ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
13
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
78
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
93
203
Commit Hash
stringclasses
13 values
b7c4b8a1-814a-467f-8bfa-161939660f06
cpp
tensorflow/tensorflow
gen_node
tensorflow/core/grappler/graph_analyzer/gen_node.cc
tensorflow/core/grappler/graph_analyzer/gen_node_test.cc
#include "tensorflow/core/grappler/graph_analyzer/gen_node.h" #include "absl/memory/memory.h" #include "absl/strings/str_format.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/grappler/graph_analyzer/hash_tools.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace graph_analyzer { GenNode::GenNode(const NodeDef* node) : node_(node), op_(nullptr) {} Status GenNode::BuildGraphInMap(const GraphDef& source, GenNodeMap* map) { for (const auto& n : source.node()) { const string& name = n.name(); if (map->find(name) != map->end()) { return Status(absl::StatusCode::kInvalidArgument, "Duplicate node name '" + name + "'."); } (*map)[name] = std::make_unique<GenNode>(&n); } for (const auto& mapit : *map) { Status st = mapit.second->ParseInputs(map); if (!st.ok()) { return st; } } return absl::OkStatus(); } Status GenNode::ParseInputs(const GenNodeMap* map) { all_inputs_or_none_ = false; Status st = OpRegistry::Global()->LookUpOpDef(opcode(), &op_); if (!st.ok()) { return Status( absl::StatusCode::kInvalidArgument, absl::StrFormat("Node '%s' contains an undefined operation '%s': %s", name(), opcode(), st.message())); } int n_inputs = node_->input_size(); int n_named_inputs = op_->input_arg_size(); int n_multi_inputs = 0; for (const auto& inarg : op_->input_arg()) { if (!inarg.number_attr().empty() || !inarg.type_list_attr().empty()) { ++n_multi_inputs; } } bool is_commutative = grappler::IsCommutative(*node_); if (n_multi_inputs > 1 || (n_multi_inputs > 0 && n_named_inputs > 1)) { is_commutative = false; } if (is_commutative) { n_named_inputs = 1; all_inputs_or_none_ = false; } else if (n_multi_inputs > 0) { all_inputs_or_none_ = true; } for (int i = 0; i < n_inputs; ++i) { int other_position; string other_name = ParseNodeName(node_->input(i), &other_position); auto other_it = map->find(other_name); if (other_it == map->end()) { return Status( absl::StatusCode::kInvalidArgument, absl::StrFormat( "Node '%s' input %d refers to a non-existing node '%s'.", name(), i, other_name)); } GenNode* other_node = other_it->second.get(); int this_position = other_position < 0 ? -1 : (is_commutative ? 0 : i); if (this_position >= 0 && n_multi_inputs == 0 && this_position >= n_named_inputs) { return Status( absl::StatusCode::kInvalidArgument, absl::StrFormat( "Node '%s' has a non-control input from '%s' at index %d but its " "operation '%s' defines only %d inputs.", name(), other_name, this_position, op_->name(), n_named_inputs)); } Port this_port(true, this_position); Port other_port(false, other_position); links_[this_port].emplace_back(LinkTarget(other_node, other_port)); other_node->links_[other_port].emplace_back(LinkTarget(this, this_port)); } return absl::OkStatus(); } bool GenNode::IsMultiInput(Port port) const { if (!port.IsInbound()) { return false; } auto it = links_.find(port); if (it == links_.end()) { return false; } return (it->second.size() > 1); } GenNode::Port::operator string() const { string result = this->IsInbound() ? "i" : "o"; if (this->IsControl()) { result.append("C"); } else { result.append(absl::StrFormat("%d", this->Id())); } return result; } } } }
#include "tensorflow/core/grappler/graph_analyzer/gen_node.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "tensorflow/core/grappler/graph_analyzer/test_tools.h" namespace tensorflow { namespace grappler { namespace graph_analyzer { namespace test { namespace { using ::testing::ElementsAre; using ::testing::Eq; using ::testing::Ne; TEST(GenNodeTest, Port) { { GenNode::Port p(true, 100); EXPECT_THAT(p.IsInbound(), Eq(true)); EXPECT_THAT(p.IsControl(), Eq(false)); EXPECT_THAT(p.Id(), Eq(100)); GenNode::Port p2 = GenNode::Port::Decode(p.Encoded()); EXPECT_THAT(p2.IsInbound(), Eq(true)); EXPECT_THAT(p2.IsControl(), Eq(false)); EXPECT_THAT(p2.Id(), Eq(100)); } { GenNode::Port p(false, 0); EXPECT_THAT(p.IsInbound(), Eq(false)); EXPECT_THAT(p.IsControl(), Eq(false)); EXPECT_THAT(p.Id(), Eq(0)); GenNode::Port p2 = GenNode::Port::Decode(p.Encoded()); EXPECT_THAT(p2.IsInbound(), Eq(false)); EXPECT_THAT(p2.IsControl(), Eq(false)); EXPECT_THAT(p2.Id(), Eq(0)); } { GenNode::Port p(true, -100); EXPECT_THAT(p.IsInbound(), Eq(true)); EXPECT_THAT(p.IsControl(), Eq(true)); EXPECT_THAT(p.Id(), Eq(-100)); GenNode::Port p2 = GenNode::Port::Decode(p.Encoded()); EXPECT_THAT(p2.IsInbound(), Eq(true)); EXPECT_THAT(p2.IsControl(), Eq(true)); EXPECT_THAT(p2.Id(), Eq(-100)); } { GenNode::Port p(false, -1); EXPECT_THAT(p.IsInbound(), Eq(false)); EXPECT_THAT(p.IsControl(), Eq(true)); EXPECT_THAT(p.Id(), Eq(-1)); GenNode::Port p2 = GenNode::Port::Decode(p.Encoded()); EXPECT_THAT(p2.IsInbound(), Eq(false)); EXPECT_THAT(p2.IsControl(), Eq(true)); EXPECT_THAT(p2.Id(), Eq(-1)); } } TEST(GenNodeTest, ParseNodeNoInputs) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); auto gn1 = map["node1"].get(); ASSERT_THAT(gn1->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre()); } TEST(GenNodeTest, ParseNodeWithControl) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeSub("node3", "node1", "node2"); node3.add_input("^node1"); node3.add_input("^node2"); map["node3"] = std::make_unique<GenNode>(&node3); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); ASSERT_THAT(gn3->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node3[i0]", "oC: node3[iC]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node3[i1]", "oC: node3[iC]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "i0: node1[o0]", "i1: node2[o0]", "iC: node1[oC], node2[oC]" )); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, 0)), Eq(false)); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, -1)), Eq(true)); EXPECT_FALSE(gn1->AllInputsOrNone()); EXPECT_FALSE(gn2->AllInputsOrNone()); EXPECT_FALSE(gn3->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeCommutative) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeMul("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); ASSERT_THAT(gn3->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "i0: node1[o0], node2[o0]" )); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, 0)), Eq(true)); EXPECT_FALSE(gn3->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeMultiInputCommutative) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeAddN("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); ASSERT_THAT(gn3->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "i0: node1[o0], node2[o0]" )); EXPECT_THAT(gn2->IsMultiInput(GenNode::Port(false, 0)), Eq(false)); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, 0)), Eq(true)); EXPECT_FALSE(gn3->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeMultiInputNotCommutative) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeShapeN("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); ASSERT_THAT(gn3->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node3[i1]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "i0: node1[o0]", "i1: node2[o0]" )); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, 0)), Eq(false)); EXPECT_TRUE(gn3->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeMultiInputList) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeIdentityN("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); ASSERT_THAT(gn3->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node3[i1]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "i0: node1[o0]", "i1: node2[o0]" )); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, 0)), Eq(false)); EXPECT_TRUE(gn3->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeMultiMultiInput) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeConst("node3"); map["node3"] = std::make_unique<GenNode>(&node3); NodeDef node4 = MakeNodeConst("node4"); map["node4"] = std::make_unique<GenNode>(&node4); NodeDef node5 = MakeNodeQuantizedConcat("node5", "node1", "node2", "node3", "node4"); map["node5"] = std::make_unique<GenNode>(&node5); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); auto gn4 = map["node4"].get(); auto gn5 = map["node5"].get(); ASSERT_THAT(gn5->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node5[i0]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node5[i1]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "o0: node5[i2]" )); EXPECT_THAT(DumpLinkMap(gn4->links()), ElementsAre( "o0: node5[i3]" )); EXPECT_THAT(DumpLinkMap(gn5->links()), ElementsAre( "i0: node1[o0]", "i1: node2[o0]", "i2: node3[o0]", "i3: node4[o0]" )); EXPECT_THAT(gn5->IsMultiInput(GenNode::Port(true, 1)), Eq(false)); EXPECT_THAT(gn5->IsMultiInput(GenNode::Port(true, 2)), Eq(false)); EXPECT_TRUE(gn5->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeMultiOutput) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeBroadcastGradientArgs("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); NodeDef node4 = MakeNodeSub("node4", "node3:1", "node3:0"); map["node4"] = std::make_unique<GenNode>(&node4); auto gn4 = map["node4"].get(); ASSERT_THAT(gn4->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn4->links()), ElementsAre( "i0: node3[o1]", "i1: node3[o0]" )); } TEST(GenNodeTest, ParseNodeUndefinedOp) { GenNodeMap map; NodeDef node1; node1.set_name("node1"); node1.set_op("Zzzx"); map["node1"] = std::make_unique<GenNode>(&node1); const OpDef* opdef; Status nested_error = OpRegistry::Global()->LookUpOpDef("Zzzx", &opdef); auto gn = map["node1"].get(); ASSERT_THAT( gn->ParseInputs(&map), Eq(Status( absl::StatusCode::kInvalidArgument, absl::StrCat("Node 'node1' contains an undefined operation 'Zzzx': ", nested_error.message())))); } TEST(GenNodeTest, ParseNodeUnexpectedInputs) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); node1.add_input("node1"); auto gn1 = map["node1"].get(); EXPECT_THAT(gn1->ParseInputs(&map), Eq(Status(absl::StatusCode::kInvalidArgument, "Node 'node1' has a non-control " "input from 'node1' at index 0 but its operation " "'Const' defines only 0 inputs."))); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeSub("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); node3.add_input("node1"); auto gn3 = map["node3"].get(); EXPECT_THAT(gn3->ParseInputs(&map), Eq(Status(absl::StatusCode::kInvalidArgument, "Node 'node3' has a non-control " "input from 'node1' at index 2 but its operation " "'Sub' defines only 2 inputs."))); } TEST(GenNodeTest, ParseNodeControlInputsAlwaysOk) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); node1.add_input("^node1"); auto gn1 = map["node1"].get(); ASSERT_THAT(gn1->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "iC: node1[oC]", "oC: node1[iC]" )); } TEST(GenNodeTest, ParseNodeInvalidInput) { GenNodeMap map; NodeDef node1 = MakeNodeAddN("node1", "node2", "node3"); map["node1"] = std::make_unique<GenNode>(&node1); node1.add_input("node1"); auto gn1 = map["node1"].get(); ASSERT_THAT( gn1->ParseInputs(&map), Eq(Status( absl::StatusCode::kInvalidArgument, "Node 'node1' input 0 refers to a non-existing node 'node2'."))); } TEST(GenNodeTest, BuildGraphInMap) { GraphDef graph; (*graph.add_node()) = MakeNodeConst("node1"); (*graph.add_node()) = MakeNodeSub("node2", "node3:1", "node3:0"); (*graph.add_node()) = MakeNodeBroadcastGradientArgs("node3", "node1", "node2"); GenNodeMap map; ASSERT_THAT(GenNode::BuildGraphInMap(graph, &map), Eq(absl::OkStatus())); ASSERT_THAT(map.find("node1"), Ne(map.end())); ASSERT_THAT(map.find("node2"), Ne(map.end())); ASSERT_THAT(map.find("node3"), Ne(map.end())); EXPECT_THAT(map["node1"]->name(), Eq("node1")); EXPECT_THAT(map["node2"]->name(), Eq("node2")); EXPECT_THAT(map["node3"]->name(), Eq("node3")); EXPECT_THAT(DumpLinkMap(map["node1"]->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(map["node2"]->links()), ElementsAre( "i0: node3[o1]", "i1: node3[o0]", "o0: node3[i1]" )); EXPECT_THAT(DumpLinkMap(map["node3"]->links()), ElementsAre( "i0: node1[o0]", "i1: node2[o0]", "o0: node2[i1]", "o1: node2[i0]" )); } TEST(GenNodeTest, BuildGraphInMapDuplicateNode) { GraphDef graph; (*graph.add_node()) = MakeNodeConst("node1"); (*graph.add_node()) = MakeNodeConst("node1"); GenNodeMap map; ASSERT_THAT(GenNode::BuildGraphInMap(graph, &map), Eq(Status(absl::StatusCode::kInvalidArgument, "Duplicate node name 'node1'."))); } TEST(GenNodeTest, BuildGraphInMapParseError) { GraphDef graph; (*graph.add_node()) = MakeNodeConst("node1"); (*graph.add_node()) = MakeNodeSub("node2", "node3:1", "node3:0"); GenNodeMap map; ASSERT_THAT( GenNode::BuildGraphInMap(graph, &map), Eq(Status( absl::StatusCode::kInvalidArgument, "Node 'node2' input 0 refers to a non-existing node 'node3'."))); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_analyzer/gen_node.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_analyzer/gen_node_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
08c7ac11-785d-49c7-8f9f-282729b8967d
cpp
tensorflow/tensorflow
single_machine
tensorflow/core/grappler/clusters/single_machine.cc
tensorflow/core/grappler/clusters/single_machine_test.cc
#include "tensorflow/core/grappler/clusters/single_machine.h" #include <atomic> #include <memory> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/cc/training/queue_runner.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/gpu/gpu_id.h" #include "tensorflow/core/common_runtime/gpu/gpu_id_manager.h" #include "tensorflow/core/grappler/clusters/utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/notification.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/session.h" namespace tensorflow { namespace grappler { static std::atomic<bool> already_provisioned(false); SingleMachine::SingleMachine(int timeout_s, int num_cpu_cores, int num_gpus) : Cluster(timeout_s), expected_init_time_s_(0), closing_(false) { VLOG(1) << "Number of CPU cores: " << num_cpu_cores << " Number of GPUs: " << num_gpus; thread_pool_ = std::make_unique<thread::ThreadPool>( Env::Default(), SanitizeThreadSuffix("single_machine"), 2); (*options_.config.mutable_device_count())["CPU"] = 1; if (num_gpus > 0) { (*options_.config.mutable_device_count())["GPU"] = num_gpus; } CHECK_GE(num_cpu_cores, 1); options_.config.set_intra_op_parallelism_threads(num_cpu_cores); options_.config.add_session_inter_op_thread_pool()->set_num_threads( num_cpu_cores); if (timeout_s > 0) { options_.config.set_operation_timeout_in_ms(timeout_s * 1000); } } SingleMachine::~SingleMachine() { CloseSession(false ).IgnoreError(); thread_pool_.reset(); } Status SingleMachine::Provision() { if (already_provisioned) { return absl::UnavailableError( "Can't provision more than one single cluster at a time"); } TF_RETURN_IF_ERROR(ResetSession()); std::vector<DeviceAttributes> devices; TF_RETURN_IF_ERROR(session_->ListDevices(&devices)); for (const auto& dev : devices) { DeviceProperties attr; if (dev.device_type() == "CPU") { attr = GetLocalCPUInfo(); } else if (dev.device_type() == "GPU") { DeviceNameUtils::ParsedName parsed; if (!DeviceNameUtils::ParseFullName(dev.name(), &parsed)) { return absl::InvalidArgumentError( absl::StrCat("Not able to parse GPU device name: ", dev.name())); } TfDeviceId tf_device_id(parsed.id); PlatformDeviceId platform_device_id; Status s = GpuIdManager::TfToPlatformDeviceId(tf_device_id, &platform_device_id); if (!s.ok()) { return absl::UnavailableError( absl::StrCat("Unknown TF GPU device with id ", tf_device_id.value(), ": ", s.message())); } attr = GetLocalGPUInfo(platform_device_id); } else if (dev.device_type().find("XLA") == string::npos) { attr.set_type(dev.device_type()); } attr.set_memory_size(dev.memory_limit()); devices_[dev.name()] = attr; } already_provisioned = true; if (cpu_allocator_stats_enabled_) { TF_RETURN_IF_ERROR(ClearAllocatorStats()); } return absl::OkStatus(); } Status SingleMachine::Initialize(const GrapplerItem& item) { mutex_lock l(this->last_graph_mu_); if (last_graph_ != &item.graph || last_graph_id_ != item.id) { init_ops_ = item.init_ops; expected_init_time_s_ = item.expected_init_time; last_graph_ = nullptr; queue_runner_defs_ = item.queue_runners; last_graph_id_ = item.id; } return absl::OkStatus(); } Status SingleMachine::Shutdown() { TF_RETURN_IF_ERROR(ShutdownSession()); mutex_lock l(this->last_graph_mu_); last_graph_ = nullptr; already_provisioned = false; return absl::OkStatus(); } Status SingleMachine::Run(const GraphDef& graph_def, const std::vector<std::pair<string, Tensor>>& feed, const std::vector<string>& fetch, RunMetadata* metadata) { mutex_lock l(this->last_graph_mu_); if (last_graph_ != &graph_def) { TF_RETURN_IF_ERROR(ResetSession()); TF_RETURN_IF_ERROR(session_->Create(graph_def)); if (!init_ops_.empty()) { init_metadata_ = RunMetadata(); int64_t timeout_s = timeout_s_ + expected_init_time_s_; TF_RETURN_IF_ERROR( RunWithTimeout({}, init_ops_, &init_metadata_, timeout_s)); for (auto node : *init_metadata_.mutable_cost_graph()->mutable_node()) { node.clear_compute_cost(); } init_metadata_.clear_step_stats(); } RunOptions queue_options = run_options_; if (queue_options.trace_level() >= RunOptions::HARDWARE_TRACE) { queue_options.set_trace_level(RunOptions::SOFTWARE_TRACE); } for (size_t i = 0; i < queue_runner_defs_.size(); ++i) { std::unique_ptr<QueueRunner> queue_runner; TF_RETURN_IF_ERROR(QueueRunner::New(queue_runner_defs_[i], coordinator_.get(), &queue_runner)); TF_RETURN_IF_ERROR(queue_runner->StartAndCollectCostGraph(session_.get(), queue_options)); TF_RETURN_IF_ERROR(coordinator_->RegisterRunner(std::move(queue_runner))); TF_RETURN_IF_ERROR(coordinator_->GetStatus()); } for (int i = 0; i < NumWarmupSteps(); ++i) { TF_RETURN_IF_ERROR(RunWithTimeout(feed, fetch, nullptr)); } } if (metadata) { TF_RETURN_IF_ERROR(RunWithTimeout(feed, fetch, metadata)); CostGraphDef queue_costs; TF_RETURN_IF_ERROR(coordinator_->ExportCostGraph(&queue_costs)); MergeCosts(metadata->mutable_cost_graph(), init_metadata_.cost_graph(), queue_costs); } else { TF_RETURN_IF_ERROR(RunWithTimeout(feed, fetch, nullptr)); } last_graph_ = &graph_def; return absl::OkStatus(); } Status SingleMachine::EnablePeakMemoryStats() { EnableCPUAllocatorStats(); cpu_allocator_stats_enabled_ = true; return absl::OkStatus(); } Status SingleMachine::GetPeakMemoryUsage( std::unordered_map<string, uint64>* device_peak_memory) const { if (!cpu_allocator_stats_enabled_) { return Status(absl::StatusCode::kInvalidArgument, "Tracking allocation for CPU is not enabled."); } const DeviceMgr* device_mgr; TF_RETURN_IF_ERROR(session_->LocalDeviceManager(&device_mgr)); std::vector<Device*> devices = device_mgr->ListDevices(); device_peak_memory->clear(); for (Device* device : devices) { auto* allocator = device->GetAllocator(AllocatorAttributes()); if (!allocator->TracksAllocationSizes()) { return Status(absl::StatusCode::kInvalidArgument, "Tracking allocation is not enabled."); } absl::optional<AllocatorStats> stats = allocator->GetStats(); (*device_peak_memory)[device->name()] = (stats ? stats->peak_bytes_in_use : 0); } return absl::OkStatus(); } Status SingleMachine::RunWithTimeout( const std::vector<std::pair<string, Tensor>>& feed, const std::vector<string>& fetch, RunMetadata* run_metadata) { return RunWithTimeout(feed, fetch, run_metadata, timeout_s_); } Status SingleMachine::RunWithTimeout( const std::vector<std::pair<string, Tensor>>& feed, const std::vector<string>& fetch, RunMetadata* run_metadata, int64_t timeout_s) { { mutex_lock l(close_mu_); CHECK(!closing_); } auto status = std::make_shared<Status>(); auto local_metadata = std::make_shared<RunMetadata>(); const bool executed_in_time = ExecuteWithTimeout( [this, status, local_metadata, feed, fetch]() { *status = session_->Run(run_options_, feed, {}, fetch, nullptr, local_metadata.get()); }, timeout_s * 1000, thread_pool_.get()); if (!executed_in_time) { return absl::DeadlineExceededError(absl::StrCat( "Failed to run the graph after ", timeout_s, " seconds, aborting")); } else if (run_metadata && status->ok()) { *run_metadata = *local_metadata; } return *status; } Status SingleMachine::CloseSession(bool use_timeout) { if (!session_ || !thread_pool_) { return absl::OkStatus(); } { mutex_lock l(close_mu_); if (!closing_) { closing_ = true; } } const bool executed_in_time = ExecuteWithTimeout( [&]() { if (this->coordinator_) { this->coordinator_->RequestStop().IgnoreError(); while (!this->coordinator_->AllRunnersStopped()) { Env::Default()->SleepForMicroseconds(1000000); } this->session_->Close().IgnoreError(); this->coordinator_.reset(); } else { this->session_->Close().IgnoreError(); } mutex_lock l2(close_mu_); closing_ = false; }, use_timeout ? timeout_s_ * 1000 : -1, thread_pool_.get()); if (!executed_in_time) { return absl::UnavailableError( absl::StrCat("Failed to close the previous session after ", timeout_s_, " seconds, aborting")); } return absl::OkStatus(); } Status SingleMachine::ShutdownSession() { TF_RETURN_IF_ERROR(CloseSession(true )); auto n = std::make_shared<Notification>(); Env::Default()->SchedClosure([this, n]() { thread_pool_.reset(); n->Notify(); }); int64_t timeout_us = 1000000ll * timeout_s_; const bool notified = WaitForNotificationWithTimeout(n.get(), timeout_us); if (!notified) { return absl::UnavailableError(absl::StrCat( "The session is still running graphs after ", timeout_s_, " seconds")); } return absl::OkStatus(); } Status SingleMachine::ResetSession() { if (session_) { LOG(INFO) << "Cleaning up previous session"; TF_RETURN_IF_ERROR(ShutdownSession()); session_.reset(); } LOG(INFO) << "Starting new session"; thread_pool_ = std::make_unique<thread::ThreadPool>( Env::Default(), SanitizeThreadSuffix("single_machine"), 2); session_.reset(NewSession(options_)); if (!session_) { return absl::UnknownError("Failed to create session"); } coordinator_ = std::make_unique<Coordinator>(); device_set_ = std::make_unique<DeviceSet>(); const DeviceMgr* device_mgr; TF_RETURN_IF_ERROR(session_->LocalDeviceManager(&device_mgr)); for (auto d : device_mgr->ListDevices()) { device_set_->AddDevice(d); } return absl::OkStatus(); } void SingleMachine::MergeCosts(CostGraphDef* graph_costs, const CostGraphDef& init_costs, const CostGraphDef& queue_costs) { graph_costs->mutable_node()->Reserve(graph_costs->node_size() + init_costs.node_size() + queue_costs.node_size()); std::unordered_set<string> nodes_seen; int queue_costs_id_offset = graph_costs->node_size(); for (const auto& node : graph_costs->node()) { nodes_seen.insert(node.name()); if (node.id() >= queue_costs_id_offset) { queue_costs_id_offset = node.id() + 1; } } int init_costs_id_offset = queue_costs_id_offset + queue_costs.node_size(); for (const auto& node : queue_costs.node()) { if (nodes_seen.find(node.name()) != nodes_seen.end()) { continue; } auto* new_node = graph_costs->add_node(); new_node->MergeFrom(node); new_node->set_id(node.id() + queue_costs_id_offset); if (new_node->id() >= init_costs_id_offset) { init_costs_id_offset = new_node->id() + 1; } for (auto& input_info : *new_node->mutable_input_info()) { input_info.set_preceding_node(input_info.preceding_node() + queue_costs_id_offset); } for (auto& control_input : *new_node->mutable_control_input()) { control_input += queue_costs_id_offset; } } for (const auto& node : init_costs.node()) { if (nodes_seen.find(node.name()) != nodes_seen.end()) { continue; } auto* new_node = graph_costs->add_node(); new_node->MergeFrom(node); new_node->set_id(node.id() + init_costs_id_offset); for (auto& input_info : *new_node->mutable_input_info()) { input_info.set_preceding_node(input_info.preceding_node() + init_costs_id_offset); } for (auto& control_input : *new_node->mutable_control_input()) { control_input += init_costs_id_offset; } } } Status SingleMachine::ClearAllocatorStats() const { if (!cpu_allocator_stats_enabled_) { return Status(absl::StatusCode::kInvalidArgument, "Tracking allocation for CPU is not enabled."); } const DeviceMgr* device_mgr; TF_RETURN_IF_ERROR(session_->LocalDeviceManager(&device_mgr)); std::vector<Device*> devices = device_mgr->ListDevices(); for (Device* device : devices) { auto* allocator = device->GetAllocator(AllocatorAttributes()); if (!allocator->TracksAllocationSizes()) { return Status(absl::StatusCode::kInvalidArgument, "Tracking allocation is not enabled."); } if (!allocator->ClearStats()) { return Status( absl::StatusCode::kInvalidArgument, absl::StrCat("Clearing allocation stats is not supported for ", device->name())); } } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/clusters/single_machine.h" #include <memory> #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/queue_runner.pb.h" namespace tensorflow { namespace grappler { namespace { class SingleMachineTest : public ::testing::Test { public: void SetUp() override { #if TENSORFLOW_USE_ROCM int timeout_s = 10; #else int timeout_s = 5; #endif #ifdef THREAD_SANITIZER timeout_s *= 5; #endif cluster_ = std::make_unique<SingleMachine>(timeout_s, 3 , 0 ); TF_CHECK_OK(cluster_->EnablePeakMemoryStats()); TF_CHECK_OK(cluster_->Provision()); } void TearDown() override { if (cluster_) { TF_CHECK_OK(cluster_->Shutdown()); } cluster_.reset(); } protected: std::unique_ptr<SingleMachine> cluster_; }; TEST_F(SingleMachineTest, ClusterType) { CHECK_EQ("single_machine", cluster_->type()); } TEST_F(SingleMachineTest, CostModel) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster_->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); TF_CHECK_OK(cluster_->Initialize(item)); RunMetadata metadata; const int64_t start_micros = Env::Default()->NowMicros(); TF_CHECK_OK(cluster_->Run(item.graph, item.feed, item.fetch, &metadata)); const int64_t run_duration_micros = Env::Default()->NowMicros() - start_micros; EXPECT_LE(4, metadata.cost_graph().node_size()); for (const auto& node : metadata.cost_graph().node()) { if (node.name()[0] == '_' || node.name().find("/_") != string::npos) { continue; } #ifndef INTEL_MKL EXPECT_EQ(1, node.output_info_size()); #endif EXPECT_LE(8, node.output_info(0).size()); const TensorShapeProto& shape = node.output_info(0).shape(); EXPECT_EQ(2, shape.dim_size()); EXPECT_EQ(10, shape.dim(0).size()); EXPECT_EQ(1, shape.dim(1).size()); EXPECT_LE(0, node.compute_cost()); EXPECT_GE(run_duration_micros, node.compute_cost()); } } TEST_F(SingleMachineTest, Queue) { TrivialTestGraphInputYielder fake_input(4, 1, 10, true, cluster_->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); TF_CHECK_OK(cluster_->Initialize(item)); RunMetadata metadata; TF_CHECK_OK(cluster_->Run(item.graph, item.feed, item.fetch, &metadata)); } TEST_F(SingleMachineTest, MultipleItems) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster_->GetDeviceNames()); for (int i = 0; i < 3; ++i) { GrapplerItem item; CHECK(fake_input.NextItem(&item)); TF_CHECK_OK(cluster_->Initialize(item)); RunMetadata metadata1; TF_CHECK_OK(cluster_->Run(item.graph, item.feed, item.fetch, &metadata1)); RunMetadata metadata2; TF_CHECK_OK(cluster_->Run(item.graph, item.feed, item.fetch, &metadata2)); EXPECT_LE(6, metadata1.cost_graph().node_size()); for (const auto& node : metadata1.cost_graph().node()) { if (node.name()[0] == '_' || node.name().find("/_") != string::npos || node.name() == "queue") { continue; } #ifndef INTEL_MKL EXPECT_EQ(1, node.output_info_size()); #endif const TensorShapeProto& shape = node.output_info(0).shape(); EXPECT_EQ(2, shape.dim_size()); EXPECT_EQ(10, shape.dim(0).size()); EXPECT_EQ(1, shape.dim(1).size()); } for (int i = 0; i < metadata1.cost_graph().node_size(); ++i) { metadata1.mutable_cost_graph()->mutable_node(i)->set_compute_cost(0); metadata1.clear_step_stats(); } for (int i = 0; i < metadata2.cost_graph().node_size(); ++i) { metadata2.mutable_cost_graph()->mutable_node(i)->set_compute_cost(0); metadata2.clear_step_stats(); } string s1; ::tensorflow::protobuf::TextFormat::PrintToString(metadata1, &s1); string s2; ::tensorflow::protobuf::TextFormat::PrintToString(metadata2, &s2); EXPECT_EQ(s1, s2); } } TEST_F(SingleMachineTest, GraphOptimizations) { tensorflow::Scope root = tensorflow::Scope::NewRootScope(); auto zero = ops::Const(root.WithOpName("zero"), 0.0f, {2, 3}); auto one = ops::Const(root.WithOpName("one"), 1.0f, {2, 3}); auto add = ops::Add(root.WithOpName("add"), zero, one); auto square = ops::Square(root.WithOpName("square"), add); auto new_shape = ops::Const(root.WithOpName("new_shape"), {3, -1}, {2}); auto reshaped = ops::Reshape(root.WithOpName("reshaped"), square, new_shape); auto final_shape = ops::Shape(root.WithOpName("final_shape"), reshaped); auto expected_shape = ops::Const(root.WithOpName("expected_shape"), {3, 2}, {2}); auto valid = ops::Equal(root.WithOpName("valid"), final_shape, expected_shape); auto all_dims = ops::Const(root.WithOpName("all_dims"), {0}, {1}); auto all_valid = ops::All(root.WithOpName("all_valid"), valid, all_dims); auto assert_valid = ops::Assert(root.WithOpName("assert_valid"), all_valid, {final_shape.output}); GrapplerItem item; TF_CHECK_OK(root.ToGraphDef(&item.graph)); item.fetch.push_back("assert_valid"); for (auto& node : *item.graph.mutable_node()) { node.set_device("/cpu:0"); } TF_CHECK_OK(cluster_->Shutdown()); cluster_->DisableOptimizer(true); TF_CHECK_OK(cluster_->Provision()); RunMetadata metadata; TF_CHECK_OK(cluster_->Initialize(item)); TF_CHECK_OK(cluster_->Run(item.graph, item.feed, item.fetch, &metadata)); std::set<string> cost_nodes; for (const auto& node : metadata.cost_graph().node()) { #ifdef INTEL_MKL if (node.name()[0] == '_' || node.name().find("/_") != string::npos) { continue; } cost_nodes.insert(node.name()); #else if (node.name()[0] != '_') { cost_nodes.insert(node.name()); } #endif } const std::set<string> expected_cost_nodes = { "zero", "one", "add", "square", "new_shape", "reshaped", "final_shape", "expected_shape", "valid", "all_dims", "all_valid", "assert_valid"}; EXPECT_EQ(expected_cost_nodes, cost_nodes); } TEST_F(SingleMachineTest, TimeOuts) { tensorflow::Scope root = tensorflow::Scope::NewRootScope(); auto q = ops::FIFOQueue(root.WithOpName("queue"), {DataType::DT_INT32}); auto dequeue = ops::QueueDequeue(root.WithOpName("dequeue"), q, {DataType::DT_INT32}); GrapplerItem item; TF_CHECK_OK(root.ToGraphDef(&item.graph)); item.fetch.push_back("dequeue"); TF_CHECK_OK(cluster_->Initialize(item)); RunMetadata metadata; Status s1 = cluster_->Run(item.graph, item.feed, item.fetch, &metadata); EXPECT_TRUE(errors::IsDeadlineExceeded(s1)); Status s2 = cluster_->Run(item.graph, item.feed, item.fetch, &metadata); EXPECT_TRUE(errors::IsDeadlineExceeded(s2)); } static void RunInfiniteTFLoop() { GrapplerItem item; NodeDef* shp = item.graph.add_node(); shp->set_name("shape"); shp->set_op("Const"); (*shp->mutable_attr())["dtype"].set_type(DT_INT32); Tensor shp_tensor(DT_INT32, TensorShape({1})); shp_tensor.flat<int32>()(0) = 1; shp_tensor.AsProtoTensorContent( (*shp->mutable_attr())["value"].mutable_tensor()); NodeDef* r = item.graph.add_node(); r->set_name("random"); r->set_op("RandomUniform"); (*r->mutable_attr())["dtype"].set_type(DT_FLOAT); (*r->mutable_attr())["T"].set_type(DT_INT32); *r->add_input() = "shape"; NodeDef* e = item.graph.add_node(); e->set_name("while/Enter"); e->set_op("Enter"); (*e->mutable_attr())["T"].set_type(DT_FLOAT); (*e->mutable_attr())["frame_name"].set_s("while/while/"); *e->add_input() = "random"; NodeDef* m = item.graph.add_node(); m->set_name("while/Merge"); m->set_op("Merge"); (*m->mutable_attr())["T"].set_type(DT_FLOAT); (*m->mutable_attr())["N"].set_i(2); *m->add_input() = "while/Enter"; *m->add_input() = "while/NextIteration"; NodeDef* t = item.graph.add_node(); t->set_name("always_true"); t->set_op("Const"); (*t->mutable_attr())["dtype"].set_type(DT_BOOL); *t->add_input() = "^while/Merge"; Tensor true_tensor(DT_BOOL, TensorShape()); true_tensor.flat<bool>()(0) = true; true_tensor.AsProtoTensorContent( (*t->mutable_attr())["value"].mutable_tensor()); NodeDef* c = item.graph.add_node(); c->set_name("while/LoopCond"); c->set_op("LoopCond"); *c->add_input() = "always_true"; NodeDef* s = item.graph.add_node(); s->set_name("while/Switch"); (*s->mutable_attr())["T"].set_type(DT_FLOAT); s->set_op("Switch"); *s->add_input() = "while/Merge"; *s->add_input() = "while/LoopCond"; NodeDef* i = item.graph.add_node(); i->set_name("while/Identity"); i->set_op("Identity"); (*i->mutable_attr())["T"].set_type(DT_FLOAT); *i->add_input() = "while/Switch:1"; NodeDef* n = item.graph.add_node(); n->set_name("while/NextIteration"); n->set_op("NextIteration"); (*n->mutable_attr())["T"].set_type(DT_FLOAT); *n->add_input() = "while/Identity"; NodeDef* x = item.graph.add_node(); x->set_name("while/Exit"); x->set_op("Exit"); (*x->mutable_attr())["T"].set_type(DT_FLOAT); *x->add_input() = "while/Switch"; item.fetch.push_back("while/Exit"); SingleMachine cluster(5, 3, 0); TF_CHECK_OK(cluster.Provision()); TF_CHECK_OK(cluster.Initialize(item)); Status s1 = cluster.Run(item.graph, item.feed, item.fetch, nullptr); if (!errors::IsDeadlineExceeded(s1)) { LOG(ERROR) << "Expected 'deadline exceeded' error, got " << s1; _exit(1); } Status s2 = cluster.Shutdown(); if (!errors::IsUnavailable(s2)) { LOG(ERROR) << "Expected 'unavailable' error, got " << s2; _exit(2); } _exit(0); } TEST_F(SingleMachineTest, InfiniteLoops) { #if !(TENSORFLOW_USE_ROCM) TF_CHECK_OK(cluster_->Shutdown()); EXPECT_EXIT(RunInfiniteTFLoop(), ::testing::ExitedWithCode(0), ".*"); #endif } TEST_F(SingleMachineTest, InitializationMemory) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); int batch_size = 10; Output x = ops::RandomNormal(s.WithOpName("x"), {batch_size, 1}, DataType::DT_FLOAT); Output v = ops::Variable(s.WithOpName("v"), TensorShape({batch_size, 1}), DataType::DT_FLOAT); Output init = ops::Assign(s.WithOpName("init"), v, x); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.init_ops.push_back(init.name()); item.fetch.push_back(v.name()); TF_CHECK_OK(cluster_->Initialize(item)); RunMetadata metadata; TF_CHECK_OK(cluster_->Run(item.graph, item.feed, item.fetch, &metadata)); bool found = false; for (const auto& node : metadata.cost_graph().node()) { found |= (node.name() == NodeName(init.name())); } EXPECT_TRUE(found); } namespace { template <class T> inline void SetNodeAttr(const string& key, const T& value, NodeDef* node) { AttrValue attr_value; SetAttrValue(value, &attr_value); auto* attr_map = node->mutable_attr(); (*attr_map)[key] = attr_value; } template <> inline void SetNodeAttr(const string& key, const Tensor& tensor, NodeDef* node) { TensorProto tensor_proto; tensor.AsProtoTensorContent(&tensor_proto); SetNodeAttr(key, tensor_proto, node); } } TEST_F(SingleMachineTest, PersistentMemory) { GrapplerItem item; const DataType key_dtype = DT_INT64; const DataType data_dtype = DT_INT64; NodeDef* hashtable_node = item.graph.add_node(); hashtable_node->set_op("HashTable"); hashtable_node->set_name("hash_table"); SetNodeAttr("key_dtype", key_dtype, hashtable_node); SetNodeAttr("value_dtype", data_dtype, hashtable_node); NodeDef* keys_node = item.graph.add_node(); keys_node->set_op("Const"); keys_node->set_name("table_keys"); SetNodeAttr("dtype", key_dtype, keys_node); Tensor keys(key_dtype, TensorShape{2}); keys.vec<int64_t>()(0) = 123; keys.vec<int64_t>()(1) = 321; SetNodeAttr("value", keys, keys_node); NodeDef* values_node = item.graph.add_node(); values_node->set_op("Const"); values_node->set_name("table_values"); SetNodeAttr("dtype", data_dtype, values_node); Tensor values(data_dtype, TensorShape{2}); values.vec<int64_t>()(0) = 789; values.vec<int64_t>()(1) = 987; SetNodeAttr("value", values, values_node); NodeDef* init_table_node = item.graph.add_node(); init_table_node->set_op("InitializeTable"); init_table_node->set_name("initialize_table"); SetNodeAttr("Tkey", key_dtype, init_table_node); SetNodeAttr("Tval", data_dtype, init_table_node); *init_table_node->add_input() = "hash_table"; *init_table_node->add_input() = "table_keys"; *init_table_node->add_input() = "table_values"; item.init_ops.push_back(init_table_node->name()); NodeDef* query_node = item.graph.add_node(); query_node->set_op("Const"); query_node->set_name("query"); SetNodeAttr("dtype", key_dtype, query_node); Tensor query(key_dtype, TensorShape({})); query.flat<int64_t>()(0) = 0; SetNodeAttr("value", query, query_node); NodeDef* default_value_node = item.graph.add_node(); default_value_node->set_op("Const"); default_value_node->set_name("default_table_value"); SetNodeAttr("dtype", data_dtype, default_value_node); Tensor dflt(data_dtype, TensorShape({})); dflt.flat<int64_t>()(0) = 456; SetNodeAttr("value", dflt, default_value_node); NodeDef* lookup_node = item.graph.add_node(); lookup_node->set_op("LookupTableFind"); lookup_node->set_name("table_lookup"); SetNodeAttr("Tin", key_dtype, lookup_node); SetNodeAttr("Tout", data_dtype, lookup_node); *lookup_node->add_input() = "hash_table"; *lookup_node->add_input() = "query"; *lookup_node->add_input() = "default_table_value"; item.fetch.push_back(lookup_node->name()); TF_CHECK_OK(cluster_->Initialize(item)); RunMetadata metadata; TF_CHECK_OK(cluster_->Run(item.graph, item.feed, item.fetch, &metadata)); bool found_table_init = false; bool found_hashtable = false; for (const auto& node : metadata.cost_graph().node()) { if (node.name() == "hash_table") { found_hashtable = true; EXPECT_EQ(0, node.persistent_memory_size()); } else if (node.name() == "initialize_table") { found_table_init = true; EXPECT_LE(4 * sizeof(int64_t), node.persistent_memory_size()); } } EXPECT_TRUE(found_table_init); EXPECT_TRUE(found_hashtable); } GrapplerItem CreateGrapplerItemWithResourceMemory() { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Variable(s.WithOpName("a"), TensorShape({128, 256}), DataType::DT_FLOAT); Output a_init = ops::RandomNormal(s.WithOpName("a/init"), {128, 256}, DataType::DT_FLOAT); Output a_init_assign = ops::Assign(s.WithOpName("a/init/assign"), a, a_init); Output b = ops::VarHandleOp(s.WithOpName("b"), DataType::DT_FLOAT, {256, 512}); Output b_read = ops::ReadVariableOp(s.WithOpName("b/read"), b, DataType::DT_FLOAT); Output b_init = ops::RandomNormal(s.WithOpName("b/init"), {256, 512}, DataType::DT_FLOAT); auto b_init_assign = ops::AssignVariableOp(s.WithOpName("b/init/assign"), b, b_init); ops::FIFOQueue queue(s.WithOpName("queue"), {DataType::DT_STRING}); Output some_string = ops::Const(s.WithOpName("some_string"), string("nothing")); ops::QueueEnqueue enqueue(s.WithOpName("enqueue"), queue, {some_string}); ops::QueueDequeue dequeue(s.WithOpName("dequeue"), queue, {DataType::DT_STRING}); ops::IdentityReader reader(s.WithOpName("identity_reader")); ops::ReaderRead read(s.WithOpName("read_from_queue"), reader, queue); Output var_mul = ops::MatMul(s.WithOpName("var_matmul"), a, b_read); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); QueueRunnerDef queue_runner; queue_runner.set_queue_name("queue"); *queue_runner.add_enqueue_op_name() = "enqueue"; item.queue_runners.push_back(queue_runner); item.init_ops.push_back("a/init/assign"); item.init_ops.push_back("b/init/assign"); item.fetch.push_back("var_matmul"); item.fetch.push_back("dequeue"); return item; } #if defined(PLATFORM_GOOGLE) TEST_F(SingleMachineTest, ReleaseMemoryAfterDestruction) { GrapplerItem item = CreateGrapplerItemWithResourceMemory(); TF_CHECK_OK(cluster_->Initialize(item)); std::unordered_map<string, uint64> device_peak_memory_before; TF_CHECK_OK(cluster_->GetPeakMemoryUsage(&device_peak_memory_before)); EXPECT_EQ(device_peak_memory_before.size(), 1); EXPECT_LT(device_peak_memory_before.begin()->second, 400); RunMetadata metadata; TF_CHECK_OK(cluster_->Run(item.graph, item.feed, item.fetch, &metadata)); std::unordered_map<string, uint64> device_peak_memory; TF_CHECK_OK(cluster_->GetPeakMemoryUsage(&device_peak_memory)); EXPECT_EQ(device_peak_memory.size(), 1); EXPECT_GT(device_peak_memory.begin()->second, 0); TF_CHECK_OK(cluster_->Shutdown()); TF_CHECK_OK(cluster_->Provision()); std::unordered_map<string, uint64> device_peak_memory_after; TF_CHECK_OK(cluster_->GetPeakMemoryUsage(&device_peak_memory_after)); TF_CHECK_OK(cluster_->Shutdown()); EXPECT_EQ(device_peak_memory_before.size(), 1); EXPECT_EQ(device_peak_memory_after.size(), 1); EXPECT_LT(device_peak_memory_before.begin()->second, 400); EXPECT_LT(device_peak_memory_after.begin()->second, 400); } TEST_F(SingleMachineTest, PeakMemory) { GrapplerItem item = CreateGrapplerItemWithResourceMemory(); TF_CHECK_OK(cluster_->Initialize(item)); RunMetadata metadata; TF_CHECK_OK(cluster_->Run(item.graph, item.feed, item.fetch, &metadata)); std::unordered_map<string, uint64> device_peak_memory; TF_CHECK_OK(cluster_->GetPeakMemoryUsage(&device_peak_memory)); ASSERT_NE( device_peak_memory.find("/job:localhost/replica:0/task:0/device:CPU:0"), device_peak_memory.end()); uint64 cpu_memory = device_peak_memory["/job:localhost/replica:0/task:0/device:CPU:0"]; EXPECT_GT(cpu_memory, 0); TF_CHECK_OK(cluster_->Shutdown()); TF_CHECK_OK(cluster_->Provision()); device_peak_memory.clear(); TF_CHECK_OK(cluster_->GetPeakMemoryUsage(&device_peak_memory)); TF_CHECK_OK(cluster_->Shutdown()); ASSERT_NE( device_peak_memory.find("/job:localhost/replica:0/task:0/device:CPU:0"), device_peak_memory.end()); cpu_memory = device_peak_memory["/job:localhost/replica:0/task:0/device:CPU:0"]; EXPECT_LT(cpu_memory, 200); } TEST_F(SingleMachineTest, PeakMemoryStatsNotEnabled) { GrapplerItem item = CreateGrapplerItemWithResourceMemory(); TF_CHECK_OK(cluster_->Shutdown()); cluster_.reset(); SingleMachine cluster(60 , 3 , 0 ); TF_CHECK_OK(cluster.Provision()); TF_CHECK_OK(cluster.Initialize(item)); std::unordered_map<string, uint64> device_peak_memory; Status s = cluster.GetPeakMemoryUsage(&device_peak_memory); TF_CHECK_OK(cluster.Shutdown()); ASSERT_FALSE(s.ok()); EXPECT_TRUE(errors::IsInvalidArgument(s)); } #endif } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/clusters/single_machine.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/clusters/single_machine_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3b6c598b-463d-44f0-8dff-85cc24436344
cpp
tensorflow/tensorflow
virtual_cluster
tensorflow/core/grappler/clusters/virtual_cluster.cc
tensorflow/core/grappler/clusters/virtual_cluster_test.cc
#include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/grappler/clusters/utils.h" #include "tensorflow/core/grappler/costs/op_level_cost_estimator.h" namespace tensorflow { namespace grappler { VirtualCluster::VirtualCluster( const std::unordered_map<string, DeviceProperties>& devices) : VirtualCluster(devices, std::make_unique<OpLevelCostEstimator>(), ReadyNodeManagerFactory("FirstReady")) {} VirtualCluster::VirtualCluster( const std::unordered_map<string, DeviceProperties>& devices, std::unique_ptr<OpLevelCostEstimator> node_estimator, std::unique_ptr<ReadyNodeManager> node_manager) : Cluster(0) { devices_ = devices; estimator_ = std::make_unique<AnalyticalCostEstimator>( this, std::move(node_estimator), std::move(node_manager), true, false); } VirtualCluster::VirtualCluster(const DeviceSet* device_set) : VirtualCluster(std::unordered_map<string, DeviceProperties>()) { device_set_ = device_set; for (const auto& device : device_set_->devices()) { DeviceProperties props = GetDeviceInfo(device->parsed_name()); if (props.type() == "UNKNOWN") continue; auto attrs = device->attributes(); props.set_memory_size(attrs.memory_limit()); devices_[device->name()] = props; } } VirtualCluster::~VirtualCluster() {} Status VirtualCluster::Provision() { return absl::OkStatus(); } Status VirtualCluster::Initialize(const GrapplerItem& item) { return absl::OkStatus(); } Status VirtualCluster::Run(const GraphDef& graph, const std::vector<std::pair<string, Tensor>>& feed, const std::vector<string>& fetch, RunMetadata* metadata) { GrapplerItem item; item.graph = graph; item.feed = feed; item.fetch = fetch; return Run(item, metadata); } Status VirtualCluster::Run(const GrapplerItem& item, RunMetadata* metadata) { if (metadata) { metadata->clear_step_stats(); metadata->clear_cost_graph(); metadata->clear_partition_graphs(); } TF_RETURN_IF_ERROR(estimator_->Initialize(item)); TF_RETURN_IF_ERROR( estimator_->PredictCosts(item.graph, metadata, nullptr)); const std::unordered_map<string, DeviceProperties>& device = GetDevices(); std::unordered_map<string, int64_t> peak_mem_usage = estimator_->GetScheduler()->GetPeakMemoryUsage(); for (const auto& mem_usage : peak_mem_usage) { const string& device_name = mem_usage.first; auto it = device.find(device_name); if (it == device.end()) { continue; } const DeviceProperties& dev = it->second; if (dev.memory_size() <= 0) { continue; } int64_t peak_mem = mem_usage.second; if (peak_mem >= dev.memory_size()) { return errors::ResourceExhausted( "Graph requires ", peak_mem, " bytes of memory on device ", device_name, " to run ", " but device only has ", dev.memory_size(), " available."); } } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include <memory> #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace grappler { namespace { class VirtualClusterTest : public ::testing::Test { public: void SetUp() override { DeviceProperties cpu_device; cpu_device.set_type("CPU"); cpu_device.set_frequency(1000); cpu_device.set_num_cores(4); cpu_device.set_bandwidth(32); cpu_device.set_l1_cache_size(32 * 1024); cpu_device.set_l2_cache_size(256 * 1024); cpu_device.set_l3_cache_size(4 * 1024 * 1024); cpu_device.set_memory_size(1024 * 1024); std::unordered_map<string, DeviceProperties> devices; devices["/job:localhost/replica:0/task:0/cpu:0"] = cpu_device; cluster_ = std::make_unique<VirtualCluster>(devices); TF_CHECK_OK(cluster_->Provision()); } void TearDown() override { TF_CHECK_OK(cluster_->Shutdown()); cluster_.reset(); } protected: std::unique_ptr<VirtualCluster> cluster_; }; TEST_F(VirtualClusterTest, ClusterType) { CHECK_EQ("virtual", cluster_->type()); } TEST_F(VirtualClusterTest, CostModel) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster_->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); TF_CHECK_OK(cluster_->Initialize(item)); RunMetadata metadata; TF_CHECK_OK(cluster_->Run(item.graph, item.feed, item.fetch, &metadata)); EXPECT_LE(4, metadata.cost_graph().node_size()); for (const auto& node : metadata.cost_graph().node()) { if (node.name().find("Const/Const") != string::npos) { continue; } EXPECT_EQ(1, node.output_info_size()); EXPECT_EQ(40, node.output_info(0).size()); const TensorShapeProto& shape = node.output_info(0).shape(); EXPECT_EQ(2, shape.dim_size()); EXPECT_EQ(10, shape.dim(0).size()); EXPECT_EQ(1, shape.dim(1).size()); if (node.name() == "x") { EXPECT_EQ(1500, node.compute_cost()); } else { EXPECT_EQ(2500, node.compute_cost()); } } for (const auto& dev_stat : metadata.step_stats().dev_stats()) { EXPECT_EQ("/job:localhost/replica:0/task:0/cpu:0", dev_stat.device()); for (const auto& node : dev_stat.node_stats()) { if (node.node_name() == "AddN") { EXPECT_EQ(2500, node.op_end_rel_micros()); } } } } TEST_F(VirtualClusterTest, OutOfMemory) { tensorflow::Scope root = tensorflow::Scope::NewRootScope(); auto zero = ops::Variable(root.WithOpName("zero"), {1024, 1024}, DT_FLOAT); auto identity = ops::Identity(root.WithOpName("i"), zero); auto identity2 = ops::Identity(root.WithOpName("i2"), identity); GrapplerItem item; TF_CHECK_OK(root.ToGraphDef(&item.graph)); item.fetch.push_back("i2"); TF_CHECK_OK(cluster_->Initialize(item)); Status s = cluster_->Run(item.graph, item.feed, item.fetch, nullptr); EXPECT_EQ(error::RESOURCE_EXHAUSTED, s.code()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/clusters/virtual_cluster.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/clusters/virtual_cluster_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8516a4c9-8e79-4fdf-822d-a8ebae3ce68e
