_map; hlo_proto_map.AddHloProtosFromXSpace(space); SetProgramIdToNameMap(hlo_proto_map, op_stats); return op_stats; } } }
#include "tensorflow/core/profiler/convert/xplane_to_op_stats.h" #include <memory> #include <string> #include <utility> #include <vector> #include "xla/tsl/profiler/utils/group_events.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/convert/multi_xplanes_to_op_stats.h" #include "tensorflow/core/profiler/convert/repository.h" #include "tensorflow/core/profiler/convert/step_events_to_steps_db.h" #include "tensorflow/core/profiler/protobuf/diagnostics.pb.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/protobuf/tf_function.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" #include "tsl/platform/status.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { using ::testing::Property; using ::testing::UnorderedElementsAre; TEST(ConvertXPlaneToOpStats, GpuPerfEnv) { auto space = std::make_unique<XSpace>(); constexpr double kMaxError = 0.01; constexpr int kClockRateKHz = 1530000; constexpr int kCoreCount = 80; constexpr uint64 kMemoryBandwidthBytesPerSecond = uint64{900} * 1000 * 1000 * 1000; constexpr int kComputeCapMajor = 7; constexpr int kComputeCapMinor = 0; XPlaneBuilder device_plane( GetOrCreateGpuXPlane(space.get(), 0)); device_plane.AddStatValue(*device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kDevVendor)), kDeviceVendorNvidia); device_plane.AddStatValue(*device_plane.GetOrCreateStatMetadata("clock_rate"), kClockRateKHz); device_plane.AddStatValue(*device_plane.GetOrCreateStatMetadata("core_count"), kCoreCount); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("memory_bandwidth"), kMemoryBandwidthBytesPerSecond); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("compute_cap_major"), kComputeCapMajor); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("compute_cap_minor"), kComputeCapMinor); std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStatsOptions options; options.generate_op_metrics_db = true; OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &op_stats)); const PerfEnv& perf_env = op_stats.perf_env(); EXPECT_NEAR(125.34, perf_env.peak_tera_flops_per_second(), kMaxError); EXPECT_NEAR( 900, perf_env.peak_bws_giga_bytes_per_second(MemBwType::MEM_BW_TYPE_HBM_RW), kMaxError); EXPECT_NEAR(139.26, perf_env.ridge_point(), kMaxError); } TEST(ConvertXPlaneToOpStats, GpuRunEnvironment) { auto space = std::make_unique<XSpace>(); XPlaneBuilder device_plane1( GetOrCreateGpuXPlane(space.get(), 0)); device_plane1.AddStatValue(*device_plane1.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kDevVendor)), kDeviceVendorNvidia); XPlaneBuilder device_plane2( GetOrCreateGpuXPlane(space.get(), 1)); device_plane2.AddStatValue(*device_plane2.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kDevVendor)), kDeviceVendorNvidia); std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats( session_snapshot_or.value(), OpStatsOptions(), &op_stats)); const RunEnvironment& run_env = op_stats.run_environment(); EXPECT_EQ("Nvidia GPU", run_env.device_type()); EXPECT_EQ(1, run_env.host_count()); EXPECT_EQ(1, run_env.task_count()); EXPECT_EQ(2, run_env.device_core_count()); } TEST(ConvertXPlaneToOpStats, CpuOnlyStepDbTest) { constexpr int64_t kStepNum = 123; constexpr int64_t kStepId = 0; auto space = std::make_unique<XSpace>(); XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(space.get())); host_plane_builder.ReserveLines(2); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kTraceContext, 0, 100, {{StatType::kStepNum, kStepNum}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 10, 90, {{StatType::kStepId, kStepId}, {StatType::kProducerType, int64_t{1}}, {StatType::kProducerId, kStepId}}); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kStepId, kStepId}, {StatType::kConsumerType, int64_t{1}}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "matmul", 30, 70); OpStatsOptions options; options.generate_op_metrics_db = true; options.generate_step_db = true; std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &op_stats)); const StepDatabaseResult& step_db = op_stats.step_db(); EXPECT_EQ(step_db.step_sequence_size(), 1); } TEST(ConvertXPlaneToOpStats, GpuStepDbTest) { constexpr int64_t kStepNum = 123; constexpr int64_t kStepId = 0; constexpr int64_t kCorrelationId = 100; auto space = std::make_unique<XSpace>(); XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(space.get())); host_plane_builder.ReserveLines(2); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kTraceContext, 0, 100, {{StatType::kStepNum, kStepNum}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 10, 90, {{StatType::kStepId, kStepId}, {StatType::kProducerType, int64_t{1}}, {StatType::kProducerId, kStepId}}); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 20, 20, {{StatType::kStepId, kStepId}, {StatType::kConsumerType, int64_t{1}}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "matmul", 30, 10, {{StatType::kCorrelationId, kCorrelationId}}); XPlaneBuilder device_plane_builder( GetOrCreateGpuXPlane(space.get(), 0)); device_plane_builder.ReserveLines(1); auto stream = device_plane_builder.GetOrCreateLine(0); CreateXEvent(&device_plane_builder, &stream, "matmul", 50, 40, {{StatType::kCorrelationId, kCorrelationId}}); OpStatsOptions options; options.generate_op_metrics_db = true; options.generate_step_db = true; std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &op_stats)); const StepDatabaseResult& step_db = op_stats.step_db(); EXPECT_EQ(step_db.step_sequence_size(), 0); PrecisionStats precision_stats = op_stats.device_op_metrics_db().precision_stats(); EXPECT_EQ(precision_stats.compute_16bit_ps(), 0); EXPECT_EQ(precision_stats.compute_32bit_ps(), 40); } TEST(ConvertXPlaneToOpStats, PropagateAndDedupErrors) { XSpace space; static constexpr char kError[] = "host: error"; *space.add_errors() = kError; *space.add_errors() = kError; OpStats op_stats = ConvertXSpaceToOpStats(space, OpStatsOptions()); EXPECT_EQ(1, op_stats.diagnostics().errors_size()); EXPECT_EQ(kError, op_stats.diagnostics().errors(0)); } TEST(ConvertXPlaneToOpStats, Hostnames) { XSpace space; static constexpr char kHost[] = "host1"; *space.add_hostnames() = kHost; OpStats op_stats = ConvertXSpaceToOpStats(space, OpStatsOptions()); EXPECT_EQ( kHost, op_stats.core_id_to_details().at(kDefaultGpuLocalCoreId).hostname()); } void BuildXSpaceForTest(XSpace& xspace, absl::string_view hostname) { constexpr int64_t kStepNum = 123; constexpr int64_t kStepId = 456; XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(&xspace)); host_plane_builder.ReserveLines(2); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kTraceContext, 0, 100, {{StatType::kStepNum, kStepNum}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 10, 90, {{StatType::kStepId, kStepId}, {StatType::kProducerType, int64_t{1}}, {StatType::kProducerId, kStepId}}); auto executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &executor_thread, HostEventType::kExecutorStateProcess, 20, 80, {{StatType::kStepId, kStepId}, {StatType::kConsumerType, int64_t{1}}, {StatType::kConsumerId, kStepId}}); CreateXEvent(&host_plane_builder, &executor_thread, "aaa:bbb", 30, 70); xspace.add_hostnames(std::string(hostname)); } TEST(ConvertXPlaneToOpStats, TestConvertMultiXSpacesToCombinedOpStats) { static constexpr char kHost1[] = "host1"; static constexpr char kHost2[] = "host2"; auto xspace1 = std::make_unique<XSpace>(); auto xspace2 = std::make_unique<XSpace>(); BuildXSpaceForTest(*xspace1, kHost1); BuildXSpaceForTest(*xspace2, kHost2); std::vector<std::string> xspace_paths; xspace_paths.push_back("host1.pb"); xspace_paths.push_back("host2.pb"); std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(xspace1)); xspaces.push_back(std::move(xspace2)); auto session_snapshot_or = SessionSnapshot::Create(std::move(xspace_paths), std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStatsOptions options; options.generate_op_metrics_db = true; options.generate_step_db = true; OpStats combined_op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &combined_op_stats)) << "Failed to convert multi XSpace to OpStats"; ASSERT_EQ(combined_op_stats.host_op_metrics_db().metrics_db_size(), 2); const auto& metric = combined_op_stats.host_op_metrics_db().metrics_db(1); EXPECT_EQ(metric.name(), "aaa"); EXPECT_EQ(metric.category(), "bbb"); EXPECT_EQ(metric.self_time_ps(), 140); ASSERT_EQ(combined_op_stats.step_db().step_sequence_size(), 1); ASSERT_EQ( combined_op_stats.step_db().step_sequence(0).step_info_per_core_size(), 2); const auto& step_info_per_core = combined_op_stats.step_db().step_sequence(0).step_info_per_core(); EXPECT_TRUE(step_info_per_core.contains(kDefaultGpuLocalCoreId)); EXPECT_TRUE(step_info_per_core.contains(1000 + kDefaultGpuLocalCoreId)); const auto& core_details_map = combined_op_stats.core_id_to_details(); EXPECT_EQ(kHost1, core_details_map.at(kDefaultGpuLocalCoreId).hostname()); EXPECT_EQ(kHost2, core_details_map.at(1000 + kDefaultGpuLocalCoreId).hostname()); } TEST(ConvertXPlaneToOpStats, RunEnvironmentExtractedFromTpuPlane) { XSpace xspace; for (int i : {0, 1, 2, 3}) { GetOrCreateTpuXPlane(&xspace, i, "TPU V4", 0, 0); } OpStats op_stats = ConvertXSpaceToOpStats(xspace, OpStatsOptions()); EXPECT_EQ(op_stats.run_environment().device_type(), "TPU V4"); EXPECT_EQ(op_stats.run_environment().device_core_count(), 4); } TEST(ConvertXPlaneToOpStats, TpuPerfEnv) { auto space = std::make_unique<XSpace>(); constexpr double kMaxError = 0.01; constexpr int kClockRateKHz = 1530000; constexpr int kCoreCount = 80; constexpr uint64 kMemoryBandwidthBytesPerSecond = uint64{900} * 1000 * 1000 * 1000; constexpr int kComputeCapMajor = 7; constexpr int kComputeCapMinor = 0; constexpr double kDevCapPeakTeraflopsPerSecond = 141.0; constexpr double kDevCapPeakHbmBwGigabytesPerSecond = 900.0; XPlaneBuilder device_plane(GetOrCreateTpuXPlane( space.get(), 0, "TPU V4", kDevCapPeakTeraflopsPerSecond, kDevCapPeakHbmBwGigabytesPerSecond)); device_plane.AddStatValue(*device_plane.GetOrCreateStatMetadata("clock_rate"), kClockRateKHz); device_plane.AddStatValue(*device_plane.GetOrCreateStatMetadata("core_count"), kCoreCount); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("memory_bandwidth"), kMemoryBandwidthBytesPerSecond); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("compute_cap_major"), kComputeCapMajor); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata("compute_cap_minor"), kComputeCapMinor); OpStatsOptions options; options.generate_op_metrics_db = true; std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &op_stats)); const PerfEnv& perf_env = op_stats.perf_env(); EXPECT_NEAR(141, perf_env.peak_tera_flops_per_second(), kMaxError); EXPECT_NEAR( 900, perf_env.peak_bws_giga_bytes_per_second(MemBwType::MEM_BW_TYPE_HBM_RW), kMaxError); EXPECT_NEAR(156.67, perf_env.ridge_point(), kMaxError); } TEST(ConvertXPlaneToOpStats, TpuRunEnvironment) { auto space = std::make_unique<XSpace>(); XPlaneBuilder device_plane1( GetOrCreateTpuXPlane(space.get(), 0, "TPU V4", 0, 0)); XPlaneBuilder device_plane2( GetOrCreateTpuXPlane(space.get(), 1, "TPU V4", 0, 0)); std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats( session_snapshot_or.value(), OpStatsOptions(), &op_stats)); const RunEnvironment& run_env = op_stats.run_environment(); EXPECT_EQ("TPU V4", run_env.device_type()); EXPECT_EQ(1, run_env.host_count()); EXPECT_EQ(1, run_env.task_count()); EXPECT_EQ(2, run_env.device_core_count()); } TEST(ConvertXPlaneToOpStats, TpuDeviceTraceToStepDb) { auto space = std::make_unique<XSpace>(); constexpr double kDevCapPeakTeraflopsPerSecond = 141.0; constexpr double kDevCapPeakHbmBwGigabytesPerSecond = 1000.0; XPlaneBuilder xplane_builder(GetOrCreateTpuXPlane( space.get(), 0, "TPU V4", kDevCapPeakTeraflopsPerSecond, kDevCapPeakHbmBwGigabytesPerSecond)); XEventMetadata* event_metadata = xplane_builder.GetOrCreateEventMetadata(1); event_metadata->set_name("op_name"); XStatsBuilder<XEventMetadata> stats(event_metadata, &xplane_builder); stats.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kProgramId)), 1); stats.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kSymbolId)), 1); stats.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kSelfDurationPs)), 10); stats.AddStatValue( *xplane_builder.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), "tf_op_name"); stats.AddStatValue(*xplane_builder.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kHloCategory)), "category"); XLineBuilder line = xplane_builder.GetOrCreateLine(1); line.SetName(kTensorFlowOpLineName); XEventBuilder event = line.AddEvent(*event_metadata); event.SetOffsetNs(0); event.SetDurationNs(10); OpStatsOptions options; options.generate_op_metrics_db = true; std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(space)); auto session_snapshot_or = SessionSnapshot::Create({"test_xspace"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); OpStats op_stats; TF_CHECK_OK(ConvertMultiXSpacesToCombinedOpStats(session_snapshot_or.value(), options, &op_stats)); EXPECT_THAT(op_stats.device_op_metrics_db().metrics_db(), UnorderedElementsAre(Property(&OpMetrics::name, "op_name"), Property(&OpMetrics::name, "IDLE"))); } TEST(ConvertXPlaneToOpStats, TpuMultiDeviceStepDbTest) { auto space = std::make_unique<XSpace>(); XPlaneBuilder device_plane_builder1( GetOrCreateTpuXPlane(space.get(), 0, "TPU V4", 0, 0)); XPlaneBuilder device_plane_builder2( GetOrCreateTpuXPlane(space.get(), 1, "TPU V4", 0, 0)); device_plane_builder1.ReserveLines(1); device_plane_builder2.ReserveLines(1); XStatMetadata* kGroupId1 = device_plane_builder1.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kGroupId)); XLineBuilder line = device_plane_builder1.GetOrCreateLine(1); line.SetName(kXlaOpLineName); XEventMetadata* event_metadata = device_plane_builder1.GetOrCreateEventMetadata(1); event_metadata->set_name("Step 1"); XEventBuilder event_builder = line.AddEvent(*event_metadata); event_builder.AddStatValue(*kGroupId1, 1); event_builder.SetDurationNs(100); event_builder.SetOffsetNs(100); line = device_plane_builder2.GetOrCreateLine(1); line.SetName(kXlaOpLineName); XStatMetadata* kGroupId2 = device_plane_builder2.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kGroupId)); XEventMetadata* event_metadata2 = device_plane_builder2.GetOrCreateEventMetadata(2); event_metadata2->set_name("Step 1"); XEventBuilder event_builder2 = line.AddEvent(*event_metadata2); event_builder2.AddStatValue(*kGroupId2, 1); event_builder2.SetDurationNs(100); event_builder2.SetOffsetNs(300); XStatMetadata* kGroupId3 = device_plane_builder2.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kGroupId)); XEventMetadata* event_metadata3 = device_plane_builder2.GetOrCreateEventMetadata(2); event_metadata3->set_name("Step 2"); XEventBuilder event_builder3 = line.AddEvent(*event_metadata3); event_builder3.AddStatValue(*kGroupId3, 2); event_builder3.SetDurationNs(100); event_builder3.SetOffsetNs(300); OpStatsOptions options; options.generate_op_metrics_db = true; options.generate_step_db = true; OpStats op_stats = ConvertXSpaceToOpStats(*space, options); const StepDatabaseResult& step_db = op_stats.step_db(); EXPECT_EQ(step_db.step_sequence_size(), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_op_stats.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_op_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6f511ca0-49b7-4aac-b89e-b29692c7d1e9
cpp
tensorflow/tensorflow
xplane_to_tf_functions
tensorflow/core/profiler/convert/xplane_to_tf_functions.cc
tensorflow/core/profiler/convert/xplane_to_tf_functions_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_tf_functions.h" #include <algorithm> #include <ostream> #include <stack> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/timespan.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/math_utils.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { namespace { std::pair<TfFunctionExecutionMode, TfFunctionCompiler> Decode( absl::string_view function_name, absl::string_view mode) { if (mode == "eager") return {EAGER_MODE, INVALID_COMPILER}; if (mode == "concrete") return {CONCRETE_MODE, INVALID_COMPILER}; if (mode == "traced-xla") return {TRACED_MODE, XLA_COMPILER}; if (mode == "traced-nonXla") return {TRACED_MODE, OTHER_COMPILER}; if (mode == "notTraced-xla") return {NOT_TRACED_MODE, XLA_COMPILER}; if (mode == "notTraced-nonXla") return {NOT_TRACED_MODE, OTHER_COMPILER}; LOG(ERROR) << absl::StrCat("tf-function '", function_name, "' has an unexpected execution mode '", mode, "'") << std::endl; return {INVALID_MODE, INVALID_COMPILER}; DCHECK(false); } double ComputeExpensiveCallPercent(const TfFunction& tf_function) { uint64 total_call_time_ps = 0; uint64 expensive_call_time_ps = 0; for (const auto& mode_metrics : tf_function.metrics()) { const auto mode = mode_metrics.first; const auto& metrics = mode_metrics.second; total_call_time_ps += metrics.self_time_ps(); if (mode == TRACED_MODE || mode == EAGER_MODE) { expensive_call_time_ps += metrics.self_time_ps(); } } return tsl::profiler::SafeDivide(100.0 * expensive_call_time_ps, total_call_time_ps); } struct ActivationRecord { std::string function_name; tsl::profiler::Timespan timespan; TfFunctionExecutionMode execution_mode; TfFunctionCompiler compiler; int64_t tracing_count; uint64 children_duration_ps; ActivationRecord() : function_name(""), execution_mode(INVALID_MODE), compiler(INVALID_COMPILER), tracing_count(0), children_duration_ps(0) {} ActivationRecord(absl::string_view name, const tsl::profiler::Timespan& timespan, TfFunctionExecutionMode exe_mode, TfFunctionCompiler compiler, int64_t tracing_cnt) : function_name(std::string(name)), timespan(timespan), execution_mode(exe_mode), compiler(compiler), tracing_count(tracing_cnt), children_duration_ps(0) {} std::string DebugString() const { return absl::StrCat("{", function_name, ", ", TfFunctionExecutionMode_Name(execution_mode), ", ", TfFunctionCompiler_Name(compiler), ", tracing_count:", tracing_count, ", children_duration:", children_duration_ps, " ps, timespan:", timespan.DebugString(), "}"); } }; struct EntryOrExit { bool is_entry; int64_t index; uint64 timestamp_ps; EntryOrExit() : is_entry(false), index(-1), timestamp_ps(0) {} EntryOrExit(bool is_entry, int64_t index, uint64 timestamp_ps) : is_entry(is_entry), index(index), timestamp_ps(timestamp_ps) {} std::string DebugString() const { std::string entry_or_exit = is_entry ? "entry, " : "exit, "; return absl::StrCat("{", entry_or_exit, "idx:", index, ", timestamp:", timestamp_ps, "}"); } }; TfFunctionCompiler CombineCompilers(TfFunctionCompiler a, TfFunctionCompiler b) { if (a == INVALID_COMPILER) return b; if (b == INVALID_COMPILER) return a; if (a == b) return a; return MIXED_COMPILER; } void CombineTfFunctionMetrics(const TfFunctionMetrics& src, TfFunctionMetrics* dst) { dst->set_count(src.count() + dst->count()); dst->set_self_time_ps(src.self_time_ps() + dst->self_time_ps()); } void CombineTfFunction(const TfFunction& src, TfFunction* dst) { dst->set_total_tracing_count( std::max(src.total_tracing_count(), dst->total_tracing_count())); dst->set_compiler(CombineCompilers(src.compiler(), dst->compiler())); for (const auto& mode_metrics : src.metrics()) { int32_t execution_mode = mode_metrics.first; const TfFunctionMetrics& src_metrics = mode_metrics.second; TfFunctionMetrics* dst_metrics = gtl::FindOrNull(*dst->mutable_metrics(), execution_mode); if (dst_metrics == nullptr) { (*dst->mutable_metrics())[execution_mode] = src_metrics; } else { CombineTfFunctionMetrics(src_metrics, dst_metrics); } } dst->set_expensive_call_percent(ComputeExpensiveCallPercent(*dst)); } class TfFunctionExecutions { public: explicit TfFunctionExecutions(const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { absl::string_view mode; int64_t tracing_count = 0; event.ForEachStat([&mode, &tracing_count](const XStatVisitor& stat) { if (!stat.Type().has_value()) return; switch (stat.Type().value()) { case StatType::kTfFunctionCall: mode = stat.StrOrRefValue(); break; case StatType::kTfFunctionTracingCount: tracing_count = stat.IntValue(); break; } }); if (mode.empty()) return; int64_t index = activations_.size(); auto timespan = event.GetTimespan(); auto mode_compiler = Decode(event.Name(), mode); ActivationRecord activation_record = ActivationRecord(event.Name(), timespan, mode_compiler.first, mode_compiler.second, tracing_count); activations_.push_back(activation_record); EntryOrExit entry_point = EntryOrExit(true, index, timespan.begin_ps()); EntryOrExit exit_point = EntryOrExit(false, index, timespan.end_ps()); points_.push_back(entry_point); points_.push_back(exit_point); }); auto ascending_in_timestamp = [](const EntryOrExit& a, const EntryOrExit& b) { return a.timestamp_ps < b.timestamp_ps; }; absl::c_sort(points_, ascending_in_timestamp); CalculateChildrenDurations(); } std::string DebugString() const { std::string result = "\nActivations:\n"; for (int i = 0, end = activations_.size(); i < end; i++) { absl::StrAppend(&result, "[", i, "] ", activations_[i].DebugString(), "\n"); } absl::StrAppend(&result, "tf-function Entry/Exit Points:\n"); for (const auto& pt : points_) { absl::StrAppend(&result, pt.DebugString(), "\n"); } return result; } TfFunctionDb ConvertToTfFunctionDb() { TfFunctionDb result; for (const auto& record : activations_) { TfFunction* fun = &(*result.mutable_tf_functions())[record.function_name]; fun->set_total_tracing_count( std::max(static_cast<int64_t>(fun->total_tracing_count()), record.tracing_count)); fun->set_compiler(CombineCompilers(fun->compiler(), record.compiler)); uint64 self_time_ps = record.timespan.duration_ps() - record.children_duration_ps; TfFunctionMetrics* metrics = &(*fun->mutable_metrics())[record.execution_mode]; metrics->set_count(metrics->count() + 1); metrics->set_self_time_ps(metrics->self_time_ps() + self_time_ps); } for (auto& name_fun : *result.mutable_tf_functions()) { TfFunction& fun = name_fun.second; fun.set_expensive_call_percent(ComputeExpensiveCallPercent(fun)); } return result; } void CalculateChildrenDurations() { std::stack<int64_t> call_stack; for (const auto& pt : points_) { if (pt.is_entry) { call_stack.push(pt.index); } else { DCHECK(call_stack.top() == pt.index); uint64 call_duration = activations_[pt.index].timespan.duration_ps(); call_stack.pop(); if (!call_stack.empty()) { activations_[call_stack.top()].children_duration_ps += call_duration; } } } } private: std::vector<ActivationRecord> activations_; std::vector<EntryOrExit> points_; }; } std::string DebugString(const TfFunctionDb& tf_function_db) { std::string str; protobuf::TextFormat::PrintToString(tf_function_db, &str); return str; } void CombineTfFunctionDb(const TfFunctionDb& src, TfFunctionDb* dst) { for (const auto& name_function : src.tf_functions()) { const auto& name = name_function.first; const auto& src_fun = name_function.second; TfFunction* dst_fun = gtl::FindOrNull(*dst->mutable_tf_functions(), name); if (dst_fun == nullptr) { (*dst->mutable_tf_functions())[name] = src_fun; } else { CombineTfFunction(src_fun, dst_fun); } } } TfFunctionDb ConvertHostThreadsXLineToTfFunctionDb(const XLineVisitor& line) { TfFunctionExecutions tf_function_executions = TfFunctionExecutions(line); return tf_function_executions.ConvertToTfFunctionDb(); } } }
#include "tensorflow/core/profiler/convert/xplane_to_tf_functions.h" #include <string> #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/protobuf/tf_function.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { namespace { const absl::string_view kEager = "eager"; const absl::string_view kConcrete = "concrete"; const absl::string_view kTracedNonXla = "traced-nonXla"; const absl::string_view kTracedXla = "traced-xla"; const absl::string_view kNotTracedNonXla = "notTraced-nonXla"; const absl::string_view kNotTracedXla = "notTraced-xla"; constexpr double kMaxError = 0.001; TfFunctionDb ConvertXSpaceToTfFunctionDb(const XSpace& space) { TfFunctionDb result; const XPlane* host_plane = FindPlaneWithName(space, kHostThreadsPlaneName); if (host_plane) { XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(host_plane); plane.ForEachLine([&result](const XLineVisitor& line) { TfFunctionDb tf_function_db = ConvertHostThreadsXLineToTfFunctionDb(line); CombineTfFunctionDb(tf_function_db, &result); }); } return result; } TEST(ConvertXPlaneToTfFunctions, CombineTwoThreads) { XSpace space; XPlaneBuilder host_plane_builder(space.add_planes()); host_plane_builder.SetName(kHostThreadsPlaneName); host_plane_builder.ReserveLines(2); std::string kFunctionName = "decrement"; auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateTfFunctionCallEvent(&host_plane_builder, &main_thread, kFunctionName, 10, 100, kTracedNonXla, 1); CreateTfFunctionCallEvent(&host_plane_builder, &main_thread, kFunctionName, 150, 20, kNotTracedNonXla, 2); CreateTfFunctionCallEvent(&host_plane_builder, &main_thread, kFunctionName, 200, 80, kTracedNonXla, 3); auto other_thread = host_plane_builder.GetOrCreateLine(1); CreateTfFunctionCallEvent(&host_plane_builder, &other_thread, kFunctionName, 20, 100, kTracedNonXla, 2); CreateTfFunctionCallEvent(&host_plane_builder, &other_thread, kFunctionName, 160, 20, kNotTracedNonXla, 2); CreateTfFunctionCallEvent(&host_plane_builder, &other_thread, kFunctionName, 210, 80, kTracedXla, 4); TfFunctionDb tf_function_db = ConvertXSpaceToTfFunctionDb(space); EXPECT_EQ(tf_function_db.tf_functions().size(), 1); EXPECT_EQ(tf_function_db.tf_functions().count(kFunctionName), 1); const TfFunction& tf_function = tf_function_db.tf_functions().at(kFunctionName); EXPECT_EQ(tf_function.total_tracing_count(), 4); EXPECT_EQ(tf_function.compiler(), MIXED_COMPILER); EXPECT_NEAR(tf_function.expensive_call_percent(), 90, kMaxError); const auto& metrics = tf_function.metrics(); EXPECT_EQ(metrics.size(), 2); EXPECT_EQ(metrics.count(TRACED_MODE), 1); EXPECT_EQ(metrics.count(NOT_TRACED_MODE), 1); const auto& traced_mode = metrics.at(TRACED_MODE); EXPECT_EQ(traced_mode.count(), 4); EXPECT_EQ(traced_mode.self_time_ps(), 360); const auto& not_traced_mode = metrics.at(NOT_TRACED_MODE); EXPECT_EQ(not_traced_mode.count(), 2); EXPECT_EQ(not_traced_mode.self_time_ps(), 40); } TEST(ConvertXPlaneToTfFunctions, NestedFunctions) { XSpace space; XPlaneBuilder host_plane_builder(space.add_planes()); host_plane_builder.SetName(kHostThreadsPlaneName); host_plane_builder.ReserveLines(1); std::string kOuterFunctionName = "outer"; std::string kInnerFunctionName = "inner"; auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateTfFunctionCallEvent(&host_plane_builder, &main_thread, kOuterFunctionName, 10, 100, kTracedNonXla, 1); CreateTfFunctionCallEvent(&host_plane_builder, &main_thread, kInnerFunctionName, 30, 40, kNotTracedXla, 0); TfFunctionDb tf_function_db = ConvertXSpaceToTfFunctionDb(space); EXPECT_EQ(tf_function_db.tf_functions().size(), 2); EXPECT_EQ(tf_function_db.tf_functions().count(kOuterFunctionName), 1); EXPECT_EQ(tf_function_db.tf_functions().count(kInnerFunctionName), 1); const TfFunction& outer = tf_function_db.tf_functions().at(kOuterFunctionName); EXPECT_EQ(outer.total_tracing_count(), 1); EXPECT_EQ(outer.compiler(), OTHER_COMPILER); EXPECT_NEAR(outer.expensive_call_percent(), 100, kMaxError); const auto& outer_metrics = outer.metrics(); EXPECT_EQ(outer_metrics.size(), 1); EXPECT_EQ(outer_metrics.count(TRACED_MODE), 1); const auto& traced_mode = outer_metrics.at(TRACED_MODE); EXPECT_EQ(traced_mode.count(), 1); EXPECT_EQ(traced_mode.self_time_ps(), 60); const TfFunction& inner = tf_function_db.tf_functions().at(kInnerFunctionName); EXPECT_EQ(inner.total_tracing_count(), 0); EXPECT_EQ(inner.compiler(), XLA_COMPILER); EXPECT_NEAR(inner.expensive_call_percent(), 0, kMaxError); const auto& inner_metrics = inner.metrics(); EXPECT_EQ(inner_metrics.size(), 1); EXPECT_EQ(inner_metrics.count(NOT_TRACED_MODE), 1); const auto& not_traced_mode = inner_metrics.at(NOT_TRACED_MODE); EXPECT_EQ(not_traced_mode.count(), 1); EXPECT_EQ(not_traced_mode.self_time_ps(), 40); } TEST(ConvertXPlaneToTfFunctions, EagerPlusConcrete) { XSpace space; XPlaneBuilder host_plane_builder(GetOrCreateHostXPlane(&space)); host_plane_builder.ReserveLines(2); std::string kEagerFunctionName = "i_am_eager"; std::string kConcreteFunctionName = "i_am_concrete"; auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateTfFunctionCallEvent(&host_plane_builder, &main_thread, kEagerFunctionName, 10, 200, kEager); auto other_thread = host_plane_builder.GetOrCreateLine(1); CreateTfFunctionCallEvent(&host_plane_builder, &other_thread, kConcreteFunctionName, 20, 40, kConcrete); TfFunctionDb tf_function_db = ConvertXSpaceToTfFunctionDb(space); EXPECT_EQ(tf_function_db.tf_functions().size(), 2); EXPECT_EQ(tf_function_db.tf_functions().count(kEagerFunctionName), 1); EXPECT_EQ(tf_function_db.tf_functions().count(kConcreteFunctionName), 1); const TfFunction& eager = tf_function_db.tf_functions().at(kEagerFunctionName); EXPECT_EQ(eager.total_tracing_count(), 0); EXPECT_EQ(eager.compiler(), INVALID_COMPILER); EXPECT_NEAR(eager.expensive_call_percent(), 100, kMaxError); const auto& eager_metrics = eager.metrics(); EXPECT_EQ(eager_metrics.size(), 1); EXPECT_EQ(eager_metrics.count(EAGER_MODE), 1); const auto& eager_mode = eager_metrics.at(EAGER_MODE); EXPECT_EQ(eager_mode.count(), 1); EXPECT_EQ(eager_mode.self_time_ps(), 200); const TfFunction& concrete = tf_function_db.tf_functions().at(kConcreteFunctionName); EXPECT_EQ(concrete.total_tracing_count(), 0); EXPECT_EQ(concrete.compiler(), INVALID_COMPILER); EXPECT_NEAR(concrete.expensive_call_percent(), 0, kMaxError); const auto& concrete_metrics = concrete.metrics(); EXPECT_EQ(concrete_metrics.size(), 1); EXPECT_EQ(concrete_metrics.count(CONCRETE_MODE), 1); const auto& concrete_mode = concrete_metrics.at(CONCRETE_MODE); EXPECT_EQ(concrete_mode.count(), 1); EXPECT_EQ(concrete_mode.self_time_ps(), 40); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_tf_functions.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_tf_functions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
32138b08-241d-42a6-8f88-50a041a5c0d0
cpp
tensorflow/tensorflow
xplane_to_tf_data_stats
tensorflow/core/profiler/convert/xplane_to_tf_data_stats.cc
tensorflow/core/profiler/convert/xplane_to_tf_data_stats_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_tf_data_stats.h" #include <algorithm> #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/group_events.h" #include "xla/tsl/profiler/utils/tf_op_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/timespan.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/profiler/protobuf/tf_data_stats.pb.h" #include "tensorflow/core/profiler/utils/html_utils.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { const int64_t kSlowCallThresholdPs = 50 * 1000000; namespace { bool IsRootIteratorEvent(const XEventVisitor& iterator_event) { std::vector<absl::string_view> split_result = absl::StrSplit(iterator_event.Name(), "::"); return split_result.size() == 2; } bool IsAsyncIterator(absl::string_view iterator_event_name) { static auto* kAsyncIterators = new absl::flat_hash_set<absl::string_view>( {"Prefetch", "ParallelInterleave", "ParallelMap", "ParseExample", "MapAndBatch", "DataService", "LegacyParallelInterleave", "ParallelBatch"}); return kAsyncIterators->contains(iterator_event_name); } void SetIteratorMetadata(int64_t id, const XEventVisitor& event, IteratorMetadata* metadata) { metadata->set_id(id); auto parent_id_stat = event.GetStat(StatType::kParentId); if (parent_id_stat.has_value()) { metadata->set_parent_id(parent_id_stat->IntValue()); } metadata->set_name(tsl::profiler::IteratorName(event.Name())); metadata->set_long_name(event.Name().data(), event.Name().size()); metadata->set_is_async(IsAsyncIterator(metadata->name())); } std::optional<int64_t> FindDeviceInputPipeline(const XEventVisitor& event) { if (event.Type() == HostEventType::kDeviceInputPipelineSecondIterator) { auto parent_id_stat = event.GetStat(StatType::kParentId); if (parent_id_stat.has_value()) return parent_id_stat->IntValue(); } return std::nullopt; } void ProcessEventForest( const tsl::profiler::EventForest& event_forest, absl::flat_hash_set<int64_t>* device_input_pipeline_ids, absl::flat_hash_map<int64_t, std::vector<const tsl::profiler::EventNode*>>* root_iterator_event_map, TfDataStats* tf_data_stats) { const tsl::profiler::EventNodeMap& event_node_map = event_forest.GetEventNodeMap(); auto* iterator_event_list = gtl::FindOrNull(event_node_map, HostEventType::kIterator); if (!iterator_event_list) return; for (const tsl::profiler::EventNode& iterator_event : *iterator_event_list) { const XEventVisitor& iterator_event_visitor = iterator_event.GetEventVisitor(); auto iterator_id_stat = iterator_event_visitor.GetStat(StatType::kStepId); if (!iterator_id_stat.has_value()) continue; int64_t iterator_id = iterator_id_stat->IntValue(); auto result = tf_data_stats->mutable_iterator_metadata()->insert( {iterator_id, IteratorMetadata()}); IteratorMetadata& metadata = result.first->second; if (result.second) { SetIteratorMetadata(iterator_id, iterator_event_visitor, &metadata); } if (IsRootIteratorEvent(iterator_event_visitor)) { (*root_iterator_event_map)[iterator_id].push_back(&iterator_event); } } auto* device_input_pipeline_second_iterator_events = gtl::FindOrNull( event_node_map, HostEventType::kDeviceInputPipelineSecondIterator); if (!device_input_pipeline_second_iterator_events) return; for (const tsl::profiler::EventNode& iterator_event : *device_input_pipeline_second_iterator_events) { const XEventVisitor& iterator_event_visitor = iterator_event.GetEventVisitor(); auto iterator_id_stat = iterator_event_visitor.GetStat(StatType::kStepId); if (!iterator_id_stat.has_value()) continue; int64_t iterator_id = iterator_id_stat->IntValue(); auto result = tf_data_stats->mutable_iterator_metadata()->insert( {iterator_id, IteratorMetadata()}); IteratorMetadata& metadata = result.first->second; if (result.second) { SetIteratorMetadata(iterator_id, iterator_event_visitor, &metadata); std::optional<int64_t> device_input_pipeline_id = FindDeviceInputPipeline(iterator_event_visitor); if (device_input_pipeline_id.has_value()) { device_input_pipeline_ids->insert(*device_input_pipeline_id); } } } } void SetInputPipelineMetadata(int64_t id, int64_t name_id, bool is_device_input_pipeline, InputPipelineMetadata* metadata) { constexpr absl::string_view kHostInputPipelinePrefix = "Host:"; constexpr absl::string_view kDeviceInputPipelinePrefix = "Device:"; metadata->set_id(id); if (is_device_input_pipeline) { metadata->set_type(InputPipelineMetadata::DEVICE); metadata->set_name(absl::StrCat(kDeviceInputPipelinePrefix, name_id)); } else { metadata->set_type(InputPipelineMetadata::HOST); metadata->set_name(absl::StrCat(kHostInputPipelinePrefix, name_id)); } } void ProcessIteratorEvent(const tsl::profiler::EventNode& iterator_event, InputPipelineStat* input_pipeline_stat, bool is_blocking, int level = 0) { if (level > 100) return; const XEventVisitor& visitor = iterator_event.GetEventVisitor(); auto iterator_id_stat = visitor.GetStat(StatType::kStepId); if (!iterator_id_stat.has_value()) return; int64_t iterator_id = iterator_id_stat->IntValue(); auto result = input_pipeline_stat->mutable_iterator_stats()->insert( {iterator_id, IteratorStat()}); IteratorStat& iterator_stat = result.first->second; if (result.second) { iterator_stat.set_id(iterator_id); iterator_stat.set_start_time_ps(visitor.TimestampPs()); } iterator_stat.set_duration_ps(iterator_stat.duration_ps() + visitor.DurationPs()); int64_t self_time_ps = visitor.DurationPs(); tsl::profiler::Timespan self_time_span = visitor.GetTimespan(); for (const tsl::profiler::EventNode* child : iterator_event.GetChildren()) { const XEventVisitor& child_visitor = child->GetEventVisitor(); if (tsl::profiler::ParseTfOpFullname(child_visitor.Name()).category == tsl::profiler::Category::kTfData) { int64_t overlap_duration_ps = self_time_span.OverlappedDurationPs(child_visitor.GetTimespan()); ProcessIteratorEvent(*child, input_pipeline_stat, is_blocking && overlap_duration_ps, level + 1); self_time_ps -= overlap_duration_ps; } } iterator_stat.set_self_time_ps(iterator_stat.self_time_ps() + self_time_ps); iterator_stat.set_is_blocking(iterator_stat.is_blocking() || is_blocking); iterator_stat.set_num_calls(iterator_stat.num_calls() + 1); } void SetBottleneckIteratorId(InputPipelineStat* input_pipeline_stat) { int64_t bottleneck_iterator_id = 0; int64_t max_self_time = 0; for (const auto& pair : input_pipeline_stat->iterator_stats()) { const auto& id = pair.first; const auto& iterator_stat = pair.second; if (iterator_stat.is_blocking() && iterator_stat.self_time_ps() > max_self_time) { bottleneck_iterator_id = id; max_self_time = iterator_stat.self_time_ps(); } } input_pipeline_stat->set_bottleneck_iterator_id(bottleneck_iterator_id); input_pipeline_stat->set_bottleneck_iterator_latency_ps(max_self_time); } void ProcessInputPipelines( const absl::flat_hash_set<int64_t>& device_input_pipeline_ids, absl::flat_hash_map<int64_t, std::vector<const tsl::profiler::EventNode*>>* root_iterator_event_map, TfDataStats* tf_data_stats) { auto* input_pipelines = tf_data_stats->mutable_input_pipelines(); int64_t num_host_input_pipelines = 0; int64_t num_device_input_pipelines = 0; for (auto& id_and_events : *root_iterator_event_map) { auto& root_iterator_id = id_and_events.first; auto& root_iterator_events = id_and_events.second; absl::c_sort(root_iterator_events, [](const tsl::profiler::EventNode* lhs, const tsl::profiler::EventNode* rhs) { return lhs->GetEventVisitor().DurationPs() > rhs->GetEventVisitor().DurationPs(); }); auto result = input_pipelines->insert({root_iterator_id, InputPipelineStats()}); InputPipelineStats& input_pipeline_stats = result.first->second; InputPipelineMetadata* metadata = input_pipeline_stats.mutable_metadata(); if (result.second) { bool is_device_input_pipeline = device_input_pipeline_ids.contains(root_iterator_id); int64_t name_id = is_device_input_pipeline ? num_device_input_pipelines++ : num_host_input_pipelines++; SetInputPipelineMetadata(root_iterator_id, name_id, is_device_input_pipeline, metadata); } int64_t sum_latency_ps = 0; int64_t min_latency_ps = INT64_MAX; int64_t max_latency_ps = 0; int64_t num_slow_calls = 0; for (const tsl::profiler::EventNode* root_iterator_event : root_iterator_events) { InputPipelineStat* stat = input_pipeline_stats.add_stats(); ProcessIteratorEvent(*root_iterator_event, stat, true); SetBottleneckIteratorId(stat); int64_t latency_ps = root_iterator_event->GetEventVisitor().DurationPs(); sum_latency_ps += latency_ps; min_latency_ps = std::min(min_latency_ps, latency_ps); max_latency_ps = std::max(max_latency_ps, latency_ps); if (latency_ps > kSlowCallThresholdPs) num_slow_calls++; } input_pipeline_stats.set_avg_latency_ps(sum_latency_ps / root_iterator_events.size()); input_pipeline_stats.set_min_latency_ps(min_latency_ps); input_pipeline_stats.set_max_latency_ps(max_latency_ps); input_pipeline_stats.set_num_slow_calls(num_slow_calls); } } void SetBottleneckAnalysis(CombinedTfDataStats* combined_tf_data_stats) { struct InputPipeline { InputPipeline(absl::string_view host_name, absl::string_view input_pipeline_name, int64_t max_latency_ps, absl::string_view iterator_name, absl::string_view iterator_long_name, int64_t iterator_latency_ps) : host_name(host_name), input_pipeline_name(input_pipeline_name), max_latency_ps(max_latency_ps), iterator_name(iterator_name), iterator_long_name(iterator_long_name), iterator_latency_ps(iterator_latency_ps) {} absl::string_view host_name; absl::string_view input_pipeline_name; int64_t max_latency_ps; absl::string_view iterator_name; absl::string_view iterator_long_name; int64_t iterator_latency_ps; bool operator<(const InputPipeline& rhs) const { return max_latency_ps > rhs.max_latency_ps; } }; std::vector<InputPipeline> slow_input_pipelines; for (const auto& host_name_and_tf_data_stats : combined_tf_data_stats->tf_data_stats()) { absl::string_view host_name = host_name_and_tf_data_stats.first; const TfDataStats& tf_data_stats = host_name_and_tf_data_stats.second; for (const auto& id_and_stats : tf_data_stats.input_pipelines()) { const InputPipelineStats& input_pipeline_stats = id_and_stats.second; if (input_pipeline_stats.metadata().type() == InputPipelineMetadata::DEVICE) { continue; } const InputPipelineStat& input_pipeline_stat = input_pipeline_stats.stats(0); const IteratorMetadata& metadata = tf_data_stats.iterator_metadata().at( input_pipeline_stat.bottleneck_iterator_id()); slow_input_pipelines.emplace_back( host_name, input_pipeline_stats.metadata().name(), input_pipeline_stats.max_latency_ps(), metadata.name(), metadata.long_name(), input_pipeline_stat.bottleneck_iterator_latency_ps()); } } std::sort(slow_input_pipelines.begin(), slow_input_pipelines.end()); for (const auto& input_pipeline : slow_input_pipelines) { TfDataBottleneckAnalysis* bottleneck_analysis = combined_tf_data_stats->add_bottleneck_analysis(); bottleneck_analysis->set_host(input_pipeline.host_name.data(), input_pipeline.host_name.size()); bottleneck_analysis->set_input_pipeline( input_pipeline.input_pipeline_name.data(), input_pipeline.input_pipeline_name.size()); bottleneck_analysis->set_max_latency_ps(input_pipeline.max_latency_ps); bottleneck_analysis->set_iterator_name(input_pipeline.iterator_name.data(), input_pipeline.iterator_name.size()); bottleneck_analysis->set_iterator_long_name( input_pipeline.iterator_long_name.data(), input_pipeline.iterator_long_name.size()); bottleneck_analysis->set_iterator_latency_ps( input_pipeline.iterator_latency_ps); } } std::string GetSuggestion(BottleneckType type) { constexpr absl::string_view kPlaybookLink = "https: constexpr absl::string_view kPlaybookSourceDatasetLink = "https: "data_performance_analysis#source_datasets"; constexpr absl::string_view kPlaybookCpuUtilizationLink = "https: "data_performance_analysis#3_are_you_reaching_high_cpu_utilization"; constexpr absl::string_view kPlaybookTransformationLink = "https: "data_performance_analysis#transformation_datasets"; constexpr absl::string_view kTfGuideParallelDataExtractionLink = "https: "data_performance#parallelizing_data_extraction"; constexpr absl::string_view kTfGuideParallelTransformationLink = "https: "data_performance#parallelizing_data_transformation"; constexpr absl::string_view kTfGuideCacheLink = "https: constexpr absl::string_view kTfDataServiceLink = "https: "service?version=nightly"; switch (type) { case BottleneckType::kSlowSource: return absl::StrFormat( "1. Check the locality of a host and input data. Ideally, they " "should be in the same cell (or very close, like the same " "region).<br/>" "2. Parallelize reading from this dataset source. See %s and %s for " "more details.<br/>", AnchorElement(kPlaybookSourceDatasetLink, "here"), AnchorElement(kTfGuideParallelDataExtractionLink, "here")); case BottleneckType::kSlowDataService: return absl::StrFormat( "1. Fetching data from tf.data service took a while. Profile the " "tf.data service worker to analyze the issue further.<br/>" "2. See %s for more details on tf.data service.<br/>" "3. See %s for other suggestions.", AnchorElement(kTfDataServiceLink, "this"), AnchorElement(kPlaybookLink, "this")); case BottleneckType::kSlowRemoteSource: return absl::StrFormat( "1. The remote data source is slow. Profile its host to analyze the " "issue further.<br/>" "2. See %s for other suggestions.", AnchorElement(kPlaybookLink, "this")); case BottleneckType::kSlowTransformationWithParallelVersion: return absl::StrFormat( "1. Parallelize this transformation by setting " "<code>num_parallel_calls=tf.data.experimental.AUTOTUNE</code>. See " "%s for more details.<br/>" "2. Consider adding <code>cache</code> after this transformation if " "your data fits into memory and it is appropriate (e.g., there is no " "randomness in upstream transformations like <code>shuffle</code>). " "See %s for more details.<br/>" "3. Find more resources %s.", AnchorElement(kTfGuideParallelTransformationLink, "this"), AnchorElement(kTfGuideCacheLink, "this"), AnchorElement(kPlaybookTransformationLink, "here")); case BottleneckType::kSlowTransformationWithoutParallelVersion: return absl::StrFormat( "1. This transformation is inherently sequential. Add outer " "parallelism by running multiple copies of the input pipeline over " "sharded inputs and combining the results. See %s for more " "details.<br/>" "2. Consider adding <code>cache</code> after this transformation if " "your data fits into memory and it is appropriate (e.g., there is no " "randomness in upstream transformations like <code>shuffle</code>). " "See %s for more details.<br/>" "3. Find more resources %s.", AnchorElement(kPlaybookTransformationLink, "this"), AnchorElement(kTfGuideCacheLink, "this"), AnchorElement(kPlaybookCpuUtilizationLink, "here")); default: return absl::StrFormat("See %s for suggestions.", AnchorElement(kPlaybookLink, "this")); } } void SetSuggestion(CombinedTfDataStats* combined_tf_data_stats) { for (TfDataBottleneckAnalysis& bottleneck_analysis : *combined_tf_data_stats->mutable_bottleneck_analysis()) { bottleneck_analysis.set_suggestion( GetSuggestion(GetBottleneckType(bottleneck_analysis.iterator_name()))); } } void SetSummary(CombinedTfDataStats* combined_tf_data_stats) { int64_t max_latency_ps = 0; if (combined_tf_data_stats->bottleneck_analysis_size()) { max_latency_ps = combined_tf_data_stats->bottleneck_analysis().at(0).max_latency_ps(); } if (max_latency_ps > kSlowCallThresholdPs) { combined_tf_data_stats->set_is_input_bound(true); combined_tf_data_stats->set_summary( "Your profile has a tf.data input pipeline slower than 50 us. For each " "slow input pipeline, below shows a bottleneck in the input pipeline " "and a suggestion on how to fix it."); } else if (max_latency_ps > 0) { combined_tf_data_stats->set_is_input_bound(false); combined_tf_data_stats->set_summary( "Your profile does not have any tf.data input pipeline slower than 50 " "us. Your job could be still input bound if this profile didn't " "capture all workers."); } else { combined_tf_data_stats->set_is_input_bound(false); combined_tf_data_stats->set_summary( "No tf.data activity captured in your profile. If your job uses " "tf.data, try to capture a longer profile."); } } } BottleneckType GetBottleneckType(absl::string_view bottleneck_iterator_name) { static auto* kBottleneckTypeMap = new absl::flat_hash_map<absl::string_view, BottleneckType>( { {"TFRecord", BottleneckType::kSlowSource}, {"SSTable", BottleneckType::kSlowSource}, {"RecordIO", BottleneckType::kSlowSource}, {"Spanner", BottleneckType::kSlowSource}, {"TFColumn", BottleneckType::kSlowSource}, {"SleepwalkRemoteDataset", BottleneckType::kSlowSource}, {"TextLine", BottleneckType::kSlowSource}, {"StitchedTimelineDataset", BottleneckType::kSlowSource}, {"DateKeyDataset", BottleneckType::kSlowSource}, {"CapacitorProto", BottleneckType::kSlowSource}, {"LMDB", BottleneckType::kSlowSource}, {"ExternalDataset", BottleneckType::kSlowSource}, {"PearModel", BottleneckType::kSlowSource}, {"FixedLengthRecordV2", BottleneckType::kSlowSource}, {"FromTensor", BottleneckType::kSlowSource}, {"TensorSlice", BottleneckType::kSlowSource}, {"Generator", BottleneckType::kSlowSource}, {"SyntheticDatasetOp", BottleneckType::kSlowSource}, {"DataService", BottleneckType::kSlowDataService}, {"GuzzlerDataGuzzlerRemoteDataset", BottleneckType::kSlowRemoteSource}, {"ReverbDataset", BottleneckType::kSlowRemoteSource}, {"DatasetSampleGame", BottleneckType::kSlowRemoteSource}, {"Courier", BottleneckType::kSlowRemoteSource}, {"ReverbEpisodeDataset", BottleneckType::kSlowRemoteSource}, {"Map", BottleneckType::kSlowTransformationWithParallelVersion}, {"Interleave", BottleneckType::kSlowTransformationWithParallelVersion}, {"Filter", BottleneckType::kSlowTransformationWithoutParallelVersion}, {"Batch", BottleneckType::kSlowTransformationWithoutParallelVersion}, {"Unbatch", BottleneckType::kSlowTransformationWithoutParallelVersion}}); if (auto type = gtl::FindOrNull(*kBottleneckTypeMap, bottleneck_iterator_name)) { return *type; } return BottleneckType::kOther; } void CombinedTfDataStatsBuilder::Add(absl::string_view host_name, XPlane* host_plane) { TfDataStats& tf_data_stats = (*combined_tf_data_stats_ ->mutable_tf_data_stats())[std::string(host_name)]; tsl::profiler::EventForest event_forest; event_forest.AddPlanes(tsl::profiler::CreateTfXPlaneVisitor, {host_plane}); event_forest.ConnectEvents(); event_forest.ConnectTfDataEvents(); absl::flat_hash_set<int64_t> device_input_pipeline_ids; absl::flat_hash_map<int64_t, std::vector<const tsl::profiler::EventNode*>> root_iterator_event_map; ProcessEventForest(event_forest, &device_input_pipeline_ids, &root_iterator_event_map, &tf_data_stats); ProcessInputPipelines(device_input_pipeline_ids, &root_iterator_event_map, &tf_data_stats); } void CombinedTfDataStatsBuilder::Finalize() { SetBottleneckAnalysis(combined_tf_data_stats_); if (generate_suggestion_) SetSuggestion(combined_tf_data_stats_); SetSummary(combined_tf_data_stats_); } } }
#include "tensorflow/core/profiler/convert/xplane_to_tf_data_stats.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/protobuf/tf_data_stats.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" namespace tensorflow { namespace profiler { namespace { using ::testing::EqualsProto; TEST(XPlaneToTfDataStatsTest, HostInputPipeline) { constexpr int64_t kPrefetchIteratorId = 123; constexpr int64_t kRangeIteratorId = 456; constexpr int64_t kFirstElementId = 100; constexpr int64_t kSecondElementId = 200; XPlane host_plane; XPlaneBuilder host_plane_builder(&host_plane); host_plane_builder.ReserveLines(2); auto consumer_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &consumer_thread, "Iterator::Prefetch", 0, 100000000, {{StatType::kStepId, kPrefetchIteratorId}}); CreateXEvent(&host_plane_builder, &consumer_thread, HostEventType::kPrefetchConsume, 80000000, 20000000, {{StatType::kElementId, kFirstElementId}}); CreateXEvent(&host_plane_builder, &consumer_thread, "Iterator::Prefetch", 200000000, 20000000, {{StatType::kStepId, kPrefetchIteratorId}}); CreateXEvent(&host_plane_builder, &consumer_thread, HostEventType::kPrefetchConsume, 210000000, 10000000, {{StatType::kElementId, kSecondElementId}}); auto producer_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &producer_thread, HostEventType::kPrefetchProduce, 0, 80000000, {{StatType::kElementId, kFirstElementId}}); CreateXEvent(&host_plane_builder, &producer_thread, "Iterator::Prefetch::Range", 0, 80000000, {{StatType::kStepId, kRangeIteratorId}, {StatType::kParentId, kPrefetchIteratorId}}); CreateXEvent(&host_plane_builder, &producer_thread, HostEventType::kPrefetchProduce, 100000000, 80000000, {{StatType::kElementId, kSecondElementId}}); CreateXEvent(&host_plane_builder, &producer_thread, "Iterator::Prefetch::Range", 100000000, 80000000, {{StatType::kStepId, kRangeIteratorId}, {StatType::kParentId, kPrefetchIteratorId}}); CombinedTfDataStats combined_tf_data_stats; CombinedTfDataStatsBuilder builder(&combined_tf_data_stats); builder.Add("host1", &host_plane); builder.Finalize(); EXPECT_THAT( combined_tf_data_stats, EqualsProto(R"pb( bottleneck_analysis: { host: "host1" input_pipeline: "Host:0" max_latency_ps: 100000000 iterator_name: "Range" iterator_long_name: "Iterator::Prefetch::Range" iterator_latency_ps: 80000000 suggestion: "See <a href=\"https: } tf_data_stats: { key: "host1" value: { iterator_metadata: { key: 123, value: { id: 123 name: "Prefetch" long_name: "Iterator::Prefetch" is_async: true } } iterator_metadata: { key: 456, value: { id: 456 parent_id: 123 name: "Range" long_name: "Iterator::Prefetch::Range" is_async: false } } input_pipelines { key: 123, value: { metadata { id: 123 type: HOST name: "Host:0" } avg_latency_ps: 60000000 min_latency_ps: 20000000 max_latency_ps: 100000000 num_slow_calls: 1 stats { bottleneck_iterator_id: 456 bottleneck_iterator_latency_ps: 80000000 iterator_stats { key: 123, value: { id: 123 start_time_ps: 0 duration_ps: 100000000 self_time_ps: 20000000 is_blocking: true num_calls: 1 } } iterator_stats { key: 456, value: { id: 456 start_time_ps: 0 duration_ps: 80000000 self_time_ps: 80000000 is_blocking: true num_calls: 1 } } } stats { bottleneck_iterator_id: 123 bottleneck_iterator_latency_ps: 20000000 iterator_stats { key: 123, value: { id: 123 start_time_ps: 200000000 duration_ps: 20000000 self_time_ps: 20000000 is_blocking: true num_calls: 1 } } iterator_stats { key: 456, value: { id: 456 start_time_ps: 100000000 duration_ps: 80000000 self_time_ps: 80000000 is_blocking: false num_calls: 1 } } } } } } } is_input_bound: true summary: "Your profile has a tf.data input pipeline slower than 50 us. For each slow input pipeline, below shows a bottleneck in the input pipeline and a suggestion on how to fix it." )pb")); } TEST(XPlaneToTfDataStatsTest, DeviceInputPipeline) { constexpr int64_t kPrefetchIteratorId = 123; constexpr int64_t kRangeIteratorId = 456; constexpr int64_t kElementId = 100; XPlane host_plane; XPlaneBuilder host_plane_builder(&host_plane); host_plane_builder.ReserveLines(2); auto consumer_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &consumer_thread, "Iterator::Prefetch", 0, 30000000, {{StatType::kStepId, kPrefetchIteratorId}}); CreateXEvent(&host_plane_builder, &consumer_thread, "Iterator::Prefetch", 100000000, 100000000, {{StatType::kStepId, kPrefetchIteratorId}}); CreateXEvent(&host_plane_builder, &consumer_thread, HostEventType::kPrefetchConsume, 180000000, 20000000, {{StatType::kElementId, kElementId}}); auto producer_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &producer_thread, HostEventType::kPrefetchProduce, 100000000, 80000000, {{StatType::kElementId, kElementId}}); CreateXEvent(&host_plane_builder, &producer_thread, "Iterator::Prefetch::Generator", 100000000, 80000000, {{StatType::kStepId, kRangeIteratorId}, {StatType::kParentId, kPrefetchIteratorId}}); CombinedTfDataStats combined_tf_data_stats; CombinedTfDataStatsBuilder builder(&combined_tf_data_stats); builder.Add("host1", &host_plane); builder.Finalize(); EXPECT_THAT( combined_tf_data_stats, EqualsProto(R"pb( tf_data_stats: { key: "host1" value: { iterator_metadata: { key: 123, value: { id: 123 name: "Prefetch" long_name: "Iterator::Prefetch" is_async: true } } iterator_metadata: { key: 456, value: { id: 456 parent_id: 123 name: "Generator" long_name: "Iterator::Prefetch::Generator" is_async: false } } input_pipelines { key: 123, value: { metadata { id: 123 type: DEVICE name: "Device:0" } avg_latency_ps: 65000000 min_latency_ps: 30000000 max_latency_ps: 100000000 num_slow_calls: 1 stats { bottleneck_iterator_id: 456 bottleneck_iterator_latency_ps: 80000000 iterator_stats { key: 123, value: { id: 123 start_time_ps: 100000000 duration_ps: 100000000 self_time_ps: 20000000 is_blocking: true num_calls: 1 } } iterator_stats { key: 456, value: { id: 456 start_time_ps: 100000000 duration_ps: 80000000 self_time_ps: 80000000 is_blocking: true num_calls: 1 } } } stats { bottleneck_iterator_id: 123 bottleneck_iterator_latency_ps: 30000000 iterator_stats { key: 123, value: { id: 123 start_time_ps: 0 duration_ps: 30000000 self_time_ps: 30000000 is_blocking: true num_calls: 1 } } } } } } } summary: "No tf.data activity captured in your profile. If your job uses tf.data, try to capture a longer profile." )pb")); } TEST(XPlaneToTfDataStatsTest, MapAndBatch) { constexpr int64_t kMapAndBatchIteratorId = 123; constexpr int64_t kRangeIteratorId = 456; constexpr int64_t kElementId = 100; XPlane host_plane; XPlaneBuilder host_plane_builder(&host_plane); host_plane_builder.ReserveLines(2); XLineBuilder consumer_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &consumer_thread, "Iterator::MapAndBatch", 0, 100000000, {{StatType::kStepId, kMapAndBatchIteratorId}}); CreateXEvent(&host_plane_builder, &consumer_thread, HostEventType::kMapAndBatchConsume, 80000000, 20000000, {{StatType::kElementId, kElementId}}); XLineBuilder producer_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &producer_thread, HostEventType::kMapAndBatchProduce, 0, 30000000, {{StatType::kElementId, kElementId}}); CreateXEvent(&host_plane_builder, &producer_thread, "Iterator::MapAndBatch::Range", 0, 30000000, {{StatType::kStepId, kRangeIteratorId}, {StatType::kParentId, kMapAndBatchIteratorId}}); CreateXEvent(&host_plane_builder, &producer_thread, HostEventType::kMapAndBatchProduce, 40000000, 30000000, {{StatType::kElementId, kElementId}}); CreateXEvent(&host_plane_builder, &producer_thread, "Iterator::MapAndBatch::Range", 40000000, 30000000, {{StatType::kStepId, kRangeIteratorId}, {StatType::kParentId, kMapAndBatchIteratorId}}); CombinedTfDataStats combined_tf_data_stats; CombinedTfDataStatsBuilder builder(&combined_tf_data_stats); builder.Add("host1", &host_plane); builder.Finalize(); EXPECT_THAT( combined_tf_data_stats, EqualsProto(R"pb( bottleneck_analysis: { host: "host1" input_pipeline: "Host:0" max_latency_ps: 100000000 iterator_name: "Range" iterator_long_name: "Iterator::MapAndBatch::Range" iterator_latency_ps: 60000000 suggestion: "See <a href=\"https: } tf_data_stats: { key: "host1" value: { iterator_metadata: { key: 123, value: { id: 123 name: "MapAndBatch" long_name: "Iterator::MapAndBatch" is_async: true } } iterator_metadata: { key: 456, value: { id: 456 parent_id: 123 name: "Range" long_name: "Iterator::MapAndBatch::Range" is_async: false } } input_pipelines { key: 123, value: { metadata { id: 123 type: HOST name: "Host:0" } avg_latency_ps: 100000000 min_latency_ps: 100000000 max_latency_ps: 100000000 num_slow_calls: 1 stats { bottleneck_iterator_id: 456 bottleneck_iterator_latency_ps: 60000000 iterator_stats { key: 123, value: { id: 123 start_time_ps: 0 duration_ps: 100000000 self_time_ps: 40000000 is_blocking: true num_calls: 1 } } iterator_stats { key: 456, value: { id: 456 start_time_ps: 0 duration_ps: 60000000 self_time_ps: 60000000 is_blocking: true num_calls: 2 } } } } } } } is_input_bound: true summary: "Your profile has a tf.data input pipeline slower than 50 us. For each slow input pipeline, below shows a bottleneck in the input pipeline and a suggestion on how to fix it." )pb")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_tf_data_stats.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_tf_data_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
00b7dd90-cd98-4777-86c0-fa8ab725430b
cpp
tensorflow/tensorflow
xplane_to_step_events
tensorflow/core/profiler/convert/xplane_to_step_events.cc
tensorflow/core/profiler/convert/xplane_to_step_events_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_step_events.h" #include <cstdint> #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/match.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/profiler/utils/tf_op_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/timespan.h" #include "xla/tsl/profiler/utils/tpu_xplane_utils.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/event_span.h" #include "tensorflow/core/profiler/utils/op_metrics_db_utils.h" #include "tensorflow/core/profiler/utils/trace_utils.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { namespace { inline bool IsExplicitHostStepMarker(absl::string_view event_name) { return (absl::StartsWith(event_name, "train") || absl::StartsWith(event_name, "test") || absl::StartsWith(event_name, "TraceContext")) && !absl::StrContains(event_name, "/"); } inline bool IsRealCpuCompute(absl::string_view event_name) { bool not_real = absl::StartsWith(event_name, "EagerExecute") || absl::StartsWith(event_name, "EagerLocalExecute") || absl::StartsWith(event_name, "EagerKernelExecute") || absl::StartsWith(event_name, "FunctionRun") || IsExplicitHostStepMarker(event_name); return !not_real; } uint64 ParseNumBytesFromMemcpyDetail(absl::string_view memcpy_detail) { const std::vector<absl::string_view> params = absl::StrSplit(memcpy_detail, absl::ByAnyChar(":\n")); for (uint32 ii = 0; ii < params.size(); ii += 2) { if (params[ii] != "num_bytes") continue; uint64 value = 0; if (absl::SimpleAtoi(params[ii + 1], &value)) return value; break; } return 0ULL; } EventType ClassifyGpuCompute(absl::string_view event_name, absl::string_view tensor_shapes) { if (tensor_shapes.empty()) { return (absl::StrContains(event_name, "half") || absl::StrContains(event_name, "fp16")) ? DEVICE_COMPUTE_16 : DEVICE_COMPUTE_32; } else { return (absl::StrContains(tensor_shapes, "half")) ? DEVICE_COMPUTE_16 : DEVICE_COMPUTE_32; } } EventType ClassifyGpuEvent(absl::string_view event_name, absl::string_view tensor_shapes) { tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(event_name); if (tsl::profiler::IsMemcpyHToDOp(tf_op)) { return HOST_TO_DEVICE; } else if (tsl::profiler::IsMemcpyDToHOp(tf_op)) { return DEVICE_TO_HOST; } else if (tsl::profiler::IsMemcpyDToDOp(tf_op)) { return DEVICE_TO_DEVICE; } else if (absl::StartsWithIgnoreCase(event_name, "nccl")) { return DEVICE_COLLECTIVES; } else { return ClassifyGpuCompute(event_name, tensor_shapes); } } EventType ClassifyCpuEvent(absl::string_view event_name, bool has_device, bool has_correlation_id) { tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(event_name); if (tsl::profiler::IsInfeedEnqueueOp(tf_op) || tsl::profiler::IsMemcpyHToDOp(tf_op)) { return HOST_TO_DEVICE; } else if (tsl::profiler::IsMemcpyHToHOp(tf_op)) { return HOST_TO_HOST; } else if (has_device && (has_correlation_id || absl::StartsWithIgnoreCase( event_name, "ExecutorState::Process"))) { return HOST_PREPARE; } else if (absl::StartsWithIgnoreCase(event_name, "IteratorGetNext")) { return HOST_WAIT_INPUT; } else { return HOST_COMPUTE; } } } StepEvents ConvertHostThreadsXLineToStepEvents( const XLineVisitor& line, const StepEvents* device_step_events) { StepEvents result; line.ForEachEvent([&](const XEventVisitor& event) { int64_t correlation_id = -1; int64_t group_id = -1; absl::string_view step_name; event.ForEachStat([&](const XStatVisitor& stat) { if (!stat.Type().has_value()) return; switch (stat.Type().value()) { case StatType::kCorrelationId: correlation_id = stat.IntValue(); break; case StatType::kGroupId: group_id = stat.IntValue(); break; case StatType::kStepName: step_name = stat.StrOrRefValue(); break; } }); if (group_id < 0) return; bool has_device = (device_step_events != nullptr); if (has_device && !device_step_events->contains(group_id)) return; if (IsExplicitHostStepMarker(event.Name())) { result[group_id].AddMarker( StepMarker(StepMarkerType::kExplicitHostStepMarker, event.Name(), event.GetTimespan())); } else if (!step_name.empty()) { result[group_id].AddMarker( StepMarker(StepMarkerType::kImplicitHostStepMarker, event.Name(), event.GetTimespan())); } else if (IsRealCpuCompute(event.Name())) { result[group_id].AddEvent(EventTypeSpan( ClassifyCpuEvent(event.Name(), has_device, correlation_id >= 0), event.GetTimespan())); } if (!step_name.empty()) { result[group_id].SetStepName(std::string(step_name)); } }); return result; } StepEvents ConvertHostThreadsXPlaneToStepEvents( const XPlane& host_trace, const StepEvents* device_step_events) { StepEvents host_step_events; XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(&host_trace); plane.ForEachLine([&](const XLineVisitor& line) { StepEvents thread_step_events = ConvertHostThreadsXLineToStepEvents(line, device_step_events); UnionCombineStepEvents(thread_step_events, &host_step_events); }); return host_step_events; } StepEvents ConvertDeviceStepInfoToStepMarkers(const XLineVisitor& line) { StepEvents result; line.ForEachEvent([&](const XEventVisitor& event) { if (std::optional<XStatVisitor> stat = event.GetStat(StatType::kGroupId)) { result[stat->IntValue()].AddMarker( StepMarker(StepMarkerType::kDeviceStepMarker, event.Name(), event.GetTimespan())); } }); return result; } StepEvents ConvertDeviceTraceXLineToStepEvents(const uint64 device_id, const XLineVisitor& line) { StepEvents result; line.ForEachEvent([&](const XEventVisitor& event) { int64_t correlation_id = -1; int64_t group_id = -1; absl::string_view tensor_shapes; absl::string_view memcpy_details; event.ForEachStat([&](const XStatVisitor& stat) { if (!stat.Type().has_value()) return; switch (stat.Type().value()) { case StatType::kCorrelationId: correlation_id = stat.IntValue(); break; case StatType::kGroupId: group_id = stat.IntValue(); break; case StatType::kTensorShapes: tensor_shapes = stat.StrOrRefValue(); break; case StatType::kMemcpyDetails: memcpy_details = stat.StrOrRefValue(); break; } }); if (correlation_id >= 0 && group_id >= 0) { EventType event_type = ClassifyGpuEvent(event.Name(), tensor_shapes); EventTypeSpan event_type_span(event_type, event.GetTimespan()); result[group_id].AddEvent(event_type_span); switch (event_type) { case DEVICE_COLLECTIVES: { AllReduceInfo collective_ops; collective_ops.set_start_time_ps(event.TimestampPs()); collective_ops.set_end_time_ps(event.EndOffsetPs()); result[group_id].AddCollectiveOpEvent(device_id, collective_ops); break; } case HOST_TO_DEVICE: case DEVICE_TO_DEVICE: case DEVICE_TO_HOST: { uint64 bytes_transferred = ParseNumBytesFromMemcpyDetail(memcpy_details); result[group_id].AddDeviceMemoryTransferEvent( event_type, event.GetTimespan(), bytes_transferred); break; } default: return; } } }); return result; } StepEvents ConvertTpuDeviceTraceXLineToStepEvents(const uint64 device_id, const XLineVisitor& line) { StepEvents result; absl::flat_hash_map<int64_t , XEventsOpMetricsDbBuilder> op_metrics_builder; line.ForEachEvent([&](const XEventVisitor& event) { auto group_id = event.GetStat(StatType::kGroupId); if (!group_id.has_value()) return; op_metrics_builder[group_id->IntOrUintValue()].AddOpMetric(event); }); for (auto& [group_id, builder] : op_metrics_builder) { result[group_id].SetPerCoreOpMetricsDb(builder.Finalize(), device_id); } return result; } StepEvents ConvertDeviceTraceXPlaneToStepEvents(const XPlane& device_trace) { StepEvents device_step_events; XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(&device_trace); std::optional<int> tpu_core_id = tsl::profiler::GetTensorCoreId(plane.Name()); std::optional<int> sc_core_id = tsl::profiler::GetSparseCoreId(plane.Name()); plane.ForEachLine([&](const XLineVisitor& line) { int64_t line_id = line.Id(); if (line_id == kThreadIdStepInfo || (tpu_core_id.has_value() && line.Name() == tsl::profiler::kStepLineName) || (sc_core_id.has_value() && line.Name() == tsl::profiler::kSparseCoreStepLineName)) { StepEvents step_marker_events = ConvertDeviceStepInfoToStepMarkers(line); UnionCombineStepEvents(step_marker_events, &device_step_events); } else if (IsDerivedThreadId(line_id)) { return; } else { StepEvents stream_step_events; if (tpu_core_id.has_value()) { stream_step_events = ConvertTpuDeviceTraceXLineToStepEvents(*tpu_core_id, line); IntersectCombineStepEvents(stream_step_events, &device_step_events); } else if (sc_core_id.has_value()) { stream_step_events = ConvertTpuDeviceTraceXLineToStepEvents( kSparseCoreIndexStart + *sc_core_id, line); IntersectCombineStepEvents(stream_step_events, &device_step_events); } else { stream_step_events = ConvertDeviceTraceXLineToStepEvents(plane.Id(), line); UnionCombineStepEvents(stream_step_events, &device_step_events); } } }); return device_step_events; } } }
#include "tensorflow/core/profiler/convert/xplane_to_step_events.h" #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/tsl/profiler/utils/group_events.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/event_span.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" namespace tensorflow { namespace profiler { namespace { TEST(ConvertXPlaneToOpStats, CpuOnlyStepDbTest) { constexpr int64_t kFirstStepNum = 123; constexpr int64_t kSecondStepNum = 456; constexpr int64_t kFirstStepId = 0; constexpr int64_t kSecondStepId = 1; constexpr int64_t kFirstCorrelationId = 100; constexpr int64_t kSecondCorrelationId = 200; XSpace space; XPlane* host_plane = GetOrCreateHostXPlane(&space); XPlaneBuilder host_plane_builder(host_plane); host_plane_builder.ReserveLines(2); auto main_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kTraceContext, 0, 100, {{StatType::kStepNum, kFirstStepNum}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 10, 90, {{StatType::kStepId, kFirstStepId}, {StatType::kProducerType, int64_t{1}}, {StatType::kProducerId, kFirstStepId}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kTraceContext, 300, 100, {{StatType::kStepNum, kSecondStepNum}}); CreateXEvent(&host_plane_builder, &main_thread, HostEventType::kFunctionRun, 310, 90, {{StatType::kStepId, kSecondStepId}, {StatType::kProducerType, int64_t{1}}, {StatType::kProducerId, kSecondStepId}}); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 20, 20, {{StatType::kStepId, kFirstStepId}, {StatType::kConsumerType, int64_t{1}}, {StatType::kConsumerId, kFirstStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "matmul", 30, 10, {{StatType::kCorrelationId, kFirstCorrelationId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, HostEventType::kExecutorStateProcess, 320, 20, {{StatType::kStepId, kSecondStepId}, {StatType::kConsumerType, int64_t{1}}, {StatType::kConsumerId, kSecondStepId}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "matmul", 330, 10, {{StatType::kCorrelationId, kSecondCorrelationId}}); XPlane* device_plane = space.add_planes(); XPlaneBuilder device_plane_builder(device_plane); device_plane_builder.ReserveLines(1); auto stream = device_plane_builder.GetOrCreateLine(0); CreateXEvent(&device_plane_builder, &stream, "matmul", 50, 40, {{StatType::kCorrelationId, kFirstCorrelationId}}); tsl::profiler::GroupTfEvents(&space); StepEvents device_step_events = ConvertDeviceTraceXPlaneToStepEvents(*device_plane); EXPECT_EQ(device_step_events.size(), 1); EXPECT_EQ(device_step_events[0].Events().size(), 1); StepEvents host_step_events = ConvertHostThreadsXPlaneToStepEvents(*host_plane, &device_step_events); EXPECT_EQ(host_step_events.size(), 1); EXPECT_EQ(host_step_events[0].Markers().size(), 1); EXPECT_EQ(host_step_events[0].Events().size(), 2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_step_events.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_step_events_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
10c3c9a1-2e41-4864-a9be-cd9d7a285c38
cpp
tensorflow/tensorflow
xplane_to_tool_names
tensorflow/core/profiler/convert/xplane_to_tool_names.cc
tensorflow/core/profiler/convert/xplane_to_tool_names_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_tool_names.h" #include <memory> #include <string> #include <vector> #include "absl/strings/str_join.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/profiler/convert/repository.h" #include "tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats.h" #include "tensorflow/core/profiler/convert/xplane_to_hlo.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" namespace tensorflow { namespace profiler { absl::StatusOr<std::string> GetAvailableToolNames( const SessionSnapshot& session_snapshot) { std::vector<std::string> tools; bool is_cloud_vertex_ai = !session_snapshot.HasAccessibleRunDir(); if (session_snapshot.XSpaceSize() != 0) { tools.reserve(11); tools.push_back(is_cloud_vertex_ai ? "trace_viewer" : "trace_viewer@"); tools.push_back("overview_page"); tools.push_back("input_pipeline_analyzer"); tools.push_back("framework_op_stats"); tools.push_back("memory_profile"); tools.push_back("pod_viewer"); tools.push_back("tf_data_bottleneck_analysis"); tools.push_back("op_profile"); TF_ASSIGN_OR_RETURN(std::unique_ptr<XSpace> xspace, session_snapshot.GetXSpace(0)); if (!FindPlanesWithPrefix(*xspace, kGpuPlanePrefix).empty()) { tools.push_back("kernel_stats"); } TF_ASSIGN_OR_RETURN(bool has_hlo, ConvertMultiXSpaceToHloProto(session_snapshot)); if (has_hlo) { tools.push_back("memory_viewer"); tools.push_back("graph_viewer"); } TF_ASSIGN_OR_RETURN(bool has_dcn_collective_stats, HasDcnCollectiveStatsInMultiXSpace(session_snapshot)); if (has_dcn_collective_stats) { tools.push_back("dcn_collective_stats"); } } return absl::StrJoin(tools, ","); } } }
#include "tensorflow/core/profiler/convert/xplane_to_tool_names.h" #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/convert/repository.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { struct XPlaneToToolsTestCase { std::string test_name; std::string_view plane_name; bool has_hlo_module; bool has_dcn_collective_stats; std::vector<std::string> expected_tools; }; SessionSnapshot CreateSessionSnapshot(std::unique_ptr<XSpace> xspace, bool has_hlo_module, bool has_dcn_collective_stats) { std::string test_name = ::testing::UnitTest::GetInstance()->current_test_info()->name(); std::string path = absl::StrCat("ram: std::unique_ptr<WritableFile> xplane_file; tensorflow::Env::Default() ->NewAppendableFile(absl::StrCat(path, "hostname.xplane.pb"), &xplane_file) .IgnoreError(); std::vector<std::string> paths = {path}; if (has_hlo_module) { tensorflow::Env::Default() ->NewAppendableFile(absl::StrCat(path, "module_name.hlo_proto.pb"), &xplane_file) .IgnoreError(); } else { tensorflow::Env::Default() ->NewAppendableFile(absl::StrCat(path, "NO_MODULE.hlo_proto.pb"), &xplane_file) .IgnoreError(); } if (has_dcn_collective_stats) { tensorflow::Env::Default() ->NewAppendableFile( absl::StrCat(path, "hostname.dcn_collective_stats.pb"), &xplane_file) .IgnoreError(); tensorflow::Env::Default() ->NewAppendableFile( absl::StrCat(path, "ALL_HOSTS.dcn_collective_stats.pb"), &xplane_file) .IgnoreError(); } else { tensorflow::Env::Default() ->NewAppendableFile( absl::StrCat(path, "NO_HOST.dcn_collective_stats.pb"), &xplane_file) .IgnoreError(); } std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(xspace)); absl::StatusOr<SessionSnapshot> session_snapshot = SessionSnapshot::Create(paths, std::move(xspaces)); TF_CHECK_OK(session_snapshot.status()); return std::move(session_snapshot.value()); } using XPlaneToToolsTest = ::testing::TestWithParam<XPlaneToToolsTestCase>; TEST_P(XPlaneToToolsTest, ToolsList) { const XPlaneToToolsTestCase& test_case = GetParam(); auto xspace = std::make_unique<XSpace>(); FindOrAddMutablePlaneWithName(xspace.get(), test_case.plane_name); SessionSnapshot sessionSnapshot = CreateSessionSnapshot(std::move(xspace), test_case.has_hlo_module, test_case.has_dcn_collective_stats); absl::StatusOr<std::string> toolsString = GetAvailableToolNames(sessionSnapshot); ASSERT_TRUE(toolsString.ok()); std::vector<std::string> tools = absl::StrSplit(toolsString.value(), ','); std::vector<std::string> expected_tools = {"trace_viewer", "overview_page", "input_pipeline_analyzer", "framework_op_stats", "memory_profile", "pod_viewer", "tf_data_bottleneck_analysis", "op_profile"}; expected_tools.insert(expected_tools.end(), test_case.expected_tools.begin(), test_case.expected_tools.end()); EXPECT_THAT(tools, ::testing::UnorderedElementsAreArray(expected_tools)); } INSTANTIATE_TEST_SUITE_P( XPlaneToToolsTests, XPlaneToToolsTest, ::testing::ValuesIn<XPlaneToToolsTestCase>({ {"ToolsForTpuWithoutHloModule", kTpuPlanePrefix, false, false, {}}, {"ToolsForTpuWithHloModule", kTpuPlanePrefix, true, false, {"graph_viewer", "memory_viewer"}}, {"ToolsForGpuWithoutHloModule", kGpuPlanePrefix, false, false, {"kernel_stats"}}, {"ToolsForGpuWithHloModule", kGpuPlanePrefix, true, false, {"kernel_stats", "graph_viewer", "memory_viewer"}}, {"ToolsForTpuWithDcnCollectiveStats", kTpuPlanePrefix, false, true, {"dcn_collective_stats"}}, }), [](const ::testing::TestParamInfo<XPlaneToToolsTest::ParamType>& info) { return info.param.test_name; }); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_tool_names.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_tool_names_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c60900b9-5117-4a35-921c-e7e73ded1358
cpp
tensorflow/tensorflow
xplane_to_dcn_collective_stats
tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats.cc
tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats.h" #include <memory> #include <string> #include <utility> #include "absl/strings/match.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/profiler/convert/dcn_slack_analysis_combiner.h" #include "tensorflow/core/profiler/convert/repository.h" #include "tensorflow/core/profiler/convert/xspace_to_dcn_slack_analysis.h" #include "tensorflow/core/profiler/protobuf/dcn_slack_analysis.pb.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { bool HasDcnCollectiveStatsInXSpace(const XSpace& xspace) { if (const tensorflow::profiler::XPlane* xplane = FindPlaneWithName( xspace, tensorflow::profiler::kHostThreadsPlaneName); xplane != nullptr) { for (const auto& [_, metadata] : xplane->event_metadata()) { if (absl::StartsWith(metadata.name(), "MegaScale:")) { return true; } } } return false; } absl::StatusOr<bool> GetDcnCollectiveStatsFromMultiXSpaceAndSaveToFile( const SessionSnapshot& session_snapshot) { DcnSlackAnalysisCombiner combiner; for (int idx = 0; idx < session_snapshot.XSpaceSize(); idx++) { std::string hostname = session_snapshot.GetHostname(idx); TF_ASSIGN_OR_RETURN(std::unique_ptr<XSpace> xspace, session_snapshot.GetXSpace(idx)); if (!HasDcnCollectiveStatsInXSpace(*xspace)) { DcnSlackAnalysis dcnSlackAnalysis; TF_RETURN_IF_ERROR(WriteBinaryProto(session_snapshot, StoredDataType::DCN_COLLECTIVE_STATS, kNoHostIdentifier, dcnSlackAnalysis)); return false; } DcnSlackAnalysis dcnSlackAnalysis = ConvertXSpaceToDcnSlackAnalysis(*xspace, nullptr, nullptr); TF_RETURN_IF_ERROR(WriteBinaryProto(session_snapshot, StoredDataType::DCN_COLLECTIVE_STATS, hostname, dcnSlackAnalysis)); combiner.Combine(dcnSlackAnalysis); } DcnSlackAnalysis dcnSlackAnalysis = combiner.Finalize(); TF_RETURN_IF_ERROR(WriteBinaryProto(session_snapshot, StoredDataType::DCN_COLLECTIVE_STATS, kAllHostsIdentifier, dcnSlackAnalysis)); return true; } } absl::StatusOr<bool> HasDcnCollectiveStatsInMultiXSpace( const SessionSnapshot& session_snapshot) { std::pair<bool, std::string> hasCacheFile; TF_ASSIGN_OR_RETURN(hasCacheFile, session_snapshot.HasCacheFile( StoredDataType::DCN_COLLECTIVE_STATS)); if (!hasCacheFile.first) { for (int idx = 0; idx < session_snapshot.XSpaceSize(); idx++) { std::string hostname = session_snapshot.GetHostname(idx); TF_ASSIGN_OR_RETURN(std::unique_ptr<XSpace> xspace, session_snapshot.GetXSpace(idx)); if (HasDcnCollectiveStatsInXSpace(*xspace)) { return true; } } return false; } if (hasCacheFile.second.empty()) { return false; } else { return true; } } absl::StatusOr<bool> ConvertMultiXSpaceToDcnCollectiveStats( const SessionSnapshot& session_snapshot) { std::pair<bool, std::string> hasCacheFile; TF_ASSIGN_OR_RETURN(hasCacheFile, session_snapshot.HasCacheFile( StoredDataType::DCN_COLLECTIVE_STATS)); if (!hasCacheFile.first) { return GetDcnCollectiveStatsFromMultiXSpaceAndSaveToFile(session_snapshot); } if (hasCacheFile.second.empty()) { return false; } else { return true; } } absl::StatusOr<DcnSlackAnalysis> GetDcnSlackAnalysisByHostName( const SessionSnapshot& session_snapshot, const std::string hostname) { TF_ASSIGN_OR_RETURN(bool hasDcnCollectiveStats, ConvertMultiXSpaceToDcnCollectiveStats(session_snapshot)); DcnSlackAnalysis dcnSlackAnalysis; if (hasDcnCollectiveStats) { TF_RETURN_IF_ERROR(ReadBinaryProto(session_snapshot, StoredDataType::DCN_COLLECTIVE_STATS, hostname, &dcnSlackAnalysis)); } return dcnSlackAnalysis; } } }
#include "tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/profiler/convert/repository.h" #include "tensorflow/core/profiler/protobuf/dcn_slack_analysis.pb.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tsl/platform/status.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { DcnSlackAnalysis CreateDcnSlackAnalysisProto() { DcnSlackAnalysis dcn_slack_analysis; DcnSlackSummary* dcn_slack_summary = dcn_slack_analysis.add_dcn_slack_summary(); dcn_slack_summary->set_rendezvous("collective"); dcn_slack_summary->set_recv_op_name("recv-done"); dcn_slack_summary->set_send_op_name("send"); dcn_slack_summary->set_slack_us(2); dcn_slack_summary->set_observed_duration_us(12); dcn_slack_summary->set_stall_duration_us(5); dcn_slack_summary->set_occurrences(4); dcn_slack_summary->set_bytes_transmitted_over_network(819200); return dcn_slack_analysis; } SessionSnapshot CreateSessionSnapshot(bool create_cache_file, bool has_dcn_collective_stats) { std::string test_name = ::testing::UnitTest::GetInstance()->current_test_info()->name(); std::string path = absl::StrCat("ram: std::unique_ptr<WritableFile> xplane_file; std::vector<std::string> paths = {absl::StrCat(path, "hostname.xplane.pb")}; auto xspace = std::make_unique<XSpace>(); XPlane* xplane = FindOrAddMutablePlaneWithName(xspace.get(), "/host:CPU"); if (has_dcn_collective_stats) { XPlaneBuilder xplane_builder(xplane); xplane_builder.GetOrCreateEventMetadata("MegaScale:"); } if (create_cache_file) { if (has_dcn_collective_stats) { tensorflow::Env::Default() ->NewAppendableFile( absl::StrCat(path, "hostname.dcn_collective_stats.pb"), &xplane_file) .IgnoreError(); tensorflow::Env::Default() ->NewAppendableFile( absl::StrCat(path, "ALL_HOSTS.dcn_collective_stats.pb"), &xplane_file) .IgnoreError(); } else { tensorflow::Env::Default() ->NewAppendableFile( absl::StrCat(path, "NO_HOST.dcn_collective_stats.pb"), &xplane_file) .IgnoreError(); } } std::vector<std::unique_ptr<XSpace>> xspaces; xspaces.push_back(std::move(xspace)); absl::StatusOr<SessionSnapshot> session_snapshot_status = SessionSnapshot::Create(paths, std::move(xspaces)); TF_CHECK_OK(session_snapshot_status.status()); SessionSnapshot session_snapshot = std::move(session_snapshot_status.value()); if (has_dcn_collective_stats) { DcnSlackAnalysis dcn_slack_analysis = CreateDcnSlackAnalysisProto(); TF_CHECK_OK(session_snapshot.WriteBinaryProto( DCN_COLLECTIVE_STATS, "hostname", dcn_slack_analysis)); TF_CHECK_OK(session_snapshot.WriteBinaryProto( DCN_COLLECTIVE_STATS, kAllHostsIdentifier, dcn_slack_analysis)); } return session_snapshot; } TEST(ConvertXplaneToDcnCollectiveStats, HasAllHostsDcnCollectiveStatsCacheFile) { SessionSnapshot session_snapshot = CreateSessionSnapshot(true, true); absl::StatusOr<bool> status = HasDcnCollectiveStatsInMultiXSpace(session_snapshot); EXPECT_EQ(status.value(), true); } TEST(ConvertXplaneToDcnCollectiveStats, HasNoHostDcnCollectiveStatsCacheFile) { SessionSnapshot session_snapshot = CreateSessionSnapshot(true, false); absl::StatusOr<bool> status = HasDcnCollectiveStatsInMultiXSpace(session_snapshot); EXPECT_EQ(status.value(), false); } TEST(ConvertXplaneToDcnCollectiveStats, NoCacheFileButTraceHasDcnCollectiveStats) { SessionSnapshot session_snapshot = CreateSessionSnapshot(false, true); absl::StatusOr<bool> status = HasDcnCollectiveStatsInMultiXSpace(session_snapshot); EXPECT_EQ(status.value(), true); } TEST(ConvertXplaneToDcnCollectiveStats, NoCacheFileNoDcnCollectiveStatsPresent) { SessionSnapshot session_snapshot = CreateSessionSnapshot(false, false); absl::StatusOr<bool> status = HasDcnCollectiveStatsInMultiXSpace(session_snapshot); EXPECT_EQ(status.value(), false); } TEST(ConvertXplaneToDcnCollectiveStats, ConvertXSpaceToDcnCollectiveStatsWhenStatsPresent) { SessionSnapshot session_snapshot = CreateSessionSnapshot(false, true); absl::StatusOr<bool> status = ConvertMultiXSpaceToDcnCollectiveStats(session_snapshot); absl::StatusOr<std::optional<std::string>> all_hosts_filepath = session_snapshot.GetHostDataFilePath(StoredDataType::DCN_COLLECTIVE_STATS, kAllHostsIdentifier); absl::StatusOr<std::optional<std::string>> host_filepath = session_snapshot.GetHostDataFilePath(StoredDataType::DCN_COLLECTIVE_STATS, "hostname"); EXPECT_EQ(status.value(), true); TF_EXPECT_OK(all_hosts_filepath.status()); EXPECT_TRUE(all_hosts_filepath.value().has_value()); EXPECT_FALSE(all_hosts_filepath.value().value().empty()); TF_EXPECT_OK(host_filepath.status()); EXPECT_TRUE(host_filepath.value().has_value()); EXPECT_FALSE(host_filepath.value().value().empty()); } TEST(ConvertXplaneToDcnCollectiveStats, ConvertXSpaceToDcnCollectiveStatsWhenStatsNotPresent) { SessionSnapshot session_snapshot = CreateSessionSnapshot(false, false); absl::StatusOr<bool> status = ConvertMultiXSpaceToDcnCollectiveStats(session_snapshot); absl::StatusOr<std::optional<std::string>> filepath = session_snapshot.GetHostDataFilePath(StoredDataType::DCN_COLLECTIVE_STATS, kNoHostIdentifier); EXPECT_EQ(status.value(), false); TF_EXPECT_OK(filepath.status()); EXPECT_TRUE(filepath.value().has_value()); EXPECT_FALSE(filepath.value().value().empty()); } TEST(ConvertXplaneToDcnCollectiveStats, GetHostDcnSlackAnalysisWhenStatsNotPresent) { SessionSnapshot session_snapshot = CreateSessionSnapshot(false, false); absl::StatusOr<DcnSlackAnalysis> host_dcn_slack_analysis = GetDcnSlackAnalysisByHostName(session_snapshot, "hostname"); TF_EXPECT_OK(host_dcn_slack_analysis.status()); EXPECT_EQ(host_dcn_slack_analysis.value().dcn_slack_summary_size(), 0); } TEST(ConvertXplaneToDcnCollectiveStats, GetHostDcnSlackAnalysisWhenStatsPresent) { SessionSnapshot session_snapshot = CreateSessionSnapshot(true, true); absl::StatusOr<DcnSlackAnalysis> host_dcn_slack_analysis = GetDcnSlackAnalysisByHostName(session_snapshot, "hostname"); TF_EXPECT_OK(host_dcn_slack_analysis.status()); EXPECT_EQ(host_dcn_slack_analysis.value().dcn_slack_summary_size(), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_dcn_collective_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
429e12ca-dd05-4f23-8bf5-04fa9872c11b
cpp
tensorflow/tensorflow
op_stats_combiner
tensorflow/core/profiler/convert/op_stats_combiner.cc
tensorflow/core/profiler/convert/op_stats_combiner_test.cc
#include "tensorflow/core/profiler/convert/op_stats_combiner.h" #include <algorithm> #include <cstddef> #include <vector> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/profiler/convert/op_metrics_db_combiner.h" #include "tensorflow/core/profiler/convert/xplane_to_tf_functions.h" #include "tensorflow/core/profiler/protobuf/diagnostics.pb.h" #include "tensorflow/core/profiler/protobuf/hardware_types.pb.h" #include "tensorflow/core/profiler/protobuf/kernel_stats.pb.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/power_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/protobuf/topology.pb.h" #include "tensorflow/core/profiler/utils/hardware_type_utils.h" #include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include "tensorflow/core/profiler/utils/step_intersection.h" namespace tensorflow { namespace profiler { namespace { void CombinePerCoreStepInfo( int src_host_id, const PerCoreStepInfo& src, bool use_incomplete_step, PerCoreStepInfo* dst, OpMetricsDbCombiner* hlo_metrics_db_complete_steps_only_combiner, OpMetricsDbCombiner* hlo_metrics_db_per_step_combiner) { CombineCoreIdMap(src_host_id, src.step_info_per_core(), dst->mutable_step_info_per_core()); uint32 new_step_num = dst->step_num(); for (auto& percore_stepinfo : *dst->mutable_step_info_per_core()) { auto& stepinfo = percore_stepinfo.second; stepinfo.set_step_num(new_step_num); } if (!use_incomplete_step) { hlo_metrics_db_complete_steps_only_combiner->Combine(src.hlo_metrics_db()); } hlo_metrics_db_per_step_combiner->Combine(src.hlo_metrics_db()); CombineCoreIdMap(src_host_id, src.all_reduce_db_per_core(), dst->mutable_all_reduce_db_per_core()); CombineCoreIdMap(src_host_id, src.core_id_to_replica_id_map(), dst->mutable_core_id_to_replica_id_map()); } void CombineStepDatabase( int src_host_id, const StepIntersection& step_intersection, const StepDatabaseResult& src, StepDatabaseResult* dst, OpMetricsDbCombiner* hlo_metrics_db_complete_steps_only_combiner, std::vector<OpMetricsDbCombiner>* hlo_metrics_db_per_step_combiners) { if (src.use_incomplete_step()) dst->set_use_incomplete_step(true); uint32 src_first_step_idx = step_intersection.FirstStepIndex(src_host_id); for (uint32 i = 0; i < step_intersection.NumSteps(); i++) { CombinePerCoreStepInfo( src_host_id, src.step_sequence(src_first_step_idx + i), src.use_incomplete_step(), dst->mutable_step_sequence(i), hlo_metrics_db_complete_steps_only_combiner, &(*hlo_metrics_db_per_step_combiners)[i]); } } void CombinePowerMetrics(const RunEnvironment& src, RunEnvironment* dst) { const size_t src_hosts = src.hostnames_size(); const size_t dst_hosts = dst->hostnames_size(); const double src_weight = src_hosts * 1.0 / (src_hosts + dst_hosts); const double dst_weight = dst_hosts * 1.0 / (src_hosts + dst_hosts); for (const auto& src_metric : src.power_metrics().power_component_metrics()) { for (auto& dst_metric : *dst->mutable_power_metrics()->mutable_power_component_metrics()) { if (src_metric.component_name() != dst_metric.component_name()) continue; dst_metric.set_max_power( std::max(src_metric.max_power(), dst_metric.max_power())); dst_metric.set_avg_power(src_metric.avg_power() * src_weight + dst_metric.avg_power() * dst_weight); } } } void CombineRunEnvironment(const RunEnvironment& src, RunEnvironment* dst) { dst->mutable_hostnames()->insert(src.hostnames().begin(), src.hostnames().end()); dst->set_host_count(dst->hostnames_size()); if (src.device_type() != "CPU" && src.device_type() != "Device") { dst->set_device_type(src.device_type()); dst->set_device_core_count(src.device_core_count() + dst->device_core_count()); dst->set_replica_count(std::max(src.replica_count(), dst->replica_count())); dst->set_num_cores_per_replica( std::max(src.num_cores_per_replica(), dst->num_cores_per_replica())); *dst->mutable_system_topology() = src.system_topology(); } else if (dst->device_type().empty()) { dst->set_device_type(src.device_type()); } dst->set_task_count(src.task_count() + dst->task_count()); if (src.host_independent_job_info().profile_duration_ms() > 0) { (*dst->mutable_host_independent_job_info()) = src.host_independent_job_info(); } for (const auto& job_info : src.host_dependent_job_info()) { *(dst->add_host_dependent_job_info()) = job_info; } dst->set_host_trace_level(src.host_trace_level()); dst->set_is_training(src.is_training()); CombinePowerMetrics(src, dst); } void CombinePerfEnv(const PerfEnv& src, PerfEnv* dst) { if (src.peak_tera_flops_per_second() > 0) { dst->set_peak_tera_flops_per_second(src.peak_tera_flops_per_second()); } if (src.peak_bws_giga_bytes_per_second_size() > 0 && dst->peak_bws_giga_bytes_per_second_size() == 0) { *dst->mutable_peak_bws_giga_bytes_per_second() = src.peak_bws_giga_bytes_per_second(); } if (src.ridge_point() > 0) { dst->set_ridge_point(src.ridge_point()); } } void CombineDiagnostics(const Diagnostics& src, Diagnostics* dst) { dst->mutable_info()->MergeFrom(src.info()); dst->mutable_warnings()->MergeFrom(src.warnings()); dst->mutable_errors()->MergeFrom(src.errors()); } void CombineOpStats( bool no_accelerator_in_system, int src_host_id, HardwareType hardware_type, const StepIntersection& step_intersection, const OpStats& src, OpStats* dst, OpMetricsDbCombiner* host_op_metrics_db_combiner, OpMetricsDbCombiner* device_op_metrics_db_combiner, OpMetricsDbCombiner* hlo_metrics_db_complete_steps_only_combiner, std::vector<OpMetricsDbCombiner>* hlo_metrics_db_per_step_combiners) { host_op_metrics_db_combiner->Combine(src.host_op_metrics_db(), false); device_op_metrics_db_combiner->Combine(src.device_op_metrics_db()); if (!IsCoordinator(no_accelerator_in_system, hardware_type)) { CombineStepDatabase(src_host_id, step_intersection, src.step_db(), dst->mutable_step_db(), hlo_metrics_db_complete_steps_only_combiner, hlo_metrics_db_per_step_combiners); } CombineRunEnvironment(src.run_environment(), dst->mutable_run_environment()); CombinePerfEnv(src.perf_env(), dst->mutable_perf_env()); CombineDiagnostics(src.diagnostics(), dst->mutable_diagnostics()); dst->mutable_kernel_stats_db()->mutable_reports()->MergeFrom( src.kernel_stats_db().reports()); CombineTfFunctionDb(src.tf_function_db(), dst->mutable_tf_function_db()); CombineCoreIdMap(src_host_id, src.core_id_to_details(), dst->mutable_core_id_to_details()); dst->mutable_performance_counter_result() ->set_matrix_unit_utilization_percent( dst->performance_counter_result().matrix_unit_utilization_percent() + src.performance_counter_result().matrix_unit_utilization_percent()); } } bool IsCoordinator(bool no_accelerator_in_system, HardwareType hardware_type) { return !HasDevice(hardware_type) && !no_accelerator_in_system; } bool NoAcceleratorInSystem(const std::vector<OpStatsInfo>& all_op_stats_info) { for (const auto& op_stats_info : all_op_stats_info) { if (HasDevice(op_stats_info.hardware_type)) { return false; } } return true; } uint32 GlobalCoreId(int host_id, uint32 device_ordinal) { constexpr uint32 kMaxDevicesPerHost = 1000; return host_id * kMaxDevicesPerHost + device_ordinal; } StepIntersection ComputeStepIntersectionToMergeOpStats( const std::vector<OpStatsInfo>& all_op_stats_info, uint32 max_step_per_host) { bool no_accelerator_in_system = NoAcceleratorInSystem(all_op_stats_info); absl::flat_hash_map<uint32, const StepDatabaseResult*> per_host_step_db; for (const auto& op_stats_info : all_op_stats_info) { if (IsCoordinator(no_accelerator_in_system, op_stats_info.hardware_type)) continue; per_host_step_db[op_stats_info.src_host_id] = &op_stats_info.op_stats->step_db(); } return StepIntersection(max_step_per_host, per_host_step_db); } void CombineAllOpStats(const std::vector<OpStatsInfo>& all_op_stats_info, const StepIntersection& step_intersection, OpStats* combined_op_stats) { if (all_op_stats_info.size() == 1) { *combined_op_stats = *all_op_stats_info[0].op_stats; return; } StepDatabaseResult* combined_step_db = combined_op_stats->mutable_step_db(); for (uint32 dst_step_num : step_intersection.DstStepNumbers()) { combined_step_db->add_step_sequence()->set_step_num(dst_step_num); } combined_step_db->set_num_steps_dropped(step_intersection.StepsDropped()); combined_step_db->set_empty_intersect(step_intersection.EmptyIntersect()); OpMetricsDbCombiner host_op_metrics_db_combiner( combined_op_stats->mutable_host_op_metrics_db()); OpMetricsDbCombiner device_op_metrics_db_combiner( combined_op_stats->mutable_device_op_metrics_db()); OpMetricsDbCombiner hlo_metrics_db_complete_steps_only_combiner( combined_op_stats->mutable_hlo_metrics_db_complete_steps_only()); std::vector<OpMetricsDbCombiner> hlo_metrics_db_per_step_combiners; hlo_metrics_db_per_step_combiners.reserve( combined_step_db->step_sequence_size()); for (PerCoreStepInfo& step_info : *combined_step_db->mutable_step_sequence()) { hlo_metrics_db_per_step_combiners.emplace_back( step_info.mutable_hlo_metrics_db()); } bool no_accelerator_in_system = NoAcceleratorInSystem(all_op_stats_info); for (const auto& op_stats_info : all_op_stats_info) { CombineOpStats(no_accelerator_in_system, op_stats_info.src_host_id, op_stats_info.hardware_type, step_intersection, *op_stats_info.op_stats, combined_op_stats, &host_op_metrics_db_combiner, &device_op_metrics_db_combiner, &hlo_metrics_db_complete_steps_only_combiner, &hlo_metrics_db_per_step_combiners); } SortAndKeepTopKDurationKernelReportsInDb( combined_op_stats->mutable_kernel_stats_db()); combined_op_stats->mutable_performance_counter_result() ->set_matrix_unit_utilization_percent( combined_op_stats->performance_counter_result() .matrix_unit_utilization_percent() / all_op_stats_info.size()); } } }
#include "tensorflow/core/profiler/convert/op_stats_combiner.h" #include <vector> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/hardware_types.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/utils/step_intersection.h" namespace tensorflow { namespace profiler { namespace { TEST(CombineAllOpStatsTest, CombineRunEnvironment) { OpStats dst_op_stats, op_stats_1, op_stats_2; op_stats_1.mutable_run_environment() ->mutable_host_independent_job_info() ->set_profile_duration_ms(100); op_stats_2.mutable_run_environment() ->mutable_host_independent_job_info() ->set_profile_duration_ms(0); OpStatsInfo op_stats_info_1(&op_stats_1, TPU, 0), op_stats_info_2(&op_stats_2, TPU, 0); std::vector<OpStatsInfo> all_op_stats_info = {op_stats_info_1, op_stats_info_2}; StepDatabaseResult dummy_step_db_result; absl::flat_hash_map<uint32 , const StepDatabaseResult*> result; result.insert({0, &dummy_step_db_result}); StepIntersection dummy_step_intersection = StepIntersection(1, result); CombineAllOpStats(all_op_stats_info, dummy_step_intersection, &dst_op_stats); EXPECT_EQ(100, dst_op_stats.run_environment() .host_independent_job_info() .profile_duration_ms()); } TEST(CombineAllOpStatsTest, CombineRunEnvironmentWithUnknownDevice) { OpStats dst_op_stats, op_stats_1, op_stats_2; op_stats_1.mutable_run_environment()->set_device_type("TPU"); op_stats_2.mutable_run_environment()->set_device_type("Device"); OpStatsInfo op_stats_info_1(&op_stats_1, TPU, 0), op_stats_info_2(&op_stats_2, TPU, 0); std::vector<OpStatsInfo> all_op_stats_info = {op_stats_info_1, op_stats_info_2}; StepDatabaseResult dummy_step_db_result; absl::flat_hash_map<uint32 , const StepDatabaseResult*> result; result.insert({0, &dummy_step_db_result}); StepIntersection dummy_step_intersection = StepIntersection(1, result); CombineAllOpStats(all_op_stats_info, dummy_step_intersection, &dst_op_stats); EXPECT_EQ("TPU", dst_op_stats.run_environment().device_type()); } TEST(CombineAllOpStatsTest, CombinePerfEnvOrderZero) { OpStats dst_op_stats1, dst_op_stats2, op_stats_1, op_stats_2; op_stats_1.mutable_perf_env()->set_peak_tera_flops_per_second(100); op_stats_2.mutable_perf_env()->set_peak_tera_flops_per_second(0); absl::flat_hash_map<uint32 , const StepDatabaseResult*> result; StepIntersection dummy_step_intersection = StepIntersection(1, result); OpStatsInfo op_stats_info_1(&op_stats_1, TPU, 0), op_stats_info_2(&op_stats_2, TPU, 0); std::vector<OpStatsInfo> all_op_stats_info = {op_stats_info_1, op_stats_info_2}; CombineAllOpStats(all_op_stats_info, dummy_step_intersection, &dst_op_stats1); EXPECT_EQ(100, dst_op_stats1.perf_env().peak_tera_flops_per_second()); all_op_stats_info = { op_stats_info_2, op_stats_info_1, }; CombineAllOpStats(all_op_stats_info, dummy_step_intersection, &dst_op_stats2); EXPECT_EQ(100, dst_op_stats2.perf_env().peak_tera_flops_per_second()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/op_stats_combiner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/op_stats_combiner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fc1c3508-aaa8-4b66-b170-3982278d9920
cpp
tensorflow/tensorflow
op_stats_to_tf_stats
tensorflow/core/profiler/convert/op_stats_to_tf_stats.cc
tensorflow/core/profiler/convert/op_stats_to_tf_stats_test.cc
#include "tensorflow/core/profiler/convert/op_stats_to_tf_stats.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/convert/op_metrics_to_record.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/tf_stats.pb.h" #include "tensorflow/core/profiler/utils/kernel_stats_utils.h" #include "tensorflow/core/profiler/utils/math_utils.h" #include "tensorflow/core/profiler/utils/op_metrics_db_utils.h" namespace tensorflow { namespace profiler { namespace { const int kMaxNumOfOps = 500; TfStatsRecord ConvertOpMetricsToTfStatsRecord( bool on_device, const OpMetrics& metrics, double ridge_point_operational_intensity) { TfStatsRecord record; record.set_host_or_device(on_device ? "Device" : "Host"); record.set_is_eager(metrics.is_eager()); record.set_op_type(metrics.category()); record.set_op_name(metrics.name()); SetExecutionTimes(metrics, &record); SetRooflineMetrics(metrics, ridge_point_operational_intensity, &record); return record; } TfStatsTable GenerateTfStatsTable( const OpMetricsDb& host_tf_metrics_db, const OpMetricsDb& device_tf_metrics_db, const KernelStatsByOpName& kernel_stats_by_op_name, double ridge_point, bool exclude_idle) { TfStatsTable tf_stats_table; TfStatsRecord sentinel; sentinel.set_rank(0); sentinel.set_device_cumulative_total_self_time_as_fraction(0.0); sentinel.set_host_cumulative_total_self_time_as_fraction(0.0); const TfStatsRecord* prev_record = &sentinel; uint64 total_device_time_ps = TotalTimePs(device_tf_metrics_db, exclude_idle); double total_device_time_us = tsl::profiler::PicoToMicro(total_device_time_ps); for (const OpMetrics* metrics : SortedOpMetricsDb(device_tf_metrics_db, kMaxNumOfOps)) { if (exclude_idle && IsIdleOp(*metrics)) continue; TfStatsRecord* record = tf_stats_table.add_tf_stats_record(); *record = ConvertOpMetricsToTfStatsRecord( true, *metrics, ridge_point); auto iter = kernel_stats_by_op_name.find(record->op_name()); if (iter != kernel_stats_by_op_name.end()) { record->set_gpu_tensorcore_utilization( tsl::profiler::SafeDivide(iter->second.tensor_core_duration_ns, iter->second.total_duration_ns)); } else { record->set_gpu_tensorcore_utilization(0.0); } SetRankAndDeviceTimeFractions(total_device_time_us, *prev_record, record); prev_record = record; } uint64 total_host_time_ps = TotalTimePs(host_tf_metrics_db, exclude_idle); double total_host_time_us = tsl::profiler::PicoToMicro(total_host_time_ps); for (const OpMetrics* metrics : tensorflow::profiler::SortedOpMetricsDb( host_tf_metrics_db, kMaxNumOfOps)) { if (exclude_idle && IsIdleOp(*metrics)) continue; TfStatsRecord* record = tf_stats_table.add_tf_stats_record(); *record = ConvertOpMetricsToTfStatsRecord( false, *metrics, ridge_point); record->set_gpu_tensorcore_utilization(0.0); SetRankAndHostTimeFractions(total_host_time_us, *prev_record, record); prev_record = record; } return tf_stats_table; } } TfStatsDatabase ConvertOpStatsToTfStats(const OpStats& op_stats) { const OpMetricsDb& host_tf_metrics_db = op_stats.host_op_metrics_db(); OpMetricsDb device_tf_metrics_db = CreateTfMetricsDbFromDeviceOpMetricsDb(op_stats.device_op_metrics_db()); double ridge_point = op_stats.perf_env().ridge_point(); KernelStatsByOpName kernel_stats_by_op_name = GroupKernelReportsByOpName(op_stats.kernel_stats_db()); TfStatsDatabase tf_stats_db; *tf_stats_db.mutable_with_idle() = GenerateTfStatsTable( host_tf_metrics_db, device_tf_metrics_db, kernel_stats_by_op_name, ridge_point, false); *tf_stats_db.mutable_without_idle() = GenerateTfStatsTable( host_tf_metrics_db, device_tf_metrics_db, kernel_stats_by_op_name, ridge_point, true); tf_stats_db.set_device_type(op_stats.run_environment().device_type()); return tf_stats_db; } } }
#include "tensorflow/core/profiler/convert/op_stats_to_tf_stats.h" #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/convert/xplane_to_op_stats.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/tf_stats.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/math_utils.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" namespace tensorflow { namespace profiler { namespace { XEventBuilder AddTensorFlowOpEvent(std::string&& tf_op_fullname, int64_t start_timestamp_ns, int64_t duration_ns, bool on_device, absl::string_view kernel_name, XPlaneBuilder* plane, XLineBuilder* line) { absl::string_view name = on_device ? kernel_name : tf_op_fullname; XEventBuilder event = line->AddEvent(*plane->GetOrCreateEventMetadata(name)); event.SetTimestampNs(start_timestamp_ns); event.SetDurationNs(duration_ns); if (!on_device) return event; event.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), *plane->GetOrCreateStatMetadata(std::move(tf_op_fullname))); return event; } void AddTensorFlowOpEventWithKernelDetails(std::string&& tf_op_fullname, int64_t start_timestamp_ns, int64_t duration_ns, bool on_device, absl::string_view kernel_name, absl::string_view kernel_details, XPlaneBuilder* plane, XLineBuilder* line) { XEventBuilder event = AddTensorFlowOpEvent(std::move(tf_op_fullname), start_timestamp_ns, duration_ns, on_device, kernel_name, plane, line); if (!on_device) return; event.ParseAndAddStatValue(*plane->GetOrCreateStatMetadata("kernel_details"), kernel_details); } TEST(OpStatsToTfStats, GpuTfStats) { static constexpr char kTfOp1[] = "TfOp1"; static constexpr char kTfOp2[] = "TfOp2"; static constexpr char kTfOp3[] = "Conv2D"; static constexpr char kKernel1[] = "kernel1"; static constexpr char kKernel2[] = "kernel2"; static constexpr char kKernel3[] = "kernel3"; static constexpr char kKernel4[] = "volta_fp16_s884gemm"; static constexpr char kKernel5[] = "kernel5"; constexpr int64_t kKernel1StartNs = 100000; constexpr int64_t kKernel1DurationNs = 8000; constexpr int64_t kKernel2StartNs = 110000; constexpr int64_t kKernel2DurationNs = 10000; constexpr int64_t kKernel3StartNs = 120000; constexpr int64_t kKernel3DurationNs = 10000; constexpr int64_t kKernel4StartNs = 130000; constexpr int64_t kKernel4DurationNs = 10000; constexpr int64_t kKernel5StartNs = 150000; constexpr int64_t kKernel5DurationNs = 10000; const std::string kKernelDetails = R"MULTI(regs:32 static_shared:0 dynamic_shared:16384 grid:2,1,1 block:32,1,1 occ_pct:100)MULTI"; XSpace space; XPlaneBuilder device_plane( GetOrCreateGpuXPlane(&space, 0)); XLineBuilder stream1 = device_plane.GetOrCreateLine(10); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel1StartNs, kKernel1DurationNs, true, kKernel1, &device_plane, &stream1); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel2StartNs, kKernel2DurationNs, true, kKernel2, &device_plane, &stream1); XLineBuilder stream2 = device_plane.GetOrCreateLine(20); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel1StartNs, kKernel1DurationNs, true, kKernel1, &device_plane, &stream2); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel2StartNs, kKernel2DurationNs, true, kKernel2, &device_plane, &stream2); AddTensorFlowOpEvent(absl::StrCat(kTfOp2, ":", kTfOp2), kKernel3StartNs, kKernel3DurationNs, true, kKernel3, &device_plane, &stream2); AddTensorFlowOpEventWithKernelDetails( absl::StrCat(kTfOp3, ":", kTfOp3), kKernel4StartNs, kKernel4DurationNs, true, kKernel4, kKernelDetails, &device_plane, &stream2); AddTensorFlowOpEventWithKernelDetails( absl::StrCat(kTfOp3, ":", kTfOp3), kKernel5StartNs, kKernel5DurationNs, true, kKernel5, kKernelDetails, &device_plane, &stream2); OpStatsOptions options; options.generate_kernel_stats_db = true; options.generate_op_metrics_db = true; const OpStats op_stats = ConvertXSpaceToOpStats(space, options); const TfStatsDatabase tf_stats = ConvertOpStatsToTfStats(op_stats); EXPECT_EQ(tf_stats.device_type(), op_stats.run_environment().device_type()); EXPECT_EQ(4, tf_stats.with_idle().tf_stats_record_size()); const TfStatsRecord& record_0 = tf_stats.with_idle().tf_stats_record(0); EXPECT_EQ(kTfOp1, record_0.op_name()); EXPECT_EQ(kTfOp1, record_0.op_type()); EXPECT_EQ(2, record_0.occurrences()); EXPECT_EQ(tsl::profiler::NanoToMicro(kKernel1DurationNs) * 2 + tsl::profiler::NanoToMicro(kKernel2DurationNs) * 2, record_0.total_self_time_in_us()); const TfStatsRecord& record_1 = tf_stats.with_idle().tf_stats_record(1); EXPECT_EQ(kTfOp3, record_1.op_name()); EXPECT_EQ(kTfOp3, record_1.op_type()); EXPECT_EQ(1, record_1.occurrences()); EXPECT_EQ(tsl::profiler::NanoToMicro(kKernel4DurationNs) + tsl::profiler::NanoToMicro(kKernel5DurationNs), record_1.total_self_time_in_us()); EXPECT_DOUBLE_EQ(0.5, record_1.gpu_tensorcore_utilization()); const TfStatsRecord& record_2 = tf_stats.with_idle().tf_stats_record(2); EXPECT_EQ(kTfOp2, record_2.op_name()); EXPECT_EQ(kTfOp2, record_2.op_type()); EXPECT_EQ(1, record_2.occurrences()); EXPECT_EQ(tsl::profiler::NanoToMicro(kKernel3DurationNs), record_2.total_self_time_in_us()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/op_stats_to_tf_stats.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/op_stats_to_tf_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6e6903fa-08d5-4c96-8b91-e495d0ae1ec7
cpp
tensorflow/tensorflow
op_stats_to_pod_viewer
tensorflow/core/profiler/convert/op_stats_to_pod_viewer.cc
tensorflow/core/profiler/convert/op_stats_to_pod_viewer_test.cc
#include "tensorflow/core/profiler/convert/op_stats_to_pod_viewer.h" #include <utility> #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/profiler/convert/op_stats_to_pod_stats.h" #include "tensorflow/core/profiler/protobuf/pod_stats.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/utils/diagnostics.h" namespace tensorflow { namespace profiler { namespace { PodStatsSequence ConvertOpStatsToPodStatsSequence(const OpStats& op_stats, PodStatsDatabase pod_stats) { PodStatsSequence result_db; int i = 0; for (const auto& step_sequence : op_stats.step_db().step_sequence()) { PodStatsMap* pod_stats_map = result_db.add_pod_stats_map(); pod_stats_map->set_step_num(step_sequence.step_num()); for (const auto& entry : step_sequence.step_info_per_core()) { PodStatsRecord& record = (*pod_stats_map->mutable_pod_stats_per_core())[entry.first]; DCHECK_LE(i, pod_stats.pod_stats_record_size()); record = std::move(*pod_stats.mutable_pod_stats_record(i++)); } } return result_db; } } PodViewerDatabase ConvertOpStatsToPodViewer(const OpStats& op_stats) { PodViewerDatabase database; database.set_device_type(op_stats.run_environment().device_type()); PodStatsDatabase pod_stats = ConvertOpStatsToPodStats(op_stats); database.mutable_step_breakdown_events()->Swap( pod_stats.mutable_step_breakdown_events()); *database.mutable_pod_stats_sequence() = ConvertOpStatsToPodStatsSequence(op_stats, std::move(pod_stats)); PopulateStepDiagnostics(op_stats, database.mutable_diagnostics()); return database; } } }
#include "tensorflow/core/profiler/convert/op_stats_to_pod_viewer.h" #include "google/protobuf/any.pb.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/diagnostics.pb.h" #include "tensorflow/core/profiler/protobuf/op_stats.pb.h" #include "tensorflow/core/profiler/protobuf/pod_stats.pb.h" #include "tensorflow/core/profiler/protobuf/steps_db.pb.h" #include "tensorflow/core/profiler/utils/diagnostics.h" #include "tensorflow/core/profiler/utils/event_span.h" #include "tensorflow/core/profiler/utils/math_utils.h" namespace tensorflow { namespace profiler { namespace { const double kMaxError = 1e-6; constexpr int kStepNum = 2; constexpr int kCoreId = 1001; constexpr int kStepTimePs = 1000; constexpr int kHostComputePs = 50; constexpr int kHostCompilePs = 50; constexpr int kHostToHostPs = 50; constexpr int kHostToDevicePs = 50; constexpr int kHostPreparePs = 50; constexpr int kDeviceCollectivePs = 350; constexpr int kHostWaitInputPs = 50; constexpr int kDeviceToDevicePs = 50; constexpr int kDeviceToHostPs = 50; constexpr int kDeviceCompute32Ps = 50; constexpr int kDeviceCompute16Ps = 50; constexpr int kDeviceWaitDevicePs = 50; constexpr int kDeviceWaitHostPs = 50; constexpr int kUnknownTimePs = 50; static constexpr char kHostname[] = "host:123"; void CreateOpStats(OpStats* op_stats) { PerCoreStepInfo* info = op_stats->mutable_step_db()->add_step_sequence(); info->set_step_num(kStepNum); StepInfoResult& step_info = (*info->mutable_step_info_per_core())[kCoreId]; step_info.set_step_num(kStepNum); step_info.set_duration_ps(kStepTimePs); GenericStepBreakdown breakdown; auto& type_ps = *breakdown.mutable_type_ps(); type_ps[HOST_COMPUTE] = kHostComputePs; type_ps[HOST_COMPILE] = kHostCompilePs; type_ps[HOST_TO_HOST] = kHostToHostPs; type_ps[HOST_TO_DEVICE] = kHostToDevicePs; type_ps[HOST_PREPARE] = kHostPreparePs; type_ps[DEVICE_COLLECTIVES] = kDeviceCollectivePs; type_ps[HOST_WAIT_INPUT] = kHostWaitInputPs; type_ps[DEVICE_TO_DEVICE] = kDeviceToDevicePs; type_ps[DEVICE_TO_HOST] = kDeviceToHostPs; type_ps[DEVICE_COMPUTE_32] = kDeviceCompute32Ps; type_ps[DEVICE_COMPUTE_16] = kDeviceCompute16Ps; type_ps[DEVICE_WAIT_DEVICE] = kDeviceWaitDevicePs; type_ps[DEVICE_WAIT_HOST] = kDeviceWaitHostPs; type_ps[UNKNOWN_TIME] = kUnknownTimePs; step_info.mutable_step_breakdown()->PackFrom(breakdown); CoreDetails& details = (*op_stats->mutable_core_id_to_details())[kCoreId]; details.set_hostname(kHostname); } TEST(OpStatsToPodViewer, GpuPodViewer) { OpStats op_stats; CreateOpStats(&op_stats); PodViewerDatabase pod_viewer_db = ConvertOpStatsToPodViewer(op_stats); EXPECT_EQ(1, pod_viewer_db.pod_stats_sequence().pod_stats_map_size()); const PodStatsMap& pod_stats_map = pod_viewer_db.pod_stats_sequence().pod_stats_map(0); EXPECT_EQ(kStepNum, pod_stats_map.step_num()); const PodStatsRecord& record = pod_stats_map.pod_stats_per_core().at(kCoreId); EXPECT_EQ(kStepNum, record.step_num()); EXPECT_EQ(kHostname, record.host_name()); EXPECT_NEAR(tsl::profiler::PicoToMicro(kStepTimePs), record.total_duration_us(), kMaxError); const auto& breakdown = record.step_breakdown_us(); EXPECT_NEAR( tsl::profiler::PicoToMicro(kDeviceCompute32Ps + kDeviceCompute16Ps), breakdown.at(kDeviceCompute), kMaxError); EXPECT_NEAR( tsl::profiler::PicoToMicro(kDeviceToDevicePs + kDeviceWaitDevicePs), breakdown.at(kDeviceToDevice), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kDeviceCollectivePs), breakdown.at(kDeviceCollectives), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kHostComputePs), breakdown.at(kHostCompute), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kHostPreparePs), breakdown.at(kHostPrepare), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kHostWaitInputPs + kHostToDevicePs + kDeviceWaitHostPs), breakdown.at(kInput), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kDeviceToHostPs), breakdown.at(kOutput), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kHostCompilePs), breakdown.at(kCompile), kMaxError); EXPECT_NEAR(tsl::profiler::PicoToMicro(kUnknownTimePs), breakdown.at(kAllOthers), kMaxError); EXPECT_EQ(GetGenericEventTypeStr(kDeviceCollectives), record.bottleneck()); } TEST(OpStatsToPodViewer, Diagnostics) { OpStats op_stats; op_stats.mutable_step_db()->set_use_incomplete_step(true); PodViewerDatabase pod_viewer_db = ConvertOpStatsToPodViewer(op_stats); EXPECT_EQ(1, pod_viewer_db.diagnostics().warnings_size()); EXPECT_EQ(kErrorIncompleteStep, pod_viewer_db.diagnostics().warnings(0)); } TEST(OpStatsToPodViewer, DeviceType) { OpStats op_stats; op_stats.mutable_run_environment()->set_device_type("GPU"); PodViewerDatabase pod_viewer_db = ConvertOpStatsToPodViewer(op_stats); EXPECT_EQ("GPU", pod_viewer_db.device_type()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/op_stats_to_pod_viewer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/op_stats_to_pod_viewer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3fd2b1bc-61fe-4b2b-8e06-c2efe6bb07af
cpp
tensorflow/tensorflow
trace_viewer_visibility
tensorflow/core/profiler/convert/trace_viewer/trace_viewer_visibility.cc
tensorflow/core/profiler/convert/trace_viewer/trace_viewer_visibility_test.cc
#include "tensorflow/core/profiler/convert/trace_viewer/trace_viewer_visibility.h" #include <cstdint> #include "absl/log/check.h" #include "xla/tsl/profiler/utils/timespan.h" #include "tensorflow/core/profiler/protobuf/trace_events.pb.h" namespace tensorflow { namespace profiler { TraceViewerVisibility::TraceViewerVisibility( tsl::profiler::Timespan visible_span, uint64_t resolution_ps) : visible_span_(visible_span), resolution_ps_(resolution_ps) {} bool TraceViewerVisibility::Visible(const TraceEvent& event) { if (visible_span_.Instant()) return true; tsl::profiler::Timespan span(event.timestamp_ps(), event.duration_ps()); if (!visible_span_.Overlaps(span)) return false; if (resolution_ps_ == 0) return true; return VisibleAtResolution(event); } bool TraceViewerVisibility::VisibleAtResolution(const TraceEvent& event) { DCHECK_NE(resolution_ps_, 0); if (!event.has_resource_id()) { #if 1 return true; #else CounterRowId counter_row_id(event.device_id(), event.name()); auto iter = last_counter_timestamp_ps_.find(counter_row_id); bool found = (iter != last_counter_timestamp_ps_.end()); bool visible = !found || ((event.timestamp_ps() - iter->second) >= resolution_ps_); if (visible) { if (found) { iter->second = event.timestamp_ps(); } else { last_counter_timestamp_ps_.emplace(counter_row_id, event.timestamp_ps()); } } return visible; #endif } tsl::profiler::Timespan span(event.timestamp_ps(), event.duration_ps()); bool visible = (span.duration_ps() >= resolution_ps_); auto& row = rows_[RowId(event.device_id(), event.resource_id())]; size_t depth = row.Depth(span.begin_ps()); if (!visible) { auto last_end_timestamp_ps = row.LastEndTimestampPs(depth); visible = !last_end_timestamp_ps || (span.begin_ps() - *last_end_timestamp_ps >= resolution_ps_); } if (event.has_flow_id()) { auto result = flows_.try_emplace(event.flow_id(), visible); if (!visible) { if (result.second) { auto last_flow_timestamp_ps = row.LastFlowTimestampPs(); result.first->second = !last_flow_timestamp_ps || (span.end_ps() - *last_flow_timestamp_ps >= resolution_ps_); } visible = result.first->second; } if (event.flow_entry_type() == TraceEvent::FLOW_END) { flows_.erase(result.first); } if (visible) { row.SetLastFlowTimestampPs(span.end_ps()); } } if (visible) { row.SetLastEndTimestampPs(depth, span.end_ps()); } return visible; } void TraceViewerVisibility::SetVisibleAtResolution(const TraceEvent& event) { DCHECK_NE(resolution_ps_, 0); if (!event.has_resource_id()) { CounterRowId counter_row_id(event.device_id(), event.name()); last_counter_timestamp_ps_.insert_or_assign(counter_row_id, event.timestamp_ps()); } else { tsl::profiler::Timespan span(event.timestamp_ps(), event.duration_ps()); auto& row = rows_[RowId(event.device_id(), event.resource_id())]; if (event.has_flow_id()) { if (event.flow_entry_type() == TraceEvent::FLOW_END) { flows_.erase(event.flow_id()); } else { flows_.try_emplace(event.flow_id(), true); } row.SetLastFlowTimestampPs(span.end_ps()); } size_t depth = row.Depth(span.begin_ps()); row.SetLastEndTimestampPs(depth, span.end_ps()); } } size_t TraceViewerVisibility::RowVisibility::Depth( uint64_t begin_timestamp_ps) const { size_t depth = 0; for (; depth < last_end_timestamp_ps_.size(); ++depth) { if (last_end_timestamp_ps_[depth] <= begin_timestamp_ps) break; } return depth; } } }
#include "tensorflow/core/profiler/convert/trace_viewer/trace_viewer_visibility.h" #include <cstdint> #include "xla/tsl/profiler/utils/timespan.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/protobuf/trace_events.pb.h" namespace tensorflow { namespace profiler { namespace { using tsl::profiler::Timespan; constexpr uint32_t kDeviceId = 10; constexpr uint32_t kResourceId = 1; constexpr uint32_t kSrcResourceId = 2; constexpr uint32_t kDstResourceId = 4; TraceEvent Complete(Timespan span, uint32_t resource_id = kResourceId) { TraceEvent event; event.set_device_id(kDeviceId); event.set_resource_id(resource_id); event.set_timestamp_ps(span.begin_ps()); event.set_duration_ps(span.duration_ps()); return event; } TraceEvent Counter(uint64_t time_ps) { TraceEvent event; event.set_device_id(kDeviceId); event.set_timestamp_ps(time_ps); return event; } TraceEvent Flow(Timespan span, uint64_t flow_id, uint32_t resource_id) { TraceEvent event; event.set_flow_id(flow_id); event.set_device_id(kDeviceId); event.set_resource_id(resource_id); event.set_timestamp_ps(span.begin_ps()); event.set_duration_ps(span.duration_ps()); return event; } TEST(TraceViewerVisibilityTest, VisibilityNoDownsampling) { TraceViewerVisibility v(Timespan(1000, 1000)); EXPECT_FALSE(v.Visible(Complete(Timespan(999)))); EXPECT_TRUE(v.Visible(Complete(Timespan(1000)))); EXPECT_TRUE(v.Visible(Complete(Timespan(1500)))); EXPECT_TRUE(v.Visible(Complete(Timespan(2000)))); EXPECT_FALSE(v.Visible(Complete(Timespan(2001)))); EXPECT_FALSE(v.Visible(Complete(Timespan(900, 99)))); EXPECT_TRUE(v.Visible(Complete(Timespan(900, 100)))); EXPECT_TRUE(v.Visible(Complete(Timespan(1450, 100)))); EXPECT_TRUE(v.Visible(Complete(Timespan(2000, 50)))); EXPECT_FALSE(v.Visible(Complete(Timespan(2001, 50)))); } TEST(TraceViewerVisibilityTest, DISABLED_CounterEventsDownsampling) { TraceViewerVisibility v(Timespan(1000, 1000), 100); EXPECT_FALSE(v.Visible(Counter(999))); EXPECT_TRUE(v.Visible(Counter(1000))); EXPECT_FALSE(v.Visible(Counter(1099))); EXPECT_TRUE(v.Visible(Counter(1100))); EXPECT_TRUE(v.Visible(Counter(2000))); EXPECT_FALSE(v.Visible(Counter(2001))); } TEST(TraceViewerVisibilityTest, CompleteEventsDownsampling) { TraceViewerVisibility v(Timespan(1000, 1000), 100); EXPECT_TRUE(v.Visible(Complete(Timespan(950, 50)))); EXPECT_FALSE(v.Visible(Complete(Timespan(1050, 50)))); EXPECT_TRUE(v.Visible(Complete(Timespan(1055, 200)))); EXPECT_TRUE(v.Visible(Complete(Timespan(1355, 50)))); } TEST(TraceViewerVisibilityTest, CompleteNestedEventsDownsampling) { TraceViewerVisibility v(Timespan(1000, 1000), 100); EXPECT_TRUE(v.Visible(Complete(Timespan(1000, 200)))); EXPECT_TRUE(v.Visible(Complete(Timespan(1200, 190)))); EXPECT_TRUE(v.Visible(Complete(Timespan(1250, 20)))); EXPECT_FALSE(v.Visible(Complete(Timespan(1270, 20)))); EXPECT_TRUE(v.Visible(Complete(Timespan(1290, 100)))); } TEST(TraceViewerVisibilityTest, FlowEventsDownsampling) { TraceViewerVisibility v(Timespan(1000, 1000), 100); EXPECT_TRUE(v.Visible(Flow(Timespan(1000, 50), 1, kSrcResourceId))); EXPECT_FALSE(v.Visible(Flow(Timespan(1050, 50), 2, kSrcResourceId))); EXPECT_TRUE(v.Visible(Flow(Timespan(1100, 50), 3, kSrcResourceId))); EXPECT_TRUE(v.Visible(Flow(Timespan(1100, 50), 1, kDstResourceId))); EXPECT_FALSE(v.Visible(Flow(Timespan(1200, 52), 2, kDstResourceId))); EXPECT_TRUE(v.Visible(Flow(Timespan(1252, 10), 3, kDstResourceId))); EXPECT_TRUE(v.Visible(Complete(Timespan(1300, 50)))); EXPECT_FALSE(v.Visible(Complete(Timespan(1350, 50)))); EXPECT_FALSE(v.Visible(Complete(Timespan(1400, 50)))); EXPECT_TRUE(v.Visible(Flow(Timespan(1600, 50), 4, kResourceId))); EXPECT_TRUE(v.Visible(Flow(Timespan(1700, 52), 5, kResourceId))); EXPECT_FALSE(v.Visible(Flow(Timespan(1752, 10), 6, kResourceId))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/trace_viewer/trace_viewer_visibility.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/trace_viewer/trace_viewer_visibility_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
30f62b59-33de-4ae1-862a-1be8642281f9
cpp
tensorflow/tensorflow
tpu_embedding_errors
tensorflow/core/tpu/tpu_embedding_errors.cc
tensorflow/core/tpu/tpu_embedding_errors_test.cc
#include "tensorflow/core/tpu/tpu_embedding_errors.h" #include <string> #include "absl/strings/cord.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/tpu/tpu_embedding_configuration.pb.h" namespace tensorflow::tpu { Status AppendTpuEmbeddingErrorPayload(Status obj) { if (obj.ok()) { return absl::OkStatus(); } else { const std::string error_message = absl::StrCat(kTpuEmbeddingErrorMessage, ". ", obj.message()); Status status(obj.code(), error_message); TPUEmbeddingError error_payload; status.SetPayload(kTpuEmbeddingErrorUrl, absl::Cord(error_payload.SerializeAsString())); return status; } } bool HasTpuEmbeddingErrorPayload(const Status& status) { return status.GetPayload(kTpuEmbeddingErrorUrl).has_value(); } bool HasTpuEmbeddingErrorMessage(const Status& status) { return absl::StrContains(status.message(), kTpuEmbeddingErrorMessage); } }
#include "tensorflow/core/tpu/tpu_embedding_errors.h" #include <string> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow::tpu { namespace { using absl::Status; using absl::StatusOr; StatusOr<std::string> GenerateTFStatusOr(absl::StatusCode code, absl::string_view value = "") { if (code == absl::StatusCode::kOk) { return std::string(value); } else { return absl::Status(code, value); } } TEST(TpuEmbeddingErrors, StatusOk) { constexpr absl::string_view kValue = "success"; { const Status status = AppendTpuEmbeddingErrorPayload(absl::OkStatus()); TF_EXPECT_OK(status); EXPECT_FALSE(HasTpuEmbeddingErrorPayload(status)); EXPECT_FALSE(HasTpuEmbeddingErrorMessage(status)); } { TF_ASSERT_OK_AND_ASSIGN(const std::string value, AppendTpuEmbeddingErrorPayload(GenerateTFStatusOr( absl::StatusCode::kOk, kValue))); EXPECT_EQ(value, kValue); } } TEST(TpuEmbeddingErrors, StatusFailed) { { const Status status = AppendTpuEmbeddingErrorPayload(errors::InvalidArgument("")); EXPECT_EQ(status.code(), error::Code::INVALID_ARGUMENT); EXPECT_TRUE(HasTpuEmbeddingErrorPayload(status)); EXPECT_TRUE(HasTpuEmbeddingErrorMessage(status)); } { StatusOr<std::string> status_or = AppendTpuEmbeddingErrorPayload( GenerateTFStatusOr(absl::StatusCode::kResourceExhausted)); EXPECT_FALSE(status_or.ok()); const Status& status = status_or.status(); EXPECT_EQ(status.code(), error::Code::RESOURCE_EXHAUSTED); EXPECT_TRUE(HasTpuEmbeddingErrorPayload(status)); EXPECT_TRUE(HasTpuEmbeddingErrorMessage(status)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/tpu_embedding_errors.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/tpu_embedding_errors_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
af90d2c7-6e27-4c92-88ac-00e9bdbb24f6
cpp
tensorflow/tensorflow
tpu_embedding_configuration_proto_rewrite
tensorflow/core/tpu/tpu_embedding_configuration_proto_rewrite.cc
tensorflow/core/tpu/tpu_embedding_configuration_proto_rewrite_test.cc
#include "tensorflow/core/tpu/tpu_embedding_configuration_proto_rewrite.h" #include <cstdint> #include <functional> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "tensorflow/core/lib/math/math_util.h" #include "tensorflow/core/protobuf/tpu/tpu_embedding_configuration.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace tensorflow { namespace { absl::Status ValidateBatchSizeAndFeatureCounts( const tpu::TPUEmbeddingConfiguration& config) { if (config.batch_size_per_tensor_core() <= 0) { return absl::InvalidArgumentError(absl::StrFormat( "Invalid batch_size_per_tensor_core: %d found in the TPU embedding " "configuration. Valid values are >0.", config.batch_size_per_tensor_core())); } for (const auto& table_config : config.table_descriptor()) { if (table_config.num_features() <= 0) { return absl::InvalidArgumentError(absl::StrFormat( "Invalid num_features: %d found for table: %s in the TPU embedding " "configuration. Valid values are >0.", table_config.num_features(), table_config.name())); } } return absl::OkStatus(); } absl::Status ValidateBatchSizeAndFeatureCountsAreEmpty( const tpu::TPUEmbeddingConfiguration& config) { if (config.batch_size_per_tensor_core() != 0) { return absl::InvalidArgumentError( "Invalid TPU embedding configuration. The batch_size_per_tensor_core " "field must NOT be populated when the feature_descriptor fields are " "filled in."); } for (const auto& table_config : config.table_descriptor()) { if (table_config.num_features() != 0) { return absl::InvalidArgumentError(absl::StrFormat( "Invalid TPU embedding configuration. The " "TableDescriptor.num_features field must NOT be populated when the " "feature_descriptor fields are filled in, num_features is set to %d " "for table %s.", table_config.num_features(), table_config.name())); } } return absl::OkStatus(); } absl::Status ValidateFeatureDescriptors( const tpu::TPUEmbeddingConfiguration& config) { const int table_count = config.table_descriptor_size(); std::vector<bool> tables_present(table_count, false); for (const auto& feature_config : config.feature_descriptor()) { const int table_id = feature_config.table_id(); const auto& input_shape = feature_config.input_shape(); if (table_id < 0 || table_id >= table_count) { return absl::InvalidArgumentError(absl::StrFormat( "Invalid table_id: %d found in feature_descriptor: %s, all table_ids " "must be in the range[0, %d)", table_id, feature_config.ShortDebugString(), table_count)); } if (input_shape.empty()) { return absl::InvalidArgumentError(absl::StrFormat( "The input_shape field cannot be empty in feature_descriptor: %s", feature_config.ShortDebugString())); } for (const int dim_size : input_shape) { if (dim_size <= 0) { return absl::InvalidArgumentError(absl::StrFormat( "The input_shape dimension sizes must all be >0 in " "feature_descriptor: %s, found dimension size set to %d", feature_config.ShortDebugString(), dim_size)); } } tables_present[table_id] = true; } for (int table_id = 0; table_id < table_count; ++table_id) { if (!tables_present[table_id]) { return absl::InvalidArgumentError(absl::StrFormat( "No feature_descriptor fields found for table: %s (ID: %d) in " "the TPU embedding configuration.", config.table_descriptor(table_id).name(), table_id)); } } return absl::OkStatus(); } void PopulateFeatureDescriptors(tpu::TPUEmbeddingConfiguration* config) { for (int table_id = 0; table_id < config->table_descriptor_size(); ++table_id) { tpu::TPUEmbeddingConfiguration::FeatureDescriptor* feature_descriptor = config->add_feature_descriptor(); feature_descriptor->set_table_id(table_id); feature_descriptor->add_input_shape( config->batch_size_per_tensor_core() * config->table_descriptor(table_id).num_features()); } } std::vector<int> ComputeInputFeatureBatchSizes( const tpu::TPUEmbeddingConfiguration& config) { std::vector<int32_t> input_feature_batch_sizes; for (int i = 0; i < config.feature_descriptor_size(); ++i) { const int32_t batch_size = absl::c_accumulate(config.feature_descriptor(i).input_shape(), 1, std::multiplies<>()); input_feature_batch_sizes.push_back(batch_size); } return input_feature_batch_sizes; } int ComputeBatchSizePerTensorCore( absl::Span<const int> input_feature_batch_sizes) { uint32_t batch_size = input_feature_batch_sizes[0]; for (const uint32_t input_feature_batch_size : input_feature_batch_sizes) { batch_size = tensorflow::MathUtil::GCD(batch_size, input_feature_batch_size); } return batch_size; } std::vector<int> ComputeTpuFeatureCounts( const tpu::TPUEmbeddingConfiguration& config, absl::Span<const int> input_feature_batch_sizes, int batch_size_per_tensor_core) { DCHECK_EQ(input_feature_batch_sizes.size(), config.feature_descriptor_size()); std::vector<int> tpu_feature_counts(config.table_descriptor_size(), 0); for (int i = 0; i < config.feature_descriptor_size(); ++i) { DCHECK_EQ(input_feature_batch_sizes[i] % batch_size_per_tensor_core, 0); tpu_feature_counts[config.feature_descriptor(i).table_id()] += (input_feature_batch_sizes[i] / batch_size_per_tensor_core); } return tpu_feature_counts; } void PopulateBatchSizeAndFeatureCounts(tpu::TPUEmbeddingConfiguration* config) { const std::vector<int> input_feature_batch_sizes = ComputeInputFeatureBatchSizes(*config); const int batch_size_per_tensor_core = ComputeBatchSizePerTensorCore(input_feature_batch_sizes); const std::vector<int> tpu_feature_counts = ComputeTpuFeatureCounts( *config, input_feature_batch_sizes, batch_size_per_tensor_core); config->set_batch_size_per_tensor_core(batch_size_per_tensor_core); for (int table_id = 0; table_id < config->table_descriptor_size(); ++table_id) { auto* table_config = config->mutable_table_descriptor(table_id); table_config->set_num_features(tpu_feature_counts[table_id]); } } } absl::Status PopulateMissingFieldsInTPUEmbeddingConfig( tpu::TPUEmbeddingConfiguration* config) { if (config->feature_descriptor_size() == 0) { TF_RETURN_IF_ERROR(ValidateBatchSizeAndFeatureCounts(*config)); PopulateFeatureDescriptors(config); } else { TF_RETURN_IF_ERROR(ValidateBatchSizeAndFeatureCountsAreEmpty(*config)); TF_RETURN_IF_ERROR(ValidateFeatureDescriptors(*config)); PopulateBatchSizeAndFeatureCounts(config); } return absl::OkStatus(); } }
#include "tensorflow/core/tpu/tpu_embedding_configuration_proto_rewrite.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/protobuf/tpu/tpu_embedding_configuration.pb.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/test.h" namespace tensorflow { namespace { Status ParseTextProto(absl::string_view text_proto, tpu::TPUEmbeddingConfiguration* parsed_proto) { tsl::protobuf::TextFormat::Parser parser; tsl::protobuf::io::ArrayInputStream input_stream(text_proto.data(), text_proto.size()); if (parser.Parse(&input_stream, parsed_proto)) { return absl::OkStatus(); } parsed_proto->Clear(); return errors::InvalidArgument("Could not parse text proto: ", text_proto); } TEST(TPUEmbeddingConfigurationProtoRewriteTest, FillFeatureDescriptor) { const std::string config_str = R"pb( table_descriptor { name: "T0" vocabulary_size: 35324928 dimension: 128 num_features: 3 optimization_parameters { adagrad {} learning_rate { constant: 0.1 } } } table_descriptor { name: "T1" vocabulary_size: 3122176 dimension: 128 num_features: 2 optimization_parameters { adagrad {} learning_rate { constant: 0.1 } } } mode: TRAINING batch_size_per_tensor_core: 256 num_hosts: 16 num_tensor_cores: 128 pipeline_execution_with_tensor_core: true )pb"; tpu::TPUEmbeddingConfiguration tpu_embedding_config; TF_ASSERT_OK(ParseTextProto(config_str, &tpu_embedding_config)); TF_ASSERT_OK( PopulateMissingFieldsInTPUEmbeddingConfig(&tpu_embedding_config)); EXPECT_EQ(tpu_embedding_config.feature_descriptor_size(), 2); const auto& feature_0 = tpu_embedding_config.feature_descriptor(0); EXPECT_EQ(feature_0.table_id(), 0); EXPECT_THAT(feature_0.input_shape(), ::testing::ElementsAre(256 * 3)); const auto& feature_1 = tpu_embedding_config.feature_descriptor(1); EXPECT_EQ(feature_1.table_id(), 1); EXPECT_THAT(feature_1.input_shape(), ::testing::ElementsAre(256 * 2)); } TEST(TPUEmbeddingConfigurationProtoRewriteTest, FillBatchSizeAndNumFeatures) { const std::string config_str = R"pb( table_descriptor { name: "T0" vocabulary_size: 35324928 dimension: 128 optimization_parameters { adagrad {} learning_rate { constant: 0.1 } } } table_descriptor { name: "T1" vocabulary_size: 3122176 dimension: 128 optimization_parameters { adagrad {} learning_rate { constant: 0.1 } } } feature_descriptor { name: "F0" table_id: 0 input_shape: [ 100, 5 ] } feature_descriptor { name: "F1" table_id: 1 input_shape: [ 200, 5, 20 ] } feature_descriptor { name: "F2" table_id: 0 input_shape: [ 50 ] } feature_descriptor { name: "F3" table_id: 0 input_shape: [ 100, 2, 3 ] } mode: TRAINING num_hosts: 16 num_tensor_cores: 128 pipeline_execution_with_tensor_core: true )pb"; tpu::TPUEmbeddingConfiguration tpu_embedding_config; TF_ASSERT_OK(ParseTextProto(config_str, &tpu_embedding_config)); TF_ASSERT_OK( PopulateMissingFieldsInTPUEmbeddingConfig(&tpu_embedding_config)); EXPECT_EQ(tpu_embedding_config.batch_size_per_tensor_core(), 50); const auto& table_0 = tpu_embedding_config.table_descriptor(0); EXPECT_EQ(table_0.num_features(), 23); const auto& table_1 = tpu_embedding_config.table_descriptor(1); EXPECT_EQ(table_1.num_features(), 400); } TEST(TPUEmbeddingConfigurationProtoRewriteTest, InvalidBatchSizeOrNumFeatures) { const std::string config_str = R"pb( table_descriptor { name: "T0" vocabulary_size: 35324928 dimension: 128 num_features: 3 optimization_parameters { adagrad {} learning_rate { constant: 0.1 } } } feature_descriptor { table_id: 0 input_shape: [ 768 ] } mode: TRAINING batch_size_per_tensor_core: 256 num_hosts: 16 num_tensor_cores: 128 pipeline_execution_with_tensor_core: true )pb"; tpu::TPUEmbeddingConfiguration tpu_embedding_config; TF_ASSERT_OK(ParseTextProto(config_str, &tpu_embedding_config)); { tpu::TPUEmbeddingConfiguration invalid_config = tpu_embedding_config; invalid_config.clear_feature_descriptor(); invalid_config.clear_batch_size_per_tensor_core(); EXPECT_THAT( PopulateMissingFieldsInTPUEmbeddingConfig(&invalid_config), tensorflow::testing::StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr("Invalid batch_size_per_tensor_core"))); } { tpu::TPUEmbeddingConfiguration invalid_config = tpu_embedding_config; invalid_config.clear_feature_descriptor(); invalid_config.mutable_table_descriptor(0)->clear_num_features(); EXPECT_THAT(PopulateMissingFieldsInTPUEmbeddingConfig(&invalid_config), tensorflow::testing::StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr("Invalid num_features"))); } { tpu::TPUEmbeddingConfiguration invalid_config = tpu_embedding_config; EXPECT_THAT( PopulateMissingFieldsInTPUEmbeddingConfig(&invalid_config), tensorflow::testing::StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr( "The batch_size_per_tensor_core field must NOT be populated"))); } { tpu::TPUEmbeddingConfiguration invalid_config = tpu_embedding_config; invalid_config.clear_batch_size_per_tensor_core(); EXPECT_THAT(PopulateMissingFieldsInTPUEmbeddingConfig(&invalid_config), tensorflow::testing::StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr("The TableDescriptor.num_features " "field must NOT be populated"))); } } TEST(TPUEmbeddingConfigurationProtoRewriteTest, InvalidFeatureDescriptor) { const std::string config_str = R"pb( table_descriptor { name: "T0" vocabulary_size: 35324928 dimension: 128 optimization_parameters { adagrad {} learning_rate { constant: 0.1 } } } table_descriptor { name: "T1" vocabulary_size: 3122176 dimension: 128 optimization_parameters { adagrad {} learning_rate { constant: 0.1 } } } feature_descriptor { name: "F1" table_id: 0 input_shape: [ 768 ] } feature_descriptor { name: "F2" table_id: 1 input_shape: [ 512 ] } mode: TRAINING num_hosts: 16 num_tensor_cores: 128 pipeline_execution_with_tensor_core: true )pb"; tpu::TPUEmbeddingConfiguration tpu_embedding_config; TF_ASSERT_OK(ParseTextProto(config_str, &tpu_embedding_config)); { tpu::TPUEmbeddingConfiguration invalid_config = tpu_embedding_config; invalid_config.mutable_feature_descriptor(0)->set_table_id(2); EXPECT_THAT(PopulateMissingFieldsInTPUEmbeddingConfig(&invalid_config), tensorflow::testing::StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr("Invalid table_id"))); } { tpu::TPUEmbeddingConfiguration invalid_config = tpu_embedding_config; invalid_config.mutable_feature_descriptor(0)->clear_input_shape(); EXPECT_THAT( PopulateMissingFieldsInTPUEmbeddingConfig(&invalid_config), tensorflow::testing::StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr("The input_shape field cannot be empty"))); } { tpu::TPUEmbeddingConfiguration invalid_config = tpu_embedding_config; invalid_config.mutable_feature_descriptor(0)->set_input_shape(0, -5); EXPECT_THAT( PopulateMissingFieldsInTPUEmbeddingConfig(&invalid_config), tensorflow::testing::StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr("The input_shape dimension sizes must all"))); } { tpu::TPUEmbeddingConfiguration invalid_config = tpu_embedding_config; invalid_config.mutable_feature_descriptor(1)->set_table_id(0); EXPECT_THAT(PopulateMissingFieldsInTPUEmbeddingConfig(&invalid_config), tensorflow::testing::StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr( "No feature_descriptor fields found for table: T1"))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/tpu_embedding_configuration_proto_rewrite.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/tpu_embedding_configuration_proto_rewrite_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e436db0a-f077-4f69-8a2a-f6758b0a0ae3
cpp
tensorflow/tensorflow
sharding_util_ops
tensorflow/compiler/tf2xla/kernels/sharding_util_ops.cc
tensorflow/core/tpu/kernels/sharding_util_ops_test.cc
#include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace { constexpr absl::string_view kNumSplitsAttrName = "num_splits"; constexpr absl::string_view kNumConcatsAttrName = "num_concats"; template <bool Split> Status GetAndValidateAttributes(OpKernelConstruction* ctx, std::vector<int64_t>& num_partitions, int& num_slices, std::vector<int64_t>& paddings, bool& has_paddings) { absl::string_view num_partitions_attr_name = Split ? kNumSplitsAttrName : kNumConcatsAttrName; TF_RETURN_IF_ERROR(ctx->GetAttr(num_partitions_attr_name, &num_partitions)); int num_dims_to_split = 0; for (int i = 0, e = num_partitions.size(); i < e; ++i) { const auto& split = num_partitions[i]; if (split <= 0) { return errors::InvalidArgument("'", num_partitions_attr_name, "' at index ", i, " must be positive, but got ", split, "."); } if (split > 1) { ++num_dims_to_split; } num_slices *= split; } int n; TF_RETURN_IF_ERROR(ctx->GetAttr("N", &n)); if (n != num_slices) { return errors::InvalidArgument( "'N' must match number of slices ", num_slices, " from '", num_partitions_attr_name, "', but got ", n, "."); } TF_RETURN_IF_ERROR(ctx->GetAttr("paddings", &paddings)); const int expected_rank = num_partitions.size(); if (!paddings.empty()) { if (paddings.size() != expected_rank) { return errors::InvalidArgument( "'paddings' length must match '", num_partitions_attr_name, "' length ", expected_rank, ", but got ", paddings.size(), "."); } for (int dim = 0; dim < expected_rank; ++dim) { if (paddings[dim] < 0) { return errors::InvalidArgument( "'padding' must be all non-negative, but got ", paddings[dim], " at index ", dim, "."); } if (paddings[dim] > 0) { has_paddings = true; } } } else { paddings.assign(expected_rank, 0); } return absl::OkStatus(); } std::vector<int64_t> GetSliceIndices(absl::Span<const int64> num_partitions, absl::Span<const int64> slice_shape, const int index) { DCHECK_EQ(num_partitions.size(), slice_shape.size()); std::vector<int64_t> slice_indices(num_partitions.size()); if (num_partitions.empty()) { return slice_indices; } auto divisor = [&](const int dim) { int divisor = 1; for (int i = num_partitions.size() - 1; i > dim; --i) { divisor *= num_partitions[i]; } return divisor; }; for (int dim = num_partitions.size() - 1; dim > 0; --dim) { slice_indices[dim] = ((index / divisor(dim)) % num_partitions[dim]) * slice_shape[dim]; } slice_indices[0] = (index / divisor(0)) * slice_shape[0]; return slice_indices; } constexpr absl::string_view kTensorName = "'input' tensor"; constexpr absl::string_view kResourceName = "'resource' variable tensor"; template <bool Resource> class XlaSplitNDBaseOp : public XlaOpKernel { public: explicit XlaSplitNDBaseOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { OP_REQUIRES_OK(ctx, GetAndValidateAttributes<true>(ctx, num_splits_, num_slices_, paddings_, has_paddings_)); } protected: Status CompileInternal(XlaOpKernelContext* ctx, const xla::XlaOp input, const TensorShape& input_shape, const DataType input_dtype) { xla::PrimitiveType type; TF_RETURN_IF_ERROR(DataTypeToPrimitiveType(input_dtype, &type)); absl::string_view input_name = Resource ? kResourceName : kTensorName; const int rank = input_shape.dims(); if (rank != num_splits_.size()) { return errors::InvalidArgument( input_name, " rank must be the same as 'num_splits' length ", num_splits_.size(), ", but got rank ", rank, "."); } for (int dim = 0; dim < rank; ++dim) { if ((input_shape.dim_size(dim) + paddings_[dim]) % num_splits_[dim] != 0) { return errors::InvalidArgument( input_name, " shape dimension ", dim, " (", input_shape.dim_size(dim), ") with padding ", paddings_[dim], " must be evenly divisible by 'num_splits' ", num_splits_[dim], "."); } } if (num_slices_ == 1 && has_paddings_) { xla::PaddingConfig padding_config; for (int dim = 0; dim < rank; ++dim) { auto* padding_dim = padding_config.add_dimensions(); padding_dim->set_edge_padding_low(0); padding_dim->set_edge_padding_high(paddings_[dim]); padding_dim->set_interior_padding(0); } ctx->SetOutput( 0, xla::Pad(input, xla::ConstantR0WithType(ctx->builder(), type, 0), padding_config)); return absl::OkStatus(); } else if (num_slices_ == 1) { ctx->SetOutput(0, input); return absl::OkStatus(); } std::vector<int64_t> slice_shape(rank); for (int dim = 0; dim < rank; ++dim) { slice_shape[dim] = (input_shape.dim_size(dim) + paddings_[dim]) / num_splits_[dim]; } const std::vector<int64_t> slice_strides(rank, 1); for (int i = 0; i < num_slices_; ++i) { int num_complete_pad_dims = 0; int num_partial_pad_dims = 0; std::vector<int64_t> slice_start_indices = GetSliceIndices(num_splits_, slice_shape, i); std::vector<int64_t> slice_limit_indices(slice_shape.size()); xla::PaddingConfig slice_padding_config; for (int dim = 0; dim < rank; ++dim) { auto* padding_dim = slice_padding_config.add_dimensions(); padding_dim->set_edge_padding_low(0); padding_dim->set_edge_padding_high(0); padding_dim->set_interior_padding(0); } for (int dim = 0; dim < rank; ++dim) { const int64 dim_size = input_shape.dim_size(dim); if (slice_start_indices[dim] >= dim_size) { slice_start_indices[dim] = dim_size; slice_limit_indices[dim] = dim_size; slice_padding_config.mutable_dimensions(dim)->set_edge_padding_high( slice_shape[dim]); ++num_complete_pad_dims; } else if (slice_start_indices[dim] + slice_shape[dim] > dim_size) { slice_limit_indices[dim] = dim_size; slice_padding_config.mutable_dimensions(dim)->set_edge_padding_high( slice_start_indices[dim] + slice_shape[dim] - dim_size); ++num_partial_pad_dims; } else { slice_limit_indices[dim] = slice_start_indices[dim] + slice_shape[dim]; } } if (num_complete_pad_dims == rank) { ctx->SetOutput(i, xla::Broadcast(xla::ConstantR0WithType( ctx->builder(), type, 0), slice_shape)); } else if (num_complete_pad_dims > 0 || num_partial_pad_dims > 0) { ctx->SetOutput( i, xla::Pad(xla::Slice(input, slice_start_indices, slice_limit_indices, slice_strides), xla::ConstantR0WithType(ctx->builder(), type, 0), slice_padding_config)); } else { ctx->SetOutput(i, xla::Slice(input, slice_start_indices, slice_limit_indices, slice_strides)); } } return absl::OkStatus(); } private: std::vector<int64_t> num_splits_; int num_slices_ = 1; std::vector<int64_t> paddings_; bool has_paddings_ = false; }; class XlaSplitNDOp : public XlaSplitNDBaseOp<false> { public: explicit XlaSplitNDOp(OpKernelConstruction* ctx) : XlaSplitNDBaseOp<false>(ctx) {} void Compile(XlaOpKernelContext* ctx) override { OP_REQUIRES_OK(ctx, this->CompileInternal(ctx, ctx->Input(0), ctx->InputShape(0), ctx->input_type(0))); } }; REGISTER_XLA_OP(Name("XlaSplitND"), XlaSplitNDOp); class ReadVariableXlaSplitNDOp : public XlaSplitNDBaseOp<true> { public: explicit ReadVariableXlaSplitNDOp(OpKernelConstruction* ctx) : XlaSplitNDBaseOp<true>(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("T", &dtype_)); } void Compile(XlaOpKernelContext* ctx) override { DataType variable_input_dtype; TensorShape variable_input_shape; OP_REQUIRES_OK( ctx, ctx->GetVariableTypeAndShape(0, &variable_input_dtype, &variable_input_shape)); OP_REQUIRES( ctx, variable_input_dtype == dtype_, errors::InvalidArgument("'T' must match 'resource' variable dtype ", DataTypeString(variable_input_dtype), ", but got ", dtype_)); xla::XlaOp handle; OP_REQUIRES_OK(ctx, ctx->ReadVariableInput(0, dtype_, nullptr, &handle)); OP_REQUIRES_OK( ctx, this->CompileInternal(ctx, handle, variable_input_shape, dtype_)); } private: DataType dtype_; }; REGISTER_XLA_OP(Name("ReadVariableXlaSplitND"), ReadVariableXlaSplitNDOp); class XlaConcatNDBaseOp : public XlaOpKernel { public: explicit XlaConcatNDBaseOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { OP_REQUIRES_OK( ctx, GetAndValidateAttributes<false>(ctx, num_concats_, num_slices_, paddings_, has_paddings_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("T", &dtype_)); } protected: absl::StatusOr<xla::XlaOp> CompileInternal(XlaOpKernelContext* ctx) { xla::PrimitiveType type; TF_RETURN_IF_ERROR(DataTypeToPrimitiveType(dtype_, &type)); std::vector<xla::XlaOp> input_handles; std::vector<TensorShape> input_shapes; std::vector<int64_t> output_shape; TF_RETURN_IF_ERROR(GetInputsAndOutputShape(ctx, input_handles, input_shapes, output_shape)); const int rank = output_shape.size(); if (num_slices_ == 1 && has_paddings_) { return xla::Slice(input_handles[0], std::vector<int64_t>(rank, 0), output_shape, std::vector<int64_t>(rank, 1)); } else if (num_slices_ == 1) { return input_handles[0]; } auto slice_shape = input_shapes[0].dim_sizes(); xla::XlaOp output = xla::Broadcast( xla::ConstantR0WithType(ctx->builder(), type, 0), output_shape); const std::vector<int64_t> input_slice_start_indices(rank, 0); const std::vector<int64_t> slice_strides(rank, 1); for (int i = 0; i < num_slices_; ++i) { std::vector<int64_t> slice_start_indices = GetSliceIndices(num_concats_, slice_shape, i); int num_complete_pad_dims = 0; int num_partial_pad_dims = 0; std::vector<int64_t> slice_limit_indices(rank); for (int dim = 0; dim < rank; ++dim) { const int64_t dim_size = output_shape[dim]; if (slice_start_indices[dim] >= dim_size) { slice_start_indices[dim] = dim_size; slice_limit_indices[dim] = dim_size; ++num_complete_pad_dims; } else if (slice_start_indices[dim] + slice_shape[dim] > dim_size) { slice_limit_indices[dim] = dim_size; ++num_partial_pad_dims; } else { slice_limit_indices[dim] = slice_start_indices[dim] + slice_shape[dim]; } } if (num_complete_pad_dims == rank) { continue; } xla::XlaOp input_slice = input_handles[i]; if (num_complete_pad_dims > 0 || num_partial_pad_dims > 0) { std::vector<int64_t> input_slice_limit_indices(rank); for (int dim = 0; dim < rank; ++dim) { input_slice_limit_indices[dim] = slice_limit_indices[dim] - slice_start_indices[dim]; } input_slice = xla::Slice(input_slice, input_slice_start_indices, input_slice_limit_indices, slice_strides); } std::vector<xla::XlaOp> update_slice_start_indices; update_slice_start_indices.reserve(rank); for (int64 start_index : slice_start_indices) { update_slice_start_indices.push_back( xla::ConstantR0<int32>(ctx->builder(), start_index)); } output = xla::DynamicUpdateSlice(output, input_slice, update_slice_start_indices); } return output; } DataType dtype_; private: Status GetInputsAndOutputShape(XlaOpKernelContext* ctx, std::vector<xla::XlaOp>& input_handles, std::vector<TensorShape>& input_shapes, std::vector<int64_t>& output_shape) { TF_RETURN_IF_ERROR(ctx->InputList("inputs", &input_handles, &input_shapes)); const TensorShape& slice_shape = input_shapes[0]; if (slice_shape.dims() != num_concats_.size()) { return errors::InvalidArgument( "'inputs' rank must be the same as 'num_concats' length ", num_concats_.size(), ", but got rank ", slice_shape.dims(), "."); } for (int i = 1; i < num_slices_; ++i) { const TensorShape& slice_shape_i = input_shapes[i]; if (slice_shape != slice_shape_i) { return errors::InvalidArgument( "'inputs' must all have the same expected shape ", slice_shape, ", but got ", slice_shape_i, " at index ", i, "."); } } const int rank = input_shapes[0].dims(); for (int dim = 0; dim < rank; ++dim) { const int max_dim_size = slice_shape.dim_size(dim) * num_concats_[dim]; if (paddings_[dim] > max_dim_size) { return errors::InvalidArgument( "'paddings' must not exceed expected output shape dimension ", max_dim_size, " at index ", dim, ", but got ", paddings_[dim], "."); } output_shape.push_back(max_dim_size - paddings_[dim]); } return absl::OkStatus(); } std::vector<int64_t> num_concats_; int num_slices_ = 1; std::vector<int64_t> paddings_; bool has_paddings_ = false; }; class XlaConcatNDOp : public XlaConcatNDBaseOp { public: explicit XlaConcatNDOp(OpKernelConstruction* ctx) : XlaConcatNDBaseOp(ctx) {} void Compile(XlaOpKernelContext* ctx) override { auto output_or = this->CompileInternal(ctx); OP_REQUIRES_OK(ctx, output_or.status()); ctx->SetOutput(0, output_or.value()); } }; REGISTER_XLA_OP(Name("XlaConcatND"), XlaConcatNDOp); class AssignVariableXlaConcatNDOp : public XlaConcatNDBaseOp { public: explicit AssignVariableXlaConcatNDOp(OpKernelConstruction* ctx) : XlaConcatNDBaseOp(ctx) {} void Compile(XlaOpKernelContext* ctx) override { auto output_or = this->CompileInternal(ctx); OP_REQUIRES_OK(ctx, output_or.status()); OP_REQUIRES_OK(ctx, ctx->AssignVariable("resource", dtype_, output_or.value())); } }; REGISTER_XLA_OP(Name("AssignVariableXlaConcatND"), AssignVariableXlaConcatNDOp); } }
#include <cstdint> #include <functional> #include <memory> #include <numeric> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" #include "tsl/platform/errors.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace { MATCHER_P2(IsStatus, error_code, error_message, "") { return arg.code() == error_code && absl::StrContains(arg.message(), error_message); } Status RunGraph(const Graph& graph, const std::vector<std::string>& output_tensor_names, const std::vector<std::string>& target_tensor_names, std::vector<Tensor>* output_tensors) { GraphDef graph_def; graph.ToGraphDef(&graph_def); SessionOptions session_options; std::unique_ptr<Session> session(NewSession(session_options)); TF_RETURN_IF_ERROR(session->Create(graph_def)); RunOptions run_options; return session->Run(run_options, {}, output_tensor_names, target_tensor_names, output_tensors, nullptr); } TEST(ReadVariableXlaSplitNDOpTest, VariableMissing) { Graph graph(OpRegistry::Global()); Node* var_handle = nullptr; DataType data_type = DataTypeToEnum<int32_t>::value; const TensorShape input_shape({4, 4}); TF_ASSERT_OK(NodeBuilder(graph.NewName("var_handle"), "VarHandleOp") .Attr("dtype", data_type) .Attr("shape", input_shape) .Finalize(&graph, &var_handle)); Node* xla_op = nullptr; const std::vector<int32_t> num_splits = {2, 2}; const int num_outputs = 4; TF_ASSERT_OK(NodeBuilder(graph.NewName("xla_op"), "ReadVariableXlaSplitND") .Input(var_handle) .Attr("num_splits", num_splits) .Attr("T", data_type) .Attr("N", num_outputs) .Finalize(&graph, &xla_op)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, {xla_op->name()}, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "cannot be found")); } TEST(ReadVariableXlaSplitNDOpTest, DTypeInvalid) { Graph graph(OpRegistry::Global()); Node* var_handle = nullptr; DataType data_type = DataTypeToEnum<int32_t>::value; const TensorShape input_shape({4, 4}); TF_ASSERT_OK(NodeBuilder(graph.NewName("var_handle"), "VarHandleOp") .Attr("dtype", data_type) .Attr("shape", input_shape) .Finalize(&graph, &var_handle)); Tensor input_tensor(data_type, input_shape); test::FillIota<int32_t>(&input_tensor, 0); Node* input = test::graph::Constant(&graph, input_tensor); Node* assign_var = nullptr; TF_ASSERT_OK(NodeBuilder(graph.NewName("assign_var"), "AssignVariableOp") .Input(var_handle) .Input(input) .Attr("dtype", data_type) .Finalize(&graph, &assign_var)); Node* xla_op = nullptr; const std::vector<int32_t> num_splits = {2, 2}; const int num_outputs = 4; TF_ASSERT_OK(NodeBuilder(graph.NewName("xla_op"), "ReadVariableXlaSplitND") .Input(var_handle) .ControlInput(assign_var) .Attr("num_splits", num_splits) .Attr("T", DataTypeToEnum<float>::value) .Attr("N", num_outputs) .Finalize(&graph, &xla_op)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, {xla_op->name()}, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "'T' must match 'resource'")); } Status CreateSplitTensorGraph(const TensorShape& input_shape, absl::Span<const int32_t> num_splits, absl::Span<const int32_t> paddings, const int num_outputs, Graph* graph, std::vector<std::string>* output_tensor_names) { DataType data_type = DataTypeToEnum<int32_t>::value; Tensor input_tensor(data_type, input_shape); test::FillIota<int32_t>(&input_tensor, 0); Node* input = test::graph::Constant(graph, input_tensor); Node* xla_op = nullptr; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("xla_op"), "XlaSplitND") .Input(input) .Attr("num_splits", num_splits) .Attr("paddings", paddings) .Attr("T", data_type) .Attr("N", num_outputs) .Finalize(graph, &xla_op)); output_tensor_names->reserve(num_outputs); for (int i = 0; i < num_outputs; ++i) { output_tensor_names->push_back(absl::StrCat(xla_op->name(), ":", i)); } return absl::OkStatus(); } Status CreateSplitResourceGraph(const TensorShape& input_shape, absl::Span<const int32_t> num_splits, absl::Span<const int32_t> paddings, const int num_outputs, Graph* graph, std::vector<std::string>* output_tensor_names) { Node* var_handle = nullptr; DataType data_type = DataTypeToEnum<int32_t>::value; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("var_handle"), "VarHandleOp") .Attr("dtype", data_type) .Attr("shape", input_shape) .Finalize(graph, &var_handle)); Tensor input_tensor(data_type, input_shape); test::FillIota<int32_t>(&input_tensor, 0); Node* input = test::graph::Constant(graph, input_tensor); Node* assign_var = nullptr; TF_RETURN_IF_ERROR( NodeBuilder(graph->NewName("assign_var"), "AssignVariableOp") .Input(var_handle) .Input(input) .Attr("dtype", data_type) .Finalize(graph, &assign_var)); Node* xla_op = nullptr; TF_RETURN_IF_ERROR( NodeBuilder(graph->NewName("xla_op"), "ReadVariableXlaSplitND") .Input(var_handle) .ControlInput(assign_var) .Attr("num_splits", num_splits) .Attr("paddings", paddings) .Attr("T", data_type) .Attr("N", num_outputs) .Finalize(graph, &xla_op)); output_tensor_names->reserve(num_outputs); for (int i = 0; i < num_outputs; ++i) { output_tensor_names->push_back(absl::StrCat(xla_op->name(), ":", i)); } return absl::OkStatus(); } struct XlaSplitNDTestParam { std::string name; std::function<Status(const TensorShape&, absl::Span<const int32_t>, absl::Span<const int32_t>, const int num_outputs, Graph*, std::vector<std::string>*)> graph_creator; }; using XlaSplitNDOpTest = ::testing::TestWithParam<XlaSplitNDTestParam>; TEST_P(XlaSplitNDOpTest, SplitDimensionZero) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({1, 1, 1}); const std::vector<int32_t> num_splits = {1, 1, 0}; const std::vector<int32_t> paddings; const int num_outputs = 1; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "index 2 must be positive, but got 0")); } TEST_P(XlaSplitNDOpTest, SplitDimensionNegative) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({1, 1, 1}); const std::vector<int32_t> num_splits = {1, -1, 1}; const std::vector<int32_t> paddings; const int num_outputs = 1; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "index 1 must be positive, but got -1")); } TEST_P(XlaSplitNDOpTest, NumOutputsMismatch) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2}); const std::vector<int32_t> num_splits = {2}; const std::vector<int> paddings; const int num_outputs = 1; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "'N' must match number of slices 2")); } TEST_P(XlaSplitNDOpTest, PaddingsLengthMismatch) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 2}); const std::vector<int32_t> num_splits = {2, 2}; const std::vector<int32_t> paddings = {0}; const int num_outputs = 4; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "length 2, but got 1")); } TEST_P(XlaSplitNDOpTest, PaddingsNegative) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 2}); const std::vector<int32_t> num_splits = {2, 2}; const std::vector<int32_t> paddings = {0, -1}; const int num_outputs = 4; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "non-negative, but got -1 at index 1")); } TEST_P(XlaSplitNDOpTest, InputRank0) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({}); const std::vector<int32_t> num_splits = {2}; const std::vector<int32_t> paddings; const int num_outputs = 2; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "range (0, 8], but got 0")); } TEST_P(XlaSplitNDOpTest, InputRank9) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 2, 2, 2, 2, 2, 2, 2, 2}); const std::vector<int32_t> num_splits(9, 2); const std::vector<int32_t> paddings; const int num_outputs = 512; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "range (0, 8], but got 9")); } TEST_P(XlaSplitNDOpTest, InputRankSplitMismatch) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 2}); const std::vector<int32_t> num_splits = {2, 2, 2}; const std::vector<int32_t> paddings; const int num_outputs = 8; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "'num_splits' length 3, but got rank 2")); } TEST_P(XlaSplitNDOpTest, DimNotEvenlySplit) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({4, 2}); const std::vector<int32_t> num_splits = {3, 2}; const std::vector<int32_t> paddings; const int num_outputs = 6; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "divisible by 'num_splits' 3")); } TEST_P(XlaSplitNDOpTest, DimWithPaddingNotEvenlySplit) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({4, 2}); const std::vector<int32_t> num_splits = {2, 2}; const std::vector<int32_t> paddings = {0, 1}; const int num_outputs = 4; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "divisible by 'num_splits' 2")); } TEST_P(XlaSplitNDOpTest, NoSplits) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 2, 2}); const std::vector<int32_t> num_splits = {1, 1, 1}; const std::vector<int> paddings; const int num_outputs = 1; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 2, 3, 4, 5, 6, 7}, TensorShape({2, 2, 2}))); } TEST_P(XlaSplitNDOpTest, NoSplitsWithPadding) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 1, 1}); const std::vector<int32_t> num_splits = {1, 1, 1}; const std::vector<int> paddings = {0, 1, 1}; const int num_outputs = 1; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); std::vector<int32_t> expected_values(3 * 3 * 3); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 0, 0, 0, 1, 0, 0, 0}, TensorShape({2, 2, 2}))); } TEST_P(XlaSplitNDOpTest, SplitNoPadding) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({4, 4}); const std::vector<int32_t> num_splits = {2, 2}; const std::vector<int32_t> paddings; const int num_outputs = 4; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), num_outputs); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 4, 5}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[1], test::AsTensor<int32_t>({2, 3, 6, 7}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[2], test::AsTensor<int32_t>({8, 9, 12, 13}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[3], test::AsTensor<int32_t>({10, 11, 14, 15}, TensorShape({2, 2}))); } TEST_P(XlaSplitNDOpTest, SplitPartialPadding) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({3, 3}); const std::vector<int32_t> num_splits = {2, 2}; const std::vector<int32_t> paddings = {1, 1}; const int num_outputs = 4; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), num_outputs); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 3, 4}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[1], test::AsTensor<int32_t>({2, 0, 5, 0}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[2], test::AsTensor<int32_t>({6, 7, 0, 0}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[3], test::AsTensor<int32_t>({8, 0, 0, 0}, TensorShape({2, 2}))); } TEST_P(XlaSplitNDOpTest, SplitCompletePadding) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 1}); const std::vector<int32_t> num_splits = {2, 2}; const std::vector<int32_t> paddings = {2, 3}; const int num_outputs = 4; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), num_outputs); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 0, 1, 0}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[1], test::AsTensor<int32_t>({0, 0, 0, 0}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[2], test::AsTensor<int32_t>({0, 0, 0, 0}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[3], test::AsTensor<int32_t>({0, 0, 0, 0}, TensorShape({2, 2}))); } INSTANTIATE_TEST_SUITE_P( XlaSplitNDOpTest, XlaSplitNDOpTest, ::testing::ValuesIn<XlaSplitNDTestParam>( {{"Tensor", CreateSplitTensorGraph}, {"Resource", CreateSplitResourceGraph}}), [](const ::testing::TestParamInfo<XlaSplitNDOpTest::ParamType>& info) { return info.param.name; }); struct RankedXlaSplitNDTestParam { std::string name; int rank = 0; std::function<Status(const TensorShape&, absl::Span<const int32_t>, absl::Span<const int32_t>, const int num_outputs, Graph*, std::vector<std::string>*)> graph_creator; }; class RankedXlaSplitNDOpTest : public ::testing::TestWithParam<RankedXlaSplitNDTestParam> {}; TEST_P(RankedXlaSplitNDOpTest, TestSubscriptRank) { const int rank = GetParam().rank; const std::vector<int32_t> num_splits(rank, 2); Graph graph(OpRegistry::Global()); const TensorShape input_shape(std::vector<int64_t>(rank, 2)); const std::vector<int32_t> paddings; const int num_outputs = 2 << (rank - 1); std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_splits, paddings, num_outputs, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), num_outputs); TensorShape output_shape(std::vector<int64_t>(rank, 1)); for (int i = 0; i < num_outputs; ++i) { test::ExpectTensorEqual<int32_t>( output_tensors[i], test::AsTensor<int32_t>({i}, output_shape)); } } INSTANTIATE_TEST_SUITE_P( RankedXlaSplitNDOpTest, RankedXlaSplitNDOpTest, ::testing::ValuesIn<RankedXlaSplitNDTestParam>( {{"TensorRanked1", 1, CreateSplitTensorGraph}, {"TensorRanked2", 2, CreateSplitTensorGraph}, {"TensorRanked3", 3, CreateSplitTensorGraph}, {"TensorRanked4", 4, CreateSplitTensorGraph}, {"TensorRanked5", 5, CreateSplitTensorGraph}, {"TensorRanked6", 6, CreateSplitTensorGraph}, {"TensorRanked7", 7, CreateSplitTensorGraph}, {"TensorRanked8", 8, CreateSplitTensorGraph}, {"ResourceRanked1", 1, CreateSplitResourceGraph}, {"ResourceRanked2", 2, CreateSplitResourceGraph}, {"ResourceRanked3", 3, CreateSplitResourceGraph}, {"ResourceRanked4", 4, CreateSplitResourceGraph}, {"ResourceRanked5", 5, CreateSplitResourceGraph}, {"ResourceRanked6", 6, CreateSplitResourceGraph}, {"ResourceRanked7", 7, CreateSplitResourceGraph}, {"ResourceRanked8", 8, CreateSplitResourceGraph}}), [](const ::testing::TestParamInfo<RankedXlaSplitNDOpTest::ParamType>& info) { return info.param.name; }); TEST(AssignVariableXlaConcatNDOpTest, HandleDTypeInvalid) { Graph graph(OpRegistry::Global()); Node* var_handle = nullptr; DataType handle_dtype = DataTypeToEnum<int32_t>::value; PartialTensorShape handle_shape; TF_ASSERT_OK(NodeBuilder(graph.NewName("var_handle"), "VarHandleOp") .Attr("dtype", handle_dtype) .Attr("shape", handle_shape) .Finalize(&graph, &var_handle)); DataType update_data_type = DataTypeToEnum<float>::value; const TensorShape update_input_shape({4, 4}); Tensor update_input_tensor(update_data_type, update_input_shape); test::FillIota<float>(&update_input_tensor, 0.f); Node* update_input = test::graph::Constant(&graph, update_input_tensor); Node* xla_op = nullptr; const std::vector<int32_t> num_concats = {1, 1}; const int num_inputs = 1; TF_ASSERT_OK(NodeBuilder(graph.NewName("xla_op"), "AssignVariableXlaConcatND") .Input(var_handle) .Input(std::vector<NodeBuilder::NodeOut>{update_input}) .Attr("num_concats", num_concats) .Attr("T", update_data_type) .Attr("N", num_inputs) .Finalize(&graph, &xla_op)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, {}, {xla_op->name()}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "dtype int32, but got float")); } TEST(AssignVariableXlaConcatNDOpTest, TensorDTypeInvalid) { Graph graph(OpRegistry::Global()); Node* var_handle = nullptr; DataType handle_dtype = DataTypeToEnum<float>::value; PartialTensorShape handle_shape; TF_ASSERT_OK(NodeBuilder(graph.NewName("var_handle"), "VarHandleOp") .Attr("dtype", handle_dtype) .Attr("shape", handle_shape) .Finalize(&graph, &var_handle)); DataType init_data_type = DataTypeToEnum<int32_t>::value; const TensorShape init_input_shape({4, 4}); Tensor init_input_tensor(init_data_type, init_input_shape); test::FillIota<int32_t>(&init_input_tensor, 0); Node* input = test::graph::Constant(&graph, init_input_tensor); Node* assign_var = nullptr; TF_ASSERT_OK(NodeBuilder(graph.NewName("assign_var"), "AssignVariableOp") .Input(var_handle) .Input(input) .Attr("dtype", init_data_type) .Finalize(&graph, &assign_var)); DataType update_data_type = DataTypeToEnum<float>::value; const TensorShape update_input_shape({4, 4}); Tensor update_input_tensor(update_data_type, update_input_shape); test::FillIota<float>(&update_input_tensor, 0.f); Node* update_input = test::graph::Constant(&graph, update_input_tensor); Node* xla_op = nullptr; const std::vector<int32_t> num_concats = {1, 1}; const int num_inputs = 1; TF_ASSERT_OK(NodeBuilder(graph.NewName("xla_op"), "AssignVariableXlaConcatND") .Input(var_handle) .Input(std::vector<NodeBuilder::NodeOut>{update_input}) .ControlInput(assign_var) .Attr("num_concats", num_concats) .Attr("T", update_data_type) .Attr("N", num_inputs) .Finalize(&graph, &xla_op)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, {}, {xla_op->name()}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "dtype int32, but got float")); } TEST(AssignVariableXlaConcatNDOpTest, HandleShapeIncompatible) { Graph graph(OpRegistry::Global()); Node* var_handle = nullptr; DataType handle_dtype = DataTypeToEnum<float>::value; PartialTensorShape handle_shape({}); TF_ASSERT_OK(NodeBuilder(graph.NewName("var_handle"), "VarHandleOp") .Attr("dtype", handle_dtype) .Attr("shape", handle_shape) .Finalize(&graph, &var_handle)); DataType update_data_type = DataTypeToEnum<float>::value; const TensorShape update_input_shape({4, 4}); Tensor update_input_tensor(update_data_type, update_input_shape); test::FillIota<float>(&update_input_tensor, 0.f); Node* update_input = test::graph::Constant(&graph, update_input_tensor); Node* xla_op = nullptr; const std::vector<int32_t> num_concats = {1, 1}; const int num_inputs = 1; TF_ASSERT_OK(NodeBuilder(graph.NewName("xla_op"), "AssignVariableXlaConcatND") .Input(var_handle) .Input(std::vector<NodeBuilder::NodeOut>{update_input}) .Attr("num_concats", num_concats) .Attr("T", update_data_type) .Attr("N", num_inputs) .Finalize(&graph, &xla_op)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, {}, {xla_op->name()}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "expected shape [4,4], but got []")); } TEST(AssignVariableXlaConcatNDOpTest, HandleShapeWithPaddingIncompatible) { Graph graph(OpRegistry::Global()); Node* var_handle = nullptr; DataType handle_dtype = DataTypeToEnum<float>::value; PartialTensorShape handle_shape({4, 4}); TF_ASSERT_OK(NodeBuilder(graph.NewName("var_handle"), "VarHandleOp") .Attr("dtype", handle_dtype) .Attr("shape", handle_shape) .Finalize(&graph, &var_handle)); DataType update_data_type = DataTypeToEnum<float>::value; const TensorShape update_input_shape({4, 4}); Tensor update_input_tensor(update_data_type, update_input_shape); test::FillIota<float>(&update_input_tensor, 0.f); Node* update_input = test::graph::Constant(&graph, update_input_tensor); Node* xla_op = nullptr; const std::vector<int32_t> num_concats = {1, 1}; const std::vector<int32_t> paddings = {1, 1}; const int num_inputs = 1; TF_ASSERT_OK(NodeBuilder(graph.NewName("xla_op"), "AssignVariableXlaConcatND") .Input(var_handle) .Input(std::vector<NodeBuilder::NodeOut>{update_input}) .Attr("num_concats", num_concats) .Attr("paddings", paddings) .Attr("T", update_data_type) .Attr("N", num_inputs) .Finalize(&graph, &xla_op)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, {}, {xla_op->name()}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "expected shape [3,3], but got [4,4]")); } TEST(AssignVariableXlaConcatNDOpTest, AssignDifferentShape) { Graph graph(OpRegistry::Global()); Node* var_handle = nullptr; DataType data_type = DataTypeToEnum<float>::value; TF_ASSERT_OK(NodeBuilder(graph.NewName("var_handle"), "VarHandleOp") .Attr("dtype", data_type) .Attr("shape", PartialTensorShape({4, -1})) .Finalize(&graph, &var_handle)); const TensorShape init_input_shape({4, 2}); Tensor init_input_tensor(data_type, init_input_shape); test::FillFn<float>(&init_input_tensor, [](int unused) { return -1.f; }); Node* init_input = test::graph::Constant(&graph, init_input_tensor); Node* assign_var = nullptr; TF_ASSERT_OK(NodeBuilder(graph.NewName("assign_var"), "AssignVariableOp") .Input(var_handle) .Input(init_input) .Attr("dtype", data_type) .Finalize(&graph, &assign_var)); const TensorShape update_input_shape({4, 4}); Tensor update_input_tensor(data_type, update_input_shape); test::FillIota<float>(&update_input_tensor, 0.f); Node* update_input = test::graph::Constant(&graph, update_input_tensor); Node* xla_op = nullptr; const std::vector<int32_t> num_concats = {1, 1}; const int num_inputs = 1; TF_ASSERT_OK(NodeBuilder(graph.NewName("xla_op"), "AssignVariableXlaConcatND") .Input(var_handle) .Input(std::vector<NodeBuilder::NodeOut>{update_input}) .ControlInput(assign_var) .Attr("num_concats", num_concats) .Attr("T", data_type) .Attr("N", num_inputs) .Finalize(&graph, &xla_op)); Node* read_var = nullptr; TF_ASSERT_OK(NodeBuilder(graph.NewName("read_var"), "ReadVariableOp") .Input(var_handle) .ControlInput(xla_op) .Attr("dtype", data_type) .Finalize(&graph, &read_var)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph( graph, {absl::StrCat(read_var->name(), ":", 0)}, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorNear<float>(output_tensors[0], update_input_tensor, 1e-6); } Status CreateConcatTensorGraph(absl::Span<const TensorShape> input_shapes, absl::Span<const int32_t> num_concats, absl::Span<const int32_t> paddings, Graph* graph, std::vector<std::string>* output_tensor_names) { int32_t val = 0; DataType data_type = DataTypeToEnum<int32_t>::value; std::vector<NodeBuilder::NodeOut> inputs; inputs.reserve(input_shapes.size()); for (const TensorShape& input_shape : input_shapes) { Tensor input_tensor(data_type, input_shape); test::FillIota<int32_t>(&input_tensor, val); val += input_tensor.NumElements(); inputs.push_back(test::graph::Constant(graph, input_tensor)); } Node* xla_op = nullptr; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("xla_op"), "XlaConcatND") .Input(inputs) .Attr("num_concats", num_concats) .Attr("paddings", paddings) .Attr("T", data_type) .Attr("N", static_cast<int64_t>(input_shapes.size())) .Finalize(graph, &xla_op)); output_tensor_names->push_back(absl::StrCat(xla_op->name(), ":", 0)); return absl::OkStatus(); } template <bool Init> Status CreateConcatResourceGraph( absl::Span<const TensorShape> input_shapes, absl::Span<const int32_t> num_concats, absl::Span<const int32_t> paddings, Graph* graph, std::vector<std::string>* output_tensor_names) { Node* var_handle = nullptr; DataType data_type = DataTypeToEnum<int32_t>::value; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("var_handle"), "VarHandleOp") .Attr("dtype", data_type) .Attr("shape", PartialTensorShape()) .Finalize(graph, &var_handle)); Node* assign_var = nullptr; if (Init) { Tensor init_input_tensor(data_type, input_shapes.front()); test::FillFn<int32_t>(&init_input_tensor, [](int unused) { return -1; }); Node* init_input = test::graph::Constant(graph, init_input_tensor); TF_RETURN_IF_ERROR( NodeBuilder(graph->NewName("assign_var"), "AssignVariableOp") .Input(var_handle) .Input(init_input) .Attr("dtype", data_type) .Finalize(graph, &assign_var)); } int32_t val = 0; std::vector<NodeBuilder::NodeOut> inputs; inputs.reserve(input_shapes.size()); for (const TensorShape& input_shape : input_shapes) { Tensor input_tensor(data_type, input_shape); test::FillIota<int32_t>(&input_tensor, val); val += input_tensor.NumElements(); inputs.push_back(test::graph::Constant(graph, input_tensor)); } Node* xla_op = nullptr; NodeBuilder builder(graph->NewName("xla_op"), "AssignVariableXlaConcatND"); builder.Input(var_handle); builder.Input(inputs); if (assign_var != nullptr) { builder.ControlInput(assign_var); } TF_RETURN_IF_ERROR(builder.Attr("num_concats", num_concats) .Attr("paddings", paddings) .Attr("T", data_type) .Attr("N", static_cast<int64_t>(input_shapes.size())) .Finalize(graph, &xla_op)); Node* read_var = nullptr; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("read_var"), "ReadVariableOp") .Input(var_handle) .ControlInput(xla_op) .Attr("dtype", data_type) .Finalize(graph, &read_var)); output_tensor_names->push_back(absl::StrCat(read_var->name(), ":", 0)); return absl::OkStatus(); } struct XlaConcatNDTestParam { std::string name; std::function<Status(absl::Span<const TensorShape>, absl::Span<const int32_t>, absl::Span<const int32_t>, Graph*, std::vector<std::string>*)> graph_creator; }; using XlaConcatNDOpTest = ::testing::TestWithParam<XlaConcatNDTestParam>; TEST_P(XlaConcatNDOpTest, ConcatDimensionZero) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({1, 1, 1}); const std::vector<int32_t> num_concats = {1, 1, 0}; const std::vector<int32_t> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "index 2 must be positive, but got 0")); } TEST_P(XlaConcatNDOpTest, ConcatDimensionNegative) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({1, 1, 1}); const std::vector<int32_t> num_splits = {1, -1, 1}; const std::vector<int32_t> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_splits, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "index 1 must be positive, but got -1")); } TEST_P(XlaConcatNDOpTest, NumInputsMismatch) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2}); const std::vector<int32_t> num_concats = {2}; const std::vector<int> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "'N' must match number of slices 2")); } TEST_P(XlaConcatNDOpTest, PaddingsLengthMismatch) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 2}); const std::vector<int32_t> num_concats = {1, 1}; const std::vector<int32_t> paddings = {0}; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "length 2, but got 1")); } TEST_P(XlaConcatNDOpTest, PaddingsNegative) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 2}); const std::vector<int32_t> num_concats = {1, 1}; const std::vector<int32_t> paddings = {0, -1}; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "non-negative, but got -1 at index 1")); } TEST_P(XlaConcatNDOpTest, InputRank0) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({}); const std::vector<int32_t> num_concats; const std::vector<int32_t> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "range (0, 8], but got 0")); } TEST_P(XlaConcatNDOpTest, InputRank9) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({1, 1, 1, 1, 1, 1, 1, 1, 1}); const std::vector<int32_t> num_concats(9, 1); const std::vector<int32_t> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "range (0, 8], but got 9")); } TEST_P(XlaConcatNDOpTest, InputRankConcatMismatch) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({1}); const std::vector<int32_t> num_concats = {1, 1}; const std::vector<int32_t> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "'num_concats' length 2, but got rank 1")); } TEST_P(XlaConcatNDOpTest, DifferentShapedInputs) { Graph graph(OpRegistry::Global()); const std::vector<TensorShape> input_shapes{{1}, {2}}; const std::vector<int32_t> num_concats = {2}; const std::vector<int32_t> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shapes, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT(RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus(error::INVALID_ARGUMENT, "same expected shape [1], but got [2] at index 1")); } TEST_P(XlaConcatNDOpTest, PaddingExceedsOutputDimSize) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({1}); const std::vector<int32_t> num_concats = {1}; const std::vector<int32_t> paddings = {2}; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; EXPECT_THAT( RunGraph(graph, output_tensor_names, {}, &output_tensors), IsStatus( error::INVALID_ARGUMENT, "exceed expected output shape dimension 1 at index 0, but got 2")); } TEST_P(XlaConcatNDOpTest, NoConcats) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 2, 2}); const std::vector<int32_t> num_concats = {1, 1, 1}; const std::vector<int> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 2, 3, 4, 5, 6, 7}, TensorShape({2, 2, 2}))); } TEST_P(XlaConcatNDOpTest, NoConcatsWithPadding) { Graph graph(OpRegistry::Global()); const TensorShape input_shape({2, 2, 2}); const std::vector<int32_t> num_concats = {1, 1, 1}; const std::vector<int> paddings = {1, 1, 1}; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator({input_shape}, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0}, TensorShape({1, 1, 1}))); } TEST_P(XlaConcatNDOpTest, ConcatNoPadding) { Graph graph(OpRegistry::Global()); const std::vector<TensorShape> input_shapes{{2, 2}, {2, 2}, {2, 2}, {2, 2}}; const std::vector<int32_t> num_concats = {2, 2}; const std::vector<int32_t> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shapes, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15}, TensorShape({4, 4}))); } TEST_P(XlaConcatNDOpTest, ConcatPartialPadding) { Graph graph(OpRegistry::Global()); const std::vector<TensorShape> input_shapes{{2, 2}, {2, 2}, {2, 2}, {2, 2}}; const std::vector<int32_t> num_concats = {2, 2}; const std::vector<int32_t> paddings = {1, 1}; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shapes, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 4, 2, 3, 6, 8, 9, 12}, TensorShape({3, 3}))); } TEST_P(XlaConcatNDOpTest, ConcatCompletePadding) { Graph graph(OpRegistry::Global()); const std::vector<TensorShape> input_shapes{{2, 2}, {2, 2}, {2, 2}, {2, 2}}; const std::vector<int32_t> num_concats = {2, 2}; const std::vector<int32_t> paddings = {2, 2}; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shapes, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 2, 3}, TensorShape({2, 2}))); } INSTANTIATE_TEST_SUITE_P( XlaConcatNDOpTest, XlaConcatNDOpTest, ::testing::ValuesIn<XlaConcatNDTestParam>( {{"Tensor", CreateConcatTensorGraph}, {"InitializedResource", CreateConcatResourceGraph<true>}, {"UninitializedResource", CreateConcatResourceGraph<false>}}), [](const ::testing::TestParamInfo<XlaConcatNDOpTest::ParamType>& info) { return info.param.name; }); struct RankedXlaConcatNDTestParam { std::string name; int rank = 0; std::function<Status(absl::Span<const TensorShape>, absl::Span<const int32_t>, absl::Span<const int32_t>, Graph*, std::vector<std::string>*)> graph_creator; }; class RankedXlaConcatNDOpTest : public ::testing::TestWithParam<RankedXlaConcatNDTestParam> {}; TEST_P(RankedXlaConcatNDOpTest, TestSubscriptRank) { const int rank = GetParam().rank; const std::vector<int32_t> num_concats(rank, 2); Graph graph(OpRegistry::Global()); const int num_inputs = 2 << (rank - 1); const TensorShape base_input_shape(std::vector<int64_t>(rank, 1)); const std::vector<TensorShape> input_shapes(num_inputs, base_input_shape); const std::vector<int32_t> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shapes, num_concats, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); std::vector<int32_t> expected_values(num_inputs); std::iota(expected_values.begin(), expected_values.end(), 0); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>(expected_values, TensorShape(std::vector<int64_t>(rank, 2)))); } INSTANTIATE_TEST_SUITE_P( RankedXlaConcatNDOpTest, RankedXlaConcatNDOpTest, ::testing::ValuesIn<RankedXlaConcatNDTestParam>( {{"TensorRanked1", 1, CreateConcatTensorGraph}, {"TensorRanked2", 2, CreateConcatTensorGraph}, {"TensorRanked3", 3, CreateConcatTensorGraph}, {"TensorRanked4", 4, CreateConcatTensorGraph}, {"TensorRanked5", 5, CreateConcatTensorGraph}, {"TensorRanked6", 6, CreateConcatTensorGraph}, {"TensorRanked7", 7, CreateConcatTensorGraph}, {"TensorRanked8", 8, CreateConcatTensorGraph}, {"InitializedResourceRanked1", 1, CreateConcatResourceGraph<true>}, {"InitializedResourceRanked2", 2, CreateConcatResourceGraph<true>}, {"InitializedResourceRanked3", 3, CreateConcatResourceGraph<true>}, {"InitializedResourceRanked4", 4, CreateConcatResourceGraph<true>}, {"InitializedResourceRanked5", 5, CreateConcatResourceGraph<true>}, {"InitializedResourceRanked6", 6, CreateConcatResourceGraph<true>}, {"InitializedResourceRanked7", 7, CreateConcatResourceGraph<true>}, {"InitializedResourceRanked8", 8, CreateConcatResourceGraph<true>}, {"UninitializedResourceRanked1", 1, CreateConcatResourceGraph<false>}, {"UninitializedResourceRanked2", 2, CreateConcatResourceGraph<false>}, {"UninitializedResourceRanked3", 3, CreateConcatResourceGraph<false>}, {"UninitializedResourceRanked4", 4, CreateConcatResourceGraph<false>}, {"UninitializedResourceRanked5", 5, CreateConcatResourceGraph<false>}, {"UninitializedResourceRanked6", 6, CreateConcatResourceGraph<false>}, {"UninitializedResourceRanked7", 7, CreateConcatResourceGraph<false>}, {"UninitializedResourceRanked8", 8, CreateConcatResourceGraph<false>}}), [](const ::testing::TestParamInfo<RankedXlaConcatNDOpTest::ParamType>& info) { return info.param.name; }); Status CreateRoundtripTensorGraph( const TensorShape& input_shape, absl::Span<const int32_t> num_partitions, absl::Span<const int32_t> paddings, Graph* graph, std::vector<std::string>* output_tensor_names) { const int32_t num_partitions_size = std::accumulate(num_partitions.begin(), num_partitions.end(), 1, std::multiplies<int32_t>()); DataType data_type = DataTypeToEnum<int32_t>::value; Tensor input_tensor(data_type, input_shape); test::FillIota<int32_t>(&input_tensor, 0); Node* input = test::graph::Constant(graph, input_tensor); Node* xla_split_op = nullptr; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("xla_split_op"), "XlaSplitND") .Input(input) .Attr("num_splits", num_partitions) .Attr("paddings", paddings) .Attr("T", data_type) .Attr("N", num_partitions_size) .Finalize(graph, &xla_split_op)); std::vector<NodeBuilder::NodeOut> concat_inputs; concat_inputs.reserve(num_partitions_size); for (int i = 0; i < num_partitions_size; ++i) { concat_inputs.push_back({xla_split_op, i}); } Node* xla_concat_op = nullptr; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("xla_concat_op"), "XlaConcatND") .Input(concat_inputs) .Attr("num_concats", num_partitions) .Attr("paddings", paddings) .Attr("T", data_type) .Attr("N", num_partitions_size) .Finalize(graph, &xla_concat_op)); Node* equal = nullptr; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("equal"), "Equal") .Input(input) .Input(xla_concat_op) .Attr("T", data_type) .Finalize(graph, &equal)); output_tensor_names->push_back(absl::StrCat(equal->name(), ":", 0)); return absl::OkStatus(); } Status CreateRoundtripResourceGraph( const TensorShape& input_shape, absl::Span<const int32_t> num_partitions, absl::Span<const int32_t> paddings, Graph* graph, std::vector<std::string>* output_tensor_names) { const int32_t num_partitions_size = std::accumulate(num_partitions.begin(), num_partitions.end(), 1, std::multiplies<int32_t>()); Node* var_handle = nullptr; DataType data_type = DataTypeToEnum<int32_t>::value; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("var_handle"), "VarHandleOp") .Attr("dtype", data_type) .Attr("shape", PartialTensorShape()) .Finalize(graph, &var_handle)); Tensor input_tensor(data_type, input_shape); test::FillIota<int32_t>(&input_tensor, 0); Node* input = test::graph::Constant(graph, input_tensor); Node* assign_var = nullptr; TF_RETURN_IF_ERROR( NodeBuilder(graph->NewName("assign_var"), "AssignVariableOp") .Input(var_handle) .Input(input) .Attr("dtype", data_type) .Finalize(graph, &assign_var)); Node* xla_split_op = nullptr; TF_RETURN_IF_ERROR( NodeBuilder(graph->NewName("xla_split_op"), "ReadVariableXlaSplitND") .Input(var_handle) .ControlInput(assign_var) .Attr("num_splits", num_partitions) .Attr("paddings", paddings) .Attr("T", data_type) .Attr("N", num_partitions_size) .Finalize(graph, &xla_split_op)); std::vector<NodeBuilder::NodeOut> concat_inputs; concat_inputs.reserve(num_partitions_size); for (int i = 0; i < num_partitions_size; ++i) { concat_inputs.push_back({xla_split_op, i}); } Node* xla_concat_op = nullptr; TF_RETURN_IF_ERROR( NodeBuilder(graph->NewName("xla_op"), "AssignVariableXlaConcatND") .Input(var_handle) .Input(concat_inputs) .Attr("num_concats", num_partitions) .Attr("paddings", paddings) .Attr("T", data_type) .Attr("N", num_partitions_size) .Finalize(graph, &xla_concat_op)); Node* read_var = nullptr; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("read_var"), "ReadVariableOp") .Input(var_handle) .ControlInput(xla_concat_op) .Attr("dtype", data_type) .Finalize(graph, &read_var)); Node* equal = nullptr; TF_RETURN_IF_ERROR(NodeBuilder(graph->NewName("equal"), "Equal") .Input(input) .Input(read_var) .Attr("T", data_type) .Finalize(graph, &equal)); output_tensor_names->push_back(absl::StrCat(equal->name(), ":", 0)); return absl::OkStatus(); } struct RoundtripXlaSplitConcatNDTestParam { std::string name; int rank = 0; std::function<Status(const TensorShape&, absl::Span<const int32_t>, absl::Span<const int32_t>, Graph*, std::vector<std::string>*)> graph_creator; }; class RoundtripXlaSplitConcatNDTest : public ::testing::TestWithParam<RoundtripXlaSplitConcatNDTestParam> {}; template <typename T> Tensor Constant(T v, TensorShape shape) { Tensor ret(DataTypeToEnum<T>::value, shape); ret.flat<T>().setConstant(v); return ret; } TEST_P(RoundtripXlaSplitConcatNDTest, NoPadding) { const int rank = GetParam().rank; const std::vector<int32_t> num_partitions(rank, 2); Graph graph(OpRegistry::Global()); const TensorShape input_shape(std::vector<int64_t>(rank, 4)); const std::vector<int32_t> paddings; std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_partitions, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<bool>( output_tensors[0], Constant<bool>(true, TensorShape(std::vector<int64_t>(rank, 4)))); } TEST_P(RoundtripXlaSplitConcatNDTest, PartialPadding) { const int rank = GetParam().rank; const std::vector<int32_t> num_partitions(rank, 2); Graph graph(OpRegistry::Global()); const TensorShape input_shape(std::vector<int64_t>(rank, 4)); const std::vector<int32_t> paddings(rank, 2); std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_partitions, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<bool>( output_tensors[0], Constant<bool>(true, TensorShape(std::vector<int64_t>(rank, 4)))); } TEST_P(RoundtripXlaSplitConcatNDTest, CompletePadding) { const int rank = GetParam().rank; const std::vector<int32_t> num_partitions(rank, 2); Graph graph(OpRegistry::Global()); const TensorShape input_shape(std::vector<int64_t>(rank, 4)); const std::vector<int32_t> paddings(rank, 4); std::vector<std::string> output_tensor_names; TF_ASSERT_OK(GetParam().graph_creator(input_shape, num_partitions, paddings, &graph, &output_tensor_names)); std::vector<Tensor> output_tensors; TF_ASSERT_OK(RunGraph(graph, output_tensor_names, {}, &output_tensors)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<bool>( output_tensors[0], Constant<bool>(true, TensorShape(std::vector<int64_t>(rank, 4)))); } INSTANTIATE_TEST_SUITE_P( RoundtripXlaSplitConcatNDTest, RoundtripXlaSplitConcatNDTest, ::testing::ValuesIn<RoundtripXlaSplitConcatNDTestParam>( {{"TensorRanked1", 1, CreateRoundtripTensorGraph}, {"TensorRanked2", 2, CreateRoundtripTensorGraph}, {"TensorRanked3", 3, CreateRoundtripTensorGraph}, {"TensorRanked4", 4, CreateRoundtripTensorGraph}, {"TensorRanked5", 5, CreateRoundtripTensorGraph}, {"TensorRanked6", 6, CreateRoundtripTensorGraph}, {"TensorRanked7", 7, CreateRoundtripTensorGraph}, {"TensorRanked8", 8, CreateRoundtripTensorGraph}, {"ResourceRanked1", 1, CreateRoundtripResourceGraph}, {"ResourceRanked2", 2, CreateRoundtripResourceGraph}, {"ResourceRanked3", 3, CreateRoundtripResourceGraph}, {"ResourceRanked4", 4, CreateRoundtripResourceGraph}, {"ResourceRanked5", 5, CreateRoundtripResourceGraph}, {"ResourceRanked6", 6, CreateRoundtripResourceGraph}, {"ResourceRanked7", 7, CreateRoundtripResourceGraph}, {"ResourceRanked8", 8, CreateRoundtripResourceGraph}}), [](const ::testing::TestParamInfo<RoundtripXlaSplitConcatNDTest::ParamType>& info) { return info.param.name; }); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/sharding_util_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/kernels/sharding_util_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fe09ef8b-81a3-4fba-97de-713f5e1c309e