cpp
tensorflow/tensorflow
structure_verifier
tensorflow/core/grappler/verifiers/structure_verifier.cc
tensorflow/core/grappler/verifiers/structure_verifier_test.cc
#include "tensorflow/core/grappler/verifiers/structure_verifier.h" #include <string> #include <vector> #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/validate.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/grappler/verifiers/graph_verifier.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { namespace grappler { Status StructureVerifier::Verify(const GraphDef& graph) { StatusGroup status_group; FunctionLibraryDefinition function_library(OpRegistry::Global(), graph.library()); status_group.Update(tensorflow::graph::ValidateGraphDefAgainstOpRegistry( graph, function_library)); status_group.Update(tensorflow::graph::VerifyNoDuplicateNodeNames(graph)); std::vector<const NodeDef*> topo_order; status_group.Update(ComputeTopologicalOrder(graph, &topo_order)); return status_group.as_concatenated_status(); } } }
#include "tensorflow/core/grappler/verifiers/structure_verifier.h" #include <memory> #include "absl/strings/match.h" #include "tensorflow/cc/ops/parsing_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class StructureVerifierTest : public ::testing::Test { protected: StructureVerifierTest() { verifier_ = std::make_unique<StructureVerifier>(); } void SetGraph(const string& gdef_ascii) { CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &graph_)); } GraphDef graph_; std::unique_ptr<StructureVerifier> verifier_; }; Status Scalars(shape_inference::InferenceContext* c) { for (int i = 0; i < c->num_outputs(); ++i) { c->set_output(i, c->Scalar()); } return absl::OkStatus(); } REGISTER_OP("TestParams").Output("o: float").SetShapeFn(Scalars); REGISTER_OP("TestInput") .Output("a: float") .Output("b: float") .SetShapeFn(Scalars); REGISTER_OP("TestMul") .Input("a: float") .Input("b: float") .Output("o: float") .SetShapeFn(Scalars); TEST_F(StructureVerifierTest, ValidGraphs) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); ops::ShapeN b(s.WithOpName("b"), {a, a, a}); GraphDef graph; TF_CHECK_OK(s.ToGraphDef(&graph)); TF_EXPECT_OK(verifier_->Verify(graph)); SetGraph( "node { name: 'W1' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }"); TF_EXPECT_OK(verifier_->Verify(graph_)); } TEST_F(StructureVerifierTest, OpNotRegistered) { SetGraph( "node { name: 'input' op: 'OpNotRegistered' }" "node { name: 't1' op: 'TestMul' input: [ 'input:0', 't2' ] }" "node { name: 't2' op: 'TestMul' input: [ 'input:1', 't1' ] }"); Status status = verifier_->Verify(graph_); EXPECT_TRUE(errors::IsNotFound(status)); EXPECT_TRUE(absl::StrContains(status.message(), "Op type not registered")); } TEST_F(StructureVerifierTest, DuplicateNodeNames) { SetGraph( "node { name: 'A' op: 'TestParams' }" "node { name: 'A' op: 'TestInput' }"); Status status = verifier_->Verify(graph_); EXPECT_TRUE(errors::IsAlreadyExists(status)); EXPECT_TRUE(absl::StrContains(status.message(), "Node already exists:")); } TEST_F(StructureVerifierTest, GraphWithInvalidCycle) { SetGraph( "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'input:0', 't2' ] }" "node { name: 't2' op: 'TestMul' input: [ 'input:1', 't1' ] }"); Status status = verifier_->Verify(graph_); EXPECT_TRUE(errors::IsInvalidArgument(status)); EXPECT_TRUE(absl::StrContains( status.message(), "The graph couldn't be sorted in topological order")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/verifiers/structure_verifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/verifiers/structure_verifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
410e7e92-82a6-4242-b4e3-ef2747fc3700
cpp
tensorflow/tensorflow
canonicalizer
tensorflow/core/grappler/utils/canonicalizer.cc
tensorflow/core/grappler/utils/canonicalizer_test.cc
#include "tensorflow/core/grappler/utils/canonicalizer.h" #include <algorithm> #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { void CanonicalizeNode(NodeDef* node) { if (node->input_size() < 2) return; int index = 0; for (; index < node->input_size(); ++index) { if (IsControlInput(node->input(index))) { break; } } auto* input = node->mutable_input(); if (IsCommutative(*node) && index > 0) { std::sort(input->begin(), input->begin() + index); } if (index < node->input_size()) { std::sort(input->begin() + index, input->end()); input->erase(std::unique(input->begin() + index, input->end()), input->end()); } } void CanonicalizeGraph(GraphDef* graph) { for (int i = 0; i < graph->node_size(); ++i) { CanonicalizeNode(graph->mutable_node(i)); } } void CompressConstants(GraphDef* graph) { for (int i = 0; i < graph->node_size(); ++i) { NodeDef* node = graph->mutable_node(i); if ((IsConstant(*node) || IsHostConstant(*node)) && HasNodeAttr(*node, "value")) { AttrValue& attr_val = (*node->mutable_attr())["value"]; if (attr_val.has_tensor()) { tensor::CompressTensorProtoInPlace(attr_val.mutable_tensor()); } } } } } }
#include "tensorflow/core/grappler/utils/canonicalizer.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { NodeDef MakeNode(const string& op) { NodeDef node; node.set_name("node"); node.set_op(op); *node.add_input() = "b"; *node.add_input() = "a"; *node.add_input() = "^z"; *node.add_input() = "^y"; *node.add_input() = "^x"; *node.add_input() = "^z"; return node; } void Verify(const NodeDef& node) { EXPECT_EQ(node.name(), "node"); ASSERT_EQ(node.input_size(), 5); if (node.op() == "Div") { EXPECT_EQ(node.input(0), "b"); EXPECT_EQ(node.input(1), "a"); } else { EXPECT_EQ(node.input(0), "a"); EXPECT_EQ(node.input(1), "b"); } EXPECT_EQ(node.input(2), "^x"); EXPECT_EQ(node.input(3), "^y"); EXPECT_EQ(node.input(4), "^z"); } TEST(CanonicalizeNode, NonCommutative) { NodeDef node = MakeNode("Div"); CanonicalizeNode(&node); Verify(node); } TEST(CanonicalizeNode, Commutative) { NodeDef node = MakeNode("Mul"); CanonicalizeNode(&node); Verify(node); } TEST(CanonicalizeGraph, Simple) { GraphDef graph; *graph.add_node() = MakeNode("Div"); *graph.add_node() = MakeNode("Mul"); CanonicalizeGraph(&graph); for (auto node : graph.node()) { Verify(node); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/canonicalizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/canonicalizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6fadef9d-22c1-478a-82f1-11ef5eabfa35
cpp
tensorflow/tensorflow
symbolic_shapes
tensorflow/core/grappler/utils/symbolic_shapes.cc
tensorflow/core/grappler/utils/symbolic_shapes_test.cc
#include "tensorflow/core/grappler/utils/symbolic_shapes.h" #include <unordered_map> #include "tensorflow/core/util/bcast.h" namespace tensorflow { namespace grappler { namespace { BCast::Vec ShapeDims(const TensorShapeProto& shape) { BCast::Vec dims; dims.reserve(shape.dim_size()); for (int i = 0; i < shape.dim_size(); ++i) dims.push_back(shape.dim(i).size()); return dims; } } bool IsKnown(const TensorShapeProto::Dim& dim) { return dim.size() >= 0; } bool IsKnownSymbolically(const TensorShapeProto::Dim& dim) { return dim.size() <= -2; } bool IsUnknown(const TensorShapeProto::Dim& dim) { return dim.size() == -1; } bool ShapeIsSymbolicallyDefined(const TensorShapeProto& shape) { return !shape.unknown_rank() && std::all_of( shape.dim().begin(), shape.dim().end(), [](const TensorShapeProto::Dim& dim) { return !IsUnknown(dim); }); } bool ShapeIsSymbolicallyDefined(const OpInfo::TensorProperties& properties) { return ShapeIsSymbolicallyDefined(properties.shape()); } int Rank(const TensorShapeProto& shape) { if (shape.unknown_rank()) { return -1; } return shape.dim_size(); } int64_t NumCoefficients(const TensorShapeProto& shape) { if (shape.unknown_rank()) { return -1; } int64_t num_coefficients = 1; for (const auto& dim : shape.dim()) { if (dim.size() < 0) { return -1; } num_coefficients *= dim.size(); } return num_coefficients; } bool ShapesSymbolicallyEqual(const TensorShapeProto& left, const TensorShapeProto& right) { if (left.unknown_rank() || right.unknown_rank() || left.dim_size() != right.dim_size()) { return false; } for (int i = 0; i < left.dim_size(); ++i) { const auto& ldim = left.dim(i); const auto& rdim = right.dim(i); if (IsUnknown(ldim) || IsUnknown(rdim) || ldim.size() != rdim.size()) { return false; } } return true; } bool ShapesSymbolicallyEqual(const OpInfo::TensorProperties& left, const OpInfo::TensorProperties& right) { return ShapesSymbolicallyEqual(left.shape(), right.shape()); } bool ShapesBroadcastable(const TensorShapeProto& left, const TensorShapeProto& right) { if (!ShapeIsSymbolicallyDefined(left) || !ShapeIsSymbolicallyDefined(right)) { return false; } BCast bcast(ShapeDims(left), ShapeDims(right), false); return bcast.IsValid(); } bool ShapesBroadcastable(const OpInfo::TensorProperties& left, const OpInfo::TensorProperties& right) { return ShapesBroadcastable(left.shape(), right.shape()); } bool ShapeAfterBroadcast(const TensorShapeProto& left, const TensorShapeProto& right, TensorShapeProto* output_shape) { if (!ShapeIsSymbolicallyDefined(left) || !ShapeIsSymbolicallyDefined(right)) { return false; } BCast bcast(ShapeDims(left), ShapeDims(right), false); if (!bcast.IsValid()) { return false; } output_shape->set_unknown_rank(false); output_shape->clear_dim(); for (const auto& dim : bcast.output_shape()) { output_shape->add_dim()->set_size(dim); } return true; } bool CompareSymbolicallyShapedTensorSizes(const TensorShapeProto& left, const TensorShapeProto& right) { if (left.unknown_rank() || right.unknown_rank()) { return false; } int64_t left_defined_size = 1; int64_t right_defined_size = 1; std::unordered_map<int64_t, int64_t> left_unknown_dims; std::unordered_map<int64_t, int64_t> right_unknown_dims; int64_t unknown_dim_id = 1; auto process_dimensions = [&unknown_dim_id](const TensorShapeProto& shape, int64* defined_size, std::unordered_map<int64, int64>* unknown_dims) { for (int i = 0; i < shape.dim_size(); ++i) { const auto& dim = shape.dim(i); int64_t dim_size = dim.size(); if (dim_size > 0) { *defined_size *= dim_size; } else if (IsUnknown(dim)) { ++(*unknown_dims)[unknown_dim_id++]; } else if (IsKnownSymbolically(dim)) { ++(*unknown_dims)[dim_size]; } } }; process_dimensions(left, &left_defined_size, &left_unknown_dims); process_dimensions(right, &right_defined_size, &right_unknown_dims); std::set<int64_t> unknown_dims; for (const auto& el : left_unknown_dims) unknown_dims.insert(el.first); for (const auto& el : right_unknown_dims) unknown_dims.insert(el.first); for (int64_t unknown_dim : unknown_dims) { int64_t co_occurrence = std::min(left_unknown_dims[unknown_dim], right_unknown_dims[unknown_dim]); left_unknown_dims[unknown_dim] -= co_occurrence; right_unknown_dims[unknown_dim] -= co_occurrence; } int64_t left_unbalanced_unknown_dims = 0; int64_t right_unbalanced_unknown_dims = 0; for (const auto& el : left_unknown_dims) left_unbalanced_unknown_dims += el.second; for (const auto& el : right_unknown_dims) right_unbalanced_unknown_dims += el.second; if (left_unbalanced_unknown_dims == 0 && right_unbalanced_unknown_dims == 0) { return left_defined_size < right_defined_size; } if (left_defined_size <= right_defined_size && left_unbalanced_unknown_dims == 0 && right_unbalanced_unknown_dims > 0) { return true; } return false; } bool CompareSymbolicallyShapedTensorSizes( const OpInfo::TensorProperties& left, const OpInfo::TensorProperties& right) { return CompareSymbolicallyShapedTensorSizes(left.shape(), right.shape()); } int64_t ComputeSizeRatio(const TensorShapeProto& numerator, const TensorShapeProto& denominator) { if (numerator.unknown_rank() || denominator.unknown_rank()) { return -1; } std::multiset<int> symbolic_dims; int64_t num = 1; for (const auto& dim : numerator.dim()) { if (dim.size() == -1) { return -1; } else if (dim.size() < -1) { symbolic_dims.insert(dim.size()); } else { num *= dim.size(); } } int64_t denom = 1; for (const auto& dim : denominator.dim()) { if (dim.size() == -1) { return -1; } else if (dim.size() < -1) { auto it = symbolic_dims.find(dim.size()); if (it == symbolic_dims.end()) { return -1; } symbolic_dims.erase(it); } else { denom *= dim.size(); } } if (denom == 0) { return -1; } if (!symbolic_dims.empty()) { return -1; } return num / denom; } } }
#include "tensorflow/core/grappler/utils/symbolic_shapes.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class SymbolicShapesTest : public ::testing::Test { protected: TensorShapeProto MakeUnknown() { TensorShapeProto shape; shape.set_unknown_rank(true); return shape; } TensorShapeProto MakeShape(std::vector<int> dims) { TensorShapeProto shape; for (int dim_size : dims) { TensorShapeProto::Dim dim; dim.set_size(dim_size); *shape.add_dim() = dim; } return shape; } }; bool operator<(const TensorShapeProto& lhs, const TensorShapeProto& rhs) { return CompareSymbolicallyShapedTensorSizes(lhs, rhs); } TEST_F(SymbolicShapesTest, ShapeIsSymbolicallyDefined) { EXPECT_FALSE(ShapeIsSymbolicallyDefined(MakeUnknown())); EXPECT_FALSE(ShapeIsSymbolicallyDefined(MakeShape({-1, 2}))); EXPECT_TRUE(ShapeIsSymbolicallyDefined(MakeShape({1, 2}))); EXPECT_TRUE(ShapeIsSymbolicallyDefined(MakeShape({-2, 2}))); } TEST_F(SymbolicShapesTest, ShapesSymbolicallyEqual) { EXPECT_FALSE(ShapesSymbolicallyEqual(MakeUnknown(), MakeUnknown())); EXPECT_FALSE(ShapesSymbolicallyEqual(MakeShape({-1, 2}), MakeShape({-1, 2}))); EXPECT_FALSE(ShapesSymbolicallyEqual(MakeShape({-2, 2}), MakeShape({-3, 2}))); EXPECT_TRUE(ShapesSymbolicallyEqual(MakeShape({1, 2}), MakeShape({1, 2}))); EXPECT_TRUE(ShapesSymbolicallyEqual(MakeShape({-2, 2}), MakeShape({-2, 2}))); } TEST_F(SymbolicShapesTest, ShapesBroadcastable) { EXPECT_FALSE(ShapesBroadcastable(MakeUnknown(), MakeUnknown())); EXPECT_FALSE(ShapesBroadcastable(MakeShape({-2}), MakeShape({1, -3}))); EXPECT_FALSE(ShapesBroadcastable(MakeShape({-1, 2}), MakeShape({-1, 2}))); EXPECT_FALSE(ShapesBroadcastable(MakeShape({-2, 2}), MakeShape({-3, 2}))); EXPECT_FALSE(ShapesBroadcastable(MakeShape({-2, 4}), MakeShape({-2, 8}))); EXPECT_TRUE(ShapesBroadcastable(MakeShape({1, 2}), MakeShape({1, 2}))); EXPECT_TRUE(ShapesBroadcastable(MakeShape({-2, 2}), MakeShape({-2, 2}))); EXPECT_TRUE(ShapesBroadcastable(MakeShape({-2, 32}), MakeShape({-2, 1}))); EXPECT_TRUE(ShapesBroadcastable(MakeShape({-2, 1}), MakeShape({1, -2}))); EXPECT_TRUE(ShapesBroadcastable(MakeShape({-2, 1}), MakeShape({1, -3}))); EXPECT_TRUE(ShapesBroadcastable(MakeShape({-3}), MakeShape({-2, -3}))); TensorShapeProto output_shape; EXPECT_TRUE( ShapeAfterBroadcast(MakeShape({1, 2}), MakeShape({1, 2}), &output_shape)); EXPECT_TRUE(ShapesSymbolicallyEqual(MakeShape({1, 2}), output_shape)); EXPECT_TRUE(ShapeAfterBroadcast(MakeShape({-2, 2}), MakeShape({-2, 2}), &output_shape)); EXPECT_TRUE(ShapesSymbolicallyEqual(MakeShape({-2, 2}), output_shape)); EXPECT_TRUE(ShapeAfterBroadcast(MakeShape({-2, 32}), MakeShape({-2, 1}), &output_shape)); EXPECT_TRUE(ShapesSymbolicallyEqual(MakeShape({-2, 32}), output_shape)); EXPECT_TRUE(ShapeAfterBroadcast(MakeShape({-2, 1}), MakeShape({1, -2}), &output_shape)); EXPECT_TRUE(ShapesSymbolicallyEqual(MakeShape({-2, -2}), output_shape)); EXPECT_TRUE(ShapeAfterBroadcast(MakeShape({-2, 1}), MakeShape({1, -3}), &output_shape)); EXPECT_TRUE(ShapesSymbolicallyEqual(MakeShape({-2, -3}), output_shape)); EXPECT_TRUE( ShapeAfterBroadcast(MakeShape({-3}), MakeShape({-2, -3}), &output_shape)); EXPECT_TRUE(ShapesSymbolicallyEqual(MakeShape({-2, -3}), output_shape)); } TEST_F(SymbolicShapesTest, CompareSymbolicallyShapedTensorSizes) { EXPECT_TRUE(MakeShape({1, 1, 32}) < MakeShape({32, 32})); EXPECT_TRUE(MakeShape({1, 32, 32}) < MakeShape({2048})); EXPECT_TRUE(MakeShape({1, -2, 32}) < MakeShape({-2, 32, 32})); EXPECT_TRUE(MakeShape({1, 32, 32}) < MakeShape({-2, 32, 32})); EXPECT_TRUE(MakeShape({1, 32, 32}) < MakeShape({-1, 32, 32})); EXPECT_TRUE(MakeShape({1, -2, 32}) < MakeShape({-2, -2, 32})); EXPECT_FALSE(MakeShape({1, -2, 32}) < MakeShape({-3, 32, 32})); EXPECT_FALSE(MakeShape({1, -1, 32}) < MakeShape({1, -1, 32})); EXPECT_FALSE(MakeShape({1, -1, 32}) < MakeShape({-1, -1, 32})); EXPECT_FALSE(MakeShape({-1, -1, 32}) < MakeShape({1, -1, 32})); } TEST_F(SymbolicShapesTest, RankAndNumCoeff) { EXPECT_EQ(2, Rank(MakeShape({32, 32}))); EXPECT_EQ(32 * 32, NumCoefficients(MakeShape({32, 32}))); EXPECT_EQ(2, Rank(MakeShape({-2, 32}))); EXPECT_EQ(-1, NumCoefficients(MakeShape({-2, 32}))); TensorShapeProto shape; shape.set_unknown_rank(true); EXPECT_EQ(-1, Rank(shape)); EXPECT_EQ(-1, NumCoefficients(shape)); } TEST_F(SymbolicShapesTest, SizeRatio) { EXPECT_EQ(16, ComputeSizeRatio(MakeShape({32, 32}), MakeShape({32, 2}))); EXPECT_EQ(16, ComputeSizeRatio(MakeShape({-2, 32}), MakeShape({-2, 2}))); EXPECT_EQ(16, ComputeSizeRatio(MakeShape({-2, -2, 32}), MakeShape({-2, 2, -2}))); EXPECT_EQ(-1, ComputeSizeRatio(MakeShape({-2, -2, 32}), MakeShape({-2, 2, 2}))); EXPECT_EQ(-1, ComputeSizeRatio(MakeShape({-2, 2, 32}), MakeShape({-2, 2, -2}))); EXPECT_EQ(-1, ComputeSizeRatio(MakeShape({-2, -2}), MakeShape({-2, 2}))); EXPECT_EQ(-1, ComputeSizeRatio(MakeShape({-2, 32}), MakeShape({-2, -2}))); EXPECT_EQ(1, ComputeSizeRatio(MakeShape({-2, -3}), MakeShape({-3, -2}))); EXPECT_EQ(-1, ComputeSizeRatio(MakeShape({-1, 32}), MakeShape({-2, 2}))); EXPECT_EQ(-1, ComputeSizeRatio(MakeShape({-1, 32}), MakeShape({-2, 0}))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/symbolic_shapes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/symbolic_shapes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
84dc13a8-40c4-46d9-9c1a-bea4f801ff37
cpp
tensorflow/tensorflow
grappler_test
tensorflow/c/experimental/grappler/grappler_test.cc
tensorflow/core/grappler/utils/grappler_test_test.cc
#include "tensorflow/c/experimental/grappler/grappler.h" #include "absl/log/check.h" #include "tensorflow/c/experimental/grappler/grappler_internal.h" #include "tensorflow/c/tf_buffer.h" #include "tensorflow/c/tf_buffer_internal.h" #include "tensorflow/c/tf_status.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/clusters/single_machine.h" #include "tensorflow/core/grappler/costs/op_performance_data.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace grappler { namespace { void optimize_func(void* optimizer, const TF_Buffer* graph_buf, const TF_GrapplerItem* item, TF_Buffer* optimized_graph_buf, TF_Status* tf_status) {} void PopulateDefaultParam(TP_OptimizerRegistrationParams* params) { params->struct_size = TP_OPTIMIZER_REGISTRATION_PARAMS_STRUCT_SIZE; params->optimizer_configs->struct_size = TP_OPTIMIZER_CONFIGS_STRUCT_SIZE; params->optimizer->struct_size = TP_OPTIMIZER_STRUCT_SIZE; params->optimizer->create_func = nullptr; params->optimizer->optimize_func = optimize_func; params->optimizer->destroy_func = nullptr; } TEST(Grappler, SuccessfulRegistration) { auto plugin_init = [](TP_OptimizerRegistrationParams* const params, TF_Status* const status) -> void { TF_SetStatus(status, TF_OK, ""); PopulateDefaultParam(params); params->device_type = "Success"; params->optimizer_configs->remapping = TF_TriState_Off; }; TF_ASSERT_OK(InitGraphPlugin(plugin_init)); ASSERT_EQ(PluginGraphOptimizerRegistry::CreateOptimizers( std::set<string>{"Success"}) .size(), 1); ConfigList config = PluginGraphOptimizerRegistry::GetPluginConfigs( true, std::set<string>{"Success"}); ASSERT_EQ(config.toggle_config["remapping"], RewriterConfig::OFF); } TEST(Grappler, MultiplePluginRegistration) { auto plugin_init_0 = [](TP_OptimizerRegistrationParams* const params, TF_Status* const status) -> void { TF_SetStatus(status, TF_OK, ""); PopulateDefaultParam(params); params->device_type = "Device0"; }; auto plugin_init_1 = [](TP_OptimizerRegistrationParams* const params, TF_Status* const status) -> void { TF_SetStatus(status, TF_OK, ""); PopulateDefaultParam(params); params->device_type = "Device1"; }; TF_ASSERT_OK(InitGraphPlugin(plugin_init_0)); TF_ASSERT_OK(InitGraphPlugin(plugin_init_1)); ASSERT_EQ(PluginGraphOptimizerRegistry::CreateOptimizers( std::set<string>{"Device0", "Device1"}) .size(), 2); } TEST(Grappler, DeviceTypeNotSet) { auto plugin_init = [](TP_OptimizerRegistrationParams* const params, TF_Status* const status) -> void { TF_SetStatus(status, TF_OK, ""); PopulateDefaultParam(params); params->device_type = nullptr; }; tensorflow::Status status = InitGraphPlugin(plugin_init); ASSERT_EQ(status.code(), tensorflow::error::FAILED_PRECONDITION); ASSERT_EQ( status.message(), "'device_type' field in TP_OptimizerRegistrationParams must be set."); } TEST(Grappler, OptimizeFuncNotSet) { auto plugin_init = [](TP_OptimizerRegistrationParams* const params, TF_Status* const status) -> void { TF_SetStatus(status, TF_OK, ""); PopulateDefaultParam(params); params->device_type = "FuncNotSet"; params->optimizer->optimize_func = nullptr; }; tensorflow::Status status = InitGraphPlugin(plugin_init); ASSERT_EQ(status.code(), tensorflow::error::FAILED_PRECONDITION); ASSERT_EQ(status.message(), "'optimize_func' field in TP_Optimizer must be set."); } TEST(TF_GrapplerItem, NodesToPreserve) { GrapplerItem item; item.fetch = std::vector<string>{"Conv", "BiasAdd"}; std::unordered_set<string> nodes_preserved = item.NodesToPreserve(); TF_GrapplerItem* c_item = reinterpret_cast<TF_GrapplerItem*>(&item); int list_total_size = 0; for (const string& s : nodes_preserved) { list_total_size += s.size(); } size_t storage_size = 0; int num_values = 0; TF_Status* status = TF_NewStatus(); TF_GetNodesToPreserveListSize(c_item, &num_values, &storage_size, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(nodes_preserved.size(), num_values); EXPECT_EQ(list_total_size, storage_size); std::unique_ptr<char*[]> values(new char*[nodes_preserved.size()]); std::unique_ptr<size_t[]> lens(new size_t[nodes_preserved.size()]); std::unique_ptr<char[]> storage(new char[storage_size]); TF_GetNodesToPreserveList(c_item, values.get(), lens.get(), nodes_preserved.size(), storage.get(), storage_size, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); for (size_t i = 0; i < nodes_preserved.size(); ++i) { EXPECT_EQ(nodes_preserved.find(string(static_cast<const char*>(values[i]), lens[i])) != nodes_preserved.end(), true); } TF_DeleteStatus(status); } TEST(TF_GrapplerItem, FetchNodes) { GrapplerItem item; item.fetch = std::vector<string>{"Conv", "BiasAdd"}; TF_GrapplerItem* c_item = reinterpret_cast<TF_GrapplerItem*>(&item); int list_total_size = 0; for (const string& s : item.fetch) { list_total_size += s.size(); } size_t storage_size = 0; int num_values = 0; TF_Status* status = TF_NewStatus(); TF_GetFetchNodesListSize(c_item, &num_values, &storage_size, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(item.fetch.size(), num_values); EXPECT_EQ(list_total_size, storage_size); std::unique_ptr<char*[]> values(new char*[item.fetch.size()]); std::unique_ptr<size_t[]> lens(new size_t[item.fetch.size()]); std::unique_ptr<char[]> storage(new char[storage_size]); TF_GetFetchNodesList(c_item, values.get(), lens.get(), item.fetch.size(), storage.get(), storage_size, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); for (size_t i = 0; i < item.fetch.size(); ++i) { EXPECT_EQ(item.fetch[i].size(), lens[i]) << i; EXPECT_EQ(item.fetch[i], string(static_cast<const char*>(values[i]), lens[i])) << i; } TF_DeleteStatus(status); } TEST(TF_GraphProperties, InputProperties) { std::unique_ptr<SingleMachine> cluster(new SingleMachine(5 * 60, 3, 0)); TF_ASSERT_OK(cluster->Provision()); TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); TF_Status* status = TF_NewStatus(); TF_GraphProperties* graph_properties = TF_NewGraphProperties(reinterpret_cast<TF_GrapplerItem*>(&item)); TF_InferStatically(graph_properties, true, false, false, false, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); for (const NodeDef& node : item.graph.node()) { if (node.op() == "AddN") { int num_values = 0; TF_GetInputPropertiesListSize(graph_properties, node.name().c_str(), &num_values, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(num_values, 1); std::vector<TF_Buffer*> in_props_buf(num_values, TF_NewBuffer()); TF_GetInputPropertiesList(graph_properties, node.name().c_str(), in_props_buf.data(), num_values, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::OpInfo::TensorProperties in_props; Status s = tensorflow::BufferToMessage(in_props_buf[0], &in_props); TF_ASSERT_OK(s); EXPECT_EQ(DT_FLOAT, in_props.dtype()); EXPECT_FALSE(in_props.shape().unknown_rank()); EXPECT_EQ(2, in_props.shape().dim_size()); EXPECT_EQ(10, in_props.shape().dim(0).size()); EXPECT_EQ(1, in_props.shape().dim(1).size()); for (int i = 0; i < in_props_buf.size(); i++) TF_DeleteBuffer(in_props_buf[i]); } } TF_DeleteGraphProperties(graph_properties); TF_DeleteStatus(status); TF_ASSERT_OK(cluster->Shutdown()); } TEST(TF_GraphProperties, OutputProperties) { std::unique_ptr<SingleMachine> cluster(new SingleMachine(5 * 60, 3, 0)); TF_ASSERT_OK(cluster->Provision()); TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); TF_Status* status = TF_NewStatus(); TF_GraphProperties* graph_properties = TF_NewGraphProperties(reinterpret_cast<TF_GrapplerItem*>(&item)); TF_InferStatically(graph_properties, true, false, false, false, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); for (const NodeDef& node : item.graph.node()) { if (node.op() == "AddN") { int num_values = 0; TF_GetOutputPropertiesListSize(graph_properties, node.name().c_str(), &num_values, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); EXPECT_EQ(num_values, 1); std::vector<TF_Buffer*> out_props_buf(num_values, TF_NewBuffer()); TF_GetOutputPropertiesList(graph_properties, node.name().c_str(), out_props_buf.data(), num_values, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); tensorflow::OpInfo::TensorProperties out_props; Status s = tensorflow::BufferToMessage(out_props_buf[0], &out_props); TF_ASSERT_OK(s); EXPECT_EQ(DT_FLOAT, out_props.dtype()); EXPECT_FALSE(out_props.shape().unknown_rank()); EXPECT_EQ(2, out_props.shape().dim_size()); EXPECT_EQ(10, out_props.shape().dim(0).size()); EXPECT_EQ(1, out_props.shape().dim(1).size()); for (int i = 0; i < out_props_buf.size(); i++) TF_DeleteBuffer(out_props_buf[i]); } } TF_DeleteStatus(status); TF_DeleteGraphProperties(graph_properties); TF_ASSERT_OK(cluster->Shutdown()); } TEST(TF_FunctionLibraryDefinition, LookUpOpDef) { TF_Buffer* g_buf = TF_NewBuffer(); TF_Buffer* op_buf = TF_NewBuffer(); TF_Status* status = TF_NewStatus(); GraphDef g_def; Status s = MessageToBuffer(g_def, g_buf); TF_ASSERT_OK(s); TF_FunctionLibraryDefinition* func = TF_NewFunctionLibraryDefinition(g_buf, status); TF_LookUpOpDef(func, "Add", op_buf, status); string actual_string(reinterpret_cast<const char*>(op_buf->data), op_buf->length); ASSERT_EQ(TF_OK, TF_GetCode(status)); const OpDef* expected_op_def; TF_ASSERT_OK(OpRegistry::Global()->LookUpOpDef("Add", &expected_op_def)); string expected_serialized; expected_op_def->SerializeToString(&expected_serialized); EXPECT_EQ(expected_serialized, actual_string); TF_DeleteBuffer(g_buf); TF_DeleteBuffer(op_buf); TF_DeleteStatus(status); TF_DeleteFunctionLibraryDefinition(func); } } } }
#include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class GrapplerTestTest : public GrapplerTest {}; TEST_F(GrapplerTestTest, CompareIdenticalGraphs) { tensorflow::Scope s1 = tensorflow::Scope::NewRootScope(); auto s1_a = ops::Variable(s1.WithOpName("a"), {2, 2}, DT_FLOAT); auto s1_b = ops::Variable(s1.WithOpName("b"), {2, 2}, DT_FLOAT); auto s1_add = ops::Add(s1.WithOpName("Add_1"), s1_a, s1_b); tensorflow::Scope s2 = tensorflow::Scope::NewRootScope(); auto s2_a = ops::Variable(s2.WithOpName("a"), {2, 2}, DT_FLOAT); auto s2_b = ops::Variable(s2.WithOpName("b"), {2, 2}, DT_FLOAT); auto s2_add = ops::Add(s2.WithOpName("Add_1"), s2_a, s2_b); GraphDef graph1; TF_ASSERT_OK(s1.ToGraphDef(&graph1)); GraphDef graph2; TF_ASSERT_OK(s2.ToGraphDef(&graph2)); CompareGraphs(graph1, graph2); } TEST_F(GrapplerTestTest, CheckNodesConnectivity) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a = ops::Variable(s.WithOpName("a"), {2, 2}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("b"), {2, 2}, DT_FLOAT); auto add_1 = ops::Add(s.WithOpName("Add_1"), a, b); auto add_2 = ops::Add(s.WithOpName("Add_2"), add_1, b); GraphDef graph; TF_ASSERT_OK(s.ToGraphDef(&graph)); NodeMap node_map(&graph); EXPECT_TRUE(IsNodesDirectlyConnected(node_map, "a", "Add_1", 0)); EXPECT_TRUE(IsNodesDirectlyConnected(node_map, "b", "Add_1", 1)); EXPECT_FALSE(IsNodesDirectlyConnected(node_map, "a", "Add_2", 0)); EXPECT_TRUE(IsNodesDirectlyConnected(node_map, "b", "Add_2", 1)); } TEST_F(GrapplerTestTest, CountOpNodes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a = ops::Variable(s.WithOpName("a"), {2, 2}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("b"), {2, 2}, DT_FLOAT); auto c = ops::Variable(s.WithOpName("c"), {2, 2}, DT_FLOAT); auto add_ab = ops::Add(s.WithOpName("Add_ab"), a, b); auto add_bc = ops::Add(s.WithOpName("Add_bc"), b, c); auto mul_ab = ops::Mul(s.WithOpName("Mull_ab"), a, b); auto mul_bc = ops::Mul(s.WithOpName("Mull_bc"), a, b); InputList inputs{ Output(add_ab), Output(add_bc), Output(mul_ab), Output(mul_bc), }; auto add_all = ops::AddN(s.WithOpName("Add_all"), inputs); GraphDef graph; TF_ASSERT_OK(s.ToGraphDef(&graph)); EXPECT_EQ(2, CountOpNodes(graph, "Add")); EXPECT_EQ(2, CountOpNodes(graph, "Mul")); EXPECT_EQ(1, CountOpNodes(graph, "AddN")); EXPECT_EQ(0, CountOpNodes(graph, "Transpose")); } TEST_F(GrapplerTestTest, EvaluateNodes) { EnableAllOptimizers(); tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("c"), {1.0f, 2.0f}, {1, 2}); Output b = ops::Const(s.WithOpName("d"), {3.0f, 4.0f}, {1, 2}); Output mul = ops::Mul(s.WithOpName("mul"), a, b); GrapplerItem item; item.fetch = {"mul"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors.size(), 1); EXPECT_EQ(tensors[0].flat<float>()(0), 3.0f); EXPECT_EQ(tensors[0].flat<float>()(1), 8.0f); } TEST_F(GrapplerTestTest, EvaluateNodesInvalidFetch) { EnableAllOptimizers(); tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("c"), {1.0f, 2.0f}, {1, 2}); Output b = ops::Const(s.WithOpName("d"), {3.0f, 4.0f}, {1, 2}); Output mul = ops::Mul(s.WithOpName("mul"), a, b); GrapplerItem item; item.fetch = {"no_such_node"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); EXPECT_DEATH(EvaluateNodes(item.graph, item.fetch), "Tensor no_such_node:0, specified in either " "feed_devices or fetch_devices was not found in the Graph"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/grappler/grappler_test.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/grappler_test_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ad0c7e00-9ae2-4443-ae99-f6f4b58dc22e
cpp
tensorflow/tensorflow
scc
tensorflow/core/grappler/utils/scc.cc
tensorflow/core/grappler/utils/scc_test.cc
#include "tensorflow/core/grappler/utils/scc.h" #include <stack> #include <unordered_map> #include <unordered_set> #include <vector> #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { struct SCCNodeData { SCCNodeData() : node(nullptr), index(-1), lowlink(-1), onstack(false), caller(nullptr), caller_loop_location(-1) {} void ResetStack(int new_index, SCCNodeData* new_caller) { index = new_index; lowlink = new_index; onstack = true; caller = new_caller; caller_loop_location = 0; } const NodeDef* node; int index; int lowlink; bool onstack; std::vector<SCCNodeData*> children; SCCNodeData* caller; int caller_loop_location; }; void StrongConnect(SCCNodeData* v, std::stack<SCCNodeData*>* stack, int* index, std::unordered_map<const NodeDef*, int>* components, int* scc_index) { v->ResetStack(*index , nullptr ); ++*index; stack->push(v); v->caller = nullptr; v->caller_loop_location = 0; SCCNodeData* last = v; while (true) { if (last->caller_loop_location < last->children.size()) { SCCNodeData* w = last->children[last->caller_loop_location]; ++(last->caller_loop_location); if (w->index == -1) { w->ResetStack(*index , last ); ++*index; stack->push(w); last = w; } else if (w->onstack == true) { last->lowlink = std::min(last->lowlink, w->index); } } else { if (last->lowlink == last->index) { SCCNodeData* top; while (true) { top = stack->top(); stack->pop(); top->onstack = false; (*components)[top->node] = *scc_index; if (top == last) { break; } } ++*scc_index; } SCCNodeData* next_last = last->caller; if (next_last == nullptr) { break; } else { next_last->lowlink = std::min(next_last->lowlink, last->lowlink); last = next_last; } } } } void StronglyConnectedComponents( const GraphDef& graph, std::unordered_map<const NodeDef*, int>* components, int* num_components) { std::stack<SCCNodeData*> stack; std::unordered_map<string, SCCNodeData*> name_to_data; std::vector<SCCNodeData> node_data_container; node_data_container.reserve(graph.node_size()); std::unordered_map<const NodeDef*, SCCNodeData*> node_to_data; for (const NodeDef& node : graph.node()) { SCCNodeData node_data; node_data.node = &node; node_data_container.push_back(node_data); name_to_data[node.name()] = &(*node_data_container.rbegin()); node_to_data[&node] = &(*node_data_container.rbegin()); } for (const NodeDef& node : graph.node()) { for (const string& input : node.input()) { auto it = name_to_data.find(NodeName(input)); if (it != name_to_data.end()) { it->second->children.push_back(node_to_data[&node]); } } } components->clear(); *num_components = 0; int index = 0; for (auto& v : node_data_container) { if (v.index == -1) { StrongConnect(&v, &stack, &index, components, num_components); } } std::vector<int> counts_per_component(*num_components, 0); for (auto& component : *components) { DCHECK(component.second >= 0); DCHECK(component.second < *num_components); counts_per_component[component.second]++; } bool has_single_element_component = false; for (auto& component : *components) { if (counts_per_component[component.second] == 1) { component.second = -1; (*num_components)--; has_single_element_component = true; } } if (has_single_element_component) { (*num_components) += 1; } } int IdentifyLoops(const GraphDef& graph, std::unordered_map<const NodeDef*, std::vector<int>>* loops) { int num_components = 0; std::unordered_map<const NodeDef*, int> components; StronglyConnectedComponents(graph, &components, &num_components); if (num_components <= 1) { if (!components.empty() && components.begin()->second == -1) { return 0; } } std::unordered_map<int, std::vector<const NodeDef*>> component_ids; for (const auto it : components) { int id = it.second; if (id < 0) { continue; } component_ids[id].push_back(it.first); } int loop_id = 0; for (const auto& component : component_ids) { const std::vector<const NodeDef*>& component_nodes = component.second; std::vector<std::pair<NodeDef*, string>> next_iter_nodes; GraphDef subgraph; std::unordered_map<const NodeDef*, const NodeDef*> subgraph_mapping; for (const auto& component_node : component_nodes) { NodeDef* node = subgraph.add_node(); *node = *component_node; subgraph_mapping[node] = component_node; if (IsNextIteration(*node)) { CHECK_EQ(1, node->input_size()); next_iter_nodes.emplace_back(node, node->input(0)); } } if (next_iter_nodes.size() == 1) { for (const auto& component_node : component_nodes) { (*loops)[component_node].push_back(loop_id); } ++loop_id; } else { for (int i = 0; i < next_iter_nodes.size(); ++i) { for (int j = 0; j < next_iter_nodes.size(); ++j) { next_iter_nodes[j].first->clear_input(); if (i == j) { *next_iter_nodes[j].first->add_input() = next_iter_nodes[j].second; } } int num_components = 0; std::unordered_map<const NodeDef*, int> components; StronglyConnectedComponents(subgraph, &components, &num_components); CHECK_GE(num_components, 1); for (const auto it : components) { int id = it.second; if (id < 0) { continue; } (*loops)[subgraph_mapping[it.first]].push_back(loop_id); } ++loop_id; } } } return loop_id; } } }
#include "tensorflow/core/grappler/utils/scc.h" #include <memory> #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class SCCTest : public ::testing::Test { public: void SetUp() override { std::unordered_map<string, DeviceProperties> devices; DeviceProperties unknown_device; devices["MY_DEVICE"] = unknown_device; cluster_ = std::make_unique<VirtualCluster>(devices); TF_CHECK_OK(cluster_->Provision()); } void TearDown() override { cluster_.reset(); } protected: static NodeDef CreateNode(const string& name, absl::Span<const string> inputs) { NodeDef node; node.set_name(name); for (const string& input : inputs) { node.add_input(input); } return node; } std::unique_ptr<VirtualCluster> cluster_; }; TEST_F(SCCTest, NoLoops) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster_->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); std::unordered_map<const NodeDef*, int> components; int num_components; StronglyConnectedComponents(item.graph, &components, &num_components); EXPECT_EQ(num_components, 1); for (const auto& node : item.graph.node()) { EXPECT_EQ(-1, components[&node]); } } TEST_F(SCCTest, DisjointCycleAndPath) { GraphDef graph; *graph.add_node() = CreateNode("a", {"d"}); *graph.add_node() = CreateNode("b", {"a"}); *graph.add_node() = CreateNode("c", {"b"}); *graph.add_node() = CreateNode("d", {"c"}); *graph.add_node() = CreateNode("e", {}); *graph.add_node() = CreateNode("f", {"e"}); *graph.add_node() = CreateNode("g", {"f"}); *graph.add_node() = CreateNode("h", {"g"}); std::vector<const NodeDef*> nodes; std::unordered_map<string, const NodeDef*> name_to_node; for (const auto& n : graph.node()) { nodes.push_back(&n); name_to_node[n.name()] = &n; } int num_components; std::unordered_map<const NodeDef*, int> components; StronglyConnectedComponents(graph, &components, &num_components); EXPECT_EQ(num_components, 2); for (const auto& pair : {std::make_pair("a", "b"), std::make_pair("a", "c"), std::make_pair("a", "d")}) { EXPECT_EQ(components[name_to_node[pair.first]], components[name_to_node[pair.second]]); } for (const auto& node : {"e", "f", "g", "h"}) EXPECT_EQ(-1, components[name_to_node[node]]); } } TEST_F(SCCTest, WikipediaExample) { GraphDef graph; *graph.add_node() = CreateNode("a", {"c"}); *graph.add_node() = CreateNode("b", {"a", "d"}); *graph.add_node() = CreateNode("c", {"b", "d", "f"}); *graph.add_node() = CreateNode("d", {"e"}); *graph.add_node() = CreateNode("e", {"d"}); *graph.add_node() = CreateNode("f", {"e", "g"}); *graph.add_node() = CreateNode("g", {"f", "h"}); *graph.add_node() = CreateNode("h", {"h"}); std::vector<const NodeDef*> nodes; std::unordered_map<string, const NodeDef*> name_to_node; for (const auto& n : graph.node()) { nodes.push_back(&n); name_to_node[n.name()] = &n; } int num_components; std::unordered_map<const NodeDef*, int> components; StronglyConnectedComponents(graph, &components, &num_components); EXPECT_EQ(num_components, 4); for (const auto& pair : {std::make_pair("a", "b"), std::make_pair("a", "c"), std::make_pair("d", "e"), std::make_pair("f", "g")}) { EXPECT_EQ(components[name_to_node[pair.first]], components[name_to_node[pair.second]]); } for (const auto& pair : {std::make_pair("a", "d"), std::make_pair("a", "f"), std::make_pair("a", "h"), std::make_pair("d", "f"), std::make_pair("d", "h"), std::make_pair("f", "h")}) { EXPECT_NE(components[name_to_node[pair.first]], components[name_to_node[pair.second]]); } } TEST_F(SCCTest, TensorFlowLoop) { const string gdef_ascii = R"EOF( node { name: "Const" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 0 } } } } node { name: "while/Enter" op: "Enter" input: "Const" attr { key: "T" value { type: DT_INT32 } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 10 } } } node { name: "while/Merge" op: "Merge" input: "while/Enter" input: "while/NextIteration" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Less/y" op: "Const" input: "^while/Merge" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 10 } } } } node { name: "while/Less" op: "Less" input: "while/Merge" input: "while/Less/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/LoopCond" op: "LoopCond" input: "while/Less" } node { name: "while/Switch" op: "Switch" input: "while/Merge" input: "while/LoopCond" attr { key: "T" value { type: DT_INT32 } } attr { key: "_class" value { list { s: "loc:@while/Merge" } } } } node { name: "while/Identity" op: "Identity" input: "while/Switch:1" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Add/y" op: "Const" input: "^while/Identity" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 1 } } } } node { name: "while/Add" op: "Add" input: "while/Identity" input: "while/Add/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/NextIteration" op: "NextIteration" input: "while/Add" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Exit" op: "Exit" input: "while/Switch" attr { key: "T" value { type: DT_INT32 } } } versions { producer: 11 } )EOF"; GrapplerItem item; CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &item.graph)); std::unordered_map<const NodeDef*, int> components; int num_components; StronglyConnectedComponents(item.graph, &components, &num_components); EXPECT_EQ(num_components, 2); for (const auto& node : item.graph.node()) { if (node.name() == "Const" || node.name() == "while/Enter" || node.name() == "while/Exit") { EXPECT_EQ(-1, components[&node]); } else { EXPECT_LE(0, components[&node]); } } } TEST_F(SCCTest, NestedLoops) { GrapplerItem item; string filename = io::JoinPath( testing::TensorFlowSrcRoot(), "core/grappler/costs/graph_properties_testdata/nested_loop.pbtxt"); TF_CHECK_OK(ReadGraphDefFromFile(filename, &item.graph)); for (const auto& node : item.graph.node()) { std::cout << node.DebugString() << std::endl; } std::unordered_map<const NodeDef*, std::vector<int>> loops; int num_loops = IdentifyLoops(item.graph, &loops); EXPECT_EQ(4, num_loops); for (const auto& node_info : loops) { std::cout << node_info.first->name() << " ["; for (int i : node_info.second) { std::cout << " " << i; } std::cout << "]" << std::endl; } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/scc.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/scc_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fe2c227f-65c5-4a70-b35a-da2c942eea18
cpp
tensorflow/tensorflow
colocation
tensorflow/core/grappler/utils/colocation.cc
tensorflow/core/grappler/utils/colocation_test.cc
#include "tensorflow/core/grappler/utils/colocation.h" #include <cstring> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace { string GetColocationGroupRoot(std::unordered_map<string, string>* map, const string& node_name) { if (map->find(node_name) == map->end()) { map->insert({node_name, node_name}); return node_name; } std::list<string> nodes_to_root; string cur = node_name; while ((*map)[cur] != cur) { nodes_to_root.push_back(cur); cur = (*map)[cur]; } if (!nodes_to_root.empty()) { nodes_to_root.pop_back(); for (const string& node : nodes_to_root) { (*map)[node] = cur; } } return cur; } void MergeColocationGroup(std::unordered_map<string, string>* map, const string& left, const string& right) { if (map->find(left) == map->end() || map->find(right) == map->end()) { return; } if (left != right) { map->at(right) = left; } } } void ReassignColocation(GraphDef* graph) { constexpr char kClassAttr[] = "_class"; constexpr char kColocPrefix[] = "loc:@"; std::unordered_map<string, string> coloc_groups; NodeMap node_map(graph); for (const auto& node : graph->node()) { auto iter = node.attr().find(kClassAttr); if (iter != node.attr().end() && iter->second.has_list()) { for (const auto& str : iter->second.list().s()) { size_t pos = str.find(kColocPrefix); if (pos == 0) { string colocate_node = str.substr(pos + strlen(kColocPrefix)); MergeColocationGroup( &coloc_groups, GetColocationGroupRoot(&coloc_groups, node.name()), GetColocationGroupRoot(&coloc_groups, colocate_node)); } } } } for (const auto& pair : coloc_groups) { if (pair.first != pair.second) { NodeDef* node = node_map.GetNode(pair.first); if (node) { AttrValue new_value; new_value.mutable_list()->add_s( kColocPrefix + GetColocationGroupRoot(&coloc_groups, pair.first)); node->mutable_attr()->erase(kClassAttr); node->mutable_attr()->insert({kClassAttr, new_value}); } } else { NodeDef* node = node_map.GetNode(pair.first); if (node) { node->mutable_attr()->erase(kClassAttr); } } } } } }
#include "tensorflow/core/grappler/utils/colocation.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { class ColocationTest : public ::testing::Test {}; bool VerifyNodeHasColocation(const NodeDef& ndef, const string& coloc) { if (ndef.attr().empty()) { return false; } if (ndef.attr().find("_class") == ndef.attr().end()) { return false; } return ndef.attr().at("_class").list().s(0) == coloc; } TEST(ColocationTest, ReassignColocation_SingleNode) { NodeDef ndef; const Status status = NodeDefBuilder("A", "Const").Attr("_class", {"loc:@B"}).Finalize(&ndef); TF_EXPECT_OK(status); GraphDef gdef = test::function::GDef({ndef}); EXPECT_EQ(1, gdef.node_size()); EXPECT_EQ(1, gdef.node(0).attr_size()); ReassignColocation(&gdef); EXPECT_EQ(1, gdef.node_size()); EXPECT_EQ(0, gdef.node(0).attr_size()); } TEST(ColocationTest, ReassignColocation_MultiNode_SingleGroup) { NodeDef ndef_a, ndef_b, ndef_c, ndef_d, ndef_e; Status status = NodeDefBuilder("A", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_a); TF_EXPECT_OK(status); status = NodeDefBuilder("B", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_b); TF_EXPECT_OK(status); status = NodeDefBuilder("C", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_c); TF_EXPECT_OK(status); status = NodeDefBuilder("D", "Const").Attr("_class", {"loc:@C"}).Finalize(&ndef_d); TF_EXPECT_OK(status); status = NodeDefBuilder("E", "Const").Attr("_class", {"loc:@D"}).Finalize(&ndef_e); TF_EXPECT_OK(status); GraphDef gdef = test::function::GDef({ndef_a, ndef_b, ndef_c, ndef_d, ndef_e}); EXPECT_EQ(5, gdef.node_size()); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(0), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(1), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(2), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(3), "loc:@C")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(4), "loc:@D")); ReassignColocation(&gdef); EXPECT_EQ(5, gdef.node_size()); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(0), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(1), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(2), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(3), "loc:@E")); EXPECT_EQ(0, gdef.node(4).attr_size()); } TEST(ColocationTest, ReassignColocation_MultiNode_MultiGroup) { NodeDef ndef_a, ndef_b, ndef_c, ndef_d, ndef_e, ndef_u, ndef_v; Status status = NodeDefBuilder("A", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_a); TF_EXPECT_OK(status); status = NodeDefBuilder("B", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_b); TF_EXPECT_OK(status); status = NodeDefBuilder("C", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_c); TF_EXPECT_OK(status); status = NodeDefBuilder("D", "Const").Attr("_class", {"loc:@C"}).Finalize(&ndef_d); TF_EXPECT_OK(status); status = NodeDefBuilder("E", "Const").Attr("_class", {"loc:@D"}).Finalize(&ndef_e); TF_EXPECT_OK(status); status = NodeDefBuilder("U", "Const").Attr("_class", {"loc:@W"}).Finalize(&ndef_u); TF_EXPECT_OK(status); status = NodeDefBuilder("V", "Const").Attr("_class", {"loc:@W"}).Finalize(&ndef_v); TF_EXPECT_OK(status); GraphDef gdef = test::function::GDef( {ndef_a, ndef_b, ndef_c, ndef_d, ndef_e, ndef_u, ndef_v}); EXPECT_EQ(7, gdef.node_size()); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(0), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(1), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(2), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(3), "loc:@C")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(4), "loc:@D")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(5), "loc:@W")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(6), "loc:@W")); ReassignColocation(&gdef); EXPECT_EQ(7, gdef.node_size()); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(0), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(1), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(2), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(3), "loc:@E")); EXPECT_EQ(0, gdef.node(4).attr_size()); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(5), "loc:@V")); EXPECT_EQ(0, gdef.node(6).attr_size()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/colocation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/colocation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