cpp
tensorflow/tensorflow
sparse_core_ops_utils
tensorflow/core/tpu/kernels/sparse_core_ops_utils.cc
tensorflow/core/tpu/kernels/sparse_core_ops_utils_test.cc
#include "tensorflow/core/tpu/kernels/sparse_core_ops_utils.h" #include <algorithm> #include <cmath> #include <cstdint> #include <functional> #include <string> #include <tuple> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/container/flat_hash_map.h" #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "tensorflow/compiler/jit/flags.h" #include "xla/stream_executor/tpu/status_helper.h" #include "xla/stream_executor/tpu/tpu_api.h" #include "xla/stream_executor/tpu/tpu_ops_c_api.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { std::vector<int> ConvertBinarySplitsToBucketSplits(int64 split, int max_division_level) { std::vector<int> bucket_splits; uint32 current_index = 0; while (split > 0) { if (split % 2 == 1) { int split_level = absl::bit_width(current_index + 1) - 1; int split_offset = current_index - (1 << split_level) + 1; int split_size = 1 << (max_division_level - 1 - split_level); bucket_splits.push_back(split_size + split_offset * split_size * 2); } split >>= 1; current_index += 1; } absl::c_sort(bucket_splits); return bucket_splits; } int64 ConvertBucketSplitsToBinarySplits(std::vector<int> bucket_splits, int max_division_level) { int64 binary_splits = 0; for (auto& bucket_split : bucket_splits) { int split_level = max_division_level - 1; while (bucket_split > 0 && bucket_split % 2 == 0) { --split_level; bucket_split = bucket_split >> 1; } binary_splits |= (1LL << ((1 << split_level) - 1 + bucket_split / 2)); } return binary_splits; } Status ValidateInputCombiner(const std::string& combiner) { if (combiner != "sum" && combiner != "mean" && combiner != "sqrtn") { return absl::InvalidArgumentError( "Invalid combiner: only \"sum\", \"mean\", and " "\"sqrtn\" are supported."); } return absl::OkStatus(); } std::function<float(float)> GetCombinerScaleContributionFunction( absl::string_view combiner) { if (combiner == "sum") { return [](float x) -> float { return 1.f; }; } else if (combiner == "mean") { return [](float x) -> float { return x; }; } else { return [](float x) -> float { return x * x; }; } } std::function<float(float)> GetCombinerScaleTransformFunction( absl::string_view combiner) { if (combiner == "sum") { return [](float x) -> float { return 1; }; } else if (combiner == "mean") { return [](float x) -> float { return x == 0.0f ? 0.0f : 1.0 / x; }; } else { return [](float x) -> float { return x == 0.0f ? 0.0f : 1.0 / std::sqrt(x); }; } } Status GetMaxIdsAndUniquesExternal(const std::string& program_key, const std::string& table_name, int64_t num_samples_per_sparse_core, int64_t feature_width, int64_t* max_ids_per_partition, int64_t* max_unique_ids_per_partition) { SparseCore_GetMaxIdsAndUniques_Params params; params.program_key = program_key.c_str(); params.table_name = table_name.c_str(); params.num_samples_per_sparse_core = num_samples_per_sparse_core; params.feature_width = feature_width; StatusHelper status; params.status = status.c_status; stream_executor::tpu::OpsApiFn()->SparseCore_GetMaxIdsAndUniquesFn(&params); *max_ids_per_partition = params.max_ids_per_partition; *max_unique_ids_per_partition = params.max_unique_ids_per_partition; return status.status(); } std::vector<std::vector<std::string>> GetTableStacks( const std::vector<int64_t>& table_height, const std::vector<int64_t>& table_width, const std::vector<int64_t>& table_num_samples, const std::vector<int64_t>& table_group, const std::vector<std::string>& table_names, int64_t num_tpu_chips) { if (GetDisableTableStacking()) { std::vector<std::vector<std::string>> stacks(table_names.size()); for (int i = 0; i < table_names.size(); ++i) stacks[i] = {table_names[i]}; return stacks; } std::vector<std::tuple<int64_t, int64_t, int64_t, int64_t, std::string>> table_data(table_height.size()); for (int i = 0; i < table_height.size(); ++i) table_data[i] = std::make_tuple(table_height[i], table_width[i], table_num_samples[i], table_group[i], table_names[i]); std::sort(table_data.begin(), table_data.end(), [](auto& lh, auto& rh) { return std::get<4>(lh) < std::get<4>(rh); }); absl::flat_hash_map<int64_t, std::vector<std::vector<std::string>>> stacks_by_group; absl::flat_hash_map<int64_t, std::vector<int64_t>> stacks_height_by_group; absl::flat_hash_map<int64_t, std::vector<int64_t>> stacks_width_by_group; absl::flat_hash_map<int64_t, std::vector<int64_t>> stacks_samples_by_group; const int64_t mem_limit = GetXlaSparseCoreStackingMemLimit(); const int64_t table_shard_limit = GetXlaSparseCoreStackingTableShardLimit(); for (const auto& table : table_data) { int64_t height; int64_t width; int64_t num_samples; int64_t group; std::string name; std::tie(height, width, num_samples, group, name) = table; num_samples /= 4; int64_t stack_id = 0; for (; stack_id < stacks_by_group[group].size(); ++stack_id) if (((mem_limit == 0) || (sizeof(float) * width * (num_samples + stacks_samples_by_group[group][stack_id]) < mem_limit)) && ((table_shard_limit == 0) || (sizeof(float) * (height + stacks_height_by_group[group][stack_id]) * width / num_tpu_chips < table_shard_limit))) break; if (stack_id == stacks_by_group[group].size()) { stacks_by_group[group].resize(stacks_by_group[group].size() + 1); stacks_height_by_group[group].push_back(0); stacks_width_by_group[group].push_back(width); stacks_samples_by_group[group].push_back(0); } stacks_by_group[group][stack_id].push_back(name); stacks_height_by_group[group][stack_id] += height; stacks_samples_by_group[group][stack_id] += num_samples; } std::vector<std::vector<std::string>> table_stacks; for (const auto& [group, stacks] : stacks_by_group) table_stacks.insert(table_stacks.end(), stacks.begin(), stacks.end()); return table_stacks; } ABSL_ATTRIBUTE_WEAK int GetMinibatchMaxDivisionLevel() { XlaSparseCoreFlags* sparse_core_flags = GetXlaSparseCoreFlags(); return sparse_core_flags->tf_xla_sparse_core_minibatch_max_division_level; } ABSL_ATTRIBUTE_WEAK bool GetDisableTableStacking() { XlaSparseCoreFlags* sparse_core_flags = GetXlaSparseCoreFlags(); return sparse_core_flags->tf_xla_sparse_core_disable_table_stacking; } ABSL_ATTRIBUTE_WEAK int64_t GetXlaSparseCoreStackingMemLimit() { XlaSparseCoreFlags* sparse_core_flags = GetXlaSparseCoreFlags(); return sparse_core_flags->tf_xla_sparse_core_stacking_mem_limit_bytes; } ABSL_ATTRIBUTE_WEAK int64_t GetXlaSparseCoreStackingTableShardLimit() { XlaSparseCoreFlags* sparse_core_flags = GetXlaSparseCoreFlags(); return sparse_core_flags->tf_xla_sparse_core_stacking_table_shard_limit_bytes; } }
#include "tensorflow/core/tpu/kernels/sparse_core_ops_utils.h" #include <vector> #include <gtest/gtest.h> #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { TEST(ConvertSplitsAndBackTest, Split0) { const int max_division_level = 6; int64 original_split = 0; std::vector<int> actual_buckets = ConvertBinarySplitsToBucketSplits(original_split, max_division_level); std::vector<int> expected_buckets = {}; int64 re_split = ConvertBucketSplitsToBinarySplits(expected_buckets, max_division_level); ASSERT_EQ(re_split, original_split); } TEST(ConvertSplitsAndBackTest, Split2) { const int max_division_level = 6; int64 original_split = 2; std::vector<int> actual_buckets = ConvertBinarySplitsToBucketSplits(original_split, max_division_level); std::vector<int> expected_buckets = {16}; int64 re_split = ConvertBucketSplitsToBinarySplits(expected_buckets, max_division_level); ASSERT_EQ(re_split, original_split); } TEST(ConvertSplitsAndBackTest, Split3) { const int max_division_level = 6; int64 original_split = 3; std::vector<int> actual_buckets = ConvertBinarySplitsToBucketSplits(original_split, max_division_level); std::vector<int> expected_buckets = {16, 32}; int64 re_split = ConvertBucketSplitsToBinarySplits(expected_buckets, max_division_level); ASSERT_EQ(re_split, original_split); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/kernels/sparse_core_ops_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/kernels/sparse_core_ops_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5b8f066c-2a97-4e81-9265-a2cf2cc649cd
cpp
tensorflow/tensorflow
sparse_core_layout
tensorflow/core/tpu/kernels/sparse_core_layout.cc
tensorflow/core/tpu/kernels/sparse_core_layout_test.cc
#include "tensorflow/core/tpu/kernels/sparse_core_layout.h" #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/core/tpu/kernels/sparse_core_layout.pb.h" #include "tsl/platform/stringpiece.h" namespace tensorflow { ABSL_ATTRIBUTE_WEAK bool GetDisableTableStacking(bool disable_table_stacking) { bool should_disable_stacking = false; XlaSparseCoreFlags *sparse_core_flags = GetXlaSparseCoreFlags(); should_disable_stacking = sparse_core_flags->tf_xla_sparse_core_disable_table_stacking; return should_disable_stacking || disable_table_stacking; } ABSL_ATTRIBUTE_WEAK int64_t GetXlaSparseCoreStackingMemLimit() { XlaSparseCoreFlags *sparse_core_flags = GetXlaSparseCoreFlags(); return sparse_core_flags->tf_xla_sparse_core_stacking_mem_limit_bytes; } ABSL_ATTRIBUTE_WEAK int64_t GetXlaSparseCoreStackingTableShardLimit() { XlaSparseCoreFlags *sparse_core_flags = GetXlaSparseCoreFlags(); return sparse_core_flags->tf_xla_sparse_core_stacking_table_shard_limit_bytes; } namespace tpu { static int64_t NextLargestMultiple(int64_t n, int64_t factor) { int64_t extra = n % factor; if (extra == 0) return n; return n + factor - extra; } SparseCoreLayoutStacker::SparseCoreLayoutStacker(int num_partitions, bool disable_table_stacking, int sparse_cores_per_partition) : num_partitions_(num_partitions), sparse_cores_per_partition_(sparse_cores_per_partition), num_sparse_cores_(num_partitions_ * sparse_cores_per_partition_), stacking_enabled_(!GetDisableTableStacking(disable_table_stacking)), activation_mem_bytes_limit_(GetXlaSparseCoreStackingMemLimit()), variable_shard_bytes_limit_(GetXlaSparseCoreStackingTableShardLimit()) {} absl::Status SparseCoreLayoutStacker::AddTable(absl::string_view table_name, int64_t table_height, int64_t table_width, absl::string_view group, int64_t output_samples) { if (stacks_by_group_.empty()) { VLOG(1) << "Stacking parameters: stacking_enabled_ = " << stacking_enabled_ << ", activation_mem_bytes_limit_ = " << activation_mem_bytes_limit_ << ", variable_shard_bytes_limit_ = " << variable_shard_bytes_limit_ << ", row_limit_ = " << row_limit_ << ", table_limit_ = " << table_limit_; } VLOG(2) << "Table " << table_name << ":"; int64_t samples_per_sparse_core = output_samples / sparse_cores_per_partition_; int64_t padded_width = NextLargestMultiple(table_width, 8); int64_t padded_height = NextLargestMultiple(table_height, num_sparse_cores_ * 8); VLOG(2) << " Original size: " << table_height << "x" << table_width << " padded size: " << padded_height << "x" << padded_width; int64_t activation_mem_bytes = sizeof(float) * padded_width * samples_per_sparse_core; int64_t variable_shard_bytes = sizeof(float) * padded_width * padded_height / num_partitions_; VLOG(2) << " activation mem = " << activation_mem_bytes << ", variable shard bytes = " << variable_shard_bytes; std::vector<TableStack> &candidate_stacks = stacks_by_group_[std::make_pair(padded_width, std::string(group))]; TableStack *stack = nullptr; if (stacking_enabled_) { for (TableStack &ts : candidate_stacks) { if (ts.incomplete_tables.size() >= table_limit_) continue; if (activation_mem_bytes_limit_ != 0 && ts.total_activation_mem_bytes + activation_mem_bytes >= activation_mem_bytes_limit_) { continue; } if (variable_shard_bytes_limit_ != 0 && ts.total_variable_shard_bytes + variable_shard_bytes >= variable_shard_bytes_limit_) { continue; } if (row_limit_ != 0 && ts.unsharded_height + padded_height >= row_limit_) { continue; } stack = &ts; break; } } if (stack == nullptr) { candidate_stacks.emplace_back(); stack = &candidate_stacks.back(); stack->padded_width = padded_width; stack->temporary_name = absl::Substitute("w$0_i$1_$2", padded_width, candidate_stacks.size(), group); } stack->incomplete_tables.emplace_back(); SparseCoreTableLayout &layout = stack->incomplete_tables.back(); layout.set_table_name(std::string(table_name)); layout.set_num_sparse_cores(num_sparse_cores_); layout.set_num_partitions(num_partitions_); layout.add_unsharded_shape(table_height); layout.add_unsharded_shape(table_width); layout.add_unsharded_padded_shape(padded_height); layout.add_unsharded_padded_shape(padded_width); layout.set_sparse_core_shard_row_offset(stack->unsharded_height / num_sparse_cores_); layout.set_sparse_core_shard_rotation(((stack->incomplete_tables.size() - 1) * num_sparse_cores_ / num_partitions_) % num_sparse_cores_); stack->unsharded_height += padded_height; stack->total_variable_shard_bytes += variable_shard_bytes; stack->total_activation_mem_bytes += activation_mem_bytes; return absl::OkStatus(); } absl::StatusOr<SparseCoreTableLayouts> SparseCoreLayoutStacker::GetLayouts() { SparseCoreTableLayouts layouts; for (const auto &[key, stacks] : stacks_by_group_) { VLOG(1) << "Stack group: padded width " << key.first << ", name = " << key.second; for (const TableStack &stack : stacks) { VLOG(1) << " Stack " << stack.temporary_name << ": unsharded_height = " << stack.unsharded_height << ", total_activation_mem_bytes = " << stack.total_activation_mem_bytes << ", total_variable_shard_bytes = " << stack.total_variable_shard_bytes; std::string stacked_table_name; for (const SparseCoreTableLayout &incomplete_layout : stack.incomplete_tables) { if (!stacked_table_name.empty()) stacked_table_name += "_"; absl::StrAppend(&stacked_table_name, incomplete_layout.table_name()); } for (const SparseCoreTableLayout &incomplete_layout : stack.incomplete_tables) { SparseCoreTableLayout *out_layout = layouts.add_tables(); *out_layout = incomplete_layout; out_layout->set_stacked_table_name(stacked_table_name); VLOG(1) << " Contains " << out_layout->table_name(); out_layout->set_total_rows_per_sparse_core_shard( stack.unsharded_height / num_sparse_cores_); } } } return layouts; } } }
#include "tensorflow/core/tpu/kernels/sparse_core_layout.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/tpu/kernels/sparse_core_layout.pb.h" namespace tensorflow { namespace tpu { namespace { using ::testing::EqualsProto; using ::testing::proto::Partially; using ::testing::status::IsOkAndHolds; TEST(SparseCoreLayoutStacker, StacksTwoTablesAndPads) { SparseCoreLayoutStacker stacker(2); ASSERT_OK(stacker.AddTable("table1", 100, 6, "stack1", 10)); ASSERT_OK(stacker.AddTable("table2", 50, 5, "stack1", 10)); EXPECT_THAT(stacker.GetLayouts(), IsOkAndHolds(EqualsProto(R"pb( tables { table_name: 'table1' stacked_table_name: 'table1_table2' num_sparse_cores: 8 num_partitions: 2 total_rows_per_sparse_core_shard: 24 # = (128 + 64) / 8 unsharded_shape: [ 100, 6 ] unsharded_padded_shape: [ 128, 8 ] sparse_core_shard_row_offset: 0 sparse_core_shard_rotation: 0 } tables { table_name: 'table2' stacked_table_name: 'table1_table2' num_sparse_cores: 8 num_partitions: 2 total_rows_per_sparse_core_shard: 24 unsharded_shape: [ 50, 5 ] unsharded_padded_shape: [ 64, 8 ] sparse_core_shard_row_offset: 16 # = 128/8 sparse_core_shard_rotation: 4 } )pb"))); } TEST(SparseCoreLayoutStacker, RespectsDisableStacking) { SparseCoreLayoutStacker stacker(2); stacker.SetStackingEnabled(false); ASSERT_OK(stacker.AddTable("table1", 100, 6, "stack1", 10)); ASSERT_OK(stacker.AddTable("table2", 50, 5, "stack1", 10)); EXPECT_THAT(stacker.GetLayouts(), IsOkAndHolds(EqualsProto(R"pb( tables { table_name: 'table1' stacked_table_name: 'table1' num_sparse_cores: 8 num_partitions: 2 total_rows_per_sparse_core_shard: 16 # = 128 / 8 unsharded_shape: [ 100, 6 ] unsharded_padded_shape: [ 128, 8 ] sparse_core_shard_row_offset: 0 sparse_core_shard_rotation: 0 } tables { table_name: 'table2' stacked_table_name: 'table2' num_sparse_cores: 8 num_partitions: 2 total_rows_per_sparse_core_shard: 8 # = 64/8 unsharded_shape: [ 50, 5 ] unsharded_padded_shape: [ 64, 8 ] sparse_core_shard_row_offset: 0 sparse_core_shard_rotation: 0 } )pb"))); } TEST(SparseCoreLayoutStacker, RespectsActivationMemLimit) { SparseCoreLayoutStacker stacker(2); stacker.SetActivationMemoryBytesLimit(16384 + 1); ASSERT_OK(stacker.AddTable("table1", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table2", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table3", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table4", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table5", 128, 8, "stack1", 1024)); EXPECT_THAT( stacker.GetLayouts(), IsOkAndHolds(Partially(EqualsProto(R"pb( tables { table_name: 'table1' stacked_table_name: 'table1_table2' } tables { table_name: 'table2' stacked_table_name: 'table1_table2' } tables { table_name: 'table3' stacked_table_name: 'table3_table4' } tables { table_name: 'table4' stacked_table_name: 'table3_table4' } tables { table_name: 'table5' stacked_table_name: 'table5' } )pb")))); } TEST(SparseCoreLayoutStacker, RespectsVariableShardLimit) { SparseCoreLayoutStacker stacker(2); stacker.SetVariableShardBytesLimit(4096 + 1); ASSERT_OK(stacker.AddTable("table1", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table2", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table3", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table4", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table5", 128, 8, "stack1", 1024)); EXPECT_THAT( stacker.GetLayouts(), IsOkAndHolds(Partially(EqualsProto(R"pb( tables { table_name: 'table1' stacked_table_name: 'table1_table2' } tables { table_name: 'table2' stacked_table_name: 'table1_table2' } tables { table_name: 'table3' stacked_table_name: 'table3_table4' } tables { table_name: 'table4' stacked_table_name: 'table3_table4' } tables { table_name: 'table5' stacked_table_name: 'table5' } )pb")))); } TEST(SparseCoreLayoutStacker, RespectsRowLimit) { SparseCoreLayoutStacker stacker(2); stacker.SetActivationMemoryBytesLimit(0); stacker.SetVariableShardBytesLimit(0); ASSERT_OK(stacker.AddTable("table1", 1 << 29, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table2", 1 << 29, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table3", 1 << 29, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table4", 1 << 29, 8, "stack1", 1024)); EXPECT_THAT(stacker.GetLayouts(), IsOkAndHolds(Partially(EqualsProto(R"pb( tables { table_name: 'table1' stacked_table_name: 'table1_table2_table3' } tables { table_name: 'table2' stacked_table_name: 'table1_table2_table3' } tables { table_name: 'table3' stacked_table_name: 'table1_table2_table3' } tables { table_name: 'table4' stacked_table_name: 'table4' } )pb")))); } TEST(SparseCoreLayoutStacker, RespectsTableLimit) { SparseCoreLayoutStacker stacker(2); stacker.SetActivationMemoryBytesLimit(0); stacker.SetVariableShardBytesLimit(0); stacker.SetStackingTableLimit(2); ASSERT_OK(stacker.AddTable("table1", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table2", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table3", 128, 8, "stack1", 1024)); ASSERT_OK(stacker.AddTable("table4", 128, 8, "stack1", 1024)); EXPECT_THAT( stacker.GetLayouts(), IsOkAndHolds(Partially(EqualsProto(R"pb( tables { table_name: 'table1' stacked_table_name: 'table1_table2' } tables { table_name: 'table2' stacked_table_name: 'table1_table2' } tables { table_name: 'table3' stacked_table_name: 'table3_table4' } tables { table_name: 'table4' stacked_table_name: 'table3_table4' } )pb")))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/kernels/sparse_core_layout.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/kernels/sparse_core_layout_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b171af87-ba8d-4846-b355-b1c99330705c
cpp
tensorflow/tensorflow
encapsulate_tpu_computations_pass
tensorflow/core/tpu/graph_rewrite/encapsulate_tpu_computations_pass.cc
tensorflow/core/tpu/graph_rewrite/encapsulate_tpu_computations_pass_test.cc
#include "tensorflow/core/tpu/graph_rewrite/encapsulate_tpu_computations_pass.h" #include <algorithm> #include <cstdint> #include <map> #include <memory> #include <optional> #include <queue> #include <set> #include <string> #include <tuple> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/node_hash_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/compiler/jit/encapsulate_subgraphs_pass.h" #include "tensorflow/compiler/jit/encapsulate_util.h" #include "tensorflow/compiler/jit/extract_outside_compilation_pass.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "tensorflow/compiler/tf2xla/side_effect_util.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/function_body.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/gtl/flatset.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/tpu/tpu_compile_interface.h" #include "tensorflow/core/tpu/tpu_defs.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { const char* const kTPUReplicatedInput = "TPUReplicatedInput"; const char* const kTPUReplicatedOutput = "TPUReplicatedOutput"; const char* const kPivotForClusterAttr = "_pivot_for_cluster"; const char* const kTPUPartitionedInput = "TPUPartitionedInput"; const char* const kTPUPartitionedInputV2 = "TPUPartitionedInputV2"; Status GetIndexAttr(const Node& n, int num_args, int* index) { TF_RETURN_IF_ERROR(GetNodeAttr(n.attrs(), "index", index)); if (*index < 0 || *index >= num_args) { return absl::InvalidArgumentError( absl::StrCat("Invalid ", n.type_string(), " number ", *index)); } return absl::OkStatus(); } Status RewriteSubgraph(const std::vector<OutputTensor>& arg_source_tensors, std::unique_ptr<Graph>* graph_ptr, std::vector<int>* input_permutation, std::vector<int>* output_permutation, NodeDef* call_def) { auto is_replicated_input = [&](const Node& n, bool* is_packed = nullptr) { CHECK_EQ("_Arg", n.type_string()); int index; TF_CHECK_OK(GetIndexAttr(n, arg_source_tensors.size(), &index)); bool ret = arg_source_tensors.at(index).node->type_string() == kTPUReplicatedInput; if (is_packed) { if (!ret || !GetNodeAttr(arg_source_tensors.at(index).node->attrs(), "is_packed", is_packed) .ok()) { *is_packed = false; } } return ret; }; auto is_guaranteed_constant = [&](const Node& n) { bool guaranteed_constant = false; if (!GetNodeAttr(n.attrs(), "_is_guaranteed_constant", &guaranteed_constant) .ok()) { return false; } return guaranteed_constant && !is_replicated_input(n); }; Graph* graph = graph_ptr->get(); Node* metadata_node = nullptr; const int num_args = input_permutation->size(); const int num_retvals = output_permutation->size(); std::vector<Node*> args; std::vector<Node*> retvals; args.reserve(num_args); retvals.reserve(num_retvals); for (Node* n : graph->nodes()) { if (n->type_string() == "_Arg") { args.push_back(n); } else if (n->type_string() == "_Retval") { retvals.push_back(n); } else if (n->type_string() == "TPUReplicateMetadata") { metadata_node = n; } else if (!absl::StrContains(n->requested_device(), DEVICE_TPU_REPLICATED_CORE)) { n->set_assigned_device_name( absl::StrCat("/device:", DEVICE_TPU_REPLICATED_CORE)); } } if (metadata_node == nullptr) { return absl::InvalidArgumentError("Missing TPUReplicateMetadata node"); } for (const auto& attr : metadata_node->attrs()) { if (attr.first == "computation_shape") { std::vector<int> shape; TF_RETURN_IF_ERROR( GetNodeAttr(metadata_node->attrs(), "computation_shape", &shape)); if (!shape.empty()) { int64_t num_cores_per_replica = 1LL; for (int dim : shape) { num_cores_per_replica *= dim; } call_def->mutable_attr()->erase("num_cores_per_replica"); AddNodeAttr("num_cores_per_replica", num_cores_per_replica, call_def); } } else { call_def->mutable_attr()->insert(attr); } } MergeDebugInfo(NodeDebugInfo(metadata_node->def()), call_def); graph->RemoveNode(metadata_node); if (std::find(args.begin(), args.end(), nullptr) != args.end()) { return absl::InvalidArgumentError("Missing or non-consecutive arguments"); } std::sort(args.begin(), args.end(), [&](Node* a, Node* b) { bool a_is_guaranteed_constant = is_guaranteed_constant(*a); bool b_is_guaranteed_constant = is_guaranteed_constant(*b); bool a_is_packed; bool b_is_packed; bool a_not_replicated = !is_replicated_input(*a, &a_is_packed); bool b_not_replicated = !is_replicated_input(*b, &b_is_packed); bool a_is_resource = (a->output_type(0) == DT_RESOURCE); bool b_is_resource = (b->output_type(0) == DT_RESOURCE); absl::string_view a_name(a->name()); absl::string_view b_name(b->name()); return std::tie(a_is_guaranteed_constant, a_not_replicated, a_is_packed, a_is_resource, a_name) < std::tie(b_is_guaranteed_constant, b_not_replicated, b_is_packed, b_is_resource, b_name); }); std::sort(retvals.begin(), retvals.end(), [](Node* a, Node* b) { return a->name() < b->name(); }); int variable_start_index = num_args; int guaranteed_const_start_index = num_args; for (int i = 0; i < num_args; ++i) { int index; TF_RETURN_IF_ERROR(GetIndexAttr(*args[i], num_args, &index)); if (args[i]->output_type(0) == DT_RESOURCE && !is_replicated_input(*args[i]) && variable_start_index == num_args) { variable_start_index = i; } else if (is_guaranteed_constant(*args[i]) && guaranteed_const_start_index == num_args) { guaranteed_const_start_index = i; } (*input_permutation)[index] = i; args[i]->AddAttr("index", i); } VLOG(4) << "variable_start_index: " << variable_start_index << " guaranteed_const_start_index: " << guaranteed_const_start_index; for (int i = 0; i < num_retvals; ++i) { int index; TF_RETURN_IF_ERROR(GetIndexAttr(*retvals[i], num_retvals, &index)); (*output_permutation)[index] = i; retvals[i]->AddAttr("index", i); } AddNodeAttr(kTPUReplicateAttr, call_def->name(), call_def); AddNodeAttr("_variable_start_index", variable_start_index, call_def); AddNodeAttr("_guaranteed_const_start_index", guaranteed_const_start_index, call_def); TF_ASSIGN_OR_RETURN(std::string serialized, SerializeGraphDeterministic(*graph)); uint64_t fingerprint = TpuCompileInterface::Get()->FingerprintString(serialized); LOG(INFO) << "Subgraph fingerprint:" << fingerprint; call_def->set_op(absl::StrCat(call_def->op(), "_", fingerprint)); return absl::OkStatus(); } DataType EdgeType(const Edge* edge) { return edge->dst()->input_type(edge->dst_input()); } void AddControlInputs(const Node& node, gtl::FlatSet<Node*>* deps) { for (const Edge* edge : node.in_edges()) { if (edge->IsControlEdge()) { deps->insert(edge->src()); } } } void AddControlOutputs(const Node& node, gtl::FlatSet<Node*>* deps) { for (const Edge* edge : node.out_edges()) { if (edge->IsControlEdge()) { deps->insert(edge->dst()); } } } Status RemoveIdentityNodesForArgRetval(Graph* g) { std::vector<Node*> identity_nodes; for (Node* n : g->nodes()) { if (n->type_string() == "Identity" && (HasNodeAttr(n->def(), "_tpu_input_identity") || HasNodeAttr(n->def(), "_tpu_output_identity"))) { identity_nodes.push_back(n); } } for (Node* n : identity_nodes) { const Edge* input_edge; TF_RETURN_IF_ERROR(n->input_edge(0, &input_edge)); std::vector<const Edge*> output_edges; for (const Edge* e : n->out_edges()) { output_edges.push_back(e); } for (const Edge* e : output_edges) { if (e->IsControlEdge()) { Node* dst = e->dst(); g->RemoveEdge(e); g->AddControlEdge(input_edge->src(), dst); } else { Node* dst = e->dst(); int dst_input = e->dst_input(); g->RemoveEdge(e); g->AddEdge(input_edge->src(), input_edge->src_output(), dst, dst_input); } } g->RemoveNode(n); } return absl::OkStatus(); } Status UpdateMirroredVariableIndices(int additional_per_replica_inputs, Node* xla_node) { std::vector<int> mirrored_variable_indices; if (xla_node->attrs().Find(TPUREPLICATE_MIRRORED_VAR_INDICES_ATTR) != nullptr) { TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->def(), TPUREPLICATE_MIRRORED_VAR_INDICES_ATTR, &mirrored_variable_indices)); } if (!mirrored_variable_indices.empty()) { for (int i = 0; i < mirrored_variable_indices.size(); ++i) mirrored_variable_indices[i] += additional_per_replica_inputs; xla_node->ClearAttr(TPUREPLICATE_MIRRORED_VAR_INDICES_ATTR); xla_node->AddAttr(TPUREPLICATE_MIRRORED_VAR_INDICES_ATTR, mirrored_variable_indices); } return absl::OkStatus(); } Status MoveHeadOutsideCompilationToHost( const std::string& outside_compilation_attr_name, const std::string& xla_func_name, const std::string& cluster_name, Graph* g, Graph* xla_graph, Node* xla_node, Node* pivot_node) { std::vector<Node*> oc_nodes_at_head; const std::string kOnlyArgOrOcInputAttrName = "_xla_only_arg_or_oc_input"; ReverseDFS( *xla_graph, nullptr, [&](Node* n) { bool has_non_arg_or_oc_input = false; for (const Edge* e : n->in_edges()) { if (e->src() == xla_graph->source_node()) { continue; } if (!e->src()->IsArg() && (!HasNodeAttr(e->src()->def(), outside_compilation_attr_name) || !HasNodeAttr(e->src()->def(), kOnlyArgOrOcInputAttrName))) { has_non_arg_or_oc_input = true; break; } } if (HasNodeAttr(n->def(), outside_compilation_attr_name) && !has_non_arg_or_oc_input && !HasNodeAttr(n->def(), kXlaIsPlaceholderForArg)) { n->AddAttr(kOnlyArgOrOcInputAttrName, true); oc_nodes_at_head.push_back(n); } }, NodeComparatorName()); std::vector<Node*> const_nodes_to_remove; for (Node* n : oc_nodes_at_head) { if (n->type_string() != "Const") { continue; } std::vector<const Edge*> edges_to_replace; for (const Edge* e : n->out_edges()) { if (!e->IsControlEdge() && HasNodeAttr(e->dst()->def(), outside_compilation_attr_name) && !HasNodeAttr(e->dst()->def(), kOnlyArgOrOcInputAttrName)) { edges_to_replace.push_back(e); } } if (edges_to_replace.empty()) { continue; } Node* const_copy = xla_graph->CopyNode(n); for (const Edge* e : edges_to_replace) { Node* dst = e->dst(); int dst_input = e->dst_input(); xla_graph->RemoveEdge(e); xla_graph->AddEdge(const_copy, 0, dst, dst_input); } xla_graph->AddControlEdge(xla_graph->source_node(), const_copy); bool has_output_edge = false; for (const Edge* e : n->out_edges()) { if (!e->IsControlEdge()) { has_output_edge = true; break; } } if (!has_output_edge) { const_nodes_to_remove.push_back(n); } } for (Node* n : const_nodes_to_remove) { xla_graph->RemoveNode(n); oc_nodes_at_head.erase( std::remove(oc_nodes_at_head.begin(), oc_nodes_at_head.end(), n), oc_nodes_at_head.end()); } if (VLOG_IS_ON(5)) { for (Node* n : oc_nodes_at_head) { VLOG(5) << "oc_nodes_at_head: " << n->DebugString(); } } std::vector<const Edge*> input_edges; TF_RETURN_IF_ERROR(xla_node->input_edges(&input_edges)); std::vector<DataType> input_types; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->attrs(), "Tinputs", &input_types)); int num_distributed_vars; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->attrs(), "num_distributed_variables", &num_distributed_vars)); int num_replicas; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->attrs(), "num_replicas", &num_replicas)); int old_num_per_replica_inputs = (input_types.size() - num_distributed_vars) / num_replicas; VLOG(5) << "old_num_per_replica_inputs: " << old_num_per_replica_inputs; absl::flat_hash_map<Node*, std::vector<Node*>> node_images; for (Node* n : oc_nodes_at_head) { for (int replica_id = 0; replica_id < num_replicas; replica_id++) { NodeDef copy_def = n->def(); copy_def.set_name(absl::StrCat(n->name(), "_head_oc/R", replica_id)); copy_def.clear_device(); TF_ASSIGN_OR_RETURN(Node * copy_node, g->AddNode(copy_def)); copy_node->AddAttr(kXlaReplicaIdAttrName, replica_id); copy_node->AddAttr(kTPUReplicateAttr, cluster_name); for (const Edge* e : n->in_edges()) { if (e->src() == xla_graph->source_node()) { continue; } if (e->src()->IsArg()) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(e->src()->attrs(), "index", &index)); const int new_index = (index < old_num_per_replica_inputs) ? (old_num_per_replica_inputs * replica_id + index) : (old_num_per_replica_inputs * num_replicas + (index - old_num_per_replica_inputs)); const Edge* original_edge = input_edges.at(new_index); g->AddEdge(original_edge->src(), original_edge->src_output(), copy_node, e->dst_input()); } else { g->AddEdge(node_images[e->src()][replica_id], e->src_output(), copy_node, e->dst_input()); } } g->AddControlEdge(copy_node, xla_node); if (pivot_node) { g->AddControlEdge(pivot_node, copy_node); } node_images[n].push_back(copy_node); } } std::vector<const Edge*> oc_output_edges; std::vector<DataType> new_arg_types; for (Node* n : oc_nodes_at_head) { for (const Edge* e : n->out_edges()) { if (!e->IsControlEdge() && node_images.find(e->dst()) == node_images.end()) { VLOG(5) << "oc_output_edges: " << e->DebugString(); oc_output_edges.push_back(e); new_arg_types.push_back(e->src()->output_type(e->src_output())); } } } int new_num_per_replica_inputs = old_num_per_replica_inputs + oc_output_edges.size(); VLOG(5) << "new_num_per_replica_inputs: " << new_num_per_replica_inputs; int num_variables; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->attrs(), "NumVariables", &num_variables)); std::vector<DataType> broadcast_input_types, guaranteed_constant_types; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->attrs(), "Tbroadcast_inputs", &broadcast_input_types)); TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->attrs(), "Tguaranteed_constants", &guaranteed_constant_types)); int num_other_inputs = num_distributed_vars + num_variables + broadcast_input_types.size() + guaranteed_constant_types.size(); VLOG(5) << "num_other_inputs: " << num_other_inputs; std::vector<DataType> new_input_types; new_input_types.reserve(num_replicas * new_num_per_replica_inputs + num_distributed_vars); for (int replica_id = 0; replica_id < num_replicas; ++replica_id) { for (int i = 0; i < old_num_per_replica_inputs; ++i) { new_input_types.push_back(input_types[i]); } for (int i = old_num_per_replica_inputs; i < new_num_per_replica_inputs; ++i) { new_input_types.push_back(new_arg_types[i - old_num_per_replica_inputs]); } } const int num_new_per_replica_input_types = new_input_types.size(); for (int i = input_types.size() - num_distributed_vars; i < input_types.size(); i++) { new_input_types.push_back(input_types[i]); } xla_node->ClearAttr("Tinputs"); xla_node->AddAttr("Tinputs", new_input_types); TF_RETURN_IF_ERROR(UpdateMirroredVariableIndices( oc_output_edges.size(), xla_node)); int new_variable_start_index = num_new_per_replica_input_types / num_replicas + num_distributed_vars + broadcast_input_types.size(); if (xla_node->attrs().Find("_variable_start_index") != nullptr) { xla_node->ClearAttr("_variable_start_index"); xla_node->AddAttr("_variable_start_index", new_variable_start_index); } int new_guaranteed_const_start_index = new_variable_start_index + num_variables; if (xla_node->attrs().Find("_guaranteed_const_start_index") != nullptr) { xla_node->ClearAttr("_guaranteed_const_start_index"); xla_node->AddAttr("_guaranteed_const_start_index", new_guaranteed_const_start_index); } std::vector<const Edge*> new_input_edges( num_replicas * new_num_per_replica_inputs + num_other_inputs); int end_input_index = num_replicas * new_num_per_replica_inputs + num_other_inputs - 1; int start_input_index = end_input_index + 1 - num_other_inputs; for (int input_index = end_input_index; input_index >= start_input_index; input_index--) { const Edge* e = input_edges.at(input_index - num_replicas * new_arg_types.size()); Node* src = e->src(); int src_output = e->src_output(); g->RemoveEdge(e); const Edge* new_input_edge = g->AddEdge(src, src_output, xla_node, input_index); new_input_edges[input_index] = new_input_edge; } std::vector<std::pair<Node*, int>> per_replica_inputs; std::vector<const Edge*> old_per_replica_edges; for (int i = 0; i < old_num_per_replica_inputs * num_replicas; i++) { const Edge* e = input_edges.at(i); per_replica_inputs.push_back(std::make_pair(e->src(), e->src_output())); old_per_replica_edges.push_back(e); } for (const Edge* e : old_per_replica_edges) { g->RemoveEdge(e); } for (int replica_id = 0; replica_id < num_replicas; replica_id++) { for (int input_index = 0; input_index < old_num_per_replica_inputs; input_index++) { Node* src = per_replica_inputs[replica_id * old_num_per_replica_inputs + input_index] .first; int src_output = per_replica_inputs[replica_id * old_num_per_replica_inputs + input_index] .second; const Edge* new_input_edge = g->AddEdge(src, src_output, xla_node, replica_id * new_num_per_replica_inputs + input_index); new_input_edges[input_index] = new_input_edge; } for (int input_index = old_num_per_replica_inputs; input_index < new_num_per_replica_inputs; input_index++) { Node* original_src = oc_output_edges[input_index - old_num_per_replica_inputs]->src(); int original_src_output = oc_output_edges[input_index - old_num_per_replica_inputs] ->src_output(); Node* src = node_images[original_src][replica_id]; const Edge* new_input_edge = g->AddEdge(src, original_src_output, xla_node, replica_id * new_num_per_replica_inputs + input_index); new_input_edges[input_index] = new_input_edge; } } for (Node* n : xla_graph->nodes()) { if (n->IsArg()) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); if (index >= old_num_per_replica_inputs) { index += new_arg_types.size(); n->ClearAttr("index"); n->AddAttr("index", index); } } } for (int i = old_num_per_replica_inputs; i < new_num_per_replica_inputs; i++) { NodeDefBuilder arg_builder(absl::StrCat("arg_", i), FunctionLibraryDefinition::kArgOp); arg_builder.Attr("T", new_arg_types[i - old_num_per_replica_inputs]); arg_builder.Attr("index", i); NodeDef arg_def; TF_RETURN_IF_ERROR(arg_builder.Finalize(&arg_def)); TF_ASSIGN_OR_RETURN(Node * arg_node, xla_graph->AddNode(arg_def)); const Edge* original_edge = oc_output_edges[i - old_num_per_replica_inputs]; Node* dst = original_edge->dst(); int dst_input = original_edge->dst_input(); xla_graph->RemoveEdge(original_edge); xla_graph->AddEdge(arg_node, 0, dst, dst_input); } for (Node* n : oc_nodes_at_head) { bool is_lifted_arg; std::string outside_compilation_attr; if (!TryGetNodeAttr(n->def(), kXlaIsLiftedArgAttrName, &is_lifted_arg) || !TryGetNodeAttr(n->def(), kOutsideCompilationAttr, &outside_compilation_attr)) { continue; } TF_RET_CHECK(n->IsIdentity()); NodeDefBuilder ph_builder(absl::StrCat("placeholder_", n->name()), "Placeholder"); DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "T", &dtype)); ph_builder.Attr("dtype", dtype); ph_builder.Attr(kXlaIsLiftedArgAttrName, true); ph_builder.Attr(kOutsideCompilationAttr, outside_compilation_attr); NodeDef ph_def; TF_RETURN_IF_ERROR(ph_builder.Finalize(&ph_def)); Status s; xla_graph->AddNode(ph_def, &s); TF_RETURN_IF_ERROR(s); Node* input_node; TF_RETURN_IF_ERROR(n->input_node(0, &input_node)); TF_RET_CHECK(input_node->type_string() == "_Arg"); int index; TF_RETURN_IF_ERROR(GetNodeAttr(input_node->def(), "index", &index)); TF_RET_CHECK(index >= new_num_per_replica_inputs + num_distributed_vars); const Edge* input_edge = new_input_edges.at(num_replicas * new_num_per_replica_inputs + index - new_num_per_replica_inputs); NodeDefBuilder id_builder(absl::StrCat("lifted_arg_input_", index), "IdentityN"); DataType input_dtype = input_edge->src()->output_type(input_edge->src_output()); id_builder.Attr("T", std::vector<DataType>(num_replicas, input_dtype)); std::vector<NodeDefBuilder::NodeOut> inputs( num_replicas, NodeDefBuilder::NodeOut{input_edge->src()->name(), input_edge->src_output(), input_dtype}); id_builder.Attr(kXlaOutsideCompilationInputsAttrName, outside_compilation_attr); id_builder.Input(inputs); NodeDef id_def; TF_RETURN_IF_ERROR(id_builder.Finalize(&id_def)); TF_ASSIGN_OR_RETURN(Node * id_node, g->AddNode(id_def)); for (int i = 0; i < num_replicas; i++) { g->AddEdge(input_edge->src(), input_edge->src_output(), id_node, i); } } for (Node* n : oc_nodes_at_head) { xla_graph->RemoveNode(n); } VLOG(4) << "MoveHeadOutsideCompilationToHost host graph: " << DumpGraphToFile(absl::StrCat("move_head_oc_host_", xla_func_name), *g); VLOG(4) << "MoveHeadOutsideCompilationToHost XLA graph: " << DumpGraphToFile(absl::StrCat("move_head_oc_xla_", xla_func_name), *xla_graph); return absl::OkStatus(); } Status RemoveUnusedXlaInput(const std::string& xla_func_name, Graph* g, Graph* xla_graph, Node* xla_node) { std::vector<DataType> input_types; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->def(), "Tinputs", &input_types)); std::vector<int> mirrored_variable_indices; if (xla_node->attrs().Find(TPUREPLICATE_MIRRORED_VAR_INDICES_ATTR) != nullptr) { TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->def(), TPUREPLICATE_MIRRORED_VAR_INDICES_ATTR, &mirrored_variable_indices)); } std::vector<DataType> broadcast_input_types; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->def(), "Tbroadcast_inputs", &broadcast_input_types)); std::vector<DataType> guaranteed_constant_types; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->def(), "Tguaranteed_constants", &guaranteed_constant_types)); int num_variables; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->def(), "NumVariables", &num_variables)); int num_replicas; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->def(), "num_replicas", &num_replicas)); int num_distributed_vars; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->attrs(), "num_distributed_variables", &num_distributed_vars)); int num_per_replica_inputs = (input_types.size() - num_distributed_vars) / num_replicas; std::set<int> arg_indices_to_remove; std::vector<Node*> arg_nodes_to_update, nodes_to_remove; int num_args = 0, num_removed_per_replica_inputs = 0, num_removed_distributed_vars = 0; for (Node* n : xla_graph->nodes()) { if (!n->IsArg()) { continue; } bool has_output = false; for (const Edge* e : n->out_edges()) { if (e->dst() != xla_graph->sink_node()) { has_output = true; break; } } num_args++; int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "index", &index)); if (has_output) { arg_nodes_to_update.push_back(n); continue; } arg_indices_to_remove.insert(index); if (index < num_per_replica_inputs) { num_removed_per_replica_inputs++; } else if (index < num_per_replica_inputs + num_distributed_vars) { num_removed_distributed_vars++; } nodes_to_remove.push_back(n); } for (Node* n : nodes_to_remove) { xla_graph->RemoveNode(n); } std::map<int, int> arg_index_mapping; int new_arg_index = 0; for (int i = 0; i < num_args; i++) { if (arg_indices_to_remove.find(i) != arg_indices_to_remove.end()) { continue; } else { arg_index_mapping[i] = new_arg_index; new_arg_index++; } } for (Node* n : arg_nodes_to_update) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "index", &index)); n->ClearAttr("index"); n->AddAttr("index", arg_index_mapping[index]); } std::vector<const Edge*> input_edges; TF_RETURN_IF_ERROR(xla_node->input_edges(&input_edges)); const int num_new_per_replica_inputs = num_per_replica_inputs - num_removed_per_replica_inputs; for (int i = 0; i < num_replicas; i++) { for (int j = 0; j < num_per_replica_inputs; j++) { auto iter = arg_index_mapping.find(j); if (iter != arg_index_mapping.end()) { const Edge* e = input_edges.at(i * num_per_replica_inputs + j); Node* src = e->src(); int src_output = e->src_output(); int dst_input = i * num_new_per_replica_inputs + iter->second; g->RemoveEdge(e); g->AddEdge(src, src_output, xla_node, dst_input); } else { const Edge* e = input_edges.at(i * num_per_replica_inputs + j); g->RemoveEdge(e); } } } for (int i = num_replicas * num_per_replica_inputs; i < xla_node->num_inputs(); i++) { int arg_index = num_per_replica_inputs + i - num_replicas * num_per_replica_inputs; auto iter = arg_index_mapping.find(arg_index); if (iter != arg_index_mapping.end()) { const Edge* e = input_edges.at(i); Node* src = e->src(); int src_output = e->src_output(); int dst_input = num_replicas * num_new_per_replica_inputs + iter->second - num_new_per_replica_inputs; g->RemoveEdge(e); g->AddEdge(src, src_output, xla_node, dst_input); } else { const Edge* e = input_edges.at(i); g->RemoveEdge(e); } } std::vector<DataType> new_input_types; for (int i = 0; i < num_replicas; i++) { for (int j = 0; j < num_per_replica_inputs; j++) { auto iter = arg_index_mapping.find(j); if (iter != arg_index_mapping.end()) { new_input_types.push_back(input_types[iter->first]); } } } for (int i = 0; i < num_distributed_vars; ++i) { auto iter = arg_index_mapping.find(i + num_per_replica_inputs); if (iter != arg_index_mapping.end()) { new_input_types.push_back( input_types[iter->first - num_per_replica_inputs + num_per_replica_inputs * num_replicas]); } } xla_node->ClearAttr("Tinputs"); xla_node->AddAttr("Tinputs", new_input_types); const int num_new_distributed_vars = num_distributed_vars - num_removed_distributed_vars; xla_node->ClearAttr("num_distributed_variables"); xla_node->AddAttr("num_distributed_variables", num_new_distributed_vars); if (!mirrored_variable_indices.empty()) { std::vector<int> new_mirrored_variable_indices; absl::flat_hash_set<int> old_mirrored_variable_indices_set; for (int index : mirrored_variable_indices) { old_mirrored_variable_indices_set.insert(index); } for (int i = 0; i < num_per_replica_inputs + num_distributed_vars; i++) { auto iter = arg_index_mapping.find(i); if (iter != arg_index_mapping.end() && old_mirrored_variable_indices_set.contains(iter->first)) { new_mirrored_variable_indices.push_back(iter->second); } } xla_node->ClearAttr(TPUREPLICATE_MIRRORED_VAR_INDICES_ATTR); xla_node->AddAttr(TPUREPLICATE_MIRRORED_VAR_INDICES_ATTR, new_mirrored_variable_indices); } int num_replicated_inputs = num_per_replica_inputs + num_distributed_vars; std::vector<DataType> new_broadcast_input_types; for (int i = 0; i < broadcast_input_types.size(); i++) { int arg_index = num_replicated_inputs + i; if (arg_index_mapping.find(arg_index) != arg_index_mapping.end()) { new_broadcast_input_types.push_back(broadcast_input_types[i]); } } xla_node->ClearAttr("Tbroadcast_inputs"); xla_node->AddAttr("Tbroadcast_inputs", new_broadcast_input_types); int new_num_variables = 0; for (int i = 0; i < num_variables; i++) { int arg_index = num_replicated_inputs + broadcast_input_types.size() + i; if (arg_index_mapping.find(arg_index) != arg_index_mapping.end()) { new_num_variables++; } } xla_node->ClearAttr("NumVariables"); xla_node->AddAttr("NumVariables", new_num_variables); std::vector<DataType> new_guaranteed_constant_types; for (int i = 0; i < guaranteed_constant_types.size(); i++) { int arg_index = num_replicated_inputs + broadcast_input_types.size() + num_variables + i; if (arg_index_mapping.find(arg_index) != arg_index_mapping.end()) { new_guaranteed_constant_types.push_back(guaranteed_constant_types[i]); } } xla_node->ClearAttr("Tguaranteed_constants"); xla_node->AddAttr("Tguaranteed_constants", new_guaranteed_constant_types); int new_variable_start_index = num_new_per_replica_inputs + num_new_distributed_vars + new_broadcast_input_types.size(); if (xla_node->attrs().Find("_variable_start_index") != nullptr) { xla_node->ClearAttr("_variable_start_index"); xla_node->AddAttr("_variable_start_index", new_variable_start_index); } int new_guaranteed_const_start_index = new_variable_start_index + new_num_variables; if (xla_node->attrs().Find("_guaranteed_const_start_index") != nullptr) { xla_node->ClearAttr("_guaranteed_const_start_index"); xla_node->AddAttr("_guaranteed_const_start_index", new_guaranteed_const_start_index); } VLOG(4) << "RemoveUnusedXlaInput host graph: " << DumpGraphToFile( absl::StrCat("remove_unused_input_host_", xla_func_name), *g); VLOG(4) << "RemoveUnusedXlaInput XLA graph: " << DumpGraphToFile( absl::StrCat("remove_unused_input_xla_", xla_func_name), *xla_graph); return absl::OkStatus(); } Status MoveTailOutsideCompilationToHost( const std::string& outside_compilation_attr_name, const std::string& xla_func_name, const std::string& cluster_name, Graph* g, Graph* xla_graph, Node* xla_node, Node* pivot_node) { std::vector<Node*> oc_nodes_at_tail; const std::string kOnlyRetOrOcOutputAttrName = "_xla_only_ret_or_oc_output"; DFS( *xla_graph, nullptr, [&](Node* n) { bool has_non_ret_or_oc_output = false; for (const Edge* e : n->out_edges()) { if (e->dst() == xla_graph->sink_node()) { continue; } if (!e->dst()->IsRetval() && (!HasNodeAttr(e->dst()->def(), outside_compilation_attr_name) || !HasNodeAttr(e->dst()->def(), kOnlyRetOrOcOutputAttrName))) { has_non_ret_or_oc_output = true; break; } } if (HasNodeAttr(n->def(), outside_compilation_attr_name) && !has_non_ret_or_oc_output) { n->AddAttr(kOnlyRetOrOcOutputAttrName, true); oc_nodes_at_tail.push_back(n); } }, NodeComparatorName()); if (VLOG_IS_ON(5)) { for (Node* n : oc_nodes_at_tail) { VLOG(5) << "oc_nodes_at_tail: " << n->DebugString(); } } std::vector<const Edge*> oc_input_edges; std::vector<DataType> new_ret_types; for (Node* n : oc_nodes_at_tail) { for (const Edge* e : n->in_edges()) { if (!e->IsControlEdge() && !HasNodeAttr(e->src()->def(), kOnlyRetOrOcOutputAttrName)) { VLOG(5) << "oc_input_edges: " << e->DebugString(); oc_input_edges.push_back(e); new_ret_types.push_back(e->src()->output_type(e->src_output())); } } } std::vector<DataType> output_types; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->attrs(), "output_types", &output_types)); int num_replicas; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->attrs(), "num_replicas", &num_replicas)); int old_num_replicated_outputs = output_types.size() / num_replicas; int new_num_replicated_outputs = old_num_replicated_outputs + oc_input_edges.size(); VLOG(5) << "old_num_replicated_outputs: " << old_num_replicated_outputs; VLOG(5) << "new_num_replicated_outputs: " << new_num_replicated_outputs; std::vector<DataType> new_output_types; for (int replica_id = 0; replica_id < num_replicas; replica_id++) { for (int i = 0; i < old_num_replicated_outputs; i++) { new_output_types.push_back(output_types[i]); } for (int i = old_num_replicated_outputs; i < new_num_replicated_outputs; i++) { new_output_types.push_back(new_ret_types[i - old_num_replicated_outputs]); } } xla_node->ClearAttr("output_types"); xla_node->AddAttr("output_types", new_output_types); std::vector<std::vector<std::pair<Node*, int>>> replicated_outputs( old_num_replicated_outputs * num_replicas); std::vector<const Edge*> old_replicated_edges; for (const Edge* e : xla_node->out_edges()) { if (e->src_output() >= 0 && e->src_output() < old_num_replicated_outputs * num_replicas) { replicated_outputs[e->src_output()].push_back( std::make_pair(e->dst(), e->dst_input())); old_replicated_edges.push_back(e); } } for (const Edge* e : old_replicated_edges) { g->RemoveEdge(e); } for (int replica_id = 0; replica_id < num_replicas; replica_id++) { for (int output_index = 0; output_index < old_num_replicated_outputs; output_index++) { for (const auto& node_input_pair : replicated_outputs[replica_id * old_num_replicated_outputs + output_index]) { Node* dst = node_input_pair.first; int dst_input = node_input_pair.second; g->AddEdge(xla_node, replica_id * new_num_replicated_outputs + output_index, dst, dst_input); } } } absl::flat_hash_map<Node*, std::vector<Node*>> node_images; for (Node* n : oc_nodes_at_tail) { for (int replica_id = 0; replica_id < num_replicas; replica_id++) { NodeDef copy_def = n->def(); copy_def.set_name(absl::StrCat(n->name(), "_tail_oc/R", replica_id)); copy_def.clear_device(); TF_ASSIGN_OR_RETURN(Node * copy_node, g->AddNode(copy_def)); copy_node->AddAttr(kXlaReplicaIdAttrName, replica_id); copy_node->AddAttr(kTPUReplicateAttr, cluster_name); for (const Edge* e : n->out_edges()) { if (e->dst() == xla_graph->sink_node()) { continue; } if (e->dst()->IsRetval()) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(e->dst()->attrs(), "index", &index)); for (const auto& output : replicated_outputs[replica_id * old_num_replicated_outputs + index]) { const Edge* original_edge; Status s = output.first->input_edge(output.second, &original_edge); if (s.ok()) { g->RemoveEdge(original_edge); } g->AddEdge(copy_node, e->src_output(), output.first, output.second); } } else { g->AddEdge(copy_node, e->src_output(), node_images[e->dst()][replica_id], e->dst_input()); } } copy_node->AddAttr("_xla_tail_outside_compilation", true); g->AddControlEdge(xla_node, copy_node); if (pivot_node) { g->AddControlEdge(pivot_node, copy_node); } node_images[n].push_back(copy_node); } } for (int i = 0; i < new_ret_types.size(); i++) { const Edge* original_edge = oc_input_edges[i]; for (int replica_id = 0; replica_id < num_replicas; replica_id++) { int src_output = replica_id * new_num_replicated_outputs + old_num_replicated_outputs + i; Node* dst = node_images[original_edge->dst()][replica_id]; g->AddEdge(xla_node, src_output, dst, original_edge->dst_input()); } } for (int i = old_num_replicated_outputs; i < new_num_replicated_outputs; i++) { NodeDefBuilder ret_builder(absl::StrCat("ret_", i), FunctionLibraryDefinition::kRetOp); ret_builder.Attr("T", new_ret_types[i - old_num_replicated_outputs]); ret_builder.Attr("index", i); const Edge* original_edge = oc_input_edges[i - old_num_replicated_outputs]; Node* src = original_edge->src(); int src_output = original_edge->src_output(); ret_builder.Input(src->name(), src_output, src->output_type(src_output)); NodeDef ret_def; TF_RETURN_IF_ERROR(ret_builder.Finalize(&ret_def)); TF_ASSIGN_OR_RETURN(Node * ret_node, xla_graph->AddNode(ret_def)); xla_graph->RemoveEdge(original_edge); xla_graph->AddEdge(src, src_output, ret_node, 0); } for (Node* n : oc_nodes_at_tail) { xla_graph->RemoveNode(n); } std::vector<Node*> unused_rets; for (Node* n : xla_graph->nodes()) { if (n->IsRetval() && n->in_edges().empty()) { unused_rets.push_back(n); } } for (Node* n : unused_rets) { NodeDefBuilder builder(absl::StrCat("placeholder_", n->name()), "Placeholder"); DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "T", &dtype)); builder.Attr("dtype", dtype); builder.Attr(kXlaIsPlaceholderForTailOcAttrName, true); NodeDef def; TF_RETURN_IF_ERROR(builder.Finalize(&def)); TF_ASSIGN_OR_RETURN(Node * placeholder, xla_graph->AddNode(def)); xla_graph->AddEdge(placeholder, 0, n, 0); } VLOG(4) << "MoveTailOutsideCompilationToHost host graph: " << DumpGraphToFile(absl::StrCat("move_tail_oc_host_", xla_func_name), *g); VLOG(4) << "MoveTaildOutsideCompilationToHost XLA graph: " << DumpGraphToFile(absl::StrCat("move_tail_oc_xla_", xla_func_name), *xla_graph); return absl::OkStatus(); } Status ReplaceArgUsedByOutsideCompilationWithPlaceholder( const std::string& outside_compilation_attr_name, const std::string& xla_func_name, Graph* g, Graph* xla_graph, Node* xla_node) { std::vector<DataType> input_types; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->attrs(), "Tinputs", &input_types)); int num_distributed_vars; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->attrs(), "num_distributed_variables", &num_distributed_vars)); int num_replicas; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->attrs(), "num_replicas", &num_replicas)); int num_per_replica_inputs = (input_types.size() - num_distributed_vars) / num_replicas; for (Node* n : xla_graph->op_nodes()) { if (!n->IsArg()) { continue; } DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "T", &dtype)); if (dtype != DT_RESOURCE) { continue; } std::vector<const Edge*> oc_out_edges; for (const Edge* e : n->out_edges()) { if (e->IsControlEdge() || !HasNodeAttr(e->dst()->def(), kOutsideCompilationAttr)) { continue; } oc_out_edges.push_back(e); } if (oc_out_edges.empty()) { continue; } std::vector<const Edge*> input_edges; TF_RETURN_IF_ERROR(xla_node->input_edges(&input_edges)); int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "index", &index)); std::string oc_identifier = absl::StrCat("oc_only_arg_", index); NodeDefBuilder id_builder(absl::StrCat(oc_identifier, "_inputs"), "IdentityN"); std::vector<DataType> dtypes(num_replicas, dtype); id_builder.Attr("T", dtypes); id_builder.Attr(kXlaOutsideCompilationInputsAttrName, oc_identifier); std::vector<NodeDefBuilder::NodeOut> inputs(num_replicas); if (index >= num_per_replica_inputs) { const Edge* e = input_edges.at(num_replicas * num_per_replica_inputs + (index - num_per_replica_inputs)); for (int i = 0; i < num_replicas; i++) { inputs[i] = NodeDefBuilder::NodeOut{e->src()->name(), e->src_output(), e->src()->output_type(e->src_output())}; } } else { for (int i = 0; i < num_replicas; i++) { const Edge* e = input_edges.at(i * num_per_replica_inputs + index); inputs[i] = NodeDefBuilder::NodeOut{e->src()->name(), e->src_output(), e->src()->output_type(e->src_output())}; } } id_builder.Input(inputs); NodeDef id_def; TF_RETURN_IF_ERROR(id_builder.Finalize(&id_def)); TF_ASSIGN_OR_RETURN(Node * id_node, g->AddNode(id_def)); if (index >= num_per_replica_inputs) { const Edge* e = input_edges.at(num_replicas * num_per_replica_inputs + (index - num_per_replica_inputs)); for (int i = 0; i < num_replicas; i++) { g->AddEdge(e->src(), e->src_output(), id_node, i); } } else { for (int i = 0; i < num_replicas; i++) { const Edge* e = input_edges.at(i * num_per_replica_inputs + index); g->AddEdge(e->src(), e->src_output(), id_node, i); } } for (const Edge* e : oc_out_edges) { NodeDefBuilder ph_builder(xla_graph->NewName("ph_for_arg_in_oc_"), "Placeholder"); ph_builder.Attr("dtype", dtype); std::string outside_compilation_attr; TF_RETURN_IF_ERROR(GetNodeAttr(e->dst()->def(), kOutsideCompilationAttr, &outside_compilation_attr)); ph_builder.Attr(kOutsideCompilationAttr, outside_compilation_attr); ph_builder.Attr(kXlaOutsideCompilationInputsAttrName, oc_identifier); ph_builder.Attr(kXlaIsPlaceholderForArg, true); NodeDef ph_def; TF_RETURN_IF_ERROR(ph_builder.Finalize(&ph_def)); TF_ASSIGN_OR_RETURN(Node * ph_node, xla_graph->AddNode(ph_def)); Node* dst = e->dst(); int dst_input = e->dst_input(); xla_graph->RemoveEdge(e); xla_graph->AddEdge(ph_node, 0, dst, dst_input); xla_graph->AddControlEdge(xla_graph->source_node(), ph_node); } } VLOG(4) << "ReplaceOutsideCompilationOnlyArgWithPlaceholder host graph: " << DumpGraphToFile( absl::StrCat("replace_oc_only_arg_host_", xla_func_name), *g); VLOG(4) << "ReplaceOutsideCompilationOnlyArgWithPlaceholder XLA graph: " << DumpGraphToFile( absl::StrCat("replace_oc_only_arg_xla_", xla_func_name), *xla_graph); return absl::OkStatus(); } Status RemoveUnusedXlaOutput(const std::string& xla_func_name, Graph* g, Graph* xla_graph, Node* xla_node) { std::vector<DataType> output_types; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->def(), "output_types", &output_types)); int num_replicas; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->def(), "num_replicas", &num_replicas)); int num_replicated_outputs = output_types.size() / num_replicas; std::set<int> ret_indices_to_remove; std::vector<Node*> ret_nodes_to_update, nodes_to_remove; int num_rets = 0; for (Node* n : xla_graph->nodes()) { if (!n->IsRetval()) { continue; } num_rets++; const Edge* e; TF_RETURN_IF_ERROR(n->input_edge(0, &e)); if (e->src()->type_string() != "Placeholder" || !HasNodeAttr(e->src()->def(), kXlaIsPlaceholderForTailOcAttrName)) { ret_nodes_to_update.push_back(n); continue; } int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "index", &index)); ret_indices_to_remove.insert(index); nodes_to_remove.push_back(e->src()); nodes_to_remove.push_back(n); } for (Node* n : nodes_to_remove) { xla_graph->RemoveNode(n); } std::map<int, int> ret_index_mapping; int new_ret_index = 0; for (int i = 0; i < num_rets; i++) { if (ret_indices_to_remove.find(i) != ret_indices_to_remove.end()) { continue; } else { ret_index_mapping[i] = new_ret_index; new_ret_index++; } } for (Node* n : ret_nodes_to_update) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "index", &index)); n->ClearAttr("index"); n->AddAttr("index", ret_index_mapping[index]); } std::vector<DataType> new_output_types; for (int i = 0; i < num_replicas; i++) { for (const auto& e : ret_index_mapping) { new_output_types.push_back(output_types[e.first]); } } xla_node->ClearAttr("output_types"); xla_node->AddAttr("output_types", new_output_types); std::vector<std::vector<const Edge*>> output_edges(num_replicas * num_replicated_outputs); for (const Edge* e : xla_node->out_edges()) { if (e->src_output() >= 0 && e->src_output() < num_replicas * num_replicated_outputs) { output_edges[e->src_output()].push_back(e); } } for (int i = 0; i < num_replicas; i++) { for (int j = 0; j < num_replicated_outputs; j++) { auto iter = ret_index_mapping.find(j); if (iter != ret_index_mapping.end()) { for (const Edge* e : output_edges[i * num_replicated_outputs + j]) { Node* dst = e->dst(); int dst_input = e->dst_input(); int src_output = i * (num_replicated_outputs - ret_indices_to_remove.size()) + iter->second; g->RemoveEdge(e); g->AddEdge(xla_node, src_output, dst, dst_input); } } else { TF_RET_CHECK(output_edges[i * num_replicated_outputs + j].empty()) << "Output edge not removed: " << output_edges[i * num_replicated_outputs + j][0]->DebugString(); } } } VLOG(4) << "RemoveUnusedXlaOutput host graph: " << DumpGraphToFile( absl::StrCat("remove_unused_output_host_", xla_func_name), *g); VLOG(4) << "RemoveUnusedXlaOutput XLA graph: " << DumpGraphToFile( absl::StrCat("remove_unused_output_xla_", xla_func_name), *xla_graph); return absl::OkStatus(); } Status RemoveEdgesBetweenArgAndRetval(const std::string& xla_func_name, Graph* g, Graph* xla_graph, Node* xla_node) { int num_replicas; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->def(), "num_replicas", &num_replicas)); std::vector<DataType> input_types; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->def(), "Tinputs", &input_types)); int num_distributed_vars; TF_RETURN_IF_ERROR(GetNodeAttr(xla_node->attrs(), "num_distributed_variables", &num_distributed_vars)); int old_num_per_replica_inputs = (input_types.size() - num_distributed_vars) / num_replicas; std::vector<DataType> output_types; TF_RETURN_IF_ERROR( GetNodeAttr(xla_node->def(), "output_types", &output_types)); int old_num_outputs = output_types.size() / num_replicas; std::vector<const Edge*> edges; for (const Edge* e : xla_graph->edges()) { if (!e->IsControlEdge() && e->src()->IsArg() && e->dst()->IsRetval()) { edges.push_back(e); } } std::vector<std::vector<const Edge*>> xla_node_out_edges( xla_node->num_outputs()); for (const Edge* e : xla_node->out_edges()) { if (!e->IsControlEdge()) { xla_node_out_edges[e->src_output()].push_back(e); } } std::vector<const Edge*> input_edges; TF_RETURN_IF_ERROR(xla_node->input_edges(&input_edges)); for (const Edge* e : edges) { int arg_index; TF_RETURN_IF_ERROR(GetNodeAttr(e->src()->def(), "index", &arg_index)); int ret_index; TF_RETURN_IF_ERROR(GetNodeAttr(e->dst()->def(), "index", &ret_index)); for (int replica_id = 0; replica_id < num_replicas; replica_id++) { int input_index; if (arg_index < old_num_per_replica_inputs) { input_index = replica_id * old_num_per_replica_inputs + arg_index; } else { input_index = num_replicas * old_num_per_replica_inputs + (arg_index - old_num_per_replica_inputs); } const Edge* input_edge = input_edges.at(input_index); int output_index = replica_id * old_num_outputs + ret_index; for (const Edge* output_edge : xla_node_out_edges[output_index]) { Node* dst = output_edge->dst(); int dst_input = output_edge->dst_input(); g->RemoveEdge(output_edge); g->AddEdge(input_edge->src(), input_edge->src_output(), dst, dst_input); } } } for (const Edge* e : edges) { NodeDefBuilder placeholder_builder( absl::StrCat("placeholder_", e->dst()->name()), "Placeholder"); placeholder_builder.Attr("dtype", e->src()->output_type(e->src_output())); placeholder_builder.Attr(kXlaIsPlaceholderForTailOcAttrName, true); NodeDef placeholder_def; TF_RETURN_IF_ERROR(placeholder_builder.Finalize(&placeholder_def)); TF_ASSIGN_OR_RETURN(Node * placeholder_node, xla_graph->AddNode(placeholder_def)); Node* dst = e->dst(); int dst_input = e->dst_input(); xla_graph->RemoveEdge(e); xla_graph->AddEdge(placeholder_node, 0, dst, dst_input); } VLOG(4) << "RemoveUnusedArgRetvalPair host graph: " << DumpGraphToFile( absl::StrCat("remove_unused_arg_ret_host_", xla_func_name), *g); VLOG(4) << "RemoveUnusedArgRetvalPair XLA graph: " << DumpGraphToFile( absl::StrCat("remove_unused_arg_ret_xla_", xla_func_name), *xla_graph); return absl::OkStatus(); } void RemoveUnusedTPUReplicatedInputs(Graph* graph) { for (Node* n : graph->nodes()) { if (n->type_string() == kTPUReplicatedInput) { bool has_output = false; for (const Edge* e : n->out_edges()) { if (!e->dst()->IsSink()) { has_output = true; break; } } if (!has_output) { std::vector<Node*> to_be_removed_src_nodes; for (const auto& e_in : n->in_edges()) { if (!e_in->IsControlEdge() && (e_in->src()->type_string() == kTPUPartitionedInput || e_in->src()->type_string() == kTPUPartitionedInputV2)) to_be_removed_src_nodes.push_back(e_in->src()); } graph->RemoveNode(n); for (Node* node : to_be_removed_src_nodes) { graph->RemoveNode(node); } } } } } Status RenameClustersWithDuplicatedNames(Graph* g) { std::unordered_map<std::string, std::vector<Node*>> cluster_name_to_metadata_nodes; std::unordered_set<std::string> cluster_names; for (Node* n : g->nodes()) { if (n->type_string() != "TPUReplicateMetadata") { continue; } std::string cluster_name; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), kTPUReplicateAttr, &cluster_name)); cluster_name_to_metadata_nodes[cluster_name].push_back(n); cluster_names.insert(cluster_name); } for (const auto& iter : cluster_name_to_metadata_nodes) { if (iter.second.size() == 1) { continue; } for (int i = 1; i < iter.second.size(); i++) { std::string new_cluster_name; int cluster_name_suffix = 1; while (true) { new_cluster_name = absl::StrCat(iter.first, "_", cluster_name_suffix); if (cluster_names.find(new_cluster_name) == cluster_names.end()) { break; } cluster_name_suffix++; } cluster_names.insert(new_cluster_name); std::queue<Node*> queue; queue.push(iter.second.at(i)); absl::flat_hash_set<Node*> visited; while (!queue.empty()) { Node* n = queue.front(); queue.pop(); visited.insert(n); n->ClearAttr(kTPUReplicateAttr); n->AddAttr(kTPUReplicateAttr, new_cluster_name); std::string cluster_name; for (const Edge* e : n->out_edges()) { if (GetNodeAttr(e->dst()->def(), kTPUReplicateAttr, &cluster_name) .ok() && cluster_name == iter.first && visited.find(e->dst()) == visited.end()) { queue.push(e->dst()); } } } for (const Edge* e : iter.second.at(i)->out_edges()) { if (e->dst()->type_string() == "TPUCompilationResult") { e->dst()->ClearAttr("_tpu_compilation_status"); e->dst()->AddAttr("_tpu_compilation_status", new_cluster_name); } } } } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<FunctionBody>> InstantiateAssociatedFunction( const Node& n, absl::string_view function_name_attr, FunctionLibraryDefinition* fld) { std::unique_ptr<FunctionBody> fbody; NameAttrList func_attr_list; TF_RETURN_IF_ERROR(GetNodeAttr(n.def(), function_name_attr, &func_attr_list)); const FunctionDef* fdef = fld->Find(func_attr_list.name()); if (fdef == nullptr) { return absl::InternalError(absl::StrCat("Cannot find ", function_name_attr, " function", "for node ", n.DebugString())); } TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *fdef, AttrSlice(&func_attr_list.attr()), fld, &fbody)); return fbody; } absl::StatusOr<absl::flat_hash_set<int>> FindArgsToLiftForIfNode( const Node& if_node, FunctionLibraryDefinition* fld) { absl::flat_hash_set<int> args_to_lift_indices; std::vector<DataType> dtypes; TF_RETURN_IF_ERROR(GetNodeAttr(if_node.def(), "Tin", &dtypes)); int num_args = dtypes.size(); for (int i = 0; i < num_args; i++) { if (dtypes[i] == DT_RESOURCE) { args_to_lift_indices.insert(i); } } TF_ASSIGN_OR_RETURN( std::unique_ptr<FunctionBody> then_branch_fbody, InstantiateAssociatedFunction(if_node, "then_branch", fld)); TF_ASSIGN_OR_RETURN( std::unique_ptr<FunctionBody> else_branch_fbody, InstantiateAssociatedFunction(if_node, "else_branch", fld)); for (int i = 0; i < num_args; ++i) { bool used = false; const Node* then_arg_node = then_branch_fbody->arg_nodes[i]; for (const Edge* e : then_arg_node->out_edges()) { used = true; if (e->IsControlEdge() || HasNodeAttr(e->dst()->def(), kOutsideCompilationAttr)) continue; args_to_lift_indices.erase(i); break; } const Node* else_arg_node = else_branch_fbody->arg_nodes[i]; for (const Edge* e : else_arg_node->out_edges()) { used = true; if (e->IsControlEdge() || HasNodeAttr(e->dst()->def(), kOutsideCompilationAttr)) continue; args_to_lift_indices.erase(i); break; } if (!used) args_to_lift_indices.erase(i); } return args_to_lift_indices; } absl::StatusOr<absl::flat_hash_set<int>> FindArgsToLiftForWhileNode( Node* while_node, FunctionLibraryDefinition* fld) { absl::flat_hash_set<int> result; std::vector<DataType> dtypes; TF_RETURN_IF_ERROR(GetNodeAttr(while_node->def(), "T", &dtypes)); for (int i = 0; i < dtypes.size(); i++) { if (dtypes[i] == DT_RESOURCE) { result.insert(i); } } NameAttrList cond_func; TF_RETURN_IF_ERROR(GetNodeAttr(while_node->def(), "cond", &cond_func)); const FunctionDef* cond_fdef = fld->Find(cond_func.name()); if (cond_fdef == nullptr) { return absl::InternalError( absl::StrCat("Cannot find cond function ", cond_func.name(), " for while node ", while_node->DebugString())); } std::unique_ptr<FunctionBody> cond_fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *cond_fdef, AttrSlice(&cond_func.attr()), fld, &cond_fbody)); for (int i = 0; i < cond_fbody->arg_nodes.size(); i++) { const Node* arg_node = cond_fbody->arg_nodes[i]; for (const Edge* e : arg_node->out_edges()) { if (!e->IsControlEdge()) { result.erase(i); } } } NameAttrList body_func; TF_RETURN_IF_ERROR(GetNodeAttr(while_node->def(), "body", &body_func)); const FunctionDef* body_fdef = fld->Find(body_func.name()); if (body_fdef == nullptr) { return absl::InternalError( absl::StrCat("Cannot find body function ", body_func.name(), " for while node ", while_node->DebugString())); } std::unique_ptr<FunctionBody> body_fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *body_fdef, AttrSlice(&body_func.attr()), fld, &body_fbody)); for (int i = 0; i < body_fbody->ret_nodes.size(); i++) { const Node* node = body_fbody->ret_nodes[i]; do { TF_RETURN_IF_ERROR(node->input_node(0, &node)); } while (node->IsIdentity()); if (node != body_fbody->arg_nodes[i]) { result.erase(i); } } for (int i = 0; i < body_fbody->arg_nodes.size(); i++) { const Node* arg_node = body_fbody->arg_nodes[i]; int data_edge_count = std::count_if( arg_node->out_edges().begin(), arg_node->out_edges().end(), [](const Edge* e) { return !e->IsControlEdge(); }); if (data_edge_count == 1) { result.erase(i); } } for (int i = 0; i < body_fbody->arg_nodes.size(); i++) { const Node* arg_node = body_fbody->arg_nodes[i]; for (const Edge* e : arg_node->out_edges()) { if (!e->dst()->IsRetval() && !HasNodeAttr(e->dst()->def(), kOutsideCompilationAttr)) { result.erase(i); break; } } } return result; } absl::StatusOr<absl::flat_hash_set<int>> FindArgsToLiftForCallNode( Node* call_node, const FunctionBody& fbody) { absl::flat_hash_set<int> result; std::vector<DataType> dtypes(call_node->input_types().begin(), call_node->input_types().end()); for (int i = 0; i < dtypes.size(); i++) { if (dtypes[i] == DT_RESOURCE) { result.insert(i); } } for (int i = 0; i < fbody.arg_nodes.size(); i++) { const Node* arg_node = fbody.arg_nodes[i]; if (arg_node->out_edges().empty()) { result.erase(i); continue; } for (const Edge* e : arg_node->out_edges()) { if (!HasNodeAttr(e->dst()->def(), kOutsideCompilationAttr)) { result.erase(i); break; } } } return result; } Status LiftOutsideCompilationOnlyArgs(Graph* g, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, int* lifted_arg_count, bool* rewritten); Status LiftOutsideCompilationOnlyArgsAndReplaceFunctionDef( const FunctionBody& fbody, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, int* lifted_arg_count, std::optional<std::string> new_func_name, bool* rewritten) { *rewritten = false; TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgs( fbody.graph, flr, fld, lifted_arg_count, rewritten)); if (*rewritten) { FunctionDef rewritten_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef( *(fbody.graph), fbody.record->fdef().signature().name(), &rewritten_fdef)); if (new_func_name) { rewritten_fdef.mutable_signature()->set_name(*new_func_name); TF_RETURN_IF_ERROR(fld->AddFunctionDef(rewritten_fdef)); } else { TF_RETURN_IF_ERROR(fld->ReplaceFunction( fbody.record->fdef().signature().name(), rewritten_fdef)); } } return absl::OkStatus(); } Status MakeIdentityNodesForArgsToLift( const absl::flat_hash_set<int>& args_to_lift, const int arg_to_input_edge_offset, Graph* g, Node* n, absl::flat_hash_map<int, std::string>* lifted_arg_index_to_oc_cluster_name, int* lifted_arg_count) { int num_input = n->num_inputs(); for (int arg_index = 0; arg_index < num_input; ++arg_index) { if (!args_to_lift.contains(arg_index)) continue; int input_edge_index = arg_index + arg_to_input_edge_offset; const Edge* arg_edge; TF_RETURN_IF_ERROR(n->input_edge(input_edge_index, &arg_edge)); std::string node_name = g->NewName(absl::StrCat("lifted_arg", *lifted_arg_count)); (*lifted_arg_count)++; (*lifted_arg_index_to_oc_cluster_name)[arg_index] = node_name; NodeDefBuilder id_builder(node_name, "Identity"); id_builder.Attr("T", n->input_type(input_edge_index)); id_builder.Attr(kOutsideCompilationAttr, id_builder.node_name()); id_builder.Attr(kXlaIsLiftedArgAttrName, true); id_builder.Input(arg_edge->src()->name(), arg_edge->src_output(), n->input_type(input_edge_index)); NodeDef id_def; TF_RETURN_IF_ERROR(id_builder.Finalize(&id_def)); TF_ASSIGN_OR_RETURN(Node * id_node, g->AddNode(id_def)); g->AddEdge(arg_edge->src(), arg_edge->src_output(), id_node, 0); g->AddControlEdge(id_node, n); } return absl::OkStatus(); } Status RemoveArgsToLiftFromFunctionBody( const absl::flat_hash_set<int>& args_to_lift, const std::vector<DataType>& arg_dtypes, const absl::flat_hash_map<int, std::string>& lifted_arg_index_to_oc_cluster_name, const absl::flat_hash_map<int, int>& index_mapping, const FunctionBody* fbody) { for (int i = 0; i < fbody->arg_nodes.size(); ++i) { Node* arg_node = fbody->arg_nodes[i]; if (!args_to_lift.contains(i)) { int new_index = index_mapping.at(i); arg_node->ClearAttr("index"); arg_node->AddAttr("index", new_index); arg_node->ClearAttr("T"); arg_node->AddAttr("T", arg_dtypes[i]); continue; } std::vector<const Edge*> out_edges_to_oc; for (const Edge* e : arg_node->out_edges()) { if (HasNodeAttr(e->dst()->def(), kOutsideCompilationAttr)) { out_edges_to_oc.push_back(e); } } for (const Edge* e : out_edges_to_oc) { std::string outside_compilation_cluster; TF_RETURN_IF_ERROR(GetNodeAttr(e->dst()->def(), kOutsideCompilationAttr, &outside_compilation_cluster)); NodeDefBuilder ph_builder(fbody->graph->NewName("lifted_arg"), "Placeholder"); ph_builder.Attr("dtype", arg_dtypes[i]); ph_builder.Attr(kOutsideCompilationAttr, outside_compilation_cluster); TF_RET_CHECK(lifted_arg_index_to_oc_cluster_name.contains(i)); ph_builder.Attr(kXlaLiftedArgOutsideCompilationAttrName, lifted_arg_index_to_oc_cluster_name.at(i)); NodeDef ph_def; TF_RETURN_IF_ERROR(ph_builder.Finalize(&ph_def)); TF_ASSIGN_OR_RETURN(Node * ph_node, fbody->graph->AddNode(ph_def)); Node* dst = e->dst(); int dst_input = e->dst_input(); fbody->graph->RemoveEdge(e); fbody->graph->AddEdge(ph_node, 0, dst, dst_input); } fbody->graph->RemoveNode(arg_node); } return absl::OkStatus(); } Status CleanUpInEdges(const absl::flat_hash_map<int, int>& index_mapping, const int arg_to_input_edge_offset, Graph* g, Node* n) { int num_inputs = n->num_inputs(); for (int i = 0; i < num_inputs; ++i) { if (i < arg_to_input_edge_offset) continue; int arg_idx = i - arg_to_input_edge_offset; const Edge* e; TF_RETURN_IF_ERROR(n->input_edge(i, &e)); if (!index_mapping.contains(arg_idx)) { g->RemoveEdge(e); continue; } if (index_mapping.at(arg_idx) == arg_idx) continue; g->AddEdge(e->src(), e->src_output(), n, index_mapping.at(arg_idx) + arg_to_input_edge_offset); g->RemoveEdge(e); } return absl::OkStatus(); } void RemoveOutputIdentityNodesForWhileV2(Graph* g, Node* while_node) { std::vector<const Edge*> edges_to_identity_node; for (const Edge* e : while_node->out_edges()) { if (!e->IsControlEdge() && e->dst()->IsIdentity()) { edges_to_identity_node.push_back(e); } } for (const Edge* e : edges_to_identity_node) { Node* identity = e->dst(); std::vector<const Edge*> out_edges(identity->out_edges().begin(), identity->out_edges().end()); for (const Edge* out_edge : out_edges) { if (out_edge->IsControlEdge()) { g->AddControlEdge(while_node, out_edge->dst()); } else { Node* dst = out_edge->dst(); int dst_input = out_edge->dst_input(); g->RemoveEdge(out_edge); g->AddEdge(while_node, e->src_output(), dst, dst_input); } } g->RemoveNode(identity); } } Status ReplaceOutputEdgesWithInputEdgeSourceForWhile( const absl::flat_hash_set<int>& args_to_lift, Graph* g, Node* while_node) { std::vector<const Edge*> edges_to_replace; for (const Edge* e : while_node->out_edges()) { if (args_to_lift.contains(e->src_output())) { edges_to_replace.push_back(e); } } for (const Edge* e : edges_to_replace) { const Edge* input_edge; TF_RETURN_IF_ERROR(while_node->input_edge(e->src_output(), &input_edge)); Node* dst = e->dst(); int dst_input = e->dst_input(); g->RemoveEdge(e); g->AddEdge(input_edge->src(), input_edge->src_output(), dst, dst_input); } return absl::OkStatus(); } absl::flat_hash_map<int, int> ArgIndexMapping( const int num_args, const absl::flat_hash_set<int>& args_to_lift) { absl::flat_hash_map<int, int> index_mapping; int new_index = 0; for (int i = 0; i < num_args; i++) { if (!args_to_lift.contains(i)) { index_mapping[i] = new_index; ++new_index; } } return index_mapping; } void CleanUpRetvalsForWhileBody( const absl::flat_hash_map<int, int>& index_mapping, const std::vector<DataType>& dtypes, FunctionBody* fbody) { for (int i = 0; i < fbody->ret_nodes.size(); i++) { Node* ret_node = fbody->ret_nodes[i]; if (index_mapping.contains(i)) { int new_index = index_mapping.at(i); ret_node->ClearAttr("index"); ret_node->AddAttr("index", new_index); ret_node->ClearAttr("T"); ret_node->AddAttr("T", dtypes[i]); } else { fbody->graph->RemoveNode(ret_node); } } } Status LiftOutsideCompilationOnlyArgsFromWhileNode( Graph* g, Node* while_node, FunctionLibraryDefinition* fld, int* lifted_arg_count, bool* rewritten) { *rewritten = false; TF_ASSIGN_OR_RETURN(absl::flat_hash_set<int> args_to_lift, FindArgsToLiftForWhileNode(while_node, fld)); if (args_to_lift.empty()) return absl::OkStatus(); RemoveOutputIdentityNodesForWhileV2(g, while_node); TF_RETURN_IF_ERROR(ReplaceOutputEdgesWithInputEdgeSourceForWhile( args_to_lift, g, while_node)); std::vector<DataType> dtypes; TF_RETURN_IF_ERROR(GetNodeAttr(while_node->def(), "T", &dtypes)); absl::flat_hash_map<int, int> index_mapping = ArgIndexMapping(dtypes.size(), args_to_lift); absl::flat_hash_map<int, std::string> lifted_arg_index_to_oc_cluster_name; TF_RETURN_IF_ERROR(MakeIdentityNodesForArgsToLift( args_to_lift, 0, g, while_node, &lifted_arg_index_to_oc_cluster_name, lifted_arg_count)); TF_ASSIGN_OR_RETURN(std::unique_ptr<FunctionBody> cond_fbody, InstantiateAssociatedFunction(*while_node, "cond", fld)); TF_RETURN_IF_ERROR(RemoveArgsToLiftFromFunctionBody( args_to_lift, dtypes, lifted_arg_index_to_oc_cluster_name, index_mapping, cond_fbody.get())); FunctionDef rewritten_cond_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef( *(cond_fbody->graph), cond_fbody->record->fdef().signature().name(), &rewritten_cond_fdef)); TF_RETURN_IF_ERROR(fld->ReplaceFunction( cond_fbody->record->fdef().signature().name(), rewritten_cond_fdef)); TF_ASSIGN_OR_RETURN(std::unique_ptr<FunctionBody> body_fbody, InstantiateAssociatedFunction(*while_node, "body", fld)); TF_RETURN_IF_ERROR(RemoveArgsToLiftFromFunctionBody( args_to_lift, dtypes, lifted_arg_index_to_oc_cluster_name, index_mapping, body_fbody.get())); CleanUpRetvalsForWhileBody(index_mapping, dtypes, body_fbody.get()); FunctionDef rewritten_body_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef( *(body_fbody->graph), body_fbody->record->fdef().signature().name(), &rewritten_body_fdef)); TF_RETURN_IF_ERROR(fld->ReplaceFunction( body_fbody->record->fdef().signature().name(), rewritten_body_fdef)); TF_RETURN_IF_ERROR(CleanUpInEdges( index_mapping, 0, g, while_node)); TF_RETURN_IF_ERROR(while_node->ShrinkTypeInfo(index_mapping, "T", true)); *rewritten = true; return absl::OkStatus(); } Status LiftOutsideCompilationOnlyArgsFromIfNode(Graph* g, Node* if_node, FunctionLibraryDefinition* fld, int* lifted_arg_count, bool* rewritten) { *rewritten = false; TF_ASSIGN_OR_RETURN(absl::flat_hash_set<int> args_to_lift, FindArgsToLiftForIfNode(*if_node, fld)); if (args_to_lift.empty()) return absl::OkStatus(); std::vector<DataType> dtypes; TF_RETURN_IF_ERROR(GetNodeAttr(if_node->def(), "Tin", &dtypes)); absl::flat_hash_map<int, int> index_mapping; int new_index = 0; for (int i = 0; i < dtypes.size(); i++) { if (!args_to_lift.contains(i)) { index_mapping[i] = new_index; ++new_index; } } absl::flat_hash_map<int, std::string> lifted_arg_index_to_oc_cluster_name; TF_RETURN_IF_ERROR(MakeIdentityNodesForArgsToLift( args_to_lift, 1, g, if_node, &lifted_arg_index_to_oc_cluster_name, lifted_arg_count)); TF_ASSIGN_OR_RETURN( std::unique_ptr<FunctionBody> then_branch_fbody, InstantiateAssociatedFunction(*if_node, "then_branch", fld)); TF_RETURN_IF_ERROR(RemoveArgsToLiftFromFunctionBody( args_to_lift, dtypes, lifted_arg_index_to_oc_cluster_name, index_mapping, then_branch_fbody.get())); FunctionDef rewritten_then_branch_fdef; TF_RETURN_IF_ERROR( GraphToFunctionDef(*(then_branch_fbody->graph), then_branch_fbody->record->fdef().signature().name(), &rewritten_then_branch_fdef)); TF_RETURN_IF_ERROR( fld->ReplaceFunction(then_branch_fbody->record->fdef().signature().name(), rewritten_then_branch_fdef)); TF_ASSIGN_OR_RETURN( std::unique_ptr<FunctionBody> else_branch_fbody, InstantiateAssociatedFunction(*if_node, "else_branch", fld)); TF_RETURN_IF_ERROR(RemoveArgsToLiftFromFunctionBody( args_to_lift, dtypes, lifted_arg_index_to_oc_cluster_name, index_mapping, else_branch_fbody.get())); FunctionDef rewritten_else_branch_fdef; TF_RETURN_IF_ERROR( GraphToFunctionDef(*(else_branch_fbody->graph), else_branch_fbody->record->fdef().signature().name(), &rewritten_else_branch_fdef)); TF_RETURN_IF_ERROR( fld->ReplaceFunction(else_branch_fbody->record->fdef().signature().name(), rewritten_else_branch_fdef)); TF_RETURN_IF_ERROR(CleanUpInEdges( index_mapping, 1, g, if_node)); TF_RETURN_IF_ERROR(if_node->ShrinkTypeInfo(index_mapping, "Tin", false)); *rewritten = true; return absl::OkStatus(); } Status LiftOutsideCompilationOnlyArgsFromCallNode( Graph* g, Node* call_node, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, int* lifted_arg_count, bool* rewritten) { *rewritten = false; NameAttrList func; if (fld->Contains(call_node->type_string())) { func.set_name(call_node->type_string()); *func.mutable_attr() = call_node->def().attr(); } else if (call_node->IsPartitionedCall()) { TF_RETURN_IF_ERROR(GetNodeAttr(call_node->def(), "f", &func)); } else { TF_RET_CHECK(call_node->type_string() == FunctionLibraryDefinition::kGradientOp); func.set_name(FunctionLibraryDefinition::kGradientOp); *func.mutable_attr() = call_node->def().attr(); } FunctionLibraryRuntime::Handle handle; TF_RETURN_IF_ERROR( flr->Instantiate(func.name(), AttrSlice(&func.attr()), &handle)); auto cleanup_handle = gtl::MakeCleanup( [&flr, &handle]() { flr->ReleaseHandle(handle).IgnoreError(); }); const FunctionBody* fbody = flr->GetFunctionBody(handle); TF_ASSIGN_OR_RETURN(absl::flat_hash_set<int> args_to_lift, FindArgsToLiftForCallNode(call_node, *fbody)); if (args_to_lift.empty()) return absl::OkStatus(); std::vector<DataType> dtypes; dtypes = std::vector<DataType>(call_node->input_types().begin(), call_node->input_types().end()); absl::flat_hash_map<int, int> index_mapping = ArgIndexMapping(dtypes.size(), args_to_lift); absl::flat_hash_map<int, std::string> lifted_arg_index_to_oc_cluster_name; TF_RETURN_IF_ERROR(MakeIdentityNodesForArgsToLift( args_to_lift, 0, g, call_node, &lifted_arg_index_to_oc_cluster_name, lifted_arg_count)); TF_RETURN_IF_ERROR(RemoveArgsToLiftFromFunctionBody( args_to_lift, dtypes, lifted_arg_index_to_oc_cluster_name, index_mapping, fbody)); FunctionDef rewritten_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef( *(fbody->graph), fbody->record->fdef().signature().name(), &rewritten_fdef)); std::string new_func_name = fld->UniqueFunctionName(fbody->record->fdef().signature().name()); rewritten_fdef.mutable_signature()->set_name(new_func_name); TF_RETURN_IF_ERROR(fld->AddFunctionDef(rewritten_fdef)); TF_RETURN_IF_ERROR(CleanUpInEdges( index_mapping, 0, g, call_node)); NodeDef node_def; node_def.set_name(g->NewName(call_node->name())); node_def.set_op(new_func_name); if (call_node->IsPartitionedCall()) { NameAttrList f; TF_RETURN_IF_ERROR(GetNodeAttr(call_node->def(), "f", &f)); *node_def.mutable_attr() = f.attr(); } else if (fld->Contains(call_node->type_string())) { *node_def.mutable_attr() = call_node->def().attr(); } else { TF_RET_CHECK(call_node->type_string() == FunctionLibraryDefinition::kGradientOp); *node_def.mutable_attr() = call_node->def().attr(); node_def.mutable_attr()->erase(FunctionLibraryDefinition::kFuncAttr); } TF_ASSIGN_OR_RETURN(call_node, ReplaceNode(g, call_node, node_def)); *rewritten = true; return absl::OkStatus(); } Status LiftOutsideCompilationOnlyArgs(Graph* g, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld, int* lifted_arg_count, bool* rewritten) { *rewritten = false; std::vector<Node*> while_nodes, if_nodes, call_nodes; for (Node* n : g->op_nodes()) { if (HasNodeAttr(n->def(), kOutsideCompilationAttr)) { continue; } if (n->IsWhileNode()) { TF_ASSIGN_OR_RETURN(std::unique_ptr<FunctionBody> body_fbody, InstantiateAssociatedFunction(*n, "body", fld)); bool func_rewritten = false; TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgsAndReplaceFunctionDef( *body_fbody, flr, fld, lifted_arg_count, std::nullopt, &func_rewritten)); *rewritten = *rewritten || func_rewritten; while_nodes.push_back(n); } else if (n->IsIfNode()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<FunctionBody> then_branch_fbody, InstantiateAssociatedFunction(*n, "then_branch", fld)); bool func_rewritten = false; TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgsAndReplaceFunctionDef( *then_branch_fbody, flr, fld, lifted_arg_count, std::nullopt, &func_rewritten)); *rewritten |= func_rewritten; TF_ASSIGN_OR_RETURN( std::unique_ptr<FunctionBody> else_branch_fbody, InstantiateAssociatedFunction(*n, "else_branch", fld)); func_rewritten = false; TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgsAndReplaceFunctionDef( *else_branch_fbody, flr, fld, lifted_arg_count, std::nullopt, &func_rewritten)); *rewritten |= func_rewritten; if_nodes.push_back(n); } else if (IsFunctionCall(*fld, *n)) { call_nodes.push_back(n); } } std::vector<Node*> rewritten_call_nodes; for (Node* call_node : call_nodes) { if (call_node->IsPartitionedCall()) { std::unique_ptr<FunctionBody> function_fbody; TF_ASSIGN_OR_RETURN(function_fbody, InstantiateAssociatedFunction(*call_node, "f", fld)); bool func_rewritten = false; std::string new_func_name = fld->UniqueFunctionName( function_fbody->record->fdef().signature().name()); TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgsAndReplaceFunctionDef( *function_fbody, flr, fld, lifted_arg_count, new_func_name, &func_rewritten)); if (func_rewritten) { NameAttrList f; TF_RETURN_IF_ERROR(GetNodeAttr(call_node->def(), "f", &f)); f.set_name(new_func_name); call_node->ClearAttr("f"); call_node->AddAttr("f", f); } *rewritten |= func_rewritten; rewritten_call_nodes.push_back(call_node); } else if (fld->Contains(call_node->type_string())) { std::unique_ptr<FunctionBody> function_fbody; const FunctionDef* fdef = fld->Find(call_node->type_string()); TF_RET_CHECK(fdef); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*fdef, call_node->attrs(), fld, &function_fbody)); bool func_rewritten = false; std::string new_func_name = fld->UniqueFunctionName( function_fbody->record->fdef().signature().name()); TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgsAndReplaceFunctionDef( *function_fbody, flr, fld, lifted_arg_count, new_func_name, &func_rewritten)); if (func_rewritten) { NodeDef node_def; node_def.set_name(g->NewName(call_node->name())); node_def.set_op(new_func_name); *node_def.mutable_attr() = call_node->def().attr(); TF_ASSIGN_OR_RETURN(call_node, ReplaceNode(g, call_node, node_def)); } *rewritten |= func_rewritten; rewritten_call_nodes.push_back(call_node); } else { TF_RET_CHECK(call_node->type_string() == FunctionLibraryDefinition::kGradientOp); FunctionLibraryRuntime::Handle handle; TF_RETURN_IF_ERROR(flr->Instantiate(call_node->type_string(), call_node->attrs(), &handle)); auto cleanup_handle = gtl::MakeCleanup( [&flr, &handle]() { flr->ReleaseHandle(handle).IgnoreError(); }); bool func_rewritten = false; std::string new_func_name = fld->UniqueFunctionName( absl::StrCat(call_node->name(), "_lift_args")); const FunctionBody* function_fbody = flr->GetFunctionBody(handle); TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgsAndReplaceFunctionDef( *function_fbody, flr, fld, lifted_arg_count, new_func_name, &func_rewritten)); if (func_rewritten) { NodeDef node_def; node_def.set_name(g->NewName(call_node->name())); node_def.set_op(new_func_name); *node_def.mutable_attr() = call_node->def().attr(); node_def.mutable_attr()->erase(FunctionLibraryDefinition::kFuncAttr); TF_ASSIGN_OR_RETURN(call_node, ReplaceNode(g, call_node, node_def)); } *rewritten |= func_rewritten; rewritten_call_nodes.push_back(call_node); } } for (Node* n : while_nodes) { bool node_rewritten = false; TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgsFromWhileNode( g, n, fld, lifted_arg_count, &node_rewritten)); *rewritten = *rewritten || node_rewritten; } for (Node* n : if_nodes) { bool node_rewritten = false; TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgsFromIfNode( g, n, fld, lifted_arg_count, &node_rewritten)); *rewritten = *rewritten || node_rewritten; } for (Node* n : rewritten_call_nodes) { bool node_rewritten = false; TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgsFromCallNode( g, n, flr, fld, lifted_arg_count, &node_rewritten)); *rewritten = *rewritten || node_rewritten; } if (*rewritten) { VLOG(4) << DumpGraphToFile("after_lifting_args", *g, fld); } return absl::OkStatus(); } bool ShouldSkipEncapsulationForNonTPUGraph() { return flags::Global().enable_skip_encapsulation_for_non_tpu_graphs.value(); } } Status EncapsulateTPUComputationsPass::Encapsulate( std::unique_ptr<Graph>* graph, FunctionLibraryDefinition* flib_def) { if (ShouldSkipEncapsulationForNonTPUGraph()) { bool found_tpu_replicate = false; for (const Node* n : (*graph)->nodes()) { if (n->attrs().Find(kTPUReplicateAttr) != nullptr) { found_tpu_replicate = true; break; } } if (!found_tpu_replicate) { VLOG(1) << "No TPU replicate found, skipping encapsulation"; return absl::OkStatus(); } } for (const Edge* e : (*graph)->edges()) { if (!e->IsControlEdge() && e->src()->attrs().Find(kTPUReplicateAttr) != nullptr && e->src()->attrs().Find(kOutsideCompilationAttr) == nullptr && e->dst()->attrs().Find(kTPUReplicateAttr) == nullptr && e->dst()->type_string() != kTPUReplicatedOutput) { return absl::InvalidArgumentError(absl::StrCat( "Undeclared output of TPU computation. A common cause of this error " "is variable initializers that depend on the TPU computation. Edge: ", FormatNodeForError(*e->src()), ":", e->src_output(), " -> ", FormatNodeForError(*e->dst()), ":", e->dst_input())); } } RemoveUnusedTPUReplicatedInputs(graph->get()); TF_RETURN_IF_ERROR(RenameClustersWithDuplicatedNames(graph->get())); TF_RETURN_IF_ERROR( PerformStaticShapeInferenceBeforeEncapsulation(graph->get())); auto output = std::make_unique<Graph>((*graph)->op_registry()); TF_RETURN_WITH_CONTEXT_IF_ERROR( EncapsulateSubgraphsInFunctions( kTPUReplicateAttr, **graph, RewriteSubgraph, true, &output, flib_def), "EncapsulateTPUComputationsPass failed"); graph->swap(output); return absl::OkStatus(); } Status EncapsulateTPUComputationsPass::BuildTPUReplicateOps( Graph* graph) { std::vector<Node*> replicate_nodes; std::vector<Node*> guarantee_const_nodes; for (Node* n : graph->nodes()) { std::string name; if (TryGetNodeAttr(n->attrs(), kTPUReplicateAttr, &name) && !TryGetNodeAttr(n->attrs(), kOutsideCompilationAttr, &name)) { replicate_nodes.push_back(n); } else if (n->type_string() == "GuaranteeConst") { guarantee_const_nodes.push_back(n); } } for (Node* n : guarantee_const_nodes) { std::vector<std::pair<Node*, int>> predecessors; for (const Edge* e : n->in_edges()) { predecessors.emplace_back(e->src(), e->src_output()); } std::vector<std::pair<Node*, int>> successors; for (const Edge* e : n->out_edges()) { successors.emplace_back(e->dst(), e->dst_input()); } NodeDef ndef; ndef.set_name(n->name()); ndef.set_op("Identity"); ndef.set_device(n->requested_device()); MergeDebugInfo(NodeDebugInfo(n->def()), &ndef); AddNodeAttr("T", n->output_type(0), &ndef); graph->RemoveNode(n); TF_ASSIGN_OR_RETURN(Node * id_node, graph->AddNode(ndef)); for (const auto& pred : predecessors) { if (pred.second < 0) { graph->AddControlEdge(pred.first, id_node); } else { graph->AddEdge(pred.first, pred.second, id_node, 0); } } for (const auto& succ : successors) { if (succ.second < 0) { graph->AddControlEdge(id_node, succ.first); } else { graph->AddEdge(id_node, 0, succ.first, succ.second); } } } for (Node* replicate : replicate_nodes) { int num_replicas; TF_RETURN_IF_ERROR( GetNodeAttr(replicate->attrs(), "num_replicas", &num_replicas)); int variable_start_index; TF_RETURN_IF_ERROR(GetNodeAttr(replicate->attrs(), "_variable_start_index", &variable_start_index)); int guaranteed_const_start_index; TF_RETURN_IF_ERROR(GetNodeAttr(replicate->attrs(), "_guaranteed_const_start_index", &guaranteed_const_start_index)); if (HasNodeAttr(replicate->def(), "use_tpu")) { bool use_tpu; TF_RETURN_IF_ERROR(GetNodeAttr(replicate->attrs(), "use_tpu", &use_tpu)); if (!use_tpu) { LOG(WARNING) << "use_tpu=false attr on a TPUReplicate node is ignored."; } } std::vector<const Edge*> in_edges; TF_RETURN_IF_ERROR(replicate->input_edges(&in_edges)); int pos = 0; std::vector<int> mirrored_variable_indices; int distributed_var_start_index = 0; while (pos < in_edges.size() && in_edges[pos]->src()->type_string() == kTPUReplicatedInput) { int input_num_replicas; TF_RETURN_IF_ERROR( GetNodeAttr(in_edges[pos]->src()->attrs(), "N", &input_num_replicas)); bool is_mirrored_variable; TF_CHECK_OK(GetNodeAttr(in_edges[pos]->src()->attrs(), "is_mirrored_variable", &is_mirrored_variable)); if (is_mirrored_variable) { mirrored_variable_indices.push_back(pos); } bool is_packed = false; GetNodeAttr(in_edges[pos]->src()->attrs(), "is_packed", &is_packed) .IgnoreError(); bool is_distributed_variable = is_packed && (in_edges[pos]->src()->output_type( in_edges[pos]->src_output()) == DT_RESOURCE); if (!is_distributed_variable && input_num_replicas != num_replicas) { return absl::InvalidArgumentError(absl::StrCat( "Mismatched number of replicas. Computation has ", num_replicas, " replicas, input '", FormatNodeForError(*in_edges[pos]->src()), "' has ", input_num_replicas, " replicas.")); } if (!is_distributed_variable) { if (distributed_var_start_index < pos) { return absl::InvalidArgumentError( absl::StrCat("Expect a distributed resource after index ", distributed_var_start_index, ", but got a replicated resource at index ", pos)); } else { ++distributed_var_start_index; } } ++pos; } const int num_replicated_inputs = distributed_var_start_index; const int num_distributed_vars = pos - num_replicated_inputs; const int num_variables = std::max(0, guaranteed_const_start_index - variable_start_index); const int num_guaranteed_constants = in_edges.size() - guaranteed_const_start_index; TF_RET_CHECK(num_guaranteed_constants >= 0); VLOG(1) << "Replicate node '" << replicate->name() << "'" << " input edges: " << in_edges.size() << " num_replicated_inputs: " << num_replicated_inputs << " num_distributed_vars: " << num_distributed_vars << " num_variables: " << num_variables << " num_guaranteed_constants: " << num_guaranteed_constants << " num_mirrored_variables: " << mirrored_variable_indices.size(); const int num_broadcast_inputs = in_edges.size() - (num_replicated_inputs + num_distributed_vars + num_variables + num_guaranteed_constants); TF_RET_CHECK(num_broadcast_inputs >= 0); const int num_inputs = num_replicated_inputs * num_replicas + num_distributed_vars + num_broadcast_inputs + num_guaranteed_constants + num_variables; std::vector<Node*> nodes_to_remove = {replicate}; std::vector<std::pair<Node*, int>> data_inputs(num_inputs); gtl::FlatSet<Node*> control_inputs; AddControlInputs(*replicate, &control_inputs); DataTypeVector replicated_input_types(num_replicated_inputs * num_replicas + num_distributed_vars); for (int i = 0; i < num_replicated_inputs; ++i) { std::vector<const Edge*> replica_in_edges; TF_RETURN_IF_ERROR(in_edges[i]->src()->input_edges(&replica_in_edges)); for (int replica = 0; replica < num_replicas; ++replica) { int pos = replica * num_replicated_inputs + i; const Edge* edge = replica_in_edges[replica]; data_inputs[pos] = {edge->src(), edge->src_output()}; replicated_input_types[pos] = EdgeType(edge); } AddControlInputs(*in_edges[i]->src(), &control_inputs); nodes_to_remove.push_back(in_edges[i]->src()); } for (int i = 0; i < num_distributed_vars; ++i) { int pos = num_replicas * num_replicated_inputs + i; std::vector<const Edge*> replica_in_edges; TF_RETURN_IF_ERROR( in_edges[num_replicated_inputs + i]->src()->input_edges( &replica_in_edges)); TF_RET_CHECK(replica_in_edges.size() == 1); const Edge* edge = replica_in_edges[0]; data_inputs[pos] = {edge->src(), edge->src_output()}; replicated_input_types[pos] = EdgeType(edge); AddControlInputs(*in_edges[num_replicated_inputs + i]->src(), &control_inputs); nodes_to_remove.push_back(in_edges[num_replicated_inputs + i]->src()); } DataTypeVector broadcast_input_types(num_broadcast_inputs); for (int i = 0; i < num_broadcast_inputs; ++i) { int pos = num_replicas * num_replicated_inputs + num_distributed_vars + i; const Edge* edge = in_edges[num_replicated_inputs + num_distributed_vars + i]; data_inputs[pos] = {edge->src(), edge->src_output()}; broadcast_input_types[i] = EdgeType(edge); } for (int i = 0; i < num_variables; ++i) { int pos = num_replicas * num_replicated_inputs + num_distributed_vars + num_broadcast_inputs + i; const Edge* edge = in_edges[num_replicated_inputs + num_distributed_vars + num_broadcast_inputs + i]; data_inputs[pos] = {edge->src(), edge->src_output()}; } DataTypeVector guaranteed_constant_types(num_guaranteed_constants); for (int i = 0; i < num_guaranteed_constants; ++i) { int pos = num_replicas * num_replicated_inputs + num_distributed_vars + num_broadcast_inputs + num_variables + i; const Edge* edge = in_edges[num_replicated_inputs + num_distributed_vars + num_broadcast_inputs + num_variables + i]; data_inputs[pos] = {edge->src(), edge->src_output()}; guaranteed_constant_types[i] = EdgeType(edge); } const int num_outputs = replicate->output_types().size(); gtl::FlatSet<Node*> control_outputs; std::vector<Node*> replicated_outputs(num_outputs); for (const Edge* e : replicate->out_edges()) { if (e->IsControlEdge()) { control_outputs.insert(e->dst()); } else { TF_RET_CHECK(e->src_output() < num_outputs); TF_RET_CHECK(e->dst()->type_string() == kTPUReplicatedOutput) << e->DebugString(); TF_RET_CHECK(e->dst()->output_types().size() == num_replicas); replicated_outputs[e->src_output()] = e->dst(); nodes_to_remove.push_back(e->dst()); AddControlOutputs(*e->dst(), &control_outputs); } } std::vector<std::vector<std::pair<Node*, int>>> data_outputs(num_replicas * num_outputs); DataTypeVector output_types(num_replicas * num_outputs); for (int i = 0; i < num_outputs; ++i) { std::vector<std::vector<const Edge*>> replica_out_edges(num_replicas); TF_RET_CHECK(replicated_outputs[i] != nullptr); for (const Edge* e : replicated_outputs[i]->out_edges()) { TF_RET_CHECK(!e->IsControlEdge()); replica_out_edges[e->src_output()].push_back(e); } for (int replica = 0; replica < num_replicas; ++replica) { const int pos = replica * num_outputs + i; for (const Edge* edge : replica_out_edges[replica]) { data_outputs[pos].push_back({edge->dst(), edge->dst_input()}); } output_types[pos] = replicated_outputs[i]->input_type(0); } } NodeDef def; def.set_name(replicate->name()); def.set_op("_TPUReplicate"); MergeDebugInfo(NodeDebugInfo(replicate->def()), &def); NameAttrList computation; computation.set_name(replicate->type_string()); AddNodeAttr("computation", computation, &def); for (const auto& attr : replicate->attrs()) { def.mutable_attr()->insert(attr); } AddNodeAttr("Tinputs", replicated_input_types, &def); AddNodeAttr("Tbroadcast_inputs", broadcast_input_types, &def); AddNodeAttr("NumVariables", num_variables, &def); AddNodeAttr("Tguaranteed_constants", guaranteed_constant_types, &def); AddNodeAttr("output_types", output_types, &def); AddNodeAttr(TPUREPLICATE_MIRRORED_VAR_INDICES_ATTR, mirrored_variable_indices, &def); AddNodeAttr("num_distributed_variables", num_distributed_vars, &def); for (Node* node : nodes_to_remove) { VLOG(2) << "Deleting node " << node->DebugString(); control_inputs.erase(node); control_outputs.erase(node); graph->RemoveNode(node); } TF_ASSIGN_OR_RETURN(Node * tpu_replicate, graph->AddNode(def)); for (int i = 0; i < data_inputs.size(); ++i) { graph->AddEdge(data_inputs[i].first, data_inputs[i].second, tpu_replicate, i); } for (Node* n : control_inputs) { graph->AddControlEdge(n, tpu_replicate); } for (int i = 0; i < data_outputs.size(); ++i) { for (const auto& successor : data_outputs[i]) { graph->AddEdge(tpu_replicate, i, successor.first, successor.second); } } for (Node* n : control_outputs) { graph->AddControlEdge(tpu_replicate, n); } } return absl::OkStatus(); } Status EncapsulateTPUComputationsPass::Run( const GraphOptimizationPassOptions& options) { VLOG(1) << "EncapsulateTPUComputations(): " << DumpGraphToFile("encapsulate_tpu_computations_before", **options.graph, options.flib_def); TF_RETURN_IF_ERROR(Encapsulate(options.graph, options.flib_def)); VLOG(1) << "EncapsulateTPUComputations() half-way: " << DumpGraphToFile("encapsulate_tpu_computations_halfway", **options.graph, options.flib_def); TF_RETURN_IF_ERROR(BuildTPUReplicateOps(options.graph->get())); VLOG(1) << "EncapsulateTPUComputations() finished: " << DumpGraphToFile("encapsulate_tpu_computations_after", **options.graph, options.flib_def); return absl::OkStatus(); } Status ExtractOutsideCompilationPass::ProcessHeadTailOutsideCompilation( const std::string& outside_compilation_attr_name, int* lifted_arg_count, std::unordered_map<std::string, XlaClusterInfo>* clusters, Graph* g, FunctionLibraryRuntime* flr, FunctionLibraryDefinition* fld) { absl::node_hash_map<std::string, Node*> pivots; std::string cluster_name; for (Node* node : g->nodes()) { if (TryGetNodeAttr(node->attrs(), kPivotForClusterAttr, &cluster_name)) { pivots[cluster_name] = node; } } for (auto& iter : *clusters) { Node* pivot_node = pivots[iter.first]; std::string xla_func_name = iter.second.func_name_attrs.name(); std::unique_ptr<FunctionBody> xla_fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *fld->Find(xla_func_name), AttrSlice(&iter.second.func_name_attrs.attr()), fld, &xla_fbody)); Graph* xla_graph = xla_fbody->graph; FixupSourceAndSinkEdges(xla_graph); TF_RETURN_IF_ERROR(RemoveIdentityNodesForArgRetval(xla_graph)); bool rewritten; TF_RETURN_IF_ERROR(LiftOutsideCompilationOnlyArgs( xla_graph, flr, fld, lifted_arg_count, &rewritten)); TF_RETURN_IF_ERROR(MoveHeadOutsideCompilationToHost( outside_compilation_attr_name, iter.second.func_name_attrs.name(), iter.second.cluster_name, g, xla_graph, iter.second.node, pivot_node)); TF_RETURN_IF_ERROR(MoveTailOutsideCompilationToHost( outside_compilation_attr_name, iter.second.func_name_attrs.name(), iter.second.cluster_name, g, xla_graph, iter.second.node, pivot_node)); TF_RETURN_IF_ERROR(ReplaceArgUsedByOutsideCompilationWithPlaceholder( outside_compilation_attr_name, xla_func_name, g, xla_graph, iter.second.node)); TF_RETURN_IF_ERROR(RemoveEdgesBetweenArgAndRetval( iter.second.func_name_attrs.name(), g, xla_graph, iter.second.node)); TF_RETURN_IF_ERROR(RemoveUnusedXlaInput(iter.second.func_name_attrs.name(), g, xla_graph, iter.second.node)); TF_RETURN_IF_ERROR(RemoveUnusedXlaOutput(iter.second.func_name_attrs.name(), g, xla_graph, iter.second.node)); FunctionDef replace_fdef; TF_RETURN_IF_ERROR( GraphToFunctionDef(*xla_graph, xla_func_name, &replace_fdef)); TF_RETURN_IF_ERROR(fld->ReplaceFunction(xla_func_name, replace_fdef)); FixupSourceAndSinkEdges(g); } return absl::OkStatus(); } Status ExtractOutsideCompilationPass::Run( const GraphOptimizationPassOptions& options) { const auto* config = (options.session_options ? &options.session_options->config : nullptr); std::unique_ptr<ProcessFunctionLibraryRuntime> pflr( new ProcessFunctionLibraryRuntime( nullptr, options.session_options->env, config, TF_GRAPH_DEF_VERSION, options.flib_def, config ? config->graph_options().optimizer_options() : OptimizerOptions())); FunctionLibraryRuntime* flr = pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); static std::map<std::string, std::string>* kNodeTypeToFunctionAttrMapping = new std::map<std::string, std::string>{ {"_TPUReplicate", "computation"}, }; std::unordered_map<std::string, XlaClusterInfo> clusters; int lifted_arg_count = 0; for (Node* n : (*options.graph)->nodes()) { auto iter = kNodeTypeToFunctionAttrMapping->find(n->type_string()); if (iter == kNodeTypeToFunctionAttrMapping->end()) { continue; } std::string xla_cluster_name = n->name(); std::string func_attr = iter->second; NameAttrList func; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), func_attr, &func)); std::vector<std::string> core_list; TF_RETURN_IF_ERROR( GetNodeAttr(n->attrs(), "host_compute_core", &core_list)); std::map<std::string, int> host_compute_core; TF_RETURN_IF_ERROR(ParseHostComputeCoreList(core_list, &host_compute_core)); clusters.emplace(xla_cluster_name, XlaClusterInfo{xla_cluster_name, func, n, host_compute_core}); } TF_RETURN_IF_ERROR(ProcessHeadTailOutsideCompilation( kOutsideCompilationAttr, &lifted_arg_count, &clusters, options.graph->get(), flr, options.flib_def)); bool modified; TF_RETURN_IF_ERROR(ExtractOutsideCompilation( kTPUReplicateAttr, kOutsideCompilationAttr, clusters, options.graph->get(), flr, options.flib_def, &modified)); if (modified) { TF_RETURN_IF_ERROR( PruneUnreachableFunctionsFromGraph(**options.graph, options.flib_def)); } return absl::OkStatus(); } }
#include "tensorflow/core/tpu/graph_rewrite/encapsulate_tpu_computations_pass.h" #include <memory> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { std::unique_ptr<Graph> CreateGraph() { auto g = std::make_unique<Graph>(OpRegistry::Global()); auto in0 = test::graph::Arg(g.get(), 0, DT_FLOAT); auto in1 = test::graph::Arg(g.get(), 1, DT_FLOAT); auto tmp = test::graph::Add(g.get(), in0, in1); auto ret = test::graph::Retval(g.get(), 0, tmp); g->AddControlEdge(in1, ret); FixupSourceAndSinkEdges(g.get()); return g; } TEST(EncapsulateTPUComputationsPassTest, NonTPUGraph) { auto g = CreateGraph(); GraphOptimizationPassOptions options; options.graph = &g; options.flib_def = g->mutable_flib_def(); EncapsulateTPUComputationsPass pass; TF_ASSERT_OK(pass.Run(options)); int nodes_meeting_expectations = 0; for (const auto* node : g->nodes()) { if (!IsSource(node) && !IsSink(node)) { ASSERT_TRUE(node->attrs().Find("_xla_inferred_shapes")); ++nodes_meeting_expectations; } } EXPECT_EQ(nodes_meeting_expectations, 4); } TEST(EncapsulateTPUComputationsPassTest, SkipEncapsulationForNonTPUGraph) { flags::Global().enable_skip_encapsulation_for_non_tpu_graphs.reset(true); auto g = CreateGraph(); GraphOptimizationPassOptions options; options.graph = &g; options.flib_def = g->mutable_flib_def(); EncapsulateTPUComputationsPass pass; TF_ASSERT_OK(pass.Run(options)); int nodes_meeting_expectations = 0; for (const auto* node : g->nodes()) { if (!IsSource(node) && !IsSink(node)) { ASSERT_FALSE(node->attrs().Find("_xla_inferred_shapes")); ++nodes_meeting_expectations; } } EXPECT_EQ(nodes_meeting_expectations, 4); flags::Global().enable_skip_encapsulation_for_non_tpu_graphs.reset(false); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/graph_rewrite/encapsulate_tpu_computations_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/graph_rewrite/encapsulate_tpu_computations_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
054d4ec8-7d02-492e-9705-84fd9efd0b3a
cpp
tensorflow/tensorflow
serialization_utils
tensorflow/core/data/serialization_utils.cc
tensorflow/core/data/serialization_utils_test.cc
#include "tensorflow/core/data/serialization_utils.h" #include <cstdint> #include <map> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/data/compression_utils.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/platform/stringpiece.h" namespace tensorflow { namespace data { namespace { constexpr char kDelimiter[] = "@@"; constexpr char kComponent[] = "component"; constexpr char kNumComponents[] = "num_components"; constexpr char kNumElements[] = "num_elements"; constexpr char kIsDataset[] = ".is_dataset"; constexpr char kIteratorVariantTypeName[] = "tensorflow::Iterator"; constexpr char kOutputNode[] = ".output_node"; Status FromGraphDef(FunctionLibraryRuntime* flr, const GraphDef& graph_def, const std::vector<std::pair<string, Tensor>>& input_list, const string& output_node, Tensor* result) { FunctionLibraryRuntime* cloned_flr = nullptr; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr = nullptr; std::unique_ptr<FunctionLibraryDefinition> lib_def = nullptr; TF_RETURN_IF_ERROR(flr->Clone(&lib_def, &pflr, &cloned_flr, true)); TF_RETURN_IF_ERROR(AddToFunctionLibrary(lib_def.get(), graph_def.library())); Graph graph(OpRegistry::Global()); TF_RETURN_IF_ERROR(ImportGraphDef({}, graph_def, &graph, nullptr)); std::vector<Tensor> outputs; GraphRunner graph_runner(cloned_flr->device()); TF_RETURN_IF_ERROR(graph_runner.Run(&graph, cloned_flr, input_list, {output_node}, &outputs)); *result = outputs[0]; return absl::OkStatus(); } Status FindStatefulOps(const GraphDef& graph_def, std::vector<string>* stateful_op_names) { FunctionLibraryDefinition lib_def(OpRegistry::Global(), graph_def.library()); for (const auto& node : graph_def.node()) { if (node.op() == FunctionLibraryDefinition::kRetOp) continue; if (!IsNodeStateful(lib_def, node).ok()) { stateful_op_names->push_back(node.op()); } } for (const auto& fdef : graph_def.library().function()) { if (!fdef.signature().is_stateful()) continue; for (const auto& node : fdef.node_def()) { if (!IsNodeStateful(lib_def, node).ok()) { stateful_op_names->push_back( absl::StrCat(node.op(), " in function: ", fdef.signature().name())); } } } return absl::OkStatus(); } } Status ReadElementsFromCheckpoint(IteratorContext* ctx, IteratorStateReader* reader, StringPiece key_prefix, std::vector<std::vector<Tensor>>* elements) { int64_t num_elements; TF_RETURN_IF_ERROR( reader->ReadScalar(key_prefix, kNumElements, &num_elements)); DCHECK(elements->empty()); elements->reserve(num_elements); for (int i = 0; i < num_elements; ++i) { std::string element_prefix = absl::StrCat(key_prefix, "::", i); int64_t num_components; TF_RETURN_IF_ERROR( reader->ReadScalar(element_prefix, kNumComponents, &num_components)); elements->emplace_back(); std::vector<Tensor>& element = elements->at(i); element.reserve(num_components); for (int j = 0; j < num_components; ++j) { element.emplace_back(); TF_RETURN_IF_ERROR(reader->ReadTensor( ctx->flr(), element_prefix, absl::StrCat(kComponent, "[", j, "]"), &element.back())); } } return absl::OkStatus(); } Status WriteElement(IteratorStateWriter* writer, StringPiece key_prefix, const std::vector<std::vector<Tensor>>& elements, int64_t index) { const std::vector<Tensor>& element = elements[index]; std::string element_prefix = absl::StrCat(key_prefix, "::", index); TF_RETURN_IF_ERROR( writer->WriteScalar(element_prefix, kNumComponents, element.size())); for (int j = 0; j < element.size(); ++j) { TF_RETURN_IF_ERROR(writer->WriteTensor( element_prefix, absl::StrCat(kComponent, "[", j, "]"), element[j])); } return absl::OkStatus(); } Status WriteElementsToCheckpoint( IteratorStateWriter* writer, StringPiece key_prefix, const std::vector<std::vector<Tensor>>& elements) { TF_RETURN_IF_ERROR( writer->WriteScalar(key_prefix, kNumElements, elements.size())); for (int i = 0; i < elements.size(); ++i) { TF_RETURN_IF_ERROR(WriteElement(writer, key_prefix, elements, i)); } return absl::OkStatus(); } Status UpdateCheckpointElements( IteratorStateWriter* writer, StringPiece key_prefix, const std::vector<std::vector<Tensor>>& elements, const absl::flat_hash_set<int64_t>& checkpoint_indices) { TF_RETURN_IF_ERROR( writer->WriteScalar(key_prefix, kNumElements, elements.size())); for (int64_t i : checkpoint_indices) { TF_RETURN_IF_ERROR(WriteElement(writer, key_prefix, elements, i)); } return absl::OkStatus(); } VariantTensorDataReader::VariantTensorDataReader( const std::vector<const tensorflow::VariantTensorData*>& data) { for (const auto& d : data) { string metadata; d->get_metadata(&metadata); auto keys = str_util::Split(metadata, kDelimiter, str_util::SkipEmpty()); const string name = keys[0]; data_[name] = d; map_[name] = std::map<string, size_t>(); for (size_t i = 1; i < keys.size(); ++i) { map_[name][keys[i]] = i - 1; } } } Status VariantTensorDataReader::ReadScalar(StringPiece key, int64_t* val) const { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return ReadScalar(prefix, key, val); } Status VariantTensorDataReader::ReadScalar(StringPiece name, StringPiece key, int64_t* val) const { return ReadScalarInternal(name, key, val); } Status VariantTensorDataReader::ReadScalar(StringPiece key, tstring* val) const { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return ReadScalar(prefix, key, val); } Status VariantTensorDataReader::ReadScalar(StringPiece name, StringPiece key, tstring* val) const { return ReadScalarInternal(name, key, val); } Status VariantTensorDataReader::ReadTensor(StringPiece key, Tensor* val) const { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return ReadTensor(prefix, key, val); } Status VariantTensorDataReader::ReadTensor(FunctionLibraryRuntime* flr, StringPiece key, Tensor* val) const { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return ReadTensorInternal(flr, prefix, key, val); } Status VariantTensorDataReader::ReadTensor(StringPiece name, StringPiece key, Tensor* val) const { return ReadTensor(nullptr, name, key, val); } Status VariantTensorDataReader::ReadTensor(FunctionLibraryRuntime* flr, StringPiece name, StringPiece key, Tensor* val) const { return ReadTensorInternal(flr, name, key, val); } bool VariantTensorDataReader::Contains(StringPiece key) const { string prefix; if (!ExtractIteratorPrefix(key, &prefix).ok()) { return false; } return Contains(prefix, key); } bool VariantTensorDataReader::Contains(StringPiece n, StringPiece key) const { string name(n); auto it = map_.find(name); if (it == map_.end()) { return false; } const auto& bucket = it->second; return bucket.find(string(key)) != bucket.end(); } template <typename T> Status VariantTensorDataReader::ReadScalarInternal(StringPiece n, StringPiece key, T* val) const { string name(n); auto it = map_.find(name); if (it == map_.end()) { return errors::NotFound(name); } const auto& bucket = it->second; auto key_it = bucket.find(string(key)); if (key_it == bucket.end()) { return errors::NotFound(key); } *val = data_.at(name)->tensors(key_it->second).scalar<T>()(); return absl::OkStatus(); } Status VariantTensorDataReader::ReadTensorInternal(FunctionLibraryRuntime* flr, StringPiece n, StringPiece key, Tensor* val) const { if (Contains(n, strings::StrCat(key, kIsDataset))) { return ReadDatasetInternal(flr, n, key, val); } string name(n); auto it = map_.find(name); if (it == map_.end()) { return errors::NotFound(name); } const auto& bucket = it->second; auto key_it = bucket.find(string(key)); if (key_it == bucket.end()) { return errors::NotFound(key); } *val = data_.at(name)->tensors(key_it->second); return absl::OkStatus(); } Status VariantTensorDataReader::ReadDatasetInternal(FunctionLibraryRuntime* flr, StringPiece n, StringPiece key, Tensor* val) const { if (flr == nullptr) { return errors::Internal( "Function library runtime is needed to restore a dataset."); } tstring output_node, serialized_graph_def; TF_RETURN_IF_ERROR( ReadScalar(n, strings::StrCat(key, kOutputNode), &output_node)); TF_RETURN_IF_ERROR( ReadScalar(n, strings::StrCat(key), &serialized_graph_def)); GraphDef graph_def; graph_def.ParseFromString(serialized_graph_def); TF_RETURN_IF_ERROR(FromGraphDef(flr, graph_def, {}, output_node, val)); return absl::OkStatus(); } std::map<string, Tensor> VariantTensorDataReader::ReadAllTensors() { std::map<string, Tensor> result; for (const auto& entry : map_) { string key1 = entry.first; for (const auto& inner : entry.second) { string key2 = inner.first; size_t index = inner.second; result[absl::StrCat(key1, kDelimiter, key2)] = data_[key1]->tensors(index); } } return result; } Status VariantTensorDataWriter::WriteScalar(StringPiece key, const int64_t val) { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return WriteScalar(prefix, key, val); } Status VariantTensorDataWriter::WriteScalar(StringPiece name, StringPiece key, const int64_t val) { return WriteScalarInternal(name, key, val); } Status VariantTensorDataWriter::WriteScalar(StringPiece key, const tstring& val) { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return WriteScalar(prefix, key, val); } Status VariantTensorDataWriter::WriteScalar(StringPiece name, StringPiece key, const tstring& val) { return WriteScalarInternal(name, key, val); } Status VariantTensorDataWriter::WriteTensor(StringPiece key, const Tensor& val) { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return WriteTensor(prefix, key, val); } Status VariantTensorDataWriter::WriteTensor(StringPiece name, StringPiece key, const Tensor& val) { return WriteTensorInternal(name, key, val); } void VariantTensorDataWriter::MaybeFlush() { if (is_flushed_) return; for (auto& keys : keys_) { const string name = keys.first; string metadata = name; for (size_t i = 0; i < keys_[name].size(); ++i) { strings::StrAppend(&metadata, kDelimiter, keys_[name][i]); } data_[name]->set_metadata(metadata); } is_flushed_ = true; } void VariantTensorDataWriter::Reset() { is_flushed_ = false; data_.clear(); keys_.clear(); } void VariantTensorDataWriter::ReleaseData( std::vector<std::unique_ptr<VariantTensorData>>* variants) { MaybeFlush(); for (auto& it : data_) { variants->push_back(std::move(it.second)); } Reset(); } void VariantTensorDataWriter::GetData( std::vector<const VariantTensorData*>* variants) { MaybeFlush(); for (auto& it : data_) { variants->push_back(it.second.get()); } } template <typename T> Status VariantTensorDataWriter::WriteScalarInternal(StringPiece name, StringPiece key, const T& val) { if (is_flushed_) { return errors::FailedPrecondition( "Cannot call WriteScalar after GetData or ReleaseData is called"); } Tensor val_t = Tensor(DataTypeToEnum<T>::v(), TensorShape({})); val_t.scalar<T>()() = val; return WriteTensorInternal(name, key, val_t); } Status VariantTensorDataWriter::WriteTensorInternal(StringPiece n, StringPiece key, const Tensor& val) { DatasetBase* dataset; if (GetDatasetFromVariantTensor(val, &dataset).ok()) { return WriteDatasetInternal(n, key, dataset); } if (is_flushed_) { return errors::FailedPrecondition( "Cannot call WriteTensor after GetData or ReleaseData is called"); } DCHECK_EQ(key.find(kDelimiter), string::npos); string name(n); if (keys_.count(name) == 0) { keys_[name] = std::vector<string>(); } keys_[name].push_back(string(key)); if (data_.count(name) == 0) { data_[name] = std::make_unique<VariantTensorData>(); data_[name]->set_type_name("tensorflow::Iterator"); } *(data_[name]->add_tensors()) = val; return absl::OkStatus(); } Status VariantTensorDataWriter::WriteDatasetInternal( StringPiece n, StringPiece key, const DatasetBase* dataset) { GraphDef graph_def; SerializationContext ctx((SerializationContext::Params())); TF_RETURN_IF_ERROR(AsGraphDef(dataset, std::move(ctx), &graph_def)); string output_node; for (const auto& node : graph_def.node()) { if (node.op() == kRetvalOp) { output_node = node.input(0); break; } } string result; graph_def.SerializeToString(&result); TF_RETURN_IF_ERROR(WriteScalar(n, strings::StrCat(key, kIsDataset), "")); TF_RETURN_IF_ERROR( WriteScalar(n, strings::StrCat(key, kOutputNode), output_node)); TF_RETURN_IF_ERROR(WriteScalar(n, key, result)); return absl::OkStatus(); } std::string IteratorStateVariant::TypeName() { return kIteratorVariantTypeName; } IteratorStateVariant::IteratorStateVariant(const IteratorStateVariant& other) { if (other.data_) { data_ = std::make_unique<VariantTensorData>(*other.data_); } } Status IteratorStateVariant::InitializeFromVariantData( std::unique_ptr<VariantTensorData> data) { data_ = std::move(data); return absl::OkStatus(); } void IteratorStateVariant::Encode(VariantTensorData* data) const { CompressedElement compressed_tensors; Status s = CompressElement(data_->tensors(), &compressed_tensors); if (!s.ok()) { LOG(WARNING) << "Failed to compress iterator state variant: " << s; *data = *data_; return; } data->set_type_name(TypeName()); data->set_metadata(data_->metadata_string()); Tensor tensor(DT_VARIANT, TensorShape({})); tensor.scalar<Variant>()() = std::move(compressed_tensors); *data->add_tensors() = std::move(tensor); } bool IteratorStateVariant::Decode(VariantTensorData data) { if (data.type_name() != TypeName()) { return false; } const CompressedElement* compressed = GetCompressedElement(data); if (!compressed) { data_ = std::make_unique<VariantTensorData>(std::move(data)); return true; } std::vector<Tensor> tensors; Status s = UncompressElement(*compressed, &tensors); if (!s.ok()) { LOG(WARNING) << "Failed to uncompress iterator state variant: " << s; data_ = std::make_unique<VariantTensorData>(std::move(data)); return true; } data_ = std::make_unique<VariantTensorData>(); data_->set_type_name(TypeName()); data_->set_metadata(std::move(data.metadata_string())); for (auto& tensor : tensors) { *data_->add_tensors() = std::move(tensor); } return true; } const CompressedElement* IteratorStateVariant::GetCompressedElement( const VariantTensorData& data) { bool should_uncompress = data.tensors_size() == 1 && TensorShapeUtils::IsScalar(data.tensors(0).shape()) && data.tensors(0).dtype() == DT_VARIANT; if (!should_uncompress) { return nullptr; } const Variant& variant = data.tensors(0).scalar<Variant>()(); return variant.get<CompressedElement>(); } std::string IteratorStateVariant::DebugString() const { if (data_) { return strings::StrCat("IteratorStateVariant<", data_->DebugString(), ">"); } else { return strings::StrCat("IteratorStateVariant<empty>"); } } REGISTER_UNARY_VARIANT_DECODE_FUNCTION(IteratorStateVariant, kIteratorVariantTypeName); Status AsGraphDefForRewrite(OpKernelContext* ctx, const DatasetBase* input, std::vector<std::pair<string, Tensor>>* input_list, GraphDef* result, string* dataset_node) { SerializationContext::Params params(ctx); params.input_list = input_list; params.external_state_policy = ExternalStatePolicy::POLICY_IGNORE; params.is_graph_rewrite = true; SerializationContext serialization_ctx(params); TF_RETURN_IF_ERROR(AsGraphDef(input, std::move(serialization_ctx), result)); for (const auto& node : result->node()) { if (node.op() == kRetvalOp) { *dataset_node = node.input(0); } } return absl::OkStatus(); } Status AsGraphDef(const DatasetBase* dataset, SerializationContext&& serialization_ctx, GraphDef* graph_def) { if (serialization_ctx.external_state_policy() == ExternalStatePolicy::POLICY_FAIL) { TF_RETURN_IF_ERROR(dataset->CheckExternalState()); } if (serialization_ctx.external_state_policy() == ExternalStatePolicy::POLICY_WARN) { std::vector<string> stateful_op_names; TF_RETURN_IF_ERROR(FindStatefulOps(*graph_def, &stateful_op_names)); if (!stateful_op_names.empty()) { LOG(WARNING) << "We found the following stateful ops in the dataset " "construction graph whose state would not be " "serialized and might " "cause subtle bugs: " << absl::StrJoin(stateful_op_names, ", "); } } GraphDefBuilder b; DatasetBase::DatasetGraphDefBuilder db(&b); Node* output_node = nullptr; TF_RETURN_IF_ERROR( db.AddInputDataset(&serialization_ctx, dataset, &output_node)); ops::UnaryOp(std::string(kRetvalOp), output_node, b.opts() .WithName("dataset") .WithAttr("T", DT_VARIANT) .WithAttr("index", 0)); TF_RETURN_IF_ERROR(b.ToGraphDef(graph_def)); return absl::OkStatus(); } absl::StatusOr<absl::flat_hash_map<std::string, int64_t>> CheckpointStats( const std::string& checkpoint_bytes) { TensorProto proto; if (!ParseProtoUnlimited(&proto, checkpoint_bytes)) { return absl::InvalidArgumentError( "Failed to parse checkpoint bytes into proto."); } Tensor t; if (!t.FromProto(proto)) { return absl::InvalidArgumentError( "Failed to parse checkpoint tensor from proto."); } auto variant = t.scalar<Variant>()(); auto* w = variant.get<IteratorStateVariant>(); if (!w) { return absl::InvalidArgumentError( "Failed to access IteratorStateVariant inside checkpoint tensor"); } const VariantTensorData* data = w->GetData(); auto reader = std::make_unique<VariantTensorDataReader>( std::vector<const VariantTensorData*>{data}); absl::flat_hash_map<std::string, int64_t> stats; for (const auto& [key, tensor] : reader->ReadAllTensors()) { stats[key] = tensor.TotalBytes(); } return stats; } } }
#include "tensorflow/core/data/serialization_utils.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/test_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/work_sharder.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace { string full_name(string key) { return FullName("Iterator:", key); } TEST(SerializationUtilsTest, CheckpointElementsRoundTrip) { std::vector<std::vector<Tensor>> elements; elements.push_back(CreateTensors<int32>(TensorShape({3}), {{1, 2, 3}})); elements.push_back(CreateTensors<int32>(TensorShape({2}), {{4, 5}})); VariantTensorDataWriter writer; tstring test_prefix = full_name("test_prefix"); TF_ASSERT_OK(WriteElementsToCheckpoint(&writer, test_prefix, elements)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); std::vector<std::vector<Tensor>> read_elements; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TestContext> ctx, TestContext::Create()); TF_ASSERT_OK(ReadElementsFromCheckpoint(ctx->iter_ctx(), &reader, test_prefix, &read_elements)); ASSERT_EQ(elements.size(), read_elements.size()); for (int i = 0; i < elements.size(); ++i) { std::vector<Tensor>& original = elements[i]; std::vector<Tensor>& read = read_elements[i]; ASSERT_EQ(original.size(), read.size()); for (int j = 0; j < original.size(); ++j) { EXPECT_EQ(original[j].NumElements(), read[j].NumElements()); EXPECT_EQ(original[j].flat<int32>()(0), read[j].flat<int32>()(0)); } } } TEST(SerializationUtilsTest, VariantTensorDataRoundtrip) { VariantTensorDataWriter writer; TF_ASSERT_OK(writer.WriteScalar(full_name("Int64"), 24)); Tensor input_tensor(DT_FLOAT, {1}); input_tensor.flat<float>()(0) = 2.0f; TF_ASSERT_OK(writer.WriteTensor(full_name("Tensor"), input_tensor)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); int64_t val_int64; TF_ASSERT_OK(reader.ReadScalar(full_name("Int64"), &val_int64)); EXPECT_EQ(val_int64, 24); Tensor val_tensor; TF_ASSERT_OK(reader.ReadTensor(full_name("Tensor"), &val_tensor)); EXPECT_EQ(input_tensor.NumElements(), val_tensor.NumElements()); EXPECT_EQ(input_tensor.flat<float>()(0), val_tensor.flat<float>()(0)); } TEST(SerializationUtilsTest, VariantTensorDataNonExistentKey) { VariantTensorData data; strings::StrAppend(&data.metadata_, "key1", "@@"); data.tensors_.push_back(Tensor(DT_INT64, {1})); std::vector<const VariantTensorData*> reader_data; reader_data.push_back(&data); VariantTensorDataReader reader(reader_data); int64_t val_int64; tstring val_string; Tensor val_tensor; EXPECT_EQ(error::NOT_FOUND, reader.ReadScalar(full_name("NonExistentKey"), &val_int64).code()); EXPECT_EQ(error::NOT_FOUND, reader.ReadScalar(full_name("NonExistentKey"), &val_string).code()); EXPECT_EQ(error::NOT_FOUND, reader.ReadTensor(full_name("NonExistentKey"), &val_tensor).code()); } TEST(SerializationUtilsTest, VariantTensorDataRoundtripIteratorName) { VariantTensorDataWriter writer; TF_ASSERT_OK(writer.WriteScalar("Iterator", "Int64", 24)); Tensor input_tensor(DT_FLOAT, {1}); input_tensor.flat<float>()(0) = 2.0f; TF_ASSERT_OK(writer.WriteTensor("Iterator", "Tensor", input_tensor)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); int64_t val_int64; TF_ASSERT_OK(reader.ReadScalar("Iterator", "Int64", &val_int64)); EXPECT_EQ(val_int64, 24); Tensor val_tensor; TF_ASSERT_OK(reader.ReadTensor("Iterator", "Tensor", &val_tensor)); EXPECT_EQ(input_tensor.NumElements(), val_tensor.NumElements()); EXPECT_EQ(input_tensor.flat<float>()(0), val_tensor.flat<float>()(0)); } TEST(SerializationUtilsTest, VariantTensorDataNonExistentKeyIteratorName) { VariantTensorData data; strings::StrAppend(&data.metadata_, "key1", "@@"); data.tensors_.push_back(Tensor(DT_INT64, {1})); std::vector<const VariantTensorData*> reader_data; reader_data.push_back(&data); VariantTensorDataReader reader(reader_data); int64_t val_int64; tstring val_string; Tensor val_tensor; EXPECT_EQ(error::NOT_FOUND, reader.ReadScalar("Iterator", "NonExistentKey", &val_int64).code()); EXPECT_EQ( error::NOT_FOUND, reader.ReadScalar("Iterator", "NonExistentKey", &val_string).code()); EXPECT_EQ( error::NOT_FOUND, reader.ReadTensor("Iterator", "NonExistentKey", &val_tensor).code()); } TEST(SerializationUtilsTest, VariantTensorDataWriteAfterFlushing) { VariantTensorDataWriter writer; TF_ASSERT_OK(writer.WriteScalar(full_name("Int64"), 24)); std::vector<const VariantTensorData*> data; writer.GetData(&data); Tensor input_tensor(DT_FLOAT, {1}); input_tensor.flat<float>()(0) = 2.0f; EXPECT_EQ(error::FAILED_PRECONDITION, writer.WriteTensor(full_name("Tensor"), input_tensor).code()); } class ParameterizedIteratorStateVariantTest : public DatasetOpsTestBase, public ::testing::WithParamInterface<std::vector<Tensor>> { protected: VariantTensorData GetVariantTensorData() const { std::vector<Tensor> tensors = GetParam(); VariantTensorData data; data.set_type_name(IteratorStateVariant::TypeName()); for (Tensor& tensor : tensors) { *data.add_tensors() = std::move(tensor); } return data; } absl::StatusOr<VariantTensorData> EncodeAndDecode( const VariantTensorData& data) const { IteratorStateVariant encoder; TF_RETURN_IF_ERROR(encoder.InitializeFromVariantData( std::make_unique<VariantTensorData>(data))); VariantTensorData encoded_data; encoder.Encode(&encoded_data); IteratorStateVariant decoder; decoder.Decode(encoded_data); return *decoder.GetData(); } absl::StatusOr<VariantTensorData> DecodeUncompressed( const VariantTensorData& data) const { IteratorStateVariant decoder; decoder.Decode(data); return *decoder.GetData(); } }; class ParemeterizedCheckpointIndicesTest : public DatasetOpsTestBase, public ::testing::WithParamInterface<absl::flat_hash_set<int64_t>> { protected: absl::flat_hash_set<int64_t> GetCheckpointIndices() const { absl::flat_hash_set<int64_t> checkpoint_indices = GetParam(); return checkpoint_indices; } }; std::vector<std::vector<Tensor>> TestCases() { return { CreateTensors<int64_t>(TensorShape{1}, {{1}}), CreateTensors<int64_t>(TensorShape{1}, {{1}, {2}}), CreateTensors<tstring>(TensorShape{1}, {{"a"}, {"b"}}), {CreateTensor<tstring>(TensorShape{1}, {"a"}), CreateTensor<int64_t>(TensorShape{1}, {1})}, {}, {CreateTensor<int64_t>(TensorShape{128, 128}), CreateTensor<int64_t>(TensorShape{64, 2})}, }; } std::vector<absl::flat_hash_set<int64_t>> CheckpointIndicesTestCases() { return { {}, { 0}, { 0, 1}, { 0, 1, 2}, { 1, 3, 4}, { 1, 2, 3, 4}, { 0, 1, 2, 3, 4}, }; } TEST_P(ParameterizedIteratorStateVariantTest, EncodeAndDecode) { VariantTensorData data = GetVariantTensorData(); TF_ASSERT_OK_AND_ASSIGN(VariantTensorData result, EncodeAndDecode(data)); EXPECT_EQ(result.type_name(), data.type_name()); for (int i = 0; i < result.tensors_size(); ++i) { test::ExpectEqual(result.tensors(i), data.tensors(i)); } } TEST_P(ParameterizedIteratorStateVariantTest, DecodeUncompressed) { VariantTensorData data = GetVariantTensorData(); TF_ASSERT_OK_AND_ASSIGN(VariantTensorData result, DecodeUncompressed(data)); EXPECT_EQ(result.type_name(), data.type_name()); for (int i = 0; i < result.tensors_size(); ++i) { test::ExpectEqual(result.tensors(i), data.tensors(i)); } } TEST_P(ParemeterizedCheckpointIndicesTest, CheckpointElementsRoundTripUsingIndices) { std::vector<std::vector<Tensor>> elements; elements.push_back(CreateTensors<int32>(TensorShape({3}), {{1, 2, 3}})); elements.push_back(CreateTensors<int32>(TensorShape({2}), {{4, 5}})); elements.push_back( CreateTensors<int32>(TensorShape({5}), {{6, 7, 8, 9, 10}})); elements.push_back( CreateTensors<int32>(TensorShape({4}), {{11, 12, 13, 14}})); elements.push_back(CreateTensors<int32>(TensorShape({2}), {{15, 16}})); VariantTensorDataWriter writer; tstring test_prefix = full_name("test_prefix"); absl::flat_hash_set<int64_t> checkpoint_indices_write = {0, 1, 2, 3, 4}; TF_ASSERT_OK(WriteElementsToCheckpoint(&writer, test_prefix, elements)); for (auto index : GetCheckpointIndices()) { elements.at(index) = CreateTensors<int32>(TensorShape({1}), {{1}}); } TF_ASSERT_OK(UpdateCheckpointElements(&writer, test_prefix, elements, GetCheckpointIndices())); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); std::vector<std::vector<Tensor>> read_elements; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TestContext> ctx, TestContext::Create()); TF_ASSERT_OK(ReadElementsFromCheckpoint(ctx->iter_ctx(), &reader, test_prefix, &read_elements)); ASSERT_EQ(elements.size(), read_elements.size()); for (int index = 0; index < elements.size(); ++index) { std::vector<Tensor>& original = elements[index]; std::vector<Tensor>& read = read_elements[index]; ASSERT_EQ(original.size(), read.size()); for (int j = 0; j < original.size(); ++j) { EXPECT_EQ(original[j].NumElements(), read[j].NumElements()); EXPECT_EQ(original[j].flat<int32>()(0), read[j].flat<int32>()(0)); } } } INSTANTIATE_TEST_SUITE_P(Instantiation, ParameterizedIteratorStateVariantTest, ::testing::ValuesIn(TestCases())); INSTANTIATE_TEST_SUITE_P(Instantiation, ParemeterizedCheckpointIndicesTest, ::testing::ValuesIn(CheckpointIndicesTestCases())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/serialization_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/serialization_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3867fb7c-4631-4b9d-84a9-d1c6629febeb
cpp
tensorflow/tensorflow
rewrite_utils
tensorflow/core/data/rewrite_utils.cc
tensorflow/core/data/rewrite_utils_test.cc
#include "tensorflow/core/data/rewrite_utils.h" #include "tensorflow/core/platform/refcount.h" #if !defined(IS_MOBILE_PLATFORM) #include <algorithm> #include <functional> #include <map> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/hash_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/grappler_item_builder.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/optimizers/meta_optimizer.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/proto_serialization.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/device_properties.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace data { namespace { constexpr char kOptimizerName[] = "tf_data_meta_optimizer"; constexpr char kOptimizers[] = "optimizers"; constexpr char kOptimizerConfigs[] = "optimizer_configs"; void AddFakeSinks(FunctionDef* function_def) { int counter = 0; for (const auto& output : function_def->signature().output_arg()) { NodeDef* node = function_def->add_node_def(); tensorflow::grappler::function_utils::SetUniqueFunctionNodeName( strings::StrCat("FakeSink", counter++), function_def, node); node->set_op("Identity"); node->add_input(function_def->ret().at(output.name())); (*node->mutable_attr())["T"].set_type(output.type()); (*function_def->mutable_ret())[output.name()] = strings::StrCat(node->name(), ":output:0"); } } void RemoveFakeSinks(FunctionDef* function_def) { std::map<std::string, std::string> identity_map; for (const auto& node : function_def->node_def()) { if (node.op() == "Identity" && node.input_size() == 1) { identity_map[node.name()] = node.input(0); } } for (const auto& output_arg : function_def->signature().output_arg()) { const std::string& tensor = function_def->ret().at(output_arg.name()); const std::string& output_node = tensor.substr(0, tensor.find(':')); if (identity_map.find(output_node) != identity_map.end()) { (*function_def->mutable_ret())[output_arg.name()] = identity_map.at(output_node); } } } Status ApplyRewrites(OpKernelContext* ctx, const std::function<RewriterConfig(void)> config_factory, GraphDef* graph_def, string* dataset_node) { std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = GetGrapplerItem(graph_def, dataset_node, true); std::unordered_map<std::string, tensorflow::DeviceProperties> device_map; tensorflow::grappler::VirtualCluster cluster(device_map); tensorflow::ConfigProto config; *config.mutable_graph_options()->mutable_rewrite_options() = config_factory(); TF_RETURN_IF_ERROR(tensorflow::grappler::RunMetaOptimizer( std::move(*grappler_item), config, ctx->device(), &cluster, graph_def)); for (auto& function_def : *graph_def->mutable_library()->mutable_function()) { RemoveFakeSinks(&function_def); } return absl::OkStatus(); } } RewriterConfig CreateRewriterConfig( const absl::flat_hash_set<tstring>& optimizations, const absl::flat_hash_set<tstring>& optimizations_configs) { RewriterConfig rewriter_config; rewriter_config.add_optimizers(kOptimizerName); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::ONE); rewriter_config.set_fail_on_optimizer_errors(true); auto custom_optimizer = rewriter_config.add_custom_optimizers(); custom_optimizer->set_name(kOptimizerName); auto* custom_optimizations_list = (*custom_optimizer->mutable_parameter_map())[kOptimizers].mutable_list(); const auto& registered_optimizers = grappler::CustomGraphOptimizerRegistry::GetRegisteredOptimizers(); for (const auto& optimization : optimizations) { if (std::find(registered_optimizers.begin(), registered_optimizers.end(), optimization) != registered_optimizers.end()) { custom_optimizations_list->add_s(optimization.data(), optimization.size()); } else { VLOG(1) << "Optimization " << optimization << " is not registered."; } } auto* config_list = (*custom_optimizer->mutable_parameter_map())[kOptimizerConfigs] .mutable_list(); for (const auto& config : optimizations_configs) { config_list->add_s(config.data(), config.size()); } return rewriter_config; } Status RewriteDataset(OpKernelContext* ctx, const DatasetBase* input, std::function<RewriterConfig(void)> config_factory, bool record_fingerprint, core::RefCountPtr<DatasetBase>* rewritten_input) { std::vector<std::pair<string, Tensor>> input_list; GraphDef graph_def; string output_node; TF_RETURN_IF_ERROR( AsGraphDefForRewrite(ctx, input, &input_list, &graph_def, &output_node)); VLOG(3) << "Before graph rewrites: " << graph_def.DebugString(); TF_RETURN_IF_ERROR( ApplyRewrites(ctx, config_factory, &graph_def, &output_node)); VLOG(3) << "After graph rewrites: " << graph_def.DebugString(); FunctionLibraryRuntime* flr = nullptr; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr = nullptr; std::unique_ptr<FunctionLibraryDefinition> lib_def = nullptr; TF_RETURN_IF_ERROR( ctx->function_library()->Clone(&lib_def, &pflr, &flr, true)); TF_RETURN_IF_ERROR(AddToFunctionLibrary(lib_def.get(), graph_def.library())); Graph graph(OpRegistry::Global()); TF_RETURN_IF_ERROR(ImportGraphDef({}, graph_def, &graph, nullptr)); std::vector<Tensor> outputs; GraphRunner graph_runner(flr->device()); TF_RETURN_IF_ERROR( graph_runner.Run(&graph, flr, input_list, {output_node}, &outputs)); DatasetBase* rewritten_dataset; TF_RETURN_IF_ERROR( GetDatasetFromVariantTensor(outputs[0], &rewritten_dataset)); rewritten_dataset->Ref(); rewritten_input->reset(rewritten_dataset); if (record_fingerprint) { (*ctx->runner())([graph_def = std::move(graph_def), lib_def = lib_def.release(), input_list = std::move(input_list), output_node = std::move(output_node)]() { std::unique_ptr<FunctionLibraryDefinition> lib_def_owner(lib_def); const NodeDef* node_def = nullptr; for (const auto& node : graph_def.node()) { if (node.name() == output_node) { node_def = &node; break; } } if (node_def == nullptr) { VLOG(3) << "Failed to find node: " << output_node; return; } uint64 hash = 0; Status s = HashNode(graph_def, *node_def, *lib_def, &hash); if (!s.ok()) { VLOG(3) << "Failed to hash graph: " << s; return; } for (const auto& pair : input_list) { hash = Hash64CombineUnordered(hash, Hash64(pair.first)); uint64 tensor_hash = 0; Status s = HashTensor(pair.second, &tensor_hash); if (s.ok()) { hash = Hash64CombineUnordered(hash, tensor_hash); } else { VLOG(3) << "Failed to hash tensor: " << s; } } string graph_hash = strings::StrCat(strings::Hex(hash, strings::kZeroPad16)); metrics::RecordTFDataFingerprint(graph_hash); }); } return absl::OkStatus(); } std::unique_ptr<tensorflow::grappler::GrapplerItem> GetGrapplerItem( GraphDef* graph_def, std::string* dataset_node, bool add_fake_sinks, bool apply_optimizations) { NodeDef* node = graph_def->mutable_node()->Add(); tensorflow::grappler::graph_utils::SetUniqueGraphNodeName("Sink", graph_def, node); node->set_op("Identity"); node->add_input(*dataset_node); (*node->mutable_attr())["T"].set_type(DT_VARIANT); *dataset_node = node->name(); if (add_fake_sinks) { for (auto& function_def : *graph_def->mutable_library()->mutable_function()) { AddFakeSinks(&function_def); } } MetaGraphDef meta_graph_def; (*meta_graph_def.mutable_graph_def()) = *graph_def; CollectionDef collection_def; auto node_list = collection_def.mutable_node_list(); node_list->add_value(*dataset_node); (*meta_graph_def.mutable_collection_def())["train_op"] = collection_def; tensorflow::grappler::ItemConfig item_config; item_config.apply_optimizations = apply_optimizations; std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = tensorflow::grappler::GrapplerItemFromMetaGraphDef( "graph", meta_graph_def, item_config); grappler_item->optimization_options().optimize_function_library = false; return grappler_item; } absl::flat_hash_set<tstring> SelectOptimizations( const absl::flat_hash_set<string>& experiments, const absl::flat_hash_set<tstring>& optimizations_enabled, const absl::flat_hash_set<tstring>& optimizations_disabled, const absl::flat_hash_set<tstring>& optimizations_default) { absl::flat_hash_set<tstring> optimizations; optimizations.insert(optimizations_enabled.begin(), optimizations_enabled.end()); for (const auto& optimization : optimizations_default) { if (!optimizations_disabled.contains(optimization)) { optimizations.insert(optimization); } } const auto& registered_optimizers = grappler::CustomGraphOptimizerRegistry::GetRegisteredOptimizers(); for (const auto& experiment : experiments) { if (std::find(registered_optimizers.begin(), registered_optimizers.end(), experiment) != registered_optimizers.end() && !optimizations_disabled.contains(experiment)) { optimizations.insert(experiment); } } return optimizations; } absl::StatusOr<std::string> GetDatasetNode(const GraphDef& graph_def) { for (const auto& node : graph_def.node()) { if (node.op() == kRetvalOp) { return node.input(0); } } return errors::NotFound( absl::Substitute("Dataset node for graph is not found:\n$0", graph_def.ShortDebugString())); } absl::StatusOr<NodeDef> GetDatasetNodeDef(const GraphDef& graph_def) { TF_ASSIGN_OR_RETURN(std::string dataset_node_name, GetDatasetNode(graph_def)); for (const auto& node : graph_def.node()) { if (node.name() == dataset_node_name) { return node; } } return errors::NotFound( absl::Substitute("Dataset node for graph is not found:\n$0", graph_def.ShortDebugString())); } } } #endif
#include "tensorflow/core/data/rewrite_utils.h" #include <memory> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::test::AsScalar; using ::tensorflow::test::function::GDef; using ::tensorflow::test::function::NDef; using ::testing::ElementsAre; NodeDef GetMapNode(absl::string_view name, absl::string_view input_node_name, absl::string_view function_name) { return NDef( name, "MapDataset", {std::string(input_node_name)}, {{"f", FunctionDefHelper::FunctionRef(std::string(function_name))}, {"Targuments", {}}, {"output_shapes", absl::Span<const TensorShape>{TensorShape()}}, {"output_types", absl::Span<const DataType>{DT_INT64}}}); } FunctionDef XTimesX() { return FunctionDefHelper::Create( "XTimesX", {"x: int64"}, {"y: int64"}, {}, {{{"y"}, "Mul", {"x", "x"}, {{"T", DT_INT64}}}}, {{"y", "y:z:0"}}); } GraphDef GetRangeSquareDatasetDef(const int64_t range) { return GDef( {NDef("start", "Const", {}, {{"value", AsScalar<int64_t>(0)}, {"dtype", DT_INT64}}), NDef("stop", "Const", {}, {{"value", AsScalar<int64_t>(range)}, {"dtype", DT_INT64}}), NDef("step", "Const", {}, {{"value", AsScalar<int64_t>(1)}, {"dtype", DT_INT64}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{TensorShape()}}, {"output_types", absl::Span<const DataType>{DT_INT64}}}), GetMapNode("map", "range", "XTimesX"), NDef("dataset", "_Retval", {"map"}, {{"T", DT_VARIANT}, {"index", 0}})}, {XTimesX()}); } TEST(GraphUtilTest, GetFetchNode) { GraphDef graph = GetRangeSquareDatasetDef(10); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_node, GetDatasetNode(graph)); std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = GetGrapplerItem(&graph, &dataset_node, false); EXPECT_THAT(grappler_item->fetch, ElementsAre("Sink")); } TEST(GraphUtilTest, GetFetchNodeDef) { GraphDef graph = GetRangeSquareDatasetDef(10); TF_ASSERT_OK_AND_ASSIGN(NodeDef dataset_nodedef, GetDatasetNodeDef(graph)); std::string dataset_node = dataset_nodedef.name(); std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = GetGrapplerItem(&graph, &dataset_node, false); EXPECT_THAT(grappler_item->fetch, ElementsAre("Sink")); } struct SelectOptimizationsTestCase { absl::flat_hash_set<string> experiments; absl::flat_hash_set<tstring> optimizations_enabled; absl::flat_hash_set<tstring> optimizations_disabled; absl::flat_hash_set<tstring> optimizations_default; std::vector<string> expected; }; class SelectOptimizationsTest : public ::testing::TestWithParam<SelectOptimizationsTestCase> {}; TEST_P(SelectOptimizationsTest, DatasetUtils) { const SelectOptimizationsTestCase test_case = GetParam(); auto optimizations = SelectOptimizations( test_case.experiments, test_case.optimizations_enabled, test_case.optimizations_disabled, test_case.optimizations_default); EXPECT_THAT(std::vector<string>(optimizations.begin(), optimizations.end()), ::testing::UnorderedElementsAreArray(test_case.expected)); } INSTANTIATE_TEST_SUITE_P( Test, SelectOptimizationsTest, ::testing::Values( SelectOptimizationsTestCase{ {}, {}, {}, {}, {}}, SelectOptimizationsTestCase{ {"map_and_batch_fusion"}, {"bar"}, {}, {"baz"}, {"map_and_batch_fusion", "bar", "baz"}}, SelectOptimizationsTestCase{ {"this_is_not_an_optimization"}, {"bar"}, {}, {"baz"}, {"bar", "baz"}}, SelectOptimizationsTestCase{{}, {"foo"}, {"baz"}, {"bar", "baz"}, {"foo", "bar"}}, SelectOptimizationsTestCase{ {"foo"}, {"bar"}, {"foo"}, {"baz"}, {"bar", "baz"}})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/rewrite_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/rewrite_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
16f36227-4093-4bab-99de-c06d8b586284
cpp
tensorflow/tensorflow
compression_utils
tensorflow/core/data/compression_utils.cc
tensorflow/core/data/compression_utils_test.cc
#include "tensorflow/core/data/compression_utils.h" #include <limits> #include <string> #include <vector> #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/snappy.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { namespace { constexpr int kCompressedElementVersion = 0; } class Iov { public: explicit Iov(size_t size) : iov_(size), idx_(0), num_bytes_(0) {} void Add(void* base, size_t len) { iov_[idx_].iov_base = base; iov_[idx_].iov_len = len; num_bytes_ += len; ++idx_; } iovec* Data() { return iov_.data(); } size_t NumBytes() const { return num_bytes_; } size_t NumPieces() const { return iov_.size(); } private: std::vector<struct iovec> iov_; size_t idx_; size_t num_bytes_; }; Status CompressElement(const std::vector<Tensor>& element, CompressedElement* out) { size_t num_string_tensors = 0; size_t num_string_tensor_strings = 0; std::vector<TensorProto> nonmemcpyable_components; size_t total_nonmemcpyable_size = 0; for (const auto& component : element) { if (component.dtype() == DT_STRING) { ++num_string_tensors; num_string_tensor_strings += component.NumElements(); } else if (!DataTypeCanUseMemcpy(component.dtype())) { nonmemcpyable_components.emplace_back(); component.AsProtoTensorContent(&nonmemcpyable_components.back()); total_nonmemcpyable_size += nonmemcpyable_components.back().ByteSizeLong(); } } Iov iov{element.size() + num_string_tensor_strings - num_string_tensors}; tstring nonmemcpyable; nonmemcpyable.resize_uninitialized(total_nonmemcpyable_size); char* nonmemcpyable_pos = nonmemcpyable.mdata(); int nonmemcpyable_component_index = 0; for (int i = 0; i < element.size(); ++i) { const auto& component = element[i]; CompressedComponentMetadata* metadata = out->mutable_component_metadata()->Add(); metadata->set_dtype(component.dtype()); component.shape().AsProto(metadata->mutable_tensor_shape()); if (DataTypeCanUseMemcpy(component.dtype())) { const TensorBuffer* buffer = DMAHelper::buffer(&component); if (buffer) { iov.Add(buffer->data(), buffer->size()); metadata->add_uncompressed_bytes(buffer->size()); } } else if (component.dtype() == DT_STRING) { const auto& flats = component.unaligned_flat<tstring>(); for (int i = 0; i < flats.size(); ++i) { iov.Add(const_cast<char*>(flats.data()[i].data()), flats.data()[i].size()); metadata->add_uncompressed_bytes(flats.data()[i].size()); } } else { TensorProto& proto = nonmemcpyable_components[nonmemcpyable_component_index++]; proto.SerializeToArray(nonmemcpyable_pos, proto.ByteSizeLong()); iov.Add(nonmemcpyable_pos, proto.ByteSizeLong()); nonmemcpyable_pos += proto.ByteSizeLong(); metadata->add_uncompressed_bytes(proto.ByteSizeLong()); } } if (iov.NumBytes() > kuint32max) { return errors::OutOfRange("Encountered dataset element of size ", iov.NumBytes(), ", exceeding the 4GB Snappy limit."); } if (!port::Snappy_CompressFromIOVec(iov.Data(), iov.NumBytes(), out->mutable_data())) { return errors::Internal("Failed to compress using snappy."); } out->set_version(kCompressedElementVersion); VLOG(3) << "Compressed element from " << iov.NumBytes() << " bytes to " << out->data().size() << " bytes"; return absl::OkStatus(); } Status UncompressElement(const CompressedElement& compressed, std::vector<Tensor>* out) { if (compressed.version() != kCompressedElementVersion) { return errors::Internal("Unsupported compressed element version: ", compressed.version()); } int num_components = compressed.component_metadata_size(); out->clear(); out->reserve(num_components); size_t num_string_tensors = 0; size_t num_string_tensor_strings = 0; size_t total_nonmemcpyable_size = 0; for (const auto& metadata : compressed.component_metadata()) { if (metadata.dtype() == DT_STRING) { ++num_string_tensors; num_string_tensor_strings += metadata.uncompressed_bytes_size(); } else if (!DataTypeCanUseMemcpy(metadata.dtype())) { total_nonmemcpyable_size += metadata.uncompressed_bytes(0); } } Iov iov{num_components + num_string_tensor_strings - num_string_tensors}; tstring nonmemcpyable; nonmemcpyable.resize_uninitialized(total_nonmemcpyable_size); char* nonmemcpyable_pos = nonmemcpyable.mdata(); for (const auto& metadata : compressed.component_metadata()) { if (DataTypeCanUseMemcpy(metadata.dtype())) { out->emplace_back(metadata.dtype(), metadata.tensor_shape()); TensorBuffer* buffer = DMAHelper::buffer(&out->back()); if (buffer) { iov.Add(buffer->data(), metadata.uncompressed_bytes(0)); } } else if (metadata.dtype() == DT_STRING) { out->emplace_back(metadata.dtype(), metadata.tensor_shape()); const auto& flats = out->back().unaligned_flat<tstring>(); for (int i = 0; i < metadata.uncompressed_bytes_size(); ++i) { flats.data()[i].resize(metadata.uncompressed_bytes(i)); iov.Add(flats.data()[i].mdata(), metadata.uncompressed_bytes(i)); } } else { out->emplace_back(); iov.Add(nonmemcpyable_pos, metadata.uncompressed_bytes(0)); nonmemcpyable_pos += metadata.uncompressed_bytes(0); } } const std::string& compressed_data = compressed.data(); size_t uncompressed_size; if (!port::Snappy_GetUncompressedLength( compressed_data.data(), compressed_data.size(), &uncompressed_size)) { return errors::Internal( "Could not get snappy uncompressed length. Compressed data size: ", compressed_data.size()); } if (uncompressed_size != static_cast<size_t>(iov.NumBytes())) { return errors::Internal( "Uncompressed size mismatch. Snappy expects ", uncompressed_size, " whereas the tensor metadata suggests ", iov.NumBytes()); } if (!port::Snappy_UncompressToIOVec(compressed_data.data(), compressed_data.size(), iov.Data(), iov.NumPieces())) { return errors::Internal("Failed to perform snappy decompression."); } nonmemcpyable_pos = nonmemcpyable.mdata(); for (int i = 0; i < num_components; ++i) { const CompressedComponentMetadata& metadata = compressed.component_metadata(i); if (!DataTypeCanUseMemcpy(metadata.dtype()) && metadata.dtype() != DT_STRING) { TensorProto tp; if (!tp.ParseFromString( {nonmemcpyable_pos, static_cast<size_t>(metadata.uncompressed_bytes(0))})) { return errors::Internal("Could not parse TensorProto"); } if (!out->at(i).FromProto(tp)) { return errors::Internal("Could not parse Tensor"); } nonmemcpyable_pos += metadata.uncompressed_bytes(0); } } return absl::OkStatus(); } REGISTER_UNARY_VARIANT_DECODE_FUNCTION(CompressedElement, "tensorflow.data.CompressedElement"); } }
#include "tensorflow/core/data/compression_utils.h" #include <string> #include <vector> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(CompressionUtilsTest, Exceeds4GB) { std::vector<Tensor> element = { CreateTensor<int64_t>(TensorShape{1024, 1024, 513})}; CompressedElement compressed; EXPECT_THAT(CompressElement(element, &compressed), StatusIs(error::OUT_OF_RANGE, HasSubstr("exceeding the 4GB Snappy limit"))); } std::vector<std::vector<Tensor>> TestCases() { return { CreateTensors<int64_t>(TensorShape{1}, {{1}}), CreateTensors<int64_t>(TensorShape{1}, {{1}, {2}}), CreateTensors<tstring>(TensorShape{1}, {{"a"}, {"b"}}), {CreateTensor<tstring>(TensorShape{1, 2}, {"abc", "xyz"}), CreateTensor<tstring>(TensorShape{2, 1}, {"ijk", "mnk"})}, {CreateTensor<tstring>(TensorShape{1}, {"a"}), CreateTensor<int64_t>(TensorShape{1}, {1})}, {}, {CreateTensor<int64_t>(TensorShape{1, 0})}, {CreateTensor<int64_t>(TensorShape{128, 128}), CreateTensor<int64_t>(TensorShape{64, 2})}, { DatasetOpsTestBase::CreateTestVariantTensor( {CreateTensor<int64_t>(TensorShape{3, 1}, {1, 2, 3}), CreateTensor<tstring>(TensorShape{}, {"abc"})}), DatasetOpsTestBase::CreateTestVariantTensor( {CreateTensor<int64_t>(TensorShape{3, 1}, {10, 11, 12}), CreateTensor<tstring>(TensorShape{}, {"xyz"})}), }, }; } class ParameterizedCompressionUtilsTest : public DatasetOpsTestBase, public ::testing::WithParamInterface<std::vector<Tensor>> {}; TEST_P(ParameterizedCompressionUtilsTest, RoundTrip) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); std::vector<Tensor> round_trip_element; TF_ASSERT_OK(UncompressElement(compressed, &round_trip_element)); TF_EXPECT_OK( ExpectEqual(element, round_trip_element, true)); } TEST_P(ParameterizedCompressionUtilsTest, CompressedElementVersion) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); EXPECT_EQ(0, compressed.version()); } TEST_P(ParameterizedCompressionUtilsTest, VersionMismatch) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); compressed.set_version(1); std::vector<Tensor> round_trip_element; EXPECT_THAT(UncompressElement(compressed, &round_trip_element), StatusIs(error::INTERNAL)); } INSTANTIATE_TEST_SUITE_P(Instantiation, ParameterizedCompressionUtilsTest, ::testing::ValuesIn(TestCases())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/compression_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/compression_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce3f8a43-50fd-4413-8f1e-68a60566350c
cpp
tensorflow/tensorflow
name_utils
tensorflow/compiler/mlir/utils/name_utils.cc
tensorflow/core/data/name_utils_test.cc
#include "tensorflow/compiler/mlir/utils/name_utils.h" #include <cctype> #include <string> #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/Location.h" #include "mlir/Support/LLVM.h" namespace mlir { namespace { bool IsLegalChar(char c, bool first_char) { if (isalpha(c)) return true; if (isdigit(c)) return true; if (c == '.') return true; if (c == '_') return true; if (first_char) return false; if (c == '/') return true; if (c == '-') return true; return false; } } void LegalizeNodeName(std::string& name) { if (name.empty()) return; if (!IsLegalChar(name[0], true)) name[0] = '.'; for (char& c : llvm::drop_begin(name, 1)) if (!IsLegalChar(c, false)) c = '.'; } std::string GetNameFromLoc(Location loc) { llvm::SmallVector<llvm::StringRef, 8> loc_names; llvm::SmallVector<Location, 8> locs; locs.push_back(loc); bool names_is_nonempty = false; while (!locs.empty()) { Location curr_loc = locs.pop_back_val(); if (auto name_loc = mlir::dyn_cast<NameLoc>(curr_loc)) { auto name = name_loc.getName().strref().split('@').first; if (!name.ends_with(":")) { loc_names.push_back(name); if (!name.empty()) names_is_nonempty = true; } continue; } else if (auto call_loc = mlir::dyn_cast<CallSiteLoc>(curr_loc)) { locs.push_back(call_loc.getCallee()); continue; } else if (auto fused_loc = mlir::dyn_cast<FusedLoc>(curr_loc)) { auto reversed_fused_locs = llvm::reverse(fused_loc.getLocations()); locs.append(reversed_fused_locs.begin(), reversed_fused_locs.end()); continue; } loc_names.push_back(llvm::StringRef()); } if (names_is_nonempty) return llvm::join(loc_names.begin(), loc_names.end(), ";"); return ""; } }
#include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { TEST(DeviceNameUtils, ArgsToString) { EXPECT_EQ(name_utils::ArgsToString({}), ""); EXPECT_EQ(name_utils::ArgsToString({"a"}), "(a)"); EXPECT_EQ(name_utils::ArgsToString({"1", "2", "3"}), "(1, 2, 3)"); } TEST(NameUtilsTest, DatasetDebugString) { EXPECT_EQ(name_utils::DatasetDebugString("Concatenate"), "ConcatenateDatasetOp::Dataset"); name_utils::DatasetDebugStringParams range_params; range_params.set_args(0, 10, 3); EXPECT_EQ(name_utils::DatasetDebugString("Range", range_params), "RangeDatasetOp(0, 10, 3)::Dataset"); name_utils::DatasetDebugStringParams shuffle_params; shuffle_params.dataset_prefix = "FixedSeed"; shuffle_params.set_args(10, 1, 2); EXPECT_EQ(name_utils::DatasetDebugString("Shuffle", shuffle_params), "ShuffleDatasetOp(10, 1, 2)::FixedSeedDataset"); name_utils::DatasetDebugStringParams parallel_interleave_params; parallel_interleave_params.op_version = 2; EXPECT_EQ(name_utils::DatasetDebugString("ParallelInterleave", parallel_interleave_params), "ParallelInterleaveDatasetV2Op::Dataset"); } TEST(NameUtilsTest, OpName) { EXPECT_EQ(name_utils::OpName("Range"), "RangeDataset"); EXPECT_EQ(name_utils::OpName("Concatenate", name_utils::OpNameParams()), "ConcatenateDataset"); name_utils::OpNameParams params; params.op_version = 2; EXPECT_EQ(name_utils::OpName("ParallelInterleave", params), "ParallelInterleaveDatasetV2"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/utils/name_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/name_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c035c168-6335-49bb-a102-f0b941fe3711