99856370-42e8-403a-a6aa-3269bbcf2b79
cpp
tensorflow/tensorflow
tpu
tensorflow/core/grappler/utils/tpu.cc
tensorflow/core/grappler/utils/tpu_test.cc
#include "tensorflow/core/grappler/utils/tpu.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" namespace tensorflow { namespace grappler { bool IsLegacyTPUBridgeGraphDef(const GraphDef& def) { for (const auto& node : def.node()) { if (node.op() == "TPUCompile" || node.op() == "TPUPartitionedCall") { return true; } } if (!def.has_library()) return false; for (const auto& function_def : def.library().function()) { for (const auto& node : function_def.node_def()) { if (node.op() == "TPUCompile" || node.op() == "TPUPartitionedCall") { return true; } } } return false; } } }
#include "tensorflow/core/grappler/utils/tpu.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { class TpuTest : public ::testing::Test {}; TEST_F(TpuTest, NotTpuGraph) { { GraphDef tpu_graph; tpu_graph.add_node()->set_op("Add"); FunctionDefLibrary* library = tpu_graph.mutable_library(); FunctionDef* function_def = library->add_function(); function_def->add_node_def()->set_op("Mul"); EXPECT_FALSE(IsLegacyTPUBridgeGraphDef(tpu_graph)); } } TEST_F(TpuTest, TpuMainGraph) { { GraphDef tpu_graph; tpu_graph.add_node()->set_op("TPUPartitionedCall"); EXPECT_TRUE(IsLegacyTPUBridgeGraphDef(tpu_graph)); } } TEST_F(TpuTest, TpuLibraryGraph) { { GraphDef tpu_graph; tpu_graph.add_node()->set_op("BatchFunction"); FunctionDefLibrary* library = tpu_graph.mutable_library(); FunctionDef* function_def = library->add_function(); function_def->add_node_def()->set_op("TPUPartitionedCall"); EXPECT_TRUE(IsLegacyTPUBridgeGraphDef(tpu_graph)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/tpu.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/tpu_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7cf8e0a3-4cf1-437a-bcf9-712f019c16e5
cpp
tensorflow/tensorflow
pattern_utils
tensorflow/core/grappler/utils/pattern_utils.cc
tensorflow/core/grappler/utils/pattern_utils_test.cc
#include "tensorflow/core/grappler/utils/pattern_utils.h" #include <algorithm> #include <memory> #include "absl/container/flat_hash_set.h" namespace tensorflow { namespace grappler { namespace utils { const bool IsCommutativeOp(const string& op) { std::vector<string> op_list = str_util::Split(op, '|'); static const auto* commutative_ops = new absl::flat_hash_set<string>( {"Add", "AddV2", "Mul", "Maximum", "SquaredDifference"}); for (const string& op_ : op_list) { if (commutative_ops->contains(op_)) return true; } return false; } bool IsSame(string op1, string op2) { if (op1 == "*") return true; std::vector<string> op1_list = str_util::Split(op1, '|'); for (const string& op_1 : op1_list) { if (op_1 == op2) return true; } return false; } template <> bool SubGraphMatcher<MatchingDirection::kFollowInputs>::DoesOpTypePatternMatch( const OpTypePattern& pattern, MutableNodeView* node_view, NodeViewMatch* match) { if ((node_view->NumControllingFanins() > 0 && pattern.node_status != NodeStatus::kRemain) || (node_view->NumControlledFanouts() > 0 && pattern.node_status == NodeStatus::kRemove)) return false; bool op_type_matched = false; if (pattern.op == "*") { op_type_matched = true; } else { std::vector<string> op_list = str_util::Split(pattern.op, '|'); for (const string& op : op_list) { if (node_view->node()->op() == op) { op_type_matched = true; break; } } } if (op_type_matched) { if (node_label_to_index_.find(pattern.label) == node_label_to_index_.end()) { node_label_to_index_[pattern.label] = node_view->node_index(); matched_node_indices_.insert(node_view->node_index()); if (pattern.node_status == NodeStatus::kRemove) { remove_node_indices_.insert(node_view->node_index()); } } else if (node_label_to_index_[pattern.label] != node_view->node_index()) { return false; } else { DCHECK(node_label_to_index_[pattern.label] == node_view->node_index()); } } else { return false; } match->node_view = node_view; if (!pattern.children.empty()) { auto graph_children = node_view->GetRegularFanins(); int num_children = graph_children.size(); if (num_children != pattern.children.size()) { return false; } else { std::vector<int> pattern_child_indices(num_children); std::iota(pattern_child_indices.begin(), pattern_child_indices.end(), 0); string op_name = pattern.op; if (IsCommutativeOp(op_name) && num_children == 2) { MutableNodeView* graph_child0_node_view = graph_view_->GetNode(graph_children[0].node_index()); MutableNodeView* graph_child1_node_view = graph_view_->GetNode(graph_children[1].node_index()); if ((!IsSame(pattern.children[0].op, graph_child0_node_view->GetOp()) && IsSame(pattern.children[1].op, graph_child0_node_view->GetOp())) || (!IsSame(pattern.children[1].op, graph_child1_node_view->GetOp()) && IsSame(pattern.children[0].op, graph_child1_node_view->GetOp()))) std::swap(pattern_child_indices[0], pattern_child_indices[1]); } for (int i = 0; i < num_children; ++i) { auto child_node_index = graph_children[i].node_index(); MutableNodeView* child_node_view = graph_view_->GetNode(child_node_index); const OpTypePattern& child_pattern = pattern.children[pattern_child_indices[i]]; match->children.push_back(NodeViewMatch()); NodeViewMatch* child_match = &(match->children.back()); if (!DoesOpTypePatternMatch(child_pattern, child_node_view, child_match)) { return false; } } } } return true; } template <> bool SubGraphMatcher<MatchingDirection::kFollowInputs>::GetMatchedNodes( const OpTypePattern& pattern, const std::unordered_set<string>& nodes_to_preserve, MutableNodeView* node_view, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices) { bool found_match = false; match_ = std::make_unique<NodeViewMatch>(); if (DoesOpTypePatternMatch(pattern, node_view, match_.get())) { if (IsSafeNodesToRemove(nodes_to_preserve)) { found_match = true; *matched_nodes_map = this->node_label_to_index_; *remove_node_indices = this->remove_node_indices_; } } else { found_match = false; } match_->Clear(); match_.reset(nullptr); matched_node_indices_.clear(); node_label_to_index_.clear(); remove_node_indices_.clear(); return found_match; } } } }
#include "tensorflow/core/grappler/utils/pattern_utils.h" #include "tensorflow/cc/ops/nn_ops_internal.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace grappler { namespace utils { namespace { using ::tensorflow::ops::Placeholder; void GetMatMulBiasAddGeluGraph(GraphDef* graph, bool add_external_dependent = false) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 32}); auto weight_shape = ops::Placeholder::Shape({32, 64}); auto bias_shape = ops::Placeholder::Shape({64}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto weight = Placeholder(s.WithOpName("weight"), DT_FLOAT, weight_shape); auto bias = Placeholder(s.WithOpName("bias"), DT_FLOAT, bias_shape); auto matmul = ops::MatMul(s.WithOpName("matmul"), input, weight); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), matmul, bias); if (add_external_dependent) { auto external_dependent = ops::Identity(s.WithOpName("external_dependent"), bias_add); } auto one_over_square_root_two = ops::Const(s.WithOpName("one_over_square_root_two"), {0.707f}, {}); auto bias_add_times_const = ops::Mul(s.WithOpName("bias_add_times_const"), bias_add, one_over_square_root_two); auto erf = ops::Erf(s.WithOpName("erf"), bias_add_times_const); auto one = ops::Const(s.WithOpName("one"), {1.0f}, {}); auto erf_plus_one = ops::AddV2(s.WithOpName("erf_plus_one"), erf, one); auto one_half = ops::Const(s.WithOpName("one_half"), {0.5f}, {}); auto one_half_times_erf_plus_one = ops::Mul( s.WithOpName("one_half_times_erf_plus_one"), one_half, erf_plus_one); auto gelu = ops::Mul(s.WithOpName("gelu"), one_half_times_erf_plus_one, bias_add); auto fetch = ops::Identity(s.WithOpName("fetch"), gelu); TF_ASSERT_OK(s.ToGraphDef(graph)); } OpTypePattern GetMatMulBiasAddGeluPattern() { OpTypePattern pattern_syntax{"Mul", "my_gelu", NodeStatus::kReplace, { {"Mul", "my_one_half_times_erf_plus_one", NodeStatus::kRemove, { {"Const", "my_one_half", NodeStatus::kRemain}, {"AddV2", "my_erf_plus_one", NodeStatus::kRemove, { {"Erf", "my_erf", NodeStatus::kRemove, { {"Mul", "my_bias_add_times_const", NodeStatus::kRemove, { {"BiasAdd", "my_bias_add", NodeStatus::kRemove}, {"Const", "my_one_over_square_root_two", NodeStatus::kRemain} } } } }, {"Const", "my_one", NodeStatus::kRemain} } } } }, {"BiasAdd", "my_bias_add", NodeStatus::kRemove, { {"MatMul", "my_matmul", NodeStatus::kRemove}, {"*", "my_bias", NodeStatus::kRemain} } } } }; return pattern_syntax; } class PatternMatcherTest : public ::testing::Test { protected: struct NodeConfig { NodeConfig(string name, string op, std::vector<string> inputs) : name(std::move(name)), op(std::move(op)), inputs(std::move(inputs)) {} string name; string op; std::vector<string> inputs; }; static GraphDef CreateGraph(const std::vector<NodeConfig>& nodes) { GraphDef graph; for (const NodeConfig& node : nodes) { NodeDef node_def; node_def.set_name(node.name); node_def.set_op(node.op); for (const string& input : node.inputs) { node_def.add_input(input); } *graph.add_node() = std::move(node_def); } return graph; } }; TEST_F(PatternMatcherTest, Tree) { ::tensorflow::Status status; GraphDef graph = CreateGraph({{"e", "E", {"c", "d"}}, {"c", "C", {"b"}}, {"d", "D", {}}, {"b", "B", {"a"}}, {"a", "A", {}}}); OpTypePattern pattern{"E", "my_e", NodeStatus::kReplace, { {"C", "my_c", NodeStatus::kRemove}, {"D", "my_d", NodeStatus::kRemove} } }; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); auto root_node_view = graph_view.GetNode("e"); SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher(&graph_view); std::map<string, int> matched_nodes_map; std::set<int> remove_node_indices; bool found_match = graph_matcher.GetMatchedNodes( pattern, {}, root_node_view, &matched_nodes_map, &remove_node_indices); EXPECT_TRUE(found_match); EXPECT_FALSE(matched_nodes_map.empty()); EXPECT_FALSE(remove_node_indices.empty()); bool all_indices_matched = true; for (auto it = matched_nodes_map.begin(); it != matched_nodes_map.begin(); it++) { auto label = absl::StripPrefix(it->first, "my_"); int matched_node_idx = it->second; int expected_node_idx = graph_view.GetNode(label)->node_index(); if (matched_node_idx != expected_node_idx) { all_indices_matched = false; break; } } EXPECT_TRUE(all_indices_matched); } TEST_F(PatternMatcherTest, DAG) { ::tensorflow::Status status; GraphDef graph = CreateGraph({{"e", "E", {"c", "d"}}, {"c", "C", {"b"}}, {"d", "D", {"b"}}, {"b", "B", {"a"}}, {"a", "A", {}}}); OpTypePattern pattern{"E", "my_e", NodeStatus::kReplace, { {"C", "my_c", NodeStatus::kRemove, { {"B", "my_b", NodeStatus::kRemove} } }, {"D", "my_d", NodeStatus::kRemove, { {"B", "my_b", NodeStatus::kRemove} } } } }; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); auto root_node_view = graph_view.GetNode("e"); SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher(&graph_view); std::unordered_set<string> nodes_to_preserve = {"foo"}; std::map<string, int> matched_nodes_map; std::set<int> remove_node_indices; bool found_match = graph_matcher.GetMatchedNodes(pattern, nodes_to_preserve, root_node_view, &matched_nodes_map, &remove_node_indices); EXPECT_TRUE(found_match); EXPECT_FALSE(matched_nodes_map.empty()); EXPECT_FALSE(remove_node_indices.empty()); bool all_indices_matched = true; for (auto it = matched_nodes_map.begin(); it != matched_nodes_map.begin(); it++) { auto label = absl::StripPrefix(it->first, "my_"); int matched_node_idx = it->second; int expected_node_idx = graph_view.GetNode(label)->node_index(); if (matched_node_idx != expected_node_idx) { all_indices_matched = false; break; } } EXPECT_TRUE(all_indices_matched); nodes_to_preserve.insert({"c", "d"}); matched_nodes_map.clear(); remove_node_indices.clear(); found_match = graph_matcher.GetMatchedNodes(pattern, nodes_to_preserve, root_node_view, &matched_nodes_map, &remove_node_indices); EXPECT_FALSE(found_match); EXPECT_TRUE(matched_nodes_map.empty()); EXPECT_TRUE(remove_node_indices.empty()); } TEST_F(PatternMatcherTest, DAGExternalDependent) { ::tensorflow::Status status; GraphDef graph = CreateGraph({{"f", "F", {"d"}}, {"e", "E", {"c", "d"}}, {"c", "C", {"b"}}, {"d", "D", {"b"}}, {"b", "B", {"a"}}, {"a", "A", {}}}); OpTypePattern pattern{"E", "my_e", NodeStatus::kReplace, { {"C", "my_c", NodeStatus::kRemove, { {"B", "my_b", NodeStatus::kRemove} } }, {"D", "my_d", NodeStatus::kRemove, { {"B", "my_b", NodeStatus::kRemove} } } } }; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); auto root_node_view = graph_view.GetNode("e"); SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher(&graph_view); std::map<string, int> matched_nodes_map; std::set<int> remove_node_indices; bool found_match = graph_matcher.GetMatchedNodes( pattern, {}, root_node_view, &matched_nodes_map, &remove_node_indices); EXPECT_FALSE(found_match); EXPECT_TRUE(matched_nodes_map.empty()); EXPECT_TRUE(remove_node_indices.empty()); } TEST_F(PatternMatcherTest, MatMulBiasAddGelu) { ::tensorflow::Status status; GraphDef graph; GetMatMulBiasAddGeluGraph(&graph); OpTypePattern pattern = GetMatMulBiasAddGeluPattern(); MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); auto root_node_view = graph_view.GetNode("gelu"); SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher(&graph_view); std::map<string, int> matched_nodes_map; std::set<int> remove_node_indices; bool found_match = graph_matcher.GetMatchedNodes( pattern, {}, root_node_view, &matched_nodes_map, &remove_node_indices); EXPECT_TRUE(found_match); EXPECT_FALSE(matched_nodes_map.empty()); EXPECT_FALSE(remove_node_indices.empty()); bool all_indices_matched = true; for (auto it = matched_nodes_map.begin(); it != matched_nodes_map.begin(); it++) { auto label = absl::StripPrefix(it->first, "my_"); int matched_node_idx = it->second; int expected_node_idx = graph_view.GetNode(label)->node_index(); if (matched_node_idx != expected_node_idx) { all_indices_matched = false; break; } } EXPECT_TRUE(all_indices_matched); } TEST_F(PatternMatcherTest, MatMulBiasAddGeluExternalDependent) { ::tensorflow::Status status; GraphDef graph; GetMatMulBiasAddGeluGraph(&graph, true); OpTypePattern pattern = GetMatMulBiasAddGeluPattern(); MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); auto root_node_view = graph_view.GetNode("gelu"); SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher(&graph_view); std::map<string, int> matched_nodes_map; std::set<int> remove_node_indices; bool found_match = graph_matcher.GetMatchedNodes( pattern, {}, root_node_view, &matched_nodes_map, &remove_node_indices); EXPECT_FALSE(found_match); EXPECT_TRUE(matched_nodes_map.empty()); EXPECT_TRUE(remove_node_indices.empty()); } TEST_F(PatternMatcherTest, MatMulBiasAddGeluMutation) { ::tensorflow::Status status; GraphDef graph; GetMatMulBiasAddGeluGraph(&graph); OpTypePattern pattern = GetMatMulBiasAddGeluPattern(); MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); auto root_node_view = graph_view.GetNode("gelu"); SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher(&graph_view); std::map<string, int> matched_nodes_map; std::set<int> remove_node_indices; bool found_match = graph_matcher.GetMatchedNodes( pattern, {}, root_node_view, &matched_nodes_map, &remove_node_indices); EXPECT_TRUE(found_match); EXPECT_FALSE(matched_nodes_map.empty()); EXPECT_FALSE(remove_node_indices.empty()); int num_nodes_before = graph_view.NumNodes(); std::vector<string> remove_node_names; for (auto const& node_idx : remove_node_indices) { remove_node_names.push_back(graph_view.GetNode(node_idx)->GetName()); } Mutation* mutation = graph_view.GetMutationBuilder(); NodeDef fused_node; fused_node.set_name("gelu"); fused_node.set_op("_FusedMatMul"); fused_node.add_input(graph_view.GetNode("matmul")->node()->input(0)); fused_node.add_input(graph_view.GetNode("matmul")->node()->input(1)); fused_node.add_input(graph_view.GetNode("bias_add")->node()->input(1)); mutation->AddNode(std::move(fused_node), &status); TF_ASSERT_OK(status); TF_EXPECT_OK(mutation->Apply()); for (auto const& node_idx : remove_node_indices) { mutation->RemoveNode(graph_view.GetNode(node_idx)); } TF_EXPECT_OK(mutation->Apply()); int num_nodes_after = graph_view.NumNodes(); EXPECT_EQ(num_nodes_before - remove_node_indices.size(), num_nodes_after); bool remove_nodes_deleted = true; for (auto const& node_name : remove_node_names) { if (graph_view.GetNode(node_name) != nullptr) { remove_nodes_deleted = false; break; } } EXPECT_TRUE(remove_nodes_deleted); bool replace_node_exist = graph_view.HasNode("gelu") ? true : false; EXPECT_TRUE(replace_node_exist); } TEST_F(PatternMatcherTest, CommutativeInputs) { ::tensorflow::Status status; std::vector<string> commutative_ops = {"Mul", "Add", "AddV2"}; for (string op : commutative_ops) { for (bool should_swap : {false, true}) { std::vector<string> commutative_operands = (should_swap ? std::vector<string>{"d", "c"} : std::vector<string>{"c", "d"}); GraphDef graph = CreateGraph({{"e", op, commutative_operands}, {"c", "C", {"b"}}, {"d", "D", {"b"}}, {"b", "B", {"a"}}, {"a", "A", {}}}); OpTypePattern pattern{op, "my_e", NodeStatus::kReplace, { {"C", "my_c", NodeStatus::kRemove, { {"B", "my_b", NodeStatus::kRemove} } }, {"D", "my_d", NodeStatus::kRemove, { {"B", "my_b", NodeStatus::kRemove} } } } }; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); auto root_node_view = graph_view.GetNode("e"); SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &graph_view); std::map<string, int> matched_nodes_map; std::set<int> remove_node_indices; bool found_match = graph_matcher.GetMatchedNodes( pattern, {}, root_node_view, &matched_nodes_map, &remove_node_indices); EXPECT_TRUE(found_match); EXPECT_FALSE(matched_nodes_map.empty()); EXPECT_FALSE(remove_node_indices.empty()); bool all_indices_matched = true; for (auto it = matched_nodes_map.begin(); it != matched_nodes_map.begin(); it++) { auto label = absl::StripPrefix(it->first, "my_"); int matched_node_idx = it->second; int expected_node_idx = graph_view.GetNode(label)->node_index(); if (matched_node_idx != expected_node_idx) { all_indices_matched = false; break; } } EXPECT_TRUE(all_indices_matched); } } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/pattern_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/pattern_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3cc7cc66-874f-47a7-a4f0-c1960ee89b92
cpp
tensorflow/tensorflow
transitive_fanin
tensorflow/core/grappler/utils/transitive_fanin.cc
tensorflow/core/grappler/utils/transitive_fanin_test.cc
#include "tensorflow/core/grappler/utils/transitive_fanin.h" #include <queue> #include <vector> #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { namespace grappler { Status ComputeTransitiveFanin( const GraphDef& graph, const std::vector<string>& terminal_nodes, std::unordered_map<string, const NodeDef*>* name_to_fanin_node, std::vector<const NodeDef*>* fanin_nodes) { std::unordered_map<string, const NodeDef*> name_to_node; std::unordered_map<string, const NodeDef*> name_to_send; for (const auto& node : graph.node()) { name_to_node[node.name()] = &node; if (node.op() == "_Send") { const auto& attr = node.attr(); name_to_send[attr.at("tensor_name").s()] = &node; } } std::vector<const NodeDef*> queue; for (const string& root : terminal_nodes) { const NodeDef* node = name_to_node[NodeName(root)]; if (!node) { return errors::InvalidArgument("Graph does not contain terminal node ", root, "."); } queue.push_back(node); } std::unordered_set<const NodeDef*> visited; while (!queue.empty()) { const NodeDef* node = queue.back(); queue.pop_back(); if (!visited.insert(node).second) { continue; } fanin_nodes->push_back(node); if (name_to_fanin_node) { name_to_fanin_node->insert( std::pair<string, const NodeDef*>(node->name(), node)); } for (const string& input : node->input()) { const NodeDef* in = name_to_node[NodeName(input)]; if (!in) { return errors::InvalidArgument("Graph does not contain input ", NodeName(input), " of node ", node->name(), "."); } queue.push_back(in); } if (node->op() == "_Recv") { const auto& attr = node->attr(); const NodeDef* send = name_to_send[attr.at("tensor_name").s()]; if (send) { queue.push_back(send); } } } return absl::OkStatus(); } Status ComputeTransitiveFanin(const GraphDef& graph, const std::vector<string>& terminal_nodes, std::vector<const NodeDef*>* fanin_nodes) { return ComputeTransitiveFanin(graph, terminal_nodes, nullptr, fanin_nodes); } Status SetTransitiveFaninGraph(const GraphDef& input_graph, GraphDef* output_graph, const std::vector<string>& terminal_nodes) { std::vector<const NodeDef*> keep; TF_RETURN_IF_ERROR( ComputeTransitiveFanin(input_graph, terminal_nodes, &keep)); output_graph->mutable_node()->Reserve(keep.size()); for (int i = keep.size() - 1; i >= 0; --i) { *output_graph->add_node() = *keep[i]; } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/utils/transitive_fanin.h" #include <vector> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class TransitiveFaninTest : public ::testing::Test { protected: struct NodeConfig { NodeConfig(string name, std::vector<string> inputs) : name(std::move(name)), inputs(std::move(inputs)) {} NodeConfig(string name, string op, std::vector<string> inputs) : name(std::move(name)), op(std::move(op)), inputs(std::move(inputs)) {} string name; string op; std::vector<string> inputs; }; static GraphDef CreateGraph(const std::vector<NodeConfig>& nodes) { GraphDef graph; for (const NodeConfig& node : nodes) { NodeDef node_def; node_def.set_name(node.name); node_def.set_op(node.op); for (const string& input : node.inputs) { node_def.add_input(input); } *graph.add_node() = std::move(node_def); } return graph; } }; TEST_F(TransitiveFaninTest, NoPruning) { GraphDef graph = CreateGraph({ {"1", {"2"}}, {"2", {"3"}}, {"3", {"4"}}, {"4", {}} }); GraphDef output_graph; const std::vector<string> terminal_nodes = {"1"}; TF_EXPECT_OK(SetTransitiveFaninGraph(graph, &output_graph, terminal_nodes)); NodeMap node_map(&output_graph); ASSERT_TRUE(node_map.NodeExists("1")); ASSERT_TRUE(node_map.NodeExists("2")); ASSERT_TRUE(node_map.NodeExists("3")); ASSERT_TRUE(node_map.NodeExists("4")); } TEST_F(TransitiveFaninTest, PruneNodesUnreachableFromSingleTerminalNode) { GraphDef graph = CreateGraph({ {"1", {"2"}}, {"2", {"3"}}, {"3", {"4"}}, {"4", {}}, {"5", {"1"}} }); GraphDef output_graph; const std::vector<string> terminal_nodes = {"1"}; TF_EXPECT_OK(SetTransitiveFaninGraph(graph, &output_graph, terminal_nodes)); NodeMap node_map(&output_graph); ASSERT_TRUE(node_map.NodeExists("1")); ASSERT_TRUE(node_map.NodeExists("2")); ASSERT_TRUE(node_map.NodeExists("3")); ASSERT_TRUE(node_map.NodeExists("4")); ASSERT_FALSE(node_map.NodeExists("5")); } TEST_F(TransitiveFaninTest, PruneNodesUnreachableFromMultipleTerminalNodes) { GraphDef graph = CreateGraph({ {"1", {"2"}}, {"2", {"3"}}, {"3", {"4"}}, {"4", {}}, {"5", {"2"}}, {"6", {"1"}} }); GraphDef output_graph; const std::vector<string> terminal_nodes = {"1", "5"}; TF_EXPECT_OK(SetTransitiveFaninGraph(graph, &output_graph, terminal_nodes)); NodeMap node_map(&output_graph); ASSERT_TRUE(node_map.NodeExists("1")); ASSERT_TRUE(node_map.NodeExists("2")); ASSERT_TRUE(node_map.NodeExists("3")); ASSERT_TRUE(node_map.NodeExists("4")); ASSERT_TRUE(node_map.NodeExists("5")); ASSERT_FALSE(node_map.NodeExists("6")); } TEST_F(TransitiveFaninTest, InvalidGraphOrTerminalNodes) { GraphDef graph = CreateGraph({ {"1", {"2"}}, {"2", {"3"}}, {"3", {"4"}}, {"4", {}}, {"5", {"6"}}, {"7", {"8"}} }); GraphDef output_graph; const std::vector<string> terminal_nodes = {"1", "5"}; auto s = SetTransitiveFaninGraph(graph, &output_graph, terminal_nodes); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Graph does not contain input 6 of node 5."); const std::vector<string> invalid_terminal_nodes = {"0", "1", "5"}; s = SetTransitiveFaninGraph(graph, &output_graph, invalid_terminal_nodes); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Graph does not contain terminal node 0."); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/transitive_fanin.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/transitive_fanin_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5a4a1614-9a0c-4bf7-975a-a434a63a9822
cpp
tensorflow/tensorflow
frame
tensorflow/core/grappler/utils/frame.cc
tensorflow/core/grappler/utils/frame_test.cc
#include "tensorflow/core/grappler/utils/frame.h" #include <deque> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { namespace grappler { namespace {} template <typename GraphViewT> inline Status FrameView::InferFromGraphViewT(const GraphViewT& graph_view) { if (is_inferred_) { return errors::Internal("FrameView was already inferred from the graph"); } is_inferred_ = true; std::deque<int> ready_node_indices; for (const auto& node : graph_view.GetNodes()) { if (node.NumRegularFanins() + node.NumControllingFanins() == 0) { ready_node_indices.push_back(node.node_index()); node_to_frames_[node.node()] = node_has_no_frames_; } } const auto* graph = graph_view.graph(); absl::flat_hash_map<string, int> frame_name_to_id; auto process_fanout = [this, graph]( absl::flat_hash_map<string, int>* frame_name_to_id, std::deque<int>* ready_node_indices, const NodeDef* ready_node, int fanout_node_index) { const NodeDef* fanout_node = &graph->node(fanout_node_index); if (!node_to_frames_.contains(fanout_node)) { std::vector<int> frame_ids = node_to_frames_[ready_node]; if (IsExit(*ready_node)) { frame_ids.pop_back(); } if (IsEnter(*fanout_node)) { const AttrValue* frame_name_attr = AttrSlice(*fanout_node).Find("frame_name"); if (!frame_name_attr) { return errors::InvalidArgument( "Missing frame name for the Enter node: ", SummarizeNodeDef(*fanout_node)); } const string& frame_name = frame_name_attr->s(); int frame_id; if (frame_name_to_id->contains(frame_name)) { frame_id = (*frame_name_to_id)[frame_name]; } else { frame_id = static_cast<int>(frame_name_to_id->size()); (*frame_name_to_id)[frame_name] = frame_id; } frame_ids.push_back(frame_id); } ready_node_indices->push_back(fanout_node_index); node_to_frames_[fanout_node] = std::move(frame_ids); } else { std::vector<int> frame_ids_fanout = node_to_frames_[fanout_node]; std::vector<int> frame_ids_node = node_to_frames_[ready_node]; if (IsEnter(*fanout_node)) { frame_ids_fanout.pop_back(); } if (IsExit(*ready_node)) { frame_ids_node.pop_back(); } if (frame_ids_node != frame_ids_fanout) { return errors::InvalidArgument( "Invalid graph: Frame ids for node ", ready_node->name(), " does not match frame ids for it's fanout ", fanout_node->name()); } } return absl::OkStatus(); }; while (!ready_node_indices.empty()) { const int ready_node_index = ready_node_indices.front(); ready_node_indices.pop_front(); const auto* ready_node_view = graph_view.GetNode(ready_node_index); const NodeDef* ready_node_def = ready_node_view->node(); for (const auto& regular_fanouts_port_i : ready_node_view->GetRegularFanouts()) { for (const auto& regular_fanout : regular_fanouts_port_i) { TF_RETURN_IF_ERROR(process_fanout(&frame_name_to_id, &ready_node_indices, ready_node_def, regular_fanout.node_index())); } } for (const auto& controlled_fanout : ready_node_view->GetControlledFanouts()) { TF_RETURN_IF_ERROR(process_fanout(&frame_name_to_id, &ready_node_indices, ready_node_def, controlled_fanout.node_index())); } } num_frames_ = static_cast<int>(frame_name_to_id.size()); return absl::OkStatus(); } Status FrameView::InferFromGraphView(const utils::GraphView& graph_view) { return InferFromGraphViewT(graph_view); } Status FrameView::InferFromGraphView( const utils::MutableGraphView& graph_view) { return InferFromGraphViewT(graph_view); } Status FrameView::InferFromGraph(const GraphDef& graph) { Status status; utils::GraphView graph_view(&graph, &status); TF_RETURN_IF_ERROR(status); return InferFromGraphViewT(graph_view); } const std::vector<int>& FrameView::Frames(const NodeDef& node) const { DCHECK(is_inferred_) << "FrameView is not initialized"; auto frames = node_to_frames_.find(&node); if (frames == node_to_frames_.end()) { LOG(WARNING) << "Node '" << node.name() << "' doesn't belong to the graph used for initialization"; return node_has_no_frames_; } else { return frames->second; } } bool FrameView::IsInFrame(const NodeDef& node) const { return !Frames(node).empty(); } } }
#include "tensorflow/core/grappler/utils/frame.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/utils/graph_view.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using GraphTypes = ::testing::Types<GraphDef, utils::GraphView, utils::MutableGraphView>; template <typename T> class FrameViewTest : public ::testing::Test { protected: NodeDef CreateNode(const string& name, const std::vector<string>& inputs) { return CreateNode(name, "", "", inputs); } NodeDef CreateNode(const string& name, const string& op, const std::vector<string>& inputs) { return CreateNode(name, op, "", inputs); } NodeDef CreateNode(const string& name, const string& op, const string& frame, const std::vector<string>& inputs) { NodeDef node; node.set_name(name); if (!op.empty()) { node.set_op(op); } if (!frame.empty()) { AttrValue frame_name; frame_name.set_s(frame); node.mutable_attr()->insert({"frame_name", frame_name}); } for (const string& input : inputs) { node.add_input(input); } return node; } }; TYPED_TEST_SUITE(FrameViewTest, GraphTypes); template <typename T> void InferFromGraph(FrameView* frame_view, GraphDef* graph, bool valid) { Status status; T graph_view(graph, &status); TF_ASSERT_OK(status); status = frame_view->InferFromGraphView(graph_view); if (valid) { TF_ASSERT_OK(status); } else { ASSERT_FALSE(status.ok()); } } template <> void InferFromGraph<GraphDef>(FrameView* frame_view, GraphDef* graph, bool valid) { Status status = frame_view->InferFromGraph(*graph); if (valid) { TF_ASSERT_OK(status); } else { ASSERT_FALSE(status.ok()); } } TYPED_TEST(FrameViewTest, NestedLoop) { GraphDef graph; *graph.add_node() = this->CreateNode("0", {}); *graph.add_node() = this->CreateNode("1", "Enter", "while/context1", {"0"}); *graph.add_node() = this->CreateNode("2", {"1"}); *graph.add_node() = this->CreateNode("3", "Merge", {"2", "14"}); *graph.add_node() = this->CreateNode("4", {"3"}); *graph.add_node() = this->CreateNode("5", "Switch", {"4"}); *graph.add_node() = this->CreateNode("6", {"5"}); *graph.add_node() = this->CreateNode("7", "Enter", "while/context2", {"6"}); *graph.add_node() = this->CreateNode("8", {"7"}); *graph.add_node() = this->CreateNode("9", "Merge", {"8", "12"}); *graph.add_node() = this->CreateNode("10", {"9"}); *graph.add_node() = this->CreateNode("11", "Switch", {"10"}); *graph.add_node() = this->CreateNode("12", "NextIteration", {"11"}); *graph.add_node() = this->CreateNode("13", "Exit", {"11"}); *graph.add_node() = this->CreateNode("14", "NextIteration", {"13"}); *graph.add_node() = this->CreateNode("15", {"5"}); *graph.add_node() = this->CreateNode("16", "Exit", {"15"}); *graph.add_node() = this->CreateNode("17", {"16"}); FrameView frame_view; InferFromGraph<TypeParam>(&frame_view, &graph, true); std::unordered_map<string, std::vector<int>> expected = { {"0", {}}, {"1", {0}}, {"2", {0}}, {"3", {0}}, {"4", {0}}, {"5", {0}}, {"6", {0}}, {"7", {0, 1}}, {"8", {0, 1}}, {"9", {0, 1}}, {"10", {0, 1}}, {"11", {0, 1}}, {"12", {0, 1}}, {"13", {0, 1}}, {"14", {0}}, {"15", {0}}, {"16", {0}}, {"17", {}}}; EXPECT_EQ(frame_view.num_frames(), 2); for (const NodeDef& node : graph.node()) { std::vector<int> expected_frames = expected[node.name()]; std::vector<int> node_frames = frame_view.Frames(node); EXPECT_EQ(expected_frames, node_frames); } } TYPED_TEST(FrameViewTest, MultipleInputsToEnter) { GraphDef graph; *graph.add_node() = this->CreateNode("0", {}); *graph.add_node() = this->CreateNode("1", {}); *graph.add_node() = this->CreateNode("2", "Enter", "while/context", {"0", "1"}); *graph.add_node() = this->CreateNode("3", "Exit", {"2"}); FrameView frame_view; InferFromGraph<TypeParam>(&frame_view, &graph, true); std::unordered_map<string, std::vector<int>> expected = { {"0", {}}, {"1", {}}, {"2", {0}}, {"3", {0}}}; EXPECT_EQ(frame_view.num_frames(), 1); for (const NodeDef& node : graph.node()) { std::vector<int> expected_frames = expected[node.name()]; std::vector<int> node_frames = frame_view.Frames(node); EXPECT_EQ(expected_frames, node_frames); } } TYPED_TEST(FrameViewTest, ExitOutput) { GraphDef graph; *graph.add_node() = this->CreateNode("0", {}); *graph.add_node() = this->CreateNode("1", "Enter", "while/context", {"0"}); *graph.add_node() = this->CreateNode("2", "Exit", {"1"}); *graph.add_node() = this->CreateNode("3", {}); *graph.add_node() = this->CreateNode("4", {"2", "3"}); FrameView frame_view; InferFromGraph<TypeParam>(&frame_view, &graph, true); std::unordered_map<string, std::vector<int>> expected = { {"0", {}}, {"1", {0}}, {"2", {0}}, {"3", {}}, {"4", {}}}; EXPECT_EQ(frame_view.num_frames(), 1); for (const NodeDef& node : graph.node()) { std::vector<int> expected_frames = expected[node.name()]; std::vector<int> node_frames = frame_view.Frames(node); EXPECT_EQ(expected_frames, node_frames); } } TYPED_TEST(FrameViewTest, MultipleEnterNodes) { GraphDef graph; *graph.add_node() = this->CreateNode("0", {}); *graph.add_node() = this->CreateNode("1", "Enter", "while/context", {"0"}); *graph.add_node() = this->CreateNode("2", {"1"}); *graph.add_node() = this->CreateNode("5", {}); *graph.add_node() = this->CreateNode("4", "Enter", "while/context", {"5"}); *graph.add_node() = this->CreateNode("3", {"4", "2"}); *graph.add_node() = this->CreateNode("6", "Merge", {"3", "8"}); *graph.add_node() = this->CreateNode("7", "Switch", {"6"}); *graph.add_node() = this->CreateNode("8", "NextIteration", {"7"}); *graph.add_node() = this->CreateNode("9", "Exit", {"7"}); FrameView frame_view; InferFromGraph<TypeParam>(&frame_view, &graph, true); std::unordered_map<string, std::vector<int>> expected = { {"0", {}}, {"1", {0}}, {"2", {0}}, {"3", {0}}, {"4", {0}}, {"5", {}}, {"6", {0}}, {"7", {0}}, {"8", {0}}, {"9", {0}}}; EXPECT_EQ(frame_view.num_frames(), 1); for (const NodeDef& node : graph.node()) { std::vector<int> expected_frames = expected[node.name()]; std::vector<int> node_frames = frame_view.Frames(node); EXPECT_EQ(expected_frames, node_frames); } } TYPED_TEST(FrameViewTest, ConflictingFrames) { GraphDef graph; *graph.add_node() = this->CreateNode("0", {}); *graph.add_node() = this->CreateNode("1", "Enter", "while/context1", {"0"}); *graph.add_node() = this->CreateNode("2", "Enter", "while/context2", {"1"}); *graph.add_node() = this->CreateNode("3", {"1", "2"}); FrameView frame_view; InferFromGraph<TypeParam>(&frame_view, &graph, false); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/frame.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/frame_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0a7e1071-a884-4f38-a6e5-24b3584f062c
cpp
tensorflow/tensorflow
traversal
tensorflow/core/grappler/utils/traversal.cc
tensorflow/core/grappler/utils/traversal_test.cc
#include "tensorflow/core/grappler/utils/traversal.h" #include "absl/container/flat_hash_map.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/graph_topology_view.h" namespace tensorflow { namespace grappler { namespace { struct DfsStackElem { DfsStackElem(int node, bool children_visited, int src) : node(node), children_visited(children_visited), src(src) {} explicit DfsStackElem(int node) : DfsStackElem(node, false, -1) {} int node; bool children_visited; int src; }; enum class NodeState { kNotVisited, kVisiting, kDone }; } void DfsTraversal(const GraphTopologyView& graph_view, const absl::Span<const NodeDef* const> from, const TraversalDirection direction, const DfsPredicates& predicates, const DfsCallbacks& callbacks) { std::vector<DfsStackElem> stack; stack.reserve(from.size()); for (const NodeDef* node : from) { const absl::optional<int> node_idx = graph_view.GetNodeIndex(*node); DCHECK(node_idx.has_value()) << "Illegal start node: " << node->name(); if (node_idx.has_value()) { stack.emplace_back(node_idx.value()); } } absl::flat_hash_map<int, NodeState> node_state; while (!stack.empty()) { DfsStackElem w = stack.back(); stack.pop_back(); NodeState& state = node_state[w.node]; if (state == NodeState::kDone) continue; if (predicates.enter && !predicates.enter(graph_view.GetNode(w.node))) { state = NodeState::kDone; continue; } if (w.children_visited) { state = NodeState::kDone; if (callbacks.post_order) { callbacks.post_order(graph_view.GetNode(w.node)); } continue; } if (state == NodeState::kVisiting) { if (callbacks.on_back_edge) { callbacks.on_back_edge(graph_view.GetNode(w.src), graph_view.GetNode(w.node)); } continue; } state = NodeState::kVisiting; if (callbacks.pre_order) { callbacks.pre_order(graph_view.GetNode(w.node)); } stack.emplace_back(w.node, true, w.src); if (predicates.advance && !predicates.advance(graph_view.GetNode(w.node))) { continue; } if (direction == TraversalDirection::kFollowInputs) { for (const int fanin : graph_view.GetFanin(w.node)) { stack.emplace_back(fanin, false, w.node); } } else { for (const int fanout : graph_view.GetFanout(w.node)) { stack.emplace_back(fanout, false, w.node); } } } } void DfsTraversal(const GraphTopologyView& graph_view, const absl::Span<const NodeDef* const> from, TraversalDirection direction, const DfsCallbacks& callbacks) { DfsTraversal(graph_view, from, direction, {}, callbacks); } } }
#include "tensorflow/core/grappler/utils/traversal.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using ::tensorflow::test::function::NDef; DfsCallbacks MkCallbacks(std::vector<string>* pre_order, std::vector<string>* post_order, std::vector<string>* back_edges) { return {[pre_order](const NodeDef* n) { pre_order->push_back(n->name()); }, [post_order](const NodeDef* n) { post_order->push_back(n->name()); }, [back_edges](const NodeDef* src, const NodeDef* dst) { back_edges->push_back(absl::StrCat(src->name(), "->", dst->name())); }}; } TEST(TraversalTest, OutputsDfsNoLoop) { const string op = "OpIsNotImportantInThisTest"; GraphDef graph = ::tensorflow::test::function::GDef( {NDef("2", op, {"5"}, {}), NDef("0", op, {"5", "4"}, {}), NDef("1", op, {"4", "3"}, {}), NDef("3", op, {"2"}, {}), NDef("5", op, {}, {}), NDef("4", op, {}, {})}, {}); std::vector<const NodeDef*> start_nodes = {&graph.node(4), &graph.node(5)}; std::vector<string> pre_order; std::vector<string> post_order; std::vector<string> back_edges; GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); DfsTraversal(graph_view, start_nodes, TraversalDirection::kFollowOutputs, MkCallbacks(&pre_order, &post_order, &back_edges)); const std::vector<string> expected_pre = {"4", "1", "0", "5", "2", "3"}; const std::vector<string> expected_post = {"1", "0", "4", "3", "2", "5"}; EXPECT_EQ(pre_order, expected_pre); EXPECT_EQ(post_order, expected_post); EXPECT_TRUE(back_edges.empty()); } TEST(TraversalTest, InputsDfsNoLoop) { const string op = "OpIsNotImportantInThisTest"; GraphDef graph = ::tensorflow::test::function::GDef( {NDef("2", op, {"5"}, {}), NDef("0", op, {"5", "4"}, {}), NDef("1", op, {"4", "3"}, {}), NDef("3", op, {"2"}, {}), NDef("5", op, {}, {}), NDef("4", op, {}, {})}, {}); std::vector<const NodeDef*> start_nodes = {&graph.node(1), &graph.node(2)}; std::vector<string> pre_order; std::vector<string> post_order; std::vector<string> back_edges; GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); DfsTraversal(graph_view, start_nodes, TraversalDirection::kFollowInputs, MkCallbacks(&pre_order, &post_order, &back_edges)); const std::vector<string> expected_pre = {"1", "4", "3", "2", "5", "0"}; const std::vector<string> expected_post = {"4", "5", "2", "3", "1", "0"}; EXPECT_EQ(pre_order, expected_pre); EXPECT_EQ(post_order, expected_post); EXPECT_TRUE(back_edges.empty()); } TEST(TraversalTest, InputsDfsWithLoop) { GraphDef graph = ::tensorflow::test::function::GDef( {NDef("2", "Merge", {"1", "5"}, {}), NDef("3", "Switch", {"2"}, {}), NDef("4", "Identity", {"3"}, {}), NDef("5", "NextIteration", {"4"}, {}), NDef("1", "Enter", {}, {}), NDef("6", "Exit", {"3"}, {})}, {}); std::vector<const NodeDef*> start_nodes = {&graph.node(5)}; std::vector<string> pre_order; std::vector<string> post_order; std::vector<string> back_edges; GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); DfsTraversal(graph_view, start_nodes, TraversalDirection::kFollowInputs, MkCallbacks(&pre_order, &post_order, &back_edges)); const std::vector<string> expected_pre = {"6", "3", "2", "1", "5", "4"}; const std::vector<string> expected_post = {"1", "4", "5", "2", "3", "6"}; const std::vector<string> expected_edges = {"4->3"}; EXPECT_EQ(pre_order, expected_pre); EXPECT_EQ(post_order, expected_post); EXPECT_EQ(back_edges, expected_edges); } TEST(TraversalTest, OutputDfsWithLoop) { GraphDef graph = ::tensorflow::test::function::GDef( {NDef("2", "Merge", {"1", "5"}, {}), NDef("3", "Switch", {"2"}, {}), NDef("4", "Identity", {"3"}, {}), NDef("5", "NextIteration", {"4"}, {}), NDef("1", "Enter", {}, {}), NDef("6", "Exit", {"3"}, {})}, {}); std::vector<const NodeDef*> start_nodes = {&graph.node(0)}; std::vector<string> pre_order; std::vector<string> post_order; std::vector<string> back_edges; GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); DfsTraversal(graph_view, start_nodes, TraversalDirection::kFollowOutputs, MkCallbacks(&pre_order, &post_order, &back_edges)); const std::vector<string> expected_pre = {"2", "3", "6", "4", "5"}; const std::vector<string> expected_post = {"6", "5", "4", "3", "2"}; const std::vector<string> expected_edges = {"5->2"}; EXPECT_EQ(pre_order, expected_pre); EXPECT_EQ(post_order, expected_post); EXPECT_EQ(back_edges, expected_edges); } TEST(TraversalTest, DfsWithEnterPredicate) { const string op = "OpIsNotImportantInThisTest"; GraphDef graph = ::tensorflow::test::function::GDef( {NDef("1", op, {}, {}), NDef("2", op, {"1"}, {}), NDef("3", op, {"2"}, {}), NDef("4", op, {"1"}, {}), NDef("5", op, {"4"}, {}), NDef("6", op, {"3", "5"}, {})}, {}); const auto enter = [](const NodeDef* node) { return node->name() != "2" && node->name() != "3"; }; std::vector<const NodeDef*> start_nodes = {&graph.node(0)}; std::vector<string> pre_order; std::vector<string> post_order; std::vector<string> back_edges; GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); DfsTraversal(graph_view, start_nodes, TraversalDirection::kFollowOutputs, DfsPredicates::Enter(enter), MkCallbacks(&pre_order, &post_order, &back_edges)); const std::vector<string> expected_pre = {"1", "4", "5", "6"}; const std::vector<string> expected_post = {"6", "5", "4", "1"}; EXPECT_EQ(pre_order, expected_pre); EXPECT_EQ(post_order, expected_post); EXPECT_TRUE(back_edges.empty()); } TEST(TraversalTest, DfsWithAdvancePredicate) { const string op = "OpIsNotImportantInThisTest"; GraphDef graph = ::tensorflow::test::function::GDef( {NDef("1", op, {}, {}), NDef("2", op, {"1"}, {}), NDef("3", op, {"2"}, {}), NDef("4", op, {"1"}, {}), NDef("5", op, {"4"}, {}), NDef("6", op, {"3", "5"}, {})}, {} ); const auto advance = [](const NodeDef* node) { return node->name() != "2" && node->name() != "3"; }; std::vector<const NodeDef*> start_nodes = {&graph.node(0)}; std::vector<string> pre_order; std::vector<string> post_order; std::vector<string> back_edges; GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); DfsTraversal(graph_view, start_nodes, TraversalDirection::kFollowOutputs, DfsPredicates::Advance(advance), MkCallbacks(&pre_order, &post_order, &back_edges)); const std::vector<string> expected_pre = {"1", "4", "5", "6", "2"}; const std::vector<string> expected_post = {"6", "5", "4", "2", "1"}; EXPECT_EQ(pre_order, expected_pre); EXPECT_EQ(post_order, expected_post); EXPECT_TRUE(back_edges.empty()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/traversal.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/traversal_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
334818dd-5c64-4cee-a523-41f3195eb4c3
cpp
tensorflow/tensorflow
functions
tensorflow/core/grappler/utils/functions.cc
tensorflow/core/grappler/utils/functions_test.cc