cpp
tensorflow/tensorflow
hash_utils
tensorflow/core/data/hash_utils.cc
tensorflow/core/data/hash_utils_test.cc
#include "tensorflow/core/data/hash_utils.h" #include <array> #include <memory> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/proto_serialization.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/regexp.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { namespace data { namespace { constexpr std::array<const char*, 3> kOpsWithSeed = { "AnonymousRandomSeedGenerator", "ShuffleDataset", "ShuffleAndRepeatDataset" }; constexpr char kSeedInputName[] = "seed"; constexpr char kSeed2InputName[] = "seed2"; constexpr char kSeedGeneratorInputName[] = "seed_generator"; template <std::size_t SIZE> bool IsNodeOfType(const NodeDef& node, const std::array<const char*, SIZE>& op_types) { for (const auto& type : op_types) { if (MatchesAnyVersion(type, node.op())) { return true; } } return false; } Status GetSink(const GraphDef& graph_def, const NodeDef** sink) { for (auto& node : graph_def.node()) { if (node.op() == kRetvalOp) { *sink = &node; break; } } if (sink == nullptr) { return errors::Internal("Cannot find sink node for dataset graph."); } return absl::OkStatus(); } Status ShouldIgnoreInput(const NodeDef& node, int i, bool* result) { *result = false; if (IsNodeOfType(node, kOpsWithSeed)) { const OpRegistrationData* reg; auto status = OpRegistry::Global()->LookUp(node.op(), &reg); if (status.ok()) { if (reg->op_def.input_arg_size() > i) { const std::string input_arg_name = reg->op_def.input_arg(i).name(); if (input_arg_name == kSeedInputName || input_arg_name == kSeed2InputName || input_arg_name == kSeedGeneratorInputName) { VLOG(2) << "Ignoring arg: " << input_arg_name << " from node: " << node.name(); *result = true; return absl::OkStatus(); } } } else if (errors::IsNotFound(status)) { LOG(WARNING) << "Cannot find " << node.op() << " in global op registry, so cannot determine which " "inputs are seeds."; } else { return status; } } return absl::OkStatus(); } Status ParseInputNodeName(absl::string_view input_name, absl::string_view* node_name, absl::string_view* suffix, bool* is_control_input) { if (input_name[0] == '^') { *node_name = input_name.substr(1); *is_control_input = true; return absl::OkStatus(); } std::pair<absl::string_view, absl::string_view> node_spec = absl::StrSplit(input_name, absl::MaxSplits(':', 1)); *node_name = node_spec.first; *suffix = node_spec.second; *is_control_input = false; return absl::OkStatus(); } class GraphHasher { using NodeCache = absl::flat_hash_map<const NodeDef*, uint64>; using FunctionCache = absl::flat_hash_map<const FunctionDef*, uint64>; using AttrCache = absl::flat_hash_map<std::pair<const NodeDef*, bool>, uint64>; public: explicit GraphHasher(const GraphDef* graph, const NodeDef* root, const FunctionLibraryDefinition* flib) : graph_(graph), root_(root), flib_(flib) { node_cache_ = std::make_shared<NodeCache>(); function_cache_ = std::make_shared<FunctionCache>(); attr_cache_ = std::make_shared<AttrCache>(); } explicit GraphHasher(const GraphDef* graph, const NodeDef* root, const FunctionLibraryDefinition* flib, std::shared_ptr<NodeCache> node_cache, std::shared_ptr<FunctionCache> function_cache, std::shared_ptr<AttrCache> attr_cache) : graph_(graph), root_(root), flib_(flib), node_cache_(node_cache), function_cache_(function_cache), attr_cache_(attr_cache) {} Status Init() { absl::flat_hash_map<absl::string_view, const NodeDef*> node_def_by_name; node_def_by_name.reserve(graph_->node_size()); for (const auto& node : graph_->node()) { auto result = node_def_by_name.emplace(node.name(), &node); if (TF_PREDICT_FALSE(!result.second)) { auto node_name_formatter = [](std::string* out, const decltype(node_def_by_name)::value_type& item) { absl::StrAppend(out, "'", item.first, "'"); }; return errors::Internal( "Encountered graph with duplicate node name '", node.name(), "' in [", absl::StrJoin(node_def_by_name, ",", node_name_formatter), "]"); } } absl::flat_hash_set<absl::string_view> visited; std::queue<const NodeDef*> bfs_queue; bfs_queue.push(root_); while (!bfs_queue.empty()) { const NodeDef* node = bfs_queue.front(); bfs_queue.pop(); if (visited.contains(node->name())) { continue; } visited.insert(node->name()); NodeRep node_rep; for (int i = 0; i < node->input_size(); ++i) { DCHECK_GT(node->input(i).length(), 0); bool should_ignore_input = false; TF_RETURN_IF_ERROR(ShouldIgnoreInput(*node, i, &should_ignore_input)); if (should_ignore_input) continue; absl::string_view node_name, suffix; bool is_control_input; TF_RETURN_IF_ERROR(ParseInputNodeName(node->input(i), &node_name, &suffix, &is_control_input)); auto* input_node = gtl::FindPtrOrNull(node_def_by_name, node_name); if (input_node == nullptr) { return errors::Internal("Graph node [", node->name(), "] has input [", node_name, "] that doesn't exist in graph"); } if (visited.contains(node_name)) { EdgeRep cycle_edge(node, input_node); cycle_forming_edges_.insert(cycle_edge.GetHash()); continue; } if (is_control_input) { node_rep.node_control_inputs.push_back(input_node); } else { node_rep.node_inputs.push_back(std::make_pair(input_node, suffix)); bfs_queue.push(input_node); } } nodes_[node] = node_rep; } return absl::OkStatus(); } Status HashRoot(uint64* hash) { return HashNode(root_, hash); } Status CheckEqual(GraphHasher* that) { return CheckNodesEqual(root_, that, that->root_); } private: Status HashNode(const NodeDef* node, uint64* hash) { auto it = node_cache_->find(node); if (it != node_cache_->end()) { *hash = it->second; return absl::OkStatus(); } NodeRep* node_rep = gtl::FindOrNull(nodes_, node); if (node_rep == nullptr) { return errors::InvalidArgument("Could not find node: ", node->name()); } uint64 non_input_hash; TF_RETURN_IF_ERROR( HashNodeNonInput(node, true, &non_input_hash)); uint64 control_inputs_hash; TF_RETURN_IF_ERROR( HashControlInputs(node_rep->node_control_inputs, &control_inputs_hash)); uint64 inputs_hash = 0; for (const auto& input : node_rep->node_inputs) { uint64 node_hash = 0; EdgeRep edge(node, input.first); if (cycle_forming_edges_.contains(edge.GetHash())) { TF_RETURN_IF_ERROR( HashNodeNonInput(input.first, true, &node_hash)); } else { TF_RETURN_IF_ERROR(HashNode(input.first, &node_hash)); } inputs_hash = Hash64Combine( inputs_hash, Hash64Combine(node_hash, Hash64(input.second.data(), input.second.size()))); } *hash = Hash64Combine(non_input_hash, Hash64Combine(control_inputs_hash, inputs_hash)); auto result = node_cache_->emplace(node, *hash); if (!result.second) { return errors::Internal(absl::StrCat("Computed the hash for node ", node->DebugString(), " twice!")); } return absl::OkStatus(); } Status CheckNodesEqual(const NodeDef* this_node, GraphHasher* that, const NodeDef* that_node) { Status s = CheckNodesEqualHelper(this_node, that, that_node); if (!s.ok()) { return errors::FailedPrecondition("Nodes ", this_node->name(), " and ", that_node->name(), " are not the same:\n", s); } return s; } Status CheckNodesEqualHelper(const NodeDef* this_node, GraphHasher* that, const NodeDef* that_node) { TF_RETURN_IF_ERROR(CheckNodesEqualNonInput(this_node, that, that_node, true)); TF_RETURN_IF_ERROR( CheckControlInputsEqual(nodes_[this_node].node_control_inputs, that, that->nodes_[that_node].node_control_inputs)); auto& this_node_inputs = nodes_[this_node].node_inputs; auto& that_node_inputs = that->nodes_[that_node].node_inputs; if (this_node_inputs.size() != that_node_inputs.size()) { return errors::FailedPrecondition( "Nodes have different numbers of node inputs: ", this_node_inputs.size(), " vs ", that_node_inputs.size()); } for (int i = 0; i < this_node_inputs.size(); ++i) { const NodeDef* this_input = this_node_inputs[i].first; const NodeDef* that_input = that_node_inputs[i].first; if (is_cycle_forming_edge(this_node, this_input)) { TF_RETURN_IF_ERROR(CheckNodesEqualNonInput(this_input, that, that_input, true)); } else { TF_RETURN_IF_ERROR(CheckNodesEqual(this_input, that, that_input)); } absl::string_view this_input_suffix = this_node_inputs[i].second; absl::string_view that_input_suffix = that_node_inputs[i].second; if (this_input_suffix != that_input_suffix) { return errors::FailedPrecondition( "Node inputs ", this_input->name(), " and ", that_input->name(), " have different suffixes: ", this_input_suffix, " vs ", that_input_suffix); } } return absl::OkStatus(); } Status HashNodeNonInput(const NodeDef* node, bool hash_functions, uint64* hash) { auto iter = attr_cache_->find(std::make_pair(node, hash_functions)); if (iter != attr_cache_->end()) { *hash = iter->second; return absl::OkStatus(); } uint64 attrs_hash = 0; const OpRegistrationData* reg; TF_RETURN_IF_ERROR(flib_->LookUp(node->op(), &reg)); uint64 op_hash = 0; if (reg->is_function_op) { if (hash_functions) { TF_RETURN_IF_ERROR(HashFunction(node->op(), node->attr(), &op_hash)); } } else { op_hash = Hash64(node->op()); } for (const auto& attr : reg->op_def.attr()) { const auto& attr_key = attr.name(); if (DatasetOpKernel::IsDatasetOp(reg->op_def) && attr_key == "metadata") continue; auto node_attr_iter = node->attr().find(attr_key); if (node_attr_iter == node->attr().end()) { continue; } const auto& attr_value = node_attr_iter->second; if (attr_key == kColocationAttrName || attr_key == kColocationGroupPrefix) { continue; } uint64 attr_hash = 0; TF_RETURN_IF_ERROR( HashAttr(attr_key, attr_value, hash_functions, &attr_hash)); attrs_hash = Hash64Combine(attrs_hash, attr_hash); } uint64 device_hash = Hash64(node->device()); *hash = Hash64Combine(op_hash, Hash64Combine(attrs_hash, device_hash)); auto result = attr_cache_->emplace(std::make_pair(node, hash_functions), *hash); if (!result.second) { return errors::Internal(absl::StrCat( "Computed the hash for non-input node: ", node->DebugString(), " and hash function bool: ", hash_functions, "twice!")); } return absl::OkStatus(); } Status CheckNodesEqualNonInput(const NodeDef* this_node, GraphHasher* that, const NodeDef* that_node, bool compare_functions) { const OpRegistrationData* reg; TF_RETURN_IF_ERROR(flib_->LookUp(this_node->op(), &reg)); if (reg->is_function_op) { if (compare_functions) { TF_RETURN_IF_ERROR( CheckFunctionsEqual(this_node->op(), this_node->attr(), that, that_node->op(), that_node->attr())); } } else { if (this_node->op() != that_node->op()) { return errors::FailedPrecondition( "ops for nodes ", this_node->name(), " and ", that_node->name(), " are different: ", this_node->op(), " != ", that_node->op()); } } for (const auto& attr : reg->op_def.attr()) { const auto& attr_key = attr.name(); const bool this_has_attr = this_node->attr().contains(attr_key); const bool that_has_attr = that_node->attr().contains(attr_key); if (this_has_attr != that_has_attr) { return errors::FailedPrecondition( "attr with key ", attr_key, " is different for nodes ", this_node->name(), " and ", that_node->name(), ". Present in former: ", this_has_attr, ". Present in latter: ", that_has_attr); } if (!this_has_attr) { continue; } if (attr_key == kColocationAttrName || attr_key == kColocationGroupPrefix) { continue; } const auto& this_attr = this_node->attr().at(attr_key); const auto& that_attr = that_node->attr().at(attr_key); TF_RETURN_IF_ERROR(CheckAttrsEqual(attr_key, this_attr, that, that_attr, compare_functions)); } if (this_node->device() != that_node->device()) { return errors::FailedPrecondition( "Devices are different for nodes ", this_node->name(), " and ", that_node->name(), ": ", this_node->device(), " vs ", that_node->device()); } return absl::OkStatus(); } Status HashAttr(const std::string& attr_name, const AttrValue& attr_value, bool hash_functions, uint64* hash) { uint64 value_hash = 0; if (attr_value.has_func()) { if (hash_functions) { TF_RETURN_IF_ERROR(HashFunction(attr_value.func(), &value_hash)); } } else if (attr_value.has_list() && attr_value.list().func_size() > 0) { if (hash_functions) { for (auto& func : attr_value.list().func()) { uint64 func_hash; TF_RETURN_IF_ERROR(HashFunction(func, &func_hash)); value_hash = Hash64Combine(value_hash, func_hash); } } } else { value_hash = DeterministicProtoHash64(attr_value); } *hash = Hash64Combine(Hash64(attr_name), value_hash); return absl::OkStatus(); } Status CheckAttrsEqual(const std::string& attr_name, const AttrValue& this_attr, GraphHasher* that, const AttrValue& that_attr, bool compare_functions) { if (this_attr.has_func() != that_attr.has_func()) { return errors::FailedPrecondition( "AttrValues are of different types: ", this_attr.DebugString(), " vs ", that_attr.DebugString()); } if (this_attr.has_func()) { if (compare_functions) { TF_RETURN_IF_ERROR( CheckFunctionsEqual(this_attr.func(), that, that_attr.func())); } return absl::OkStatus(); } if (this_attr.has_list() != that_attr.has_list()) { return errors::FailedPrecondition( "AttrValues are of different types: ", this_attr.DebugString(), " vs ", that_attr.DebugString()); } if (this_attr.has_list()) { if (this_attr.list().func_size() != that_attr.list().func_size()) { return errors::FailedPrecondition( "AttrValues have func lists of different sizes: ", this_attr.DebugString(), " vs ", that_attr.DebugString()); } if (compare_functions) { for (int i = 0; i < this_attr.list().func_size(); ++i) { TF_RETURN_IF_ERROR(CheckFunctionsEqual(this_attr.list().func(i), that, that_attr.list().func(i))); } } return absl::OkStatus(); } uint64 this_hash, that_hash; TF_RETURN_IF_ERROR( HashAttr(attr_name, this_attr, true, &this_hash)); TF_RETURN_IF_ERROR(that->HashAttr(attr_name, that_attr, true, &that_hash)); if (this_hash != that_hash) { return errors::FailedPrecondition( "AttrValues are different: ", this_attr.DebugString(), " vs ", that_attr.DebugString()); } return absl::OkStatus(); } Status HashFunction(const NameAttrList& func, uint64* hash) { return HashFunction(func.name(), func.attr(), hash); } Status HashFunction(const std::string& name, const AttrValueMap& attrs, uint64* hash) { const FunctionDef* fdef = flib_->Find(name); auto it = function_cache_->find(fdef); if (it != function_cache_->end()) { *hash = it->second; return absl::OkStatus(); } std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(*fdef, AttrSlice(&attrs), flib_, &fbody)); GraphDef graph_def = fbody->graph->ToGraphDefDebug(); uint64 ret_nodes_hash = 0; for (const auto& ret_node : fbody->ret_nodes) { uint64 ret_node_hash = 0; GraphHasher hasher(&graph_def, &ret_node->def(), flib_, node_cache_, function_cache_, attr_cache_); TF_RETURN_IF_ERROR(hasher.Init()); TF_RETURN_IF_ERROR(hasher.HashRoot(&ret_node_hash)); ret_nodes_hash = Hash64Combine(ret_nodes_hash, ret_node_hash); } std::vector<const NodeDef*> control_rets; control_rets.reserve(fbody->control_ret_nodes.size()); for (const auto& control_ret_node : fbody->control_ret_nodes) { control_rets.push_back(&control_ret_node->def()); } uint64 control_ret_nodes_hash = 0; TF_RETURN_IF_ERROR( HashControlInputs(control_rets, &control_ret_nodes_hash)); *hash = Hash64Combine(ret_nodes_hash, control_ret_nodes_hash); auto result = function_cache_->emplace(fdef, *hash); if (!result.second) { return errors::Internal( absl::StrCat("Computed the hash for function ", name, " twice!")); } return absl::OkStatus(); } Status CheckFunctionsEqual(const NameAttrList& this_func, GraphHasher* that, const NameAttrList& that_func) { return CheckFunctionsEqual(this_func.name(), this_func.attr(), that, that_func.name(), that_func.attr()); } Status CheckFunctionsEqual(const std::string& this_name, const AttrValueMap& this_attrs, GraphHasher* that, const std::string& that_name, const AttrValueMap& that_attrs) { Status s = CheckFunctionsEqualHelper(this_name, this_attrs, that, that_name, that_attrs); if (!s.ok()) { return errors::FailedPrecondition("Functions ", this_name, " and ", that_name, " are not the same:\n", s); } return s; } Status CheckFunctionsEqualHelper(const std::string& this_name, const AttrValueMap& this_attrs, GraphHasher* that, const std::string& that_name, const AttrValueMap& that_attrs) { const FunctionDef* this_fdef = flib_->Find(this_name); const FunctionDef* that_fdef = that->flib_->Find(that_name); std::unique_ptr<FunctionBody> this_fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *this_fdef, AttrSlice(&this_attrs), flib_, &this_fbody)); GraphDef this_graph_def = this_fbody->graph->ToGraphDefDebug(); std::unique_ptr<FunctionBody> that_fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *that_fdef, AttrSlice(&that_attrs), that->flib_, &that_fbody)); GraphDef that_graph_def = that_fbody->graph->ToGraphDefDebug(); if (this_fbody->ret_nodes.size() != that_fbody->ret_nodes.size()) { return errors::FailedPrecondition( "Different numbers of ret nodes for functions ", this_name, " and ", that_name, ": ", this_fbody->ret_nodes.size(), " vs ", that_fbody->ret_nodes.size()); } for (int i = 0; i < this_fbody->ret_nodes.size(); ++i) { const NodeDef* this_root = &this_fbody->ret_nodes[i]->def(); const NodeDef* that_root = &that_fbody->ret_nodes[i]->def(); GraphHasher this_hasher(&this_graph_def, this_root, flib_, node_cache_, function_cache_, attr_cache_); TF_RETURN_IF_ERROR(this_hasher.Init()); GraphHasher that_hasher(&that_graph_def, that_root, that->flib_, node_cache_, function_cache_, attr_cache_); TF_RETURN_IF_ERROR(that_hasher.Init()); TF_RETURN_IF_ERROR(this_hasher.CheckEqual(&that_hasher)); } std::vector<const NodeDef*> this_control_rets; this_control_rets.reserve(this_fbody->control_ret_nodes.size()); for (const auto& control_ret_node : this_fbody->control_ret_nodes) { this_control_rets.push_back(&control_ret_node->def()); } std::vector<const NodeDef*> that_control_rets; that_control_rets.reserve(that_fbody->control_ret_nodes.size()); for (const auto& control_ret_node : that_fbody->control_ret_nodes) { that_control_rets.push_back(&control_ret_node->def()); } TF_RETURN_IF_ERROR( CheckControlInputsEqual(this_control_rets, that, that_control_rets)); return absl::OkStatus(); } Status HashControlInputs(const std::vector<const NodeDef*>& inputs, uint64* hash) { *hash = 0; for (const NodeDef* input : inputs) { uint64 node_hash = 0; TF_RETURN_IF_ERROR( HashNodeNonInput(input, false, &node_hash)); *hash = Hash64CombineUnordered(*hash, node_hash); } return absl::OkStatus(); } Status CheckControlInputsEqual( const std::vector<const NodeDef*>& this_inputs, GraphHasher* that, const std::vector<const NodeDef*>& that_inputs) { absl::flat_hash_map<uint64, const NodeDef*> this_hashes; for (const NodeDef* input : this_inputs) { uint64 node_hash = 0; TF_RETURN_IF_ERROR( HashNodeNonInput(input, false, &node_hash)); this_hashes[node_hash] = input; } absl::flat_hash_map<uint64, const NodeDef*> that_hashes; for (const NodeDef* input : that_inputs) { uint64 node_hash = 0; TF_RETURN_IF_ERROR( HashNodeNonInput(input, false, &node_hash)); auto this_iter = this_hashes.find(node_hash); if (this_iter != this_hashes.end()) { this_hashes.erase(this_iter); } else { that_hashes[node_hash] = input; } } if (!this_hashes.empty()) { auto formatter = [](string* out, const decltype(this_hashes)::value_type& item) { out->append(item.second->name()); }; return errors::FailedPrecondition( "Control dependencies are different. One node has dependencies [", absl::StrJoin(this_hashes, ", ", formatter), "], which don't match any of the other node's dependencies [", absl::StrJoin(that_hashes, ", ", formatter), "]"); } return absl::OkStatus(); } private: bool is_cycle_forming_edge(const NodeDef* start, const NodeDef* end) { EdgeRep edge(start, end); return cycle_forming_edges_.contains(edge.GetHash()); } struct NodeRep { std::vector<const NodeDef*> node_control_inputs; std::vector<std::pair<const NodeDef*, absl::string_view>> node_inputs; }; struct EdgeRep { const NodeDef* start_node; const NodeDef* end_node; EdgeRep(const NodeDef* start, const NodeDef* end) : start_node(start), end_node(end) {} uint64 GetHash() { return Hash64Combine(absl::Hash<const NodeDef*>()(start_node), absl::Hash<const NodeDef*>()(end_node)); } }; const GraphDef* const graph_; const NodeDef* const root_; const FunctionLibraryDefinition* const flib_; absl::flat_hash_set<uint64> cycle_forming_edges_; absl::flat_hash_map<const NodeDef*, NodeRep> nodes_; std::shared_ptr<NodeCache> node_cache_; std::shared_ptr<FunctionCache> function_cache_; std::shared_ptr<AttrCache> attr_cache_; }; } Status HashTensor(const Tensor& tensor, uint64* hash) { const tstring* s = nullptr; *hash = Hash64Combine(0, tensor.dtype()); for (int i = 0; i < tensor.shape().dims(); ++i) { *hash = Hash64Combine(*hash, tensor.shape().dim_size(i)); } switch (tensor.dtype()) { case DT_RESOURCE: case DT_VARIANT: return errors::Unimplemented("Hashing ", DataTypeString(tensor.dtype()), " is not supported."); case DT_STRING: s = tensor.flat<tstring>().data(); for (int i = 0; i < tensor.NumElements(); ++i, ++s) { *hash = Hash64Combine(*hash, Hash64(s->data(), s->size())); } break; default: *hash = Hash64(tensor.tensor_data().data(), tensor.tensor_data().size()); } return absl::OkStatus(); } Status HashNode(const GraphDef& graph, const NodeDef& node, uint64* hash) { const FunctionLibraryDefinition flib_def(OpRegistry::Global(), graph.library()); return HashNode(graph, node, flib_def, hash); } Status HashNode(const GraphDef& graph, const NodeDef& node, const FunctionLibraryDefinition& flib_def, uint64* hash) { GraphHasher hasher(&graph, &node, &flib_def); TF_RETURN_IF_ERROR(hasher.Init()); return hasher.HashRoot(hash); } Status HashGraph(const GraphDef& graph_def, uint64* hash) { const NodeDef* sink = nullptr; TF_RETURN_IF_ERROR(GetSink(graph_def, &sink)); return HashNode(graph_def, *sink, hash); } Status CheckGraphsEqual(const GraphDef& a, const GraphDef& b) { const NodeDef* sink_a; TF_RETURN_IF_ERROR(GetSink(a, &sink_a)); const NodeDef* sink_b; TF_RETURN_IF_ERROR(GetSink(b, &sink_b)); return CheckSubgraphsEqual(a, sink_a, b, sink_b); } Status CheckSubgraphsEqual(const GraphDef& a, const NodeDef* node_a, const GraphDef& b, const NodeDef* node_b) { const FunctionLibraryDefinition flib_def_a(OpRegistry::Global(), a.library()); GraphHasher hasher_a(&a, node_a, &flib_def_a); TF_RETURN_IF_ERROR(hasher_a.Init()); const FunctionLibraryDefinition flib_def_b(OpRegistry::Global(), b.library()); GraphHasher hasher_b(&b, node_b, &flib_def_b); TF_RETURN_IF_ERROR(hasher_b.Init()); return hasher_a.CheckEqual(&hasher_b); } } }
#include "tensorflow/core/data/hash_utils.h" #include <utility> #include <vector> #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { namespace data { namespace { using ::testing::ContainsRegex; class DatasetHashUtilsTest : public ::testing::Test { protected: uint64 GetHash(const FunctionDefLibrary& library, const FunctionDef& fn) { GraphDef graph_def; *graph_def.mutable_library() = library; NodeDef* node = graph_def.add_node(); node->set_op("RemoteCall"); NameAttrList func; func.set_name(fn.signature().name()); AddNodeAttr("f", func, node); uint64 hash = 0; TF_CHECK_OK(HashNode(graph_def, *node, &hash)); return hash; } Status CheckEqual(const FunctionDefLibrary& library, const FunctionDef& fn1, const FunctionDef& fn2) { GraphDef graph_def; *graph_def.mutable_library() = library; NodeDef* node1 = graph_def.add_node(); node1->set_name("RemoteCall"); node1->set_op("RemoteCall"); NameAttrList func1; func1.set_name(fn1.signature().name()); AddNodeAttr("f", func1, node1); NodeDef* node2 = graph_def.add_node(); node1->set_name("RemoteCall2"); node2->set_op("RemoteCall"); NameAttrList func2; func2.set_name(fn2.signature().name()); AddNodeAttr("f", func2, node2); return CheckSubgraphsEqual(graph_def, node1, graph_def, node2); } uint64 GetHash(const GraphDef& graph, const NodeDef& node) { uint64 hash = 0; TF_CHECK_OK(HashNode(graph, node, &hash)); return hash; } uint64 GetHash(const Tensor& tensor) { uint64 hash = 0; TF_CHECK_OK(HashTensor(tensor, &hash)); return hash; } }; TEST_F(DatasetHashUtilsTest, HashFunctionSameFunctionDifferentNames) { FunctionDefLibrary fl; FunctionDef* f1 = fl.add_function(); *f1 = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); FunctionDef* f2 = fl.add_function(); *f2 = FunctionDefHelper::Create( "AddAndMul2", {"input: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"input", "input"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"input", "input"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); EXPECT_EQ(GetHash(fl, *f1), GetHash(fl, *f2)); TF_EXPECT_OK(CheckEqual(fl, *f1, *f2)); } TEST_F(DatasetHashUtilsTest, HashFunctionDifferentFunctions) { FunctionDefLibrary fl; FunctionDef* f1 = fl.add_function(); *f1 = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); FunctionDef* f2 = fl.add_function(); *f2 = FunctionDefHelper::Create( "AddAndAdd", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); EXPECT_NE(GetHash(fl, *f1), GetHash(fl, *f2)); Status s = CheckEqual(fl, *f1, *f2); EXPECT_NE(s.code(), error::OK); EXPECT_THAT(s.message(), ContainsRegex("Add")); } TEST_F(DatasetHashUtilsTest, HashFunctionDifferentInternalNodeNames) { FunctionDefLibrary fl; FunctionDef* f1 = fl.add_function(); *f1 = FunctionDefHelper::Create( "AddAndMul", {"i: float", "j: float", "k: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "j"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"add:z:0", "k"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "ret"}}); FunctionDef* f2 = fl.add_function(); *f2 = FunctionDefHelper::Create( "AddAndMul2", {"a: float", "b: float", "c: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"a", "b"}, {{"T", DT_FLOAT}}}, {{"mul"}, "Mul", {"add:z:0", "c"}, {{"T", DT_FLOAT}}}}, {{"o", "mul:z:0"}}, {{"must_execute", "mul"}}); EXPECT_EQ(GetHash(fl, *f1), GetHash(fl, *f2)); TF_EXPECT_OK(CheckEqual(fl, *f1, *f2)); } TEST_F(DatasetHashUtilsTest, HashGraphWithMultipleCycles) { uint64 hash = 0; for (int i = 0; i < 1000; ++i) { GraphDef g; NodeDef* output_node = g.add_node(); TF_CHECK_OK(NodeDefBuilder("O", "Add") .Input("A", 0, DT_FLOAT) .Input("D", 0, DT_FLOAT) .Finalize(output_node)); TF_CHECK_OK(NodeDefBuilder("A", "Abs") .Input("B", 0, DT_FLOAT) .Finalize(g.add_node())); TF_CHECK_OK(NodeDefBuilder("B", "Add") .Input("C", 0, DT_FLOAT) .Input("D", 0, DT_FLOAT) .Finalize(g.add_node())); TF_CHECK_OK(NodeDefBuilder("C", "Ceil") .Input("A", 0, DT_FLOAT) .Finalize(g.add_node())); TF_CHECK_OK(NodeDefBuilder("D", "Cos") .Input("E", 0, DT_FLOAT) .Finalize(g.add_node())); TF_CHECK_OK(NodeDefBuilder("E", "Floor") .Input("B", 0, DT_FLOAT) .Finalize(g.add_node())); uint64 t = GetHash(g, *output_node); if (hash == 0) { hash = t; } else { EXPECT_EQ(t, hash); } } } TEST_F(DatasetHashUtilsTest, HashNodeSameGraphDifferentNames) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_3/node_7", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n4)); NodeDef* n5 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_4/node_9", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n5)); NodeDef* n6 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_5/node_11", "Add") .Device("CPU:0") .Input(n4->name(), 0, DT_INT32) .Input(n5->name(), 0, DT_INT32) .Finalize(n6)); uint64 hash1 = GetHash(gd, *n3); uint64 hash2 = GetHash(gd, *n6); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n3, gd, n6)); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentGraphs) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Mul") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n4)); uint64 hash1 = GetHash(gd, *n3); uint64 hash2 = GetHash(gd, *n4); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n3, gd, n4); EXPECT_NE(s.code(), error::OK); EXPECT_THAT(s.message(), ContainsRegex("Add")); EXPECT_THAT(s.message(), ContainsRegex("Mul")); } TEST_F(DatasetHashUtilsTest, HashSameGraphDifferentSeeds) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* seed = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/seed", "Const") .Attr("value", 123) .Device("CPU:0") .Finalize(seed)); NodeDef* seed2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/seed2", "Const") .Attr("value", 456) .Device("CPU:0") .Finalize(seed2)); NodeDef* range_ds = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/range", "RangeDataset") .Input(n1->name(), 0, DT_INT64) .Input(n1->name(), 0, DT_INT64) .Input(n1->name(), 0, DT_INT64) .Device("CPU:0") .Finalize(range_ds)); NodeDef* shuffle_ds = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/shuffle", "ShuffleDataset") .Input(range_ds->name(), 0, DT_VARIANT) .Input(n1->name(), 0, DT_INT64) .Input(seed->name(), 0, DT_INT64) .Input(seed2->name(), 0, DT_INT64) .Device("CPU:0") .Finalize(shuffle_ds)); NodeDef* different_seed = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/different_seed", "Const") .Attr("value", 789) .Device("CPU:0") .Finalize(different_seed)); NodeDef* different_seed2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/different_seed2", "Const") .Attr("value", 654) .Device("CPU:0") .Finalize(different_seed2)); NodeDef* range_ds_2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/range_2", "RangeDataset") .Input(n1->name(), 0, DT_INT64) .Input(n1->name(), 0, DT_INT64) .Input(n1->name(), 0, DT_INT64) .Device("CPU:0") .Finalize(range_ds_2)); NodeDef* shuffle_ds_2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/shuffle_2", "ShuffleDataset") .Input(range_ds_2->name(), 0, DT_VARIANT) .Input(n1->name(), 0, DT_INT64) .Input(different_seed->name(), 0, DT_INT64) .Input(different_seed2->name(), 0, DT_INT64) .Device("CPU:0") .Finalize(shuffle_ds_2)); uint64 hash1 = GetHash(gd, *shuffle_ds); uint64 hash2 = GetHash(gd, *shuffle_ds_2); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, shuffle_ds, gd, shuffle_ds_2)); } TEST_F(DatasetHashUtilsTest, HashNodeSameGraphDifferentColocationNames) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Attr("_class", {"graph_1/node_2"}) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_3/node_7", "Const") .Attr("value", 1) .Attr("_class", {"graph_3/node_9"}) .Device("CPU:0") .Finalize(n4)); NodeDef* n5 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_4/node_9", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n5)); NodeDef* n6 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_5/node_11", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n6)); uint64 hash1 = GetHash(gd, *n3); uint64 hash2 = GetHash(gd, *n6); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n3, gd, n6)); } TEST_F(DatasetHashUtilsTest, HashNodeReversedOrder) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Add") .Device("CPU:0") .Input(n2->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Finalize(n4)); uint64 hash1 = GetHash(gd, *n3); uint64 hash2 = GetHash(gd, *n4); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n3, gd, n4); EXPECT_NE(s.code(), error::OK); EXPECT_THAT(s.message(), ContainsRegex("AttrValues are different")); } TEST_F(DatasetHashUtilsTest, HashNodeInputPortChanged) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Add") .Device("CPU:0") .Input(n1->name(), 1, DT_INT32) .Input(n2->name(), 2, DT_INT32) .Finalize(n4)); uint64 hash1 = GetHash(gd, *n3); uint64 hash2 = GetHash(gd, *n4); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n3, gd, n4); EXPECT_NE(s.code(), error::OK); EXPECT_THAT(s.message(), ContainsRegex("Node inputs")); } TEST_F(DatasetHashUtilsTest, HashNodeSameFunctionDifferentNames) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); *f1 = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); FunctionDef* f2 = fl1->add_function(); *f2 = FunctionDefHelper::Create( "AddAndMul2", {"input: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"input", "input"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"input", "input"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); AttrValue a1; NameAttrList* nal1 = a1.mutable_func(); nal1->set_name("AddAndMul"); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); std::vector<NodeDefBuilder::NodeOut> func_inputs; func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a1) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); AttrValue a2; NameAttrList* nal2 = a2.mutable_func(); nal2->set_name("AddAndMul2"); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a2) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n2, gd, n3)); } TEST_F(DatasetHashUtilsTest, HashNodeSameFunctionListsDifferentNames) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); *f1 = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); FunctionDef* f2 = fl1->add_function(); *f2 = FunctionDefHelper::Create( "AddAndMul2", {"input: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"input", "input"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"input", "input"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); AttrValue a1; AttrValue_ListValue* list1 = a1.mutable_list(); NameAttrList* nal1 = list1->add_func(); nal1->set_name("AddAndMul"); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); std::vector<NodeDefBuilder::NodeOut> func_inputs; func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a1) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); AttrValue a2; AttrValue_ListValue* list2 = a2.mutable_list(); NameAttrList* nal2 = list2->add_func(); nal2->set_name("AddAndMul2"); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a2) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n2, gd, n3)); } TEST_F(DatasetHashUtilsTest, HashNodeSameFunctionsOps) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); FunctionDef func = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f1 = func; FunctionDef* f2 = fl1->add_function(); func = FunctionDefHelper::Create( "AddAndMul2", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f2 = func; FunctionLibraryDefinition flib(OpRegistry::Global(), gd.library()); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "AddAndMul", &flib) .Input(n1->name(), 0, DT_FLOAT) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "AddAndMul2", &flib) .Input(n1->name(), 0, DT_FLOAT) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n2, gd, n3)); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentFunctionsOps) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); FunctionDef func = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f1 = func; FunctionDef* f2 = fl1->add_function(); func = FunctionDefHelper::Create( "AddAndMul2", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "ret"}}); *f2 = func; FunctionLibraryDefinition flib(OpRegistry::Global(), gd.library()); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "AddAndMul", &flib) .Input(n1->name(), 0, DT_FLOAT) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "AddAndMul2", &flib) .Input(n1->name(), 0, DT_FLOAT) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n2, gd, n3); EXPECT_NE(s.code(), error::OK); EXPECT_THAT( s.message(), ContainsRegex("Functions AddAndMul and AddAndMul2 are not the same")); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentFunctions) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); FunctionDef func = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f1 = func; FunctionDef* f2 = fl1->add_function(); func = FunctionDefHelper::Create( "AddAndMul2", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "ret"}}); *f2 = func; AttrValue a1; NameAttrList* nal1 = a1.mutable_func(); nal1->set_name("AddAndMul"); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); std::vector<NodeDefBuilder::NodeOut> func_inputs; func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a1) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); AttrValue a2; NameAttrList* nal2 = a2.mutable_func(); nal2->set_name("AddAndMul2"); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a2) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n2, gd, n3); EXPECT_NE(s.code(), error::OK); EXPECT_THAT( s.message(), ContainsRegex("Functions AddAndMul and AddAndMul2 are not the same")); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentFunctionLists) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); FunctionDef func = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f1 = func; FunctionDef* f2 = fl1->add_function(); func = FunctionDefHelper::Create( "AddAndMul2", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "ret"}}); *f2 = func; AttrValue a1; AttrValue_ListValue* list1 = a1.mutable_list(); NameAttrList* nal1 = list1->add_func(); nal1->set_name("AddAndMul"); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); std::vector<NodeDefBuilder::NodeOut> func_inputs; func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a1) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); AttrValue a2; AttrValue_ListValue* list2 = a2.mutable_list(); NameAttrList* nal2 = list2->add_func(); nal2->set_name("AddAndMul2"); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a2) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n2, gd, n3); EXPECT_NE(s.code(), error::OK); EXPECT_THAT( s.message(), ContainsRegex("Functions AddAndMul and AddAndMul2 are not the same")); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentControlInputs) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Const") .Attr("value", 10) .Device("CPU:0") .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Identity") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .ControlInput(n2->name()) .Finalize(n4)); NodeDef* n5 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_5", "Identity") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .ControlInput(n3->name()) .Finalize(n5)); uint64 hash1 = GetHash(gd, *n4); uint64 hash2 = GetHash(gd, *n5); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n4, gd, n5); EXPECT_NE(s.code(), error::OK); EXPECT_THAT(s.message(), ContainsRegex("Control dependencies are different")); } TEST_F(DatasetHashUtilsTest, HashNodeControlInputDifferentOrdering) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Const") .Attr("value", 10) .Device("CPU:0") .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Identity") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .ControlInput(n2->name()) .ControlInput(n3->name()) .Finalize(n4)); NodeDef* n5 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_5", "Identity") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .ControlInput(n3->name()) .ControlInput(n2->name()) .Finalize(n5)); uint64 hash1 = GetHash(gd, *n4); uint64 hash2 = GetHash(gd, *n5); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n4, gd, n5)); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentGraphSamePartialGraph) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); uint64 hash1 = GetHash(gd, *n1); n3->Clear(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Mul") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); uint64 hash2 = GetHash(gd, *n1); EXPECT_EQ(hash1, hash2); } TEST_F(DatasetHashUtilsTest, HashNodeWithManyControlDependencies) { GraphDef gd; NodeDef* n; for (int i = 0; i < 1000; ++i) { n = gd.add_node(); NodeDefBuilder ndb(absl::StrCat("graph_1/node_", i), "Const"); ndb.Attr("value", 1); ndb.Device("CPU:0"); for (int j = 0; j < i; ++j) { ndb.ControlInput(absl::StrCat("graph_1/node_", j)); } TF_CHECK_OK(ndb.Finalize(n)); } GetHash(gd, *n); } TEST_F(DatasetHashUtilsTest, HashFunctionsWithControlDependencyLoop) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); AttrValue a1; NameAttrList* nal1 = a1.mutable_func(); nal1->set_name("AddAndMul"); std::pair<string, FunctionDefHelper::AttrValueWrapper> func_attr = { "body", FunctionDefHelper::AttrValueWrapper(*nal1)}; FunctionDef func = FunctionDefHelper::Create( "AddAndMul", {"i: float", "j: int32"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}, {"ret"}}, {{"for"}, "For", {"j", "j", "j"}, {func_attr, {"T", DT_FLOAT}}, {"ret"}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f1 = func; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); std::vector<NodeDefBuilder::NodeOut> func_inputs; func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .ControlInput("graph_1/node_2") .Attr("body", a1) .Device("CPU:0") .Finalize(n2)); GetHash(gd, *n2); } TEST_F(DatasetHashUtilsTest, HashNodeWithControlDependencyLoop) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .ControlInput("graph_1/node_2") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .ControlInput("graph_1/node_1") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .ControlInput("graph_1/node_1") .ControlInput("graph_1/node_2") .Finalize(n3)); GetHash(gd, *n3); } TEST_F(DatasetHashUtilsTest, HashNodeWithControlDependencyLoopDifferentNames) { GraphDef gd1; NodeDef* n1 = gd1.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .ControlInput("graph_1/node_2") .Finalize(n1)); NodeDef* n2 = gd1.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .ControlInput("graph_1/node_1") .Finalize(n2)); NodeDef* n3 = gd1.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .ControlInput("graph_1/node_1") .ControlInput("graph_1/node_2") .Finalize(n3)); GraphDef gd2; NodeDef* n4 = gd2.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Const") .Attr("value", 1) .Device("CPU:0") .ControlInput("graph_1/node_5") .Finalize(n4)); NodeDef* n5 = gd2.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_5", "Const") .Attr("value", 2) .Device("CPU:0") .ControlInput("graph_1/node_4") .Finalize(n5)); NodeDef* n6 = gd2.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_6", "Add") .Device("CPU:0") .Input(n4->name(), 0, DT_INT32) .Input(n5->name(), 0, DT_INT32) .ControlInput("graph_1/node_4") .ControlInput("graph_1/node_5") .Finalize(n6)); EXPECT_EQ(GetHash(gd1, *n3), GetHash(gd2, *n6)); } TEST_F(DatasetHashUtilsTest, HashInt32Tensor) { Tensor s1(42); Tensor s2(42); Tensor s3(43); EXPECT_EQ(GetHash(s1), GetHash(s2)); EXPECT_NE(GetHash(s1), GetHash(s3)); Tensor v1(DT_INT32, TensorShape({2})); v1.vec<int32>()(0) = 0; v1.vec<int32>()(1) = 1; Tensor v2(DT_INT32, TensorShape({2})); v2.vec<int32>()(0) = 0; v2.vec<int32>()(1) = 1; Tensor v3(DT_INT32, TensorShape({2})); v3.vec<int32>()(0) = 0; v3.vec<int32>()(1) = 2; EXPECT_EQ(GetHash(v1), GetHash(v2)); EXPECT_NE(GetHash(v1), GetHash(v3)); } TEST_F(DatasetHashUtilsTest, HashStringTensor) { Tensor s1("hello"); Tensor s2("hello"); Tensor s3("world"); EXPECT_EQ(GetHash(s1), GetHash(s2)); EXPECT_NE(GetHash(s1), GetHash(s3)); Tensor v1(DT_STRING, TensorShape({2})); v1.vec<tstring>()(0) = "hello"; v1.vec<tstring>()(1) = "world"; Tensor v2(DT_STRING, TensorShape({2})); v2.vec<tstring>()(0) = "hello"; v2.vec<tstring>()(1) = "world"; Tensor v3(DT_STRING, TensorShape({2})); v3.vec<tstring>()(0) = "hello"; v3.vec<tstring>()(1) = "universe"; EXPECT_EQ(GetHash(v1), GetHash(v2)); EXPECT_NE(GetHash(v1), GetHash(v3)); } static void BM_ParallelFunctionCallsGraph(benchmark::State& state) { GraphDef graph_def; FunctionDefLibrary* fl = graph_def.mutable_library(); FunctionDef* fd = fl->add_function(); *fd = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); NodeDef* input = graph_def.add_node(); input->set_name("InputPlaceholder"); input->set_op("Placeholder"); AddNodeAttr("dtype", DT_FLOAT, input); NodeDef* target = graph_def.add_node(); target->set_name("Target"); target->set_op("NoOp"); ConfigProto config_pb; config_pb.mutable_device_count()->insert({"CPU", 1}); config_pb.mutable_device_count()->insert({"GPU", 1}); config_pb.set_allow_soft_placement(true); for (int i = 0; i < 100; ++i) { NodeDef* node = graph_def.add_node(); node->set_name(absl::StrCat("PartitionedCall_", i)); node->set_op("PartitionedCall"); *node->add_input() = input->name(); AddNodeAttr("Tin", DT_FLOAT, node); AddNodeAttr("Tout", DT_FLOAT, node); AddNodeAttr("config", "", node); AddNodeAttr("config_proto", config_pb.SerializeAsString(), node); NameAttrList func; func.set_name(fd->signature().name()); AddNodeAttr("f", func, node); *target->add_input() = absl::StrCat("^", node->name()); } uint64 hash_value; for (auto _ : state) { TF_CHECK_OK(HashNode(graph_def, *target, &hash_value)); } } BENCHMARK(BM_ParallelFunctionCallsGraph); static void BM_ChainedFunctionCallsGraph(benchmark::State& state) { GraphDef graph_def; FunctionDefLibrary* fl = graph_def.mutable_library(); FunctionDef* fd = fl->add_function(); *fd = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); NodeDef* input = graph_def.add_node(); input->set_name("InputPlaceholder"); input->set_op("Placeholder"); AddNodeAttr("dtype", DT_FLOAT, input); ConfigProto config_pb; config_pb.mutable_device_count()->insert({"CPU", 1}); config_pb.mutable_device_count()->insert({"GPU", 1}); config_pb.set_allow_soft_placement(true); for (int i = 0; i < 100; ++i) { NodeDef* node = graph_def.add_node(); node->set_name(absl::StrCat("PartitionedCall_", i)); node->set_op("PartitionedCall"); if (i > 0) { *node->add_input() = absl::StrCat("PartitionedCall_", i - 1); } else { *node->add_input() = input->name(); } AddNodeAttr("Tin", DT_FLOAT, node); AddNodeAttr("Tout", DT_FLOAT, node); AddNodeAttr("config", "", node); AddNodeAttr("config_proto", config_pb.SerializeAsString(), node); NameAttrList func; func.set_name(fd->signature().name()); AddNodeAttr("f", func, node); } const NodeDef& target = graph_def.node(graph_def.node_size() - 1); uint64 hash_value; for (auto _ : state) { TF_CHECK_OK(HashNode(graph_def, target, &hash_value)); } } BENCHMARK(BM_ChainedFunctionCallsGraph); static void BM_ComposedFunctionCallsGraph(benchmark::State& state) { GraphDef graph_def; FunctionDefLibrary* fl = graph_def.mutable_library(); FunctionDef* fd = fl->add_function(); *fd = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); ConfigProto config_pb; config_pb.mutable_device_count()->insert({"CPU", 1}); config_pb.mutable_device_count()->insert({"GPU", 1}); config_pb.set_allow_soft_placement(true); for (int i = 0; i < 99; ++i) { NameAttrList func; func.set_name(fd->signature().name()); FunctionDef* fd = fl->add_function(); *fd = FunctionDefHelper::Create( absl::StrCat("F_", i), {"i: float"}, {"o: float"}, {}, { { {"inner_call"}, "PartitionedCall", {"i"}, {{"Ti", DT_FLOAT}, {"Tout", DT_FLOAT}, {"config", ""}, {"config_proto", config_pb.SerializeAsString()}, {"f", func}}, }, }, {{"o", "inner_call:o:0"}}, {{"must_execute", "inner_call"}}); } NodeDef* input = graph_def.add_node(); input->set_name("InputPlaceholder"); input->set_op("Placeholder"); AddNodeAttr("dtype", DT_FLOAT, input); NodeDef* node = graph_def.add_node(); node->set_name("PartitionedCall_start"); node->set_op("PartitionedCall"); *node->add_input() = input->name(); AddNodeAttr("Tin", DT_FLOAT, node); AddNodeAttr("Tout", DT_FLOAT, node); AddNodeAttr("config", "", node); AddNodeAttr("config_proto", config_pb.SerializeAsString(), node); NameAttrList func; func.set_name(fd->signature().name()); AddNodeAttr("f", func, node); const NodeDef& target = graph_def.node(graph_def.node_size() - 1); uint64 hash_value; for (auto _ : state) { TF_CHECK_OK(HashNode(graph_def, target, &hash_value)); } } BENCHMARK(BM_ComposedFunctionCallsGraph); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/hash_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/hash_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
16d598a3-12f1-4153-9343-8f010008dc25
cpp
tensorflow/tensorflow
metric_utils
tensorflow/core/data/metric_utils.cc
tensorflow/core/data/metric_utils_test.cc
#include "tensorflow/core/data/metric_utils.h" #include <algorithm> #include <cstdint> #include <string> #include <vector> #include "absl/time/time.h" #include "tensorflow/core/data/utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { namespace data { namespace { uint64_t safe_sub(uint64_t x, uint64_t y) { return x >= y ? x - y : 0; } } IteratorMetricsCollector::IteratorMetricsCollector( const std::string& device_type, const Env& env) : device_type_(device_type), env_(env) {} absl::Time IteratorMetricsCollector::RecordStart() { const uint64_t start_time_us = env_.NowMicros(); if (!ShouldCollectMetrics()) { return absl::FromUnixMicros(start_time_us); } mutex_lock l(mu_); if (end_time_us_ == 0) { end_time_us_ = start_time_us; } uint64_t gap_time_us = 0; if (num_active_calls_ == 0) { first_start_time_us_ = start_time_us; gap_time_us = safe_sub(start_time_us, end_time_us_); } metrics::RecordTFDataIteratorGap(gap_time_us); num_active_calls_++; return absl::FromUnixMicros(start_time_us); } void IteratorMetricsCollector::RecordStop(absl::Time start_time, const std::vector<Tensor>& output) { if (!ShouldCollectMetrics()) { return; } const uint64_t end_time_us = env_.NowMicros(); const int64_t latency_micros = safe_sub(end_time_us, absl::ToUnixMicros(start_time)); AddLatencySample(latency_micros); IncrementThroughput(GetTotalBytes(output)); mutex_lock l(mu_); metrics::RecordTFDataIteratorLifetime(safe_sub(end_time_us, end_time_us_)); end_time_us_ = std::max(end_time_us_, end_time_us); num_active_calls_--; if (num_active_calls_ == 0) { metrics::RecordTFDataIteratorBusy( safe_sub(end_time_us_, first_start_time_us_)); } } bool IteratorMetricsCollector::ShouldCollectMetrics() const { return device_type_ == DEVICE_CPU; } } }
#include "tensorflow/core/data/metric_utils.h" #include <cstdint> #include "absl/memory/memory.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/lib/monitoring/test_utils.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { using tensorflow::monitoring::testing::CellReader; using tensorflow::monitoring::testing::Histogram; TEST(MetricUtilsTest, CollectMetrics) { CellReader<Histogram> latency("/tensorflow/data/getnext_duration"); CellReader<int64_t> iterator_lifetime("/tensorflow/data/iterator_lifetime"); CellReader<int64_t> iterator_busy("/tensorflow/data/iterator_busy"); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0); EXPECT_EQ(iterator_busy.Delta(), 0); IteratorMetricsCollector metrics_collector(DEVICE_CPU, *Env::Default()); absl::Time start_time = metrics_collector.RecordStart(); absl::SleepFor(absl::Seconds(1)); metrics_collector.RecordStop(start_time, {}); Histogram latency_histogram = latency.Delta(); EXPECT_FLOAT_EQ(latency_histogram.num(), 1.0); EXPECT_GT(latency_histogram.sum(), 0.0); EXPECT_GT(iterator_lifetime.Delta(), 0); EXPECT_GT(iterator_busy.Delta(), 0); } TEST(MetricUtilsTest, ShouldNotCollectMetrics) { CellReader<Histogram> latency("/tensorflow/data/getnext_duration"); CellReader<int64_t> iterator_lifetime("/tensorflow/data/iterator_lifetime"); CellReader<int64_t> iterator_busy("/tensorflow/data/iterator_busy"); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0); EXPECT_EQ(iterator_busy.Delta(), 0); IteratorMetricsCollector metrics_collector(DEVICE_TPU, *Env::Default()); absl::Time start_time = metrics_collector.RecordStart(); absl::SleepFor(absl::Seconds(1)); metrics_collector.RecordStop(start_time, {}); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0); EXPECT_EQ(iterator_busy.Delta(), 0); } TEST(MetricUtilsTest, ConcurrentThreads) { CellReader<Histogram> latency("/tensorflow/data/getnext_duration"); CellReader<int64_t> iterator_lifetime("/tensorflow/data/iterator_lifetime"); CellReader<int64_t> iterator_busy("/tensorflow/data/iterator_busy"); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0); EXPECT_EQ(iterator_busy.Delta(), 0); IteratorMetricsCollector metrics_collector(DEVICE_CPU, *Env::Default()); absl::Time start_time = metrics_collector.RecordStart(); auto thread = absl::WrapUnique(Env::Default()->StartThread( {}, "Concurrent metric collection thread", [&metrics_collector]() { absl::Time concurrent_start_time = metrics_collector.RecordStart(); absl::SleepFor(absl::Seconds(1)); metrics_collector.RecordStop(concurrent_start_time, {}); })); absl::SleepFor(absl::Seconds(1)); metrics_collector.RecordStop(start_time, {}); thread.reset(); Histogram latency_histogram = latency.Delta(); EXPECT_FLOAT_EQ(latency_histogram.num(), 2.0); EXPECT_GT(latency_histogram.sum(), absl::ToInt64Microseconds(absl::Seconds(2))); EXPECT_GE(iterator_lifetime.Delta(), absl::ToInt64Microseconds(absl::Seconds(1))); EXPECT_LT(iterator_lifetime.Delta(), absl::ToInt64Microseconds(absl::Seconds(1.5))); EXPECT_GE(iterator_busy.Delta(), absl::ToInt64Microseconds(absl::Seconds(1))); EXPECT_LT(iterator_busy.Delta(), absl::ToInt64Microseconds(absl::Seconds(1.5))); } TEST(MetricUtilsTest, OverlappingThreads) { CellReader<Histogram> latency("/tensorflow/data/getnext_duration"); CellReader<int64_t> iterator_lifetime("/tensorflow/data/iterator_lifetime"); CellReader<int64_t> iterator_busy("/tensorflow/data/iterator_busy"); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0); EXPECT_EQ(iterator_busy.Delta(), 0); IteratorMetricsCollector metrics_collector(DEVICE_CPU, *Env::Default()); absl::Time start_time = metrics_collector.RecordStart(); absl::SleepFor(absl::Seconds(0.5)); auto thread = absl::WrapUnique(Env::Default()->StartThread( {}, "Concurrent metric collection thread", [&metrics_collector]() { absl::Time concurrent_start_time = metrics_collector.RecordStart(); absl::SleepFor(absl::Seconds(2)); metrics_collector.RecordStop(concurrent_start_time, {}); })); absl::SleepFor(absl::Seconds(0.5)); metrics_collector.RecordStop(start_time, {}); absl::SleepFor(absl::Seconds(1.5)); thread.reset(); Histogram latency_histogram = latency.Delta(); EXPECT_FLOAT_EQ(latency_histogram.num(), 2.0); EXPECT_GT(latency_histogram.sum(), absl::ToInt64Microseconds(absl::Seconds(3))); EXPECT_GE(iterator_lifetime.Delta(), absl::ToInt64Microseconds(absl::Seconds(2.5))); EXPECT_LT(iterator_lifetime.Delta(), absl::ToInt64Microseconds(absl::Seconds(2.9))); EXPECT_GE(iterator_busy.Delta(), absl::ToInt64Microseconds(absl::Seconds(2.5))); EXPECT_LT(iterator_busy.Delta(), absl::ToInt64Microseconds(absl::Seconds(2.9))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/metric_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/metric_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2700df4d-b4a5-4d9a-94cd-6f37b3920e1d
cpp
tensorflow/tensorflow
dataset_utils
tensorflow/core/data/dataset_utils.cc
tensorflow/core/data/dataset_utils_test.cc
#include "tensorflow/core/data/dataset_utils.h" #include <algorithm> #include <array> #include <cstdint> #include <cstdlib> #include <functional> #include <memory> #include <queue> #include <random> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/proto_serialization.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/host_info.h" #include "tensorflow/core/platform/regexp.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/util/determinism.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { namespace data { namespace { constexpr char kOutputSize[] = "output_size"; constexpr char kCode[] = "code"; constexpr char kExperimentOptAll[] = "all"; constexpr char kExperimentOptOutAllExceptOptIn[] = "all_except_opt_in"; constexpr char kMessage[] = "msg"; constexpr char kOutput[] = "output"; static mutex* get_dataset_experiment_registry_lock() { static mutex dataset_experiment_registry_lock(LINKER_INITIALIZED); return &dataset_experiment_registry_lock; } static absl::flat_hash_map<string, DatasetExperimentRegistry::ExperimentSelector>* get_dataset_experiments() { static absl::flat_hash_map< string, DatasetExperimentRegistry::ExperimentSelector>* experiments = new absl::flat_hash_map<string, DatasetExperimentRegistry::ExperimentSelector>; return experiments; } constexpr char kMapAndBatchFusionOpt[] = "map_and_batch_fusion"; constexpr char kNoopEliminationOpt[] = "noop_elimination"; constexpr char kMapParallelizationOpt[] = "map_parallelization"; constexpr char kShuffleAndRepeatFusionOpt[] = "shuffle_and_repeat_fusion"; constexpr char kFilterFusionOpt[] = "filter_fusion"; constexpr char kMapAndFilterFusionOpt[] = "map_and_filter_fusion"; constexpr char kMapFusionOpt[] = "map_fusion"; constexpr char kParallelBatchOpt[] = "parallel_batch"; constexpr char kAutotuneBufferSizesOpt[] = "autotune_buffer_sizes"; constexpr char kDisablePrefetchLegacyAutotuneOpt[] = "disable_prefetch_legacy_autotune"; constexpr char kMakeSloppyOpt[] = "make_sloppy"; constexpr char kBatchParallelizationOpt[] = "batch_parallelization"; constexpr char kEnableGradientDescentOpt[] = "enable_gradient_descent"; constexpr char kInjectPrefetchOpt[] = "inject_prefetch"; constexpr char kSeqInterleavePrefetchOpt[] = "seq_interleave_prefetch"; constexpr char kInjectIoPrefetchEligibleOpt[] = "inject_io_prefetch_eligible"; constexpr char kInjectIoPrefetchOpt[] = "inject_io_prefetch"; constexpr char kAutotuneOpt[] = "autotune"; constexpr char kSlackOpt[] = "slack"; constexpr char kSlackPeriodOpt[] = "slack_period"; constexpr char kMakeDeterministicOpt[] = "make_deterministic"; constexpr char kFilterParallelizationOpt[] = "filter_parallelization"; constexpr char kWarmStartOpt[] = "warm_start"; void DefaultOptimizationGraphRewrites( const Options& options, absl::flat_hash_set<tstring>* optimization_enabled, absl::flat_hash_set<tstring>* optimization_disabled, absl::flat_hash_set<tstring>* optimization_default) { const auto& optimization_options = options.optimization_options(); if (optimization_options.optional_apply_default_optimizations_case() != OptimizationOptions::kApplyDefaultOptimizations || optimization_options.apply_default_optimizations()) { if (optimization_options.optional_map_and_batch_fusion_case() != OptimizationOptions::kMapAndBatchFusion) { optimization_default->insert(kMapAndBatchFusionOpt); } if (optimization_options.optional_noop_elimination_case() != OptimizationOptions::kNoopElimination) { optimization_default->insert(kNoopEliminationOpt); } if (optimization_options.optional_map_parallelization_case() != OptimizationOptions::kMapParallelization) { optimization_default->insert(kMapParallelizationOpt); } if (optimization_options.optional_shuffle_and_repeat_fusion_case() != OptimizationOptions::kShuffleAndRepeatFusion) { optimization_default->insert(kShuffleAndRepeatFusionOpt); } if (optimization_options.optional_parallel_batch_case() != OptimizationOptions::kParallelBatch) { optimization_default->insert(kParallelBatchOpt); } if (optimization_options.optional_inject_prefetch_case() != OptimizationOptions::kInjectPrefetch) { optimization_default->insert(kInjectPrefetchOpt); } } if (OpDeterminismRequired()) { optimization_enabled->insert(kMakeDeterministicOpt); } if (optimization_options.optional_filter_fusion_case() == OptimizationOptions::kFilterFusion) { if (optimization_options.filter_fusion()) { optimization_enabled->insert(kFilterFusionOpt); } else { optimization_disabled->insert(kFilterFusionOpt); } } if (optimization_options.optional_map_and_batch_fusion_case() == OptimizationOptions::kMapAndBatchFusion) { if (optimization_options.map_and_batch_fusion()) { optimization_enabled->insert(kMapAndBatchFusionOpt); } else { optimization_disabled->insert(kMapAndBatchFusionOpt); } } if (optimization_options.optional_map_and_filter_fusion_case() == OptimizationOptions::kMapAndFilterFusion) { if (optimization_options.map_and_filter_fusion()) { optimization_enabled->insert(kMapAndFilterFusionOpt); } else { optimization_disabled->insert(kMapAndFilterFusionOpt); } } if (optimization_options.optional_map_parallelization_case() == OptimizationOptions::kMapParallelization) { if (optimization_options.map_parallelization()) { optimization_enabled->insert(kMapParallelizationOpt); } else { optimization_disabled->insert(kMapParallelizationOpt); } } if (optimization_options.optional_filter_parallelization_case() == OptimizationOptions::kFilterParallelization) { if (optimization_options.filter_parallelization()) { optimization_enabled->insert(kFilterParallelizationOpt); } else { optimization_disabled->insert(kFilterParallelizationOpt); } } if (optimization_options.optional_map_fusion_case() == OptimizationOptions::kMapFusion) { if (optimization_options.map_fusion()) { optimization_enabled->insert(kMapFusionOpt); } else { optimization_disabled->insert(kMapFusionOpt); } } if (optimization_options.optional_noop_elimination_case() == OptimizationOptions::kNoopElimination) { if (optimization_options.noop_elimination()) { optimization_enabled->insert(kNoopEliminationOpt); } else { optimization_disabled->insert(kNoopEliminationOpt); } } if (optimization_options.optional_parallel_batch_case() == OptimizationOptions::kParallelBatch) { if (optimization_options.parallel_batch()) { optimization_enabled->insert(kParallelBatchOpt); } else { optimization_disabled->insert(kParallelBatchOpt); } } if (optimization_options.optional_shuffle_and_repeat_fusion_case() == OptimizationOptions::kShuffleAndRepeatFusion) { if (optimization_options.shuffle_and_repeat_fusion()) { optimization_enabled->insert(kShuffleAndRepeatFusionOpt); } else { optimization_disabled->insert(kShuffleAndRepeatFusionOpt); } } if (optimization_options.optional_inject_prefetch_case() == OptimizationOptions::kInjectPrefetch) { if (optimization_options.inject_prefetch()) { optimization_enabled->insert(kInjectPrefetchOpt); } else { optimization_disabled->insert(kInjectPrefetchOpt); } } if (optimization_options.optional_seq_interleave_prefetch_case() == OptimizationOptions::kSeqInterleavePrefetch) { if (optimization_options.seq_interleave_prefetch()) { optimization_enabled->insert(kSeqInterleavePrefetchOpt); } else { optimization_disabled->insert(kSeqInterleavePrefetchOpt); } } } bool IsOpAllowlisted(const OpDef* op_def) { return (op_def->output_arg_size() == 1 && op_def->output_arg(0).type() == DT_VARIANT && (absl::EndsWith(op_def->name(), "Dataset") || absl::EndsWith(op_def->name(), "DatasetV2"))) || AllowlistedStatefulOpRegistry::Global()->Contains(op_def->name()); } } std::pair<int64_t, int64_t> MaybeOverrideSeeds( std::pair<int64_t, int64_t> seeds) { if (seeds.first == 0 && seeds.second == 0) { return {random::New64(), random::New64()}; } return seeds; } Status VerifyTypeMatch(const DataType& expected, const DataType& received, int index) { if (expected != received) { return errors::InvalidArgument("Data type mismatch at component ", index, ": expected ", DataTypeString(expected), " but got ", DataTypeString(received), "."); } return absl::OkStatus(); } Status VerifyTypesMatch(const DataTypeVector& expected, const DataTypeVector& received) { if (expected.size() != received.size()) { return errors::InvalidArgument( "Number of components does not match: expected ", expected.size(), " types but got ", received.size(), "."); } for (size_t i = 0; i < expected.size(); ++i) { TF_RETURN_IF_ERROR(VerifyTypeMatch(expected[i], received[i], i)); } return absl::OkStatus(); } Status VerifyTypesMatch(const DataTypeVector& expected, const std::vector<Tensor>& received) { if (expected.size() != received.size()) { return errors::InvalidArgument( "Number of components does not match: expected ", expected.size(), " types but got ", received.size(), "."); } for (size_t i = 0; i < expected.size(); ++i) { TF_RETURN_IF_ERROR(VerifyTypeMatch(expected[i], received[i].dtype(), i)); } return absl::OkStatus(); } Status VerifyShapeCompatible(const PartialTensorShape& expected, const PartialTensorShape& received, int index) { if (!expected.IsCompatibleWith(received)) { return errors::InvalidArgument("Incompatible shapes at component ", index, ": expected ", expected.DebugString(), " but got ", received.DebugString(), "."); } return absl::OkStatus(); } Status VerifyShapesCompatible(const std::vector<PartialTensorShape>& expected, const std::vector<PartialTensorShape>& received) { if (expected.size() != received.size()) { return errors::InvalidArgument( "Number of components does not match: expected ", expected.size(), " shapes but got ", received.size(), "."); } for (size_t i = 0; i < expected.size(); ++i) { TF_RETURN_IF_ERROR(VerifyShapeCompatible(expected[i], received[i], i)); } return absl::OkStatus(); } Status VerifyShapesCompatible(const std::vector<PartialTensorShape>& expected, const std::vector<Tensor>& received) { if (expected.size() != received.size()) { return errors::InvalidArgument( "Number of components does not match: expected ", expected.size(), " shapes but got ", received.size(), "."); } for (size_t i = 0; i < expected.size(); ++i) { TF_RETURN_IF_ERROR( VerifyShapeCompatible(expected[i], received[i].shape(), i)); } return absl::OkStatus(); } Status AddToFunctionLibrary(FunctionLibraryDefinition* base, const FunctionLibraryDefinition& to_add) { for (const auto& fn : to_add.ListFunctionNames()) { if (auto found = base->Find(fn)) { if (!OpDefEqual(found->signature(), to_add.Find(fn)->signature())) { return errors::InvalidArgument("Cannot add function '", fn, "' because a different function with " "the same signature already exists."); } TF_RETURN_IF_ERROR(base->RemoveFunction(fn)); } } return base->AddLibrary(to_add); } Status AddToFunctionLibrary(FunctionLibraryDefinition* base, const FunctionDefLibrary& to_add) { for (const auto& fd : to_add.function()) { if (auto found = base->Find(fd.signature().name())) { if (!OpDefEqual(found->signature(), fd.signature())) { return errors::InvalidArgument("Cannot add function '", fd.signature().name(), "' because a different function with " "the same signature already exists."); } TF_RETURN_IF_ERROR(base->RemoveFunction(fd.signature().name())); } } return base->AddLibrary(to_add); } Status IsFunctionStateful(const FunctionLibraryDefinition& library, const FunctionDef& function_def) { if (!function_def.signature().is_stateful()) { return absl::OkStatus(); } for (const NodeDef& node_def : function_def.node_def()) { TF_RETURN_IF_ERROR(IsNodeStateful(library, node_def)); } return absl::OkStatus(); } Status IsNodeStateful(const FunctionLibraryDefinition& library, const NodeDef& node) { const OpDef* op_def; if (!OpRegistry::Global()->LookUpOpDef(node.op(), &op_def).ok() || IsOpAllowlisted(op_def) || !op_def->is_stateful() || op_def->name() == "Assert") { return absl::OkStatus(); } if (op_def->name() == "If") { const FunctionDef* then_func = library.Find(node.attr().at("then_branch").func().name()); const FunctionDef* else_func = library.Find(node.attr().at("else_branch").func().name()); if (then_func != nullptr) { TF_RETURN_IF_ERROR(IsFunctionStateful(library, *then_func)); } if (else_func != nullptr) { TF_RETURN_IF_ERROR(IsFunctionStateful(library, *else_func)); } return absl::OkStatus(); } if (op_def->name() == "While") { const FunctionDef* cond_func = library.Find(node.attr().at("cond").func().name()); const FunctionDef* body_func = library.Find(node.attr().at("body").func().name()); if (cond_func != nullptr) { TF_RETURN_IF_ERROR(IsFunctionStateful(library, *cond_func)); } if (body_func != nullptr) { TF_RETURN_IF_ERROR(IsFunctionStateful(library, *body_func)); } return absl::OkStatus(); } return errors::FailedPrecondition(op_def->name(), " is stateful."); } std::function<void(std::function<void()>)> RunnerWithMaxParallelism( std::function<void(std::function<void()>)> runner, int max_parallelism) { return std::bind( [max_parallelism]( const std::function<void(std::function<void()>)>& runner, std::function<void()> fn) { std::function<void()> scoped_fn = std::bind( [max_parallelism](const std::function<void()>& fn) { ScopedPerThreadMaxParallelism scope(max_parallelism); fn(); }, std::move(fn)); runner(std::move(scoped_fn)); }, std::move(runner), std::placeholders::_1); } Status DeterminismPolicy::FromString(const std::string& s, DeterminismPolicy* out) { DeterminismPolicy::Type type; if (s == DeterminismPolicy::kDeterministic) { type = DeterminismPolicy::Type::kDeterministic; } else if (s == DeterminismPolicy::kNondeterministic) { type = DeterminismPolicy::Type::kNondeterministic; } else if (s == DeterminismPolicy::kDefault) { type = DeterminismPolicy::Type::kDefault; } else { return errors::InvalidArgument("Unrecognized determinism policy: ", s); } *out = DeterminismPolicy(type); return absl::OkStatus(); } DeterminismPolicy::DeterminismPolicy(bool is_deterministic) { if (is_deterministic) { determinism_ = DeterminismPolicy::Type::kDeterministic; } else { determinism_ = DeterminismPolicy::Type::kNondeterministic; } } std::string DeterminismPolicy::String() const { switch (determinism_) { case DeterminismPolicy::Type::kDeterministic: return DeterminismPolicy::kDeterministic; case DeterminismPolicy::Type::kNondeterministic: return DeterminismPolicy::kNondeterministic; case DeterminismPolicy::Type::kDefault: return DeterminismPolicy::kDefault; default: LOG(ERROR) << "Unrecognized determinism value"; return "Unrecognized"; } } bool MatchesAnyVersion(StringPiece op_prefix, StringPiece op_to_match) { if (!absl::StartsWith(op_to_match, op_prefix)) { return false; } if (op_to_match.length() == op_prefix.length()) { return true; } size_t index = op_to_match.length() - 1; while (isdigit(op_to_match[index])) { index--; } return (op_to_match[index] == 'V') && (op_prefix.length() == index); } absl::flat_hash_set<string> GetExperiments() { return GetExperiments(tsl::port::JobName(), tsl::port::TaskId(), [](const tstring& str) { return Hash64(str); }); } absl::flat_hash_set<string> GetExperiments( const string& job_name, int64_t task_id, std::function<uint64_t(const string&)> hash_func) { absl::flat_hash_set<string> experiments; if (job_name.empty() || task_id < 0) { return experiments; } const char* opt_ins_raw_cs = std::getenv("TF_DATA_EXPERIMENT_OPT_IN"); const char* opt_outs_raw_cs = std::getenv("TF_DATA_EXPERIMENT_OPT_OUT"); string opt_ins_raw; if (opt_ins_raw_cs != nullptr) { opt_ins_raw = string(opt_ins_raw_cs); } string opt_outs_raw; if (opt_outs_raw_cs != nullptr) { opt_outs_raw = string(opt_outs_raw_cs); } auto live_experiments = DatasetExperimentRegistry::Experiments(); for (const auto& [experiment, unused] : live_experiments) { metrics::RecordTFDataExperimentLive(experiment); } absl::flat_hash_set<string> opt_outs; if (opt_outs_raw == kExperimentOptAll) { for (const auto& pair : live_experiments) { opt_outs.insert(pair.first); } metrics::RecordTFDataExperimentOptOut(kExperimentOptAll); } else { for (const auto& experiment : str_util::Split(opt_outs_raw, ',', str_util::SkipEmpty())) { opt_outs.insert(experiment); metrics::RecordTFDataExperimentOptOut(experiment); } } if (opt_ins_raw == kExperimentOptAll) { for (const auto& pair : live_experiments) { auto experiment = pair.first; if (!opt_outs.contains(experiment)) { experiments.insert(experiment); } } metrics::RecordTFDataExperimentOptIn(kExperimentOptAll); } else { for (const auto& experiment : str_util::Split(opt_ins_raw, ',', str_util::SkipEmpty())) { if (!opt_outs.contains(experiment)) { experiments.insert(experiment); } metrics::RecordTFDataExperimentOptIn(experiment); } } if (opt_outs_raw == kExperimentOptOutAllExceptOptIn) { metrics::RecordTFDataExperimentOptOut(kExperimentOptOutAllExceptOptIn); return experiments; } for (const auto& [experiment_name, experiment_selector] : live_experiments) { uint64_t name_hash = hash_func(strings::StrCat(job_name, experiment_name)); std::mt19937_64 rng{name_hash}; std::bernoulli_distribution d{0.5}; bool evens = d(rng); if (experiment_selector.job_selector(name_hash) && experiment_selector.task_selector(task_id, evens) && !opt_outs.contains(experiment_name)) { experiments.insert(experiment_name); } } return experiments; } void LogAndRecordExperiments(const absl::flat_hash_set<string>& experiments) { if (!experiments.empty()) { constexpr float TEN_MINUTES = 60.0 * 10.0; LOG_EVERY_N_SEC(INFO, TEN_MINUTES) << "The input pipeline is subject to the following tf.data experiments:" << " " << absl::StrJoin(experiments, ", ") << ". " << "See `go/tf-data-experiments` for more details."; } for (auto& experiment : experiments) { metrics::RecordTFDataExperiment(experiment); } } void GetOptimizations(const Options& options, absl::flat_hash_set<tstring>* optimizations_enabled, absl::flat_hash_set<tstring>* optimizations_disabled, absl::flat_hash_set<tstring>* optimizations_default) { DefaultOptimizationGraphRewrites(options, optimizations_enabled, optimizations_disabled, optimizations_default); if (!OpDeterminismRequired() && options.optional_deterministic_case() == Options::kDeterministic && !options.deterministic()) { optimizations_enabled->insert(kMakeSloppyOpt); } if (options.optional_slack_case() == Options::kSlack) { if (options.slack()) { optimizations_enabled->insert(kSlackOpt); } else { optimizations_disabled->insert(kSlackOpt); } } if (options.optional_warm_start_case() == Options::kWarmStart) { if (options.warm_start()) { optimizations_enabled->insert(kWarmStartOpt); } else { optimizations_disabled->insert(kWarmStartOpt); } } } Tensor MaybeCopySubSlice(const Tensor& tensor, int64 index) { Tensor slice = tensor.SubSlice(index); if (slice.IsAligned()) { return slice; } else { return tensorflow::tensor::DeepCopy(slice); } } void StripDevicePlacement(FunctionDefLibrary* library) { for (auto& function : (*library->mutable_function())) { for (auto& node : (*function.mutable_node_def())) { if (!node.device().empty()) { *node.mutable_device() = ""; } } } } Status CopyPartialBatch(int64_t num_elements, const Tensor& value, Tensor* output) { switch (value.dtype()) { #define HANDLE_TYPE(type) \ case DataTypeToEnum<type>::value: { \ auto output_t = output->flat_outer_dims<type>(); \ auto value_t = value.flat_outer_dims<type>(); \ for (size_t i = 0; i < num_elements; i++) { \ output_t.template chip<0>(i) = value_t.template chip<0>(i); \ } \ return OkStatus(); \ } TF_CALL_DATASET_TYPES(HANDLE_TYPE); #undef HANDLE_TYPE default: return errors::InvalidArgument("Unsupported data type: ", DataTypeString(value.dtype())); } return absl::OkStatus(); } Status ReadBatch(IteratorContext* ctx, IteratorStateReader* reader, int64_t batch_size, const string& iterator_prefix, const string& batch_prefix, std::vector<Tensor>* batch) { int64_t output_size; TF_RETURN_IF_ERROR(reader->ReadScalar( FullName(iterator_prefix, strings::StrCat(batch_prefix, "_", kOutputSize)), &output_size)); batch->reserve(output_size); for (int i = 0; i < output_size; i++) { Tensor t; TF_RETURN_IF_ERROR( reader->ReadTensor(ctx->flr(), FullName(iterator_prefix, batch_prefix), strings::StrCat(kOutput, "_", i), &t)); if (t.dim_size(0) < batch_size) { TensorShape component_shape(t.shape()); component_shape.set_dim(0, batch_size); AllocatorAttributes attr; attr.set_gpu_compatible(true); Tensor new_t(ctx->allocator(attr), t.dtype(), component_shape); TF_RETURN_IF_ERROR(CopyPartialBatch(t.dim_size(0), t, &new_t)); batch->emplace_back(std::move(new_t)); } else { batch->emplace_back(std::move(t)); } } return absl::OkStatus(); } Status WriteBatch(int64_t batch_size, int64_t num_elements, const string& iterator_prefix, const string& batch_prefix, IteratorStateWriter* writer, std::vector<Tensor>* batch) { TF_RETURN_IF_ERROR(writer->WriteScalar( FullName(iterator_prefix, strings::StrCat(batch_prefix, "_", kOutputSize)), batch->size())); for (int i = 0; i < batch->size(); i++) { if (num_elements < batch_size) { TF_RETURN_IF_ERROR( writer->WriteTensor(FullName(iterator_prefix, batch_prefix), strings::StrCat(kOutput, "_", i), (*batch)[i].Slice(0, num_elements))); } else { TF_RETURN_IF_ERROR( writer->WriteTensor(FullName(iterator_prefix, batch_prefix), strings::StrCat(kOutput, "_", i), (*batch)[i])); } } return absl::OkStatus(); } Status ReadStatus(const string& iterator_prefix, const string& prefix, IteratorStateReader* reader, Status* status) { int64_t code_int; TF_RETURN_IF_ERROR(reader->ReadScalar( FullName(iterator_prefix, strings::StrCat(prefix, "_", kCode)), &code_int)); absl::StatusCode code = static_cast<absl::StatusCode>(code_int); if (code != absl::StatusCode::kOk) { tstring error_message; TF_RETURN_IF_ERROR(reader->ReadScalar( FullName(iterator_prefix, strings::StrCat(prefix, "_", kMessage)), &error_message)); *status = Status(code, error_message); } else { *status = absl::OkStatus(); } return absl::OkStatus(); } Status WriteStatus(const string& iterator_prefix, const string& prefix, const Status& status, IteratorStateWriter* writer) { TF_RETURN_IF_ERROR(writer->WriteScalar( FullName(iterator_prefix, strings::StrCat(prefix, "_", kCode)), static_cast<int64_t>(status.code()))); if (!status.ok()) { TF_RETURN_IF_ERROR(writer->WriteScalar( FullName(iterator_prefix, strings::StrCat(prefix, "_", kMessage)), std::string(status.message()))); } return absl::OkStatus(); } Status ProcessBatch(int64_t batch_size, int64_t num_elements, bool drop_remainder, const Status& status, IteratorContext* ctx, std::vector<Tensor>* output, bool* end_of_sequence, std::vector<Tensor>* batch) { if (num_elements == 0) { if (status.ok() || absl::IsOutOfRange(status)) { *end_of_sequence = true; return absl::OkStatus(); } else { *end_of_sequence = false; return status; } } if (!status.ok() && !absl::IsOutOfRange(status)) { *end_of_sequence = false; return status; } if (num_elements < batch_size) { if (drop_remainder) { *end_of_sequence = true; return absl::OkStatus(); } for (size_t i = 0; i < batch->size(); ++i) { TensorShape component_shape((*batch)[i].shape()); component_shape.set_dim(0, num_elements); AllocatorAttributes attr; attr.set_gpu_compatible(true); output->emplace_back(ctx->allocator(attr), (*batch)[i].dtype(), component_shape); if (!output->back().IsInitialized()) { return errors::ResourceExhausted( "Failed to allocate memory for the batch of component ", i); } TF_RETURN_IF_ERROR( CopyPartialBatch(num_elements, (*batch)[i], &output->back())); } } else { *output = std::move(*batch); } *end_of_sequence = false; return absl::OkStatus(); } Status CopyBatch(AnyContext ctx, std::vector<std::vector<Tensor>>&& batch_elements, bool parallel_copy, std::vector<Tensor>* out_tensors) { const size_t num_tuple_components = batch_elements.at(0).size(); out_tensors->reserve(num_tuple_components); const int64_t num_batch_elements = batch_elements.size(); for (size_t component_index = 0; component_index < num_tuple_components; ++component_index) { const Tensor& first_element = batch_elements.at(0)[component_index]; TensorShape first_element_shape(first_element.shape()); TensorShape batch_component_shape({num_batch_elements}); batch_component_shape.AppendShape(first_element_shape); out_tensors->emplace_back(ctx.allocator, first_element.dtype(), batch_component_shape); if (!out_tensors->back().IsInitialized()) { return errors::ResourceExhausted( "Failed to allocate memory for the batch of component ", component_index); } } for (size_t component_index = 0; component_index < num_tuple_components; ++component_index) { Tensor& batch_component = out_tensors->at(component_index); const Tensor& first_element = batch_elements.at(0)[component_index]; TensorShape first_element_shape(first_element.shape()); auto copy_element_fn = [component_index, &batch_elements, &batch_component, &first_element_shape](int index) { if (batch_elements.at(index)[component_index].shape() != first_element_shape) { return errors::InvalidArgument( "Cannot batch tensors with different shapes in component ", component_index, ". First element had shape ", first_element_shape.DebugString(), " and element ", index, " had shape ", batch_elements.at(index)[component_index].shape().DebugString(), "."); } return batch_util::CopyElementToSlice( std::move(batch_elements.at(index)[component_index]), &batch_component, index); }; const auto total_bytes = first_element.AllocatedBytes() * num_batch_elements; if (parallel_copy && total_bytes >= (1 << 20)) { Status status; mutex status_mu; const auto num_threads = ctx.runner_threadpool_size; const auto slice_size = num_batch_elements / num_threads; int64_t offset = 0; BlockingCounter counter(num_threads); for (size_t i = 0; i < num_threads; ++i) { int64_t length = slice_size; if (i < num_batch_elements % num_threads) ++length; (*ctx.runner)([offset, length, &status, &status_mu, &counter, &copy_element_fn]() { Status s; for (size_t j = offset; j < offset + length; ++j) { s.Update(copy_element_fn(j)); } { mutex_lock l(status_mu); status.Update(s); } counter.DecrementCount(); }); offset += length; } counter.Wait(); TF_RETURN_IF_ERROR(status); } else { for (size_t i = 0; i < num_batch_elements; ++i) { TF_RETURN_IF_ERROR(copy_element_fn(i)); } } } return absl::OkStatus(); } absl::flat_hash_set<tstring> CreateGraphRewriteConfigs(const Options& options) { absl::flat_hash_set<tstring> configs; const auto& autotune_options = options.autotune_options(); std::array<tstring, 11> autotune_only_optimizations = { kAutotuneBufferSizesOpt, kBatchParallelizationOpt, kDisablePrefetchLegacyAutotuneOpt, kEnableGradientDescentOpt, kFilterParallelizationOpt, kMapParallelizationOpt, kMapFusionOpt, kSeqInterleavePrefetchOpt, kInjectPrefetchOpt, kInjectIoPrefetchEligibleOpt, kInjectIoPrefetchOpt}; if (autotune_options.optional_enabled_case() == AutotuneOptions::kEnabled && !autotune_options.enabled()) { for (const auto& optimization : autotune_only_optimizations) { configs.insert( absl::StrCat(optimization.data(), ":", kAutotuneOpt, ":false")); } } else { for (const auto& optimization : autotune_only_optimizations) { configs.insert( absl::StrCat(optimization.data(), ":", kAutotuneOpt, ":true")); } } if (options.slack()) { int num_devices = 1; if (options.distribute_options().optional_num_devices_case() == DistributeOptions::kNumDevices) { num_devices = options.distribute_options().num_devices(); } configs.insert( absl::StrCat(kSlackOpt, ":", kSlackPeriodOpt, ":", num_devices)); } return configs; } bool ShouldConfigureMaxIntraOpParallelism(const Options& options) { return options.threading_options().optional_max_intra_op_parallelism_case() == ThreadingOptions::kMaxIntraOpParallelism; } bool ShouldUsePrivateThreadPool(const Options& options) { return options.threading_options().optional_private_threadpool_size_case() == ThreadingOptions::kPrivateThreadpoolSize; } bool ShouldUseAutotuning(const Options& options) { return options.autotune_options().optional_enabled_case() != AutotuneOptions::kEnabled || options.autotune_options().enabled(); } bool ShouldApplyOptimizations( const Options& options, const absl::flat_hash_set<tstring>& optimizations_enabled, const absl::flat_hash_set<tstring>& optimizations_default) { return (options.optimization_options() .optional_apply_default_optimizations_case() != OptimizationOptions::kApplyDefaultOptimizations || options.optimization_options().apply_default_optimizations() || !optimizations_enabled.empty() || !optimizations_default.empty()); } int64 GetAutotuneDefaultParallelism(IteratorContext* ctx) { int64_t initial_parallelism = 16; if (ctx->options()) { int64_t initial_parallelism_option = ctx->options()->autotune_options().initial_parallelism(); if (initial_parallelism_option > 0) { initial_parallelism = initial_parallelism_option; } } int64_t runner_threadpool_size = ctx->runner_threadpool_size(); int64_t value = std::min(initial_parallelism, runner_threadpool_size); return value; } IteratorContext MakeNestedIteratorContext(IteratorContext* ctx) { if (ctx->split_providers().empty()) { return *ctx; } IteratorContext::Params params(ctx); params.split_providers.clear(); return IteratorContext(std::move(params)); } void DatasetExperimentRegistry::Register(const string& experiment, JobSelector job_selector, TaskSelector task_selector) { mutex_lock l(*get_dataset_experiment_registry_lock()); get_dataset_experiments()->insert( std::make_pair(experiment, DatasetExperimentRegistry::ExperimentSelector{ job_selector, task_selector})); } absl::flat_hash_map<string, DatasetExperimentRegistry::ExperimentSelector> DatasetExperimentRegistry::Experiments() { mutex_lock l(*get_dataset_experiment_registry_lock()); return *get_dataset_experiments(); } bool AllTasks(int64_t unused_task_id, bool unused_evens) { return true; } bool IndependentHostTasks(int64_t task_id, bool evens) { int64_t lhs = task_id & 0x2; int64_t rhs = 0x2; return evens ? lhs != rhs : lhs == rhs; } namespace { REGISTER_DATASET_EXPERIMENT("noop_task_level", RandomJobSamplePercentage<50>, IndependentHostTasks); REGISTER_DATASET_EXPERIMENT("noop_job_level", RandomJobSamplePercentage<50>, AllTasks); REGISTER_DATASET_EXPERIMENT("allow_small_function_optimizations", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("autotune_buffer_optimization", RandomJobSamplePercentage<0>, IndependentHostTasks); REGISTER_DATASET_EXPERIMENT(kFilterParallelizationOpt, RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("min_outer_interleave_parallelism", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("reduce_interleave_prefetch", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("serialize_input_cycle_length", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("stage_based_autotune", RandomJobSamplePercentage<0>, IndependentHostTasks); REGISTER_DATASET_EXPERIMENT("stage_based_autotune_v2", RandomJobSamplePercentage<0>, IndependentHostTasks); REGISTER_DATASET_EXPERIMENT("data_transfer", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("file_locality", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("file_locality_v2", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("no_compression", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("no_compression_v2", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("inject_io_prefetch", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("map_fusion", RandomJobSamplePercentage<0>, IndependentHostTasks); } } }
#include "tensorflow/core/data/dataset_utils.h" #include <functional> #include <memory> #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "xla/tsl/util/determinism_test_util.h" #include "tensorflow/core/data/compression_utils.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/test_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/util/work_sharder.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(DatasetUtilsTest, MatchesAnyVersion) { EXPECT_TRUE(MatchesAnyVersion("BatchDataset", "BatchDataset")); EXPECT_TRUE(MatchesAnyVersion("BatchDataset", "BatchDatasetV2")); EXPECT_TRUE(MatchesAnyVersion("BatchDataset", "BatchDatasetV3")); EXPECT_FALSE(MatchesAnyVersion("BatchDataset", "BatchDatasetXV3")); EXPECT_FALSE(MatchesAnyVersion("BatchDataset", "BatchV2Dataset")); EXPECT_FALSE(MatchesAnyVersion("BatchDataset", "PaddedBatchDataset")); } TEST(DatasetUtilsTest, AddToFunctionLibrary) { auto make_fn_a = [](const string& fn_name) { return FunctionDefHelper::Create( fn_name, {"arg: int64"}, {"ret: int64"}, {}, {{{"node"}, "Identity", {"arg"}, {{"T", DT_INT64}}}}, {{"ret", "node:output:0"}}); }; auto make_fn_b = [](const string& fn_name) { return FunctionDefHelper::Create( fn_name, {"arg: int64"}, {"ret: int64"}, {}, {{{"node"}, "Identity", {"arg"}, {{"T", DT_INT64}}}, {{"node2"}, "Identity", {"node:output:0"}, {{"T", DT_INT64}}}}, {{"ret", "node2:output:0"}}); }; FunctionDefLibrary fdef_base; *fdef_base.add_function() = make_fn_a("0"); *fdef_base.add_function() = make_fn_a("1"); *fdef_base.add_function() = make_fn_a("2"); FunctionDefLibrary fdef_to_add; *fdef_to_add.add_function() = make_fn_b("0"); *fdef_to_add.add_function() = make_fn_a("1"); *fdef_to_add.add_function() = make_fn_b("3"); FunctionLibraryDefinition flib_0(OpRegistry::Global(), fdef_base); TF_ASSERT_OK(AddToFunctionLibrary(&flib_0, fdef_to_add)); FunctionLibraryDefinition flib_1(OpRegistry::Global(), fdef_base); FunctionLibraryDefinition flib_to_add(OpRegistry::Global(), fdef_to_add); TF_ASSERT_OK(AddToFunctionLibrary(&flib_1, flib_to_add)); for (const auto& flib : {flib_0, flib_1}) { EXPECT_TRUE(FunctionDefsEqual(*flib.Find("0"), make_fn_b("0"))); EXPECT_TRUE(FunctionDefsEqual(*flib.Find("1"), make_fn_a("1"))); EXPECT_TRUE(FunctionDefsEqual(*flib.Find("2"), make_fn_a("2"))); EXPECT_TRUE(FunctionDefsEqual(*flib.Find("3"), make_fn_b("3"))); } } TEST(DatasetUtilsTest, AddToFunctionLibraryWithConflictingSignatures) { FunctionDefLibrary fdef_base; *fdef_base.add_function() = FunctionDefHelper::Create( "0", {"arg: int64"}, {"ret: int64"}, {}, {}, {{"ret", "arg"}}); FunctionDefLibrary fdef_to_add; *fdef_to_add.add_function() = FunctionDefHelper::Create( "0", {"arg: int64"}, {"ret: int64", "ret2: int64"}, {}, {}, {{"ret", "arg"}, {"ret2", "arg"}}); FunctionLibraryDefinition flib_0(OpRegistry::Global(), fdef_base); Status s = AddToFunctionLibrary(&flib_0, fdef_to_add); EXPECT_EQ(error::Code::INVALID_ARGUMENT, s.code()); EXPECT_EQ( "Cannot add function '0' because a different function with the same " "signature already exists.", s.message()); FunctionLibraryDefinition flib_1(OpRegistry::Global(), fdef_base); FunctionLibraryDefinition flib_to_add(OpRegistry::Global(), fdef_to_add); s = AddToFunctionLibrary(&flib_1, flib_to_add); EXPECT_EQ(error::Code::INVALID_ARGUMENT, s.code()); EXPECT_EQ( "Cannot add function '0' because a different function with the same " "signature already exists.", s.message()); } TEST(DatasetUtilsTest, StripDevicePlacement) { FunctionDefLibrary flib; *flib.add_function() = FunctionDefHelper::Create( "0", {"arg: int64"}, {"ret: int64"}, {}, {{{"node"}, "Identity", {"arg"}, {{"T", DT_INT64}}, {}, "device:CPU:0"}}, {{"ret", "arg"}}); EXPECT_EQ(flib.function(0).node_def(0).device(), "device:CPU:0"); StripDevicePlacement(&flib); EXPECT_EQ(flib.function(0).node_def(0).device(), ""); } TEST(DatasetUtilsTest, RunnerWithMaxParallelism) { auto runner = RunnerWithMaxParallelism([](const std::function<void()> fn) { fn(); }, 2); auto fn = []() { ASSERT_EQ(GetPerThreadMaxParallelism(), 2); }; runner(fn); } TEST(DatasetUtilsTest, ParseDeterminismPolicy) { DeterminismPolicy determinism; TF_ASSERT_OK(DeterminismPolicy::FromString("true", &determinism)); EXPECT_TRUE(determinism.IsDeterministic()); TF_ASSERT_OK(DeterminismPolicy::FromString("false", &determinism)); EXPECT_TRUE(determinism.IsNondeterministic()); TF_ASSERT_OK(DeterminismPolicy::FromString("default", &determinism)); EXPECT_TRUE(determinism.IsDefault()); } TEST(DatasetUtilsTest, DeterminismString) { for (auto s : {"true", "false", "default"}) { DeterminismPolicy determinism; TF_ASSERT_OK(DeterminismPolicy::FromString(s, &determinism)); EXPECT_TRUE(s == determinism.String()); } } TEST(DatasetUtilsTest, BoolConstructor) { EXPECT_TRUE(DeterminismPolicy(true).IsDeterministic()); EXPECT_FALSE(DeterminismPolicy(true).IsNondeterministic()); EXPECT_FALSE(DeterminismPolicy(true).IsDefault()); EXPECT_TRUE(DeterminismPolicy(false).IsNondeterministic()); EXPECT_FALSE(DeterminismPolicy(false).IsDeterministic()); EXPECT_FALSE(DeterminismPolicy(false).IsDefault()); } class TestSplitProvider : public SplitProvider { public: Status GetNext(Tensor* split, bool* end_of_splits) override { return absl::OkStatus(); } Status Reset() override { return absl::OkStatus(); } Status Save(std::function<std::string(std::string)> key_name_fn, IteratorStateWriter* writer) override { return absl::OkStatus(); } Status Restore(std::function<std::string(std::string)> key_name_fn, IteratorStateReader* reader) override { return absl::OkStatus(); } }; TEST(DatasetUtilsTest, MakeNestedIteratorContext) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TestContext> test_ctx, TestContext::Create()); IteratorContext::Params params(test_ctx->op_ctx()); params.split_providers.push_back(std::make_unique<TestSplitProvider>()); IteratorContext iter_ctx(params); IteratorContext nested_ctx = MakeNestedIteratorContext(&iter_ctx); EXPECT_FALSE(iter_ctx.split_providers().empty()); EXPECT_TRUE(nested_ctx.split_providers().empty()); } REGISTER_DATASET_EXPERIMENT("test_only_experiment_0", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_1", RandomJobSamplePercentage<1>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_5", RandomJobSamplePercentage<5>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_10", RandomJobSamplePercentage<10>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_50", RandomJobSamplePercentage<50>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_99", RandomJobSamplePercentage<99>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_100", RandomJobSamplePercentage<100>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_task_experiment_100", RandomJobSamplePercentage<100>, IndependentHostTasks); struct GetExperimentsHashTestCase { uint64 hash; std::vector<string> expected_in; std::vector<string> expected_out; }; class GetExperimentsHashTest : public ::testing::TestWithParam<GetExperimentsHashTestCase> {}; TEST_P(GetExperimentsHashTest, DatasetUtils) { const GetExperimentsHashTestCase test_case = GetParam(); uint64 hash_result = test_case.hash; const std::string job_name = "job"; const int64_t task_id = 0; auto hash_func = [hash_result](const string& str) { return hash_result; }; auto experiments = GetExperiments(job_name, task_id, hash_func); absl::flat_hash_set<string> experiment_set(experiments.begin(), experiments.end()); for (const auto& experiment : test_case.expected_in) { EXPECT_TRUE(experiment_set.find(experiment) != experiment_set.end()) << "experiment=" << experiment << " hash=" << hash_result; } for (const auto& experiment : test_case.expected_out) { EXPECT_TRUE(experiment_set.find(experiment) == experiment_set.end()) << "experiment=" << experiment << " hash=" << hash_result; } } INSTANTIATE_TEST_SUITE_P( Test, GetExperimentsHashTest, ::testing::Values<GetExperimentsHashTestCase>( GetExperimentsHashTestCase{ 0, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0"}, }, GetExperimentsHashTestCase{ 5, {"test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, { "test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", }, }, GetExperimentsHashTestCase{ 95, {"test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50"}, }, GetExperimentsHashTestCase{ 99, {"test_only_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99"}, }, GetExperimentsHashTestCase{ 100, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0"}, }, GetExperimentsHashTestCase{ 105, {"test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, { "test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", }, }, GetExperimentsHashTestCase{ 195, {"test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50"}, })); struct GetExperimentsOptTestCase { std::vector<string> opt_ins; std::vector<string> opt_outs; std::vector<string> expected_in; std::vector<string> expected_out; }; class GetExperimentsOptTest : public ::testing::TestWithParam<GetExperimentsOptTestCase> {}; TEST_P(GetExperimentsOptTest, DatasetUtils) { const GetExperimentsOptTestCase test_case = GetParam(); auto opt_ins = test_case.opt_ins; auto opt_outs = test_case.opt_outs; if (!opt_ins.empty()) { setenv("TF_DATA_EXPERIMENT_OPT_IN", absl::StrJoin(opt_ins, ",").c_str(), 1); } if (!opt_outs.empty()) { setenv("TF_DATA_EXPERIMENT_OPT_OUT", absl::StrJoin(opt_outs, ",").c_str(), 1); } const std::string job_name = "job"; const int64_t task_id = 0; auto hash_func = [](const string& str) { return 0; }; auto experiments = GetExperiments(job_name, task_id, hash_func); absl::flat_hash_set<string> experiment_set(experiments.begin(), experiments.end()); for (const auto& experiment : test_case.expected_in) { EXPECT_TRUE(experiment_set.find(experiment) != experiment_set.end()) << "experiment=" << experiment << " opt_ins={" << absl::StrJoin(opt_ins, ",") << "} opt_outs={" << absl::StrJoin(opt_outs, ",") << "}"; } for (const auto& experiment : test_case.expected_out) { EXPECT_TRUE(experiment_set.find(experiment) == experiment_set.end()) << "experiment=" << experiment << " opt_ins={" << absl::StrJoin(opt_ins, ",") << "} opt_outs={" << absl::StrJoin(opt_outs, ",") << "}"; } if (!opt_ins.empty()) { unsetenv("TF_DATA_EXPERIMENT_OPT_IN"); } if (!opt_outs.empty()) { unsetenv("TF_DATA_EXPERIMENT_OPT_OUT"); } } INSTANTIATE_TEST_SUITE_P( Test, GetExperimentsOptTest, ::testing::Values<GetExperimentsOptTestCase>( GetExperimentsOptTestCase{ {"all"}, {"all"}, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}}, GetExperimentsOptTestCase{ {"all"}, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {}}, GetExperimentsOptTestCase{ {"all"}, {"test_only_experiment_1", "test_only_experiment_99"}, {"test_only_experiment_0", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_100"}, {"test_only_experiment_1", "test_only_experiment_99"}}, GetExperimentsOptTestCase{ {}, {"all"}, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}}, GetExperimentsOptTestCase{ {}, {}, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0"}}, GetExperimentsOptTestCase{ {}, {"test_only_experiment_1", "test_only_experiment_99"}, {"test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_99"}}, GetExperimentsOptTestCase{ {"test_only_experiment_0", "test_only_experiment_100"}, {"all"}, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}}, GetExperimentsOptTestCase{ {"test_only_experiment_0", "test_only_experiment_100"}, {"all_except_opt_in"}, {"test_only_experiment_0", "test_only_experiment_100"}, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99"}}, GetExperimentsOptTestCase{ {"test_only_experiment_0", "test_only_experiment_100"}, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {}}, GetExperimentsOptTestCase{ {"test_only_experiment_0", "test_only_experiment_100"}, {"test_only_experiment_1", "test_only_experiment_99"}, {"test_only_experiment_0", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_100"}, {"test_only_experiment_1", "test_only_experiment_99"}})); struct GetExperimentsJobNameTestCase { uint64_t hash; string job_name; int64_t task_id; std::vector<string> expected_in; std::vector<string> expected_out; }; class GetExperimentsJobNameTest : public ::testing::TestWithParam<GetExperimentsJobNameTestCase> {}; TEST_P(GetExperimentsJobNameTest, DatasetUtils) { const GetExperimentsJobNameTestCase test_case = GetParam(); auto job_name = test_case.job_name; auto task_id = test_case.task_id; uint64 hash_result = test_case.hash; auto hash_func = [hash_result](const string& str) { return hash_result; }; auto experiments = GetExperiments(job_name, task_id, hash_func); absl::flat_hash_set<string> experiment_set(experiments.begin(), experiments.end()); for (const auto& experiment : test_case.expected_in) { EXPECT_TRUE(experiment_set.find(experiment) != experiment_set.end()) << "experiment=" << experiment << " job_name=" << job_name; } for (const auto& experiment : test_case.expected_out) { EXPECT_TRUE(experiment_set.find(experiment) == experiment_set.end()) << "experiment=" << experiment << " job_name=" << job_name; } } INSTANTIATE_TEST_SUITE_P( Test, GetExperimentsJobNameTest, ::testing::Values( GetExperimentsJobNameTestCase{ 0, "", 0, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 0, "", -1, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 0, "", 2, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 0, "job_name", -1, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 0, "job_name", 0, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}, {"test_only_experiment_0"}}, GetExperimentsJobNameTestCase{ 0, "job_name", 1, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}, {"test_only_experiment_0"}}, GetExperimentsJobNameTestCase{ 0, "job_name", 2, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 95, "job_name", 1, {"test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 95, "job_name", 2, {"test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50"}})); struct GetOptimizationsTestCase { Options options; std::vector<string> expected_enabled; std::vector<string> expected_disabled; std::vector<string> expected_default; }; GetOptimizationsTestCase GetOptimizationTestCase1() { return { Options(), {}, {}, {"noop_elimination", "map_and_batch_fusion", "shuffle_and_repeat_fusion", "map_parallelization", "parallel_batch", "inject_prefetch"}}; } GetOptimizationsTestCase GetOptimizationTestCase2() { Options options; options.mutable_optimization_options()->set_apply_default_optimizations( false); return {options, {}, {}, {}}; } GetOptimizationsTestCase GetOptimizationTestCase3() { Options options; options.set_deterministic(false); options.mutable_optimization_options()->set_map_and_batch_fusion(true); options.mutable_optimization_options()->set_map_parallelization(false); options.mutable_optimization_options()->set_parallel_batch(false); return {options, {"make_sloppy", "map_and_batch_fusion"}, {"parallel_batch", "map_parallelization"}, {"noop_elimination", "shuffle_and_repeat_fusion", "inject_prefetch"}}; } GetOptimizationsTestCase GetOptimizationTestCase4() { Options options; options.set_deterministic(false); options.mutable_optimization_options()->set_filter_fusion(true); options.mutable_optimization_options()->set_filter_parallelization(true); options.mutable_optimization_options()->set_map_and_batch_fusion(true); options.mutable_optimization_options()->set_map_and_filter_fusion(true); options.mutable_optimization_options()->set_map_fusion(true); options.mutable_optimization_options()->set_map_parallelization(true); options.mutable_optimization_options()->set_noop_elimination(true); options.mutable_optimization_options()->set_parallel_batch(true); options.mutable_optimization_options()->set_shuffle_and_repeat_fusion(true); options.mutable_optimization_options()->set_inject_prefetch(true); options.mutable_optimization_options()->set_seq_interleave_prefetch(true); options.set_slack(true); return {options, {"filter_fusion", "filter_parallelization", "make_sloppy", "map_and_batch_fusion", "map_and_filter_fusion", "map_fusion", "map_parallelization", "noop_elimination", "parallel_batch", "shuffle_and_repeat_fusion", "slack", "inject_prefetch", "seq_interleave_prefetch"}, {}, {}}; } class GetOptimizationsTest : public ::testing::TestWithParam<GetOptimizationsTestCase> {}; TEST_P(GetOptimizationsTest, DatasetUtils) { const GetOptimizationsTestCase test_case = GetParam(); auto options = test_case.options; absl::flat_hash_set<tstring> actual_enabled, actual_disabled, actual_default; GetOptimizations(options, &actual_enabled, &actual_disabled, &actual_default); EXPECT_THAT(std::vector<string>(actual_enabled.begin(), actual_enabled.end()), ::testing::UnorderedElementsAreArray(test_case.expected_enabled)); EXPECT_THAT( std::vector<string>(actual_disabled.begin(), actual_disabled.end()), ::testing::UnorderedElementsAreArray(test_case.expected_disabled)); EXPECT_THAT(std::vector<string>(actual_default.begin(), actual_default.end()), ::testing::UnorderedElementsAreArray(test_case.expected_default)); } INSTANTIATE_TEST_SUITE_P(Test, GetOptimizationsTest, ::testing::Values(GetOptimizationTestCase1(), GetOptimizationTestCase2(), GetOptimizationTestCase3(), GetOptimizationTestCase4())); TEST(DeterministicOpsTest, GetOptimizations) { #if !defined(__APPLE__) tsl::test::DeterministicOpsScope det_scope; Options options; options.set_deterministic(false); absl::flat_hash_set<tstring> actual_enabled, actual_disabled, actual_default; GetOptimizations(options, &actual_enabled, &actual_disabled, &actual_default); EXPECT_THAT(std::vector<string>(actual_enabled.begin(), actual_enabled.end()), ::testing::UnorderedElementsAreArray({"make_deterministic"})); EXPECT_EQ(actual_disabled.size(), 0); #endif } REGISTER_DATASET_EXPERIMENT("test_only_experiment", RandomJobSamplePercentage<42>, AllTasks); TEST(DatasetUtilsTest, DatasetExperimentRegistry) { auto experiments = DatasetExperimentRegistry::Experiments(); EXPECT_TRUE(experiments.find("test_only_experiment") != experiments.end()); EXPECT_TRUE(experiments.find("non_existing_experiment") == experiments.end()); } TEST(DatasetUtilsTest, CountBytes) { std::vector<Tensor> uncompressed = { CreateTensor<int64_t>(TensorShape{128, 2}), CreateTensor<int64_t>(TensorShape{64, 4})}; EXPECT_EQ(GetAllocatedBytes(uncompressed), 4096); EXPECT_EQ(GetTotalBytes(uncompressed), 4096); CompressedElement compressed_element; TF_ASSERT_OK(CompressElement(uncompressed, &compressed_element)); std::vector<Tensor> compressed{{DT_VARIANT, TensorShape({})}}; compressed.front().scalar<Variant>()() = compressed_element; EXPECT_EQ(GetAllocatedBytes(compressed), compressed_element.ByteSizeLong()); EXPECT_EQ(GetTotalBytes(compressed), compressed_element.ByteSizeLong()); } TEST_F(DatasetOpsTestBase, TestVariantEqualityChecking) { Tensor scalar_0{DT_VARIANT, TensorShape({})}; scalar_0.scalar<Variant>()() = TestVariant({CreateTensor<int64_t>({}, {0})}); TF_EXPECT_OK(ExpectEqual(scalar_0, scalar_0)); Tensor scalar_1{DT_VARIANT, TensorShape({})}; scalar_1.scalar<Variant>()() = TestVariant({CreateTensor<int64_t>({}, {1})}); EXPECT_THAT(ExpectEqual(scalar_0, scalar_1), StatusIs(tsl::error::INTERNAL, HasSubstr("aren't equal"))); Tensor nonscalar{DT_VARIANT, TensorShape({2})}; EXPECT_THAT(ExpectEqual(nonscalar, nonscalar), StatusIs(tsl::error::INTERNAL, HasSubstr("must be scalars"))); Tensor unsupported{DT_VARIANT, TensorShape({})}; unsupported.scalar<Variant>()() = 0; EXPECT_THAT(ExpectEqual(unsupported, unsupported), StatusIs(tsl::error::INTERNAL, HasSubstr("types must be"))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/dataset_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/dataset_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fcc9cb62-4002-4ced-aa88-1c3431b4b183
cpp
tensorflow/tensorflow
unbounded_thread_pool
tensorflow/core/data/unbounded_thread_pool.cc
tensorflow/core/data/unbounded_thread_pool_test.cc
#include "tensorflow/core/data/unbounded_thread_pool.h" #include <functional> #include <memory> #include <utility> #include "absl/memory/memory.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/resource.h" #include "tensorflow/core/platform/unbounded_work_queue.h" namespace tensorflow { namespace data { class UnboundedThreadPool::LogicalThreadWrapper : public Thread { public: explicit LogicalThreadWrapper(std::shared_ptr<Notification> done) : done_(std::move(done)) {} ~LogicalThreadWrapper() override { done_->WaitForNotification(); } private: std::shared_ptr<Notification> done_; }; class UnboundedThreadPool::LogicalThreadFactory : public ThreadFactory { public: explicit LogicalThreadFactory(UnboundedThreadPool* pool) : pool_(pool) {} std::unique_ptr<Thread> StartThread(const string& name, std::function<void()> fn) override { auto done = std::make_shared<Notification>(); pool_->ScheduleOnWorkQueue(std::move(fn), done); return std::make_unique<LogicalThreadWrapper>(std::move(done)); } private: UnboundedThreadPool* const pool_; }; std::shared_ptr<ThreadFactory> UnboundedThreadPool::get_thread_factory() { return std::make_shared<LogicalThreadFactory>(this); } void UnboundedThreadPool::Schedule(std::function<void()> fn) { auto tagged_fn = [fn = std::move(fn)]() { tensorflow::ResourceTagger tag(kTFDataResourceTag, "ThreadPool"); fn(); }; ScheduleOnWorkQueue(std::move(tagged_fn), nullptr); } int UnboundedThreadPool::NumThreads() const { return -1; } int UnboundedThreadPool::CurrentThreadId() const { return -1; } namespace { void WorkQueueFunc(const std::function<void()>& fn, std::shared_ptr<Notification> done) { fn(); if (done) { done->Notify(); } } } void UnboundedThreadPool::ScheduleOnWorkQueue( std::function<void()> fn, std::shared_ptr<Notification> done) { unbounded_work_queue_.Schedule( std::bind(&WorkQueueFunc, std::move(fn), std::move(done))); } } }
#include "tensorflow/core/data/unbounded_thread_pool.h" #include <atomic> #include <memory> #include <vector> #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { TEST(UnboundedThreadPool, ConcurrentThreadCreation) { UnboundedThreadPool pool(Env::Default(), "test"); auto thread_factory = pool.get_thread_factory(); std::vector<std::unique_ptr<Thread>> threads; const int kNumThreadsToCreate = 10; std::atomic<int> i(0); for (int j = 0; j < kNumThreadsToCreate; ++j) { threads.push_back(thread_factory->StartThread("", [=, &i, &thread_factory]() { std::vector<std::unique_ptr<Thread>> nested_threads; for (int k = 0; k < kNumThreadsToCreate; ++k) { nested_threads.push_back( thread_factory->StartThread("", [&i]() { ++i; })); } nested_threads.clear(); })); } threads.clear(); EXPECT_EQ(i, kNumThreadsToCreate * kNumThreadsToCreate); } TEST(UnboundedThreadPool, MultipleBlockingThreads) { UnboundedThreadPool pool(Env::Default(), "test"); auto thread_factory = pool.get_thread_factory(); std::vector<std::unique_ptr<Thread>> threads; std::vector<int> round_sizes = {5, 10, 15, 20}; for (const int round_size : round_sizes) { Notification n; BlockingCounter bc(round_size); for (int j = 0; j < round_size; ++j) { threads.push_back(thread_factory->StartThread("", [&bc, &n]() { bc.DecrementCount(); n.WaitForNotification(); })); } bc.Wait(); n.Notify(); threads.clear(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/unbounded_thread_pool.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/unbounded_thread_pool_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
37abeb31-83e0-4027-b89c-e603f6e35271
cpp
tensorflow/tensorflow
standalone
tensorflow/core/data/standalone.cc
tensorflow/core/data/standalone_test.cc
#include "tensorflow/core/data/standalone.h" #include <algorithm> #include <functional> #include <iterator> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/root_dataset.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/tf_data_memory_logger.h" #include "tensorflow/core/data/tfdataz_metrics.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_handle_cache.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/version.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/refcount.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace standalone { namespace { OpKernelContext::Params CreateParams( ProcessFunctionLibraryRuntime* pflr, DeviceMgr* device_mgr, std::function<void(std::function<void()>)>* runner) { OpKernelContext::Params params; params.function_library = pflr->GetFLR("/device:CPU:0"); params.device = device_mgr->ListDevices()[0]; params.runner = runner; return params; } } Iterator::Iterator(IteratorBase* iterator, IteratorContext* ctx, SerializationContext* serialization_ctx) : iterator_(iterator), ctx_(ctx), serialization_ctx_(serialization_ctx) { if (DatasetBaseIterator* dataset_iterator = dynamic_cast<DatasetBaseIterator*>(iterator_.get())) { tf_dataz_metrics_collector_ = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), dataset_iterator, ctx_->model()); TfDatazMetricsRegistry::Register(tf_dataz_metrics_collector_); EnsureIteratorMemoryLoggerStarted(); } } Iterator::~Iterator() { if (tf_dataz_metrics_collector_) { TfDatazMetricsRegistry::Deregister(tf_dataz_metrics_collector_); } } Status Iterator::GetNext(std::vector<Tensor>* outputs, bool* end_of_input) { return iterator_->GetNext(ctx_.get(), outputs, end_of_input); } absl::StatusOr<std::vector<Tensor>> Iterator::Save() { VariantTensorDataWriter writer; TF_RETURN_IF_ERROR(iterator_->Save(serialization_ctx_.get(), &writer)); std::vector<std::unique_ptr<VariantTensorData>> data; writer.ReleaseData(&data); std::vector<Tensor> serialized; for (size_t i = 0; i < data.size(); ++i) { Tensor tensor(DT_VARIANT, TensorShape({1})); IteratorStateVariant variant; TF_RETURN_IF_ERROR(variant.InitializeFromVariantData(std::move(data[i]))); tensor.vec<Variant>()(0) = std::move(variant); serialized.push_back(std::move(tensor)); } return serialized; } Status Iterator::Restore(const std::vector<Tensor>& saved_iterator) { std::vector<const VariantTensorData*> data; data.reserve(saved_iterator.size()); for (int i = 0; i < saved_iterator.size(); ++i) { auto saved_vec = saved_iterator[i].vec<Variant>(); auto* variant = saved_vec(0).get<IteratorStateVariant>(); if (!variant) { return errors::Internal( "Cannot initialize an iterator from tensor ", saved_vec(0).DebugString(), ". Expected a variant tensor of type IteratorStateVariant."); } data.push_back(variant->GetData()); } VariantTensorDataReader reader(data); return iterator_->Restore(ctx_.get(), &reader); } std::shared_ptr<model::Model> Iterator::model() const { return ctx_->model(); } Status Dataset::FromGraph(Params params, const GraphDef& graph_def, std::unique_ptr<Dataset>* result) { Graph graph(OpRegistry::Global()); TF_RETURN_IF_ERROR(ImportGraphDef({}, graph_def, &graph, nullptr)); auto device_mgr = std::make_unique<StaticDeviceMgr>(DeviceFactory::NewDevice( "CPU", params.session_options, "/job:localhost/replica:0/task:0")); Device* device = device_mgr->ListDevices()[0]; auto flib_def = std::make_unique<FunctionLibraryDefinition>( OpRegistry::Global(), graph_def.library()); auto pflr = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, flib_def.get(), OptimizerOptions{}, nullptr, nullptr, nullptr, Rendezvous::Factory{[](const int64_t, const DeviceMgr* device_mgr, tsl::core::RefCountPtr<Rendezvous>* r) { *r = tsl::core::RefCountPtr<Rendezvous>( new IntraProcessRendezvous(device_mgr)); return absl::OkStatus(); }}); string fetch_node = ""; for (const auto& node : graph_def.node()) { if (node.op() == "_Retval") { fetch_node = node.input(0); } } if (fetch_node.empty()) { return errors::NotFound("Failed to find a _Retval op in the given dataset"); } std::vector<Tensor> outputs; GraphRunner graph_runner(device); TF_RETURN_IF_ERROR(graph_runner.Run(&graph, pflr->GetFLR("/device:CPU:0"), {}, {fetch_node}, &outputs)); data::DatasetBase* dataset; TF_RETURN_IF_ERROR(GetDatasetFromVariantTensor(outputs[0], &dataset)); data::DatasetBase* finalized_dataset; std::unique_ptr<thread::ThreadPool> pool( NewThreadPoolFromSessionOptions(params.session_options)); std::function<void(std::function<void()>)> runner = [&pool](std::function<void()> c) { pool->Schedule(std::move(c)); }; OpKernelContext::Params op_params = CreateParams(pflr.get(), device_mgr.get(), &runner); OpKernelContext ctx(&op_params, 0); TF_RETURN_IF_ERROR(data::FinalizeDataset(&ctx, dataset, &finalized_dataset)); core::ScopedUnref unref(finalized_dataset); *result = absl::WrapUnique(new Dataset( finalized_dataset, dataset, device_mgr.release(), pflr.release(), flib_def.release(), pool.release(), std::move(runner))); return absl::OkStatus(); } Status Dataset::MakeIterator( std::vector<std::unique_ptr<SplitProvider>> split_providers, std::unique_ptr<Iterator>* result) { std::unique_ptr<IteratorContext> ctx; OpKernelContext::Params op_params = CreateParams(pflr_.get(), device_mgr_.get(), &runner_); OpKernelContext op_ctx(&op_params, 0); IteratorContext::Params params(&op_ctx); params.cancellation_manager = &cancellation_manager_; params.function_handle_cache = function_handle_cache_.get(); params.resource_mgr = &resource_mgr_; std::move(split_providers.begin(), split_providers.end(), std::back_inserter(params.split_providers)); params.thread_factory = unbounded_thread_pool_.get_thread_factory(); params.thread_pool = &unbounded_thread_pool_; if (ShouldUseAutotuning(finalized_dataset_->options())) { params.model = std::make_shared<model::Model>(); } params.run_mode = RunMode::STANDALONE; ctx = std::make_unique<IteratorContext>(std::move(params)); SerializationContext::Params serialization_params(&op_ctx); auto serialization_ctx = std::make_unique<SerializationContext>(std::move(serialization_params)); std::unique_ptr<IteratorBase> iterator; TF_RETURN_IF_ERROR(finalized_dataset_->MakeIterator( ctx.get(), nullptr, "Iterator", &iterator)); *result = absl::WrapUnique(new Iterator(iterator.release(), ctx.release(), serialization_ctx.release())); return absl::OkStatus(); } Status Dataset::MakeIterator(std::unique_ptr<Iterator>* result) { return MakeIterator({}, result); } Status Dataset::MakeSplitProviders( std::vector<std::unique_ptr<SplitProvider>>* result) { return finalized_dataset_->MakeSplitProviders(result); } const DatasetBase* Dataset::Get() const { return finalized_dataset_; } Dataset::Dataset(DatasetBase* finalized_dataset, DatasetBase* original_dataset, DeviceMgr* device_mgr, ProcessFunctionLibraryRuntime* pflr, FunctionLibraryDefinition* flib_def, thread::ThreadPool* pool, std::function<void(std::function<void()>)> runner) : finalized_dataset_(finalized_dataset), original_dataset_(original_dataset), device_mgr_(device_mgr), flib_def_(flib_def), pflr_(pflr), interop_threadpool_(pool), runner_(std::move(runner)), unbounded_thread_pool_(Env::Default(), "tf_data_standalone") { finalized_dataset_->Ref(); original_dataset_->Ref(); function_handle_cache_ = std::make_unique<FunctionHandleCache>(pflr_->GetFLR("/device:CPU:0")); } Dataset::~Dataset() { finalized_dataset_->Unref(); original_dataset_->Unref(); } } } }
#include "tensorflow/core/data/standalone.h" #include <memory> #include <optional> #include <vector> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace standalone { namespace { constexpr const char* const kRangeGraphProto = R"pb( node { name: "Const/_0" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 0 } } } } node { name: "Const/_1" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 10 } } } } node { name: "Const/_2" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 1 } } } } node { name: "RangeDataset/_3" op: "RangeDataset" input: "Const/_0" input: "Const/_1" input: "Const/_2" attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } } node { name: "dataset" op: "_Retval" input: "RangeDataset/_3" attr { key: "T" value { type: DT_VARIANT } } attr { key: "index" value { i: 0 } } } library {} versions { producer: 96 } )pb"; constexpr const char* const kMapGraphProto = R"pb( node { name: "Const/_0" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 0 } } } } node { name: "Const/_1" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 10 } } } } node { name: "Const/_2" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 1 } } } } node { name: "RangeDataset/_3" op: "RangeDataset" input: "Const/_0" input: "Const/_1" input: "Const/_2" attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } } node { name: "MapDataset/_4" op: "MapDataset" input: "RangeDataset/_3" attr { key: "Targuments" value { list {} } } attr { key: "f" value { func { name: "__inference_Dataset_map_<lambda>_67" } } } attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } attr { key: "preserve_cardinality" value { b: false } } attr { key: "use_inter_op_parallelism" value { b: true } } } node { name: "dataset" op: "_Retval" input: "MapDataset/_4" attr { key: "T" value { type: DT_VARIANT } } attr { key: "index" value { i: 0 } } } library { function { signature { name: "__inference_Dataset_map_<lambda>_67" input_arg { name: "args_0" type: DT_INT64 } output_arg { name: "identity" type: DT_INT64 } } node_def { name: "mul" op: "Mul" input: "args_0" input: "args_0" attr { key: "T" value { type: DT_INT64 } } } node_def { name: "Identity" op: "Identity" input: "mul:z:0" attr { key: "T" value { type: DT_INT64 } } } ret { key: "identity" value: "Identity:output:0" } arg_attr { key: 0 value { attr { key: "_user_specified_name" value { s: "args_0" } } } } } } versions { producer: 96 min_consumer: 12 } )pb"; constexpr const char* const kMapGraphNoAutotuneProto = R"pb( node { name: "Const/_0" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 0 } } } } node { name: "Const/_1" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 10 } } } } node { name: "Const/_2" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 1 } } } } node { name: "RangeDataset/_3" op: "RangeDataset" input: "Const/_0" input: "Const/_1" input: "Const/_2" attr { key: "metadata" value { s: "\n\017RangeDataset:13" } } attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } attr { key: "replicate_on_split" value { b: false } } experimental_type { type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT64 } } } } } } node { name: "MapDataset/_4" op: "MapDataset" input: "RangeDataset/_3" attr { key: "Targuments" value { list {} } } attr { key: "f" value { func { name: "__inference_Dataset_map_lambda_74" } } } attr { key: "metadata" value { s: "\n\rMapDataset:14" } } attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } attr { key: "preserve_cardinality" value { b: true } } attr { key: "use_inter_op_parallelism" value { b: true } } experimental_type { type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT64 } } } } } } node { name: "OptionsDataset/_5" op: "OptionsDataset" input: "MapDataset/_4" attr { key: "metadata" value { s: "\n\021OptionsDataset:15" } } attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } attr { key: "serialized_options" value { s: "\022\000\032\003\240\001\000*\000:\002\010\000" } } experimental_type { type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT64 } } } } } } node { name: "dataset" op: "_Retval" input: "OptionsDataset/_5" attr { key: "T" value { type: DT_VARIANT } } attr { key: "index" value { i: 0 } } } library { function { signature { name: "__inference_Dataset_map_lambda_74" input_arg { name: "args_0" type: DT_INT64 } output_arg { name: "identity" type: DT_INT64 } } node_def { name: "mul" op: "Mul" input: "args_0" input: "args_0" attr { key: "T" value { type: DT_INT64 } } } node_def { name: "Identity" op: "Identity" input: "mul:z:0" attr { key: "T" value { type: DT_INT64 } } } ret { key: "identity" value: "Identity:output:0" } attr { key: "_construction_context" value { s: "kEagerRuntime" } } attr { key: "_tf_data_function" value { b: true } } arg_attr { key: 0 value { attr { key: "_output_shapes" value { list { shape {} } } } attr { key: "_user_specified_name" value { s: "args_0" } } } } } } versions { producer: 1594 } )pb"; TEST(Scalar, Standalone) { struct TestCase { string graph_string; std::vector<int64_t> expected_outputs; }; auto test_cases = { TestCase{kRangeGraphProto, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}, TestCase{kMapGraphProto, {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}}, }; for (auto test_case : test_cases) { GraphDef graph_def; protobuf::TextFormat::ParseFromString(test_case.graph_string, &graph_def); std::unique_ptr<Dataset> dataset; TF_EXPECT_OK(Dataset::FromGraph({}, graph_def, &dataset)); std::unique_ptr<Iterator> iterator; TF_EXPECT_OK(dataset->MakeIterator(&iterator)); EXPECT_DOUBLE_EQ(iterator->model()->ComputeSnapshotProcessingTimeNsec(), 0); bool end_of_input = false; for (int num_outputs = 0; !end_of_input; ++num_outputs) { std::vector<tensorflow::Tensor> outputs; TF_EXPECT_OK(iterator->GetNext(&outputs, &end_of_input)); if (!end_of_input) { EXPECT_EQ(outputs[0].scalar<int64_t>()(), test_case.expected_outputs[num_outputs]); } else { EXPECT_EQ(test_case.expected_outputs.size(), num_outputs); } } absl::SleepFor(absl::Seconds(1)); EXPECT_GT(iterator->model()->ComputeSnapshotProcessingTimeNsec(), 0); } } TEST(NoAutotune, Standalone) { std::vector<int64_t> expected_outputs({0, 1, 4, 9, 16, 25, 36, 49, 64, 81}); GraphDef graph_def; protobuf::TextFormat::ParseFromString(kMapGraphNoAutotuneProto, &graph_def); std::unique_ptr<Dataset> dataset; TF_EXPECT_OK(Dataset::FromGraph({}, graph_def, &dataset)); std::unique_ptr<Iterator> iterator; TF_EXPECT_OK(dataset->MakeIterator(&iterator)); EXPECT_EQ(iterator->model(), nullptr); bool end_of_input = false; for (int num_outputs = 0; !end_of_input; ++num_outputs) { std::vector<tensorflow::Tensor> outputs; TF_EXPECT_OK(iterator->GetNext(&outputs, &end_of_input)); if (!end_of_input) { EXPECT_EQ(outputs[0].scalar<int64_t>()(), expected_outputs[num_outputs]); } else { EXPECT_EQ(expected_outputs.size(), num_outputs); } } absl::SleepFor(absl::Seconds(1)); EXPECT_EQ(iterator->model(), nullptr); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/standalone.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/standalone_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ba3ccac4-9de1-481a-a94c-43c91831dbcf
cpp
tensorflow/tensorflow
tfdataz_metrics
tensorflow/core/data/tfdataz_metrics.cc
tensorflow/core/data/tfdataz_metrics_test.cc
#include "tensorflow/core/data/tfdataz_metrics.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/time/time.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { ApproximateLatencyEstimator::ApproximateLatencyEstimator(const Env& env) : env_(env), last_updated_time_mins_(0), latency_value_counter_(0), latency_count_counter_(0), next_slot_(0) { for (int i = 0; i < kSlots; ++i) { latency_value_[i] = 0; latency_count_[i] = 0; } } void ApproximateLatencyEstimator::AddLatency(const int64_t latency_usec) TF_LOCKS_EXCLUDED(mu_) { UpdateRingBuffer(); mutex_lock l(mu_); latency_value_counter_ += latency_usec; latency_count_counter_ += 1; } void ApproximateLatencyEstimator::UpdateRingBuffer() TF_LOCKS_EXCLUDED(mu_) { int64_t now_minutes = absl::ToInt64Minutes(absl::Microseconds(env_.NowMicros())); mutex_lock l(mu_); int64_t elapsed_minutes = now_minutes - last_updated_time_mins_; int64_t minutes_to_update = std::min(elapsed_minutes, kSlots); for (int i = 0; i < minutes_to_update; ++i) { latency_value_[next_slot_] = latency_value_counter_; latency_count_[next_slot_] = latency_count_counter_; IncrementNextSlot(); } last_updated_time_mins_ = now_minutes; } void ApproximateLatencyEstimator::IncrementNextSlot() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { next_slot_ = (next_slot_ + 1) % kSlots; } int ApproximateLatencyEstimator::PrevSlot(int steps) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return (next_slot_ - steps + kSlots) % kSlots; } absl::Duration ApproximateLatencyEstimator::GetAverageLatency(Duration duration) TF_LOCKS_EXCLUDED(mu_) { UpdateRingBuffer(); mutex_lock l(mu_); double interval_latency = static_cast<double>(latency_value_counter_ - latency_value_[PrevSlot(static_cast<int>(duration))]); double interval_count = static_cast<double>(latency_count_counter_ - latency_count_[PrevSlot(static_cast<int>(duration))]); if (interval_count == 0) { return absl::ZeroDuration(); } return absl::Duration(absl::Microseconds(interval_latency)) / interval_count; } TfDatazMetricsCollector::TfDatazMetricsCollector( const Env& env, DatasetBaseIterator* iterator, std::shared_ptr<model::Model> model) : iterator_(iterator), model_(std::move(model)), latency_estimator_(env) {} void TfDatazMetricsCollector::RecordGetNextLatency( int64_t get_next_latency_usec) { if (get_next_latency_usec > 0) { latency_estimator_.AddLatency(get_next_latency_usec); } } absl::Duration TfDatazMetricsCollector::GetAverageLatencyForLastOneMinute() { return latency_estimator_.GetAverageLatency( ApproximateLatencyEstimator::Duration::kMinute); } absl::Duration TfDatazMetricsCollector::GetAverageLatencyForLastFiveMinutes() { return latency_estimator_.GetAverageLatency( ApproximateLatencyEstimator::Duration::kFiveMinutes); } absl::Duration TfDatazMetricsCollector::GetAverageLatencyForLastSixtyMinutes() { return latency_estimator_.GetAverageLatency( ApproximateLatencyEstimator::Duration::kSixtyMinutes); } std::optional<std::string> TfDatazMetricsCollector::DatasetName() { auto options = iterator_->dataset()->options(); if (options.has_dataset_name()) { return std::make_optional(options.dataset_name()); } return std::nullopt; } int64_t TfDatazMetricsCollector::GetIteratorTotalMemoryUsage() { return iterator_->TotalBufferedBytes(); } std::shared_ptr<model::Model> TfDatazMetricsCollector::GetModel() { return model_; } namespace { static mutex* get_tfdataz_metrics_registry_lock() { static mutex tfdataz_metrics_registry_lock(LINKER_INITIALIZED); return &tfdataz_metrics_registry_lock; } using TfDatazMetricsCollectors = absl::flat_hash_set<std::shared_ptr<TfDatazMetricsCollector>>; TfDatazMetricsCollectors& tfdataz_metric_collectors() { static auto& collectors = *new TfDatazMetricsCollectors(); return collectors; } } void TfDatazMetricsRegistry::Register( std::shared_ptr<TfDatazMetricsCollector> collector) { mutex_lock l(*get_tfdataz_metrics_registry_lock()); tfdataz_metric_collectors().insert(collector); } void TfDatazMetricsRegistry::Deregister( std::shared_ptr<TfDatazMetricsCollector> collector) { mutex_lock l(*get_tfdataz_metrics_registry_lock()); tfdataz_metric_collectors().erase(collector); } absl::flat_hash_set<std::shared_ptr<TfDatazMetricsCollector>> TfDatazMetricsRegistry::GetIteratorMetricCollectors() { mutex_lock l(*get_tfdataz_metrics_registry_lock()); return tfdataz_metric_collectors(); } } }
#include "tensorflow/core/data/tfdataz_metrics.h" #include <memory> #include <utility> #include "absl/time/time.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/fake_clock_env.h" namespace tensorflow { namespace data { namespace { static int64_t k1MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(1)); static int64_t k2MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(2)); static int64_t k5MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(5)); static int64_t k59MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(59)); static int64_t k60MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(60)); static int64_t k61MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(61)); class TfDatazMetricsTest : public ::testing::Test { protected: void SetUp() override { env_ = std::make_unique<FakeClockEnv>(Env::Default()); tfdataz_metrics_ = std::make_unique<TfDatazMetricsCollector>( *env_, iterator_.get(), nullptr); } void TearDown() override { env_.reset(); tfdataz_metrics_.reset(); } std::unique_ptr<DatasetBaseIterator> iterator_; std::unique_ptr<FakeClockEnv> env_; std::unique_ptr<TfDatazMetricsCollector> tfdataz_metrics_; }; TEST_F(TfDatazMetricsTest, RecordGetNextLatency) { tfdataz_metrics_->RecordGetNextLatency(1); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 2.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastOneMinute) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k2MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 2.5); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastFiveMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k5MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 5.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastSixtyMinutesWithAdvanceBySixtyMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k60MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 5.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastSixtyMinutesWithAdvanceByFiftyNineMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k59MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 4.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastSixtyMinutesWithAdvanceBySixtyOneMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k61MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); tfdataz_metrics_->RecordGetNextLatency(4); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 3.0); } TEST_F(TfDatazMetricsTest, GetMultipleAverageLatencies) { tfdataz_metrics_->RecordGetNextLatency(1); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 1.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 1.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 1.0); env_->AdvanceByMicroseconds(k1MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 2.5); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 2.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 2.0); env_->AdvanceByMicroseconds(k60MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 5.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 5.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 5.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyWithZeroGetNextCalls) { EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 0); } class ScopedTfDataMetricsRegistration { public: explicit ScopedTfDataMetricsRegistration( std::shared_ptr<TfDatazMetricsCollector> collector) : collector_(std::move(collector)) { TfDatazMetricsRegistry::Register(collector_); } ~ScopedTfDataMetricsRegistration() { TfDatazMetricsRegistry::Deregister(collector_); } void Deregister() { TfDatazMetricsRegistry::Deregister(collector_); } private: std::shared_ptr<TfDatazMetricsCollector> collector_; }; TEST(TfDatazMetricsRegistryTest, Register) { std::unique_ptr<DatasetBaseIterator> iterator; auto collector_one = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); auto collector_two = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); ScopedTfDataMetricsRegistration scoped_registration_one(collector_one); ScopedTfDataMetricsRegistration scoped_registration_two(collector_two); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 2); } TEST(TfDatazMetricsRegistryTest, Deregister) { std::unique_ptr<DatasetBaseIterator> iterator; auto collector_one = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); auto collector_two = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); auto collector_three = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); ScopedTfDataMetricsRegistration scoped_registration_one(collector_one); ScopedTfDataMetricsRegistration scoped_registration_two(collector_two); ScopedTfDataMetricsRegistration scoped_registration_three(collector_three); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 3); scoped_registration_one.Deregister(); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 2); scoped_registration_two.Deregister(); scoped_registration_three.Deregister(); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/tfdataz_metrics.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/tfdataz_metrics_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
61925c0b-7afa-459a-b403-0769cea80bda
cpp
tensorflow/tensorflow
snapshot_utils
tensorflow/core/data/snapshot_utils.cc
tensorflow/core/data/snapshot_utils_test.cc
#include "tensorflow/core/data/snapshot_utils.h" #include <algorithm> #include <climits> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/tsl/lib/io/snappy/snappy_inputbuffer.h" #include "xla/tsl/lib/io/snappy/snappy_outputbuffer.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/io/buffered_inputstream.h" #include "tensorflow/core/lib/io/random_inputstream.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/lib/io/zlib_compression_options.h" #include "tensorflow/core/lib/io/zlib_inputstream.h" #include "tensorflow/core/lib/io/zlib_outputbuffer.h" #include "tensorflow/core/platform/coding.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringprintf.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/protobuf/snapshot.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace snapshot_util { namespace { constexpr const char* const kOutputTypes = "output_types"; constexpr const char* const kOutputShapes = "output_shapes"; constexpr const char* const kCompression = "compression"; constexpr const char* const kVersion = "version"; constexpr const char* const kCurrentCheckpointID = "current_checkpoint_id"; constexpr const char* const kIndex = "index"; constexpr const char* const kStartIndex = "start_index"; std::string ProtoSerializationErrorMessage(const TensorProto& proto, const std::string& output_file) { const auto proto_byte_size = proto.ByteSizeLong(); std::string error_message = absl::StrCat("Failed to serialize tensor proto of ", proto_byte_size, " bytes to file: ", output_file); if (proto_byte_size > INT_MAX) { absl::StrAppend(&error_message, ": exceeded maximum protobuf size of 2GB."); } return error_message; } } constexpr const int64_t CustomReader::kSnappyReaderInputBufferSizeBytes; constexpr const int64_t CustomReader::kSnappyReaderOutputBufferSizeBytes; std::string HashDirectory(const std::string& path, uint64 hash) { return io::JoinPath( path, strings::Printf("%llu", static_cast<unsigned long long>(hash))); } std::string RunDirectory(const std::string& hash_directory, uint64 run_id) { return RunDirectory( hash_directory, strings::Printf("%llu", static_cast<unsigned long long>(run_id))); } std::string RunDirectory(const std::string& hash_directory, const std::string& run_id) { return io::JoinPath(hash_directory, run_id); } std::string ShardDirectory(const std::string& run_directory, int64_t shard_id) { return io::JoinPath( run_directory, strings::Printf("%08llu%s", static_cast<unsigned long long>(shard_id), kShardDirectorySuffix)); } std::string GetCheckpointFileName(const std::string& shard_directory, uint64 checkpoint_id) { return io::JoinPath( shard_directory, strings::Printf("%08llu.snapshot", static_cast<unsigned long long>(checkpoint_id))); } Status Writer::Create(Env* env, const std::string& filename, const std::string& compression_type, int version, const DataTypeVector& dtypes, std::unique_ptr<Writer>* out_writer) { switch (version) { case 1: *out_writer = std::make_unique<CustomWriter>(filename, compression_type, dtypes); break; case 2: *out_writer = std::make_unique<TFRecordWriter>(filename, compression_type); break; default: return errors::InvalidArgument("Snapshot writer version: ", version, " is not supported."); } return (*out_writer)->Initialize(env); } TFRecordWriter::TFRecordWriter(const std::string& filename, const std::string& compression_type) : filename_(filename), compression_type_(compression_type) {} Status TFRecordWriter::Initialize(tensorflow::Env* env) { TF_RETURN_IF_ERROR(env->NewAppendableFile(filename_, &dest_)); record_writer_ = std::make_unique<io::RecordWriter>( dest_.get(), io::RecordWriterOptions::CreateRecordWriterOptions( compression_type_)); return absl::OkStatus(); } Status TFRecordWriter::WriteTensors(const std::vector<Tensor>& tensors) { for (const auto& tensor : tensors) { TensorProto proto; tensor.AsProtoTensorContent(&proto); #if defined(TF_CORD_SUPPORT) auto* proto_buffer = new std::string(); if (!proto.SerializeToString(proto_buffer)) { delete proto_buffer; return errors::DataLoss(ProtoSerializationErrorMessage(proto, filename_)); } absl::Cord proto_serialized = absl::MakeCordFromExternal( *proto_buffer, [proto_buffer](absl::string_view) { delete proto_buffer; }); TF_RETURN_IF_ERROR(record_writer_->WriteRecord(proto_serialized)); #else std::string proto_serialized; if (!proto.SerializeToString(&proto_serialized)) { return errors::DataLoss(ProtoSerializationErrorMessage(proto, filename_)); } TF_RETURN_IF_ERROR(record_writer_->WriteRecord(proto_serialized)); #endif } return absl::OkStatus(); } Status TFRecordWriter::Sync() { TF_RETURN_IF_ERROR(record_writer_->Flush()); return dest_->Flush(); } Status TFRecordWriter::Close() { if (record_writer_ != nullptr) { TF_RETURN_IF_ERROR(Sync()); TF_RETURN_IF_ERROR(record_writer_->Close()); TF_RETURN_IF_ERROR(dest_->Close()); record_writer_ = nullptr; dest_ = nullptr; } return absl::OkStatus(); } TFRecordWriter::~TFRecordWriter() { Status s = Close(); if (!s.ok()) { LOG(ERROR) << "Failed to close snapshot file " << filename_ << ": " << s; } } CustomWriter::CustomWriter(const std::string& filename, const std::string& compression_type, const DataTypeVector& dtypes) : filename_(filename), compression_type_(compression_type), dtypes_(dtypes) {} Status CustomWriter::Initialize(tensorflow::Env* env) { TF_RETURN_IF_ERROR(env->NewAppendableFile(filename_, &dest_)); #if defined(IS_SLIM_BUILD) if (compression_type_ != io::compression::kNone) { LOG(ERROR) << "Compression is unsupported on mobile platforms. Turning " << "off compression."; } #else if (compression_type_ == io::compression::kGzip) { zlib_underlying_dest_.swap(dest_); io::ZlibCompressionOptions zlib_options; zlib_options = io::ZlibCompressionOptions::GZIP(); io::ZlibOutputBuffer* zlib_output_buffer = new io::ZlibOutputBuffer( zlib_underlying_dest_.get(), zlib_options.input_buffer_size, zlib_options.output_buffer_size, zlib_options); TF_CHECK_OK(zlib_output_buffer->Init()); dest_.reset(zlib_output_buffer); } #endif simple_tensor_mask_.reserve(dtypes_.size()); for (const auto& dtype : dtypes_) { if (DataTypeCanUseMemcpy(dtype)) { simple_tensor_mask_.push_back(true); num_simple_++; } else { simple_tensor_mask_.push_back(false); num_complex_++; } } return absl::OkStatus(); } Status CustomWriter::WriteTensors(const std::vector<Tensor>& tensors) { if (compression_type_ != io::compression::kSnappy) { experimental::SnapshotRecord record; for (const auto& tensor : tensors) { TensorProto* t = record.add_tensor(); tensor.AsProtoTensorContent(t); } #if defined(TF_CORD_SUPPORT) auto record_buffer = new std::string(); record.SerializeToString(record_buffer); absl::Cord record_serialized = absl::MakeCordFromExternal( *record_buffer, [record_buffer](absl::string_view) { delete record_buffer; }); return WriteRecord(record_serialized); #else return WriteRecord(record.SerializeAsString()); #endif } std::vector<const TensorBuffer*> tensor_buffers; tensor_buffers.reserve(num_simple_); std::vector<TensorProto> tensor_protos; tensor_protos.reserve(num_complex_); experimental::SnapshotTensorMetadata metadata; int64_t total_size = 0; for (int i = 0, end = tensors.size(); i < end; ++i) { const Tensor& tensor = tensors[i]; experimental::TensorMetadata* tensor_metadata = metadata.add_tensor_metadata(); tensor.shape().AsProto(tensor_metadata->mutable_tensor_shape()); int64_t size = 0; if (simple_tensor_mask_[i]) { auto tensor_buffer = DMAHelper::buffer(&tensor); tensor_buffers.push_back(tensor_buffer); size = tensor_buffer->size(); } else { TensorProto proto; tensor.AsProtoTensorContent(&proto); size = proto.ByteSizeLong(); tensor_protos.push_back(std::move(proto)); } tensor_metadata->set_tensor_size_bytes(size); total_size += size; } std::vector<char> uncompressed(total_size); char* position = uncompressed.data(); int buffer_index = 0; int proto_index = 0; for (int i = 0, end = tensors.size(); i < end; ++i) { const auto& tensor_metadata = metadata.tensor_metadata(i); if (simple_tensor_mask_[i]) { memcpy(position, tensor_buffers[buffer_index]->data(), tensor_metadata.tensor_size_bytes()); buffer_index++; } else { tensor_protos[proto_index].SerializeToArray( position, tensor_metadata.tensor_size_bytes()); proto_index++; } position += tensor_metadata.tensor_size_bytes(); } DCHECK_EQ(position, uncompressed.data() + total_size); string output; if (!tsl::port::Snappy_Compress(uncompressed.data(), total_size, &output)) { return errors::Internal("Failed to compress using snappy."); } #if defined(TF_CORD_SUPPORT) auto metadata_buffer = new std::string(); metadata.SerializeToString(metadata_buffer); absl::Cord metadata_serialized = absl::MakeCordFromExternal( *metadata_buffer, [metadata_buffer](absl::string_view) { delete metadata_buffer; }); #else std::string metadata_serialized = metadata.SerializeAsString(); #endif TF_RETURN_IF_ERROR(WriteRecord(metadata_serialized)); TF_RETURN_IF_ERROR(WriteRecord(output)); return absl::OkStatus(); } Status CustomWriter::Sync() { return dest_->Sync(); } Status CustomWriter::Close() { if (dest_ != nullptr) { TF_RETURN_IF_ERROR(dest_->Close()); dest_ = nullptr; } if (zlib_underlying_dest_ != nullptr) { TF_RETURN_IF_ERROR(zlib_underlying_dest_->Close()); zlib_underlying_dest_ = nullptr; } return absl::OkStatus(); } CustomWriter::~CustomWriter() { Status s = Close(); if (!s.ok()) { LOG(ERROR) << "Could not finish writing file: " << s; } } Status CustomWriter::WriteRecord(const StringPiece& data) { char header[kHeaderSize]; core::EncodeFixed64(header, data.size()); TF_RETURN_IF_ERROR(dest_->Append(StringPiece(header, sizeof(header)))); return dest_->Append(data); } #if defined(TF_CORD_SUPPORT) Status CustomWriter::WriteRecord(const absl::Cord& data) { char header[kHeaderSize]; core::EncodeFixed64(header, data.size()); TF_RETURN_IF_ERROR(dest_->Append(StringPiece(header, sizeof(header)))); return dest_->Append(data); } #endif Status Reader::Create(Env* env, const std::string& filename, const string& compression_type, int version, const DataTypeVector& dtypes, std::unique_ptr<Reader>* out_reader) { switch (version) { case 0: case 1: *out_reader = std::make_unique<CustomReader>(filename, compression_type, version, dtypes); break; case 2: *out_reader = std::make_unique<TFRecordReader>(filename, compression_type, dtypes); break; default: return errors::InvalidArgument("Snapshot reader version: ", version, " is not supported."); } return (*out_reader)->Initialize(env); } Status Reader::SkipRecords(int64_t num_records) { for (int i = 0; i < num_records; ++i) { std::vector<Tensor> unused_tensors; TF_RETURN_IF_ERROR(ReadTensors(&unused_tensors)); } return absl::OkStatus(); } class Reader::Dataset : public DatasetBase { public: Dataset(DatasetContext&& ctx, const std::string& shard_dir, const std::string& compression, const int64_t version, const DataTypeVector& dtypes, const std::vector<PartialTensorShape>& shapes, const int64_t start_index) : DatasetBase(std::move(ctx)), shard_dir_(shard_dir), compression_(compression), version_(version), dtypes_(dtypes), shapes_(shapes), start_index_(start_index) {} const DataTypeVector& output_dtypes() const override { return dtypes_; } const std::vector<PartialTensorShape>& output_shapes() const override { return shapes_; } std::string DebugString() const override { return "SnapshotDatasetReader"; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { return absl::OkStatus(); } Status CheckExternalState() const override { return absl::OkStatus(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** node) const override { Node* shard_dir = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(shard_dir_, &shard_dir)); Node* start_index = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(start_index_, &start_index)); AttrValue compression; b->BuildAttrValue(compression_, &compression); AttrValue version; b->BuildAttrValue(version_, &version); return b->AddDataset( this, {std::make_pair(0, shard_dir), std::make_pair(1, start_index)}, {}, {{kCompression, compression}, {kVersion, version}}, true, node); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(node_name(), prefix)}); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params), start_index_(dataset()->start_index_) {} Status Initialize(IteratorContext* ctx) override { TF_RETURN_IF_ERROR(Reader::Create( ctx->env(), GetCurrentFilename(), dataset()->compression_, dataset()->version_, dataset()->dtypes_, &reader_)); return AdvanceToStartIndex(ctx); } protected: Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { *end_of_sequence = false; Status s = reader_->ReadTensors(out_tensors); if (!absl::IsOutOfRange(s)) { start_index_++; return s; } Status status = AdvanceToNextFile(ctx->env()); if (absl::IsNotFound(status)) { *end_of_sequence = true; return absl::OkStatus(); } return status; } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR(writer->WriteScalar(full_name(kCurrentCheckpointID), current_checkpoint_id_)); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kStartIndex), start_index_)); return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { TF_RETURN_IF_ERROR(reader->ReadScalar(full_name(kCurrentCheckpointID), &current_checkpoint_id_)); TF_RETURN_IF_ERROR( reader->ReadScalar(full_name(kStartIndex), &start_index_)); TF_RETURN_IF_ERROR(ctx->env()->FileExists(GetCurrentFilename())); TF_RETURN_IF_ERROR(Reader::Create( ctx->env(), GetCurrentFilename(), dataset()->compression_, dataset()->version_, dataset()->dtypes_, &reader_)); return AdvanceToStartIndex(ctx); } private: Status AdvanceToNextFile(Env* env) { start_index_ = 0; current_checkpoint_id_++; TF_RETURN_IF_ERROR(env->FileExists(GetCurrentFilename())); return Reader::Create(env, GetCurrentFilename(), dataset()->compression_, dataset()->version_, dataset()->dtypes_, &reader_); } std::string GetCurrentFilename() { return GetCheckpointFileName(dataset()->shard_dir_, current_checkpoint_id_); } Status AdvanceToStartIndex(IteratorContext* ctx) { for (int64_t i = 0; i < start_index_; ++i) { std::vector<Tensor> unused; TF_RETURN_IF_ERROR(reader_->ReadTensors(&unused)); } return absl::OkStatus(); } std::unique_ptr<Reader> reader_; int64_t current_checkpoint_id_ = 0; int64_t start_index_; }; const tstring shard_dir_; const std::string compression_; const int64_t version_; const DataTypeVector dtypes_; const std::vector<PartialTensorShape> shapes_; const int64_t start_index_; }; Reader::DatasetOp::DatasetOp(OpKernelConstruction* ctx) : DatasetOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kCompression, &compression_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kVersion, &version_)); } void Reader::DatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase** output) { tstring shard_dir; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, "shard_dir", &shard_dir)); int64_t start_index; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, "start_index", &start_index)); *output = new Reader::Dataset(DatasetContext(ctx), shard_dir, compression_, version_, output_types_, output_shapes_, start_index); } class Reader::NestedDataset : public DatasetBase { public: explicit NestedDataset(DatasetContext&& ctx, std::vector<DatasetBase*> datasets) : DatasetBase(std::move(ctx)), datasets_(datasets) { dtypes_.push_back(DT_VARIANT); absl::InlinedVector<int64_t, 1UL> element_dim_sizes; element_dim_sizes.push_back(1); partial_shapes_.emplace_back(element_dim_sizes); } const DataTypeVector& output_dtypes() const override { return dtypes_; } const std::vector<PartialTensorShape>& output_shapes() const override { return partial_shapes_; } std::string DebugString() const override { return "SnapshotNestedDatasetReader"; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->clear(); return absl::OkStatus(); } Status CheckExternalState() const override { return absl::OkStatus(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** node) const override { std::vector<Node*> input_graph_nodes; input_graph_nodes.reserve(datasets_.size()); for (const auto& dataset : datasets_) { Node* input_node; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, dataset, &input_node)); input_graph_nodes.emplace_back(input_node); } TF_RETURN_IF_ERROR( b->AddDataset(this, {}, {std::make_pair(0, input_graph_nodes)}, {}, node)); return absl::OkStatus(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(node_name(), prefix)}); } private: std::vector<DatasetBase*> datasets_; DataTypeVector dtypes_; std::vector<PartialTensorShape> partial_shapes_; class Iterator : public DatasetIterator<NestedDataset> { public: explicit Iterator(const Params& params) : DatasetIterator<NestedDataset>(params) {} protected: Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { const int64_t num_datasets = dataset()->datasets_.size(); *end_of_sequence = num_datasets == index_; if (!*end_of_sequence) { Tensor tensor(DT_VARIANT, TensorShape({})); TF_RETURN_IF_ERROR( StoreDatasetInVariantTensor(dataset()->datasets_[index_], &tensor)); out_tensors->clear(); out_tensors->push_back(std::move(tensor)); index_++; } return absl::OkStatus(); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR(writer->WriteScalar(full_name(kIndex), index_)); return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { TF_RETURN_IF_ERROR(reader->ReadScalar(full_name(kIndex), &index_)); return absl::OkStatus(); } private: int64_t index_ = 0; }; }; Reader::NestedDatasetOp::NestedDatasetOp(OpKernelConstruction* ctx) : DatasetOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } void Reader::NestedDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase** output) { std::vector<DatasetBase*> inputs; for (size_t i = 0; i < ctx->num_inputs(); ++i) { DatasetBase* input; OP_REQUIRES_OK(ctx, GetDatasetFromVariantTensor(ctx->input(i), &input)); inputs.push_back(input); } *output = new Reader::NestedDataset(DatasetContext(ctx), inputs); (*output)->Initialize({}); } Status Reader::MakeNestedDataset(Env* env, const std::vector<std::string>& shard_dirs, const string& compression_type, int version, const DataTypeVector& dtypes, const std::vector<PartialTensorShape>& shapes, const int64_t start_index, DatasetBase** output) { std::vector<DatasetBase*> datasets; datasets.reserve(shard_dirs.size()); for (int64_t i = 0; i < shard_dirs.size(); ++i) { int64_t dataset_start_index = start_index / shard_dirs.size(); if (start_index % shard_dirs.size() > datasets.size()) { dataset_start_index++; } datasets.push_back( new Dataset(DatasetContext(DatasetContext::Params( {"SnapshotDatasetReader", strings::StrCat("SnapshotDatasetReader/_", i)})), shard_dirs.at(i), compression_type, version, dtypes, shapes, dataset_start_index)); datasets.back()->Initialize({}); } if (!shard_dirs.empty()) { std::rotate(datasets.begin(), datasets.begin() + (start_index % shard_dirs.size()), datasets.end()); } MakeNestedDataset(datasets, output); return absl::OkStatus(); } void Reader::MakeNestedDataset(const std::vector<DatasetBase*>& datasets, DatasetBase** output) { *output = new NestedDataset( DatasetContext(DatasetContext::Params( {"SnapshotNestedDatasetReader", "SnapshotNestedDatasetReader"})), datasets); (*output)->Initialize({}); } TFRecordReaderImpl::TFRecordReaderImpl( const std::string& filename, const string& compression, std::optional<int64_t> output_buffer_size) : filename_(filename), offset_(0), bytes_read_(0), compression_(compression), output_buffer_size_(output_buffer_size) {} Status TFRecordReaderImpl::Initialize(Env* env) { TF_RETURN_IF_ERROR(env->NewRandomAccessFile(filename_, &file_)); auto options = io::RecordReaderOptions::CreateRecordReaderOptions( compression_); #if !defined(IS_SLIM_BUILD) if (output_buffer_size_.has_value()) { options.snappy_options.output_buffer_size = *output_buffer_size_; options.zlib_options.output_buffer_size = *output_buffer_size_; } #endif record_reader_ = std::make_unique<io::RecordReader>(file_.get(), options); bytes_read_ = 0; return absl::OkStatus(); } absl::StatusOr<Tensor> TFRecordReaderImpl::GetNext() { tstring record; TF_RETURN_IF_ERROR(record_reader_->ReadRecord(&offset_, &record)); bytes_read_ += record.size(); return Parse(record); } absl::StatusOr<std::vector<Tensor>> TFRecordReaderImpl::GetTensors() { std::vector<Tensor> tensors; while (true) { absl::StatusOr<Tensor> tensor = GetNext(); if (absl::IsOutOfRange(tensor.status())) { return tensors; } TF_RETURN_IF_ERROR(tensor.status()); tensors.push_back(std::move(*tensor)); } return tensors; } absl::StatusOr<Tensor> TFRecordReaderImpl::Parse(const tstring& record) { TensorProto proto; if (!proto.ParseFromArray(record.data(), record.size())) { return errors::DataLoss( "Unable to parse tensor from stored proto in file: ", filename_, ", record ", offset_, ". Serialized proto: ", record); } Tensor tensor; if (!tensor.FromProto(proto)) { return errors::DataLoss( "Unable to parse tensor from stored proto in file: ", filename_, ", record ", offset_, ". TensorProto: ", proto.ShortDebugString()); } return tensor; } Status TFRecordReader::ReadTensors(std::vector<Tensor>* read_tensors) { read_tensors->clear(); read_tensors->reserve(dtypes_.size()); for (int i = 0; i < dtypes_.size(); ++i) { TF_ASSIGN_OR_RETURN(Tensor tensor, reader_impl_.GetNext()); read_tensors->push_back(std::move(tensor)); } return absl::OkStatus(); } CustomReader::CustomReader(const std::string& filename, const string& compression_type, const int version, const DataTypeVector& dtypes) : filename_(filename), compression_type_(compression_type), version_(version), dtypes_(dtypes) {} Status CustomReader::Initialize(Env* env) { TF_RETURN_IF_ERROR(env->NewRandomAccessFile(filename_, &file_)); input_stream_ = std::make_unique<io::RandomAccessInputStream>(file_.get()); #if defined(IS_SLIM_BUILD) if (compression_type_ != io::compression::kNone) { LOG(ERROR) << "Compression is unsupported on mobile platforms. Turning " << "off compression."; } #else if (compression_type_ == io::compression::kGzip) { io::ZlibCompressionOptions zlib_options; zlib_options = io::ZlibCompressionOptions::GZIP(); input_stream_ = std::make_unique<io::ZlibInputStream>( input_stream_.release(), zlib_options.input_buffer_size, zlib_options.output_buffer_size, zlib_options, true); } else if (compression_type_ == io::compression::kSnappy) { if (version_ == 0) { input_stream_ = std::make_unique<tsl::io::SnappyInputBuffer>( file_.get(), kSnappyReaderInputBufferSizeBytes, kSnappyReaderOutputBufferSizeBytes); } else { input_stream_ = std::make_unique<io::BufferedInputStream>(file_.get(), 64 << 20); } } #endif simple_tensor_mask_.reserve(dtypes_.size()); for (const auto& dtype : dtypes_) { if (DataTypeCanUseMemcpy(dtype)) { simple_tensor_mask_.push_back(true); num_simple_++; } else { simple_tensor_mask_.push_back(false); num_complex_++; } } return absl::OkStatus(); } Status CustomReader::ReadTensors(std::vector<Tensor>* read_tensors) { tsl::profiler::TraceMe activity( [&]() { return absl::StrCat(kClassName, kSeparator, "ReadTensors"); }, tsl::profiler::TraceMeLevel::kInfo); if (version_ == 0 || compression_type_ != io::compression::kSnappy) { return ReadTensorsV0(read_tensors); } if (version_ != 1) { return errors::InvalidArgument("Version: ", version_, " is not supported."); } if (compression_type_ != io::compression::kSnappy) { return errors::InvalidArgument("Compression ", compression_type_, " is not supported."); } experimental::SnapshotTensorMetadata metadata; tstring metadata_str; TF_RETURN_IF_ERROR(ReadRecord(&metadata_str)); if (!metadata.ParseFromArray(metadata_str.data(), metadata_str.size())) { return errors::DataLoss("Could not parse SnapshotTensorMetadata"); } read_tensors->reserve(metadata.tensor_metadata_size()); std::vector<Tensor> simple_tensors; simple_tensors.reserve(num_simple_); std::vector<std::pair<std::unique_ptr<char[]>, size_t>> tensor_proto_strs; tensor_proto_strs.reserve(num_complex_); TF_RETURN_IF_ERROR( SnappyUncompress(&metadata, &simple_tensors, &tensor_proto_strs)); int simple_index = 0; int complex_index = 0; for (int i = 0, end = simple_tensor_mask_.size(); i < end; ++i) { if (simple_tensor_mask_[i]) { read_tensors->push_back(std::move(simple_tensors[simple_index])); simple_index++; } else { auto tensor_proto_str = std::move(tensor_proto_strs[complex_index].first); size_t tensor_proto_size = tensor_proto_strs[complex_index].second; TensorProto tp; if (!tp.ParseFromArray(tensor_proto_str.get(), tensor_proto_size)) { return errors::Internal("Could not parse TensorProto"); } Tensor t; if (!t.FromProto(tp)) { return errors::Internal("Could not parse Tensor"); } read_tensors->push_back(std::move(t)); complex_index++; } } return absl::OkStatus(); } Status CustomReader::ReadTensorsV0(std::vector<Tensor>* read_tensors) { experimental::SnapshotRecord record; #if defined(PLATFORM_GOOGLE) absl::Cord c; TF_RETURN_IF_ERROR(ReadRecord(&c)); record.ParseFromCord(c); #else tstring record_bytes; TF_RETURN_IF_ERROR(ReadRecord(&record_bytes)); record.ParseFromArray(record_bytes.data(), record_bytes.size()); #endif read_tensors->reserve(record.tensor_size()); for (int i = 0; i < record.tensor_size(); ++i) { read_tensors->emplace_back(); if (!read_tensors->back().FromProto(record.tensor(i))) { return errors::DataLoss("Unable to parse tensor from proto."); } } return absl::OkStatus(); } Status CustomReader::SnappyUncompress( const experimental::SnapshotTensorMetadata* metadata, std::vector<Tensor>* simple_tensors, std::vector<std::pair<std::unique_ptr<char[]>, size_t>>* tensor_proto_strs) { tstring compressed; TF_RETURN_IF_ERROR(ReadRecord(&compressed)); size_t size; if (!tsl::port::Snappy_GetUncompressedLength(compressed.data(), compressed.size(), &size)) { return errors::Internal("Could not get snappy uncompressed length"); } int num_tensors = metadata->tensor_metadata_size(); std::vector<tsl::iovec> iov(num_tensors); int index = 0; int64_t total_size = 0; for (int i = 0, end = simple_tensor_mask_.size(); i < end; ++i) { const auto& tensor_metadata = metadata->tensor_metadata(i); if (simple_tensor_mask_[i]) { TensorShape shape(tensor_metadata.tensor_shape()); Tensor simple_tensor(dtypes_[i], shape); TensorBuffer* buffer = DMAHelper::buffer(&simple_tensor); iov[index].iov_base = buffer->data(); iov[index].iov_len = buffer->size(); simple_tensors->push_back(std::move(simple_tensor)); } else { auto tensor_proto_str = std::make_unique<char[]>(tensor_metadata.tensor_size_bytes()); iov[index].iov_base = tensor_proto_str.get(); iov[index].iov_len = tensor_metadata.tensor_size_bytes(); tensor_proto_strs->push_back(std::make_pair( std::move(tensor_proto_str), tensor_metadata.tensor_size_bytes())); } total_size += iov[index].iov_len; index++; } const int64_t size_int = size; if (size_int != total_size) { return errors::Internal("Uncompressed size mismatch. Snappy expects ", size, " whereas the tensor metadata suggests ", total_size); } if (!tsl::port::Snappy_UncompressToIOVec(compressed.data(), compressed.size(), iov.data(), num_tensors)) { return errors::Internal("Failed to perform snappy decompression."); } return absl::OkStatus(); } Status CustomReader::ReadRecord(tstring* record) { tstring header; TF_RETURN_IF_ERROR(input_stream_->ReadNBytes(kHeaderSize, &header)); uint64 length = core::DecodeFixed64(header.data()); return input_stream_->ReadNBytes(length, record); } #if defined(TF_CORD_SUPPORT) Status CustomReader::ReadRecord(absl::Cord* record) { tstring header; TF_RETURN_IF_ERROR(input_stream_->ReadNBytes(kHeaderSize, &header)); uint64 length = core::DecodeFixed64(header.data()); if (compression_type_ == io::compression::kNone) { return input_stream_->ReadNBytes(length, record); } else { auto tmp_str = new tstring(); TF_RETURN_IF_ERROR(input_stream_->ReadNBytes(length, tmp_str)); absl::string_view tmp_str_view(*tmp_str); record->Append(absl::MakeCordFromExternal( tmp_str_view, [tmp_str](absl::string_view) { delete tmp_str; })); return absl::OkStatus(); } } #endif Status WriteMetadataFile(Env* env, const string& dir, const experimental::SnapshotMetadataRecord* metadata) { string metadata_filename = io::JoinPath(dir, kMetadataFilename); TF_RETURN_IF_ERROR(env->RecursivelyCreateDir(dir)); std::string tmp_filename = absl::StrCat(metadata_filename, "-tmp-", random::New64()); TF_RETURN_IF_ERROR(WriteBinaryProto(env, tmp_filename, *metadata)); return env->RenameFile(tmp_filename, metadata_filename); } Status WriteMetadataFile( Env* env, const string& dir, const experimental::DistributedSnapshotMetadata* metadata) { string metadata_filename = io::JoinPath(dir, kMetadataFilename); TF_RETURN_IF_ERROR(env->RecursivelyCreateDir(dir)); std::string tmp_filename = absl::StrCat(metadata_filename, "-tmp-", random::New64()); TF_RETURN_IF_ERROR(WriteBinaryProto(env, tmp_filename, *metadata)); return env->RenameFile(tmp_filename, metadata_filename); } Status ReadMetadataFile(Env* env, const string& dir, experimental::SnapshotMetadataRecord* metadata, bool* file_exists) { string metadata_filename = io::JoinPath(dir, kMetadataFilename); Status s = env->FileExists(metadata_filename); *file_exists = s.ok(); if (*file_exists) { return ReadBinaryProto(env, metadata_filename, metadata); } else { return absl::OkStatus(); } } Status ReadMetadataFile(Env* env, const string& dir, experimental::DistributedSnapshotMetadata* metadata, bool* file_exists) { string metadata_filename = io::JoinPath(dir, kMetadataFilename); Status s = env->FileExists(metadata_filename); *file_exists = s.ok(); if (*file_exists) { return ReadBinaryProto(env, metadata_filename, metadata); } else { return absl::OkStatus(); } } Status DumpDatasetGraph(Env* env, const std::string& path, uint64 hash, const GraphDef* graph) { std::string hash_hex = strings::StrCat(strings::Hex(hash, strings::kZeroPad16)); std::string graph_file = io::JoinPath(path, absl::StrCat(hash_hex, "-graph.pbtxt")); LOG(INFO) << "Graph hash is " << hash_hex << ", writing to " << graph_file; TF_RETURN_IF_ERROR(env->RecursivelyCreateDir(path)); return WriteTextProto(env, graph_file, *graph); } Status DetermineOpState(const std::string& mode_string, bool file_exists, const experimental::SnapshotMetadataRecord* metadata, const uint64 pending_snapshot_expiry_seconds, Mode* mode) { if (mode_string == kModeRead) { if (!file_exists) { return errors::NotFound("Metadata file does not exist."); } LOG(INFO) << "Overriding mode to reader."; *mode = READER; return absl::OkStatus(); } if (mode_string == kModeWrite) { LOG(INFO) << "Overriding mode to writer."; *mode = WRITER; return absl::OkStatus(); } if (mode_string == kModePassthrough) { LOG(INFO) << "Overriding mode to passthrough."; *mode = PASSTHROUGH; return absl::OkStatus(); } if (!file_exists) { *mode = WRITER; return absl::OkStatus(); } if (metadata->finalized()) { *mode = READER; return absl::OkStatus(); } int64_t expiration_timer = static_cast<int64_t>(EnvTime::NowMicros()) - pending_snapshot_expiry_seconds * 1000000; if (metadata->creation_timestamp() >= expiration_timer) { *mode = PASSTHROUGH; return absl::OkStatus(); } else { *mode = WRITER; return absl::OkStatus(); } } AsyncWriter::AsyncWriter(Env* env, int64_t file_index, const std::string& shard_directory, uint64 checkpoint_id, const std::string& compression, int64_t version, const DataTypeVector& output_types, std::function<void(Status)> done) { thread_ = absl::WrapUnique(env->StartThread( ThreadOptions(), absl::StrCat("writer_thread_", file_index), [this, env, shard_directory, checkpoint_id, compression, version, &output_types, done = std::move(done)] { done(WriterThread(env, shard_directory, checkpoint_id, compression, version, output_types)); })); } void AsyncWriter::Write(const std::vector<Tensor>& tensors) { mutex_lock l(mu_); ElementOrEOF element; element.value = tensors; deque_.push_back(std::move(element)); } void AsyncWriter::SignalEOF() { mutex_lock l(mu_); ElementOrEOF be; be.end_of_sequence = true; deque_.push_back(std::move(be)); } void AsyncWriter::Consume(ElementOrEOF* be) { mutex_lock l(mu_); mu_.Await(tensorflow::Condition(this, &AsyncWriter::ElementAvailable)); *be = deque_.front(); deque_.pop_front(); } bool AsyncWriter::ElementAvailable() { return !deque_.empty(); } Status AsyncWriter::WriterThread(Env* env, const std::string& shard_directory, uint64 checkpoint_id, const std::string& compression, int64_t version, DataTypeVector output_types) { std::unique_ptr<snapshot_util::Writer> writer; TF_RETURN_IF_ERROR(env->RecursivelyCreateDir(shard_directory)); TF_RETURN_IF_ERROR(snapshot_util::Writer::Create( env, GetCheckpointFileName(shard_directory, checkpoint_id), compression, version, std::move(output_types), &writer)); while (true) { ElementOrEOF be; Consume(&be); if (be.end_of_sequence) { TF_RETURN_IF_ERROR(writer->Close()); break; } TF_RETURN_IF_ERROR(writer->WriteTensors(be.value)); } return absl::OkStatus(); } namespace { REGISTER_KERNEL_BUILDER(Name("SnapshotDatasetReader").Device(DEVICE_CPU), Reader::DatasetOp); REGISTER_KERNEL_BUILDER(Name("SnapshotNestedDatasetReader").Device(DEVICE_CPU), Reader::NestedDatasetOp); } } } }
#include "tensorflow/core/data/snapshot_utils.h" #include <memory> #include <string> #include <vector> #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/compression.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace data { namespace snapshot_util { namespace { using ::tensorflow::data::testing::EqualsProto; using ::tensorflow::data::testing::LocalTempFilename; void GenerateTensorVector(tensorflow::DataTypeVector& dtypes, std::vector<Tensor>& tensors) { std::string tensor_data(1024, 'a'); for (int i = 0; i < 10; ++i) { Tensor t(tensor_data.data()); dtypes.push_back(t.dtype()); tensors.push_back(t); } } void SnapshotRoundTrip(std::string compression_type, int version) { std::vector<Tensor> tensors; tensorflow::DataTypeVector dtypes; GenerateTensorVector(dtypes, tensors); std::string filename; EXPECT_TRUE(Env::Default()->LocalTempFilename(&filename)); std::unique_ptr<Writer> writer; TF_ASSERT_OK(Writer::Create(tensorflow::Env::Default(), filename, compression_type, version, dtypes, &writer)); for (int i = 0; i < 100; ++i) { TF_ASSERT_OK(writer->WriteTensors(tensors)); } TF_ASSERT_OK(writer->Close()); std::unique_ptr<Reader> reader; TF_ASSERT_OK(Reader::Create(Env::Default(), filename, compression_type, version, dtypes, &reader)); for (int i = 0; i < 100; ++i) { std::vector<Tensor> read_tensors; TF_ASSERT_OK(reader->ReadTensors(&read_tensors)); EXPECT_EQ(tensors.size(), read_tensors.size()); for (int j = 0; j < read_tensors.size(); ++j) { TensorProto proto; TensorProto read_proto; tensors[j].AsProtoTensorContent(&proto); read_tensors[j].AsProtoTensorContent(&read_proto); std::string proto_serialized, read_proto_serialized; proto.AppendToString(&proto_serialized); read_proto.AppendToString(&read_proto_serialized); EXPECT_EQ(proto_serialized, read_proto_serialized); } } TF_ASSERT_OK(Env::Default()->DeleteFile(filename)); } TEST(SnapshotUtilTest, CombinationRoundTripTest) { SnapshotRoundTrip(io::compression::kNone, 1); SnapshotRoundTrip(io::compression::kGzip, 1); SnapshotRoundTrip(io::compression::kSnappy, 1); SnapshotRoundTrip(io::compression::kNone, 2); SnapshotRoundTrip(io::compression::kGzip, 2); SnapshotRoundTrip(io::compression::kSnappy, 2); } TEST(SnapshotUtilTest, MetadataFileRoundTrip) { experimental::DistributedSnapshotMetadata metadata_in; metadata_in.set_compression(io::compression::kGzip); std::string dir = LocalTempFilename(); TF_ASSERT_OK(WriteMetadataFile(Env::Default(), dir, &metadata_in)); experimental::DistributedSnapshotMetadata metadata_out; bool file_exists; TF_ASSERT_OK( ReadMetadataFile(Env::Default(), dir, &metadata_out, &file_exists)); EXPECT_THAT(metadata_in, EqualsProto(metadata_out)); } TEST(SnapshotUtilTest, MetadataFileDoesntExist) { experimental::DistributedSnapshotMetadata metadata; bool file_exists; TF_ASSERT_OK(ReadMetadataFile(Env::Default(), LocalTempFilename(), &metadata, &file_exists)); EXPECT_FALSE(file_exists); } void SnapshotReaderBenchmarkLoop(::testing::benchmark::State& state, std::string compression_type, int version) { tensorflow::DataTypeVector dtypes; std::vector<Tensor> tensors; GenerateTensorVector(dtypes, tensors); std::string filename; EXPECT_TRUE(Env::Default()->LocalTempFilename(&filename)); std::unique_ptr<Writer> writer; TF_ASSERT_OK(Writer::Create(tensorflow::Env::Default(), filename, compression_type, version, dtypes, &writer)); for (auto s : state) { writer->WriteTensors(tensors).IgnoreError(); } TF_ASSERT_OK(writer->Close()); std::unique_ptr<Reader> reader; TF_ASSERT_OK(Reader::Create(Env::Default(), filename, compression_type, version, dtypes, &reader)); for (auto s : state) { std::vector<Tensor> read_tensors; reader->ReadTensors(&read_tensors).IgnoreError(); } TF_ASSERT_OK(Env::Default()->DeleteFile(filename)); } void SnapshotCustomReaderNoneBenchmark(::testing::benchmark::State& state) { SnapshotReaderBenchmarkLoop(state, io::compression::kNone, 1); } void SnapshotCustomReaderGzipBenchmark(::testing::benchmark::State& state) { SnapshotReaderBenchmarkLoop(state, io::compression::kGzip, 1); } void SnapshotCustomReaderSnappyBenchmark(::testing::benchmark::State& state) { SnapshotReaderBenchmarkLoop(state, io::compression::kSnappy, 1); } void SnapshotTFRecordReaderNoneBenchmark(::testing::benchmark::State& state) { SnapshotReaderBenchmarkLoop(state, io::compression::kNone, 2); } void SnapshotTFRecordReaderGzipBenchmark(::testing::benchmark::State& state) { SnapshotReaderBenchmarkLoop(state, io::compression::kGzip, 2); } BENCHMARK(SnapshotCustomReaderNoneBenchmark); BENCHMARK(SnapshotCustomReaderGzipBenchmark); BENCHMARK(SnapshotCustomReaderSnappyBenchmark); BENCHMARK(SnapshotTFRecordReaderNoneBenchmark); BENCHMARK(SnapshotTFRecordReaderGzipBenchmark); void SnapshotWriterBenchmarkLoop(::testing::benchmark::State& state, std::string compression_type, int version) { tensorflow::DataTypeVector dtypes; std::vector<Tensor> tensors; GenerateTensorVector(dtypes, tensors); std::string filename; EXPECT_TRUE(Env::Default()->LocalTempFilename(&filename)); std::unique_ptr<Writer> writer; TF_ASSERT_OK(Writer::Create(tensorflow::Env::Default(), filename, compression_type, version, dtypes, &writer)); for (auto s : state) { writer->WriteTensors(tensors).IgnoreError(); } writer->Close().IgnoreError(); TF_ASSERT_OK(Env::Default()->DeleteFile(filename)); } void SnapshotCustomWriterNoneBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kNone, 1); } void SnapshotCustomWriterGzipBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kGzip, 1); } void SnapshotCustomWriterSnappyBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kSnappy, 1); } void SnapshotTFRecordWriterNoneBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kNone, 2); } void SnapshotTFRecordWriterGzipBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kGzip, 2); } void SnapshotTFRecordWriterSnappyBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kSnappy, 2); } BENCHMARK(SnapshotCustomWriterNoneBenchmark); BENCHMARK(SnapshotCustomWriterGzipBenchmark); BENCHMARK(SnapshotCustomWriterSnappyBenchmark); BENCHMARK(SnapshotTFRecordWriterNoneBenchmark); BENCHMARK(SnapshotTFRecordWriterGzipBenchmark); BENCHMARK(SnapshotTFRecordWriterSnappyBenchmark); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/snapshot_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/snapshot_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3207d09c-b623-41ab-a161-44bb10022704
cpp
tensorflow/tensorflow
dispatcher_state
tensorflow/core/data/service/dispatcher_state.cc
tensorflow/core/data/service/dispatcher_state_test.cc