#include "tensorflow/core/grappler/utils/functions.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/substitute.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/strings/scanner.h" namespace tensorflow { namespace grappler { GrapplerFunctionItem::GrapplerFunctionItem( string func_name, string description, AttrSlice func_attr, std::vector<const FunctionDef::ArgAttrs*> arg_attr, std::vector<InputArgInstantiation> input_args, std::vector<OutputArgInstantiation> output_args, std::vector<ControlOutput> control_outputs, const int graph_def_version, const bool is_stateful, GraphDef&& function_body) : description_(std::move(description)), func_attr_(func_attr), arg_attr_(std::move(arg_attr)), input_args_(std::move(input_args)), output_args_(std::move(output_args)), control_outputs_(std::move(control_outputs)), is_stateful_(is_stateful) { id = std::move(func_name); graph = std::move(function_body); graph.mutable_versions()->set_producer(graph_def_version); for (const InputArgInstantiation& input_arg : input_args_) { feed.push_back({input_arg.node_name, Tensor()}); } for (const OutputArgInstantiation& output_arg : output_args_) { fetch.push_back(output_arg.node_name); } for (const ControlOutput& control_output : control_outputs_) { keep_ops.push_back(control_output.node_name); } optimization_options().allow_pruning_stateful_and_dataset_ops = false; } const string& GrapplerFunctionItem::description() const { return description_; } const std::vector<InputArgInstantiation>& GrapplerFunctionItem::inputs() const { return input_args_; } const InputArgInstantiation& GrapplerFunctionItem::input(int i) const { return input_args_[i]; } const std::size_t GrapplerFunctionItem::input_size() const { return input_args_.size(); } const std::vector<OutputArgInstantiation>& GrapplerFunctionItem::outputs() const { return output_args_; } const OutputArgInstantiation& GrapplerFunctionItem::output(int i) const { return output_args_[i]; } const std::size_t GrapplerFunctionItem::output_size() const { return output_args_.size(); } const std::vector<ControlOutput>& GrapplerFunctionItem::control_outputs() const { return control_outputs_; } const std::size_t GrapplerFunctionItem::control_output_size() const { return control_outputs_.size(); } const AttrSlice& GrapplerFunctionItem::func_attr() const { return func_attr_; } const std::vector<const FunctionDef::ArgAttrs*>& GrapplerFunctionItem::arg_attr() const { return arg_attr_; } const GraphDef& GrapplerFunctionItem::function_body() const { return graph; } GraphDef& GrapplerFunctionItem::mutable_function_body() { return graph; } bool GrapplerFunctionItem::is_stateful() const { return is_stateful_; } GrapplerFunctionItem& GrapplerFunctionItem::SwapFunctionBody(GraphDef&& other) { graph = std::move(other); return *this; } bool HasParametrizedType(const FunctionDef& func) { const auto is_type_parametrized = [](const OpDef::ArgDef& arg) { return !arg.type_attr().empty() || !arg.number_attr().empty() || !arg.type_list_attr().empty(); }; const auto& input = func.signature().input_arg(); const auto& output = func.signature().output_arg(); return std::any_of(input.begin(), input.end(), is_type_parametrized) || std::any_of(output.begin(), output.end(), is_type_parametrized); } bool HasParametrizedBody(const FunctionDef& func) { const auto is_parametrized = [&](const NodeDef& node) { for (const auto& attr : node.attr()) { if (!attr.second.placeholder().empty()) return true; } return false; }; return std::any_of(func.node_def().begin(), func.node_def().end(), is_parametrized); } bool IsParametrized(const FunctionDef& func) { return HasParametrizedType(func) || HasParametrizedBody(func); } Status InstantiationTypeParameters( const FunctionDef& func, const AttrSlice& func_instantiation_attr, absl::flat_hash_map<string, DataType>* type_parameters) { if (!type_parameters->empty()) { return absl::InvalidArgumentError( "Type parameters output map must be empty"); } const auto resolve_type_attr = [&](const OpDef::ArgDef& arg) -> Status { if (!arg.type_attr().empty()) { DataType dtype; TF_RETURN_IF_ERROR( GetNodeAttr(func_instantiation_attr, arg.type_attr(), &dtype)); type_parameters->emplace(arg.type_attr(), dtype); } else if (!arg.type_list_attr().empty()) { std::vector<DataType> dtypes; TF_RETURN_IF_ERROR( GetNodeAttr(func_instantiation_attr, arg.type_list_attr(), &dtypes)); int index = 0; for (const DataType& dtype : dtypes) { type_parameters->emplace(absl::StrCat(arg.type_list_attr(), ":", index), dtype); ++index; } } return absl::OkStatus(); }; for (const auto& input : func.signature().input_arg()) TF_RETURN_IF_ERROR(resolve_type_attr(input)); for (const auto& output : func.signature().output_arg()) TF_RETURN_IF_ERROR(resolve_type_attr(output)); return absl::OkStatus(); } Status InstantiationBodyParameters( const FunctionDef& func, const AttrSlice& func_instantiation_attr, absl::flat_hash_map<string, AttrValue>* body_parameters) { if (!body_parameters->empty()) { return absl::InvalidArgumentError( "Body parameters output map must be empty"); } for (const NodeDef& func_body_node : func.node_def()) { for (auto& attr : func_body_node.attr()) { const string& placeholder = attr.second.placeholder(); if (placeholder.empty() || body_parameters->contains(placeholder)) { continue; } const AttrValue* placeholder_value = func_instantiation_attr.Find(placeholder); if (placeholder_value) { body_parameters->insert({placeholder, *placeholder_value}); } else { return absl::InvalidArgumentError( absl::StrCat("Can't resolve placeholder: ", placeholder)); } } } return absl::OkStatus(); } Status MakeGrapplerFunctionItem(const FunctionDef& func, const AttrSlice& func_instantiation_attr, const FunctionLibraryDefinition& flib, const int graph_def_version, GrapplerFunctionItem* item) { const OpDef& signature = func.signature(); if (signature.name().empty()) { return absl::InvalidArgumentError("Function name must be specified"); } for (const OpDef::AttrDef& attr : signature.attr()) { if (attr.type() != "type") { return absl::InvalidArgumentError( "Function signature must have only type attributes"); } } std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(func, func_instantiation_attr, &flib, &fbody)); GraphDef function_body; fbody->graph->ToGraphDef(&function_body); *function_body.mutable_library() = flib.ReachableDefinitions(func).ToProto(); VLOG(3) << absl::Substitute( "Deleted $0 unreachable functions from the Grappler function item " "instantiation of $1 (library size = $2)", flib.num_functions() - function_body.library().function_size(), signature.name(), function_body.library().function_size()); const int num_instantiated_inputs = fbody->arg_types.size(); const int num_instantiated_outputs = fbody->ret_types.size(); std::vector<InputArgInstantiation> inputs; inputs.reserve(num_instantiated_inputs); for (int in_id = 0; in_id < num_instantiated_inputs; ++in_id) { const Node* node = fbody->arg_nodes[in_id]; const DataType& dtype = fbody->arg_types[in_id]; inputs.emplace_back(node->name(), dtype); } std::vector<OutputArgInstantiation> outputs; outputs.reserve(num_instantiated_outputs); for (int out_id = 0; out_id < num_instantiated_outputs; ++out_id) { const Node* node = fbody->ret_nodes[out_id]; const DataType& dtype = fbody->ret_types[out_id]; outputs.emplace_back(node->name(), dtype); } std::vector<ControlOutput> control_outputs; control_outputs.reserve(func.control_ret_size()); for (const auto& control_ret : func.control_ret()) { control_outputs.push_back({control_ret.first, control_ret.second}); } std::sort(control_outputs.begin(), control_outputs.end()); std::vector<const FunctionDef::ArgAttrs*> arg_attr(inputs.size(), nullptr); for (const auto& attr : func.arg_attr()) { if (attr.first >= inputs.size()) { return absl::InvalidArgumentError( absl::StrCat("Invalid attribute index, got ", attr.first, " but expected less than ", inputs.size())); } arg_attr.at(attr.first) = &attr.second; } *item = GrapplerFunctionItem( signature.name(), signature.description(), AttrSlice(&func.attr()), std::move(arg_attr), std::move(inputs), std::move(outputs), std::move(control_outputs), graph_def_version, signature.is_stateful(), std::move(function_body)); return absl::OkStatus(); } Status MakeGrapplerFunctionItem(const FunctionDef& func, const FunctionLibraryDefinition& flib, const int graph_def_version, GrapplerFunctionItem* item) { return MakeGrapplerFunctionItem(func, AttrSlice(), flib, graph_def_version, item); } Status ReplaceInputWithConst(const NodeDef& input_const, int input_index, GrapplerFunctionItem* item) { if (!IsConstant(input_const)) { return absl::InvalidArgumentError(absl::StrCat( "Input node is not a constant: ", SummarizeNodeDef(input_const))); } const int item_input_size = item->input_size(); if (input_index < 0 || input_index >= item_input_size) { return absl::InvalidArgumentError(absl::StrCat( "Function input index is out of bound: index=", input_index, " input_size=", item->input_size())); } const InputArgInstantiation& input_arg = item->input(input_index); for (NodeDef& node : *item->graph.mutable_node()) { if (node.name() == input_arg.node_name) { node = input_const; node.set_name(input_arg.node_name); node.clear_input(); node.clear_device(); } if (IsArg(node)) { auto attrs = AttrSlice(node); int index; TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "index", &index)); if (index >= input_index) { (*node.mutable_attr())["index"].set_i(index - 1); } } } item->input_args_.erase(item->input_args_.begin() + input_index); item->arg_attr_.erase(item->arg_attr_.begin() + input_index); return absl::OkStatus(); } Status RemoveFunctionOutputs(const absl::flat_hash_set<int>& remove_outputs, GrapplerFunctionItem* item, std::vector<std::pair<int, int>>* output_mapping) { DCHECK(output_mapping->empty()); for (int remove_output : remove_outputs) { const int item_output_size = item->output_size(); if (remove_output < 0 || remove_output >= item_output_size) { return absl::InvalidArgumentError(absl::StrCat( "Function output index is out of bound: index=", remove_output, " output_size=", item->output_size())); } } absl::flat_hash_set<const OutputArgInstantiation*> remove_output_args; const auto is_remove_output_arg = [&](const OutputArgInstantiation& output) { return remove_output_args.find(&output) != remove_output_args.end(); }; for (int i = 0, end = item->output_size(); i < end; ++i) { const OutputArgInstantiation& output = item->output(i); if (remove_outputs.contains(i)) { VLOG(3) << "Remove functions output: name=" << output.node_name << "(index = " << i << ")"; remove_output_args.insert(&output); } else if (!remove_output_args.empty()) { output_mapping->push_back({i, i - remove_output_args.size()}); } } for (NodeDef& node : *item->graph.mutable_node()) { if (IsRetval(node)) { auto attrs = AttrSlice(node); int index; TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "index", &index)); for (const auto& mapping : *output_mapping) { const int from = mapping.first; const int to = mapping.second; if (index == from) { (*node.mutable_attr())["index"].set_i(to); } } } } auto& o = item->output_args_; o.erase(std::remove_if(o.begin(), o.end(), is_remove_output_arg), o.end()); return absl::OkStatus(); } namespace { class MakeFunctionDefHelper { public: MakeFunctionDefHelper() = default; Status Initialize(const GrapplerFunctionItem& item, const FunctionLibraryDefinition& flib); Status AsFunctionDefInput(const string& graph_def_input, string* func_def_input) const; Status AsFunctionDefNode(NodeDef* function_body_node) const; bool IsInputNode(const NodeDef& node) const { return input_nodes_.contains(node.name()); } bool IsOutputNode(const NodeDef& node) const { return output_nodes_.contains(node.name()); } private: absl::flat_hash_set<absl::string_view> input_nodes_; absl::flat_hash_set<absl::string_view> output_nodes_; absl::flat_hash_map<string, tensorflow::NameRangeMap> function_body_outputs_; }; Status MakeFunctionDefHelper::Initialize( const GrapplerFunctionItem& item, const FunctionLibraryDefinition& flib) { for (const InputArgInstantiation& input_arg : item.inputs()) { input_nodes_.insert(input_arg.node_name); } for (const OutputArgInstantiation& output_arg : item.outputs()) { output_nodes_.insert(output_arg.node_name); } for (const NodeDef& node : item.function_body().node()) { const OpRegistrationData* registration; TF_RETURN_IF_ERROR(flib.LookUp(node.op(), &registration)); tensorflow::NameRangeMap outputs_range_map; TF_RETURN_IF_ERROR(tensorflow::NameRangesForNode( node, registration->op_def, nullptr, &outputs_range_map)); function_body_outputs_.emplace(node.name(), std::move(outputs_range_map)); } return absl::OkStatus(); } Status MakeFunctionDefHelper::AsFunctionDefInput(const string& graph_def_input, string* func_def_input) const { if (IsControlInput(graph_def_input)) { *func_def_input = graph_def_input; return absl::OkStatus(); } const SafeTensorId tensor = ParseTensorName(graph_def_input); DCHECK_GE(tensor.index(), 0); const auto is_input = input_nodes_.find(tensor.node()); if (is_input != input_nodes_.end()) { DCHECK_EQ(tensor.index(), 0); *func_def_input = tensor.node(); return absl::OkStatus(); } const auto is_body_output = function_body_outputs_.find(tensor.node()); if (is_body_output != function_body_outputs_.end()) { const tensorflow::NameRangeMap& outputs_range_map = is_body_output->second; for (const auto& el : outputs_range_map) { const auto& output_name = el.first; const auto& output_range = el.second; if (tensor.index() >= output_range.first && tensor.index() < output_range.second) { *func_def_input = absl::StrCat(tensor.node(), ":", output_name, ":", tensor.index() - output_range.first); return absl::OkStatus(); } } } return absl::InvalidArgumentError( absl::StrCat("Unknown graph def input: ", graph_def_input)); } Status MakeFunctionDefHelper::AsFunctionDefNode( NodeDef* function_body_node) const { string func_def_input; for (int i = 0; i < function_body_node->input_size(); ++i) { TF_RETURN_IF_ERROR( AsFunctionDefInput(function_body_node->input(i), &func_def_input)); function_body_node->set_input(i, func_def_input); } return absl::OkStatus(); } } Status MakeFunctionDef(const GrapplerFunctionItem& item, const FunctionLibraryDefinition& flib, FunctionDef* func) { func->mutable_signature()->set_name(item.id); func->mutable_signature()->set_description(item.description()); func->mutable_signature()->set_is_stateful(item.is_stateful()); MakeFunctionDefHelper helper; TF_RETURN_IF_ERROR(helper.Initialize(item, flib)); absl::flat_hash_map<absl::string_view, string> output_tensors; for (const NodeDef& func_body_node : item.function_body().node()) { if (!helper.IsOutputNode(func_body_node)) continue; if (func_body_node.input_size() != 1) { return absl::InternalError( absl::StrCat("_Retval node must have single input: ", SummarizeNodeDef(func_body_node))); } output_tensors.emplace(func_body_node.name(), func_body_node.input(0)); } for (const InputArgInstantiation& input_arg : item.inputs()) { OpDef::ArgDef arg_def; arg_def.set_name(input_arg.node_name); arg_def.set_type(input_arg.data_type); arg_def.set_is_ref(IsRefType(input_arg.data_type)); *func->mutable_signature()->add_input_arg() = arg_def; } for (const OutputArgInstantiation& output_arg : item.outputs()) { const string output_name = absl::StrReplaceAll(output_arg.node_name, {{"_RetVal", ""}}); OpDef::ArgDef arg_def; arg_def.set_name(output_name); arg_def.set_type(output_arg.data_type); arg_def.set_is_ref(IsRefType(output_arg.data_type)); *func->mutable_signature()->add_output_arg() = arg_def; auto it = output_tensors.find(output_arg.node_name); if (it == output_tensors.end()) { return absl::InternalError( absl::StrCat("Can't find an output tensor for the output node: ", output_arg.node_name)); } TF_RETURN_IF_ERROR(helper.AsFunctionDefInput( it->second, &(*func->mutable_ret())[output_name])); } for (const ControlOutput& control_out : item.control_outputs()) { func->mutable_control_ret()->insert( {control_out.output_name, control_out.node_name}); *func->mutable_signature()->add_control_output() = control_out.output_name; } for (const auto& attr : item.func_attr()) { const auto& attr_name = attr.first; const auto& attr_value = attr.second; (*func->mutable_attr())[attr_name] = attr_value; } for (int i = 0, end = item.arg_attr().size(); i < end; ++i) { const auto* attr = item.arg_attr().at(i); if (attr != nullptr) { (*func->mutable_arg_attr())[i] = *attr; } } for (const NodeDef& func_node : item.function_body().node()) { if (IsArg(func_node) || IsRetval(func_node) || helper.IsInputNode(func_node) || helper.IsOutputNode(func_node)) continue; NodeDef* func_def_node = func->add_node_def(); *func_def_node = func_node; TF_RETURN_IF_ERROR(helper.AsFunctionDefNode(func_def_node)); } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/utils/functions.h" #include "absl/container/flat_hash_map.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace grappler { namespace { constexpr char kDevice[] = "/device:CPU:0"; class FunctionsTest : public ::testing::Test {}; TEST_F(FunctionsTest, IsParametrized) { FunctionDef parametrized_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"output"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "output:z:0"}}); FunctionDef non_parametrized_func = FunctionDefHelper::Create( "MyMul", {"x:float", "y:float"}, {"z:float"}, {}, {{{"output"}, "Mul", {"x", "y"}, {{"T", DT_FLOAT}}}}, {{"z", "output:z:0"}}); EXPECT_TRUE(HasParametrizedType(parametrized_func)); EXPECT_TRUE(HasParametrizedBody(parametrized_func)); EXPECT_TRUE(IsParametrized(parametrized_func)); EXPECT_FALSE(HasParametrizedType(non_parametrized_func)); EXPECT_FALSE(HasParametrizedBody(non_parametrized_func)); EXPECT_FALSE(IsParametrized(non_parametrized_func)); } TEST_F(FunctionsTest, InstantiationParameters) { FunctionDef func = FunctionDefHelper::Create( "ParametrizedFunc", {"input1:A", "input2:B", "input3:float", "input4: C"}, {"output1: A", "output2:D"}, { "A: {float, double}", "B: {float, int32}", "C: list(type)", "D: {float, double}", }, {{{"output"}, "FakeOp", {"input1", "input2"}, {{"key", "$key"}}}}, {{"x", "cx:output:0"}, {"y", "cy:output:0"}}); protobuf::Map<string, AttrValue> func_instantiation_attr; func_instantiation_attr["key"].set_s("key-value"); func_instantiation_attr["A"].set_type(DT_FLOAT); func_instantiation_attr["B"].set_type(DT_INT32); func_instantiation_attr["C"].mutable_list()->add_type(DT_FLOAT); func_instantiation_attr["C"].mutable_list()->add_type(DT_INT32); func_instantiation_attr["D"].set_type(DT_DOUBLE); absl::flat_hash_map<string, DataType> type_parameters; TF_EXPECT_OK(InstantiationTypeParameters( func, AttrSlice(&func_instantiation_attr), &type_parameters)); ASSERT_EQ(5, type_parameters.size()); EXPECT_EQ(DT_FLOAT, type_parameters["A"]); EXPECT_EQ(DT_INT32, type_parameters["B"]); EXPECT_EQ(DT_FLOAT, type_parameters["C:0"]); EXPECT_EQ(DT_INT32, type_parameters["C:1"]); EXPECT_EQ(DT_DOUBLE, type_parameters["D"]); absl::flat_hash_map<string, AttrValue> body_parameters; TF_EXPECT_OK(InstantiationBodyParameters( func, AttrSlice(&func_instantiation_attr), &body_parameters)); ASSERT_EQ(1, body_parameters.size()); EXPECT_EQ("key-value", body_parameters["key"].s()); } TEST_F(FunctionsTest, FromSimpleFunctionDef) { const Tensor kTwo = test::AsScalar<int64_t>(2); FunctionDef func = FunctionDefHelper::Define( "XTimesTwo", {"x: T"}, {"y: T"}, {"T: {float, double, int32, int64}"}, { {{"two"}, "Const", {}, {{"value", kTwo}, {"dtype", DT_INT64}}}, {{"scale"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", "$T"}}}, {{"y"}, "Mul", {"x", "scale"}, {{"T", "$T"}}}, }); protobuf::Map<string, AttrValue> func_instantiation_attr; func_instantiation_attr["T"].set_type(DT_FLOAT); FunctionLibraryDefinition flib(OpRegistry::Global(), FunctionDefLibrary()); GrapplerFunctionItem item; TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); EXPECT_EQ("XTimesTwo", item.id); EXPECT_EQ(5, item.function_body().node_size()); EXPECT_EQ(1, item.input_size()); EXPECT_EQ("x", item.input(0).node_name); EXPECT_EQ(1, item.output_size()); EXPECT_EQ("y_RetVal", item.output(0).node_name); int count = 0; for (const NodeDef &node : item.function_body().node()) { if (node.name() == "x" && ++count) { EXPECT_EQ("_Arg", node.op()); EXPECT_EQ(DT_FLOAT, node.attr().at("T").type()); EXPECT_EQ(0, node.attr().at("index").i()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "two" && ++count) { EXPECT_EQ("Const", node.op()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "scale" && ++count) { EXPECT_EQ("Cast", node.op()); EXPECT_EQ(DT_FLOAT, node.attr().at("DstT").type()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("two", node.input(0)); } else if (node.name() == "y" && ++count) { EXPECT_EQ("Mul", node.op()); EXPECT_EQ(DT_FLOAT, node.attr().at("T").type()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("scale", node.input(1)); } else if (node.name() == "y_RetVal" && ++count) { EXPECT_EQ("_Retval", node.op()); ASSERT_EQ(1, node.input_size()); EXPECT_EQ("y", node.input(0)); EXPECT_EQ(0, node.attr().at("index").i()); } } EXPECT_EQ(5, count); } TEST_F(FunctionsTest, FromFunctionDefWithMultiOutputNodes) { std::vector<FunctionDefHelper::Node> nodes = { {{"sx"}, "Shape", {"x"}}, {{"sy"}, "Shape", {"y"}}, {{"gx"}, "Identity", {"dz"}}, {{"gy"}, "Neg", {"dz"}}, {{"rx", "ry"}, "BroadcastGradientArgs", {"sx", "sy"}}, {{"sum_gx"}, "Sum", {"gx", "rx"}}, {{"dx"}, "Reshape", {"sum_gx", "sx"}}, {{"sum_gy"}, "Sum", {"gy", "ry"}}, {{"dy"}, "Reshape", {"sum_gy", "sy"}}, }; for (auto &n : nodes) { if (n.attr.empty() && n.op != "BroadcastGradientArgs") { n.attr = {{"T", "$T"}}; } } FunctionDef func = FunctionDefHelper::Define( "SubGrad", {"x: T", "y: T", "dz: T"}, {"dx: T", "dy: T"}, {{"T: {half, float, double}"}}, nodes); protobuf::Map<string, AttrValue> func_instantiation_attr; func_instantiation_attr["T"].set_type(DT_FLOAT); FunctionLibraryDefinition flib(OpRegistry::Global(), FunctionDefLibrary()); GrapplerFunctionItem item; TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); EXPECT_EQ("SubGrad", item.id); EXPECT_EQ(14, item.function_body().node_size()); ASSERT_EQ(3, item.input_size()); EXPECT_EQ("x", item.input(0).node_name); EXPECT_EQ("y", item.input(1).node_name); EXPECT_EQ("dz", item.input(2).node_name); ASSERT_EQ(2, item.output_size()); EXPECT_EQ("dx_RetVal", item.output(0).node_name); EXPECT_EQ("dy_RetVal", item.output(1).node_name); int count = 0; for (const NodeDef &node : item.function_body().node()) { if (node.name() == "x" || node.name() == "y" || node.name() == "dz") { count++; EXPECT_EQ("_Arg", node.op()); EXPECT_EQ(DT_FLOAT, node.attr().at("T").type()); int expected_index = node.name() == "x" ? 0 : node.name() == "y" ? 1 : 2; EXPECT_EQ(expected_index, node.attr().at("index").i()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "rx" && ++count) { EXPECT_EQ("BroadcastGradientArgs", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("sx", node.input(0)); EXPECT_EQ("sy", node.input(1)); } else if (node.name() == "sum_gx" && ++count) { EXPECT_EQ("Sum", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("gx", node.input(0)); EXPECT_EQ("rx", node.input(1)); } else if (node.name() == "sum_gy" && ++count) { EXPECT_EQ("Sum", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("gy", node.input(0)); EXPECT_EQ("rx:1", node.input(1)); } else if (node.name() == "dx_RetVal" && ++count) { EXPECT_EQ("_Retval", node.op()); EXPECT_EQ(0, node.attr().at("index").i()); ASSERT_EQ(1, node.input_size()); EXPECT_EQ("dx", node.input(0)); } else if (node.name() == "dy_RetVal" && ++count) { EXPECT_EQ("_Retval", node.op()); EXPECT_EQ(1, node.attr().at("index").i()); ASSERT_EQ(1, node.input_size()); EXPECT_EQ("dy", node.input(0)); } } EXPECT_EQ(8, count); } TEST_F(FunctionsTest, FromFunctionDefWithNestedFuncs) { FunctionLibraryDefinition flib(OpRegistry::Global(), FunctionDefLibrary()); TF_ASSERT_OK(flib.AddFunctionDef(FunctionDefHelper::Define( "Swap", {"i0: T", "i1: T"}, {"o0: T", "o1: T"}, {"T: {float, double}"}, {{{"o0"}, "Identity", {"i1"}, {{"T", "$T"}}}, {{"o1"}, "Identity", {"i0"}, {{"T", "$T"}}}}))); FunctionDef func = FunctionDefHelper::Create( "ManySwapsFirst", {"x: float", "y: float"}, {"o: float"}, {}, {{{"a0"}, "Swap", {"x", "y"}, {{"T", DT_FLOAT}}, {"x2"}}, {{"a1"}, "Swap", {"a0:o0:0", "a0:o1:0"}, {{"T", DT_FLOAT}}}, {{"x2"}, "Mul", {"x", "x"}, {{"T", DT_FLOAT}}}, {{"y2"}, "Mul", {"y", "y"}, {{"T", DT_FLOAT}}, {"a1"}}, {{"o"}, "Add", {"x2:z:0", "y2:z:0"}, {{"T", DT_FLOAT}}}}, {{"o", "o:z:0"}}); protobuf::Map<string, AttrValue> func_instantiation_attr; func_instantiation_attr["T"].set_type(DT_FLOAT); GrapplerFunctionItem item; TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); int count = 0; for (const NodeDef &node : item.function_body().node()) { if (node.name() == "x" || node.name() == "y") { count++; EXPECT_EQ("_Arg", node.op()); EXPECT_EQ(DT_FLOAT, node.attr().at("T").type()); int expected_index = node.name() == "x" ? 