#include "tensorflow/core/data/service/dispatcher_state.h" #include <algorithm> #include <memory> #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/journal.h" #include "tensorflow/core/data/service/journal.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { DispatcherState::DispatcherState() : worker_index_resolver_(std::vector<std::string>{}) {} DispatcherState::DispatcherState( const experimental::DispatcherConfig& dispatcher_config) : worker_index_resolver_(dispatcher_config.worker_addresses()) {} Status DispatcherState::Apply(const Update& update) { switch (update.update_type_case()) { case Update::kRegisterDataset: RegisterDataset(update.register_dataset()); break; case Update::kRegisterWorker: RegisterWorker(update.register_worker()); break; case Update::kCreateJob: CreateJob(update.create_job()); break; case Update::kCreateIteration: CreateIteration(update.create_iteration()); break; case Update::kProduceSplit: ProduceSplit(update.produce_split()); break; case Update::kAcquireIterationClient: AcquireIterationClient(update.acquire_iteration_client()); break; case Update::kReleaseIterationClient: ReleaseIterationClient(update.release_iteration_client()); break; case Update::kGarbageCollectIteration: GarbageCollectIteration(update.garbage_collect_iteration()); break; case Update::kRemoveTask: RemoveTask(update.remove_task()); break; case Update::kCreatePendingTask: CreatePendingTask(update.create_pending_task()); break; case Update::kClientHeartbeat: ClientHeartbeat(update.client_heartbeat()); break; case Update::kCreateTask: CreateTask(update.create_task()); break; case Update::kFinishTask: FinishTask(update.finish_task()); break; case Update::kSnapshot: Snapshot(update.snapshot()); break; case Update::kCompressionDisabledAtRuntime: CompressionDisabledAtRuntime(update.compression_disabled_at_runtime()); break; case Update::UPDATE_TYPE_NOT_SET: return errors::Internal("Update type not set."); } return absl::OkStatus(); } void DispatcherState::RegisterDataset( const RegisterDatasetUpdate& register_dataset) { std::string dataset_id = register_dataset.dataset_id(); auto dataset = std::make_shared<Dataset>(dataset_id, register_dataset.metadata()); DCHECK(!datasets_by_id_.contains(dataset_id)); datasets_by_id_[dataset_id] = dataset; UpdateNextAvailableDatasetId(); } void DispatcherState::RegisterWorker( const RegisterWorkerUpdate& register_worker) { std::string address = register_worker.worker_address(); DCHECK(!workers_.contains(address)); workers_[address] = std::make_shared<Worker>(register_worker); tasks_by_worker_[address] = absl::flat_hash_map<int64_t, std::shared_ptr<Task>>(); worker_index_resolver_.AddWorker(address); } void DispatcherState::CreateJob(const CreateJobUpdate& create_job) { int64_t job_id = create_job.job_id(); std::string job_name = create_job.job_name(); std::optional<int64_t> num_consumers; if (create_job.optional_num_consumers_case() == CreateJobUpdate::kNumConsumers) { num_consumers = create_job.num_consumers(); } auto job = std::make_shared<Job>( job_id, create_job.dataset_id(), create_job.processing_mode_def(), job_name, num_consumers, create_job.use_cross_trainer_cache(), create_job.target_workers()); DCHECK(!jobs_by_id_.contains(job_id)); jobs_by_id_[job_id] = job; DCHECK(!jobs_by_name_.contains(job_name)); jobs_by_name_[job_name] = job; next_available_job_id_ = std::max(next_available_job_id_, job_id + 1); } Status DispatcherState::JobFromId(int64_t job_id, std::shared_ptr<const Job>& job) const { auto it = jobs_by_id_.find(job_id); if (it == jobs_by_id_.end()) { return errors::NotFound("Job with id ", job_id, " not found"); } job = it->second; return absl::OkStatus(); } Status DispatcherState::JobByName(const std::string& job_name, std::shared_ptr<const Job>& job) const { auto it = jobs_by_name_.find(job_name); if (it == jobs_by_name_.end()) { return errors::NotFound("Job with name ", job_name, " not found"); } job = it->second; return absl::OkStatus(); } void DispatcherState::CreateIteration( const CreateIterationUpdate& create_iteration) { int64_t iteration_id = create_iteration.iteration_id(); int64_t job_id = create_iteration.job_id(); DCHECK(jobs_by_id_.contains(job_id)); auto& job = jobs_by_id_[job_id]; DCHECK(job); IterationKey iteration_key(job->job_name, create_iteration.repetition()); auto iteration = std::make_shared<Iteration>( iteration_id, iteration_key, create_iteration.num_split_providers(), job); DCHECK(!iterations_.contains(iteration_id)); iterations_[iteration_id] = iteration; tasks_by_iteration_[iteration_id] = std::vector<std::shared_ptr<Task>>(); DCHECK(!iterations_by_key_.contains(iteration_key) || iterations_by_key_[iteration_key]->garbage_collected); iterations_by_key_[iteration_key] = iteration; next_available_iteration_id_ = std::max(next_available_iteration_id_, iteration_id + 1); } void DispatcherState::ProduceSplit(const ProduceSplitUpdate& produce_split) { std::shared_ptr<Iteration> iteration = iterations_[produce_split.iteration_id()]; DCHECK(iteration->distributed_epoch_state.has_value()); DistributedEpochState& state = iteration->distributed_epoch_state.value(); int64_t provider_index = produce_split.split_provider_index(); DCHECK_GE(produce_split.repetition(), state.repetitions[provider_index]); state.repetitions[provider_index] = produce_split.repetition(); if (produce_split.finished()) { state.repetitions[provider_index]++; state.indices[provider_index] = 0; return; } state.indices[provider_index]++; } void DispatcherState::AcquireIterationClient( const AcquireIterationClientUpdate& acquire_iteration_client) { int64_t iteration_client_id = acquire_iteration_client.iteration_client_id(); std::shared_ptr<Iteration>& iteration = iterations_for_client_ids_[iteration_client_id]; DCHECK(!iteration); iteration = iterations_[acquire_iteration_client.iteration_id()]; DCHECK(iteration); iteration->num_clients++; next_available_iteration_client_id_ = std::max(next_available_iteration_client_id_, iteration_client_id + 1); } void DispatcherState::ReleaseIterationClient( const ReleaseIterationClientUpdate& release_iteration_client) { int64_t iteration_client_id = release_iteration_client.iteration_client_id(); std::shared_ptr<Iteration>& iteration = iterations_for_client_ids_[iteration_client_id]; DCHECK(iteration); iteration->num_clients--; DCHECK_GE(iteration->num_clients, 0); iteration->last_client_released_micros = release_iteration_client.time_micros(); iterations_for_client_ids_.erase(iteration_client_id); } void DispatcherState::GarbageCollectIteration( const GarbageCollectIterationUpdate& garbage_collect_iteration) { int64_t iteration_id = garbage_collect_iteration.iteration_id(); for (auto& task : tasks_by_iteration_[iteration_id]) { task->finished = true; tasks_by_worker_[task->worker_address].erase(task->task_id); } iterations_[iteration_id]->finished = true; iterations_[iteration_id]->garbage_collected = true; } void DispatcherState::RemoveTask(const RemoveTaskUpdate& remove_task) { std::shared_ptr<Task>& task = tasks_[remove_task.task_id()]; DCHECK(task); task->removed = true; auto& tasks_for_iteration = tasks_by_iteration_[task->iteration->iteration_id]; for (auto it = tasks_for_iteration.begin(); it != tasks_for_iteration.end(); ++it) { if ((*it)->task_id == task->task_id) { tasks_for_iteration.erase(it); break; } } tasks_by_worker_[task->worker_address].erase(task->task_id); tasks_.erase(task->task_id); VLOG(1) << "Removed task " << remove_task.task_id() << " from worker " << task->worker_address; } void DispatcherState::CreatePendingTask( const CreatePendingTaskUpdate& create_pending_task) { int64_t task_id = create_pending_task.task_id(); auto& task = tasks_[task_id]; DCHECK_EQ(task, nullptr); auto& iteration = iterations_[create_pending_task.iteration_id()]; DCHECK_NE(iteration, nullptr); task = std::make_shared<Task>(create_pending_task, iteration); iteration->pending_tasks.emplace(task, create_pending_task.starting_round()); tasks_by_worker_[create_pending_task.worker_address()][task->task_id] = task; next_available_task_id_ = std::max(next_available_task_id_, task_id + 1); } void DispatcherState::ClientHeartbeat( const ClientHeartbeatUpdate& client_heartbeat) { int64_t iteration_client_id = client_heartbeat.iteration_client_id(); auto& iteration = iterations_for_client_ids_[iteration_client_id]; DCHECK(!iteration->pending_tasks.empty()); auto& task = iteration->pending_tasks.front(); if (client_heartbeat.has_task_rejected()) { task.failures++; task.ready_consumers.clear(); task.target_round = client_heartbeat.task_rejected().new_target_round(); } if (client_heartbeat.task_accepted()) { task.ready_consumers.insert(iteration_client_id); if (task.ready_consumers.size() == iteration->job->num_consumers.value()) { VLOG(1) << "Promoting task " << task.task->task_id << " from pending to active"; task.task->starting_round = task.target_round; tasks_by_iteration_[iteration->iteration_id].push_back(task.task); iteration->pending_tasks.pop(); } } } void DispatcherState::CreateTask(const CreateTaskUpdate& create_task) { int64_t task_id = create_task.task_id(); auto& task = tasks_[task_id]; DCHECK_EQ(task, nullptr); auto& iteration = iterations_[create_task.iteration_id()]; DCHECK_NE(iteration, nullptr); task = std::make_shared<Task>(create_task, iteration); tasks_by_iteration_[create_task.iteration_id()].push_back(task); tasks_by_worker_[create_task.worker_address()][task->task_id] = task; next_available_task_id_ = std::max(next_available_task_id_, task_id + 1); } void DispatcherState::FinishTask(const FinishTaskUpdate& finish_task) { VLOG(2) << "Marking task " << finish_task.task_id() << " as finished"; int64_t task_id = finish_task.task_id(); auto& task = tasks_[task_id]; DCHECK(task != nullptr); task->finished = true; tasks_by_worker_[task->worker_address].erase(task->task_id); bool all_finished = true; for (const auto& task_for_iteration : tasks_by_iteration_[task->iteration->iteration_id]) { if (!task_for_iteration->finished) { all_finished = false; } } VLOG(3) << "Iteration " << task->iteration->iteration_id << " finished: " << all_finished; iterations_[task->iteration->iteration_id]->finished = all_finished; } std::string DispatcherState::NextAvailableDatasetId() const { return absl::StrCat(next_available_dataset_id_); } void DispatcherState::UpdateNextAvailableDatasetId() { while (datasets_by_id_.contains(absl::StrCat(next_available_dataset_id_))) { ++next_available_dataset_id_; } } Status DispatcherState::DatasetFromId( const std::string& id, std::shared_ptr<const Dataset>& dataset) const { auto it = datasets_by_id_.find(id); if (it == datasets_by_id_.end()) { return errors::NotFound("Dataset id ", id, " not found"); } dataset = it->second; return absl::OkStatus(); } Status DispatcherState::WorkerFromAddress( const std::string& address, std::shared_ptr<const Worker>& worker) const { auto it = workers_.find(address); if (it == workers_.end()) { return errors::NotFound("Worker with address ", address, " not found."); } worker = it->second; return absl::OkStatus(); } std::vector<std::shared_ptr<const DispatcherState::Worker>> DispatcherState::ListWorkers() const { std::vector<std::shared_ptr<const Worker>> workers; workers.reserve(workers_.size()); for (const auto& it : workers_) { workers.push_back(it.second); } return workers; } std::vector<std::shared_ptr<const DispatcherState::Iteration>> DispatcherState::ListIterations() const { std::vector<std::shared_ptr<const DispatcherState::Iteration>> iterations; iterations.reserve(iterations_.size()); for (const auto& it : iterations_) { iterations.push_back(it.second); } return iterations; } Status DispatcherState::IterationFromId( int64_t id, std::shared_ptr<const Iteration>& iteration) const { auto it = iterations_.find(id); if (it == iterations_.end()) { return errors::NotFound("Iteration id ", id, " not found"); } iteration = it->second; return absl::OkStatus(); } Status DispatcherState::IterationByKey( IterationKey iteration_key, std::shared_ptr<const Iteration>& iteration) const { auto it = iterations_by_key_.find(iteration_key); if (it == iterations_by_key_.end()) { return errors::NotFound("Iteration key ", iteration_key.DebugString(), " not found"); } iteration = it->second; return absl::OkStatus(); } int64_t DispatcherState::NextAvailableJobId() const { return next_available_job_id_; } int64_t DispatcherState::NextAvailableIterationId() const { return next_available_iteration_id_; } Status DispatcherState::IterationForIterationClientId( int64_t iteration_client_id, std::shared_ptr<const Iteration>& iteration) { iteration = iterations_for_client_ids_[iteration_client_id]; if (!iteration) { return errors::NotFound("Iteration client id not found: ", iteration_client_id); } return absl::OkStatus(); } std::vector<int64_t> DispatcherState::ListActiveClientIds() { std::vector<int64_t> ids; for (const auto& it : iterations_for_client_ids_) { if (it.second && !it.second->finished) { ids.push_back(it.first); } } return ids; } int64_t DispatcherState::NextAvailableIterationClientId() const { return next_available_iteration_client_id_; } Status DispatcherState::TaskFromId(int64_t id, std::shared_ptr<const Task>& task) const { auto it = tasks_.find(id); if (it == tasks_.end()) { return errors::NotFound("Task ", id, " not found"); } task = it->second; return absl::OkStatus(); } Status DispatcherState::TasksForIteration( int64_t iteration_id, std::vector<std::shared_ptr<const Task>>& tasks) const { auto it = tasks_by_iteration_.find(iteration_id); if (it == tasks_by_iteration_.end()) { return errors::NotFound("Iteration ", iteration_id, " not found"); } tasks.clear(); tasks.reserve(it->second.size()); for (const auto& task : it->second) { tasks.push_back(task); } return absl::OkStatus(); } Status DispatcherState::TasksForWorker( absl::string_view worker_address, std::vector<std::shared_ptr<const Task>>& tasks) const { tasks.clear(); auto it = tasks_by_worker_.find(worker_address); if (it == tasks_by_worker_.end()) { return errors::NotFound("Worker ", worker_address, " not found"); } const absl::flat_hash_map<int64_t, std::shared_ptr<Task>>& worker_tasks = it->second; tasks.reserve(worker_tasks.size()); for (const auto& task : worker_tasks) { tasks.push_back(task.second); } return absl::OkStatus(); } int64_t DispatcherState::NextAvailableTaskId() const { return next_available_task_id_; } Status DispatcherState::ValidateWorker(absl::string_view worker_address) const { return worker_index_resolver_.ValidateWorker(worker_address); } absl::StatusOr<int64_t> DispatcherState::GetWorkerIndex( absl::string_view worker_address) const { return worker_index_resolver_.GetWorkerIndex(worker_address); } void DispatcherState::Snapshot(const SnapshotUpdate& snapshot) { snapshot_paths_.insert(snapshot.path()); } void DispatcherState::CompressionDisabledAtRuntime( const CompressionDisabledAtRuntimeUpdate& compression_disabled_at_runtime) { compression_disabled_at_runtime_.insert({ compression_disabled_at_runtime.dataset_id(), compression_disabled_at_runtime.compression_disabled(), }); } std::optional<bool> DispatcherState::CompressionDisabledAtRuntime( const std::string& dataset_id) const { if (auto it = compression_disabled_at_runtime_.find(dataset_id); it != compression_disabled_at_runtime_.end()) { return it->second; } return std::nullopt; } } }
#include "tensorflow/core/data/service/dispatcher_state.h" #include <cstdint> #include <memory> #include <string> #include <vector> #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/journal.pb.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using Dataset = DispatcherState::Dataset; using Worker = DispatcherState::Worker; using IterationKey = DispatcherState::IterationKey; using Job = DispatcherState::Job; using Iteration = DispatcherState::Iteration; using Task = DispatcherState::Task; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; using ::tsl::testing::StatusIs; Status RegisterDataset(const std::string& dataset_id, DispatcherState& state) { Update update; RegisterDatasetUpdate* register_dataset = update.mutable_register_dataset(); register_dataset->set_dataset_id(dataset_id); return state.Apply(update); } Status RegisterWorker(std::string worker_address, DispatcherState& state) { Update update; update.mutable_register_worker()->set_worker_address(worker_address); return state.Apply(update); } Status CreateJob(int64_t job_id, const std::string& dataset_id, const std::string& job_name, DispatcherState& state) { Update update; CreateJobUpdate* create_job = update.mutable_create_job(); create_job->set_job_id(job_id); create_job->set_dataset_id(dataset_id); create_job->set_job_name(job_name); return state.Apply(update); } Status CreateIteration(int64_t iteration_id, const std::string& dataset_id, const IterationKey& named_iteration_key, DispatcherState& state) { int64_t job_id = state.NextAvailableJobId(); TF_RETURN_IF_ERROR( CreateJob(job_id, dataset_id, named_iteration_key.name, state)); Update update; CreateIterationUpdate* create_iteration = update.mutable_create_iteration(); create_iteration->set_job_id(job_id); create_iteration->set_iteration_id(iteration_id); create_iteration->set_repetition(named_iteration_key.repetition); return state.Apply(update); } Status CreateIteration(int64_t iteration_id, const std::string& dataset_id, DispatcherState& state) { IterationKey key(absl::StrCat(random::New64()), 0); return CreateIteration(iteration_id, dataset_id, key, state); } Status AcquireIterationClientId(int64_t iteration_id, int64_t iteration_client_id, DispatcherState& state) { Update update; AcquireIterationClientUpdate* acquire_iteration_client = update.mutable_acquire_iteration_client(); acquire_iteration_client->set_iteration_id(iteration_id); acquire_iteration_client->set_iteration_client_id(iteration_client_id); return state.Apply(update); } Status ReleaseIterationClientId(int64_t iteration_client_id, int64_t release_time, DispatcherState& state) { Update update; ReleaseIterationClientUpdate* release_iteration_client = update.mutable_release_iteration_client(); release_iteration_client->set_iteration_client_id(iteration_client_id); release_iteration_client->set_time_micros(release_time); return state.Apply(update); } Status CreateTask(int64_t task_id, int64_t iteration_id, const std::string& worker_address, DispatcherState& state) { Update update; CreateTaskUpdate* create_task = update.mutable_create_task(); create_task->set_task_id(task_id); create_task->set_iteration_id(iteration_id); create_task->set_worker_address(worker_address); return state.Apply(update); } Status FinishTask(int64_t task_id, DispatcherState& state) { Update update; FinishTaskUpdate* finish_task = update.mutable_finish_task(); finish_task->set_task_id(task_id); return state.Apply(update); } Status Snapshot(const std::string& path, DispatcherState& state) { Update update; SnapshotUpdate* snapshot = update.mutable_snapshot(); snapshot->set_path(path); return state.Apply(update); } } TEST(DispatcherState, RegisterDataset) { DispatcherState state; std::string dataset_id = state.NextAvailableDatasetId(); int64_t dataset_id_int; ASSERT_TRUE(absl::SimpleAtoi(dataset_id, &dataset_id_int)); TF_EXPECT_OK(RegisterDataset(dataset_id, state)); EXPECT_EQ(state.NextAvailableDatasetId(), absl::StrCat(dataset_id_int + 1)); std::shared_ptr<const Dataset> dataset; TF_EXPECT_OK(state.DatasetFromId(dataset_id, dataset)); EXPECT_TRUE(dataset->metadata.element_spec().empty()); EXPECT_EQ(dataset->metadata.compression(), DataServiceMetadata::COMPRESSION_UNSPECIFIED); } TEST(DispatcherState, RegisterDatasetWithExplicitID) { DispatcherState state; TF_EXPECT_OK(RegisterDataset("dataset_id", state)); std::shared_ptr<const Dataset> dataset; TF_EXPECT_OK(state.DatasetFromId("dataset_id", dataset)); EXPECT_EQ(dataset->dataset_id, "dataset_id"); } TEST(DispatcherState, RegisterDatasetsWithDifferentIDs) { DispatcherState state; TF_EXPECT_OK(RegisterDataset("dataset_id1", state)); TF_EXPECT_OK(RegisterDataset("dataset_id2", state)); std::shared_ptr<const Dataset> dataset; TF_EXPECT_OK(state.DatasetFromId("dataset_id1", dataset)); EXPECT_EQ(dataset->dataset_id, "dataset_id1"); TF_EXPECT_OK(state.DatasetFromId("dataset_id2", dataset)); EXPECT_EQ(dataset->dataset_id, "dataset_id2"); } TEST(DispatcherState, RegisterDatasetCompression) { DispatcherState state; const std::string dataset_id = state.NextAvailableDatasetId(); Update update; RegisterDatasetUpdate* register_dataset = update.mutable_register_dataset(); register_dataset->set_dataset_id(dataset_id); register_dataset->mutable_metadata()->set_compression( DataServiceMetadata::COMPRESSION_SNAPPY); TF_ASSERT_OK(state.Apply(update)); { std::shared_ptr<const Dataset> dataset; TF_EXPECT_OK(state.DatasetFromId(dataset_id, dataset)); EXPECT_EQ(dataset->metadata.compression(), DataServiceMetadata::COMPRESSION_SNAPPY); } } TEST(DispatcherState, RegisterDatasetElementSpec) { DispatcherState state; const std::string dataset_id = state.NextAvailableDatasetId(); Update update; RegisterDatasetUpdate* register_dataset = update.mutable_register_dataset(); register_dataset->set_dataset_id(dataset_id); register_dataset->mutable_metadata()->set_element_spec( "encoded_element_spec"); TF_ASSERT_OK(state.Apply(update)); { std::shared_ptr<const Dataset> dataset; TF_EXPECT_OK(state.DatasetFromId(dataset_id, dataset)); EXPECT_EQ(dataset->metadata.element_spec(), "encoded_element_spec"); } } TEST(DispatcherState, MissingDatasetId) { DispatcherState state; std::shared_ptr<const Dataset> dataset; Status s = state.DatasetFromId("missing_dataset_id", dataset); EXPECT_EQ(s.code(), error::NOT_FOUND); } TEST(DispatcherState, NextAvailableDatasetId) { DispatcherState state; std::string dataset_id = state.NextAvailableDatasetId(); int64_t dataset_id_int; ASSERT_TRUE(absl::SimpleAtoi(dataset_id, &dataset_id_int)); TF_EXPECT_OK(RegisterDataset(dataset_id, state)); EXPECT_NE(state.NextAvailableDatasetId(), dataset_id); EXPECT_EQ(state.NextAvailableDatasetId(), absl::StrCat(dataset_id_int + 1)); EXPECT_EQ(state.NextAvailableDatasetId(), state.NextAvailableDatasetId()); } TEST(DispatcherState, RegisterWorker) { DispatcherState state; std::string address = "test_worker_address"; TF_EXPECT_OK(RegisterWorker(address, state)); std::shared_ptr<const Worker> worker; TF_EXPECT_OK(state.WorkerFromAddress(address, worker)); EXPECT_EQ(worker->address, address); } TEST(DispatcherState, RegisterWorkerInFixedWorkerSet) { experimental::DispatcherConfig config; config.add_worker_addresses("/worker/task/0"); config.add_worker_addresses("/worker/task/1"); config.add_worker_addresses("/worker/task/2"); DispatcherState state(config); TF_EXPECT_OK(state.ValidateWorker("/worker/task/0:20000")); TF_EXPECT_OK(state.ValidateWorker("/worker/task/1:20000")); TF_EXPECT_OK(state.ValidateWorker("/worker/task/2:20000")); TF_EXPECT_OK(RegisterWorker("/worker/task/0:20000", state)); TF_EXPECT_OK(RegisterWorker("/worker/task/1:20000", state)); TF_EXPECT_OK(RegisterWorker("/worker/task/2:20000", state)); std::shared_ptr<const Worker> worker; TF_EXPECT_OK(state.WorkerFromAddress("/worker/task/0:20000", worker)); EXPECT_EQ(worker->address, "/worker/task/0:20000"); } TEST(DispatcherState, RegisterInvalidWorkerInFixedWorkerSet) { experimental::DispatcherConfig config; config.add_worker_addresses("/worker/task/0"); config.add_worker_addresses("/worker/task/1"); config.add_worker_addresses("/worker/task/2"); DispatcherState state(config); EXPECT_THAT(state.ValidateWorker("localhost:20000"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("The worker's address is not configured"))); TF_EXPECT_OK(RegisterWorker("localhost:20000", state)); std::shared_ptr<const Worker> worker; EXPECT_THAT(state.WorkerFromAddress("/worker/task/0:20000", worker), StatusIs(error::NOT_FOUND, "Worker with address /worker/task/0:20000 not found.")); } TEST(DispatcherState, ListWorkers) { DispatcherState state; std::string address_1 = "address_1"; std::string address_2 = "address_2"; { std::vector<std::shared_ptr<const Worker>> workers = state.ListWorkers(); EXPECT_THAT(workers, IsEmpty()); } TF_EXPECT_OK(RegisterWorker(address_1, state)); { std::vector<std::shared_ptr<const Worker>> workers = state.ListWorkers(); EXPECT_THAT(workers, SizeIs(1)); } TF_EXPECT_OK(RegisterWorker(address_2, state)); { std::vector<std::shared_ptr<const Worker>> workers = state.ListWorkers(); EXPECT_THAT(workers, SizeIs(2)); } } TEST(DispatcherState, MissingWorker) { DispatcherState state; std::shared_ptr<const Worker> worker; Status s = state.WorkerFromAddress("test_worker_address", worker); EXPECT_EQ(s.code(), error::NOT_FOUND); } TEST(DispatcherState, UnknownUpdate) { DispatcherState state; Update update; Status s = state.Apply(update); EXPECT_EQ(s.code(), error::INTERNAL); } TEST(DispatcherState, JobName) { DispatcherState state; std::string dataset_id = state.NextAvailableDatasetId(); int64_t job_id = state.NextAvailableJobId(); std::string job_name = "test_name"; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateJob(job_id, dataset_id, job_name, state)); std::shared_ptr<const Job> job; TF_EXPECT_OK(state.JobByName(job_name, job)); EXPECT_EQ(state.NextAvailableJobId(), job_id + 1); EXPECT_EQ(job->dataset_id, dataset_id); EXPECT_FALSE(job->use_cross_trainer_cache); } TEST(DispatcherState, JobData) { DispatcherState state; std::string dataset_id = state.NextAvailableDatasetId(); int64_t job_id = state.NextAvailableJobId(); int64_t num_consumers = 8; bool use_cross_trainer_cache = true; TF_ASSERT_OK(RegisterDataset(dataset_id, state)); Update update; CreateJobUpdate* create_job = update.mutable_create_job(); create_job->set_job_id(job_id); create_job->set_dataset_id(dataset_id); create_job->set_num_consumers(num_consumers); create_job->set_use_cross_trainer_cache(use_cross_trainer_cache); TF_ASSERT_OK(state.Apply(update)); std::shared_ptr<const Job> job; TF_ASSERT_OK(state.JobFromId(job_id, job)); EXPECT_EQ(job->num_consumers, num_consumers); EXPECT_EQ(job->use_cross_trainer_cache, use_cross_trainer_cache); } TEST(DispatcherState, CrossTrainerCacheTask) { DispatcherState state; std::string dataset_id = state.NextAvailableDatasetId(); std::string worker_address = "test_worker_address"; TF_ASSERT_OK(RegisterDataset(dataset_id, state)); int64_t job_id = state.NextAvailableJobId(); Update job_update; CreateJobUpdate* create_job = job_update.mutable_create_job(); create_job->set_job_id(job_id); create_job->set_dataset_id(dataset_id); create_job->set_use_cross_trainer_cache(true); TF_ASSERT_OK(state.Apply(job_update)); int64_t iteration_id = state.NextAvailableIterationId(); Update iteration_update; CreateIterationUpdate* create_iteration = iteration_update.mutable_create_iteration(); create_iteration->set_job_id(job_id); create_iteration->set_iteration_id(iteration_id); TF_ASSERT_OK(state.Apply(iteration_update)); int64_t task_id = state.NextAvailableTaskId(); TF_EXPECT_OK(CreateTask(task_id, iteration_id, worker_address, state)); std::shared_ptr<const Task> task; TF_EXPECT_OK(state.TaskFromId(task_id, task)); EXPECT_EQ(task->iteration->iteration_id, iteration_id); EXPECT_EQ(task->task_id, task_id); EXPECT_EQ(task->worker_address, worker_address); EXPECT_TRUE(task->iteration->job->use_cross_trainer_cache); } TEST(DispatcherState, CreateTask) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; std::string worker_address = "test_worker_address"; DispatcherState state; int64_t task_id = state.NextAvailableTaskId(); TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id, iteration_id, worker_address, state)); EXPECT_EQ(state.NextAvailableTaskId(), task_id + 1); { std::shared_ptr<const Task> task; TF_EXPECT_OK(state.TaskFromId(task_id, task)); EXPECT_EQ(task->iteration->iteration_id, iteration_id); EXPECT_EQ(task->task_id, task_id); EXPECT_EQ(task->worker_address, worker_address); EXPECT_FALSE(task->iteration->job->use_cross_trainer_cache); } { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForIteration(iteration_id, tasks)); EXPECT_THAT(tasks, SizeIs(1)); } { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForWorker(worker_address, tasks)); EXPECT_EQ(1, tasks.size()); } } TEST(DispatcherState, CreateTasksForSameIteration) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t task_id_1 = 8; int64_t task_id_2 = 9; std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id_1, iteration_id, worker_address, state)); TF_EXPECT_OK(CreateTask(task_id_2, iteration_id, worker_address, state)); { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForIteration(iteration_id, tasks)); EXPECT_THAT(tasks, SizeIs(2)); } } TEST(DispatcherState, CreateTasksForDifferentIterations) { std::string dataset_id = "dataset_id"; int64_t iteration_id_1 = 3; int64_t iteration_id_2 = 4; int64_t task_id_1 = 8; int64_t task_id_2 = 9; std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id_1, dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id_2, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id_1, iteration_id_1, worker_address, state)); TF_EXPECT_OK(CreateTask(task_id_2, iteration_id_2, worker_address, state)); { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForIteration(iteration_id_1, tasks)); EXPECT_THAT(tasks, SizeIs(1)); } { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForIteration(iteration_id_2, tasks)); EXPECT_THAT(tasks, SizeIs(1)); } } TEST(DispatcherState, CreateTasksForSameWorker) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t task_id_1 = 8; int64_t task_id_2 = 9; std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id_1, iteration_id, worker_address, state)); TF_EXPECT_OK(CreateTask(task_id_2, iteration_id, worker_address, state)); { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForWorker(worker_address, tasks)); EXPECT_EQ(2, tasks.size()); } } TEST(DispatcherState, CreateTasksForDifferentWorkers) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t task_id_1 = 8; int64_t task_id_2 = 9; std::string worker_address_1 = "test_worker_address_1"; std::string worker_address_2 = "test_worker_address_2"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id_1, iteration_id, worker_address_1, state)); TF_EXPECT_OK(CreateTask(task_id_2, iteration_id, worker_address_2, state)); { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForWorker(worker_address_1, tasks)); EXPECT_EQ(1, tasks.size()); } { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForWorker(worker_address_2, tasks)); EXPECT_EQ(1, tasks.size()); } } TEST(DispatcherState, GetTasksForWorkerEmpty) { std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterWorker(worker_address, state)); { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForWorker(worker_address, tasks)); EXPECT_EQ(0, tasks.size()); } } TEST(DispatcherState, FinishTask) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t task_id = 4; std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id, iteration_id, worker_address, state)); TF_EXPECT_OK(FinishTask(task_id, state)); std::shared_ptr<const Task> task; TF_EXPECT_OK(state.TaskFromId(task_id, task)); EXPECT_TRUE(task->finished); std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK(state.IterationFromId(iteration_id, iteration)); EXPECT_TRUE(iteration->finished); } TEST(DispatcherState, FinishMultiTaskIteration) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t task_id_1 = 4; int64_t task_id_2 = 5; std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id_1, iteration_id, worker_address, state)); TF_EXPECT_OK(CreateTask(task_id_2, iteration_id, worker_address, state)); TF_EXPECT_OK(FinishTask(task_id_1, state)); { std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK(state.IterationFromId(iteration_id, iteration)); EXPECT_FALSE(iteration->finished); } TF_EXPECT_OK(FinishTask(task_id_2, state)); { std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK(state.IterationFromId(iteration_id, iteration)); EXPECT_TRUE(iteration->finished); } } TEST(DispatcherState, AcquireIterationClientId) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t iteration_client_id_1 = 1; int64_t iteration_client_id_2 = 2; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id_1, state)); { std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK(state.IterationFromId(iteration_id, iteration)); EXPECT_EQ(iteration->num_clients, 1); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id_2, state)); EXPECT_EQ(iteration->num_clients, 2); } { std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK( state.IterationForIterationClientId(iteration_client_id_1, iteration)); EXPECT_EQ(iteration->iteration_id, iteration_id); } { std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK( state.IterationForIterationClientId(iteration_client_id_2, iteration)); EXPECT_EQ(iteration->iteration_id, iteration_id); } } TEST(DispatcherState, ReleaseIterationClientId) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t iteration_client_id = 6; int64_t release_time = 100; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id, state)); TF_EXPECT_OK( ReleaseIterationClientId(iteration_client_id, release_time, state)); std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK(state.IterationFromId(iteration_id, iteration)); EXPECT_EQ(iteration->num_clients, 0); Status s = state.IterationForIterationClientId(iteration_client_id, iteration); EXPECT_EQ(s.code(), error::NOT_FOUND); } TEST(DispatcherState, ListActiveClientsEmpty) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t iteration_client_id = 6; int64_t release_time = 100; DispatcherState state; EXPECT_THAT(state.ListActiveClientIds(), IsEmpty()); TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id, state)); TF_EXPECT_OK( ReleaseIterationClientId(iteration_client_id, release_time, state)); EXPECT_THAT(state.ListActiveClientIds(), IsEmpty()); } TEST(DispatcherState, ListActiveClients) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t iteration_client_id_1 = 6; int64_t iteration_client_id_2 = 7; int64_t iteration_client_id_3 = 8; int64_t release_time = 100; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id_1, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id_2, state)); TF_EXPECT_OK( ReleaseIterationClientId(iteration_client_id_2, release_time, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id_3, state)); EXPECT_THAT(state.ListActiveClientIds(), UnorderedElementsAre(6, 8)); } TEST(DispatcherState, ListSnapshotPaths) { DispatcherState state; absl::flat_hash_set<std::string> snapshot_paths = {"p1", "p2"}; for (const auto& snapshot_path : snapshot_paths) { TF_EXPECT_OK(Snapshot(snapshot_path, state)); } EXPECT_EQ(state.ListSnapshotPaths(), snapshot_paths); } TEST(DispatcherState, GetNumberOfRegisteredWorkers) { DispatcherState state; std::string address_1 = "address_1"; std::string address_2 = "address_2"; EXPECT_EQ(state.GetNumberOfRegisteredWorkers(), 0); TF_EXPECT_OK(RegisterWorker(address_1, state)); EXPECT_EQ(state.GetNumberOfRegisteredWorkers(), 1); TF_EXPECT_OK(RegisterWorker(address_2, state)); EXPECT_EQ(state.GetNumberOfRegisteredWorkers(), 2); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/dispatcher_state.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/dispatcher_state_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
476923f3-b0e5-4116-ab25-59dc056d648d
cpp
tensorflow/tensorflow
grpc_dispatcher_impl
tensorflow/core/data/service/grpc_dispatcher_impl.cc
tensorflow/core/data/service/grpc_dispatcher_impl_test.cc
#include "tensorflow/core/data/service/grpc_dispatcher_impl.h" #include "grpcpp/server_context.h" #include "tensorflow/core/data/service/export.pb.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { using ::grpc::ServerBuilder; using ::grpc::ServerContext; GrpcDispatcherImpl::GrpcDispatcherImpl( const experimental::DispatcherConfig& config, ServerBuilder& server_builder) : impl_(config) { server_builder.RegisterService(this); VLOG(1) << "Registered data service dispatcher"; } Status GrpcDispatcherImpl::Start() { return impl_.Start(); } void GrpcDispatcherImpl::Stop() { impl_.Stop(); } size_t GrpcDispatcherImpl::NumActiveIterations() { return impl_.NumActiveIterations(); } DispatcherStateExport GrpcDispatcherImpl::ExportState() const { return impl_.ExportState(); } #define HANDLER(method) \ grpc::Status GrpcDispatcherImpl::method(ServerContext* context, \ const method##Request* request, \ method##Response* response) { \ return ToGrpcStatus(impl_.method(request, response)); \ } HANDLER(WorkerHeartbeat); HANDLER(WorkerUpdate); HANDLER(GetDatasetDef); HANDLER(GetSplit); HANDLER(GetVersion); HANDLER(GetOrRegisterDataset); HANDLER(ReleaseIterationClient); HANDLER(MaybeRemoveTask); HANDLER(GetOrCreateJob); HANDLER(GetOrCreateIteration); HANDLER(ClientHeartbeat); HANDLER(GetWorkers); HANDLER(GetDataServiceMetadata); HANDLER(GetDataServiceConfig); HANDLER(Snapshot); HANDLER(GetSnapshotSplit); HANDLER(GetSnapshotStreams); HANDLER(DisableCompressionAtRuntime); #undef HANDLER } }
#include "tensorflow/core/data/service/grpc_dispatcher_impl.h" #include <limits> #include <memory> #include <string> #include <utility> #include "grpcpp/channel.h" #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/server_lib.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { namespace { using ::grpc::Channel; using ::grpc::ChannelArguments; using ::grpc::ChannelCredentials; using ::grpc::ClientContext; constexpr const char kHostAddress[] = "localhost"; constexpr const char kProtocol[] = "grpc"; class GrpcDispatcherImplTest : public ::testing::Test { protected: void SetUp() override { TF_ASSERT_OK(SetUpDispatcherServer()); TF_ASSERT_OK(SetUpDispatcherClientStub()); } Status SetUpDispatcherServer() { experimental::DispatcherConfig config; config.set_protocol(kProtocol); TF_RETURN_IF_ERROR(NewDispatchServer(config, dispatcher_server_)); return dispatcher_server_->Start(); } Status SetUpDispatcherClientStub() { std::shared_ptr<ChannelCredentials> credentials; TF_RETURN_IF_ERROR( CredentialsFactory::CreateClientCredentials(kProtocol, &credentials)); ChannelArguments args; args.SetMaxReceiveMessageSize(std::numeric_limits<int32>::max()); args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, true); std::shared_ptr<Channel> channel = ::grpc::CreateCustomChannel(GetDispatcherAddress(), credentials, args); dispatcher_client_stub_ = DispatcherService::NewStub(channel); return absl::OkStatus(); } std::string GetDispatcherAddress() const { return absl::StrCat(kHostAddress, ":", dispatcher_server_->BoundPort()); } std::unique_ptr<DispatchGrpcDataServer> dispatcher_server_; std::unique_ptr<DispatcherService::Stub> dispatcher_client_stub_; }; TEST_F(GrpcDispatcherImplTest, GrpcTest) { ClientContext ctx; GetVersionRequest req; GetVersionResponse resp; TF_ASSERT_OK( FromGrpcStatus(dispatcher_client_stub_->GetVersion(&ctx, req, &resp))); EXPECT_EQ(resp.version(), kDataServiceVersion); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/grpc_dispatcher_impl.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/grpc_dispatcher_impl_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
785e640c-83bd-4859-b375-a19a3da0f900
cpp
tensorflow/tensorflow
dataset_store
tensorflow/core/data/service/dataset_store.cc
tensorflow/core/data/service/dataset_store_test.cc
#include "tensorflow/core/data/service/dataset_store.h" #include <memory> #include <string> #include "absl/memory/memory.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/utils.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/path.h" namespace tensorflow { namespace data { FileSystemDatasetStore::FileSystemDatasetStore(const std::string& datasets_dir) : datasets_dir_(datasets_dir) {} Status FileSystemDatasetStore::Put(const std::string& key, const DatasetDef& dataset) { std::string path_to_write = io::JoinPath(datasets_dir_, key); TF_RETURN_IF_ERROR(WriteDatasetDef(path_to_write, dataset)); return absl::OkStatus(); } Status FileSystemDatasetStore::Get( const std::string& key, std::shared_ptr<const DatasetDef>& dataset_def) { std::string path = io::JoinPath(datasets_dir_, key); TF_RETURN_IF_ERROR(Env::Default()->FileExists(path)); DatasetDef def; TF_RETURN_IF_ERROR(ReadDatasetDef(path, def)); dataset_def = std::make_shared<const DatasetDef>(def); return absl::OkStatus(); } Status MemoryDatasetStore::Put(const std::string& key, const DatasetDef& dataset) { auto& stored_dataset = datasets_[key]; stored_dataset = std::make_shared<const DatasetDef>(dataset); return absl::OkStatus(); } Status MemoryDatasetStore::Get(const std::string& key, std::shared_ptr<const DatasetDef>& dataset_def) { auto& stored_dataset = datasets_[key]; if (!stored_dataset) { return errors::NotFound("Dataset with key ", key, " not found"); } dataset_def = stored_dataset; return absl::OkStatus(); } } }
#include "tensorflow/core/data/service/dataset_store.h" #include <memory> #include <string> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { const char kFileSystem[] = "file_system"; const char kMemory[] = "memory"; std::string NewDatasetsDir() { std::string dir = io::JoinPath(testing::TmpDir(), "datasets"); if (Env::Default()->FileExists(dir).ok()) { int64_t undeleted_files; int64_t undeleted_dirs; CHECK(Env::Default() ->DeleteRecursively(dir, &undeleted_files, &undeleted_dirs) .ok()); } CHECK(Env::Default()->RecursivelyCreateDir(dir).ok()); return dir; } std::unique_ptr<DatasetStore> MakeStore(const std::string& type) { if (type == kFileSystem) { return std::make_unique<FileSystemDatasetStore>(NewDatasetsDir()); } else if (type == kMemory) { return std::make_unique<MemoryDatasetStore>(); } else { CHECK(false) << "unexpected type: " << type; } } DatasetDef DatasetDefWithVersion(int32_t version) { DatasetDef def; def.mutable_graph()->set_version(version); return def; } } class DatasetStoreTest : public ::testing::Test, public ::testing::WithParamInterface<std::string> {}; TEST_P(DatasetStoreTest, StoreAndGet) { std::unique_ptr<DatasetStore> store = MakeStore(GetParam()); std::string key = "key"; DatasetDef dataset_def = DatasetDefWithVersion(1); TF_ASSERT_OK(store->Put(key, dataset_def)); std::shared_ptr<const DatasetDef> result; TF_ASSERT_OK(store->Get(key, result)); EXPECT_EQ(result->graph().version(), dataset_def.graph().version()); } TEST_P(DatasetStoreTest, StoreAndGetMultiple) { std::unique_ptr<DatasetStore> store = MakeStore(GetParam()); int64_t num_datasets = 10; std::vector<std::string> keys; for (int i = 0; i < num_datasets; ++i) { std::string key = absl::StrCat("key", i); DatasetDef dataset_def = DatasetDefWithVersion(i); TF_ASSERT_OK(store->Put(key, dataset_def)); keys.push_back(key); } for (int i = 0; i < num_datasets; ++i) { std::shared_ptr<const DatasetDef> result; TF_ASSERT_OK(store->Get(keys[i], result)); EXPECT_EQ(result->graph().version(), i); } } TEST_P(DatasetStoreTest, StoreAlreadyExists) { std::unique_ptr<DatasetStore> store = MakeStore(GetParam()); int32_t version = 1; DatasetDef dataset_def = DatasetDefWithVersion(version); std::string key = "key"; TF_ASSERT_OK(store->Put(key, dataset_def)); TF_EXPECT_OK(store->Put(key, dataset_def)); std::shared_ptr<const DatasetDef> result; TF_ASSERT_OK(store->Get(key, result)); EXPECT_EQ(result->graph().version(), version); } TEST_P(DatasetStoreTest, GetMissing) { std::unique_ptr<DatasetStore> store = MakeStore(GetParam()); std::shared_ptr<const DatasetDef> result; Status s = store->Get("missing", result); EXPECT_EQ(s.code(), error::NOT_FOUND); } INSTANTIATE_TEST_SUITE_P(DatasetStoreTests, DatasetStoreTest, ::testing::Values(kFileSystem, kMemory)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/dataset_store.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/dataset_store_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1ce618e4-f93e-4209-bb33-5fcea4ce081e
cpp
tensorflow/tensorflow
worker_client
tensorflow/core/data/service/worker_client.cc
tensorflow/core/data/service/worker_client_test.cc
#include "tensorflow/core/data/service/worker_client.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "grpcpp/support/status.h" #include "absl/container/flat_hash_set.h" #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/worker.grpc.pb.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/errors.h" #include "tsl/platform/host_info.h" namespace tensorflow { namespace data { absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> CreateDataServiceWorkerClient( const std::string& dispatcher_protocol, const DataTransferServerInfo& info, const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator) { auto client = std::make_unique<DataServiceWorkerClient>( info.address(), dispatcher_protocol, info.protocol(), accelerator_device_info, allocator); TF_RETURN_IF_ERROR(client->Initialize()); TF_RETURN_WITH_CONTEXT_IF_ERROR( client->CheckCompatibility(info.compatibility_info()), "for data transfer protocol '", client->GetDataTransferProtocol(), "', the compatibility check between the trainer worker and the ", "tf.data service worker at ", info.address(), "failed"); return client; } Status DataServiceWorkerClient::GetElement(const GetElementRequest& req, GetElementResult& result) { TF_RETURN_IF_ERROR(EnsureInitialized()); return client_->GetElement(req, result); } Status DataServiceWorkerClient::EnsureInitialized() { mutex_lock l(mu_); if (client_) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(DataTransferClient::Build( GetDataTransferProtocol(), {protocol_, address_, accelerator_device_info_, allocator_}, &client_)); return absl::OkStatus(); } std::string DataServiceWorkerClient::GetDataTransferProtocol() const { if (ForceLocalProtocol(address_)) { return kLocalTransferProtocol; } return transfer_protocol_; } void DataServiceWorkerClient::TryCancel() { client_->TryCancel(); } class GrpcDataTransferClient : public DataTransferClient { public: GrpcDataTransferClient(std::shared_ptr<grpc::ChannelCredentials> credentials, std::string address, Allocator* allocator) : allocator_(allocator) { VLOG(2) << "Create GrpcDataTransferClient for worker " << address << "."; grpc::ChannelArguments args; args.SetMaxReceiveMessageSize(-1); auto channel = grpc::CreateCustomChannel(address, credentials, args); stub_ = WorkerService::NewStub(channel); } Status GetElement(const GetElementRequest& req, GetElementResult& result) override { VLOG(3) << "GetElement for task " << req.task_id() << " from gRPC worker " << "server."; { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled("Client was cancelled."); } } grpc::ClientContext ctx; gtl::Cleanup<std::function<void()>> cleanup; { mutex_lock l(mu_); active_contexts_.insert(&ctx); cleanup = gtl::MakeCleanup([this, &ctx] { mutex_lock l(mu_); active_contexts_.erase(&ctx); }); } GetElementResponse resp; int64_t start_time_us = env_->NowMicros(); grpc::Status s = stub_->GetElement(&ctx, req, &resp); int64_t end_time_us = env_->NowMicros(); if (!s.ok()) { return grpc_util::WrapError("Failed to get element", s); } metrics::RecordTFDataServiceGetElementDuration(kGrpcTransferProtocol, end_time_us - start_time_us); result.end_of_sequence = resp.end_of_sequence(); result.skip = resp.skip_task(); switch (resp.element_case()) { case GetElementResponse::kCompressed: { Tensor tensor(DT_VARIANT, TensorShape{}); tensor.scalar<Variant>()() = std::move(resp.compressed()); result.components.push_back(tensor); break; } case GetElementResponse::kUncompressed: for (const auto& component : resp.uncompressed().components()) { result.components.emplace_back(); bool success = allocator_ != nullptr ? result.components.back().FromProto(allocator_, component) : result.components.back().FromProto(component); if (!success) { return errors::Internal("Failed to parse tensor."); } } break; case GetElementResponse::ELEMENT_NOT_SET: break; } return absl::OkStatus(); } void TryCancel() override { VLOG(2) << "Cancel GrpcDataTransferClient."; mutex_lock l(mu_); cancelled_ = true; for (const auto& ctx : active_contexts_) { ctx->TryCancel(); } } private: Allocator* const allocator_; mutex mu_; std::unique_ptr<WorkerService::Stub> stub_; absl::flat_hash_set<::grpc::ClientContext*> active_contexts_ TF_GUARDED_BY(mu_); bool cancelled_ TF_GUARDED_BY(mu_) = false; }; class GrpcTransferClientRegistrar { public: GrpcTransferClientRegistrar() { DataTransferClient::Register( kGrpcTransferProtocol, [](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* out) { std::shared_ptr<grpc::ChannelCredentials> credentials; TF_RETURN_IF_ERROR(CredentialsFactory::CreateClientCredentials( config.protocol, &credentials)); *out = std::make_unique<GrpcDataTransferClient>( credentials, config.address, config.allocator); return absl::OkStatus(); }); } }; static GrpcTransferClientRegistrar gprc_client_registrar; class LocalDataTransferClient : public DataTransferClient { public: explicit LocalDataTransferClient(absl::string_view worker_address) : worker_address_(worker_address) { VLOG(2) << "Create LocalDataTransferClient for worker " << worker_address_ << "."; } Status GetElement(const GetElementRequest& req, GetElementResult& result) override { VLOG(3) << "GetElement for task " << req.task_id() << " from local worker."; TF_RETURN_IF_ERROR(VerifyClientIsNotCancelled()); TF_ASSIGN_OR_RETURN(std::shared_ptr<DataServiceWorkerImpl> worker, GetWorker(req)); int64_t start_time_us = env_->NowMicros(); Status s = worker->GetElementResult(&req, &result); int64_t end_time_us = env_->NowMicros(); TF_RETURN_IF_ERROR(s); metrics::RecordTFDataServiceGetElementDuration(kLocalTransferProtocol, end_time_us - start_time_us); return s; } void TryCancel() override { VLOG(2) << "Cancel LocalDataTransferClient for worker " << worker_address_ << "."; mutex_lock l(mu_); cancelled_ = true; } private: Status VerifyClientIsNotCancelled() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled(absl::Substitute( "Client for worker $0 has been cancelled.", worker_address_)); } return absl::OkStatus(); } absl::StatusOr<std::shared_ptr<DataServiceWorkerImpl>> GetWorker( const GetElementRequest& req) const { std::shared_ptr<DataServiceWorkerImpl> worker = LocalWorkers::Get(worker_address_); if (!worker) { return errors::Cancelled(absl::Substitute( "Local worker at address $0 is no longer available; cancel request " "for task $1.", worker_address_, req.task_id())); } return worker; } const std::string worker_address_; mutex mu_; bool cancelled_ TF_GUARDED_BY(mu_) = false; }; class LocalTransferClientRegistrar { public: LocalTransferClientRegistrar() { DataTransferClient::Register( kLocalTransferProtocol, [](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* out) { *out = std::make_unique<LocalDataTransferClient>(config.address); return absl::OkStatus(); }); } }; static LocalTransferClientRegistrar local_client_registrar; bool ForceLocalProtocol(const std::string& worker_address) { if (tsl::port::JobUid() == -1) { return false; } return LocalWorkers::Get(worker_address) != nullptr; } } }
#include "tensorflow/core/data/service/worker_client.h" #include <memory> #include <optional> #include <string> #include <utility> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/substitute.h" #include "absl/types/optional.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::testing::RangeSquareDataset; using ::tensorflow::testing::StatusIs; using ::testing::MatchesRegex; constexpr const char kProtocol[] = "grpc"; constexpr const char kAltTransferProtocol[] = "alt"; class WorkerClientTest : public ::testing::TestWithParam<std::string> { protected: void SetUp() override { InitializeTestCluster(); } void InitializeTestCluster( std::optional<std::string> data_transfer_protocol = std::nullopt) { test_cluster_ = std::make_unique<TestCluster>(1, data_transfer_protocol); TF_ASSERT_OK(test_cluster_->Initialize()); dispatcher_client_ = std::make_unique<DataServiceDispatcherClient>( test_cluster_->DispatcherAddress(), kProtocol); } absl::StatusOr<std::string> RegisterDataset(const int64_t range) { const auto dataset_def = RangeSquareDataset(range); std::string dataset_id; TF_RETURN_IF_ERROR(dispatcher_client_->RegisterDataset( dataset_def, DataServiceMetadata(), std::nullopt, dataset_id)); return dataset_id; } absl::StatusOr<int64_t> CreateIteration(const std::string& dataset_id) { ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); int64_t job_id = 0; TF_RETURN_IF_ERROR(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, std::nullopt, std::nullopt, false, TARGET_WORKERS_AUTO, job_id)); int64_t iteration_client_id = 0; TF_RETURN_IF_ERROR(dispatcher_client_->GetOrCreateIteration( job_id, 0, iteration_client_id)); return iteration_client_id; } absl::StatusOr<int64_t> GetTaskToRead(const int64_t iteration_client_id) { ClientHeartbeatRequest request; ClientHeartbeatResponse response; request.set_iteration_client_id(iteration_client_id); TF_RETURN_IF_ERROR(dispatcher_client_->ClientHeartbeat(request, response)); if (response.task_info().empty()) { return errors::NotFound(absl::Substitute( "No task found for iteration $0.", iteration_client_id)); } return response.task_info(0).task_id(); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> GetWorkerClient( const std::string& data_transfer_protocol) { DataTransferServerInfo info; info.set_address(GetWorkerAddress()); info.set_protocol(data_transfer_protocol); return CreateDataServiceWorkerClient(kProtocol, info, nullptr, nullptr); } absl::StatusOr<GetElementResult> GetElement(DataServiceWorkerClient& client, const int64_t task_id) { GetElementRequest request; GetElementResult result; request.set_task_id(task_id); TF_RETURN_IF_ERROR(client.GetElement(request, result)); return result; } std::string GetDispatcherAddress() const { return test_cluster_->DispatcherAddress(); } std::string GetWorkerAddress() const { return test_cluster_->WorkerAddress(0); } std::unique_ptr<TestCluster> test_cluster_; std::unique_ptr<DataServiceDispatcherClient> dispatcher_client_; }; class AltDataTransferServer : public DataTransferServer { public: explicit AltDataTransferServer(DataTransferServer::GetElementT get_element) : get_element_(get_element) {} absl::Status GetElement(const GetElementRequest& req, GetElementResult& result) { return get_element_(&req, &result); } absl::Status Start(const experimental::WorkerConfig& config) override { return absl::OkStatus(); } int Port() const override { return -1; } private: DataTransferServer::GetElementT get_element_; }; class AltDataTransferClient : public DataTransferClient { public: explicit AltDataTransferClient(std::shared_ptr<AltDataTransferServer> server) : server_(server) {} absl::Status GetElement(const GetElementRequest& req, GetElementResult& result) override { return server_->GetElement(req, result); } void TryCancel() override {} private: std::shared_ptr<AltDataTransferServer> server_; }; class AltDataTransferRegistrar { public: AltDataTransferRegistrar() { DataTransferServer::Register( kAltTransferProtocol, [this](DataTransferServer::GetElementT get_element, std::shared_ptr<DataTransferServer>* server) { server_ = std::make_shared<AltDataTransferServer>(get_element); *server = server_; return absl::OkStatus(); }); DataTransferClient::Register( kAltTransferProtocol, [this](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* client) { *client = std::make_unique<AltDataTransferClient>(server_); return absl::OkStatus(); }); } private: std::shared_ptr<AltDataTransferServer> server_ = nullptr; }; static AltDataTransferRegistrar alt_data_transfer_registrar; class DataTransferProtocolWorkerClientTest : public WorkerClientTest { protected: void SetUp() override { std::string data_transfer_protocol = GetParam(); InitializeTestCluster(data_transfer_protocol); } }; TEST_F(WorkerClientTest, LocalRead) { const int64_t range = 5; TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(range)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); for (int64_t i = 0; i < range; ++i) { TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); test::ExpectEqual(result.components[0], Tensor(int64_t{i * i})); EXPECT_FALSE(result.end_of_sequence); } LocalWorkers::Remove(GetWorkerAddress()); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_F(WorkerClientTest, LocalReadEmptyDataset) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(0)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); EXPECT_TRUE(result.end_of_sequence); LocalWorkers::Remove(GetWorkerAddress()); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_P(DataTransferProtocolWorkerClientTest, NetworkRead) { std::string data_transfer_protocol = GetParam(); LocalWorkers::Remove(GetWorkerAddress()); const int64_t range = 5; TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(range)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(data_transfer_protocol)); for (int64_t i = 0; i < range; ++i) { TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); test::ExpectEqual(result.components[0], Tensor(int64_t{i * i})); EXPECT_FALSE(result.end_of_sequence); } } INSTANTIATE_TEST_SUITE_P( NetworkProtocols, DataTransferProtocolWorkerClientTest, ::testing::Values(kGrpcTransferProtocol, kAltTransferProtocol), [](const ::testing::TestParamInfo< DataTransferProtocolWorkerClientTest::ParamType>& info) { return info.param; }); TEST_F(WorkerClientTest, LocalServerShutsDown) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(5)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); test_cluster_->StopWorkers(); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_F(WorkerClientTest, CancelClient) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(5)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); client->TryCancel(); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Client for worker.*has been cancelled."))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/worker_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/worker_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
11c70d79-3753-4076-a1b8-1c481f3ba170
cpp
tensorflow/tensorflow
common
tensorflow/compiler/mlir/lite/kernels/internal/common.cc
tensorflow/lite/core/c/common_test.cc
#include "tensorflow/compiler/mlir/lite/kernels/internal/common.h" namespace tflite_migration { #if TFLITE_SINGLE_ROUNDING int32_t MultiplyByQuantizedMultiplier(int32_t x, int32_t quantized_multiplier, int shift) { TFLITE_DCHECK(quantized_multiplier >= 0); TFLITE_DCHECK(shift >= -31 && shift <= 30); const int64_t total_shift = 31 - shift; const int64_t round = static_cast<int64_t>(1) << (total_shift - 1); int64_t result = x * static_cast<int64_t>(quantized_multiplier) + round; result = result >> total_shift; TFLITE_DCHECK(result >= std::numeric_limits<int32_t>::min() && result <= std::numeric_limits<int32_t>::max()); return static_cast<int32_t>(result); } int32_t MultiplyByQuantizedMultiplier(int64_t x, int32_t quantized_multiplier, int shift) { TFLITE_DCHECK(quantized_multiplier >= 0); TFLITE_DCHECK(shift >= -31 && shift < 8); TFLITE_DCHECK(x >= -(static_cast<int64_t>(1) << 47) && x < (static_cast<int64_t>(1) << 47)); const int32_t reduced_multiplier = (quantized_multiplier < 0x7FFF0000) ? ((quantized_multiplier + (1 << 15)) >> 16) : 0x7FFF; const int64_t total_shift = 15 - shift; const int64_t round = static_cast<int64_t>(1) << (total_shift - 1); int64_t result = x * static_cast<int64_t>(reduced_multiplier) + round; result = result >> total_shift; TFLITE_DCHECK(result >= std::numeric_limits<int32_t>::min() && result <= std::numeric_limits<int32_t>::max()); return static_cast<int32_t>(result); } #else int32_t MultiplyByQuantizedMultiplier(int32_t x, int32_t quantized_multiplier, int shift) { using gemmlowp::RoundingDivideByPOT; using gemmlowp::SaturatingRoundingDoublingHighMul; int left_shift = shift > 0 ? shift : 0; int right_shift = shift > 0 ? 0 : -shift; return RoundingDivideByPOT(SaturatingRoundingDoublingHighMul( x * (1 << left_shift), quantized_multiplier), right_shift); } int32_t MultiplyByQuantizedMultiplier(int64_t x, int32_t quantized_multiplier, int shift) { assert(quantized_multiplier >= 0); assert(shift >= -31 && shift < 8); assert(x >= -(static_cast<int64_t>(1) << 47) && x < (static_cast<int64_t>(1) << 47)); int32_t reduced_multiplier = (quantized_multiplier < 0x7FFF0000) ? ((quantized_multiplier + (1 << 15)) >> 16) : 0x7FFF; int total_shift = 15 - shift; x = (x * (int64_t)reduced_multiplier) + ((int64_t)1 << (total_shift - 1)); int32_t result = x >> total_shift; return result; } #endif }
#include "tensorflow/lite/core/c/common.h" #include <cstddef> #include <cstdlib> #include <limits> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/util.h" namespace tflite { using ::testing::ElementsAreArray; TEST(IntArray, TestIntArrayCreate) { TfLiteIntArray* a = TfLiteIntArrayCreate(0); TfLiteIntArray* b = TfLiteIntArrayCreate(3); TfLiteIntArrayFree(a); TfLiteIntArrayFree(b); } TEST(IntArray, TestIntArrayCopy) { TfLiteIntArray* a = TfLiteIntArrayCreate(2); a->data[0] = 22; a->data[1] = 24; TfLiteIntArray* b = TfLiteIntArrayCopy(a); ASSERT_NE(a, b); ASSERT_EQ(a->size, b->size); ASSERT_EQ(a->data[0], b->data[0]); ASSERT_EQ(a->data[1], b->data[1]); TfLiteIntArrayFree(a); TfLiteIntArrayFree(b); } TEST(IntArray, TestIntArrayEqual) { TfLiteIntArray* a = TfLiteIntArrayCreate(1); a->data[0] = 1; TfLiteIntArray* b = TfLiteIntArrayCreate(2); b->data[0] = 5; b->data[1] = 6; TfLiteIntArray* c = TfLiteIntArrayCreate(2); c->data[0] = 5; c->data[1] = 6; TfLiteIntArray* d = TfLiteIntArrayCreate(2); d->data[0] = 6; d->data[1] = 6; EXPECT_FALSE(TfLiteIntArrayEqual(a, b)); EXPECT_TRUE(TfLiteIntArrayEqual(b, c)); EXPECT_TRUE(TfLiteIntArrayEqual(b, b)); EXPECT_FALSE(TfLiteIntArrayEqual(c, d)); EXPECT_FALSE(TfLiteIntArrayEqual(nullptr, a)); EXPECT_FALSE(TfLiteIntArrayEqual(a, nullptr)); EXPECT_TRUE(TfLiteIntArrayEqual(nullptr, nullptr)); TfLiteIntArrayFree(a); TfLiteIntArrayFree(b); TfLiteIntArrayFree(c); TfLiteIntArrayFree(d); } TEST(FloatArray, TestFloatArrayCreate) { TfLiteFloatArray* a = TfLiteFloatArrayCreate(0); TfLiteFloatArray* b = TfLiteFloatArrayCreate(3); TfLiteFloatArrayFree(a); TfLiteFloatArrayFree(b); } TEST(FloatArray, TestFloatArrayCopy) { TfLiteFloatArray* a = TfLiteFloatArrayCreate(2); a->data[0] = 22.0; a->data[1] = 24.0; TfLiteFloatArray* b = TfLiteFloatArrayCopy(a); ASSERT_NE(a, b); ASSERT_EQ(a->size, b->size); ASSERT_EQ(a->data[0], b->data[0]); ASSERT_EQ(a->data[1], b->data[1]); TfLiteFloatArrayFree(a); TfLiteFloatArrayFree(b); } TEST(Types, TestTypeNames) { auto type_name = [](TfLiteType t) { return std::string(TfLiteTypeGetName(t)); }; EXPECT_EQ(type_name(kTfLiteNoType), "NOTYPE"); EXPECT_EQ(type_name(kTfLiteFloat64), "FLOAT64"); EXPECT_EQ(type_name(kTfLiteFloat32), "FLOAT32"); EXPECT_EQ(type_name(kTfLiteFloat16), "FLOAT16"); EXPECT_EQ(type_name(kTfLiteBFloat16), "BFLOAT16"); EXPECT_EQ(type_name(kTfLiteInt16), "INT16"); EXPECT_EQ(type_name(kTfLiteUInt16), "UINT16"); EXPECT_EQ(type_name(kTfLiteInt32), "INT32"); EXPECT_EQ(type_name(kTfLiteUInt32), "UINT32"); EXPECT_EQ(type_name(kTfLiteUInt8), "UINT8"); EXPECT_EQ(type_name(kTfLiteUInt64), "UINT64"); EXPECT_EQ(type_name(kTfLiteInt8), "INT8"); EXPECT_EQ(type_name(kTfLiteInt64), "INT64"); EXPECT_EQ(type_name(kTfLiteBool), "BOOL"); EXPECT_EQ(type_name(kTfLiteComplex64), "COMPLEX64"); EXPECT_EQ(type_name(kTfLiteComplex128), "COMPLEX128"); EXPECT_EQ(type_name(kTfLiteString), "STRING"); EXPECT_EQ(type_name(kTfLiteResource), "RESOURCE"); EXPECT_EQ(type_name(kTfLiteVariant), "VARIANT"); EXPECT_EQ(type_name(kTfLiteInt4), "INT4"); } TEST(Quantization, TestQuantizationFree) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; t.dims = nullptr; t.dims_signature = nullptr; t.quantization.type = kTfLiteAffineQuantization; t.sparsity = nullptr; auto* params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); params->scale = TfLiteFloatArrayCreate(3); params->zero_point = TfLiteIntArrayCreate(3); t.quantization.params = reinterpret_cast<void*>(params); TfLiteTensorFree(&t); } TEST(Sparsity, TestSparsityFree) { TfLiteTensor t = {}; t.allocation_type = kTfLiteArenaRw; t.dims = nullptr; t.dims_signature = nullptr; t.sparsity = static_cast<TfLiteSparsity*>(malloc(sizeof(TfLiteSparsity))); t.sparsity->traversal_order = TfLiteIntArrayCreate(2); t.sparsity->block_map = nullptr; t.sparsity->dim_metadata = static_cast<TfLiteDimensionMetadata*>( malloc(sizeof(TfLiteDimensionMetadata) * 2)); t.sparsity->dim_metadata_size = 2; t.sparsity->dim_metadata[0].format = kTfLiteDimDense; t.sparsity->dim_metadata[0].dense_size = 4; t.sparsity->dim_metadata[1].format = kTfLiteDimSparseCSR; t.sparsity->dim_metadata[1].array_segments = TfLiteIntArrayCreate(2); t.sparsity->dim_metadata[1].array_indices = TfLiteIntArrayCreate(3); TfLiteTensorFree(&t); } TEST(TensorCopy, TensorCopy_VALID) { const int kNumElements = 32; const int kBytes = sizeof(float) * kNumElements; TfLiteTensor src; TfLiteTensor dst; TfLiteDelegate delegate; memset(&delegate, 0, sizeof(delegate)); memset(&src, 0, sizeof(TfLiteTensor)); memset(&dst, 0, sizeof(TfLiteTensor)); src.data.raw = static_cast<char*>(malloc(kBytes)); for (int i = 0; i < kNumElements; ++i) { src.data.f[i] = i; } dst.data.raw = static_cast<char*>(malloc(kBytes)); src.bytes = dst.bytes = kBytes; src.delegate = &delegate; src.data_is_stale = true; src.allocation_type = kTfLiteDynamic; src.type = kTfLiteFloat32; src.dims = TfLiteIntArrayCreate(1); src.dims->data[0] = 1; src.dims_signature = TfLiteIntArrayCopy(src.dims); src.buffer_handle = 5; EXPECT_EQ(kTfLiteOk, TfLiteTensorCopy(&src, &dst)); EXPECT_EQ(dst.bytes, src.bytes); EXPECT_EQ(dst.delegate, src.delegate); EXPECT_EQ(dst.data_is_stale, src.data_is_stale); EXPECT_EQ(dst.type, src.type); EXPECT_EQ(1, TfLiteIntArrayEqual(dst.dims, src.dims)); EXPECT_EQ(dst.buffer_handle, src.buffer_handle); for (int i = 0; i < kNumElements; ++i) { EXPECT_EQ(dst.data.f[i], src.data.f[i]); } TfLiteTensorFree(&src); free(dst.data.raw); TfLiteTensorFree(&dst); } TEST(TensorCopy, TensorCopy_INVALID) { TfLiteTensor src; TfLiteTensor dst; EXPECT_EQ(kTfLiteOk, TfLiteTensorCopy(&src, nullptr)); EXPECT_EQ(kTfLiteOk, TfLiteTensorCopy(nullptr, &dst)); src.bytes = 10; dst.bytes = 12; EXPECT_EQ(kTfLiteError, TfLiteTensorCopy(&src, &dst)); } TEST(TestTensorRealloc, TensorReallocMoreBytesSucceeds) { const TfLiteType t = kTfLiteFloat32; const int num_elements = 4; const int new_num_elements = 6; const size_t bytes = sizeof(float) * num_elements; const size_t new_bytes = sizeof(float) * new_num_elements; float* data = (float*)malloc(bytes); memset(data, 0, bytes); TfLiteIntArray* dims = ConvertVectorToTfLiteIntArray({num_elements}); TfLiteTensor* tensor = (TfLiteTensor*)malloc(sizeof(TfLiteTensor)); tensor->sparsity = nullptr; tensor->quantization.type = kTfLiteNoQuantization; tensor->bytes = bytes; tensor->type = t; tensor->data.data = data; tensor->allocation_type = kTfLiteDynamic; tensor->dims = dims; tensor->dims_signature = TfLiteIntArrayCopy(dims); ASSERT_EQ(TfLiteTensorRealloc(new_bytes, tensor), kTfLiteOk); EXPECT_EQ(tensor->bytes, new_bytes); ASSERT_THAT(std::vector<int>(tensor->data.f, tensor->data.f + num_elements), ElementsAreArray({0, 0, 0, 0})); TfLiteTensorFree(tensor); free(tensor); } TEST(TestTensorRealloc, TensorReallocLessBytesSucceeds) { const TfLiteType t = kTfLiteFloat32; const int num_elements = 4; const int new_num_elements = 2; const size_t bytes = sizeof(float) * num_elements; const size_t new_bytes = sizeof(float) * new_num_elements; float* data = (float*)malloc(bytes); memset(data, 0, bytes); TfLiteIntArray* dims = ConvertVectorToTfLiteIntArray({num_elements}); TfLiteTensor* tensor = (TfLiteTensor*)malloc(sizeof(TfLiteTensor)); tensor->sparsity = nullptr; tensor->bytes = bytes; tensor->type = t; tensor->data.data = data; tensor->allocation_type = kTfLiteDynamic; tensor->dims = dims; tensor->dims_signature = TfLiteIntArrayCopy(dims); tensor->quantization.type = kTfLiteNoQuantization; ASSERT_EQ(TfLiteTensorRealloc(new_bytes, tensor), kTfLiteOk); EXPECT_EQ(tensor->bytes, new_bytes); ASSERT_THAT(std::vector<int>(tensor->data.f, tensor->data.f + 2), ElementsAreArray({0, 0})); TfLiteTensorFree(tensor); free(tensor); } TEST(TestTensorRealloc, TensorReallocNonDynamicNoChange) { const TfLiteType t = kTfLiteFloat32; const int num_elements = 4; const int new_num_elements = 6; const size_t bytes = sizeof(float) * num_elements; const size_t new_bytes = sizeof(float) * new_num_elements; float* data = (float*)malloc(bytes); memset(data, 0, bytes); TfLiteIntArray* dims = ConvertVectorToTfLiteIntArray({num_elements}); TfLiteTensor* tensor = (TfLiteTensor*)malloc(sizeof(TfLiteTensor)); tensor->sparsity = nullptr; tensor->bytes = bytes; tensor->type = t; tensor->data.data = data; tensor->allocation_type = kTfLiteArenaRw; tensor->quantization.type = kTfLiteNoQuantization; tensor->dims = dims; tensor->dims_signature = TfLiteIntArrayCopy(dims); EXPECT_EQ(TfLiteTensorRealloc(new_bytes, tensor), kTfLiteOk); EXPECT_EQ(tensor->bytes, bytes); EXPECT_THAT(std::vector<int>(tensor->data.i32, tensor->data.i32 + 4), ElementsAreArray({0, 0, 0, 0})); free(tensor->data.data); TfLiteTensorFree(tensor); free(tensor); } TEST(TestTensorRealloc, TensorReallocNumByte0) { const TfLiteType t = kTfLiteFloat32; const int num_elements = 4; const int new_num_elements = 0; const size_t bytes = sizeof(float) * num_elements; const size_t new_bytes = sizeof(float) * new_num_elements; float* data = (float*)malloc(bytes); memset(data, 0, bytes); TfLiteIntArray* dims = ConvertVectorToTfLiteIntArray({num_elements}); TfLiteTensor* tensor = (TfLiteTensor*)malloc(sizeof(TfLiteTensor)); tensor->sparsity = nullptr; tensor->bytes = bytes; tensor->type = t; tensor->data.data = data; tensor->allocation_type = kTfLiteDynamic; tensor->quantization.type = kTfLiteNoQuantization; tensor->dims = dims; tensor->dims_signature = TfLiteIntArrayCopy(dims); EXPECT_EQ(TfLiteTensorRealloc(new_bytes, tensor), kTfLiteOk); EXPECT_EQ(tensor->bytes, 0); TfLiteTensorFree(tensor); free(tensor); } TEST(TestTensorRealloc, TensorReallocLargeBytesFails) { const TfLiteType t = kTfLiteFloat32; const int num_elements = 4; const size_t bytes = sizeof(float) * num_elements; float* data = (float*)malloc(bytes); memset(data, 0, bytes); TfLiteIntArray* dims = ConvertVectorToTfLiteIntArray({num_elements}); TfLiteTensor* tensor = (TfLiteTensor*)malloc(sizeof(TfLiteTensor)); tensor->sparsity = nullptr; tensor->bytes = bytes; tensor->type = t; tensor->data.data = data; tensor->allocation_type = kTfLiteDynamic; tensor->dims = dims; tensor->dims_signature = TfLiteIntArrayCopy(dims); tensor->quantization.type = kTfLiteNoQuantization; const size_t large_bytes = std::numeric_limits<size_t>::max() - 16; EXPECT_EQ(TfLiteTensorRealloc(large_bytes, tensor), kTfLiteError); TfLiteTensorFree(tensor); free(data); free(tensor); } TEST(TestTfLiteTensorGetAllocationStrategy, MemNoneIsAllocatedWithNone) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyNone); } TEST(TestTfLiteTensorGetAllocationStrategy, MmapRoIsAllocatedWithMMap) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyMMap); } TEST(TestTfLiteTensorGetAllocationStrategy, ArenaRwIsAllocatedWithArena) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyArena); } TEST(TestTfLiteTensorGetAllocationStrategy, ArenaRwPersistentIsAllocatedWithArena) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyArena); } TEST(TestTfLiteTensorGetAllocationStrategy, DynamicIsAllocatedWithMalloc) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyMalloc); } TEST(TestTfLiteTensorGetAllocationStrategy, PersistentRoIsAllocatedWithUnknown) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyUnknown); } TEST(TestTfLiteTensorGetAllocationStrategy, CustomIsAllocatedWithUnknown) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyUnknown); } TEST(TestTfLiteTensorGetAllocationStrategy, VariantObjectIsAllocatedWithNew) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteTensorGetAllocationStrategy(&t), kTfLiteAllocationStrategyNew); } TEST(TestTfLiteTensorGetBufferAddressStability, MemNoneBufferIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetBufferAddressStability, MmapRoBufferIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetBufferAddressStability, ArenaRwBufferIsStableUnstable) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityUnstable); } TEST(TestTfLiteTensorGetBufferAddressStability, ArenaRwPersistentBufferIsStableUnstable) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityUnstable); } TEST(TestTfLiteTensorGetBufferAddressStability, DynamicBufferIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetBufferAddressStability, PersistentRoBufferIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetBufferAddressStability, CustomBufferIsStableUnknown) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityUnknown); } TEST(TestTfLiteTensorGetBufferAddressStability, VariantObjectBufferIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteTensorGetBufferAddressStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetDataStability, MemNoneDataIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetDataStability, MmapRoDataIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetDataStability, ArenaRwDataIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetDataStability, ArenaRwPersistentDataIsStableAcrossRuns) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilityAcrossRuns); } TEST(TestTfLiteTensorGetDataStability, DynamicDataIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetDataStability, PersistentRoDataIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetDataStability, CustomDataIsStableUnknown) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilityUnknown); } TEST(TestTfLiteTensorGetDataStability, VariantObjectDataIsStableSingleRun) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteTensorGetDataStability(&t), kTfLiteRunStabilitySingleRun); } TEST(TestTfLiteTensorGetDataKnownStep, MemNoneDataIsKnownAtInit) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepInit); } TEST(TestTfLiteTensorGetDataKnownStep, MmapRoDataIsKnownAtInit) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepInit); } TEST(TestTfLiteTensorGetDataKnownStep, ArenaRwDataIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepEval); } TEST(TestTfLiteTensorGetDataKnownStep, ArenaRwPersistentDataIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepEval); } TEST(TestTfLiteTensorGetDataKnownStep, DynamicDataIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepEval); } TEST(TestTfLiteTensorGetDataKnownStep, PersistentRoDataIsKnownAtPrepare) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepPrepare); } TEST(TestTfLiteTensorGetDataKnownStep, CustomDataIsKnownAtUnknown) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepUnknown); } TEST(TestTfLiteTensorGetDataKnownStep, VariantObjectDataIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteTensorGetDataKnownStep(&t), kTfLiteRunStepEval); } TEST(TestTfLiteTensorGetShapeKnownStep, MemNoneShapeIsKnownAtInit) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepInit); } TEST(TestTfLiteTensorGetShapeKnownStep, MmapRoShapeIsKnownAtInit) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepInit); } TEST(TestTfLiteTensorGetShapeKnownStep, ArenaRwShapeIsKnownAtPrepare) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepPrepare); } TEST(TestTfLiteTensorGetShapeKnownStep, ArenaRwPersistentShapeIsKnownAtPrepare) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepPrepare); } TEST(TestTfLiteTensorGetShapeKnownStep, DynamicShapeIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepEval); } TEST(TestTfLiteTensorGetShapeKnownStep, PersistentRoShapeIsKnownAtPrepare) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepPrepare); } TEST(TestTfLiteTensorGetShapeKnownStep, CustomShapeIsKnownAtUnknown) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepUnknown); } TEST(TestTfLiteTensorGetShapeKnownStep, VariantObjectShapeIsKnownAtEval) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteTensorGetShapeKnownStep(&t), kTfLiteRunStepEval); } struct Foo { int data; bool copied; }; class VariantFoo : public AbstractVariantData<VariantFoo> { public: explicit VariantFoo(int number) : foo_data_(Foo{number, false}) {} VariantFoo(const VariantFoo& other) { foo_data_ = other.foo_data_; foo_data_.copied = true; } int GetFooInt() { return foo_data_.data; } bool GetFooCopied() { return foo_data_.copied; } private: Foo foo_data_; }; class VariantFoo2 : public AbstractVariantData<VariantFoo2> { public: explicit VariantFoo2(int number, float float_number) : foo_data_(Foo{number, false}), float_data_(float_number) {} VariantFoo2(const VariantFoo2& other) { foo_data_ = other.foo_data_; foo_data_.copied = true; float_data_ = other.float_data_; } int GetFooInt() { return foo_data_.data; } bool GetFooCopied() { return foo_data_.copied; } float GetFloatData() { return float_data_; } private: Foo foo_data_; float float_data_; }; TEST(TestTfLiteReallocWithObject, ConstructSingleParamVariant) { TensorUniquePtr t = BuildTfLiteTensor(); t->type = kTfLiteVariant; ASSERT_EQ((TfLiteTensorVariantRealloc<VariantFoo>(t.get(), 3)), kTfLiteOk); ASSERT_EQ(reinterpret_cast<VariantFoo*>(t->data.data)->GetFooInt(), 3); ASSERT_EQ(t->type, kTfLiteVariant); ASSERT_EQ(t->allocation_type, kTfLiteVariantObject); } TEST(TestTfLiteReallocWithObject, ConstructMultiParamVariant) { TensorUniquePtr t = BuildTfLiteTensor(); t->type = kTfLiteVariant; ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo2, int, float>(t.get(), 3, 1.0)), kTfLiteOk); VariantFoo2* data = reinterpret_cast<VariantFoo2*>(t->data.data); ASSERT_EQ(data->GetFooInt(), 3); ASSERT_EQ(data->GetFloatData(), 1.0); ASSERT_EQ(t->type, kTfLiteVariant); ASSERT_EQ(t->allocation_type, kTfLiteVariantObject); } TEST(TestTfLiteReallocWithObject, ConstructSingleParamVariantWithAlreadyAllocated) { TensorUniquePtr t = BuildTfLiteTensor(); t->type = kTfLiteVariant; ASSERT_EQ((TfLiteTensorVariantRealloc<VariantFoo>(t.get(), 3)), kTfLiteOk); void* before_address = t->data.data; ASSERT_EQ((TfLiteTensorVariantRealloc<VariantFoo>(t.get(), 5)), kTfLiteOk); EXPECT_EQ(t->data.data, before_address); EXPECT_EQ(reinterpret_cast<VariantFoo*>(t->data.data)->GetFooInt(), 5); EXPECT_EQ(t->type, kTfLiteVariant); EXPECT_EQ(t->allocation_type, kTfLiteVariantObject); } TEST(TestTfLiteReallocWithObject, ConstructMutliParamVariantWithAlreadyAllocated) { TensorUniquePtr t = BuildTfLiteTensor(); t->type = kTfLiteVariant; ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo2, int, float>(t.get(), 3, 1.0)), kTfLiteOk); void* before_address = t->data.data; ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo2, int, float>(t.get(), 5, 2.0)), kTfLiteOk); EXPECT_EQ(t->data.data, before_address); VariantFoo2* data = reinterpret_cast<VariantFoo2*>(t->data.data); EXPECT_EQ(data->GetFooInt(), 5); EXPECT_EQ(data->GetFloatData(), 2.0); EXPECT_EQ(t->type, kTfLiteVariant); EXPECT_EQ(t->allocation_type, kTfLiteVariantObject); } TEST(TestTfLiteReallocWithObject, NonVariantTypeError) { TensorUniquePtr t = BuildTfLiteTensor(); t->type = kTfLiteInt32; ASSERT_EQ((TfLiteTensorVariantRealloc<VariantFoo>(t.get(), 3)), kTfLiteError); } TEST(TestVariantData, CopyVariantTensorCallsDerivedCopyCstor) { TensorUniquePtr src_variant_tensor = BuildTfLiteTensor(); TensorUniquePtr dst_variant_tensor = BuildTfLiteTensor(); for (TfLiteTensor* tensor : {src_variant_tensor.get(), dst_variant_tensor.get()}) { tensor->dims = ConvertVectorToTfLiteIntArray({0}); tensor->allocation_type = kTfLiteVariantObject; tensor->type = kTfLiteVariant; } ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo>(src_variant_tensor.get(), 1)), kTfLiteOk); auto* src_variant_data = reinterpret_cast<VariantFoo*>(src_variant_tensor->data.data); EXPECT_EQ(src_variant_data->GetFooInt(), 1); EXPECT_EQ(src_variant_data->GetFooCopied(), false); ASSERT_EQ( TfLiteTensorCopy(src_variant_tensor.get(), dst_variant_tensor.get()), kTfLiteOk); auto* dst_variant_data = reinterpret_cast<VariantFoo*>(dst_variant_tensor->data.data); EXPECT_EQ(dst_variant_data->GetFooInt(), 1); EXPECT_EQ(dst_variant_data->GetFooCopied(), true); } TEST(TestVariantData, CopyVariantTensorCallsDerivedCopyCstorWithAllocation) { TensorUniquePtr src_variant_tensor = BuildTfLiteTensor(); TensorUniquePtr dst_variant_tensor = BuildTfLiteTensor(); for (TfLiteTensor* tensor : {src_variant_tensor.get(), dst_variant_tensor.get()}) { tensor->dims = ConvertVectorToTfLiteIntArray({0}); tensor->allocation_type = kTfLiteVariantObject; tensor->type = kTfLiteVariant; } ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo>(src_variant_tensor.get(), 1)), kTfLiteOk); ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo>(dst_variant_tensor.get(), 2)), kTfLiteOk); void* before_address = dst_variant_tensor->data.data; ASSERT_EQ( TfLiteTensorCopy(src_variant_tensor.get(), dst_variant_tensor.get()), kTfLiteOk); auto* dst_variant_data = reinterpret_cast<VariantFoo*>(dst_variant_tensor->data.data); EXPECT_EQ(dst_variant_data->GetFooInt(), 1); EXPECT_EQ(dst_variant_tensor->data.data, before_address); } TEST(TestVariantData, CopyTensorToNonVariantObjectSetsAllocationType) { TensorUniquePtr src_variant_tensor = BuildTfLiteTensor(); TensorUniquePtr dst_variant_tensor = BuildTfLiteTensor(); for (TfLiteTensor* tensor : {src_variant_tensor.get(), dst_variant_tensor.get()}) { tensor->dims = ConvertVectorToTfLiteIntArray({0}); tensor->type = kTfLiteVariant; } src_variant_tensor->allocation_type = kTfLiteVariantObject; ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo>(src_variant_tensor.get(), 1)), kTfLiteOk); ASSERT_EQ( (TfLiteTensorVariantRealloc<VariantFoo>(dst_variant_tensor.get(), 2)), kTfLiteOk); void* before_address = dst_variant_tensor->data.data; ASSERT_EQ( TfLiteTensorCopy(src_variant_tensor.get(), dst_variant_tensor.get()), kTfLiteOk); ASSERT_EQ(dst_variant_tensor->allocation_type, kTfLiteVariantObject); auto* dst_variant_data = reinterpret_cast<VariantFoo*>(dst_variant_tensor->data.data); EXPECT_EQ(dst_variant_data->GetFooInt(), 1); EXPECT_EQ(dst_variant_tensor->data.data, before_address); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/kernels/internal/common.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/c/common_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
33f82346-9f4f-407e-9852-6d1bd1bf3883
cpp
tensorflow/tensorflow
url
tensorflow/core/data/service/url.cc
tensorflow/core/data/service/url_test.cc
#include "tensorflow/core/data/service/url.h" #include <string> #include "absl/strings/string_view.h" #include "tensorflow/core/platform/regexp.h" namespace tensorflow { namespace data { URL::URL(absl::string_view url) { Parse(url); } void URL::Parse(absl::string_view url) { absl::string_view regexp = "(.*):([a-zA-Z0-9_]+|%port(_[a-zA-Z0-9_]+)?%)"; if (!RE2::FullMatch(url, regexp, &host_, &port_)) { host_ = std::string(url); port_ = ""; } } } }
#include "tensorflow/core/data/service/url.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { TEST(URLTest, ParseUrl) { URL url("localhost"); EXPECT_EQ(url.host(), "localhost"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseUrlWithProtocol) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseUrlWithPort) { URL url("localhost:1234"); EXPECT_EQ(url.host(), "localhost"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "1234"); } TEST(URLTest, ParseUrlWithProtocolAndPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "1234"); } TEST(URLTest, ParseUrlWithProtocolAndDynamicPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port%"); } TEST(URLTest, ParseBorgAddress) { URL url("/worker/task/0"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseBorgAddressWithCustomProtocol) { URL url("worker:/worker/task/0"); EXPECT_EQ(url.host(), "worker:/worker/task/0"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseBorgAddressWithNamedPort) { URL url("/worker/task/0:worker"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "worker"); } TEST(URLTest, ParseBorgAddressWithDynamicPort) { URL url("/worker/task/0:%port%"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port%"); } TEST(URLTest, ParseBorgAddressWithDynamicNamedPort) { URL url("/worker/task/0:%port_worker%"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port_worker%"); } TEST(URLTest, ParseIPv4Address) { URL url("127.0.0.1"); EXPECT_EQ(url.host(), "127.0.0.1"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseIPv4AddressWithPort) { URL url("127.0.0.1:8000"); EXPECT_EQ(url.host(), "127.0.0.1"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "8000"); } TEST(URLTest, ParseIPv6Address) { URL url("[::1]"); EXPECT_EQ(url.host(), "[::1]"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseIPv6AddressWithProtocol) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseIPv6AddressWithPort) { URL url("[::1]:23456"); EXPECT_EQ(url.host(), "[::1]"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "23456"); } TEST(URLTest, ParseIPv6AddressWithProtocolAndPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "23456"); } TEST(URLTest, ParseIPv6AddressWithProtocolAndDynamicPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port_name%"); } TEST(URLTest, ParseNonLocalIPv6Address) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseNonLocalIPv6AddressWithNamedPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "worker"); } TEST(URLTest, ParseEmptyIPv6Address) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseEmptyAddress) { URL url(""); EXPECT_EQ(url.host(), ""); EXPECT_FALSE(url.has_port()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/url.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/url_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d202f695-4abf-4358-aa4f-6952eaf62e6d
cpp
tensorflow/tensorflow
validate_utils
tensorflow/core/data/service/client/validate_utils.cc
tensorflow/core/data/service/client/validate_utils_test.cc
#include "tensorflow/core/data/service/client/validate_utils.h" #include "tensorflow/core/data/service/client/common.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/data_service.pb.h" namespace tensorflow { namespace data { namespace { Status ValidateLocalWorkers(const DataServiceParams& data_service_params) { if (data_service_params.target_workers != TARGET_WORKERS_LOCAL) { return absl::OkStatus(); } if (LocalWorkers::Empty()) { if (IsStaticShard(data_service_params.processing_mode)) { return errors::InvalidArgument( "Static sharding policy <", ProcessingModeDef::ShardingPolicy_Name( data_service_params.processing_mode.sharding_policy()), "> requires local tf.data workers, but no local worker is found. " "You need to run local tf.data service workers in your training " "workers. Static sharding also requires a fixed worker pool and " "a list of worker addresses in the DispatcherConfig. See the " "\"Processing Modes\" section in the module doc for details."); } return errors::InvalidArgument( "Local reads require local tf.data workers, but no local worker " "is found. You need to run local tf.data service workers in your " "training workers."); } if (data_service_params.num_consumers.has_value()) { return errors::InvalidArgument( "Coordinated reads require non-local workers, but `target_workers` " "is \"LOCAL\"."); } return absl::OkStatus(); } Status ValidateCrossTrainerCache(const DataServiceParams& data_service_params) { if (!data_service_params.cross_trainer_cache_options.has_value()) { return absl::OkStatus(); } if (data_service_params.job_name.empty()) { return errors::InvalidArgument( "Cross-trainer caching requires named jobs. Got empty `job_name`."); } if (data_service_params.metadata.cardinality() >= 0) { return errors::InvalidArgument( "Cross-trainer caching requires the input dataset to be infinite. " "Got input with cardinality ", data_service_params.metadata.cardinality()); } if (data_service_params.repetition > 1) { return errors::InvalidArgument( "Cross-trainer caching requires infinite datasets and disallows " "multiple repetitions of the same dataset. Got repetition ", data_service_params.repetition); } if (data_service_params.num_consumers.has_value()) { return errors::InvalidArgument( "Cross-trainer caching does not support coordinated reads. " "Got number of coordinated consumers: ", data_service_params.num_consumers.value()); } return absl::OkStatus(); } } Status ValidateDataServiceParams(const DataServiceParams& data_service_params) { TF_RETURN_IF_ERROR(ValidateLocalWorkers(data_service_params)); TF_RETURN_IF_ERROR(ValidateCrossTrainerCache(data_service_params)); return absl::OkStatus(); } } }
#include "tensorflow/core/data/service/client/validate_utils.h" #include <memory> #include "tensorflow/core/data/service/client/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; DataServiceParams GetDefaultParams() { DataServiceParams params; params.dataset_id = "dataset_id"; params.processing_mode.set_sharding_policy(ProcessingModeDef::OFF); params.address = "localhost"; params.protocol = "grpc"; params.data_transfer_protocol = "grpc"; params.metadata.set_cardinality(kUnknownCardinality); return params; } std::shared_ptr<DataServiceWorkerImpl> GetLocalWorker() { experimental::WorkerConfig config; config.set_protocol("grpc"); config.set_dispatcher_address("localhost"); config.set_worker_address("localhost"); return std::make_shared<DataServiceWorkerImpl>(config); } TEST(ValidateUtilsTest, DefaultParams) { TF_EXPECT_OK(ValidateDataServiceParams(GetDefaultParams())); } TEST(ValidateUtilsTest, LocalWorkerSuccess) { DataServiceParams params = GetDefaultParams(); LocalWorkers::Add("localhost", GetLocalWorker()); params.target_workers = TARGET_WORKERS_LOCAL; TF_EXPECT_OK(ValidateDataServiceParams(params)); LocalWorkers::Remove("localhost"); } TEST(ValidateUtilsTest, NoLocalWorker) { DataServiceParams params = GetDefaultParams(); params.target_workers = TARGET_WORKERS_LOCAL; EXPECT_THAT( ValidateDataServiceParams(params), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Local reads require local tf.data workers, but no local worker " "is found."))); } TEST(ValidateUtilsTest, NoLocalWorkerStaticSharding) { DataServiceParams params = GetDefaultParams(); params.processing_mode.set_sharding_policy(ProcessingModeDef::FILE_OR_DATA); params.target_workers = TARGET_WORKERS_LOCAL; EXPECT_THAT( ValidateDataServiceParams(params), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Static sharding policy <FILE_OR_DATA> requires local tf.data " "workers, but no local worker is found."))); } TEST(ValidateUtilsTest, LocalReadDisallowsCoordinatedRead) { DataServiceParams params = GetDefaultParams(); LocalWorkers::Add("localhost", GetLocalWorker()); params.num_consumers = 1; params.consumer_index = 0; params.target_workers = TARGET_WORKERS_LOCAL; EXPECT_THAT( ValidateDataServiceParams(params), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Coordinated reads require non-local workers, but " "`target_workers` is \"LOCAL\"."))); LocalWorkers::Remove("localhost"); } TEST(ValidateUtilsTest, CrossTrainerCacheSuccess) { DataServiceParams params = GetDefaultParams(); params.job_name = "job_name"; params.repetition = 1; params.metadata.set_cardinality(kInfiniteCardinality); params.cross_trainer_cache_options.emplace(); params.cross_trainer_cache_options->set_trainer_id("trainer ID"); TF_EXPECT_OK(ValidateDataServiceParams(params)); } TEST(ValidateUtilsTest, CrossTrainerCacheRequiresJobName) { DataServiceParams params = GetDefaultParams(); params.repetition = 1; params.metadata.set_cardinality(kInfiniteCardinality); params.cross_trainer_cache_options.emplace(); params.cross_trainer_cache_options->set_trainer_id("trainer ID"); EXPECT_THAT( ValidateDataServiceParams(params), StatusIs( error::INVALID_ARGUMENT, "Cross-trainer caching requires named jobs. Got empty `job_name`.")); } TEST(ValidateUtilsTest, CrossTrainerCacheRequiresInfiniteDataset) { DataServiceParams params = GetDefaultParams(); params.job_name = "job_name"; params.repetition = 1; params.metadata.set_cardinality(10); params.cross_trainer_cache_options.emplace(); params.cross_trainer_cache_options->set_trainer_id("trainer ID"); EXPECT_THAT(ValidateDataServiceParams(params), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Cross-trainer caching requires the input " "dataset to be infinite."))); } TEST(ValidateUtilsTest, CrossTrainerCacheDisallowsRepetition) { DataServiceParams params = GetDefaultParams(); params.job_name = "job_name"; params.repetition = 5; params.metadata.set_cardinality(kInfiniteCardinality); params.cross_trainer_cache_options.emplace(); params.cross_trainer_cache_options->set_trainer_id("trainer ID"); EXPECT_THAT( ValidateDataServiceParams(params), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Cross-trainer caching requires infinite datasets and disallows " "multiple repetitions of the same dataset."))); } TEST(ValidateUtilsTest, CrossTrainerCacheDisallowsCoordinatedRead) { DataServiceParams params = GetDefaultParams(); params.job_name = "job_name"; params.repetition = 1; params.num_consumers = 1; params.consumer_index = 0; params.metadata.set_cardinality(kInfiniteCardinality); params.cross_trainer_cache_options.emplace(); params.cross_trainer_cache_options->set_trainer_id("trainer ID"); EXPECT_THAT( ValidateDataServiceParams(params), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Cross-trainer caching does not support coordinated reads."))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/client/validate_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/client/validate_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7992b87a-34e9-459f-b578-130df373c9f1
cpp
tensorflow/tensorflow
split_provider
tensorflow/core/data/service/split_provider.cc
tensorflow/core/data/service/split_provider_test.cc
#include "tensorflow/core/data/service/split_provider.h" #include <functional> #include <memory> #include <string> #include <vector> #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/thread_annotations.h" namespace tensorflow { namespace data { Status DataServiceSplitProvider::GetNext(Tensor* split, bool* end_of_splits) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); if (!dispatcher_) { dispatcher_ = std::make_unique<DataServiceDispatcherClient>(address_, protocol_); } TF_RETURN_IF_ERROR(grpc_util::Retry( [this, split, end_of_splits]() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return dispatcher_->GetSplit(iteration_id_, repetition_, split_provider_index_, *split, *end_of_splits); }, "get next split", Env::Default()->NowMicros() + (timeout_ms_ * EnvTime::kMillisToMicros))); if (*end_of_splits) { VLOG(1) << "Reached end of splits for iteration_id=" << iteration_id_ << ", repetition=" << repetition_; } else { VLOG(1) << "Requested split: " << split->DebugString() << "; with iteration_id=" << iteration_id_ << ", repetition=" << repetition_; } return absl::OkStatus(); } Status DataServiceSplitProvider::Reset() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); repetition_++; return absl::OkStatus(); } Status DataServiceSplitProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) { return errors::Unimplemented( "Save is not implemented for DataServiceSplitProvider"); } Status DataServiceSplitProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) { return errors::Unimplemented( "Restore is not implemented for DataServiceSplitProvider"); } Status CreateSplitProviders( const DatasetDef& dataset_def, std::vector<std::unique_ptr<SplitProvider>>& split_providers) { standalone::Dataset::Params params; std::unique_ptr<standalone::Dataset> standalone_dataset; TF_RETURN_IF_ERROR(standalone::Dataset::FromGraph(params, dataset_def.graph(), &standalone_dataset)); TF_RETURN_IF_ERROR(standalone_dataset->MakeSplitProviders(&split_providers)); return absl::OkStatus(); } } }
#include "tensorflow/core/data/service/split_provider.h" #include <array> #include <cstdint> #include <memory> #include <tuple> #include <vector> #include "absl/strings/str_cat.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/dataset.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::ElementsAre; using ::testing::UnorderedElementsAre; std::vector<int64_t> GetCardinalities( const std::vector<std::unique_ptr<SplitProvider>>& split_providers) { std::vector<int64_t> cardinalities; for (const auto& split_provider : split_providers) { cardinalities.push_back(split_provider->Cardinality()); } return cardinalities; } TEST(SplitProviderTest, RangeCardinality) { DatasetDef range_dataset = testing::RangeDataset(10); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_ASSERT_OK(CreateSplitProviders(range_dataset, split_providers)); EXPECT_THAT(GetCardinalities(split_providers), UnorderedElementsAre(10)); } class RepeatedSplitProviderTest : public ::testing::TestWithParam<std::tuple<int64_t, int64_t, int64_t>> { public: int64_t Range() const { return std::get<0>(GetParam()); } int64_t RepeatCount() const { return std::get<1>(GetParam()); } int64_t ExpectedCardinality() const { return std::get<2>(GetParam()); } }; constexpr std::array<std::tuple<int64_t, int64_t, int64_t>, 5> kRepeatedSplitProviderTestCases{{{9, 9, 81}, {9, 0, 0}, {9, -1, kInfiniteCardinality}, {0, -1, 0}, {-1, 1, 0}}}; TEST_P(RepeatedSplitProviderTest, RepeatedDatasetCardinality) { TF_ASSERT_OK_AND_ASSIGN( DatasetDef repeated_dataset, testing::GetTestDataset( "repeated_dataset", {absl::StrCat(Range()), absl::StrCat(RepeatCount())})); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_ASSERT_OK(CreateSplitProviders(repeated_dataset, split_providers)); EXPECT_THAT(GetCardinalities(split_providers), ElementsAre(ExpectedCardinality())); } INSTANTIATE_TEST_SUITE_P(MyGroup, RepeatedSplitProviderTest, ::testing::ValuesIn(kRepeatedSplitProviderTestCases)); TEST(SplitProviderTest, EnumerateCardinality) { TF_ASSERT_OK_AND_ASSIGN(DatasetDef enumerate_dataset, testing::GetTestDataset("enumerate_dataset")); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_ASSERT_OK(CreateSplitProviders(enumerate_dataset, split_providers)); EXPECT_THAT(GetCardinalities(split_providers), UnorderedElementsAre(3, kInfiniteCardinality)); } TEST(SplitProviderTest, ChooseFromDatasetsCardinality) { TF_ASSERT_OK_AND_ASSIGN(DatasetDef sample_from_datasets, testing::GetTestDataset("choose_from_datasets")); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_ASSERT_OK(CreateSplitProviders(sample_from_datasets, split_providers)); EXPECT_THAT(GetCardinalities(split_providers), UnorderedElementsAre(5, 5, 5, kInfiniteCardinality)); } TEST(SplitProviderTest, SampleFromDatasetsCardinality) { TF_ASSERT_OK_AND_ASSIGN(DatasetDef sample_from_datasets, testing::GetTestDataset("sample_from_datasets")); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_ASSERT_OK(CreateSplitProviders(sample_from_datasets, split_providers)); EXPECT_THAT(GetCardinalities(split_providers), UnorderedElementsAre(5, 5, 5, kInfiniteCardinality)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/split_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/split_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4e37c532-87dd-48a8-b0b5-c412fc21335e
cpp
tensorflow/tensorflow
dispatcher_client
tensorflow/core/data/service/dispatcher_client.cc
tensorflow/core/data/service/dispatcher_client_test.cc
#include "tensorflow/core/data/service/dispatcher_client.h" #include <cstdint> #include <limits> #include <memory> #include <optional> #include <string> #include <vector> #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "grpcpp/support/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/dispatcher.grpc.pb.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace data { Status DataServiceDispatcherClient::Initialize() { mutex_lock l(mu_); if (stub_) { return absl::OkStatus(); } std::shared_ptr<grpc::ChannelCredentials> credentials; TF_RETURN_IF_ERROR( CredentialsFactory::CreateClientCredentials(protocol_, &credentials)); grpc::ChannelArguments args; args.SetMaxReceiveMessageSize(std::numeric_limits<int32>::max()); args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, true); auto channel = grpc::CreateCustomChannel(address_, credentials, args); stub_ = DispatcherService::NewStub(channel); GetVersionRequest req; GetVersionResponse resp; grpc::ClientContext ctx; grpc::Status s = stub_->GetVersion(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to get dispatcher version from dispatcher " "running at ", address_), s); } if (resp.version() != kDataServiceVersion) { return errors::FailedPrecondition( "Version mismatch with tf.data service server. The server is running " "version ", resp.version(), ", while the client is running version ", kDataServiceVersion, ". Please ensure that the client and server side are running the " "same version of TensorFlow. If you're running an MPM binary, make " "sure the server is running an up-to-date MPM."); } return absl::OkStatus(); } absl::StatusOr<WorkerHeartbeatResponse> DataServiceDispatcherClient::WorkerHeartbeat( const WorkerHeartbeatRequest& request) { WorkerHeartbeatResponse response; grpc::ClientContext client_ctx; grpc::Status status = stub_->WorkerHeartbeat(&client_ctx, request, &response); if (!status.ok()) { return grpc_util::WrapError("Failed to perform worker heartbeat", status); } return response; } Status DataServiceDispatcherClient::WorkerUpdate( const std::string& worker_address, std::vector<TaskProgress>& task_progress) { WorkerUpdateRequest req; req.set_worker_address(worker_address); for (const auto& update : task_progress) { *(req.add_updates()) = update; } WorkerUpdateResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->WorkerUpdate(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to send worker update", status); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetDatasetDef(const std::string& dataset_id, DatasetDef& dataset_def) { GetDatasetDefRequest req; req.set_dataset_id(dataset_id); GetDatasetDefResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetDatasetDef(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to get dataset def", status); } dataset_def = resp.dataset_def(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetSplit(int64_t iteration_id, int64_t repetition, int64_t split_provider_index, Tensor& split, bool& end_of_splits) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetSplitRequest req; req.set_iteration_id(iteration_id); req.set_repetition(repetition); req.set_split_provider_index(split_provider_index); GetSplitResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetSplit(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to get split", status); } end_of_splits = resp.end_of_splits(); if (!end_of_splits) { if (!split.FromProto(resp.split())) { return errors::Internal("Failed to parse split tensor proto"); } } return absl::OkStatus(); } Status DataServiceDispatcherClient::Snapshot( const DatasetDef& dataset, const std::string& path, const experimental::DistributedSnapshotMetadata& metadata) { TF_RETURN_IF_ERROR(EnsureInitialized()); SnapshotRequest req; *req.mutable_dataset() = dataset; req.set_path(path); *req.mutable_metadata() = metadata; SnapshotResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->Snapshot(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to snapshot", status); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetSnapshotSplit( const std::string& worker_address, const std::string& base_path, int64_t stream_index, int64_t source_index, int64_t repetition_index, Tensor& split, int64_t& local_split_index, bool& end_of_splits) { GetSnapshotSplitRequest req; req.set_worker_address(worker_address); req.set_base_path(base_path); req.set_stream_index(stream_index); req.set_source_index(source_index); req.set_repetition_index(repetition_index); GetSnapshotSplitResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetSnapshotSplit(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to get snapshot split", status); } local_split_index = resp.local_split_index(); end_of_splits = resp.end_of_splits(); if (end_of_splits) { return absl::OkStatus(); } if (!split.FromProto(resp.split())) { return errors::Internal("Failed to parse split tensor proto: ", resp.split().DebugString()); } return absl::OkStatus(); } Status DataServiceDispatcherClient::RegisterDataset( const DatasetDef& dataset, const DataServiceMetadata& metadata, const std::optional<std::string>& requested_dataset_id, std::string& dataset_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetOrRegisterDatasetRequest req; *req.mutable_dataset() = dataset; *req.mutable_metadata() = metadata; if (requested_dataset_id.has_value()) { req.set_dataset_id(*requested_dataset_id); } GetOrRegisterDatasetResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetOrRegisterDataset(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to register dataset", status); } dataset_id = resp.dataset_id(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetOrCreateJob( const std::string& dataset_id, const ProcessingModeDef& processing_mode, const std::optional<std::string>& job_name, std::optional<int64_t> num_consumers, bool use_cross_trainer_cache, TargetWorkers target_workers, int64_t& job_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetOrCreateJobRequest req; req.set_dataset_id(dataset_id); *req.mutable_processing_mode_def() = processing_mode; if (job_name.has_value()) { req.set_job_name(job_name.value()); } if (num_consumers.has_value()) { req.set_num_consumers(num_consumers.value()); } req.set_target_workers(target_workers); req.set_use_cross_trainer_cache(use_cross_trainer_cache); GetOrCreateJobResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetOrCreateJob(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to get or create job for dataset with id ", dataset_id), status); } job_id = resp.job_id(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetOrCreateIteration( int64_t job_id, int64_t repetition, int64_t& iteration_client_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetOrCreateIterationRequest req; req.set_job_id(job_id); req.set_repetition(repetition); GetOrCreateIterationResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetOrCreateIteration(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to get or create iteration for job with id ", job_id), status); } iteration_client_id = resp.iteration_client_id(); return absl::OkStatus(); } Status DataServiceDispatcherClient::ReleaseIterationClient( int64_t iteration_client_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); ReleaseIterationClientRequest req; req.set_iteration_client_id(iteration_client_id); ReleaseIterationClientResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->ReleaseIterationClient(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to release iteration client with id ", iteration_client_id), status); } return absl::OkStatus(); } Status DataServiceDispatcherClient::MaybeRemoveTask(int64_t task_id, int64_t consumer_index, int64_t round, bool& removed) { TF_RETURN_IF_ERROR(EnsureInitialized()); MaybeRemoveTaskRequest req; req.set_task_id(task_id); req.set_consumer_index(consumer_index); req.set_round(round); MaybeRemoveTaskResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->MaybeRemoveTask(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to call MaybeRemoveTask", status); } removed = resp.removed(); return absl::OkStatus(); } Status DataServiceDispatcherClient::ClientHeartbeat( ClientHeartbeatRequest& req, ClientHeartbeatResponse& resp) { TF_RETURN_IF_ERROR(EnsureInitialized()); grpc::ClientContext ctx; grpc::Status s = stub_->ClientHeartbeat(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError("Failed to get tasks", s); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetWorkers( std::vector<WorkerInfo>& workers) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetWorkersRequest req; GetWorkersResponse resp; grpc::ClientContext ctx; grpc::Status s = stub_->GetWorkers(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError("Failed to get workers", s); } workers.clear(); for (auto& worker : resp.workers()) { workers.push_back(worker); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetDataServiceMetadata( const std::string& dataset_id, DataServiceMetadata& metadata) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetDataServiceMetadataRequest req; req.set_dataset_id(dataset_id); GetDataServiceMetadataResponse resp; grpc::ClientContext ctx; grpc::Status s = stub_->GetDataServiceMetadata(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError("Failed to get data service metadata", s); } metadata = resp.metadata(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetDataServiceConfig( DataServiceConfig& config) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetDataServiceConfigRequest request; GetDataServiceConfigResponse response; grpc::ClientContext ctx; grpc::Status s = stub_->GetDataServiceConfig(&ctx, request, &response); if (!s.ok()) { return grpc_util::WrapError("Failed to get data service config", s); } config = response.config(); return absl::OkStatus(); } Status DataServiceDispatcherClient::DisableCompressionAtRuntime( const std::string& dataset_id, bool disable_compression_at_runtime, DisableCompressionAtRuntimeResponse& response) { TF_RETURN_IF_ERROR(EnsureInitialized()); grpc::ClientContext ctx; DisableCompressionAtRuntimeRequest request; request.set_dataset_id(dataset_id); request.set_disable_compression_at_runtime(disable_compression_at_runtime); grpc::Status s = stub_->DisableCompressionAtRuntime(&ctx, request, &response); if (!s.ok()) { return grpc_util::WrapError( "Failed to get runtime compression disabling decision", s); } return absl::OkStatus(); } Status DataServiceDispatcherClient::EnsureInitialized() { return grpc_util::Retry([this] { return Initialize(); }, "Initialize dispatcher client", kint64max); } } }
#include "tensorflow/core/data/service/dispatcher_client.h" #include <cstdint> #include <cstdlib> #include <memory> #include <optional> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dataset_store.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/snapshot.pb.h" #include "tensorflow/core/protobuf/struct.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::experimental::DistributedSnapshotMetadata; using ::tensorflow::data::testing::CreateDummyDistributedSnapshotMetadata; using ::tensorflow::data::testing::EqualsProto; using ::tensorflow::data::testing::InfiniteDataset; using ::tensorflow::data::testing::LocalTempFilename; using ::tensorflow::data::testing::RangeDataset; using ::tensorflow::testing::StatusIs; using ::testing::AllOf; using ::testing::ContainsRegex; using ::testing::HasSubstr; constexpr const char kProtocol[] = "grpc"; DataServiceMetadata GetDefaultMetadata() { StructuredValue decoded_spec; TensorShapeProto::Dim* dim = decoded_spec.mutable_tensor_shape_value()->add_dim(); dim->set_size(1); dim->set_name(absl::StrCat("dim")); DataServiceMetadata metadata; metadata.set_element_spec(decoded_spec.SerializeAsString()); metadata.set_compression(DataServiceMetadata::COMPRESSION_SNAPPY); metadata.set_cardinality(kUnknownCardinality); return metadata; } class DispatcherClientTest : public ::testing::Test { protected: absl::Status SetUpTfDataService(int64_t num_workers, int64_t worker_max_concurrent_snapshots = 0) { TestCluster::Config config; config.num_workers = num_workers; config.work_dir = tsl::io::JoinPath(tsl::testing::TmpDir(), "work_dir"); config.worker_max_concurrent_snapshots = worker_max_concurrent_snapshots; test_cluster_ = std::make_unique<TestCluster>(config); TF_RETURN_IF_ERROR(test_cluster_->Initialize()); dispatcher_client_ = std::make_unique<DataServiceDispatcherClient>( test_cluster_->DispatcherAddress(), kProtocol); return absl::OkStatus(); } absl::StatusOr<std::string> RegisterDataset( const DatasetDef& dataset, const DataServiceMetadata& metadata, const std::optional<std::string>& requested_dataset_id = std::nullopt) { std::string dataset_id; TF_RETURN_IF_ERROR(dispatcher_client_->RegisterDataset( dataset, metadata, requested_dataset_id, dataset_id)); return dataset_id; } absl::StatusOr<absl::flat_hash_set<std::string>> StartDummySnapshots( int64_t num_snapshots) { DistributedSnapshotMetadata metadata = CreateDummyDistributedSnapshotMetadata(); absl::flat_hash_set<std::string> directories; for (int64_t i = 0; i < num_snapshots; ++i) { directories.insert(LocalTempFilename()); } for (const auto& directory : directories) { TF_RETURN_IF_ERROR( dispatcher_client_->Snapshot(RangeDataset(10), directory, metadata)); } return directories; } std::unique_ptr<TestCluster> test_cluster_; std::unique_ptr<DataServiceDispatcherClient> dispatcher_client_; }; TEST_F(DispatcherClientTest, GetDataServiceMetadata) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(RangeDataset(10), metadata)); DataServiceMetadata result; TF_ASSERT_OK(dispatcher_client_->GetDataServiceMetadata(dataset_id, result)); EXPECT_THAT(result, EqualsProto(metadata)); } TEST_F(DispatcherClientTest, DatasetDoesNotExist) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); EXPECT_THAT( dispatcher_client_->GetDataServiceMetadata( "not-found", metadata), StatusIs(error::NOT_FOUND, HasSubstr("Dataset id not-found not found"))); } TEST_F(DispatcherClientTest, SnapshotAlreadyStarted) { TF_ASSERT_OK(SetUpTfDataService(1)); DistributedSnapshotMetadata metadata = CreateDummyDistributedSnapshotMetadata(); std::string directory = LocalTempFilename(); TF_ASSERT_OK( dispatcher_client_->Snapshot(RangeDataset(10), directory, metadata)); EXPECT_THAT( dispatcher_client_->Snapshot(RangeDataset(10), directory, metadata), StatusIs(error::ALREADY_EXISTS, HasSubstr("already started"))); } TEST_F(DispatcherClientTest, GetDataServiceConfig) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceConfig config; TF_ASSERT_OK(dispatcher_client_->GetDataServiceConfig(config)); EXPECT_EQ(config.deployment_mode(), DEPLOYMENT_MODE_COLOCATED); } TEST_F(DispatcherClientTest, SnapshotSkeletonWritten) { TF_ASSERT_OK(SetUpTfDataService(1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); for (const auto& path : paths) { TF_ASSERT_OK(Env::Default()->FileExists(CommittedChunksDirectory(path))); TF_ASSERT_OK(Env::Default()->FileExists(StreamsDirectory(path))); } } TEST_F(DispatcherClientTest, SnapshotMetadataAndDatasetDefWritten) { TF_ASSERT_OK(SetUpTfDataService(1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); for (const auto& path : paths) { TF_ASSERT_OK( Env::Default()->FileExists(io::JoinPath(path, "snapshot.metadata"))); TF_ASSERT_OK( Env::Default()->FileExists(io::JoinPath(path, "dataset_def.proto"))); } } TEST_F(DispatcherClientTest, SnapshotsInHeartbeat) { TF_ASSERT_OK(SetUpTfDataService(1, 3)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address(test_cluster_->WorkerAddress(0)); for (int64_t i = 1; i <= 3; ++i) { TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); ASSERT_EQ(worker_heartbeat_response.snapshot_tasks_size(), i); for (const auto& snapshot_task : worker_heartbeat_response.snapshot_tasks()) { ASSERT_TRUE(paths.count(snapshot_task.base_path())); ASSERT_EQ(snapshot_task.stream_index(), 0); } } } TEST_F(DispatcherClientTest, GetSnapshotSplit) { TF_ASSERT_OK(SetUpTfDataService(1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address(test_cluster_->WorkerAddress(0)); TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); for (int64_t i = 0; i < 5; ++i) { for (const auto& snapshot_task : worker_heartbeat_response.snapshot_tasks()) { GetSnapshotSplitRequest get_snapshot_split_request; Tensor split; int64_t local_split_index = 0; bool end_of_splits = false; TF_ASSERT_OK(dispatcher_client_->GetSnapshotSplit( test_cluster_->WorkerAddress(0), snapshot_task.base_path(), snapshot_task.stream_index(), 0, 0, split, local_split_index, end_of_splits)); EXPECT_EQ(local_split_index, i); EXPECT_FALSE(end_of_splits); } } } TEST_F(DispatcherClientTest, GetSnapshotSplitMultipleStreams) { TF_ASSERT_OK(SetUpTfDataService(3, 1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); absl::flat_hash_set<std::string> snapshots_in_progress; for (int64_t i = 0; i < 3; ++i) { WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address( test_cluster_->WorkerAddress(i)); TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); EXPECT_EQ(worker_heartbeat_response.snapshot_tasks().size(), 1); for (const auto& snapshot_task : worker_heartbeat_response.snapshot_tasks()) { snapshots_in_progress.insert(snapshot_task.base_path()); GetSnapshotSplitRequest get_snapshot_split_request; Tensor split; int64_t local_split_index = 0; bool end_of_splits = false; TF_ASSERT_OK(dispatcher_client_->GetSnapshotSplit( test_cluster_->WorkerAddress(i), snapshot_task.base_path(), snapshot_task.stream_index(), 0, 0, split, local_split_index, end_of_splits)); EXPECT_EQ(local_split_index, 0); EXPECT_FALSE(end_of_splits); } } EXPECT_EQ(snapshots_in_progress, paths); } TEST_F(DispatcherClientTest, RegisterDatasetWithExplicitId) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN( const std::string dataset_id1, RegisterDataset(RangeDataset(10), metadata, "dataset_id")); EXPECT_EQ(dataset_id1, "dataset_id"); TF_ASSERT_OK_AND_ASSIGN( const std::string dataset_id2, RegisterDataset(RangeDataset(10), metadata, "dataset_id")); EXPECT_EQ(dataset_id1, dataset_id2); } TEST_F(DispatcherClientTest, DatasetsDoNotMatch) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN( const std::string dataset_id1, RegisterDataset(RangeDataset(10), metadata, "dataset_id")); EXPECT_EQ(dataset_id1, "dataset_id"); metadata.set_cardinality(kInfiniteCardinality); EXPECT_THAT( RegisterDataset(InfiniteDataset(), metadata, "dataset_id"), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Datasets with the same ID should have the same structure"))); } TEST_F(DispatcherClientTest, EnableCrossTrainerCache) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(kInfiniteCardinality); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(InfiniteDataset(), metadata)); ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); std::string job_name = "job"; int64_t job_id; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id)); int64_t iteration_client_id; TF_ASSERT_OK(dispatcher_client_->GetOrCreateIteration( job_id, 0, iteration_client_id)); WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address(test_cluster_->WorkerAddress(0)); TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); ASSERT_EQ(worker_heartbeat_response.new_tasks_size(), 1); EXPECT_TRUE(worker_heartbeat_response.new_tasks(0).use_cross_trainer_cache()); } TEST_F(DispatcherClientTest, CreateNamedJob) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(RangeDataset(10), metadata)); ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); std::string job_name = "job"; int64_t job_id_1 = -1; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id_1)); int64_t job_id_2 = -2; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id_2)); ASSERT_EQ(job_id_1, job_id_2); } TEST_F(DispatcherClientTest, NamedJobsDoNotMatch) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(RangeDataset(10), metadata)); int64_t job_id = 0; ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); std::string job_name = "job"; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, false, TARGET_WORKERS_AUTO, job_id)); processing_mode.set_sharding_policy(ProcessingModeDef::DYNAMIC); EXPECT_THAT( dispatcher_client_->GetOrCreateJob(dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id), StatusIs(error::INVALID_ARGUMENT, AllOf(HasSubstr("but found an existing job with different " "parameters: "), ContainsRegex("Existing processing mode: <\\w*std::nullopt, dataset_id)); EXPECT_EQ(dataset_id, "1000"); std::string datasets_dir = tsl::io::JoinPath(config.work_dir, "datasets"); FileSystemDatasetStore dataset_store(datasets_dir); TF_ASSERT_OK(dataset_store.Put("1001", dataset_def)); if (requested_dataset_id.has_value()) { TF_ASSERT_OK(dataset_store.Put(*requested_dataset_id, dataset_def)); } TF_ASSERT_OK(dispatcher_client_->RegisterDataset( dataset_def, GetDefaultMetadata(), requested_dataset_id, dataset_id)); if (requested_dataset_id.has_value()) { EXPECT_EQ(dataset_id, *requested_dataset_id); } else { EXPECT_EQ(dataset_id, "1001"); } } INSTANTIATE_TEST_SUITE_P(DatasetId, DispatcherClientTest_DatasetId, ::testing::Values(std::nullopt, "dataset_id")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/dispatcher_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/dispatcher_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
43917cfe-e049-4c6c-9278-844e1b636421
cpp
tensorflow/tensorflow
grpc_worker_impl
tensorflow/core/data/service/grpc_worker_impl.cc
tensorflow/core/data/service/grpc_worker_impl_test.cc
#include "tensorflow/core/data/service/grpc_worker_impl.h" #include <memory> #include <string> #include <vector> #include "grpcpp/server_builder.h" #include "grpcpp/server_context.h" #include "tensorflow/core/data/service/export.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { using ::grpc::ServerBuilder; using ::grpc::ServerContext; GrpcWorkerImpl::GrpcWorkerImpl(const experimental::WorkerConfig& config, ServerBuilder& server_builder) : impl_(std::make_shared<DataServiceWorkerImpl>(config)) { server_builder.RegisterService(this); VLOG(1) << "Registered data service worker"; } Status GrpcWorkerImpl::Start( const std::string& worker_address, const std::vector<DataTransferServerInfo>& transfer_servers) { worker_address_ = worker_address; TF_RETURN_IF_ERROR(impl_->Start(worker_address, transfer_servers)); LocalWorkers::Add(worker_address, impl_); return absl::OkStatus(); } void GrpcWorkerImpl::Stop() { LocalWorkers::Remove(worker_address_); impl_->Stop(); } WorkerStateExport GrpcWorkerImpl::ExportState() const { return impl_->ExportState(); } #define HANDLER(method) \ ::grpc::Status GrpcWorkerImpl::method(ServerContext* context, \ const method##Request* request, \ method##Response* response) { \ return ToGrpcStatus(impl_->method(request, response)); \ } HANDLER(ProcessTask); HANDLER(GetElement); HANDLER(GetWorkerTasks); HANDLER(GetSnapshotTaskProgresses); #undef HANDLER } }
#include "tensorflow/core/data/service/grpc_worker_impl.h" #include <limits> #include <memory> #include <string> #include <utility> #include "grpcpp/channel.h" #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/server_lib.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { namespace { using ::grpc::Channel; using ::grpc::ChannelArguments; using ::grpc::ChannelCredentials; using ::grpc::ClientContext; constexpr const char kHostAddress[] = "localhost"; constexpr const char kProtocol[] = "grpc"; class GrpcWorkerImplTest : public ::testing::Test { protected: void SetUp() override { TF_ASSERT_OK(SetUpDispatcherServer()); TF_ASSERT_OK(SetUpWorkerServer()); TF_ASSERT_OK(SetUpWorkerClientStub()); } Status SetUpDispatcherServer() { experimental::DispatcherConfig config; config.set_protocol(kProtocol); TF_RETURN_IF_ERROR(NewDispatchServer(config, dispatcher_server_)); return dispatcher_server_->Start(); } Status SetUpWorkerServer() { experimental::WorkerConfig config; config.set_protocol(kProtocol); config.set_dispatcher_address(GetDispatcherAddress()); config.set_worker_address(absl::StrCat(kHostAddress, ":%port%")); TF_RETURN_IF_ERROR(NewWorkerServer(config, worker_server_)); return worker_server_->Start(); } Status SetUpWorkerClientStub() { std::shared_ptr<ChannelCredentials> credentials; TF_RETURN_IF_ERROR( CredentialsFactory::CreateClientCredentials(kProtocol, &credentials)); ChannelArguments args; args.SetMaxReceiveMessageSize(std::numeric_limits<int32>::max()); args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, true); std::shared_ptr<Channel> channel = ::grpc::CreateCustomChannel(GetWorkerAddress(), credentials, args); worker_client_stub_ = WorkerService::NewStub(channel); return absl::OkStatus(); } std::string GetDispatcherAddress() const { return absl::StrCat(kHostAddress, ":", dispatcher_server_->BoundPort()); } std::string GetWorkerAddress() const { return absl::StrCat(kHostAddress, ":", worker_server_->BoundPort()); } std::unique_ptr<DispatchGrpcDataServer> dispatcher_server_; std::unique_ptr<WorkerGrpcDataServer> worker_server_; std::unique_ptr<WorkerService::Stub> worker_client_stub_; }; TEST_F(GrpcWorkerImplTest, GetWorkerTasks) { ClientContext ctx; GetWorkerTasksRequest req; GetWorkerTasksResponse resp; TF_ASSERT_OK( FromGrpcStatus(worker_client_stub_->GetWorkerTasks(&ctx, req, &resp))); EXPECT_EQ(resp.tasks_size(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/grpc_worker_impl.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/grpc_worker_impl_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
65d0efa3-bde3-4dea-bcb8-1f5223d73655
cpp
tensorflow/tensorflow
byte_size
tensorflow/core/data/service/byte_size.cc
tensorflow/core/data/service/byte_size_test.cc
#include "tensorflow/core/data/service/byte_size.h" #include <cstddef> #include <string> #include "absl/strings/str_cat.h" namespace tensorflow { namespace data { size_t ByteSize::ToUnsignedBytes() const { return bytes_; } double ByteSize::ToDoubleBytes() const { return static_cast<double>(bytes_); } double ByteSize::ToDoubleKB() const { return *this / ByteSize::KB(1); } double ByteSize::ToDoubleMB() const { return *this / ByteSize::MB(1); } double ByteSize::ToDoubleGB() const { return *this / ByteSize::GB(1); } double ByteSize::ToDoubleTB() const { return *this / ByteSize::TB(1); } std::string ByteSize::DebugString() const { if (*this < ByteSize::KB(1)) { return absl::StrCat(ToUnsignedBytes(), "B"); } if (*this < ByteSize::MB(1)) { return absl::StrCat(ToDoubleKB(), "KB"); } if (*this < ByteSize::GB(1)) { return absl::StrCat(ToDoubleMB(), "MB"); } if (*this < ByteSize::TB(1)) { return absl::StrCat(ToDoubleGB(), "GB"); } return absl::StrCat(ToDoubleTB(), "TB"); } } }
#include "tensorflow/core/data/service/byte_size.h" #include <cstddef> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "tsl/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::Eq; using ::testing::Not; TEST(ByteSizeTest, Constructors) { EXPECT_EQ(ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(1), ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::Bytes(1024), ByteSize::Bytes(1024)); EXPECT_EQ(ByteSize::Bytes(1024), ByteSize::KB(1)); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 63), ByteSize::TB(size_t{1} << 23)); EXPECT_EQ(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1), ByteSize::Bytes(size_t{1} << 10)); EXPECT_EQ(ByteSize::KB(0.9), ByteSize::Bytes(1024 * 0.9)); EXPECT_EQ(ByteSize::KB(1.5), ByteSize::Bytes(1024 * 1.5)); EXPECT_EQ(ByteSize::KB(1.5), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::KB(1024), ByteSize::MB(1)); EXPECT_EQ(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1), ByteSize::Bytes(size_t{1} << 20)); EXPECT_EQ(ByteSize::MB(0.9), ByteSize::Bytes(size_t{1} << 20) * 0.9); EXPECT_EQ(ByteSize::MB(1.5), ByteSize::Bytes(size_t{1} << 20) * 1.5); EXPECT_EQ(ByteSize::MB(1.5), ByteSize::MB(1.5)); EXPECT_EQ(ByteSize::MB(1024), ByteSize::GB(1)); EXPECT_EQ(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::GB(1), ByteSize::Bytes(size_t{1} << 30)); EXPECT_EQ(ByteSize::GB(0.9), ByteSize::Bytes(size_t{1} << 30) * 0.9); EXPECT_EQ(ByteSize::GB(1.5), ByteSize::Bytes(size_t{1} << 30) * 1.5); EXPECT_EQ(ByteSize::GB(1.5), ByteSize::GB(1.5)); EXPECT_EQ(ByteSize::GB(1024), ByteSize::TB(1)); EXPECT_EQ(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::TB(1), ByteSize::Bytes(size_t{1} << 40)); EXPECT_EQ(ByteSize::TB(0.9), ByteSize::Bytes(size_t{1} << 40) * 0.9); EXPECT_EQ(ByteSize::TB(1.5), ByteSize::Bytes(size_t{1} << 40) * 1.5); EXPECT_EQ(ByteSize::TB(1.5), ByteSize::TB(1.5)); EXPECT_EQ(ByteSize::TB(1024), ByteSize::TB(1024)); EXPECT_EQ(ByteSize::TB(size_t{1} << 23), ByteSize::TB(size_t{1} << 23)); EXPECT_THAT(ByteSize::Bytes(0), Not(Eq(ByteSize::Bytes(1)))); EXPECT_THAT(ByteSize::Bytes(1025), Not(Eq(ByteSize::KB(1)))); EXPECT_THAT(ByteSize::KB(1), Not(Eq(ByteSize::MB(1)))); EXPECT_THAT(ByteSize::MB(1), Not(Eq(ByteSize::GB(1)))); EXPECT_THAT(ByteSize::GB(1), Not(Eq(ByteSize::TB(1)))); EXPECT_THAT(ByteSize::TB(1), Not(Eq(ByteSize::TB(2)))); } TEST(ByteSizeTest, ConstexprConstruction) { constexpr ByteSize default_byte_size; EXPECT_EQ(default_byte_size, ByteSize::Bytes(0)); constexpr ByteSize bytes = ByteSize::Bytes(1); EXPECT_EQ(bytes, ByteSize::Bytes(1)); constexpr ByteSize kb = ByteSize::KB(1); EXPECT_EQ(kb, ByteSize::KB(1)); constexpr ByteSize mb = ByteSize::MB(1); EXPECT_EQ(mb, ByteSize::MB(1)); constexpr ByteSize gb = ByteSize::GB(1); EXPECT_EQ(gb, ByteSize::GB(1)); constexpr ByteSize tb = ByteSize::TB(1); EXPECT_EQ(tb, ByteSize::TB(1)); constexpr ByteSize tb_copy(tb); EXPECT_EQ(tb_copy, tb); } TEST(ByteSizeTest, ConvertToBytes) { EXPECT_EQ(ByteSize::Bytes(0).ToUnsignedBytes(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleBytes(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleKB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleMB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleGB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleTB(), 0); EXPECT_EQ(ByteSize::Bytes(1).ToUnsignedBytes(), 1); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleBytes(), 1.0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleKB(), 1.0 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleMB(), 1.0 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleGB(), 1.0 / 1024 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleTB(), 1.0 / 1024 / 1024 / 1024 / 1024); EXPECT_EQ(ByteSize::KB(0.25).ToUnsignedBytes(), 0.25 * (size_t{1} << 10)); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleBytes(), 0.25 * 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleKB(), 0.25); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleMB(), 0.25 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleGB(), 0.25 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleTB(), 0.25 / 1024 / 1024 / 1024); EXPECT_EQ(ByteSize::MB(0.5).ToUnsignedBytes(), 0.5 * (size_t{1} << 20)); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleBytes(), 0.5 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleKB(), 0.5 * 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleMB(), 0.5); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleGB(), 0.5 / 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleTB(), 0.5 / 1024 / 1024); EXPECT_EQ(ByteSize::GB(10).ToUnsignedBytes(), 10.0 * (size_t{1} << 30)); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleBytes(), 10.0 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleKB(), 10.0 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleMB(), 10.0 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleGB(), 10.0); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleTB(), 10.0 / 1024); EXPECT_EQ(ByteSize::TB(1024).ToUnsignedBytes(), 1024 * (size_t{1} << 40)); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleBytes(), 1024.0 * 1024 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleKB(), 1024.0 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleMB(), 1024.0 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleGB(), 1024.0 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleTB(), 1024.0); } TEST(ByteSizeTest, Arithmetics) { EXPECT_EQ(ByteSize::Bytes(0) + ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) + ByteSize::Bytes(1), ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::Bytes(512) + ByteSize::Bytes(512), ByteSize::KB(1)); EXPECT_EQ(ByteSize::Bytes(512) + ByteSize::KB(1), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::KB(0.5) + ByteSize::KB(1), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::MB(1) + ByteSize::KB(512), ByteSize::MB(1.5)); EXPECT_EQ(ByteSize::MB(1) + ByteSize::Bytes(512), ByteSize::Bytes(1049088)); EXPECT_EQ(ByteSize::GB(0.5) + ByteSize::MB(256) + ByteSize::MB(256), ByteSize::GB(1)); std::vector<ByteSize> GBs(1024, ByteSize::GB(1)); EXPECT_EQ(absl::c_accumulate(GBs, ByteSize::Bytes(0)), ByteSize::TB(1)); EXPECT_EQ(ByteSize::TB(1) + ByteSize::TB(0.5) + ByteSize::GB(512), ByteSize::TB(2)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) - ByteSize::Bytes(512), ByteSize::KB(0.5)); EXPECT_EQ(ByteSize::MB(1) - ByteSize::KB(512) - ByteSize::KB(512), ByteSize::MB(0)); EXPECT_EQ(ByteSize::GB(1) - ByteSize::MB(512), ByteSize::GB(0.5)); EXPECT_EQ(ByteSize::GB(0.5) - ByteSize::MB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::GB(1) - ByteSize::MB(512) - ByteSize::MB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::TB(1) - ByteSize::GB(512) - ByteSize::GB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::GB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1) - ByteSize::GB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::GB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::TB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(1) * 1024, ByteSize::KB(1)); EXPECT_EQ(ByteSize::KB(1) * 1024, ByteSize::MB(1)); EXPECT_EQ(ByteSize::MB(1) * 1024, ByteSize::GB(1)); EXPECT_EQ(ByteSize::GB(1) * 1024, ByteSize::TB(1)); EXPECT_EQ(ByteSize::Bytes(1) * 1.1, ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::KB(1) * 1.2, ByteSize::KB(1.2)); EXPECT_EQ(ByteSize::MB(1) * 1.3, ByteSize::MB(1.3)); EXPECT_EQ(ByteSize::GB(1) * 1.4, ByteSize::GB(1.4)); EXPECT_EQ(ByteSize::TB(1) * 1.5, ByteSize::TB(1.5)); EXPECT_EQ(ByteSize::KB(1) * 0.5, ByteSize::Bytes(512)); EXPECT_EQ(ByteSize::MB(1) * 0.5, ByteSize::KB(512)); EXPECT_EQ(ByteSize::GB(1) * 0.5, ByteSize::MB(512)); EXPECT_EQ(ByteSize::TB(1) * 0.25, ByteSize::GB(256)); EXPECT_EQ(1024 * ByteSize::Bytes(1), ByteSize::KB(1)); EXPECT_EQ(1024 * ByteSize::KB(1), ByteSize::MB(1)); EXPECT_EQ(1024 * ByteSize::MB(1), ByteSize::GB(1)); EXPECT_EQ(1024 * ByteSize::GB(1), ByteSize::TB(1)); EXPECT_EQ(0.9 * ByteSize::TB(1), ByteSize::GB(921.6)); EXPECT_EQ(0 * ByteSize::TB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) / 1, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) / 2, ByteSize::KB(0.5)); EXPECT_EQ(ByteSize::MB(1) / 2, ByteSize::KB(512)); EXPECT_EQ(ByteSize::GB(1) / 2, ByteSize::MB(512)); EXPECT_EQ(ByteSize::TB(1.5) / 2, ByteSize::GB(768)); EXPECT_EQ(ByteSize::KB(1) / 0.5, ByteSize::KB(2)); EXPECT_EQ(ByteSize::MB(1) / 0.5, ByteSize::MB(2)); EXPECT_EQ(ByteSize::GB(1) / 0.5, ByteSize::GB(2)); EXPECT_EQ(ByteSize::TB(1) / 0.25, ByteSize::TB(4)); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0) / ByteSize::KB(1), 0.0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1) / ByteSize::TB(1), 1.0 / 1024 / 1024 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(1) / ByteSize::KB(2), 0.5); EXPECT_DOUBLE_EQ(ByteSize::KB(512) / ByteSize::MB(1), 0.5); EXPECT_DOUBLE_EQ(ByteSize::KB(1) / ByteSize::MB(1), 1.0 / 1024.0); EXPECT_DOUBLE_EQ(ByteSize::MB(1) / ByteSize::GB(1), 1.0 / 1024.0); EXPECT_DOUBLE_EQ(ByteSize::GB(1) / ByteSize::TB(1), 1.0 / 1024.0); } TEST(ByteSizeTest, Assignments) { ByteSize byte_size; EXPECT_EQ(byte_size, ByteSize::Bytes(0)); byte_size = ByteSize::Bytes(1); EXPECT_EQ(byte_size, ByteSize::Bytes(1)); for (size_t i = 0; i < 1023; ++i) { byte_size += ByteSize::Bytes(1); } EXPECT_EQ(byte_size, ByteSize::KB(1)); for (size_t i = 0; i < 10; ++i) { byte_size *= 2; } EXPECT_EQ(byte_size, ByteSize::MB(1)); byte_size *= 1024 * 1024; EXPECT_EQ(byte_size, ByteSize::TB(1)); for (size_t i = 0; i < 10; ++i) { byte_size /= 2; } EXPECT_EQ(byte_size, ByteSize::GB(1)); for (size_t i = 0; i < 4; ++i) { byte_size -= ByteSize::MB(256); } EXPECT_EQ(byte_size, ByteSize::Bytes(0)); byte_size -= ByteSize::Bytes(1); EXPECT_EQ(byte_size, ByteSize::Bytes(0)); } TEST(ByteSizeTest, Comparisons) { EXPECT_LE(ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::Bytes(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::Bytes(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::Bytes(1), ByteSize::Bytes(1024)); EXPECT_LE(ByteSize::Bytes(1), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::Bytes(1024), ByteSize::Bytes(1024 * 1024)); EXPECT_LE(ByteSize::Bytes(1024), ByteSize::Bytes(1024 * 1024)); EXPECT_LT(ByteSize::Bytes(1024), ByteSize::KB(1.1)); EXPECT_LE(ByteSize::Bytes(1024), ByteSize::KB(1.1)); EXPECT_LE(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_LE(ByteSize::KB(1), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::KB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::KB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::KB(0.9), ByteSize::Bytes(1024)); EXPECT_LE(ByteSize::KB(0.9), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::KB(1), ByteSize::KB(1024)); EXPECT_LE(ByteSize::KB(1), ByteSize::KB(1024)); EXPECT_LT(ByteSize::KB(1), ByteSize::MB(1)); EXPECT_LE(ByteSize::KB(1), ByteSize::MB(1)); EXPECT_LT(ByteSize::KB(1024), ByteSize::MB(1.1)); EXPECT_LE(ByteSize::KB(1024), ByteSize::MB(1.1)); EXPECT_LE(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::MB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::MB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::MB(0.9), ByteSize::KB(1024)); EXPECT_LE(ByteSize::MB(0.9), ByteSize::KB(1024)); EXPECT_LT(ByteSize::MB(1), ByteSize::MB(1024)); EXPECT_LE(ByteSize::MB(1), ByteSize::MB(1024)); EXPECT_LT(ByteSize::MB(1), ByteSize::GB(1)); EXPECT_LE(ByteSize::MB(1), ByteSize::GB(1)); EXPECT_LT(ByteSize::MB(1024), ByteSize::GB(1.1)); EXPECT_LE(ByteSize::MB(1024), ByteSize::GB(1.1)); EXPECT_LE(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::GB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::GB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::GB(0.9), ByteSize::MB(1024)); EXPECT_LE(ByteSize::GB(0.9), ByteSize::MB(1024)); EXPECT_LT(ByteSize::GB(1), ByteSize::GB(1024)); EXPECT_LE(ByteSize::GB(1), ByteSize::GB(1024)); EXPECT_LT(ByteSize::GB(1), ByteSize::TB(1)); EXPECT_LE(ByteSize::GB(1), ByteSize::TB(1)); EXPECT_LT(ByteSize::GB(1024), ByteSize::TB(1.1)); EXPECT_LE(ByteSize::GB(1024), ByteSize::TB(1.1)); EXPECT_LE(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::TB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::TB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::TB(0.9), ByteSize::GB(1024)); EXPECT_LE(ByteSize::TB(0.9), ByteSize::GB(1024)); EXPECT_LT(ByteSize::TB(1), ByteSize::TB(1024)); EXPECT_LE(ByteSize::TB(1), ByteSize::TB(1024)); EXPECT_LT(ByteSize::TB(1024), ByteSize::TB(1025)); EXPECT_LE(ByteSize::TB(1024), ByteSize::TB(1025)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1)); EXPECT_GT(ByteSize::GB(1), ByteSize::MB(1)); EXPECT_GT(ByteSize::MB(1), ByteSize::KB(1)); EXPECT_GT(ByteSize::KB(1), ByteSize::Bytes(1)); EXPECT_GT(ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1) + ByteSize::MB(1) + ByteSize::KB(1) + ByteSize::Bytes(1)); EXPECT_GT(ByteSize::GB(1), 0.0000001 * ByteSize::TB(1)); EXPECT_GT(ByteSize::MB(1), ByteSize::KB(1) * 1023); EXPECT_GT(ByteSize::KB(1), ByteSize::KB(3) / 4); EXPECT_GT(ByteSize::Bytes(1), ByteSize::TB(0)); EXPECT_GE(ByteSize::TB(0.5), ByteSize::GB(0.5)); EXPECT_GE(ByteSize::GB(0.5), ByteSize::MB(0.5)); EXPECT_GE(ByteSize::MB(0.5), ByteSize::KB(0.5)); EXPECT_GE(ByteSize::KB(0.5), ByteSize::Bytes(1)); EXPECT_GE(ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::Bytes(0), ByteSize::Bytes(0)); } TEST(ByteSizeTest, DebugString) { EXPECT_EQ(ByteSize::Bytes(0).DebugString(), "0B"); EXPECT_EQ(ByteSize::Bytes(1).DebugString(), "1B"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 10).DebugString(), "1KB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 20).DebugString(), "1MB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 30).DebugString(), "1GB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 40).DebugString(), "1TB"); EXPECT_EQ(ByteSize::KB(0.5).DebugString(), "512B"); EXPECT_EQ(ByteSize::KB(1).DebugString(), "1KB"); EXPECT_EQ(ByteSize::KB(1.5).DebugString(), "1.5KB"); EXPECT_EQ(ByteSize::KB(1024).DebugString(), "1MB"); EXPECT_EQ(ByteSize::KB(1024 * 1024).DebugString(), "1GB"); EXPECT_EQ(ByteSize::KB(1024 * 1024 * 1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::MB(0.5).DebugString(), "512KB"); EXPECT_EQ(ByteSize::MB(1).DebugString(), "1MB"); EXPECT_EQ(ByteSize::MB(1.5).DebugString(), "1.5MB"); EXPECT_EQ(ByteSize::MB(1024).DebugString(), "1GB"); EXPECT_EQ(ByteSize::MB(1024 * 1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::GB(0.5).DebugString(), "512MB"); EXPECT_EQ(ByteSize::GB(1).DebugString(), "1GB"); EXPECT_EQ(ByteSize::GB(1.5).DebugString(), "1.5GB"); EXPECT_EQ(ByteSize::GB(1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::TB(0.5).DebugString(), "512GB"); EXPECT_EQ(ByteSize::TB(1).DebugString(), "1TB"); EXPECT_EQ(ByteSize::TB(1.5).DebugString(), "1.5TB"); EXPECT_EQ(ByteSize::TB(1024).DebugString(), "1024TB"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/byte_size.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/byte_size_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
288c8bde-c5d9-4a6c-a2a7-e4e91ae9a23a
cpp
tensorflow/tensorflow
auto_scaler
tensorflow/core/data/service/auto_scaler.cc
tensorflow/core/data/service/auto_scaler_test.cc
#include "tensorflow/core/data/service/auto_scaler.h" #include <algorithm> #include <cmath> #include <cstdint> #include <memory> #include <numeric> #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "tensorflow/core/framework/metrics.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr double kAutoScalerOutlierSigmas = 1.0; template <typename T> double GetMedian(const absl::flat_hash_map<T, double>& rates) { std::vector<double> sorted_rates; for (const auto& [id, rate] : rates) { sorted_rates.push_back(rate); } std::sort(sorted_rates.begin(), sorted_rates.end()); return sorted_rates[sorted_rates.size() / 2]; } template <typename T> double GetMean(const absl::flat_hash_map<T, double>& rates) { double rates_sum = 0.0; for (const auto& [id, rate] : rates) { rates_sum += rate; } if (rates_sum == 0.0) return 0.0; return rates_sum / static_cast<double>(rates.size()); } template <typename T> double GetStandardDeviation(const absl::flat_hash_map<T, double>& rates, double mean) { double squared_distances_sum = 0.0; for (const auto& [id, rate] : rates) { squared_distances_sum += (rate - mean) * (rate - mean); } if (squared_distances_sum == 0.0 || rates.size() <= 1) return 0.0; return std::sqrt(squared_distances_sum / static_cast<double>(rates.size() - 1)); } template <typename T> void ReplaceOutliers(const absl::flat_hash_map<T, double>& rates, std::vector<double>& rates_without_outliers, double outlier_sigmas) { if (rates.empty()) return; double mean = GetMean(rates); double median = GetMedian(rates); double standard_deviation = GetStandardDeviation(rates, mean); double lower_threshold = mean - standard_deviation * outlier_sigmas; double upper_threshold = mean + standard_deviation * outlier_sigmas; for (const auto& [id, rate] : rates) { if (rate >= lower_threshold && rate <= upper_threshold) { rates_without_outliers.push_back(rate); } else { rates_without_outliers.push_back(median); } } } std::optional<int64_t> AutoScaler::GetOptimalNumberOfWorkers() const TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (worker_throughputs_.empty() || consumption_rates_.empty()) return std::nullopt; std::vector<double> consumption_rates_without_outliers; ReplaceOutliers(consumption_rates_, consumption_rates_without_outliers, kAutoScalerOutlierSigmas); double consumption_rates_sum_ = std::accumulate(consumption_rates_without_outliers.begin(), consumption_rates_without_outliers.end(), 0.0); std::vector<double> worker_throughputs_without_outliers; ReplaceOutliers(worker_throughputs_, worker_throughputs_without_outliers, kAutoScalerOutlierSigmas); double worker_throughputs_sum_ = std::accumulate(worker_throughputs_without_outliers.begin(), worker_throughputs_without_outliers.end(), 0.0); double average_worker_throughput = worker_throughputs_sum_ / static_cast<double>(worker_throughputs_.size()); int64_t optimal_number_of_workers = ceil(consumption_rates_sum_ / average_worker_throughput); return std::max(int64_t{1}, optimal_number_of_workers); } absl::Status AutoScaler::ReportProcessingTime(const std::string& worker_address, absl::Duration processing_time) TF_LOCKS_EXCLUDED(mu_) { if (processing_time <= absl::ZeroDuration()) { return absl::InvalidArgumentError(absl::StrCat( "Cannot update processing_time with a ZeroDuration or negative value: ", absl::FormatDuration(processing_time))); } double worker_throughput = 1.0 / absl::ToDoubleSeconds(processing_time); tsl::mutex_lock l(mu_); worker_throughputs_[worker_address] = worker_throughput; return absl::OkStatus(); } absl::Status AutoScaler::ReportTargetProcessingTime( int64_t consumer_id, absl::Duration target_processing_time) TF_LOCKS_EXCLUDED(mu_) { if (target_processing_time <= absl::ZeroDuration()) { return absl::InvalidArgumentError( absl::StrCat("Cannot update target_processing_time with a ZeroDuration " "or negative value: ", absl::FormatDuration(target_processing_time))); } double consumption_rate = 1.0 / absl::ToDoubleSeconds(target_processing_time); tsl::mutex_lock l(mu_); consumption_rates_[consumer_id] = consumption_rate; return absl::OkStatus(); } absl::Status AutoScaler::RemoveWorker(const std::string& worker_address) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!worker_throughputs_.contains(worker_address)) return absl::NotFoundError( absl::StrCat("Worker with address ", worker_address, " not found")); worker_throughputs_.erase(worker_address); return absl::OkStatus(); } absl::Status AutoScaler::RemoveConsumer(int64_t consumer_id) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!consumption_rates_.contains(consumer_id)) return absl::NotFoundError( absl::StrCat("Consumer with ID ", consumer_id, " not found")); consumption_rates_.erase(consumer_id); return absl::OkStatus(); } void MultipleIterationsAutoScaler::EnsureIterationIsRegistered( int64_t iteration_id) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!auto_scalers_.contains(iteration_id)) { auto_scalers_[iteration_id] = std::make_unique<AutoScaler>(); } } absl::Status MultipleIterationsAutoScaler::UnregisterIteration( int64_t iteration_id) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!auto_scalers_.contains(iteration_id)) return absl::NotFoundError(absl::StrCat("AutoScaler for iteration_id ", iteration_id, " does not exist")); auto_scalers_.erase(iteration_id); return absl::OkStatus(); } absl::Status MultipleIterationsAutoScaler::UpdateOptimalNumberOfWorkersMetric( int64_t current_number_of_workers) TF_LOCKS_EXCLUDED(mu_) { if (current_number_of_workers <= 0) return absl::InvalidArgumentError( "The current number of workers must be positive"); std::optional<int64_t> optimal_number_of_workers = GetOptimalNumberOfWorkers(); if (!optimal_number_of_workers) return absl::UnavailableError( "Cannot update the optimal number of workers metric because there are " "no reported processing and target processing times for at least one " "iteration"); VLOG(3) << "Estimated optimal number of workers: " << optimal_number_of_workers.value(); int64_t bound_optimal_number_of_workers = optimal_number_of_workers.value(); if (bound_optimal_number_of_workers > current_number_of_workers * 4 || bound_optimal_number_of_workers > current_number_of_workers + 500) { bound_optimal_number_of_workers = std::min(current_number_of_workers * 4, current_number_of_workers + 500); } bound_optimal_number_of_workers = std::min(bound_optimal_number_of_workers, int64_t{100000}); VLOG(3) << "Bound optimal number of workers: " << bound_optimal_number_of_workers; metrics::RecordTFDataServiceOptimalNumberOfWorkers( bound_optimal_number_of_workers); return absl::OkStatus(); } std::optional<int64_t> MultipleIterationsAutoScaler::GetOptimalNumberOfWorkers() const TF_LOCKS_EXCLUDED(mu_) { int64_t optimal_number_of_workers = 0; { tsl::tf_shared_lock l(mu_); for (const auto& [iteration_id, auto_scaler] : auto_scalers_) { std::optional<int64_t> current_optimal_number_of_workers = auto_scaler->GetOptimalNumberOfWorkers(); if (!current_optimal_number_of_workers.has_value()) continue; optimal_number_of_workers = std::max( optimal_number_of_workers, current_optimal_number_of_workers.value()); } } if (optimal_number_of_workers == 0) return std::nullopt; else return optimal_number_of_workers; } absl::Status MultipleIterationsAutoScaler::ReportProcessingTime( int64_t iteration_id, const std::string& worker_address, absl::Duration processing_time) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); EnsureIterationIsRegistered(iteration_id); absl::Status status = auto_scalers_[iteration_id]->ReportProcessingTime( worker_address, processing_time); return status; } absl::Status MultipleIterationsAutoScaler::ReportTargetProcessingTime( int64_t iteration_id, int64_t consumer_id, absl::Duration target_processing_time) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); EnsureIterationIsRegistered(iteration_id); absl::Status status = auto_scalers_[iteration_id]->ReportTargetProcessingTime( consumer_id, target_processing_time); return status; } absl::Status MultipleIterationsAutoScaler::RemoveWorker( int64_t iteration_id, const std::string& worker_address) TF_LOCKS_EXCLUDED(mu_) { tsl::tf_shared_lock l(mu_); if (!auto_scalers_.contains(iteration_id)) return absl::NotFoundError(absl::StrCat( "There are no reported times for iteration_id ", iteration_id)); absl::Status status = auto_scalers_[iteration_id]->RemoveWorker(worker_address); return status; } absl::Status MultipleIterationsAutoScaler::RemoveConsumer(int64_t iteration_id, int64_t consumer_id) TF_LOCKS_EXCLUDED(mu_) { tsl::tf_shared_lock l(mu_); if (!auto_scalers_.contains(iteration_id)) return absl::NotFoundError(absl::StrCat( "There are no reported times for iteration_id ", iteration_id)); absl::Status status = auto_scalers_[iteration_id]->RemoveConsumer(consumer_id); return status; } } }
#include "tensorflow/core/data/service/auto_scaler.h" #include <optional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/time/time.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using ::tsl::testing::StatusIs; TEST(AutoScalerTest, GetOptimalNumberOfWorkersInitialState) { AutoScaler auto_scaler; EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredWorkers) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredConsumers) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate1) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(0, absl::Seconds(0.025))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 8); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate2) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Seconds(0.15))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(0, absl::Seconds(0.025))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(1, absl::Seconds(0.05))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 11); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate3) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Seconds(0.1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(0, absl::Seconds(0.01))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(1, absl::Seconds(0.02))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 20); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersRemoveOutliersTPT) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Nanoseconds(80000000))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Nanoseconds(500))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Nanoseconds(3000000))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, absl::Nanoseconds(2000000))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 107); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersRemoveOutliersPT) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Nanoseconds(80000000))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Nanoseconds(70000000))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/2:20000", absl::Nanoseconds(1000))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Nanoseconds(300000))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 244); } TEST(AutoScalerTest, ReportProcessingTimeNewWorker) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); } TEST(AutoScalerTest, ReportProcessingTimeExistingWorker) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(20))); } TEST(AutoScalerTest, ReportProcessingTimeNewAndExisting) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/2:20000", absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/2:20000", absl::Microseconds(10))); } TEST(AutoScalerTest, ReportProcessingTimeZeroDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, ReportProcessingTimeNegativeDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime( "/worker/task/0:20000", absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, ReportTargetProcessingTimeNewConsumer) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); } TEST(AutoScalerTest, ReportTargetProcessingTimeExistingConsumer) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(20))); } TEST(AutoScalerTest, ReportTargetProcessingTimeNewAndExisting) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, absl::Microseconds(10))); } TEST(AutoScalerTest, ReportTargetProcessingTimeZeroDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, ReportTargetProcessingTimeNegativeDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, RemoveWorkerSuccessful) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker("/worker/task/0:20000")); TF_ASSERT_OK(auto_scaler.RemoveWorker("/worker/task/1:20000")); } TEST(AutoScalerTest, RemoveNonexistentWorker) { AutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveWorker("/worker/task/0:20000"), StatusIs(absl::StatusCode::kNotFound)); } TEST(AutoScalerTest, RemoveWorkerAfterNewPTReported) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker("/worker/task/0:20000")); } TEST(AutoScalerTest, RemoveConsumerSuccessful) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0)); TF_ASSERT_OK(auto_scaler.RemoveConsumer(1)); } TEST(AutoScalerTest, RemoveNonexistentConsumer) { AutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveConsumer(0), StatusIs(absl::StatusCode::kNotFound)); } TEST(AutoScalerTest, RemoveConsumerAfterNewTPTReported) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0)); } TEST(MultipleIterationsAutoScalerTest, UnregisterExistingIteration) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK(auto_scaler.UnregisterIteration(0)); } TEST(MultipleIterationsAutoScalerTest, UnregisterNonexistentIteration) { MultipleIterationsAutoScaler auto_scaler; EXPECT_THAT(auto_scaler.UnregisterIteration(0), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricInvalidCurrentWorkers) { MultipleIterationsAutoScaler auto_scaler; absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(0); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument)); status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(-1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricNoReportedTimes) { MultipleIterationsAutoScaler auto_scaler; absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kUnavailable)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricNoReportedPTs) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(5))); absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kUnavailable)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricNoReportedTPTs) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kUnavailable)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricWithReportedTimes) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(5))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(1)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_GT(cell_reader.Read(), 0); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricIncreaseWithinLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(500))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(15)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 50); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetric4xIncreaseLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(2)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 8); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetric500IncreaseLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10000))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(1000)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 1500); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricMaxLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(200000))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(99700)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 100000); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersInitialState) { MultipleIterationsAutoScaler auto_scaler; EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredWorkers) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(5))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredConsumers) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate1) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Seconds(0.025))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Seconds(0.15))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Seconds(0.025))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Seconds(0.05))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 11); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate2) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Seconds(0.025))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Seconds(0.15))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Seconds(0.025))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Seconds(0.05))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(2, "/worker/task/0:20000", absl::Seconds(0.1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(2, "/worker/task/1:20000", absl::Seconds(0.2))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, 0, absl::Seconds(0.01))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, 1, absl::Seconds(0.02))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 20); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNewIteration) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNewWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/1:20000", absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeExistingWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNewAndExisting) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/1:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/1:20000", absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Microseconds(30))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeZeroDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime( 0, "/worker/task/0:20000", absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNegativeDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime( 0, "/worker/task/0:20000", absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNewIteration) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNewConsumer) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 1, absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeExistingWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNewAndExisting) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 1, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 1, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Microseconds(30))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeZeroDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, 0, absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNegativeDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, RemoveWorkerUnregisteredIteration) { MultipleIterationsAutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveWorker(0, "/worker/task/1:20000"), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(auto_scaler.RemoveWorker(1, "/worker/task/1:20000"), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveWorkerSuccessful) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker(0, "/worker/task/0:20000")); TF_ASSERT_OK(auto_scaler.RemoveWorker(1, "/worker/task/0:20000")); } TEST(MultipleIterationsAutoScalerTest, RemoveNonexistentWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); EXPECT_THAT(auto_scaler.RemoveWorker(0, "/worker/task/1:20000"), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveWorkerAfterNewPTReported) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker(0, "/worker/task/0:20000")); } TEST(MultipleIterationsAutoScalerTest, RemoveConsumerUnregisteredIteration) { MultipleIterationsAutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveConsumer(0, 0), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(auto_scaler.RemoveConsumer(1, 0), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveConsumerSuccessful) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0, 0)); TF_ASSERT_OK(auto_scaler.RemoveConsumer(1, 0)); } TEST(MultipleIterationsAutoScalerTest, RemoveNonexistentConsumer) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); EXPECT_THAT(auto_scaler.RemoveConsumer(0, 1), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveConsumerAfterNewTPTReported) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0, 0)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/auto_scaler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/auto_scaler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
32b6f306-4d70-4f3a-8887-4af878ce1da0
cpp
tensorflow/tensorflow
task_runner
tensorflow/core/data/service/task_runner.cc
tensorflow/core/data/service/task_runner_test.cc
#include "tensorflow/core/data/service/task_runner.h" #include <algorithm> #include <memory> #include <optional> #include <utility> #include <vector> #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/cross_trainer_cache.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/thread_safe_buffer.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { namespace { constexpr int64_t kWaitBeforeSkipUs = 100 * 1000; constexpr size_t kDefaultCrossTrainerCacheSizeBytes = 10 * (size_t{1} << 30); } StandaloneTaskIterator::StandaloneTaskIterator( std::unique_ptr<standalone::Dataset> dataset, std::unique_ptr<standalone::Iterator> iterator) : dataset_(std::move(dataset)), iterator_(std::move(iterator)) {} Status StandaloneTaskIterator::GetNext(std::vector<Tensor>& element, bool& end_of_sequence) { return iterator_->GetNext(&element, &end_of_sequence); } int64_t StandaloneTaskIterator::Cardinality() const { return dataset_->Get()->Cardinality(); } absl::StatusOr<std::vector<Tensor>> StandaloneTaskIterator::Save() { return iterator_->Save(); } Status StandaloneTaskIterator::Restore( const std::vector<Tensor>& saved_iterator) { return iterator_->Restore(saved_iterator); } std::shared_ptr<model::Model> StandaloneTaskIterator::model() const { return iterator_->model(); } Status TaskRunner::Create(const experimental::WorkerConfig& worker_config, const TaskDef& task_def, std::unique_ptr<TaskIterator> iterator, std::unique_ptr<TaskRunner>& out) { if (task_def.optional_num_consumers_case() == TaskDef::kNumConsumers) { int64_t cardinality = iterator->Cardinality(); if (cardinality != kInfiniteCardinality && cardinality != kUnknownCardinality) { return errors::FailedPrecondition( "Round robin reads require that the input dataset has infinite " "cardinality, but the dataset has cardinality ", cardinality, ". Consider adding a `.repeat()` transformation to the dataset."); } out = std::make_unique<RoundRobinTaskRunner>(std::move(iterator), task_def.num_consumers(), task_def.worker_address()); } else if (task_def.use_cross_trainer_cache()) { const size_t max_cache_size_bytes = worker_config.cross_trainer_cache_size_bytes() > 0 ? worker_config.cross_trainer_cache_size_bytes() : kDefaultCrossTrainerCacheSizeBytes; out = std::make_unique<CachingTaskRunner>(std::move(iterator), max_cache_size_bytes); } else { out = std::make_unique<FirstComeFirstServedTaskRunner>(std::move(iterator)); } return absl::OkStatus(); } FirstComeFirstServedTaskRunner::FirstComeFirstServedTaskRunner( std::unique_ptr<TaskIterator> iterator) : iterator_(std::move(iterator)), buffer_(1) { RunPrefetchThread(); } FirstComeFirstServedTaskRunner::~FirstComeFirstServedTaskRunner() { Cancel(); } Status FirstComeFirstServedTaskRunner::GetNext(const GetElementRequest& req, GetElementResult& result) { if (req.allow_skip() && buffer_.Empty()) { result.skip = true; return absl::OkStatus(); } return GetNext(result); } Status FirstComeFirstServedTaskRunner::GetNext(GetElementResult& result) { TF_ASSIGN_OR_RETURN(result, buffer_.Pop()); return absl::OkStatus(); } Status FirstComeFirstServedTaskRunner::PrefetchFn() { while (true) { TF_RETURN_IF_ERROR(buffer_.Push(GetNextFromInputIterator())); } return absl::OkStatus(); } void FirstComeFirstServedTaskRunner::RunPrefetchThread() { auto prefetch_fn = [this] { Status status = PrefetchFn(); if (!status.ok()) { buffer_.Cancel(status); } }; prefetch_thread_ = absl::WrapUnique(Env::Default()->StartThread( {}, "tf_data_service_fcfs_prefetch_thread", prefetch_fn)); } absl::StatusOr<GetElementResult> FirstComeFirstServedTaskRunner::GetNextFromInputIterator() TF_LOCKS_EXCLUDED(mu_) { GetElementResult result; std::vector<Tensor> element; bool end_of_task = false; result.skip = false; { mutex_lock l(mu_); TF_RETURN_IF_ERROR(iterator_->GetNext(element, end_of_task)); result.end_of_sequence = end_of_task; result.element_index = element_index_++; } if (!end_of_task) { result.components = std::move(element); } return result; } void FirstComeFirstServedTaskRunner::Cancel() { VLOG(2) << "Cancelling tf.data service FCFS task."; buffer_.Cancel(errors::Cancelled("tf.data service FCFS task is cancelled.")); } std::shared_ptr<model::Model> FirstComeFirstServedTaskRunner::model() const { return model_; } CachingTaskRunner::CachingTaskRunner(std::unique_ptr<TaskIterator> iterator, size_t max_cache_size_bytes) : fcfs_task_runner_(std::move(iterator)), cache_(max_cache_size_bytes, std::make_unique<GetElementResultSequence>(fcfs_task_runner_)) { LOG(INFO) << "Initialized tf.data service cross-trainer cache with " << ByteSize::Bytes(max_cache_size_bytes) << " of memory."; } CachingTaskRunner::~CachingTaskRunner() { Cancel(); } Status CachingTaskRunner::GetNext(const GetElementRequest& req, GetElementResult& result) { TF_ASSIGN_OR_RETURN(std::shared_ptr<const GetElementResult> element, cache_.Get(req.trainer_id())); result = element->Copy(); return absl::OkStatus(); } CachingTaskRunner::GetElementResultSequence::GetElementResultSequence( FirstComeFirstServedTaskRunner& fcfs_task_runner) : fcfs_task_runner_(fcfs_task_runner) {} absl::StatusOr<GetElementResult> CachingTaskRunner::GetElementResultSequence::GetNext() { GetElementResult result; TF_RETURN_IF_ERROR(fcfs_task_runner_.GetNext(result)); if (result.end_of_sequence) { return errors::InvalidArgument( "Cross-trainer caching requires the input dataset to be infinite. " "However, it reached the end of sequence."); } return result; } size_t CachingTaskRunner::GetElementResultSequence::GetElementSizeBytes( const GetElementResult& element) const { return element.EstimatedMemoryUsageBytes(); } void CachingTaskRunner::Cancel() { VLOG(2) << "Cancelling tf.data service cross-trainer cache task."; if (!cache_.IsCancelled()) { cache_.Cancel(errors::Cancelled( "tf.data service cross-trainer cache task is cancelled.")); } fcfs_task_runner_.Cancel(); } std::shared_ptr<model::Model> CachingTaskRunner::model() const { return fcfs_task_runner_.model(); } RoundRobinTaskRunner::RoundRobinTaskRunner( std::unique_ptr<TaskIterator> iterator, int64_t num_consumers, string worker_address) : num_consumers_(num_consumers), worker_address_(worker_address), buffer_(num_consumers_), prefetch_thread_(std::move(iterator), num_consumers_) { VLOG(1) << "Creating task runner for distributing data round-robin to " << num_consumers << " consumers"; } Status RoundRobinTaskRunner::ValidateRequest(const GetElementRequest& req) { if (req.consumer_index() < 0 || req.round_index() < 0) { return errors::FailedPrecondition( "RoundRobinTaskRunner needs to know the consumer index and element " "index of each request."); } if (req.consumer_index() >= num_consumers_) { return errors::FailedPrecondition( "Requesting data for consumer index ", req.consumer_index(), ", but the task is configured for only ", num_consumers_, " consumers"); } return absl::OkStatus(); } Status RoundRobinTaskRunner::PrepareFullRound(int64_t wait_us) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { VLOG(1) << worker_address_ << ": Preparing full round for round " << current_round_; TF_RETURN_IF_ERROR(prefetch_thread_.FillBuffer(wait_us, buffer_)); round_skipped_ = buffer_.empty(); new_round_cv_.notify_all(); return absl::OkStatus(); } Status RoundRobinTaskRunner::PreparePartialRound() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { VLOG(1) << worker_address_ << ": Starting partial round " << first_round_ << " for " << requests_[first_round_].size() << " consumers"; current_round_ = first_round_; new_round_cv_.notify_all(); auto next_round_request = *(requests_[first_round_ + 1].begin()->second); if (next_round_request.skipped_previous_round()) { VLOG(1) << "Skipping partial round"; round_skipped_ = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(prefetch_thread_.FillBuffer(-1, buffer_)); round_skipped_ = false; return absl::OkStatus(); } Status RoundRobinTaskRunner::PrepareRound(const GetElementRequest& req) { mutex_lock l(mu_); first_round_ = std::min(first_round_, req.round_index()); absl::flat_hash_map<int64_t, const GetElementRequest*>& round = requests_[req.round_index()]; round[req.consumer_index()] = &req; auto cleanup = gtl::MakeCleanup([&]() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { requests_[req.round_index()].erase(req.consumer_index()); }); if (current_round_ < req.round_index() && round.size() == num_consumers_) { current_round_ = req.round_index(); int64_t wait_us = kWaitBeforeSkipUs; if (!req.allow_skip()) { wait_us = -1; } TF_RETURN_IF_ERROR(PrepareFullRound(wait_us)); } if (current_round_ < 0 && requests_[first_round_].size() + requests_[first_round_ + 1].size() == num_consumers_) { TF_RETURN_IF_ERROR(PreparePartialRound()); } while (!cancelled_ && current_round_ < req.round_index()) { TF_RETURN_IF_ERROR(prefetch_thread_.GetStatus()); new_round_cv_.wait(l); } if (current_round_ < req.round_index() && cancelled_) { return errors::Cancelled("Worker is shutting down."); } if (current_round_ != req.round_index()) { return errors::FailedPrecondition( "Consumer ", req.consumer_index(), " requested data for round ", req.round_index(), ", but the current round has already reached ", current_round_, ". This may indicate that the consumer was restarted with the same " "iteration " "name.`"); } return prefetch_thread_.GetStatus(); } Status RoundRobinTaskRunner::GetNext(const GetElementRequest& req, GetElementResult& result) { TF_RETURN_IF_ERROR(ValidateRequest(req)); result.end_of_sequence = false; VLOG(2) << worker_address_ << ": Received request from consumer index " << req.consumer_index() << " for round " << req.round_index(); TF_RETURN_IF_ERROR(PrepareRound(req)); tf_shared_lock l(mu_); result.skip = round_skipped_; if (round_skipped_) { VLOG(1) << worker_address_ << ": Buffer not ready, skipping round " << current_round_ << " for consumer " << req.consumer_index(); return absl::OkStatus(); } auto& buffer_result = buffer_[req.consumer_index()]; result.element_index = buffer_result->index; std::vector<Tensor> element; for (auto& component : buffer_result->components) { element.push_back(tensor::DeepCopy(component)); } if (VLOG_IS_ON(2)) { int64_t size = 0; for (auto& component : element) { size += component.TotalBytes(); } VLOG(2) << worker_address_ << ": Returning element " << result.element_index << " to consumer " << req.consumer_index() << " for round " << req.round_index() << ". element size " << size; } result.components = std::move(element); return absl::OkStatus(); } void RoundRobinTaskRunner::Cancel() { mutex_lock l(mu_); cancelled_ = true; new_round_cv_.notify_all(); } std::shared_ptr<model::Model> RoundRobinTaskRunner::model() const { return prefetch_thread_.model(); } PrefetchThread::PrefetchThread(std::unique_ptr<TaskIterator> iterator, int64_t round_size) : iterator_(std::move(iterator)), round_size_(round_size) { thread_ = absl::WrapUnique( Env::Default()->StartThread({}, "round-robin-prefetch", [&] { Run(); })); } PrefetchThread::~PrefetchThread() { mutex_lock l(mu_); cancelled_ = true; cv_.notify_all(); } void PrefetchThread::Run() { while (true) { { mutex_lock l(mu_); while (!cancelled_ && buffer_.size() >= round_size_) { cv_.wait(l); } if (cancelled_) { return; } } std::vector<Tensor> element; bool end_of_sequence; Status s = iterator_->GetNext(element, end_of_sequence); if (!s.ok()) { mutex_lock l(mu_); status_ = s; cv_.notify_all(); return; } if (end_of_sequence) { mutex_lock l(mu_); status_ = errors::FailedPrecondition( "Encountered end of sequence on a round-robin read iterator. " "Please ensure that the dataset used for round-robin reading has " "infinite cardinality, e.g. by adding a .repeat() transformation " "at the end."); cv_.notify_all(); return; } mutex_lock l(mu_); buffer_.push_back(std::make_unique<Element>(std::move(element), index_++)); cv_.notify_all(); } } Status PrefetchThread::FillBuffer(int64_t wait_us, std::vector<std::unique_ptr<Element>>& out) { int64_t start_us = Env::Default()->NowMicros(); out.clear(); mutex_lock l(mu_); while (buffer_.size() < round_size_ && !cancelled_ && status_.ok()) { int64_t remaining_us = start_us + wait_us - Env::Default()->NowMicros(); if (wait_us >= 0 && remaining_us <= 0) { break; } cv_.wait_for(l, std::chrono::microseconds(remaining_us)); } TF_RETURN_IF_ERROR(status_); if (cancelled_) { return errors::Cancelled("Prefetch thread cancelled"); } if (buffer_.size() < round_size_) { DCHECK_GE(wait_us, 0); return absl::OkStatus(); } for (auto& elem : buffer_) { out.push_back(std::move(elem)); } buffer_.clear(); cv_.notify_all(); return absl::OkStatus(); } Status PrefetchThread::GetStatus() { mutex_lock l(mu_); return status_; } std::shared_ptr<model::Model> PrefetchThread::model() const { return iterator_->model(); } } }
#include "tensorflow/core/data/service/task_runner.h" #include <algorithm> #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::testing::IsOkAndHolds; using ::tensorflow::testing::StatusIs; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::Gt; using ::testing::HasSubstr; using ::testing::SizeIs; using ::testing::UnorderedElementsAreArray; constexpr size_t kSmallCache = 100; constexpr size_t kLargeCache = 10 * (size_t{1} << 30); class RangeIterator : public TaskIterator { public: explicit RangeIterator(const int64_t range, const bool repeat) : range_(range), repeat_(repeat) {} Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) override { end_of_sequence = (next_ >= range_); if (end_of_sequence) { return absl::OkStatus(); } element = {Tensor{next_++}}; if (repeat_) { next_ = next_ % range_; } return absl::OkStatus(); } int64_t Cardinality() const override { return repeat_ ? kInfiniteCardinality : range_; } private: const int64_t range_; const bool repeat_; int64_t next_ = 0; }; class InfiniteRangeIterator : public TaskIterator { public: InfiniteRangeIterator() = default; Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) override { element = {Tensor{next_++}}; return absl::OkStatus(); } int64_t Cardinality() const override { return kInfiniteCardinality; } private: int64_t next_ = 0; }; template <class T> class ElementOrErrorIterator : public TaskIterator { public: explicit ElementOrErrorIterator(const std::vector<StatusOr<T>>& elements) : elements_(elements) {} Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) override { end_of_sequence = (next_ >= elements_.size()); if (end_of_sequence) { return absl::OkStatus(); } const StatusOr<T>& next_element = elements_[next_++]; TF_RETURN_IF_ERROR(next_element.status()); element = {Tensor{*next_element}}; return absl::OkStatus(); } int64_t Cardinality() const override { return elements_.size(); } private: const std::vector<StatusOr<T>> elements_; int64_t next_ = 0; }; template <class T> StatusOr<std::vector<T>> GetTaskRunnerOutput(TaskRunner& runner, const GetElementRequest& request) { std::vector<T> output; for (bool end_of_sequence = false; !end_of_sequence;) { GetElementResult result; TF_RETURN_IF_ERROR(runner.GetNext(request, result)); end_of_sequence = result.end_of_sequence; if (end_of_sequence) { break; } if (result.components.size() != 1) { return errors::Internal("GetElementResult Tensor size should be 1."); } output.push_back(result.components[0].unaligned_flat<T>().data()[0]); } return output; } template <class T> StatusOr<T> GetNextFromTaskRunner(TaskRunner& runner, const GetElementRequest& request) { GetElementResult result; TF_RETURN_IF_ERROR(runner.GetNext(request, result)); if (result.end_of_sequence) { return errors::OutOfRange("TaskRunner has reached the end of sequence."); } if (result.components.size() != 1) { return errors::Internal("GetElementResult Tensor size should be 1."); } return result.components[0].unaligned_flat<T>().data()[0]; } template <class T> StatusOr<std::vector<T>> GetElementsFromTaskRunner( TaskRunner& runner, const GetElementRequest& request, const size_t num_elements) { std::vector<T> output; for (size_t i = 0; i < num_elements; ++i) { TF_ASSIGN_OR_RETURN(T next, GetNextFromTaskRunner<T>(runner, request)); output.push_back(next); } return output; } std::vector<int64_t> GetRange(const size_t range) { std::vector<int64_t> result; for (int64_t i = 0; i < range; ++i) { result.push_back(i); } return result; } Status RunConsumer(int64_t consumer_index, int64_t start_index, int64_t end_index, TaskRunner& task_runner, std::vector<int64_t>& output) { for (int64_t next_index = start_index; next_index < end_index; ++next_index) { GetElementRequest request; request.set_round_index(next_index); request.set_consumer_index(consumer_index); request.set_skipped_previous_round(false); request.set_allow_skip(false); GetElementResult result; do { TF_RETURN_IF_ERROR(task_runner.GetNext(request, result)); if (!result.end_of_sequence) { output.push_back(result.components[0].flat<int64_t>()(0)); } } while (result.skip); } return absl::OkStatus(); } } TEST(FirstComeFirstServedTaskRunnerTest, GetNext) { size_t range = 10; FirstComeFirstServedTaskRunner runner( std::make_unique<RangeIterator>(range, false)); TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> output, GetTaskRunnerOutput<int64_t>(runner, GetElementRequest())); EXPECT_THAT(output, ElementsAreArray(GetRange(range))); GetElementResult result; TF_ASSERT_OK(runner.GetNext(GetElementRequest(), result)); EXPECT_TRUE(result.end_of_sequence); } TEST(FirstComeFirstServedTaskRunnerTest, EmptyDataset) { FirstComeFirstServedTaskRunner runner( std::make_unique<RangeIterator>(0, false)); for (int i = 0; i < 5; ++i) { GetElementResult result; TF_ASSERT_OK(runner.GetNext(GetElementRequest(), result)); EXPECT_TRUE(result.end_of_sequence); } } TEST(FirstComeFirstServedTaskRunnerTest, Cancel) { size_t range = 10; FirstComeFirstServedTaskRunner runner( std::make_unique<RangeIterator>(range, false)); runner.Cancel(); for (int i = 0; i < range; ++i) { GetElementResult result; EXPECT_THAT(runner.GetNext(GetElementRequest(), result), testing::StatusIs(error::CANCELLED)); } } TEST(FirstComeFirstServedTaskRunnerTest, ConcurrentReaders) { size_t range = 1000; size_t num_readers = 10; FirstComeFirstServedTaskRunner runner( std::make_unique<RangeIterator>(range, false)); mutex mu; std::vector<int64_t> results; std::vector<std::unique_ptr<Thread>> reader_threads; for (int i = 0; i < num_readers; ++i) { reader_threads.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("Trainer_", i), [&runner, &results, &mu]() { TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> output, GetTaskRunnerOutput<int64_t>(runner, GetElementRequest())); GetElementResult result; TF_ASSERT_OK(runner.GetNext(GetElementRequest(), result)); EXPECT_TRUE(result.end_of_sequence); mutex_lock l(mu); std::move(output.begin(), output.end(), std::back_inserter(results)); }))); } for (auto& thread : reader_threads) { thread.reset(); } EXPECT_THAT(results, UnorderedElementsAreArray(GetRange(range))); } TEST(FirstComeFirstServedTaskRunnerTest, GetNextAndCancel) { size_t range = 10; FirstComeFirstServedTaskRunner runner( std::make_unique<RangeIterator>(range, false)); int64_t i; for (i = 0; i < range / 2; ++i) { EXPECT_THAT(GetNextFromTaskRunner<int64_t>(runner, GetElementRequest()), IsOkAndHolds(i)); } runner.Cancel(); for (; i < range; ++i) { GetElementResult result; EXPECT_THAT(runner.GetNext(GetElementRequest(), result), testing::StatusIs(error::CANCELLED)); } } TEST(FirstComeFirstServedTaskRunnerTest, Error) { FirstComeFirstServedTaskRunner runner( std::make_unique<ElementOrErrorIterator<tstring>>( std::vector<absl::StatusOr<tstring>>{ tstring("First element"), errors::InvalidArgument("Invalid argument"), tstring("Second element"), errors::Aborted("Aborted")})); EXPECT_THAT(GetNextFromTaskRunner<tstring>(runner, GetElementRequest()), IsOkAndHolds("First element")); EXPECT_THAT(GetNextFromTaskRunner<tstring>(runner, GetElementRequest()), testing::StatusIs(error::INVALID_ARGUMENT)); EXPECT_THAT(GetNextFromTaskRunner<tstring>(runner, GetElementRequest()), IsOkAndHolds("Second element")); EXPECT_THAT(GetNextFromTaskRunner<tstring>(runner, GetElementRequest()), testing::StatusIs(error::ABORTED)); } TEST(CachingTaskRunnerTest, GetNext) { size_t range = 10; CachingTaskRunner runner(std::make_unique<InfiniteRangeIterator>(), kLargeCache); size_t num_trainers = 10; for (size_t i = 0; i < num_trainers; ++i) { GetElementRequest request; request.set_trainer_id(absl::StrCat("Trainer ", i)); TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> output, GetElementsFromTaskRunner<int64_t>(runner, request, range)); EXPECT_THAT(output, ElementsAreArray(GetRange(range))); GetElementResult result; TF_ASSERT_OK(runner.GetNext(request, result)); EXPECT_FALSE(result.end_of_sequence); } } TEST(CachingTaskRunnerTest, EmptyDataset) { CachingTaskRunner runner( std::make_unique<RangeIterator>(0, false), kLargeCache); GetElementRequest request; request.set_trainer_id("Trainer ID"); GetElementResult result; EXPECT_THAT(runner.GetNext(request, result), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Cross-trainer caching requires the input " "dataset to be infinite."))); } TEST(CachingTaskRunnerTest, SlowClientSkipsData) { size_t range = 1000; CachingTaskRunner runner(std::make_unique<InfiniteRangeIterator>(), kSmallCache); GetElementRequest request; request.set_trainer_id("Fast trainer"); TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> fast_trainer_output, GetElementsFromTaskRunner<int64_t>(runner, request, range)); EXPECT_THAT(fast_trainer_output, ElementsAreArray(GetRange(range))); request.set_trainer_id("Slow trainer"); TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> slow_trainer_output, GetElementsFromTaskRunner<int64_t>(runner, request, range)); EXPECT_THAT(slow_trainer_output, SizeIs(range)); EXPECT_THAT(slow_trainer_output[0], Gt(0)); } TEST(CachingTaskRunnerTest, ConcurrentTrainers) { size_t range = 100; size_t num_readers = 10; CachingTaskRunner runner(std::make_unique<InfiniteRangeIterator>(), kLargeCache); std::vector<std::unique_ptr<Thread>> reader_threads; for (int i = 0; i < num_readers; ++i) { reader_threads.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("Trainer_", i), [&runner, range, i]() { GetElementRequest request; request.set_trainer_id(absl::StrCat("Trainer_", i)); TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> output, GetElementsFromTaskRunner<int64_t>(runner, request, range)); EXPECT_THAT(output, ElementsAreArray(GetRange(range))); GetElementResult result; TF_ASSERT_OK(runner.GetNext(request, result)); EXPECT_FALSE(result.end_of_sequence); }))); } } TEST(CachingTaskRunnerTest, Cancel) { CachingTaskRunner runner(std::make_unique<InfiniteRangeIterator>(), kLargeCache); GetElementRequest request; request.set_trainer_id("Trainer ID"); int i; for (i = 0; i < 10; ++i) { EXPECT_THAT(GetNextFromTaskRunner<int64_t>(runner, request), IsOkAndHolds(i)); } runner.Cancel(); for (; i < 10; ++i) { GetElementResult result; EXPECT_THAT(runner.GetNext(request, result), testing::StatusIs(error::CANCELLED)); } } TEST(CachingTaskRunnerTest, CancelConcurrentReaders) { size_t num_readers = 10; CachingTaskRunner runner(std::make_unique<InfiniteRangeIterator>(), kSmallCache); std::vector<std::unique_ptr<Thread>> reader_threads; for (size_t i = 0; i < num_readers; ++i) { reader_threads.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("Trainer_", i), [&runner]() { for (size_t j = 0; true; ++j) { GetElementRequest request; request.set_trainer_id(absl::StrCat("Trainer_", (j % 100))); GetElementResult result; Status status = runner.GetNext(request, result); if (!status.ok()) { return; } ASSERT_FALSE(result.end_of_sequence); ASSERT_EQ(result.components.size(), 1); } }))); } Env::Default()->SleepForMicroseconds(1000000); runner.Cancel(); for (auto& thread : reader_threads) { thread.reset(); } GetElementRequest request; GetElementResult result; request.set_trainer_id(absl::StrCat("Trainer_", 0)); EXPECT_THAT(runner.GetNext(request, result), testing::StatusIs(error::CANCELLED)); } TEST(CachingTaskRunnerTest, Errors) { size_t num_readers = 10; CachingTaskRunner runner( std::make_unique<ElementOrErrorIterator<tstring>>( std::vector<absl::StatusOr<tstring>>{ tstring("First element"), errors::Cancelled("Cancelled"), tstring("Second element"), errors::FailedPrecondition("FailedPrecondition"), tstring("Third element"), errors::Unavailable("Unavailable"), }), kLargeCache); std::vector<std::unique_ptr<Thread>> reader_threads; std::vector<std::vector<tstring>> results; results.reserve(num_readers); for (size_t i = 0; i < num_readers; ++i) { results.emplace_back(); std::vector<tstring>& result = results.back(); reader_threads.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("Trainer_", i), [&runner, &result, i]() { GetElementRequest request; request.set_trainer_id(absl::StrCat("Trainer_", i)); while (true) { absl::StatusOr<tstring> element = GetNextFromTaskRunner<tstring>(runner, request); if (element.ok()) { result.push_back(*element); } if (errors::IsInvalidArgument(element.status())) { EXPECT_THAT( element.status(), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Cross-trainer caching requires the input " "dataset to be infinite."))); return; } } }))); } for (auto& thread : reader_threads) { thread.reset(); } EXPECT_EQ(results.size(), num_readers); for (const std::vector<tstring>& result : results) { EXPECT_THAT(result, ElementsAre(tstring("First element"), tstring("Second element"), tstring("Third element"))); } } class ConsumeParallelTest : public ::testing::Test, public ::testing::WithParamInterface<std::tuple<int64_t, int64_t>> {}; TEST_P(ConsumeParallelTest, ConsumeParallel) { int64_t num_elements = std::get<0>(GetParam()); int64_t num_consumers = std::get<1>(GetParam()); RoundRobinTaskRunner runner( std::make_unique<RangeIterator>(num_elements, true), num_consumers, "test_worker_address"); std::vector<std::vector<int64_t>> per_consumer_results; std::vector<std::unique_ptr<Thread>> consumers; mutex mu; Status error; for (int consumer = 0; consumer < num_consumers; ++consumer) { mutex_lock l(mu); per_consumer_results.emplace_back(); consumers.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("consumer_", consumer), [&, consumer] { std::vector<int64_t> results; Status s = RunConsumer(consumer, 0, num_elements, runner, results); mutex_lock l(mu); if (!s.ok()) { error = s; return; } per_consumer_results[consumer] = std::move(results); }))); } consumers.clear(); mutex_lock l(mu); TF_ASSERT_OK(error); for (int i = 0; i < num_elements; ++i) { int consumer = i % num_consumers; int round = i / num_consumers; EXPECT_EQ(per_consumer_results[consumer][round], i); } } INSTANTIATE_TEST_SUITE_P(ConsumeParallelTests, ConsumeParallelTest, ::testing::Values(std::make_tuple(1000, 5), std::make_tuple(1003, 5), std::make_tuple(1000, 20), std::make_tuple(4, 20), std::make_tuple(0, 20))); TEST(RoundRobinTaskRunner, ConsumeParallelPartialRound) { int64_t num_consumers = 5; std::vector<int64_t> starting_rounds = {12, 11, 11, 12, 12}; int64_t end_index = 15; std::vector<std::vector<int64_t>> expected_consumer_results = { {5, 10, 15}, {1, 6, 11, 16}, {2, 7, 12, 17}, {8, 13, 18}, {9, 14, 19}}; RoundRobinTaskRunner runner( std::make_unique<RangeIterator>(30, true), num_consumers, "test_worker_address"); std::vector<std::vector<int64_t>> per_consumer_results; std::vector<std::unique_ptr<Thread>> consumers; mutex mu; Status error; for (int consumer = 0; consumer < num_consumers; ++consumer) { mutex_lock l(mu); per_consumer_results.emplace_back(); consumers.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("consumer_", consumer), [&, consumer] { std::vector<int64_t> results; Status s = RunConsumer(consumer, starting_rounds[consumer], end_index, runner, results); mutex_lock l(mu); if (!s.ok()) { error = s; return; } per_consumer_results[consumer] = std::move(results); }))); } consumers.clear(); mutex_lock l(mu); TF_ASSERT_OK(error); for (int consumer = 0; consumer < num_consumers; ++consumer) { EXPECT_EQ(per_consumer_results[consumer], expected_consumer_results[consumer]); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/task_runner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/task_runner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ff6e614c-d7f4-4756-bc9e-cd60d9819967
cpp
tensorflow/tensorflow
data_transfer
tensorflow/core/data/service/data_transfer.cc
tensorflow/core/data/service/data_transfer_test.cc
#include "tensorflow/core/data/service/data_transfer.h" #include <functional> #include <memory> #include <string> #include <unordered_map> #include <vector> #include "absl/strings/str_join.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace data { namespace { mutex* get_lock() { static mutex lock(LINKER_INITIALIZED); return &lock; } using DataTransferServerFactories = std::unordered_map<std::string, DataTransferServer::ServerFactoryT>; DataTransferServerFactories& transfer_server_factories() { static auto& factories = *new DataTransferServerFactories(); return factories; } using DataTransferClientFactories = std::unordered_map<std::string, DataTransferClient::ClientFactoryT>; DataTransferClientFactories& transfer_client_factories() { static auto& factories = *new DataTransferClientFactories(); return factories; } } GetElementResult GetElementResult::Copy() const { GetElementResult copy; copy.components = components; copy.element_index = element_index; copy.end_of_sequence = end_of_sequence; copy.skip = skip; return copy; } size_t GetElementResult::EstimatedMemoryUsageBytes() const { size_t size_bytes = components.size() * sizeof(Tensor) + sizeof(element_index) + sizeof(end_of_sequence) + sizeof(skip); for (const Tensor& tensor : components) { size_bytes += tensor.TotalBytes(); if (tensor.dtype() != DT_VARIANT) { continue; } const Variant& variant = tensor.scalar<Variant>()(); const CompressedElement* compressed = variant.get<CompressedElement>(); if (compressed) { size_bytes += compressed->SpaceUsedLong(); } } return size_bytes; } void DataTransferServer::Register(std::string name, ServerFactoryT factory) { mutex_lock l(*get_lock()); if (!transfer_server_factories().insert({name, factory}).second) { LOG(ERROR) << "Two data transfer server factories are being registered with name " << name << ". Which one gets used is undefined."; } } Status DataTransferServer::Build(std::string name, GetElementT get_element, std::shared_ptr<DataTransferServer>* out) { mutex_lock l(*get_lock()); auto it = transfer_server_factories().find(name); if (it != transfer_server_factories().end()) { return it->second(get_element, out); } std::vector<std::string> available_names; for (const auto& factory : transfer_server_factories()) { available_names.push_back(factory.first); } return errors::NotFound( "No data transfer server factory has been registered for name ", name, ". The available names are: [ ", absl::StrJoin(available_names, ", "), " ]"); } void DataTransferClient::Register(std::string name, ClientFactoryT factory) { mutex_lock l(*get_lock()); if (!transfer_client_factories().insert({name, factory}).second) { LOG(ERROR) << "Two data transfer client factories are being registered with name " << name << ". Which one gets used is undefined."; } } Status DataTransferClient::Build(std::string name, Config config, std::unique_ptr<DataTransferClient>* out) { mutex_lock l(*get_lock()); auto it = transfer_client_factories().find(name); if (it != transfer_client_factories().end()) { return it->second(config, out); } std::vector<string> available_names; for (const auto& factory : transfer_client_factories()) { available_names.push_back(factory.first); } return errors::NotFound( "No data transfer client factory has been registered for name ", name, ". The available names are: [ ", absl::StrJoin(available_names, ", "), " ]"); } } }
#include "tensorflow/core/data/service/data_transfer.h" #include <memory> #include <string> #include <utility> #include <vector> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { class TestDataTransferServer : public DataTransferServer { public: explicit TestDataTransferServer(bool* called) : called_(called) {} Status Start(const experimental::WorkerConfig& unused_config) override { *called_ = true; return absl::OkStatus(); } int Port() const override { return 0; } private: bool* called_; }; template <class T> GetElementResult MakeElementResult(T value) { GetElementResult result; result.components.push_back(Tensor(std::move(value))); result.element_index = 0; result.end_of_sequence = false; return result; } TEST(DataTransferTest, RegisterDataTransferServerBuilder) { bool called = false; DataTransferServer::Register("test", [&called](auto ignore, auto* server) { *server = std::make_shared<TestDataTransferServer>(&called); return absl::OkStatus(); }); std::shared_ptr<DataTransferServer> server; TF_ASSERT_OK(DataTransferServer::Build("test", {}, &server)); EXPECT_FALSE(called); TF_ASSERT_OK(server->Start({})); EXPECT_TRUE(called); } TEST(DataTransferTest, EstimateMemoryUsageBytes) { GetElementResult empty; EXPECT_GT(empty.EstimatedMemoryUsageBytes(), 0); Tensor tensor(DT_INT64, TensorShape({10, 100})); GetElementResult int64_result = MakeElementResult(tensor); EXPECT_GT(int64_result.EstimatedMemoryUsageBytes(), 1000 * sizeof(int64_t)); EXPECT_GT(int64_result.EstimatedMemoryUsageBytes(), int64_result.components[0].AllocatedBytes()); EXPECT_GE(int64_result.EstimatedMemoryUsageBytes(), sizeof(int64_result)); } TEST(DataTransferTest, EstimateVariantMemoryUsageBytes) { const size_t data_size = 1000; std::unique_ptr<CompressedElement> compressed{ protobuf::Arena::Create<CompressedElement>(nullptr)}; compressed->set_data(std::string(data_size, 'a')); Tensor tensor(DT_VARIANT, TensorShape({})); tensor.scalar<Variant>()() = *compressed; GetElementResult variant_result = MakeElementResult(tensor); EXPECT_GT(variant_result.EstimatedMemoryUsageBytes(), data_size); EXPECT_GT(variant_result.EstimatedMemoryUsageBytes(), compressed->ByteSizeLong()); EXPECT_GT(variant_result.EstimatedMemoryUsageBytes(), compressed->SpaceUsedLong()); } TEST(DataTransferTest, CopyGetElementResult) { std::string hello_world = "hello, world!"; GetElementResult result = MakeElementResult(hello_world); ASSERT_EQ(result.components.size(), 1); EXPECT_GT(result.EstimatedMemoryUsageBytes(), hello_world.size()); GetElementResult copy = result.Copy(); ASSERT_EQ(copy.components.size(), 1); test::ExpectEqual(result.components[0], copy.components[0]); EXPECT_EQ(copy.EstimatedMemoryUsageBytes(), result.EstimatedMemoryUsageBytes()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/data_transfer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/data_transfer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
be4b5433-ca85-4f8f-92b6-37a1dd883c50
cpp
tensorflow/tensorflow
graph_rewriters
tensorflow/core/data/service/graph_rewriters.cc
tensorflow/core/data/service/graph_rewriters_test.cc
#include "tensorflow/core/data/service/graph_rewriters.h" #include <cstdlib> #include <iterator> #include <memory> #include <string> #include <unordered_map> #include <utility> #include "absl/algorithm/container.h" #include "absl/strings/match.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/types/optional.h" #include "tensorflow/core/data/rewrite_utils.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/url.h" #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/grappler_item_builder.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer.h" #include "tensorflow/core/grappler/optimizers/data/auto_shard.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/optimizers/data/optimizer_base.h" #include "tensorflow/core/grappler/optimizers/data/remove_compression_map.h" #include "tensorflow/core/kernels/data/experimental/auto_shard_dataset_op.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/device_properties.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::experimental::AutoShardDatasetOp; constexpr bool kApplyGeneralGrapplerOptimizations = false; bool HasDynamicPort(absl::string_view address) { URL url(address); return url.has_port() && absl::StartsWith(url.port(), "%port") && absl::EndsWith(url.port(), "%"); } bool ShouldReplaceDynamicPort(absl::string_view config_address, absl::string_view worker_address) { URL config_url(config_address), worker_url(worker_address); return (!config_url.has_port() || HasDynamicPort(config_address)) && worker_url.has_port() && config_url.host() == worker_url.host(); } } absl::StatusOr<GraphDef> RemoveCompressionMapRewriter::ApplyRemoveCompressionMapRewrite( const GraphDef& graph_def) { grappler::RemoveCompressionMap remove_compression_map; tensorflow::RewriterConfig::CustomGraphOptimizer config = GetRewriteConfig(); TF_RETURN_IF_ERROR(remove_compression_map.Init(&config)); GraphDef input_graph = graph_def; TF_ASSIGN_OR_RETURN(std::string dataset_node, GetDatasetNode(input_graph)); std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = GetGrapplerItem(&input_graph, &dataset_node, false, kApplyGeneralGrapplerOptimizations); GraphDef rewritten_graph; std::unordered_map<std::string, tensorflow::DeviceProperties> device_map; tensorflow::grappler::VirtualCluster cluster(device_map); grappler::AutoShard::OptimizationStats stats; TF_RETURN_IF_ERROR(remove_compression_map.OptimizeAndCollectStats( &cluster, *grappler_item, &rewritten_graph, &stats)); return rewritten_graph; } tensorflow::RewriterConfig::CustomGraphOptimizer RemoveCompressionMapRewriter::GetRewriteConfig() const { tensorflow::RewriterConfig::CustomGraphOptimizer config; config.set_name("tf-data-service-remove-compression-map"); return config; } absl::StatusOr<AutoShardRewriter> AutoShardRewriter::Create( const TaskDef& task_def) { TF_ASSIGN_OR_RETURN( AutoShardPolicy auto_shard_policy, ToAutoShardPolicy(task_def.processing_mode_def().sharding_policy())); return AutoShardRewriter(auto_shard_policy, task_def.num_workers(), task_def.worker_index()); } absl::StatusOr<GraphDef> AutoShardRewriter::ApplyAutoShardRewrite( const GraphDef& graph_def) { if (auto_shard_policy_ == AutoShardPolicy::OFF) { return graph_def; } VLOG(2) << "Applying auto-shard policy " << AutoShardPolicy_Name(auto_shard_policy_) << ". Number of workers: " << num_workers_ << "; worker index: " << worker_index_ << "."; grappler::AutoShard autoshard; tensorflow::RewriterConfig::CustomGraphOptimizer config = GetRewriteConfig(); TF_RETURN_IF_ERROR(autoshard.Init(&config)); GraphDef input_graph = graph_def; TF_ASSIGN_OR_RETURN(std::string dataset_node, GetDatasetNode(input_graph)); std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = GetGrapplerItem(&input_graph, &dataset_node, false, kApplyGeneralGrapplerOptimizations); GraphDef rewritten_graph; std::unordered_map<std::string, tensorflow::DeviceProperties> device_map; tensorflow::grappler::VirtualCluster cluster(device_map); grappler::AutoShard::OptimizationStats stats; TF_RETURN_IF_ERROR(autoshard.OptimizeAndCollectStats( &cluster, *grappler_item, &rewritten_graph, &stats)); return rewritten_graph; } AutoShardRewriter::AutoShardRewriter(AutoShardPolicy auto_shard_policy, int64_t num_workers, int64_t worker_index) : auto_shard_policy_(auto_shard_policy), num_workers_(num_workers), worker_index_(worker_index) {} tensorflow::RewriterConfig::CustomGraphOptimizer AutoShardRewriter::GetRewriteConfig() const { tensorflow::RewriterConfig::CustomGraphOptimizer config; config.set_name("tf-data-service-auto-shard"); (*config.mutable_parameter_map())[AutoShardDatasetOp::kNumWorkers].set_i( num_workers_); (*config.mutable_parameter_map())[AutoShardDatasetOp::kIndex].set_i( worker_index_); (*config.mutable_parameter_map())[AutoShardDatasetOp::kAutoShardPolicy].set_i( auto_shard_policy_); (*config.mutable_parameter_map())[AutoShardDatasetOp::kNumReplicas].set_i(1); return config; } Status WorkerIndexResolver::ValidateWorker( absl::string_view worker_address) const { if (worker_addresses_.empty()) { return absl::OkStatus(); } for (absl::string_view config_address : worker_addresses_) { if (config_address == worker_address || ShouldReplaceDynamicPort(config_address, worker_address)) { return absl::OkStatus(); } } return errors::FailedPrecondition(absl::Substitute( "Failed to assign an index for worker $0. Configured workers list: [$1]. " "The worker's address is not configured, or other workers are already " "running at the configured host. If your worker has restarted, make sure " "it runs at the same address and port.", worker_address, absl::StrJoin(worker_addresses_, ", "))); } void WorkerIndexResolver::AddWorker(absl::string_view worker_address) { for (std::string& config_address : worker_addresses_) { if (config_address == worker_address) { return; } if (ShouldReplaceDynamicPort(config_address, worker_address)) { config_address = std::string(worker_address); return; } } } absl::StatusOr<int64_t> WorkerIndexResolver::GetWorkerIndex( absl::string_view worker_address) const { const auto it = absl::c_find(worker_addresses_, worker_address); if (it == worker_addresses_.cend()) { return errors::NotFound(absl::Substitute( "Failed to shard dataset in tf.data service: Worker $0 is not in the " "workers list. Got workers list $1.", worker_address, absl::StrJoin(worker_addresses_, ","))); } return std::distance(worker_addresses_.cbegin(), it); } } }
#include "tensorflow/core/data/service/graph_rewriters.h" #include <string> #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::testing::EqualsProto; using ::tensorflow::data::testing::RangeDatasetWithShardHint; using ::tensorflow::data::testing::RangeSquareDataset; using ::tensorflow::testing::IsOkAndHolds; using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; using ::testing::SizeIs; absl::StatusOr<NodeDef> GetNode(const GraphDef& graph_def, absl::string_view name) { for (const NodeDef& node : graph_def.node()) { if (node.name() == name) { return node; } } return errors::NotFound(absl::Substitute("Node $0 not found in graph $1.", name, graph_def.ShortDebugString())); } absl::StatusOr<int64_t> GetValue(const GraphDef& graph_def, absl::string_view name) { for (const NodeDef& node : graph_def.node()) { if (node.name() == name) { return node.attr().at("value").tensor().int64_val()[0]; } } return errors::NotFound(absl::Substitute("Node $0 not found in graph $1.", name, graph_def.ShortDebugString())); } TaskDef GetTaskDef(const ProcessingModeDef::ShardingPolicy sharding_policy, const int64_t num_workers, const int64_t worker_index) { TaskDef task_def; task_def.mutable_processing_mode_def()->set_sharding_policy(sharding_policy); task_def.set_num_workers(num_workers); task_def.set_worker_index(worker_index); return task_def; } TEST(AutoShardRewriterTest, AutoShard) { TaskDef task_def = GetTaskDef(ProcessingModeDef::FILE_OR_DATA, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); TF_ASSERT_OK_AND_ASSIGN(GraphDef rewritten_graph, rewriter.ApplyAutoShardRewrite(dataset.graph())); TF_ASSERT_OK_AND_ASSIGN(NodeDef shard_node, GetNode(rewritten_graph, "ShardDataset")); ASSERT_THAT(shard_node.input(), SizeIs(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(1)), IsOkAndHolds(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(2)), IsOkAndHolds(1)); } TEST(AutoShardRewriterTest, ShardByData) { TaskDef task_def = GetTaskDef(ProcessingModeDef::DATA, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); TF_ASSERT_OK_AND_ASSIGN(GraphDef rewritten_graph, rewriter.ApplyAutoShardRewrite(dataset.graph())); TF_ASSERT_OK_AND_ASSIGN(NodeDef shard_node, GetNode(rewritten_graph, "ShardDataset")); ASSERT_THAT(shard_node.input(), SizeIs(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(1)), IsOkAndHolds(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(2)), IsOkAndHolds(1)); } TEST(AutoShardRewriterTest, ShardByFile) { TaskDef task_def = GetTaskDef(ProcessingModeDef::FILE, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); EXPECT_THAT(rewriter.ApplyAutoShardRewrite(dataset.graph()), StatusIs(error::NOT_FOUND, HasSubstr("Found an unshardable source dataset"))); } TEST(AutoShardRewriterTest, ShardByHint) { TaskDef task_def = GetTaskDef(ProcessingModeDef::HINT, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeDatasetWithShardHint(10); TF_ASSERT_OK_AND_ASSIGN(GraphDef rewritten_graph, rewriter.ApplyAutoShardRewrite(dataset.graph())); TF_ASSERT_OK_AND_ASSIGN(NodeDef shard_node, GetNode(rewritten_graph, "ShardDataset")); ASSERT_THAT(shard_node.input(), SizeIs(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(1)), IsOkAndHolds(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(2)), IsOkAndHolds(1)); } TEST(AutoShardRewriterTest, NoShard) { TaskDef task_def = GetTaskDef(ProcessingModeDef::OFF, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); EXPECT_THAT(rewriter.ApplyAutoShardRewrite(dataset.graph()), IsOkAndHolds(EqualsProto(dataset.graph()))); } TEST(AutoShardRewriterTest, EmptyDataset) { TaskDef task_def = GetTaskDef(ProcessingModeDef::FILE_OR_DATA, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(0); TF_ASSERT_OK_AND_ASSIGN(GraphDef rewritten_graph, rewriter.ApplyAutoShardRewrite(dataset.graph())); TF_ASSERT_OK_AND_ASSIGN(NodeDef shard_node, GetNode(rewritten_graph, "ShardDataset")); ASSERT_THAT(shard_node.input(), SizeIs(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(1)), IsOkAndHolds(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(2)), IsOkAndHolds(1)); } TEST(AutoShardRewriterTest, NoWorkers) { TaskDef task_def = GetTaskDef(ProcessingModeDef::FILE_OR_DATA, 0, 0); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); EXPECT_THAT(rewriter.ApplyAutoShardRewrite(dataset.graph()), StatusIs(error::INVALID_ARGUMENT, "num_workers should be >= 1, currently 0")); } TEST(AutoShardRewriterTest, NoWorkersWhenShardIsOff) { TaskDef task_def = GetTaskDef(ProcessingModeDef::OFF, 0, 0); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); EXPECT_THAT(rewriter.ApplyAutoShardRewrite(dataset.graph()), IsOkAndHolds(EqualsProto(dataset.graph()))); } TEST(AutoShardRewriterTest, WorkerIndexOutOfRange) { TaskDef task_def = GetTaskDef(ProcessingModeDef::FILE_OR_DATA, 2, 5); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); EXPECT_THAT(rewriter.ApplyAutoShardRewrite(dataset.graph()), StatusIs(error::INVALID_ARGUMENT, "index should be >= 0 and < 2, currently 5")); } TEST(WorkerIndexResolverTest, AddOneWorker) { WorkerIndexResolver resolver(std::vector<std::string>{"localhost"}); EXPECT_THAT(resolver.GetWorkerIndex("localhost:12345"), StatusIs(error::NOT_FOUND)); TF_EXPECT_OK(resolver.ValidateWorker("localhost:12345")); resolver.AddWorker("localhost:12345"); EXPECT_THAT(resolver.GetWorkerIndex("localhost:12345"), IsOkAndHolds(0)); } TEST(WorkerIndexResolverTest, AddMultipleWorkers) { WorkerIndexResolver resolver(std::vector<std::string>{ "/worker/task/0", "/worker/task/1", "/worker/task/2"}); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:12345")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:23456")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:34567")); resolver.AddWorker("/worker/task/2:12345"); resolver.AddWorker("/worker/task/1:23456"); resolver.AddWorker("/worker/task/0:34567"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:34567"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:12345"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, NamedPorts) { WorkerIndexResolver resolver( std::vector<std::string>{"/worker/task/0:worker", "/worker/task/1:worker", "/worker/task/2:worker"}); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:worker")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:worker")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:worker")); resolver.AddWorker("/worker/task/2:worker"); resolver.AddWorker("/worker/task/1:worker"); resolver.AddWorker("/worker/task/0:worker"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:worker"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:worker"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:worker"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, DynamicPorts) { WorkerIndexResolver resolver(std::vector<std::string>{ "/worker/task/0:%port_worker%", "/worker/task/1:%port_worker%", "/worker/task/2:%port_worker%"}); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:worker")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:worker")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:worker")); resolver.AddWorker("/worker/task/2:worker"); resolver.AddWorker("/worker/task/1:worker"); resolver.AddWorker("/worker/task/0:worker"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:worker"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:worker"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:worker"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, AnonymousPorts) { WorkerIndexResolver resolver( std::vector<std::string>{"/worker/task/0:%port%", "/worker/task/1:%port%", "/worker/task/2:%port%"}); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:10000")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:10001")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:10002")); resolver.AddWorker("/worker/task/2:10000"); resolver.AddWorker("/worker/task/1:10001"); resolver.AddWorker("/worker/task/0:10002"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:10002"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:10001"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:10000"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, NumericPorts) { WorkerIndexResolver resolver(std::vector<std::string>{ "/worker/task/0:12345", "/worker/task/1:23456", "/worker/task/2:34567"}); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:34567"), IsOkAndHolds(2)); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:34567")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:23456")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:12345")); resolver.AddWorker("/worker/task/2:34567"); resolver.AddWorker("/worker/task/1:23456"); resolver.AddWorker("/worker/task/0:12345"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:34567"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, IPv6Addresses) { WorkerIndexResolver resolver(std::vector<std::string>{ "[1080:0:0:0:8:800:200C:417A]", "[1080:0:0:0:8:800:200C:417B]", "[1080:0:0:0:8:800:200C:417C]"}); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417A]:12345")); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417B]:23456")); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417C]:34567")); resolver.AddWorker("[1080:0:0:0:8:800:200C:417A]:12345"); resolver.AddWorker("[1080:0:0:0:8:800:200C:417B]:23456"); resolver.AddWorker("[1080:0:0:0:8:800:200C:417C]:34567"); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417A]:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417B]:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417C]:34567"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, IPv6AddressesWithDynamicPort) { WorkerIndexResolver resolver( std::vector<std::string>{"[1080:0:0:0:8:800:200C:417A]:%port%", "[1080:0:0:0:8:800:200C:417B]:%port%", "[1080:0:0:0:8:800:200C:417C]:%port%"}); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417A]:12345")); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417B]:23456")); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417C]:34567")); resolver.AddWorker("[1080:0:0:0:8:800:200C:417A]:12345"); resolver.AddWorker("[1080:0:0:0:8:800:200C:417B]:23456"); resolver.AddWorker("[1080:0:0:0:8:800:200C:417C]:34567"); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417A]:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417B]:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417C]:34567"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, AddressesWithProtocols) { WorkerIndexResolver resolver(std::vector<std::string>{ "http: TF_EXPECT_OK(resolver.ValidateWorker("http: TF_EXPECT_OK(resolver.ValidateWorker("http: TF_EXPECT_OK(resolver.ValidateWorker("http: resolver.AddWorker("http: resolver.AddWorker("http: resolver.AddWorker("http: EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, AddressesWithProtocolsAndDynamicPorts) { WorkerIndexResolver resolver(std::vector<std::string>{ "http: "http: TF_EXPECT_OK(resolver.ValidateWorker("http: TF_EXPECT_OK(resolver.ValidateWorker("http: TF_EXPECT_OK(resolver.ValidateWorker("http: resolver.AddWorker("http: resolver.AddWorker("http: resolver.AddWorker("http: EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, HostNameHasColons) { WorkerIndexResolver resolver( std::vector<std::string>{":worker:task:0:%port%", ":worker:task:1:%port%", ":worker:task:2:34567"}); TF_EXPECT_OK(resolver.ValidateWorker(":worker:task:0:12345")); TF_EXPECT_OK(resolver.ValidateWorker(":worker:task:1:23456")); TF_EXPECT_OK(resolver.ValidateWorker(":worker:task:2:34567")); resolver.AddWorker(":worker:task:0:12345"); resolver.AddWorker(":worker:task:1:23456"); resolver.AddWorker(":worker:task:2:34567"); EXPECT_THAT(resolver.GetWorkerIndex(":worker:task:0:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex(":worker:task:1:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex(":worker:task:2:34567"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, ChangeWorkerPort) { WorkerIndexResolver resolver(std::vector<std::string>{ "/worker/task/0", "/worker/task/1", "/worker/task/2"}); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:12345")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:23456")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:34567")); resolver.AddWorker("/worker/task/2:12345"); resolver.AddWorker("/worker/task/1:23456"); resolver.AddWorker("/worker/task/0:34567"); EXPECT_THAT(resolver.ValidateWorker("/worker/task/0:99999"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("already running at the configured host"))); EXPECT_THAT(resolver.ValidateWorker("/worker/task/1:99999"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("already running at the configured host"))); EXPECT_THAT(resolver.ValidateWorker("/worker/task/2:99999"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("already running at the configured host"))); } TEST(WorkerIndexResolverTest, WorkerNotFound) { WorkerIndexResolver resolver(std::vector<std::string>{ "/worker/task/0", "/worker/task/1", "/worker/task/2"}); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:34567"), StatusIs(error::NOT_FOUND)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:23456"), StatusIs(error::NOT_FOUND)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:12345"), StatusIs(error::NOT_FOUND)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/3:45678"), StatusIs(error::NOT_FOUND)); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:12345")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:23456")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:34567")); EXPECT_THAT(resolver.ValidateWorker("/worker/task/3:45678"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("The worker's address is not configured"))); resolver.AddWorker("/worker/task/3:45678"); resolver.AddWorker("/worker/task/2:12345"); resolver.AddWorker("/worker/task/1:23456"); resolver.AddWorker("/worker/task/0:34567"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:34567"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:12345"), IsOkAndHolds(2)); EXPECT_THAT( resolver.GetWorkerIndex("/worker/task/3:45678"), StatusIs(error::NOT_FOUND, HasSubstr( "Worker /worker/task/3:45678 is not in the workers list."))); } TEST(WorkerIndexResolverTest, MultipleWorkersInOneHost) { WorkerIndexResolver resolver( std::vector<std::string>{"localhost", "localhost", "localhost"}); TF_EXPECT_OK(resolver.ValidateWorker("localhost:12345")); resolver.AddWorker("localhost:12345"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:23456")); resolver.AddWorker("localhost:23456"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:34567")); resolver.AddWorker("localhost:34567"); EXPECT_THAT(resolver.GetWorkerIndex("localhost:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("localhost:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("localhost:34567"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, MoreWorkersThanConfigured) { WorkerIndexResolver resolver(std::vector<std::string>{ "localhost:%port%", "localhost:%port%", "localhost:%port%"}); TF_EXPECT_OK(resolver.ValidateWorker("localhost:12345")); resolver.AddWorker("localhost:12345"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:23456")); resolver.AddWorker("localhost:23456"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:34567")); resolver.AddWorker("localhost:34567"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:12345")); resolver.AddWorker("localhost:12345"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:23456")); resolver.AddWorker("localhost:23456"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:34567")); resolver.AddWorker("localhost:34567"); EXPECT_THAT(resolver.ValidateWorker("localhost:45678"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("already running at the configured host"))); EXPECT_THAT(resolver.ValidateWorker("localhost:56789"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("already running at the configured host"))); } TEST(WorkerIndexResolverTest, WorkerNotConfigured) { WorkerIndexResolver resolver(std::vector<std::string>{""}); EXPECT_THAT(resolver.GetWorkerIndex("localhost:12345"), StatusIs(error::NOT_FOUND)); EXPECT_THAT(resolver.ValidateWorker("localhost:12345"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("The worker's address is not configured"))); resolver.AddWorker("localhost:12345"); EXPECT_THAT(resolver.GetWorkerIndex("localhost:12345"), StatusIs(error::NOT_FOUND)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/graph_rewriters.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/graph_rewriters_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0b2254c0-2234-4559-85fd-63d91a12a555
cpp
tensorflow/tensorflow
credentials_factory
tensorflow/core/data/service/credentials_factory.cc
tensorflow/core/data/service/credentials_factory_test.cc
#include "tensorflow/core/data/service/credentials_factory.h" #include <memory> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { namespace data { namespace { mutex* get_lock() { static mutex lock(LINKER_INITIALIZED); return &lock; } using CredentialsFactories = std::unordered_map<std::string, CredentialsFactory*>; CredentialsFactories& credentials_factories() { static auto& factories = *new CredentialsFactories(); return factories; } } void CredentialsFactory::Register(CredentialsFactory* factory) { mutex_lock l(*get_lock()); if (!credentials_factories().insert({factory->Protocol(), factory}).second) { LOG(ERROR) << "Two credentials factories are being registered with protocol " << factory->Protocol() << ". Which one gets used is undefined."; } } Status CredentialsFactory::Get(absl::string_view protocol, CredentialsFactory** out) { mutex_lock l(*get_lock()); auto it = credentials_factories().find(std::string(protocol)); if (it != credentials_factories().end()) { *out = it->second; return absl::OkStatus(); } std::vector<string> available_types; for (const auto& factory : credentials_factories()) { available_types.push_back(factory.first); } return errors::NotFound("No credentials factory has been registered for ", "protocol ", protocol, ". The available types are: [ ", absl::StrJoin(available_types, ", "), " ]"); } Status CredentialsFactory::CreateServerCredentials( absl::string_view protocol, std::shared_ptr<::grpc::ServerCredentials>* out) { CredentialsFactory* factory; TF_RETURN_IF_ERROR(CredentialsFactory::Get(protocol, &factory)); TF_RETURN_IF_ERROR(factory->CreateServerCredentials(out)); return absl::OkStatus(); } Status CredentialsFactory::CreateClientCredentials( absl::string_view protocol, std::shared_ptr<::grpc::ChannelCredentials>* out) { CredentialsFactory* factory; TF_RETURN_IF_ERROR(CredentialsFactory::Get(protocol, &factory)); TF_RETURN_IF_ERROR(factory->CreateClientCredentials(out)); return absl::OkStatus(); } bool CredentialsFactory::Exists(absl::string_view protocol) { mutex_lock l(*get_lock()); return credentials_factories().find(std::string(protocol)) != credentials_factories().end(); } class InsecureCredentialsFactory : public CredentialsFactory { public: std::string Protocol() override { return "grpc"; } Status CreateServerCredentials( std::shared_ptr<::grpc::ServerCredentials>* out) override { *out = ::grpc::InsecureServerCredentials(); return absl::OkStatus(); } Status CreateClientCredentials( std::shared_ptr<::grpc::ChannelCredentials>* out) override { *out = ::grpc::InsecureChannelCredentials(); return absl::OkStatus(); } }; class InsecureCredentialsRegistrar { public: InsecureCredentialsRegistrar() { auto factory = new InsecureCredentialsFactory(); CredentialsFactory::Register(factory); } }; static InsecureCredentialsRegistrar registrar; } }
#include "tensorflow/core/data/service/credentials_factory.h" #include <memory> #include <string> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { constexpr char kFailedToCreateServerCredentials[] = "Failed to create server credentials."; constexpr char kFailedToCreateClientCredentials[] = "Failed to create client credentials."; class TestCredentialsFactory : public CredentialsFactory { public: std::string Protocol() override { return "test"; } Status CreateServerCredentials( std::shared_ptr<grpc::ServerCredentials>* out) override { return errors::Internal(kFailedToCreateServerCredentials); } Status CreateClientCredentials( std::shared_ptr<grpc::ChannelCredentials>* out) override { return errors::Internal(kFailedToCreateClientCredentials); } }; } TEST(CredentialsFactory, Register) { TestCredentialsFactory test_factory; CredentialsFactory::Register(&test_factory); std::shared_ptr<grpc::ServerCredentials> server_credentials; ASSERT_EQ(errors::Internal(kFailedToCreateServerCredentials), CredentialsFactory::CreateServerCredentials(test_factory.Protocol(), &server_credentials)); std::shared_ptr<grpc::ChannelCredentials> client_credentials; ASSERT_EQ(errors::Internal(kFailedToCreateClientCredentials), CredentialsFactory::CreateClientCredentials(test_factory.Protocol(), &client_credentials)); } TEST(CredentialsFactory, DefaultGrpcProtocol) { std::shared_ptr<grpc::ServerCredentials> server_credentials; TF_ASSERT_OK( CredentialsFactory::CreateServerCredentials("grpc", &server_credentials)); std::shared_ptr<grpc::ChannelCredentials> client_credentials; TF_ASSERT_OK( CredentialsFactory::CreateClientCredentials("grpc", &client_credentials)); } TEST(CredentialsFactory, MissingServerProtocol) { std::shared_ptr<grpc::ServerCredentials> server_credentials; Status s = CredentialsFactory::CreateServerCredentials("unknown_protocol", &server_credentials); ASSERT_EQ(error::Code::NOT_FOUND, s.code()); ASSERT_TRUE( absl::StrContains(s.ToString(), "No credentials factory has been registered for " "protocol unknown_protocol")); } TEST(CredentialsFactory, MissingClientProtocol) { std::shared_ptr<grpc::ChannelCredentials> client_credentials; Status s = CredentialsFactory::CreateClientCredentials("unknown_protocol", &client_credentials); ASSERT_EQ(error::Code::NOT_FOUND, s.code()); ASSERT_TRUE( absl::StrContains(s.ToString(), "No credentials factory has been registered for " "protocol unknown_protocol")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/credentials_factory.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/credentials_factory_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce35ed39-e4f0-49e6-98a4-f765d18996b3
cpp
tensorflow/tensorflow
worker_impl
tensorflow/core/data/service/worker_impl.cc
tensorflow/core/data/service/worker_impl_test.cc
#include "tensorflow/core/data/service/worker_impl.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "grpcpp/create_channel.h" #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/time/time.h" #include "xla/tsl/protobuf/status.pb.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/export.pb.h" #include "tensorflow/core/data/service/graph_rewriters.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/snapshot_split_provider.h" #include "tensorflow/core/data/service/snapshot/snapshot_stream_writer.h" #include "tensorflow/core/data/service/split_provider.h" #include "tensorflow/core/data/service/task_runner.h" #include "tensorflow/core/data/service/utils.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/env_time.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/host_info.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/service_config.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace { constexpr absl::Duration kRetryInterval = absl::Seconds(5); constexpr absl::Duration kDefaultHeartBeatInterval = absl::Seconds(30); constexpr absl::Duration kDefaultDispatcherTimeout = absl::Hours(1); using WorkerConfig = experimental::WorkerConfig; Status MoveElementToResponse(std::vector<Tensor>&& element, GetElementResponse& resp) { if (element.size() != 1 || element[0].dtype() != DT_VARIANT || !TensorShapeUtils::IsScalar(element[0].shape())) { for (const auto& component : element) { UncompressedElement* uncompressed = resp.mutable_uncompressed(); component.AsProtoTensorContent(uncompressed->add_components()); } return absl::OkStatus(); } Variant& variant = element[0].scalar<Variant>()(); CompressedElement* compressed = variant.get<CompressedElement>(); if (compressed == nullptr) { return errors::FailedPrecondition( "Expected dataset to produce a CompressedElement variant tensor, but " "it produced ", variant.TypeName()); } *resp.mutable_compressed() = *compressed; return absl::OkStatus(); } WorkerConfig ApplyWorkerDefaults(const WorkerConfig& config) { WorkerConfig new_config(config); if (new_config.heartbeat_interval_ms() == 0) { new_config.set_heartbeat_interval_ms( absl::ToInt64Milliseconds(kDefaultHeartBeatInterval)); } if (new_config.dispatcher_timeout_ms() == 0) { new_config.set_dispatcher_timeout_ms( absl::ToInt64Milliseconds(kDefaultDispatcherTimeout)); } if (new_config.snapshot_max_chunk_size_bytes() == 0) { new_config.set_snapshot_max_chunk_size_bytes( kDefaultMaxChunkSize.ToUnsignedBytes()); } return new_config; } TaskDef Export(const TaskDef& task) { TaskDef result; switch (task.dataset_case()) { case TaskDef::kDatasetDef: result.set_path( "In-memory dataset graphs are omitted for brevity. To view datasets " "stored on the dispatcher, configure a `work_dir`."); break; case TaskDef::kPath: result.set_path(task.path()); break; default: break; } result.set_dataset_id(task.dataset_id()); result.set_task_id(task.task_id()); result.set_iteration_id(task.iteration_id()); result.set_num_split_providers(task.num_split_providers()); result.set_worker_address(task.worker_address()); *result.mutable_processing_mode_def() = task.processing_mode_def(); switch (task.optional_num_consumers_case()) { case TaskDef::kNumConsumers: result.set_num_consumers(task.num_consumers()); break; default: break; } result.set_num_workers(task.num_workers()); result.set_worker_index(task.worker_index()); return result; } } mutex LocalWorkers::mu_(LINKER_INITIALIZED); LocalWorkers::AddressToWorkerMap* LocalWorkers::local_workers_ = new AddressToWorkerMap(); DataServiceWorkerImpl::DataServiceWorkerImpl(const WorkerConfig& config) : config_(ApplyWorkerDefaults(config)), worker_uid_(port::JobUid()) { metrics::RecordTFDataServiceWorkerCreated(); } DataServiceWorkerImpl::~DataServiceWorkerImpl() { mutex_lock l(mu_); cancelled_ = true; task_completion_cv_.notify_one(); heartbeat_cv_.notify_one(); } Status DataServiceWorkerImpl::Start( const std::string& worker_address, const std::vector<DataTransferServerInfo>& transfer_servers) { VLOG(3) << "Starting tf.data service worker at address " << worker_address; TF_RETURN_IF_ERROR(ValidateWorkerConfig()); worker_address_ = worker_address; transfer_servers_ = transfer_servers; TF_ASSIGN_OR_RETURN(dispatcher_, CreateDispatcherClient()); auto should_retry = [this]() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !cancelled_; }; TF_RETURN_IF_ERROR(grpc_util::Retry([this]() { return Heartbeat(); }, should_retry, "Worker heartbeat.", kint64max)); LOG(INFO) << "Worker registered with dispatcher running at " << config_.dispatcher_address() << ". Worker config: " << config_.DebugString(); task_completion_thread_ = absl::WrapUnique( Env::Default()->StartThread({}, "data-service-worker-task-completion", [this]() { TaskCompletionThread(); })); heartbeat_thread_ = absl::WrapUnique(Env::Default()->StartThread( {}, "data-service-worker-heartbeat", [this]() { HeartbeatThread(); })); mutex_lock l(mu_); registered_ = true; return absl::OkStatus(); } void DataServiceWorkerImpl::Stop() { absl::flat_hash_map<int64_t, std::shared_ptr<Task>> tasks; absl::flat_hash_map<SnapshotTask, std::unique_ptr<SnapshotStreamWriter>, absl::Hash<SnapshotTask>> snapshot_writers; { mutex_lock l(mu_); cancelled_ = true; tasks.swap(tasks_); snapshot_writers.swap(snapshot_writers_); } for (const auto& [task_id, task] : tasks) { StopTask(*task); } for (const auto& [unused, snapshot_writer] : snapshot_writers) { snapshot_writer->Cancel(); } Env::Default()->SleepForMicroseconds(config_.shutdown_quiet_period_ms() * 1000); } Status DataServiceWorkerImpl::ValidateWorkerConfig() const { const bool any_tag_is_empty = absl::c_any_of( config_.worker_tags(), [](const std::string& worker_tag) { return worker_tag.empty(); }); if (any_tag_is_empty) { return errors::FailedPrecondition( "Worker tags cannot be empty. Got tags {", absl::StrJoin(config_.worker_tags().begin(), config_.worker_tags().end(), ", "), "}"); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<DataServiceDispatcherClient>> DataServiceWorkerImpl::CreateDispatcherClient() const TF_LOCKS_EXCLUDED(mu_) { auto dispatcher = std::make_unique<DataServiceDispatcherClient>( config_.dispatcher_address(), config_.protocol()); auto should_retry = [this]() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !cancelled_; }; TF_RETURN_IF_ERROR( grpc_util::Retry([&dispatcher]() { return dispatcher->Initialize(); }, should_retry, "Initialize dispatcher client.", kint64max)); return dispatcher; } Status DataServiceWorkerImpl::GetElementResult( const GetElementRequest* request, struct GetElementResult* result) { Task* task = nullptr; { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled("Worker is shutting down"); } if (!registered_) { return errors::Unavailable( "Worker has not yet registered with dispatcher."); } auto it = tasks_.find(request->task_id()); if (it == tasks_.end()) { if (deleted_tasks_.contains(request->task_id())) { return errors::FailedPrecondition( "Got request for local task ", request->task_id(), " of worker ", worker_address_, ", which has been deleted. You may be creating ", "a duplicate iteration which has already finished. To fix this, " "make sure to create your dataset only once, as opposed to " "re-creating it repeatedly inside a loop."); } if (finished_tasks_.contains(request->task_id())) { VLOG(3) << "Task is already finished"; result->end_of_sequence = true; result->skip = false; return absl::OkStatus(); } return errors::Unavailable("Task ", request->task_id(), " not found"); } task = it->second.get(); task->outstanding_requests++; } auto cleanup = gtl::MakeCleanup([&] { mutex_lock l(mu_); task->outstanding_requests--; cv_.notify_all(); }); TF_RETURN_IF_ERROR(EnsureTaskInitialized(*task)); TF_RETURN_IF_ERROR(task->task_runner->GetNext(*request, *result)); if (result->end_of_sequence) { mutex_lock l(mu_); VLOG(3) << "Reached end_of_sequence for task " << request->task_id(); pending_completed_tasks_.insert(request->task_id()); task_completion_cv_.notify_one(); } return absl::OkStatus(); } Status DataServiceWorkerImpl::ProcessTask(const ProcessTaskRequest* request, ProcessTaskResponse* response) { mutex_lock l(mu_); const TaskDef& task = request->task(); VLOG(3) << "Received request to process task " << task.task_id(); return ProcessTaskInternal(task); } Status DataServiceWorkerImpl::ProcessTaskInternal(const TaskDef& task_def) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { std::shared_ptr<Task>& task = tasks_[task_def.task_id()]; if (task) { VLOG(1) << "Received request to process already-processed task " << task->task_def.task_id(); return absl::OkStatus(); } task = std::make_unique<Task>(task_def); VLOG(3) << "Began processing for task " << task_def.task_id() << " with processing mode " << task_def.processing_mode_def().DebugString(); return absl::OkStatus(); } Status DataServiceWorkerImpl::EnsureTaskInitialized( DataServiceWorkerImpl::Task& task) { if (task.task_def.worker_address() != worker_address_) { return errors::Internal(absl::Substitute( "Dispatcher's worker address $0 does not match worker's address $1.", task.task_def.worker_address(), worker_address_)); } mutex_lock l(task.mu); if (task.initialized) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(DatasetDef dataset_def, GetDatasetDef(task.task_def)); TF_ASSIGN_OR_RETURN(std::unique_ptr<standalone::Dataset> dataset, MakeDataset(dataset_def, task.task_def)); TF_ASSIGN_OR_RETURN(std::unique_ptr<standalone::Iterator> iterator, MakeDatasetIterator(*dataset, task.task_def)); auto task_iterator = std::make_unique<StandaloneTaskIterator>( std::move(dataset), std::move(iterator)); TF_RETURN_IF_ERROR(TaskRunner::Create( config_, task.task_def, std::move(task_iterator), task.task_runner)); task.initialized = true; VLOG(3) << "Created iterator for task " << task.task_def.task_id(); return absl::OkStatus(); } absl::StatusOr<DatasetDef> DataServiceWorkerImpl::GetDatasetDef( const TaskDef& task_def) const { switch (task_def.dataset_case()) { case TaskDef::kDatasetDef: return task_def.dataset_def(); case TaskDef::kPath: { DatasetDef def; Status s = ReadDatasetDef(task_def.path(), def); if (!s.ok()) { LOG(INFO) << "Failed to read dataset from " << task_def.path() << ": " << s << ". Falling back to reading from dispatcher."; TF_RETURN_IF_ERROR( dispatcher_->GetDatasetDef(task_def.dataset_id(), def)); } return def; } case TaskDef::DATASET_NOT_SET: return errors::Internal("Unrecognized dataset case: ", task_def.dataset_case()); } } absl::StatusOr<bool> DataServiceWorkerImpl::DisableCompressionAtRuntime( const std::string& dataset_id) const { DisableCompressionAtRuntimeResponse response; absl::Time deadline = absl::FromUnixMicros(EnvTime::NowMicros()) + kDefaultDispatcherTimeout; auto should_retry = [this]() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !cancelled_; }; TF_RETURN_IF_ERROR(grpc_util::Retry( [&]() { return dispatcher_->DisableCompressionAtRuntime( dataset_id, false, response); }, should_retry, "Disable compression at runtime.", absl::ToUnixMicros(deadline))); if (response.no_compression_to_disable()) { return false; } metrics::RecordTFDataServiceRuntimeCompressionDecision( response.compression_disabled_at_runtime()); return response.compression_disabled_at_runtime(); } absl::StatusOr<std::unique_ptr<standalone::Dataset>> DataServiceWorkerImpl::MakeDataset(const DatasetDef& dataset_def, const TaskDef& task_def) const { TF_ASSIGN_OR_RETURN(bool compression_disabled_at_runtime, DisableCompressionAtRuntime(task_def.dataset_id())); GraphDef graph = dataset_def.graph(); if (VLOG_IS_ON(1)) { std::string prefix = absl::StrCat(task_def.dataset_id(), "_", worker_uid_); DumpGraphDefToFile(absl::StrCat(prefix, "-prerewrite_GraphDef"), graph); DumpProtoToFile(absl::StrCat(prefix, "-prerewrite_TaskDef"), task_def); } if (compression_disabled_at_runtime) { RemoveCompressionMapRewriter remove_compression_map_rewriter; TF_ASSIGN_OR_RETURN( graph, remove_compression_map_rewriter.ApplyRemoveCompressionMapRewrite( graph)); } TF_ASSIGN_OR_RETURN(AutoShardRewriter auto_shard_rewriter, AutoShardRewriter::Create(task_def)); TF_ASSIGN_OR_RETURN(graph, auto_shard_rewriter.ApplyAutoShardRewrite(graph)); std::unique_ptr<standalone::Dataset> dataset; TF_RETURN_IF_ERROR(standalone::Dataset::FromGraph( standalone::Dataset::Params(), graph, &dataset)); return dataset; } absl::StatusOr<std::unique_ptr<standalone::Iterator>> DataServiceWorkerImpl::MakeDatasetIterator(standalone::Dataset& dataset, const TaskDef& task_def) const { std::unique_ptr<standalone::Iterator> iterator; if (IsNoShard(task_def.processing_mode_def()) || IsStaticShard(task_def.processing_mode_def())) { TF_RETURN_IF_ERROR(dataset.MakeIterator(&iterator)); return iterator; } if (IsDynamicShard(task_def.processing_mode_def())) { std::vector<std::unique_ptr<SplitProvider>> split_providers; split_providers.reserve(task_def.num_split_providers()); for (int i = 0; i < task_def.num_split_providers(); ++i) { split_providers.push_back(std::make_unique<DataServiceSplitProvider>( config_.dispatcher_address(), config_.protocol(), task_def.iteration_id(), i, config_.dispatcher_timeout_ms())); } TF_RETURN_IF_ERROR( dataset.MakeIterator(std::move(split_providers), &iterator)); return iterator; } return errors::InvalidArgument("Unrecognized processing mode: ", task_def.processing_mode_def().DebugString()); } void DataServiceWorkerImpl::StopTask(Task& task) TF_LOCKS_EXCLUDED(mu_) { { mutex_lock l(task.mu); task.initialized = true; } if (task.task_runner) { task.task_runner->Cancel(); } mutex_lock l(mu_); while (task.outstanding_requests > 0) { cv_.wait(l); } } Status DataServiceWorkerImpl::GetElement(const GetElementRequest* request, GetElementResponse* response) { VLOG(3) << "Received GetElement request for task " << request->task_id(); struct GetElementResult result; TF_RETURN_IF_ERROR(GetElementResult(request, &result)); response->set_end_of_sequence(result.end_of_sequence); response->set_skip_task(result.skip); if (!response->end_of_sequence() && !response->skip_task()) { TF_RETURN_IF_ERROR( MoveElementToResponse(std::move(result.components), *response)); VLOG(3) << "Producing an element for task " << request->task_id(); } return absl::OkStatus(); } Status DataServiceWorkerImpl::GetWorkerTasks( const GetWorkerTasksRequest* request, GetWorkerTasksResponse* response) { mutex_lock l(mu_); for (const auto& it : tasks_) { Task* task = it.second.get(); TaskInfo* task_info = response->add_tasks(); task_info->set_worker_address(worker_address_); task_info->set_task_id(task->task_def.task_id()); task_info->set_iteration_id(task->task_def.iteration_id()); } return absl::OkStatus(); } Status DataServiceWorkerImpl::GetSnapshotTaskProgresses( const GetSnapshotTaskProgressesRequest* request, GetSnapshotTaskProgressesResponse* response) { for (const auto& snapshot_task_progress : GetSnapshotTaskProgress()) { *response->add_snapshot_task_progresses() = snapshot_task_progress; } return absl::OkStatus(); } void DataServiceWorkerImpl::TaskCompletionThread() TF_LOCKS_EXCLUDED(mu_) { while (true) { { mutex_lock l(mu_); while (!cancelled_ && pending_completed_tasks_.empty()) { task_completion_cv_.wait(l); } if (cancelled_ && pending_completed_tasks_.empty()) { VLOG(3) << "Task completion thread shutting down"; return; } } Status s = SendTaskUpdates(); if (!s.ok()) { LOG(WARNING) << "Failed to send task updates to dispatcher: " << s; mutex_lock l(mu_); if (cancelled_) { VLOG(3) << "Task completion thread shutting down"; return; } else { task_completion_cv_.wait_for( l, absl::ToChronoMicroseconds(kRetryInterval)); } } } } Status DataServiceWorkerImpl::SendTaskUpdates() TF_LOCKS_EXCLUDED(mu_) { std::vector<TaskProgress> task_progress; { mutex_lock l(mu_); VLOG(3) << "Sending " << pending_completed_tasks_.size() << " task updates to dispatcher"; task_progress.reserve(pending_completed_tasks_.size()); for (int task_id : pending_completed_tasks_) { task_progress.emplace_back(); task_progress.back().set_task_id(task_id); task_progress.back().set_completed(true); } } TF_RETURN_IF_ERROR(dispatcher_->WorkerUpdate(worker_address_, task_progress)); mutex_lock l(mu_); for (const auto& update : task_progress) { pending_completed_tasks_.erase(update.task_id()); } VLOG(3) << "Sent " << task_progress.size() << " task updates "; return absl::OkStatus(); } void DataServiceWorkerImpl::HeartbeatThread() TF_LOCKS_EXCLUDED(mu_) { while (true) { int64_t next_heartbeat_micros = Env::Default()->NowMicros() + (config_.heartbeat_interval_ms() * 1000); { mutex_lock l(mu_); while (!cancelled_ && Env::Default()->NowMicros() < next_heartbeat_micros) { int64_t time_to_wait_micros = next_heartbeat_micros - Env::Default()->NowMicros(); heartbeat_cv_.wait_for(l, std::chrono::microseconds(time_to_wait_micros)); } if (cancelled_) { VLOG(3) << "Heartbeat thread shutting down"; return; } if (!registered_) { VLOG(1) << "Not performing heartbeat; worker is not yet registered"; continue; } } Status s = Heartbeat(); if (!s.ok()) { LOG(WARNING) << "Failed to send heartbeat to dispatcher: " << s; } } } Status DataServiceWorkerImpl::Heartbeat() { WorkerHeartbeatRequest request = BuildWorkerHeartbeatRequest(); TF_ASSIGN_OR_RETURN(WorkerHeartbeatResponse response, dispatcher_->WorkerHeartbeat(request)); UpdateTasks(response); return UpdateSnapshotWriters(response); } std::vector<ActiveTask> DataServiceWorkerImpl::GetActiveTasks() const TF_LOCKS_EXCLUDED(mu_) { std::vector<ActiveTask> active_tasks; absl::flat_hash_map<int64_t, std::shared_ptr<Task>> current_tasks; { mutex_lock l(mu_); current_tasks = tasks_; } for (const auto& [task_id, task] : current_tasks) { if (task == nullptr) { continue; } ActiveTask active_task; active_task.set_task_id(task_id); active_task.set_processing_time_nsec(0.0); bool task_initialized = false; { mutex_lock task_lock(task->mu); task_initialized = task->initialized; } if (task_initialized && task->task_runner != nullptr && task->task_runner->model() != nullptr) { std::shared_ptr<model::Model> model = task->task_runner->model(); double processing_time_nsec = model->ComputeSnapshotProcessingTimeNsec(); if (processing_time_nsec > 0) { active_task.set_processing_time_nsec(processing_time_nsec); } } active_tasks.push_back(std::move(active_task)); } return active_tasks; } std::vector<int64_t> DataServiceWorkerImpl::GetTaskIds( const std::vector<ActiveTask>& active_tasks) const { std::vector<int64_t> task_ids; task_ids.reserve(active_tasks.size()); for (const ActiveTask& active_task : active_tasks) { task_ids.push_back(active_task.task_id()); } return task_ids; } WorkerHeartbeatRequest DataServiceWorkerImpl::BuildWorkerHeartbeatRequest() const TF_LOCKS_EXCLUDED(mu_) { std::vector<ActiveTask> active_tasks = GetActiveTasks(); std::vector<int64_t> current_tasks = GetTaskIds(active_tasks); WorkerHeartbeatRequest request; request.set_worker_address(worker_address_); *request.mutable_transfer_servers() = {transfer_servers_.begin(), transfer_servers_.end()}; *request.mutable_worker_tags() = config_.worker_tags(); request.set_worker_uid(worker_uid_); *request.mutable_current_tasks() = {current_tasks.begin(), current_tasks.end()}; for (const auto& snapshot_task_progress : GetSnapshotTaskProgress()) { request.mutable_snapshot_task_progress()->insert( {snapshot_task_progress.snapshot_task().base_path(), snapshot_task_progress}); } *request.mutable_active_tasks() = {active_tasks.begin(), active_tasks.end()}; return request; } std::vector<SnapshotTaskProgress> DataServiceWorkerImpl::GetSnapshotTaskProgress() const { mutex_lock l(mu_); std::vector<SnapshotTaskProgress> snapshot_task_progress; for (const auto& [snapshot_task, stream_writer] : snapshot_writers_) { SnapshotTaskProgress progress; progress.mutable_snapshot_task()->set_base_path(snapshot_task.base_path); progress.mutable_snapshot_task()->set_stream_index( snapshot_task.stream_index); absl::StatusOr<bool> completed = stream_writer->Completed(); if (completed.ok()) { progress.set_completed(*completed); } else { *progress.mutable_status() = tsl::StatusToProto(completed.status()); } snapshot_task_progress.push_back(std::move(progress)); } return snapshot_task_progress; } void DataServiceWorkerImpl::UpdateTasks(const WorkerHeartbeatResponse& response) TF_LOCKS_EXCLUDED(mu_) { std::vector<std::shared_ptr<Task>> tasks_to_delete; { mutex_lock l(mu_); for (const auto& task : response.new_tasks()) { VLOG(1) << "Received new task from dispatcher with id " << task.task_id(); if (deleted_tasks_.contains(task.task_id())) { continue; } Status s = ProcessTaskInternal(task); if (!s.ok() && !errors::IsAlreadyExists(s)) { LOG(WARNING) << "Failed to start processing task " << task.task_id() << ": " << s; } } tasks_to_delete.reserve(response.tasks_to_delete_size()); for (int64_t task_id : response.tasks_to_delete()) { VLOG(3) << "Deleting task " << task_id << " at the request of the dispatcher"; if (!tasks_.contains(task_id)) { continue; } tasks_to_delete.push_back(std::move(tasks_[task_id])); tasks_.erase(task_id); finished_tasks_.insert(task_id); } } for (const auto& task : tasks_to_delete) { StopTask(*task); } } Status DataServiceWorkerImpl::UpdateSnapshotWriters( const WorkerHeartbeatResponse& response) TF_LOCKS_EXCLUDED(mu_) { absl::flat_hash_set<SnapshotTask> assigned_snapshot_task_keys; for (const SnapshotTaskDef& snapshot_task : response.snapshot_tasks()) { SnapshotTask snapshot_task_key{snapshot_task.base_path(), snapshot_task.stream_index()}; assigned_snapshot_task_keys.insert(snapshot_task_key); { mutex_lock l(mu_); if (snapshot_writers_.contains(snapshot_task_key)) { continue; } } DatasetDef dataset_def; TF_RETURN_IF_ERROR(ReadBinaryProto( Env::Default(), DatasetDefFilePath(snapshot_task.base_path()), &dataset_def)); TF_ASSIGN_OR_RETURN(std::unique_ptr<StandaloneTaskIterator> iterator, MakeSnapshotTaskIterator(snapshot_task, dataset_def)); mutex_lock l(mu_); snapshot_writers_.emplace( snapshot_task_key, std::make_unique<SnapshotStreamWriter>( SnapshotWriterParams{ snapshot_task.base_path(), snapshot_task.stream_index(), snapshot_task.metadata().compression(), Env::Default(), ByteSize::Bytes(config_.snapshot_max_chunk_size_bytes())}, std::move(iterator))); } mutex_lock l(mu_); for (auto it = snapshot_writers_.begin(); it != snapshot_writers_.end();) { if (!assigned_snapshot_task_keys.contains(it->first)) { it->second->Cancel(); snapshot_writers_.erase(it++); } else { ++it; } } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<StandaloneTaskIterator>> DataServiceWorkerImpl::MakeSnapshotTaskIterator( const SnapshotTaskDef& snapshot_task, const DatasetDef& dataset_def) const { std::unique_ptr<standalone::Dataset> dataset; TF_RETURN_IF_ERROR(standalone::Dataset::FromGraph( standalone::Dataset::Params(), dataset_def.graph(), &dataset)); std::vector<std::unique_ptr<SplitProvider>> split_providers; split_providers.reserve(snapshot_task.num_sources()); for (int i = 0; i < snapshot_task.num_sources(); ++i) { TF_ASSIGN_OR_RETURN(std::unique_ptr<DataServiceDispatcherClient> dispatcher, CreateDispatcherClient()); split_providers.push_back(std::make_unique<SnapshotSplitProvider>( worker_address_, snapshot_task, i, absl::Milliseconds(config_.dispatcher_timeout_ms()), std::move(dispatcher), Env::Default())); } std::unique_ptr<standalone::Iterator> iterator; TF_RETURN_IF_ERROR( dataset->MakeIterator(std::move(split_providers), &iterator)); return std::make_unique<StandaloneTaskIterator>(std::move(dataset), std::move(iterator)); } void DataServiceWorkerImpl::DeleteLocalTask(const TaskInfo& task_info) TF_LOCKS_EXCLUDED(mu_) { std::shared_ptr<Task> task; { mutex_lock l(mu_); auto it = tasks_.find(task_info.task_id()); if (it == tasks_.end() || !it->second) { return; } task = std::move(it->second); tasks_.erase(task_info.task_id()); pending_completed_tasks_.insert(task_info.task_id()); deleted_tasks_.insert(task_info.task_id()); } VLOG(2) << "Delete local task " << task_info.task_id() << " from worker " << worker_address_ << " at the request of the client."; StopTask(*task); } WorkerStateExport DataServiceWorkerImpl::ExportState() const { WorkerStateExport worker_state_export; *worker_state_export.mutable_worker_config() = config_; mutex_lock l(mu_); if (!registered_) { return worker_state_export; } for (const auto& task : tasks_) { *worker_state_export.add_tasks() = Export(task.second->task_def); } for (int64_t finished_task : finished_tasks_) { worker_state_export.add_finished_task_ids(finished_task); } for (int64_t deleted_task : deleted_tasks_) { worker_state_export.add_deleted_task_ids(deleted_task); } return worker_state_export; } void LocalWorkers::Add(absl::string_view worker_address, std::shared_ptr<DataServiceWorkerImpl> worker) { DCHECK(worker != nullptr) << "Adding a nullptr local worker is disallowed."; VLOG(1) << "Register local worker at address " << worker_address; mutex_lock l(mu_); (*local_workers_)[worker_address] = worker; } std::shared_ptr<DataServiceWorkerImpl> LocalWorkers::Get( absl::string_view worker_address) { tf_shared_lock l(mu_); AddressToWorkerMap::const_iterator it = local_workers_->find(worker_address); if (it == local_workers_->end()) { return nullptr; } return it->second; } bool LocalWorkers::Empty() { tf_shared_lock l(mu_); return local_workers_->empty(); } void LocalWorkers::Remove(absl::string_view worker_address) { VLOG(1) << "Remove local worker at address " << worker_address; mutex_lock l(mu_); local_workers_->erase(worker_address); } } }
#include "tensorflow/core/data/service/worker_impl.h" #include <memory> #include <string> #include <vector> #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::IsNull; using ::testing::NotNull; class LocalWorkersTest : public ::testing::Test { protected: void SetUp() override { test_cluster_ = std::make_unique<TestCluster>(0); TF_ASSERT_OK(test_cluster_->Initialize()); } std::unique_ptr<TestCluster> test_cluster_; }; TEST_F(LocalWorkersTest, AddRemoveLocalWorkers) { EXPECT_TRUE(LocalWorkers::Empty()); TF_ASSERT_OK(test_cluster_->AddWorker()); TF_ASSERT_OK(test_cluster_->AddWorker()); TF_ASSERT_OK(test_cluster_->AddWorker()); std::vector<std::string> worker_addresses = {test_cluster_->WorkerAddress(0), test_cluster_->WorkerAddress(1), test_cluster_->WorkerAddress(2)}; EXPECT_FALSE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[0]), NotNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[1]), NotNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[2]), NotNull()); test_cluster_->StopWorker(0); EXPECT_FALSE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[0]), IsNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[1]), NotNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[2]), NotNull()); test_cluster_->StopWorkers(); EXPECT_TRUE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[0]), IsNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[1]), IsNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[2]), IsNull()); } TEST_F(LocalWorkersTest, NoLocalWorker) { EXPECT_TRUE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(""), IsNull()); EXPECT_THAT(LocalWorkers::Get("Invalid address"), IsNull()); EXPECT_TRUE(LocalWorkers::Empty()); LocalWorkers::Remove(""); LocalWorkers::Remove("Invalid address"); EXPECT_TRUE(LocalWorkers::Empty()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/worker_impl.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/worker_impl_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
85e435bf-b69e-489b-a72a-a03f354f1baa
cpp
tensorflow/tensorflow
server_lib
tensorflow/core/distributed_runtime/server_lib.cc
tensorflow/core/distributed_runtime/server_lib_test.cc
#include "tensorflow/core/distributed_runtime/server_lib.h" #include <unordered_map> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { namespace { mutex* get_server_factory_lock() { static mutex server_factory_lock(LINKER_INITIALIZED); return &server_factory_lock; } typedef std::unordered_map<string, ServerFactory*> ServerFactories; ServerFactories* server_factories() { static ServerFactories* factories = new ServerFactories; return factories; } } void ServerFactory::Register(const string& server_type, ServerFactory* factory) { mutex_lock l(*get_server_factory_lock()); if (!server_factories()->insert({server_type, factory}).second) { LOG(ERROR) << "Two server factories are being registered under " << server_type; } } Status ServerFactory::GetFactory(const ServerDef& server_def, ServerFactory** out_factory) { mutex_lock l(*get_server_factory_lock()); for (const auto& server_factory : *server_factories()) { if (server_factory.second->AcceptsOptions(server_def)) { *out_factory = server_factory.second; return absl::OkStatus(); } } std::vector<string> server_names; for (const auto& server_factory : *server_factories()) { server_names.push_back(server_factory.first); } return errors::NotFound( "No server factory registered for the given ServerDef: ", server_def.DebugString(), "\nThe available server factories are: [ ", absl::StrJoin(server_names, ", "), " ]"); } Status NewServer(const ServerDef& server_def, std::unique_ptr<ServerInterface>* out_server) { ServerFactory* factory; TF_RETURN_IF_ERROR(ServerFactory::GetFactory(server_def, &factory)); return factory->NewServer(server_def, ServerFactory::Options(), out_server); } Status NewServerWithOptions(const ServerDef& server_def, const ServerFactory::Options& options, std::unique_ptr<ServerInterface>* out_server) { ServerFactory* factory; TF_RETURN_IF_ERROR(ServerFactory::GetFactory(server_def, &factory)); return factory->NewServer(server_def, options, out_server); } }
#include "tensorflow/core/distributed_runtime/server_lib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { class TestServerFactory : public ServerFactory { public: bool AcceptsOptions(const ServerDef& server_def) override { return server_def.protocol() == "test_protocol"; } Status NewServer(const ServerDef& server_def, const Options& options, std::unique_ptr<ServerInterface>* out_server) override { return absl::OkStatus(); } }; TEST(ServerLibTest, NewServerFactoryAccepts) { ServerFactory::Register("TEST_SERVER", new TestServerFactory()); ServerDef server_def; server_def.set_protocol("test_protocol"); std::unique_ptr<ServerInterface> server; TF_EXPECT_OK(NewServer(server_def, &server)); } TEST(ServerLibTest, NewServerNoFactoriesAccept) { ServerDef server_def; server_def.set_protocol("fake_protocol"); std::unique_ptr<ServerInterface> server; Status s = NewServer(server_def, &server); ASSERT_NE(s, absl::OkStatus()); EXPECT_TRUE(absl::StrContains( s.message(), "No server factory registered for the given ServerDef")); EXPECT_TRUE( absl::StrContains(s.message(), "The available server factories are: [")); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/server_lib.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/server_lib_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b0a5d668-8561-4789-820f-0d628bfa1730
cpp
tensorflow/tensorflow
journal
tensorflow/core/data/service/journal.cc
tensorflow/core/data/service/journal_test.cc
#include "tensorflow/core/data/service/journal.h" #include <algorithm> #include <memory> #include <string> #include <vector> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "tensorflow/core/data/service/journal.pb.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/regexp.h" namespace tensorflow { namespace data { namespace { constexpr StringPiece kJournal = "journal"; Status ParseSequenceNumber(const std::string& journal_file, int64_t* sequence_number) { if (!RE2::FullMatch(journal_file, ".*_(\\d+)", sequence_number)) { return errors::InvalidArgument("Failed to parse journal file name: ", journal_file); } return absl::OkStatus(); } } std::string DataServiceJournalFile(const std::string& journal_dir, int64_t sequence_number) { return io::JoinPath(journal_dir, absl::StrCat(kJournal, "_", sequence_number)); } FileJournalWriter::FileJournalWriter(Env* env, const std::string& journal_dir) : env_(env), journal_dir_(journal_dir) {} Status FileJournalWriter::EnsureInitialized() { if (writer_) { return absl::OkStatus(); } std::vector<std::string> journal_files; TF_RETURN_IF_ERROR(env_->RecursivelyCreateDir(journal_dir_)); TF_RETURN_IF_ERROR(env_->GetChildren(journal_dir_, &journal_files)); int64_t latest_sequence_number = -1; for (const auto& file : journal_files) { int64_t sequence_number; TF_RETURN_IF_ERROR(ParseSequenceNumber(file, &sequence_number)); latest_sequence_number = std::max(latest_sequence_number, sequence_number); } std::string journal_file = DataServiceJournalFile(journal_dir_, latest_sequence_number + 1); TF_RETURN_IF_ERROR(env_->NewAppendableFile(journal_file, &file_)); writer_ = std::make_unique<io::RecordWriter>(file_.get()); VLOG(1) << "Created journal writer to write to " << journal_file; return absl::OkStatus(); } Status FileJournalWriter::Write(const Update& update) { TF_RETURN_IF_ERROR(EnsureInitialized()); std::string s = update.SerializeAsString(); if (s.empty()) { return errors::Internal("Failed to serialize update ", update.DebugString(), " to string"); } TF_RETURN_IF_ERROR(writer_->WriteRecord(s)); TF_RETURN_IF_ERROR(writer_->Flush()); TF_RETURN_IF_ERROR(file_->Sync()); if (VLOG_IS_ON(4)) { VLOG(4) << "Wrote journal entry: " << update.DebugString(); } return absl::OkStatus(); } FileJournalReader::FileJournalReader(Env* env, StringPiece journal_dir) : env_(env), journal_dir_(journal_dir) {} Status FileJournalReader::EnsureInitialized() { if (reader_) { return absl::OkStatus(); } return UpdateFile(DataServiceJournalFile(journal_dir_, 0)); } Status FileJournalReader::Read(Update& update, bool& end_of_journal) { TF_RETURN_IF_ERROR(EnsureInitialized()); while (true) { tstring record; Status s = reader_->ReadRecord(&record); if (absl::IsOutOfRange(s)) { sequence_number_++; std::string next_journal_file = DataServiceJournalFile(journal_dir_, sequence_number_); if (absl::IsNotFound(env_->FileExists(next_journal_file))) { VLOG(3) << "Next journal file " << next_journal_file << " does not exist. End of journal reached."; end_of_journal = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFile(next_journal_file)); continue; } TF_RETURN_IF_ERROR(s); if (!update.ParseFromString(record)) { return errors::DataLoss("Failed to parse journal record."); } if (VLOG_IS_ON(4)) { VLOG(4) << "Read journal entry: " << update.DebugString(); } end_of_journal = false; return absl::OkStatus(); } } Status FileJournalReader::UpdateFile(const std::string& filename) { VLOG(1) << "Reading from journal file " << filename; TF_RETURN_IF_ERROR(env_->NewRandomAccessFile(filename, &file_)); io::RecordReaderOptions opts; opts.buffer_size = 2 << 20; reader_ = std::make_unique<io::SequentialRecordReader>(file_.get(), opts); return absl::OkStatus(); } } }
#include "tensorflow/core/data/service/journal.h" #include <memory> #include <string> #include <vector> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/journal.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/data_service.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; bool NewJournalDir(std::string& journal_dir) { std::string filename = testing::TmpDir(); if (!Env::Default()->CreateUniqueFileName(&filename, "journal_dir")) { return false; } journal_dir = filename; return true; } Update MakeCreateIterationUpdate() { Update update; CreateIterationUpdate* create_iteration = update.mutable_create_iteration(); create_iteration->set_job_id(3); create_iteration->set_iteration_id(8); create_iteration->set_repetition(5); return update; } Update MakeFinishTaskUpdate() { Update update; FinishTaskUpdate* finish_task = update.mutable_finish_task(); finish_task->set_task_id(8); return update; } Update MakeRegisterDatasetUpdate() { Update update; RegisterDatasetUpdate* register_dataset = update.mutable_register_dataset(); register_dataset->set_dataset_id("dataset_id"); register_dataset->set_fingerprint(3); return update; } Status CheckJournalContent(StringPiece journal_dir, const std::vector<Update>& expected) { FileJournalReader reader(Env::Default(), journal_dir); for (const auto& update : expected) { Update result; bool end_of_journal = true; TF_RETURN_IF_ERROR(reader.Read(result, end_of_journal)); EXPECT_FALSE(end_of_journal); EXPECT_EQ(result.SerializeAsString(), update.SerializeAsString()); } Update result; bool end_of_journal = false; TF_RETURN_IF_ERROR(reader.Read(result, end_of_journal)); EXPECT_TRUE(end_of_journal); return absl::OkStatus(); } } TEST(Journal, RoundTripMultiple) { std::string journal_dir; EXPECT_TRUE(NewJournalDir(journal_dir)); std::vector<Update> updates = {MakeCreateIterationUpdate(), MakeRegisterDatasetUpdate(), MakeFinishTaskUpdate()}; FileJournalWriter writer(Env::Default(), journal_dir); for (const auto& update : updates) { TF_EXPECT_OK(writer.Write(update)); } TF_EXPECT_OK(CheckJournalContent(journal_dir, updates)); } TEST(Journal, AppendExistingJournal) { std::string journal_dir; EXPECT_TRUE(NewJournalDir(journal_dir)); std::vector<Update> updates = {MakeCreateIterationUpdate(), MakeRegisterDatasetUpdate(), MakeFinishTaskUpdate()}; for (const auto& update : updates) { FileJournalWriter writer(Env::Default(), journal_dir); TF_EXPECT_OK(writer.Write(update)); } TF_EXPECT_OK(CheckJournalContent(journal_dir, updates)); } TEST(Journal, MissingFile) { std::string journal_dir; EXPECT_TRUE(NewJournalDir(journal_dir)); FileJournalReader reader(Env::Default(), journal_dir); Update result; bool end_of_journal = true; Status s = reader.Read(result, end_of_journal); EXPECT_TRUE(absl::IsNotFound(s)); } TEST(Journal, NonRecordData) { std::string journal_dir; EXPECT_TRUE(NewJournalDir(journal_dir)); TF_ASSERT_OK(Env::Default()->RecursivelyCreateDir(journal_dir)); { std::unique_ptr<WritableFile> file; TF_ASSERT_OK(Env::Default()->NewAppendableFile( DataServiceJournalFile(journal_dir, 0), &file)); TF_ASSERT_OK(file->Append("not record data")); } FileJournalReader reader(Env::Default(), journal_dir); Update result; bool end_of_journal = true; Status s = reader.Read(result, end_of_journal); EXPECT_THAT(s.message(), HasSubstr("corrupted record")); EXPECT_EQ(s.code(), error::DATA_LOSS); } TEST(Journal, InvalidRecordData) { std::string journal_dir; EXPECT_TRUE(NewJournalDir(journal_dir)); TF_ASSERT_OK(Env::Default()->RecursivelyCreateDir(journal_dir)); { std::unique_ptr<WritableFile> file; TF_ASSERT_OK(Env::Default()->NewAppendableFile( DataServiceJournalFile(journal_dir, 0), &file)); auto writer = std::make_unique<io::RecordWriter>(file.get()); TF_ASSERT_OK(writer->WriteRecord("not serialized proto")); } FileJournalReader reader(Env::Default(), journal_dir); Update result; bool end_of_journal = true; Status s = reader.Read(result, end_of_journal); EXPECT_THAT(s.message(), HasSubstr("Failed to parse journal record")); EXPECT_EQ(s.code(), error::DATA_LOSS); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/journal.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/journal_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
637f3e50-ff60-4f5e-af87-9df00924ac52
cpp
tensorflow/tensorflow
snapshot_split_provider
tensorflow/core/data/service/snapshot/snapshot_split_provider.cc
tensorflow/core/data/service/snapshot/snapshot_split_provider_test.cc
#include "tensorflow/core/data/service/snapshot/snapshot_split_provider.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/btree_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/path.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { namespace { constexpr char kNextSplitIndex[] = "next_split_index"; constexpr char kRepetitionIndex[] = "repetition_index"; absl::StatusOr<int64_t> GetRepetitionIndex(const std::string& split_file) { absl::string_view repetition_dir_path = tsl::io::Dirname(split_file); absl::string_view repetition_dir_name = tsl::io::Basename(repetition_dir_path); return ParseRepetitionDirectoryName(repetition_dir_name); } } SnapshotSplitProvider::SnapshotSplitProvider( const std::string& worker_address, const SnapshotTaskDef& snapshot_task, int64_t source_index, absl::Duration timeout, std::unique_ptr<DataServiceDispatcherClient> dispatcher, Env* env) : worker_address_(worker_address), snapshot_task_(snapshot_task), source_index_(source_index), timeout_(timeout), env_(env) { mutex_lock l(mu_); dispatcher_ = std::move(dispatcher); } absl::Status SnapshotSplitProvider::GetNext(Tensor* split, bool* end_of_splits) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); TF_RETURN_IF_ERROR(GetAndValidateSplit(split, end_of_splits)); if (!*end_of_splits) { ++next_split_index_; } return absl::OkStatus(); } absl::Status SnapshotSplitProvider::GetAndValidateSplit(Tensor* split, bool* end_of_splits) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (split_to_file_map_.contains(next_split_index_)) { return GetSplitFromFile(split_to_file_map_[next_split_index_], split, end_of_splits); } TF_ASSIGN_OR_RETURN(int64_t dispatcher_split_index, GetSplitFromDispatcher(split, end_of_splits)); if (dispatcher_split_index == next_split_index_) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(split_to_file_map_, GetSplitsFiles(next_split_index_)); TF_RETURN_IF_ERROR(ValidateSplitFiles(split_to_file_map_, next_split_index_, dispatcher_split_index, *end_of_splits)); return GetSplitFromFile(split_to_file_map_[next_split_index_], split, end_of_splits); } absl::Status SnapshotSplitProvider::GetSplitFromFile( const std::string& split_file, Tensor* split, bool* end_of_splits) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { VLOG(3) << "Getting the next split from file: " << split_file; TF_ASSIGN_OR_RETURN(int64_t repetition_index, GetRepetitionIndex(split_file)); if (repetition_index_ < repetition_index) { *end_of_splits = true; return absl::OkStatus(); } snapshot_util::TFRecordReaderImpl reader(split_file, tsl::io::compression::kNone); TF_RETURN_IF_ERROR(reader.Initialize(env_)); TF_ASSIGN_OR_RETURN(std::vector<Tensor> tensors, reader.GetTensors()); if (tensors.size() != 1) { return absl::InternalError(absl::StrCat( "A snapshot split file is expected to contain 1 tensor. Got ", tensors.size(), " tensors from ", split_file, ".")); } *split = std::move(tensors[0]); *end_of_splits = false; return absl::OkStatus(); } absl::StatusOr<int64_t> SnapshotSplitProvider::GetSplitFromDispatcher( Tensor* split, bool* end_of_splits) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { int64_t local_split_index = 0; TF_RETURN_IF_ERROR(grpc_util::Retry( [this, split, &local_split_index, end_of_splits]() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return dispatcher_->GetSnapshotSplit( worker_address_, snapshot_task_.base_path(), snapshot_task_.stream_index(), source_index_, repetition_index_, *split, local_split_index, *end_of_splits); }, "Get next split for snapshot", env_->NowMicros() + absl::ToInt64Microseconds(timeout_))); return local_split_index; } absl::StatusOr<absl::btree_map<int64_t, std::string>> SnapshotSplitProvider::GetSplitsFiles(int64_t start_index) const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { absl::btree_map<int64_t, std::string> split_to_file_map; std::string splits_directory = SourceDirectory( snapshot_task_.base_path(), snapshot_task_.stream_index(), source_index_); TF_ASSIGN_OR_RETURN(std::vector<std::string> repetition_directories, GetChildren(splits_directory, env_)); for (const std::string& repetition : repetition_directories) { std::string repetition_dir = io::JoinPath(splits_directory, repetition); TF_ASSIGN_OR_RETURN(std::vector<std::string> split_files, GetChildren(repetition_dir, env_)); for (const std::string& split_file : split_files) { TF_ASSIGN_OR_RETURN(auto split_index, ParseSplitFilename(split_file)); auto [local_split_index, global_split_index] = split_index; if (local_split_index >= start_index) { split_to_file_map[local_split_index] = tsl::io::JoinPath(repetition_dir, split_file); } } } TF_RETURN_IF_ERROR(ValidateSplitFiles(split_to_file_map, start_index)); return split_to_file_map; } absl::Status SnapshotSplitProvider::ValidateSplitFiles( const absl::btree_map<int64_t, std::string>& split_files, int64_t start_index) const { if (split_files.empty()) { return absl::OkStatus(); } if (split_files.cbegin()->first != start_index) { return absl::InternalError(absl::StrCat("Failed to get split ", start_index, " for snapshot ", snapshot_task_.DebugString())); } int64_t end_index = split_files.rbegin()->first; if (end_index - start_index + 1 != split_files.size()) { return absl::InternalError(absl::StrCat( "Failed to get split ", start_index, ". Some splits between [", start_index, ", ", end_index, "] are missing for snapshot ", snapshot_task_.DebugString())); } return absl::OkStatus(); } absl::Status SnapshotSplitProvider::ValidateSplitFiles( const absl::btree_map<int64_t, std::string>& split_files, int64_t start_index, int64_t end_index, bool end_of_splits) const { TF_RETURN_IF_ERROR(ValidateSplitFiles(split_files, start_index)); if (end_index < start_index) { return absl::InternalError(absl::StrCat( "The tf.data service worker is expected to read split ", start_index, ", but the dispatcher returns split ", end_index, " for snapshot ", snapshot_task_.DebugString())); } if (end_of_splits) { end_index = end_index - 1; } if (split_files.empty() || split_files.cbegin()->first != start_index || split_files.rbegin()->first < end_index) { return absl::InternalError(absl::StrCat( "The tf.data service dispatcher has written split ", end_index, ". However, not all splits between [", start_index, ", ", end_index, "] are found for snapshot ", snapshot_task_.DebugString())); } return absl::OkStatus(); } absl::Status SnapshotSplitProvider::Reset() { mutex_lock l(mu_); ++repetition_index_; LOG(INFO) << "Reset tf.data snapshot split provider for snapshot " << snapshot_task_.ShortDebugString() << ", repetition " << repetition_index_ << "."; return absl::OkStatus(); } absl::Status SnapshotSplitProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kNextSplitIndex), next_split_index_)); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kRepetitionIndex), repetition_index_)); return absl::OkStatus(); } absl::Status SnapshotSplitProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) TF_LOCKS_EXCLUDED(mu_) { int64_t next_split_index = 0; int64_t repetition_index = 0; TF_RETURN_IF_ERROR( reader->ReadScalar(full_name(kNextSplitIndex), &next_split_index)); TF_RETURN_IF_ERROR( reader->ReadScalar(full_name(kRepetitionIndex), &repetition_index)); mutex_lock l(mu_); next_split_index_ = next_split_index; repetition_index_ = repetition_index; TF_ASSIGN_OR_RETURN(split_to_file_map_, GetSplitsFiles(next_split_index_)); LOG(INFO) << "Restored snapshot split provider for snapshot " << snapshot_task_.ShortDebugString() << ", next split " << next_split_index_ << ", repetition " << repetition_index_ << "."; return absl::OkStatus(); } } }
#include "tensorflow/core/data/service/snapshot/snapshot_split_provider.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/lib/io/compression.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/protobuf/snapshot.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::_; using testing::CreateDummyDistributedSnapshotMetadata; using ::testing::DoAll; using ::testing::HasSubstr; using testing::LocalTempFilename; using ::testing::Return; using ::testing::SetArgReferee; using tsl::testing::StatusIs; class MockDispatcherClient : public DataServiceDispatcherClient { public: explicit MockDispatcherClient() : DataServiceDispatcherClient("localhost", "grpc") {} MOCK_METHOD(absl::Status, GetSnapshotSplit, (const std::string& worker_address, const std::string& base_path, int64_t stream_index, int64_t source_index, int64_t repetition_index, Tensor& split, int64_t& local_split_index, bool& end_of_splits), (override)); }; SnapshotTaskDef TestSnapshotTask() { SnapshotTaskDef snapshot_task; snapshot_task.set_base_path(LocalTempFilename()); snapshot_task.set_stream_index(0); snapshot_task.set_num_sources(1); *snapshot_task.mutable_metadata() = CreateDummyDistributedSnapshotMetadata(); return snapshot_task; } absl::Status WriteSplits(const SnapshotTaskDef& snapshot_task, int64_t num_splits) { std::string source_dir = RepetitionDirectory(snapshot_task.base_path(), snapshot_task.stream_index(), 0, 0); TF_RETURN_IF_ERROR(Env::Default()->RecursivelyCreateDir(source_dir)); for (int64_t i = 0; i < num_splits; ++i) { std::string split_filename = absl::StrCat("split_", i, "_", i); std::string split_path = tsl::io::JoinPath(source_dir, split_filename); Tensor split(int64_t{i}); TF_RETURN_IF_ERROR(AtomicallyWriteTFRecords( split_path, {split}, tsl::io::compression::kNone, Env::Default())); } return absl::OkStatus(); } TEST(SnapshotSplitProviderTest, GetSplitFromDispatcher) { const SnapshotTaskDef snapshot_task = TestSnapshotTask(); Tensor split(int64_t{0}); auto mock_dispatcher_ptr = std::make_unique<MockDispatcherClient>(); MockDispatcherClient* mock_dispatcher = mock_dispatcher_ptr.get(); EXPECT_CALL(*mock_dispatcher, GetSnapshotSplit(_, _, _, _, _, _, _, _)) .WillOnce(DoAll(SetArgReferee<5>(split), SetArgReferee<6>(0), SetArgReferee<7>(false), Return(absl::OkStatus()))); Tensor result; bool end_of_splits = false; SnapshotSplitProvider split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::move(mock_dispatcher_ptr), Env::Default()); TF_EXPECT_OK(split_provider.GetNext(&result, &end_of_splits)); test::ExpectTensorEqual<int64_t>(result, split); EXPECT_FALSE(end_of_splits); } TEST(SnapshotSplitProviderTest, GetSplitFromFile) { const SnapshotTaskDef snapshot_task = TestSnapshotTask(); Tensor split(int64_t{9}); auto mock_dispatcher_ptr = std::make_unique<MockDispatcherClient>(); MockDispatcherClient* mock_dispatcher = mock_dispatcher_ptr.get(); EXPECT_CALL(*mock_dispatcher, GetSnapshotSplit(_, _, _, _, _, _, _, _)) .WillOnce(DoAll(SetArgReferee<5>(split), SetArgReferee<6>(9), SetArgReferee<7>(false), Return(absl::OkStatus()))); TF_ASSERT_OK(WriteSplits(snapshot_task, 10)); SnapshotSplitProvider split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::move(mock_dispatcher_ptr), Env::Default()); for (int64_t i = 0; i < 10; ++i) { Tensor result; bool end_of_splits = false; TF_EXPECT_OK(split_provider.GetNext(&result, &end_of_splits)); test::ExpectTensorEqual<int64_t>(result, Tensor(int64_t{i})); EXPECT_FALSE(end_of_splits); } } TEST(SnapshotSplitProviderTest, EndOfSplits) { const SnapshotTaskDef snapshot_task = TestSnapshotTask(); auto mock_dispatcher_ptr = std::make_unique<MockDispatcherClient>(); MockDispatcherClient* mock_dispatcher = mock_dispatcher_ptr.get(); EXPECT_CALL(*mock_dispatcher, GetSnapshotSplit(_, _, _, _, _, _, _, _)) .WillOnce(DoAll(SetArgReferee<6>(0), SetArgReferee<7>(true), Return(absl::OkStatus()))); SnapshotSplitProvider split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::move(mock_dispatcher_ptr), Env::Default()); Tensor result; bool end_of_splits = false; TF_EXPECT_OK(split_provider.GetNext(&result, &end_of_splits)); EXPECT_TRUE(end_of_splits); } TEST(SnapshotSplitProviderTest, SplitNotFound) { const SnapshotTaskDef snapshot_task = TestSnapshotTask(); Tensor split(int64_t{10}); auto mock_dispatcher_ptr = std::make_unique<MockDispatcherClient>(); MockDispatcherClient* mock_dispatcher = mock_dispatcher_ptr.get(); EXPECT_CALL(*mock_dispatcher, GetSnapshotSplit(_, _, _, _, _, _, _, _)) .WillOnce(DoAll(SetArgReferee<5>(split), SetArgReferee<6>(10), SetArgReferee<7>(false), Return(absl::OkStatus()))); TF_ASSERT_OK(WriteSplits(snapshot_task, 0)); SnapshotSplitProvider split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::move(mock_dispatcher_ptr), Env::Default()); Tensor result; bool end_of_splits = false; EXPECT_THAT(split_provider.GetNext(&result, &end_of_splits), StatusIs(absl::StatusCode::kInternal, HasSubstr("not all splits between [0, 10] are found"))); } std::string full_name(const std::string& name) { return FullName("test", name); } TEST(SnapshotSplitProviderTest, SaveRestore) { const SnapshotTaskDef snapshot_task = TestSnapshotTask(); Tensor split(int64_t{9}); auto mock_dispatcher_ptr = std::make_unique<MockDispatcherClient>(); MockDispatcherClient* mock_dispatcher = mock_dispatcher_ptr.get(); EXPECT_CALL(*mock_dispatcher, GetSnapshotSplit(_, _, _, _, _, _, _, _)) .WillOnce(DoAll(SetArgReferee<5>(split), SetArgReferee<6>(9), SetArgReferee<7>(false), Return(absl::OkStatus()))); TF_ASSERT_OK(WriteSplits(snapshot_task, 10)); SnapshotSplitProvider split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::move(mock_dispatcher_ptr), Env::Default()); for (int64_t i = 0; i < 5; ++i) { Tensor result; bool end_of_splits = false; TF_EXPECT_OK(split_provider.GetNext(&result, &end_of_splits)); test::ExpectTensorEqual<int64_t>(result, Tensor(int64_t{i})); EXPECT_FALSE(end_of_splits); } VariantTensorDataWriter writer; TF_ASSERT_OK(split_provider.Save(full_name, &writer)); std::vector<const VariantTensorData*> variants; writer.GetData(&variants); VariantTensorDataReader reader(variants); SnapshotSplitProvider restored_split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::make_unique<MockDispatcherClient>(), Env::Default()); TF_ASSERT_OK(restored_split_provider.Restore(full_name, &reader)); for (int64_t i = 5; i <= 9; ++i) { Tensor result; bool end_of_splits = false; TF_EXPECT_OK(split_provider.GetNext(&result, &end_of_splits)); test::ExpectTensorEqual<int64_t>(result, Tensor(int64_t{i})); EXPECT_FALSE(end_of_splits); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/snapshot_split_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/snapshot_split_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ad69ddc5-0993-4550-bcd1-c25e14d6bb5e
cpp
tensorflow/tensorflow
path_utils
tensorflow/core/data/service/snapshot/path_utils.cc
tensorflow/core/data/service/snapshot/path_utils_test.cc
#include "tensorflow/core/data/service/snapshot/path_utils.h" #include <cstdint> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "tsl/platform/path.h" namespace tensorflow { namespace data { namespace { constexpr const char kDoneFileName[] = "DONE"; constexpr const char kErrorFileName[] = "ERROR"; constexpr const char kWorkerFileName[] = "owner_worker"; constexpr const char kSnapshotMetadataFileName[] = "snapshot.metadata"; constexpr const char kDatasetDefFileName[] = "dataset_def.proto"; constexpr const char kDatasetSpecFileName[] = "dataset_spec.pb"; constexpr const char kStreamsDirectoryName[] = "streams"; constexpr const char kSplitsDirectoryName[] = "splits"; constexpr const char kCheckpointsDirectoryName[] = "checkpoints"; constexpr const char kCommittedChunksDirectoryName[] = "chunks"; constexpr const char kUncommittedChunksDirectoryName[] = "uncommitted_chunks"; constexpr int64_t kUnknownNumElements = -1; } std::string StreamsDirectory(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kStreamsDirectoryName); } std::string StreamDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamsDirectory(snapshot_path), absl::StrCat("stream_", stream_index)); } std::string SplitsDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kSplitsDirectoryName); } std::string SourceDirectory(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index) { return tsl::io::JoinPath(SplitsDirectory(snapshot_path, stream_index), absl::StrCat("source_", source_index)); } std::string RepetitionDirectory(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index, int64_t repetition_index) { return tsl::io::JoinPath( SourceDirectory(snapshot_path, stream_index, source_index), absl::StrCat("repetition_", repetition_index)); } std::string SplitPath(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index, int64_t repetition_index, int64_t local_index, int64_t global_index) { return tsl::io::JoinPath( RepetitionDirectory(snapshot_path, stream_index, source_index, repetition_index), absl::StrCat("split_", local_index, "_", global_index)); } absl::StatusOr<int64_t> ParseStreamDirectoryName( absl::string_view stream_directory_name) { std::vector<std::string> tokens = absl::StrSplit(stream_directory_name, '_'); int64_t stream_index = 0; if (tokens.size() != 2 || tokens[0] != "stream" || !absl::SimpleAtoi(tokens[1], &stream_index) || stream_index < 0) { return absl::InvalidArgumentError( absl::StrCat("Invalid stream directory name: ", stream_directory_name, ". Expected stream_<stream_index>.")); } return stream_index; } absl::StatusOr<int64_t> ParseSourceDirectoryName( absl::string_view source_directory_name) { std::vector<std::string> tokens = absl::StrSplit(source_directory_name, '_'); int64_t source_index = 0; if (tokens.size() != 2 || tokens[0] != "source" || !absl::SimpleAtoi(tokens[1], &source_index) || source_index < 0) { return absl::InvalidArgumentError( absl::StrCat("Invalid source directory name: ", source_directory_name, ". Expected source_<source_index>.")); } return source_index; } absl::StatusOr<int64_t> ParseRepetitionDirectoryName( absl::string_view repetition_directory_name) { std::vector<std::string> tokens = absl::StrSplit(repetition_directory_name, '_'); int64_t repetition_index = 0; if (tokens.size() != 2 || tokens[0] != "repetition" || !absl::SimpleAtoi(tokens[1], &repetition_index) || repetition_index < 0) { return absl::InvalidArgumentError(absl::StrCat( "Invalid repetition directory name: ", repetition_directory_name, ". Expected repetition_<repetition_index>.")); } return repetition_index; } absl::StatusOr<std::pair<int64_t, int64_t>> ParseSplitFilename( absl::string_view split_filename) { std::vector<std::string> tokens = absl::StrSplit(tsl::io::Basename(split_filename), '_'); int64_t local_split_index = 0, global_split_index = 0; if (tokens.size() != 3 || tokens[0] != "split" || !absl::SimpleAtoi(tokens[1], &local_split_index) || local_split_index < 0 || !absl::SimpleAtoi(tokens[2], &global_split_index) || global_split_index < 0) { return absl::InvalidArgumentError(absl::StrCat( "Invalid split file name: ", split_filename, ". Expected split_<local_split_index>_<global_split_index>.")); } if (local_split_index > global_split_index) { return absl::InvalidArgumentError(absl::StrCat( "Invalid split file name: ", split_filename, ". The local split index ", local_split_index, " exceeds the global split index ", global_split_index, ".")); } return std::make_pair(local_split_index, global_split_index); } absl::StatusOr<std::pair<int64_t, int64_t>> ParseCheckpointFilename( absl::string_view checkpoint_filename) { std::vector<std::string> tokens = absl::StrSplit(checkpoint_filename, '_'); int64_t checkpoint_index = 0, checkpoint_num_elements = 0; if (tokens.size() != 3 || tokens[0] != "checkpoint" || !absl::SimpleAtoi(tokens[1], &checkpoint_index) || checkpoint_index < 0 || !absl::SimpleAtoi(tokens[2], &checkpoint_num_elements) || (checkpoint_num_elements < 0 && checkpoint_num_elements != kUnknownNumElements)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid checkpoint file name: ", checkpoint_filename, ". Expected checkpoint_<checkpoint_index>_<checkpoint_num_elements>.")); } return std::make_pair(checkpoint_index, checkpoint_num_elements); } absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> ParseChunkFilename( absl::string_view chunk_filename) { std::vector<std::string> tokens = absl::StrSplit(chunk_filename, '_'); int64_t stream_index = 0, stream_chunk_index = 0, chunk_num_elements = 0; if (tokens.size() != 4 || tokens[0] != "chunk" || !absl::SimpleAtoi(tokens[1], &stream_index) || stream_index < 0 || !absl::SimpleAtoi(tokens[2], &stream_chunk_index) || stream_chunk_index < 0 || !absl::SimpleAtoi(tokens[3], &chunk_num_elements) || (chunk_num_elements < 0 && chunk_num_elements != kUnknownNumElements)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid chunk file name: ", chunk_filename, ". Expected " "chunk_<stream_index>_<stream_chunk_index>_<chunk_num_elements>.")); } return std::make_tuple(stream_index, stream_chunk_index, chunk_num_elements); } std::string SnapshotMetadataFilePath(absl::string_view snapshot_path_) { return tsl::io::JoinPath(snapshot_path_, kSnapshotMetadataFileName); } std::string DatasetDefFilePath(absl::string_view snapshot_path_) { return tsl::io::JoinPath(snapshot_path_, kDatasetDefFileName); } std::string DatasetSpecFilePath(absl::string_view snapshot_path_) { return tsl::io::JoinPath(snapshot_path_, kDatasetSpecFileName); } std::string StreamDoneFilePath(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kDoneFileName); } std::string StreamWorkerFilePath(absl::string_view snapshot_path, int64_t stream_index) { return StreamWorkerFilePath(StreamDirectory(snapshot_path, stream_index)); } std::string StreamWorkerFilePath(absl::string_view stream_path) { return tsl::io::JoinPath(stream_path, kWorkerFileName); } std::string SnapshotDoneFilePath(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kDoneFileName); } std::string SnapshotErrorFilePath(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kErrorFileName); } std::string CheckpointsDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kCheckpointsDirectoryName); } std::string CommittedChunksDirectory(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kCommittedChunksDirectoryName); } std::string UncommittedChunksDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kUncommittedChunksDirectoryName); } } }
#include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::FieldsAre; using ::testing::HasSubstr; using ::testing::MatchesRegex; using ::testing::Pair; using tsl::testing::IsOkAndHolds; using tsl::testing::StatusIs; TEST(PathUtilsTest, StreamsDirectory) { EXPECT_THAT(StreamsDirectory("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.streams")); } TEST(PathUtilsTest, StreamDirectory) { EXPECT_THAT(StreamDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0")); } TEST(PathUtilsTest, SplitsDirectory) { EXPECT_THAT(SplitsDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.splits")); } TEST(PathUtilsTest, SourceDirectory) { EXPECT_THAT( SourceDirectory("/path/to/snapshot", 0, 1), MatchesRegex("/path/to/snapshot.streams.stream_0.splits.source_1")); } TEST(PathUtilsTest, RepetitionDirectory) { EXPECT_THAT( RepetitionDirectory("/path/to/snapshot", 0, 1, 2), MatchesRegex( "/path/to/snapshot.streams.stream_0.splits.source_1.repetition_2")); } TEST(PathUtilsTest, SplitPath) { EXPECT_THAT( SplitPath("/path/to/snapshot", 0, 1, 2, 3, 4), MatchesRegex( "/path/to/" "snapshot.streams.stream_0.splits.source_1.repetition_2.split_3_4")); } TEST(PathUtilsTest, ParseStreamDirectoryName) { EXPECT_THAT(ParseStreamDirectoryName("stream_1"), IsOkAndHolds(1)); } TEST(PathUtilsTest, ParseSourceDirectoryName) { EXPECT_THAT(ParseSourceDirectoryName("source_1"), IsOkAndHolds(1)); EXPECT_THAT(ParseSourceDirectoryName(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected source_<source_index>"))); EXPECT_THAT(ParseSourceDirectoryName("source_-1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected source_<source_index>"))); EXPECT_THAT(ParseSourceDirectoryName("chunk_1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected source_<source_index>"))); } TEST(PathUtilsTest, ParseRepetitionDirectoryName) { EXPECT_THAT(ParseRepetitionDirectoryName("repetition_1"), IsOkAndHolds(1)); EXPECT_THAT(ParseRepetitionDirectoryName(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected repetition_<repetition_index>"))); EXPECT_THAT(ParseRepetitionDirectoryName("repetition_-1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected repetition_<repetition_index>"))); EXPECT_THAT(ParseRepetitionDirectoryName("chunk_1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected repetition_<repetition_index>"))); } TEST(PathUtilsTest, InvalidStreamDirectoryName) { EXPECT_THAT(ParseStreamDirectoryName(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected stream_<stream_index>"))); EXPECT_THAT(ParseStreamDirectoryName("stream_-1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected stream_<stream_index>"))); EXPECT_THAT(ParseStreamDirectoryName("chunk_1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected stream_<stream_index>"))); } TEST(PathUtilsTest, ParseSplitFilename) { EXPECT_THAT(ParseSplitFilename("split_0_1"), IsOkAndHolds(Pair(0, 1))); } TEST(PathUtilsTest, InvalidSplitFilename) { EXPECT_THAT( ParseSplitFilename(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("split_123"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("split_-1_(-1)"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("chunk_1_2"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("split_5_0"), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "The local split index 5 exceeds the global split index 0"))); } TEST(PathUtilsTest, ParseCheckpointFilename) { EXPECT_THAT(ParseCheckpointFilename("checkpoint_0_1"), IsOkAndHolds(Pair(0, 1))); EXPECT_THAT(ParseCheckpointFilename("checkpoint_0_-1"), IsOkAndHolds(Pair(0, -1))); } TEST(PathUtilsTest, InvalidCheckpointFilename) { EXPECT_THAT( ParseCheckpointFilename(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); EXPECT_THAT( ParseCheckpointFilename("checkpoint_123"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); EXPECT_THAT( ParseCheckpointFilename("checkpoint_-1_(-1)"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); EXPECT_THAT( ParseCheckpointFilename("chunk_1_2"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); } TEST(PathUtilsTest, ParseChunkFilename) { EXPECT_THAT(ParseChunkFilename("chunk_0_1_2"), IsOkAndHolds(FieldsAre(0, 1, 2))); EXPECT_THAT(ParseChunkFilename("chunk_0_1_-1"), IsOkAndHolds(FieldsAre(0, 1, -1))); } TEST(PathUtilsTest, InvalidChunkFilename) { EXPECT_THAT(ParseChunkFilename(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); EXPECT_THAT(ParseChunkFilename("chunk_123_0"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); EXPECT_THAT(ParseChunkFilename("chunk_-1_(-1)_0"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); EXPECT_THAT(ParseChunkFilename("split_1_2_3"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); } TEST(PathUtilsTest, StreamDoneFilePath) { EXPECT_THAT(StreamDoneFilePath("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.DONE")); } TEST(PathUtilsTest, StreamWorkerFilePath) { EXPECT_THAT(StreamWorkerFilePath("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.owner_worker")); EXPECT_THAT(StreamWorkerFilePath("/path/to/snapshot/streams/stream_0"), MatchesRegex("/path/to/snapshot.streams.stream_0.owner_worker")); } TEST(PathUtilsTest, SnapshotDoneFilePath) { EXPECT_THAT(SnapshotDoneFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.DONE")); } TEST(PathUtilsTest, SnapshotErrorFilePath) { EXPECT_THAT(SnapshotErrorFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.ERROR")); } TEST(PathUtilsTest, SnapshotMetadataFilePath) { EXPECT_THAT(SnapshotMetadataFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.snapshot.metadata")); } TEST(PathUtilsTest, DatasetDefFilePath) { EXPECT_THAT(DatasetDefFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.dataset_def.proto")); } TEST(PathUtilsTest, DatasetSpefFilePath) { EXPECT_THAT(DatasetSpecFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.dataset_spec.pb")); } TEST(PathUtilsTest, CheckpointsDirectory) { EXPECT_THAT(CheckpointsDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.checkpoints")); } TEST(PathUtilsTest, CommittedChunksDirectory) { EXPECT_THAT(CommittedChunksDirectory("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.chunks")); } TEST(PathUtilsTest, UncommittedChunksDirectory) { EXPECT_THAT( UncommittedChunksDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.uncommitted_chunks")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/path_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/path_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f87db812-983d-4651-9b5e-a77f29660ffd
cpp
tensorflow/tensorflow
prefetched_split_provider
tensorflow/core/data/service/snapshot/prefetched_split_provider.cc
tensorflow/core/data/service/snapshot/prefetched_split_provider_test.cc
#include "tensorflow/core/data/service/snapshot/prefetched_split_provider.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "xla/tsl/lib/io/compression.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace tensorflow { namespace data { PrefetchedSplitProvider::PrefetchedSplitProvider( std::unique_ptr<SplitProvider> split_provider, const std::string& directory, tsl::Env* env, size_t num_write_threads, size_t buffer_size_per_thread) : env_(env), directory_(directory), num_write_threads_(num_write_threads), buffer_size_(num_write_threads_ * buffer_size_per_thread), split_provider_(std::move(split_provider)) { absl::Status status = InitDirs(); if (!status.ok()) { UpdateStatus(std::move(status)); return; } absl::MutexLock l(&mu_); thread_pool_ = RunPrefetchThreads(); } PrefetchedSplitProvider::~PrefetchedSplitProvider() { Cancel(); } absl::StatusOr<std::optional<Tensor>> PrefetchedSplitProvider::GetNext( const std::string& split_path) ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); while (status_.ok() && (buffer_.empty() || buffer_.begin()->index != split_index_to_read_) && (finished_threads_ < num_write_threads_ || reset_)) { ready_to_pop_.Wait(&mu_); } TF_RETURN_IF_ERROR(status_); if (buffer_.empty()) { return std::nullopt; } if (buffer_.begin()->index != split_index_to_read_) { return absl::InternalError(absl::StrCat( "Failed to get tf.data snapshot split. Expected split ", split_index_to_read_, ", got split ", buffer_.begin()->index, ". This is likely a tf.data bug.")); } auto it = buffer_.begin(); SplitAndIndex split = std::move(*it); buffer_.erase(it); TF_RETURN_IF_ERROR(env_->RenameFile(split.SplitPath(directory_), split_path)); ++split_index_to_read_; ready_to_push_.Signal(); return std::move(split.split); } std::unique_ptr<tsl::thread::ThreadPool> PrefetchedSplitProvider::RunPrefetchThreads() { auto thread_pool = std::make_unique<tsl::thread::ThreadPool>( env_, tsl::ThreadOptions{}, "tf_data_prefetch_splits_thread", num_write_threads_); for (size_t i = 0; i < num_write_threads_; ++i) { thread_pool->Schedule([this]() { PrefetchLoop(); }); } return thread_pool; } void PrefetchedSplitProvider::PrefetchLoop() ABSL_LOCKS_EXCLUDED(mu_) { while (ShouldPrefetchSplit()) { absl::StatusOr<bool> has_next = PrefetchSplit(); if (!has_next.status().ok()) { UpdateStatus(has_next.status()); break; } if (!*has_next) { break; } } absl::MutexLock l(&mu_); if (++finished_threads_ >= num_write_threads_) { ready_to_pop_.SignalAll(); } } bool PrefetchedSplitProvider::ShouldPrefetchSplit() const ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); return status_.ok() && !reset_; } absl::StatusOr<bool> PrefetchedSplitProvider::PrefetchSplit() ABSL_LOCKS_EXCLUDED(mu_) { TF_ASSIGN_OR_RETURN(std::optional<SplitAndIndex> split, GetSplitFromProvider()); if (!split.has_value()) { return false; } TF_RETURN_IF_ERROR( AtomicallyWriteTFRecords(split->SplitPath(directory_), {split->split}, tsl::io::compression::kNone, env_)); absl::MutexLock l(&mu_); buffer_.insert(std::move(*split)); ready_to_pop_.Signal(); return true; } absl::StatusOr<std::optional<PrefetchedSplitProvider::SplitAndIndex>> PrefetchedSplitProvider::GetSplitFromProvider() ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); while (status_.ok() && buffer_.size() >= buffer_size_ && !reset_) { ready_to_push_.Wait(&mu_); } TF_RETURN_IF_ERROR(status_); if (reset_) { return std::nullopt; } Tensor split; bool end_of_splits = false; TF_RETURN_IF_ERROR(split_provider_->GetNext(&split, &end_of_splits)); if (end_of_splits) { return std::nullopt; } return SplitAndIndex{split, split_index_to_write_++}; } absl::Status PrefetchedSplitProvider::Reset() ABSL_LOCKS_EXCLUDED(mu_) { std::unique_ptr<tsl::thread::ThreadPool> thread_pool; { absl::MutexLock l(&mu_); reset_ = true; ready_to_push_.SignalAll(); ready_to_pop_.SignalAll(); thread_pool = std::move(thread_pool_); } thread_pool.reset(); TF_RETURN_IF_ERROR(split_provider_->Reset()); absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR(status_); reset_ = false; split_index_to_read_ = 0; split_index_to_write_ = 0; finished_threads_ = 0; buffer_.clear(); TF_RETURN_IF_ERROR(InitDirs()); thread_pool_ = RunPrefetchThreads(); return absl::OkStatus(); } void PrefetchedSplitProvider::Cancel() { UpdateStatus( absl::CancelledError("tf.data prefetched split provider is shut down.")); std::unique_ptr<tsl::thread::ThreadPool> thread_pool; { absl::MutexLock l(&mu_); thread_pool = std::move(thread_pool_); } } absl::Status PrefetchedSplitProvider::InitDirs() { if (env_->FileExists(directory_).ok()) { int64_t undeleted_files, undeleted_dirs; TF_RETURN_IF_ERROR( env_->DeleteRecursively(directory_, &undeleted_files, &undeleted_dirs)); } return env_->RecursivelyCreateDir(directory_); } void PrefetchedSplitProvider::UpdateStatus(absl::Status status) ABSL_LOCKS_EXCLUDED(mu_) { if (status.ok()) { return; } absl::MutexLock l(&mu_); status_.Update(std::move(status)); ready_to_push_.SignalAll(); ready_to_pop_.SignalAll(); } } }
#include "tensorflow/core/data/service/snapshot/prefetched_split_provider.h" #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <numeric> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/lib/io/compression.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/split_provider.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::ElementsAreArray; using ::testing::IsSupersetOf; using ::testing::UnorderedElementsAreArray; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::vector<std::string>> TestDirs(size_t num_dirs) { std::vector<std::string> test_dirs; std::string base_dir; if (!tsl::Env::Default()->LocalTempFilename(&base_dir)) { return absl::FailedPreconditionError("Failed to create local temp file."); } TF_RETURN_IF_ERROR(tsl::Env::Default()->RecursivelyCreateDir(base_dir)); for (size_t i = 0; i < num_dirs; ++i) { std::string test_dir = tsl::io::JoinPath(base_dir, absl::StrCat("test_dir_", i)); TF_RETURN_IF_ERROR(tsl::Env::Default()->RecursivelyCreateDir(test_dir)); test_dirs.push_back(std::move(test_dir)); } return test_dirs; } absl::StatusOr<std::unique_ptr<SplitProvider>> RangeSplitProvider( int64_t range) { DatasetDef range_dataset = testing::RangeDataset(range); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_RETURN_IF_ERROR(CreateSplitProviders(range_dataset, split_providers)); if (split_providers.size() != 1) { return absl::InternalError( absl::StrCat("Range dataset should have one split provider, got ", split_providers.size(), ".")); } return std::move(split_providers[0]); } template <class T> T GetValue(const Tensor& tensor) { return tensor.unaligned_flat<T>().data()[0]; } template <class T> absl::StatusOr<T> GetValueFromFile(const std::string& filename) { snapshot_util::TFRecordReaderImpl reader(filename, tsl::io::compression::kNone); TF_RETURN_IF_ERROR(reader.Initialize(tsl::Env::Default())); TF_ASSIGN_OR_RETURN(std::vector<Tensor> tensors, reader.GetTensors()); if (tensors.size() != 1) { return absl::InternalError(absl::StrCat( "A snapshot split file is expected to contain 1 tensor. Got ", tensors.size(), " tensors from ", filename, ".")); } return GetValue<T>(tensors[0]); } template <class T> absl::StatusOr<std::vector<T>> GetSplits( PrefetchedSplitProvider& prefetched_split_provider, const std::string& test_dir) { std::vector<T> splits; for (size_t i = 0;; ++i) { std::string target_split_path = tsl::io::JoinPath(test_dir, absl::StrCat("split_", i)); TF_ASSIGN_OR_RETURN(std::optional<Tensor> split, prefetched_split_provider.GetNext(target_split_path)); if (!split.has_value()) { return splits; } T split_value = GetValue<T>(*split); TF_ASSIGN_OR_RETURN(T split_from_file, GetValueFromFile<T>(target_split_path)); if (split_value != split_from_file) { return absl::InternalError( absl::StrCat("Inconsistent splits. From buffer: ", split_value, ", from file: ", split_from_file, ".")); } splits.push_back(split_value); } return splits; } std::vector<int64_t> Range(int64_t range) { std::vector<int64_t> result(range); std::iota(result.begin(), result.end(), 0); return result; } class PrefetchedSplitProviderParamTest : public ::testing::TestWithParam< std::tuple<int64_t, size_t, size_t, size_t>> { protected: int64_t NumElements() const { return std::get<0>(GetParam()); } size_t NumClients() const { return std::get<1>(GetParam()); } size_t NumWriteThreads() const { return std::get<2>(GetParam()); } size_t BufferSizePerThread() const { return std::get<3>(GetParam()); } }; TEST_P(PrefetchedSplitProviderParamTest, GetSplits) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(NumElements())); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(2)); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default(), NumWriteThreads(), BufferSizePerThread()); EXPECT_THAT(GetSplits<int64_t>(prefetched_split_provider, test_dirs[1]), IsOkAndHolds(ElementsAreArray(Range(NumElements())))); } TEST_P(PrefetchedSplitProviderParamTest, ConcurrentGetSplits) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(NumElements())); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(1 + NumClients())); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default(), NumWriteThreads(), BufferSizePerThread()); absl::Mutex mu; std::vector<int64_t> splits; std::vector<std::unique_ptr<tsl::Thread>> client_threads; for (int i = 0; i < NumClients(); ++i) { client_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Client_", i), [i, &prefetched_split_provider, &splits, &test_dirs, &mu]() { TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> splits_per_thread, GetSplits<int64_t>(prefetched_split_provider, test_dirs[1 + i])); EXPECT_TRUE(absl::c_is_sorted(splits_per_thread)); absl::MutexLock l(&mu); absl::c_move(splits_per_thread, std::back_inserter(splits)); }))); } client_threads.clear(); EXPECT_THAT(splits, UnorderedElementsAreArray(Range(NumElements()))); } TEST_P(PrefetchedSplitProviderParamTest, Reset) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(NumElements())); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(2)); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default(), NumWriteThreads(), BufferSizePerThread()); for (int i = 0; i < 3; ++i) { EXPECT_THAT(GetSplits<int64_t>(prefetched_split_provider, test_dirs[1]), IsOkAndHolds(ElementsAreArray(Range(NumElements())))); TF_EXPECT_OK(prefetched_split_provider.Reset()); } } TEST_P(PrefetchedSplitProviderParamTest, ConcurrentGetSplitsAndReset) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(NumElements())); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(1 + NumClients())); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default(), NumWriteThreads(), BufferSizePerThread()); absl::Mutex mu; std::vector<int64_t> splits; std::vector<std::unique_ptr<tsl::Thread>> client_threads; for (int i = 0; i < NumClients(); ++i) { client_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Client_", i), [i, &prefetched_split_provider, &splits, &test_dirs, &mu]() { TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> splits_per_thread, GetSplits<int64_t>(prefetched_split_provider, test_dirs[1 + i])); absl::MutexLock l(&mu); absl::c_move(splits_per_thread, std::back_inserter(splits)); }))); } TF_EXPECT_OK(prefetched_split_provider.Reset()); client_threads.clear(); EXPECT_THAT(splits, IsSupersetOf(Range(NumElements()))); } INSTANTIATE_TEST_SUITE_P( PrefetchedSplitProviderParams, PrefetchedSplitProviderParamTest, ::testing::Combine( ::testing::Values(0, 10, 1000), ::testing::Values(1, 5), ::testing::Values(1, 10), ::testing::Values(1, 10000))); TEST(PrefetchedSplitProviderTest, Cancellation) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(999999)); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(2)); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default(), 2, 1); std::unique_ptr<tsl::Thread> client_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "client_thread", [&prefetched_split_provider, &test_dirs]() { EXPECT_THAT( GetSplits<int64_t>(prefetched_split_provider, test_dirs[1]), StatusIs(absl::StatusCode::kCancelled)); })); prefetched_split_provider.Cancel(); client_thread.reset(); } TEST(PrefetchedSplitProviderTest, ShutdownWithUnreadSplits) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(100)); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(2)); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default()); TF_EXPECT_OK(prefetched_split_provider.Reset()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/prefetched_split_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/prefetched_split_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
17e0abbc-0854-4ec0-a080-901466566b64
cpp
tensorflow/tensorflow
snapshot_manager
tensorflow/core/data/service/snapshot/snapshot_manager.cc
tensorflow/core/data/service/snapshot/snapshot_manager_test.cc
#include "tensorflow/core/data/service/snapshot/snapshot_manager.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "xla/tsl/lib/io/compression.h" #include "xla/tsl/protobuf/status.pb.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/prefetched_split_provider.h" #include "tensorflow/core/data/service/split_provider.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/path.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/thread_annotations.h" #include "tsl/platform/threadpool.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { const absl::Duration kProgressLoggingInterval = absl::Minutes(1); absl::StatusOr<int64_t> CountSplits(SplitProvider& split_provider) { if (split_provider.Cardinality() != kUnknownCardinality) { return split_provider.Cardinality(); } int64_t num_splits = 0; Tensor tensor; for (bool end_of_splits = false; !end_of_splits; ++num_splits) { TF_RETURN_IF_ERROR(split_provider.GetNext(&tensor, &end_of_splits)); } --num_splits; TF_RETURN_IF_ERROR(split_provider.Reset()); return num_splits; } absl::Status SkipSplit(SplitProvider& split_provider, int64_t& repetition_index) { Tensor tensor; bool end_of_splits = false; TF_RETURN_IF_ERROR(split_provider.GetNext(&tensor, &end_of_splits)); while (end_of_splits) { ++repetition_index; TF_RETURN_IF_ERROR(split_provider.Reset()); TF_RETURN_IF_ERROR(split_provider.GetNext(&tensor, &end_of_splits)); } return absl::OkStatus(); } std::string PrefetchedSplitDir(const std::string& snapshot_path, int64_t source_index) { return tsl::io::JoinPath(snapshot_path, "prefetched_splits", absl::StrCat("source_", source_index)); } } absl::StatusOr<bool> SnapshotAssignmentManager::TryAddAssignment( absl::string_view snapshot_path, absl::string_view worker_address, int64_t stream_index) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (assignments_[worker_address].size() >= worker_max_concurrent_snapshots()) { return false; } Assignment assignment{std::string(snapshot_path), stream_index}; auto [unused, success] = assignments_[worker_address].insert(assignment); if (!success) { return absl::InternalError(absl::StrCat("Worker ", worker_address, " already had an assignment for ", assignment.DebugString())); } ++snapshot_assignment_counts_[snapshot_path]; return true; } void SnapshotAssignmentManager::RemoveAssignment( absl::string_view snapshot_path, absl::string_view worker_address, int64_t stream_index) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); auto num_erased = assignments_[worker_address].erase( {std::string(snapshot_path), stream_index}); if ((snapshot_assignment_counts_[snapshot_path] -= num_erased) <= 0) { snapshot_assignment_counts_.erase(snapshot_path); } } void SnapshotAssignmentManager::AddSnapshot(absl::string_view snapshot_path) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!snapshot_assignment_counts_.contains(snapshot_path)) { snapshot_assignment_counts_[snapshot_path] = 0; } } std::vector<std::string> SnapshotAssignmentManager::LoadBalanceSnapshots( absl::string_view worker_address) TF_LOCKS_EXCLUDED(mu_) { std::vector<std::string> result; tsl::mutex_lock l(mu_); result.reserve(snapshot_assignment_counts_.size()); const auto it = assignments_.find(worker_address); if (it != assignments_.end()) { for (const Assignment& assignment : it->second) { result.push_back(assignment.snapshot_path); } } if (result.size() >= worker_max_concurrent_snapshots()) { return result; } absl::btree_multimap<size_t, std::string> snapshots_by_count; for (const auto& [snapshot, count] : snapshot_assignment_counts_) { snapshots_by_count.emplace(count, snapshot); } for (const auto& [_, snapshot] : snapshots_by_count) { if (absl::c_find(result, snapshot) == result.end()) { result.push_back(snapshot); return result; } } return result; } absl::StatusOr<std::unique_ptr<SnapshotManager>> SnapshotManager::Start( const SnapshotRequest& request, SnapshotAssignmentManager& assignment_manager, Env* env) { std::unique_ptr<SnapshotManager> snapshot_manager{ new SnapshotManager{request.path(), assignment_manager, env}}; TF_RETURN_IF_ERROR(snapshot_manager->Start(request)); return snapshot_manager; } absl::Status SnapshotManager::Start(const SnapshotRequest& request) TF_LOCKS_EXCLUDED(mu_) { LOG(INFO) << "Starting to write tf.data snapshot at " << request.path(); if (env_->FileExists(request.path()).ok()) { return errors::AlreadyExists("tf.data snapshot at ", request.path(), " already exists."); } tsl::mutex_lock l(mu_); TF_RETURN_IF_ERROR(WriteOnDiskSkeleton()); TF_RETURN_IF_ERROR(WriteOnDiskMetadata(request)); TF_ASSIGN_OR_RETURN(sources_, CreateSources(request.dataset())); TF_ASSIGN_OR_RETURN(num_total_splits_, GetSplitsCardinality()); metadata_ = request.metadata(); LOG(INFO) << "Started writing tf.data distributed snapshot at " << path_; return absl::OkStatus(); } absl::StatusOr<std::vector<SnapshotManager::Source>> SnapshotManager::CreateSources(const DatasetDef& dataset_def) const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_RETURN_IF_ERROR(CreateSplitProviders(dataset_def, split_providers)); std::vector<SnapshotManager::Source> sources; sources.reserve(split_providers.size()); for (size_t i = 0; i < split_providers.size(); ++i) { TF_ASSIGN_OR_RETURN(size_t cardinality, CountSplits(*split_providers[i])); sources.emplace_back( std::make_unique<PrefetchedSplitProvider>( std::move(split_providers[i]), PrefetchedSplitDir(path_, i), env_), 0, cardinality); } return sources; } absl::StatusOr<int64_t> SnapshotManager::GetSplitsCardinality() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return absl::c_accumulate(sources_, 0, [](size_t cardinality, const Source& source) { return cardinality + source.cardinality; }); } absl::Status SnapshotManager::WriteOnDiskSkeleton() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_RETURN_IF_ERROR( env_->RecursivelyCreateDir(CommittedChunksDirectory(path_))); TF_RETURN_IF_ERROR(env_->RecursivelyCreateDir(StreamsDirectory(path_))); return absl::OkStatus(); } absl::Status SnapshotManager::WriteOnDiskMetadata( const SnapshotRequest& request) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_RETURN_IF_ERROR(AtomicallyWriteTextProto(SnapshotMetadataFilePath(path_), request.metadata(), env_)); TF_RETURN_IF_ERROR(AtomicallyWriteStringToFile( DatasetSpecFilePath(path_), request.metadata().element_spec(), env_)); TF_RETURN_IF_ERROR(AtomicallyWriteBinaryProto(DatasetDefFilePath(path_), request.dataset(), env_)); return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<SnapshotManager>> SnapshotManager::Resume( absl::string_view path, SnapshotAssignmentManager& assignment_manager, Env* env) { SnapshotManager* snapshot_manager = new SnapshotManager(path, assignment_manager, env); TF_RETURN_IF_ERROR(snapshot_manager->Resume()); return absl::WrapUnique(snapshot_manager); } absl::Status SnapshotManager::Resume() TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!env_->FileExists(path_).ok()) { return absl::InternalError( absl::StrCat("Failed to recover tf.data snapshot at ", path_, ": the snapshot path doesn't exist.")); } if (env_->FileExists(SnapshotDoneFilePath(path_)).ok()) { mode_ = Mode::kDone; LOG(INFO) << "Recovered finished tf.data snapshot at " << path_; return absl::OkStatus(); } if (env_->FileExists(SnapshotErrorFilePath(path_)).ok()) { mode_ = Mode::kError; StatusProto status_proto; TF_RETURN_IF_ERROR( ReadTextProto(env_, SnapshotErrorFilePath(path_), &status_proto)); status_ = tsl::StatusFromProto(status_proto); return absl::OkStatus(); } TF_RETURN_IF_ERROR(ReadOnDiskMetadata()); TF_RETURN_IF_ERROR(ReadOnDiskStreams()); LOG(INFO) << "Resumed writing tf.data distributed snapshot at " << path_; return absl::OkStatus(); } absl::Status SnapshotManager::ReadOnDiskMetadata() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!env_->FileExists(SnapshotMetadataFilePath(path_)).ok()) { return absl::InternalError( absl::StrCat("Failed to recover snapshot at ", path_, ": snapshot has no snapshot.metadata")); } TF_RETURN_IF_ERROR( ReadTextProto(env_, SnapshotMetadataFilePath(path_), &metadata_)); if (!env_->FileExists(DatasetDefFilePath(path_)).ok()) { return absl::InternalError( absl::StrCat("Failed to recovery snapshot at ", path_, ": snapshot has no dataset_def.proto")); } return absl::OkStatus(); } absl::Status SnapshotManager::ReadOnDiskStreams() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { std::string streams_path = StreamsDirectory(path_); TF_ASSIGN_OR_RETURN(const std::vector<std::string> stream_directories, GetChildren(streams_path, env_)); DatasetDef dataset_def; TF_RETURN_IF_ERROR( tsl::ReadBinaryProto(env_, DatasetDefFilePath(path_), &dataset_def)); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_RETURN_IF_ERROR(CreateSplitProviders(dataset_def, split_providers)); std::vector<int64_t> repetition_indices(split_providers.size(), 0); std::vector<int64_t> cardinalities; for (size_t i = 0; i < split_providers.size(); ++i) { TF_ASSIGN_OR_RETURN(int64_t cardinality, CountSplits(*split_providers[i])); cardinalities.push_back(cardinality); } tsl::mutex mu; absl::Status resume_status; absl::flat_hash_set<int64_t> global_split_indices; auto thread_pool = std::make_unique<tsl::thread::ThreadPool>( env_, tsl::ThreadOptions{}, "restore_snapshot_stream_thread", std::max(size_t{1}, stream_directories.size())); for (const auto& stream_directory : stream_directories) { std::string stream_path = tsl::io::JoinPath(streams_path, stream_directory); std::vector<std::string> tokens = absl::StrSplit(stream_directory, '_'); int64_t stream_index; if (tokens.size() != 2 || !absl::SimpleAtoi(tokens[1], &stream_index) || stream_index < 0) { return absl::InternalError(absl::StrCat( "Can't parse tf.data snapshot stream directory ", stream_path, ": filename must have the format stream_<stream_index>.")); } thread_pool->Schedule([this, &stream_directories, stream_index, &split_providers, &repetition_indices, &global_split_indices, &resume_status, &mu]() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { StreamRestorer stream_restorer(env_, path_, stream_index, split_providers.size(), assignment_manager_); absl::Status s = stream_restorer.ReadOnDiskStream(); tsl::mutex_lock l(mu); resume_status.Update(s); resume_status.Update(RestoreFrom(stream_restorer, stream_directories, split_providers, repetition_indices, global_split_indices)); }); } thread_pool.reset(); TF_RETURN_IF_ERROR(resume_status); for (int64_t i = 0; i < split_providers.size(); ++i) { sources_.emplace_back( std::make_unique<PrefetchedSplitProvider>( std::move(split_providers[i]), PrefetchedSplitDir(path_, i), env_), repetition_indices[i], cardinalities[i]); } TF_ASSIGN_OR_RETURN(num_total_splits_, GetSplitsCardinality()); for (int64_t i = 0; i < global_split_indices.size(); ++i) { if (!global_split_indices.contains(i)) { return absl::InternalError( absl::StrCat("Failed to restore tf.data snapshot at ", path_, ": Found missing global split index ", i, ".")); } } num_assigned_splits_ = global_split_indices.size(); if (!streams_.empty() && absl::c_all_of(streams_, [](const auto& stream) { return stream.second.state == Stream::State::kDone; })) { mode_ = Mode::kDone; TF_RETURN_IF_ERROR(AtomicallyWriteStringToFile(SnapshotDoneFilePath(path_), std::string(), env_)); LOG(INFO) << "Finished writing tf.data distributed snapshot at " << path_; } return absl::OkStatus(); } absl::StatusOr<std::string> SnapshotManager::StreamRestorer::OwnerWorkerAddress() const { std::string worker_address; TF_RETURN_IF_ERROR( env_->FileExists(StreamWorkerFilePath(path_, stream_index_))); TF_RETURN_IF_ERROR(tsl::ReadFileToString( env_, StreamWorkerFilePath(path_, stream_index_), &worker_address)); return worker_address; } absl::Status SnapshotManager::StreamRestorer::ReadOnDiskStream() { absl::StatusOr<std::string> worker_address = OwnerWorkerAddress(); if (!worker_address.ok()) { return absl::OkStatus(); } worker_address_ = *worker_address; restored_stream_.emplace(num_sources_); std::string splits_path = SplitsDirectory(path_, stream_index_); TF_ASSIGN_OR_RETURN(std::vector<std::string> source_directories, GetChildren(splits_path, env_)); for (const auto& source_directory : source_directories) { std::string source_path = tsl::io::JoinPath(splits_path, source_directory); std::vector<std::string> tokens = absl::StrSplit(source_directory, '_'); int64_t source_index = 0; if (tokens.size() != 2 || !absl::SimpleAtoi(tokens[1], &source_index) || source_index < 0) { return absl::InternalError(absl::StrCat( "Can't parse tf.data snapshot source directory ", source_path, ": filename must have the format source_<source_index>.")); } if (source_index >= num_sources_) { return absl::InternalError( absl::StrCat("Found conflict between the number of sources, ", num_sources_, ", and the filename of ", source_path)); } TF_RETURN_IF_ERROR(ReadOnDiskSource(source_index)); } if (env_->FileExists(StreamDoneFilePath(path_, stream_index_)).ok()) { restored_stream_->state = Stream::State::kDone; return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(bool assignment_added, assignment_manager_.TryAddAssignment( path_, *worker_address, stream_index_)); if (!assignment_added) { return absl::InternalError(absl::StrCat( "Failed to recover tf.data snapshot dispatcher: Worker ", *worker_address, " was assigned too many streams. At most ", assignment_manager_.worker_max_concurrent_snapshots(), " streams are allowed.")); } return absl::OkStatus(); } absl::Status SnapshotManager::StreamRestorer::ReadOnDiskSource( int64_t source_index) { std::string source_directory = SourceDirectory(path_, stream_index_, source_index); TF_ASSIGN_OR_RETURN(std::vector<std::string> repetition_directories, GetChildren(source_directory, env_)); for (const std::string& repetition : repetition_directories) { std::string repetition_dir = tsl::io::JoinPath(source_directory, repetition); TF_ASSIGN_OR_RETURN(std::vector<std::string> split_files, GetChildren(repetition_dir, env_)); for (const std::string& split_file : split_files) { std::string split_path = tsl::io::JoinPath(repetition_dir, split_file); TF_RETURN_IF_ERROR( ReadOnDiskSplit(source_index, split_files, split_path)); } restored_stream_->num_assigned_splits_per_source[source_index] += split_files.size(); } return absl::OkStatus(); } absl::Status SnapshotManager::StreamRestorer::ReadOnDiskSplit( int64_t source_index, const std::vector<std::string>& split_files, const std::string& split_file) { TF_ASSIGN_OR_RETURN(auto split_indices, ParseSplitFilename(split_file)); auto [local_split_index, global_split_index] = split_indices; if (global_split_indices_.contains(global_split_index)) { return absl::InternalError(absl::StrCat( "Failed to restore tf.data snapshot at ", path_, ": Found duplicate global split index in split ", split_file, ".")); } global_split_indices_.insert(global_split_index); return absl::OkStatus(); } absl::Status SnapshotManager::RestoreFrom( const StreamRestorer& stream_restorer, const std::vector<std::string>& stream_directories, std::vector<std::unique_ptr<SplitProvider>>& split_providers, std::vector<std::int64_t>& repetition_indices, absl::flat_hash_set<int64_t>& global_split_indices) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!stream_restorer.GetStream().has_value()) { return absl::OkStatus(); } streams_.insert( {stream_restorer.StreamIndex(), *stream_restorer.GetStream()}); auto [it, success] = assignments_.insert( {stream_restorer.WorkerAddress(), stream_restorer.StreamIndex()}); if (!success) { return absl::InternalError(absl::StrCat( "tf.data dispatcher failed to assign stream ", stream_restorer.StreamIndex(), " to snapshot worker ", stream_restorer.WorkerAddress(), ": The worker is already assigned stream ", it->second, ".")); } for (int64_t source_index = 0; source_index < repetition_indices.size(); ++source_index) { int64_t skip_splits = GetStream(stream_restorer.StreamIndex()) .num_assigned_splits_per_source[source_index]; for (int64_t i = 0; i < skip_splits; ++i) { TF_RETURN_IF_ERROR(SkipSplit(*split_providers[source_index], repetition_indices[source_index])); } } for (int64_t global_split_index : stream_restorer.GlobalSplitIndices()) { if (global_split_indices.contains(global_split_index)) { return absl::InternalError( absl::StrCat("Failed to restore tf.data snapshot at ", path_, ": Found ", "duplicate global split index in stream ", stream_restorer.StreamIndex(), ".")); } global_split_indices.insert(global_split_index); } return absl::OkStatus(); } SnapshotManager::Stream& SnapshotManager::GetStream(int64_t stream_index) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { auto [it, _] = streams_.try_emplace(stream_index, num_sources()); return it->second; } absl::Status SnapshotManager::HandleStreamCompletion( int64_t stream_index, absl::string_view worker_address) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { GetStream(stream_index).state = Stream::State::kDone; assignment_manager_.RemoveAssignment(path_, worker_address, stream_index); ++num_completed_streams_; if (absl::c_all_of(streams_, [](const auto& stream) { return stream.second.state == Stream::State::kDone; })) { mode_ = Mode::kDone; TF_RETURN_IF_ERROR(AtomicallyWriteStringToFile(SnapshotDoneFilePath(path_), std::string(), env_)); LOG(INFO) << "Finished writing tf.data distributed snapshot at " << path_; } return absl::OkStatus(); } absl::Status SnapshotManager::HandleStreamError( absl::string_view worker_address, const StatusProto& status_proto) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!status_.ok()) { return absl::OkStatus(); } mode_ = Mode::kError; status_ = tsl::StatusFromProto(status_proto); TF_RETURN_IF_ERROR(AtomicallyWriteTextProto(SnapshotErrorFilePath(path_), status_proto, env_)); LOG(ERROR) << "Failed to write tf.data distributed snapshot at " << path_ << ". Worker " << worker_address << " reported error: " << status_; return absl::OkStatus(); } absl::StatusOr<std::optional<int64_t>> SnapshotManager::MaybeCreateAndAssignNewStream(absl::string_view worker_address) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { int64_t new_stream_index = streams_.empty() ? 0 : streams_.rbegin()->first + 1; TF_ASSIGN_OR_RETURN(bool assignment_added, assignment_manager_.TryAddAssignment( path_, worker_address, new_stream_index)); if (!assignment_added) { return std::optional<int64_t>(); } streams_.insert({new_stream_index, Stream(num_sources())}); assignments_[worker_address] = new_stream_index; return new_stream_index; } absl::StatusOr<std::optional<std::pair<int64_t, bool>>> SnapshotManager::MaybeGetOrCreateStreamAssignment( absl::string_view worker_address, const SnapshotTaskProgress* snapshot_progress) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { std::optional<int64_t> assigned_stream_index; if (auto it = assignments_.find(worker_address); it != assignments_.end()) { assigned_stream_index = it->second; } if (snapshot_progress) { if (assigned_stream_index.has_value() && *assigned_stream_index != snapshot_progress->snapshot_task().stream_index()) { return absl::InternalError(absl::StrCat( "tf.data snapshot worker ", worker_address, " was assigned stream ", snapshot_progress->snapshot_task().stream_index(), ", but is now assigned a different stream ", *assigned_stream_index)); } if (assigned_stream_index.has_value() && snapshot_progress->completed()) { TF_RETURN_IF_ERROR(HandleStreamCompletion( snapshot_progress->snapshot_task().stream_index(), worker_address)); return std::nullopt; } if (snapshot_progress->status().code() != error::OK) { TF_RETURN_IF_ERROR( HandleStreamError(worker_address, snapshot_progress->status())); return std::nullopt; } } if (!assigned_stream_index) { if (mode_ != Mode::kActive) { return std::nullopt; } TF_ASSIGN_OR_RETURN(assigned_stream_index, MaybeCreateAndAssignNewStream(worker_address)); if (!assigned_stream_index.has_value()) { return std::nullopt; } return std::make_pair(*assigned_stream_index, true); } if (!assigned_stream_index.has_value() || GetStream(*assigned_stream_index).state == Stream::State::kDone) { return std::nullopt; } return std::make_pair(*assigned_stream_index, false); } absl::Status SnapshotManager::WorkerHeartbeat( const WorkerHeartbeatRequest& request, WorkerHeartbeatResponse& response) TF_LOCKS_EXCLUDED(mu_) { std::optional<std::pair<int64_t, bool>> assigned_stream_index; std::vector<int64_t> repetitions_per_source; { tsl::mutex_lock l(mu_); dead_workers_.erase(request.worker_address()); if (mode_ == Mode::kDone || mode_ == Mode::kError) { return absl::OkStatus(); } if (absl::Time now = absl::FromUnixMicros(env_->NowMicros()); now - last_progress_log_time_ > kProgressLoggingInterval) { LOG(INFO) << "tf.data snapshot progress [" << path_ << "]: " << num_completed_streams_ << "/" << streams_.size() << " streams completed; " << num_assigned_splits_ << "/" << num_total_splits_ << " splits assigned or completed."; last_progress_log_time_ = now; } const SnapshotTaskProgress* snapshot_progress = nullptr; if (auto it = request.snapshot_task_progress().find(path_); it != request.snapshot_task_progress().end()) { snapshot_progress = &it->second; } if (snapshot_progress && snapshot_progress->completed() && mode_ == Mode::kActive) { mode_ = Mode::kWindingDown; } TF_ASSIGN_OR_RETURN(assigned_stream_index, MaybeGetOrCreateStreamAssignment( request.worker_address(), snapshot_progress)); if (!assigned_stream_index.has_value()) { return absl::OkStatus(); } SnapshotTaskDef* snapshot_task = response.add_snapshot_tasks(); snapshot_task->set_base_path(path_); snapshot_task->set_num_sources(num_sources()); *snapshot_task->mutable_metadata() = metadata_; snapshot_task->set_stream_index(assigned_stream_index->first); for (int64_t source_index = 0; source_index < num_sources(); ++source_index) { repetitions_per_source.push_back(sources_[source_index].repetition_index); } } const auto [stream_index, is_new_stream] = *assigned_stream_index; if (is_new_stream) { TF_RETURN_IF_ERROR(InitStreamDirectory( stream_index, request.worker_address(), repetitions_per_source)); LOG(INFO) << "For snapshot at " << path_ << ", created stream_" << stream_index << " and assigned to " << request.worker_address(); } return absl::OkStatus(); } absl::Status SnapshotManager::InitStreamDirectory( int64_t stream_index, const std::string& worker_address, const std::vector<int64_t>& repetitions_per_source) { for (int64_t source_index = 0; source_index < repetitions_per_source.size(); ++source_index) { for (int64_t repetition_index = 0; repetition_index <= repetitions_per_source[source_index]; ++repetition_index) { TF_RETURN_IF_ERROR(env_->RecursivelyCreateDir(RepetitionDirectory( path_, stream_index, source_index, repetition_index))); } } return AtomicallyWriteStringToFile(StreamWorkerFilePath(path_, stream_index), worker_address, env_); } absl::Status SnapshotManager::GetSnapshotSplit( const GetSnapshotSplitRequest& request, GetSnapshotSplitResponse& response) TF_LOCKS_EXCLUDED(get_split_mu_, mu_) { int64_t local_split_index = 0; int64_t global_split_index = 0; PrefetchedSplitProvider* split_provider = nullptr; tsl::mutex_lock get_split_lock(get_split_mu_); { tsl::mutex_lock l(mu_); if (auto it = assignments_.find(request.worker_address()); it == assignments_.end()) { return absl::InternalError( absl::StrCat("tf.data snapshot worker ", request.worker_address(), " was assigned stream ", request.stream_index(), ", but the assignment is no longer available.")); } else if (it->second != request.stream_index()) { return absl::InternalError( absl::StrCat("tf.data snapshot worker ", request.worker_address(), " was assigned stream ", request.stream_index(), " but is now assigned a different stream ", it->second)); } Stream& stream = GetStream(request.stream_index()); local_split_index = stream.num_assigned_splits_per_source[request.source_index()]; global_split_index = num_assigned_splits_; response.set_local_split_index(local_split_index); Source& source = sources_[request.source_index()]; if (request.repetition_index() < source.repetition_index) { response.set_end_of_splits(true); return absl::OkStatus(); } while (request.repetition_index() > source.repetition_index) { TF_RETURN_IF_ERROR(ResetSource(source, request.source_index())); } split_provider = source.split_provider.get(); } std::string split_path = SplitPath( path_, request.stream_index(), request.source_index(), request.repetition_index(), local_split_index, global_split_index); TF_ASSIGN_OR_RETURN(std::optional<Tensor> split, split_provider->GetNext(split_path)); if (!split.has_value()) { response.set_end_of_splits(true); return absl::OkStatus(); } split->AsProtoTensorContent(response.mutable_split()); tsl::mutex_lock l(mu_); ++GetStream(request.stream_index()) .num_assigned_splits_per_source[request.source_index()]; ++num_assigned_splits_; return absl::OkStatus(); } absl::Status SnapshotManager::ResetSource(Source& source, int64_t source_index) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_RETURN_IF_ERROR(source.split_provider->Reset()); ++source.repetition_index; LOG(INFO) << "Starting repetition_" << source.repetition_index << " " << "for snapshot " << path_ << ", source " << source_index; for (const auto& [stream_index, _] : streams_) { TF_RETURN_IF_ERROR(env_->RecursivelyCreateDir(RepetitionDirectory( path_, stream_index, source_index, source.repetition_index))); } return absl::OkStatus(); } absl::Status SnapshotManager::GetSnapshotStreams( GetSnapshotStreamsResponse& response) TF_LOCKS_EXCLUDED(mu_) { tsl::tf_shared_lock l(mu_); for (const auto& [stream_index, stream] : streams_) { SnapshotStreamInfo* stream_info = response.add_streams(); stream_info->set_index(stream_index); stream_info->set_state(stream.state == Stream::State::kDone ? SnapshotStreamInfo::DONE : SnapshotStreamInfo::ASSIGNED); } return absl::OkStatus(); } void SnapshotManager::Cancel() { std::vector<PrefetchedSplitProvider*> split_providers_to_cancel; { tsl::mutex_lock l(mu_); for (Source& source : sources_) { split_providers_to_cancel.push_back(source.split_provider.get()); } } for (PrefetchedSplitProvider* split_provider : split_providers_to_cancel) { split_provider->Cancel(); } } } }
#include "tensorflow/core/data/service/snapshot/snapshot_manager.h" #include <memory> #include <string> #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/status.pb.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::_; using ::testing::ElementsAre; using ::testing::IsEmpty; using ::testing::Not; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; template <class T> T GetValue(const Tensor& tensor) { return tensor.unaligned_flat<T>().data()[0]; } TEST(SnapshotManagerTest, CreateStreamAssignment) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest request; *request.mutable_dataset() = testing::RangeDataset(10); request.set_path(snapshot_path); *request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(request, snapshot_assignment_manager, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); ASSERT_EQ(heartbeat_response.snapshot_tasks().size(), 1); EXPECT_EQ(heartbeat_response.snapshot_tasks(0).base_path(), snapshot_path); EXPECT_EQ(heartbeat_response.snapshot_tasks(0).stream_index(), 0); EXPECT_EQ(heartbeat_response.snapshot_tasks(0).num_sources(), 1); } TEST(SnapshotManagerTest, GetSnapshotSplit) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest request; *request.mutable_dataset() = testing::RangeDataset(10); request.set_path(snapshot_path); *request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(request, snapshot_assignment_manager, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); const SnapshotTaskDef& task = heartbeat_response.snapshot_tasks(0); GetSnapshotSplitRequest get_split_request; GetSnapshotSplitResponse get_split_response; get_split_request.set_worker_address("localhost"); get_split_request.set_base_path(task.base_path()); get_split_request.set_stream_index(task.stream_index()); get_split_request.set_source_index(0); for (int64_t i = 0; i < 10; ++i) { TF_ASSERT_OK(snapshot_manager->GetSnapshotSplit(get_split_request, get_split_response)); Tensor tensor; ASSERT_TRUE(tensor.FromProto(get_split_response.split())); EXPECT_EQ(GetValue<int64_t>(tensor), i); } } TEST(SnapshotManagerTest, HandleStreamCompletion) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest request; *request.mutable_dataset() = testing::RangeDataset(10); request.set_path(snapshot_path); *request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(request, snapshot_assignment_manager, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost:1"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); heartbeat_request.Clear(); heartbeat_response.Clear(); heartbeat_request.set_worker_address("localhost:2"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); ASSERT_EQ(heartbeat_response.snapshot_tasks().size(), 1); const SnapshotTaskDef& snapshot_task = heartbeat_response.snapshot_tasks(0); EXPECT_EQ(snapshot_task.base_path(), snapshot_path); EXPECT_EQ(snapshot_task.stream_index(), 1); EXPECT_EQ(snapshot_task.num_sources(), 1); heartbeat_request.Clear(); heartbeat_response.Clear(); heartbeat_request.set_worker_address("localhost:1"); SnapshotTaskProgress progress; *progress.mutable_snapshot_task() = snapshot_task; progress.set_completed(true); (*heartbeat_request.mutable_snapshot_task_progress())[snapshot_path] = progress; TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_TRUE(heartbeat_response.snapshot_tasks().empty()); heartbeat_request.Clear(); heartbeat_response.Clear(); heartbeat_request.set_worker_address("localhost:1"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_TRUE(heartbeat_response.snapshot_tasks().empty()); } TEST(SnapshotManagerTest, Resume) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest request; *request.mutable_dataset() = testing::RangeDataset(10); request.set_path(snapshot_path); *request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager_1( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(request, snapshot_assignment_manager_1, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_THAT(heartbeat_response.snapshot_tasks(), SizeIs(1)); heartbeat_response.Clear(); SnapshotAssignmentManager snapshot_assignment_manager_2( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> resumed_manager, SnapshotManager::Resume(snapshot_path, snapshot_assignment_manager_2, Env::Default())); TF_EXPECT_OK( resumed_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_THAT(heartbeat_response.snapshot_tasks(), SizeIs(1)); } TEST(SnapshotManagerTest, SnapshotStreamError) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest snapshot_request; *snapshot_request.mutable_dataset() = testing::RangeDataset(10); snapshot_request.set_path(snapshot_path); *snapshot_request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(snapshot_request, snapshot_assignment_manager, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); const SnapshotTaskDef& task = heartbeat_response.snapshot_tasks(0); heartbeat_response.Clear(); SnapshotTaskProgress snapshot_task_progress; *snapshot_task_progress.mutable_snapshot_task() = task; *snapshot_task_progress.mutable_status() = tsl::StatusToProto(errors::NotFound("Not found")); (*heartbeat_request.mutable_snapshot_task_progress())[snapshot_path] = snapshot_task_progress; TF_EXPECT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_THAT(heartbeat_response.snapshot_tasks(), IsEmpty()); TF_ASSERT_OK( Env::Default()->FileExists(SnapshotErrorFilePath(snapshot_path))); StatusProto status_proto; TF_ASSERT_OK(ReadTextProto( Env::Default(), SnapshotErrorFilePath(snapshot_path), &status_proto)); EXPECT_THAT(tsl::StatusFromProto(status_proto), StatusIs(error::NOT_FOUND, "Not found")); } TEST(SnapshotManagerTest, ResumeFromError) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest request; *request.mutable_dataset() = testing::RangeDataset(10); request.set_path(snapshot_path); *request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager_1( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(request, snapshot_assignment_manager_1, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); ASSERT_THAT(heartbeat_response.snapshot_tasks(), SizeIs(1)); const SnapshotTaskDef& task = heartbeat_response.snapshot_tasks(0); heartbeat_response.Clear(); SnapshotTaskProgress snapshot_task_progress; *snapshot_task_progress.mutable_snapshot_task() = task; *snapshot_task_progress.mutable_status() = tsl::StatusToProto(errors::NotFound("Not found")); (*heartbeat_request.mutable_snapshot_task_progress())[snapshot_path] = snapshot_task_progress; TF_EXPECT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_THAT(heartbeat_response.snapshot_tasks(), IsEmpty()); heartbeat_response.Clear(); SnapshotAssignmentManager snapshot_assignment_manager_2( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> resumed_manager, SnapshotManager::Resume(snapshot_path, snapshot_assignment_manager_2, Env::Default())); TF_EXPECT_OK( resumed_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_THAT(heartbeat_response.snapshot_tasks(), IsEmpty()); } TEST(SnapshotAssignmentManagerTest, LoadBalanceSnapshots) { SnapshotAssignmentManager snapshot_assignment_manager( 2); snapshot_assignment_manager.AddSnapshot("snapshot_1"); snapshot_assignment_manager.AddSnapshot("snapshot_2"); snapshot_assignment_manager.AddSnapshot("snapshot_3"); EXPECT_THAT(snapshot_assignment_manager.TryAddAssignment( "snapshot_3", "worker_1", 0), IsOkAndHolds(true)); EXPECT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_1"), ElementsAre("snapshot_3", _)); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_2"), ElementsAre(Not("snapshot_3"))); EXPECT_THAT(snapshot_assignment_manager.TryAddAssignment( "snapshot_2", "worker_1", 0), IsOkAndHolds(true)); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_1"), UnorderedElementsAre("snapshot_2", "snapshot_3")); EXPECT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_2"), ElementsAre("snapshot_1")); EXPECT_THAT(snapshot_assignment_manager.TryAddAssignment( "snapshot_1", "worker_1", 0), IsOkAndHolds(false)); EXPECT_THAT(snapshot_assignment_manager.TryAddAssignment( "snapshot_2", "worker_2", 0), IsOkAndHolds(true)); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_1"), UnorderedElementsAre("snapshot_2", "snapshot_3")); EXPECT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_2"), ElementsAre("snapshot_2", "snapshot_1")); snapshot_assignment_manager.RemoveAssignment("snapshot_2", "worker_1", 0); EXPECT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_1"), ElementsAre("snapshot_3", "snapshot_1")); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_2"), ElementsAre("snapshot_2", "snapshot_1")); snapshot_assignment_manager.RemoveAssignment("snapshot_3", "worker_1", 0); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_1"), ElementsAre("snapshot_1")); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_2"), ElementsAre("snapshot_2", "snapshot_1")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/snapshot_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/snapshot_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fbd27fd6-da5b-4cbf-9c30-4a3f1eebfb20
cpp
tensorflow/tensorflow
snapshot_stream_writer
tensorflow/core/data/service/snapshot/snapshot_stream_writer.cc
tensorflow/core/data/service/snapshot/snapshot_stream_writer_test.cc
#include "tensorflow/core/data/service/snapshot/snapshot_stream_writer.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/utils.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/data/utils.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/mutex.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace tensorflow { namespace data { namespace { constexpr ByteSize kTFRecordReaderOutputBufferSize = ByteSize::GB(1); constexpr int64_t kUnknownNumElements = -1; constexpr const char kFileShardDelimiter[] = "_CHUNK_SHARDS_"; absl::StatusOr<int64_t> GetUncommittedChunkIndex(const std::string& filename) { std::vector<std::string> tokens = absl::StrSplit(filename, kFileShardDelimiter); if (tokens.size() != 2) { return absl::InternalError( absl::StrCat("Invalid tf.data snapshot chunk file: ", filename, ". Expected sharded chunk files.")); } tokens = absl::StrSplit(tokens[0], '_'); int64_t chunk_index = 0; if (tokens.size() != 2 || tokens[0] != "chunk" || !absl::SimpleAtoi(tokens[1], &chunk_index) || chunk_index < 0) { return absl::InternalError( absl::StrCat("Invalid tf.data snapshot chunk file: ", filename, ". Expected chunk_<chunk_index>.")); } return chunk_index; } size_t TotalNumElements( const ParallelTFRecordWriter::FileToStatsMap& file_stats) { size_t num_elements = 0; for (const auto& [file, stats] : file_stats) { num_elements += stats.num_records; } return num_elements; } ByteSize TotalBytes(const ParallelTFRecordWriter::FileToStatsMap& file_stats) { ByteSize bytes; for (const auto& [file, stats] : file_stats) { bytes += stats.estimated_size; } return bytes; } } SnapshotStreamWriter::SnapshotStreamWriter( const SnapshotWriterParams& params, std::unique_ptr<TaskIterator> iterator) : params_(params), iterator_(std::move(iterator)) { DCHECK_NE(iterator_.get(), nullptr); last_commit_time_ = absl::FromUnixMicros(params_.env->NowMicros()); snapshot_thread_ = absl::WrapUnique(params_.env->StartThread( {}, "tf_data_service_snapshot_thread", [this]() { WriteSnapshotAndLog(); })); } void SnapshotStreamWriter::WriteSnapshotAndLog() TF_LOCKS_EXCLUDED(mu_) { if (StreamAlreadyCompleted()) { LOG(INFO) << "Distributed tf.data snapshot stream has already been " << "completed for " << params_.DebugString(); mutex_lock l(mu_); completed_ = true; return; } LOG(INFO) << "Writing distributed tf.data snapshot stream: " << params_.DebugString(); absl::Status status = WriteSnapshot(); if (IsPreemptedError(status)) { LOG(INFO) << "tf.data service snapshot writer is cancelled: " << status; return; } status = FinalizeStream(status); mutex_lock l(mu_); if (!status.ok()) { LOG(ERROR) << "Failed to write distributed tf.data snapshot stream: " << params_.DebugString() << ". Status: " << status; completed_ = std::move(status); return; } LOG(INFO) << "Finished writing distributed tf.data snapshot stream: " << params_.DebugString(); completed_ = true; iterator_ = nullptr; } absl::Status SnapshotStreamWriter::WriteSnapshot() TF_LOCKS_EXCLUDED(mu_) { TF_RETURN_IF_ERROR(InitializeDirectories()); TF_RETURN_IF_ERROR(Restore()); while (ShouldWriteChunks()) { TF_RETURN_IF_ERROR(WriteChunks()); } mutex_lock l(mu_); return completed_.status(); } bool SnapshotStreamWriter::StreamAlreadyCompleted() const { std::string done_file_path = StreamDoneFilePath(params_.snapshot_path, params_.stream_index); return params_.env->FileExists(done_file_path).ok(); } absl::Status SnapshotStreamWriter::InitializeDirectories() { TF_RETURN_IF_ERROR( params_.env->RecursivelyCreateDir(params_.UncommittedChunksDirectory())); TF_RETURN_IF_ERROR( params_.env->RecursivelyCreateDir(params_.CheckpointsDirectory())); return absl::OkStatus(); } bool SnapshotStreamWriter::ShouldWriteChunks() const TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !end_of_sequence_ && completed_.ok(); } absl::Status SnapshotStreamWriter::WriteChunks() { LOG(INFO) << "Writing distributed tf.data snapshot " << params_.snapshot_path << ", stream " << params_.stream_index << ", chunk " << chunk_index_ << "."; std::string chunks_prefix = tsl::io::JoinPath( params_.UncommittedChunksDirectory(), absl::StrCat("chunk_", chunk_index_, kFileShardDelimiter)); ParallelTFRecordWriter writer(TranslateFileName(chunks_prefix), params_.compression, params_.env, params_.max_chunk_size); do { TF_RETURN_IF_ERROR(WriteRecord(writer)); } while (ShouldWriteRecord()); TF_ASSIGN_OR_RETURN(const ParallelTFRecordWriter::FileToStatsMap file_stats, writer.Finalize()); TF_RETURN_IF_ERROR(Completed().status()); TF_RETURN_IF_ERROR(Commit(file_stats)); metrics::RecordTFDataServiceSnapshotBytesCommitted( TotalBytes(file_stats).ToUnsignedBytes()); return absl::OkStatus(); } bool SnapshotStreamWriter::ShouldWriteRecord() const { mutex_lock l(mu_); if (!completed_.ok() || end_of_sequence_) { return false; } const absl::Time now = absl::FromUnixMicros(params_.env->NowMicros()); const absl::Duration adjusted_checkpoint_interval = std::min( params_.checkpoint_interval, absl::Minutes(0.5 * chunk_index_ + 5)); return now < last_commit_time_ + adjusted_checkpoint_interval; } absl::Status SnapshotStreamWriter::WriteRecord(ParallelTFRecordWriter& writer) { std::vector<Tensor> element; TF_RETURN_IF_ERROR(iterator_->GetNext(element, end_of_sequence_)); if (end_of_sequence_) { return absl::OkStatus(); } return writer.Write(std::move(element)); } absl::Status SnapshotStreamWriter::Commit( const ParallelTFRecordWriter::FileToStatsMap& file_stats) { TF_RETURN_IF_ERROR(Save(file_stats)); for (const auto& [file, stats] : file_stats) { std::string committed_chunk_path = tsl::io::JoinPath(params_.CommittedChunksDirectory(), absl::StrCat("chunk_", params_.stream_index, "_", chunk_index_++, "_", stats.num_records)); TF_RETURN_IF_ERROR(params_.env->RenameFile(file, committed_chunk_path)); } last_commit_time_ = absl::FromUnixMicros(params_.env->NowMicros()); return absl::OkStatus(); } absl::Status SnapshotStreamWriter::FinalizeStream(absl::Status status) { if (status.ok()) { status = WriteDoneFile(); } if (!status.ok()) { WriteErrorFile(status).IgnoreError(); } absl::Status s = DeleteCheckpoints(); if (!s.ok()) { LOG(ERROR) << "Failed to clean up checkpoints at " << params_.CheckpointsDirectory() << ": " << s; } return status; } absl::Status SnapshotStreamWriter::WriteDoneFile() { std::string done_file_path = StreamDoneFilePath(params_.snapshot_path, params_.stream_index); return AtomicallyWriteStringToFile(done_file_path, "", params_.env); } absl::Status SnapshotStreamWriter::WriteErrorFile(const absl::Status& status) { std::string error_file_path = tsl::io::JoinPath(params_.StreamDirectory(), "ERROR"); return AtomicallyWriteStringToFile(error_file_path, status.ToString(), params_.env); } absl::StatusOr<bool> SnapshotStreamWriter::Completed() const TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return completed_; } absl::StatusOr<bool> SnapshotStreamWriter::Wait() TF_LOCKS_EXCLUDED(mu_) { snapshot_thread_.reset(); mutex_lock l(mu_); return completed_; } void SnapshotStreamWriter::Cancel() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); completed_ = absl::CancelledError( "The tf.data service snapshot writer has been cancelled."); } absl::Status SnapshotStreamWriter::Save( const ParallelTFRecordWriter::FileToStatsMap& file_stats) { const size_t num_elements = TotalNumElements(file_stats); const ByteSize byte_size = TotalBytes(file_stats); LOG(INFO) << "Checkpointing distributed tf.data snapshot writer for snapshot " << params_.DebugString() << ". Stream " << params_.stream_index << ", chunk " << chunk_index_ << ", number of elements in chunk: " << num_elements << ", chunk size: " << byte_size << "."; tsl::profiler::TraceMe activity("SnapshotCheckpoint", tsl::profiler::TraceMeLevel::kInfo); absl::Time start_time = absl::FromUnixMicros(params_.env->NowMicros()); int64_t checkpoint_index = chunk_index_ + file_stats.size(); std::string checkpoint_path = CheckpointPath(checkpoint_index, num_elements); TF_ASSIGN_OR_RETURN(std::vector<Tensor> serialized_iterator, iterator_->Save()); TF_RETURN_IF_ERROR(AtomicallyWriteTFRecords( checkpoint_path, serialized_iterator, params_.compression, params_.env)); absl::Time end_time = absl::FromUnixMicros(params_.env->NowMicros()); LOG(INFO) << "Wrote checkpoint file " << checkpoint_path << ". " << "Checkpointing distributed tf.data snapshot writer took " << (end_time - start_time); return DeleteOutdatedCheckpoints(checkpoint_index); } absl::Status SnapshotStreamWriter::DeleteOutdatedCheckpoints( int64_t checkpoint_index) { if (params_.test_only_keep_temp_files) { return absl::OkStatus(); } std::vector<std::string> checkpoint_filenames; TF_RETURN_IF_ERROR(params_.env->GetChildren(params_.CheckpointsDirectory(), &checkpoint_filenames)); for (const std::string& checkpoint_filename : checkpoint_filenames) { std::string checkpoint_filepath = tsl::io::JoinPath(params_.CheckpointsDirectory(), checkpoint_filename); if (IsTemporaryFile(checkpoint_filename)) { TF_RETURN_IF_ERROR(params_.env->DeleteFile(checkpoint_filepath)); continue; } TF_ASSIGN_OR_RETURN(auto checkpoint_filename_tokens, ParseCheckpointFilename(checkpoint_filename)); auto [checkpoint_file_index, _] = checkpoint_filename_tokens; if (checkpoint_file_index < checkpoint_index) { TF_RETURN_IF_ERROR(params_.env->DeleteFile(checkpoint_filepath)); } } return absl::OkStatus(); } absl::Status SnapshotStreamWriter::DeleteCheckpoints() { if (params_.test_only_keep_temp_files) { return absl::OkStatus(); } LOG(INFO) << "Deleting tf.data snapshot checkpoints directory: " << params_.CheckpointsDirectory(); if (params_.env->FileExists(params_.CheckpointsDirectory()).ok()) { int64_t undeleted_files, undeleted_dirs; return params_.env->DeleteRecursively(params_.CheckpointsDirectory(), &undeleted_files, &undeleted_dirs); } return absl::OkStatus(); } absl::Status SnapshotStreamWriter::Restore() { absl::StatusOr<std::string> checkpoint_name = LastCheckpointName(); if (absl::IsNotFound(checkpoint_name.status())) { return SyncCheckpointWithChunks(std::nullopt, kUnknownNumElements); } TF_RETURN_IF_ERROR(checkpoint_name.status()); snapshot_util::TFRecordReaderImpl reader( CheckpointPath(*checkpoint_name), params_.compression, kTFRecordReaderOutputBufferSize.ToUnsignedBytes()); TF_RETURN_IF_ERROR(reader.Initialize(params_.env)); TF_ASSIGN_OR_RETURN(std::vector<Tensor> serialized_tensors, reader.GetTensors()); TF_RETURN_IF_ERROR(iterator_->Restore(serialized_tensors)); TF_ASSIGN_OR_RETURN(auto checkpoint_name_tokens, ParseCheckpointFilename(*checkpoint_name)); auto [checkpoint_index, checkpoint_num_elements] = checkpoint_name_tokens; TF_RETURN_IF_ERROR( SyncCheckpointWithChunks(checkpoint_index, checkpoint_num_elements)); chunk_index_ = checkpoint_index; LOG(INFO) << "Restored distributed tf.data snapshot writer. Snapshot " << params_.snapshot_path << ", stream " << params_.stream_index << ", chunk " << checkpoint_index << "."; return absl::OkStatus(); } absl::StatusOr<std::string> SnapshotStreamWriter::LastCheckpointName() const { TF_ASSIGN_OR_RETURN(std::vector<std::string> checkpoint_names, GetChildren(params_.CheckpointsDirectory(), params_.env)); if (checkpoint_names.empty()) { return absl::NotFoundError( absl::StrCat("No checkpoint has been written in directory ", params_.CheckpointsDirectory())); } int64_t last_index = -1; std::string last_checkpoint_name = ""; for (const std::string& checkpoint_name : checkpoint_names) { TF_ASSIGN_OR_RETURN(auto checkpoint_name_tokens, ParseCheckpointFilename(checkpoint_name)); auto [checkpoint_index, unused] = checkpoint_name_tokens; if (checkpoint_index > last_index) { last_index = checkpoint_index; last_checkpoint_name = checkpoint_name; } } return last_checkpoint_name; } absl::Status SnapshotStreamWriter::SyncCheckpointWithChunks( std::optional<int64_t> checkpoint_index, int64_t checkpoint_num_elements) { TF_ASSIGN_OR_RETURN( std::vector<std::string> uncommitted_chunks, GetChildren(params_.UncommittedChunksDirectory(), params_.env)); TF_ASSIGN_OR_RETURN(int64_t last_committed_chunk_index, LastCommittedChunkIndex()); int64_t next_chunk_index = last_committed_chunk_index + 1; for (const std::string& uncommitted_chunk : uncommitted_chunks) { std::string uncommitted_chunk_filename = tsl::io::JoinPath( params_.UncommittedChunksDirectory(), uncommitted_chunk); TF_ASSIGN_OR_RETURN(int64_t uncommitted_chunk_index, GetUncommittedChunkIndex(uncommitted_chunk)); if (checkpoint_index.has_value() && uncommitted_chunk_index < *checkpoint_index) { int64_t chunk_num_elements = (next_chunk_index == *checkpoint_index - 1) ? checkpoint_num_elements : kUnknownNumElements; std::string committed_chunk_filename = tsl::io::JoinPath( params_.CommittedChunksDirectory(), absl::StrCat("chunk_", params_.stream_index, "_", next_chunk_index, "_", chunk_num_elements)); TF_RETURN_IF_ERROR(params_.env->RenameFile(uncommitted_chunk_filename, committed_chunk_filename)); ++next_chunk_index; } else { TF_RETURN_IF_ERROR(params_.env->DeleteFile(uncommitted_chunk_filename)); } } if (checkpoint_index.has_value() && next_chunk_index != *checkpoint_index) { return absl::InternalError(absl::StrCat( "Failed to recover tf.data snapshot writer: Unable to find chunks [", next_chunk_index, ", ", *checkpoint_index, ").")); } return absl::OkStatus(); } absl::StatusOr<int64_t> SnapshotStreamWriter::LastCommittedChunkIndex() { std::string committed_chunks_directory = params_.CommittedChunksDirectory(); TF_ASSIGN_OR_RETURN( std::vector<std::string> committed_chunks, GetChildren(params_.CommittedChunksDirectory(), params_.env)); int64_t last_committed_chunk_index = -1; for (const std::string& committed_chunk : committed_chunks) { TF_ASSIGN_OR_RETURN(auto chunk_filename_tokens, ParseChunkFilename(committed_chunk)); const auto [stream_index, chunk_index, _] = chunk_filename_tokens; if (stream_index != params_.stream_index) { continue; } if (chunk_index > last_committed_chunk_index) { last_committed_chunk_index = chunk_index; } } return last_committed_chunk_index; } std::string SnapshotStreamWriter::CheckpointPath( int64_t chunk_index, int64_t chunk_num_elements) const { return tsl::io::JoinPath( params_.CheckpointsDirectory(), absl::StrCat("checkpoint_", chunk_index, "_", chunk_num_elements)); } std::string SnapshotStreamWriter::CheckpointPath( const std::string& checkpoint_name) const { return tsl::io::JoinPath(params_.CheckpointsDirectory(), checkpoint_name); } } }