0 : 1; EXPECT_EQ(expected_index, node.attr().at("index").i()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "a0" && ++count) { EXPECT_EQ("Swap", node.op()); EXPECT_EQ(3, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("y", node.input(1)); EXPECT_EQ("^x2", node.input(2)); } else if (node.name() == "a1" && ++count) { EXPECT_EQ("Swap", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("a0", node.input(0)); EXPECT_EQ("a0:1", node.input(1)); } else if (node.name() == "x2" && ++count) { EXPECT_EQ("Mul", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("x", node.input(1)); } else if (node.name() == "y2" && ++count) { EXPECT_EQ("Mul", node.op()); EXPECT_EQ(3, node.input_size()); EXPECT_EQ("y", node.input(0)); EXPECT_EQ("y", node.input(1)); EXPECT_EQ("^a1", node.input(2)); } else if (node.name() == "o" && ++count) { EXPECT_EQ("Add", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("x2", node.input(0)); EXPECT_EQ("y2", node.input(1)); } } EXPECT_EQ(7, count); } TEST_F(FunctionsTest, FromFunctionDefWithOutputMappings) { FunctionDef func = FunctionDefHelper::Create( "Exp_func", {"in: float"}, {"out: float"}, {}, {{{"Linear_func"}, "Identity", {"in"}, {{"T", DT_FLOAT}}}, {{"Exp"}, "Exp", {"Linear_func:output:0"}, {{"T", DT_FLOAT}}}}, {{"out", "Exp:y:0"}}); protobuf::Map<string, AttrValue> func_instantiation_attr; FunctionLibraryDefinition flib(OpRegistry::Global(), FunctionDefLibrary()); GrapplerFunctionItem item; TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); EXPECT_EQ(1, item.output_size()); EXPECT_EQ("out_RetVal", item.output(0).node_name); int count = 0; for (const NodeDef &node : item.function_body().node()) { if (node.name() == "in" && ++count) { EXPECT_EQ("_Arg", node.op()); EXPECT_EQ(DT_FLOAT, node.attr().at("T").type()); EXPECT_EQ(0, node.attr().at("index").i()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "Linear_func" && ++count) { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("in", node.input(0)); } else if (node.name() == "Exp" && ++count) { EXPECT_EQ("Exp", node.op()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("Linear_func", node.input(0)); } else if (node.name() == "out_RetVal" && ++count) { EXPECT_EQ("_Retval", node.op()); EXPECT_EQ(0, node.attr().at("index").i()); ASSERT_EQ(1, node.input_size()); EXPECT_EQ("Exp", node.input(0)); } } EXPECT_EQ(4, count); } TEST_F(FunctionsTest, FromFunctionDefWithoutInput) { const Tensor kTwo = test::AsScalar<int64_t>(2); FunctionDef func = FunctionDefHelper::Define( "GenerateTwo", {}, {"o: T"}, {"T: {float, double}"}, {{{"two"}, "Const", {}, {{"value", kTwo}, {"dtype", DT_INT64}}}, {{"o"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", "$T"}}}}); protobuf::Map<string, AttrValue> func_instantiation_attr; func_instantiation_attr["T"].set_type(DT_FLOAT); FunctionLibraryDefinition flib(OpRegistry::Global(), FunctionDefLibrary()); GrapplerFunctionItem item; TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); EXPECT_EQ(0, item.input_size()); EXPECT_EQ(1, item.output_size()); EXPECT_EQ("o_RetVal", item.output(0).node_name); EXPECT_EQ(3, item.function_body().node_size()); const NodeDef &two = item.function_body().node(0); EXPECT_EQ("two", two.name()); EXPECT_EQ(0, two.input_size()); const NodeDef &cast = item.function_body().node(1); EXPECT_EQ("o", cast.name()); EXPECT_EQ(1, cast.input_size()); EXPECT_EQ("two", cast.input(0)); const NodeDef &retval = item.function_body().node(2); EXPECT_EQ("o_RetVal", retval.name()); EXPECT_EQ(1, retval.input_size()); EXPECT_EQ("o", retval.input(0)); } TEST_F(FunctionsTest, FromFunctionDefWithSideEffectfulOps) { const Tensor kOne = test::AsScalar<float>(1.0); FunctionDef func = FunctionDefHelper::Define( "SideEffects", {"x: Ref(float)"}, {}, {}, {{{"one"}, "Const", {}, {{"value", kOne}, {"dtype", DT_FLOAT}}}, {{"update"}, "AssignAdd", {"x", "one"}, {{"T", DT_FLOAT}}}}); protobuf::Map<string, AttrValue> func_instantiation_attr; FunctionLibraryDefinition flib(OpRegistry::Global(), FunctionDefLibrary()); GrapplerFunctionItem item; TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); EXPECT_EQ("SideEffects", item.id); EXPECT_EQ(3, item.function_body().node_size()); EXPECT_EQ(1, item.input_size()); EXPECT_EQ(0, item.output_size()); const auto &opts = item.optimization_options(); EXPECT_FALSE(opts.allow_pruning_stateful_and_dataset_ops); } TEST_F(FunctionsTest, FromFunctionDefWithControlOutputs) { const Tensor kOne = test::AsScalar<float>(1.0); FunctionDef func = FunctionDefHelper::Create( "WithControlOutputs", {"x: Ref(float)"}, {}, {}, { {{"one"}, "Const", {}, {{"value", kOne}, {"dtype", DT_FLOAT}}}, {{"update"}, "AssignAdd", {"x", "one:output:0"}, {{"T", DT_FLOAT}}}, }, {}, {{"side_effects", "update"}}); protobuf::Map<string, AttrValue> func_instantiation_attr; FunctionLibraryDefinition flib(OpRegistry::Global(), FunctionDefLibrary()); GrapplerFunctionItem item; TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); EXPECT_EQ("WithControlOutputs", item.id); EXPECT_EQ(3, item.function_body().node_size()); EXPECT_EQ(1, item.input_size()); EXPECT_EQ(0, item.output_size()); ASSERT_EQ(1, item.keep_ops.size()); EXPECT_EQ("update", item.keep_ops[0]); ASSERT_EQ(1, item.control_output_size()); const ControlOutput &ctrl = item.control_outputs()[0]; EXPECT_EQ("side_effects", ctrl.output_name); EXPECT_EQ("update", ctrl.node_name); } TEST_F(FunctionsTest, MakeFunctionDef) { const Tensor kTwo = test::AsScalar<int64_t>(2); FunctionDef func = FunctionDefHelper::Define( "XTimesTwo", {"x: T"}, {"y: T"}, {"T: {float, double, int32, int64}"}, { {{"two"}, "Const", {}, {{"value", kTwo}, {"dtype", DT_INT64}}}, {{"scale"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", "$T"}}}, {{"y"}, "Mul", {"x", "scale"}, {{"T", "$T"}}}, }); const uint32 arg_index = 0; const std::pair<string, string> arg_attr_key_and_value = {"_arg_attr", "abc"}; FunctionDef::ArgAttrs arg_attr; (*arg_attr.mutable_attr())[arg_attr_key_and_value.first].set_s( arg_attr_key_and_value.second); (*func.mutable_arg_attr())[arg_index] = arg_attr; protobuf::Map<string, AttrValue> func_instantiation_attr; func_instantiation_attr["T"].set_type(DT_FLOAT); FunctionLibraryDefinition flib(OpRegistry::Global(), FunctionDefLibrary()); GrapplerFunctionItem item; TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); FunctionDef specialized; TF_EXPECT_OK(MakeFunctionDef(item, flib, &specialized)); EXPECT_EQ("x", specialized.signature().input_arg(0).name()); EXPECT_EQ(DT_FLOAT, specialized.signature().input_arg(0).type()); EXPECT_EQ("y", specialized.signature().output_arg(0).name()); EXPECT_EQ(DT_FLOAT, specialized.signature().output_arg(0).type()); EXPECT_EQ(specialized.arg_attr().size(), 1); EXPECT_EQ(specialized.arg_attr().at(arg_index).attr().size(), 1); EXPECT_EQ(specialized.arg_attr() .at(arg_index) .attr() .at(arg_attr_key_and_value.first) .s(), arg_attr_key_and_value.second); int count = 0; for (const NodeDef &node : specialized.node_def()) { if (node.name() == "scale" && ++count) { EXPECT_EQ(DT_FLOAT, node.attr().at("DstT").type()); } else if (node.name() == "y" && ++count) { EXPECT_EQ("Mul", node.op()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("scale:y:0", node.input(1)); EXPECT_EQ(DT_FLOAT, node.attr().at("T").type()); } } EXPECT_EQ(2, count); } TEST_F(FunctionsTest, ReplaceInputWithConst) { FunctionDef func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"output"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "output:z:0"}}); protobuf::Map<string, AttrValue> func_instantiation_attr; func_instantiation_attr["T"].set_type(DT_FLOAT); FunctionLibraryDefinition flib(OpRegistry::Global(), FunctionDefLibrary()); GrapplerFunctionItem item; TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); EXPECT_EQ(2, item.input_size()); EXPECT_EQ(1, item.output_size()); ASSERT_EQ(4, item.function_body().node_size()); const NodeDef &input_x = item.function_body().node(0); const NodeDef &input_y = item.function_body().node(1); EXPECT_EQ("_Arg", input_x.op()); EXPECT_EQ("_Arg", input_y.op()); NodeDef const_input_x; const_input_x.set_op("Const"); AddNodeAttr("Tag", "const_input_x", &const_input_x); NodeDef const_input_y; const_input_y.set_op("Const"); AddNodeAttr("Tag", "const_input_y", &const_input_y); TF_EXPECT_OK(ReplaceInputWithConst(const_input_x, 0, &item)); EXPECT_EQ(1, item.input_size()); EXPECT_EQ("Const", input_x.op()); EXPECT_EQ("const_input_x", input_x.attr().at("Tag").s()); TF_EXPECT_OK(ReplaceInputWithConst(const_input_y, 0, &item)); EXPECT_EQ(0, item.input_size()); EXPECT_EQ("Const", input_y.op()); EXPECT_EQ("const_input_y", input_y.attr().at("Tag").s()); FunctionDef specialized; TF_EXPECT_OK(MakeFunctionDef(item, flib, &specialized)); EXPECT_EQ(0, specialized.signature().input_arg_size()); EXPECT_EQ(1, specialized.signature().output_arg_size()); EXPECT_EQ(3, specialized.node_def_size()); int count = 0; for (const NodeDef &node : specialized.node_def()) { if (node.name() == "x" && ++count) { EXPECT_EQ("Const", node.op()); EXPECT_EQ("const_input_x", node.attr().at("Tag").s()); } else if (node.name() == "y" && ++count) { EXPECT_EQ("Const", node.op()); EXPECT_EQ("const_input_y", node.attr().at("Tag").s()); } else if (node.name() == "output" && ++count) { EXPECT_EQ("Mul", node.op()); EXPECT_EQ("x:output:0", node.input(0)); EXPECT_EQ("y:output:0", node.input(1)); } } EXPECT_EQ(3, count); } TEST_F(FunctionsTest, SwapFunctionBodyAndMakeFunctionDef) { using ::tensorflow::test::function::NDef; FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"output"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "output:z:0"}}); FunctionDef func = FunctionDefHelper::Create( "MySquare", {"x:T"}, {"z:T"}, {"T: {float, double}"}, {{{"output"}, "MyMul", {"x", "x"}, {{"T", "$T"}}}}, {{"z", "output:z:0"}}); GraphDef id_func_body = test::function::GDef( { NDef("read_x", "Identity", {"x"}, {{"T", "float"}}), NDef("z_RetVal", "_Retval", {"read_x"}, {{"T", "float"}})}); protobuf::Map<string, AttrValue> func_instantiation_attr; func_instantiation_attr["T"].set_type(DT_FLOAT); FunctionDefLibrary lib_def; *lib_def.add_function() = func; *lib_def.add_function() = mul_func; FunctionLibraryDefinition flib(OpRegistry::Global(), lib_def); GrapplerFunctionItem item; TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); item.SwapFunctionBody(std::move(id_func_body)); FunctionDef specialized; TF_EXPECT_OK(MakeFunctionDef(item, flib, &specialized)); int count = 0; for (const NodeDef &node : specialized.node_def()) { if (node.name() == "read_x" && ++count) { EXPECT_EQ("Identity", node.op()); EXPECT_EQ("x", node.input(0)); } } EXPECT_EQ(1, count); EXPECT_EQ("read_x:output:0", (*specialized.mutable_ret())["z"]); } TEST_F(FunctionsTest, FunctionDefGrapplerFunctionItemRoundTrip) { FunctionDef func = FunctionDefHelper::Create( "DoNothing", {"i: int32"}, {"o: int32"}, {}, { {{"id"}, "Identity", {"i"}, {{"T", DT_INT32}}}, }, {{"o", "id:output:0"}}, {{"must_execute", "id"}}); constexpr char description[] = "This is a helpful description."; func.mutable_signature()->set_description(description); FunctionLibraryDefinition flib(OpRegistry::Global(), FunctionDefLibrary()); GrapplerFunctionItem item; protobuf::Map<string, AttrValue> func_instantiation_attr; func_instantiation_attr["T"].set_type(DT_INT32); TF_EXPECT_OK(MakeGrapplerFunctionItem(func, AttrSlice(&func_instantiation_attr), flib, TF_GRAPH_DEF_VERSION, &item)); FunctionDef func2; TF_EXPECT_OK(MakeFunctionDef(item, flib, &func2)); EXPECT_TRUE(FunctionDefsEqual(func, func2)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/functions.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/functions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0c8c31e5-79a6-45c5-8432-abce7d1be83d
cpp
tensorflow/tensorflow
topological_sort
tensorflow/compiler/mlir/tensorflow/utils/topological_sort.cc
tensorflow/core/grappler/utils/topological_sort_test.cc
#include "tensorflow/compiler/mlir/tensorflow/utils/topological_sort.h" #include <algorithm> #include <queue> #include <utility> #include <vector> #include "mlir/IR/BuiltinOps.h" namespace mlir { namespace TF { ExtraDependenciesFunction no_extra_dependencies = nullptr; std::vector<Operation*> SortBlockTopologically( Block& block, PriorityFunction priorityFunction, ExtraDependenciesFunction extraDependencies) { llvm::DenseMap<Operation*, int> remaining_incoming_data_edges; llvm::DenseMap<Operation*, int> remaining_incoming_ctrl_edges; llvm::DenseMap<Operation*, int> position; llvm::DenseMap<Operation*, Operation*> ancestor; SmallVector<Operation*> ready; llvm::SmallVector<mlir::Operation*, 4> empty_op_set; auto ctrlPredecessors = [&](Operation* op) -> llvm::SmallVector<mlir::Operation*, 4> const& { if (extraDependencies) { return extraDependencies(op, true); } else { return empty_op_set; } }; auto ctrlSuccessors = [&](Operation* op) -> llvm::SmallVector<mlir::Operation*, 4> const& { if (extraDependencies) { return extraDependencies(op, false); } else { return empty_op_set; } }; int i = 0; for (Operation& op : block.getOperations()) { int incoming_ctrl_edges = 0; int incoming_data_edges = 0; op.walk([&](Operation* child) { ancestor[child] = &op; for (Operation* predecessor : ctrlPredecessors(child)) { if (predecessor->getBlock() == &block) { incoming_ctrl_edges++; } } for (Value v : child->getOperands()) { if (v.getParentBlock() == &block) { incoming_data_edges++; } } }); remaining_incoming_data_edges[&op] = incoming_data_edges; remaining_incoming_ctrl_edges[&op] = incoming_ctrl_edges; if (incoming_data_edges == 0 && incoming_ctrl_edges == 0) { ready.push_back(&op); } position[&op] = i++; } std::queue<Value> todo; for (Value value : block.getArguments()) { todo.push(value); } std::vector<Operation*> result; Operation* previous_op = nullptr; while (!todo.empty() || !ready.empty()) { while (!todo.empty()) { Value value = todo.front(); todo.pop(); for (OpOperand& operand : value.getUses()) { Operation* user = ancestor[operand.getOwner()]; remaining_incoming_data_edges[user]--; if (remaining_incoming_data_edges[user] == 0 && remaining_incoming_ctrl_edges[user] == 0) { ready.push_back(user); } } } auto better = [&](Operation* a, Operation* b) { if (a->hasTrait<OpTrait::IsTerminator>() != b->hasTrait<OpTrait::IsTerminator>()) { return b->hasTrait<OpTrait::IsTerminator>(); } int a_priority = priorityFunction(previous_op, a); int b_priority = priorityFunction(previous_op, b); if (a_priority != b_priority) { return a_priority > b_priority; } else { return position[a] < position[b]; } }; Operation* best = nullptr; for (Operation* op : ready) { if (best == nullptr || better(op, best)) { best = op; } } if (!best) { assert(ready.empty()); return result; } ready.erase(std::find(ready.begin(), ready.end(), best)); previous_op = best; for (Value result : best->getResults()) { todo.push(result); } for (Operation* successor : ctrlSuccessors(best)) { if (ancestor.find(successor) != ancestor.end()) { successor = ancestor[successor]; remaining_incoming_ctrl_edges[successor]--; if (remaining_incoming_ctrl_edges[successor] == 0 && remaining_incoming_data_edges[successor] == 0) { ready.push_back(successor); } } } result.push_back(best); } return result; } } }
#include "tensorflow/core/grappler/utils/topological_sort.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/graph/benchmark_testlib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace grappler { class TopologicalSortTest : public ::testing::Test { protected: struct NodeConfig { NodeConfig(string name, std::vector<string> inputs) : name(std::move(name)), inputs(std::move(inputs)) {} NodeConfig(string name, string op, std::vector<string> inputs) : name(std::move(name)), op(std::move(op)), inputs(std::move(inputs)) {} string name; string op; std::vector<string> inputs; }; static GraphDef CreateGraph(const std::vector<NodeConfig>& nodes) { GraphDef graph; for (const NodeConfig& node : nodes) { NodeDef node_def; node_def.set_name(node.name); node_def.set_op(node.op); for (const string& input : node.inputs) { node_def.add_input(input); } *graph.add_node() = std::move(node_def); } return graph; } }; TEST_F(TopologicalSortTest, NoLoop) { GraphDef graph = CreateGraph({ {"2", {"5"}}, {"0", {"5", "4"}}, {"1", {"4", "3"}}, {"3", {"2"}}, {"5", {}}, {"4", {}} }); std::vector<const NodeDef*> topo_order; TF_EXPECT_OK(ComputeTopologicalOrder(graph, &topo_order)); const std::vector<string> order = {"5", "4", "2", "0", "3", "1"}; ASSERT_EQ(topo_order.size(), order.size()); for (int i = 0; i < topo_order.size(); ++i) { const NodeDef* node = topo_order[i]; EXPECT_EQ(node->name(), order[i]); } TF_EXPECT_OK(TopologicalSort(&graph)); for (int i = 0; i < topo_order.size(); i++) { EXPECT_EQ(graph.node(i).name(), order[i]); } } TEST_F(TopologicalSortTest, WithLoop) { GraphDef graph = CreateGraph({ {"2", "Merge", {"1", "5"}}, {"3", "Switch", {"2"}}, {"4", "Identity", {"3"}}, {"5", "NextIteration", {"4"}}, {"1", {}} }); std::vector<const NodeDef*> topo_order; TF_EXPECT_OK(ComputeTopologicalOrder(graph, &topo_order)); const std::vector<string> order = {"1", "2", "3", "4", "5"}; ASSERT_EQ(topo_order.size(), order.size()); for (int i = 0; i < topo_order.size(); ++i) { const NodeDef* node = topo_order[i]; EXPECT_EQ(node->name(), order[i]); } TF_EXPECT_OK(TopologicalSort(&graph)); for (int i = 0; i < order.size(); i++) { EXPECT_EQ(graph.node(i).name(), order[i]); } } TEST_F(TopologicalSortTest, WithIllegalLoop) { GraphDef graph = CreateGraph({ {"2", {"1", "3"}}, {"3", {"2"}}, {"1", {}} }); EXPECT_FALSE(TopologicalSort(&graph).ok()); std::vector<string> order = {"2", "3", "1"}; for (int i = 0; i < order.size(); i++) { EXPECT_EQ(graph.node(i).name(), order[i]); } } TEST_F(TopologicalSortTest, DuplicatedInputs) { GraphDef graph = CreateGraph({ {"2", {"1", "1"}}, {"1", {}} }); TF_EXPECT_OK(TopologicalSort(&graph)); std::vector<string> order = {"1", "2"}; for (int i = 0; i < order.size(); i++) { EXPECT_EQ(graph.node(i).name(), order[i]); } } TEST_F(TopologicalSortTest, Idempotent) { GraphDef graph = CreateGraph({ {"1", {}}, {"2", {}}, {"3", {"1", "2"}}, {"4", {"1", "3"}}, {"5", {"2", "3"}} }); TF_EXPECT_OK(TopologicalSort(&graph)); std::vector<string> order = {"1", "2", "3", "4", "5"}; for (int i = 0; i < order.size(); i++) { EXPECT_EQ(graph.node(i).name(), order[i]); } TF_EXPECT_OK(TopologicalSort(&graph)); for (int i = 0; i < order.size(); i++) { EXPECT_EQ(graph.node(i).name(), order[i]); } } TEST_F(TopologicalSortTest, ExtraDependencies) { GraphDef graph = CreateGraph({ {"2", {"5"}}, {"0", {"5", "4"}}, {"1", {"4", "3"}}, {"3", {"2"}}, {"5", {}}, {"4", {}} }); std::vector<TopologicalDependency> extra_dependencies; extra_dependencies.push_back({&graph.node(5), &graph.node(4)}); std::vector<const NodeDef*> topo_order; TF_EXPECT_OK(ComputeTopologicalOrder(graph, extra_dependencies, &topo_order)); const std::vector<string> valid_order_1 = {"4", "5", "2", "0", "3", "1"}; const std::vector<string> valid_order_2 = {"4", "5", "0", "2", "3", "1"}; ASSERT_EQ(topo_order.size(), valid_order_1.size()); std::vector<string> computed_order(6, ""); for (int i = 0; i < topo_order.size(); ++i) { const NodeDef* node = topo_order[i]; computed_order[i] = node->name(); } EXPECT_TRUE(computed_order == valid_order_1 || computed_order == valid_order_2); extra_dependencies.push_back({&graph.node(1), &graph.node(5)}); EXPECT_FALSE( ComputeTopologicalOrder(graph, extra_dependencies, &topo_order).ok()); } static void BM_ComputeTopologicalOrder(::testing::benchmark::State& state) { const int size = state.range(0); GraphDef graph = test::CreateRandomGraph(size); std::vector<const NodeDef*> topo_order; for (auto s : state) { topo_order.clear(); Status st = ComputeTopologicalOrder(graph, &topo_order); CHECK(st.ok()) << "Failed to compute topological order"; } } BENCHMARK(BM_ComputeTopologicalOrder) ->Arg(10) ->Arg(100) ->Arg(1000) ->Arg(10000) ->Arg(25000) ->Arg(50000) ->Arg(100000); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/utils/topological_sort.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/topological_sort_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a906af01-7ab9-4be4-9a21-19751f5ce494
cpp
tensorflow/tensorflow
generic_layout_optimizer_transposer_factory
tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer_factory.cc
tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer_factory_test.cc
#include "tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer_factory.h" #include "tensorflow/core/grappler/op_types.h" namespace tensorflow { namespace grappler { std::shared_ptr<Transposer> TransposerFactory::GetTransposer( const NodeDef& node) { if (IsDefaultLayoutSensitiveOp(node)) { return GetOrCreateIfNotFound<DefaultLayoutSensitiveOpTransposer>( "DefaultLayoutSensitiveOp"); } if (IsAvgPoolGrad(node)) { return GetOrCreateIfNotFound<AvgPoolGradTransposer>("AvgPoolGrad"); } if (IsBiasAddV2(node)) { return GetOrCreateIfNotFound<BiasAddTransposer>("BiasAdd"); } if (IsBiasAddGrad(node)) { return GetOrCreateIfNotFound<BiasAddGradTransposer>("BiasAddGrad"); } if (IsConv2DBackpropFilter(node) || IsDepthwiseConv2dNativeBackpropFilter(node)) { return GetOrCreateIfNotFound<Conv2DBackpropFilterTransposer>( "Conv2DBackpropFilter"); } if (IsConv2DBackpropInput(node) || IsDepthwiseConv2dNativeBackpropInput(node)) { return GetOrCreateIfNotFound<Conv2DBackpropInputTransposer>( "Conv2DBackpropInput"); } if (IsConv3D(node)) { return GetOrCreateIfNotFound<Conv3DTransposer>("Conv3D"); } if (IsConv3DBackpropInputV2(node)) { return GetOrCreateIfNotFound<Conv3DBackpropInputTransposer>( "Conv3DBackpropInput"); } if (IsConv3DBackpropFilterV2(node)) { return GetOrCreateIfNotFound<Conv3DBackpropFilterTransposer>( "Conv3DBackpropFilter"); } if (IsFusedBatchNormEx(node)) { return GetOrCreateIfNotFound<FusedBatchNormExTransposer>( "FusedBatchNormEx"); } if (IsFusedBatchNormGrad(node)) { return GetOrCreateIfNotFound<FusedBatchNormGradTransposer>( "FusedBatchNormGrad"); } if (IsMaxPoolV2(node)) { return GetOrCreateIfNotFound<MaxPoolV2Transposer>("MaxPoolV2"); } if (IsMaxPoolGrad(node) || IsMaxPoolGradGradV1(node)) { return GetOrCreateIfNotFound<MaxPoolGradTransposer>("MaxPoolGrad"); } if (IsMaxPoolGradV2(node) || IsMaxPoolGradGradV2(node)) { return GetOrCreateIfNotFound<MaxPoolGradV2Transposer>("MaxPoolGradV2"); } if (IsMaxPool3D(node)) { return GetOrCreateIfNotFound<MaxPool3DTransposer>("MaxPool3D"); } if (IsDefaultLayoutAgnosticOp(node)) { return GetOrCreateIfNotFound<DefaultLayoutAgnosticOpTransposer>( "DefaultLayoutAgnosticOp"); } if (IsAddN(node)) { return GetOrCreateIfNotFound<AddNTransposer>("AddN"); } if (IsBinaryOp(node)) { return GetOrCreateIfNotFound<BinaryOpTransposer>("BinaryOp"); } if (IsConcat(node)) { return GetOrCreateIfNotFound<ConcatOpTransposer>("Concat"); } if (IsFill(node)) { return GetOrCreateIfNotFound<FillOpTransposer>("Fill"); } if (IsIdentityN(node)) { return GetOrCreateIfNotFound<IdentityNTransposer>("IdentityN"); } if (IsMerge(node)) { return GetOrCreateIfNotFound<MergeTransposer>("Merge"); } if (IsMirrorPad(node) || IsMirrorPadGrad(node) || IsPad(node)) { return GetOrCreateIfNotFound<PadTransposer>("Pad"); } if (IsReduceOp(node)) { return GetOrCreateIfNotFound<ReduceTransposer>("ReduceOp"); } if (IsReverseV2(node)) { return GetOrCreateIfNotFound<ReverseV2Transposer>("ReverseV2"); } if (IsSelect(node)) { return GetOrCreateIfNotFound<SelectTransposer>("Select"); } if (IsShape(node)) { return GetOrCreateIfNotFound<ShapeTransposer>("Shape"); } if (IsShapeN(node)) { return GetOrCreateIfNotFound<ShapeNTransposer>("ShapeN"); } if (IsSlice(node)) { return GetOrCreateIfNotFound<SliceTransposer>("Slice"); } if (IsSplit(node)) { return GetOrCreateIfNotFound<SplitTransposer>("Split"); } if (IsSplitV(node)) { return GetOrCreateIfNotFound<SplitVTransposer>("SplitV"); } if (IsSqueeze(node)) { return GetOrCreateIfNotFound<SqueezeTransposer>("Squeeze"); } if (IsStridedSlice(node)) { return GetOrCreateIfNotFound<StridedSliceTransposer>("StridedSlice"); } if (IsSwitch(node)) { return GetOrCreateIfNotFound<SwitchTransposer>("Switch"); } if (IsTernaryOp(node)) { return GetOrCreateIfNotFound<TernaryOpTransposer>("TernaryOp"); } if (IsTile(node)) { return GetOrCreateIfNotFound<TileTransposer>("Tile"); } if (IsUnaryGrad(node)) { return GetOrCreateIfNotFound<UnaryGradTransposer>("UnaryGrad"); } return nullptr; } } }