#include "tensorflow/core/data/service/snapshot/snapshot_stream_writer.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/lib/io/compression.h" #include "xla/tsl/lib/monitoring/cell_reader.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/test_utils.h" #include "tensorflow/core/data/service/task_runner.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; using ::testing::ValuesIn; using ::tsl::monitoring::testing::CellReader; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::unique_ptr<StandaloneTaskIterator>> TestIterator( const DatasetDef& dataset_def) { std::unique_ptr<standalone::Dataset> dataset; TF_RETURN_IF_ERROR(standalone::Dataset::FromGraph( standalone::Dataset::Params(), dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_RETURN_IF_ERROR(dataset->MakeIterator(&iterator)); return std::make_unique<StandaloneTaskIterator>(std::move(dataset), std::move(iterator)); } template <class T> class ElementOrErrorIterator : public TaskIterator { public: explicit ElementOrErrorIterator( const std::vector<absl::StatusOr<T>>& elements) : elements_(elements) {} absl::Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) override { end_of_sequence = (next_ >= elements_.size()); if (end_of_sequence) { return absl::OkStatus(); } const absl::StatusOr<T>& next_element = elements_[next_++]; TF_RETURN_IF_ERROR(next_element.status()); element = {Tensor{*next_element}}; return absl::OkStatus(); } absl::StatusOr<std::vector<Tensor>> Save() override { return std::vector<Tensor>{}; } absl::Status Restore(const std::vector<Tensor>& saved_iterator) override { return absl::OkStatus(); } int64_t Cardinality() const override { return elements_.size(); } private: const std::vector<absl::StatusOr<T>> elements_; int64_t next_ = 0; }; absl::StatusOr<std::string> CreateSnapshotDirectory() { std::string snapshot_path; if (!Env::Default()->LocalTempFilename(&snapshot_path)) { return absl::FailedPreconditionError( "Failed to create local temp file for snapshot."); } TF_RETURN_IF_ERROR(Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); return snapshot_path; } absl::StatusOr<std::unique_ptr<snapshot_util::Reader>> CreateSnapshotReader( const std::string& snapshot_path, int64_t num_elements, const std::string& compression, Env* env) { static constexpr int kTFRecordReader = 2; DataTypeVector dtypes(num_elements, DT_INT64); std::unique_ptr<snapshot_util::Reader> reader; TF_RETURN_IF_ERROR(snapshot_util::Reader::Create( env, snapshot_path, compression, kTFRecordReader, dtypes, &reader)); return reader; } template <class T> absl::StatusOr<std::vector<T>> ReadSnapshot(const std::string& snapshot_path, const std::string& compression, int64_t num_elements) { TF_ASSIGN_OR_RETURN(std::unique_ptr<snapshot_util::Reader> reader, CreateSnapshotReader(snapshot_path, num_elements, compression, Env::Default())); std::vector<Tensor> tensors; TF_RETURN_IF_ERROR(reader->ReadTensors(&tensors)); std::vector<T> result; for (const Tensor& tensor : tensors) { result.push_back(tensor.unaligned_flat<T>().data()[0]); } return result; } absl::StatusOr<std::string> ReadStringFromFile(const std::string& filename) { std::string data; TF_RETURN_IF_ERROR(ReadFileToString(Env::Default(), filename, &data)); return data; } class SnapshotStreamWriterParameterizedTest : public ::testing::TestWithParam<std::string> { public: std::string Compression() const { return GetParam(); } }; TEST_P(SnapshotStreamWriterParameterizedTest, WriteSnapshot) { CellReader<int64_t> cell_reader( "/tensorflow/data/service/snapshot_bytes_committed"); EXPECT_EQ(cell_reader.Delta(), 0); int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); EXPECT_THAT( GetChildren(writer_params.UncommittedChunksDirectory(), Env::Default()), IsOkAndHolds(IsEmpty())); EXPECT_GE(cell_reader.Delta(), 80); } TEST_P(SnapshotStreamWriterParameterizedTest, StreamAlreadyCompleted) { int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); TF_ASSERT_OK_AND_ASSIGN(iterator, TestIterator(testing::RangeDataset(range))); SnapshotStreamWriter duplicate_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); } TEST_P(SnapshotStreamWriterParameterizedTest, WriteSnapshotChunks) { int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default(), ByteSize::Bytes(1)}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT( GetChildren(writer_params.CommittedChunksDirectory(), Env::Default()), IsOkAndHolds(SizeIs(range))); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); } TEST_P(SnapshotStreamWriterParameterizedTest, WriteDoneFile) { int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::string done_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "DONE"); std::string error_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "ERROR"); EXPECT_THAT(Env::Default()->FileExists(done_file_path), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(Env::Default()->FileExists(error_file_path), StatusIs(absl::StatusCode::kNotFound)); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default(), ByteSize::Bytes(1)}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); TF_EXPECT_OK(Env::Default()->FileExists(done_file_path)); EXPECT_THAT(Env::Default()->FileExists(error_file_path), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(snapshot_writer.Completed(), IsOkAndHolds(true)); } TEST_P(SnapshotStreamWriterParameterizedTest, WriteErrorFile) { auto error_iterator = std::make_unique<ElementOrErrorIterator<tstring>>( std::vector<absl::StatusOr<tstring>>{ tstring("First element"), absl::InvalidArgumentError("Invalid argument"), tstring("Second element"), absl::AbortedError("Aborted")}); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::string done_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "DONE"); std::string error_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "ERROR"); EXPECT_THAT(Env::Default()->FileExists(done_file_path), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(Env::Default()->FileExists(error_file_path), StatusIs(absl::StatusCode::kNotFound)); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default(), ByteSize::Bytes(1)}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(error_iterator)); EXPECT_THAT(snapshot_writer.Wait(), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Env::Default()->FileExists(done_file_path), StatusIs(absl::StatusCode::kNotFound)); TF_EXPECT_OK(Env::Default()->FileExists(error_file_path)); EXPECT_THAT(ReadStringFromFile(error_file_path), IsOkAndHolds(HasSubstr("Invalid argument"))); EXPECT_THAT(snapshot_writer.Completed(), StatusIs(absl::StatusCode::kInvalidArgument)); } INSTANTIATE_TEST_SUITE_P(Compression, SnapshotStreamWriterParameterizedTest, ValuesIn<std::string>({tsl::io::compression::kNone, tsl::io::compression::kGzip, tsl::io::compression::kSnappy, tsl::io::compression::kZlib})); TEST(SnapshotStreamWriterTest, EmptyDataset) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(0))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, tsl::io::compression::kSnappy, Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, tsl::io::compression::kSnappy), IsOkAndHolds(IsEmpty())); } TEST(SnapshotStreamWriterTest, Cancel) { const int64_t range = 10000; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, tsl::io::compression::kSnappy, Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); snapshot_writer.Cancel(); EXPECT_THAT(snapshot_writer.Wait(), StatusIs(absl::StatusCode::kCancelled)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/snapshot_stream_writer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/snapshot_stream_writer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f20f0ac8-614d-4be5-a30f-2b86a1eedae3
cpp
tensorflow/tensorflow
snapshot_chunk_provider
tensorflow/core/data/service/snapshot/snapshot_chunk_provider.cc
tensorflow/core/data/service/snapshot/snapshot_chunk_provider_test.cc
#include "tensorflow/core/data/service/snapshot/snapshot_chunk_provider.h" #include <cstdint> #include <functional> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/btree_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "xla/tsl/protobuf/status.pb.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/retrying_utils.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/tstring.h" namespace tensorflow { namespace data { namespace { constexpr char kChunksRead[] = "chunks_read"; constexpr absl::string_view kSetElementDelimiter = ","; Tensor ConvertToTensor(absl::string_view s) { Tensor tensor(DT_STRING, TensorShape({})); tensor.scalar<tsl::tstring>()() = tsl::tstring(s); return tensor; } std::string AbsPath(absl::string_view snapshot_path, absl::string_view chunk) { return tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk); } void Backoff(int num_retries, tsl::Env* env) { if (num_retries >= 1) { absl::Duration retry_backoff = tsl::ComputeRetryBackoff(num_retries - 1); env->SleepForMicroseconds(absl::ToInt64Microseconds(retry_backoff)); } } } SnapshotChunkProvider::SnapshotChunkProvider(absl::string_view snapshot_path, tsl::Env* env) : snapshot_path_(snapshot_path), env_(env) {} absl::Status SnapshotChunkProvider::GetNext(Tensor* split, bool* end_of_splits) ABSL_LOCKS_EXCLUDED(mu_) { for (int num_retries = 0;; ++num_retries) { Backoff(num_retries, env_); absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR(snapshot_state_.status); if (!chunks_unread_.empty()) { std::string next_chunk = *chunks_unread_.begin(); chunks_read_.insert(next_chunk); chunks_unread_.erase(next_chunk); *split = ConvertToTensor(AbsPath(snapshot_path_, next_chunk)); *end_of_splits = false; return absl::OkStatus(); } if (snapshot_state_.snapshot_is_done) { *end_of_splits = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateSnapshot()); } } absl::Status SnapshotChunkProvider::UpdateSnapshot() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_ASSIGN_OR_RETURN(snapshot_state_, GetSnapshotState()); TF_RETURN_IF_ERROR(snapshot_state_.status); TF_ASSIGN_OR_RETURN(std::vector<std::string> chunks, GetAvailableChunks()); for (const std::string& chunk : chunks) { if (!chunks_read_.contains(chunk)) { chunks_unread_.insert(std::string(chunk)); } } return absl::OkStatus(); } absl::StatusOr<SnapshotChunkProvider::SnapshotState> SnapshotChunkProvider::GetSnapshotState() { std::string error_file_path = SnapshotErrorFilePath(snapshot_path_); if (env_->FileExists(error_file_path).ok()) { StatusProto status_proto; TF_RETURN_IF_ERROR(ReadTextProto(env_, error_file_path, &status_proto)); absl::Status status = tsl::StatusFromProto(status_proto); if (status.ok()) { return absl::InternalError(absl::StrCat( "Unexpected snapshot ERROR file contains an OK status at ", error_file_path, ".")); } return SnapshotState(status); } return SnapshotState( env_->FileExists(SnapshotDoneFilePath(snapshot_path_)).ok()); } absl::StatusOr<std::vector<std::string>> SnapshotChunkProvider::GetAvailableChunks() { absl::StatusOr<std::vector<std::string>> status_or_chunks = GetChildren(CommittedChunksDirectory(snapshot_path_), env_); if (status_or_chunks.ok()) { return *std::move(status_or_chunks); } else if (absl::IsNotFound(status_or_chunks.status())) { return std::vector<std::string>{}; } return status_or_chunks.status(); } absl::Status SnapshotChunkProvider::Reset() { absl::MutexLock l(&mu_); chunks_read_.clear(); chunks_unread_.clear(); return UpdateSnapshot(); } absl::Status SnapshotChunkProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) { absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kChunksRead), SetToString(chunks_read_))); return absl::OkStatus(); } absl::Status SnapshotChunkProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) { absl::MutexLock l(&mu_); tsl::tstring chunks_read; TF_RETURN_IF_ERROR(reader->ReadScalar(full_name(kChunksRead), &chunks_read)); chunks_read_ = SetFromString(chunks_read); return UpdateSnapshot(); } int64_t SnapshotChunkProvider::Cardinality() const { return SnapshotChunksCardinality(snapshot_path_, env_); } void SnapshotChunkProvider::Cancel() { absl::MutexLock l(&mu_); if (snapshot_state_.snapshot_is_done || !snapshot_state_.status.ok()) { return; } snapshot_state_.status = absl::CancelledError( absl::StrCat("Cancelled loading tf.data snapshot at ", snapshot_path_)); VLOG(2) << snapshot_state_.status; } std::string SnapshotChunkProvider::SetToString( const SnapshotChunkProvider::OrderedChunkSet& s) { return absl::StrJoin(s, kSetElementDelimiter); } SnapshotChunkProvider::OrderedChunkSet SnapshotChunkProvider::SetFromString( absl::string_view s) { if (s.empty()) { return {}; } std::vector<std::string> split = absl::StrSplit(s, kSetElementDelimiter); return OrderedChunkSet(split.begin(), split.end()); } bool SnapshotChunkProvider::ChunkOrder::operator()( const std::string& chunk1, const std::string& chunk2) const { absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> tokens1 = ParseChunkFilename(chunk1); absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> tokens2 = ParseChunkFilename(chunk2); if (!tokens1.status().ok()) { LOG_EVERY_N_SEC(ERROR, 60) << "Failed to parse tf.data snapshot chunk file " << chunk1 << ": " << tokens1.status(); return chunk1 < chunk2; } if (!tokens2.status().ok()) { LOG_EVERY_N_SEC(ERROR, 60) << "Failed to parse tf.data snapshot chunk file " << chunk2 << ": " << tokens2.status(); return chunk1 < chunk2; } auto [stream_index1, chunk_index1, num_records1] = *tokens1; auto [stream_index2, chunk_index2, num_records2] = *tokens2; if (chunk_index1 != chunk_index2) { return chunk_index1 < chunk_index2; } return stream_index1 < stream_index2; } } }
#include "tensorflow/core/data/service/snapshot/snapshot_chunk_provider.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/status.pb.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/tstring.h" namespace tensorflow { namespace data { namespace { using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::UnorderedElementsAreArray; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::string> CreateSnapshotDirectory() { std::string snapshot_path; if (!tsl::Env::Default()->LocalTempFilename(&snapshot_path)) { return absl::FailedPreconditionError( "Failed to create local temp file for snapshot."); } TF_RETURN_IF_ERROR(tsl::Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); return snapshot_path; } absl::Status WriteChunk(absl::string_view snapshot_path, absl::string_view chunk_file) { return AtomicallyWriteStringToFile( tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk_file), "", tsl::Env::Default()); } absl::Status SetDone(absl::string_view snapshot_path) { return AtomicallyWriteStringToFile(SnapshotDoneFilePath(snapshot_path), "", tsl::Env::Default()); } absl::Status SetStatus(absl::string_view snapshot_path, const absl::Status& status) { return AtomicallyWriteTextProto(SnapshotErrorFilePath(snapshot_path), tsl::StatusToProto(status), tsl::Env::Default()); } absl::StatusOr<std::string> GetChunk( SnapshotChunkProvider& snapshot_chunk_provider) { Tensor split; bool end_of_splits = false; TF_RETURN_IF_ERROR(snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { return absl::OutOfRangeError("No more available chunks."); } return split.unaligned_flat<tsl::tstring>().data()[0]; } absl::StatusOr<std::vector<std::string>> GetAllChunks( SnapshotChunkProvider& snapshot_chunk_provider) { std::vector<std::string> chunks; while (true) { Tensor split; bool end_of_splits = false; TF_RETURN_IF_ERROR(snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { return chunks; } chunks.push_back(split.unaligned_flat<tsl::tstring>().data()[0]); } return chunks; } std::vector<std::string> JoinPaths(absl::string_view snapshot_path, const std::vector<std::string> chunks) { std::vector<std::string> joined_chunks; for (absl::string_view chunk : chunks) { joined_chunks.push_back( tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk)); } return joined_chunks; } std::string full_name(const std::string& name) { return FullName("test", name); } absl::Status SaveAndRestore(SplitProvider& split_provider) { VariantTensorDataWriter writer; TF_RETURN_IF_ERROR(split_provider.Save(full_name, &writer)); std::vector<const VariantTensorData*> variants; writer.GetData(&variants); VariantTensorDataReader reader(variants); TF_RETURN_IF_ERROR(split_provider.Restore(full_name, &reader)); return absl::OkStatus(); } TEST(SnapshotChunkProviderTest, EmptySnapshot) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(IsEmpty())); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(IsEmpty())); } TEST(SnapshotChunkProviderTest, SingleReader) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::vector<std::string> chunks = {"chunk_4_4_4", "chunk_3_3_3", "chunk_2_2_2", "chunk_1_1_1", "chunk_0_0_0"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); absl::c_reverse(chunks); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(ElementsAreArray(JoinPaths(snapshot_path, chunks)))); } TEST(SnapshotChunkProviderTest, Cardinality) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_EQ(snapshot_chunk_provider.Cardinality(), kUnknownCardinality); std::vector<std::string> chunks = {"chunk_1_1_1", "chunk_2_2_2", "chunk_3_3_3", "chunk_4_4_4"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } EXPECT_EQ(snapshot_chunk_provider.Cardinality(), kUnknownCardinality); TF_ASSERT_OK(SetDone(snapshot_path)); EXPECT_EQ(snapshot_chunk_provider.Cardinality(), 5); } TEST(SnapshotChunkProviderTest, WaitForSnapshot) { std::string snapshot_path; ASSERT_TRUE(tsl::Env::Default()->LocalTempFilename(&snapshot_path)); absl::Mutex mu; std::vector<std::string> result; std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_path, &mu, &result]() { SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> chunks, GetAllChunks(snapshot_chunk_provider)); absl::MutexLock l(&mu); result = std::move(chunks); })); { absl::MutexLock l(&mu); EXPECT_TRUE(result.empty()); } TF_ASSERT_OK(tsl::Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(SetDone(snapshot_path)); reader_thread.reset(); absl::MutexLock l(&mu); EXPECT_THAT(result, ElementsAreArray(JoinPaths(snapshot_path, {"chunk_0_0_0"}))); } TEST(SnapshotChunkProviderTest, ConcurrentReadWrite) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); const int num_readers = 10; absl::Mutex mu; SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); std::vector<std::string> result; std::vector<std::unique_ptr<tsl::Thread>> reader_threads; for (int i = 0; i < num_readers; ++i) { reader_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Reader_", i), [&snapshot_chunk_provider, &mu, &result]() { while (true) { tsl::Env::Default()->SleepForMicroseconds(25); Tensor split; bool end_of_splits = false; TF_ASSERT_OK( snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { break; } absl::MutexLock l(&mu); result.push_back(split.unaligned_flat<tsl::tstring>().data()[0]); } }))); } int num_streams = 10, num_chunks_per_stream = 50; std::vector<std::unique_ptr<tsl::Thread>> stream_threads; for (int i = 0; i < num_streams; ++i) { stream_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Writer_", i), [&snapshot_path, num_chunks_per_stream, i]() { for (int j = 0; j < num_chunks_per_stream; ++j) { std::string filename = absl::StrCat("chunk_", i, "_", j, "_1"); TF_ASSERT_OK(WriteChunk(snapshot_path, filename)); tsl::Env::Default()->SleepForMicroseconds(35); } }))); } stream_threads.clear(); TF_ASSERT_OK(SetDone(snapshot_path)); reader_threads.clear(); std::vector<std::string> expected; for (int i = 0; i < num_streams; ++i) { for (int j = 0; j < num_chunks_per_stream; ++j) { expected.push_back(absl::StrCat("chunk_", i, "_", j, "_1")); } } EXPECT_THAT(result, UnorderedElementsAreArray(JoinPaths(snapshot_path, expected))); } TEST(SnapshotChunkProviderTest, SaveRestore) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::vector<std::string> chunks = {"chunk_4_4_4", "chunk_3_3_3", "chunk_2_2_2", "chunk_1_1_1", "chunk_0_0_0"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT(GetChunk(snapshot_chunk_provider), IsOkAndHolds(tsl::io::JoinPath( CommittedChunksDirectory(snapshot_path), "chunk_0_0_0"))); TF_ASSERT_OK(SaveAndRestore(snapshot_chunk_provider)); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(ElementsAreArray( JoinPaths(snapshot_path, {"chunk_1_1_1", "chunk_2_2_2", "chunk_3_3_3", "chunk_4_4_4"})))); } TEST(SnapshotChunkProviderTest, SnapshotError) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_path]() { SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT( GetAllChunks(snapshot_chunk_provider), StatusIs(absl::StatusCode::kFailedPrecondition, "Test error.")); })); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_1_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_2_0_0")); TF_ASSERT_OK( SetStatus(snapshot_path, absl::FailedPreconditionError("Test error."))); reader_thread.reset(); } TEST(SnapshotChunkProviderTest, Cancel) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_chunk_provider]() { EXPECT_THAT( GetAllChunks(snapshot_chunk_provider), StatusIs(absl::StatusCode::kCancelled, HasSubstr("Cancelled loading tf.data snapshot at"))); })); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_1_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_2_0_0")); snapshot_chunk_provider.Cancel(); reader_thread.reset(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/snapshot_chunk_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/snapshot_chunk_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d16e7c62-0807-460f-8ba5-1385b18f29fc
cpp
tensorflow/tensorflow
parallel_tfrecord_writer
tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.cc
tensorflow/core/data/service/snapshot/parallel_tfrecord_writer_test.cc
#include "tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/snapshot/utils.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/random.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/traceme.h" namespace tensorflow { namespace data { ParallelTFRecordWriter::ParallelTFRecordWriter(const std::string& file_prefix, const std::string& compression, tsl::Env* env, ByteSize max_file_size, int64_t num_write_threads, int64_t buffer_size) : env_(env), file_prefix_(file_prefix), compression_(compression), max_file_size_(max_file_size), buffer_size_(buffer_size) { thread_pool_ = std::make_unique<tsl::thread::ThreadPool>( env_, tsl::ThreadOptions{}, "write_tfrecord_thread", num_write_threads); for (int64_t i = 0; i < num_write_threads; ++i) { thread_pool_->Schedule([this]() { WriteFiles(); }); } } ParallelTFRecordWriter::~ParallelTFRecordWriter() { absl::Status status = Finalize().status(); if (!status.ok()) { LOG(ERROR) << "Parallel TFRecord writer failed with error: " << status; } } absl::Status ParallelTFRecordWriter::Write(std::vector<Tensor> record) ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); while (status_.ok() && !finalized_ && buffer_.size() >= buffer_size_) { ready_to_push_.Wait(&mu_); } TF_RETURN_IF_ERROR(status_); if (finalized_) { return absl::FailedPreconditionError(absl::StrCat( "Trying to write a closed TFRecord file at ", file_prefix_, ".")); } buffer_.push_back(std::move(record)); ready_to_pop_.Signal(); return absl::OkStatus(); } absl::StatusOr<ParallelTFRecordWriter::FileToStatsMap> ParallelTFRecordWriter::Finalize() ABSL_LOCKS_EXCLUDED(mu_) { { absl::MutexLock l(&mu_); finalized_ = true; ready_to_push_.SignalAll(); ready_to_pop_.SignalAll(); } thread_pool_.reset(); absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR(status_); return file_stats_; } void ParallelTFRecordWriter::WriteFiles() { while (HasNext()) { UpdateStatus(WriteFile()); } } bool ParallelTFRecordWriter::HasNext() const ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); if (!status_.ok()) { return false; } return !finalized_ || !buffer_.empty(); } absl::Status ParallelTFRecordWriter::WriteFile() ABSL_LOCKS_EXCLUDED(mu_) { TF_ASSIGN_OR_RETURN(const std::string filename, GetUniqueFile()); snapshot_util::TFRecordWriter writer(filename, compression_); TF_RETURN_IF_ERROR(writer.Initialize(env_)); while (ShouldWriteFile(filename)) { TF_RETURN_IF_ERROR(WriteRecord(filename, writer)); } TF_RETURN_IF_ERROR(writer.Close()); return DeleteEmptyFile(filename); } bool ParallelTFRecordWriter::ShouldWriteFile(const std::string& filename) const ABSL_LOCKS_EXCLUDED(mu_) { if (!HasNext()) { return false; } absl::MutexLock l(&mu_); auto iterator = file_stats_.find(filename); return iterator == file_stats_.end() || iterator->second.estimated_size < max_file_size_; } absl::Status ParallelTFRecordWriter::WriteRecord( const std::string& filename, snapshot_util::TFRecordWriter& writer) { TF_ASSIGN_OR_RETURN(std::optional<std::vector<Tensor>> record, GetNextRecord(filename)); if (!record.has_value()) { return absl::OkStatus(); } tsl::profiler::TraceMe activity("WriteTFRecord", tsl::profiler::TraceMeLevel::kInfo); TF_RETURN_IF_ERROR(writer.WriteTensors(*std::move(record))); return absl::OkStatus(); } absl::StatusOr<std::optional<std::vector<Tensor>>> ParallelTFRecordWriter::GetNextRecord(const std::string& filename) ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); while (status_.ok() && !finalized_ && buffer_.empty()) { ready_to_pop_.Wait(&mu_); } TF_RETURN_IF_ERROR(status_); if (buffer_.empty()) { return std::nullopt; } std::vector<Tensor> record = std::move(buffer_.front()); ByteSize estimated_size = EstimatedSize(record); LOG_EVERY_N_SEC(INFO, 1) << "Writing TFRecord of " << estimated_size << " to file " << filename << "*."; ++file_stats_[filename].num_records; file_stats_[filename].estimated_size += estimated_size; buffer_.pop_front(); ready_to_push_.SignalAll(); return record; } absl::Status ParallelTFRecordWriter::DeleteEmptyFile( const std::string& filename) ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); auto iterator = file_stats_.find(filename); if (iterator != file_stats_.end() && iterator->second.num_records > 0) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(env_->DeleteFile(filename)); if (iterator != file_stats_.end()) { file_stats_.erase(iterator); } return absl::OkStatus(); } absl::StatusOr<std::string> ParallelTFRecordWriter::GetUniqueFile() const { std::string filename = absl::StrCat(file_prefix_, "__shard__", absl::Hex(tsl::random::New64()), "_"); if (!env_->CreateUniqueFileName(&filename, ".tfrecord")) { return absl::InternalError( absl::StrCat("Failed to write file ", filename, ": Unable to open temporary files.")); } return filename; } void ParallelTFRecordWriter::UpdateStatus(absl::Status status) ABSL_LOCKS_EXCLUDED(mu_) { if (status.ok()) { return; } absl::MutexLock l(&mu_); status_.Update(std::move(status)); ready_to_push_.SignalAll(); ready_to_pop_.SignalAll(); } } }
#include "tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.h" #include <cstdint> #include <iterator> #include <limits> #include <memory> #include <numeric> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/lib/io/compression.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::Each; using ::testing::Eq; using ::testing::Field; using ::testing::Gt; using ::testing::IsEmpty; using ::testing::Le; using ::testing::SizeIs; using ::testing::UnorderedElementsAreArray; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::string> TestDir() { std::string test_dir; if (!tsl::Env::Default()->LocalTempFilename(&test_dir)) { return absl::FailedPreconditionError("Failed to create local temp file."); } TF_RETURN_IF_ERROR(tsl::Env::Default()->RecursivelyCreateDir(test_dir)); return test_dir; } class RangeIterator { public: explicit RangeIterator(const int64_t range) : range_(range) {} absl::Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) { end_of_sequence = (next_ >= range_); if (end_of_sequence) { return absl::OkStatus(); } element = {Tensor{next_++}}; return absl::OkStatus(); } int64_t Cardinality() const { return range_; } private: const int64_t range_; int64_t next_ = 0; }; absl::StatusOr<ParallelTFRecordWriter::FileToStatsMap> WriteRecords( ParallelTFRecordWriter& writer, RangeIterator& iterator, bool finalize_writer = true) { std::vector<Tensor> record; bool end_of_sequence = false; TF_RETURN_IF_ERROR(iterator.GetNext(record, end_of_sequence)); while (!end_of_sequence) { TF_RETURN_IF_ERROR(writer.Write(record)); TF_RETURN_IF_ERROR(iterator.GetNext(record, end_of_sequence)); } if (finalize_writer) { return writer.Finalize(); } return ParallelTFRecordWriter::FileToStatsMap(); } template <class T> absl::StatusOr<std::vector<T>> ReadRecords(const std::string& filename, const std::string& compression) { snapshot_util::TFRecordReader reader(filename, compression, DataTypeVector{DT_INT64}); TF_RETURN_IF_ERROR(reader.Initialize(tsl::Env::Default())); std::vector<T> result; while (true) { std::vector<Tensor> record; absl::Status status = reader.ReadTensors(&record); if (absl::IsOutOfRange(status)) { break; } TF_RETURN_IF_ERROR(status); for (const Tensor& tensor : record) { result.push_back(tensor.unaligned_flat<T>().data()[0]); } } return result; } template <class T> absl::StatusOr<std::vector<T>> ReadRecords( const std::vector<std::string>& filenames, const std::string& compression) { std::vector<T> result; for (const std::string& filename : filenames) { TF_ASSIGN_OR_RETURN(std::vector<T> records, ReadRecords<T>(filename, compression)); absl::c_move(records, std::back_inserter(result)); } return result; } std::vector<int64_t> Range(int64_t range) { std::vector<int64_t> result(range); std::iota(result.begin(), result.end(), 0); return result; } std::vector<int64_t> Repeat(const std::vector<int64_t>& values, int64_t repeat) { std::vector<int64_t> result; for (int64_t i = 0; i < repeat; ++i) { absl::c_copy(values, std::back_inserter(result)); } return result; } template <class K, class V> std::pair<std::vector<K>, std::vector<V>> Unzip( const absl::flat_hash_map<K, V>& m) { std::vector<K> keys; std::vector<V> values; for (const auto& [k, v] : m) { keys.push_back(k); values.push_back(v); } return std::make_pair(keys, values); } class ParallelTFRecordWriterParamTest : public ::testing::TestWithParam<std::tuple< int64_t, int64_t, ByteSize, int64_t, int64_t, std::string>> { protected: int64_t NumElements() const { return std::get<0>(GetParam()); } int64_t NumClients() const { return std::get<1>(GetParam()); } ByteSize MaxFileSize() const { return std::get<2>(GetParam()); } int64_t NumWriteThreads() const { return std::get<3>(GetParam()); } int64_t BufferSize() const { return std::get<4>(GetParam()); } std::string Compression() const { return std::get<5>(GetParam()); } void VerifyFileStats( const std::vector<ParallelTFRecordWriter::FileStats>& file_stats, int64_t expected_num_elements) const { auto add_num_elements = [](int64_t num_elements, const ParallelTFRecordWriter::FileStats& stats) { return num_elements + stats.num_records; }; EXPECT_EQ(absl::c_accumulate(file_stats, 0, add_num_elements), expected_num_elements); EXPECT_THAT( file_stats, Each(Field(&ParallelTFRecordWriter::FileStats::num_records, Gt(0)))); EXPECT_THAT(file_stats, Each(Field(&ParallelTFRecordWriter::FileStats::estimated_size, Le(MaxFileSize() + ByteSize::Bytes(16))))); if (MaxFileSize() <= ByteSize::Bytes(1)) { EXPECT_THAT( file_stats, Each(Field(&ParallelTFRecordWriter::FileStats::num_records, Eq(1)))); EXPECT_THAT(file_stats, SizeIs(expected_num_elements)); } if (MaxFileSize() >= ByteSize::GB(1)) { EXPECT_THAT(file_stats, SizeIs(Le(NumWriteThreads()))); } } }; TEST_P(ParallelTFRecordWriterParamTest, WriteRecords) { TF_ASSERT_OK_AND_ASSIGN(std::string test_dir, TestDir()); ParallelTFRecordWriter parallel_tfrecord_writer( test_dir, Compression(), tsl::Env::Default(), MaxFileSize(), NumWriteThreads(), BufferSize()); RangeIterator range_iterator(NumElements()); TF_ASSERT_OK_AND_ASSIGN( ParallelTFRecordWriter::FileToStatsMap file_stats, WriteRecords(parallel_tfrecord_writer, range_iterator)); const auto [files, stats] = Unzip(file_stats); EXPECT_THAT(ReadRecords<int64_t>(files, Compression()), IsOkAndHolds(UnorderedElementsAreArray(Range(NumElements())))); VerifyFileStats(stats, NumElements()); } TEST_P(ParallelTFRecordWriterParamTest, ConcurrentWrites) { TF_ASSERT_OK_AND_ASSIGN(std::string test_dir, TestDir()); ParallelTFRecordWriter parallel_tfrecord_writer( test_dir, Compression(), tsl::Env::Default(), MaxFileSize(), NumWriteThreads(), BufferSize()); std::vector<std::unique_ptr<tsl::Thread>> client_threads; for (int i = 0; i < NumClients(); ++i) { client_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Client_", i), [this, &parallel_tfrecord_writer]() { RangeIterator range_iterator(NumElements()); TF_ASSERT_OK(WriteRecords(parallel_tfrecord_writer, range_iterator, false) .status()); }))); } client_threads.clear(); TF_ASSERT_OK_AND_ASSIGN(ParallelTFRecordWriter::FileToStatsMap file_stats, parallel_tfrecord_writer.Finalize()); const auto [files, stats] = Unzip(file_stats); EXPECT_THAT(ReadRecords<int64_t>(files, Compression()), IsOkAndHolds(UnorderedElementsAreArray( Repeat(Range(NumElements()), NumClients())))); VerifyFileStats(stats, NumElements() * NumClients()); } INSTANTIATE_TEST_SUITE_P(ParallelTFRecordWriterParams, ParallelTFRecordWriterParamTest, ::testing::Combine( ::testing::Values(0, 1, 100), ::testing::Values(1, 5), ::testing::Values(ByteSize::Bytes(1), ByteSize::Bytes(100), ByteSize::GB(1)), ::testing::Values(1, 5), ::testing::Values(1, 10000), ::testing::Values(tsl::io::compression::kNone, tsl::io::compression::kSnappy, tsl::io::compression::kZlib))); TEST(ParallelTFRecordWriterTest, WriteNoRecord) { TF_ASSERT_OK_AND_ASSIGN(std::string test_dir, TestDir()); ParallelTFRecordWriter parallel_tfrecord_writer( test_dir, tsl::io::compression::kNone, tsl::Env::Default()); TF_ASSERT_OK_AND_ASSIGN(ParallelTFRecordWriter::FileToStatsMap file_stats, parallel_tfrecord_writer.Finalize()); const auto [files, stats] = Unzip(file_stats); EXPECT_THAT(ReadRecords<int64_t>(files, tsl::io::compression::kNone), IsOkAndHolds(IsEmpty())); } TEST(ParallelTFRecordWriterTest, CannotWriteFinalizedWriter) { TF_ASSERT_OK_AND_ASSIGN(std::string test_dir, TestDir()); std::string file_prefix = "file"; ParallelTFRecordWriter parallel_tfrecord_writer( test_dir, tsl::io::compression::kNone, tsl::Env::Default()); std::unique_ptr<tsl::Thread> client_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Client", [&parallel_tfrecord_writer]() { RangeIterator range_iterator(std::numeric_limits<int64_t>::max()); EXPECT_THAT(WriteRecords(parallel_tfrecord_writer, range_iterator), StatusIs(absl::StatusCode::kFailedPrecondition)); })); parallel_tfrecord_writer.Finalize().status().IgnoreError(); client_thread.reset(); } TEST(ParallelTFRecordWriterTest, DirectoryDoesNotExist) { ParallelTFRecordWriter parallel_tfrecord_writer("/directory/does/not/exists", tsl::io::compression::kNone, tsl::Env::Default()); RangeIterator range_iterator(10); std::vector<Tensor> element; bool end_of_sequence = false; TF_ASSERT_OK(range_iterator.GetNext(element, end_of_sequence)); parallel_tfrecord_writer.Write(element).IgnoreError(); EXPECT_THAT(parallel_tfrecord_writer.Finalize().status(), StatusIs(absl::StatusCode::kNotFound)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/parallel_tfrecord_writer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a6b50088-4668-4bea-9a3a-97e531d48900
cpp
tensorflow/tensorflow
data_service_client
tensorflow/core/data/service/client/data_service_client.cc
tensorflow/core/data/service/client/data_service_client_test.cc
#include "tensorflow/core/data/service/client/data_service_client.h" #include <algorithm> #include <functional> #include <limits> #include <memory> #include <optional> #include <random> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/strings/ascii.h" #include "absl/strings/substitute.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/client/common.h" #include "tensorflow/core/data/service/client/validate_utils.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/worker_client.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/data/utils.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/profiler/lib/traceme_encode.h" #include "tsl/platform/retrying_utils.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { bool IsColocatedTask(const TaskInfo& task) { return absl::c_any_of(task.worker_tags(), [](std::string_view worker_tag) { return absl::AsciiStrToUpper(worker_tag) == kColocatedWorkerTag; }); } absl::StatusOr<DataTransferServerInfo> GetTransferServer( const std::string& protocol, const TaskInfo& task_info) { for (const auto& transfer_server : task_info.transfer_servers()) { if (transfer_server.protocol() == protocol) { return transfer_server; } } return errors::NotFound("protocol ", protocol, " is not available for worker ", task_info.worker_address()); } } DataServiceClient::DataServiceClient(const DataServiceParams& params) : params_(params), max_outstanding_requests_(params.max_outstanding_requests) {} DataServiceClient::~DataServiceClient() { VLOG(2) << "Destroying data service client for iteration id " << iteration_client_id_; task_thread_manager_.reset(); if (initialized_) { Status s = dispatcher_->ReleaseIterationClient(iteration_client_id_); if (!s.ok()) { LOG(WARNING) << "Failed to release iteration client id: " << s; } } for (auto& worker_thread : worker_threads_) { worker_thread.reset(); } DeleteLocalWorkerTasks(); VLOG(2) << "Destroyed data service dataset iterator for iteration id " << iteration_client_id_; } Status DataServiceClient::Initialize( const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator) { accelerator_device_info_ = accelerator_device_info; allocator_ = allocator; TF_RETURN_IF_ERROR(ValidateDataServiceParams(params_)); VLOG(3) << "Connecting to " << params_.address << " in tf.data service client."; dispatcher_ = std::make_unique<DataServiceDispatcherClient>(params_.address, params_.protocol); int64_t deadline_micros = kint64max; std::optional<std::string> job_name; if (!params_.job_name.empty()) { job_name = params_.job_name; } TF_RETURN_IF_ERROR(grpc_util::Retry( [&]() { return dispatcher_->GetOrCreateJob( params_.dataset_id, params_.processing_mode, job_name, params_.num_consumers, params_.cross_trainer_cache_options.has_value(), params_.target_workers, job_id_); }, strings::StrCat("get or create job with dispatcher at ", params_.address), deadline_micros)); TF_RETURN_IF_ERROR(grpc_util::Retry( [&]() { return dispatcher_->GetOrCreateIteration(job_id_, params_.repetition, iteration_client_id_); }, strings::StrCat("get or create iteration with dispatcher at ", params_.address), deadline_micros)); initialized_ = true; return absl::OkStatus(); } absl::StatusOr<GetNextResult> DataServiceClient::GetNext( DataServiceContextFactory context_factory) TF_LOCKS_EXCLUDED(mu_) { VLOG(3) << "Getting the next element from tf.data service client."; mutex_lock l(mu_); if (ctx_ == nullptr) { ctx_ = context_factory(); } EnsureThreadsStarted(); std::shared_ptr<Result> result; do { while (!ResultReady() && !Finished() && !cancelled_ && status_.ok()) { VLOG(3) << "Blocking in GetNext: " << DebugString(); get_next_cv_.wait(l); } if (cancelled_) { VLOG(3) << "Returning from GetNext due to cancellation"; return errors::Cancelled("Data service iterator was cancelled"); } if (!status_.ok()) { VLOG(3) << "Returning from GetNext with error " << status_; return status_; } if (results_.empty()) { VLOG(3) << "Returning from GetNext with end_of_sequence"; return GetNextResult::EndOfSequence(); } if (!ResultReady()) { VLOG(3) << "Returning from GetNext with internal error"; return errors::Internal("Expected a result to be ready, but none were."); } result = PopNextResult(); worker_thread_cv_.notify_one(); if (result->skip) { VLOG(3) << "Skipping result from task " << result->task_id; } } while (result->skip); GetNextResult next; next.end_of_sequence = result->end_of_sequence; if (next.end_of_sequence) { VLOG(1) << "Returning end_of_sequence"; return next; } VLOG(1) << "Returning the next element from data service dataset's " << "Iterator: task " << result->task_id << ", element " << result->element_index; if (IsCoordinatedRead()) { VLOG(1) << "Consumer " << *params_.consumer_index << ": Result " << get_next_index_++; } next.tensors.swap(result->element); return next; } void DataServiceClient::Cancel() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); for (const auto& task : tasks_) { task->worker->TryCancel(); } cancelled_ = true; worker_thread_cv_.notify_all(); manager_thread_cv_.notify_all(); get_next_cv_.notify_all(); } TraceMeMetadata DataServiceClient::GetTraceMeMetadata() const { TraceMeMetadata result; int64_t num_tasks = -1; int64_t autotuned_max_outstanding_requests = model::kAutotune; if (mu_.try_lock()) { num_tasks = tasks_.size() - finished_tasks_; autotuned_max_outstanding_requests = max_outstanding_requests_; mu_.unlock(); } result.push_back(std::make_pair( "num_tasks", num_tasks == -1 ? kTraceInfoUnavailable : strings::Printf("%lld", static_cast<long long>(num_tasks)))); result.push_back(std::make_pair("job_name", params_.job_name)); result.push_back(std::make_pair( "max_outstanding_requests", strings::Printf( "%lld", static_cast<long long>(params_.max_outstanding_requests)))); if (params_.max_outstanding_requests == model::kAutotune) { result.push_back(std::make_pair( "autotuned_max_outstanding_requests", strings::Printf("%lld", static_cast<long long>( autotuned_max_outstanding_requests)))); } return result; } void DataServiceClient::EnsureThreadsStarted() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!task_thread_manager_ && !cancelled_) { task_thread_manager_ = ctx_->StartThread("task-thread-manager", [this]() { TaskThreadManager(); }); } } bool DataServiceClient::Finished() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return num_running_worker_threads_ == 0 && !ShouldWaitForNext(); } bool DataServiceClient::ShouldWaitForNext() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (should_finish_iteration_) { return !iteration_finished_; } return tasks_.empty() || finished_tasks_ < tasks_.size(); } void DataServiceClient::DeleteLocalWorkerTasks() TF_LOCKS_EXCLUDED(mu_) { std::vector<std::shared_ptr<Task>> tasks; { mutex_lock l(mu_); tasks = tasks_; } for (const std::shared_ptr<Task>& task : tasks) { std::shared_ptr<DataServiceWorkerImpl> worker = LocalWorkers::Get(task->info.worker_address()); if (worker && ShouldDeleteLocalTask(task->info)) { worker->DeleteLocalTask(task->info); } } } bool DataServiceClient::ShouldDeleteLocalTask(const TaskInfo& task) const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (IsCoordinatedRead()) { return false; } if (params_.target_workers == TARGET_WORKERS_LOCAL) { return true; } return params_.target_workers == TARGET_WORKERS_AUTO && IsColocatedTask(task); } void DataServiceClient::TaskThreadManager() TF_LOCKS_EXCLUDED(mu_) { auto cleanup = gtl::MakeCleanup([] { VLOG(1) << "Task thread manager exiting"; }); VLOG(1) << "Starting task thread manager"; uint64 next_check = Env::Default()->NowMicros(); while (true) { { mutex_lock l(mu_); while (!cancelled_ && Env::Default()->NowMicros() < next_check) { int64_t remaining_time = next_check - Env::Default()->NowMicros(); VLOG(4) << "Task thread manager waiting for " << remaining_time << "us"; manager_thread_cv_.wait_for(l, std::chrono::microseconds(remaining_time)); } if (cancelled_) { VLOG(3) << "Task thread manager finished"; return; } } Heartbeat(); UpdateBufferSize(); UpdateWorkerThreads(); next_check = Env::Default()->NowMicros() + absl::ToInt64Microseconds(params_.task_refresh_interval); } } void DataServiceClient::TryBlockRound(int64_t round) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (round_robin_round_limit_.has_value() && round_robin_round_limit_.value() == round) { return; } if (current_round_ >= round) { VLOG(1) << "Rejecting request to block round " << round << ", because processing has already begun for round " << current_round_; return; } VLOG(1) << "Accepting request to block round " << round; round_robin_round_limit_ = round; } void DataServiceClient::UpdateIterationFinished(bool iteration_finished) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!iteration_finished) { return; } iteration_finished_ = true; get_next_cv_.notify_all(); worker_thread_cv_.notify_all(); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> DataServiceClient::CreateWorkerClient(const std::string& protocol, const TaskInfo& task_info) { TF_ASSIGN_OR_RETURN(DataTransferServerInfo transfer_server, GetTransferServer(protocol, task_info)); return CreateDataServiceWorkerClient(params_.protocol, transfer_server, accelerator_device_info_, allocator_); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> DataServiceClient::CreateGrpcWorkerClient(const TaskInfo& task_info) { return CreateWorkerClient(kGrpcTransferProtocol, task_info); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> DataServiceClient::CreateAlternativeWorkerClientWithGrpcFallback( const DataTransferServerInfo& transfer_server, const TaskInfo& task_info) { absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> worker = CreateDataServiceWorkerClient(params_.protocol, transfer_server, accelerator_device_info_, allocator_); if (worker.ok()) { LOG(INFO) << "Successfully started client for data transfer protocol '" << transfer_server.protocol() << "' for worker '" << task_info.worker_address() << "'."; return worker; } LOG(INFO) << "Failed to start client for data transfer protocol '" << transfer_server.protocol() << "' for worker '" << task_info.worker_address() << "'; falling back to grpc. " << "Original error: " << worker.status(); metrics::RecordTFDataServiceDataTransferProtocolFallback( transfer_server.protocol(), static_cast<error::Code>(worker.status().raw_code()), std::string(worker.status().message())); return CreateGrpcWorkerClient(task_info); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> DataServiceClient::CreateWorkerClient(const TaskInfo& task_info) { if (params_.data_transfer_protocol == kLocalTransferProtocol || ForceLocalProtocol(task_info.worker_address())) { DataTransferServerInfo info; info.set_protocol(kLocalTransferProtocol); info.set_address(task_info.worker_address()); return CreateDataServiceWorkerClient(params_.protocol, info, accelerator_device_info_, allocator_); } if (!params_.data_transfer_protocol.empty()) { TF_ASSIGN_OR_RETURN( DataTransferServerInfo transfer_server, GetTransferServer(params_.data_transfer_protocol, task_info)); return CreateAlternativeWorkerClientWithGrpcFallback(transfer_server, task_info); } if (std::string default_protocol = DefaultDataTransferProtocol(); default_protocol != kGrpcTransferProtocol) { absl::StatusOr<DataTransferServerInfo> transfer_server = GetTransferServer(default_protocol, task_info); if (transfer_server.ok()) { return CreateAlternativeWorkerClientWithGrpcFallback(*transfer_server, task_info); } VLOG(1) << "Failed to find transfer server for default data transfer " "protocol '" << default_protocol << "' for worker '" << task_info.worker_address() << "'; falling back to grpc. Original error: " << transfer_server.status(); metrics::RecordTFDataServiceDataTransferProtocolFallback( default_protocol, error::Code::NOT_FOUND, "Failed to find transfer server for default protocol"); } return CreateGrpcWorkerClient(task_info); } Status DataServiceClient::AddTask(const TaskInfo& task_info) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_ASSIGN_OR_RETURN(std::unique_ptr<DataServiceWorkerClient> worker, CreateWorkerClient(task_info)); metrics::RecordTFDataServiceDataTransferProtocolUsed( worker->GetDataTransferProtocol(), !params_.data_transfer_protocol.empty()); tasks_.push_back(std::make_shared<Task>(task_info, std::move(worker))); worker_thread_cv_.notify_one(); if (IsCoordinatedRead()) { VLOG(1) << "Consumer " << params_.consumer_index.value() << " adding task " << task_info.task_id() << " to read from worker " << task_info.worker_address() << ". Task starting round: " << task_info.starting_round(); DCHECK_LE(current_round_, task_info.starting_round()); if (current_round_ == task_info.starting_round()) { DCHECK_EQ(next_task_index_, 0); } } if (!IsCoordinatedRead()) { std::mt19937 rng; std::shuffle(tasks_.begin(), tasks_.end(), rng); } return absl::OkStatus(); } void DataServiceClient::Heartbeat() TF_LOCKS_EXCLUDED(mu_) { ClientHeartbeatRequest req; req.set_iteration_client_id(iteration_client_id_); if (IsCoordinatedRead()) { mutex_lock l(mu_); req.set_current_round(current_round_); if (round_robin_round_limit_.has_value()) { req.set_blocked_round(round_robin_round_limit_.value()); } } { mutex_lock l(mu_); double target_processing_time_nsec = ctx_->GetTargetProcessingTimeNsec(); req.set_target_processing_time_nsec(target_processing_time_nsec); } ClientHeartbeatResponse resp; Status s = dispatcher_->ClientHeartbeat(req, resp); if (!s.ok()) { if (IsPreemptedError(s)) { LOG(WARNING) << "Failed to heartbeat to dispatcher from iteration client id " << iteration_client_id_ << ". Dispatcher address: " << params_.address << ". Error: " << s; return; } mutex_lock l(mu_); status_ = s; get_next_cv_.notify_all(); } mutex_lock l(mu_); UpdateIterationFinished(resp.iteration_finished()); if (resp.optional_block_round_case() == ClientHeartbeatResponse::kBlockRound) { TryBlockRound(resp.block_round()); } else { round_robin_round_limit_ = std::nullopt; worker_thread_cv_.notify_all(); } UpdateTasks(resp); RecordTFMetrics(resp); } void DataServiceClient::UpdateTasks(const ClientHeartbeatResponse& resp) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { absl::flat_hash_map<int64_t, TaskInfo> task_id_to_task; for (auto& task : resp.task_info()) { task_id_to_task[task.task_id()] = task; } if (iteration_finished_) { return; } int index = 0; while (index < tasks_.size()) { std::shared_ptr<Task> task = tasks_[index]; if (task_id_to_task.contains(task->info.task_id())) { task_id_to_task.erase(task->info.task_id()); ++index; } else { if (task->end_of_sequence) { finished_tasks_--; } tasks_.erase(tasks_.begin() + index); if (index < next_task_index_) { next_task_index_--; } if (!tasks_.empty() && next_task_index_ >= tasks_.size()) { AdvanceTaskIndex(); } } } for (auto& task : resp.task_info()) { auto it = task_id_to_task.find(task.task_id()); if (it == task_id_to_task.end()) { continue; } if (!ShouldReadFromTask(task)) { VLOG(3) << "Skipping untargeted worker task " << task.task_id(); should_finish_iteration_ = false; continue; } Status s = AddTask(it->second); if (!s.ok()) { status_ = s; get_next_cv_.notify_all(); break; } } } bool DataServiceClient::ShouldReadFromTask(const TaskInfo& task) const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (IsCoordinatedRead()) { return true; } const bool is_local_task = (LocalWorkers::Get(task.worker_address()) != nullptr); if (params_.target_workers == TARGET_WORKERS_LOCAL && !is_local_task) { return false; } const bool is_cross_tf_host_read = !is_local_task && IsColocatedTask(task); if (params_.target_workers == TARGET_WORKERS_AUTO && is_cross_tf_host_read) { return false; } return true; } void DataServiceClient::RecordTFMetrics(const ClientHeartbeatResponse& resp) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { for (const auto& task : resp.task_info()) { if (worker_uids_.contains(task.worker_uid())) { continue; } metrics::RecordTFDataServiceClientIterators( task.worker_uid(), resp.deployment_mode(), params_.processing_mode, IsCoordinatedRead()); worker_uids_.insert(task.worker_uid()); } } void DataServiceClient::UpdateBufferSize() TF_LOCKS_EXCLUDED(mu_) { if (params_.max_outstanding_requests == model::kAutotune) { mutex_lock l(mu_); int64_t max_outstanding_requests = ctx_->UpdateMaxOutstandingRequests( max_outstanding_requests_, tasks_.size()); if (max_outstanding_requests > max_outstanding_requests_) { worker_thread_cv_.notify_all(); } VLOG(3) << "Updated `max_outstanding_requests` from " << max_outstanding_requests_ << " to " << max_outstanding_requests << " with " << tasks_.size() << " tasks."; max_outstanding_requests_ = max_outstanding_requests; } } void DataServiceClient::UpdateWorkerThreads() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); const int64_t max_num_threads = std::min<int64_t>(tasks_.size(), max_outstanding_requests_); while (num_running_worker_threads_ < max_num_threads && !cancelled_ && status_.ok()) { num_running_worker_threads_++; auto done = [this]() { mutex_lock l(mu_); num_running_worker_threads_--; get_next_cv_.notify_all(); }; worker_threads_.push_back(ctx_->StartThread( "tf-data-service-task_thread", [this, done = std::move(done)]() { RunWorkerThread(std::move(done)); })); } } void DataServiceClient::RunWorkerThread(std::function<void()> done) TF_LOCKS_EXCLUDED(mu_) { auto cleanup = gtl::MakeCleanup([done = std::move(done)]() { done(); VLOG(1) << "Worker thread exiting"; }); VLOG(1) << "Starting worker thread"; std::shared_ptr<Task> task_to_process; int64_t num_consecutive_skipped = 0; constexpr int64_t MAX_ROUND_FALLBACK_TO_BLOCKING = 5; bool allow_skip = true; while (true) { std::shared_ptr<Result> result; { mutex_lock l(mu_); if (task_to_process) { task_to_process->in_use = false; --outstanding_requests_; task_to_process = nullptr; worker_thread_cv_.notify_one(); } while (true) { if (cancelled_ || !ShouldWaitForNext()) { return; } task_to_process = GetTaskToProcess(); if (task_to_process) { VLOG(3) << "Selected a task to process: " << task_to_process->info.ShortDebugString(); break; } worker_thread_cv_.wait(l); } DCHECK(task_to_process != nullptr); task_to_process->in_use = true; ++outstanding_requests_; if (IsCoordinatedRead()) { results_.push(std::make_shared<Result>()); ctx_->RecordBufferEnqueue(results_.back()->element); result = results_.back(); } else { result = std::make_shared<Result>(); } VLOG(3) << "Processing task " << task_to_process->info.task_id(); } int64_t deadline_micros = kint64max; Status s = GetElementTraced(task_to_process.get(), deadline_micros, !IsCoordinatedRead(), allow_skip, result); if (!s.ok()) { mutex_lock l(mu_); VLOG(1) << "Failed to get element from worker " << task_to_process->info.worker_address() << ": " << s; task_to_process->in_use = false; --outstanding_requests_; status_ = errors::CreateWithUpdatedMessage( s, absl::StrCat("Failed to get element from worker ", task_to_process->info.worker_address(), ": ", s.message())); get_next_cv_.notify_all(); return; } if (!IsCoordinatedRead()) { if (mutex_lock l(mu_); result->skip) { num_consecutive_skipped++; if (num_consecutive_skipped >= MAX_ROUND_FALLBACK_TO_BLOCKING * tasks_.size()) { allow_skip = false; VLOG(1) << "`allow_skip` is turned off. Switching to blocking " "get element calls to the workers."; } } else { num_consecutive_skipped = 0; allow_skip = true; } } } } bool DataServiceClient::ShouldProcessTask() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (IsCoordinatedRead()) { return results_.size() < max_outstanding_requests_; } return results_.size() + outstanding_requests_ < max_outstanding_requests_; } std::shared_ptr<DataServiceClient::Task> DataServiceClient::GetTaskToProcess() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!ShouldProcessTask()) { return nullptr; } for (int i = 0; i < tasks_.size(); ++i) { std::shared_ptr<Task>& task = tasks_[next_task_index_]; if (IsCoordinatedRead() && (task->in_use || current_round_ >= round_robin_round_limit_.value_or( std::numeric_limits<int64_t>::max()))) { VLOG(4) << "No round robin task found. in_use: " << task->in_use << ". current_round: " << current_round_ << ". round_robin_round_limit: " << round_robin_round_limit_.value_or(-1); return nullptr; } if (current_round_ < task->info.starting_round() || task->in_use || task->end_of_sequence || task->removed) { VLOG(3) << "Skipping task " << next_task_index_ << ". starting round: " << task->info.starting_round() << ". current round: " << current_round_ << ". task->in_use: " << task->in_use << ". end_of_sequence: " << task->end_of_sequence << ". task->removed: " << task->removed; AdvanceTaskIndex(); continue; } task->round = current_round_; AdvanceTaskIndex(); return task; } return nullptr; } void DataServiceClient::AdvanceTaskIndex() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { next_task_index_++; if (next_task_index_ >= tasks_.size()) { current_round_++; next_task_index_ = 0; } } Status DataServiceClient::TryGetElement(const Task& task, bool allow_skip, GetElementResult& result) { GetElementRequest req; req.set_task_id(task.info.task_id()); req.set_skipped_previous_round(task.skipped_previous_round); if (IsCoordinatedRead()) { req.set_consumer_index(params_.consumer_index.value()); req.set_round_index(task.round); req.set_allow_skip(true); } else { req.set_allow_skip(allow_skip); } if (params_.cross_trainer_cache_options) { req.set_trainer_id(params_.cross_trainer_cache_options->trainer_id()); } return task.worker->GetElement(req, result); } void DataServiceClient::ProcessGetElementResponse( bool enqueue_result, GetElementResult& get_element_result, std::shared_ptr<Result> result, Task& task) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); result->ready = true; result->end_of_sequence = get_element_result.end_of_sequence; result->skip = get_element_result.skip; if (!get_element_result.end_of_sequence && !get_element_result.skip) { task.skipped_previous_round = false; result->element = std::move(get_element_result.components); result->element_index = get_element_result.element_index; result->task_id = task.info.task_id(); } else if (get_element_result.skip) { task.skipped_previous_round = true; } else { task.end_of_sequence = true; finished_tasks_++; } if (enqueue_result && !result->end_of_sequence && !result->skip) { ctx_->RecordBufferEnqueue(result->element); results_.push(std::move(result)); } get_next_cv_.notify_all(); } Status DataServiceClient::GetElementTraced(Task* task, int64_t deadline_micros, bool enqueue_result, bool allow_skip, std::shared_ptr<Result> result) TF_LOCKS_EXCLUDED(mu_) { VLOG(3) << "Getting an element for task id " << task->info.task_id(); tsl::profiler::TraceMe activity("GetDataServiceElement", tsl::profiler::TraceMeLevel::kInfo); activity.AppendMetadata([&]() { return tsl::profiler::TraceMeEncode( {{"address", task->info.worker_address()}}); }); if (IsCoordinatedRead()) { VLOG(3) << "Requesting element from consumer index " << params_.consumer_index.value() << ", round " << task->round; activity.AppendMetadata([&]() { return tsl::profiler::TraceMeEncode( {{"consumer_index", params_.consumer_index.value()}, {"round_index", task->round}}); }); } Status s = GetElement(task, deadline_micros, enqueue_result, allow_skip, result); mutex_lock l(mu_); VLOG(3) << "Got an element for task id " << task->info.task_id(); return s; } Status DataServiceClient::MaybeRemoveTask(Task& task, int64_t deadline_micros, Result& result) TF_LOCKS_EXCLUDED(mu_) { bool removed; VLOG(1) << "Requesting task removal for worker " << task.info.worker_address() << " in round " << task.round; TF_RETURN_IF_ERROR(grpc_util::Retry( [&] { return dispatcher_->MaybeRemoveTask(task.info.task_id(), params_.consumer_index.value(), task.round, removed); }, [&] { mutex_lock l(mu_); return !cancelled_; }, "request task removal ", deadline_micros)); if (removed) { mutex_lock l(mu_); task.removed = true; result.ready = true; result.skip = true; get_next_cv_.notify_all(); return absl::OkStatus(); } VLOG(1) << "Failed to remove task for worker " << task.info.worker_address(); return absl::OkStatus(); } Status DataServiceClient::GetElement(Task* task, int64_t deadline_micros, bool enqueue_result, bool allow_skip, std::shared_ptr<Result> result) TF_LOCKS_EXCLUDED(mu_) { GetElementResult get_element_result; while (true) { Status s = TryGetElement(*task, allow_skip, get_element_result); if (s.ok()) { task->num_retries = 0; break; } if (!IsPreemptedError(s)) { if (task->worker->GetDataTransferProtocol() == kGrpcTransferProtocol || task->worker->GetDataTransferProtocol() == kLocalTransferProtocol) { return s; } LOG(ERROR) << "Failed to use alternative data transfer protocol '" << task->worker->GetDataTransferProtocol() << "' for worker '" << task->info.worker_address() << "'; falling back to grpc. Original error: " << s; metrics::RecordTFDataServiceDataTransferProtocolError( task->worker->GetDataTransferProtocol(), static_cast<error::Code>(s.raw_code()), std::string(s.message())); mutex_lock l(mu_); TF_ASSIGN_OR_RETURN(std::unique_ptr<DataServiceWorkerClient> worker, CreateGrpcWorkerClient(task->info)); task->worker = std::move(worker); continue; } { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled("DataServiceDataset iterator cancelled"); } } int64_t now_micros = Env::Default()->NowMicros(); if (now_micros > deadline_micros) { return s; } if (IsCoordinatedRead() && task->num_retries > 0) { TF_RETURN_IF_ERROR(MaybeRemoveTask(*task, deadline_micros, *result)); mutex_lock l(mu_); if (result->skip) { return absl::OkStatus(); } } int64_t backoff_until = std::min( deadline_micros, now_micros + absl::ToInt64Microseconds( tsl::ComputeRetryBackoff(task->num_retries++))); VLOG(1) << "Failed to get an element from worker " << task->info.worker_address() << ": " << s << ". Will retry in " << (backoff_until - now_micros) << " microseconds"; Env::Default()->SleepForMicroseconds(backoff_until - now_micros); if (!IsCoordinatedRead()) { mutex_lock l(mu_); result->ready = true; result->skip = true; return absl::OkStatus(); } } ProcessGetElementResponse(enqueue_result, get_element_result, result, *task); return absl::OkStatus(); } bool DataServiceClient::ResultReady() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return !results_.empty() && results_.front()->ready; } std::shared_ptr<DataServiceClient::Result> DataServiceClient::PopNextResult() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { std::shared_ptr<Result> result = results_.front(); results_.pop(); ctx_->RecordBufferDequeue(result->element); return result; } bool DataServiceClient::IsCoordinatedRead() const { return params_.num_consumers.has_value(); } std::string DataServiceClient::DebugString() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return absl::Substitute( "results_ { size: $0 front.ready: $1 } iteration_finished_: $2 " "tasks { size: $3 } finished_tasks_: $4 " "num_running_worker_threads_: $5", results_.size(), !results_.empty() && results_.front()->ready, iteration_finished_, tasks_.size(), finished_tasks_, num_running_worker_threads_); } } }
#include "tensorflow/core/data/service/client/data_service_client.h" #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/time/time.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/data/service/client/common.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::testing::RangeDataset; using ::tensorflow::testing::IsOkAndHolds; using ::tensorflow::testing::StatusIs; using ::testing::_; using ::testing::AtLeast; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::UnorderedElementsAreArray; DataServiceParams GetDataServiceParams( const std::string& dataset_id, const std::string& data_service_address, const ProcessingModeDef::ShardingPolicy sharding_policy) { DataServiceParams params; params.dataset_id = dataset_id; params.processing_mode.set_sharding_policy(sharding_policy); params.address = data_service_address; params.protocol = "grpc"; params.data_transfer_protocol = "grpc"; params.job_name = "test_job"; params.repetition = 0; params.max_outstanding_requests = 100; params.task_refresh_interval = absl::Milliseconds(100); return params; } std::vector<int64_t> Range(const int64_t range) { std::vector<int64_t> result; for (int64_t i = 0; i < range; ++i) { result.push_back(i); } return result; } class TestDataServiceContext : public DataServiceContext { public: TestDataServiceContext() = default; ~TestDataServiceContext() override = default; std::unique_ptr<Thread> StartThread(const string& name, std::function<void()> fn) override { return absl::WrapUnique( Env::Default()->StartThread({}, name, std::move(fn))); } MOCK_METHOD(void, RecordBufferEnqueue, (const std::vector<Tensor>& element), (override)); MOCK_METHOD(void, RecordBufferDequeue, (const std::vector<Tensor>& element), (override)); double GetTargetProcessingTimeNsec() const override { return 1.0e6; } int64_t UpdateMaxOutstandingRequests(int64_t max_outstanding_requests, int64_t new_size) override { return new_size; } }; std::unique_ptr<TestDataServiceContext> GetTestDataServiceContext() { return std::make_unique<TestDataServiceContext>(); } template <class T> StatusOr<std::vector<T>> GetResults(DataServiceClient& client) { std::vector<T> results; while (true) { TF_ASSIGN_OR_RETURN(GetNextResult next, client.GetNext(GetTestDataServiceContext)); if (next.end_of_sequence) { return results; } results.push_back(next.tensors[0].unaligned_flat<T>().data()[0]); } return results; } template <class T> StatusOr<T> GetNext(DataServiceClient& client) { TF_ASSIGN_OR_RETURN(GetNextResult next, client.GetNext(GetTestDataServiceContext)); if (next.end_of_sequence) { return errors::OutOfRange( "The tf.data service has reached the end of sequence"); } return next.tensors[0].unaligned_flat<T>().data()[0]; } TEST(DataServiceClientTest, NoSharding) { TestCluster test_cluster(1); TF_ASSERT_OK(test_cluster.Initialize()); DatasetClient<int64_t> test_dataset(test_cluster); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_id, test_dataset.RegisterDataset(RangeDataset(10))); DataServiceParams params = GetDataServiceParams( dataset_id, test_cluster.DispatcherAddress(), ProcessingModeDef::OFF); DataServiceClient client(params); TF_ASSERT_OK(client.Initialize(nullptr, nullptr)); EXPECT_THAT(GetResults<int64_t>(client), IsOkAndHolds(ElementsAreArray(Range(10)))); client.Cancel(); } TEST(DataServiceClientTest, DynamicSharding) { TestCluster test_cluster(3); TF_ASSERT_OK(test_cluster.Initialize()); DatasetClient<int64_t> test_dataset(test_cluster); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_id, test_dataset.RegisterDataset(RangeDataset(10))); DataServiceParams params = GetDataServiceParams( dataset_id, test_cluster.DispatcherAddress(), ProcessingModeDef::DYNAMIC); DataServiceClient client(params); TF_ASSERT_OK(client.Initialize(nullptr, nullptr)); EXPECT_THAT(GetResults<int64_t>(client), IsOkAndHolds(UnorderedElementsAreArray(Range(10)))); client.Cancel(); } TEST(DataServiceClientTest, StaticSharding) { TestCluster test_cluster(3); TF_ASSERT_OK(test_cluster.Initialize()); DatasetClient<int64_t> dataset_client(test_cluster); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_id, dataset_client.RegisterDataset(RangeDataset(10))); DataServiceParams params = GetDataServiceParams(dataset_id, test_cluster.DispatcherAddress(), ProcessingModeDef::FILE_OR_DATA); DataServiceClient client(params); TF_ASSERT_OK(client.Initialize(nullptr, nullptr)); EXPECT_THAT(GetResults<int64_t>(client), IsOkAndHolds(UnorderedElementsAreArray(Range(10)))); client.Cancel(); } TEST(DataServiceClientTest, RecordBufferEvents) { TestCluster test_cluster(1); TF_ASSERT_OK(test_cluster.Initialize()); DatasetClient<int64_t> test_dataset(test_cluster); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_id, test_dataset.RegisterDataset(RangeDataset(10))); DataServiceParams params = GetDataServiceParams( dataset_id, test_cluster.DispatcherAddress(), ProcessingModeDef::OFF); DataServiceClient client(params); TF_ASSERT_OK(client.Initialize(nullptr, nullptr)); auto mock_context = std::make_unique<TestDataServiceContext>(); TestDataServiceContext* ctx = mock_context.get(); EXPECT_CALL(*ctx, RecordBufferEnqueue(_)).Times(AtLeast(1)); EXPECT_CALL(*ctx, RecordBufferDequeue(_)).Times(AtLeast(1)); TF_ASSERT_OK_AND_ASSIGN(GetNextResult next, client.GetNext([&mock_context]() { return std::move(mock_context); })); client.Cancel(); } TEST(DataServiceClientTest, Cancel) { TestCluster test_cluster(1); TF_ASSERT_OK(test_cluster.Initialize()); DatasetClient<int64_t> dataset_client(test_cluster); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_id, dataset_client.RegisterDataset(RangeDataset(10))); DataServiceParams params = GetDataServiceParams( dataset_id, test_cluster.DispatcherAddress(), ProcessingModeDef::OFF); DataServiceClient client(params); TF_ASSERT_OK(client.Initialize(nullptr, nullptr)); client.Cancel(); EXPECT_THAT(client.GetNext(GetTestDataServiceContext), StatusIs(error::CANCELLED)); } TEST(DataServiceClientTest, ValidationError) { DataServiceParams params = GetDataServiceParams( "dataset_id", "tf_data_service_address", ProcessingModeDef::OFF); params.target_workers = TARGET_WORKERS_LOCAL; DataServiceClient client(params); EXPECT_THAT( client.Initialize(nullptr, nullptr), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Local reads require local tf.data workers, but no local worker " "is found."))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/client/data_service_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/client/data_service_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
422bf0f2-be5f-4d65-a40c-dbfaaaace216
cpp
tensorflow/tensorflow
message_wrappers
tensorflow/core/distributed_runtime/message_wrappers.cc
tensorflow/core/distributed_runtime/message_wrappers_test.cc
#include "tensorflow/core/distributed_runtime/message_wrappers.h" #include <memory> #include "absl/status/status.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/named_tensor.pb.h" namespace tensorflow { bool ParseTensorProtoToTensor(const TensorProto& tensor_proto, Tensor* out_tensor) { if (tensor_proto.dtype() > 0 && tensor_proto.dtype() <= DataType_MAX) { Tensor parsed(tensor_proto.dtype()); if (parsed.FromProto(cpu_allocator(), tensor_proto)) { *out_tensor = parsed; return true; } } return false; } const string& InMemoryRunStepRequest::session_handle() const { return session_handle_; } void InMemoryRunStepRequest::set_session_handle(const string& handle) { session_handle_ = handle; } const string& InMemoryRunStepRequest::partial_run_handle() const { return partial_run_handle_; } void InMemoryRunStepRequest::set_partial_run_handle(const string& handle) { partial_run_handle_ = handle; } size_t InMemoryRunStepRequest::num_feeds() const { return feeds_.size(); } const string& InMemoryRunStepRequest::feed_name(size_t i) const { return feeds_[i].first; } Status InMemoryRunStepRequest::FeedValue(size_t i, Tensor* out_tensor) const { *out_tensor = feeds_[i].second; return absl::OkStatus(); } Status InMemoryRunStepRequest::FeedValue(size_t i, TensorProto* out_tensor) const { feeds_[i].second.AsProtoTensorContent(out_tensor); return absl::OkStatus(); } void InMemoryRunStepRequest::add_feed(const string& name, const Tensor& value) { feeds_.emplace_back(name, value); } size_t InMemoryRunStepRequest::num_fetches() const { return fetches_.size(); } const string& InMemoryRunStepRequest::fetch_name(size_t i) const { return fetches_[i]; } void InMemoryRunStepRequest::add_fetch(const string& name) { fetches_.push_back(name); } size_t InMemoryRunStepRequest::num_targets() const { return targets_.size(); } const string& InMemoryRunStepRequest::target_name(size_t i) const { return targets_[i]; } void InMemoryRunStepRequest::add_target(const string& name) { targets_.push_back(name); } const RunOptions& InMemoryRunStepRequest::options() const { return options_; } RunOptions* InMemoryRunStepRequest::mutable_options() { return &options_; } bool InMemoryRunStepRequest::store_errors_in_response_body() const { return store_errors_in_response_body_; } int64_t InMemoryRunStepRequest::request_id() const { return 0; } void InMemoryRunStepRequest::set_store_errors_in_response_body( bool store_errors) { store_errors_in_response_body_ = store_errors; } string InMemoryRunStepRequest::DebugString() const { return ToProto().DebugString(); } const RunStepRequest& InMemoryRunStepRequest::ToProto() const { if (!proto_version_) { proto_version_ = std::make_unique<RunStepRequest>(); proto_version_->set_session_handle(session_handle()); proto_version_->set_partial_run_handle(partial_run_handle()); for (size_t i = 0; i < num_feeds(); ++i) { auto feed = proto_version_->add_feed(); feed->set_name(feed_name(i)); feeds_[i].second.AsProtoTensorContent(feed->mutable_tensor()); } for (size_t i = 0; i < num_fetches(); ++i) { proto_version_->add_fetch(fetch_name(i)); } for (size_t i = 0; i < num_targets(); ++i) { proto_version_->add_target(target_name(i)); } *proto_version_->mutable_options() = options(); } return *proto_version_; } const string& MutableProtoRunStepRequest::session_handle() const { return request_.session_handle(); } void MutableProtoRunStepRequest::set_session_handle(const string& handle) { request_.set_session_handle(handle); } const string& MutableProtoRunStepRequest::partial_run_handle() const { return request_.partial_run_handle(); } void MutableProtoRunStepRequest::set_partial_run_handle(const string& handle) { request_.set_partial_run_handle(handle); } size_t MutableProtoRunStepRequest::num_feeds() const { return request_.feed_size(); } const string& MutableProtoRunStepRequest::feed_name(size_t i) const { return request_.feed(i).name(); } Status MutableProtoRunStepRequest::FeedValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(request_.feed(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for feed value ", i); } else { return absl::OkStatus(); } } Status MutableProtoRunStepRequest::FeedValue(size_t i, TensorProto* out_tensor) const { *out_tensor = request_.feed(i).tensor(); return absl::OkStatus(); } void MutableProtoRunStepRequest::add_feed(const string& name, const Tensor& value) { NamedTensorProto* feed = request_.add_feed(); feed->set_name(name); TensorProto* value_proto = feed->mutable_tensor(); value.AsProtoTensorContent(value_proto); } size_t MutableProtoRunStepRequest::num_fetches() const { return request_.fetch_size(); } const string& MutableProtoRunStepRequest::fetch_name(size_t i) const { return request_.fetch(i); } void MutableProtoRunStepRequest::add_fetch(const string& name) { request_.add_fetch(name); } size_t MutableProtoRunStepRequest::num_targets() const { return request_.target_size(); } const string& MutableProtoRunStepRequest::target_name(size_t i) const { return request_.target(i); } void MutableProtoRunStepRequest::add_target(const string& name) { request_.add_target(name); } const RunOptions& MutableProtoRunStepRequest::options() const { return request_.options(); } RunOptions* MutableProtoRunStepRequest::mutable_options() { return request_.mutable_options(); } bool MutableProtoRunStepRequest::store_errors_in_response_body() const { return request_.store_errors_in_response_body(); } void MutableProtoRunStepRequest::set_store_errors_in_response_body( bool store_errors) { request_.set_store_errors_in_response_body(store_errors); } int64_t MutableProtoRunStepRequest::request_id() const { return request_.request_id(); } string MutableProtoRunStepRequest::DebugString() const { return request_.DebugString(); } const RunStepRequest& MutableProtoRunStepRequest::ToProto() const { return request_; } ProtoRunStepRequest::ProtoRunStepRequest(const RunStepRequest* request) : request_(request) {} const string& ProtoRunStepRequest::session_handle() const { return request_->session_handle(); } const string& ProtoRunStepRequest::partial_run_handle() const { return request_->partial_run_handle(); } size_t ProtoRunStepRequest::num_feeds() const { return request_->feed_size(); } const string& ProtoRunStepRequest::feed_name(size_t i) const { return request_->feed(i).name(); } Status ProtoRunStepRequest::FeedValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(request_->feed(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for feed value ", i); } else { return absl::OkStatus(); } } Status ProtoRunStepRequest::FeedValue(size_t i, TensorProto* out_tensor) const { *out_tensor = request_->feed(i).tensor(); return absl::OkStatus(); } size_t ProtoRunStepRequest::num_fetches() const { return request_->fetch_size(); } const string& ProtoRunStepRequest::fetch_name(size_t i) const { return request_->fetch(i); } size_t ProtoRunStepRequest::num_targets() const { return request_->target_size(); } const string& ProtoRunStepRequest::target_name(size_t i) const { return request_->target(i); } const RunOptions& ProtoRunStepRequest::options() const { return request_->options(); } bool ProtoRunStepRequest::store_errors_in_response_body() const { return request_->store_errors_in_response_body(); } int64_t ProtoRunStepRequest::request_id() const { return request_->request_id(); } string ProtoRunStepRequest::DebugString() const { return request_->DebugString(); } const RunStepRequest& ProtoRunStepRequest::ToProto() const { return *request_; } const string& InMemoryRunGraphRequest::session_handle() const { return session_handle_; } bool InMemoryRunGraphRequest::create_worker_session_called() const { return create_worker_session_called_; } void InMemoryRunGraphRequest::set_session_handle(const string& handle) { session_handle_ = handle; } void InMemoryRunGraphRequest::set_create_worker_session_called(bool called) { create_worker_session_called_ = called; } const string& InMemoryRunGraphRequest::graph_handle() const { return graph_handle_; } void InMemoryRunGraphRequest::set_graph_handle(const string& handle) { graph_handle_ = handle; } int64_t InMemoryRunGraphRequest::step_id() const { return step_id_; } void InMemoryRunGraphRequest::set_step_id(int64_t step_id) { step_id_ = step_id; } const ExecutorOpts& InMemoryRunGraphRequest::exec_opts() const { return exec_opts_; } ExecutorOpts* InMemoryRunGraphRequest::mutable_exec_opts() { return &exec_opts_; } size_t InMemoryRunGraphRequest::num_sends() const { return sends_.size(); } const string& InMemoryRunGraphRequest::send_key(size_t i) const { return sends_[i].first; } Status InMemoryRunGraphRequest::SendValue(size_t i, Tensor* out_tensor) const { *out_tensor = sends_[i].second; return absl::OkStatus(); } Status InMemoryRunGraphRequest::AddSendFromRunStepRequest( const RunStepRequestWrapper& run_step_request, size_t i, const string& send_key) { Tensor tensor; TF_RETURN_IF_ERROR(run_step_request.FeedValue(i, &tensor)); sends_.emplace_back(send_key, std::move(tensor)); return absl::OkStatus(); } Status InMemoryRunGraphRequest::AddSendFromRunCallableRequest( const RunCallableRequest& run_callable_request, size_t i, const string& send_key) { Tensor tensor; if (!ParseTensorProtoToTensor(run_callable_request.feed(i), &tensor)) { return errors::InvalidArgument("Invalid TensorProto for feed value ", i); } sends_.emplace_back(send_key, std::move(tensor)); return absl::OkStatus(); } size_t InMemoryRunGraphRequest::num_recvs() const { return recvs_.size(); } const string& InMemoryRunGraphRequest::recv_key(size_t i) const { return recvs_[i]; } void InMemoryRunGraphRequest::add_recv_key(const string& recv_key) { recvs_.push_back(recv_key); } bool InMemoryRunGraphRequest::is_partial() const { return is_partial_; } void InMemoryRunGraphRequest::set_is_partial(bool is_partial) { is_partial_ = is_partial; } bool InMemoryRunGraphRequest::is_last_partial_run() const { return is_last_partial_run_; } void InMemoryRunGraphRequest::set_is_last_partial_run( bool is_last_partial_run) { is_last_partial_run_ = is_last_partial_run; } bool InMemoryRunGraphRequest::store_errors_in_response_body() const { return store_errors_in_response_body_; } void InMemoryRunGraphRequest::set_store_errors_in_response_body( bool store_errors) { store_errors_in_response_body_ = store_errors; } int64_t InMemoryRunGraphRequest::request_id() const { return request_id_; } void InMemoryRunGraphRequest::set_request_id(int64_t request_id) { request_id_ = request_id; } const RunGraphRequest& InMemoryRunGraphRequest::ToProto() const { if (!proto_version_) { proto_version_ = std::make_unique<RunGraphRequest>(); proto_version_->set_session_handle(session_handle()); proto_version_->set_create_worker_session_called( create_worker_session_called()); proto_version_->set_graph_handle(graph_handle()); proto_version_->set_step_id(step_id()); *proto_version_->mutable_exec_opts() = exec_opts(); for (size_t i = 0; i < num_sends(); ++i) { auto send = proto_version_->add_send(); send->set_name(send_key(i)); sends_[i].second.AsProtoTensorContent(send->mutable_tensor()); } for (size_t i = 0; i < num_recvs(); ++i) { proto_version_->add_recv_key(recv_key(i)); } proto_version_->set_is_partial(is_partial()); proto_version_->set_is_last_partial_run(is_last_partial_run()); } proto_version_->set_store_errors_in_response_body( store_errors_in_response_body_); proto_version_->set_request_id(request_id_); return *proto_version_; } const string& MutableProtoRunGraphRequest::session_handle() const { return request_.session_handle(); } void MutableProtoRunGraphRequest::set_session_handle(const string& handle) { request_.set_session_handle(handle); } bool MutableProtoRunGraphRequest::create_worker_session_called() const { return request_.create_worker_session_called(); } void MutableProtoRunGraphRequest::set_create_worker_session_called( bool called) { request_.set_create_worker_session_called(called); } const string& MutableProtoRunGraphRequest::graph_handle() const { return request_.graph_handle(); } void MutableProtoRunGraphRequest::set_graph_handle(const string& handle) { request_.set_graph_handle(handle); } int64_t MutableProtoRunGraphRequest::step_id() const { return request_.step_id(); } void MutableProtoRunGraphRequest::set_step_id(int64_t step_id) { request_.set_step_id(step_id); } const ExecutorOpts& MutableProtoRunGraphRequest::exec_opts() const { return request_.exec_opts(); } ExecutorOpts* MutableProtoRunGraphRequest::mutable_exec_opts() { return request_.mutable_exec_opts(); } size_t MutableProtoRunGraphRequest::num_sends() const { return request_.send_size(); } const string& MutableProtoRunGraphRequest::send_key(size_t i) const { return request_.send(i).name(); } Status MutableProtoRunGraphRequest::SendValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(request_.send(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for feed value ", i); } else { return absl::OkStatus(); } } Status MutableProtoRunGraphRequest::AddSendFromRunStepRequest( const RunStepRequestWrapper& run_step_request, size_t i, const string& send_key) { NamedTensorProto* send = request_.add_send(); send->set_name(send_key); TF_RETURN_IF_ERROR(run_step_request.FeedValue(i, send->mutable_tensor())); return absl::OkStatus(); } Status MutableProtoRunGraphRequest::AddSendFromRunCallableRequest( const RunCallableRequest& run_callable_request, size_t i, const string& send_key) { NamedTensorProto* send = request_.add_send(); send->set_name(send_key); *send->mutable_tensor() = run_callable_request.feed(i); return absl::OkStatus(); } size_t MutableProtoRunGraphRequest::num_recvs() const { return request_.recv_key_size(); } const string& MutableProtoRunGraphRequest::recv_key(size_t i) const { return request_.recv_key(i); } void MutableProtoRunGraphRequest::add_recv_key(const string& recv_key) { request_.add_recv_key(recv_key); } bool MutableProtoRunGraphRequest::is_partial() const { return request_.is_partial(); } void MutableProtoRunGraphRequest::set_is_partial(bool is_partial) { request_.set_is_partial(is_partial); } bool MutableProtoRunGraphRequest::is_last_partial_run() const { return request_.is_last_partial_run(); } void MutableProtoRunGraphRequest::set_is_last_partial_run( bool is_last_partial_run) { request_.set_is_last_partial_run(is_last_partial_run); } bool MutableProtoRunGraphRequest::store_errors_in_response_body() const { return request_.store_errors_in_response_body(); } void MutableProtoRunGraphRequest::set_store_errors_in_response_body( bool store_errors) { request_.set_store_errors_in_response_body(store_errors); } int64_t MutableProtoRunGraphRequest::request_id() const { return request_.request_id(); } void MutableProtoRunGraphRequest::set_request_id(int64_t request_id) { request_.set_request_id(request_id); } const RunGraphRequest& MutableProtoRunGraphRequest::ToProto() const { return request_; } ProtoRunGraphRequest::ProtoRunGraphRequest(const RunGraphRequest* request) : request_(request) {} const string& ProtoRunGraphRequest::session_handle() const { return request_->session_handle(); } bool ProtoRunGraphRequest::create_worker_session_called() const { return request_->create_worker_session_called(); } const string& ProtoRunGraphRequest::graph_handle() const { return request_->graph_handle(); } int64_t ProtoRunGraphRequest::step_id() const { return request_->step_id(); } const ExecutorOpts& ProtoRunGraphRequest::exec_opts() const { return request_->exec_opts(); } size_t ProtoRunGraphRequest::num_sends() const { return request_->send_size(); } const string& ProtoRunGraphRequest::send_key(size_t i) const { return request_->send(i).name(); } Status ProtoRunGraphRequest::SendValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(request_->send(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for feed value ", i); } else { return absl::OkStatus(); } } size_t ProtoRunGraphRequest::num_recvs() const { return request_->recv_key_size(); } const string& ProtoRunGraphRequest::recv_key(size_t i) const { return request_->recv_key(i); } bool ProtoRunGraphRequest::is_partial() const { return request_->is_partial(); } bool ProtoRunGraphRequest::is_last_partial_run() const { return request_->is_last_partial_run(); } bool ProtoRunGraphRequest::store_errors_in_response_body() const { return request_->store_errors_in_response_body(); } int64_t ProtoRunGraphRequest::request_id() const { return request_->request_id(); } const RunGraphRequest& ProtoRunGraphRequest::ToProto() const { return *request_; } size_t InMemoryRunGraphResponse::num_recvs() const { return recvs_.size(); } const string& InMemoryRunGraphResponse::recv_key(size_t i) const { return recvs_[i].first; } Status InMemoryRunGraphResponse::RecvValue(size_t i, TensorProto* out_tensor) { recvs_[i].second.AsProtoTensorContent(out_tensor); return absl::OkStatus(); } Status InMemoryRunGraphResponse::RecvValue(size_t i, Tensor* out_tensor) { *out_tensor = recvs_[i].second; return absl::OkStatus(); } void InMemoryRunGraphResponse::AddRecv(const string& key, const Tensor& value) { recvs_.emplace_back(key, value); } StepStats* InMemoryRunGraphResponse::mutable_step_stats() { return &step_stats_; } CostGraphDef* InMemoryRunGraphResponse::mutable_cost_graph() { return &cost_graph_; } Status InMemoryRunGraphResponse::status() const { return status_; } errors::Code InMemoryRunGraphResponse::status_code() const { return static_cast<errors::Code>(status_.code()); } void InMemoryRunGraphResponse::set_status(const Status& status) { status_ = status; } RunGraphResponse* InMemoryRunGraphResponse::get_proto() { LOG(FATAL) << "Cannot get a mutable protobuf for an InMemoryRunGraphResponse"; return nullptr; } size_t InMemoryRunGraphResponse::num_partition_graphs() const { return partition_graphs_.size(); } GraphDef* InMemoryRunGraphResponse::mutable_partition_graph(size_t i) { return &partition_graphs_[i]; } void InMemoryRunGraphResponse::AddPartitionGraph( const GraphDef& partition_graph) { partition_graphs_.push_back(partition_graph); } size_t OwnedProtoRunGraphResponse::num_recvs() const { return response_.recv_size(); } const string& OwnedProtoRunGraphResponse::recv_key(size_t i) const { return response_.recv(i).name(); } Status OwnedProtoRunGraphResponse::RecvValue(size_t i, TensorProto* out_tensor) { out_tensor->Swap(response_.mutable_recv(i)->mutable_tensor()); return absl::OkStatus(); } Status OwnedProtoRunGraphResponse::RecvValue(size_t i, Tensor* out_tensor) { if (!ParseTensorProtoToTensor(response_.recv(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for recv value ", i); } else { return absl::OkStatus(); } } void OwnedProtoRunGraphResponse::AddRecv(const string& key, const Tensor& value) { NamedTensorProto* recv = response_.add_recv(); recv->set_name(key); TensorProto* value_proto = recv->mutable_tensor(); value.AsProtoTensorContent(value_proto); } StepStats* OwnedProtoRunGraphResponse::mutable_step_stats() { return response_.mutable_step_stats(); } CostGraphDef* OwnedProtoRunGraphResponse::mutable_cost_graph() { return response_.mutable_cost_graph(); } Status OwnedProtoRunGraphResponse::status() const { return Status(static_cast<absl::StatusCode>(response_.status_code()), response_.status_error_message()); } absl::StatusCode OwnedProtoRunGraphResponse::status_code() const { return static_cast<absl::StatusCode>(response_.status_code()); } void OwnedProtoRunGraphResponse::set_status(const Status& status) { response_.set_status_code(static_cast<tsl::error::Code>(status.code())); response_.set_status_error_message(absl::StatusMessageAsCStr(status)); } RunGraphResponse* OwnedProtoRunGraphResponse::get_proto() { return &response_; } size_t OwnedProtoRunGraphResponse::num_partition_graphs() const { return response_.partition_graph_size(); } GraphDef* OwnedProtoRunGraphResponse::mutable_partition_graph(size_t i) { return response_.mutable_partition_graph(i); } void OwnedProtoRunGraphResponse::AddPartitionGraph( const GraphDef& partition_graph) { GraphDef* graph_def = response_.mutable_partition_graph()->Add(); *graph_def = partition_graph; } NonOwnedProtoRunGraphResponse::NonOwnedProtoRunGraphResponse( RunGraphResponse* response) : response_(response) {} size_t NonOwnedProtoRunGraphResponse::num_recvs() const { return response_->recv_size(); } const string& NonOwnedProtoRunGraphResponse::recv_key(size_t i) const { return response_->recv(i).name(); } Status NonOwnedProtoRunGraphResponse::RecvValue(size_t i, TensorProto* out_tensor) { out_tensor->Swap(response_->mutable_recv(i)->mutable_tensor()); return absl::OkStatus(); } Status NonOwnedProtoRunGraphResponse::RecvValue(size_t i, Tensor* out_tensor) { if (!ParseTensorProtoToTensor(response_->recv(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for recv value ", i); } else { return absl::OkStatus(); } } void NonOwnedProtoRunGraphResponse::AddRecv(const string& key, const Tensor& value) { NamedTensorProto* recv = response_->add_recv(); recv->set_name(key); TensorProto* value_proto = recv->mutable_tensor(); value.AsProtoTensorContent(value_proto); } StepStats* NonOwnedProtoRunGraphResponse::mutable_step_stats() { return response_->mutable_step_stats(); } CostGraphDef* NonOwnedProtoRunGraphResponse::mutable_cost_graph() { return response_->mutable_cost_graph(); } Status NonOwnedProtoRunGraphResponse::status() const { return Status(static_cast<absl::StatusCode>(response_->status_code()), response_->status_error_message()); } absl::StatusCode NonOwnedProtoRunGraphResponse::status_code() const { return static_cast<absl::StatusCode>(response_->status_code()); } void NonOwnedProtoRunGraphResponse::set_status(const Status& status) { response_->set_status_code(static_cast<tsl::error::Code>(status.code())); response_->set_status_error_message(absl::StatusMessageAsCStr(status)); } RunGraphResponse* NonOwnedProtoRunGraphResponse::get_proto() { return response_; } size_t NonOwnedProtoRunGraphResponse::num_partition_graphs() const { return response_->partition_graph_size(); } GraphDef* NonOwnedProtoRunGraphResponse::mutable_partition_graph(size_t i) { return response_->mutable_partition_graph(i); } void NonOwnedProtoRunGraphResponse::AddPartitionGraph( const GraphDef& partition_graph) { GraphDef* graph_def = response_->add_partition_graph(); *graph_def = partition_graph; } MutableRunStepResponseWrapper::~MutableRunStepResponseWrapper() {} size_t InMemoryRunStepResponse::num_tensors() const { return tensors_.size(); } const string& InMemoryRunStepResponse::tensor_name(size_t i) const { return tensors_[i].first; } Status InMemoryRunStepResponse::TensorValue(size_t i, Tensor* out_tensor) const { *out_tensor = tensors_[i].second; return absl::OkStatus(); } const RunMetadata& InMemoryRunStepResponse::metadata() const { return metadata_; } Status InMemoryRunStepResponse::AddTensorFromRunGraphResponse( const string& name, MutableRunGraphResponseWrapper* wrapper, size_t i) { Tensor tensor; TF_RETURN_IF_ERROR(wrapper->RecvValue(i, &tensor)); tensors_.emplace_back(name, tensor); return absl::OkStatus(); } RunMetadata* InMemoryRunStepResponse::mutable_metadata() { return &metadata_; } Status InMemoryRunStepResponse::status() const { return status_; } errors::Code InMemoryRunStepResponse::status_code() const { return static_cast<errors::Code>(status_.code()); } void InMemoryRunStepResponse::set_status(const Status& status) { status_ = status; } RunStepResponse* InMemoryRunStepResponse::get_proto() { LOG(FATAL) << "Cannot get a mutable protobuf for an InMemoryRunStepResponse"; return nullptr; } size_t OwnedProtoRunStepResponse::num_tensors() const { return response_.tensor_size(); } const string& OwnedProtoRunStepResponse::tensor_name(size_t i) const { return response_.tensor(i).name(); } Status OwnedProtoRunStepResponse::TensorValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(response_.tensor(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for fetch value ", i); } else { return absl::OkStatus(); } } const RunMetadata& OwnedProtoRunStepResponse::metadata() const { return response_.metadata(); } Status OwnedProtoRunStepResponse::AddTensorFromRunGraphResponse( const string& name, MutableRunGraphResponseWrapper* run_graph_response, size_t i) { NamedTensorProto* response_tensor = response_.add_tensor(); response_tensor->set_name(name); return run_graph_response->RecvValue(i, response_tensor->mutable_tensor()); } RunMetadata* OwnedProtoRunStepResponse::mutable_metadata() { return response_.mutable_metadata(); } Status OwnedProtoRunStepResponse::status() const { return Status(static_cast<absl::StatusCode>(response_.status_code()), response_.status_error_message()); } absl::StatusCode OwnedProtoRunStepResponse::status_code() const { return static_cast<absl::StatusCode>(response_.status_code()); } void OwnedProtoRunStepResponse::set_status(const Status& status) { response_.set_status_code(static_cast<tsl::error::Code>(status.code())); response_.set_status_error_message(absl::StatusMessageAsCStr(status)); } RunStepResponse* OwnedProtoRunStepResponse::get_proto() { return &response_; } NonOwnedProtoRunStepResponse::NonOwnedProtoRunStepResponse( RunStepResponse* response) : response_(response) {} size_t NonOwnedProtoRunStepResponse::num_tensors() const { return response_->tensor_size(); } const string& NonOwnedProtoRunStepResponse::tensor_name(size_t i) const { return response_->tensor(i).name(); } Status NonOwnedProtoRunStepResponse::TensorValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(response_->tensor(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for fetch value ", i); } else { return absl::OkStatus(); } } const RunMetadata& NonOwnedProtoRunStepResponse::metadata() const { return response_->metadata(); } Status NonOwnedProtoRunStepResponse::AddTensorFromRunGraphResponse( const string& name, MutableRunGraphResponseWrapper* run_graph_response, size_t i) { NamedTensorProto* response_tensor = response_->add_tensor(); response_tensor->set_name(name); return run_graph_response->RecvValue(i, response_tensor->mutable_tensor()); } RunMetadata* NonOwnedProtoRunStepResponse::mutable_metadata() { return response_->mutable_metadata(); } Status NonOwnedProtoRunStepResponse::status() const { return Status(static_cast<absl::StatusCode>(response_->status_code()), response_->status_error_message()); } absl::StatusCode NonOwnedProtoRunStepResponse::status_code() const { return static_cast<absl::StatusCode>(response_->status_code()); } void NonOwnedProtoRunStepResponse::set_status(const Status& status) { response_->set_status_code(static_cast<tsl::error::Code>(status.code())); response_->set_status_error_message(absl::StatusMessageAsCStr(status)); } RunStepResponse* NonOwnedProtoRunStepResponse::get_proto() { return response_; } }
#include "tensorflow/core/distributed_runtime/message_wrappers.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" namespace tensorflow { namespace { Tensor TensorA() { Tensor a_tensor(DT_INT32, TensorShape({2, 2})); test::FillValues<int32>(&a_tensor, {3, 2, -1, 0}); return a_tensor; } Tensor TensorB() { Tensor b_tensor(DT_INT32, TensorShape({1, 2})); test::FillValues<int32>(&b_tensor, {1, 2}); return b_tensor; } void BuildRunStepRequest(MutableRunStepRequestWrapper* request) { request->set_session_handle("handle"); request->set_partial_run_handle("partial_handle"); request->add_feed("feed_a:0", TensorA()); request->add_feed("feed_b:0", TensorB()); request->add_fetch("fetch_x:0"); request->add_fetch("fetch_y:0"); request->add_target("target_i"); request->add_target("target_j"); request->mutable_options()->set_timeout_in_ms(37); } void CheckRunStepRequest(const RunStepRequestWrapper& request) { EXPECT_EQ("handle", request.session_handle()); EXPECT_EQ("partial_handle", request.partial_run_handle()); EXPECT_EQ(2, request.num_feeds()); EXPECT_EQ("feed_a:0", request.feed_name(0)); EXPECT_EQ("feed_b:0", request.feed_name(1)); Tensor val; TF_EXPECT_OK(request.FeedValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(request.FeedValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); EXPECT_EQ(2, request.num_fetches()); EXPECT_EQ("fetch_x:0", request.fetch_name(0)); EXPECT_EQ("fetch_y:0", request.fetch_name(1)); EXPECT_EQ("target_i", request.target_name(0)); EXPECT_EQ("target_j", request.target_name(1)); EXPECT_EQ(37, request.options().timeout_in_ms()); } void BuildRunGraphRequest(const RunStepRequestWrapper& run_step_request, MutableRunGraphRequestWrapper* run_graph_request) { run_graph_request->set_graph_handle("graph_handle"); run_graph_request->set_step_id(13); run_graph_request->mutable_exec_opts()->set_record_timeline(true); TF_EXPECT_OK(run_graph_request->AddSendFromRunStepRequest(run_step_request, 0, "send_0")); TF_EXPECT_OK(run_graph_request->AddSendFromRunStepRequest(run_step_request, 1, "send_1")); run_graph_request->add_recv_key("recv_2"); run_graph_request->add_recv_key("recv_3"); run_graph_request->set_is_partial(true); } void CheckRunGraphRequest(const RunGraphRequestWrapper& request) { EXPECT_EQ("graph_handle", request.graph_handle()); EXPECT_EQ(13, request.step_id()); EXPECT_FALSE(request.exec_opts().record_costs()); EXPECT_TRUE(request.exec_opts().record_timeline()); EXPECT_FALSE(request.exec_opts().record_partition_graphs()); EXPECT_EQ(2, request.num_sends()); Tensor val; TF_EXPECT_OK(request.SendValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(request.SendValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); EXPECT_TRUE(request.is_partial()); EXPECT_FALSE(request.is_last_partial_run()); } void BuildRunGraphResponse(MutableRunGraphResponseWrapper* run_graph_response) { run_graph_response->AddRecv("recv_2", TensorA()); run_graph_response->AddRecv("recv_3", TensorB()); run_graph_response->mutable_step_stats()->add_dev_stats()->set_device( "/cpu:0"); run_graph_response->mutable_cost_graph()->add_node()->set_name("cost_node"); GraphDef graph_def; graph_def.mutable_versions()->set_producer(1234); graph_def.mutable_versions()->set_min_consumer(1234); run_graph_response->AddPartitionGraph(graph_def); } void CheckRunGraphResponse(MutableRunGraphResponseWrapper* response) { ASSERT_EQ(2, response->num_recvs()); EXPECT_EQ("recv_2", response->recv_key(0)); EXPECT_EQ("recv_3", response->recv_key(1)); Tensor val; TF_EXPECT_OK(response->RecvValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(response->RecvValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); ASSERT_EQ(1, response->mutable_step_stats()->dev_stats_size()); EXPECT_EQ("/cpu:0", response->mutable_step_stats()->dev_stats(0).device()); ASSERT_EQ(1, response->mutable_cost_graph()->node_size()); EXPECT_EQ("cost_node", response->mutable_cost_graph()->node(0).name()); ASSERT_EQ(1, response->num_partition_graphs()); EXPECT_EQ(1234, response->mutable_partition_graph(0)->versions().producer()); EXPECT_EQ(1234, response->mutable_partition_graph(0)->versions().min_consumer()); } void BuildRunStepResponse(MutableRunGraphResponseWrapper* run_graph_response, MutableRunStepResponseWrapper* run_step_response) { TF_EXPECT_OK(run_step_response->AddTensorFromRunGraphResponse( "fetch_x:0", run_graph_response, 0)); TF_EXPECT_OK(run_step_response->AddTensorFromRunGraphResponse( "fetch_y:0", run_graph_response, 1)); *run_step_response->mutable_metadata()->mutable_step_stats() = *run_graph_response->mutable_step_stats(); protobuf::RepeatedPtrField<GraphDef>* partition_graph_defs = run_step_response->mutable_metadata()->mutable_partition_graphs(); for (size_t i = 0; i < run_graph_response->num_partition_graphs(); i++) { partition_graph_defs->Add()->Swap( run_graph_response->mutable_partition_graph(i)); } } void CheckRunStepResponse(const MutableRunStepResponseWrapper& response) { ASSERT_EQ(2, response.num_tensors()); EXPECT_EQ("fetch_x:0", response.tensor_name(0)); EXPECT_EQ("fetch_y:0", response.tensor_name(1)); Tensor val; TF_EXPECT_OK(response.TensorValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(response.TensorValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); ASSERT_EQ(1, response.metadata().step_stats().dev_stats_size()); EXPECT_EQ("/cpu:0", response.metadata().step_stats().dev_stats(0).device()); ASSERT_EQ(1, response.metadata().partition_graphs_size()); EXPECT_EQ(1234, response.metadata().partition_graphs(0).versions().producer()); EXPECT_EQ(1234, response.metadata().partition_graphs(0).versions().min_consumer()); } TEST(MessageWrappers, RunStepRequest_Basic) { InMemoryRunStepRequest in_memory_request; BuildRunStepRequest(&in_memory_request); CheckRunStepRequest(in_memory_request); MutableProtoRunStepRequest proto_request; BuildRunStepRequest(&proto_request); CheckRunStepRequest(proto_request); CheckRunStepRequest(ProtoRunStepRequest(&in_memory_request.ToProto())); CheckRunStepRequest(ProtoRunStepRequest(&proto_request.ToProto())); } TEST(MessageWrappers, RunGraphRequest_Basic) { InMemoryRunStepRequest in_memory_run_step_request; BuildRunStepRequest(&in_memory_run_step_request); MutableProtoRunStepRequest mutable_proto_run_step_request; BuildRunStepRequest(&mutable_proto_run_step_request); ProtoRunStepRequest proto_run_step_request( &mutable_proto_run_step_request.ToProto()); { InMemoryRunGraphRequest request; BuildRunGraphRequest(in_memory_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { InMemoryRunGraphRequest request; BuildRunGraphRequest(mutable_proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { InMemoryRunGraphRequest request; BuildRunGraphRequest(proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { MutableProtoRunGraphRequest request; BuildRunGraphRequest(in_memory_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { MutableProtoRunGraphRequest request; BuildRunGraphRequest(mutable_proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { MutableProtoRunGraphRequest request; BuildRunGraphRequest(proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } } TEST(MessageWrappers, RunGraphResponse_Basic) { InMemoryRunGraphResponse in_memory_response; BuildRunGraphResponse(&in_memory_response); CheckRunGraphResponse(&in_memory_response); OwnedProtoRunGraphResponse owned_proto_response; BuildRunGraphResponse(&owned_proto_response); CheckRunGraphResponse(&owned_proto_response); RunGraphResponse response_proto; NonOwnedProtoRunGraphResponse non_owned_proto_response(&response_proto); BuildRunGraphResponse(&non_owned_proto_response); CheckRunGraphResponse(&non_owned_proto_response); } TEST(MessageWrappers, RunStepResponse_Basic) { { InMemoryRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); InMemoryRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { InMemoryRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); OwnedProtoRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { InMemoryRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); RunStepResponse response_proto; NonOwnedProtoRunStepResponse response(&response_proto); BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { OwnedProtoRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); InMemoryRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { OwnedProtoRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); OwnedProtoRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { OwnedProtoRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); RunStepResponse response_proto; NonOwnedProtoRunStepResponse response(&response_proto); BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { RunGraphResponse run_graph_response_proto; NonOwnedProtoRunGraphResponse run_graph_response(&run_graph_response_proto); BuildRunGraphResponse(&run_graph_response); InMemoryRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { RunGraphResponse run_graph_response_proto; NonOwnedProtoRunGraphResponse run_graph_response(&run_graph_response_proto); BuildRunGraphResponse(&run_graph_response); OwnedProtoRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { RunGraphResponse run_graph_response_proto; NonOwnedProtoRunGraphResponse run_graph_response(&run_graph_response_proto); BuildRunGraphResponse(&run_graph_response); RunStepResponse response_proto; NonOwnedProtoRunStepResponse response(&response_proto); BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/message_wrappers.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/message_wrappers_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
029d686d-d1e9-4d27-9854-c4784353d924
cpp
tensorflow/tensorflow
device_resolver_distributed
tensorflow/core/distributed_runtime/device_resolver_distributed.cc
tensorflow/core/distributed_runtime/device_resolver_distributed_test.cc
#include "tensorflow/core/distributed_runtime/device_resolver_distributed.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { DeviceResolverDistributed::DeviceResolverDistributed(const DeviceMgr* dev_mgr) { mutex_lock l(mu_); for (Device* device : dev_mgr->ListDevices()) { attr_table_[device->name()] = device->attributes(); } } Status DeviceResolverDistributed::GetDeviceAttributes( const string& device, DeviceAttributes* attributes) { mutex_lock l(mu_); auto it = attr_table_.find(device); if (it == attr_table_.end()) { return errors::NotFound(device, " not found"); } *attributes = it->second; return absl::OkStatus(); } Status DeviceResolverDistributed::GetAllDeviceAttributes( const string& task, std::vector<DeviceAttributes>* attributes) { mutex_lock l(mu_); attributes->clear(); for (const auto& it : attr_table_) { const string& device_name = it.first; if (DeviceNameUtils::IsSameAddressSpace(task, device_name)) { attributes->push_back(it.second); } } if (attributes->empty()) { return errors::NotFound(task, " not found in the cache"); } return absl::OkStatus(); } Status DeviceResolverDistributed::UpdateDeviceAttributes( const std::vector<DeviceAttributes>& attributes) { mutex_lock l(mu_); for (const DeviceAttributes& attr : attributes) { auto item = attr_table_.insert({attr.name(), attr}); auto it = item.first; bool success = item.second; if (!success && it->second.incarnation() != attr.incarnation()) { return errors::FailedPrecondition( attr.name(), "exists in cache with a different incarnation. " "This usually means the remote worker has restarted"); } } return absl::OkStatus(); } }
#include "tensorflow/core/distributed_runtime/device_resolver_distributed.h" #include "absl/memory/memory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/distributed_runtime/test_utils.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace { using ::testing::Property; using ::testing::UnorderedElementsAre; std::unique_ptr<Device> NewDevice(const string& type, const string& name) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr) : Device(nullptr, attr) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } }; DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); attr.set_incarnation(random::New64()); return std::make_unique<FakeDevice>(attr); } class DeviceResDistTest : public ::testing::Test { protected: void SetUp() override { std::vector<std::unique_ptr<Device>> devices; devices.push_back( NewDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( NewDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:1")); dev_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); dev_resolver_ = std::make_unique<DeviceResolverDistributed>(dev_mgr_.get()); std::vector<DeviceAttributes> attributes; attributes.push_back( NewDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0") ->attributes()); attributes.push_back( NewDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:1") ->attributes()); TF_ASSERT_OK(dev_resolver_->UpdateDeviceAttributes(attributes)); } std::unique_ptr<DeviceMgr> dev_mgr_; std::unique_ptr<DeviceResolverDistributed> dev_resolver_; }; TEST_F(DeviceResDistTest, GetDeviceAttributesLocal) { DeviceAttributes attributes; TF_ASSERT_OK(dev_resolver_->GetDeviceAttributes( "/job:worker/replica:0/task:0/device:CPU:0", &attributes)); EXPECT_EQ(attributes.name(), "/job:worker/replica:0/task:0/device:CPU:0"); } TEST_F(DeviceResDistTest, GetDeviceAttributesLocalUnknown) { DeviceAttributes attributes; EXPECT_TRUE(errors::IsNotFound(dev_resolver_->GetDeviceAttributes( "/job:worker/replica:0/task:0/device:CPU:9", &attributes))); } TEST_F(DeviceResDistTest, GetAllDeviceAttributes) { std::vector<DeviceAttributes> attributes; TF_ASSERT_OK(dev_resolver_->GetAllDeviceAttributes( "/job:worker/replica:0/task:0", &attributes)); EXPECT_THAT(attributes, UnorderedElementsAre( Property(&DeviceAttributes::name, "/job:worker/replica:0/task:0/device:CPU:0"), Property(&DeviceAttributes::name, "/job:worker/replica:0/task:0/device:CPU:1"))); TF_ASSERT_OK(dev_resolver_->GetAllDeviceAttributes( "/job:worker/replica:0/task:1", &attributes)); EXPECT_THAT(attributes, UnorderedElementsAre( Property(&DeviceAttributes::name, "/job:worker/replica:0/task:1/device:CPU:0"), Property(&DeviceAttributes::name, "/job:worker/replica:0/task:1/device:CPU:1"))); } TEST_F(DeviceResDistTest, GetAllDeviceAttributesUnknown) { std::vector<DeviceAttributes> attributes; EXPECT_TRUE(errors::IsNotFound(dev_resolver_->GetAllDeviceAttributes( "/job:worker/replica:0/task:3", &attributes))); } TEST_F(DeviceResDistTest, UpdateDeviceAttributes) { std::vector<DeviceAttributes> attributes; attributes.push_back( NewDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0") ->attributes()); attributes.push_back( NewDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:1") ->attributes()); TF_ASSERT_OK(dev_resolver_->UpdateDeviceAttributes(attributes)); TF_ASSERT_OK(dev_resolver_->GetAllDeviceAttributes( "/job:worker/replica:0/task:2", &attributes)); EXPECT_THAT(attributes, UnorderedElementsAre( Property(&DeviceAttributes::name, "/job:worker/replica:0/task:2/device:CPU:0"), Property(&DeviceAttributes::name, "/job:worker/replica:0/task:2/device:CPU:1"))); TF_ASSERT_OK(dev_resolver_->GetAllDeviceAttributes( "/job:worker/replica:0/task:0", &attributes)); EXPECT_THAT(attributes, UnorderedElementsAre( Property(&DeviceAttributes::name, "/job:worker/replica:0/task:0/device:CPU:0"), Property(&DeviceAttributes::name, "/job:worker/replica:0/task:0/device:CPU:1"))); } TEST_F(DeviceResDistTest, UpdateDeviceAttributesExisting) { std::vector<DeviceAttributes> attributes; TF_ASSERT_OK(dev_resolver_->GetAllDeviceAttributes( "/job:worker/replica:0/task:0", &attributes)); TF_ASSERT_OK(dev_resolver_->UpdateDeviceAttributes(attributes)); } TEST_F(DeviceResDistTest, UpdateDeviceAttributesDifferentIncarnation) { std::vector<DeviceAttributes> attributes; attributes.push_back( NewDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0") ->attributes()); attributes.push_back( NewDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:1") ->attributes()); EXPECT_TRUE(errors::IsFailedPrecondition( dev_resolver_->UpdateDeviceAttributes(attributes))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/device_resolver_distributed.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/device_resolver_distributed_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7a63ecfb-0bf9-4b2d-bc5b-7ffc4cb555fa
cpp
tensorflow/tensorflow
recent_request_ids
tensorflow/core/distributed_runtime/recent_request_ids.cc
tensorflow/core/distributed_runtime/recent_request_ids_test.cc
#include "tensorflow/core/distributed_runtime/recent_request_ids.h" #include <utility> #include "tensorflow/core/platform/logging.h" namespace tensorflow { RecentRequestIds::RecentRequestIds(int num_tracked_request_ids, int num_shards) : index_buckets_(num_shards > 0 ? num_shards : 1) { DCHECK(num_tracked_request_ids >= num_shards); const int per_bucket_size = num_tracked_request_ids / index_buckets_.size(); for (auto& bucket : index_buckets_) { mutex_lock l(bucket.mu); bucket.circular_buffer.resize(per_bucket_size); bucket.set.reserve(per_bucket_size); } } bool RecentRequestIds::Insert(int64_t request_id) { if (request_id == 0) { return true; } const int bucket_index = request_id % index_buckets_.size(); auto& bucket = index_buckets_[bucket_index]; mutex_lock l(bucket.mu); const bool inserted = bucket.set.insert(request_id).second; if (!inserted) { return false; } bucket.set.erase(bucket.circular_buffer[bucket.next_index]); bucket.circular_buffer[bucket.next_index] = request_id; bucket.next_index = (bucket.next_index + 1) % bucket.circular_buffer.size(); return true; } Status RecentRequestIds::TrackUnique(int64_t request_id, const string& method_name, const protobuf::Message& request) { if (Insert(request_id)) { return absl::OkStatus(); } else { return errors::Aborted("The same ", method_name, " request was received twice. ", request.ShortDebugString()); } } }
#include "tensorflow/core/distributed_runtime/recent_request_ids.h" #include <algorithm> #include "tensorflow/core/distributed_runtime/request_id.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/worker.pb.h" namespace tensorflow { Status TrackUnique(int64_t request_id, RecentRequestIds* recent_request_ids) { RecvTensorRequest request; request.set_request_id(request_id); return recent_request_ids->TrackUnique(request_id, "recent_request_ids_test", request); } TEST(RecentRequestIds, Zero) { RecentRequestIds recent_request_ids(1); EXPECT_TRUE(TrackUnique(0, &recent_request_ids).ok()); EXPECT_TRUE(TrackUnique(0, &recent_request_ids).ok()); EXPECT_TRUE(TrackUnique(0, &recent_request_ids).ok()); } TEST(RecentRequestIds, Unordered) { RecentRequestIds recent_request_ids(6); std::vector<int64_t> numbers = {53754, 23351, 164101, 7476, 162432, 130761, 164102}; for (int i = 0; i < 6; ++i) { TF_EXPECT_OK(TrackUnique(numbers[i], &recent_request_ids)); for (int j = 0; j <= i; ++j) { EXPECT_FALSE(TrackUnique(numbers[j], &recent_request_ids).ok()) << "i=" << i << " j=" << j; } } TF_EXPECT_OK(TrackUnique(numbers[6], &recent_request_ids)); for (int i = 1; i < 7; ++i) { EXPECT_FALSE(TrackUnique(numbers[i], &recent_request_ids).ok()) << "i=" << i; } TF_EXPECT_OK(TrackUnique(numbers[0], &recent_request_ids)); } void TestOrdered(int num_request_ids, int num_shards) { RecentRequestIds recent_request_ids(num_request_ids, num_shards); for (int i = 1; i < 101; ++i) { TF_EXPECT_OK(TrackUnique(i, &recent_request_ids)); for (int j = std::max(1, i - num_request_ids % num_shards + 1); j <= i; ++j) { EXPECT_FALSE(TrackUnique(j, &recent_request_ids).ok()) << "i=" << i << " j=" << j; } } } TEST(RecentRequestIds, Ordered2Shard1) { TestOrdered(2, 1); } TEST(RecentRequestIds, Ordered3Shard1) { TestOrdered(3, 1); } TEST(RecentRequestIds, Ordered4Shard1) { TestOrdered(4, 1); } TEST(RecentRequestIds, Ordered5Shard1) { TestOrdered(5, 1); } TEST(RecentRequestIds, Ordered10Shard3) { TestOrdered(10, 3); } TEST(RecentRequestIds, Ordered11Shard3) { TestOrdered(11, 3); } TEST(RecentRequestIds, Ordered12Shard4) { TestOrdered(12, 4); } TEST(RecentRequestIds, Ordered100Shard8) { TestOrdered(100, 8); } static void BM_TrackUnique(::testing::benchmark::State& state) { RecentRequestIds recent_request_ids(100000); RecvTensorRequest request; for (auto s : state) { TF_CHECK_OK(recent_request_ids.TrackUnique(GetUniqueRequestId(), "BM_TrackUnique", request)); } } BENCHMARK(BM_TrackUnique); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/recent_request_ids.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/recent_request_ids_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e3460a20-4301-4749-99c9-483fa6ad0a48
cpp
tensorflow/tensorflow
master
tensorflow/core/distributed_runtime/master.cc
tensorflow/core/distributed_runtime/master_test.cc
#include "tensorflow/core/distributed_runtime/master.h" #include <memory> #include <unordered_set> #include <vector> #include "xla/tsl/protobuf/rpc_options.pb.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/remote_device.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/distributed_runtime/worker_interface.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/regexp.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/cluster.pb.h" #include "tensorflow/core/protobuf/master.pb.h" #include "tensorflow/core/protobuf/worker.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace { constexpr char kGrpcPrefixRegex[] = "^grpc.*: } Master::Master(MasterEnv* env, double session_gc_seconds) : env_(env), last_1000_steps_(1000), step_count_(0), session_gc_seconds_(session_gc_seconds), recent_request_ids_(10000, env_->experimental_num_shards) { CHECK(!env->local_devices.empty()); DCHECK_GT(env_->experimental_num_shards, 0); if (session_gc_seconds_ > 0.0) { gc_thread_ = env_->env->StartThread(ThreadOptions(), "TF_master_GC", [this]() { GC(); }); } else { gc_thread_ = nullptr; } } Master::~Master() { if (gc_thread_) { mutex_lock l(mu_); shutdown_ = true; shutdown_cv_.notify_all(); delete gc_thread_; } } void Master::GC() { Env* env = Env::Default(); while (true) { mutex_lock l(mu_); const int kTimeoutMilliseconds = 10 * 1000; WaitForMilliseconds(&l, &shutdown_cv_, kTimeoutMilliseconds); if (shutdown_) { break; } std::vector<string> handles; const int64_t num_micros = static_cast<int64_t>(session_gc_seconds_ * 1000000); for (const auto& entry : sessions_) { int64_t lat = entry.second->last_access_time_usec(); if (static_cast<int64_t>(env->NowMicros()) - lat > num_micros) { handles.push_back(entry.first); auto* sess = entry.second; SchedClosure([this, sess]() { LOG(WARNING) << "GC session " << sess->handle() << " after " << session_gc_seconds_ << " seconds. " << "Note that if you are starting multiple replicas " << "on a staggered delay, session_gc_seconds may need " << "to be raised."; sess->GarbageCollect(); }); } } for (const auto& handle : handles) sessions_.erase(handle); } } MasterSession* Master::FindMasterSession(const string& handle) { MasterSession* session = nullptr; { mutex_lock l(mu_); session = gtl::FindPtrOrNull(sessions_, handle); if (session != nullptr) { session->Ref(); } } return session; } class DeviceFinder { public: static Status GetRemoteDevices( const protobuf::RepeatedPtrField<string>& device_filters, MasterEnv* env, WorkerCacheInterface* worker_cache, std::vector<std::unique_ptr<Device>>* out_remote) { DeviceFinder finder(device_filters, env, worker_cache); finder.Start(); TF_RETURN_IF_ERROR(finder.Wait()); finder.GetRemoteDevices(env->local_devices, out_remote); return absl::OkStatus(); } static void GetRemoteWorkers( const protobuf::RepeatedPtrField<string>& device_filters, MasterEnv* env, WorkerCacheInterface* worker_cache, std::vector<string>* workers) { DeviceFinder finder(device_filters, env, worker_cache); *workers = finder.targets_; } private: explicit DeviceFinder( const protobuf::RepeatedPtrField<string>& device_filters, MasterEnv* env, WorkerCacheInterface* worker_cache) : env_(env), worker_cache_(worker_cache) { CHECK(worker_cache) << "Worker cache was null!"; auto process_filter = [this](const string& filter) { DeviceNameUtils::ParsedName parsed; if (DeviceNameUtils::ParseFullName(filter, &parsed)) { filters_.push_back(parsed); } else { LOG(FATAL) << "Skipping invalid filter: " << filter; } }; for (const string& filter : device_filters) { process_filter(filter); } if (filters_.empty()) { std::vector<string> workers; worker_cache->ListWorkers(&workers); std::swap(workers, targets_); } else { CHECK_GT(env_->local_devices.size(), 0) << "No local devices provided."; const string& local_device_name = env_->local_devices[0]->name(); DeviceNameUtils::ParsedName local_parsed_name; CHECK(DeviceNameUtils::ParseFullName(local_device_name, &local_parsed_name)); bool all_filters_have_job = true; std::unordered_set<string> filter_job_names({local_parsed_name.job}); for (const DeviceNameUtils::ParsedName& filter : filters_) { all_filters_have_job = all_filters_have_job && filter.has_job; if (filter.has_job) { filter_job_names.insert(filter.job); } } std::vector<string> workers; if (all_filters_have_job) { for (const string& job_name : filter_job_names) { VLOG(2) << "Selectively listing workers in job: " << job_name; std::vector<string> workers_in_job; worker_cache->ListWorkersInJob(job_name, &workers_in_job); workers.insert(workers.end(), workers_in_job.begin(), workers_in_job.end()); } } else { VLOG(2) << "Listing workers in all jobs because some device " << "filter has no job specified. Filters were:"; if (device_filters.empty()) { VLOG(2) << "- <NO FILTERS>"; } else { for (const string& filter : device_filters) { VLOG(2) << "- " << filter; } } worker_cache->ListWorkers(&workers); } for (const string& name : workers) { if (MatchFilters(name) || DeviceNameUtils::IsSameAddressSpace(name, local_device_name)) { targets_.push_back(name); } } } seen_targets_.assign(targets_.size(), false); } ~DeviceFinder() { for (Device* dev : found_) delete dev; } void Start() { LOG(INFO) << "Scanning workers for devices: " << targets_.size() << " total workers"; { mutex_lock l(mu_); num_pending_ = targets_.size(); if (num_pending_ == 0) { pending_zero_.notify_all(); } } for (size_t i = 0; i < targets_.size(); ++i) { NewRemoteDevices( env_->env, worker_cache_, targets_[i], [this, i](const Status& s, std::vector<Device*>* devices) { WhenFound(i, s, devices); }); } } const int32 kLoggingPeriodMs = 10 * 1000; Status Wait() { mutex_lock l(mu_); while (num_pending_ != 0) { pending_zero_.wait_for(l, std::chrono::milliseconds(kLoggingPeriodMs)); if (num_pending_ != 0) { for (size_t i = 0; i < targets_.size(); ++i) { if (!seen_targets_[i]) { LOG(INFO) << "CreateSession still waiting for response from worker: " << targets_[i]; } } } } return status_; } void GetRemoteDevices(const std::vector<Device*>& local, std::vector<std::unique_ptr<Device>>* remote) { std::unordered_set<string> names(local.size()); for (Device* dev : local) names.insert(dev->name()); mutex_lock l(mu_); for (Device* dev : found_) { const string& name = dev->name(); if (names.insert(name).second && MatchFilters(name)) { remote->push_back(std::unique_ptr<Device>(dev)); } else { delete dev; } } found_.clear(); } typedef DeviceFinder ME; const MasterEnv* env_; WorkerCacheInterface* worker_cache_; std::vector<DeviceNameUtils::ParsedName> filters_; mutex mu_; int num_pending_ TF_GUARDED_BY(mu_); condition_variable pending_zero_; std::vector<Device*> found_ TF_GUARDED_BY(mu_); std::vector<string> targets_; std::vector<bool> seen_targets_ TF_GUARDED_BY(mu_); Status status_; void WhenFound(int target_index, const Status& s, std::vector<Device*>* devices) { mutex_lock l(mu_); seen_targets_[target_index] = true; if (!s.ok()) { LOG(ERROR) << "CreateSession failed because worker " << targets_[target_index] << " returned error: " << s; status_.Update(s); } else { found_.insert(found_.end(), devices->begin(), devices->end()); devices->clear(); } --num_pending_; if (num_pending_ == 0) { pending_zero_.notify_all(); } } bool Intersects(const DeviceNameUtils::ParsedName& x, const DeviceNameUtils::ParsedName& y) { return (!x.has_job || !y.has_job || x.job == y.job) && (!x.has_replica || !y.has_replica || x.replica == y.replica) && (!x.has_task || !y.has_task || x.task == y.task) && (!x.has_type || !y.has_type || x.type == y.type) && (!x.has_id || !y.has_id || x.id == y.id); } bool MatchFilters(const string& name) { if (filters_.empty()) return true; DeviceNameUtils::ParsedName x; if (DeviceNameUtils::ParseFullName(name, &x)) { for (const auto& filter : filters_) { if (Intersects(x, filter)) return true; } } return false; } DeviceFinder(const DeviceFinder&) = delete; void operator=(const DeviceFinder&) = delete; }; void Master::CreateSession(const CreateSessionRequest* req, CreateSessionResponse* resp, MyClosure done) { SchedClosure([this, req, resp, done]() { Status status; WorkerCacheFactoryOptions worker_cache_factory_options; auto call_done = gtl::MakeCleanup([&status, &done] { done(status); }); status = ValidateExternalGraphDefSyntax(req->graph_def()); if (!status.ok()) return; WorkerCacheInterface* worker_cache = nullptr; std::unique_ptr<WorkerCacheInterface> worker_cache_ptr; std::unique_ptr<DeviceSet> device_set; std::unique_ptr<std::vector<std::unique_ptr<Device>>> remote_devices( new std::vector<std::unique_ptr<Device>>()); const ClusterDef& cluster_def = req->config().cluster_def(); if (!cluster_def.job().empty()) { worker_cache_factory_options.cluster_def = cluster_def; string normalized_string(req->target()); RE2::Replace(&normalized_string, kGrpcPrefixRegex, ""); for (auto&& job : cluster_def.job()) { for (auto&& task : job.tasks()) { if (task.second == normalized_string) { if (!worker_cache_factory_options.job_name.empty()) { status = errors::InvalidArgument( "Found multiple matching tasks that correspond to " "to the master. Master target: '", req->target(), "'. ClusterDef: ", cluster_def.ShortDebugString()); LOG(ERROR) << status; return; } if (env_->local_devices[0]->parsed_name().job == job.name() && env_->local_devices[0]->parsed_name().task == task.first) { status = errors::InvalidArgument( "The ClusterSpec names the job and task index to be the same " "names that were provided when the server booted. This is " "currently not allowed. Job: ", job.name(), ", task index: ", task.first); return; } worker_cache_factory_options.job_name = job.name(); worker_cache_factory_options.task_index = task.first; } } } worker_cache_factory_options.rpc_options = req->config().rpc_options(); status = env_->worker_cache_factory(worker_cache_factory_options, &worker_cache); if (!status.ok()) return; worker_cache_ptr = std::unique_ptr<WorkerCacheInterface>(worker_cache); status = DeviceFinder::GetRemoteDevices(req->config().device_filters(), env_, worker_cache, remote_devices.get()); if (!status.ok()) return; device_set = std::make_unique<DeviceSet>(); for (auto&& d : *remote_devices) { device_set->AddDevice(d.get()); DeviceNameUtils::ParsedName name = d->parsed_name(); if (name.job == worker_cache_factory_options.job_name && name.task == worker_cache_factory_options.task_index && name.type == "CPU" && name.id == 0) { device_set->set_client_device(d.get()); } } } else { worker_cache = env_->worker_cache; status = DeviceFinder::GetRemoteDevices(req->config().device_filters(), env_, worker_cache, remote_devices.get()); if (!status.ok()) return; device_set = std::make_unique<DeviceSet>(); for (auto&& d : *remote_devices) { device_set->AddDevice(d.get()); } int num_local_devices = 0; for (Device* d : env_->local_devices) { device_set->AddDevice(d); if (num_local_devices == 0) { device_set->set_client_device(d); } num_local_devices++; } } CHECK(device_set->client_device()) << "No client device found. Missing " << "CPU:0 device?"; SessionOptions options; options.target = req->target(); options.config = req->config(); options.config.mutable_experimental() ->set_disable_optimize_for_static_graph(true); std::vector<string> filtered_worker_list; DeviceFinder::GetRemoteWorkers(req->config().device_filters(), env_, worker_cache, &filtered_worker_list); MasterSession* session = env_->master_session_factory( options, env_, std::move(remote_devices), std::move(worker_cache_ptr), std::move(device_set), std::move(filtered_worker_list)); GraphDef* gdef = const_cast<CreateSessionRequest*>(req)->mutable_graph_def(); status = session->Create(std::move(*gdef), cluster_def); if (!status.ok()) { session->Close().IgnoreError(); session->Unref(); return; } resp->set_session_handle(session->handle()); { mutex_lock l(mu_); CHECK(sessions_.insert({session->handle(), session}).second); } }); } void Master::ExtendSession(const ExtendSessionRequest* req, ExtendSessionResponse* resp, MyClosure done) { auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([session, req, resp, done]() { Status status = ValidateExternalGraphDefSyntax(req->graph_def()); if (status.ok()) { status = session->Extend(req, resp); } session->Unref(); done(status); }); } void Master::PartialRunSetup(const PartialRunSetupRequest* req, PartialRunSetupResponse* resp, MyClosure done) { Status s = recent_request_ids_.TrackUnique(req->request_id(), "PartialRunSetup (Master)", *req); if (!s.ok()) { done(s); return; } auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([session, req, resp, done]() { Status s = session->PartialRunSetup(req, resp); session->Unref(); done(s); }); } void Master::RunStep(CallOptions* opts, const RunStepRequestWrapper* req, MutableRunStepResponseWrapper* resp, MyClosure done) { Status s = recent_request_ids_.TrackUnique(req->request_id(), "RunStep (Master)", req); if (!s.ok()) { done(s); return; } auto start_time = env_->env->NowMicros(); auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([this, start_time, session, opts, req, resp, done]() { Status status = session->Run(opts, *req, resp); session->Unref(); uint64 done_time = env_->env->NowMicros(); done(status); mutex_lock l(mu_); last_1000_steps_.AddValue((done_time - start_time) / 1e9); ++step_count_; }); } void Master::CloseSession(const CloseSessionRequest* req, CloseSessionResponse* resp, MyClosure done) { MasterSession* session = nullptr; { mu_.lock(); auto iter = sessions_.find(req->session_handle()); if (iter == sessions_.end()) { mu_.unlock(); done(errors::Aborted( "Session ", req->session_handle(), " is not found. Possibly, this master has restarted.")); return; } session = iter->second; sessions_.erase(iter); mu_.unlock(); } SchedClosure([session, done]() { Status s = session->Close(); session->Unref(); done(s); }); } void Master::ListDevices(const ListDevicesRequest* req, ListDevicesResponse* resp, MyClosure done) { SchedClosure([this, req, resp, done]() { if (!req->session_handle().empty()) { auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::InvalidArgument( "Session ", req->session_handle(), " is not found. Possibly, this master has restarted.")); return; } core::ScopedUnref ref(session); Status s = session->ListDevices(resp); done(s); return; } std::vector<std::unique_ptr<Device>> remote_devices; Status s = DeviceFinder::GetRemoteDevices({}, env_, env_->worker_cache, &remote_devices); if (s.ok()) { for (Device* dev : env_->local_devices) { *(resp->add_local_device()) = dev->attributes(); } for (auto&& dev : remote_devices) { *(resp->add_remote_device()) = dev->attributes(); } } done(s); }); } void Master::CleanupWorkers(const ResetRequest& reset) { std::vector<string> worker_names; DeviceFinder::GetRemoteWorkers(reset.device_filters(), env_, env_->worker_cache, &worker_names); if (!worker_names.empty()) { const int num_workers = worker_names.size(); std::vector<Notification> n(num_workers); CleanupAllRequest req; (*req.mutable_container()) = reset.container(); std::vector<CleanupAllResponse> resp(num_workers); int c = 0; for (int i = 0; i < num_workers; ++i) { const string& worker_name = worker_names[i]; auto worker = env_->worker_cache->GetOrCreateWorker(worker_name); if (worker) { worker->CleanupAllAsync( &req, &resp[i], [this, &n, worker_name, worker, c](Status s) { if (!s.ok()) { LOG(ERROR) << "Worker CleanupAll failed: " << s; } env_->worker_cache->ReleaseWorker(worker_name, worker); n[c].Notify(); }); } else { n[c].Notify(); } ++c; } for (size_t i = 0; i < n.size(); ++i) { n[i].WaitForNotification(); } } } void Master::Reset(const ResetRequest* req, ResetResponse* resp, MyClosure done) { std::vector<MasterSession*> sessions_to_close; { mutex_lock l(mu_); for (const auto& entry : sessions_) { sessions_to_close.push_back(entry.second); } sessions_.clear(); } CleanupWorkers(*req); SchedClosure([sessions_to_close, done]() { Status s; for (MasterSession* session : sessions_to_close) { s.Update(session->Close()); session->Unref(); } done(s); }); } void Master::MakeCallable(const MakeCallableRequest* req, MakeCallableResponse* resp, MyClosure done) { Status s = recent_request_ids_.TrackUnique(req->request_id(), "MakeCallable (Master)", *req); if (!s.ok()) { done(s); return; } auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([session, req, resp, done = std::move(done)]() { Status s = session->MakeCallable(*req, resp); session->Unref(); done(s); }); } void Master::RunCallable(CallOptions* opts, const RunCallableRequest* req, RunCallableResponse* resp, MyClosure done) { Status s = recent_request_ids_.TrackUnique(req->request_id(), "RunCallable (Master)", *req); if (!s.ok()) { done(s); return; } auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([session, opts, req, resp, done = std::move(done)]() { Status s = session->RunCallable(opts, *req, resp); session->Unref(); done(s); }); } void Master::ReleaseCallable(const ReleaseCallableRequest* req, ReleaseCallableResponse* resp, MyClosure done) { auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([session, req, resp, done = std::move(done)]() { Status s = session->ReleaseCallable(*req, resp); session->Unref(); done(s); }); } }
#include "tensorflow/core/distributed_runtime/master.h" #include <map> #include <memory> #include "grpcpp/grpcpp.h" #include "Eigen/Core" #include "tensorflow/core/distributed_runtime/rpc/grpc_channel.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_master_service_impl.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_testlib.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/master.pb.h" namespace tensorflow { class MasterTest : public ::testing::Test { protected: MasterTest() { std::vector<string> targets; SessionOptions options; (*options.config.mutable_device_count())["CPU"] = 1; (*options.config.mutable_device_count())["GPU"] = 0; TF_CHECK_OK(test::TestCluster::MakeTestCluster( test::TestClusterConfig().Options(options).Jobs( {test::TestJob{"localhost", 2}}), &cluster_)); SharedGrpcChannelPtr channel_ptr; TF_CHECK_OK(NewHostPortGrpcChannel( cluster_->targets()[0], &options.config.rpc_options(), &channel_ptr)); master_ = grpc::MasterService::NewStub(channel_ptr); } std::unique_ptr<test::TestCluster> cluster_; std::unique_ptr<grpc::MasterService::Stub> master_; Status CreateSession(const GraphDef& def, string* handle, int64_t* initial_version) { ::grpc::ClientContext ctx; CreateSessionRequest req; *(req.mutable_graph_def()) = def; req.mutable_config()->set_placement_period(1); CreateSessionResponse resp; const Status s = FromGrpcStatus(master_->CreateSession(&ctx, req, &resp)); if (s.ok()) { *handle = resp.session_handle(); *initial_version = resp.graph_version(); } return s; } Status ExtendSession(const string& handle, const GraphDef& def, int64_t current_version, int64_t* new_version) { ::grpc::ClientContext ctx; ExtendSessionRequest req; req.set_session_handle(handle); *(req.mutable_graph_def()) = def; req.set_current_graph_version(current_version); ExtendSessionResponse resp; const Status s = FromGrpcStatus(master_->ExtendSession(&ctx, req, &resp)); if (s.ok()) { *new_version = resp.new_graph_version(); } return s; } Status RunStep(const string& handle, const std::vector<std::pair<string, const Tensor*> >& feed, const std::map<string, Tensor*>& fetch) { ::grpc::ClientContext ctx; RunStepRequest req; req.set_session_handle(handle); for (const auto& p : feed) { const string& feed_name = p.first; const Tensor* feed_tensor = p.second; auto f = req.add_feed(); f->set_name(feed_name); feed_tensor->AsProtoTensorContent(f->mutable_tensor()); } for (const auto& p : fetch) { const string& fetch_name = p.first; req.add_fetch(fetch_name); } RunStepResponse resp; const Status s = FromGrpcStatus(master_->RunStep(&ctx, req, &resp)); if (s.ok()) { for (const auto& fetch_resp : resp.tensor()) { auto it = fetch.find(fetch_resp.name()); CHECK(it != fetch.end()); CHECK(it->second->FromProto(fetch_resp.tensor())); } } return s; } Status CloseSession(const string& handle) { ::grpc::ClientContext ctx; CloseSessionRequest req; req.set_session_handle(handle); CloseSessionResponse resp; return FromGrpcStatus(master_->CloseSession(&ctx, req, &resp)); } Status Reset() { ::grpc::ClientContext ctx; ResetRequest req; ResetResponse resp; return FromGrpcStatus(master_->Reset(&ctx, req, &resp)); } }; TEST_F(MasterTest, CreateClose) { GraphDef def; string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def, &handle, &initial_version)); EXPECT_TRUE(errors::IsAborted(CloseSession("randombits"))); EXPECT_TRUE(CloseSession(handle).ok()); } TEST_F(MasterTest, ListDevices) { ::grpc::ClientContext ctx; ListDevicesRequest req; ListDevicesResponse resp; const Status s = FromGrpcStatus(master_->ListDevices(&ctx, req, &resp)); TF_EXPECT_OK(s); EXPECT_EQ(1, resp.local_device_size()); EXPECT_EQ("CPU", resp.local_device(0).device_type()); } TEST_F(MasterTest, Reset) { GraphDef def; string s1, s2; int64_t initial_version1, initial_version2; TF_ASSERT_OK(CreateSession(def, &s1, &initial_version1)); TF_ASSERT_OK(CreateSession(def, &s2, &initial_version2)); EXPECT_TRUE(Reset().ok()); EXPECT_TRUE(errors::IsAborted(CloseSession(s1))); EXPECT_TRUE(errors::IsAborted(CloseSession(s2))); } TEST_F(MasterTest, Extend) { GraphDef def_0; string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def_0, &handle, &initial_version)); Tensor A_expected(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&A_expected, {3.0, 2.0, -1.0, 0.0}); Tensor x_expected(DT_FLOAT, TensorShape({2, 1})); test::FillValues<float>(&x_expected, {2.0, 2.0}); Graph graph_1(OpRegistry::Global()); test::graph::Constant(&graph_1, A_expected, "A"); GraphDef def_1; test::graph::ToGraphDef(&graph_1, &def_1); int64_t version_1; TF_ASSERT_OK(ExtendSession(handle, def_1, initial_version, &version_1)); EXPECT_GT(version_1, initial_version); Tensor A(DT_FLOAT, TensorShape({2, 2})); TF_ASSERT_OK(RunStep(handle, {}, {{"A:0", &A}})); test::ExpectTensorEqual<float>(A, A_expected); Graph graph_2(OpRegistry::Global()); test::graph::Constant(&graph_2, x_expected, "x"); GraphDef def_2; test::graph::ToGraphDef(&graph_2, &def_2); int64_t version_2; EXPECT_TRUE(errors::IsAborted( ExtendSession("randombits", def_2, version_1, &version_2))); TF_ASSERT_OK(ExtendSession(handle, def_2, version_1, &version_2)); EXPECT_GT(version_2, version_1); Tensor x(DT_FLOAT, TensorShape({2, 1})); TF_ASSERT_OK(RunStep(handle, {}, {{"A:0", &A}, {"x:0", &x}})); test::ExpectTensorEqual<float>(A, A_expected); test::ExpectTensorEqual<float>(x, x_expected); TF_ASSERT_OK(CloseSession(handle)); } TEST_F(MasterTest, ExtendUpdateStatefulFails) { GraphDef def_0; string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def_0, &handle, &initial_version)); Graph graph_1(OpRegistry::Global()); test::graph::Var(&graph_1, DT_FLOAT, TensorShape({512})); GraphDef def_1; test::graph::ToGraphDef(&graph_1, &def_1); int64_t version_1, version_2; TF_ASSERT_OK(ExtendSession(handle, def_1, initial_version, &version_1)); EXPECT_GT(version_1, initial_version); EXPECT_TRUE(errors::IsInvalidArgument( ExtendSession(handle, def_1, version_1, &version_2))); TF_ASSERT_OK(CloseSession(handle)); } TEST_F(MasterTest, ExtendTwiceFails) { GraphDef def_0; string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def_0, &handle, &initial_version)); Graph graph_1(OpRegistry::Global()); test::graph::Var(&graph_1, DT_FLOAT, TensorShape({512})); GraphDef def_1; test::graph::ToGraphDef(&graph_1, &def_1); int64_t version_1; TF_ASSERT_OK(ExtendSession(handle, def_1, initial_version, &version_1)); EXPECT_GT(version_1, initial_version); EXPECT_TRUE(errors::IsAborted( ExtendSession(handle, def_1, initial_version, &version_1))); TF_ASSERT_OK(CloseSession(handle)); } TEST_F(MasterTest, ConcurrentExtendOnlyOneSucceeds) { GraphDef def_0; string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def_0, &handle, &initial_version)); Graph graph_1(OpRegistry::Global()); test::graph::Var(&graph_1, DT_FLOAT, TensorShape({512})); GraphDef def_1; test::graph::ToGraphDef(&graph_1, &def_1); Notification n; mutex mu; int succeeded = 0; int failed = 0; auto extend_fn = [this, handle, def_1, initial_version, &n, &mu, &succeeded, &failed]() { n.WaitForNotification(); int64_t new_version; Status s = ExtendSession(handle, def_1, initial_version, &new_version); EXPECT_TRUE(s.ok() || errors::IsAborted(s)); { mutex_lock l(mu); if (s.ok()) { ++succeeded; } else { ++failed; } } }; { thread::ThreadPool thread_pool(Env::Default(), "extend_pool", 100); for (int i = 0; i < 100; ++i) { thread_pool.Schedule(extend_fn); } n.Notify(); } EXPECT_EQ(failed, 99); EXPECT_EQ(succeeded, 1); TF_ASSERT_OK(CloseSession(handle)); } TEST_F(MasterTest, ConcurrentExtendAndRun) { Graph graph_0(OpRegistry::Global()); Tensor a_tensor(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&a_tensor, {3, 2, -1, 0}); test::graph::Constant(&graph_0, a_tensor, "A"); GraphDef def_0; test::graph::ToGraphDef(&graph_0, &def_0); string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def_0, &handle, &initial_version)); Graph graph_1(OpRegistry::Global()); Tensor b_tensor(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&b_tensor, {1, 0, 0, 1}); test::graph::Constant(&graph_1, b_tensor, "B"); GraphDef def_1; test::graph::ToGraphDef(&graph_1, &def_1); Notification extend_done; Notification extend_can_start; auto get_a_fn = [this, handle, &extend_done]() { Tensor A(DT_FLOAT, TensorShape({2, 2})); while (!extend_done.HasBeenNotified()) { TF_ASSERT_OK(RunStep(handle, {}, {{"A:0", &A}})); } TF_ASSERT_OK(RunStep(handle, {}, {{"A:0", &A}})); }; auto get_a_and_b_fn = [this, handle, &extend_done, &extend_can_start]() { Tensor A(DT_FLOAT, TensorShape({2, 2})); Tensor B(DT_FLOAT, TensorShape({2, 2})); EXPECT_TRUE( errors::IsNotFound(RunStep(handle, {}, {{"A:0", &A}, {"B:0", &B}}))); extend_can_start.Notify(); while (!extend_done.HasBeenNotified()) { Status s = RunStep(handle, {}, {{"A:0", &A}, {"B:0", &B}}); EXPECT_TRUE(errors::IsNotFound(s) || s.ok()); } TF_ASSERT_OK(RunStep(handle, {}, {{"A:0", &A}, {"B:0", &B}})); }; auto extend_fn = [this, handle, def_1, initial_version, &extend_done, &extend_can_start]() { extend_can_start.WaitForNotification(); int64_t version_1; TF_ASSERT_OK(ExtendSession(handle, def_1, initial_version, &version_1)); extend_done.Notify(); }; { thread::ThreadPool thread_pool(Env::Default(), "extend_pool", 3); thread_pool.Schedule(get_a_fn); thread_pool.Schedule(get_a_and_b_fn); thread_pool.Schedule(extend_fn); } TF_ASSERT_OK(CloseSession(handle)); } TEST_F(MasterTest, EigenProblem) { Graph graph(OpRegistry::Global()); Tensor a_tensor(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&a_tensor, {3, 2, -1, 0}); Node* a_node = test::graph::Constant(&graph, a_tensor); Tensor x_tensor(DT_FLOAT, TensorShape({2, 1})); test::FillValues<float>(&x_tensor, {0, 0}); Node* x_node = test::graph::Constant(&graph, x_tensor); Node* y_node = test::graph::Matmul(&graph, a_node, x_node, false, false); GraphDef def; test::graph::ToGraphDef(&graph, &def); string handle; int64_t initial_version; TF_CHECK_OK(CreateSession(def, &handle, &initial_version)); const Eigen::array<Eigen::DenseIndex, 1> sum_along_dim{0}; const Eigen::array<Eigen::DenseIndex, 2> matrix_transpose{1, 0}; Tensor x(DT_FLOAT, TensorShape({2, 1})); Tensor y(DT_FLOAT, TensorShape({2, 1})); Eigen::Tensor<float, 1, Eigen::RowMajor> y_square_sum; Eigen::Tensor<float, 2, Eigen::RowMajor> y_normalized(2, 1); y_normalized.setRandom(); Eigen::Tensor<float, 1, Eigen::RowMajor> error_square_sum; float lambda; bool converged = false; while (!converged) { auto x_matrix = x.matrix<float>(); x_matrix = y_normalized; TF_EXPECT_OK( RunStep(handle, {{x_node->name(), &x}}, {{y_node->name() + ":0", &y}})); auto y_matrix = y.matrix<float>(); { lambda = y_matrix(0, 0) / x_matrix(0, 0); y_square_sum = y.matrix<float>().square().sum(sum_along_dim); const float norm = static_cast<float>(sqrt(y_square_sum(0))); y_normalized = y_matrix * (1 / norm); error_square_sum = (x_matrix - y_normalized).square().sum(sum_along_dim); VLOG(1) << "x = [" << x_matrix.shuffle(matrix_transpose) << "] y = [" << y_matrix.shuffle(matrix_transpose) << "] lambda = " << lambda; converged = sqrt(error_square_sum(0)) < 1e-10; } } EXPECT_NEAR(lambda, 2.0, 0.01); TF_EXPECT_OK(CloseSession(handle)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/master.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/master_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2a390141-a179-474f-84ec-21165faf17ec
cpp
tensorflow/tensorflow
request_id
tensorflow/core/distributed_runtime/request_id.cc
tensorflow/core/distributed_runtime/request_id_test.cc
#include "tensorflow/core/distributed_runtime/request_id.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { int64_t GetUniqueRequestId() { int64_t request_id = 0; while (request_id == 0) { request_id = tsl::random::ThreadLocalNew64(); } return request_id; } }
#include "tensorflow/core/distributed_runtime/request_id.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(GetUniqueRequestId, Basic) { for (int i = 0; i < 1000000; ++i) { EXPECT_NE(GetUniqueRequestId(), 0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/request_id.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/request_id_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5054f737-a436-48d6-bda7-202ce4f02830
cpp
tensorflow/tensorflow
session_mgr
tensorflow/core/distributed_runtime/session_mgr.cc
tensorflow/core/distributed_runtime/session_mgr_test.cc
#include "tensorflow/core/distributed_runtime/session_mgr.h" #include <algorithm> #include <memory> #include <string> #include <utility> #include <vector> #include "xla/tsl/distributed_runtime/coordination/coordination_service.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "xla/tsl/protobuf/distributed_runtime_payloads.pb.h" #include "tensorflow/core/activity_watcher/activity.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/renamed_device.h" #include "tensorflow/core/distributed_runtime/cluster_function_library_runtime.h" #include "tensorflow/core/distributed_runtime/error_payloads.h" #include "tensorflow/core/distributed_runtime/graph_mgr.h" #include "tensorflow/core/distributed_runtime/remote_device.h" #include "tensorflow/core/distributed_runtime/worker_cache_wrapper.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/protobuf/cluster.pb.h" #include "tensorflow/core/protobuf/tensorflow_server.pb.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace { bool IsMultiClientLeader(const ServerDef& server_def, const CoordinationServiceConfig& config) { DeviceNameUtils::ParsedName leader_pn; DeviceNameUtils::ParseFullName(config.service_leader(), &leader_pn); return server_def.job_name() == leader_pn.job && server_def.task_index() == leader_pn.task; } void SetCoordinationServiceLeader(const ServerDef& server_def, CoordinationServiceConfig* config) { const std::string& collective_leader = server_def.default_session_config() .experimental() .collective_group_leader(); if (!collective_leader.empty()) { config->set_service_leader(collective_leader); LOG(INFO) << "No coordination leader is set, using the collective leader " << collective_leader; } else { const std::string& default_leader = strings::StrCat("/job:", server_def.job_name(), "/replica:0/task:0"); config->set_service_leader(default_leader); LOG(INFO) << "No coordination leader is set, using the default leader " << default_leader; } } void SetCoordinatedJobList(const ServerDef& server_def, CoordinationServiceConfig* config) { for (const auto& job : server_def.cluster().job()) { tensorflow::CoordinatedJob* coordinated_job = config->mutable_coordinated_job_list()->Add(); coordinated_job->set_name(job.name()); coordinated_job->set_num_tasks(job.tasks().size()); } } } SessionMgr::SessionMgr( WorkerEnv* worker_env, const std::string& default_worker_name, std::unique_ptr<WorkerCacheInterface> default_worker_cache, WorkerCacheFactory worker_cache_factory, tsl::CoordinationServiceRpcHandler* coordination_handler) : worker_env_(worker_env), default_worker_cache_(std::move(default_worker_cache)), legacy_session_(WorkerSession::CreateWithBorrowedDeviceMgr( "", default_worker_name, std::unique_ptr<WorkerCacheInterface>( new WorkerCacheWrapper(default_worker_cache_.get())), worker_env->device_mgr, std::make_unique<GraphMgr>(worker_env, worker_env->device_mgr), nullptr, [](WorkerSession* worker_session, bool create_worker_session_called, DeviceMgr* remote_device_mgr) -> std::unique_ptr<DistributedFunctionLibraryRuntime> { return std::make_unique<ClusterFunctionLibraryRuntime>( worker_session, create_worker_session_called, remote_device_mgr); })), worker_cache_factory_(std::move(worker_cache_factory)), coordination_handler_(coordination_handler) {} std::string SessionMgr::WorkerNameFromServerDef(const ServerDef& server_def) { return strings::StrCat("/job:", server_def.job_name(), "/replica:", server_def.replica(), "/task:", server_def.task_index()); } Status SessionMgr::CreateSession(const std::string& session, const ServerDef& server_def, bool isolate_session_state, StatusCallback coordination_error_callback) { return CreateSession(session, server_def, {}, isolate_session_state, "", 0, coordination_error_callback); } Status SessionMgr::CreateSession( const std::string& session, const ServerDef& server_def, const protobuf::RepeatedPtrField<DeviceAttributes>& cluster_device_attributes, bool isolate_session_state) { return CreateSession(session, server_def, cluster_device_attributes, isolate_session_state, "", 0); } Status SessionMgr::CreateSession( const std::string& session, const ServerDef& server_def, const protobuf::RepeatedPtrField<DeviceAttributes>& cluster_device_attributes, bool isolate_session_state, std::string master_task, int64_t master_incarnation, StatusCallback coordination_error_callback) { mutex_lock l(mu_); if (session.empty()) { return errors::InvalidArgument("Session must be non-empty."); } if (!master_task.empty()) { auto it_range = master_to_associated_sessions_.equal_range(master_task); if (it_range.first != it_range.second && it_range.first->second.master_incarnation != master_incarnation) { LOG(INFO) << "When creating WorkerSession for master task " << master_task << ", found old WorkerSessions created by the same master task " << "with a different incarnation. These sessions will " << "be garbage collected. Current WorkerSession count: " << sessions_.size(); auto it = it_range.first; while (it != it_range.second) { auto session_it = sessions_.find(it->second.session_handle); if (session_it != sessions_.end()) { sessions_.erase(session_it); } it = master_to_associated_sessions_.erase(it); } } } WorkerCacheInterface* worker_cache = nullptr; std::string worker_name; if (server_def.cluster().job().empty()) { worker_cache = new WorkerCacheWrapper(default_worker_cache_.get()); worker_name = legacy_session_->worker_name(); } else { TF_RETURN_IF_ERROR(worker_cache_factory_(server_def, &worker_cache)); worker_name = WorkerNameFromServerDef(server_def); } if (worker_cache != nullptr && default_worker_cache_ != nullptr) { worker_cache->SetLogging(this->is_logging_active_); } CHECK(worker_env_->device_mgr) << "The WorkerEnv must have a device manager."; std::vector<Device*> local_devices = worker_env_->device_mgr->ListDevices(); CHECK(!local_devices.empty()) << "The WorkerEnv must have at least one device in `local_devices`."; std::shared_ptr<WorkerSession> worker_session; std::vector<std::unique_ptr<Device>> cluster_devices; if (isolate_session_state || server_def.cluster().job_size()) { if (server_def.cluster().job_size()) { VLOG(1) << "ClusterSpec propagation is enabled."; } if (!isolate_session_state) { VLOG(1) << "Session state isolation is disabled."; } std::vector<std::unique_ptr<Device>> renamed_devices; renamed_devices.reserve(local_devices.size()); for (Device* d : local_devices) { renamed_devices.push_back(RenamedDevice::NewRenamedDevice( worker_name, d, false, isolate_session_state)); } auto device_mgr = std::make_unique<StaticDeviceMgr>(std::move(renamed_devices)); LookupLocalDevice cb = [&device_mgr](StringPiece name, Device** device) { return device_mgr->LookupDevice(name, device); }; AsRemoteDevices(worker_env_->env, cluster_device_attributes, cb, &cluster_devices); std::unique_ptr<DynamicDeviceMgr> remote_devices; if (!cluster_device_attributes.empty()) { remote_devices = std::make_unique<DynamicDeviceMgr>(); TF_RETURN_IF_ERROR( remote_devices->AddDevices(std::move(cluster_devices))); } auto graph_mgr = std::make_unique<GraphMgr>(worker_env_, device_mgr.get()); worker_session.reset(new WorkerSession( session, worker_name, std::unique_ptr<WorkerCacheInterface>(worker_cache), std::move(device_mgr), std::move(graph_mgr), std::move(remote_devices), [](WorkerSession* worker_session, bool create_worker_session_called, DeviceMgr* remote_device_mgr) -> std::unique_ptr<DistributedFunctionLibraryRuntime> { return std::make_unique<ClusterFunctionLibraryRuntime>( worker_session, create_worker_session_called, remote_device_mgr); })); } else { AsRemoteDevices(worker_env_->env, cluster_device_attributes, nullptr, &cluster_devices); std::unique_ptr<DynamicDeviceMgr> remote_devices; if (!cluster_device_attributes.empty()) { remote_devices = std::make_unique<DynamicDeviceMgr>(); TF_RETURN_IF_ERROR( remote_devices->AddDevices(std::move(cluster_devices))); } auto graph_mgr = std::make_unique<GraphMgr>(worker_env_, worker_env_->device_mgr); worker_session = WorkerSession::CreateWithBorrowedDeviceMgr( session, worker_name, std::unique_ptr<WorkerCacheInterface>(worker_cache), worker_env_->device_mgr, std::move(graph_mgr), std::move(remote_devices), [](WorkerSession* worker_session, bool create_worker_session_called, DeviceMgr* remote_device_mgr) -> std::unique_ptr<DistributedFunctionLibraryRuntime> { return std::make_unique<ClusterFunctionLibraryRuntime>( worker_session, create_worker_session_called, remote_device_mgr); }); } sessions_.insert(std::make_pair(session, std::move(worker_session))); if (!master_task.empty()) { MasterAssociatedSession s{master_incarnation, session}; master_to_associated_sessions_.emplace(master_task, s); } CoordinationServiceConfig coordination_config = server_def.default_session_config().experimental().coordination_config(); if (!coordination_config.service_type().empty() && !coordination_config.force_disable() && coordination_service_agent_ == nullptr) { std::unique_ptr<CoordinationClientCache> client_cache; TF_RETURN_IF_ERROR(worker_cache->GetCoordinationClientCache(&client_cache)); if (coordination_config.service_leader().empty()) { SetCoordinationServiceLeader(server_def, &coordination_config); } if (coordination_config.coordinated_job_list().empty()) { SetCoordinatedJobList(server_def, &coordination_config); } if (IsMultiClientLeader(server_def, coordination_config)) { coordination_service_ = tsl::CoordinationServiceInterface::EnableCoordinationService( worker_env_->env, coordination_config, std::move(client_cache)); if (coordination_handler_ != nullptr) { coordination_handler_->SetServiceInstance(coordination_service_.get()); } } std::unique_ptr<CoordinationClientCache> agent_cache; TF_RETURN_IF_ERROR(worker_cache->GetCoordinationClientCache(&agent_cache)); coordination_service_agent_ = tsl::CreateCoordinationServiceAgent(); TF_RETURN_IF_ERROR(coordination_service_agent_->Initialize( worker_env_->env, server_def.job_name(), server_def.task_index(), coordination_config, agent_cache->GetOwnedClient(coordination_config.service_leader()), std::move(coordination_error_callback))); activity_watcher::MaybeEnableMultiWorkersWatching( coordination_service_agent_.get()); } return absl::OkStatus(); } void SessionMgr::ResetDefaultWorkerCache(WorkerCacheInterface* worker_cache) { default_worker_cache_.reset(worker_cache); } Status SessionMgr::UpdateSession( const std::string& session, const ServerDef& server_def, const protobuf::RepeatedPtrField<DeviceAttributes>& cluster_device_attributes) { mutex_lock l(mu_); if (session.empty()) { return errors::InvalidArgument("Session must be non-empty."); } auto it = sessions_.find(session); if (it == sessions_.end()) { return errors::InvalidArgument("Cannot update session ", session, " because it does not exist."); } std::shared_ptr<WorkerSession> worker_session = it->second; WorkerCacheInterface* worker_cache = nullptr; if (server_def.cluster().job().empty()) { worker_cache = new WorkerCacheWrapper(default_worker_cache_.get()); } else { TF_RETURN_IF_ERROR(worker_cache_factory_(server_def, &worker_cache)); } std::vector<std::string> updated_remote_workers; worker_cache->ListWorkers(&updated_remote_workers); std::vector<std::unique_ptr<Device>> cluster_devices; const DeviceMgr* local_device_mgr = worker_session->device_mgr(); DeviceMgr* remote_device_mgr = worker_session->remote_device_mgr(); std::vector<Device*> curr_remote_devices = remote_device_mgr->ListDevices(); std::vector<std::unique_ptr<Device>> added_remote_devices; std::vector<Device*> removed_remote_devices; std::vector<DeviceAttributes> added_cluster_device_attrs; for (const auto& da : cluster_device_attributes) { Device* device; if (!local_device_mgr->LookupDevice(da.name(), &device).ok() && !remote_device_mgr->LookupDevice(da.name(), &device).ok()) { added_cluster_device_attrs.emplace_back(da); } else if (device != nullptr && device->attributes().incarnation() != da.incarnation()) { removed_remote_devices.emplace_back(device); added_cluster_device_attrs.emplace_back(da); } } for (Device* device : curr_remote_devices) { std::string task_name; DeviceNameUtils::GetTaskName(device->parsed_name(), &task_name); if (std::find(updated_remote_workers.begin(), updated_remote_workers.end(), task_name) == updated_remote_workers.end()) { removed_remote_devices.emplace_back(device); } } protobuf::RepeatedPtrField<DeviceAttributes> added_cluster_device_attrs_pb( added_cluster_device_attrs.begin(), added_cluster_device_attrs.end()); AsRemoteDevices(worker_env_->env, added_cluster_device_attrs_pb, nullptr, &added_remote_devices); TF_RETURN_IF_ERROR(worker_session->UpdateWorkerCacheAndDevices( std::unique_ptr<WorkerCacheInterface>(worker_cache), std::move(added_remote_devices), removed_remote_devices)); return absl::OkStatus(); } Status SessionMgr::DeleteSession(const std::string& session) { mutex_lock l(mu_); auto it = sessions_.find(session); if (it != sessions_.end()) { sessions_.erase(it); } return absl::OkStatus(); } Status SessionMgr::DeleteAllSessions() { std::map<std::string, std::shared_ptr<WorkerSession>> tmp_sessions; { mutex_lock l(mu_); swap(sessions_, tmp_sessions); } for (auto& session : tmp_sessions) { session.second.reset(); } return absl::OkStatus(); } Status SessionMgr::WorkerSessionForSessionLocked( const std::string& session_handle, std::shared_ptr<WorkerSession>* out_session) { if (session_handle.empty()) { *out_session = legacy_session_; } else { auto it = sessions_.find(session_handle); if (it == sessions_.end()) { return errors::AbortedWithPayloads( strings::StrCat("Session handle is not found: ", session_handle, ". Possibly this worker (\"", legacy_session_->worker_name(), "\") just restarted."), {{kWorkerPossiblyRestarted, distributed_runtime::WorkerPossiblyRestarted() .SerializeAsString()}}); } else { *out_session = it->second; } } return absl::OkStatus(); } Status SessionMgr::WorkerSessionForSession( const std::string& session_handle, std::shared_ptr<WorkerSession>* out_session) { mutex_lock l(mu_); return WorkerSessionForSessionLocked(session_handle, out_session); } std::shared_ptr<WorkerSession> SessionMgr::LegacySession() { return legacy_session_; } tsl::CoordinationServiceAgent* SessionMgr::GetCoordinationServiceAgent() { return coordination_service_agent_.get(); } void SessionMgr::SetLogging(bool active) { mutex_lock l(mu_); this->is_logging_active_ = active; if (legacy_session_) { auto* worker_cache = legacy_session_->worker_cache(); if (worker_cache) { worker_cache->SetLogging(active); } } for (const auto& session_kv : sessions_) { auto session = session_kv.second.get(); if (session) { auto* worker_cache = session->worker_cache(); if (worker_cache) { worker_cache->SetLogging(active); } } } } void SessionMgr::RetrieveLogs(int64_t step_id, LoggingResponse* response) { mutex_lock l(mu_); if (legacy_session_) { auto* worker_cache = legacy_session_->worker_cache(); if (worker_cache) { auto step_stats = StepStats(); if (worker_cache->RetrieveLogs(step_id, &step_stats)) { auto* labeled_step_stats = response->add_step(); labeled_step_stats->set_step_id(step_id); labeled_step_stats->mutable_step_stats()->Swap(&step_stats); } } } for (const auto& session_kv : sessions_) { auto session = session_kv.second.get(); if (session) { auto* worker_cache = session->worker_cache(); if (worker_cache) { auto step_stats = StepStats(); if (worker_cache->RetrieveLogs(step_id, &step_stats)) { auto* labeled_step_stats = response->add_step(); labeled_step_stats->set_step_id(step_id); labeled_step_stats->mutable_step_stats()->Swap(&step_stats); } } } } } void SessionMgr::ClearLogs() { mutex_lock l(mu_); if (legacy_session_) { auto* worker_cache = legacy_session_->worker_cache(); if (worker_cache) { worker_cache->ClearLogs(); } } for (const auto& session_kv : sessions_) { auto session = session_kv.second.get(); if (session) { auto* worker_cache = session->worker_cache(); if (worker_cache) { worker_cache->ClearLogs(); } } } } void SessionMgr::TeardownCoordinationService() { coordination_service_ = nullptr; } void SessionMgr::TeardownCoordinationServiceAgent() { coordination_service_agent_ = nullptr; } }
#include "tensorflow/core/distributed_runtime/session_mgr.h" #include <string> #include "absl/status/status.h" #include "tensorflow/core/distributed_runtime/error_payloads.h" #include "tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr.h" #include "tensorflow/core/distributed_runtime/worker_env.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/cluster.pb.h" namespace tensorflow { class FakeDevice : public Device { private: explicit FakeDevice(const DeviceAttributes& device_attributes) : Device(nullptr, device_attributes) {} public: Status Sync() override { return errors::Unimplemented("FakeDevice::Sync()"); } Allocator* GetAllocator(AllocatorAttributes attr) override { return nullptr; } static std::unique_ptr<Device> MakeCPU(const std::string& name) { DeviceAttributes device_attributes; device_attributes.set_name(name); device_attributes.set_device_type(DeviceType("FakeCPU").type()); return std::unique_ptr<Device>(new FakeDevice(device_attributes)); } }; class SessionMgrTest : public ::testing::Test { protected: SessionMgrTest() : mgr_(&env_, "/job:mnist/replica:0/task:0", std::unique_ptr<WorkerCacheInterface>(), factory_, nullptr) { device_mgr_ = std::make_unique<DynamicDeviceMgr>( FakeDevice::MakeCPU("/job:mnist/replica:0/task:0/device:fakecpu:0")); env_.device_mgr = device_mgr_.get(); } std::unique_ptr<DeviceMgr> device_mgr_; WorkerEnv env_; SessionMgr::WorkerCacheFactory factory_ = [](const ServerDef& server_def, WorkerCacheInterface** worker_cache) { *worker_cache = nullptr; return absl::OkStatus(); }; SessionMgr mgr_; }; TEST_F(SessionMgrTest, CreateSessionSimple) { ServerDef server_def; server_def.set_job_name("worker"); server_def.set_task_index(3); std::string session_handle = "test_session_handle"; TF_EXPECT_OK(mgr_.CreateSession(session_handle, server_def, true)); std::shared_ptr<WorkerSession> session; TF_EXPECT_OK(mgr_.WorkerSessionForSession(session_handle, &session)); EXPECT_NE(nullptr, session) << "Session for " << session_handle << "was null"; EXPECT_NE(mgr_.LegacySession(), session); TF_EXPECT_OK(mgr_.DeleteSession(session_handle)); } TEST_F(SessionMgrTest, CreateSessionClusterDefWorkerName) { ServerDef server_def; server_def.set_job_name("worker"); server_def.set_task_index(3); auto job = server_def.mutable_cluster()->add_job(); job->set_name("worker"); job->mutable_tasks()->insert({3, "localhost:3333"}); protobuf::RepeatedPtrField<DeviceAttributes> cluster_device_attributes; DeviceAttributes* local_cpu = cluster_device_attributes.Add(); local_cpu->set_name("/job:worker/replica:0/task:3/device:fakecpu:0"); DeviceAttributes* remote_cpu = cluster_device_attributes.Add(); remote_cpu->set_name("/job:coordinator/replica:0/task:0/device:fakecpu:0"); std::string session_handle = "test_session_handle"; TF_EXPECT_OK(mgr_.CreateSession(session_handle, server_def, cluster_device_attributes, true)); std::shared_ptr<WorkerSession> session; TF_EXPECT_OK(mgr_.WorkerSessionForSession(session_handle, &session)); Device* device; TF_EXPECT_OK( session->remote_device_mgr()->LookupDevice(local_cpu->name(), &device)); EXPECT_TRUE(device->IsLocal()); EXPECT_NE(nullptr, session) << "Session for " << session_handle << "was null"; EXPECT_EQ("/job:worker/replica:0/task:3", session->worker_name()); TF_EXPECT_OK(mgr_.DeleteSession(session_handle)); } TEST_F(SessionMgrTest, CreateSessionDefaultWorkerName) { ServerDef server_def; std::string session_handle = "test_session_handle"; TF_EXPECT_OK(mgr_.CreateSession(session_handle, server_def, true)); std::shared_ptr<WorkerSession> session; TF_EXPECT_OK(mgr_.WorkerSessionForSession(session_handle, &session)); EXPECT_NE(nullptr, session) << "Session for " << session_handle << "was null"; EXPECT_EQ("/job:mnist/replica:0/task:0", session->worker_name()); TF_EXPECT_OK(mgr_.DeleteSession(session_handle)); } TEST_F(SessionMgrTest, CreateSessionIsolateSessionState) { ServerDef server_def; server_def.set_job_name("worker"); server_def.set_task_index(3); TF_EXPECT_OK(mgr_.CreateSession("handle_1", server_def, false)); std::shared_ptr<WorkerSession> session_1; TF_EXPECT_OK(mgr_.WorkerSessionForSession("handle_1", &session_1)); std::vector<Device*> devices_1 = session_1->device_mgr()->ListDevices(); EXPECT_EQ(1, devices_1.size()); TF_EXPECT_OK(mgr_.CreateSession("handle_2", server_def, false)); std::shared_ptr<WorkerSession> session_2; TF_EXPECT_OK(mgr_.WorkerSessionForSession("handle_2", &session_2)); std::vector<Device*> devices_2 = session_2->device_mgr()->ListDevices(); EXPECT_EQ(1, devices_2.size()); TF_EXPECT_OK(mgr_.CreateSession("handle_3", server_def, true)); std::shared_ptr<WorkerSession> session_3; TF_EXPECT_OK(mgr_.WorkerSessionForSession("handle_3", &session_3)); std::vector<Device*> devices_3 = session_3->device_mgr()->ListDevices(); EXPECT_EQ(1, devices_3.size()); TF_EXPECT_OK(mgr_.CreateSession("handle_4", server_def, true)); std::shared_ptr<WorkerSession> session_4; TF_EXPECT_OK(mgr_.WorkerSessionForSession("handle_4", &session_4)); std::vector<Device*> devices_4 = session_4->device_mgr()->ListDevices(); EXPECT_EQ(1, devices_4.size()); EXPECT_EQ(devices_1[0]->resource_manager(), devices_2[0]->resource_manager()); EXPECT_NE(devices_1[0]->resource_manager(), devices_3[0]->resource_manager()); EXPECT_NE(devices_1[0]->resource_manager(), devices_4[0]->resource_manager()); EXPECT_NE(devices_3[0]->resource_manager(), devices_4[0]->resource_manager()); } TEST_F(SessionMgrTest, CreateSessionWithMasterName) { ServerDef server_def; server_def.set_job_name("worker"); server_def.set_task_index(3); auto job = server_def.mutable_cluster()->add_job(); job->set_name("worker"); job->mutable_tasks()->insert({3, "localhost:3333"}); protobuf::RepeatedPtrField<DeviceAttributes> cluster_device_attributes; const std::string master_name = "/job:master/replica:0/task:1"; const int64_t old_incarnation = random::New64(); const int64_t new_incarnation = random::New64(); std::string sess_handle1 = "test_session_handle_1"; TF_EXPECT_OK(mgr_.CreateSession(sess_handle1, server_def, cluster_device_attributes, true, master_name, old_incarnation)); std::string sess_handle2 = "test_session_handle_2"; TF_EXPECT_OK(mgr_.CreateSession(sess_handle2, server_def, cluster_device_attributes, true, master_name, old_incarnation)); std::shared_ptr<WorkerSession> session; TF_EXPECT_OK(mgr_.WorkerSessionForSession(sess_handle1, &session)); EXPECT_NE(nullptr, session) << "Session for " << sess_handle1 << "was null"; TF_EXPECT_OK(mgr_.WorkerSessionForSession(sess_handle2, &session)); EXPECT_NE(nullptr, session) << "Session for " << sess_handle2 << "was null"; std::string sess_handle3 = "test_session_handle_3"; TF_EXPECT_OK(mgr_.CreateSession(sess_handle3, server_def, cluster_device_attributes, true, master_name, new_incarnation)); EXPECT_NE(mgr_.WorkerSessionForSession(sess_handle1, &session), absl::OkStatus()) << "Session for " << sess_handle1 << " should have been garbage collected."; EXPECT_NE(mgr_.WorkerSessionForSession(sess_handle2, &session), absl::OkStatus()) << "Session for " << sess_handle2 << " should have been garbage collected."; TF_EXPECT_OK(mgr_.WorkerSessionForSession(sess_handle3, &session)); EXPECT_NE(nullptr, session) << "Session for " << sess_handle3 << "was null"; TF_EXPECT_OK(mgr_.DeleteSession(sess_handle2)); TF_EXPECT_OK(mgr_.DeleteSession(sess_handle3)); } TEST_F(SessionMgrTest, CreateSessionWithoutMasterName) { ServerDef server_def; server_def.set_job_name("worker"); server_def.set_task_index(3); auto job = server_def.mutable_cluster()->add_job(); job->set_name("worker"); job->mutable_tasks()->insert({3, "localhost:3333"}); protobuf::RepeatedPtrField<DeviceAttributes> cluster_device_attributes; std::string sess_handle1 = "test_session_handle_no_master_1"; TF_EXPECT_OK(mgr_.CreateSession(sess_handle1, server_def, cluster_device_attributes, true, "", 0)); std::string sess_handle2 = "test_session_handle_no_master_2"; TF_EXPECT_OK(mgr_.CreateSession(sess_handle2, server_def, cluster_device_attributes, true, "", 0)); std::shared_ptr<WorkerSession> session; TF_EXPECT_OK(mgr_.WorkerSessionForSession(sess_handle1, &session)); EXPECT_NE(nullptr, session) << "Session for " << sess_handle1 << "was null"; TF_EXPECT_OK(mgr_.WorkerSessionForSession(sess_handle2, &session)); EXPECT_NE(nullptr, session) << "Session for " << sess_handle2 << "was null"; TF_EXPECT_OK(mgr_.DeleteSession(sess_handle1)); TF_EXPECT_OK(mgr_.DeleteSession(sess_handle2)); } TEST_F(SessionMgrTest, LegacySession) { std::string session_handle = ""; std::shared_ptr<WorkerSession> session; TF_EXPECT_OK(mgr_.WorkerSessionForSession(session_handle, &session)); EXPECT_EQ(mgr_.LegacySession(), session); TF_EXPECT_OK(mgr_.DeleteSession(session_handle)); } TEST_F(SessionMgrTest, UnknownSessionHandle) { std::string session_handle = "unknown_session_handle"; std::shared_ptr<WorkerSession> session; Status s = mgr_.WorkerSessionForSession(session_handle, &session); EXPECT_TRUE(absl::IsAborted(s)); EXPECT_TRUE(absl::StrContains(s.message(), "Session handle is not found")); EXPECT_TRUE(s.GetPayload(kWorkerPossiblyRestarted).has_value()); } TEST_F(SessionMgrTest, WorkerNameFromServerDef) { ServerDef server_def; server_def.set_job_name("worker"); server_def.set_task_index(3); std::string worker_name = SessionMgr::WorkerNameFromServerDef(server_def); EXPECT_EQ("/job:worker/replica:0/task:3", worker_name); } TEST_F(SessionMgrTest, DeleteLegacySession) { TF_EXPECT_OK(mgr_.DeleteSession("")); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/session_mgr.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/session_mgr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e7903eb4-9985-4b6c-b0e5-c2348dbcc8ef
cpp
tensorflow/tensorflow
remote_device
tensorflow/core/distributed_runtime/remote_device.cc
tensorflow/core/distributed_runtime/remote_device_test.cc
#include "tensorflow/core/distributed_runtime/remote_device.h" #include <stdlib.h> #include <vector> #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/renamed_device.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/distributed_runtime/worker_interface.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/protobuf/worker.pb.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { class RemoteDevice : public Device { public: RemoteDevice(Env* env, const DeviceAttributes& da) : Device(env, da), local_dev_name_(DeviceNameUtils::LocalName(da.name())) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes attr) override { return nullptr; } ResourceMgr* resource_manager() override { LOG(FATAL) << "Accessing the resource manager of a remote device is not " << "supported."; std::abort(); } bool IsLocal() const override { return false; } bool IsRemoteCallAllowed() const override { return true; } private: const string local_dev_name_; RemoteDevice(const RemoteDevice&) = delete; void operator=(const RemoteDevice&) = delete; }; void AsRemoteDevices( Env* env, const protobuf::RepeatedPtrField<DeviceAttributes>& device_attributes, LookupLocalDevice lookup_local_device, std::vector<std::unique_ptr<Device>>* remote_devices) { for (const auto& da : device_attributes) { Device* local_device; if (lookup_local_device != nullptr && lookup_local_device(da.name(), &local_device).ok()) { remote_devices->emplace_back(RenamedDevice::NewRenamedDevice( local_device->name(), local_device, false, false)); } else { auto d = new RemoteDevice(env, da); remote_devices->emplace_back(d); } } } void NewRemoteDevices(Env* env, WorkerCacheInterface* worker_cache, const string& worker_name, NewRemoteDevicesDone done) { WorkerInterface* wi = worker_cache->GetOrCreateWorker(worker_name); if (wi == nullptr) { std::vector<Device*> empty; done(errors::NotFound("Device ", worker_name, " is not found."), &empty); return; } struct Call { GetStatusRequest req; GetStatusResponse resp; }; Call* call = new Call; auto cb = [env, worker_cache, worker_name, done, wi, call](const Status& status) { Status s = status; std::vector<Device*> remote_devices; auto cleanup = gtl::MakeCleanup( [&worker_cache, &worker_name, &wi, &done, &remote_devices, &s, call] { worker_cache->ReleaseWorker(worker_name, wi); done(s, &remote_devices); delete call; }); if (!s.ok()) { return; } DeviceNameUtils::ParsedName worker_name_parsed; if (!DeviceNameUtils::ParseFullName(worker_name, &worker_name_parsed) || !worker_name_parsed.has_job || !worker_name_parsed.has_replica || !worker_name_parsed.has_task) { s = errors::InvalidArgument("Could not parse worker name: ", worker_name); LOG(WARNING) << s; return; } remote_devices.reserve(call->resp.device_attributes_size()); for (const DeviceAttributes& da : call->resp.device_attributes()) { DeviceNameUtils::ParsedName device_name_parsed; CHECK(DeviceNameUtils::ParseFullName(da.name(), &device_name_parsed)) << "Device attribute name '" << da.name() << "' could not be " << "parsed. Device Attribute: " << da.DebugString(); if (device_name_parsed.job == worker_name_parsed.job && device_name_parsed.replica == worker_name_parsed.replica && device_name_parsed.task == worker_name_parsed.task) { auto d = new RemoteDevice(env, da); remote_devices.push_back(d); } else { DeviceAttributes da_rewritten = da; da_rewritten.set_name(DeviceNameUtils::FullName( worker_name_parsed.job, worker_name_parsed.replica, worker_name_parsed.task, device_name_parsed.type, device_name_parsed.id)); auto d = new RemoteDevice(env, da_rewritten); if (getenv("TPU_NO_POPULATE_DEVICE_LIST_FROM_CLUSTER_SPEC") != nullptr) { if (worker_name_parsed.job == "worker" || device_name_parsed.type.find("TPU") == std::string::npos) { remote_devices.push_back(d); } } else { remote_devices.push_back(d); } } } }; wi->GetStatusAsync(nullptr, &call->req, &call->resp, false, cb); } std::unique_ptr<Device> NewRemoteDevice(Env* env, DeviceAttributes device_attribute) { return std::make_unique<RemoteDevice>(env, device_attribute); } }
#include "tensorflow/core/distributed_runtime/remote_device.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_channel.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_testlib.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.h" #include "tensorflow/core/distributed_runtime/worker_interface.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { const char* const kSession = "remote_session"; class RemoteDeviceTest : public ::testing::Test { protected: string remote_name_; std::unique_ptr<WorkerCacheInterface> worker_cache_; WorkerInterface* wi_; std::vector<Device*> devices_; std::unique_ptr<test::TestCluster> cluster_; std::unique_ptr<GrpcWorkerEnv> grpc_worker_env_; RemoteDeviceTest() { SessionOptions options; (*options.config.mutable_device_count())["CPU"] = 2; TF_CHECK_OK(test::TestCluster::MakeTestCluster(options, 1, &cluster_)); const string& hostport = cluster_->targets()[0]; GrpcChannelSpec spec; TF_CHECK_OK(spec.AddHostPortsJob("localhost", {hostport})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); std::shared_ptr<GrpcChannelCache> channel_cache( NewGrpcChannelCache(spec, channel_func)); grpc_worker_env_.reset(CreateGrpcWorkerEnv()); worker_cache_.reset( NewGrpcWorkerCache(channel_cache, grpc_worker_env_.get())); remote_name_ = "/job:localhost/replica:0/task:0"; wi_ = worker_cache_->GetOrCreateWorker(remote_name_); } ~RemoteDeviceTest() override { worker_cache_->ReleaseWorker(remote_name_, wi_); } void SetUp() override { Notification n; NewRemoteDevices(Env::Default(), worker_cache_.get(), remote_name_, [&n, this](const Status& s, std::vector<Device*>* found) { TF_CHECK_OK(s); devices_ = *found; n.Notify(); }); n.WaitForNotification(); EXPECT_EQ(devices_.size(), 2); std::sort(devices_.begin(), devices_.end(), [](Device* a, Device* b) { return a->name().compare(b->name()) < 0; }); } void TearDown() override { for (auto d : devices_) delete d; } }; TEST_F(RemoteDeviceTest, GetStatus) { EXPECT_EQ(devices_[0]->name(), strings::StrCat(remote_name_, "/device:CPU:0")); EXPECT_EQ(devices_[0]->attributes().device_type(), DeviceType(DEVICE_CPU).type()); EXPECT_EQ(devices_[0]->attributes().memory_limit(), 256 << 20); EXPECT_EQ(devices_[1]->name(), strings::StrCat(remote_name_, "/device:CPU:1")); EXPECT_EQ(devices_[1]->attributes().memory_limit(), 256 << 20); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/remote_device.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/remote_device_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ed544b03-b54a-491f-ae4b-4e50be0c4758
cpp
tensorflow/tensorflow
partial_run_mgr
tensorflow/core/distributed_runtime/partial_run_mgr.cc
tensorflow/core/distributed_runtime/partial_run_mgr_test.cc
#include "tensorflow/core/distributed_runtime/partial_run_mgr.h" namespace tensorflow { bool PartialRunMgr::FindOrCreate(int step_id, CancellationManager** cancellation_manager) { mutex_lock l(mu_); auto it = step_id_to_partial_run_.find(step_id); if (it != step_id_to_partial_run_.end()) { *cancellation_manager = it->second->cancellation_manager.get(); return false; } std::unique_ptr<PartialRunState> partial_run = std::make_unique<PartialRunState>(); partial_run->cancellation_manager = std::make_unique<CancellationManager>(); *cancellation_manager = partial_run->cancellation_manager.get(); step_id_to_partial_run_[step_id] = std::move(partial_run); return true; } void PartialRunMgr::ExecutorDone(int step_id, const Status& executor_status) { StatusCallback done; Status callback_status; { mutex_lock l(mu_); auto run_it = step_id_to_partial_run_.find(step_id); if (run_it == step_id_to_partial_run_.end()) { return; } done = std::move(run_it->second->final_callback); if (!executor_status.ok()) { run_it->second->final_status = executor_status; } callback_status = run_it->second->final_status; run_it->second->executor_done = true; } if (done != nullptr) { done(callback_status); mutex_lock l(mu_); step_id_to_partial_run_.erase(step_id); } } void PartialRunMgr::PartialRunDone(int step_id, StatusCallback done, const Status& status) { Status callback_status; { mutex_lock l(mu_); auto run_it = step_id_to_partial_run_.find(step_id); if (run_it == step_id_to_partial_run_.end()) { return; } run_it->second->final_status.Update(status); if (!run_it->second->executor_done) { run_it->second->final_callback = std::move(done); return; } callback_status = run_it->second->final_status; } done(callback_status); mutex_lock l(mu_); step_id_to_partial_run_.erase(step_id); } }
#include "tensorflow/core/distributed_runtime/partial_run_mgr.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(PartialRunMgrFindOrCreate, Create) { PartialRunMgr partial_run_mgr; int step_id = 1; CancellationManager* cancellation_manager; partial_run_mgr.FindOrCreate(step_id, &cancellation_manager); EXPECT_TRUE(cancellation_manager != nullptr); } TEST(PartialRunMgrFindOrCreate, Find) { PartialRunMgr partial_run_mgr; int step_id = 1; CancellationManager* cancellation_manager; partial_run_mgr.FindOrCreate(step_id, &cancellation_manager); CancellationManager* found_cancellation_manager; partial_run_mgr.FindOrCreate(step_id, &found_cancellation_manager); EXPECT_EQ(cancellation_manager, found_cancellation_manager); } TEST(PartialRunMgrFindOrCreate, NewCreate) { PartialRunMgr partial_run_mgr; int step_id = 1; CancellationManager* cancellation_manager; partial_run_mgr.FindOrCreate(step_id, &cancellation_manager); int new_step_id = 2; CancellationManager* new_cancellation_manager; partial_run_mgr.FindOrCreate(new_step_id, &new_cancellation_manager); EXPECT_NE(cancellation_manager, new_cancellation_manager); } TEST(PartialRunMgr, PartialRunRemoved) { PartialRunMgr partial_run_mgr; int step_id = 1; CancellationManager* cancellation_manager; partial_run_mgr.FindOrCreate(step_id, &cancellation_manager); int called = 0; partial_run_mgr.PartialRunDone( step_id, [&called](Status status) { called++; }, absl::OkStatus()); partial_run_mgr.ExecutorDone(step_id, absl::OkStatus()); partial_run_mgr.PartialRunDone( step_id, [&called](Status status) { called++; }, absl::OkStatus()); partial_run_mgr.ExecutorDone(step_id, absl::OkStatus()); EXPECT_EQ(1, called); } struct StatusTestParam { Status executor_status; Status partial_run_status; Status expected_status; }; class StatusPropagationTest : public ::testing::TestWithParam<StatusTestParam> { protected: PartialRunMgr partial_run_mgr_; Notification invoked_; Status status_; void set_status(const Status& status) { status_ = status; invoked_.Notify(); } Status status() { invoked_.WaitForNotification(); return status_; } }; TEST_P(StatusPropagationTest, ExecutorDoneFirst) { StatusTestParam param = GetParam(); int step_id = 1; CancellationManager* cancellation_manager; partial_run_mgr_.FindOrCreate(step_id, &cancellation_manager); partial_run_mgr_.ExecutorDone(step_id, param.executor_status); partial_run_mgr_.PartialRunDone(step_id, [this](Status status) { set_status(status); }, param.partial_run_status); EXPECT_EQ(status(), param.expected_status); } TEST_P(StatusPropagationTest, PartialRunDoneFirst) { StatusTestParam param = GetParam(); int step_id = 1; CancellationManager* cancellation_manager; partial_run_mgr_.FindOrCreate(step_id, &cancellation_manager); partial_run_mgr_.PartialRunDone(step_id, [this](Status status) { set_status(status); }, param.partial_run_status); partial_run_mgr_.ExecutorDone(step_id, param.executor_status); EXPECT_EQ(status(), param.expected_status); } Status ExecutorError() { return errors::Internal("executor error"); } Status PartialRunError() { return errors::Internal("partial run error"); } INSTANTIATE_TEST_SUITE_P( PartialRunMgr, StatusPropagationTest, ::testing::Values( StatusTestParam{absl::OkStatus(), absl::OkStatus(), absl::OkStatus()}, StatusTestParam{ExecutorError(), absl::OkStatus(), ExecutorError()}, StatusTestParam{absl::OkStatus(), PartialRunError(), PartialRunError()}, StatusTestParam{ExecutorError(), PartialRunError(), ExecutorError()})); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/partial_run_mgr.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/partial_run_mgr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
09bea60d-dbf0-4bb3-b457-acc4a46d50db
cpp
tensorflow/tensorflow
collective_rma_distributed
tensorflow/core/distributed_runtime/collective_rma_distributed.cc
tensorflow/core/distributed_runtime/collective_rma_distributed_test.cc
#include "tensorflow/core/distributed_runtime/collective_rma_distributed.h" #include <memory> #include "absl/status/status.h" #include "tensorflow/core/common_runtime/base_collective_executor.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/call_options.h" #include "tensorflow/core/distributed_runtime/cancellable_call.h" #include "tensorflow/core/distributed_runtime/request_id.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/protobuf_internal.h" #include "tensorflow/core/profiler/lib/scoped_memory_debug_annotation.h" #include "tensorflow/core/protobuf/transport_options.pb.h" #include "tensorflow/core/protobuf/worker.pb.h" namespace tensorflow { namespace { class RecvBufCall : public CancellableCall { public: RecvBufCall(int64_t step_id, const string& peer_device, const string& peer_task, const string& key, Device* to_device, DeviceContext* to_device_ctx, const AllocatorAttributes& to_alloc_attr, Tensor* to_tensor, const DeviceLocality& client_locality, const DeviceAttributes& server_attributes, CancellationManager* cancel_mgr, WorkerCacheInterface* wc) : CancellableCall(cancel_mgr, peer_task, wc) { req_.set_step_id(step_id); req_.set_buf_rendezvous_key(key); *req_.mutable_client_locality() = client_locality; *req_.mutable_server_locality() = server_attributes.locality(); req_.set_num_bytes(to_tensor->TotalBytes()); req_.set_buf_ptr(reinterpret_cast<int64_t>(DMAHelper::base(to_tensor))); req_.set_src_device(peer_device); req_.set_src_incarnation(server_attributes.incarnation()); req_.set_dst_device(to_device->name()); req_.set_request_id(GetUniqueRequestId()); } ~RecvBufCall() override {} void IssueCall(const StatusCallback& done) override { wi_->RecvBufAsync(&opts_, &req_, &resp_, done); } RecvBufRequest req_; RecvBufResponse resp_; }; void PopulateTensorFromExtra(const RecvBufRespExtra& extra, Tensor* cpu_tensor) { char* head = reinterpret_cast<char*>(DMAHelper::base(cpu_tensor)); for (const auto& tensor_content_chunk : extra.tensor_content()) { memcpy(head, std::string(tensor_content_chunk).data(), tensor_content_chunk.size()); head += tensor_content_chunk.size(); } } Status PopulateTensorFromResponse(const RecvBufResponse& response, Tensor* cpu_tensor) { const bool has_transport_options = response.has_transport_options(); if (!has_transport_options) return absl::OkStatus(); const int64_t total_bytes = cpu_tensor->TotalBytes(); int64_t num_bytes = 0; RecvBufRespExtra extra; response.transport_options().UnpackTo(&extra); for (const auto& chunk : extra.tensor_content()) { num_bytes += chunk.size(); } if (num_bytes != total_bytes) { return errors::Internal("Tensor Size Mismatch: RecvBufResponse returned ", num_bytes, " bytes, expected: ", cpu_tensor->TotalBytes()); } PopulateTensorFromExtra(extra, cpu_tensor); return absl::OkStatus(); } } void CollectiveRemoteAccessDistributed::RecvFromPeer( const string& peer_device, const string& peer_task, bool peer_is_local, const string& key, Device* to_device, DeviceContext* to_device_ctx, const AllocatorAttributes& to_alloc_attr, Tensor* to_tensor, const DeviceLocality& client_locality, int dev_to_dev_stream_index, CancellationManager* cancellation_manager, const StatusCallback& done) { if (peer_is_local) { CollectiveRemoteAccessLocal::RecvFromPeer( peer_device, peer_task, peer_is_local, key, to_device, to_device_ctx, to_alloc_attr, to_tensor, client_locality, dev_to_dev_stream_index, cancellation_manager, done); return; } struct State { DeviceAttributes server_attributes; std::unique_ptr<RecvBufCall> call; std::unique_ptr<Tensor> cpu_tensor; }; State* state = new State; Status s = dev_resolver_->GetDeviceAttributes(peer_device, &state->server_attributes); if (!s.ok()) { delete state; done(s); return; } Tensor* dst_tensor = nullptr; Device* cpu_dev = nullptr; if (to_device->tensorflow_accelerator_device_info()) { Status status = dev_mgr_->LookupDevice("CPU:0", &cpu_dev); if (!status.ok()) { delete state; done(s); return; } AllocatorAttributes cpu_attr; cpu_attr.set_gpu_compatible(true); tsl::profiler::ScopedMemoryDebugAnnotation op_annotation( "CollectiveRemoteAccessDistributed::RecvFromPeer" "::recv_buf_callback", step_id_, "dynamic", to_tensor->dtype(), [to_tensor]() { return to_tensor->shape().DebugString(); }); state->cpu_tensor = std::make_unique<Tensor>(cpu_dev->GetAllocator(cpu_attr), to_tensor->dtype(), to_tensor->shape()); dst_tensor = state->cpu_tensor.get(); } else { dst_tensor = to_tensor; } auto recv_buf_callback = [this, state, to_device, to_alloc_attr, to_device_ctx, to_tensor, cpu_dev, dev_to_dev_stream_index, dst_tensor, done](const Status& s) { if (s.ok()) { Status status = PopulateTensorFromResponse(state->call->resp_, dst_tensor); if (!status.ok()) { done(status); delete state; return; } if (to_device->tensorflow_accelerator_device_info()) { AllocatorAttributes cpu_attr; cpu_attr.set_gpu_compatible(true); CopyTensor::ViaDMA("", nullptr , to_device_ctx, cpu_dev, to_device, cpu_attr, to_alloc_attr, dst_tensor, to_tensor, dev_to_dev_stream_index, [this, state, done](const Status& s) { delete state; work_queue_->Schedule([s, done] { done(s); }); }); return; } } delete state; done(s); }; state->call = std::make_unique<RecvBufCall>( step_id_, peer_device, peer_task, key, to_device, to_device_ctx, to_alloc_attr, dst_tensor, client_locality, state->server_attributes, cancellation_manager, worker_cache_); CancellationToken abortion_token = abortion_cancel_mgr_.get_cancellation_token(); bool already_aborted = !abortion_cancel_mgr_.RegisterCallback( abortion_token, [state] { state->call->Cancel(); }); if (already_aborted) { recv_buf_callback(errors::Cancelled("collective ops already aborted")); } else { state->call->Start([this, abortion_token, done = std::move(recv_buf_callback)](const Status& s) { abortion_cancel_mgr_.DeregisterCallback(abortion_token); done(s); }); } } void CollectiveRemoteAccessDistributed::CheckPeerHealth( const string& peer_task, int64_t timeout_in_ms, const StatusCallback& done) { if (peer_task == task_name_) { done(absl::OkStatus()); return; } WorkerInterface* wi = worker_cache_->GetOrCreateWorker(peer_task); if (wi == nullptr) { done(errors::InvalidArgument(peer_task, " not found. It's probably invalid. The " "valid form is /job:xxx/replica:0/task:N")); return; } auto opts = new CallOptions(); opts->SetTimeout(timeout_in_ms); auto req = new GetStatusRequest(); auto resp = new GetStatusResponse(); wi->GetStatusAsync( opts, req, resp, true, [this, opts, req, resp, wi, peer_task, done](Status s) { std::vector<DeviceAttributes> cached_attrs; if (s.ok()) { s = dev_resolver_->GetAllDeviceAttributes(peer_task, &cached_attrs); } if (s.ok()) { absl::flat_hash_set<uint64> remote_incarnations; for (const DeviceAttributes& da : resp->device_attributes()) { remote_incarnations.insert(da.incarnation()); } for (const DeviceAttributes& attr : cached_attrs) { if (!remote_incarnations.contains(attr.incarnation())) { s = errors::FailedPrecondition( attr.name(), " with incarnation ", attr.incarnation(), " is not available. This usually means ", peer_task, " has restarted"); break; } } } else if (absl::IsNotFound(s)) { s = absl::OkStatus(); } delete opts; delete req; delete resp; worker_cache_->ReleaseWorker(peer_task, wi); done(s); }); } void CollectiveRemoteAccessDistributed::StartAbort(const Status& s) { CollectiveRemoteAccessLocal::StartAbort(s); abortion_cancel_mgr_.StartCancel(); } }
#include "tensorflow/core/distributed_runtime/collective_rma_distributed.h" #include <memory> #include "google/protobuf/any.pb.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/device_resolver_distributed.h" #include "tensorflow/core/distributed_runtime/test_utils.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/transport_options.pb.h" #include "tensorflow/core/protobuf/worker.pb.h" namespace tensorflow { namespace { class FakeAllocator : public Allocator { public: string Name() override { return "fake"; } void* AllocateRaw(size_t alignment, size_t num_bytes) override { return port::AlignedMalloc(num_bytes, alignment); } void DeallocateRaw(void* ptr) override { return port::AlignedFree(ptr); } }; static std::unique_ptr<Device> NewDevice(const string& type, const string& name, Allocator* allocator) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr, Allocator* allocator) : Device(nullptr, attr), allocator_(allocator) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return allocator_; } private: Allocator* const allocator_; }; DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); attr.mutable_locality()->set_numa_node(3); attr.set_incarnation(random::New64()); return std::make_unique<FakeDevice>(attr, allocator); } static int64_t kStepId = 123; class FakeWorker : public TestWorkerInterface { public: FakeWorker(const string& name, DeviceMgr* dev_mgr, DeviceResolverDistributed* dres, bool is_failed, bool set_tensor_in_extra) : name_(name), device_mgr_(dev_mgr), device_resolver_(dres), buf_rendezvous_(kStepId, dev_mgr), is_failed_(is_failed), set_tensor_in_extra_(set_tensor_in_extra) {} BufRendezvous* buf_rendezvous() { return &buf_rendezvous_; } void GetStatusAsync(CallOptions* opts, const GetStatusRequest* request, GetStatusResponse* response, bool fail_fast, StatusCallback done) override { if (is_failed_) { done(errors::Unavailable("peer down")); return; } std::vector<DeviceAttributes> dev_attr; device_mgr_->ListDeviceAttributes(&dev_attr); for (const auto& da : dev_attr) { *response->add_device_attributes() = da; } done(absl::OkStatus()); } void RecvBufAsync(CallOptions* opts, const RecvBufRequest* request, RecvBufResponse* response, StatusCallback done) override { if (is_failed_) { done(errors::Unavailable("peer down")); return; } opts->SetCancelCallback([this]() { SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100); buf_rendezvous_.StartAbort(errors::Internal("Cancelled")); }); }); VLOG(2) << "ConsumeBuf key=" << request->buf_rendezvous_key() << " src_device=" << request->src_device() << " src_incarnation=" << request->src_incarnation(); buf_rendezvous_.ConsumeBuf( request->buf_rendezvous_key(), request->src_device(), request->src_incarnation(), [this, opts, request, response, done](const Status& status, BufRendezvous::Hook* h) { Status s = status; if (s.ok()) { opts->ClearCancelCallback(); int64_t num_bytes = h->prod_value->TotalBytes(); if (set_tensor_in_extra_) { RecvBufRespExtra extra; extra.add_tensor_content(string( reinterpret_cast<const char*>(DMAHelper::base(h->prod_value)), num_bytes)); response->mutable_transport_options()->PackFrom(extra); } else { if (request->num_bytes() != num_bytes) { s = errors::Internal("Tensor Size Mismatch."); } else { memcpy(reinterpret_cast<void*>(request->buf_ptr()), DMAHelper::base(h->prod_value), num_bytes); } } } done(s); if (h) BufRendezvous::DoneWithHook(h); }, nullptr ); } private: string name_; DeviceMgr* device_mgr_; DeviceResolverDistributed* device_resolver_; BufRendezvous buf_rendezvous_; bool is_failed_; const bool set_tensor_in_extra_; }; class FakeCache : public TestWorkerCache { public: bool GetDeviceLocalityNonBlocking(const string& device, DeviceLocality* locality) override { return false; } void GetDeviceLocalityAsync(const string& device, DeviceLocality* locality, StatusCallback done) override { string task_name; string dev_part; if (!DeviceNameUtils::SplitDeviceName(device, &task_name, &dev_part)) { done(errors::Internal("failed to parse device name")); return; } auto it = workers_.find(task_name); if (it == workers_.end()) { done(errors::Internal("failed to find worker ", task_name)); return; } WorkerInterface* wi = it->second; GetStatusRequest req; GetStatusResponse resp; Status status = wi->GetStatus(&req, &resp); if (!status.ok()) { done(status); return; } for (const auto& it : resp.device_attributes()) { if (it.name() == device) { *locality = it.locality(); done(absl::OkStatus()); return; } } done(errors::Internal("device not found: ", device)); } }; enum TEST_PARAM_DEVICE_TYPE { TEST_PARAM_DEVICE_TYPE_CPU = 0, TEST_PARAM_DEVICE_TYPE_GPU, }; enum TEST_PARAM_TENSOR_LOC { TEST_PARAM_TENSOR_LOC_AT_BUF_PTR = 0, TEST_PARAM_TENSOR_LOC_IN_EXTRA, }; class CollRMADistTest : public ::testing::TestWithParam< std::tuple<TEST_PARAM_DEVICE_TYPE, TEST_PARAM_TENSOR_LOC>> { protected: CollRMADistTest() : work_queue_( std::make_shared<UnboundedWorkQueue>(Env::Default(), "test")) {} ~CollRMADistTest() override { for (DeviceMgr* dm : device_mgrs_) { delete dm; } for (auto it : dev_resolvers_) { delete it.second; } for (FakeWorker* w : workers_) { delete w; } } void SetUp() override { const int num_workers = 2; const int num_devices = 1; string device_type = "CPU"; string dev0_worker_name; for (int w = 0; w < num_workers; ++w) { string name = strings::StrCat("/job:worker/replica:0/task:", w); if (w == 0) { dev0_worker_name = name; } DefineWorker(name, device_type, num_devices); } rma_ = std::make_unique<CollectiveRemoteAccessDistributed>( device_mgrs_[0], dev_resolvers_[dev0_worker_name], work_queue_, &wc_, kStepId, "/job:worker/replica:0/task:0"); const int kNumElts = 8; expected_value_ = Tensor(DT_FLOAT, {kNumElts}); to_tensor_ = Tensor(DT_FLOAT, {kNumElts}); large_response_ = Tensor(DT_FLOAT, {2 * kNumElts}); auto exp_alias = expected_value_.flat<float>(); auto to_alias = to_tensor_.flat<float>(); auto large_response_alias = large_response_.flat<float>(); for (int i = 0; i < kNumElts; ++i) { exp_alias(i) = i; to_alias(i) = -1; } for (int i = 0; i < 2 * kNumElts; ++i) { large_response_alias(i) = -2; } } void ResolveDeviceAttributes() { for (auto& dev_resolver_item : dev_resolvers_) { DeviceResolverDistributed* dev_resolver = dev_resolver_item.second; for (const auto& item : dev_by_task_) { TF_CHECK_OK(dev_resolver->UpdateDeviceAttributes(item.second)); } } } void DefineWorker(const string& worker_name, const string& device_type, int num_devices, bool is_failed = false) { std::vector<std::unique_ptr<Device>> devices; for (int i = 0; i < num_devices; ++i) { devices.push_back(NewDevice( device_type, strings::StrCat(worker_name, "/device:", device_type, ":", i), &fake_allocator_)); } DeviceMgr* dev_mgr = new StaticDeviceMgr(std::move(devices)); device_mgrs_.push_back(dev_mgr); std::vector<DeviceAttributes>* dv = &dev_by_task_[worker_name]; dv->clear(); for (auto d : dev_mgr->ListDevices()) { dv->push_back(d->attributes()); } DeviceResolverDistributed* dev_res = new DeviceResolverDistributed(dev_mgr); dev_resolvers_[worker_name] = dev_res; FakeWorker* fw = new FakeWorker(worker_name, dev_mgr, dev_res, is_failed, std::get<TEST_PARAM_TENSOR_LOC>(GetParam()) == TEST_PARAM_TENSOR_LOC_IN_EXTRA); workers_.push_back(fw); wc_.AddWorker(worker_name, fw); } void RestartWorker(const string& worker_name, const string& device_type, int num_devices, bool is_failed = false) { auto it = dev_resolvers_.find(worker_name); if (it != dev_resolvers_.end()) { delete it->second; dev_resolvers_.erase(it); } DefineWorker(worker_name, device_type, num_devices, is_failed); } void ValidateResultTensor() { ASSERT_EQ(expected_value_.NumElements(), to_tensor_.NumElements()); for (int i = 0; i < to_tensor_.NumElements(); ++i) { EXPECT_FLOAT_EQ(expected_value_.flat<float>()(i), to_tensor_.flat<float>()(i)); } } void ValidateResultTensorUnchanged() { for (int i = 0; i < to_tensor_.NumElements(); ++i) { EXPECT_FLOAT_EQ(-1, to_tensor_.flat<float>()(i)); } } void MaybeSetGPUDevice(Device* dst_device) { if (std::get<TEST_PARAM_DEVICE_TYPE>(GetParam()) == TEST_PARAM_DEVICE_TYPE_GPU) { dst_device->set_tensorflow_accelerator_device_info( &accelerator_device_info_); } } FakeCache wc_; CancellationManager cm_; std::vector<DeviceMgr*> device_mgrs_; std::unordered_map<string, DeviceResolverDistributed*> dev_resolvers_; std::unordered_map<string, std::vector<DeviceAttributes>> dev_by_task_; std::shared_ptr<UnboundedWorkQueue> work_queue_; std::vector<FakeWorker*> workers_; std::unique_ptr<CollectiveRemoteAccessDistributed> rma_; mutex mu_; int num_done_ TF_GUARDED_BY(mu_); condition_variable done_; CallOptions opts_; DeviceLocality device_locality_; AllocatorAttributes alloc_attr_; FakeAllocator fake_allocator_; DeviceBase::AcceleratorDeviceInfo accelerator_device_info_; Tensor expected_value_; Tensor large_response_; Tensor to_tensor_; }; TEST_P(CollRMADistTest, ProdFirstOK) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string kBufKey = "fake_buf_key"; wi->buf_rendezvous()->ProvideBuf( kBufKey, nullptr , nullptr , &expected_value_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); DeviceContext* to_device_ctx = nullptr; MaybeSetGPUDevice(dst_device); rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); consumer_note.WaitForNotification(); TF_EXPECT_OK(consumer_status); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensor(); } TEST_P(CollRMADistTest, ConsFirstOK) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string kBufKey = "fake_buf_key"; Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); MaybeSetGPUDevice(dst_device); DeviceContext* to_device_ctx = nullptr; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); wi->buf_rendezvous()->ProvideBuf( kBufKey, nullptr , nullptr , &expected_value_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); consumer_note.WaitForNotification(); TF_EXPECT_OK(consumer_status); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensor(); } TEST_P(CollRMADistTest, ConsFirstAbort) { ResolveDeviceAttributes(); Notification consumer_note; Status consumer_status; const string kBufKey = "fake_buf_key"; Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); MaybeSetGPUDevice(dst_device); DeviceContext* to_device_ctx = nullptr; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); rma_->StartAbort(errors::Internal("Deliberate Failure")); consumer_note.WaitForNotification(); EXPECT_EQ(consumer_status.message(), "Cancelled"); } TEST_P(CollRMADistTest, ResponseTooLarge) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string kBufKey = "fake_buf_key"; wi->buf_rendezvous()->ProvideBuf( kBufKey, nullptr , nullptr , &large_response_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); DeviceContext* to_device_ctx = nullptr; MaybeSetGPUDevice(dst_device); rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); consumer_note.WaitForNotification(); EXPECT_THAT(consumer_status.message(), ::testing::HasSubstr("Tensor Size Mismatch")); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensorUnchanged(); } TEST_P(CollRMADistTest, WorkerRestart) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string buf_key = "fake_buf_key"; Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); MaybeSetGPUDevice(dst_device); DeviceContext* to_device_ctx = nullptr; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, buf_key, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); wi->buf_rendezvous()->ProvideBuf( buf_key, nullptr , nullptr , &expected_value_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); consumer_note.WaitForNotification(); TF_EXPECT_OK(consumer_status); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensor(); RestartWorker("/job:worker/replica:0/task:1", "CPU", 1); Notification post_restart_note; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, buf_key, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &post_restart_note](const Status& s) { consumer_status = s; post_restart_note.Notify(); }); post_restart_note.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(consumer_status)); } TEST_P(CollRMADistTest, CheckHealthOKWithCachedAttr) { ResolveDeviceAttributes(); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); TF_EXPECT_OK(check_health_status); } TEST_P(CollRMADistTest, CheckHealthOKWithoutCachedAttr) { Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(check_health_status.ok()); } TEST_P(CollRMADistTest, CheckHealthRestarted) { ResolveDeviceAttributes(); RestartWorker("/job:worker/replica:0/task:1", "CPU", 1); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(check_health_status)); } TEST_P(CollRMADistTest, CheckHealthFailedPeer) { ResolveDeviceAttributes(); RestartWorker("/job:worker/replica:0/task:1", "CPU", 1, true); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(errors::IsUnavailable(check_health_status)); } TEST_P(CollRMADistTest, CheckHealthRestartedWithDifferentDevices) { ResolveDeviceAttributes(); RestartWorker("/job:worker/replica:0/task:1", "GPU", 1); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(check_health_status)); } INSTANTIATE_TEST_SUITE_P( TensorInBufPtrOrExtra, CollRMADistTest, ::testing::Combine(::testing::Values(TEST_PARAM_TENSOR_LOC_AT_BUF_PTR, TEST_PARAM_TENSOR_LOC_IN_EXTRA), ::testing::Values(TEST_PARAM_DEVICE_TYPE_CPU, TEST_PARAM_DEVICE_TYPE_GPU))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/collective_rma_distributed.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/collective_rma_distributed_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f7e1b2b6-c751-40a9-8248-b14670cbf6d6
cpp
tensorflow/tensorflow
cluster_function_library_runtime
tensorflow/core/distributed_runtime/eager/cluster_function_library_runtime.cc
tensorflow/core/distributed_runtime/cluster_function_library_runtime_test.cc
#include "tensorflow/core/distributed_runtime/eager/cluster_function_library_runtime.h" #include <map> #include <memory> #include <utility> #include <variant> #include <vector> #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/distributed_runtime/call_options.h" #include "tensorflow/core/distributed_runtime/eager/eager_client.h" #include "tensorflow/core/distributed_runtime/worker_session.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_def_util.h" namespace tensorflow { namespace eager { namespace { void StripDefaultAttributesInRegisterFunctionOp( RegisterFunctionOp* register_function) { StripDefaultAttributes( *OpRegistry::Global(), register_function->mutable_function_def()->mutable_node_def()); for (auto& function : *register_function->mutable_library()->mutable_function()) { StripDefaultAttributes(*OpRegistry::Global(), function.mutable_node_def()); } } } void EagerClusterFunctionLibraryRuntime::Instantiate( const string& function_name, const FunctionLibraryDefinition& lib_def, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::LocalHandle* handle, FunctionLibraryRuntime::DoneCallback done) { auto target = options.target; auto released_op = std::make_unique<EagerOperation>(ctx_); Status s = released_op->Reset(function_name.c_str(), target.c_str(), true, nullptr); if (!s.ok()) { done(s); return; } if (!released_op->is_function()) { done(errors::Internal(function_name, " is not a function.")); return; } VLOG(1) << "CFLR::Instantiate: " << function_name << " on " << target << " (this: " << this << ")"; core::RefCountPtr<eager::EagerClient> eager_client; s = ctx_->GetClient(target, &eager_client); if (!s.ok()) { done(s); return; } if (eager_client == nullptr) { done(errors::InvalidArgument("Could not find eager client for target: ", target)); return; } const FunctionLibraryDefinition& func_lib_def = options.lib_def ? *options.lib_def : lib_def; auto request = std::make_shared<EnqueueRequest>(); auto response = std::make_shared<EnqueueResponse>(); request->set_context_id(context_id_); RegisterFunctionOp* register_function = request->add_queue()->mutable_register_function(); *register_function->mutable_function_def() = *func_lib_def.Find(function_name); register_function->set_is_component_function(true); *register_function->mutable_library() = func_lib_def.ReachableDefinitions(register_function->function_def()) .ToProto(); StripDefaultAttributesInRegisterFunctionOp(register_function); const absl::optional<std::vector<int>>& ret_indices = options.ret_indices; eager_client->EnqueueAsync( nullptr, request.get(), response.get(), [this, request, response, handle, released_op = released_op.release(), target, ret_indices, eager_client = eager_client.get(), done](const Status& s) { { mutex_lock l(mu_); *handle = function_data_.size(); function_data_.emplace_back(target, ret_indices, eager_client, absl::WrapUnique(released_op)); } done(s); }); } void EagerClusterFunctionLibraryRuntime::Run( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::LocalHandle handle, absl::Span<const Tensor> args, std::vector<Tensor>* rets, FunctionLibraryRuntime::DoneCallback done) { std::vector<FunctionArg> function_args; for (const auto& tensor : args) { function_args.push_back(tensor); } std::vector<FunctionRet>* function_rets = new std::vector<FunctionRet>; Run(opts, handle, function_args, function_rets, [rets, function_rets, done = std::move(done)](const Status& s) { Status status = s; if (status.ok()) { for (const auto& t : *function_rets) { if (t.index() == 0) { rets->push_back(std::get<Tensor>(t)); } else { status.Update( errors::Internal("Expect a Tensor as a remote function " "output but got a TensorShape.")); break; } } } delete function_rets; done(status); }); } void EagerClusterFunctionLibraryRuntime::Run( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::LocalHandle handle, absl::Span<const FunctionArg> args, std::vector<FunctionRet>* rets, FunctionLibraryRuntime::DoneCallback done) { FunctionData* function_data = nullptr; { mutex_lock l(mu_); DCHECK_LE(handle, function_data_.size()); function_data = &function_data_[handle]; } EagerClient* eager_client = function_data->eager_client.get(); if (eager_client == nullptr) { done(errors::Internal("Could not find eager client")); return; } EagerOperation* op = function_data->op.get(); if (!op->Inputs().empty()) { done(errors::Internal("Inputs should not be set during instantiation.")); return; } auto request = std::make_shared<RunComponentFunctionRequest>(); auto response = std::make_shared<RunComponentFunctionResponse>(); request->set_context_id(context_id_); eager::Operation* remote_op = request->mutable_operation(); if (function_data->ret_indices.has_value()) { for (const int ret_index : function_data->ret_indices.value()) { request->add_output_num(ret_index); } } for (const auto& arg : args) { if (arg.index() == 0) { std::get<Tensor>(arg).AsProtoTensorContent( remote_op->add_op_inputs()->mutable_tensor()); } else { remote_op->add_op_inputs()->mutable_remote_handle()->Swap( std::get<RemoteTensorHandle*>(arg)); } } if (opts.op_id.has_value()) { remote_op->set_id(opts.op_id.value()); } else { remote_op->set_id(kInvalidOpId); } remote_op->set_is_function(true); remote_op->set_is_component_function(true); remote_op->set_func_step_id(opts.step_id); remote_op->set_name(op->Name()); op->Attrs().FillAttrValueMap(remote_op->mutable_attrs()); remote_op->set_device(function_data->target); CancellationManager* cm = opts.cancellation_manager; CancellationToken token = 0; auto call_opts = std::make_shared<CallOptions>(); call_opts->SetTimeout( ctx_->session_options().config.operation_timeout_in_ms()); if (cm != nullptr) { token = cm->get_cancellation_token(); const bool already_cancelled = !cm->RegisterCallback( token, [call_opts, request, response, done]() { call_opts->StartCancel(); }); if (already_cancelled) { done(errors::Cancelled("EagerClusterFunctionLibraryRuntime::Run")); return; } } eager_client->RunComponentFunctionAsync( call_opts.get(), request.get(), response.get(), [request, response, rets, call_opts, cm, token, done = std::move(done)](const Status& s) { if (cm != nullptr) { cm->TryDeregisterCallback(token); } if (!s.ok()) { done(s); return; } if (!response->shape().empty() && !response->tensor().empty()) { done(errors::Internal( "Both shape and tensor are specified in the same response")); return; } for (const auto& shape : response->shape()) { rets->push_back(shape); } for (const auto& tensor_proto : response->tensor()) { Tensor t; if (t.FromProto(tensor_proto)) { rets->push_back(std::move(t)); } else { done(errors::Internal("Could not convert tensor proto: ", tensor_proto.DebugString())); return; } } done(absl::OkStatus()); }); } void EagerClusterFunctionLibraryRuntime::CleanUp( uint64 step_id, FunctionLibraryRuntime::LocalHandle handle, FunctionLibraryRuntime::DoneCallback done) { FunctionData* function_data = nullptr; { mutex_lock l(mu_); DCHECK_LE(handle, function_data_.size()); function_data = &function_data_[handle]; } EagerClient* eager_client = function_data->eager_client.get(); if (eager_client == nullptr) { done(errors::Internal("Could not find eager client")); return; } auto request = std::make_shared<EnqueueRequest>(); auto response = std::make_shared<EnqueueResponse>(); request->set_context_id(context_id_); CleanupFunctionOp* cleanup_function = request->add_queue()->mutable_cleanup_function(); cleanup_function->set_step_id(step_id); eager_client->EnqueueAsync( nullptr, request.get(), response.get(), [request, response, done](const Status& status) { done(status); }); } DistributedFunctionLibraryRuntime* CreateClusterFLR( const uint64 context_id, EagerContext* ctx, WorkerSession* worker_session) { return new EagerClusterFunctionLibraryRuntime( context_id, ctx, worker_session->remote_device_mgr()); } } }
#include "tensorflow/core/distributed_runtime/cluster_function_library_runtime.h" #include <map> #include <memory> #include "tensorflow/core/common_runtime/function_testlib.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_channel.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_testlib.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.h" #include "tensorflow/core/distributed_runtime/worker_session.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/equal_graph_def.h" namespace tensorflow { class ClusterFunctionLibraryRuntimeTest : public ::testing::Test { public: ClusterFunctionLibraryRuntimeTest() { SessionOptions options; TF_CHECK_OK(test::TestCluster::MakeTestCluster( test::TestClusterConfig().Options(options).Jobs( {test::TestJob{"localhost", 2}}), &cluster_)); GrpcChannelSpec spec; std::map<int, string> host_ports; int i = 0; for (const auto& target : cluster_->targets("localhost")) { host_ports[i++] = target; } TF_CHECK_OK(spec.AddHostPortsJob("localhost", host_ports)); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); grpc_worker_env_.reset(CreateGrpcWorkerEnv()); std::shared_ptr<GrpcChannelCache> channel_cache( NewGrpcChannelCache(spec, channel_func)); std::unique_ptr<WorkerCacheInterface> worker_cache( NewGrpcWorkerCache(channel_cache, grpc_worker_env_.get())); worker_session_ = std::make_unique<WorkerSession>( "cluster_test_session", "/job:localhost/replica:0/task:0", std::move(worker_cache), std::unique_ptr<DeviceMgr>(), std::unique_ptr<GraphMgr>(), nullptr, [](WorkerSession* worker_session, bool called, DeviceMgr* remote_device_mgr) { return nullptr; }); cluster_flr_ = std::make_unique<ClusterFunctionLibraryRuntime>( worker_session_.get(), true, nullptr); } Status ConstructFunctionGraphHelper( const OpDef& sig, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& options, const FunctionLibraryDefinition& lib_def, GraphDef* g, std::vector<string>* send_keys, std::vector<string>* recv_keys) { return ClusterFunctionLibraryRuntime::ConstructFunctionGraph( sig, attrs, options, lib_def, g, send_keys, recv_keys); } void Instantiate(const string& function_name, const FunctionLibraryDefinition& lib_def, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::LocalHandle* local_handle, FunctionLibraryRuntime::DoneCallback done) { cluster_flr_->Instantiate(function_name, lib_def, attrs, options, local_handle, done); } Status InstantiateAndRun( const string& function_name, const FunctionLibraryDefinition& lib_def, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& options, const std::vector<Tensor>& args, std::vector<Tensor*> rets) { FunctionLibraryRuntime::LocalHandle handle; Status status; Notification instantiate_done; cluster_flr_->Instantiate(function_name, lib_def, attrs, options, &handle, [&status, &instantiate_done](const Status& s) { status = s; instantiate_done.Notify(); }); instantiate_done.WaitForNotification(); if (!status.ok()) { return status; } Notification done; FunctionLibraryRuntime::Options opts; std::vector<Tensor> out; cluster_flr_->Run(opts, handle, args, &out, [&status, &done](const Status& s) { status = s; done.Notify(); }); done.WaitForNotification(); if (!status.ok()) { return status; } CHECK_EQ(rets.size(), out.size()); for (size_t i = 0; i < rets.size(); ++i) { *rets[i] = out[i]; } return absl::OkStatus(); } protected: std::unique_ptr<test::TestCluster> cluster_; std::unique_ptr<WorkerSession> worker_session_; std::unique_ptr<ClusterFunctionLibraryRuntime> cluster_flr_; std::unique_ptr<GrpcWorkerEnv> grpc_worker_env_; }; TEST_F(ClusterFunctionLibraryRuntimeTest, ConstructFunctionGraph) { GraphDef actual; std::vector<string> send_keys, recv_keys; FunctionDefLibrary proto; *(proto.add_function()) = test::function::Swap(); FunctionLibraryDefinition lib_def(OpRegistry::Global(), proto); FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/device:CPU:0"; TF_CHECK_OK(ConstructFunctionGraphHelper( test::function::Swap().signature(), {{"T", DT_FLOAT}}, instantiate_opts, lib_def, &actual, &send_keys, &recv_keys)); GraphDef expected; protobuf::TextFormat::ParseFromString(R"( node { name: "_recv_i0_0" op: "_Recv" device: "/job:a/replica:0/task:0/device:CPU:0" attr { key: "client_terminated" value { b: true } } attr { key: "recv_device" value { s: "/job:a/replica:0/task:0/device:CPU:0" } } attr { key: "send_device" value { s: "/job:a/replica:0/task:0/device:CPU:0" } } attr { key: "send_device_incarnation" value { i: 1 } } attr { key: "tensor_name" value { s: "i0" } } attr { key: "tensor_type" value { type: DT_FLOAT } } } node { name: "_recv_i1_1" op: "_Recv" device: "/job:a/replica:0/task:0/device:CPU:0" attr { key: "client_terminated" value { b: true } } attr { key: "recv_device" value { s: "/job:a/replica:0/task:0/device:CPU:0" } } attr { key: "send_device" value { s: "/job:a/replica:0/task:0/device:CPU:0" } } attr { key: "send_device_incarnation" value { i: 1 } } attr { key: "tensor_name" value { s: "i1" } } attr { key: "tensor_type" value { type: DT_FLOAT } } } node { name: "Func/Swap/input/_0" op: "Identity" input: "_recv_i0_0" device: "/job:a/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_FLOAT } } } node { name: "Func/Swap/input/_1" op: "Identity" input: "_recv_i1_1" device: "/job:a/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_FLOAT } } } node { name: "Swap/o0" op: "Identity" input: "Func/Swap/input/_1" device: "/job:a/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_FLOAT } } } node { name: "Swap/o1" op: "Identity" input: "Func/Swap/input/_0" device: "/job:a/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_FLOAT } } } node { name: "Func/Swap/output/_2" op: "Identity" input: "Swap/o0" device: "/job:a/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_FLOAT } } } node { name: "Func/Swap/output/_3" op: "Identity" input: "Swap/o1" device: "/job:a/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_FLOAT } } } node { name: "_send_o0_0" op: "_Send" input: "Func/Swap/output/_2" device: "/job:a/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_FLOAT } } attr { key: "client_terminated" value { b: true } } attr { key: "recv_device" value { s: "/job:a/replica:0/task:0/device:CPU:0" } } attr { key: "send_device" value { s: "/job:a/replica:0/task:0/device:CPU:0" } } attr { key: "send_device_incarnation" value { i: 1 } } attr { key: "tensor_name" value { s: "o0" } } } node { name: "_send_o1_1" op: "_Send" input: "Func/Swap/output/_3" device: "/job:a/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_FLOAT } } attr { key: "client_terminated" value { b: true } } attr { key: "recv_device" value { s: "/job:a/replica:0/task:0/device:CPU:0" } } attr { key: "send_device" value { s: "/job:a/replica:0/task:0/device:CPU:0" } } attr { key: "send_device_incarnation" value { i: 1 } } attr { key: "tensor_name" value { s: "o1" } } } )", &expected); TF_EXPECT_GRAPH_EQ(expected, actual); } TEST_F(ClusterFunctionLibraryRuntimeTest, DISABLED_InstantiateAndRun) { FunctionDefLibrary proto; *(proto.add_function()) = test::function::XTimesTwoInt32(); FunctionLibraryDefinition lib_def(OpRegistry::Global(), proto); FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:localhost/replica:0/task:1/cpu:0"; Tensor y; auto x = test::AsTensor<int32>({1, 2, 3, 4}); TF_EXPECT_OK(InstantiateAndRun("XTimesTwoInt32", lib_def, {}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<int32>(y, test::AsTensor<int32>({2, 4, 6, 8})); } TEST_F(ClusterFunctionLibraryRuntimeTest, DISABLED_InstantiateAndRunAttrSubstitution) { FunctionDefLibrary proto; *(proto.add_function()) = test::function::Swap(); FunctionLibraryDefinition lib_def(OpRegistry::Global(), proto); FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:localhost/replica:0/task:1/cpu:0"; Tensor y1, y2; auto x1 = test::AsTensor<float>({1, 2, 3, 4}); auto x2 = test::AsTensor<float>({4, 3, 2, 1}); TF_EXPECT_OK(InstantiateAndRun("Swap", lib_def, {{"T", DT_FLOAT}}, instantiate_opts, {x1, x2}, {&y1, &y2})); test::ExpectTensorEqual<float>(y1, test::AsTensor<float>({4, 3, 2, 1})); test::ExpectTensorEqual<float>(y2, test::AsTensor<float>({1, 2, 3, 4})); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/eager/cluster_function_library_runtime.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/cluster_function_library_runtime_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2e44108f-0ab0-4cba-9936-a5afa356d05c
cpp
tensorflow/tensorflow
collective_param_resolver_distributed
tensorflow/core/distributed_runtime/collective_param_resolver_distributed.cc
tensorflow/core/distributed_runtime/collective_param_resolver_distributed_test.cc
#include "tensorflow/core/distributed_runtime/collective_param_resolver_distributed.h" #include "absl/strings/escaping.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/distributed_runtime/cancellable_call.h" #include "tensorflow/core/distributed_runtime/device_resolver_distributed.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace { class CompleteGroupCall : public CancellableCall { public: CompleteGroupCall(const CollGroupParams& group, const DeviceAttributes& device, CancellationManager* cancel_mgr, const string& remote_worker, WorkerCacheInterface* wc) : CancellableCall(cancel_mgr, remote_worker, wc) { req_.set_group_key(group.group_key); req_.set_group_size(group.group_size); req_.set_device_type(group.device_type.type_string()); *req_.mutable_device_attributes() = device; } ~CompleteGroupCall() override {} void IssueCall(const StatusCallback& done) override { wi_->CompleteGroupAsync(&opts_, &req_, &resp_, done); } CompleteGroupRequest req_; CompleteGroupResponse resp_; }; class CompleteInstanceCall : public CancellableCall { public: CompleteInstanceCall(const CollGroupParams& group, const CollInstanceParams& instance, const string& node_name, const string& device_name, bool is_source, CancellationManager* cancel_mgr, const string& remote_worker, WorkerCacheInterface* wc) : CancellableCall(cancel_mgr, remote_worker, wc) { req_.set_name(node_name); req_.set_type(instance.type); req_.set_step_id(instance.step_id); req_.set_data_type(instance.data_type); instance.shape.AsProto(req_.mutable_shape()); req_.set_group_key(group.group_key); req_.set_group_size(group.group_size); req_.set_instance_key(instance.instance_key); req_.set_device_type(group.device_type.type_string()); for (int32_t offset : instance.impl_details.subdiv_offsets) { req_.add_subdiv_offset(offset); } req_.set_device(device_name); req_.set_is_source(is_source); } ~CompleteInstanceCall() override {} void IssueCall(const StatusCallback& done) override { wi_->CompleteInstanceAsync(&opts_, &req_, &resp_, done); } CompleteInstanceRequest req_; CompleteInstanceResponse resp_; }; } CollectiveParamResolverDistributed::CollectiveParamResolverDistributed( const ConfigProto& config, const DeviceMgr* dev_mgr, DeviceResolverDistributed* dev_resolver, NcclCommunicatorInterface* nccl_communicator, WorkerCacheInterface* worker_cache, const string& task_name) : CollectiveParamResolverLocal(config, dev_mgr, dev_resolver, nccl_communicator, task_name), worker_cache_(worker_cache), group_leader_(task_name == config.experimental().collective_group_leader() ? "" : config.experimental().collective_group_leader()) { VLOG(1) << "CompleteParamResolverDistributed ctor task={" << task_name << "} config.collective_group_leader={" << config.experimental().collective_group_leader() << "}" << " config.collective_nccl={" << config.experimental().collective_nccl() << "}"; } void CollectiveParamResolverDistributed::CompleteParamsAsync( const DeviceAttributes& device, CollectiveParams* cp, CancellationManager* cancel_mgr, const StatusCallback& done) { VLOG(1) << "CompleteParams distributed " << device.name() << " for " << cp << ": " << cp->ToString(); if (cp->run_group_initialization) { CompleteGroupDistributed( device, &cp->group, cancel_mgr, [this, device, cp, cancel_mgr, done](Status s) { if (s.ok()) { std::vector<DeviceAttributes> devices; devices.reserve(cp->group.group_size); for (const CollGroupMember& m : cp->group.members) { devices.push_back(m.device); } s = dev_resolver_->UpdateDeviceAttributes(devices); } if (s.ok()) { CompleteInstanceDistributed(device.name(), cp, cancel_mgr, done); } else { done(s); } }); } else { auto s = LookupGroup(cp->group.group_key, &cp->group); if (s.ok()) { CompleteInstanceDistributed(device.name(), cp, cancel_mgr, done); } else { done(s); } } } void CollectiveParamResolverDistributed::CompleteGroupAsync( const DeviceAttributes& device, CollGroupParams* group_params, CancellationManager* cancel_mgr, const StatusCallback& done) { CompleteGroupDistributed(device, group_params, cancel_mgr, done); } void CollectiveParamResolverDistributed::CompleteInstanceAsync( const CompleteInstanceRequest* request, CompleteInstanceResponse* response, CancellationManager* cancel_mgr, const StatusCallback& done) { GroupRec* gr = GetCachedGroup(request->group_key()); if (gr == nullptr) { done(errors::FailedPrecondition( "group ", request->group_key(), " not found. This normally means the server has restarted")); return; } CollectiveParams* cp = new CollectiveParams; { mutex_lock l(gr->mu); if (!gr->status.ok()) { done(gr->status); return; } else if (gr->group.members.size() != gr->group.group_size) { done(errors::FailedPrecondition( "group ", request->group_key(), " failed to resolve. This normally means the server has restarted")); return; } cp->group = gr->group; } cp->name = request->name(); cp->instance.type = CollectiveType(request->type()); cp->instance.instance_key = request->instance_key(); cp->instance.step_id = request->step_id(); cp->instance.data_type = request->data_type(); cp->instance.shape = TensorShape(request->shape()); cp->is_source = request->is_source(); for (int32_t offset : request->subdiv_offset()) { cp->instance.impl_details.subdiv_offsets.push_back(offset); } StatusCallback done_and_cleanup = [cp, done](const Status& s) { done(s); cp->Unref(); }; CompleteInstanceDistributed( request->device(), cp, cancel_mgr, [this, cp, response, done_and_cleanup](Status status) { if (status.ok()) { bool created_irec; InstanceRec* ir = GetOrCreateInstanceRec(cp, &created_irec); { mutex_lock l(ir->mu); status = ir->status; if (ir->status.ok()) { response->set_instance_key(cp->instance.instance_key); response->set_source_rank(ir->source_rank); } } } done_and_cleanup(status); }); } CollectiveParamResolverDistributed::GroupRec* CollectiveParamResolverDistributed::GetCachedGroup(int32_t group_key) { mutex_lock l(group_mu_); auto it = group_table_.find(group_key); if (it == group_table_.end()) { return nullptr; } return it->second.get(); } Status CollectiveParamResolverDistributed::UpdateGroupCache( const CompleteGroupResponse& resp) { std::unique_ptr<GroupRec> gr(new GroupRec); { mutex_lock grl(gr->mu); gr->group.device_type = DeviceType(resp.device_type()); gr->group.group_key = resp.group_key(); gr->group.group_size = resp.group_size(); gr->group.num_tasks = resp.num_tasks(); if (resp.device_attributes().empty()) { return errors::Internal( "CompleteGroupResponse device_attributes is empty. Make sure you're " "running the same version of Tensorflow on all workers."); } if (resp.device_attributes_size() != gr->group.group_size) { return errors::Internal( "CompleteGroupResponse group_size doesn't match device_name list"); } gr->group.members.reserve(resp.device_attributes().size()); for (const DeviceAttributes& device : resp.device_attributes()) { CollGroupMember member; member.device = device; gr->group.members.push_back(std::move(member)); gr->incarnations_by_device_name[device.name()] = device.incarnation(); } gr->group.runtime_details.communicator_key = resp.communicator_key(); FinishGroup(gr.get()); } GroupRec* previous_gr = nullptr; { mutex_lock l(group_mu_); auto it = group_table_.find(resp.group_key()); if (it == group_table_.end()) { VLOG(2) << "UpdateGroupCache: communicator_key=" << absl::CEscape(resp.communicator_key()); group_table_[gr->group.group_key] = std::move(gr); } else { previous_gr = it->second.get(); } } if (previous_gr != nullptr) { mutex_lock grl(previous_gr->mu); if (previous_gr->group.runtime_details.communicator_key != resp.communicator_key()) { return errors::Internal( "UpdateGroupCache: CompleteGroupResponse for group ", resp.group_key(), " gives communicator_key=", absl::CEscape(resp.communicator_key()), " but cache already holds communicator_key=", absl::CEscape(previous_gr->group.runtime_details.communicator_key)); } } return absl::OkStatus(); } void CollectiveParamResolverDistributed::CompleteGroupDistributed( const DeviceAttributes& device, CollGroupParams* group_params, CancellationManager* cancel_mgr, const StatusCallback& done) { VLOG(1) << "CompleteGroupDistributed group_key=" << group_params->group_key << " dev: " << device.name() << " is_leader=" << (group_leader_.empty()); if (group_leader_.empty()) { return CompleteGroupLocal(device, group_params, cancel_mgr, done); } else if (GetCachedGroup(group_params->group_key) == nullptr) { CompleteGroupCall* call = new CompleteGroupCall( *group_params, device, cancel_mgr, group_leader_, worker_cache_); CancellationToken abortion_token = abortion_cancel_mgr_.get_cancellation_token(); bool already_aborted = !abortion_cancel_mgr_.RegisterCallback( abortion_token, [call] { call->Cancel(); }); if (already_aborted) { done(errors::Cancelled("collective ops already aborted")); delete call; return; } call->Start([this, device, group_params, call, cancel_mgr, abortion_token, done](const Status& s) { abortion_cancel_mgr_.DeregisterCallback(abortion_token); if (s.ok()) { Status status = UpdateGroupCache(call->resp_); if (status.ok()) { CompleteGroupLocal(device, group_params, cancel_mgr, done); } else { done(status); } } else { done(s); } delete call; }); return; } else { return CompleteGroupLocal(device, group_params, cancel_mgr, done); } } bool CollectiveParamResolverDistributed::InstanceIsCached( int32_t group_key, const CollInstanceParams& instance) { mutex_lock l(instance_mu_); auto group_it = instance_table_.find(group_key); if (group_it == instance_table_.end()) { return false; } auto instance_it = group_it->second.find({instance.step_id, instance.instance_key}); return instance_it != group_it->second.end(); } Status CollectiveParamResolverDistributed::UpdateInstanceCache( CollectiveParams* cp, const CompleteInstanceResponse& resp) { int32_t source_rank = resp.source_rank(); bool created_irec; InstanceRec* ir = GetOrCreateInstanceRec(cp, &created_irec); mutex_lock l(ir->mu); if (!ir->status.ok()) { return ir->status; } if (ir->source_rank != source_rank) { if (ir->source_rank >= 0) { ir->status = errors::Internal( "UpdateInstanceCache: CompleteInstanceResponse for instance ", cp->instance.instance_key, " gives source_rank=", source_rank, " but cache already holds value=", ir->source_rank); return ir->status; } ir->source_rank = source_rank; } if (ir->known_count < cp->group.group_size) { ir->known_count = cp->group.group_size; const int ir_known_size = ir->known.size(); if (ir_known_size != cp->group.group_size) { ir->status = errors::Internal( "UpdateInstanceCache:: CompleteInstanceResponse for instance ", cp->instance.instance_key, " has known.size()=", ir->known.size(), " < group_size=", cp->group.group_size); return ir->status; } for (int i = 0; i < ir_known_size; ++i) { ir->known[i] = true; } } return ir->status; } void CollectiveParamResolverDistributed::CompleteInstanceDistributed( const string& device, CollectiveParams* cp, CancellationManager* cancel_mgr, const StatusCallback& done) { if (group_leader_.empty()) { return CompleteInstanceLocal(device, cp, done); } else if (InstanceIsCached(cp->group.group_key, cp->instance)) { return CompleteInstanceLocal(device, cp, done); } else { CompleteInstanceCall* call = new CompleteInstanceCall( cp->group, cp->instance, cp->name, device, cp->is_source, cancel_mgr, group_leader_, worker_cache_); CancellationToken abortion_token = abortion_cancel_mgr_.get_cancellation_token(); bool already_aborted = !abortion_cancel_mgr_.RegisterCallback( abortion_token, [call] { call->Cancel(); }); if (already_aborted) { done(errors::Cancelled("collective ops already aborted")); delete call; return; } call->Start([this, device, cp, call, abortion_token, done](Status s) { abortion_cancel_mgr_.DeregisterCallback(abortion_token); if (s.ok()) { s = UpdateInstanceCache(cp, call->resp_); } if (s.ok()) { CompleteInstanceLocal(device, cp, done); } else { done(s); } delete call; }); return; } } void CollectiveParamResolverDistributed::StartAbort(const Status& s) { { mutex_lock l(status_mu_); if (!status_.ok()) { VLOG(2) << "CollectiveParamResolverDistributed already aborted. Ignoring " "subsequent abortion with status: " << s; return; } status_ = s; } StartAbortLocal(s); abortion_cancel_mgr_.StartCancel(); } }
#include "tensorflow/core/distributed_runtime/collective_param_resolver_distributed.h" #include "absl/container/flat_hash_map.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/test_collective_executor_mgr.h" #include "tensorflow/core/distributed_runtime/device_resolver_distributed.h" #include "tensorflow/core/distributed_runtime/test_utils.h" #include "tensorflow/core/distributed_runtime/worker.h" #include "tensorflow/core/distributed_runtime/worker_env.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace { static std::unique_ptr<Device> NewDevice(const string& type, const string& name) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr) : Device(nullptr, attr) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } }; DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); attr.mutable_locality()->set_numa_node(3); attr.set_incarnation(random::New64()); return std::make_unique<FakeDevice>(attr); } class FakeCache : public TestWorkerCache { public: bool GetDeviceLocalityNonBlocking(const string& device, DeviceLocality* locality) override { return false; } void GetDeviceLocalityAsync(const string& device, DeviceLocality* locality, StatusCallback done) override { string task_name; string dev_part; if (!DeviceNameUtils::SplitDeviceName(device, &task_name, &dev_part)) { done(errors::Internal("failed to parse device name")); return; } auto it = workers_.find(task_name); if (it == workers_.end()) { done(errors::Internal("failed to find worker ", task_name)); return; } WorkerInterface* wi = it->second; GetStatusRequest req; GetStatusResponse resp; Status status = wi->GetStatus(&req, &resp); if (!status.ok()) { done(status); return; } for (const auto& it : resp.device_attributes()) { if (it.name() == device) { *locality = it.locality(); done(absl::OkStatus()); return; } } done(errors::Internal("device not found: ", device)); } }; class FakeNcclCommunicator : public NcclCommunicatorInterface { public: string GenerateCommunicatorKey() override { return "mock-communicator-key"; } void Enqueue(std::shared_ptr<CollectiveContext> col_ctx, StatusCallback done) override { done(absl::OkStatus()); } void StartAbort(const Status& s) override {} }; class DeviceResDistTest : public ::testing::Test { public: ~DeviceResDistTest() override { for (auto& name_param : cp_) { name_param.second->Unref(); } } protected: void DefineWorkers(int num_workers, int num_devices, const string& device_type, bool nccl) { for (int w = 0; w < num_workers; ++w) { string name = strings::StrCat("/job:worker/replica:0/task:", w); DefineWorker(name, device_type, num_devices, nccl); } } void DefineWorker(const string& worker_name, const string& device_type, int num_devices, bool nccl) { ConfigProto config; config.mutable_experimental()->set_collective_group_leader( "/job:worker/replica:0/task:0"); config.mutable_experimental()->set_collective_nccl(nccl); std::vector<std::unique_ptr<Device>> devices; for (int i = 0; i < num_devices; ++i) { devices.push_back(NewDevice( device_type, strings::StrCat(worker_name, "/device:", device_type, ":", i))); } device_mgrs_[worker_name] = std::make_unique<StaticDeviceMgr>(std::move(devices)); std::vector<string>* dv = &dev_by_task_[worker_name]; dv->clear(); for (auto* d : device_mgrs_[worker_name]->ListDevices()) { dv->push_back(d->name()); } dev_resolvers_[worker_name] = std::make_unique<DeviceResolverDistributed>( device_mgrs_[worker_name].get()); cp_resolvers_[worker_name] = std::make_unique<CollectiveParamResolverDistributed>( config, device_mgrs_[worker_name].get(), dev_resolvers_[worker_name].get(), &nccl_communicator_, &wc_, worker_name); auto worker_env = std::make_unique<WorkerEnv>(); worker_env->env = Env::Default(); worker_env->device_mgr = device_mgrs_[worker_name].get(); worker_env->collective_executor_mgr = std::make_unique<TestCollectiveExecutorMgr>( cp_resolvers_[worker_name].get(), nullptr); workers_[worker_name] = std::make_unique<Worker>(worker_env.get()); worker_envs_[worker_name] = std::move(worker_env); wc_.AddWorker(worker_name, workers_[worker_name].get()); } void DefineCollectiveParams(int num_workers, int num_devices, const string& device_type, CollectiveType coll_type = REDUCTION_COLLECTIVE, int source_rank = 0) { for (int wi = 0; wi < num_workers; ++wi) { string task_name = strings::StrCat("/job:worker/replica:0/task:", wi); for (int di = 0; di < num_devices; ++di) { int idx = wi * num_devices + di; string device_name = strings::StrCat(task_name, "/device:", device_type, ":", di); cp_[device_name] = CreateCollectiveParams(num_workers, num_devices, device_type, coll_type, idx == source_rank); } } } CollectiveParams* CreateCollectiveParams(int num_workers, int num_devices, const string& device_type, CollectiveType coll_type, bool is_source) { const int kGroupKey = 5; const int kInstanceKey = 3; auto* cp = new CollectiveParams(); cp->is_source = is_source; cp->group.group_key = kGroupKey; cp->group.group_size = num_workers * num_devices; cp->group.device_type = DeviceType(device_type); cp->group.num_tasks = num_workers; cp->instance.instance_key = kInstanceKey; cp->instance.type = coll_type; cp->instance.data_type = DT_FLOAT; cp->instance.shape = TensorShape({64}); cp->instance.impl_details.subdiv_offsets.push_back(0); return cp; } void IssueRequests(int num_workers, int num_devices) { { mutex_lock l(mu_); num_done_ = 0; } int group_size = num_workers * num_devices; for (int wi = 0; wi < num_workers; ++wi) { string task_name = strings::StrCat("/job:worker/replica:0/task:", wi); for (int di = 0; di < num_devices; ++di) { string device_name = strings::StrCat(task_name, "/device:CPU:", di); IssueRequest(task_name, device_name, group_size); } } } void IssueRequest(const string& task_name, const string& device_name, int group_size) { Device* device = nullptr; TF_CHECK_OK(device_mgrs_[task_name]->LookupDevice(device_name, &device)); CollectiveParams* cp = cp_[device_name]; CollectiveParamResolverDistributed* cp_res = cp_resolvers_[task_name].get(); CHECK(cp_res); cp_res->CompleteParamsAsync( device->attributes(), cp, &cm_, [this, device_name, group_size](const Status& s) { status_[device_name] = s; { mutex_lock l(mu_); ++num_done_; if (num_done_ == group_size) { done_.notify_all(); } } }); } void ValidateCollectiveParams(int num_workers, int num_devices) { int device_count = num_workers * num_devices; { mutex_lock l(mu_); if (num_done_ < device_count) { done_.wait(l); } } const int dev_count = num_workers * num_devices; string dev0 = "/job:worker/replica:0/task:0/device:CPU:0"; for (int wi = 0; wi < num_workers; ++wi) { string task_name = strings::StrCat("/job:worker/replica:0/task:", wi); for (int di = 0; di < num_devices; ++di) { string device_name = strings::StrCat(task_name, "/device:CPU:", di); int idx = wi * num_devices + di; TF_ASSERT_OK(status_[device_name]); EXPECT_EQ(cp_[device_name]->default_rank, idx); EXPECT_EQ(cp_[device_name]->group.members.size(), dev_count); EXPECT_EQ(cp_[device_name]->group.members[idx].device.name(), device_name); EXPECT_EQ(cp_[device_name]->group.members[idx].task, task_name); ValidateDeviceResolver(*cp_[device_name], task_name); if (idx > 0) { EXPECT_EQ(cp_[dev0]->group.runtime_details.communicator_key, cp_[device_name]->group.runtime_details.communicator_key); for (int i = 0; i < dev_count; ++i) { EXPECT_EQ(cp_[dev0]->group.members[i].device.name(), cp_[device_name]->group.members[i].device.name()); EXPECT_EQ(cp_[dev0]->group.members[i].task, cp_[device_name]->group.members[i].task); } } } } } void ValidateDeviceResolver(const CollectiveParams& cp, const string& task) { for (const CollGroupMember& member : cp.group.members) { DeviceAttributes attributes; TF_ASSERT_OK(dev_resolvers_[task]->GetDeviceAttributes( member.device.name(), &attributes)); } } void RestartWorker(int worker_idx, int num_workers, int num_devices, const string& device_type, bool nccl, CollectiveType coll_type = REDUCTION_COLLECTIVE, bool is_source = false) { string worker_name = strings::StrCat("/job:worker/replica:0/task:", worker_idx); DefineWorker(worker_name, device_type, num_devices, nccl); for (int i = 0; i < num_devices; ++i) { string device_name = strings::StrCat(worker_name, "/device:", device_type, ":", i); if (cp_.find(device_name) != cp_.end()) { cp_[device_name]->Unref(); } cp_[device_name] = CreateCollectiveParams( num_workers, num_devices, device_type, coll_type, is_source); status_.erase(device_name); } } FakeCache wc_; FakeNcclCommunicator nccl_communicator_; CancellationManager cm_; absl::flat_hash_map<string, std::unique_ptr<DeviceMgr>> device_mgrs_; absl::flat_hash_map<string, std::unique_ptr<DeviceResolverDistributed>> dev_resolvers_; absl::flat_hash_map<string, std::unique_ptr<CollectiveParamResolverDistributed>> cp_resolvers_; absl::flat_hash_map<string, std::vector<string>> dev_by_task_; absl::flat_hash_map<string, std::unique_ptr<WorkerEnv>> worker_envs_; absl::flat_hash_map<string, std::unique_ptr<Worker>> workers_; absl::flat_hash_map<string, CollectiveParams*> cp_; absl::flat_hash_map<string, Status> status_; mutex mu_; int num_done_ TF_GUARDED_BY(mu_); condition_variable done_; }; TEST_F(DeviceResDistTest, Workers1Devices1) { const int num_workers = 1; const int num_devices = 1; DefineWorkers(num_workers, num_devices, "CPU", false); DefineCollectiveParams(num_workers, num_devices, "CPU"); IssueRequests(num_workers, num_devices); ValidateCollectiveParams(num_workers, num_devices); } TEST_F(DeviceResDistTest, Workers2Devices2) { const int num_workers = 2; const int num_devices = 2; DefineWorkers(num_workers, num_devices, "CPU", false); DefineCollectiveParams(num_workers, num_devices, "CPU"); IssueRequests(num_workers, num_devices); ValidateCollectiveParams(num_workers, num_devices); } TEST_F(DeviceResDistTest, DifferentIncarnation) { const int num_workers = 2; const int num_devices = 1; DefineWorkers(num_workers, num_devices, "CPU", false); DefineCollectiveParams(num_workers, num_devices, "CPU"); IssueRequests(num_workers, num_devices); RestartWorker(1, num_workers, num_devices, "CPU", false); const string task_name = "/job:worker/replica:0/task:1"; const string device_name = absl::StrCat(task_name, "/device:CPU:0"); IssueRequest(task_name, device_name, num_workers * num_devices); EXPECT_TRUE(errors::IsFailedPrecondition(status_[device_name])); } TEST_F(DeviceResDistTest, BroadcastSourceRank0) { const int num_workers = 2; const int num_devices = 2; const int source_rank = 0; DefineWorkers(num_workers, num_devices, "CPU", false); DefineCollectiveParams(num_workers, num_devices, "CPU", BROADCAST_COLLECTIVE, source_rank); IssueRequests(num_workers, num_devices); ValidateCollectiveParams(num_workers, num_devices); } TEST_F(DeviceResDistTest, BroadcastSourceRank3) { const int num_workers = 2; const int num_devices = 2; const int source_rank = 3; DefineWorkers(num_workers, num_devices, "CPU", false); DefineCollectiveParams(num_workers, num_devices, "CPU", BROADCAST_COLLECTIVE, source_rank); IssueRequests(num_workers, num_devices); ValidateCollectiveParams(num_workers, num_devices); } TEST_F(DeviceResDistTest, Workers4Devices3) { const int num_workers = 4; const int num_devices = 3; DefineWorkers(num_workers, num_devices, "CPU", true); DefineCollectiveParams(num_workers, num_devices, "CPU"); IssueRequests(num_workers, num_devices); ValidateCollectiveParams(num_workers, num_devices); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/collective_param_resolver_distributed.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/collective_param_resolver_distributed_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
79cf9640-53d5-4de9-930d-2b402a98d224
cpp
tensorflow/tensorflow
rpc_collective_executor_mgr
tensorflow/core/distributed_runtime/rpc_collective_executor_mgr.cc
tensorflow/core/distributed_runtime/rpc_collective_executor_mgr_test.cc
#include "tensorflow/core/distributed_runtime/rpc_collective_executor_mgr.h" #include "tensorflow/core/common_runtime/base_collective_executor.h" #include "tensorflow/core/common_runtime/collective_executor_mgr.h" #include "tensorflow/core/common_runtime/collective_rma_local.h" #include "tensorflow/core/distributed_runtime/collective_param_resolver_distributed.h" #include "tensorflow/core/distributed_runtime/collective_rma_distributed.h" #include "tensorflow/core/distributed_runtime/device_resolver_distributed.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/lib/random/random.h" namespace tensorflow { RpcCollectiveExecutorMgr::RpcCollectiveExecutorMgr( const ConfigProto& config, const DeviceMgr* dev_mgr, std::unique_ptr<DeviceResolverDistributed> dev_resolver, std::unique_ptr<CollectiveParamResolverDistributed> param_resolver, std::unique_ptr<NcclCommunicatorInterface> nccl_communicator, WorkerCacheInterface* worker_cache, const string& task_name) : CollectiveExecutorMgr(config, dev_mgr, std::move(dev_resolver), std::move(param_resolver), std::move(nccl_communicator)), worker_cache_(worker_cache), task_name_(task_name) { group_leader_ = (task_name == config.experimental().collective_group_leader()) ? "" : config.experimental().collective_group_leader(); } RpcCollectiveExecutorMgr::~RpcCollectiveExecutorMgr() { for (auto it : sequence_table_) { delete it.second; } } CollectiveExecutor* RpcCollectiveExecutorMgr::Create(int64_t step_id) { CollectiveRemoteAccessDistributed* rma = new CollectiveRemoteAccessDistributed(dev_mgr_, dev_resolver_.get(), work_queue_, worker_cache_, step_id, task_name_); return new BaseCollectiveExecutor(this, rma, step_id, dev_mgr_, work_queue_); } namespace { static const int64_t kStepIdMask = (((1uLL << 56) - 1) | (1uLL << 56)); int64_t NewRandomStepId() { int64_t step_id = random::New64(); step_id &= kStepIdMask; return step_id; } } void RpcCollectiveExecutorMgr::RefreshStepIdSequenceAsync( int64_t graph_key, const StatusCallback& done) { if (group_leader_.empty()) { mutex_lock l(sequence_mu_); GraphKeySequence* gks = nullptr; auto it = sequence_table_.find(graph_key); if (it == sequence_table_.end()) { gks = new GraphKeySequence(graph_key); sequence_table_[graph_key] = gks; } else { gks = it->second; } gks->next_step_id_ = NewRandomStepId(); done(absl::OkStatus()); } else { WorkerInterface* wi = worker_cache_->GetOrCreateWorker(group_leader_); GetStepSequenceRequest* req = new GetStepSequenceRequest; GetStepSequenceResponse* resp = new GetStepSequenceResponse; req->add_graph_key(graph_key); wi->GetStepSequenceAsync( req, resp, [this, req, resp, done](const Status& s) { if (!s.ok()) { LOG(ERROR) << "Bad response [" << s << "] from GetStepSequenceAsync call to " << group_leader_; done(s); } else { done(UpdateStepSequences(*resp)); } delete req; delete resp; }); } } void RpcCollectiveExecutorMgr::GetStepSequenceAsync( const GetStepSequenceRequest* request, GetStepSequenceResponse* response, const StatusCallback& done) { if (!group_leader_.empty()) { LOG(ERROR) << "GetStepSequence called at non-group-leader"; done(errors::Internal("GetStepSequenceAsync called at non-group-leader")); } else { mutex_lock l(sequence_mu_); for (int64_t graph_key : request->graph_key()) { auto it = sequence_table_.find(graph_key); GraphKeySequence* gks = nullptr; if (it == sequence_table_.end()) { gks = new GraphKeySequence(graph_key); gks->next_step_id_ = NewRandomStepId(); sequence_table_[graph_key] = gks; } else { gks = it->second; } StepSequence* ss = response->add_step_sequence(); ss->set_graph_key(graph_key); ss->set_next_step_id(gks->next_step_id_); } done(absl::OkStatus()); } } Status RpcCollectiveExecutorMgr::UpdateStepSequences( const GetStepSequenceResponse& resp) { mutex_lock l(sequence_mu_); for (const StepSequence& ss : resp.step_sequence()) { GraphKeySequence* gks = nullptr; auto it = sequence_table_.find(ss.graph_key()); if (it == sequence_table_.end()) { gks = new GraphKeySequence(ss.graph_key()); sequence_table_[ss.graph_key()] = gks; } else { gks = it->second; } gks->next_step_id_ = ss.next_step_id(); } return absl::OkStatus(); } int64_t RpcCollectiveExecutorMgr::NextStepId(int64_t graph_key) { mutex_lock l(sequence_mu_); auto it = sequence_table_.find(graph_key); if (it != sequence_table_.end()) { return it->second->next_step_id_; } return CollectiveExecutor::kInvalidId; } void RpcCollectiveExecutorMgr::RetireStepId(int64_t graph_key, int64_t step_id) { mutex_lock l(sequence_mu_); auto it = sequence_table_.find(graph_key); if (it != sequence_table_.end()) { if (step_id == it->second->next_step_id_) { it->second->next_step_id_ = (it->second->next_step_id_ + 1) & kStepIdMask; } else { it->second->next_step_id_ = CollectiveExecutor::kInvalidId; } } else { LOG(ERROR) << "Failed to find graph_key " << graph_key << " to retire."; } } std::unique_ptr<RpcCollectiveExecutorMgr> CreateProdRpcCollectiveExecutorMgr( const ConfigProto& config, const DeviceMgr* device_mgr, std::unique_ptr<NcclCommunicatorInterface> nccl_communicator, WorkerCacheInterface* worker_cache, const string& default_worker_name) { auto dev_resolver = std::make_unique<DeviceResolverDistributed>(device_mgr); auto param_resolver = std::make_unique<CollectiveParamResolverDistributed>( config, device_mgr, dev_resolver.get(), nccl_communicator.get(), worker_cache, default_worker_name); return std::make_unique<RpcCollectiveExecutorMgr>( config, device_mgr, std::move(dev_resolver), std::move(param_resolver), std::move(nccl_communicator), worker_cache, default_worker_name); } }
#include "tensorflow/core/distributed_runtime/rpc_collective_executor_mgr.h" #include <stdlib.h> #include <string> #include <vector> #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/distributed_runtime/collective_param_resolver_distributed.h" #include "tensorflow/core/distributed_runtime/device_resolver_distributed.h" #include "tensorflow/core/framework/collective.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/nccl/collective_communicator.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/worker.pb.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { #define NUM_DEVS 3 class RpcCollectiveExecutorMgrTest : public ::testing::Test { protected: RpcCollectiveExecutorMgrTest() { string task_name = "/job:localhost/replica:0/task:0"; SessionOptions options; options.config.mutable_experimental()->set_collective_group_leader( task_name); WorkerCacheInterface* worker_cache = nullptr; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", NUM_DEVS}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::AddDevices(options, task_name, &devices)); device_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); std::unique_ptr<DeviceResolverDistributed> dr( new DeviceResolverDistributed(device_mgr_.get())); std::unique_ptr<CollectiveParamResolverDistributed> cpr( new CollectiveParamResolverDistributed( options.config, device_mgr_.get(), dr.get(), nullptr, worker_cache, task_name)); cme_.reset(new RpcCollectiveExecutorMgr( options.config, device_mgr_.get(), std::move(dr), std::move(cpr), MaybeCreateNcclCommunicator(options.config), worker_cache, task_name)); } std::unique_ptr<RpcCollectiveExecutorMgr> cme_; std::unique_ptr<DeviceMgr> device_mgr_; }; TEST_F(RpcCollectiveExecutorMgrTest, FindOrCreate) { CollectiveExecutor::Handle* h = new CollectiveExecutor::Handle(cme_->FindOrCreate(1), true); EXPECT_TRUE(h->get()); CollectiveExecutor::Handle* h2 = new CollectiveExecutor::Handle(cme_->FindOrCreate(1), true); EXPECT_EQ(h->get(), h2->get()); CollectiveExecutor* ce = h->get(); delete h; delete h2; CollectiveExecutor* ce2 = cme_->FindOrCreate(1); EXPECT_EQ(ce, ce2); ce2->Unref(); cme_->Cleanup(1); } TEST_F(RpcCollectiveExecutorMgrTest, NextStepId) { int64_t x = cme_->NextStepId(7); EXPECT_EQ(x, CollectiveExecutor::kInvalidId); { Notification note; Status status; cme_->RefreshStepIdSequenceAsync(7, [this, &status, &note](const Status& s) { status = s; note.Notify(); }); EXPECT_TRUE(status.ok()); } x = cme_->NextStepId(7); EXPECT_NE(x, CollectiveExecutor::kInvalidId); EXPECT_EQ(x, cme_->NextStepId(7)); EXPECT_EQ(x, cme_->NextStepId(7)); cme_->RetireStepId(6, x); EXPECT_EQ(x, cme_->NextStepId(7)); cme_->RetireStepId(7, x); int64_t y = cme_->NextStepId(7); EXPECT_EQ((x + 1) & (((1uLL << 56) - 1) | (1uLL << 56)), y); { Notification note; Status status; cme_->RefreshStepIdSequenceAsync(7, [this, &status, &note](const Status& s) { status = s; note.Notify(); }); note.WaitForNotification(); EXPECT_TRUE(status.ok()); } int64_t z = cme_->NextStepId(7); EXPECT_NE(y, z); EXPECT_GT(llabs(y - z), 3); } TEST_F(RpcCollectiveExecutorMgrTest, GetStepSequence) { int64_t x = cme_->NextStepId(3); EXPECT_EQ(x, CollectiveExecutor::kInvalidId); int64_t y = cme_->NextStepId(4); EXPECT_EQ(y, CollectiveExecutor::kInvalidId); GetStepSequenceRequest request; GetStepSequenceResponse response; request.add_graph_key(3); request.add_graph_key(4); { Notification note; Status status; cme_->GetStepSequenceAsync(&request, &response, [this, &status, &note](const Status& s) { status = s; note.Notify(); }); note.WaitForNotification(); EXPECT_TRUE(status.ok()); } ASSERT_EQ(2, response.step_sequence_size()); std::unordered_map<int64_t, int64_t> values; for (const auto& ss : response.step_sequence()) { values[ss.graph_key()] = ss.next_step_id(); } EXPECT_NE(values[3], CollectiveExecutor::kInvalidId); EXPECT_NE(values[4], CollectiveExecutor::kInvalidId); response.Clear(); { Notification note; Status status; cme_->GetStepSequenceAsync(&request, &response, [this, &status, &note](const Status& s) { status = s; note.Notify(); }); note.WaitForNotification(); EXPECT_TRUE(status.ok()); } ASSERT_EQ(2, response.step_sequence_size()); for (const auto& ss : response.step_sequence()) { EXPECT_EQ(values[ss.graph_key()], ss.next_step_id()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc_collective_executor_mgr.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc_collective_executor_mgr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3afdaf8b-caec-4d41-8aa6-2983d81f5758
cpp
tensorflow/tensorflow
coordination_service_barrier_proxy
tensorflow/core/distributed_runtime/coordination/coordination_service_barrier_proxy.cc
tensorflow/core/distributed_runtime/coordination/coordination_service_barrier_proxy_test.cc
#include "tensorflow/core/distributed_runtime/coordination/coordination_service_barrier_proxy.h" #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tsl/profiler/lib/traceme.h" #include "tsl/profiler/lib/traceme_encode.h" namespace tensorflow { std::pair<Status, bool> BarrierProxy::Wait() { mutex_lock l(mu_); if (status_set_) { return std::make_pair( absl::FailedPreconditionError(absl::StrCat( "The barrier has already passed or timed out. key=", key_)), false); } if (num_entered_ >= num_local_threads_) { return std::make_pair(absl::FailedPreconditionError(absl::StrCat( "Wait() called too many (>", num_local_threads_, ") times. key=", key_)), false); } ++num_entered_; ++num_to_exit_; VLOG(1) << "BarrierProxy " << key_ << " enter: num_entered_=" << num_entered_ << ", num_to_exit_=" << num_to_exit_; if (num_entered_ == num_local_threads_) { if (tasks_.size() != 1) { tsl::profiler::TraceMe traceme("BarrierProxy::Wait::WaitAtBarrier"); status_ = agent_->WaitAtBarrier(key_, timeout_, tasks_); } else { status_ = absl::OkStatus(); } status_set_ = true; cv_.notify_all(); } else if (WaitForMilliseconds(&l, &cv_, timeout_ / absl::Milliseconds(1)) == kCond_Timeout) { if (!status_set_) { if (tasks_.size() != 1) { agent_->CancelBarrier(key_).IgnoreError(); } status_ = absl::DeadlineExceededError( absl::StrCat("BarrierProxy timeout: key=", key_)); status_set_ = true; cv_.notify_all(); } } else { CHECK(status_set_); } --num_to_exit_; VLOG(1) << "BarrierProxy " << key_ << " enter: num_entered_=" << num_entered_ << ", num_to_exit=" << num_to_exit_; return std::make_pair(status_, num_to_exit_ == 0); } size_t BarrierProxyManager::size() const { mutex_lock l(mu_); return barriers_.size(); } Status BarrierProxyManager::Wait(tsl::CoordinationServiceAgent* agent, const std::vector<CoordinatedTask>& tasks, int num_local_threads, absl::string_view key, absl::Duration timeout) { if (tasks.size() == 1 && num_local_threads <= 1) return absl::OkStatus(); tsl::profiler::TraceMe traceme([&] { return tsl::profiler::TraceMeEncode( "BarrierProxyManager::Wait", { {"num_tasks", tasks.size()}, {"num_local_threads", num_local_threads}, }); }); std::shared_ptr<BarrierProxy> barrier; { mutex_lock l(mu_); auto [iter, inserted] = barriers_.try_emplace(key); if (inserted) { iter->second = std::make_shared<BarrierProxy>( agent, tasks, num_local_threads, key, timeout); VLOG(1) << "BarrierProxy key=" << key << " created."; } barrier = iter->second; } CHECK(barrier); auto [status, last_exit] = barrier->Wait(); if (last_exit) { mutex_lock l(mu_); barriers_.erase(key); VLOG(1) << "BarrierProxy key=" << key << " removed."; } return status; } }
#include "tensorflow/core/distributed_runtime/coordination/coordination_service_barrier_proxy.h" #include <atomic> #include <cstdint> #include <map> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/threadpool.h" namespace tensorflow { namespace { using ::testing::_; using ::testing::Return; using tsl::CallOptions; using tsl::CoordinationClient; using tsl::CoordinationServiceAgent; class MockCoordinationServiceAgent : public CoordinationServiceAgent { public: MOCK_METHOD(Status, WaitAtBarrier, (std::string_view barrier_id, absl::Duration timeout, const std::vector<CoordinatedTask>& tasks), (override)); MOCK_METHOD(Status, CancelBarrier, (std::string_view barrier_id), (override)); MOCK_METHOD(Status, Initialize, (Env * env, std::string_view job_name, int task_id, const CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn), (override)); MOCK_METHOD(Status, Initialize, (Env * env, const CoordinatedTask& task, const CoordinationServiceConfig& configs, std::unique_ptr<CoordinationClient> leader_client, StatusCallback error_fn), (override)); MOCK_METHOD(bool, IsInitialized, (), (override)); MOCK_METHOD(bool, IsConnected, (), (override)); MOCK_METHOD(bool, IsError, (), (override)); MOCK_METHOD(Status, Connect, (), (override)); MOCK_METHOD(Status, WaitForAllTasks, (const DeviceInfo& local_devices), (override)); MOCK_METHOD(const DeviceInfo&, GetClusterDeviceInfo, (), (override)); MOCK_METHOD(absl::StatusOr<CoordinatedTask>, GetOwnTask, (), (override)); MOCK_METHOD(absl::StatusOr<std::vector<CoordinatedTaskStateInfo>>, GetTaskState, (const std::vector<CoordinatedTask>& task), (override)); MOCK_METHOD(Status, ReportError, (const Status& error), (override)); MOCK_METHOD(Status, Shutdown, (), (override)); MOCK_METHOD(Status, Reset, (), (override)); MOCK_METHOD(absl::StatusOr<std::string>, GetKeyValue, (std::string_view key), (override)); MOCK_METHOD(absl::StatusOr<std::string>, GetKeyValue, (std::string_view key, absl::Duration timeout), (override)); MOCK_METHOD(std::shared_ptr<CallOptions>, GetKeyValueAsync, (std::string_view key, StatusOrValueCallback done), (override)); MOCK_METHOD(absl::StatusOr<std::string>, TryGetKeyValue, (std::string_view key), (override)); MOCK_METHOD(absl::StatusOr<std::vector<KeyValueEntry>>, GetKeyValueDir, (std::string_view key), (override)); MOCK_METHOD(void, GetKeyValueDirAsync, (std::string_view key, StatusOrValueDirCallback done), (override)); MOCK_METHOD(Status, InsertKeyValue, (std::string_view key, std::string_view value), (override)); MOCK_METHOD(Status, InsertKeyValue, (std::string_view key, std::string_view value, bool allow_overwrite), (override)); MOCK_METHOD(Status, DeleteKeyValue, (std::string_view key), (override)); MOCK_METHOD(Status, UpdateKeyValue, (std::string_view key, std::string_view value), (override)); MOCK_METHOD(Status, StartWatchKey, (std::string_view key, ChangedKeyValuesCallback on_change), (override)); MOCK_METHOD(Status, StopWatchKey, (std::string_view key), (override)); MOCK_METHOD(void, WaitAtBarrierAsync, (std::string_view barrier_id, absl::Duration timeout, const std::vector<CoordinatedTask>& tasks, StatusCallback done), (override)); MOCK_METHOD(void, CancelBarrierAsync, (std::string_view barrier_id, StatusCallback done), (override)); MOCK_METHOD(absl::StatusOr<Env*>, GetEnv, (), (override)); MOCK_METHOD(void, SetError, (const Status& error), (override)); MOCK_METHOD(Status, ActivateWatch, (std::string_view key, (const std::map<std::string, std::string>&)), (override)); }; constexpr auto kTestKey = "test_key"; constexpr auto kTestTimeout = absl::Seconds(1); const int kThreadPoolSize = 32; void TestBarrierProxyWait( int num_tasks, int num_threads_planned, int num_threads_entered, int expected_ok_count, std::optional<Status> agent_wait_status, std::optional<Status> expected_same_exit_status_for_all_threads) { auto agent = std::make_unique<MockCoordinationServiceAgent>(); const std::vector<CoordinatedTask> tasks(num_tasks); BarrierProxy barrier(agent.get(), tasks, num_threads_planned, kTestKey, kTestTimeout); std::atomic<int> last_exit_count = 0; std::atomic<int> actual_ok_count = 0; if (agent_wait_status.has_value()) { EXPECT_CALL(*agent, WaitAtBarrier(kTestKey, kTestTimeout, _)) .WillOnce(Return(agent_wait_status.value())); } else { EXPECT_CALL(*agent, WaitAtBarrier(kTestKey, kTestTimeout, _)).Times(0); } { thread::ThreadPool pool(Env::Default(), "TestPool", kThreadPoolSize); for (int i = 0; i < num_threads_entered; ++i) { pool.Schedule([&]() { auto [status, last_exit] = barrier.Wait(); if (expected_same_exit_status_for_all_threads.has_value()) { ASSERT_EQ(status, expected_same_exit_status_for_all_threads.value()); } actual_ok_count += status.ok(); last_exit_count += last_exit; }); } } ASSERT_EQ(actual_ok_count, expected_ok_count); ASSERT_EQ(last_exit_count, 1); } TEST(BarrierProxyTest, AllThreadsExitBarrier) { TestBarrierProxyWait( 2, 8, 8, 8, absl::OkStatus(), absl::OkStatus()); } TEST(BarrierProxyTest, AgentErrorBroadcastedToAllThreads) { TestBarrierProxyWait( 2, 8, 8, 0, errors::Internal(""), errors::Internal("")); } TEST(BarrierProxyTest, AgentIsIgnoredIfThereIsOnlyOneTask) { TestBarrierProxyWait( 1, 8, 8, 8, {}, absl::OkStatus()); } TEST(BarrierProxyTest, TimeoutIfNotEnoughThreadEntered) { TestBarrierProxyWait( 2, 8, 7, 0, {}, errors::DeadlineExceeded("BarrierProxy timeout: key=", kTestKey)); } TEST(BarrierProxyTest, ExtraThreadsEnteringTheBarrierGetErrors) { TestBarrierProxyWait( 2, 8, 10, 8, absl::OkStatus(), {}); } void TestBarrierProxyManagerWaitSingleKey( int num_threads_planned, int num_threads_entered, std::optional<Status> agent_wait_status, int expected_ok_count) { auto agent = std::make_unique<MockCoordinationServiceAgent>(); const std::vector<CoordinatedTask> tasks; BarrierProxyManager mgr; std::atomic<int> actual_ok_count = 0; if (agent_wait_status.has_value()) { EXPECT_CALL(*agent, WaitAtBarrier(kTestKey, kTestTimeout, _)) .WillOnce(Return(agent_wait_status.value())); } { thread::ThreadPool pool(Env::Default(), "TestPool", num_threads_planned); for (int i = 0; i < num_threads_entered; ++i) { pool.Schedule([&]() { actual_ok_count += mgr.Wait(agent.get(), tasks, num_threads_planned, kTestKey, kTestTimeout) .ok(); }); } } ASSERT_EQ(actual_ok_count, expected_ok_count); ASSERT_EQ(mgr.size(), 0); } TEST(BarrierProxyManagerTest, AllThreadExited) { TestBarrierProxyManagerWaitSingleKey( 8, 8, absl::OkStatus(), 8); } TEST(BarrierProxyManagerTest, AllThreadTimedOut) { TestBarrierProxyManagerWaitSingleKey( 8, 7, {}, 0); } TEST(BarrierProxyManagerTest, CoordinationServiceError) { TestBarrierProxyManagerWaitSingleKey( 8, 8, errors::Internal(""), 0); } TEST(BarrierProxyManagerTest, ExtraThreadsEnteringTheSameKeyGetErrors) { TestBarrierProxyManagerWaitSingleKey( 8, 10, absl::OkStatus(), 8); } TEST(BarrierProxyManagerTest, DifferentKeysDoNotInterfereWithEachOther) { constexpr int kNumThreads = 8; auto agent = std::make_unique<MockCoordinationServiceAgent>(); const std::vector<CoordinatedTask> tasks; BarrierProxyManager mgr; EXPECT_CALL(*agent, WaitAtBarrier("key0", kTestTimeout, _)) .WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*agent, WaitAtBarrier("key1", kTestTimeout, _)) .WillOnce(Return(absl::OkStatus())); { thread::ThreadPool pool(Env::Default(), "TestPool", kThreadPoolSize); for (int i = 0; i < kNumThreads * 2; ++i) { pool.Schedule([&, key = absl::StrCat("key", i % 2)]() { ASSERT_EQ(mgr.Wait(agent.get(), tasks, kNumThreads, key, kTestTimeout), absl::OkStatus()); }); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/coordination/coordination_service_barrier_proxy.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/coordination/coordination_service_barrier_proxy_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
02f756a9-dd1d-4fcf-a26f-3d0ce3a6c096
cpp
tensorflow/tensorflow
grpc_session
tensorflow/core/distributed_runtime/rpc/grpc_session.cc
tensorflow/core/distributed_runtime/rpc/grpc_session_test.cc
#include "tensorflow/core/distributed_runtime/rpc/grpc_session.h" #include <unordered_map> #include "tensorflow/core/common_runtime/session_factory.h" #include "tensorflow/core/distributed_runtime/call_options.h" #include "tensorflow/core/distributed_runtime/local_master.h" #include "tensorflow/core/distributed_runtime/master_interface.h" #include "tensorflow/core/distributed_runtime/request_id.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_channel.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_remote_master.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/protobuf/master.pb.h" namespace tensorflow { const char* const kSchemePrefix = "grpc: const size_t kSchemePrefixLength = strlen(kSchemePrefix); GrpcSession::GrpcSession(const SessionOptions& options) : options_(options), current_graph_version_(-1) {} GrpcSession::~GrpcSession() {} Status GrpcSession::Create(const SessionOptions& options, std::unique_ptr<GrpcSession>* out_session) { std::unique_ptr<GrpcSession> session(new GrpcSession(options)); std::unique_ptr<MasterInterface> master; if (!options.config.rpc_options().use_rpc_for_inprocess_master()) { master = LocalMaster::Lookup(options.target); } if (!master) { SharedGrpcChannelPtr master_channel; TF_RETURN_IF_ERROR( NewHostPortGrpcChannel(options.target.substr(kSchemePrefixLength), &options.config.rpc_options(), &master_channel)); master.reset(NewGrpcMaster(master_channel)); } else { session->is_local_ = true; } session->SetRemoteMaster(std::move(master)); *out_session = std::move(session); return absl::OkStatus(); } namespace { void ReEncodeConsts(GraphDef* gdef) { for (NodeDef& ndef : *(gdef->mutable_node())) { if (ndef.op() == "Const") { TensorProto* proto = nullptr; for (auto& attr : *ndef.mutable_attr()) { if (attr.first == "value") { proto = attr.second.mutable_tensor(); } } if (proto != nullptr && proto->tensor_content().empty() && proto->ByteSizeLong() > 64) { Tensor parsed(proto->dtype()); if (parsed.FromProto(*proto)) { parsed.AsProtoTensorContent(proto); } } } } } } void GrpcSession::SetHandleAndGraphVersion(string handle, int64_t graph_version) { mutex_lock l(mu_); handle_ = std::move(handle); current_graph_version_ = graph_version; } Status GrpcSession::Handle(string* out_handle) { mutex_lock l(mu_); if (handle_.empty()) { return errors::InvalidArgument("A session is not created yet...."); } *out_handle = handle_; return absl::OkStatus(); } Status GrpcSession::CreateImpl(CallOptions* call_options, GraphDef graph) { { mutex_lock l(mu_); if (!handle_.empty()) { return errors::InvalidArgument("A session is alive."); } } CreateSessionRequest req; *req.mutable_config() = options_.config; req.mutable_graph_def()->Swap(&graph); req.set_target(options_.target); ReEncodeConsts(req.mutable_graph_def()); CreateSessionResponse resp; Status s = master_->CreateSession(call_options, &req, &resp); if (s.ok()) { SetHandleAndGraphVersion(resp.session_handle(), resp.graph_version()); } return s; } Status GrpcSession::Create(const GraphDef& graph) { return Create(GraphDef(graph)); } Status GrpcSession::Create(const RunOptions& run_options, const GraphDef& graph) { return Create(run_options, GraphDef(graph)); } Status GrpcSession::Create(GraphDef&& graph) { CallOptions call_options; call_options.SetTimeout(options_.config.operation_timeout_in_ms()); return CreateImpl(&call_options, std::move(graph)); } Status GrpcSession::Create(const RunOptions& run_options, GraphDef&& graph) { CallOptions call_options; call_options.SetTimeout(run_options.timeout_in_ms()); return CreateImpl(&call_options, std::move(graph)); } Status GrpcSession::ExtendImpl(CallOptions* call_options, GraphDef graph) { bool handle_is_empty; { mutex_lock l(mu_); handle_is_empty = handle_.empty(); } if (handle_is_empty) { return Create(std::move(graph)); } mutex_lock l(mu_); ExtendSessionRequest req; req.set_session_handle(handle_); req.mutable_graph_def()->Swap(&graph); req.set_current_graph_version(current_graph_version_); ExtendSessionResponse resp; Status s = master_->ExtendSession(call_options, &req, &resp); if (s.ok()) { current_graph_version_ = resp.new_graph_version(); } return s; } Status GrpcSession::Extend(const GraphDef& graph) { return Extend(GraphDef(graph)); } Status GrpcSession::Extend(const RunOptions& run_options, const GraphDef& graph) { return Extend(run_options, GraphDef(graph)); } Status GrpcSession::Extend(GraphDef&& graph) { CallOptions call_options; call_options.SetTimeout(options_.config.operation_timeout_in_ms()); return ExtendImpl(&call_options, std::move(graph)); } Status GrpcSession::Extend(const RunOptions& run_options, GraphDef&& graph) { CallOptions call_options; call_options.SetTimeout(run_options.timeout_in_ms()); return ExtendImpl(&call_options, std::move(graph)); } Status GrpcSession::RunHelper( const RunOptions& run_options, const std::vector<std::pair<string, Tensor>>& inputs, const std::vector<string>& output_tensor_names, const std::vector<string>& target_node_names, std::vector<Tensor>* outputs, RunMetadata* run_metadata, const string& prun_handle) { std::unique_ptr<MutableRunStepRequestWrapper> req( master_->CreateRunStepRequest()); std::unique_ptr<MutableRunStepResponseWrapper> resp( master_->CreateRunStepResponse()); *req->mutable_options() = run_options; if (run_options.timeout_in_ms() == 0) { req->mutable_options()->set_timeout_in_ms( options_.config.operation_timeout_in_ms()); } if (!prun_handle.empty()) { req->set_partial_run_handle(prun_handle); } for (const auto& it : inputs) { req->add_feed(it.first, it.second); } req->set_store_errors_in_response_body(true); std::unordered_map<string, int> output_name_to_offset; for (int i = 0, end = output_tensor_names.size(); i < end; ++i) { const string& name = output_tensor_names[i]; if (output_name_to_offset.insert(std::make_pair(name, i)).second) { req->add_fetch(name); } } for (const string& target : target_node_names) { req->add_target(target); } CallOptions call_options; call_options.SetTimeout(req->options().timeout_in_ms()); TF_RETURN_IF_ERROR(RunProto(&call_options, req.get(), resp.get())); if (resp->status_code() != absl::StatusCode::kOk) { return resp->status(); } if (!output_tensor_names.empty()) { outputs->resize(output_tensor_names.size()); } for (size_t i = 0; i < resp->num_tensors(); ++i) { auto fetch_it = output_name_to_offset.find(resp->tensor_name(i)); if (fetch_it == output_name_to_offset.end()) { return errors::Internal("Received response for unrequested fetch: ", resp->tensor_name(i)); } Tensor output; TF_RETURN_IF_ERROR(resp->TensorValue(i, &output)); (*outputs)[fetch_it->second] = output; } if (output_name_to_offset.size() != output_tensor_names.size()) { for (int i = 0, end = output_tensor_names.size(); i < end; ++i) { const string& name = output_tensor_names[i]; int offset = output_name_to_offset[name]; if (offset != i) { (*outputs)[i] = (*outputs)[offset]; } } } if (run_metadata) { run_metadata->Swap(resp->mutable_metadata()); } return absl::OkStatus(); } Status GrpcSession::Run(const RunOptions& run_options, const std::vector<std::pair<string, Tensor>>& inputs, const std::vector<string>& output_tensor_names, const std::vector<string>& target_node_names, std::vector<Tensor>* outputs, RunMetadata* run_metadata) { return RunHelper(run_options, inputs, output_tensor_names, target_node_names, outputs, run_metadata, ""); } Status GrpcSession::Run(const std::vector<std::pair<string, Tensor>>& inputs, const std::vector<string>& output_tensor_names, const std::vector<string>& target_node_names, std::vector<Tensor>* outputs) { RunOptions run_options; run_options.set_timeout_in_ms(options_.config.operation_timeout_in_ms()); return Run(run_options, inputs, output_tensor_names, target_node_names, outputs, nullptr); } Status GrpcSession::RunProto(CallOptions* call_options, MutableRunStepRequestWrapper* req, MutableRunStepResponseWrapper* resp) { string handle; TF_RETURN_IF_ERROR(Handle(&handle)); req->set_session_handle(handle); return master_->RunStep(call_options, req, resp); } Status GrpcSession::PRunSetup(const std::vector<string>& input_names, const std::vector<string>& output_names, const std::vector<string>& target_nodes, string* handle) { PartialRunSetupRequest req; PartialRunSetupResponse resp; CallOptions call_options; TF_RETURN_IF_ERROR(Handle(req.mutable_session_handle())); for (const string& feed : input_names) { req.add_feed(feed); } for (const string& fetch : output_names) { req.add_fetch(fetch); } for (const string& target : target_nodes) { req.add_target(target); } if (!is_local_) req.set_request_id(GetUniqueRequestId()); call_options.SetTimeout(options_.config.operation_timeout_in_ms()); TF_RETURN_IF_ERROR(master_->PartialRunSetup(&call_options, &req, &resp)); *handle = resp.partial_run_handle(); return absl::OkStatus(); } Status GrpcSession::PRun(const string& handle, const std::vector<std::pair<string, Tensor>>& inputs, const std::vector<string>& output_names, std::vector<Tensor>* outputs) { RunOptions run_options; run_options.set_timeout_in_ms(options_.config.operation_timeout_in_ms()); return RunHelper(run_options, inputs, output_names, {}, outputs, nullptr, handle); } Status GrpcSession::Close() { CloseSessionRequest req; { mutex_lock l(mu_); if (handle_.empty()) { return absl::OkStatus(); } req.set_session_handle(handle_); handle_.clear(); } CloseSessionResponse resp; CallOptions call_options; call_options.SetTimeout(options_.config.operation_timeout_in_ms()); return master_->CloseSession(&call_options, &req, &resp); } Status GrpcSession::ListDevices(std::vector<DeviceAttributes>* response) { ListDevicesRequest req; { mutex_lock l(mu_); req.set_session_handle(handle_); } if (req.session_handle().empty()) { LOG(WARNING) << "GrpcSession::ListDevices will initialize the session with " "an empty graph and other defaults because the session has " "not yet been created."; GraphDef graph_def; TF_RETURN_IF_ERROR(Create(graph_def)); { mutex_lock l(mu_); req.set_session_handle(handle_); } } ListDevicesResponse resp; CallOptions call_options; call_options.SetTimeout(options_.config.operation_timeout_in_ms()); Status s = master_->ListDevices(&call_options, &req, &resp); if (!s.ok()) { LOG(ERROR) << "Could not list devices: " << s; return s; } response->clear(); response->reserve(resp.local_device_size() + resp.remote_device_size()); for (const auto& device_attr : resp.local_device()) { response->emplace_back(device_attr); } for (const auto& device_attr : resp.remote_device()) { response->emplace_back(device_attr); } return absl::OkStatus(); } void GrpcSession::SetRemoteMaster(std::unique_ptr<MasterInterface> master) { master_ = std::move(master); } Status GrpcSession::Reset(const SessionOptions& options, const std::vector<string>& containers) { SharedGrpcChannelPtr master_channel; TF_RETURN_IF_ERROR( NewHostPortGrpcChannel(options.target.substr(kSchemePrefixLength), nullptr, &master_channel)); auto master = NewGrpcMaster(master_channel); ResetRequest req; req.mutable_container()->Reserve(containers.size()); for (const auto& c : containers) req.add_container(c); ResetResponse resp; CallOptions call_options; call_options.SetTimeout(options.config.operation_timeout_in_ms()); Status ret = master->Reset(&call_options, &req, &resp); delete master; return ret; } Status GrpcSession::MakeCallable(const CallableOptions& callable_options, CallableHandle* out_handle) { MakeCallableRequest req; TF_RETURN_IF_ERROR(Handle(req.mutable_session_handle())); *req.mutable_options() = callable_options; if (!is_local_) req.set_request_id(GetUniqueRequestId()); MakeCallableResponse resp; CallOptions call_options; call_options.SetTimeout(options_.config.operation_timeout_in_ms()); TF_RETURN_IF_ERROR(master_->MakeCallable(&call_options, &req, &resp)); *out_handle = resp.handle(); return absl::OkStatus(); } Status GrpcSession::RunCallable(CallableHandle handle, const std::vector<Tensor>& feed_tensors, std::vector<Tensor>* fetch_tensors, RunMetadata* run_metadata) { RunCallableRequest req; TF_RETURN_IF_ERROR(Handle(req.mutable_session_handle())); req.set_handle(handle); if (!is_local_) req.set_request_id(GetUniqueRequestId()); for (const Tensor& feed : feed_tensors) { feed.AsProtoTensorContent(req.mutable_feed()->Add()); } RunCallableResponse resp; CallOptions call_options; call_options.SetTimeout(options_.config.operation_timeout_in_ms()); TF_RETURN_IF_ERROR(master_->RunCallable(&call_options, &req, &resp)); for (const TensorProto& fetch : resp.fetch()) { Tensor fetch_tensor; if (!fetch_tensor.FromProto(cpu_allocator(), fetch)) { return errors::Internal( "Could not parse fetched tensor data in response from master."); } fetch_tensors->push_back(std::move(fetch_tensor)); } return absl::OkStatus(); } Status GrpcSession::ReleaseCallable(CallableHandle handle) { ReleaseCallableRequest req; TF_RETURN_IF_ERROR(Handle(req.mutable_session_handle())); req.set_handle(handle); ReleaseCallableResponse resp; CallOptions call_options; call_options.SetTimeout(options_.config.operation_timeout_in_ms()); return master_->ReleaseCallable(&call_options, &req, &resp); } class GrpcSessionFactory : public SessionFactory { public: bool AcceptsOptions(const SessionOptions& options) override { return absl::StartsWith(options.target, kSchemePrefix); } Status NewSession(const SessionOptions& options, Session** out_session) override { std::unique_ptr<GrpcSession> session; TF_RETURN_IF_ERROR(GrpcSession::Create(options, &session)); *out_session = session.release(); return absl::OkStatus(); } Status Reset(const SessionOptions& options, const std::vector<string>& containers) override { return GrpcSession::Reset(options, containers); } }; class GrpcSessionRegistrar { public: GrpcSessionRegistrar() { SessionFactory::Register("GRPC_SESSION", new GrpcSessionFactory()); } }; static GrpcSessionRegistrar registrar; }
#include "tensorflow/core/distributed_runtime/rpc/grpc_session.h" #include <string> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/default_device.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/util/port.h" namespace tensorflow { static SessionOptions Devices(int num_cpus, int num_gpus) { SessionOptions result; (*result.config.mutable_device_count())["CPU"] = num_cpus; (*result.config.mutable_device_count())["GPU"] = num_gpus; return result; } void CreateGraphDef(GraphDef* graph_def, string node_names[3]) { Graph graph(OpRegistry::Global()); Tensor a_tensor(DT_FLOAT, TensorShape({1, 2})); test::FillValues<float>(&a_tensor, {1, 2}); Node* a = test::graph::Constant(&graph, a_tensor); node_names[0] = a->name(); Tensor b_tensor(DT_FLOAT, TensorShape({2, 1})); test::FillValues<float>(&b_tensor, {2, 1}); Node* b = test::graph::Constant(&graph, b_tensor); node_names[1] = b->name(); Node* c = test::graph::Matmul(&graph, a, b, false, false); node_names[2] = c->name(); test::graph::ToGraphDef(&graph, graph_def); } static void IsSingleFloatValue(const Tensor& val, float expected_val) { ASSERT_EQ(val.dtype(), DT_FLOAT); ASSERT_EQ(val.NumElements(), 1); ASSERT_EQ(val.flat<float>()(0), expected_val); } static SessionOptions Options(const string& target, int placement_period) { SessionOptions options; options.target = strings::StrCat("grpc: options.config.set_isolate_session_state(false); options.config.set_placement_period(placement_period); options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_opt_level(OptimizerOptions::L0); return options; } static Session* NewRemote(const SessionOptions& options) { LOG(INFO) << "Connecting to " << options.target; return CHECK_NOTNULL(NewSession(options)); } using test::TestClusterConfig; using test::TestJob; TEST(GrpcSessionTest, BasicNonProtoAPI) { GraphDef graph; string node_names[3]; CreateGraphDef(&graph, node_names); std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1))); ASSERT_TRUE(session != nullptr); for (int iters = 0; iters < 25; ++iters) { TF_ASSERT_OK(session->Create(graph)); { std::vector<std::pair<string, Tensor>> inputs; std::vector<string> targets = {node_names[2]}; TF_ASSERT_OK(session->Run(inputs, {}, targets, nullptr)); } { std::vector<std::pair<string, Tensor>> inputs; std::vector<string> names = {node_names[2] + ":0"}; std::vector<string> targets = {node_names[1]}; std::vector<Tensor> outputs; TF_ASSERT_OK(session->Run(inputs, names, targets, &outputs)); ASSERT_TRUE(outputs[0].IsInitialized()); ASSERT_EQ(4.0, outputs[0].flat<float>()(0)); } TF_ASSERT_OK(session->Close()); } } TEST(GrpcSessionTest, BasicCallable) { GraphDef graph; string node_names[3]; CreateGraphDef(&graph, node_names); std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1))); ASSERT_TRUE(session != nullptr); for (int iters = 0; iters < 25; ++iters) { TF_ASSERT_OK(session->Create(graph)); { CallableOptions opts; opts.add_target(node_names[2]); Session::CallableHandle handle; TF_ASSERT_OK(session->MakeCallable(opts, &handle)); TF_ASSERT_OK(session->RunCallable(handle, {}, nullptr, nullptr)); TF_ASSERT_OK(session->ReleaseCallable(handle)); } { CallableOptions opts; opts.add_target(node_names[1]); opts.add_fetch(node_names[2] + ":0"); Session::CallableHandle handle; TF_ASSERT_OK(session->MakeCallable(opts, &handle)); std::vector<Tensor> outputs; TF_ASSERT_OK(session->RunCallable(handle, {}, &outputs, nullptr)); ASSERT_EQ(1, outputs.size()); ASSERT_TRUE(outputs[0].IsInitialized()); ASSERT_EQ(4.0, outputs[0].flat<float>()(0)); TF_ASSERT_OK(session->ReleaseCallable(handle)); } TF_ASSERT_OK(session->Close()); } } TEST(GrpcSessionTest, CallableWithOnDeviceFeedsAndFetches) { GraphDef graph; string node_names[3]; CreateGraphDef(&graph, node_names); std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(graph)); std::vector<DeviceAttributes> devices; TF_ASSERT_OK(session->ListDevices(&devices)); ASSERT_GT(devices.size(), 0); const string device_name = devices.back().name(); CallableOptions opts; const string fetch = node_names[2] + ":0"; opts.add_fetch(fetch); opts.mutable_fetch_devices()->insert({fetch, device_name}); Session::CallableHandle handle; Status status = session->MakeCallable(opts, &handle); EXPECT_EQ(error::UNIMPLEMENTED, status.code()); TF_ASSERT_OK(session->Close()); } TEST(GrpcSessionTest, BasicNonProtoAPIConsistentOrder) { GraphDef graph; string node_names[3]; CreateGraphDef(&graph, node_names); std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1))); ASSERT_TRUE(session != nullptr); ASSERT_TRUE(session->Create(graph).ok()); std::vector<std::pair<string, Tensor>> inputs; std::vector<string> names = {node_names[2] + ":0", node_names[0] + ":0", node_names[1] + ":0"}; std::vector<string> target_ops = {node_names[1]}; std::vector<Tensor> outputs; ASSERT_TRUE(session->Run(inputs, names, target_ops, &outputs).ok()); ASSERT_TRUE(outputs[0].IsInitialized()); ASSERT_EQ(4.0, outputs[0].flat<float>()(0)); ASSERT_TRUE(outputs[1].IsInitialized()); ASSERT_EQ(1.0, outputs[1].flat<float>()(0)); ASSERT_TRUE(outputs[2].IsInitialized()); ASSERT_EQ(2.0, outputs[2].flat<float>()(0)); ASSERT_TRUE(session->Close().ok()); } TEST(GrpcSessionTest, NonLocalWithFilters) { GraphDef graph; string node_names[3]; CreateGraphDef(&graph, node_names); std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); SessionOptions options; options.target = strings::StrCat("grpc: options.config.add_device_filters(cluster->devices()[0].name()); std::unique_ptr<Session> session(NewRemote(options)); ASSERT_TRUE(session != nullptr); { GraphDef graph_copy(graph); graph::SetDefaultDevice(cluster->devices()[0].name(), &graph_copy); TF_ASSERT_OK(session->Create(graph_copy)); TF_ASSERT_OK(session->Run({}, {}, {node_names[2]}, nullptr)); TF_ASSERT_OK(session->Close()); } { GraphDef graph_copy(graph); graph::SetDefaultDevice(cluster->devices()[1].name(), &graph_copy); auto status = session->Create(graph_copy); EXPECT_EQ(absl::StatusCode::kInvalidArgument, status.code()); } } TEST(GrpcSessionTest, FetchMultipleTimes) { GraphDef graph; string node_names[3]; CreateGraphDef(&graph, node_names); std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(graph)); const std::vector<std::pair<string, Tensor>> inputs; std::vector<Tensor> outputs; const string node = node_names[2] + ":0"; TF_ASSERT_OK(session->Run(inputs, {node, node}, {}, &outputs)); EXPECT_EQ(2, outputs.size()); for (int i = 0; i < outputs.size(); ++i) { const Tensor& t = outputs[i]; ASSERT_TRUE(t.IsInitialized()) << i; ASSERT_EQ(4.0, t.flat<float>()(0)) << i; } TF_ASSERT_OK(session->Close()); } TEST(GrpcSessionTest, DisableOutputPartitionGraphs) { GraphDef graph; string node_names[3]; CreateGraphDef(&graph, node_names); std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); SessionOptions options = Options(cluster->targets()[0], 1); options.config.mutable_experimental()->set_disable_output_partition_graphs( true); std::unique_ptr<Session> session(NewRemote(options)); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(graph)); { TF_ASSERT_OK(session->Run({}, {}, {node_names[2]}, nullptr)); } { RunOptions run_options; run_options.set_output_partition_graphs(true); RunMetadata run_metadata; Status s = session->Run(run_options, {}, {}, {node_names[2]}, nullptr, &run_metadata); EXPECT_TRUE(errors::IsInvalidArgument(s)); EXPECT_TRUE( absl::StrContains(s.message(), "disable_output_partition_graphs")); } TF_ASSERT_OK(session->Close()); } void FindMaxEigen(const string& target) { Graph graph(OpRegistry::Global()); Tensor a_tensor(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&a_tensor, {3, 2, -1, 0}); Node* a = test::graph::Constant(&graph, a_tensor); Tensor x_tensor(DT_FLOAT, TensorShape({2, 1})); test::FillValues<float>(&x_tensor, {0, 0}); Node* x = test::graph::Constant(&graph, x_tensor); Node* y = test::graph::Matmul(&graph, a, x, false, false); Node* y2 = test::graph::Unary(&graph, "Square", y); Tensor rdim_tensor(DT_INT32, TensorShape({})); rdim_tensor.scalar<int32>()() = 0; Node* rdim = test::graph::Constant(&graph, rdim_tensor); Node* y2_sum = test::graph::Reduce(&graph, "Sum", y2, rdim); Node* y_norm = test::graph::Unary(&graph, "Sqrt", y2_sum); Node* y_normalized = test::graph::Binary(&graph, "Div", y, y_norm); GraphDef def; test::graph::ToGraphDef(&graph, &def); std::unique_ptr<Session> session(NewRemote(Options(target, 1))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(def)); float lambda; Tensor feed_value(DT_FLOAT, TensorShape({2, 1})); feed_value.matrix<float>()(0, 0) = -3.1415; feed_value.matrix<float>()(1, 0) = +2.7183; for (int i = 0; i < 25; ++i) { std::vector<Tensor> outputs; TF_ASSERT_OK(session->Run({{x->name(), feed_value}}, {y->name(), y_normalized->name()}, {}, &outputs)); const Tensor& y = outputs[0]; const Tensor& y_normalized = outputs[1]; CHECK_EQ(2, feed_value.NumElements()); CHECK_EQ(2, y.NumElements()); lambda = y.flat<float>()(0) / feed_value.flat<float>()(0); printf("%06d lambda = %8.6f x = [%8.6f %8.6f] y = [%8.6f %8.6f]\n", i, lambda, feed_value.flat<float>()(0), feed_value.flat<float>()(1), y.flat<float>()(0), y.flat<float>()(1)); feed_value = y_normalized; } EXPECT_NEAR(2.0, lambda, 1e-6); } TEST(FindMaxEigenTest, RemoteDevice) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); FindMaxEigen(cluster->targets()[0]); } void SetDevice(GraphDef* graph, const string& name, const string& dev) { for (int i = 0; i < graph->node_size(); ++i) { if (graph->node(i).name() == name) { graph->mutable_node(i)->set_device(dev); return; } } LOG(FATAL) << "Name '" << name << "' not found."; } TEST(GrpcSessionTest, DISABLED_MultiDevices) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); Graph graph(OpRegistry::Global()); const int kSize = 1048576; Tensor a_tensor(DT_FLOAT, TensorShape({1, kSize})); Tensor b_tensor(DT_FLOAT, TensorShape({kSize, 1})); for (int i = 0; i < kSize; ++i) { a_tensor.flat<float>()(i) = 2; b_tensor.flat<float>()(i) = 3; } Node* a = test::graph::Constant(&graph, a_tensor); Node* b = test::graph::Constant(&graph, b_tensor); Node* c = test::graph::Matmul(&graph, a, b, false, false); GraphDef def; test::graph::ToGraphDef(&graph, &def); for (const auto& a_dev : cluster->devices()) { for (const auto& b_dev : cluster->devices()) { for (const auto& c_dev : cluster->devices()) { LOG(INFO) << "a: " << a_dev.name() << " b: " << b_dev.name() << " c: " << c_dev.name(); SetDevice(&def, a->name(), a_dev.name()); SetDevice(&def, b->name(), b_dev.name()); SetDevice(&def, c->name(), c_dev.name()); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1000))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(def)); { std::vector<Tensor> outputs; RunOptions options; options.set_trace_level(RunOptions::FULL_TRACE); RunMetadata metadata; TF_ASSERT_OK( session->Run(options, {}, {c->name()}, {}, &outputs, &metadata)); ASSERT_EQ(1, outputs.size()); IsSingleFloatValue(outputs[0], 6.0 * kSize); const StepStats& ss = metadata.step_stats(); bool c_placed_correctly = false; for (const auto& dev : ss.dev_stats()) { for (const auto& node : dev.node_stats()) { if (node.node_name() == c->name() && dev.device() == c_dev.name()) { c_placed_correctly = true; } } } ASSERT_TRUE(c_placed_correctly); } TF_ASSERT_OK(session->Close()); } } } } TEST(GrpcSessionTest, LargeTensorSend) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); Graph graph(OpRegistry::Global()); Tensor fill_shape_tensor(DT_INT32, TensorShape({4})); fill_shape_tensor.vec<int32>()(0) = 1; fill_shape_tensor.vec<int32>()(1) = 256; fill_shape_tensor.vec<int32>()(2) = 1024; fill_shape_tensor.vec<int32>()(3) = 1024; Node* fill_shape_node = test::graph::Constant(&graph, fill_shape_tensor); Tensor fill_val_tensor(DT_FLOAT, TensorShape({})); fill_val_tensor.flat<float>()(0) = 1.0; Node* fill_val_node = test::graph::Constant(&graph, fill_val_tensor); Node* fill_node = test::graph::Binary(&graph, "Fill", fill_shape_node, fill_val_node); Tensor max_axes_tensor(DT_INT32, TensorShape({4})); max_axes_tensor.vec<int32>()(0) = 0; max_axes_tensor.vec<int32>()(1) = 1; max_axes_tensor.vec<int32>()(2) = 2; max_axes_tensor.vec<int32>()(3) = 3; Node* max_axes_node = test::graph::Constant(&graph, max_axes_tensor); Node* max_node = test::graph::Reduce(&graph, "Max", fill_node, max_axes_node); GraphDef def; test::graph::ToGraphDef(&graph, &def); SetDevice(&def, fill_node->name(), cluster->devices()[0].name()); SetDevice(&def, fill_node->name(), cluster->devices()[1].name()); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1000))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(def)); { std::vector<Tensor> outputs; TF_ASSERT_OK(session->Run({}, {max_node->name()}, {}, &outputs)); ASSERT_EQ(1, outputs.size()); IsSingleFloatValue(outputs[0], 1.0); } TF_ASSERT_OK(session->Close()); } TEST(GrpcSessionTest, MultiDevices_String) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 1)) .Jobs({TestJob{"localhost", 2}}), &cluster)); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1000))); ASSERT_TRUE(session != nullptr); Graph graph(OpRegistry::Global()); Tensor a_tensor(DT_STRING, TensorShape({2, 2})); for (int i = 0; i < 4; ++i) { a_tensor.flat<tstring>()(i) = "hello, world"; } Node* a = test::graph::Constant(&graph, a_tensor); Node* b = test::graph::Identity(&graph, a); GraphDef def; test::graph::ToGraphDef(&graph, &def); for (const auto& a_dev : cluster->devices()) { for (const auto& b_dev : cluster->devices()) { LOG(INFO) << "a: " << a_dev.name() << " b: " << b_dev.name(); SetDevice(&def, a->name(), a_dev.name()); SetDevice(&def, b->name(), b_dev.name()); Status s = session->Create(def); if (s.ok()) { std::vector<Tensor> outputs; TF_ASSERT_OK(session->Run({}, {b->name()}, {}, &outputs)); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(outputs[0].dtype(), DT_STRING); ASSERT_EQ(outputs[0].NumElements(), 4); for (int i = 0; i < outputs[0].NumElements(); ++i) { EXPECT_EQ(outputs[0].flat<tstring>()(i), "hello, world"); } TF_ASSERT_OK(session->Close()); } else { LOG(ERROR) << "Error: " << s; ASSERT_TRUE((a_dev.device_type() == DEVICE_GPU) || (b_dev.device_type() == DEVICE_GPU)); ASSERT_FALSE(s.ok()); } } } } TEST(GrpcSessionTest, SendRecv_Node_Naming) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 3}}), &cluster)); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1))); ASSERT_TRUE(session != nullptr); CHECK_GE(cluster->devices().size(), 3); const DeviceAttributes& src = cluster->devices()[0]; const DeviceAttributes& dst0 = cluster->devices()[1]; const DeviceAttributes& dst1 = cluster->devices()[2]; LOG(INFO) << "src = " << src.name() << " dst0 = " << dst0.name() << " dst1 = " << dst1.name(); Graph graph(OpRegistry::Global()); Tensor a_tensor(DT_FLOAT, TensorShape({1, 1})); a_tensor.flat<float>()(0) = 100; Node* a = test::graph::Constant(&graph, a_tensor); Node* b = test::graph::Identity(&graph, a); Node* c = test::graph::Identity(&graph, a); GraphDef def; test::graph::ToGraphDef(&graph, &def); SetDevice(&def, a->name(), src.name()); SetDevice(&def, b->name(), dst0.name()); SetDevice(&def, c->name(), dst1.name()); TF_ASSERT_OK(session->Create(def)); { std::vector<Tensor> outputs; TF_ASSERT_OK(session->Run({}, {b->name()}, {}, &outputs)); ASSERT_EQ(1, outputs.size()); IsSingleFloatValue(outputs[0], 100); } { std::vector<Tensor> outputs; TF_ASSERT_OK(session->Run({}, {c->name()}, {}, &outputs)); ASSERT_EQ(1, outputs.size()); IsSingleFloatValue(outputs[0], 100); } TF_ASSERT_OK(session->Close()); } TEST(GrpcSessionTest, Error) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); auto master = cluster->targets()[0]; const string& dev_a = cluster->devices()[0].name(); const string& dev_b = cluster->devices()[1].name(); LOG(INFO) << "master " << master << "dev_a " << dev_a << "dev_b " << dev_b; GraphDef gdef; std::vector<string> fetches; { Graph g(OpRegistry::Global()); auto a = test::graph::Constant(&g, Tensor()); a->set_assigned_device_name(dev_a); auto a_err = test::graph::Error(&g, a, "fantasia!"); a_err->set_assigned_device_name(dev_a); auto a2 = test::graph::Add(&g, a, a_err); a2->set_assigned_device_name(dev_a); fetches.push_back(a2->name()); auto b = test::graph::Constant(&g, Tensor()); b->set_assigned_device_name(dev_b); auto b_delay = test::graph::Delay(&g, b, Microseconds(1000000)); b_delay->set_assigned_device_name(dev_b); auto b2 = test::graph::Add(&g, b, b_delay); b2->set_assigned_device_name(dev_b); fetches.push_back(b2->name()); test::graph::ToGraphDef(&g, &gdef); } std::unique_ptr<Session> session(NewRemote(Options(master, 1))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(gdef)); { Status status = session->Run({}, fetches, {}, nullptr); EXPECT_FALSE(status.ok()); EXPECT_NE(status.ToString().find("fantasia!"), string::npos); } TF_ASSERT_OK(session->Close()); Env::Default()->SleepForMicroseconds(2000000); } TEST(GrpcSessionTest, ErrorStatusLog) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); auto master = cluster->targets()[0]; const string& dev_a = cluster->devices()[0].name(); const string& dev_b = cluster->devices()[1].name(); LOG(INFO) << "master " << master << "dev_a " << dev_a << "dev_b " << dev_b; GraphDef gdef; std::vector<string> fetches; { Graph g(OpRegistry::Global()); auto a = test::graph::Constant(&g, Tensor()); a->set_assigned_device_name(dev_a); auto a_err = test::graph::Error(&g, a, "fantasia!", true); a_err->set_assigned_device_name(dev_a); auto a2 = test::graph::Add(&g, a, a_err); a2->set_assigned_device_name(dev_a); fetches.push_back(a2->name()); auto b = test::graph::Constant(&g, Tensor()); b->set_assigned_device_name(dev_b); auto b_delay = test::graph::Delay(&g, b, Microseconds(1000000)); b_delay->set_assigned_device_name(dev_b); auto b2 = test::graph::Add(&g, b, b_delay); b2->set_assigned_device_name(dev_b); fetches.push_back(b2->name()); g.ToGraphDef(&gdef); } std::unique_ptr<Session> session(NewRemote(Options(master, 1))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(gdef)); { Status status = session->Run({}, fetches, {}, nullptr); EXPECT_FALSE(status.ok()); std::cerr << status << "\n"; EXPECT_NE(status.ToString().find("fantasia!"), string::npos); EXPECT_NE(status.ToString().find("ErrorOp: fantasia!"), string::npos); } TF_ASSERT_OK(session->Close()); Env::Default()->SleepForMicroseconds(2000000); } TEST(GrpcSessionTest, LongErrorMessage) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); auto master = cluster->targets()[0]; const string& dev_a = cluster->devices()[0].name(); const string& dev_b = cluster->devices()[1].name(); LOG(INFO) << "master " << master << "dev_a " << dev_a << "dev_b " << dev_b; GraphDef gdef; std::vector<string> fetches; { Graph g(OpRegistry::Global()); auto a = test::graph::Constant(&g, Tensor()); a->set_assigned_device_name(dev_a); std::vector<char> long_string_buffer(1024 * 1024, 'x'); StringPiece long_string(long_string_buffer.data(), 1024 * 1024); string name = strings::StrCat(long_string, "fantasia!"); auto a_err = test::graph::Error(&g, a, name); a_err->set_assigned_device_name(dev_a); auto a2 = test::graph::Add(&g, a, a_err); a2->set_assigned_device_name(dev_a); fetches.push_back(a2->name()); auto b = test::graph::Constant(&g, Tensor()); b->set_assigned_device_name(dev_b); auto b_delay = test::graph::Delay(&g, b, Microseconds(1000000)); b_delay->set_assigned_device_name(dev_b); auto b2 = test::graph::Add(&g, b, b_delay); b2->set_assigned_device_name(dev_b); fetches.push_back(b2->name()); test::graph::ToGraphDef(&g, &gdef); } std::unique_ptr<Session> session(NewRemote(Options(master, 1))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(gdef)); { Status status = session->Run({}, fetches, {}, nullptr); EXPECT_FALSE(status.ok()); EXPECT_NE(status.ToString().find("fantasia!"), string::npos); } TF_ASSERT_OK(session->Close()); Env::Default()->SleepForMicroseconds(2000000); } TEST(SessionTest, SharedVar) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 1}}), &cluster)); const string master = cluster->targets()[0]; CHECK_EQ(cluster->devices().size(), 1); GraphDef gdef; string init_name; string inc_name; string get_name; { Graph g(OpRegistry::Global()); Tensor one(DT_FLOAT, TensorShape({})); one.scalar<float>()() = 1.0; Node* var = test::graph::Var(&g, DT_FLOAT, one.shape()); Node* init = test::graph::Assign(&g, var, test::graph::Constant(&g, one)); init_name = init->name(); Node* update = test::graph::Assign( &g, var, test::graph::Add(&g, var, test::graph::Constant(&g, one))); inc_name = update->name(); get_name = var->name(); test::graph::ToGraphDef(&g, &gdef); } { Session* sess = NewRemote(Options(master, 1)); TF_ASSERT_OK(sess->Create(gdef)); std::vector<std::pair<string, Tensor>> inp; TF_ASSERT_OK(sess->Run(inp, {}, {init_name}, nullptr)); TF_ASSERT_OK(sess->Close()); delete sess; } for (int rep = 1; rep < 10; ++rep) { { Session* sess = NewRemote(Options(master, 1)); TF_ASSERT_OK(sess->Create(gdef)); std::vector<std::pair<string, Tensor>> inp; TF_ASSERT_OK(sess->Run(inp, {}, {inc_name}, nullptr)); TF_ASSERT_OK(sess->Close()); delete sess; } { Session* sess = NewRemote(Options(master, 1)); TF_ASSERT_OK(sess->Create(gdef)); std::vector<std::pair<string, Tensor>> inp; std::vector<Tensor> ret; TF_ASSERT_OK(sess->Run(inp, {get_name}, {}, &ret)); ASSERT_EQ(ret.size(), 1); EXPECT_EQ(ret[0].scalar<float>()(), 1.0 * (1 + rep)); TF_ASSERT_OK(sess->Close()); delete sess; } } } TEST(SessionTest, SharedVarWithMultipleLearnerReplicas) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"variable_server", 1}, TestJob{"learner", 2, 2}}), &cluster)); for (const auto& device : cluster->devices()) { LOG(INFO) << device.DebugString(); } ASSERT_EQ(cluster->devices().size(), 3); GraphDef gdef; string init_name; string inc_name; string get_name; std::string var_server_device = "/job:variable_server/replica:0/task:0"; std::string learner_0_device = "/job:learner/replica:0/task:0"; std::string learner_1_device = "/job:learner/replica:1/task:0"; LOG(INFO) << "Learners: " << absl::StrJoin(cluster->targets("learner"), "; "); { Graph g(OpRegistry::Global()); Tensor one(DT_FLOAT, TensorShape({})); one.scalar<float>()() = 1.0; Node* var = test::graph::Var(&g, DT_FLOAT, one.shape()); var->mutable_def()->set_device(var_server_device); Node* init = test::graph::Assign(&g, var, test::graph::Constant(&g, one)); init_name = init->name(); Node* update = test::graph::Assign( &g, var, test::graph::Add(&g, var, test::graph::Constant(&g, one))); inc_name = update->name(); get_name = var->name(); test::graph::ToGraphDef(&g, &gdef); } Session* learner0 = NewRemote(Options(cluster->targets("learner")[0], 1)); { TF_ASSERT_OK(learner0->Create(gdef)); std::vector<std::pair<string, Tensor>> inp; TF_ASSERT_OK(learner0->Run(inp, {}, {init_name}, nullptr)); } for (int rep = 1; rep < 10; ++rep) { std::vector<std::pair<string, Tensor>> inp; TF_ASSERT_OK(learner0->Run(inp, {}, {inc_name}, nullptr)); } Session* learner1 = NewRemote(Options(cluster->targets("learner")[1], 1)); TF_ASSERT_OK(learner1->Create(gdef)); for (int rep = 1; rep < 10; ++rep) { std::vector<std::pair<string, Tensor>> inp; TF_ASSERT_OK(learner1->Run(inp, {}, {inc_name}, nullptr)); } std::vector<std::pair<string, Tensor>> inp; std::vector<Tensor> ret; TF_ASSERT_OK(learner0->Run(inp, {get_name}, {}, &ret)); ASSERT_EQ(ret.size(), 1); EXPECT_EQ(ret[0].scalar<float>()(), 1.0 * 19); TF_ASSERT_OK(learner1->Run(inp, {get_name}, {}, &ret)); ASSERT_EQ(ret.size(), 1); EXPECT_EQ(ret[0].scalar<float>()(), 1.0 * 19); TF_ASSERT_OK(learner0->Close()); TF_ASSERT_OK(learner1->Close()); } void CreateInvalidGraph(const string& graph_def_ascii, const string& error_substring) { GraphDef graph; CHECK(protobuf::TextFormat::ParseFromString(graph_def_ascii, &graph)); std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1))); Status s = session->Create(graph); ASSERT_FALSE(s.ok()); EXPECT_NE(s.message().find(error_substring), string::npos); } TEST(SessionTest, InvalidOpName) { CreateInvalidGraph(R"( node { name: 'a:b' op: 'Const' attr { key: 'dtype' value { type: DT_FLOAT } } attr { key: 'value' value { tensor { dtype: DT_FLOAT tensor_shape { dim [{size:1}, {size:1}] } float_val: [100] } } } } )", "Illegal op name"); CreateInvalidGraph(R"( node { name: 'a:0' op: 'Const' attr { key: 'dtype' value { type: DT_FLOAT } } attr { key: 'value' value { tensor { dtype: DT_FLOAT tensor_shape { dim [{size:1}, {size:1}] } float_val: [100] } } } } )", "Illegal op name"); CreateInvalidGraph(R"( node { name: '_a' op: 'Const' attr { key: 'dtype' value { type: DT_FLOAT } } attr { key: 'value' value { tensor { dtype: DT_FLOAT tensor_shape { dim [{size:1}, {size:1}] } float_val: [100] } } } } )", "Illegal op name"); } TEST(SessionTest, InvalidOpInputName) { CreateInvalidGraph(R"( node { name: 'a' op: 'const' attr { key: 'dtype' value { type: DT_FLOAT } } attr { key: 'value' value { tensor { dtype: DT_FLOAT tensor_shape { dim [{size:1}, {size:1}] } float_val: [100] } } } } node { name:'b' op:'MatMul' input:'a:first' input:'a' attr { key: 'T' value { type: DT_FLOAT } } attr { key: 'transpose_a' value { b: false } } attr { key: 'transpose_b' value { b: false } } } )", "Illegal op input name"); CreateInvalidGraph(R"( node { name: 'a' op: 'const' attr { key: 'dtype' value { type: DT_FLOAT } } attr { key: 'value' value { tensor { dtype: DT_FLOAT tensor_shape { dim [{size:1}, {size:1}] } float_val: [100] } } } } node { name:'b' op:'MatMul' input:'_a' input:'a' attr { key: 'T' value { type: DT_FLOAT } } attr { key: 'transpose_a' value { b: false } } attr { key: 'transpose_b' value { b: false } } } )", "Illegal op input name"); CreateInvalidGraph(R"( node { name: 'a' op: 'const' attr { key: 'dtype' value { type: DT_FLOAT } } attr { key: 'value' value { tensor { dtype: DT_FLOAT tensor_shape { dim [{size:1}, {size:1}] } float_val: [100] } } } } node { name:'b' op:'MatMul' input:'_a:0' input:'a' attr { key: 'T' value { type: DT_FLOAT } } attr { key: 'transpose_a' value { b: false } } attr { key: 'transpose_b' value { b: false } } } )", "Illegal op input name"); CreateInvalidGraph(R"( node { name: 'a' op: 'const' attr { key: 'dtype' value { type: DT_FLOAT } } attr { key: 'value' value { tensor { dtype: DT_FLOAT tensor_shape { dim [{size:1}, {size:1}] } float_val: [100] } } } } node { name:'b' op:'MatMul' input:'a:01' input:'a' attr { key: 'T' value { type: DT_FLOAT } } attr { key: 'transpose_a' value { b: false } } attr { key: 'transpose_b' value { b: false } } } )", "Illegal op input name"); } TEST(SessionTest, ExtendValidation) { GraphDef graph; bool success = protobuf::TextFormat::ParseFromString(R"( node { name: 'a' op: 'Const' attr { key: 'dtype' value { type: DT_FLOAT } } attr { key: 'value' value { tensor { dtype: DT_FLOAT tensor_shape { dim [{size:1}, {size:1}] } float_val: [100] } } } } )", &graph); ASSERT_TRUE(success); std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); std::unique_ptr<Session> session( NewRemote(Options(cluster->targets()[0], 1))); TF_ASSERT_OK(session->Create(graph)); GraphDef extension; success = protobuf::TextFormat::ParseFromString(R"( node { name:'b' op:'MatMul' input:'a:first' input:'a' attr { key: 'T' value { type: DT_FLOAT } } attr { key: 'transpose_a' value { b: false } } attr { key: 'transpose_b' value { b: false } } } )", &extension); ASSERT_TRUE(success); Status s = session->Extend(extension); ASSERT_FALSE(s.ok()); EXPECT_NE(s.message().find("Illegal op input name"), string::npos); success = protobuf::TextFormat::ParseFromString(R"( node { name:'b' op:'MatMul' input:'a' input:'a' attr { key: 'T' value { type: DT_FLOAT } } attr { key: 'transpose_a' value { b: false } } attr { key: 'transpose_b' value { b: false } } } )", &extension); ASSERT_TRUE(success); TF_ASSERT_OK(session->Extend(extension)); success = protobuf::TextFormat::ParseFromString(R"( node { name:'b' op:'MatMul' input:'a' input:'a' attr { key: 'T' value { type: DT_FLOAT } } attr { key: 'transpose_a' value { b: false } } attr { key: 'transpose_b' value { b: false } } } )", &extension); ASSERT_TRUE(success); s = session->Extend(extension); ASSERT_FALSE(s.ok()); EXPECT_NE(s.message().find("'b', which was created by a previous call"), string::npos); } TEST(SessionTest, CreateTimeoutWithSessionOptions) { SessionOptions options = Options("example.org:2222", 1); options.config.set_operation_timeout_in_ms(100); std::unique_ptr<Session> session(NewRemote(options)); Graph graph(OpRegistry::Global()); Node* b = test::graph::Constant(&graph, Tensor()); test::graph::Delay(&graph, b, Microseconds(1000000)); GraphDef gdef; test::graph::ToGraphDef(&graph, &gdef); Status status = session->Create(gdef); EXPECT_TRUE(error::DEADLINE_EXCEEDED == status.code() || error::UNAVAILABLE == status.code()); } TEST(SessionTest, CreateTimeoutWithRunOptions) { SessionOptions options = Options("example.org:2222", 1); std::unique_ptr<Session> session(NewRemote(options)); Graph graph(OpRegistry::Global()); Node* b = test::graph::Constant(&graph, Tensor()); test::graph::Delay(&graph, b, Microseconds(1000000)); GraphDef gdef; test::graph::ToGraphDef(&graph, &gdef); RunOptions run_options; run_options.set_timeout_in_ms(20); Status status = session->Create(run_options, gdef); EXPECT_TRUE(error::DEADLINE_EXCEEDED == status.code() || error::UNAVAILABLE == status.code()); } TEST(SessionTest, RunTimeoutWithSessionOptions) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 1}}), &cluster)); SessionOptions options = Options(cluster->targets()[0], 100); options.config.set_operation_timeout_in_ms(1); std::unique_ptr<Session> session(NewRemote(options)); Graph graph(OpRegistry::Global()); Node* b = test::graph::Constant(&graph, Tensor()); Node* b_delay = test::graph::Delay(&graph, b, Microseconds(2000000)); GraphDef gdef; test::graph::ToGraphDef(&graph, &gdef); RunOptions run_options; TF_ASSERT_OK(session->Create(run_options, gdef)); std::vector<std::pair<string, Tensor>> inputs; Status status = session->Run(inputs, {}, {b_delay->name()}, nullptr); EXPECT_TRUE(error::DEADLINE_EXCEEDED == status.code() || error::INTERNAL == status.code()); } TEST(SessionTest, RunTimeoutWithRunOptions) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 1}}), &cluster)); SessionOptions options = Options(cluster->targets()[0], 1); std::unique_ptr<Session> session(NewRemote(options)); Graph graph(OpRegistry::Global()); Node* b = test::graph::Constant(&graph, Tensor()); Node* b_delay = test::graph::Delay(&graph, b, Microseconds(1000000)); GraphDef gdef; test::graph::ToGraphDef(&graph, &gdef); TF_ASSERT_OK(session->Create(gdef)); std::vector<std::pair<string, Tensor>> inputs; RunOptions run_options; run_options.set_timeout_in_ms(100); Status status = session->Run(run_options, inputs, {}, {b_delay->name()}, nullptr, nullptr); EXPECT_TRUE(error::DEADLINE_EXCEEDED == status.code() || error::INTERNAL == status.code()); } TEST(SessionTest, TestCompression) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 1}}), &cluster)); SessionOptions options = Options(cluster->targets()[0], 100); RPCOptions* rpc_options = options.config.mutable_rpc_options(); rpc_options->set_compression_algorithm("deflate"); rpc_options->set_compression_level(GRPC_COMPRESS_LEVEL_HIGH); std::unique_ptr<Session> session(NewRemote(options)); static const float kTestValue = 409.1934f; Graph graph(OpRegistry::Global()); Tensor tensor(DT_FLOAT, TensorShape({1, 1})); tensor.flat<float>()(0) = kTestValue; Node* b = test::graph::Constant(&graph, tensor); GraphDef gdef; graph.ToGraphDef(&gdef); RunOptions run_options; TF_ASSERT_OK(session->Create(run_options, gdef)); std::vector<std::pair<string, Tensor>> inputs; std::vector<Tensor> outputs; TF_ASSERT_OK(session->Run(inputs, {b->name()}, {}, &outputs)); ASSERT_EQ(1, outputs.size()); IsSingleFloatValue(outputs[0], kTestValue); } TEST(GrpcSessionTest, ErrorAggregationTwoWorkersTwoErrors) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(1, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); auto& devs = cluster->devices(); auto master = cluster->targets()[0]; const string w1_dev1 = devs[0].name(); const string w2_dev1 = devs[1].name(); LOG(INFO) << "master " << master << "w1_dev1 " << w1_dev1 << " w2_dev1 " << w2_dev1; GraphDef gdef; std::vector<string> fetches; { Graph g(OpRegistry::Global()); auto a = test::graph::Constant(&g, Tensor(1)); a->set_assigned_device_name(w1_dev1); auto a_err = test::graph::Error(&g, a, "fantasia1!"); a_err->set_assigned_device_name(w1_dev1); fetches.push_back(a_err->name()); auto b = test::graph::Constant(&g, Tensor(1)); b->set_assigned_device_name(w2_dev1); auto b_err = test::graph::Error(&g, b, "fantasia2!"); b_err->set_assigned_device_name(w2_dev1); fetches.push_back(b_err->name()); g.ToGraphDef(&gdef); } std::unique_ptr<Session> session(NewRemote(Options(master, 1))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(gdef)); { std::vector<Tensor> outputs; Status status = session->Run({}, fetches, {}, &outputs); LOG(INFO) << status; EXPECT_FALSE(status.ok()); EXPECT_NE(status.ToString().find("fantasia"), string::npos); EXPECT_EQ(status.code(), error::Code::INTERNAL); } TF_ASSERT_OK(session->Close()); Env::Default()->SleepForMicroseconds(2000000); } TEST(GrpcSessionTest, ErrorAggregationTwoWorkerRace) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(2, 0)) .Jobs({TestJob{"localhost", 2}}), &cluster)); auto& devs = cluster->devices(); auto master = cluster->targets()[0]; const string w1_dev1 = devs[0].name(); const string w1_dev2 = devs[1].name(); const string w2_dev1 = devs[2].name(); LOG(INFO) << "master " << master << "w1_dev1 " << w1_dev1 << " w1_dev2 " << w1_dev2 << " w2_dev1 " << w2_dev1; GraphDef gdef; std::vector<string> fetches; std::vector<string> targets; { Graph g(OpRegistry::Global()); auto a = test::graph::Constant(&g, Tensor(1)); a->set_assigned_device_name(w1_dev1); auto a_err = test::graph::Error(&g, a, "fantasia!"); a_err->set_assigned_device_name(w1_dev1); auto a_delay = test::graph::Delay(&g, a, Microseconds(5000000)); a_delay->set_assigned_device_name(w1_dev2); targets.push_back(a_delay->name()); fetches.push_back(a_err->name()); auto b = test::graph::Constant(&g, Tensor(3)); b->set_assigned_device_name(w2_dev1); auto b2 = test::graph::Add(&g, b, a_err); b2->set_assigned_device_name(w2_dev1); fetches.push_back(b2->name()); g.ToGraphDef(&gdef); } std::unique_ptr<Session> session(NewRemote(Options(master, 1))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(gdef)); { std::vector<Tensor> outputs; Status status = session->Run({}, fetches, targets, &outputs); LOG(INFO) << status; EXPECT_FALSE(status.ok()); EXPECT_NE(status.ToString().find("fantasia!"), string::npos); EXPECT_EQ(status.ToString().find("Cancelled"), string::npos); EXPECT_EQ(status.code(), error::Code::INTERNAL); } TF_ASSERT_OK(session->Close()); Env::Default()->SleepForMicroseconds(2000000); } TEST(GrpcSessionTest, ErrorAggregationThreeWorkerRaceVariant1) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(2, 0)) .Jobs({TestJob{"localhost", 3}}), &cluster)); auto& devs = cluster->devices(); auto master = cluster->targets()[0]; const string w1_dev1 = devs[0].name(); const string w1_dev2 = devs[1].name(); const string w2_dev1 = devs[2].name(); const string w3_dev1 = devs[4].name(); LOG(INFO) << "master " << master << "w1_dev1 " << w1_dev1 << " w1_dev2 " << w1_dev2 << " w2_dev1 " << w2_dev1 << " w3_dev1 " << w3_dev1; GraphDef gdef; std::vector<string> fetches; std::vector<string> targets; { Graph g(OpRegistry::Global()); auto a = test::graph::Constant(&g, Tensor(1)); a->set_assigned_device_name(w1_dev1); auto a_err = test::graph::Error(&g, a, "fantasia!"); a_err->set_assigned_device_name(w1_dev1); auto a_delay = test::graph::Delay(&g, a, Microseconds(5000000)); a_delay->set_assigned_device_name(w1_dev2); targets.push_back(a_delay->name()); fetches.push_back(a_err->name()); auto b = test::graph::Constant(&g, Tensor(3)); b->set_assigned_device_name(w2_dev1); auto b2 = test::graph::Add(&g, b, a_err); b2->set_assigned_device_name(w2_dev1); fetches.push_back(b2->name()); auto c = test::graph::Constant(&g, Tensor(3)); c->set_assigned_device_name(w3_dev1); auto c_delay = test::graph::Delay(&g, c, Microseconds(4000000)); c_delay->set_assigned_device_name(w3_dev1); targets.push_back(c_delay->name()); g.ToGraphDef(&gdef); } std::unique_ptr<Session> session(NewRemote(Options(master, 1))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(gdef)); { std::vector<Tensor> outputs; Status status = session->Run({}, fetches, targets, &outputs); LOG(INFO) << status; EXPECT_FALSE(status.ok()); EXPECT_NE(status.ToString().find("fantasia!"), string::npos); EXPECT_EQ(status.ToString().find("Cancelled"), string::npos); EXPECT_EQ(status.ToString().find("Aborted"), string::npos); EXPECT_EQ(status.code(), error::Code::INTERNAL); } TF_ASSERT_OK(session->Close()); Env::Default()->SleepForMicroseconds(2000000); } TEST(GrpcSessionTest, ErrorAggregationThreeWorkerRaceVariant2) { std::unique_ptr<test::TestCluster> cluster; TF_ASSERT_OK(test::TestCluster::MakeTestCluster( TestClusterConfig() .Options(Devices(2, 0)) .Jobs({TestJob{"localhost", 3}}), &cluster)); auto& devs = cluster->devices(); auto master = cluster->targets()[0]; const string w1_dev1 = devs[0].name(); const string w1_dev2 = devs[1].name(); const string w2_dev1 = devs[2].name(); const string w3_dev1 = devs[4].name(); LOG(INFO) << "master " << master << "w1_dev1 " << w1_dev1 << " w1_dev2 " << w1_dev2 << " w2_dev1 " << w2_dev1 << " w3_dev1 " << w3_dev1; GraphDef gdef; std::vector<string> fetches; std::vector<string> targets; { Graph g(OpRegistry::Global()); auto a = test::graph::Constant(&g, Tensor(1)); a->set_assigned_device_name(w1_dev1); auto a_err = test::graph::Error(&g, a, "fantasia!"); a_err->set_assigned_device_name(w1_dev1); auto a_delay = test::graph::Delay(&g, a, Microseconds(5000000)); a_delay->set_assigned_device_name(w1_dev2); targets.push_back(a_delay->name()); fetches.push_back(a_err->name()); auto b = test::graph::Constant(&g, Tensor(3)); b->set_assigned_device_name(w2_dev1); auto b2 = test::graph::Add(&g, b, a_err); b2->set_assigned_device_name(w2_dev1); fetches.push_back(b2->name()); auto c = test::graph::Constant(&g, Tensor(3)); c->set_assigned_device_name(w3_dev1); auto c_delay = test::graph::Delay(&g, c, Microseconds(4000000)); c_delay->set_assigned_device_name(w3_dev1); fetches.push_back(c_delay->name()); g.ToGraphDef(&gdef); } std::unique_ptr<Session> session(NewRemote(Options(master, 1))); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(gdef)); { std::vector<Tensor> outputs; Status status = session->Run({}, fetches, targets, &outputs); LOG(INFO) << status; EXPECT_FALSE(status.ok()); EXPECT_NE(status.ToString().find("fantasia!"), string::npos); EXPECT_EQ(status.ToString().find("Cancelled"), string::npos); EXPECT_EQ(status.ToString().find("Aborted"), string::npos); EXPECT_EQ(status.code(), error::Code::INTERNAL); } TF_ASSERT_OK(session->Close()); Env::Default()->SleepForMicroseconds(2000000); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/grpc_session.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/grpc_session_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7bab9db0-18bd-4eb9-8086-4bfa1cf88e70
cpp
tensorflow/tensorflow
rpc_rendezvous_mgr
tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr.cc
tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr_test.cc
#include "tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/request_id.h" #include "tensorflow/core/distributed_runtime/tensor_coding.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/distributed_runtime/worker_interface.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/numbers.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/notification.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { class RpcRemoteRendezvous : public BaseRemoteRendezvous { public: RpcRemoteRendezvous(const WorkerEnv* env, int64_t step_id) : BaseRemoteRendezvous(env, step_id) {} protected: void RecvFromRemoteAsync(const Rendezvous::ParsedKey& parsed, const Rendezvous::Args& args, DoneCallback done) override; private: ~RpcRemoteRendezvous() override {} RpcRemoteRendezvous(const RpcRemoteRendezvous&) = delete; void operator=(const RpcRemoteRendezvous&) = delete; }; class RpcRecvTensorCall : public BaseRecvTensorCall { public: RpcRecvTensorCall() : wi_(nullptr), dst_device_(nullptr) {} void Init(WorkerInterface* wi, int64_t step_id, StringPiece key, AllocatorAttributes alloc_attrs, Device* dst_device, const Rendezvous::Args& recv_args, Rendezvous::DoneCallback done) { wi_ = wi; alloc_attrs_ = alloc_attrs; dst_device_ = dst_device; recv_args_ = recv_args; done_ = std::move(done); req_.set_step_id(step_id); req_.set_rendezvous_key(key.data(), key.size()); req_.set_request_id(GetUniqueRequestId()); } void Reset() { DCHECK_EQ(static_cast<WorkerInterface*>(nullptr), wi_) << "Leaking WorkerInterface in RpcRecvTensorCall::Reset()."; alloc_attrs_ = AllocatorAttributes(); dst_device_ = nullptr; req_.Clear(); resp_.Clear(); { mutex_lock l(mu_); status_ = absl::OkStatus(); } done_ = nullptr; } ~RpcRecvTensorCall() override { CHECK_EQ(static_cast<WorkerInterface*>(nullptr), wi_) << "Leaking WorkerInterface in RpcRecvTensorCall destructor."; } void Start(std::function<void()> recv_done) override { StartRTCall(std::move(recv_done)); } void StartAbort(const Status& s) override { { mutex_lock l(mu_); status_.Update(s); } opts_.StartCancel(); } Status status() const override { mutex_lock l(mu_); return status_; } void ReleaseWorker(WorkerCacheInterface* worker_cache) { DCHECK_NE(static_cast<WorkerInterface*>(nullptr), wi_) << "RpcRecvTensorCall::ReleaseWorker() called twice."; worker_cache->ReleaseWorker(src_worker_, wi_); wi_ = nullptr; } const Tensor& tensor() const { return resp_.tensor(); } bool is_dead() const { return resp_.metadata().is_dead(); } Device* dst_device() const { return dst_device_; } const Rendezvous::Args& recv_args() const { return recv_args_; } const Rendezvous::DoneCallback& done() const { return done_; } private: friend class RpcRemoteRendezvous; void StartRTCall(std::function<void()> recv_done) { resp_.InitAlloc(dst_device_, alloc_attrs_); auto abort_checked = std::make_shared<Notification>(); auto cb = [this, abort_checked, recv_done = std::move(recv_done)](const Status& s) { abort_checked->WaitForNotification(); if (!s.ok()) { mutex_lock l(mu_); status_.Update(s); } recv_done(); }; wi_->RecvTensorAsync(&opts_, &req_, &resp_, std::move(cb)); Status s; { mutex_lock l(mu_); s = status_; } if (!s.ok()) { opts_.StartCancel(); } abort_checked->Notify(); } string src_worker_; string src_rel_device_; WorkerInterface* wi_; AllocatorAttributes alloc_attrs_; Device* dst_device_; CallOptions opts_; RecvTensorRequest req_; TensorResponse resp_; Rendezvous::Args recv_args_; Rendezvous::DoneCallback done_; mutable mutex mu_; Status status_ TF_GUARDED_BY(mu_); RpcRecvTensorCall(const RpcRecvTensorCall&) = delete; void operator=(const RpcRecvTensorCall&) = delete; }; class RpcRecvTensorFreeList { public: RpcRecvTensorFreeList() {} ~RpcRecvTensorFreeList() { for (size_t i = 0; i < objects_.size(); i++) { delete objects_[i]; } } RpcRecvTensorCall* New() { { mutex_lock l(mu_); if (!objects_.empty()) { RpcRecvTensorCall* result = objects_.back(); objects_.pop_back(); return result; } } return new RpcRecvTensorCall; } void Release(RpcRecvTensorCall* obj) { obj->Reset(); { mutex_lock l(mu_); if (objects_.size() < kMaxObjects) { objects_.push_back(obj); return; } } delete obj; } private: static constexpr int kMaxObjects = 1000; mutex mu_; std::vector<RpcRecvTensorCall*> objects_ TF_GUARDED_BY(mu_); }; static RpcRecvTensorFreeList* get_call_freelist() { static RpcRecvTensorFreeList* call_freelist = new RpcRecvTensorFreeList(); return call_freelist; } void RpcRemoteRendezvous::RecvFromRemoteAsync( const Rendezvous::ParsedKey& parsed, const Rendezvous::Args& recv_args, DoneCallback done) { CHECK(is_initialized()); Status s; RpcRecvTensorCall* call = get_call_freelist()->New(); if (!DeviceNameUtils::SplitDeviceName(parsed.src_device, &call->src_worker_, &call->src_rel_device_)) { s = errors::Internal(parsed.src_device, " is invalid remote source device."); } WorkerSession* sess = session(); std::shared_ptr<WorkerCacheInterface> worker_cache = sess->GetSharedWorkerCache(); WorkerInterface* rwi = worker_cache->GetOrCreateWorker(call->src_worker_); if (s.ok() && rwi == nullptr) { s = errors::Internal("No worker known as ", call->src_worker_); } Device* dst_device; if (s.ok()) { s = sess->device_mgr()->LookupDevice(parsed.dst_device, &dst_device); } if (!s.ok()) { if (rwi != nullptr) { sess->worker_cache()->ReleaseWorker(call->src_worker_, rwi); } get_call_freelist()->Release(call); done(s, Args(), recv_args, Tensor{}, false); return; } call->Init(rwi, step_id_, parsed.FullKey(), recv_args.alloc_attrs, dst_device, recv_args, std::move(done)); RegisterCall(call, recv_args); if (!call->status().ok()) { DeregisterCall(call, recv_args); call->ReleaseWorker(sess->worker_cache()); call->done()(call->status(), Args(), Args(), Tensor(), false); get_call_freelist()->Release(call); return; } Ref(); call->Start([this, call, recv_args, worker_cache]() { DeregisterCall(call, recv_args); Status s = call->status(); call->ReleaseWorker(session()->worker_cache()); call->done()(s, Args(), call->recv_args(), call->tensor(), call->is_dead()); get_call_freelist()->Release(call); Unref(); }); } } RpcRendezvousMgr::RpcRendezvousMgr(const WorkerEnv* env) : BaseRendezvousMgr(env) {} tsl::core::RefCountPtr<BaseRemoteRendezvous> RpcRendezvousMgr::Create( int64_t step_id, const WorkerEnv* worker_env) { return tsl::core::RefCountPtr<BaseRemoteRendezvous>( new RpcRemoteRendezvous(worker_env, step_id)); } }
#include "tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/test_utils.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/control_flow.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { Tensor V(const string& content) { Tensor tensor(DT_STRING, TensorShape({})); tensor.scalar<tstring>()() = content; return tensor; } string V(const Tensor& tensor) { CHECK_EQ(tensor.dtype(), DT_STRING); CHECK(TensorShapeUtils::IsScalar(tensor.shape())); return tensor.scalar<tstring>()(); } Rendezvous::ParsedKey MakeKey(const string& s) { Rendezvous::ParsedKey key; CHECK(Rendezvous::ParseKey(s, &key).ok()); return key; } namespace { class DummyWorker : public TestWorkerInterface { public: void RecvTensorAsync(CallOptions* opts, const RecvTensorRequest* request, TensorResponse* response, StatusCallback done) override { SchedClosure([done = std::move(done)]() { const int64_t t_us = random::New64() % 100 * 1000; Env::Default()->SleepForMicroseconds(t_us); done(absl::OkStatus()); }); } }; class DummyWorkerCache : public WorkerCacheInterface { void ListWorkers(std::vector<string>* workers) const override {} void ListWorkersInJob(const string& job_name, std::vector<string>* workers) const override {} WorkerInterface* GetOrCreateWorker(const string& target) override { if (dummy_remote_worker_ == nullptr) { dummy_remote_worker_ = new DummyWorker; } return dummy_remote_worker_; } Status GetEagerClientCache( std::unique_ptr<eager::EagerClientCache>* eager_client_cache) override { return errors::Unimplemented("Unimplemented."); } Status GetCoordinationClientCache( std::unique_ptr<CoordinationClientCache>* coord_client_cache) override { return errors::Unimplemented("Unimplemented."); } bool GetDeviceLocalityNonBlocking(const string& device, DeviceLocality* locality) override { return false; } void GetDeviceLocalityAsync(const string& device, DeviceLocality* locality, StatusCallback done) override {} private: DummyWorker* dummy_remote_worker_ = nullptr; }; static Device* CreateDevice(const char* type, const char* name) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr) : Device(nullptr, attr) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } }; DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); return new FakeDevice(attr); } static DeviceMgr* CreateDeviceMgr() { std::unique_ptr<Device> d0( CreateDevice("CPU", "/job:mnist/replica:1/task:2/cpu:1")); std::vector<std::unique_ptr<Device>> devices; devices.emplace_back(std::move(d0)); return new StaticDeviceMgr(std::move(devices)); } } class RpcRendezvousMgrTest : public ::testing::Test { protected: RpcRendezvousMgrTest() : cache_(new DummyWorkerCache), worker_session_("rpc_session", "/job:mnist/replica:1/task:2", std::unique_ptr<WorkerCacheInterface>(cache_), std::unique_ptr<DeviceMgr>(CreateDeviceMgr()), std::unique_ptr<GraphMgr>(), nullptr, [](WorkerSession* worker_session, bool called, DeviceMgr* remote_device_mgr) { return nullptr; }), rmgr_(&env) { env.env = Env::Default(); } DummyWorkerCache* cache_; WorkerEnv env; WorkerSession worker_session_; RpcRendezvousMgr rmgr_; }; TEST_F(RpcRendezvousMgrTest, LocalSendRecv) { const int64_t step_id = 123; const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); { tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); TF_ASSERT_OK(rendez->Initialize(&worker_session_)); Rendezvous::Args args; TF_ASSERT_OK(rendez->Send(key, args, V("peach"), false)); } { Tensor val(DT_FLOAT); bool val_dead = false; TF_ASSERT_OK(rmgr_.RecvLocal(step_id, key, &val, &val_dead)); EXPECT_EQ(V(val), "peach"); } rmgr_.Cleanup(step_id); } TEST_F(RpcRendezvousMgrTest, LocalAbort) { const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); { const int64_t step_id = 123; tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); SchedClosure([this, rendez = rendez.GetNewRef()]() { env.env->SleepForMicroseconds(100 * 1000); rendez->StartAbort(errors::Aborted("")); }); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; TF_ASSERT_OK(rendez->Initialize(&worker_session_)); EXPECT_TRUE(errors::IsAborted(rendez->Recv(key, args, &val, &val_dead))); } { const int64_t step_id = 321; tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); SchedClosure([this, step_id]() { env.env->SleepForMicroseconds(100 * 1000); rmgr_.Cleanup(step_id); }); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; TF_ASSERT_OK(rendez->Initialize(&worker_session_)); EXPECT_TRUE(errors::IsAborted(rendez->Recv(key, args, &val, &val_dead))); } } TEST_F(RpcRendezvousMgrTest, LocalCancel) { const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); auto* cm = new CancellationManager(); const int64_t step_id = 123; tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); Notification n; SchedClosure([this, cm, &n]() { env.env->SleepForMicroseconds(100 * 1000); cm->StartCancel(); n.Notify(); }); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; args.cancellation_manager = cm; TF_ASSERT_OK(rendez->Initialize(&worker_session_)); EXPECT_TRUE(errors::IsCancelled(rendez->Recv(key, args, &val, &val_dead))); n.WaitForNotification(); delete cm; } TEST_F(RpcRendezvousMgrTest, CancelAfterReceived) { const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); auto* cm = new CancellationManager(); const int64_t step_id = 123; tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); Notification n; SchedClosure([this, rendez = rendez.get(), key, cm, &n]() { env.env->SleepForMicroseconds(100 * 1000); TF_ASSERT_OK(rendez->Send(key, Rendezvous::Args(), V("peach"), false)); cm->StartCancel(); n.Notify(); }); Tensor val(DT_STRING); bool val_dead = false; Rendezvous::Args args; args.cancellation_manager = cm; TF_ASSERT_OK(rendez->Initialize(&worker_session_)); TF_ASSERT_OK(rendez->Recv(key, args, &val, &val_dead)); EXPECT_EQ(V(val), "peach"); n.WaitForNotification(); delete cm; } namespace { class DummyDeviceContext : public DeviceContext { public: explicit DummyDeviceContext(int stream_id) : stream_id_(stream_id) {} ~DummyDeviceContext() override {} int stream_id() const { return stream_id_; } private: const int stream_id_; }; } TEST_F(RpcRendezvousMgrTest, TransferDummyDeviceContext) { DummyDeviceContext* dc = new DummyDeviceContext(123); const int64_t step_id = 123; const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:mnist/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); { tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); Rendezvous::Args args; args.device_context = dc; TF_ASSERT_OK(rendez->Initialize(&worker_session_)); TF_ASSERT_OK(rendez->Send(key, args, V("peach"), false)); } { Notification n; rmgr_.RecvLocalAsync( step_id, key, [&n](const Status& s, const Rendezvous::Args send_args, const Rendezvous::Args recv_args, const Tensor& val, bool is_dead) { auto send_dev_context = static_cast<DummyDeviceContext*>(send_args.device_context); CHECK_EQ(123, send_dev_context->stream_id()); CHECK_EQ(V(val), "peach"); n.Notify(); }); n.WaitForNotification(); } rmgr_.Cleanup(step_id); dc->Unref(); } TEST_F(RpcRendezvousMgrTest, RemoteRecvOne) { const int64_t step_id = 123; const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:worker/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); { tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); TF_ASSERT_OK(rendez->Initialize(&worker_session_)); Rendezvous::Args args; Tensor val(DT_STRING); bool val_dead = false; TF_ASSERT_OK(rendez->Recv(key, args, &val, &val_dead)); } rmgr_.Cleanup(step_id); } TEST_F(RpcRendezvousMgrTest, RemoteRecvAsyncMany) { const int64_t step_id = 123; const Rendezvous::ParsedKey key = MakeKey(Rendezvous::CreateKey( "/job:worker/replica:1/task:2/cpu:0", 7890, "/job:mnist/replica:1/task:2/cpu:1", "foo", FrameAndIter(0, 0))); { tsl::core::RefCountPtr<RemoteRendezvous> rendez = rmgr_.Find(step_id); TF_ASSERT_OK(rendez->Initialize(&worker_session_)); Rendezvous::Args args; int num_requests = 10000; Tensor val(DT_STRING); mutex mu_; Status status = absl::OkStatus(); BlockingCounter counter(num_requests); for (int i = 0; i < num_requests; i++) { rendez->RecvAsync( key, args, [&mu_, &status, &counter](const Status& s, const Rendezvous::Args&, const Rendezvous::Args&, const Tensor&, const bool) { { mutex_lock l(mu_); status.Update(s); } counter.DecrementCount(); }); } counter.Wait(); TF_ASSERT_OK(status); } rmgr_.Cleanup(step_id); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4e72922f-72c7-4080-9b76-440f602382cd
cpp
tensorflow/tensorflow
grpc_tensor_coding
tensorflow/core/distributed_runtime/rpc/grpc_tensor_coding.cc
tensorflow/core/distributed_runtime/rpc/grpc_tensor_coding_test.cc
#include "tensorflow/core/distributed_runtime/rpc/grpc_tensor_coding.h" #include "grpcpp/support/byte_buffer.h" #include "grpcpp/support/slice.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_reference.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/io/proto_encode_helper.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/protobuf/worker.pb.h" namespace tensorflow { namespace grpc { void EncodeRecvTensorResponseToByteBuffer(const RecvTensorResponse& proto, ::grpc::ByteBuffer* result) { ::grpc::Slice slice(proto.ByteSizeLong()); proto.SerializeWithCachedSizesToArray( const_cast<uint8*>(reinterpret_cast<const uint8*>(slice.begin()))); ::grpc::ByteBuffer tmp(&slice, 1); result->Swap(&tmp); } static int VarLengthEncodingSize(uint32 tag, size_t bytes) { return core::VarintLength(tag << 3) + core::VarintLength(bytes) + bytes; } static int SkeletonEncodingSizeUpperBound(const Tensor& val) { static const int kVarintMax64 = 10; const int ndims = val.shape().dims(); return (2 * kVarintMax64) + (ndims * (4 * kVarintMax64)); } static void EncodeSkeleton(const Tensor& val, io::ProtoEncodeHelper* e) { e->WriteUint64(TensorProto::kDtypeFieldNumber, val.dtype()); const int ndims = val.shape().dims(); int tensor_shape_bytes = 0; for (int d = 0; d < ndims; d++) { int64_t dim_size = val.shape().dim_size(d); tensor_shape_bytes += 2 + 1 + core::VarintLength(dim_size); } if (tensor_shape_bytes > 0) { e->WriteVarlengthBeginning(TensorProto::kTensorShapeFieldNumber, tensor_shape_bytes); for (int d = 0; d < ndims; d++) { int64_t dim_size = val.shape().dim_size(d); int64_t dim_varlen = 1 + core::VarintLength(dim_size); e->WriteVarlengthBeginning(TensorShapeProto::kDimFieldNumber, dim_varlen); e->WriteUint64(TensorShapeProto_Dim::kSizeFieldNumber, dim_size); } } #ifndef NDEBUG { TensorProto skeleton; skeleton.set_dtype(val.dtype()); val.shape().AsProto(skeleton.mutable_tensor_shape()); string tensor_except_contents; skeleton.AppendToString(&tensor_except_contents); TensorProto skeleton2; skeleton2.ParseFromString(string(e->data(), e->size())); string out; skeleton.AppendToString(&out); DCHECK_EQ(tensor_except_contents, out) << skeleton.DebugString() << " vs\n" << skeleton2.DebugString(); } #endif } void EncodeTensorToByteBuffer(bool is_dead, const Tensor& val, bool require_ack, ::grpc::ByteBuffer* result) { const int kLargeTensorBytes = 1024; const int64_t kProtoBufLimitBytes = 1LL << 31; if (val.TotalBytes() > kProtoBufLimitBytes) { size_t exceeded_bytes = val.TotalBytes() - kProtoBufLimitBytes; LOG(FATAL) << "Cannot encode a Tensor that exceeds the 2GB protobuf limit. " "Exceeded bytes: " << exceeded_bytes << ", tensor shape: " << val.shape().AsProto().DebugString(); } RecvTensorResponse response; if (is_dead) { response.set_is_dead(is_dead); } response.set_require_ack(require_ack); response.set_send_start_micros(Env::Default()->NowMicros()); if (!DataTypeCanUseMemcpy(val.dtype())) { val.AsProtoTensorContent(response.mutable_tensor()); EncodeRecvTensorResponseToByteBuffer(response, result); } else { absl::InlinedVector<char, 128UL> skeleton( SkeletonEncodingSizeUpperBound(val)); io::ProtoEncodeHelper e_skeleton(skeleton.data(), skeleton.size()); EncodeSkeleton(val, &e_skeleton); StringPiece tdata = val.tensor_data(); uint32 overall_tensor_proto_bytesize = (e_skeleton.size() + VarLengthEncodingSize(TensorProto::kTensorContentFieldNumber, tdata.size())); string header; response.AppendToString(&header); size_t expected_size = (header.size() + VarLengthEncodingSize(RecvTensorResponse::kTensorFieldNumber, overall_tensor_proto_bytesize)); bool share_tensor_slice_memory = (tdata.size() > kLargeTensorBytes); size_t encoder_size = expected_size - tdata.size(); absl::InlinedVector<char, 1024UL> space(encoder_size); io::ProtoEncodeHelper e(space.data(), space.size()); e.WriteRawBytes(header); e.WriteVarlengthBeginning(RecvTensorResponse::kTensorFieldNumber, overall_tensor_proto_bytesize); e.WriteRawBytes(StringPiece(e_skeleton.data(), e_skeleton.size())); e.WriteVarlengthBeginning(TensorProto::kTensorContentFieldNumber, tdata.size()); ::grpc::Slice slices[2]; int num_slices = 0; { size_t slice_len = e.size() + (share_tensor_slice_memory ? 0 : tdata.size()); slices[0] = ::grpc::Slice(slice_len); memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size()); if (!share_tensor_slice_memory) { memcpy(const_cast<uint8_t*>(slices[0].begin()) + e.size(), tdata.data(), tdata.size()); } num_slices += 1; } if (share_tensor_slice_memory) { const TensorBuffer* buf = DMAHelper::buffer(&val); buf->Ref(); slices[1] = ::grpc::Slice( const_cast<void*>(static_cast<const void*>(tdata.data())), tdata.size(), [](void* backing) { static_cast<TensorBuffer*>(backing)->Unref(); }, const_cast<TensorBuffer*>(buf)); num_slices += 1; } size_t total_bytes = 0; for (int i = 0; i < num_slices; i++) { total_bytes += slices[i].size(); } CHECK_EQ(total_bytes, expected_size); ::grpc::ByteBuffer tmp(&slices[0], num_slices); result->Swap(&tmp); } } } }
#include "tensorflow/core/distributed_runtime/rpc/grpc_tensor_coding.h" #include "grpcpp/support/byte_buffer.h" #include "grpcpp/support/slice.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/worker.pb.h" namespace tensorflow { class GrpcTensorCodingTest : public ::testing::Test { public: void Validate(const Tensor& t, bool is_dead) { ::grpc::ByteBuffer buf; grpc::EncodeTensorToByteBuffer(is_dead, t, false, &buf); std::vector<::grpc::Slice> slices; (void)buf.Dump(&slices); string tmp; for (const auto& s : slices) { tmp.append(reinterpret_cast<const char*>(s.begin()), s.size()); } RecvTensorResponse response; EXPECT_TRUE(response.ParseFromString(tmp)); EXPECT_EQ(response.is_dead(), is_dead); Tensor result_tensor; EXPECT_TRUE(result_tensor.FromProto(response.tensor())); EXPECT_EQ(t.dtype(), result_tensor.dtype()); EXPECT_EQ(t.shape().DebugString(), result_tensor.shape().DebugString()); EXPECT_EQ(t.DebugString(), result_tensor.DebugString()); } template <typename T> void DoTest(DataType dt) { gtl::InlinedVector<T, 4> v; for (int elems = 0; elems <= 10000; elems++) { if (elems < 100 || (elems % 1000 == 0)) { Tensor a(dt, TensorShape({1, static_cast<int64_t>(v.size())})); test::FillValues<T>(&a, v); Validate(a, (elems == 0)); } v.push_back(static_cast<T>(elems)); } } void DoTestForStrings(DataType dt) { absl::InlinedVector<tstring, 4UL> v; for (int elems = 0; elems <= 10000; elems++) { if (elems < 100 || (elems % 1000 == 0)) { Tensor a(dt, TensorShape({1, static_cast<int64_t>(v.size())})); test::FillValues<tstring>(&a, v); Validate(a, (elems == 0)); } v.push_back(strings::StrCat("This is string ", elems)); } } }; TEST_F(GrpcTensorCodingTest, Simple) { DoTest<float>(DT_FLOAT); DoTest<double>(DT_DOUBLE); DoTest<int32>(DT_INT32); DoTest<uint16>(DT_UINT16); DoTest<uint8>(DT_UINT8); DoTest<int16>(DT_INT16); DoTest<int8>(DT_INT8); DoTest<complex64>(DT_COMPLEX64); DoTest<complex128>(DT_COMPLEX128); DoTest<int64_t>(DT_INT64); DoTest<bool>(DT_BOOL); DoTest<qint8>(DT_QINT8); DoTest<quint8>(DT_QUINT8); DoTest<qint16>(DT_QINT16); DoTest<quint16>(DT_QUINT16); DoTest<qint32>(DT_QINT32); DoTest<bfloat16>(DT_BFLOAT16); DoTest<Eigen::half>(DT_HALF); } TEST_F(GrpcTensorCodingTest, StringTensor) { DoTestForStrings(DT_STRING); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/grpc_tensor_coding.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/grpc_tensor_coding_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0ef74f11-3523-4202-9791-2c1beb9227af
cpp
tensorflow/tensorflow
grpc_worker_cache
tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.cc
tensorflow/core/distributed_runtime/rpc/grpc_worker_cache_test.cc
#include "tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.h" #include "tensorflow/core/distributed_runtime/rpc/coordination/grpc_coordination_client.h" #include "tensorflow/core/distributed_runtime/rpc/eager/grpc_eager_client.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_remote_worker.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/distributed_runtime/worker_cache_logger.h" #include "tensorflow/core/distributed_runtime/worker_cache_partial.h" #include "tensorflow/core/distributed_runtime/worker_interface.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/util/env_var.h" namespace tensorflow { namespace { class GrpcWorkerCache : public WorkerCachePartial { public: explicit GrpcWorkerCache(std::shared_ptr<GrpcChannelCache> channel_cache, WorkerInterface* local_worker, const string& local_target, GrpcWorkerEnv* worker_env) : local_target_(local_target), local_worker_(local_worker), channel_cache_(channel_cache), worker_env_(worker_env), next_round_robin_assignment_(0) {} void ListWorkers(std::vector<string>* workers) const override { channel_cache_->ListWorkers(workers); } void ListWorkersInJob(const string& job_name, std::vector<string>* workers) const override { channel_cache_->ListWorkersInJob(job_name, workers); } WorkerInterface* GetOrCreateWorker(const string& target) override { if (target == local_target_) { return local_worker_; } else { SharedGrpcChannelPtr channel = channel_cache_->FindWorkerChannel(target); if (!channel) { return nullptr; } size_t index = AssignWorkerToThread(target); return NewGrpcRemoteWorker( channel, worker_env_->GetCompletionQueue(index), worker_env_->GetThreadPool(), &logger_, target); } } void ReleaseWorker(const string& target, WorkerInterface* worker) override { if (target == local_target_) { CHECK_EQ(worker, local_worker_) << "Releasing a worker that was not returned by this WorkerCache"; } else { WorkerCacheInterface::ReleaseWorker(target, worker); } } Status GetEagerClientCache( std::unique_ptr<eager::EagerClientCache>* eager_client_cache) override { eager_client_cache->reset(eager::NewGrpcEagerClientCache(channel_cache_)); return absl::OkStatus(); } Status GetCoordinationClientCache(std::unique_ptr<CoordinationClientCache>* coordination_client_cache) override { coordination_client_cache->reset( NewGrpcCoordinationClientCache(channel_cache_)); return absl::OkStatus(); } void SetLogging(bool v) override { logger_.SetLogging(v); } void ClearLogs() override { logger_.ClearLogs(); } bool RetrieveLogs(int64_t step_id, StepStats* ss) override { return logger_.RetrieveLogs(step_id, ss); } private: size_t AssignWorkerToThread(const string& target) { mutex_lock lock(assignment_mu_); auto it = target_assignments_.find(target); if (it == target_assignments_.end()) { it = target_assignments_ .insert(std::make_pair(target, (next_round_robin_assignment_++) % worker_env_->CompletionQueueSize())) .first; } return it->second; } const string local_target_; WorkerInterface* const local_worker_; std::shared_ptr<GrpcChannelCache> channel_cache_; WorkerCacheLogger logger_; GrpcWorkerEnv* worker_env_; mutex assignment_mu_; std::unordered_map<std::string, size_t> target_assignments_ TF_GUARDED_BY(assignment_mu_); size_t next_round_robin_assignment_ TF_GUARDED_BY(assignment_mu_); }; } GrpcWorkerEnv::GrpcWorkerEnv(size_t num_completion_queues, size_t num_threads) : threadpool_(new thread::ThreadPool( Env::Default(), ThreadOptions(), "GrpcWorkerEnvQueues", num_threads, false, nullptr)), threads_(num_completion_queues) {} GrpcWorkerEnv::~GrpcWorkerEnv() { threads_.clear(); } GrpcWorkerEnv::GrpcWorkerCacheThread::GrpcWorkerCacheThread() { thread_.reset(Env::Default()->StartThread( ThreadOptions(), "GrpcWorkerEnvPool", [this]() { void* tag; bool ok; while (completion_queue_.Next(&tag, &ok)) { GrpcClientCQTag* callback_tag = static_cast<GrpcClientCQTag*>(tag); callback_tag->OnCompleted(ok); } })); } GrpcWorkerEnv::GrpcWorkerCacheThread::~GrpcWorkerCacheThread() { completion_queue_.Shutdown(); thread_.reset(); } GrpcWorkerEnv* CreateGrpcWorkerEnv() { int num_cpus = port::NumSchedulableCPUs(); int64_t num_completion_queues; Status status = ReadInt64FromEnvVar("TF_GRPC_WORKER_CACHE_QUEUES", 64, &num_completion_queues); if (!status.ok()) { LOG(ERROR) << "Error parsing TF_GRPC_WORKER_CACHE_QUEUES: " << status; } int64_t num_threads; status = ReadInt64FromEnvVar("TF_GRPC_WORKER_CACHE_THREADS", num_cpus, &num_threads); if (!status.ok()) { LOG(ERROR) << "Error parsing TF_GRPC_WORKER_CACHE_THREADS: " << status; } return new GrpcWorkerEnv(num_completion_queues, num_threads); } WorkerCacheInterface* NewGrpcWorkerCache(std::shared_ptr<GrpcChannelCache> cc, GrpcWorkerEnv* worker_env) { return new GrpcWorkerCache(cc, nullptr, "", worker_env); } WorkerCacheInterface* NewGrpcWorkerCacheWithLocalWorker( std::shared_ptr<GrpcChannelCache> cc, GrpcWorkerEnv* worker_env, WorkerInterface* local_worker, const string& local_target) { return new GrpcWorkerCache(cc, local_worker, local_target, worker_env); } }
#include "tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_channel.h" #include "tensorflow/core/distributed_runtime/test_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/threadpool.h" namespace tensorflow { TEST(GrpcWorkerCacheTest, NewGrpcWorkerCache) { GrpcChannelSpec spec; TF_ASSERT_OK( spec.AddHostPortsJob("worker", {{0, "a:0"}, {1, "b:1"}, {2, "c:2"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); auto channel_cache = std::shared_ptr<GrpcChannelCache>( NewGrpcChannelCache(spec, channel_func)); std::unique_ptr<GrpcWorkerEnv> grpc_worker_env(CreateGrpcWorkerEnv()); std::unique_ptr<WorkerCacheInterface> worker_cache( NewGrpcWorkerCache(channel_cache, grpc_worker_env.get())); WorkerInterface* wi; wi = worker_cache->GetOrCreateWorker("/job:worker/replica:0/task:0"); EXPECT_NE(wi, nullptr); worker_cache->ReleaseWorker("/job:worker/replica:0/task:0", wi); wi = worker_cache->GetOrCreateWorker("/job:worker/replica:0/task:1"); EXPECT_NE(wi, nullptr); worker_cache->ReleaseWorker("/job:worker/replica:0/task:1", wi); wi = worker_cache->GetOrCreateWorker("/job:worker/replica:0/task:2"); EXPECT_NE(wi, nullptr); worker_cache->ReleaseWorker("/job:worker/replica:0/task:2", wi); wi = worker_cache->GetOrCreateWorker("/job:worker/replica:0/task:3"); EXPECT_EQ(wi, nullptr); std::unique_ptr<TestWorkerInterface> local_wi; worker_cache.reset(NewGrpcWorkerCacheWithLocalWorker( channel_cache, grpc_worker_env.get(), local_wi.get(), "local_target")); wi = worker_cache->GetOrCreateWorker("local_target"); EXPECT_EQ(wi, local_wi.get()); } TEST(GrpcWorkerCacheTest, DestructWorkerCacheInThreadPool) { GrpcChannelSpec spec; TF_ASSERT_OK( spec.AddHostPortsJob("worker", {{0, "a:0"}, {1, "b:1"}, {2, "c:2"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); auto channel_cache = std::shared_ptr<GrpcChannelCache>( NewGrpcChannelCache(spec, channel_func)); std::unique_ptr<GrpcWorkerEnv> grpc_worker_env(CreateGrpcWorkerEnv()); WorkerCacheInterface* worker_cache = NewGrpcWorkerCache(channel_cache, grpc_worker_env.get()); thread::ThreadPool* tp = grpc_worker_env->GetThreadPool(); Notification n; tp->Schedule([worker_cache, &n] { delete worker_cache; n.Notify(); }); n.WaitForNotification(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/grpc_worker_cache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e680641a-da49-449a-bb3e-3767970a1e11
cpp
tensorflow/tensorflow
grpc_eager_client
tensorflow/core/distributed_runtime/rpc/eager/grpc_eager_client.cc
tensorflow/core/distributed_runtime/rpc/eager/grpc_eager_client_test.cc
#include "tensorflow/core/distributed_runtime/rpc/eager/grpc_eager_client.h" #include <cstdint> #include <string> #include "grpcpp/generic/generic_stub.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "tensorflow/core/distributed_runtime/call_options.h" #include "tensorflow/core/distributed_runtime/rpc/eager/grpc_eager_service.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_client_cq_tag.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_state.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/error_payloads.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/protobuf/core_platform_payloads.pb.h" #include "tensorflow/core/protobuf/eager_service.pb.h" #include "tensorflow/core/util/env_var.h" namespace tensorflow { namespace eager { namespace { bool EnableStreaming() { bool result; TF_CHECK_OK(ReadBoolFromEnvVar("TF_ENABLE_EAGER_CLIENT_STREAMING_ENQUEUE", true, &result)); return result; } class GrpcEagerClientThread : public core::RefCounted { public: GrpcEagerClientThread() { Ref(); thread_.reset(Env::Default()->StartThread( ThreadOptions(), "eager_client_thread", [this]() { void* tag; bool ok; while (completion_queue_.Next(&tag, &ok)) { VLOG(4) << "GrpcEagerClientThread got next tag"; GrpcClientCQTag* callback_tag = static_cast<GrpcClientCQTag*>(tag); callback_tag->OnCompleted(ok); VLOG(4) << "GrpcEagerClientThread blocking for next tag"; if (RefCountIsOne()) { break; } } VLOG(4) << "GrpcEagerClientThread exiting"; completion_queue_.Shutdown(); Env::Default()->SchedClosure([this]() { this->Unref(); }); })); } ~GrpcEagerClientThread() override {} ::grpc::CompletionQueue* completion_queue() { return &completion_queue_; } private: ::grpc::CompletionQueue completion_queue_; std::unique_ptr<Thread> thread_; }; class GrpcEagerClient : public EagerClient { public: GrpcEagerClient(const tensorflow::SharedGrpcChannelPtr& channel, GrpcEagerClientThread* thread, const string& target) : stub_(channel), thread_(thread), target_(target) { thread_->Ref(); cq_ = thread->completion_queue(); } ~GrpcEagerClient() override { thread_->Unref(); } bool allow_multiple_pending_requests() const override { return EnableStreaming(); } #define CLIENT_METHOD(method) \ void method##Async(const method##Request* request, \ method##Response* response, StatusCallback done) \ override { \ StatusCallback done_wrapped = callback_wrapper(std::move(done)); \ new RPCState<protobuf::Message>( \ &stub_, cq_, "/tensorflow.eager.EagerService/" #method, *request, \ response, std::move(done_wrapped), nullptr, \ nullptr, 0, true, \ &target_); \ } CLIENT_METHOD(CreateContext); CLIENT_METHOD(UpdateContext); CLIENT_METHOD(WaitQueueDone); CLIENT_METHOD(KeepAlive); #undef CLIENT_METHOD #define CLIENT_METHOD_WITH_TIMEOUT_AND_RETRIES(method) \ void method##Async(const method##Request* request, \ method##Response* response, StatusCallback done, \ int64_t init_timeout_in_ms, int retries) override { \ CallOptions* call_ops = nullptr; \ StatusCallback done_wrapped; \ if (init_timeout_in_ms > 0) { \ call_ops = new CallOptions; \ call_ops->SetTimeout(init_timeout_in_ms); \ auto new_done = [call_ops, done = std::move(done)](const Status& s) { \ done(s); \ delete call_ops; \ }; \ done_wrapped = callback_wrapper(new_done); \ } else { \ done_wrapped = callback_wrapper(std::move(done)); \ } \ new RPCState<protobuf::Message>( \ &stub_, cq_, "/tensorflow.eager.EagerService/" #method, *request, \ response, std::move(done_wrapped), call_ops, nullptr, \ retries, true, &target_); \ } CLIENT_METHOD_WITH_TIMEOUT_AND_RETRIES(CreateContext); #undef CLIENT_METHOD_WITH_TIMEOUT_AND_RETRIES #define CLIENT_CANCELABLE_METHOD(method) \ void method##Async(CallOptions* call_opts, const method##Request* request, \ method##Response* response, StatusCallback done) \ override { \ StatusCallback done_wrapped = callback_wrapper(std::move(done)); \ new RPCState<protobuf::Message>( \ &stub_, cq_, "/tensorflow.eager.EagerService/" #method, *request, \ response, std::move(done_wrapped), call_opts, nullptr, \ 0, true, &target_); \ } CLIENT_CANCELABLE_METHOD(Enqueue); CLIENT_CANCELABLE_METHOD(RunComponentFunction); #undef CLIENT_CANCELABLE_METHOD void CloseContextAsync(const CloseContextRequest* request, CloseContextResponse* response, StatusCallback done) override { StatusCallback done_wrapped = callback_wrapper(std::move(done)); new RPCState<protobuf::Message>( &stub_, cq_, "/tensorflow.eager.EagerService/CloseContext", *request, response, std::move(done_wrapped), nullptr, nullptr, 0, true, &target_); VLOG(1) << "Sending RPC to close remote eager context " << request->DebugString(); mutex_lock l(mu_); const auto& it = enqueue_dispatchers_.find(request->context_id()); if (it != enqueue_dispatchers_.end()) { it->second.CancelCall(); enqueue_dispatchers_.erase(it); } else if (EnableStreaming()) { LOG(ERROR) << "Remote EagerContext with id " << request->context_id() << " does not seem to exist."; } } void StreamingEnqueueAsync(bool enable_streaming_enqueue, CallOptions* call_opts, const EnqueueRequest* request, EnqueueResponse* response, StatusCallback done) override { StatusCallback done_wrapped = callback_wrapper(std::move(done)); if (EnableStreaming() && enable_streaming_enqueue) { mutex_lock l(mu_); auto it = enqueue_dispatchers_.find(request->context_id()); if (it == enqueue_dispatchers_.end()) { auto it_and_bool = enqueue_dispatchers_.emplace( std::piecewise_construct, std::forward_as_tuple(request->context_id()), std::forward_as_tuple( &stub_, cq_, "/tensorflow.eager.EagerService/StreamingEnqueue")); it = it_and_bool.first; } it->second.SendNextRequest(*request, response, std::move(done_wrapped)); } else { Notification n; Status status; EnqueueAsync(call_opts, request, response, [&n, &status](const Status& s) { status.Update(s); n.Notify(); }); n.WaitForNotification(); done_wrapped(status); } } private: ::grpc::GenericStub stub_; const GrpcEagerClientThread* thread_; const string target_; ::grpc::CompletionQueue* cq_; mutable mutex mu_; std::unordered_map<uint64, StreamingRPCDispatcher<EnqueueResponse>> enqueue_dispatchers_ TF_GUARDED_BY(mu_); StatusCallback callback_wrapper(StatusCallback done) { Ref(); return [this, done = std::move(done)](const Status& status) { done(status); this->Unref(); if (TF_PREDICT_FALSE(!status.ok())) { auto error_source_payload = status.GetPayload(kErrorSource); if (error_source_payload.has_value()) { tensorflow::core::platform::ErrorSourceProto error_source_proto; error_source_proto.ParseFromString( std::string(*error_source_payload)); metrics::UpdateEagerClientErrorCounter( error_source_proto.ErrorSource_Name( error_source_proto.error_source()), absl::StatusCodeToString(status.code())); } else { metrics::UpdateEagerClientErrorCounter( "unknown", absl::StatusCodeToString(status.code())); } } }; } }; class GrpcEagerClientCache : public EagerClientCache { public: explicit GrpcEagerClientCache( std::shared_ptr<tensorflow::GrpcChannelCache> cache) : next_round_robin_assignment_(0), cache_(cache), threads_(4) { for (int i = 0, end = threads_.size(); i < end; i++) { threads_[i].reset(new GrpcEagerClientThread()); } } ~GrpcEagerClientCache() override { threads_.clear(); } Status GetClient(const string& target, core::RefCountPtr<EagerClient>* client) override { mutex_lock l(clients_mu_); auto it = clients_.find(target); if (it == clients_.end()) { tensorflow::SharedGrpcChannelPtr shared = cache_->FindWorkerChannel(target); if (shared == nullptr) { return errors::InvalidArgument("Client for target ", target, " not found."); } int assigned_index = AssignClientToThread(target); GrpcEagerClientThread* thread = threads_[assigned_index].get(); core::RefCountPtr<EagerClient> worker( new GrpcEagerClient(shared, thread, target)); it = clients_.emplace(target, std::move(worker)).first; } it->second->Ref(); client->reset(it->second.get()); return absl::OkStatus(); } private: mutex assignment_mu_; std::unordered_map<std::string, size_t> target_assignments_ TF_GUARDED_BY(assignment_mu_); size_t next_round_robin_assignment_ TF_GUARDED_BY(assignment_mu_); size_t AssignClientToThread(const string& target) { mutex_lock lock(assignment_mu_); auto it = target_assignments_.find(target); if (it == target_assignments_.end()) { it = target_assignments_ .insert(std::make_pair( target, (next_round_robin_assignment_++) % threads_.size())) .first; } return it->second; } std::shared_ptr<tensorflow::GrpcChannelCache> cache_; mutable mutex clients_mu_; std::unordered_map<string, core::RefCountPtr<EagerClient>> clients_ TF_GUARDED_BY(clients_mu_); std::vector<core::RefCountPtr<GrpcEagerClientThread>> threads_; }; } EagerClientCache* NewGrpcEagerClientCache( std::shared_ptr<tensorflow::GrpcChannelCache> channel) { return new GrpcEagerClientCache(channel); } } }
#include "tensorflow/core/distributed_runtime/rpc/eager/grpc_eager_client.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_channel.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace eager { TEST(GrpcEagerClientCache, TestGetClientThreadSafety) { GrpcChannelSpec spec; TF_ASSERT_OK(spec.AddHostPortsJob("worker", {{0, "a:1"}, {1, "b:2"}, {2, "c:3"}, {3, "d:4"}, {4, "e:5"}, {5, "f:6"}})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); auto channel_cache = std::shared_ptr<GrpcChannelCache>( NewGrpcChannelCache(spec, channel_func)); std::unique_ptr<EagerClientCache> client_cache( NewGrpcEagerClientCache(channel_cache)); const int num_calls = 10; BlockingCounter counter(num_calls); for (int i = 0; i < num_calls; i++) { Env::Default()->SchedClosure([&client_cache, i, &counter]() { string target = strings::StrCat("/job:worker/replica:0/task:", i); core::RefCountPtr<EagerClient> eager_client; Status s = client_cache->GetClient(target, &eager_client); error::Code expected_code = i <= 5 ? error::OK : error::INVALID_ARGUMENT; EXPECT_EQ(expected_code, s.code()); counter.DecrementCount(); }); } counter.Wait(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/eager/grpc_eager_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/rpc/eager/grpc_eager_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5b273aa4-9a13-4db4-af7d-902975da9160
cpp
tensorflow/tensorflow
eager_service_impl
tensorflow/core/distributed_runtime/eager/eager_service_impl.cc
tensorflow/core/distributed_runtime/eager/eager_service_impl_test.cc
#include "tensorflow/core/distributed_runtime/eager/eager_service_impl.h" #include <functional> #include <memory> #include <optional> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/container/fixed_array.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "tensorflow/c/eager/immediate_execution_distributed_manager.h" #include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/eager/context_distributed_manager.h" #include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/common_runtime/eager/execute.h" #include "tensorflow/core/distributed_runtime/eager/cluster_function_library_runtime.h" #include "tensorflow/core/distributed_runtime/eager/remote_mgr.h" #include "tensorflow/core/distributed_runtime/eager/remote_tensor_handle.h" #include "tensorflow/core/distributed_runtime/message_wrappers.h" #include "tensorflow/core/distributed_runtime/rpc_collective_executor_mgr.h" #include "tensorflow/core/distributed_runtime/session_mgr.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/distributed_runtime/worker_env.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/nccl/collective_communicator.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/host_info.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/stringprintf.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/lib/traceme.h" namespace tensorflow { namespace eager { namespace { Status GetNumRetvals(FunctionLibraryDefinition* func_lib_def, const string& op_name, const google::protobuf::Map<string, tensorflow::AttrValue>& attrs, int* num_retvals) { const tensorflow::OpRegistrationData* op_reg_data = nullptr; auto status = tensorflow::OpRegistry::Global()->LookUp(op_name, &op_reg_data); if (absl::IsNotFound(status)) { status = func_lib_def->LookUp(op_name, &op_reg_data); } TF_RETURN_IF_ERROR(status); const tensorflow::OpDef& op_def = op_reg_data->op_def; for (const auto& output_arg : op_def.output_arg()) { if (!output_arg.number_attr().empty()) { auto iter = attrs.find(output_arg.number_attr()); if (iter == attrs.end()) { return errors::InvalidArgument("Unable to find number_attr ", output_arg.number_attr(), " for Op: ", op_name); } *num_retvals += iter->second.i(); } else if (!output_arg.type_list_attr().empty()) { auto iter = attrs.find(output_arg.type_list_attr()); if (iter == attrs.end()) { return errors::InvalidArgument("Unable to find type_list_attr ", output_arg.type_list_attr(), " for Op: ", op_name); } *num_retvals += iter->second.list().type_size(); } else { *num_retvals += 1; } } return absl::OkStatus(); } Status GetEagerOperationAndNumRetvals(const Operation& operation, EagerContext* eager_context, EagerExecutor* eager_executor, EagerOperation* eager_op, int* num_retvals) { const char* name = operation.name().c_str(); std::optional<tensorflow::EagerFunctionParams> remote_func_params = std::nullopt; FunctionLibraryDefinition* func_lib_def; if (operation.is_function()) { if (operation.is_component_function()) { func_lib_def = eager_context->GetComponentFunctionFunctionLibraryDefinition( operation.name()); if (func_lib_def == nullptr) { return absl::InternalError( absl::StrCat("Could not find function library for registered " "component function: ", operation.name())); } remote_func_params = {operation.id(), true, operation.func_step_id(), func_lib_def}; } else { func_lib_def = eager_context->FuncLibDef(); remote_func_params = {operation.id(), false, std::nullopt, nullptr}; } } else { func_lib_def = eager_context->FuncLibDef(); } TF_RETURN_IF_ERROR(eager_op->Reset(name, operation.device().c_str(), false, eager_executor, remote_func_params)); { tsl::profiler::TraceMe activity("EagerService:RemoteTensorHandleInternal", tsl::profiler::TraceMeLevel::kVerbose); for (const auto& input : operation.op_inputs()) { tensorflow::TensorHandle* handle; if (input.has_remote_handle()) { TF_RETURN_IF_ERROR( eager_context->RemoteMgr()->DeserializeRemoteTensorHandle( input.remote_handle(), &handle)); TF_RETURN_IF_ERROR(eager_op->AddInput(handle)); } else { Tensor tensor; if (!ParseTensorProtoToTensor(input.tensor(), &tensor)) { return errors::InvalidArgument("Invalid TensorProto: ", input.tensor().DebugString()); } else { handle = TensorHandle::CreateLocalHandle(std::move(tensor), nullptr, nullptr, eager_context); TF_RETURN_IF_ERROR(eager_op->AddInput(handle)); } } handle->Unref(); } } for (const auto& attr : operation.attrs()) { eager_op->MutableAttrs()->Set(attr.first, attr.second); } return GetNumRetvals(func_lib_def, operation.name(), operation.attrs(), num_retvals); } Status TensorHandleProto(TensorHandle* handle, TensorProto* proto) { const tensorflow::Tensor* t = nullptr; TF_RETURN_IF_ERROR(handle->Tensor(&t)); t->AsProtoTensorContent(proto); return absl::OkStatus(); } Status TensorHandleShape(TensorHandle* handle, TensorShapeProto* proto) { const tensorflow::Tensor* t = nullptr; if (handle->Type() == TensorHandle::LOCAL) { TF_RETURN_IF_ERROR(handle->Tensor(&t)); t->shape().AsProto(proto); } else { TensorShape shape; TF_RETURN_IF_ERROR(handle->Shape(&shape)); shape.AsProto(proto); } return absl::OkStatus(); } Status AddOpRetvalsToResponse( EagerContext* eager_context, int op_id, int num_retvals, const std::vector<int32>& output_nums, TensorHandle** retvals, std::function<TensorProto*()> add_tensor_proto_fn, std::function<TensorShapeProto*()> add_shape_proto_fn, std::function<string*()> add_device_fn = nullptr) { StatusGroup sg; if (op_id == kInvalidOpId) { for (int i = 0; i < num_retvals; i++) { sg.Update(TensorHandleProto(retvals[i], add_tensor_proto_fn())); retvals[i]->Unref(); } } else { for (int i = 0; i < num_retvals; i++) { sg.Update(TensorHandleShape(retvals[i], add_shape_proto_fn())); if (add_device_fn) { Device* device = retvals[i]->device(); *add_device_fn() = device ? device->name() : ""; } if (retvals[i]->Type() == TensorHandle::REMOTE) { retvals[i]->Unref(); } else { const int output_num = output_nums.empty() ? i : output_nums.at(i); eager_context->RemoteMgr()->AddOperationOutput(retvals[i], op_id, output_num); } } } return sg.as_summary_status(); } Status ResetAgentAndConnectToCoordinationService( tsl::CoordinationServiceAgent* coord_agent) { if (coord_agent->IsError()) { const Status s = coord_agent->Reset(); if (!s.ok()) { LOG(ERROR) << "Coordination Service agent reset failed " << s; return s; } } if (!coord_agent->IsConnected()) { const Status s = coord_agent->Connect(); if (!s.ok()) { LOG(ERROR) << "Coordination Service agent connect failed " << s; return s; } } return absl::OkStatus(); } } Status EagerServiceImpl::CreateContext(const CreateContextRequest* request, CreateContextResponse* response) { bool update_collective_executor_mgr = false; { mutex_lock l(contexts_mu_); if (contexts_.empty()) { update_collective_executor_mgr = true; } else { auto context_it = contexts_.find(request->context_id()); if (context_it != contexts_.end()) { if (request->context_view_id() < context_it->second->Context()->GetContextViewId()) { return errors::InvalidArgument("EagerService:CreateContext failed. ", "Context id: <", request->context_id(), "> already exists."); } else { context_it->second->Unref(); contexts_.erase(context_it); } } } } if (env_ == nullptr || env_->rendezvous_mgr == nullptr) { return tensorflow::errors::Internal( "invalid eager env_ or env_->rendezvous_mgr."); } if (request->clear_existing_contexts()) { for (auto* device : env_->device_mgr->ListDevices()) { device->ClearResourceMgr(); } env_->rendezvous_mgr->CleanupAll(); env_->collective_executor_mgr->CleanupAll(); TF_RETURN_IF_ERROR(env_->session_mgr->DeleteAllSessions()); std::unordered_map<uint64, ServerContext*> tmp_contexts; { mutex_lock l(contexts_mu_); if (!contexts_.empty()) { std::swap(tmp_contexts, contexts_); } } for (auto& context : tmp_contexts) { context.second->Unref(); } } tsl::core::RefCountPtr<RemoteRendezvous> r = env_->rendezvous_mgr->Find(request->context_id()); auto session_name = tensorflow::strings::StrCat("eager_", request->context_id()); if (VLOG_IS_ON(2)) { VLOG(2) << "Creating context on /job:" << request->server_def().job_name() << "/task:" << request->server_def().task_index(); for (const auto& da : request->cluster_device_attributes()) { VLOG(2) << " " << da.name(); } } TF_RETURN_IF_ERROR(env_->session_mgr->CreateSession( session_name, request->server_def(), request->cluster_device_attributes(), request->server_def().default_session_config().isolate_session_state())); int64_t context_id = request->context_id(); std::function<void()> session_destroyer = [this, context_id, session_name]() { env_->rendezvous_mgr->Cleanup(context_id); auto s = env_->session_mgr->DeleteSession(session_name); if (!s.ok()) { LOG(WARNING) << "Failed to destroy worker session '" << session_name << "' due to " << s.message(); } }; std::shared_ptr<WorkerSession> worker_session; TF_RETURN_IF_ERROR(env_->session_mgr->WorkerSessionForSession( session_name, &worker_session)); tensorflow::DeviceMgr* device_mgr = worker_session->device_mgr(); TF_RETURN_IF_ERROR(r->Initialize(worker_session.get())); r->SetRemoteEagerContextDefault(); std::function<tsl::core::RefCountPtr<Rendezvous>(const int64_t)> rendezvous_creator = [worker_session, this](const int64_t step_id) { tsl::core::RefCountPtr<RemoteRendezvous> r = env_->rendezvous_mgr->Find(step_id); r->Initialize(worker_session.get()).IgnoreError(); return r; }; LOG(INFO) << "Creating " << (request->async() ? "async" : "sync") << " eager service context with rendezvous_id on host " << port::Hostname() << " " << worker_session->worker_name(); SessionOptions opts; opts.config = request->server_def().default_session_config(); LOG(INFO) << "SessionOptions: " << opts.config.DebugString(); if (update_collective_executor_mgr) { env_->collective_executor_mgr = CreateProdRpcCollectiveExecutorMgr( opts.config, device_mgr, MaybeCreateNcclCommunicator(opts.config), worker_session->worker_cache(), worker_session->worker_name()); } tensorflow::EagerContext* ctx = new tensorflow::EagerContext( opts, tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, request->async(), device_mgr, false, std::move(r), worker_session->cluster_flr(), env_->collective_executor_mgr.get()); core::ScopedUnref unref_ctx(ctx); std::vector<string> remote_workers; worker_session->worker_cache()->ListWorkers(&remote_workers); remote_workers.erase(std::remove(remote_workers.begin(), remote_workers.end(), worker_session->worker_name()), remote_workers.end()); std::unique_ptr<tensorflow::eager::EagerClientCache> remote_eager_workers; TF_RETURN_IF_ERROR(worker_session->worker_cache()->GetEagerClientCache( &remote_eager_workers)); DistributedFunctionLibraryRuntime* cluster_flr = eager::CreateClusterFLR(request->context_id(), ctx, worker_session.get()); auto remote_mgr = std::make_unique<tensorflow::eager::RemoteMgr>(false, ctx); Status s = ctx->InitializeRemoteWorker( std::move(remote_eager_workers), worker_session->remote_device_mgr(), remote_workers, request->context_id(), request->context_view_id(), std::move(rendezvous_creator), cluster_flr, std::move(remote_mgr), std::move(session_destroyer)); if (!s.ok()) { VLOG(1) << "EagerContext::InitializeRemoteWorker failed with " << s.ToString(); return s; } #if !defined(IS_MOBILE_PLATFORM) const auto& config = request->server_def().default_session_config(); const bool enable_coordination = !config.experimental().coordination_config().service_type().empty(); if (enable_coordination) { auto dist_mgr = std::make_unique<EagerContextDistributedManager>(ctx); auto coord_agent = env_->session_mgr->GetCoordinationServiceAgent(); dist_mgr->SetCoordinationServiceAgent(coord_agent); if (config.experimental().coordination_config().enable_health_check()) { TF_RETURN_IF_ERROR( ResetAgentAndConnectToCoordinationService(coord_agent)); } auto preemption_notifier = tsl::PreemptionNotifier::CreatePreemptionNotifier("sigterm", Env::Default()); preemption_notifier->WillBePreemptedAtAsync( [coord_agent](absl::StatusOr<absl::Time> time_or_status) { if (time_or_status.ok()) { const auto coord_task = coord_agent->GetOwnTask().value(); Status s = coord_agent->InsertKeyValue( "TF_DEFAULT_PREEMPTION_NOTICE_KEY", absl::StrCat("/job:", coord_task.job_name(), "/task:", coord_task.task_id())); if (!s.ok()) { VLOG(3) << "Preemption not exported to coordination service: " << s; } } }); dist_mgr->SetPreemptionNotifier(std::move(preemption_notifier)); ctx->SetDistributedManager(std::move(dist_mgr)); } #endif std::vector<DeviceAttributes> device_attributes; device_mgr->ListDeviceAttributes(&device_attributes); for (const auto& da : device_attributes) { *response->add_device_attributes() = da; } { mutex_lock l(contexts_mu_); auto context_it = contexts_.find(request->context_id()); if (context_it != contexts_.end()) { return errors::InvalidArgument("EagerService:CreateContext failed. ", "Context id: <", request->context_id(), "> already exists."); } contexts_.emplace(request->context_id(), new ServerContext(ctx, request->keep_alive_secs(), env_)); } return absl::OkStatus(); } Status EagerServiceImpl::UpdateContext(const UpdateContextRequest* request, UpdateContextResponse* response) { if (env_ == nullptr || env_->rendezvous_mgr == nullptr) { return tensorflow::errors::Internal( "invalid eager env_ or env_->rendezvous_mgr."); } ServerContext* server_context = nullptr; TF_RETURN_IF_ERROR(GetServerContext(request->context_id(), &server_context)); core::ScopedUnref context_unref(server_context); tensorflow::EagerContext* ctx = server_context->Context(); if (request->context_view_id() != ctx->GetContextViewId() + 1) { return errors::InvalidArgument( "EagerService:UpdateContext failed. Context id: <", request->context_id(), "> currently at view #", ctx->GetContextViewId(), " but received update request at view #", request->context_view_id(), ". View id should only be continuously incremented."); } if (request->cluster_device_attributes_size() == 0) { ctx->IncrementContextViewId(); VLOG(1) << "Processing simplified UpdateContextRequest on " << ctx->HostCPU()->name(); return absl::OkStatus(); } auto session_name = tensorflow::strings::StrCat("eager_", request->context_id()); TF_RETURN_IF_ERROR( env_->session_mgr->UpdateSession(session_name, request->server_def(), request->cluster_device_attributes())); std::shared_ptr<WorkerSession> worker_session; TF_RETURN_IF_ERROR(env_->session_mgr->WorkerSessionForSession( session_name, &worker_session)); const tensorflow::DeviceMgr* device_mgr = worker_session->device_mgr(); std::vector<string> remote_workers; worker_session->worker_cache()->ListWorkers(&remote_workers); remote_workers.erase(std::remove(remote_workers.begin(), remote_workers.end(), worker_session->worker_name()), remote_workers.end()); VLOG(1) << "On existing server " << worker_session->worker_name() << " updating remote workers"; if (VLOG_IS_ON(2)) { for (const string& rw : remote_workers) { VLOG(2) << "Remote worker " << rw; } } std::unique_ptr<tensorflow::eager::EagerClientCache> remote_eager_workers; TF_RETURN_IF_ERROR(worker_session->worker_cache()->GetEagerClientCache( &remote_eager_workers)); ctx->ClearCachesAndThreadExecutors(); Status s = ctx->UpdateRemoteWorker(std::move(remote_eager_workers), remote_workers, request->context_id()); if (!s.ok()) { VLOG(1) << "EagerContext::UpdateRemoteWorker failed with " << s.ToString(); return s; } #if !defined(IS_MOBILE_PLATFORM) const auto& config = request->server_def().default_session_config(); const bool should_connect = !config.experimental().coordination_config().service_type().empty() && config.experimental().coordination_config().enable_health_check(); if (should_connect) { auto coord_agent = env_->session_mgr->GetCoordinationServiceAgent(); TF_RETURN_IF_ERROR(ResetAgentAndConnectToCoordinationService(coord_agent)); } #endif std::vector<DeviceAttributes> device_attributes; device_mgr->ListDeviceAttributes(&device_attributes); for (const auto& da : device_attributes) { *response->add_device_attributes() = da; } return absl::OkStatus(); } Status EagerServiceImpl::CreateMasterContext( const tensorflow::uint64 context_id, EagerContext* context) { { mutex_lock l(contexts_mu_); auto iter = contexts_.find(context_id); if (iter != contexts_.end()) { return errors::InvalidArgument( "EagerService:CreateMasterContext failed. ", "Context id: <", context_id, "> already exists."); } } ServerContext* server_context = ServerContext::CreateMasterContext(context, env_); mutex_lock l(contexts_mu_); contexts_.emplace(context_id, server_context); return absl::OkStatus(); } void EagerServiceImpl::RunComponentFunction( CallOptions* call_opts, const RunComponentFunctionRequest* request, RunComponentFunctionResponse* response, StatusCallback done) { ServerContext* context = nullptr; Status s = GetServerContext(request->context_id(), &context); if (!s.ok()) { done(s); return; } core::ScopedUnref context_unref(context); auto& operation = request->operation(); if (!operation.is_function() || !operation.is_component_function()) { done(errors::Internal( "RunComponentFunction request can only be used to execute " "component functions.")); return; } EagerContext* eager_context = context->Context(); EagerExecutor* eager_executor = &eager_context->Executor(); EagerOperation* op = new EagerOperation(eager_context); int* num_retvals = new int(0); s = GetEagerOperationAndNumRetvals(operation, eager_context, eager_executor, op, num_retvals); if (!s.ok()) { delete num_retvals; delete op; done(s); return; } if (!op->IsLocal()) { delete num_retvals; delete op; done(errors::Internal( "Received RunComponentFunction request with remote function device. ")); return; } s = op->SetAttrBool("is_component_function", true); if (!s.ok()) { delete num_retvals; delete op; done(errors::Internal("Error setting is_component_function attribute: ", s.message())); return; } auto* retvals = new absl::FixedArray<TensorHandle*>(*num_retvals); VLOG(3) << "ServerContext: Calling EagerLocalExecuteAsync for op " << operation.id(); std::vector<int32> output_nums; for (const int32_t output_num : request->output_num()) { output_nums.push_back(output_num); } auto cm = std::make_shared<CancellationManager>(); op->SetCancellationManager(cm.get()); call_opts->SetCancelCallback([cm] { cm->StartCancel(); }); context->Ref(); EagerLocalExecuteAsync( op, retvals->data(), num_retvals, [op, op_id = operation.id(), num_retvals, retvals, output_nums, cm, call_opts, response, eager_context, context, done = std::move(done)](const Status& status) { call_opts->ClearCancelCallback(); auto wrapped_done = [&](const Status& status) { context->Unref(); done(status); delete op; delete num_retvals; delete retvals; }; if (!status.ok()) { wrapped_done(status); return; } wrapped_done(AddOpRetvalsToResponse( eager_context, op_id, *num_retvals, output_nums, retvals->data(), [response] { return response->add_tensor(); }, [response] { return response->add_shape(); })); }); } Status EagerServiceImpl::ExecuteOp(CallOptions* call_opts, const Operation& operation, EagerContext* eager_context, EagerExecutor* eager_executor, QueueResponse* queue_response) { tensorflow::EagerOperation op(eager_context); int num_retvals = 0; TF_RETURN_IF_ERROR(GetEagerOperationAndNumRetvals( operation, eager_context, eager_executor, &op, &num_retvals)); auto cm = std::make_shared<CancellationManager>(); if (call_opts) { op.SetCancellationManager(cm.get()); call_opts->SetCancelCallback([cm] { cm->StartCancel(); }); } absl::FixedArray<tensorflow::TensorHandle*> retvals(num_retvals); VLOG(3) << "ServerContext: Calling EagerExecute for op " << operation.id(); TF_RETURN_IF_ERROR(op.Execute( absl::MakeSpan( reinterpret_cast<tensorflow::AbstractTensorHandle**>(retvals.data()), num_retvals), &num_retvals)); std::function<string*()> add_device_fn = nullptr; if (op.is_function()) { add_device_fn = [queue_response] { return queue_response->add_device(); }; } return AddOpRetvalsToResponse( eager_context, operation.id(), num_retvals, {}, retvals.data(), [queue_response] { return queue_response->add_tensor(); }, [queue_response] { return queue_response->add_shape(); }, std::move(add_device_fn)); } Status EagerServiceImpl::Enqueue(CallOptions* call_opts, const EnqueueRequest* request, EnqueueResponse* response, uint64 stream_id) { tsl::profiler::TraceMe activity( [&] { return absl::StrCat( "EagerService:Enqueue#debug_str=", request->DebugString(), "#"); }, tsl::profiler::TraceMeLevel::kInfo); ServerContext* context = nullptr; TF_RETURN_IF_ERROR(GetServerContext(request->context_id(), &context)); core::ScopedUnref context_unref(context); EagerExecutor& executor = stream_id == kInvalidStreamId ? context->Context()->Executor() : context->Context()->RemoteMgr()->GetOrCreateExecutorForStream( stream_id); Status s; for (const auto& item : request->queue()) { auto* queue_response = response->add_queue_response(); if (item.has_operation()) { s = ExecuteOp(call_opts, item.operation(), context->Context(), &executor, queue_response); } else if (item.has_handle_to_decref()) { auto handle_to_decref = std::make_unique<RemoteTensorHandleInternal>( item.handle_to_decref()); auto node = std::make_unique<ClientTensorHandleDeleteNode>( context, std::move(handle_to_decref)); s = context->Context()->Executor().AddOrExecute(std::move(node)); } else if (item.has_send_tensor()) { s = SendTensor(item.send_tensor(), context->Context()); } else if (item.has_send_packed_handle()) { s = SendPackedHandle(item.send_packed_handle(), context->Context()); } else if (item.has_register_function()) { s = RegisterFunction(item.register_function(), context->Context()); } else if (item.has_remove_function()) { s = RemoveFunction(item.remove_function(), context->Context()); } else if (item.has_cleanup_function()) { s = CleanupFunction(item.cleanup_function()); } else { DCHECK(item.has_sync_remote_executor_for_stream()); s = executor.WaitForAllPendingNodes(); } if (!s.ok()) { if (stream_id != kInvalidStreamId) { context->Context()->RemoteMgr()->DeleteExecutorForStream(stream_id); } return s; } } return absl::OkStatus(); } Status EagerServiceImpl::WaitQueueDone(const WaitQueueDoneRequest* request, WaitQueueDoneResponse* response) { ServerContext* context = nullptr; TF_RETURN_IF_ERROR(GetServerContext(request->context_id(), &context)); core::ScopedUnref context_unref(context); if (request->op_id_size() > 0) { return errors::Unimplemented( "EagerServiceImpl::WaitQueueDone is not " "implemented for particular op IDs."); } return context->Context()->Executor().WaitForAllPendingNodes(); } Status EagerServiceImpl::KeepAlive(const KeepAliveRequest* request, KeepAliveResponse* response) { ServerContext* context = nullptr; TF_RETURN_IF_ERROR(GetServerContext(request->context_id(), &context)); core::ScopedUnref context_unref(context); tensorflow::EagerContext* ctx = context->Context(); response->set_context_view_id(ctx->GetContextViewId()); return absl::OkStatus(); } Status EagerServiceImpl::CloseContext(const CloseContextRequest* request, CloseContextResponse* response) { ServerContext* context = nullptr; if (!GetServerContext(request->context_id(), &context).ok()) { return absl::OkStatus(); } core::ScopedUnref context_unref(context); if (request->context_view_id() < context->Context()->GetContextViewId()) { LOG(INFO) << "Ignoring CloseContext request with a stale context_view_id " << request->context_view_id() << " for context_id " << request->context_id() << ". The current context_view_id is " << context->Context()->GetContextViewId() << "."; return absl::OkStatus(); } mutex_lock l(contexts_mu_); contexts_.erase(request->context_id()); context->Unref(); return absl::OkStatus(); } Status EagerServiceImpl::RegisterFunction( const RegisterFunctionOp& register_function, EagerContext* eager_context) { if (register_function.is_component_function()) { return eager_context->AddComponentFunction(register_function.function_def(), register_function.library()); } else { return eager_context->AddFunctionDef(register_function.function_def(), register_function.library(), false); } } Status EagerServiceImpl::RemoveFunction(const RemoveFunctionOp& remove_function, EagerContext* eager_context) { return eager_context->RemoveFunction(remove_function.function_name()); } Status EagerServiceImpl::CleanupFunction( const CleanupFunctionOp& cleanup_function) { env_->rendezvous_mgr->Cleanup(cleanup_function.step_id()); return absl::OkStatus(); } Status EagerServiceImpl::SendTensor(const SendTensorOp& send_tensor, EagerContext* eager_context) { absl::InlinedVector<tensorflow::TensorHandle*, 2UL> tensors; for (const auto& tensor_proto : send_tensor.tensors()) { Tensor tensor; if (!tensor.FromProto(tensor_proto)) { return errors::InvalidArgument("Unable to parse tensor proto"); } TensorHandle* tensor_handle = TensorHandle::CreateLocalHandle( std::move(tensor), nullptr, nullptr, eager_context); TensorHandle* copied_handle = nullptr; Device* device; TF_RETURN_IF_ERROR(eager_context->FindDeviceFromName( send_tensor.device_name().c_str(), &device)); TF_RETURN_IF_ERROR(EagerCopyToDevice(tensor_handle, eager_context, &eager_context->Executor(), device, false, &copied_handle)); tensors.push_back(copied_handle); tensor_handle->Unref(); } eager_context->RemoteMgr()->AddOperationOutputs(tensors, send_tensor.op_id()); return absl::OkStatus(); } Status EagerServiceImpl::SendPackedHandle( const SendPackedHandleOp& send_packed_handle, EagerContext* eager_context) { if (send_packed_handle.handles().empty()) { return errors::InvalidArgument("Handles should not be empty."); } std::vector<tensorflow::TensorHandle*> handles; handles.resize(send_packed_handle.handles_size()); for (int i = 0; i < send_packed_handle.handles_size(); ++i) { const auto& item = send_packed_handle.handles(i); if (item.has_local_handle()) { Tensor tensor; if (!ParseTensorProtoToTensor(item.local_handle().tensor(), &tensor)) { return errors::InvalidArgument( "Invalid TensorProto: ", item.local_handle().tensor().DebugString()); } Device* op_device = nullptr; TF_RETURN_IF_ERROR(eager_context->FindDeviceFromName( item.local_handle().device().c_str(), &op_device)); handles[i] = TensorHandle::CreateLocalHandle( std::move(tensor), nullptr, op_device, eager_context); } else { TF_RETURN_IF_ERROR( eager_context->RemoteMgr()->DeserializeRemoteTensorHandle( item.remote_handle(), &handles[i])); } } tensorflow::TensorHandle* packed_handle = nullptr; std::vector<tensorflow::TensorHandle*> handles_to_pack = handles; TF_RETURN_IF_ERROR(TensorHandle::CreatePackedHandle( std::move(handles_to_pack), handles.at(0)->dtype, TensorShape(), send_packed_handle.device_name(), eager_context, &packed_handle)); for (auto* h : handles) { h->Unref(); } eager_context->RemoteMgr()->AddOperationOutputs({packed_handle}, send_packed_handle.op_id()); return absl::OkStatus(); } tensorflow::Status EagerServiceImpl::GetServerContext( uint64 context_id, ServerContext** server_context) { tf_shared_lock l(contexts_mu_); auto iter = contexts_.find(context_id); if (iter == contexts_.end()) { *server_context = nullptr; return errors::Aborted(strings::Printf( "Unable to find a context_id matching the specified one " "(%llu). Perhaps the worker was restarted, or the context was GC'd?", static_cast<unsigned long long>(context_id))); } *server_context = iter->second; (*server_context)->Ref(); (*server_context)->RecordAccess(); return absl::OkStatus(); } } }
#include "tensorflow/core/distributed_runtime/eager/eager_service_impl.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <unordered_map> #include <utility> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #include "tensorflow/c/tf_tensor.h" #include "tensorflow/c/tf_tensor_internal.h" #include "tensorflow/core/common_runtime/eager/kernel_and_device.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/distributed_runtime/eager/cluster_function_library_runtime.h" #include "tensorflow/core/distributed_runtime/eager/remote_mgr.h" #include "tensorflow/core/distributed_runtime/rpc/rpc_rendezvous_mgr.h" #include "tensorflow/core/distributed_runtime/session_mgr.h" #include "tensorflow/core/distributed_runtime/test_utils.h" #include "tensorflow/core/distributed_runtime/worker_env.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/eager_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/remote_tensor_handle.pb.h" #include "tensorflow/core/protobuf/tensorflow_server.pb.h" namespace tensorflow { namespace eager { namespace { class TestEagerServiceImpl : public EagerServiceImpl { public: explicit TestEagerServiceImpl(WorkerEnv* env) : EagerServiceImpl(env) {} Status GetEagerContext(const uint64 context_id, EagerContext** ctx) { ServerContext* context = nullptr; TF_RETURN_IF_ERROR(GetServerContext(context_id, &context)); core::ScopedUnref context_unref(context); *ctx = context->Context(); return absl::OkStatus(); } Status GetTensorHandle(const uint64 context_id, const RemoteTensorHandleInternal& remote_handle, tensorflow::TensorHandle** handle) { ServerContext* context = nullptr; TF_RETURN_IF_ERROR(GetServerContext(context_id, &context)); core::ScopedUnref context_unref(context); return context->Context()->RemoteMgr()->GetTensorHandle(remote_handle, handle); } }; class FakeEagerClient : public EagerClient { public: FakeEagerClient() {} ~FakeEagerClient() override {} void SetServiceImpl(TestEagerServiceImpl* impl) { impl_ = impl; } #define CLIENT_METHOD(method) \ void method##Async(const method##Request* request, \ method##Response* response, StatusCallback done) \ override { \ done(impl_->method(request, response)); \ } CLIENT_METHOD(CreateContext); CLIENT_METHOD(UpdateContext); CLIENT_METHOD(WaitQueueDone); CLIENT_METHOD(KeepAlive); CLIENT_METHOD(CloseContext); #undef CLIENT_METHOD #define CLIENT_METHOD_WITH_TIMEOUT_AND_RETRIES(method) \ void method##Async(const method##Request* request, \ method##Response* response, StatusCallback done, \ int64_t init_timeout_in_ms, int retries) override { \ done(impl_->method(request, response)); \ } CLIENT_METHOD_WITH_TIMEOUT_AND_RETRIES(CreateContext); #undef CLIENT_METHOD_WITH_TIMEOUT_AND_RETRIES void EnqueueAsync(CallOptions* call_opts, const EnqueueRequest* request, EnqueueResponse* response, StatusCallback done) override { done(impl_->Enqueue(call_opts, request, response)); } void RunComponentFunctionAsync(CallOptions* call_opts, const RunComponentFunctionRequest* request, RunComponentFunctionResponse* response, StatusCallback done) override { impl_->RunComponentFunction(call_opts, request, response, std::move(done)); } void StreamingEnqueueAsync(bool enable_streaming_enqueue, CallOptions* call_opts, const EnqueueRequest* request, EnqueueResponse* response, StatusCallback done) override { done(impl_->Enqueue(nullptr, request, response)); } bool allow_multiple_pending_requests() const override { return false; } private: TestEagerServiceImpl* impl_; }; class DummyEagerClientCache : public EagerClientCache { public: DummyEagerClientCache() : client_(new FakeEagerClient) {} Status GetClient(const string& target, core::RefCountPtr<EagerClient>* client) override { client->reset(client_.get()); client_->Ref(); return absl::OkStatus(); } private: core::RefCountPtr<EagerClient> client_; }; class FakeCache : public TestWorkerCache { Status GetEagerClientCache( std::unique_ptr<eager::EagerClientCache>* eager_client_cache) override { *eager_client_cache = std::make_unique<DummyEagerClientCache>(); return absl::OkStatus(); } void ListWorkers(std::vector<string>* workers) const override { workers->push_back("/job:localhost/replica:0/task:0"); } }; class EagerServiceImplTest : public ::testing::Test { public: EagerServiceImplTest() : rendezvous_mgr_(&worker_env_), session_mgr_(new SessionMgr( &worker_env_, "/job:localhost/replica:0/task:0/device:CPU:0", std::unique_ptr<WorkerCacheInterface>(new FakeCache), [](const ServerDef& server_def, WorkerCacheInterface** worker_cache) { *worker_cache = new FakeCache; return absl::OkStatus(); }, nullptr)) { worker_env_.env = Env::Default(); worker_env_.rendezvous_mgr = &rendezvous_mgr_; worker_env_.session_mgr = session_mgr_.get(); device_mgr_ = std::make_unique<StaticDeviceMgr>( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); worker_env_.device_mgr = device_mgr_.get(); } protected: WorkerEnv worker_env_; tensorflow::RpcRendezvousMgr rendezvous_mgr_; std::unique_ptr<SessionMgr> session_mgr_; std::unique_ptr<DynamicDeviceMgr> device_mgr_; }; void SetTensorProto(TensorProto* tensor_proto) { int64_t dims[] = {2, 2}; float data[] = {1.0f, 2.0f, 3.0f, 4.0f}; TF_Tensor* t = TF_AllocateTensor( TF_FLOAT, &dims[0], sizeof(dims) / sizeof(int64_t), sizeof(data)); memcpy(TF_TensorData(t), &data[0], TF_TensorByteSize(t)); tensorflow::Tensor tensor; TF_ASSERT_OK(tensorflow::TF_TensorToTensor(t, &tensor)); tensor.AsProtoTensorContent(tensor_proto); TF_DeleteTensor(t); } void BuildOperation( Operation* operation, int64_t id, const string& name, const std::vector<std::variant<TensorProto, std::pair<int64_t, int32>>>& inputs, const std::unordered_map<string, AttrValue>& attrs, const string& device) { operation->set_id(id); operation->set_name(name); operation->set_device(device); for (const auto& input : inputs) { if (input.index() == 0) { *operation->add_op_inputs()->mutable_tensor() = std::get<TensorProto>(input); } else { const auto& tensor_handle_pair = std::get<std::pair<int64_t, int32>>(input); auto* input = operation->add_op_inputs()->mutable_remote_handle(); input->set_op_id(tensor_handle_pair.first); input->set_output_num(tensor_handle_pair.second); input->set_op_device(device); input->set_device(device); } } for (const auto& attr_entry : attrs) { (*operation->mutable_attrs())[attr_entry.first] = attr_entry.second; } } void AddOperationToEnqueueRequest( int64_t id, const string& name, const std::vector<std::variant<TensorProto, std::pair<int64_t, int32>>>& inputs, const std::unordered_map<string, AttrValue>& attrs, const string& device, EnqueueRequest* request) { auto* operation = request->add_queue()->mutable_operation(); BuildOperation(operation, id, name, inputs, attrs, device); } void AddOperationToRunComponentFunctionRequest( int64_t id, const string& name, const std::vector<std::variant<TensorProto, std::pair<int64_t, int32>>>& inputs, const std::unordered_map<string, AttrValue>& attrs, const string& device, const int output_num, RunComponentFunctionRequest* request) { auto* operation = request->mutable_operation(); operation->set_is_function(true); operation->set_is_component_function(true); request->add_output_num(output_num); BuildOperation(operation, id, name, inputs, attrs, device); } tensorflow::NodeDef MatMulFunctionNodeDef() { tensorflow::NodeDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( " name: 'matmul_func'" " op: 'MatMulFunction'" " input: 'a'" " input: 'a'" " attr {" " key: 'T'" " value {" " type: DT_FLOAT" " }" " }", &def)); return def; } tensorflow::FunctionDef MatMulFunction() { tensorflow::FunctionDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( " signature {" " name: 'MatMulFunction'" " input_arg {" " name: 'a'" " type: DT_FLOAT" " }" " output_arg {" " name: 'm'" " type: DT_FLOAT" " }" " }" " node_def {" " name: 'matmul'" " op: 'MatMul'" " input: 'a'" " input: 'a'" " attr {" " key: 'T'" " value {" " type: DT_FLOAT" " }" " }" " attr {" " key: 'transpose_a'" " value {" " b: false" " }" " }" " }" " ret {" " key: 'm'" " value: 'matmul:product'" " }", &def)); return def; } tensorflow::FunctionDef MatMulTransposeFunction() { tensorflow::FunctionDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( " signature {" " name: 'MatMulFunction'" " input_arg {" " name: 'a'" " type: DT_FLOAT" " }" " output_arg {" " name: 'm'" " type: DT_FLOAT" " }" " }" " node_def {" " name: 'matmul'" " op: 'MatMul'" " input: 'a'" " input: 'a'" " attr {" " key: 'T'" " value {" " type: DT_FLOAT" " }" " }" " attr {" " key: 'transpose_a'" " value {" " b: true" " }" " }" " }" " ret {" " key: 'm'" " value: 'matmul:product'" " }", &def)); return def; } tensorflow::FunctionDef MatMulNestedFunction() { tensorflow::FunctionDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( " signature {" " name: 'MatMulNestedFunction'" " input_arg {" " name: 'a'" " type: DT_FLOAT" " }" " output_arg {" " name: 'matmul_nested'" " type: DT_FLOAT" " }" " }" " node_def {" " name: 'matmul_nested'" " op: 'MatMulFunction'" " input: 'a'" " attr {" " key: 'T'" " value {" " type: DT_FLOAT" " }" " }" " }" " ret {" " key: 'matmul_nested'" " value: 'matmul_nested:m:0'" " }", &def)); return def; } tensorflow::FunctionDef SingleRecvNodeFunction() { tensorflow::FunctionDef def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( " signature {" " name: 'SingleRecvNodeFunction'" " input_arg {" " name: 'a'" " type: DT_FLOAT" " }" " output_arg {" " name: 'recv_tensor'" " type: DT_FLOAT" " }" " }" " node_def {" " name: 'recv_node'" " op: '_Recv'" " device: '/job:localhost/replica:0/task:0/device:CPU:0'" " attr {" " key: 'client_terminated'" " value {" " b: true" " }" " }" " attr {" " key: 'recv_device'" " value {" " s: '/job:localhost/replica:0/task:0/device:CPU:0'" " }" " }" " attr {" " key: 'send_device'" " value {" " s: '/job:localhost/replica:0/task:0/device:CPU:0'" " }" " }" " attr {" " key: 'send_device_incarnation'" " value {" " i: 1" " }" " }" " attr {" " key: 'tensor_name'" " value {" " s: 't0'" " }" " }" " attr {" " key: 'tensor_type'" " value {" " type: DT_FLOAT" " }" " }" " }" " ret {" " key: 'recv_tensor'" " value: 'recv_node:tensor:0'" " }", &def)); return def; } TEST_F(EagerServiceImplTest, BasicTest) { TestEagerServiceImpl eager_service_impl(&worker_env_); uint64 context_id = random::New64(); CreateContextRequest request; request.mutable_server_def()->set_job_name("localhost"); request.mutable_server_def()->set_task_index(0); request.set_context_id(context_id); CreateContextResponse response; TF_ASSERT_OK(eager_service_impl.CreateContext(&request, &response)); EnqueueRequest remote_enqueue_request; remote_enqueue_request.set_context_id(context_id); EnqueueResponse remote_enqueue_response; std::unordered_map<string, AttrValue> const_attrs; AttrValue val; val.set_type(tensorflow::DataType::DT_FLOAT); const_attrs.insert({"dtype", val}); val.Clear(); SetTensorProto(val.mutable_tensor()); const_attrs.insert({"value", val}); AddOperationToEnqueueRequest(1, "Const", {}, const_attrs, "/job:localhost/replica:0/task:0/device:CPU:0", &remote_enqueue_request); std::unordered_map<string, AttrValue> attrs; val.Clear(); val.set_type(tensorflow::DataType::DT_FLOAT); attrs.insert({"T", val}); val.Clear(); val.set_b(false); attrs.insert({"transpose_a", val}); attrs.insert({"transpose_b", val}); AddOperationToEnqueueRequest( 2, "MatMul", {std::make_pair(1, 0), std::make_pair(1, 0)}, attrs, "/job:localhost/replica:0/task:0/device:CPU:0", &remote_enqueue_request); TF_ASSERT_OK(eager_service_impl.Enqueue(nullptr, &remote_enqueue_request, &remote_enqueue_response)); auto& matmul_result_shape = remote_enqueue_response.queue_response(1).shape(0); EXPECT_EQ(matmul_result_shape.dim(0).size(), 2); EXPECT_EQ(matmul_result_shape.dim(1).size(), 2); tensorflow::TensorHandle* tensor_handle; TF_ASSERT_OK(eager_service_impl.GetTensorHandle( context_id, RemoteTensorHandleInternal(2, 0), &tensor_handle)); const tensorflow::Tensor* t = nullptr; TF_ASSERT_OK(tensor_handle->Tensor(&t)); auto actual = t->flat<float>(); EXPECT_EQ(4, actual.size()); EXPECT_EQ(7, actual(0)); EXPECT_EQ(10, actual(1)); EXPECT_EQ(15, actual(2)); EXPECT_EQ(22, actual(3)); CloseContextRequest close_context_request; close_context_request.set_context_id(context_id); close_context_request.set_context_view_id(0); CloseContextResponse close_context_response; TF_ASSERT_OK(eager_service_impl.CloseContext(&close_context_request, &close_context_response)); } class EagerServiceImplFunctionTest : public EagerServiceImplTest { public: EagerServiceImplFunctionTest() : EagerServiceImplTest() {} void TestFunction(const RegisterFunctionOp& register_op, const string& function_name, const bool local_inputs = false, const bool test_cancel = false) { TestEagerServiceImpl eager_service_impl(&worker_env_); uint64 context_id = random::New64(); CreateContextRequest request; request.mutable_server_def()->set_job_name("localhost"); request.mutable_server_def()->set_task_index(0); request.set_context_id(context_id); CreateContextResponse response; TF_ASSERT_OK(eager_service_impl.CreateContext(&request, &response)); EnqueueRequest enqueue_request; enqueue_request.set_context_id(context_id); *enqueue_request.add_queue()->mutable_register_function() = register_op; EnqueueResponse enqueue_response; TF_ASSERT_OK(eager_service_impl.Enqueue(nullptr, &enqueue_request, &enqueue_response)); EnqueueRequest remote_enqueue_request; remote_enqueue_request.set_context_id(context_id); EnqueueResponse remote_enqueue_response; if (local_inputs) { TensorProto tensor_proto; SetTensorProto(&tensor_proto); AddOperationToEnqueueRequest( 2, function_name, {tensor_proto}, std::unordered_map<string, AttrValue>(), "/job:localhost/replica:0/task:0/device:CPU:0", &remote_enqueue_request); } else { std::unordered_map<string, AttrValue> const_attrs; AttrValue val; val.set_type(tensorflow::DataType::DT_FLOAT); const_attrs.insert({"dtype", val}); val.Clear(); SetTensorProto(val.mutable_tensor()); const_attrs.insert({"value", val}); AddOperationToEnqueueRequest( 1, "Const", {}, const_attrs, "/job:localhost/replica:0/task:0/device:CPU:0", &remote_enqueue_request); AddOperationToEnqueueRequest( 2, function_name, {std::make_pair(1, 0)}, std::unordered_map<string, AttrValue>(), "/job:localhost/replica:0/task:0/device:CPU:0", &remote_enqueue_request); } CallOptions call_opts; Status status; Notification n; Env::Default()->SchedClosure([&] { status = eager_service_impl.Enqueue(&call_opts, &remote_enqueue_request, &remote_enqueue_response); n.Notify(); }); if (test_cancel) { Env::Default()->SleepForMicroseconds(500000); call_opts.StartCancel(); n.WaitForNotification(); EXPECT_TRUE(absl::IsCancelled(status)) << status.message(); } else { n.WaitForNotification(); TF_ASSERT_OK(status); const tensorflow::Tensor* t = nullptr; tensorflow::TensorHandle* tensor_handle; TF_ASSERT_OK(eager_service_impl.GetTensorHandle( context_id, RemoteTensorHandleInternal(2, 0), &tensor_handle)); TF_ASSERT_OK(tensor_handle->Tensor(&t)); auto actual = t->flat<float>(); EXPECT_EQ(4, actual.size()); EXPECT_EQ(7, actual(0)); EXPECT_EQ(10, actual(1)); EXPECT_EQ(15, actual(2)); EXPECT_EQ(22, actual(3)); } CloseContextRequest close_context_request; close_context_request.set_context_id(context_id); close_context_request.set_context_view_id(0); CloseContextResponse close_context_response; TF_ASSERT_OK(eager_service_impl.CloseContext(&close_context_request, &close_context_response)); } void TestComponentFunction(const RegisterFunctionOp& register_op, const string& function_name, const bool test_cancel) { TestEagerServiceImpl eager_service_impl(&worker_env_); uint64 context_id = random::New64(); CreateContextRequest request; request.mutable_server_def()->set_job_name("localhost"); request.mutable_server_def()->set_task_index(0); request.set_context_id(context_id); CreateContextResponse response; TF_ASSERT_OK(eager_service_impl.CreateContext(&request, &response)); EnqueueRequest enqueue_request; enqueue_request.set_context_id(context_id); *enqueue_request.add_queue()->mutable_register_function() = register_op; EnqueueResponse enqueue_response; TF_ASSERT_OK(eager_service_impl.Enqueue(nullptr, &enqueue_request, &enqueue_response)); EnqueueRequest remote_enqueue_request; remote_enqueue_request.set_context_id(context_id); EnqueueResponse remote_enqueue_response; std::unordered_map<string, AttrValue> const_attrs; AttrValue val; val.set_type(tensorflow::DataType::DT_FLOAT); const_attrs.insert({"dtype", val}); val.Clear(); SetTensorProto(val.mutable_tensor()); const_attrs.insert({"value", val}); AddOperationToEnqueueRequest(1, "Const", {}, const_attrs, "/job:localhost/replica:0/task:0/device:CPU:0", &remote_enqueue_request); TF_ASSERT_OK(eager_service_impl.Enqueue(nullptr, &remote_enqueue_request, &remote_enqueue_response)); RunComponentFunctionRequest run_comp_func_request; run_comp_func_request.set_context_id(context_id); RunComponentFunctionResponse run_comp_func_response; const int output_num = 5; AddOperationToRunComponentFunctionRequest( 2, function_name, {std::make_pair(1, 0)}, std::unordered_map<string, AttrValue>(), "/job:localhost/replica:0/task:0/device:CPU:0", output_num, &run_comp_func_request); CallOptions call_opts; Notification n; Status status; eager_service_impl.RunComponentFunction(&call_opts, &run_comp_func_request, &run_comp_func_response, [&status, &n](const Status& s) { status.Update(s); n.Notify(); }); if (test_cancel) { call_opts.StartCancel(); } n.WaitForNotification(); if (test_cancel) { EXPECT_TRUE(absl::IsCancelled(status)) << status.message(); } else { TF_ASSERT_OK(status); const tensorflow::Tensor* t = nullptr; tensorflow::TensorHandle* tensor_handle; TF_ASSERT_OK(eager_service_impl.GetTensorHandle( context_id, RemoteTensorHandleInternal(2, output_num), &tensor_handle)); TF_ASSERT_OK(tensor_handle->Tensor(&t)); auto actual = t->flat<float>(); EXPECT_EQ(4, actual.size()); EXPECT_EQ(7, actual(0)); EXPECT_EQ(10, actual(1)); EXPECT_EQ(15, actual(2)); EXPECT_EQ(22, actual(3)); } CloseContextRequest close_context_request; close_context_request.set_context_id(context_id); close_context_request.set_context_view_id(0); CloseContextResponse close_context_response; TF_ASSERT_OK(eager_service_impl.CloseContext(&close_context_request, &close_context_response)); } }; TEST_F(EagerServiceImplFunctionTest, BasicFunctionTest) { RegisterFunctionOp register_op; *register_op.mutable_function_def() = MatMulFunction(); TestFunction(register_op, "MatMulFunction"); } TEST_F(EagerServiceImplFunctionTest, FunctionWithLocalInputsTest) { RegisterFunctionOp register_op; *register_op.mutable_function_def() = MatMulFunction(); TestFunction(register_op, "MatMulFunction", true); } TEST_F(EagerServiceImplFunctionTest, NestedFunctionTest) { RegisterFunctionOp register_op; *register_op.mutable_function_def() = MatMulNestedFunction(); *register_op.mutable_library()->add_function() = MatMulFunction(); TestFunction(register_op, "MatMulNestedFunction"); } TEST_F(EagerServiceImplFunctionTest, FunctionCancellationTest) { RegisterFunctionOp register_op; *register_op.mutable_function_def() = SingleRecvNodeFunction(); TestFunction(register_op, "SingleRecvNodeFunction", false, true); } TEST_F(EagerServiceImplFunctionTest, ComponentFunctionTest) { RegisterFunctionOp register_op; *register_op.mutable_function_def() = MatMulFunction(); register_op.set_is_component_function(true); TestComponentFunction(register_op, "MatMulFunction", false); } TEST_F(EagerServiceImplFunctionTest, ComponentFunctionCancellationTest) { RegisterFunctionOp register_op; *register_op.mutable_function_def() = SingleRecvNodeFunction(); register_op.set_is_component_function(true); TestComponentFunction(register_op, "SingleRecvNodeFunction", true); } TEST_F(EagerServiceImplFunctionTest, ComponentNestedFunctionTest) { RegisterFunctionOp register_op; *register_op.mutable_function_def() = MatMulNestedFunction(); *register_op.mutable_library()->add_function() = MatMulFunction(); register_op.set_is_component_function(true); TestComponentFunction(register_op, "MatMulNestedFunction", false); } TEST_F(EagerServiceImplFunctionTest, ComponentNestedFunctionWithNameClashTest) { TestEagerServiceImpl eager_service_impl(&worker_env_); uint64 context_id = random::New64(); CreateContextRequest request; request.mutable_server_def()->set_job_name("localhost"); request.mutable_server_def()->set_task_index(0); request.set_context_id(context_id); CreateContextResponse response; TF_ASSERT_OK(eager_service_impl.CreateContext(&request, &response)); { EnqueueRequest enqueue_request; enqueue_request.set_context_id(context_id); RegisterFunctionOp* register_op = enqueue_request.add_queue()->mutable_register_function(); *register_op->mutable_function_def() = MatMulNestedFunction(); *register_op->mutable_library()->add_function() = MatMulFunction(); register_op->set_is_component_function(true); EnqueueResponse enqueue_response; TF_ASSERT_OK(eager_service_impl.Enqueue(nullptr, &enqueue_request, &enqueue_response)); } { EnqueueRequest enqueue_request; enqueue_request.set_context_id(context_id); RegisterFunctionOp* register_op = enqueue_request.add_queue()->mutable_register_function(); *register_op->mutable_function_def() = MatMulNestedFunction(); register_op->mutable_function_def()->mutable_signature()->set_name( "MatMulNestedTransposeFunction"); *register_op->mutable_library()->add_function() = MatMulTransposeFunction(); register_op->set_is_component_function(true); EnqueueResponse enqueue_response; TF_ASSERT_OK(eager_service_impl.Enqueue(nullptr, &enqueue_request, &enqueue_response)); } EnqueueRequest remote_enqueue_request; remote_enqueue_request.set_context_id(context_id); EnqueueResponse remote_enqueue_response; std::unordered_map<string, AttrValue> const_attrs; AttrValue val; val.set_type(tensorflow::DataType::DT_FLOAT); const_attrs.insert({"dtype", val}); val.Clear(); SetTensorProto(val.mutable_tensor()); const_attrs.insert({"value", val}); AddOperationToEnqueueRequest(1, "Const", {}, const_attrs, "/job:localhost/replica:0/task:0/device:CPU:0", &remote_enqueue_request); TF_ASSERT_OK(eager_service_impl.Enqueue(nullptr, &remote_enqueue_request, &remote_enqueue_response)); { RunComponentFunctionRequest run_comp_func_request; run_comp_func_request.set_context_id(context_id); RunComponentFunctionResponse run_comp_func_response; const int output_num = 5; AddOperationToRunComponentFunctionRequest( 2, "MatMulNestedFunction", {std::make_pair(1, 0)}, std::unordered_map<string, AttrValue>(), "/job:localhost/replica:0/task:0/device:CPU:0", output_num, &run_comp_func_request); CallOptions call_opts; Notification n; Status status; eager_service_impl.RunComponentFunction(&call_opts, &run_comp_func_request, &run_comp_func_response, [&status, &n](const Status& s) { status.Update(s); n.Notify(); }); n.WaitForNotification(); TF_ASSERT_OK(status); const tensorflow::Tensor* t = nullptr; tensorflow::TensorHandle* tensor_handle; TF_ASSERT_OK(eager_service_impl.GetTensorHandle( context_id, RemoteTensorHandleInternal(2, output_num), &tensor_handle)); TF_ASSERT_OK(tensor_handle->Tensor(&t)); auto actual = t->flat<float>(); EXPECT_EQ(4, actual.size()); EXPECT_EQ(7, actual(0)); EXPECT_EQ(10, actual(1)); EXPECT_EQ(15, actual(2)); EXPECT_EQ(22, actual(3)); } { RunComponentFunctionRequest run_comp_func_request; run_comp_func_request.set_context_id(context_id); RunComponentFunctionResponse run_comp_func_response; const int output_num = 5; AddOperationToRunComponentFunctionRequest( 3, "MatMulNestedTransposeFunction", {std::make_pair(1, 0)}, std::unordered_map<string, AttrValue>(), "/job:localhost/replica:0/task:0/device:CPU:0", output_num, &run_comp_func_request); CallOptions call_opts; Notification n; Status status; eager_service_impl.RunComponentFunction(&call_opts, &run_comp_func_request, &run_comp_func_response, [&status, &n](const Status& s) { status.Update(s); n.Notify(); }); n.WaitForNotification(); TF_ASSERT_OK(status); const tensorflow::Tensor* t = nullptr; tensorflow::TensorHandle* tensor_handle; TF_ASSERT_OK(eager_service_impl.GetTensorHandle( context_id, RemoteTensorHandleInternal(3, output_num), &tensor_handle)); TF_ASSERT_OK(tensor_handle->Tensor(&t)); auto actual = t->flat<float>(); EXPECT_EQ(4, actual.size()); EXPECT_EQ(10, actual(0)); EXPECT_EQ(14, actual(1)); EXPECT_EQ(14, actual(2)); EXPECT_EQ(20, actual(3)); } CloseContextRequest close_context_request; close_context_request.set_context_id(context_id); close_context_request.set_context_view_id(0); CloseContextResponse close_context_response; TF_ASSERT_OK(eager_service_impl.CloseContext(&close_context_request, &close_context_response)); } class FunctionWithRemoteInputsTest : public EagerServiceImplTest { public: FunctionWithRemoteInputsTest() : EagerServiceImplTest(), eager_service_impl_(&worker_env_) { remote_device_mgr_ = std::make_unique<StaticDeviceMgr>( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:1")); context_id_ = random::New64(); } class TestExecuteNodeArgs : public EagerKernelArgs { public: TestExecuteNodeArgs( absl::InlinedVector<TensorValue, 4UL>&& tensor_args, std::function<Status(const int, eager::RemoteTensorHandle*)> serialize_remote_handle) : EagerKernelArgs(std::move(tensor_args)), serialize_remote_handle_(std::move(serialize_remote_handle)) {} bool HasRemoteOrPackedInputs() const override { return true; } Status GetRemoteArg(const FunctionArgIndex& index, eager::RemoteTensorHandle* val) const override { return serialize_remote_handle_(index.index, val); } private: std::function<Status(const int, eager::RemoteTensorHandle*)> serialize_remote_handle_; }; bool MatMulHasAttrWithDefaultValue(const tensorflow::FunctionDef& fdef) { for (const auto& node : fdef.node_def()) { if (node.op() == "MatMul") { return node.attr().find("transpose_a") != node.attr().end(); } } return false; } void Init() { CreateContextRequest request; request.mutable_server_def()->set_job_name("localhost"); request.mutable_server_def()->set_task_index(0); request.set_context_id(context_id_); CreateContextResponse response; TF_ASSERT_OK(eager_service_impl_.CreateContext(&request, &response)); EagerContext* ctx = nullptr; TF_ASSERT_OK(eager_service_impl_.GetEagerContext(context_id_, &ctx)); Device* device; TF_ASSERT_OK(ctx->FindDeviceFromName(local_device_.c_str(), &device)); core::RefCountPtr<EagerClient> client; TF_ASSERT_OK(ctx->GetClient(device, &client)); FakeEagerClient* fake_client = static_cast<FakeEagerClient*>(client.get()); fake_client->SetServiceImpl(&eager_service_impl_); EnqueueRequest remote_enqueue_request; remote_enqueue_request.set_context_id(context_id_); EnqueueResponse remote_enqueue_response; std::unordered_map<string, AttrValue> const_attrs; AttrValue val; val.set_type(tensorflow::DataType::DT_FLOAT); const_attrs.insert({"dtype", val}); val.Clear(); SetTensorProto(val.mutable_tensor()); const_attrs.insert({"value", val}); AddOperationToEnqueueRequest(1, "Const", {}, const_attrs, local_device_, &remote_enqueue_request); TF_EXPECT_OK(eager_service_impl_.Enqueue(nullptr, &remote_enqueue_request, &remote_enqueue_response)); eager_cluster_flr_ = std::make_unique<EagerClusterFunctionLibraryRuntime>( context_id_, ctx, device_mgr_.get()); fdef_ = MatMulFunction(); TF_ASSERT_OK(func_lib_def_.AddFunctionDef(fdef_)); eager_pflr_ = std::make_unique<ProcessFunctionLibraryRuntime>( remote_device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, &func_lib_def_, OptimizerOptions(), nullptr, eager_cluster_flr_.get(), nullptr, Rendezvous::Factory{[this](const int64_t step_id, const DeviceMgr* device_mgr, tsl::core::RefCountPtr<Rendezvous>* r) { *r = tsl::core::RefCountPtr<Rendezvous>( worker_env_.rendezvous_mgr->Find(step_id).release()); return absl::OkStatus(); }}); } void CheckOutputTensorAndClose(const Tensor& tensor) { auto actual = tensor.flat<float>(); EXPECT_EQ(4, actual.size()); EXPECT_EQ(7, actual(0)); EXPECT_EQ(10, actual(1)); EXPECT_EQ(15, actual(2)); EXPECT_EQ(22, actual(3)); CloseContextRequest close_context_request; close_context_request.set_context_id(context_id_); close_context_request.set_context_view_id(0); CloseContextResponse close_context_response; TF_ASSERT_OK(eager_service_impl_.CloseContext(&close_context_request, &close_context_response)); } void CheckOutputsAndClose(const std::vector<FunctionRet>& outputs, const int64_t op_id) { const tensorflow::Tensor* t = nullptr; tensorflow::TensorHandle* tensor_handle; TF_ASSERT_OK(eager_service_impl_.GetTensorHandle( context_id_, RemoteTensorHandleInternal(2, 0), &tensor_handle)); TF_ASSERT_OK(tensor_handle->Tensor(&t)); EXPECT_EQ(outputs.size(), 1); EXPECT_EQ(outputs.at(0).index(), 1); const TensorShape& shape = std::get<TensorShape>(outputs.at(0)); EXPECT_EQ(shape, t->shape()); CheckOutputTensorAndClose(*t); } protected: const string local_device_ = "/job:localhost/replica:0/task:0/device:CPU:0"; const string remote_device_ = "/job:localhost/replica:0/task:1/device:CPU:0"; TestEagerServiceImpl eager_service_impl_; std::unique_ptr<DeviceMgr> remote_device_mgr_; uint64 context_id_; tensorflow::FunctionDef fdef_; std::unique_ptr<ProcessFunctionLibraryRuntime> eager_pflr_; std::unique_ptr<EagerClusterFunctionLibraryRuntime> eager_cluster_flr_; FunctionLibraryDefinition func_lib_def_{OpRegistry::Global(), FunctionDefLibrary()}; }; TEST_F(FunctionWithRemoteInputsTest, EagerPFLRTest) { Init(); FunctionLibraryRuntime::InstantiateOptions options; options.target = remote_device_; options.is_multi_device_function = true; options.input_devices.push_back(local_device_); FunctionLibraryRuntime::Handle handle; EXPECT_TRUE(MatMulHasAttrWithDefaultValue(fdef_)); TF_ASSERT_OK(eager_pflr_->Instantiate( fdef_.signature().name(), AttrSlice(&fdef_.attr()), options, &handle)); EagerContext* ctx = nullptr; TF_ASSERT_OK(eager_service_impl_.GetEagerContext(context_id_, &ctx)); for (const string& func_name : ctx->FuncLibDef()->ListFunctionNames()) { const FunctionDef* fdef = ctx->FuncLibDef()->Find(func_name); EXPECT_TRUE(fdef != nullptr); if (absl::StartsWith(func_name, "MatMulFunction")) { EXPECT_FALSE(MatMulHasAttrWithDefaultValue(*fdef)); } } bool is_cross_process = false; TF_CHECK_OK(eager_pflr_->IsCrossProcess(handle, &is_cross_process)); EXPECT_TRUE(is_cross_process); FunctionLibraryRuntime::Options opts; const uint64 op_id = 2; opts.op_id = op_id; Notification done; Status status; RemoteTensorHandle input; input.set_op_id(1); input.set_output_num(0); input.set_op_device(local_device_); input.set_device(local_device_); std::vector<RemoteTensorHandle> inputs = {input}; std::vector<FunctionRet> outputs; absl::InlinedVector<TensorValue, 4UL> tensor_args = {TensorValue()}; TestExecuteNodeArgs args( std::move(tensor_args), [&inputs](const int i, RemoteTensorHandle* handle) -> Status { *handle = inputs.at(i); return absl::OkStatus(); }); eager_pflr_->Run(opts, handle, args, &outputs, [&status, &done](const Status& s) { status = s; done.Notify(); }); done.WaitForNotification(); TF_ASSERT_OK(status); CheckOutputsAndClose(outputs, op_id); } TEST_F(FunctionWithRemoteInputsTest, EagerClusterFLRTestWithLocalInputAndOutput) { Init(); FunctionLibraryRuntime::Handle handle; EXPECT_TRUE(MatMulHasAttrWithDefaultValue(fdef_)); Status status; Notification instantiate_done; eager_cluster_flr_->Instantiate( fdef_.signature().name(), func_lib_def_, AttrSlice(&fdef_.attr()), FunctionLibraryRuntime::InstantiateOptions(), &handle, [&status, &instantiate_done](const Status& s) { status = s; instantiate_done.Notify(); }); instantiate_done.WaitForNotification(); TF_ASSERT_OK(status); EagerContext* ctx = nullptr; TF_ASSERT_OK(eager_service_impl_.GetEagerContext(context_id_, &ctx)); for (const string& func_name : ctx->FuncLibDef()->ListFunctionNames()) { const FunctionDef* fdef = ctx->FuncLibDef()->Find(func_name); EXPECT_TRUE(fdef != nullptr); if (absl::StartsWith(func_name, "MatMulFunction")) { EXPECT_FALSE(MatMulHasAttrWithDefaultValue(*fdef)); } } const tensorflow::Tensor* input_tensor = nullptr; tensorflow::TensorHandle* tensor_handle; TF_ASSERT_OK(eager_service_impl_.GetTensorHandle( context_id_, RemoteTensorHandleInternal(1, 0), &tensor_handle)); TF_ASSERT_OK(tensor_handle->Tensor(&input_tensor)); FunctionLibraryRuntime::Options opts; Notification execute_done; std::vector<Tensor> inputs = {*input_tensor}; std::vector<Tensor> outputs; eager_cluster_flr_->Run(opts, handle, inputs, &outputs, [&status, &execute_done](const Status& s) { status = s; execute_done.Notify(); }); execute_done.WaitForNotification(); TF_ASSERT_OK(status); EXPECT_EQ(outputs.size(), 1); CheckOutputTensorAndClose(outputs.at(0)); } TEST_F(FunctionWithRemoteInputsTest, KernelAndDeviceFuncTest) { Init(); Device* local_device; TF_ASSERT_OK(device_mgr_->LookupDevice(local_device_, &local_device)); std::vector<Device*> input_dev_ptrs; input_dev_ptrs.push_back(local_device); FunctionLibraryRuntime* flr = eager_pflr_->GetFLR(remote_device_); EagerContext* ctx = nullptr; TF_ASSERT_OK(eager_service_impl_.GetEagerContext(context_id_, &ctx)); core::RefCountPtr<KernelAndDeviceFunc> kernel = nullptr; const int64_t op_id = 2; kernel.reset(new KernelAndDeviceFunc( flr, eager_pflr_.get(), std::move(input_dev_ptrs), {}, {}, nullptr, nullptr, local_device, fdef_.signature().name(), false, false, false, true, false, std::nullopt, false, ctx->RendezvousFactory(), [=]() { return op_id; })); const NodeDef node_def = MatMulFunctionNodeDef(); TF_ASSERT_OK(kernel->InstantiateFunc({}, node_def, nullptr, std::nullopt)); absl::InlinedVector<TensorValue, 4UL> input_tensors = {TensorValue()}; RemoteTensorHandle input; input.set_op_id(1); input.set_output_num(0); input.set_op_device(local_device_); input.set_device(local_device_); std::vector<RemoteTensorHandle> remote_handles = {input}; TestExecuteNodeArgs inputs( std::move(input_tensors), [&remote_handles](const int index, RemoteTensorHandle* handle) -> Status { *handle = remote_handles.at(index); return absl::OkStatus(); }); std::vector<FunctionRet> outputs; TF_ASSERT_OK(kernel->Run(nullptr, inputs, &outputs, nullptr, std::nullopt, std::nullopt, nullptr)); CheckOutputsAndClose(outputs, op_id); } TEST_F(FunctionWithRemoteInputsTest, KernelAndDeviceFuncAsyncTest) { Init(); Device* local_device; TF_ASSERT_OK(device_mgr_->LookupDevice(local_device_, &local_device)); std::vector<Device*> input_dev_ptrs; input_dev_ptrs.push_back(local_device); FunctionLibraryRuntime* flr = eager_pflr_->GetFLR(remote_device_); EagerContext* ctx = nullptr; TF_ASSERT_OK(eager_service_impl_.GetEagerContext(context_id_, &ctx)); core::RefCountPtr<KernelAndDeviceFunc> kernel = nullptr; const int64_t op_id = 2; kernel.reset(new KernelAndDeviceFunc( flr, eager_pflr_.get(), std::move(input_dev_ptrs), {}, {}, nullptr, nullptr, local_device, fdef_.signature().name(), false, false, false, true, false, std::nullopt, false, ctx->RendezvousFactory(), [=]() { return op_id; })); const NodeDef node_def = MatMulFunctionNodeDef(); TF_ASSERT_OK(kernel->InstantiateFunc({}, node_def, nullptr, std::nullopt)); absl::InlinedVector<TensorValue, 4UL> input_tensors = {TensorValue()}; RemoteTensorHandle input; input.set_op_id(1); input.set_output_num(0); input.set_op_device(local_device_); input.set_device(local_device_); std::vector<RemoteTensorHandle> remote_handles = {input}; TestExecuteNodeArgs inputs( std::move(input_tensors), [&remote_handles](const int index, RemoteTensorHandle* handle) -> Status { *handle = remote_handles.at(index); return absl::OkStatus(); }); std::vector<FunctionRet> outputs; Status status; Notification n; kernel->RunAsync(nullptr, inputs, &outputs, nullptr, std::nullopt, nullptr, [&status, &n](const Status& s) { status = s; n.Notify(); }); n.WaitForNotification(); TF_ASSERT_OK(status); CheckOutputsAndClose(outputs, op_id); } TEST_F(EagerServiceImplTest, SendTensorTest) { TestEagerServiceImpl eager_service_impl(&worker_env_); uint64 context_id = random::New64(); CreateContextRequest request; request.mutable_server_def()->set_job_name("localhost"); request.mutable_server_def()->set_task_index(0); request.set_context_id(context_id); CreateContextResponse response; TF_ASSERT_OK(eager_service_impl.CreateContext(&request, &response)); EnqueueRequest remote_enqueue_request; remote_enqueue_request.set_context_id(context_id); EnqueueResponse remote_enqueue_response; auto* send_tensor = remote_enqueue_request.add_queue()->mutable_send_tensor(); send_tensor->set_op_id(1); SetTensorProto(send_tensor->add_tensors()); std::unordered_map<string, AttrValue> attrs; AttrValue val; val.Clear(); val.set_type(tensorflow::DataType::DT_FLOAT); attrs.insert({"T", val}); val.Clear(); val.set_b(false); attrs.insert({"transpose_a", val}); attrs.insert({"transpose_b", val}); AddOperationToEnqueueRequest( 2, "MatMul", {std::make_pair(1, 0), std::make_pair(1, 0)}, attrs, "/job:localhost/replica:0/task:0/device:CPU:0", &remote_enqueue_request); TF_ASSERT_OK(eager_service_impl.Enqueue(nullptr, &remote_enqueue_request, &remote_enqueue_response)); const tensorflow::Tensor* t = nullptr; tensorflow::TensorHandle* tensor_handle; TF_ASSERT_OK(eager_service_impl.GetTensorHandle( context_id, RemoteTensorHandleInternal(2, 0), &tensor_handle)); TF_ASSERT_OK(tensor_handle->Tensor(&t)); EXPECT_EQ(tensor_handle->device(), nullptr); auto actual = t->flat<float>(); EXPECT_EQ(4, actual.size()); EXPECT_EQ(7, actual(0)); EXPECT_EQ(10, actual(1)); EXPECT_EQ(15, actual(2)); EXPECT_EQ(22, actual(3)); CloseContextRequest close_context_request; close_context_request.set_context_id(context_id); close_context_request.set_context_view_id(0); CloseContextResponse close_context_response; TF_ASSERT_OK(eager_service_impl.CloseContext(&close_context_request, &close_context_response)); } TEST_F(EagerServiceImplTest, SendPackedHandleTest) { TestEagerServiceImpl eager_service_impl(&worker_env_); const string device0 = "/job:localhost/replica:0/task:0/device:CPU:0"; const string device1 = "/job:localhost/replica:0/task:1/device:CPU:0"; const string device2 = "/job:localhost/replica:0/task:2/device:CPU:0"; const string composite_device = "/job:localhost/replica:0/task:0/device:COMPOSITE:0"; uint64 context_id = random::New64(); CreateContextRequest request; auto* server_def = request.mutable_server_def(); server_def->set_job_name("localhost"); server_def->set_task_index(0); request.add_cluster_device_attributes()->set_name(device0); request.add_cluster_device_attributes()->set_name(device1); request.add_cluster_device_attributes()->set_name(device2); request.set_context_id(context_id); CreateContextResponse response; TF_ASSERT_OK(eager_service_impl.CreateContext(&request, &response)); EnqueueRequest remote_enqueue_request; remote_enqueue_request.set_context_id(context_id); EnqueueResponse remote_enqueue_response; auto* send_tensor = remote_enqueue_request.add_queue()->mutable_send_tensor(); send_tensor->set_op_id(1); SetTensorProto(send_tensor->add_tensors()); auto* send_packed_handle = remote_enqueue_request.add_queue()->mutable_send_packed_handle(); send_packed_handle->set_op_id(3); RemoteTensorHandle* remote_handle = send_packed_handle->add_handles()->mutable_remote_handle(); remote_handle->set_op_id(send_tensor->op_id()); remote_handle->set_output_num(0); remote_handle->set_op_device(device0); remote_handle->set_device(device0); SendPackedHandleOp::LocalTensorHandle* lcoal_handle = send_packed_handle->add_handles()->mutable_local_handle(); SetTensorProto(lcoal_handle->mutable_tensor()); lcoal_handle->set_device(device1); remote_handle = send_packed_handle->add_handles()->mutable_remote_handle(); remote_handle->set_op_id(2); remote_handle->set_output_num(5); remote_handle->set_op_device(device2); remote_handle->set_device(device2); TF_ASSERT_OK(eager_service_impl.Enqueue(nullptr, &remote_enqueue_request, &remote_enqueue_response)); tensorflow::TensorHandle* packed_handle; TF_ASSERT_OK(eager_service_impl.GetTensorHandle( context_id, RemoteTensorHandleInternal(3, 0), &packed_handle)); EXPECT_EQ(packed_handle->Type(), TensorHandle::PACKED); EXPECT_EQ(packed_handle->NumPackedHandles(), 3); EXPECT_EQ(packed_handle->device()->name(), composite_device); TensorHandle* handle0 = nullptr; TF_ASSERT_OK(packed_handle->ExtractPackedHandle(0, &handle0)); EXPECT_EQ(handle0->Type(), TensorHandle::LOCAL); EXPECT_EQ(handle0->op_device()->name(), device0); const Tensor* t0 = nullptr; TF_ASSERT_OK(handle0->Tensor(&t0)); auto actual = t0->flat<float>(); EXPECT_EQ(4, actual.size()); EXPECT_EQ(1.0, actual(0)); EXPECT_EQ(2.0, actual(1)); EXPECT_EQ(3.0, actual(2)); EXPECT_EQ(4.0, actual(3)); TensorHandle* handle1 = nullptr; TF_ASSERT_OK(packed_handle->ExtractPackedHandle(1, &handle1)); EXPECT_EQ(handle1->Type(), TensorHandle::LOCAL); EXPECT_EQ(handle1->op_device()->name(), device1); const Tensor* t1 = nullptr; TF_ASSERT_OK(handle0->Tensor(&t1)); EXPECT_EQ(t1, t0); TensorHandle* handle2 = nullptr; TF_ASSERT_OK(packed_handle->ExtractPackedHandle(2, &handle2)); EXPECT_EQ(handle2->Type(), TensorHandle::REMOTE); EXPECT_EQ(handle2->op_device()->name(), device2); int64_t op_id; int32_t output_num; TF_ASSERT_OK(handle2->RemoteAddress(handle2->device(), true, &op_id, &output_num)); EXPECT_EQ(op_id, 2); EXPECT_EQ(output_num, 5); CloseContextRequest close_context_request; close_context_request.set_context_id(context_id); close_context_request.set_context_view_id(0); CloseContextResponse close_context_response; TF_ASSERT_OK(eager_service_impl.CloseContext(&close_context_request, &close_context_response)); } TEST_F(EagerServiceImplTest, RequestsToMasterTest) { tsl::core::RefCountPtr<tensorflow::Rendezvous> rendezvous = tsl::core::RefCountPtr<tensorflow::Rendezvous>( new tensorflow::IntraProcessRendezvous(device_mgr_.get())); tensorflow::EagerContext* ctx = new tensorflow::EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, device_mgr_.get(), false, std::move(rendezvous), nullptr, nullptr, true); const uint64 context_id = random::New64(); auto remote_mgr = std::make_unique<tensorflow::eager::RemoteMgr>(true, ctx); TF_ASSERT_OK(ctx->InitializeRemoteWorker( nullptr, nullptr, {}, context_id, 0, nullptr, nullptr, std::move(remote_mgr), nullptr)); TestEagerServiceImpl eager_service_impl(&worker_env_); EnqueueRequest remote_enqueue_request; remote_enqueue_request.set_context_id(context_id); EnqueueResponse remote_enqueue_response; auto* send_tensor = remote_enqueue_request.add_queue()->mutable_send_tensor(); send_tensor->set_op_id(1); SetTensorProto(send_tensor->add_tensors()); Status status = eager_service_impl.Enqueue(nullptr, &remote_enqueue_request, &remote_enqueue_response); EXPECT_EQ(error::ABORTED, status.code()); EXPECT_TRUE(absl::StrContains( status.message(), "Unable to find a context_id matching the specified one")); TF_ASSERT_OK(eager_service_impl.CreateMasterContext(context_id, ctx)); TF_ASSERT_OK(eager_service_impl.Enqueue(nullptr, &remote_enqueue_request, &remote_enqueue_response)); ctx->Unref(); } TEST_F(EagerServiceImplTest, KeepAliveTest) { TestEagerServiceImpl eager_service_impl(&worker_env_); uint64 context_id = random::New64(); CreateContextRequest request; request.mutable_server_def()->set_job_name("localhost"); request.mutable_server_def()->set_task_index(0); request.set_context_id(context_id); request.set_keep_alive_secs(3); CreateContextResponse response; TF_ASSERT_OK(eager_service_impl.CreateContext(&request, &response)); worker_env_.env->SleepForMicroseconds(5 * tensorflow::EnvTime::kSecondsToMicros); KeepAliveRequest keep_alive_request; KeepAliveResponse keep_alive_response; keep_alive_request.set_context_id(context_id); Status status = eager_service_impl.KeepAlive(&keep_alive_request, &keep_alive_response); EXPECT_EQ(status.code(), error::ABORTED); EXPECT_PRED_FORMAT2(::testing::IsSubstring, "Unable to find a context_id", std::string(status.message())); uint64 new_context_id = random::New64(); request.set_context_id(new_context_id); TF_ASSERT_OK(eager_service_impl.CreateContext(&request, &response)); worker_env_.env->SleepForMicroseconds(1 * tensorflow::EnvTime::kSecondsToMicros); keep_alive_request.set_context_id(new_context_id); TF_ASSERT_OK( eager_service_impl.KeepAlive(&keep_alive_request, &keep_alive_response)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/eager/eager_service_impl.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/eager/eager_service_impl_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1f3c6aef-7f7d-42a7-8cfa-9656e271f9f0
cpp
tensorflow/tensorflow
remote_mgr
tensorflow/core/distributed_runtime/eager/remote_mgr.cc
tensorflow/core/distributed_runtime/eager/remote_mgr_test.cc
#include "tensorflow/core/distributed_runtime/eager/remote_mgr.h" #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/distributed_runtime/eager/remote_tensor_handle.h" #include "tensorflow/core/platform/error_payloads.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/env_var.h" namespace tensorflow { namespace { Status WithErrorSourcePayload(Status error) { core::platform::ErrorSourceProto error_source_proto; error_source_proto.set_error_source( core::platform::ErrorSourceProto::EAGER_REMOTE_MGR); error.SetPayload(tensorflow::kErrorSource, absl::Cord(error_source_proto.SerializeAsString())); return error; } } namespace eager { void RemoteMgr::AddOperationOutputs( const absl::Span<tensorflow::TensorHandle* const> handles, int64_t operation_id) { mutex_lock l(remote_tensor_handle_mu_); for (int i = 0, end = handles.size(); i < end; i++) { remote_tensor_handle_map_.emplace( RemoteTensorHandleInternal(operation_id, i), handles[i]); } } void RemoteMgr::AddOperationOutput(tensorflow::TensorHandle* handle, int64_t operation_id, int32_t output_num) { mutex_lock l(remote_tensor_handle_mu_); remote_tensor_handle_map_.emplace( RemoteTensorHandleInternal(operation_id, output_num), handle); } Status RemoteMgr::GetTensorHandleImpl( const RemoteTensorHandleInternal& remote_handle, tensorflow::TensorHandle** handle) { auto iter = remote_tensor_handle_map_.find(remote_handle); if (iter == remote_tensor_handle_map_.end()) { std::string error_message = absl::StrCat( "Unable to find the relevant tensor remote_handle: Op ID: ", remote_handle.op_id, ", Output num: ", remote_handle.output_num, ". One possible cause is that the tensor was accessed after " "deallocation in a distributed worker setup."); bool result; TF_CHECK_OK(ReadBoolFromEnvVar("TF_ENABLE_EAGER_CLIENT_STREAMING_ENQUEUE", true, &result)); if (result) { std::string error_message_ext; absl::StrAppend( &error_message_ext, error_message, "Try setting " "`os.environ['TF_ENABLE_EAGER_CLIENT_STREAMING_ENQUEUE']='False'` in " "your client to disable async streaming behavior to see if it fixes " "the problem."); return WithErrorSourcePayload( absl::InvalidArgumentError(error_message_ext)); } return WithErrorSourcePayload(absl::InvalidArgumentError(error_message)); } *handle = iter->second; return absl::OkStatus(); } Status RemoteMgr::GetTensorHandle( const RemoteTensorHandleInternal& remote_handle, tensorflow::TensorHandle** handle) { tf_shared_lock l(remote_tensor_handle_mu_); return GetTensorHandleImpl(remote_handle, handle); } Status RemoteMgr::GetMirroredResourceShape( const RemoteTensorHandleInternal& remote_handle, std::vector<DtypeAndPartialTensorShape>* handle) { tf_shared_lock l(mirrored_resource_shape_mu_); auto iter = mirrored_resource_shape_map_.find(remote_handle); if (iter == mirrored_resource_shape_map_.end()) { return WithErrorSourcePayload(errors::InvalidArgument( "Unable to find the relevant tensor remote_handle: Op ID: ", remote_handle.op_id, ", Output num: ", remote_handle.output_num, ". One possible cause is that the tensor was accessed after " "deallocation in a distributed worker setup. Try setting " "`os.environ['TF_ENABLE_EAGER_CLIENT_STREAMING_ENQUEUE']='False'` in " "your client to disable async streaming behavior to see if it fixes " "the problem.")); } *handle = iter->second; return absl::OkStatus(); } Status RemoteMgr::GetRemoteTensorHandle(const tensorflow::TensorHandle* handle, const bool wait_until_ready, int64_t* op_id, int32* output_num) { TF_RETURN_IF_ERROR(handle->RemoteAddress(handle->device(), wait_until_ready, op_id, output_num)); tensorflow::TensorHandle* h; TF_RETURN_IF_ERROR( GetTensorHandleImpl(RemoteTensorHandleInternal(*op_id, *output_num), &h)); if (handle != h) { return WithErrorSourcePayload(errors::Internal( "Found two different tensor handles with the same op_id:", *op_id, " and output_num:", *output_num)); } return absl::OkStatus(); } Status RemoteMgr::DeleteTensorHandle( const RemoteTensorHandleInternal& remote_handle) { { mutex_lock l(remote_tensor_handle_mu_); auto iter = remote_tensor_handle_map_.find(remote_handle); if (iter != remote_tensor_handle_map_.end()) { iter->second->Unref(); remote_tensor_handle_map_.erase(iter); return absl::OkStatus(); } } { mutex_lock l(mirrored_resource_shape_mu_); auto iter = mirrored_resource_shape_map_.find(remote_handle); if (iter != mirrored_resource_shape_map_.end()) { mirrored_resource_shape_map_.erase(iter); return absl::OkStatus(); } } return WithErrorSourcePayload(errors::InvalidArgument( "Unable to find the relevant tensor remote_handle: Op ID: ", remote_handle.op_id, ", Output num: ", remote_handle.output_num)); } Status RemoteMgr::SerializeRemoteTensorHandle( TensorHandle* in, const bool wait_until_ready, RemoteTensorHandle* out, Device* device, absl::string_view device_name, const bool serialize_resource_dtype_and_shape) { int64_t op_id; int32_t output_num; auto status = in->RemoteAddress(device, wait_until_ready, &op_id, &output_num); if (!status.ok()) { LOG(ERROR) << "Failed to get remote address for tensor handle with given device " << device->name() << " error " << status.message(); tf_shared_lock l(remote_tensor_handle_mu_); TF_RETURN_IF_ERROR( GetRemoteTensorHandle(in, wait_until_ready, &op_id, &output_num)); } out->Clear(); out->set_op_id(op_id); out->set_output_num(output_num); out->set_op_device(in->op_device() ? in->op_device()->name() : ""); out->set_device(device_name.empty() ? std::string(in->DeviceOrHostCPU(*parent_)->name()) : std::string(device_name)); out->set_dtype(in->dtype); if (serialize_resource_dtype_and_shape) { std::vector<DtypeAndPartialTensorShape> resource_dtypes_and_shapes; TF_RETURN_IF_ERROR( in->GetResourceHandleDtypesAndShapes(&resource_dtypes_and_shapes)); for (const auto& dtype_and_shape : resource_dtypes_and_shapes) { ResourceDtypeAndShape* dtype_and_shape_proto = out->add_resource_dtypes_and_shapes(); dtype_and_shape_proto->set_dtype(dtype_and_shape.dtype); dtype_and_shape.shape.AsProto(dtype_and_shape_proto->mutable_shape()); } } return absl::OkStatus(); } Status RemoteMgr::DeserializeRemoteTensorHandle(const RemoteTensorHandle& in, TensorHandle** out) { Device* device; if (parent_->local_device_mgr()->LookupDevice(in.op_device(), &device).ok() || parent_->local_device_mgr()->LookupDevice(in.device(), &device).ok()) { TF_RETURN_IF_ERROR(GetTensorHandle(RemoteTensorHandleInternal(in), out)); (*out)->Ref(); } else { const string& device_name = in.op_device().empty() ? in.device() : in.op_device(); TF_RETURN_IF_ERROR( parent_->FindDeviceFromName(device_name.c_str(), &device)); *out = TensorHandle::CreateLazyRemoteHandle(in.op_id(), in.output_num(), in.dtype(), device, true, parent_); std::vector<DtypeAndPartialTensorShape> dtypes_and_shapes; if (!GetMirroredResourceShape(RemoteTensorHandleInternal(in), &dtypes_and_shapes) .ok()) { for (const auto& dtype_and_shape_proto : in.resource_dtypes_and_shapes()) { dtypes_and_shapes.push_back(DtypeAndPartialTensorShape{ dtype_and_shape_proto.dtype(), TensorShape(dtype_and_shape_proto.shape())}); } mutex_lock l(mirrored_resource_shape_mu_); mirrored_resource_shape_map_.emplace( RemoteTensorHandleInternal(in.op_id(), in.output_num()), dtypes_and_shapes); } (*out)->SetResourceHandleDtypeAndShape(std::move(dtypes_and_shapes)); } return absl::OkStatus(); } EagerExecutor& RemoteMgr::GetOrCreateExecutorForStream(uint64 stream_id) { mutex_lock l(executor_map_mu_); auto it = executor_map_.find(stream_id); if (it == executor_map_.end()) { auto it_and_bool = executor_map_.emplace( std::piecewise_construct, std::forward_as_tuple(stream_id), std::forward_as_tuple(true)); DCHECK(it_and_bool.second); it = it_and_bool.first; } return it->second; } void RemoteMgr::DeleteExecutorForStream(uint64 stream_id) { mutex_lock l(executor_map_mu_); auto it = executor_map_.find(stream_id); if (it == executor_map_.end()) { return; } Status s = it->second.ShutDown(); if (!s.ok()) { LOG(ERROR) << "EagerExecutor shutdown with error " << s.message(); } executor_map_.erase(it); } } }
#include "tensorflow/core/distributed_runtime/eager/remote_mgr.h" #include <memory> #include <utility> #include <vector> #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/error_payloads.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/remote_tensor_handle.pb.h" namespace tensorflow { namespace eager { namespace { class TestRemoteMgr : public RemoteMgr { public: TestRemoteMgr(bool is_master, EagerContext* ctx) : RemoteMgr(is_master, ctx) {} uint64 OpId() { tf_shared_lock l(next_id_mutex_); return next_op_id_; } }; class RemoteMgrTest : public ::testing::Test { public: RemoteMgrTest() { std::vector<std::unique_ptr<Device>> devices; devices.push_back( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); local_device_ = devices.back().get(); devices.push_back( DeviceFactory::NewDevice("CPU", {}, "/job:worker/replica:0/task:0")); remote_device_ = devices.back().get(); auto device_mgr = std::make_unique<StaticDeviceMgr>(std::move(devices)); auto rendezvous = tsl::core::RefCountPtr<tensorflow::Rendezvous>( new tensorflow::IntraProcessRendezvous(device_mgr.get())); ctx_ = new tensorflow::EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, device_mgr.release(), true, std::move(rendezvous), nullptr, nullptr, true); } ~RemoteMgrTest() override { ctx_->Unref(); } Device* local_device_; Device* remote_device_; EagerContext* ctx_; }; TEST_F(RemoteMgrTest, SerializeLocalTensorHandleWithRemoteMirror) { RemoteMgr remote_mgr(false, ctx_); const TensorShape shape({0}); Tensor t(DT_FLOAT, shape); TensorHandle* handle = TensorHandle::CreateLocalHandle( std::move(t), local_device_, local_device_, ctx_); const uint64 op_id = 2; const int output_num = 3; TF_ASSERT_OK(handle->AddUnshapedRemoteMirror(remote_device_, op_id, output_num, "", ctx_)); TF_ASSERT_OK( handle->SetRemoteShape(shape, remote_device_, ctx_->GetContextViewId())); RemoteTensorHandle remote_handle; TF_ASSERT_OK(remote_mgr.SerializeRemoteTensorHandle( handle, true, &remote_handle, remote_device_, remote_device_->name())); EXPECT_EQ(op_id, remote_handle.op_id()); EXPECT_EQ(output_num, remote_handle.output_num()); EXPECT_EQ(remote_device_->name(), remote_handle.device()); handle->Unref(); } TEST_F(RemoteMgrTest, SerializeRemoteTensorHandle) { RemoteMgr remote_mgr(false, ctx_); const uint64 op_id = 3; const int output_num = 1; TensorHandle* handle = TensorHandle::CreateLazyRemoteHandle( op_id, output_num, DT_FLOAT, remote_device_, true, ctx_); RemoteTensorHandle remote_handle; TF_ASSERT_OK(remote_mgr.SerializeRemoteTensorHandle( handle, true, &remote_handle, remote_device_)); EXPECT_EQ(op_id, remote_handle.op_id()); EXPECT_EQ(output_num, remote_handle.output_num()); EXPECT_EQ(remote_device_->name(), remote_handle.device()); handle->Unref(); } TEST_F(RemoteMgrTest, InvalidateRemoteMirrorWithClusterUpdate) { RemoteMgr remote_mgr(false, ctx_); Tensor t(DT_FLOAT, TensorShape({0})); TensorHandle* handle = TensorHandle::CreateLocalHandle( std::move(t), local_device_, local_device_, ctx_); const uint64 op_id = 2; const int output_num = 3; TF_ASSERT_OK(handle->AddUnshapedRemoteMirror(remote_device_, op_id, output_num, "", ctx_)); EXPECT_TRUE( handle->HasRemoteMirror(remote_device_, ctx_->GetContextViewId())); ctx_->IncrementContextViewId(); EXPECT_FALSE( handle->HasRemoteMirror(remote_device_, ctx_->GetContextViewId())); EXPECT_FALSE(handle ->SetRemoteShape(TensorShape({0}), remote_device_, ctx_->GetContextViewId()) .ok()); handle->Unref(); } TEST_F(RemoteMgrTest, SetRemoteShapeWithClusterUpdate) { RemoteMgr remote_mgr(false, ctx_); const uint64 op_id = 3; const int output_num = 1; TensorHandle* handle = TensorHandle::CreateUnshapedRemoteHandle( op_id, output_num, "", DT_FLOAT, remote_device_, ctx_); TF_ASSERT_OK(handle->SetRemoteShape(TensorShape({0}), remote_device_, ctx_->GetContextViewId())); handle->Unref(); handle = TensorHandle::CreateUnshapedRemoteHandle( op_id, output_num, "", DT_FLOAT, remote_device_, ctx_); ctx_->IncrementContextViewId(); TF_ASSERT_OK(handle->SetRemoteShape(TensorShape({0}), remote_device_, ctx_->GetContextViewId())); handle->Unref(); } TEST_F(RemoteMgrTest, ErrorSourcesShouldExist) { RemoteMgr remote_mgr(false, ctx_); const uint64 op_id = 3; const int output_num = 1; TensorHandle* handle = TensorHandle::CreateLazyRemoteHandle( op_id, output_num, DT_FLOAT, remote_device_, true, ctx_); RemoteTensorHandle remote_handle; remote_mgr.AddOperationOutput(handle, op_id, output_num); TF_ASSERT_OK(remote_mgr.SerializeRemoteTensorHandle( handle, true, &remote_handle, remote_device_)); auto remote_handle_internal = RemoteTensorHandleInternal(remote_handle); TF_ASSERT_OK(remote_mgr.DeleteTensorHandle(remote_handle_internal)); Status s = remote_mgr.DeleteTensorHandle(remote_handle_internal); EXPECT_FALSE(s.ok()); EXPECT_TRUE(s.GetPayload(kErrorSource).has_value()); TensorHandle* out; s = remote_mgr.GetTensorHandle(remote_handle_internal, &out); EXPECT_FALSE(s.ok()); EXPECT_TRUE(s.GetPayload(kErrorSource).has_value()); s = remote_mgr.DeserializeRemoteTensorHandle(remote_handle, &out); EXPECT_FALSE(s.ok()); EXPECT_TRUE(s.GetPayload(kErrorSource).has_value()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/eager/remote_mgr.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/eager/remote_mgr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d7a0dd09-19cd-4e14-ba62-dc1cebe0e8e2
cpp
tensorflow/tensorflow
schema
tensorflow/core/summary/schema.cc
tensorflow/core/summary/schema_test.cc
#include "tensorflow/core/summary/schema.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { namespace { Status Run(Sqlite* db, const char* sql) { SqliteStatement stmt; TF_RETURN_IF_ERROR(db->Prepare(sql, &stmt)); return stmt.StepAndReset(); } } Status SetupTensorboardSqliteDb(Sqlite* db) { TF_RETURN_IF_ERROR( db->PrepareOrDie(strings::StrCat("PRAGMA application_id=", kTensorboardSqliteApplicationId)) .StepAndReset()); db->PrepareOrDie("PRAGMA user_version=0").StepAndResetOrDie(); Status s; s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Ids ( id INTEGER PRIMARY KEY ) )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Descriptions ( id INTEGER PRIMARY KEY, description TEXT ) )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Tensors ( rowid INTEGER PRIMARY KEY, series INTEGER, step INTEGER, dtype INTEGER, computed_time REAL, shape TEXT, data BLOB ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS TensorSeriesStepIndex ON Tensors (series, step) WHERE series IS NOT NULL AND step IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS TensorStrings ( rowid INTEGER PRIMARY KEY, tensor_rowid INTEGER NOT NULL, idx INTEGER NOT NULL, data BLOB ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS TensorStringIndex ON TensorStrings (tensor_rowid, idx) )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Tags ( rowid INTEGER PRIMARY KEY, run_id INTEGER, tag_id INTEGER NOT NULL, inserted_time DOUBLE, tag_name TEXT, display_name TEXT, plugin_name TEXT, plugin_data BLOB ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS TagIdIndex ON Tags (tag_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS TagRunNameIndex ON Tags (run_id, tag_name) WHERE run_id IS NOT NULL AND tag_name IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Runs ( rowid INTEGER PRIMARY KEY, experiment_id INTEGER, run_id INTEGER NOT NULL, inserted_time REAL, started_time REAL, finished_time REAL, run_name TEXT ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS RunIdIndex ON Runs (run_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS RunNameIndex ON Runs (experiment_id, run_name) WHERE run_name IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Experiments ( rowid INTEGER PRIMARY KEY, user_id INTEGER, experiment_id INTEGER NOT NULL, inserted_time REAL, started_time REAL, is_watching INTEGER, experiment_name TEXT ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS ExperimentIdIndex ON Experiments (experiment_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS ExperimentNameIndex ON Experiments (user_id, experiment_name) WHERE experiment_name IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Users ( rowid INTEGER PRIMARY KEY, user_id INTEGER NOT NULL, inserted_time REAL, user_name TEXT, email TEXT ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS UserIdIndex ON Users (user_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS UserNameIndex ON Users (user_name) WHERE user_name IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS UserEmailIndex ON Users (email) WHERE email IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Graphs ( rowid INTEGER PRIMARY KEY, run_id INTEGER, graph_id INTEGER NOT NULL, inserted_time REAL, graph_def BLOB ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS GraphIdIndex ON Graphs (graph_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS GraphRunIndex ON Graphs (run_id) WHERE run_id IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS Nodes ( rowid INTEGER PRIMARY KEY, graph_id INTEGER NOT NULL, node_id INTEGER NOT NULL, node_name TEXT, op TEXT, device TEXT, node_def BLOB ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS NodeIdIndex ON Nodes (graph_id, node_id) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS NodeNameIndex ON Nodes (graph_id, node_name) WHERE node_name IS NOT NULL )sql")); s.Update(Run(db, R"sql( CREATE TABLE IF NOT EXISTS NodeInputs ( rowid INTEGER PRIMARY KEY, graph_id INTEGER NOT NULL, node_id INTEGER NOT NULL, idx INTEGER NOT NULL, input_node_id INTEGER NOT NULL, input_node_idx INTEGER, is_control INTEGER ) )sql")); s.Update(Run(db, R"sql( CREATE UNIQUE INDEX IF NOT EXISTS NodeInputsIndex ON NodeInputs (graph_id, node_id, idx) )sql")); return s; } }
#include "tensorflow/core/summary/schema.h" #include <memory> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(SchemaTest, SmokeTestTensorboardSchema) { Sqlite* db; TF_ASSERT_OK(Sqlite::Open(":memory:", SQLITE_OPEN_READWRITE, &db)); core::ScopedUnref unref_db(db); TF_ASSERT_OK(SetupTensorboardSqliteDb(db)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/summary/schema.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/summary/schema_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
64afe01c-f225-4810-a1ae-f62d116283b3
cpp
tensorflow/tensorflow
summary_db_writer
tensorflow/core/summary/summary_db_writer.cc
tensorflow/core/summary/summary_db_writer_test.cc
#include "tensorflow/core/summary/summary_db_writer.h" #include <deque> #include "tensorflow/core/summary/summary_converter.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/db/sqlite.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/util/event.pb.h" #define CALL_SUPPORTED_TYPES(m) \ TF_CALL_tstring(m) \ TF_CALL_half(m) \ TF_CALL_float(m) \ TF_CALL_double(m) \ TF_CALL_complex64(m) \ TF_CALL_complex128(m) \ TF_CALL_int8(m) \ TF_CALL_int16(m) \ TF_CALL_int32(m) \ TF_CALL_int64(m) \ TF_CALL_uint8(m) \ TF_CALL_uint16(m) \ TF_CALL_uint32(m) \ TF_CALL_uint64(m) namespace tensorflow { namespace { const uint64 kIdTiers[] = { 0x7fffffULL, 0x7fffffffULL, 0x7fffffffffffULL, }; const int kMaxIdTier = sizeof(kIdTiers) / sizeof(uint64) - 1; const int kIdCollisionDelayMicros = 10; const int kMaxIdCollisions = 21; const int64_t kAbsent = 0LL; const char* kScalarPluginName = "scalars"; const char* kImagePluginName = "images"; const char* kAudioPluginName = "audio"; const char* kHistogramPluginName = "histograms"; const int64_t kReserveMinBytes = 32; const double kReserveMultiplier = 1.5; const int64_t kPreallocateRows = 1000; const uint64 kFlushBytes = 1024 * 1024; double DoubleTime(uint64 micros) { return static_cast<double>(micros) / 1.0e6; } string StringifyShape(const TensorShape& shape) { string result; bool first = true; for (const auto& dim : shape) { if (first) { first = false; } else { strings::StrAppend(&result, ","); } strings::StrAppend(&result, dim.size); } return result; } Status CheckSupportedType(const Tensor& t) { #define CASE(T) \ case DataTypeToEnum<T>::value: \ break; switch (t.dtype()) { CALL_SUPPORTED_TYPES(CASE) default: return errors::Unimplemented(DataTypeString(t.dtype()), " tensors unsupported on platform"); } return absl::OkStatus(); #undef CASE } Tensor AsScalar(const Tensor& t) { Tensor t2{t.dtype(), {}}; #define CASE(T) \ case DataTypeToEnum<T>::value: \ t2.scalar<T>()() = t.flat<T>()(0); \ break; switch (t.dtype()) { CALL_SUPPORTED_TYPES(CASE) default: t2 = {DT_FLOAT, {}}; t2.scalar<float>()() = NAN; break; } return t2; #undef CASE } void PatchPluginName(SummaryMetadata* metadata, const char* name) { if (metadata->plugin_data().plugin_name().empty()) { metadata->mutable_plugin_data()->set_plugin_name(name); } } Status SetDescription(Sqlite* db, int64_t id, const StringPiece& markdown) { const char* sql = R"sql( INSERT OR REPLACE INTO Descriptions (id, description) VALUES (?, ?) )sql"; SqliteStatement insert_desc; TF_RETURN_IF_ERROR(db->Prepare(sql, &insert_desc)); insert_desc.BindInt(1, id); insert_desc.BindText(2, markdown); return insert_desc.StepAndReset(); } class IdAllocator { public: IdAllocator(Env* env, Sqlite* db) : env_{env}, db_{db} { DCHECK(env_ != nullptr); DCHECK(db_ != nullptr); } Status CreateNewId(int64_t* id) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); Status s; SqliteStatement stmt; TF_RETURN_IF_ERROR(db_->Prepare("INSERT INTO Ids (id) VALUES (?)", &stmt)); for (int i = 0; i < kMaxIdCollisions; ++i) { int64_t tid = MakeRandomId(); stmt.BindInt(1, tid); s = stmt.StepAndReset(); if (s.ok()) { *id = tid; break; } if (s.code() != error::INVALID_ARGUMENT) break; if (tier_ < kMaxIdTier) { LOG(INFO) << "IdAllocator collision at tier " << tier_ << " (of " << kMaxIdTier << ") so auto-adjusting to a higher tier"; ++tier_; } else { LOG(WARNING) << "IdAllocator (attempt #" << i << ") " << "resulted in a collision at the highest tier; this " "is problematic if it happens often; you can try " "pruning the Ids table; you can also file a bug " "asking for the ID space to be increased; otherwise " "writes will gradually slow down over time until they " "become impossible"; } env_->SleepForMicroseconds((1 << i) * kIdCollisionDelayMicros); } return s; } private: int64_t MakeRandomId() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { int64_t id = static_cast<int64_t>(random::New64() & kIdTiers[tier_]); if (id == kAbsent) ++id; return id; } mutex mu_; Env* const env_; Sqlite* const db_; int tier_ TF_GUARDED_BY(mu_) = 0; IdAllocator(const IdAllocator&) = delete; void operator=(const IdAllocator&) = delete; }; class GraphWriter { public: static Status Save(Sqlite* db, SqliteTransaction* txn, IdAllocator* ids, GraphDef* graph, uint64 now, int64_t run_id, int64_t* graph_id) SQLITE_EXCLUSIVE_TRANSACTIONS_REQUIRED(*db) { TF_RETURN_IF_ERROR(ids->CreateNewId(graph_id)); GraphWriter saver{db, txn, graph, now, *graph_id}; saver.MapNameToNodeId(); TF_RETURN_WITH_CONTEXT_IF_ERROR(saver.SaveNodeInputs(), "SaveNodeInputs"); TF_RETURN_WITH_CONTEXT_IF_ERROR(saver.SaveNodes(), "SaveNodes"); TF_RETURN_WITH_CONTEXT_IF_ERROR(saver.SaveGraph(run_id), "SaveGraph"); return absl::OkStatus(); } private: GraphWriter(Sqlite* db, SqliteTransaction* txn, GraphDef* graph, uint64 now, int64_t graph_id) : db_(db), txn_(txn), graph_(graph), now_(now), graph_id_(graph_id) {} void MapNameToNodeId() { size_t toto = static_cast<size_t>(graph_->node_size()); name_copies_.reserve(toto); name_to_node_id_.reserve(toto); for (int node_id = 0; node_id < graph_->node_size(); ++node_id) { name_copies_.emplace_back(graph_->node(node_id).name()); name_to_node_id_.emplace(name_copies_.back(), node_id); } } Status SaveNodeInputs() { const char* sql = R"sql( INSERT INTO NodeInputs ( graph_id, node_id, idx, input_node_id, input_node_idx, is_control ) VALUES (?, ?, ?, ?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db_->Prepare(sql, &insert)); for (int node_id = 0; node_id < graph_->node_size(); ++node_id) { const NodeDef& node = graph_->node(node_id); for (int idx = 0; idx < node.input_size(); ++idx) { StringPiece name = node.input(idx); int64_t input_node_id; int64_t input_node_idx = 0; int64_t is_control = 0; size_t i = name.rfind(':'); if (i != StringPiece::npos) { if (!strings::safe_strto64(name.substr(i + 1, name.size() - i - 1), &input_node_idx)) { return errors::DataLoss("Bad NodeDef.input: ", name); } name.remove_suffix(name.size() - i); } if (!name.empty() && name[0] == '^') { name.remove_prefix(1); is_control = 1; } auto e = name_to_node_id_.find(name); if (e == name_to_node_id_.end()) { return errors::DataLoss("Could not find node: ", name); } input_node_id = e->second; insert.BindInt(1, graph_id_); insert.BindInt(2, node_id); insert.BindInt(3, idx); insert.BindInt(4, input_node_id); insert.BindInt(5, input_node_idx); insert.BindInt(6, is_control); unflushed_bytes_ += insert.size(); TF_RETURN_WITH_CONTEXT_IF_ERROR(insert.StepAndReset(), node.name(), " -> ", name); TF_RETURN_IF_ERROR(MaybeFlush()); } } return absl::OkStatus(); } Status SaveNodes() { const char* sql = R"sql( INSERT INTO Nodes ( graph_id, node_id, node_name, op, device, node_def) VALUES (?, ?, ?, ?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db_->Prepare(sql, &insert)); for (int node_id = 0; node_id < graph_->node_size(); ++node_id) { NodeDef* node = graph_->mutable_node(node_id); insert.BindInt(1, graph_id_); insert.BindInt(2, node_id); insert.BindText(3, node->name()); insert.BindText(4, node->op()); insert.BindText(5, node->device()); node->clear_name(); node->clear_op(); node->clear_device(); node->clear_input(); string node_def; if (node->SerializeToString(&node_def)) { insert.BindBlobUnsafe(6, node_def); } unflushed_bytes_ += insert.size(); TF_RETURN_WITH_CONTEXT_IF_ERROR(insert.StepAndReset(), node->name()); TF_RETURN_IF_ERROR(MaybeFlush()); } return absl::OkStatus(); } Status SaveGraph(int64_t run_id) { const char* sql = R"sql( INSERT OR REPLACE INTO Graphs ( run_id, graph_id, inserted_time, graph_def ) VALUES (?, ?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db_->Prepare(sql, &insert)); if (run_id != kAbsent) insert.BindInt(1, run_id); insert.BindInt(2, graph_id_); insert.BindDouble(3, DoubleTime(now_)); graph_->clear_node(); string graph_def; if (graph_->SerializeToString(&graph_def)) { insert.BindBlobUnsafe(4, graph_def); } return insert.StepAndReset(); } Status MaybeFlush() { if (unflushed_bytes_ >= kFlushBytes) { TF_RETURN_WITH_CONTEXT_IF_ERROR(txn_->Commit(), "flushing ", unflushed_bytes_, " bytes"); unflushed_bytes_ = 0; } return absl::OkStatus(); } Sqlite* const db_; SqliteTransaction* const txn_; uint64 unflushed_bytes_ = 0; GraphDef* const graph_; const uint64 now_; const int64_t graph_id_; std::vector<string> name_copies_; std::unordered_map<StringPiece, int64_t, StringPieceHasher> name_to_node_id_; GraphWriter(const GraphWriter&) = delete; void operator=(const GraphWriter&) = delete; }; class RunMetadata { public: RunMetadata(IdAllocator* ids, const string& experiment_name, const string& run_name, const string& user_name) : ids_{ids}, experiment_name_{experiment_name}, run_name_{run_name}, user_name_{user_name} { DCHECK(ids_ != nullptr); } const string& experiment_name() { return experiment_name_; } const string& run_name() { return run_name_; } const string& user_name() { return user_name_; } int64_t run_id() TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); return run_id_; } Status SetGraph(Sqlite* db, uint64 now, double computed_time, std::unique_ptr<GraphDef> g) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_LOCKS_EXCLUDED(mu_) { int64_t run_id; { mutex_lock lock(mu_); TF_RETURN_IF_ERROR(InitializeRun(db, now, computed_time)); run_id = run_id_; } int64_t graph_id; SqliteTransaction txn(*db); TF_RETURN_IF_ERROR( GraphWriter::Save(db, &txn, ids_, g.get(), now, run_id, &graph_id)); return txn.Commit(); } Status GetTagId(Sqlite* db, uint64 now, double computed_time, const string& tag_name, int64_t* tag_id, const SummaryMetadata& metadata) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); TF_RETURN_IF_ERROR(InitializeRun(db, now, computed_time)); auto e = tag_ids_.find(tag_name); if (e != tag_ids_.end()) { *tag_id = e->second; return absl::OkStatus(); } TF_RETURN_IF_ERROR(ids_->CreateNewId(tag_id)); tag_ids_[tag_name] = *tag_id; TF_RETURN_IF_ERROR( SetDescription(db, *tag_id, metadata.summary_description())); const char* sql = R"sql( INSERT INTO Tags ( run_id, tag_id, tag_name, inserted_time, display_name, plugin_name, plugin_data ) VALUES ( :run_id, :tag_id, :tag_name, :inserted_time, :display_name, :plugin_name, :plugin_data ) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db->Prepare(sql, &insert)); if (run_id_ != kAbsent) insert.BindInt(":run_id", run_id_); insert.BindInt(":tag_id", *tag_id); insert.BindTextUnsafe(":tag_name", tag_name); insert.BindDouble(":inserted_time", DoubleTime(now)); insert.BindTextUnsafe(":display_name", metadata.display_name()); insert.BindTextUnsafe(":plugin_name", metadata.plugin_data().plugin_name()); insert.BindBlobUnsafe(":plugin_data", metadata.plugin_data().content()); return insert.StepAndReset(); } private: Status InitializeUser(Sqlite* db, uint64 now) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (user_id_ != kAbsent || user_name_.empty()) return absl::OkStatus(); const char* get_sql = R"sql( SELECT user_id FROM Users WHERE user_name = ? )sql"; SqliteStatement get; TF_RETURN_IF_ERROR(db->Prepare(get_sql, &get)); get.BindText(1, user_name_); bool is_done; TF_RETURN_IF_ERROR(get.Step(&is_done)); if (!is_done) { user_id_ = get.ColumnInt(0); return absl::OkStatus(); } TF_RETURN_IF_ERROR(ids_->CreateNewId(&user_id_)); const char* insert_sql = R"sql( INSERT INTO Users ( user_id, user_name, inserted_time ) VALUES (?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db->Prepare(insert_sql, &insert)); insert.BindInt(1, user_id_); insert.BindText(2, user_name_); insert.BindDouble(3, DoubleTime(now)); TF_RETURN_IF_ERROR(insert.StepAndReset()); return absl::OkStatus(); } Status InitializeExperiment(Sqlite* db, uint64 now, double computed_time) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (experiment_name_.empty()) return absl::OkStatus(); if (experiment_id_ == kAbsent) { TF_RETURN_IF_ERROR(InitializeUser(db, now)); const char* get_sql = R"sql( SELECT experiment_id, started_time FROM Experiments WHERE user_id IS ? AND experiment_name = ? )sql"; SqliteStatement get; TF_RETURN_IF_ERROR(db->Prepare(get_sql, &get)); if (user_id_ != kAbsent) get.BindInt(1, user_id_); get.BindText(2, experiment_name_); bool is_done; TF_RETURN_IF_ERROR(get.Step(&is_done)); if (!is_done) { experiment_id_ = get.ColumnInt(0); experiment_started_time_ = get.ColumnInt(1); } else { TF_RETURN_IF_ERROR(ids_->CreateNewId(&experiment_id_)); experiment_started_time_ = computed_time; const char* insert_sql = R"sql( INSERT INTO Experiments ( user_id, experiment_id, experiment_name, inserted_time, started_time, is_watching ) VALUES (?, ?, ?, ?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db->Prepare(insert_sql, &insert)); if (user_id_ != kAbsent) insert.BindInt(1, user_id_); insert.BindInt(2, experiment_id_); insert.BindText(3, experiment_name_); insert.BindDouble(4, DoubleTime(now)); insert.BindDouble(5, computed_time); insert.BindInt(6, 0); TF_RETURN_IF_ERROR(insert.StepAndReset()); } } if (computed_time < experiment_started_time_) { experiment_started_time_ = computed_time; const char* update_sql = R"sql( UPDATE Experiments SET started_time = ? WHERE experiment_id = ? )sql"; SqliteStatement update; TF_RETURN_IF_ERROR(db->Prepare(update_sql, &update)); update.BindDouble(1, computed_time); update.BindInt(2, experiment_id_); TF_RETURN_IF_ERROR(update.StepAndReset()); } return absl::OkStatus(); } Status InitializeRun(Sqlite* db, uint64 now, double computed_time) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (run_name_.empty()) return absl::OkStatus(); TF_RETURN_IF_ERROR(InitializeExperiment(db, now, computed_time)); if (run_id_ == kAbsent) { TF_RETURN_IF_ERROR(ids_->CreateNewId(&run_id_)); run_started_time_ = computed_time; const char* insert_sql = R"sql( INSERT OR REPLACE INTO Runs ( experiment_id, run_id, run_name, inserted_time, started_time ) VALUES (?, ?, ?, ?, ?) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db->Prepare(insert_sql, &insert)); if (experiment_id_ != kAbsent) insert.BindInt(1, experiment_id_); insert.BindInt(2, run_id_); insert.BindText(3, run_name_); insert.BindDouble(4, DoubleTime(now)); insert.BindDouble(5, computed_time); TF_RETURN_IF_ERROR(insert.StepAndReset()); } if (computed_time < run_started_time_) { run_started_time_ = computed_time; const char* update_sql = R"sql( UPDATE Runs SET started_time = ? WHERE run_id = ? )sql"; SqliteStatement update; TF_RETURN_IF_ERROR(db->Prepare(update_sql, &update)); update.BindDouble(1, computed_time); update.BindInt(2, run_id_); TF_RETURN_IF_ERROR(update.StepAndReset()); } return absl::OkStatus(); } mutex mu_; IdAllocator* const ids_; const string experiment_name_; const string run_name_; const string user_name_; int64_t experiment_id_ TF_GUARDED_BY(mu_) = kAbsent; int64_t run_id_ TF_GUARDED_BY(mu_) = kAbsent; int64_t user_id_ TF_GUARDED_BY(mu_) = kAbsent; double experiment_started_time_ TF_GUARDED_BY(mu_) = 0.0; double run_started_time_ TF_GUARDED_BY(mu_) = 0.0; std::unordered_map<string, int64_t> tag_ids_ TF_GUARDED_BY(mu_); RunMetadata(const RunMetadata&) = delete; void operator=(const RunMetadata&) = delete; }; class SeriesWriter { public: SeriesWriter(int64_t series, RunMetadata* meta) : series_{series}, meta_{meta} { DCHECK(series_ > 0); } Status Append(Sqlite* db, int64_t step, uint64 now, double computed_time, const Tensor& t) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); if (rowids_.empty()) { Status s = Reserve(db, t); if (!s.ok()) { rowids_.clear(); return s; } } int64_t rowid = rowids_.front(); Status s = Write(db, rowid, step, computed_time, t); if (s.ok()) { ++count_; } rowids_.pop_front(); return s; } Status Finish(Sqlite* db) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); if (!rowids_.empty()) { SqliteTransaction txn(*db); const char* sql = R"sql( DELETE FROM Tensors WHERE rowid = ? )sql"; SqliteStatement deleter; TF_RETURN_IF_ERROR(db->Prepare(sql, &deleter)); for (size_t i = count_; i < rowids_.size(); ++i) { deleter.BindInt(1, rowids_.front()); TF_RETURN_IF_ERROR(deleter.StepAndReset()); rowids_.pop_front(); } TF_RETURN_IF_ERROR(txn.Commit()); rowids_.clear(); } return absl::OkStatus(); } private: Status Write(Sqlite* db, int64_t rowid, int64_t step, double computed_time, const Tensor& t) SQLITE_TRANSACTIONS_EXCLUDED(*db) { if (t.dtype() == DT_STRING) { if (t.dims() == 0) { return Update(db, step, computed_time, t, t.scalar<tstring>()(), rowid); } else { SqliteTransaction txn(*db); TF_RETURN_IF_ERROR( Update(db, step, computed_time, t, StringPiece(), rowid)); TF_RETURN_IF_ERROR(UpdateNdString(db, t, rowid)); return txn.Commit(); } } else { return Update(db, step, computed_time, t, t.tensor_data(), rowid); } } Status Update(Sqlite* db, int64_t step, double computed_time, const Tensor& t, const StringPiece& data, int64_t rowid) { const char* sql = R"sql( UPDATE OR REPLACE Tensors SET step = ?, computed_time = ?, dtype = ?, shape = ?, data = ? WHERE rowid = ? )sql"; SqliteStatement stmt; TF_RETURN_IF_ERROR(db->Prepare(sql, &stmt)); stmt.BindInt(1, step); stmt.BindDouble(2, computed_time); stmt.BindInt(3, t.dtype()); stmt.BindText(4, StringifyShape(t.shape())); stmt.BindBlobUnsafe(5, data); stmt.BindInt(6, rowid); TF_RETURN_IF_ERROR(stmt.StepAndReset()); return absl::OkStatus(); } Status UpdateNdString(Sqlite* db, const Tensor& t, int64_t tensor_rowid) SQLITE_EXCLUSIVE_TRANSACTIONS_REQUIRED(*db) { DCHECK_EQ(t.dtype(), DT_STRING); DCHECK_GT(t.dims(), 0); const char* deleter_sql = R"sql( DELETE FROM TensorStrings WHERE tensor_rowid = ? )sql"; SqliteStatement deleter; TF_RETURN_IF_ERROR(db->Prepare(deleter_sql, &deleter)); deleter.BindInt(1, tensor_rowid); TF_RETURN_WITH_CONTEXT_IF_ERROR(deleter.StepAndReset(), tensor_rowid); const char* inserter_sql = R"sql( INSERT INTO TensorStrings ( tensor_rowid, idx, data ) VALUES (?, ?, ?) )sql"; SqliteStatement inserter; TF_RETURN_IF_ERROR(db->Prepare(inserter_sql, &inserter)); auto flat = t.flat<tstring>(); for (int64_t i = 0; i < flat.size(); ++i) { inserter.BindInt(1, tensor_rowid); inserter.BindInt(2, i); inserter.BindBlobUnsafe(3, flat(i)); TF_RETURN_WITH_CONTEXT_IF_ERROR(inserter.StepAndReset(), "i=", i); } return absl::OkStatus(); } Status Reserve(Sqlite* db, const Tensor& t) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { SqliteTransaction txn(*db); unflushed_bytes_ = 0; if (t.dtype() == DT_STRING) { if (t.dims() == 0) { TF_RETURN_IF_ERROR(ReserveData(db, &txn, t.scalar<tstring>()().size())); } else { TF_RETURN_IF_ERROR(ReserveTensors(db, &txn, kReserveMinBytes)); } } else { TF_RETURN_IF_ERROR(ReserveData(db, &txn, t.tensor_data().size())); } return txn.Commit(); } Status ReserveData(Sqlite* db, SqliteTransaction* txn, size_t size) SQLITE_EXCLUSIVE_TRANSACTIONS_REQUIRED(*db) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { int64_t space = static_cast<int64_t>(static_cast<double>(size) * kReserveMultiplier); if (space < kReserveMinBytes) space = kReserveMinBytes; return ReserveTensors(db, txn, space); } Status ReserveTensors(Sqlite* db, SqliteTransaction* txn, int64_t reserved_bytes) SQLITE_EXCLUSIVE_TRANSACTIONS_REQUIRED(*db) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { const char* sql = R"sql( INSERT INTO Tensors ( series, data ) VALUES (?, ZEROBLOB(?)) )sql"; SqliteStatement insert; TF_RETURN_IF_ERROR(db->Prepare(sql, &insert)); for (int64_t i = 0; i < kPreallocateRows; ++i) { insert.BindInt(1, series_); insert.BindInt(2, reserved_bytes); TF_RETURN_WITH_CONTEXT_IF_ERROR(insert.StepAndReset(), "i=", i); rowids_.push_back(db->last_insert_rowid()); unflushed_bytes_ += reserved_bytes; TF_RETURN_IF_ERROR(MaybeFlush(db, txn)); } return absl::OkStatus(); } Status MaybeFlush(Sqlite* db, SqliteTransaction* txn) SQLITE_EXCLUSIVE_TRANSACTIONS_REQUIRED(*db) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (unflushed_bytes_ >= kFlushBytes) { TF_RETURN_WITH_CONTEXT_IF_ERROR(txn->Commit(), "flushing ", unflushed_bytes_, " bytes"); unflushed_bytes_ = 0; } return absl::OkStatus(); } mutex mu_; const int64_t series_; RunMetadata* const meta_; uint64 count_ TF_GUARDED_BY(mu_) = 0; std::deque<int64_t> rowids_ TF_GUARDED_BY(mu_); uint64 unflushed_bytes_ TF_GUARDED_BY(mu_) = 0; SeriesWriter(const SeriesWriter&) = delete; void operator=(const SeriesWriter&) = delete; }; class RunWriter { public: explicit RunWriter(RunMetadata* meta) : meta_{meta} {} Status Append(Sqlite* db, int64_t tag_id, int64_t step, uint64 now, double computed_time, const Tensor& t) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_LOCKS_EXCLUDED(mu_) { SeriesWriter* writer = GetSeriesWriter(tag_id); return writer->Append(db, step, now, computed_time, t); } Status Finish(Sqlite* db) SQLITE_TRANSACTIONS_EXCLUDED(*db) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); if (series_writers_.empty()) return absl::OkStatus(); for (auto i = series_writers_.begin(); i != series_writers_.end(); ++i) { if (!i->second) continue; TF_RETURN_WITH_CONTEXT_IF_ERROR(i->second->Finish(db), "finish tag_id=", i->first); i->second.reset(); } return absl::OkStatus(); } private: SeriesWriter* GetSeriesWriter(int64_t tag_id) TF_LOCKS_EXCLUDED(mu_) { mutex_lock sl(mu_); auto spot = series_writers_.find(tag_id); if (spot == series_writers_.end()) { SeriesWriter* writer = new SeriesWriter(tag_id, meta_); series_writers_[tag_id].reset(writer); return writer; } else { return spot->second.get(); } } mutex mu_; RunMetadata* const meta_; std::unordered_map<int64_t, std::unique_ptr<SeriesWriter>> series_writers_ TF_GUARDED_BY(mu_); RunWriter(const RunWriter&) = delete; void operator=(const RunWriter&) = delete; }; class SummaryDbWriter : public SummaryWriterInterface { public: SummaryDbWriter(Env* env, Sqlite* db, const string& experiment_name, const string& run_name, const string& user_name) : SummaryWriterInterface(), env_{env}, db_{db}, ids_{env_, db_}, meta_{&ids_, experiment_name, run_name, user_name}, run_{&meta_} { DCHECK(env_ != nullptr); db_->Ref(); } ~SummaryDbWriter() override { core::ScopedUnref unref(db_); Status s = run_.Finish(db_); if (!s.ok()) { LOG(ERROR) << s; } int64_t run_id = meta_.run_id(); if (run_id == kAbsent) return; const char* sql = R"sql( UPDATE Runs SET finished_time = ? WHERE run_id = ? )sql"; SqliteStatement update; s = db_->Prepare(sql, &update); if (s.ok()) { update.BindDouble(1, DoubleTime(env_->NowMicros())); update.BindInt(2, run_id); s = update.StepAndReset(); } if (!s.ok()) { LOG(ERROR) << "Failed to set Runs[" << run_id << "].finish_time: " << s; } } Status Flush() override { return absl::OkStatus(); } Status WriteTensor(int64_t global_step, Tensor t, const string& tag, const string& serialized_metadata) override { TF_RETURN_IF_ERROR(CheckSupportedType(t)); SummaryMetadata metadata; if (!metadata.ParseFromString(serialized_metadata)) { return errors::InvalidArgument("Bad serialized_metadata"); } return Write(global_step, t, tag, metadata); } Status WriteScalar(int64_t global_step, Tensor t, const string& tag) override { TF_RETURN_IF_ERROR(CheckSupportedType(t)); SummaryMetadata metadata; PatchPluginName(&metadata, kScalarPluginName); return Write(global_step, AsScalar(t), tag, metadata); } Status WriteGraph(int64_t global_step, std::unique_ptr<GraphDef> g) override { uint64 now = env_->NowMicros(); return meta_.SetGraph(db_, now, DoubleTime(now), std::move(g)); } Status WriteEvent(std::unique_ptr<Event> e) override { return MigrateEvent(std::move(e)); } Status WriteHistogram(int64_t global_step, Tensor t, const string& tag) override { uint64 now = env_->NowMicros(); std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(DoubleTime(now)); TF_RETURN_IF_ERROR( AddTensorAsHistogramToSummary(t, tag, e->mutable_summary())); return MigrateEvent(std::move(e)); } Status WriteImage(int64_t global_step, Tensor t, const string& tag, int max_images, Tensor bad_color) override { uint64 now = env_->NowMicros(); std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(DoubleTime(now)); TF_RETURN_IF_ERROR(AddTensorAsImageToSummary(t, tag, max_images, bad_color, e->mutable_summary())); return MigrateEvent(std::move(e)); } Status WriteAudio(int64_t global_step, Tensor t, const string& tag, int max_outputs, float sample_rate) override { uint64 now = env_->NowMicros(); std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(DoubleTime(now)); TF_RETURN_IF_ERROR(AddTensorAsAudioToSummary( t, tag, max_outputs, sample_rate, e->mutable_summary())); return MigrateEvent(std::move(e)); } string DebugString() const override { return "SummaryDbWriter"; } private: Status Write(int64_t step, const Tensor& t, const string& tag, const SummaryMetadata& metadata) { uint64 now = env_->NowMicros(); double computed_time = DoubleTime(now); int64_t tag_id; TF_RETURN_IF_ERROR( meta_.GetTagId(db_, now, computed_time, tag, &tag_id, metadata)); TF_RETURN_WITH_CONTEXT_IF_ERROR( run_.Append(db_, tag_id, step, now, computed_time, t), meta_.user_name(), "/", meta_.experiment_name(), "/", meta_.run_name(), "/", tag, "@", step); return absl::OkStatus(); } Status MigrateEvent(std::unique_ptr<Event> e) { switch (e->what_case()) { case Event::WhatCase::kSummary: { uint64 now = env_->NowMicros(); auto summaries = e->mutable_summary(); for (int i = 0; i < summaries->value_size(); ++i) { Summary::Value* value = summaries->mutable_value(i); TF_RETURN_WITH_CONTEXT_IF_ERROR( MigrateSummary(e.get(), value, now), meta_.user_name(), "/", meta_.experiment_name(), "/", meta_.run_name(), "/", value->tag(), "@", e->step()); } break; } case Event::WhatCase::kGraphDef: TF_RETURN_WITH_CONTEXT_IF_ERROR( MigrateGraph(e.get(), e->graph_def()), meta_.user_name(), "/", meta_.experiment_name(), "/", meta_.run_name(), "/__graph__@", e->step()); break; default: break; } return absl::OkStatus(); } Status MigrateGraph(const Event* e, const string& graph_def) { uint64 now = env_->NowMicros(); std::unique_ptr<GraphDef> graph{new GraphDef}; if (!ParseProtoUnlimited(graph.get(), graph_def)) { return errors::InvalidArgument("bad proto"); } return meta_.SetGraph(db_, now, e->wall_time(), std::move(graph)); } Status MigrateSummary(const Event* e, Summary::Value* s, uint64 now) { switch (s->value_case()) { case Summary::Value::ValueCase::kTensor: TF_RETURN_WITH_CONTEXT_IF_ERROR(MigrateTensor(e, s, now), "tensor"); break; case Summary::Value::ValueCase::kSimpleValue: TF_RETURN_WITH_CONTEXT_IF_ERROR(MigrateScalar(e, s, now), "scalar"); break; case Summary::Value::ValueCase::kHisto: TF_RETURN_WITH_CONTEXT_IF_ERROR(MigrateHistogram(e, s, now), "histo"); break; case Summary::Value::ValueCase::kImage: TF_RETURN_WITH_CONTEXT_IF_ERROR(MigrateImage(e, s, now), "image"); break; case Summary::Value::ValueCase::kAudio: TF_RETURN_WITH_CONTEXT_IF_ERROR(MigrateAudio(e, s, now), "audio"); break; default: break; } return absl::OkStatus(); } Status MigrateTensor(const Event* e, Summary::Value* s, uint64 now) { Tensor t; if (!t.FromProto(s->tensor())) return errors::InvalidArgument("bad proto"); TF_RETURN_IF_ERROR(CheckSupportedType(t)); int64_t tag_id; TF_RETURN_IF_ERROR(meta_.GetTagId(db_, now, e->wall_time(), s->tag(), &tag_id, s->metadata())); return run_.Append(db_, tag_id, e->step(), now, e->wall_time(), t); } Status MigrateScalar(const Event* e, Summary::Value* s, uint64 now) { Tensor t{DT_FLOAT, {}}; t.scalar<float>()() = s->simple_value(); int64_t tag_id; PatchPluginName(s->mutable_metadata(), kScalarPluginName); TF_RETURN_IF_ERROR(meta_.GetTagId(db_, now, e->wall_time(), s->tag(), &tag_id, s->metadata())); return run_.Append(db_, tag_id, e->step(), now, e->wall_time(), t); } Status MigrateHistogram(const Event* e, Summary::Value* s, uint64 now) { const HistogramProto& histo = s->histo(); int k = histo.bucket_size(); if (k != histo.bucket_limit_size()) { return errors::InvalidArgument("size mismatch"); } Tensor t{DT_DOUBLE, {k, 3}}; auto data = t.flat<double>(); for (int i = 0, j = 0; i < k; ++i) { double left_edge = (i == 0) ? std::numeric_limits<double>::min() : histo.bucket_limit(i - 1); data(j++) = left_edge; data(j++) = histo.bucket_limit(i); data(j++) = histo.bucket(i); } int64_t tag_id; PatchPluginName(s->mutable_metadata(), kHistogramPluginName); TF_RETURN_IF_ERROR(meta_.GetTagId(db_, now, e->wall_time(), s->tag(), &tag_id, s->metadata())); return run_.Append(db_, tag_id, e->step(), now, e->wall_time(), t); } Status MigrateImage(const Event* e, Summary::Value* s, uint64 now) { Tensor t{DT_STRING, {3}}; auto img = s->mutable_image(); t.flat<tstring>()(0) = strings::StrCat(img->width()); t.flat<tstring>()(1) = strings::StrCat(img->height()); t.flat<tstring>()(2) = std::move(*img->mutable_encoded_image_string()); int64_t tag_id; PatchPluginName(s->mutable_metadata(), kImagePluginName); TF_RETURN_IF_ERROR(meta_.GetTagId(db_, now, e->wall_time(), s->tag(), &tag_id, s->metadata())); return run_.Append(db_, tag_id, e->step(), now, e->wall_time(), t); } Status MigrateAudio(const Event* e, Summary::Value* s, uint64 now) { Tensor t{DT_STRING, {1, 2}}; auto wav = s->mutable_audio(); t.flat<tstring>()(0) = std::move(*wav->mutable_encoded_audio_string()); t.flat<tstring>()(1) = ""; int64_t tag_id; PatchPluginName(s->mutable_metadata(), kAudioPluginName); TF_RETURN_IF_ERROR(meta_.GetTagId(db_, now, e->wall_time(), s->tag(), &tag_id, s->metadata())); return run_.Append(db_, tag_id, e->step(), now, e->wall_time(), t); } Env* const env_; Sqlite* const db_; IdAllocator ids_; RunMetadata meta_; RunWriter run_; }; } Status CreateSummaryDbWriter(Sqlite* db, const string& experiment_name, const string& run_name, const string& user_name, Env* env, SummaryWriterInterface** result) { *result = new SummaryDbWriter(env, db, experiment_name, run_name, user_name); return absl::OkStatus(); } }
#include "tensorflow/core/summary/summary_db_writer.h" #include "tensorflow/core/summary/schema.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/db/sqlite.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/event.pb.h" namespace tensorflow { namespace { Tensor MakeScalarInt64(int64_t x) { Tensor t(DT_INT64, TensorShape({})); t.scalar<int64_t>()() = x; return t; } class FakeClockEnv : public EnvWrapper { public: FakeClockEnv() : EnvWrapper(Env::Default()), current_millis_(0) {} void AdvanceByMillis(const uint64 millis) { current_millis_ += millis; } uint64 NowMicros() const override { return current_millis_ * 1000; } uint64 NowSeconds() const override { return current_millis_ * 1000; } private: uint64 current_millis_; }; class SummaryDbWriterTest : public ::testing::Test { protected: void SetUp() override { TF_ASSERT_OK(Sqlite::Open(":memory:", SQLITE_OPEN_READWRITE, &db_)); TF_ASSERT_OK(SetupTensorboardSqliteDb(db_)); } void TearDown() override { if (writer_ != nullptr) { writer_->Unref(); writer_ = nullptr; } db_->Unref(); db_ = nullptr; } int64_t QueryInt(const string& sql) { SqliteStatement stmt = db_->PrepareOrDie(sql); bool is_done; Status s = stmt.Step(&is_done); if (!s.ok() || is_done) { LOG(ERROR) << s << " due to " << sql; return -1; } return stmt.ColumnInt(0); } double QueryDouble(const string& sql) { SqliteStatement stmt = db_->PrepareOrDie(sql); bool is_done; Status s = stmt.Step(&is_done); if (!s.ok() || is_done) { LOG(ERROR) << s << " due to " << sql; return -1; } return stmt.ColumnDouble(0); } string QueryString(const string& sql) { SqliteStatement stmt = db_->PrepareOrDie(sql); bool is_done; Status s = stmt.Step(&is_done); if (!s.ok() || is_done) { LOG(ERROR) << s << " due to " << sql; return "MISSINGNO"; } return stmt.ColumnString(0); } FakeClockEnv env_; Sqlite* db_ = nullptr; SummaryWriterInterface* writer_ = nullptr; }; TEST_F(SummaryDbWriterTest, WriteHistogram_VerifyTensorValues) { TF_ASSERT_OK(CreateSummaryDbWriter(db_, "histtest", "test1", "user1", &env_, &writer_)); int step = 0; std::unique_ptr<Event> e{new Event}; e->set_step(step); e->set_wall_time(123); Summary::Value* s = e->mutable_summary()->add_value(); s->set_tag("normal/myhisto"); double dummy_value = 10.123; HistogramProto* proto = s->mutable_histo(); proto->Clear(); proto->set_min(dummy_value); proto->set_max(dummy_value); proto->set_num(dummy_value); proto->set_sum(dummy_value); proto->set_sum_squares(dummy_value); int size = 3; double bucket_limits[] = {-30.5, -10.5, -5.5}; double bucket[] = {-10, 10, 20}; for (int i = 0; i < size; i++) { proto->add_bucket_limit(bucket_limits[i]); proto->add_bucket(bucket[i]); } TF_ASSERT_OK(writer_->WriteEvent(std::move(e))); TF_ASSERT_OK(writer_->Flush()); writer_->Unref(); writer_ = nullptr; string result = QueryString("SELECT data FROM Tensors"); const double* val = reinterpret_cast<const double*>(result.data()); double histarray[] = {std::numeric_limits<double>::min(), -30.5, -10, -30.5, -10.5, 10, -10.5, -5.5, 20}; int histarray_size = 9; for (int i = 0; i < histarray_size; i++) { EXPECT_EQ(histarray[i], val[i]); } } TEST_F(SummaryDbWriterTest, NothingWritten_NoRowsCreated) { TF_ASSERT_OK(CreateSummaryDbWriter(db_, "mad-science", "train", "jart", &env_, &writer_)); TF_ASSERT_OK(writer_->Flush()); writer_->Unref(); writer_ = nullptr; EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Ids")); EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Users")); EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Experiments")); EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Runs")); EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Tags")); EXPECT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Tensors")); } TEST_F(SummaryDbWriterTest, TensorsWritten_RowsGetInitialized) { SummaryMetadata metadata; metadata.set_display_name("display_name"); metadata.set_summary_description("description"); metadata.mutable_plugin_data()->set_plugin_name("plugin_name"); metadata.mutable_plugin_data()->set_content("plugin_data"); SummaryMetadata metadata_nope; metadata_nope.set_display_name("nope"); metadata_nope.set_summary_description("nope"); metadata_nope.mutable_plugin_data()->set_plugin_name("nope"); metadata_nope.mutable_plugin_data()->set_content("nope"); TF_ASSERT_OK(CreateSummaryDbWriter(db_, "mad-science", "train", "jart", &env_, &writer_)); env_.AdvanceByMillis(23); TF_ASSERT_OK(writer_->WriteTensor(1, MakeScalarInt64(123LL), "taggy", metadata.SerializeAsString())); env_.AdvanceByMillis(23); TF_ASSERT_OK(writer_->WriteTensor(2, MakeScalarInt64(314LL), "taggy", metadata_nope.SerializeAsString())); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Users")); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Experiments")); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Runs")); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Tags")); ASSERT_EQ(1000LL, QueryInt("SELECT COUNT(*) FROM Tensors")); int64_t user_id = QueryInt("SELECT user_id FROM Users"); int64_t experiment_id = QueryInt("SELECT experiment_id FROM Experiments"); int64_t run_id = QueryInt("SELECT run_id FROM Runs"); int64_t tag_id = QueryInt("SELECT tag_id FROM Tags"); EXPECT_LT(0LL, user_id); EXPECT_LT(0LL, experiment_id); EXPECT_LT(0LL, run_id); EXPECT_LT(0LL, tag_id); EXPECT_EQ("jart", QueryString("SELECT user_name FROM Users")); EXPECT_EQ(0.023, QueryDouble("SELECT inserted_time FROM Users")); EXPECT_EQ(user_id, QueryInt("SELECT user_id FROM Experiments")); EXPECT_EQ("mad-science", QueryString("SELECT experiment_name FROM Experiments")); EXPECT_EQ(0.023, QueryDouble("SELECT inserted_time FROM Experiments")); EXPECT_EQ(experiment_id, QueryInt("SELECT experiment_id FROM Runs")); EXPECT_EQ("train", QueryString("SELECT run_name FROM Runs")); EXPECT_EQ(0.023, QueryDouble("SELECT inserted_time FROM Runs")); EXPECT_EQ(run_id, QueryInt("SELECT run_id FROM Tags")); EXPECT_EQ("taggy", QueryString("SELECT tag_name FROM Tags")); EXPECT_EQ(0.023, QueryDouble("SELECT inserted_time FROM Tags")); EXPECT_EQ("display_name", QueryString("SELECT display_name FROM Tags")); EXPECT_EQ("plugin_name", QueryString("SELECT plugin_name FROM Tags")); EXPECT_EQ("plugin_data", QueryString("SELECT plugin_data FROM Tags")); EXPECT_EQ("description", QueryString("SELECT description FROM Descriptions")); EXPECT_EQ(tag_id, QueryInt("SELECT series FROM Tensors WHERE step = 1")); EXPECT_EQ(0.023, QueryDouble("SELECT computed_time FROM Tensors WHERE step = 1")); EXPECT_EQ(tag_id, QueryInt("SELECT series FROM Tensors WHERE step = 2")); EXPECT_EQ(0.046, QueryDouble("SELECT computed_time FROM Tensors WHERE step = 2")); } TEST_F(SummaryDbWriterTest, EmptyParentNames_NoParentsCreated) { TF_ASSERT_OK(CreateSummaryDbWriter(db_, "", "", "", &env_, &writer_)); TF_ASSERT_OK(writer_->WriteTensor(1, MakeScalarInt64(123LL), "taggy", "")); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Users")); ASSERT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Experiments")); ASSERT_EQ(0LL, QueryInt("SELECT COUNT(*) FROM Runs")); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Tags")); ASSERT_EQ(1000LL, QueryInt("SELECT COUNT(*) FROM Tensors")); } TEST_F(SummaryDbWriterTest, WriteEvent_Scalar) { TF_ASSERT_OK(CreateSummaryDbWriter(db_, "", "", "", &env_, &writer_)); std::unique_ptr<Event> e{new Event}; e->set_step(7); e->set_wall_time(123.456); Summary::Value* s = e->mutable_summary()->add_value(); s->set_tag("π"); s->set_simple_value(3.14f); s = e->mutable_summary()->add_value(); s->set_tag("φ"); s->set_simple_value(1.61f); TF_ASSERT_OK(writer_->WriteEvent(std::move(e))); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(2LL, QueryInt("SELECT COUNT(*) FROM Tags")); ASSERT_EQ(2000LL, QueryInt("SELECT COUNT(*) FROM Tensors")); int64_t tag1_id = QueryInt("SELECT tag_id FROM Tags WHERE tag_name = 'π'"); int64_t tag2_id = QueryInt("SELECT tag_id FROM Tags WHERE tag_name = 'φ'"); EXPECT_GT(tag1_id, 0LL); EXPECT_GT(tag2_id, 0LL); EXPECT_EQ(123.456, QueryDouble(strings::StrCat( "SELECT computed_time FROM Tensors WHERE series = ", tag1_id, " AND step = 7"))); EXPECT_EQ(123.456, QueryDouble(strings::StrCat( "SELECT computed_time FROM Tensors WHERE series = ", tag2_id, " AND step = 7"))); } TEST_F(SummaryDbWriterTest, WriteGraph) { TF_ASSERT_OK(CreateSummaryDbWriter(db_, "", "R", "", &env_, &writer_)); env_.AdvanceByMillis(23); GraphDef graph; graph.mutable_library()->add_gradient()->set_function_name("funk"); NodeDef* node = graph.add_node(); node->set_name("x"); node->set_op("Placeholder"); node = graph.add_node(); node->set_name("y"); node->set_op("Placeholder"); node = graph.add_node(); node->set_name("z"); node->set_op("Love"); node = graph.add_node(); node->set_name("+"); node->set_op("Add"); node->add_input("x"); node->add_input("y"); node->add_input("^z"); node->set_device("tpu/lol"); std::unique_ptr<Event> e{new Event}; graph.SerializeToString(e->mutable_graph_def()); TF_ASSERT_OK(writer_->WriteEvent(std::move(e))); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Runs")); ASSERT_EQ(1LL, QueryInt("SELECT COUNT(*) FROM Graphs")); ASSERT_EQ(4LL, QueryInt("SELECT COUNT(*) FROM Nodes")); ASSERT_EQ(3LL, QueryInt("SELECT COUNT(*) FROM NodeInputs")); ASSERT_EQ(QueryInt("SELECT run_id FROM Runs"), QueryInt("SELECT run_id FROM Graphs")); int64_t graph_id = QueryInt("SELECT graph_id FROM Graphs"); EXPECT_GT(graph_id, 0LL); EXPECT_EQ(0.023, QueryDouble("SELECT inserted_time FROM Graphs")); GraphDef graph2; graph2.ParseFromString(QueryString("SELECT graph_def FROM Graphs")); EXPECT_EQ(0, graph2.node_size()); EXPECT_EQ("funk", graph2.library().gradient(0).function_name()); EXPECT_EQ("x", QueryString("SELECT node_name FROM Nodes WHERE node_id = 0")); EXPECT_EQ("y", QueryString("SELECT node_name FROM Nodes WHERE node_id = 1")); EXPECT_EQ("z", QueryString("SELECT node_name FROM Nodes WHERE node_id = 2")); EXPECT_EQ("+", QueryString("SELECT node_name FROM Nodes WHERE node_id = 3")); EXPECT_EQ("Placeholder", QueryString("SELECT op FROM Nodes WHERE node_id = 0")); EXPECT_EQ("Placeholder", QueryString("SELECT op FROM Nodes WHERE node_id = 1")); EXPECT_EQ("Love", QueryString("SELECT op FROM Nodes WHERE node_id = 2")); EXPECT_EQ("Add", QueryString("SELECT op FROM Nodes WHERE node_id = 3")); EXPECT_EQ("", QueryString("SELECT device FROM Nodes WHERE node_id = 0")); EXPECT_EQ("", QueryString("SELECT device FROM Nodes WHERE node_id = 1")); EXPECT_EQ("", QueryString("SELECT device FROM Nodes WHERE node_id = 2")); EXPECT_EQ("tpu/lol", QueryString("SELECT device FROM Nodes WHERE node_id = 3")); EXPECT_EQ(graph_id, QueryInt("SELECT graph_id FROM NodeInputs WHERE idx = 0")); EXPECT_EQ(graph_id, QueryInt("SELECT graph_id FROM NodeInputs WHERE idx = 1")); EXPECT_EQ(graph_id, QueryInt("SELECT graph_id FROM NodeInputs WHERE idx = 2")); EXPECT_EQ(3LL, QueryInt("SELECT node_id FROM NodeInputs WHERE idx = 0")); EXPECT_EQ(3LL, QueryInt("SELECT node_id FROM NodeInputs WHERE idx = 1")); EXPECT_EQ(3LL, QueryInt("SELECT node_id FROM NodeInputs WHERE idx = 2")); EXPECT_EQ(0LL, QueryInt("SELECT input_node_id FROM NodeInputs WHERE idx = 0")); EXPECT_EQ(1LL, QueryInt("SELECT input_node_id FROM NodeInputs WHERE idx = 1")); EXPECT_EQ(2LL, QueryInt("SELECT input_node_id FROM NodeInputs WHERE idx = 2")); EXPECT_EQ(0LL, QueryInt("SELECT is_control FROM NodeInputs WHERE idx = 0")); EXPECT_EQ(0LL, QueryInt("SELECT is_control FROM NodeInputs WHERE idx = 1")); EXPECT_EQ(1LL, QueryInt("SELECT is_control FROM NodeInputs WHERE idx = 2")); } TEST_F(SummaryDbWriterTest, UsesIdsTable) { SummaryMetadata metadata; TF_ASSERT_OK(CreateSummaryDbWriter(db_, "mad-science", "train", "jart", &env_, &writer_)); env_.AdvanceByMillis(23); TF_ASSERT_OK(writer_->WriteTensor(1, MakeScalarInt64(123LL), "taggy", metadata.SerializeAsString())); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(4LL, QueryInt("SELECT COUNT(*) FROM Ids")); EXPECT_EQ(4LL, QueryInt(strings::StrCat( "SELECT COUNT(*) FROM Ids WHERE id IN (", QueryInt("SELECT user_id FROM Users"), ", ", QueryInt("SELECT experiment_id FROM Experiments"), ", ", QueryInt("SELECT run_id FROM Runs"), ", ", QueryInt("SELECT tag_id FROM Tags"), ")"))); } TEST_F(SummaryDbWriterTest, SetsRunFinishedTime) { SummaryMetadata metadata; TF_ASSERT_OK(CreateSummaryDbWriter(db_, "mad-science", "train", "jart", &env_, &writer_)); env_.AdvanceByMillis(23); TF_ASSERT_OK(writer_->WriteTensor(1, MakeScalarInt64(123LL), "taggy", metadata.SerializeAsString())); TF_ASSERT_OK(writer_->Flush()); ASSERT_EQ(0.023, QueryDouble("SELECT started_time FROM Runs")); ASSERT_EQ(0.0, QueryDouble("SELECT finished_time FROM Runs")); env_.AdvanceByMillis(23); writer_->Unref(); writer_ = nullptr; ASSERT_EQ(0.023, QueryDouble("SELECT started_time FROM Runs")); ASSERT_EQ(0.046, QueryDouble("SELECT finished_time FROM Runs")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/summary/summary_db_writer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/summary/summary_db_writer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b8f1a831-4754-45ce-a70d-ceae8ef287fa
cpp
tensorflow/tensorflow
summary_file_writer
tensorflow/core/summary/summary_file_writer.cc
tensorflow/core/summary/summary_file_writer_test.cc
#include "tensorflow/core/summary/summary_file_writer.h" #include <memory> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/summary/summary_converter.h" #include "tensorflow/core/util/events_writer.h" namespace tensorflow { namespace { class SummaryFileWriter : public SummaryWriterInterface { public: SummaryFileWriter(int max_queue, int flush_millis, Env* env) : SummaryWriterInterface(), is_initialized_(false), max_queue_(max_queue), flush_millis_(flush_millis), env_(env) {} Status Initialize(const string& logdir, const string& filename_suffix) { const Status is_dir = env_->IsDirectory(logdir); if (!is_dir.ok()) { if (is_dir.code() != tensorflow::error::NOT_FOUND) { return is_dir; } TF_RETURN_IF_ERROR(env_->RecursivelyCreateDir(logdir)); } int32_t pid = env_->GetProcessId(); static std::atomic<int64_t> file_id_counter(0); string sep = absl::StartsWith(filename_suffix, ".") ? "" : "."; const string uniquified_filename_suffix = absl::StrCat( ".", pid, ".", file_id_counter.fetch_add(1), sep, filename_suffix); mutex_lock ml(mu_); events_writer_ = std::make_unique<EventsWriter>(io::JoinPath(logdir, "events")); TF_RETURN_WITH_CONTEXT_IF_ERROR( events_writer_->InitWithSuffix(uniquified_filename_suffix), "Could not initialize events writer."); last_flush_ = env_->NowMicros(); is_initialized_ = true; return absl::OkStatus(); } Status Flush() override { mutex_lock ml(mu_); if (!is_initialized_) { return errors::FailedPrecondition("Class was not properly initialized."); } return InternalFlush(); } ~SummaryFileWriter() override { (void)Flush(); } Status WriteTensor(int64_t global_step, Tensor t, const string& tag, const string& serialized_metadata) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); Summary::Value* v = e->mutable_summary()->add_value(); if (t.dtype() == DT_STRING) { t.AsProtoField(v->mutable_tensor()); } else { t.AsProtoTensorContent(v->mutable_tensor()); } v->set_tag(tag); if (!serialized_metadata.empty()) { v->mutable_metadata()->ParseFromString(serialized_metadata); } return WriteEvent(std::move(e)); } Status WriteScalar(int64_t global_step, Tensor t, const string& tag) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); TF_RETURN_IF_ERROR( AddTensorAsScalarToSummary(t, tag, e->mutable_summary())); return WriteEvent(std::move(e)); } Status WriteHistogram(int64_t global_step, Tensor t, const string& tag) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); TF_RETURN_IF_ERROR( AddTensorAsHistogramToSummary(t, tag, e->mutable_summary())); return WriteEvent(std::move(e)); } Status WriteImage(int64_t global_step, Tensor t, const string& tag, int max_images, Tensor bad_color) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); TF_RETURN_IF_ERROR(AddTensorAsImageToSummary(t, tag, max_images, bad_color, e->mutable_summary())); return WriteEvent(std::move(e)); } Status WriteAudio(int64_t global_step, Tensor t, const string& tag, int max_outputs, float sample_rate) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); TF_RETURN_IF_ERROR(AddTensorAsAudioToSummary( t, tag, max_outputs, sample_rate, e->mutable_summary())); return WriteEvent(std::move(e)); } Status WriteGraph(int64_t global_step, std::unique_ptr<GraphDef> graph) override { std::unique_ptr<Event> e{new Event}; e->set_step(global_step); e->set_wall_time(GetWallTime()); graph->SerializeToString(e->mutable_graph_def()); return WriteEvent(std::move(e)); } Status WriteEvent(std::unique_ptr<Event> event) override { mutex_lock ml(mu_); queue_.emplace_back(std::move(event)); if (queue_.size() > max_queue_ || env_->NowMicros() - last_flush_ > 1000 * flush_millis_) { return InternalFlush(); } return absl::OkStatus(); } string DebugString() const override { return "SummaryFileWriter"; } private: double GetWallTime() { return static_cast<double>(env_->NowMicros()) / 1.0e6; } Status InternalFlush() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { for (const std::unique_ptr<Event>& e : queue_) { events_writer_->WriteEvent(*e); } queue_.clear(); TF_RETURN_WITH_CONTEXT_IF_ERROR(events_writer_->Flush(), "Could not flush events file."); last_flush_ = env_->NowMicros(); return absl::OkStatus(); } bool is_initialized_; const int max_queue_; const int flush_millis_; uint64 last_flush_; Env* env_; mutex mu_; std::vector<std::unique_ptr<Event>> queue_ TF_GUARDED_BY(mu_); std::unique_ptr<EventsWriter> events_writer_ TF_GUARDED_BY(mu_); std::vector<std::pair<string, SummaryMetadata>> registered_summaries_ TF_GUARDED_BY(mu_); }; } Status CreateSummaryFileWriter(int max_queue, int flush_millis, const string& logdir, const string& filename_suffix, Env* env, SummaryWriterInterface** result) { SummaryFileWriter* w = new SummaryFileWriter(max_queue, flush_millis, env); const Status s = w->Initialize(logdir, filename_suffix); if (!s.ok()) { w->Unref(); *result = nullptr; return s; } *result = w; return absl::OkStatus(); } }
#include "tensorflow/core/summary/summary_file_writer.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/event.pb.h" namespace tensorflow { namespace { class FakeClockEnv : public EnvWrapper { public: FakeClockEnv() : EnvWrapper(Env::Default()), current_millis_(0) {} void AdvanceByMillis(const uint64 millis) { current_millis_ += millis; } uint64 NowMicros() const override { return current_millis_ * 1000; } uint64 NowSeconds() const override { return current_millis_ * 1000; } private: uint64 current_millis_; }; class SummaryFileWriterTest : public ::testing::Test { protected: Status SummaryTestHelper( const string& test_name, const std::function<Status(SummaryWriterInterface*)>& writer_fn, const std::function<void(const Event&)>& test_fn) { static std::set<string>* tests = new std::set<string>(); CHECK(tests->insert(test_name).second) << ": " << test_name; SummaryWriterInterface* writer; TF_CHECK_OK(CreateSummaryFileWriter(1, 1, testing::TmpDir(), test_name, &env_, &writer)); core::ScopedUnref deleter(writer); TF_CHECK_OK(writer_fn(writer)); TF_CHECK_OK(writer->Flush()); std::vector<string> files; TF_CHECK_OK(env_.GetChildren(testing::TmpDir(), &files)); bool found = false; for (const string& f : files) { if (absl::StrContains(f, test_name)) { if (found) { return errors::Unknown("Found more than one file for ", test_name); } found = true; std::unique_ptr<RandomAccessFile> read_file; TF_CHECK_OK(env_.NewRandomAccessFile(io::JoinPath(testing::TmpDir(), f), &read_file)); io::RecordReader reader(read_file.get(), io::RecordReaderOptions()); tstring record; uint64 offset = 0; TF_CHECK_OK( reader.ReadRecord(&offset, &record)); TF_CHECK_OK(reader.ReadRecord(&offset, &record)); Event e; e.ParseFromString(record); test_fn(e); } } if (!found) { return errors::Unknown("Found no file for ", test_name); } return absl::OkStatus(); } FakeClockEnv env_; }; TEST_F(SummaryFileWriterTest, WriteTensor) { TF_CHECK_OK(SummaryTestHelper("tensor_test", [](SummaryWriterInterface* writer) { Tensor one(DT_FLOAT, TensorShape({})); one.scalar<float>()() = 1.0; TF_RETURN_IF_ERROR(writer->WriteTensor( 2, one, "name", SummaryMetadata().SerializeAsString())); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name"); })); TF_CHECK_OK(SummaryTestHelper( "string_tensor_test", [](SummaryWriterInterface* writer) { Tensor hello(DT_STRING, TensorShape({})); hello.scalar<tstring>()() = "hello"; TF_RETURN_IF_ERROR(writer->WriteTensor( 2, hello, "name", SummaryMetadata().SerializeAsString())); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name"); EXPECT_EQ(e.summary().value(0).tensor().dtype(), DT_STRING); EXPECT_EQ(e.summary().value(0).tensor().string_val()[0], "hello"); })); } TEST_F(SummaryFileWriterTest, WriteScalar) { TF_CHECK_OK(SummaryTestHelper( "scalar_test", [](SummaryWriterInterface* writer) { Tensor one(DT_FLOAT, TensorShape({})); one.scalar<float>()() = 1.0; TF_RETURN_IF_ERROR(writer->WriteScalar(2, one, "name")); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name"); EXPECT_EQ(e.summary().value(0).simple_value(), 1.0); })); } TEST_F(SummaryFileWriterTest, WriteHistogram) { TF_CHECK_OK(SummaryTestHelper("hist_test", [](SummaryWriterInterface* writer) { Tensor one(DT_FLOAT, TensorShape({})); one.scalar<float>()() = 1.0; TF_RETURN_IF_ERROR( writer->WriteHistogram(2, one, "name")); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name"); EXPECT_TRUE(e.summary().value(0).has_histo()); })); } namespace { template <typename T> static Status CreateImage(SummaryWriterInterface* writer) { Tensor bad_color(DT_UINT8, TensorShape({1})); bad_color.scalar<uint8>()() = 0; Tensor one(DataTypeToEnum<T>::v(), TensorShape({1, 1, 1, 1})); one.scalar<T>()() = T(1); TF_RETURN_IF_ERROR(writer->WriteImage(2, one, "name", 1, bad_color)); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); } static void CheckImage(const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name/image"); CHECK(e.summary().value(0).has_image()); EXPECT_EQ(e.summary().value(0).image().height(), 1); EXPECT_EQ(e.summary().value(0).image().width(), 1); EXPECT_EQ(e.summary().value(0).image().colorspace(), 1); } } TEST_F(SummaryFileWriterTest, WriteImageUInt8) { TF_CHECK_OK( SummaryTestHelper("image_test_uint8", CreateImage<uint8>, CheckImage)); } TEST_F(SummaryFileWriterTest, WriteImageFloat) { TF_CHECK_OK( SummaryTestHelper("image_test_float", CreateImage<float>, CheckImage)); } TEST_F(SummaryFileWriterTest, WriteImageHalf) { TF_CHECK_OK(SummaryTestHelper("image_test_half", CreateImage<Eigen::half>, CheckImage)); } TEST_F(SummaryFileWriterTest, WriteImageDouble) { TF_CHECK_OK( SummaryTestHelper("image_test_double", CreateImage<double>, CheckImage)); } TEST_F(SummaryFileWriterTest, WriteAudio) { TF_CHECK_OK(SummaryTestHelper( "audio_test", [](SummaryWriterInterface* writer) { Tensor one(DT_FLOAT, TensorShape({1, 1})); one.scalar<float>()() = 1.0; TF_RETURN_IF_ERROR(writer->WriteAudio(2, one, "name", 1, 1)); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 2); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "name/audio"); CHECK(e.summary().value(0).has_audio()); })); } TEST_F(SummaryFileWriterTest, WriteEvent) { TF_CHECK_OK( SummaryTestHelper("event_test", [](SummaryWriterInterface* writer) { std::unique_ptr<Event> e{new Event}; e->set_step(7); e->mutable_summary()->add_value()->set_tag("hi"); TF_RETURN_IF_ERROR(writer->WriteEvent(std::move(e))); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.step(), 7); CHECK_EQ(e.summary().value_size(), 1); EXPECT_EQ(e.summary().value(0).tag(), "hi"); })); } TEST_F(SummaryFileWriterTest, WallTime) { env_.AdvanceByMillis(7023); TF_CHECK_OK(SummaryTestHelper( "wall_time_test", [](SummaryWriterInterface* writer) { Tensor one(DT_FLOAT, TensorShape({})); one.scalar<float>()() = 1.0; TF_RETURN_IF_ERROR(writer->WriteScalar(2, one, "name")); TF_RETURN_IF_ERROR(writer->Flush()); return absl::OkStatus(); }, [](const Event& e) { EXPECT_EQ(e.wall_time(), 7.023); })); } TEST_F(SummaryFileWriterTest, AvoidFilenameCollision) { string test_name = "avoid_filename_collision_test"; int num_files = 10; for (int i = 0; i < num_files; i++) { SummaryWriterInterface* writer; TF_CHECK_OK(CreateSummaryFileWriter(1, 1, testing::TmpDir(), test_name, &env_, &writer)); core::ScopedUnref deleter(writer); } std::vector<string> files; TF_CHECK_OK(env_.GetChildren(testing::TmpDir(), &files)); files.erase(std::remove_if(files.begin(), files.end(), [test_name](string f) { return !absl::StrContains(f, test_name); }), files.end()); EXPECT_EQ(num_files, files.size()) << "files = [" << absl::StrJoin(files, ", ") << "]"; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/summary/summary_file_writer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/summary/summary_file_writer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f91e14b2-7735-43ce-8b22-6f38cce4d87a
cpp
tensorflow/tensorflow
debug_graph_utils
tensorflow/core/debug/debug_graph_utils.cc
tensorflow/core/debug/debug_graph_utils_test.cc
#include "tensorflow/core/debug/debug_graph_utils.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/common_runtime/memory_types.h" #include "tensorflow/core/framework/kernel_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/protobuf/debug.pb.h" namespace tensorflow { namespace { Status ParseBoolString(const string& bool_str, bool* bool_val) { const string lower_bool_str = absl::AsciiStrToLower(bool_str); if (lower_bool_str == "false" || lower_bool_str == "f" || lower_bool_str == "0") { *bool_val = false; } else if (lower_bool_str == "true" || lower_bool_str == "t" || lower_bool_str == "1") { *bool_val = true; } else { return absl::InvalidArgumentError( absl::StrCat("Invalid string for bool value: ", bool_str)); } return absl::OkStatus(); } } Status DebugNodeInserter::InsertNodes( const protobuf::RepeatedPtrField<DebugTensorWatch>& watches, Graph* graph, Device* device) { if (watches.empty()) { return absl::OkStatus(); } std::vector<string> default_debug_ops; std::vector<string> default_debug_urls; std::unordered_map<string, std::vector<string>> tensor_watches; std::unordered_map<string, std::vector<string>> tensor_watch_urls; std::unordered_map<string, bool> tensor_tolerate_failures; for (const DebugTensorWatch& watch : watches) { if (watch.debug_ops().empty()) { continue; } if (watch.debug_urls().empty()) { continue; } if (watch.node_name() == "*") { if (watch.output_slot() == -1) { default_debug_ops.insert(default_debug_ops.end(), watch.debug_ops().begin(), watch.debug_ops().end()); default_debug_urls.insert(default_debug_urls.end(), watch.debug_urls().begin(), watch.debug_urls().end()); } else { return Status(absl::StatusCode::kFailedPrecondition, strings::StrCat( "output_slot is expected to be -1 for wildcard ", "node name (\"*\"), but got ", watch.output_slot())); } continue; } else { if (watch.output_slot() < 0) { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("A negative output_slot in DebugTensorWatch is ", "valid only for the wildcard node name (\"*\"), ", "but got node name ", watch.node_name())); } } string tensor_name = strings::StrCat(watch.node_name(), ":", watch.output_slot()); std::vector<string> debug_ops; for (const string& debug_op : watch.debug_ops()) { debug_ops.push_back(debug_op); } tensor_watches[tensor_name] = debug_ops; tensor_tolerate_failures[tensor_name] = watch.tolerate_debug_op_creation_failures(); std::vector<string> urls; for (const string& url : watch.debug_urls()) { urls.push_back(url); } tensor_watch_urls[tensor_name] = urls; } if (tensor_watches.empty()) { return absl::OkStatus(); } DeviceType device_type = DeviceType{device->device_type()}; std::vector<const Edge*> edges_to_remove; for (Node* src_node : graph->nodes()) { std::unordered_map<int, std::vector<const Edge*>> output_slot_to_edges; for (const Edge* edge : src_node->out_edges()) { const int src_output = edge->src_output(); if (output_slot_to_edges.find(src_output) == output_slot_to_edges.end()) { output_slot_to_edges[src_output] = {edge}; } else { output_slot_to_edges[src_output].push_back(edge); } } for (int src_output_slot = 0; src_output_slot < src_node->num_outputs(); ++src_output_slot) { const string tensor_name = strings::StrCat(src_node->name(), ":", src_output_slot); const bool explicit_tensor_match = tensor_watches.find(tensor_name) != tensor_watches.end(); if (!explicit_tensor_match && default_debug_ops.empty()) { continue; } const DataType src_dt = src_node->output_type(src_output_slot); MemoryType memory_type; TF_RETURN_IF_ERROR(MemoryTypeForOutput(device_type, graph, src_node, src_output_slot, &memory_type)); const std::vector<string> debug_ops = explicit_tensor_match ? tensor_watches[tensor_name] : default_debug_ops; const std::vector<string> debug_urls = explicit_tensor_match ? tensor_watch_urls[tensor_name] : default_debug_urls; Node* copy_node; Status copy_s = CreateCopyNode(graph, device_type, memory_type == HOST_MEMORY, src_node->name(), src_output_slot, src_dt, tensor_name, debug_ops, debug_urls, &copy_node); if (!copy_s.ok()) { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create Copy/CopyHost node for tensor ", tensor_name, ", due to: ", copy_s.message())); } graph->AddEdge(src_node, src_output_slot, copy_node, 0); std::vector<Node*> debug_nodes; for (size_t i = 0; i < debug_ops.size(); ++i) { const string& debug_op_name = debug_ops[i]; Node* debug_node; Status debug_s = CreateDebugNode(graph, *device, copy_node->name(), src_dt, tensor_name, debug_urls, i, debug_op_name, &debug_node); if (debug_s.ok()) { graph->AddEdge(copy_node, 0, debug_node, 0); debug_nodes.push_back(debug_node); } else { if (tensor_tolerate_failures[tensor_name]) { LOG(INFO) << "Tolerating failure to create debug node: " << "tensor name = " << tensor_name << "; " << "debug op name = " << debug_op_name; } else { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create debug node ", debug_op_name, " for tensor ", tensor_name, ", due to: ", debug_s.message())); } } } const bool is_ref = IsRefType(src_node->output_type(src_output_slot)); for (const Edge* edge : output_slot_to_edges[src_output_slot]) { if (!is_ref) { edges_to_remove.push_back(edge); graph->AddEdge(copy_node, 0, edge->dst(), edge->dst_input()); } for (Node* debug_node : debug_nodes) { if (!src_node->IsEnter() && !src_node->IsNextIteration()) { graph->AddEdge(debug_node, Graph::kControlSlot, edge->dst(), Graph::kControlSlot); } } } } } for (const Edge* edge : edges_to_remove) { graph->RemoveEdge(edge); } return absl::OkStatus(); } void DebugNodeInserter::DeparallelizeWhileLoops(Graph* graph, Device* device) { bool deparallelized_a_loop = false; for (Node* node : graph->nodes()) { if (node->IsEnter()) { const AttrValue* parallel_iterations = node->attrs().Find("parallel_iterations"); if (parallel_iterations && parallel_iterations->i() > 1) { deparallelized_a_loop = true; VLOG(1) << "Changing the parallel_iterations attribute of the " << "Enter/RefEnter node \"" << node->name() << "\" on device \"" << device->name() << "\" from " << parallel_iterations->i() << " to 1."; node->AddAttr<int64_t>("parallel_iterations", 1); } } } if (deparallelized_a_loop) { LOG(INFO) << "For debugging, tfdbg has set the parallel_iterations " << "attribute of all scheduled Enter/RefEnter nodes to 1. (This " << "does not affect subsequent non-debug runs.)"; } } const string DebugNodeInserter::GetCopyNodeName(const string& node_name, const int output_slot) { return strings::StrCat("__copy_", node_name, "_", output_slot); } const string DebugNodeInserter::GetDebugNodeName(const string& tensor_name, const int debug_op_num, const string& debug_op_name) { return strings::StrCat("__dbg_", tensor_name, "_", debug_op_num, "_", debug_op_name); } Status DebugNodeInserter::CreateCopyNode( Graph* graph, const DeviceType device_type, const bool is_host_memory, const string& src_node_name, const int src_output, const DataType src_dt, const string& tensor_name, const std::vector<string>& debug_ops, const std::vector<string>& debug_urls, Node** copy_node) { const string kGatedGrpcAttributeKey = "gated_grpc"; NodeDef node_def; const KernelDef* kdef; const string copy_op_name = is_host_memory ? "CopyHost" : "Copy"; const string copy_node_name = GetCopyNodeName(src_node_name, src_output); std::vector<string> debug_ops_spec; for (const string& debug_op : debug_ops) { for (const string& debug_url : debug_urls) { string debug_op_name_proper; std::unordered_map<string, string> custom_attributes; TF_RETURN_IF_ERROR(ParseDebugOpName(debug_op, &debug_op_name_proper, &custom_attributes)); bool gated_grpc_value = false; if (custom_attributes.find(kGatedGrpcAttributeKey) != custom_attributes.end()) { TF_RETURN_IF_ERROR(ParseBoolString( custom_attributes[kGatedGrpcAttributeKey], &gated_grpc_value)); } debug_ops_spec.push_back(strings::StrCat(debug_op_name_proper, ";", debug_url, ";", gated_grpc_value ? "1" : "0")); } } auto builder = NodeDefBuilder(copy_node_name, copy_op_name) .Input(src_node_name, src_output, src_dt) .Attr("debug_ops_spec", debug_ops_spec); if (!builder.Finalize(&node_def).ok()) { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create node definition ", "for copy op ", copy_node_name, " on watched tensor ", tensor_name)); } Status s = FindKernelDef(device_type, node_def, &kdef, nullptr); if (!s.ok()) { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to find kernel definition ", "for copy op ", copy_node_name, " on watched tensor ", tensor_name)); } if (!NodeBuilder(builder).Finalize(graph, copy_node).ok()) { return Status(absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create copy node ", copy_node_name, " on watched tensor ", tensor_name)); } return absl::OkStatus(); } Status DebugNodeInserter::ParseDebugOpName( const string& debug_op_name, string* debug_op_name_proper, std::unordered_map<string, string>* attributes) { const size_t l_index = debug_op_name.find('('); const size_t r_index = debug_op_name.find(')'); if (l_index == string::npos && r_index == string::npos) { *debug_op_name_proper = debug_op_name; } else { if (l_index == string::npos || l_index == 0 || r_index != debug_op_name.size() - 1) { return absl::InvalidArgumentError( absl::StrCat("Malformed debug op name \"", debug_op_name, "\"")); } *debug_op_name_proper = debug_op_name.substr(0, l_index); string arguments = debug_op_name.substr(l_index + 1, r_index - l_index - 1); std::vector<string> attribute_segs = str_util::Split(arguments, ";"); for (const string& attribute_seg : attribute_segs) { StringPiece seg(attribute_seg); str_util::RemoveWhitespaceContext(&seg); if (seg.empty()) { continue; } const size_t eq_index = seg.find('='); if (eq_index == string::npos) { return absl::InvalidArgumentError(absl::StrCat( "Malformed attributes in debug op name \"", debug_op_name, "\"")); } const string key(seg.substr(0, eq_index)); const string value( seg.substr(eq_index + 1, attribute_seg.size() - eq_index - 1)); if (key.empty() || value.empty()) { return absl::InvalidArgumentError(absl::StrCat( "Malformed attributes in debug op name \"", debug_op_name, "\"")); } if (attributes->find(key) == attributes->end()) { (*attributes)[key] = value; } else { return absl::InvalidArgumentError( absl::StrCat("Duplicate attribute name \"", key, "\" found in the debug op: \"", debug_op_name, "\"")); } } } return absl::OkStatus(); } Status DebugNodeInserter::SetDebugNodeAttributes( Node* debug_node, const std::unordered_map<string, string>& attributes) { std::unordered_set<string> unfulfilled_keys; for (const auto& item : attributes) { unfulfilled_keys.insert(item.first); } for (const auto& attr : debug_node->op_def().attr()) { if (attributes.find(attr.name()) != attributes.end()) { const string& attr_value = attributes.at(attr.name()); if (attr.type() == "string") { debug_node->AddAttr<string>(attr.name(), attr_value); } else if (attr.type() == "float") { float float_value = 0.0; if (!::tensorflow::strings::safe_strtof(attr_value, &float_value)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid value string for float-type attribute ", attr.name(), "of debug node ", debug_node->name(), ": \"", attr_value, "\"")); } debug_node->AddAttr<float>(attr.name(), float_value); } else if (attr.type() == "int") { int64_t int_value = 0; if (!::tensorflow::strings::safe_strto64(attr_value, &int_value)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid value string for int-type attribute ", attr.name(), "of debug node ", debug_node->name(), ": \"", attr_value, "\"")); } debug_node->AddAttr<int>(attr.name(), int_value); } else if (attr.type() == "bool") { bool bool_value; if (!ParseBoolString(attr_value, &bool_value).ok()) { return absl::InvalidArgumentError(absl::StrCat( "Invalid value string for bool-type attribute ", attr.name(), "of debug node ", debug_node->name(), ": \"", attr_value, "\"")); } debug_node->AddAttr<bool>(attr.name(), bool_value); } else { return absl::InvalidArgumentError( absl::StrCat("Unsupported type of custom attribute for debug ops: ", attr.type())); } unfulfilled_keys.erase(attr.name()); } } if (unfulfilled_keys.empty()) { return absl::OkStatus(); } else { return absl::InvalidArgumentError(absl::StrCat( unfulfilled_keys.size(), " attribute key(s) were not valid for debug node ", debug_node->name(), ": ", absl::StrJoin(unfulfilled_keys, ", "))); } } Status DebugNodeInserter::CreateDebugNode( Graph* graph, const Device& device, const string& src_copy_node_name, const DataType src_dt, const string& tensor_name, const std::vector<string>& debug_urls, const int debug_op_num, const string& debug_op_name, Node** debug_node) { NodeDef node_def; const KernelDef* kdef; string debug_op_name_proper; std::unordered_map<string, string> custom_attributes; TF_RETURN_IF_ERROR(ParseDebugOpName(debug_op_name, &debug_op_name_proper, &custom_attributes)); const string debug_node_name = GetDebugNodeName(tensor_name, debug_op_num, debug_op_name_proper); auto builder = NodeDefBuilder(debug_node_name, debug_op_name_proper) .Input(src_copy_node_name, 0, src_dt) .Attr("device_name", device.name()) .Attr("tensor_name", tensor_name) .Attr("debug_urls", debug_urls); if (!builder.Finalize(&node_def).ok()) { return absl::FailedPreconditionError( absl::StrCat("Failed to create node definition for debug op ", debug_op_name_proper, " on watched tensor ", tensor_name)); } if (!FindKernelDef(DeviceType(device.device_type()), node_def, &kdef, nullptr) .ok()) { return absl::FailedPreconditionError( absl::StrCat("Failed to find kernel definition for debug op ", debug_op_name_proper, " on watched tensor ", tensor_name)); } if (!NodeBuilder(builder).Finalize(graph, debug_node).ok()) { return absl::FailedPreconditionError( absl::StrCat("Failed to create debug node ", debug_op_name_proper, " on watched tensor ", tensor_name)); } if (!custom_attributes.empty()) { TF_RETURN_IF_ERROR(SetDebugNodeAttributes(*debug_node, custom_attributes)); } return absl::OkStatus(); } }
#include "tensorflow/core/debug/debug_graph_utils.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { class DebugGraphUtilsTest : public ::testing::Test { protected: Status ParseDebugOpName(const string& debug_op_name, string* debug_op_name_proper, std::unordered_map<string, string>* attributes) { return DebugNodeInserter::ParseDebugOpName( debug_op_name, debug_op_name_proper, attributes); } }; TEST_F(DebugGraphUtilsTest, TestParseNoAttributeDebugOpName) { string debug_op_name_proper; std::unordered_map<string, string> attributes; TF_ASSERT_OK( ParseDebugOpName("DebugIdentity", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugIdentity", debug_op_name_proper); ASSERT_EQ(0, attributes.size()); } TEST_F(DebugGraphUtilsTest, TestMalformedDebugOpName) { string debug_op_name_proper; std::unordered_map<string, string> attributes; Status s = ParseDebugOpName("(mute_if_healthy=true)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary(", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); } TEST_F(DebugGraphUtilsTest, TestDebugOpNameWithMalformedAttributes) { string debug_op_name_proper; std::unordered_map<string, string> attributes; Status s = ParseDebugOpName("DebugNumericSummary(=)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary(mute_if_healthy=)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary(=true)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary(mute_if_healthy:true)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary(mute_if_healthy=true;threshold=)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName( "DebugNumericSummary(mute_if_healthy=true;threshold:300.0)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); } TEST_F(DebugGraphUtilsTest, TestValidDebugOpNameWithSingleAttribute) { string debug_op_name_proper; std::unordered_map<string, string> attributes; TF_ASSERT_OK(ParseDebugOpName("DebugNumericSummary()", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(0, attributes.size()); attributes.clear(); TF_ASSERT_OK(ParseDebugOpName("DebugNumericSummary(mute_if_healthy=true)", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(1, attributes.size()); ASSERT_EQ("true", attributes["mute_if_healthy"]); } TEST_F(DebugGraphUtilsTest, TestValidDebugOpNameWithMoreThanOneAttributes) { string debug_op_name_proper; std::unordered_map<string, string> attributes; TF_ASSERT_OK(ParseDebugOpName( "DebugNumericSummary(mute_if_healthy=true; threshold=300.0)", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(2, attributes.size()); ASSERT_EQ("true", attributes["mute_if_healthy"]); ASSERT_EQ("300.0", attributes["threshold"]); attributes.clear(); TF_ASSERT_OK(ParseDebugOpName( "DebugNumericSummary(mute_if_healthy=true;threshold=300.0;first_n=100)", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(3, attributes.size()); ASSERT_EQ("true", attributes["mute_if_healthy"]); ASSERT_EQ("300.0", attributes["threshold"]); ASSERT_EQ("100", attributes["first_n"]); } TEST_F(DebugGraphUtilsTest, TestValidDebugOpNameWithMoreDuplicateAttributes) { string debug_op_name_proper; std::unordered_map<string, string> attributes; Status s = ParseDebugOpName( "DebugNumericSummary(mute_if_healthy=true; lower_bound=3; " "mute_if_healthy=false;)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); } TEST_F(DebugGraphUtilsTest, TestValidDebugOpNameWithWhitespaceInAttributes) { string debug_op_name_proper; std::unordered_map<string, string> attributes; TF_ASSERT_OK(ParseDebugOpName( "DebugNumericSummary( mute_if_healthy=true; threshold=300.0 )", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(2, attributes.size()); ASSERT_EQ("true", attributes["mute_if_healthy"]); ASSERT_EQ("300.0", attributes["threshold"]); attributes.clear(); TF_ASSERT_OK(ParseDebugOpName( "DebugNumericSummary(;;mute_if_healthy=true; threshold=300.0;;)", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(2, attributes.size()); ASSERT_EQ("true", attributes["mute_if_healthy"]); ASSERT_EQ("300.0", attributes["threshold"]); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/debug/debug_graph_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/debug/debug_graph_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea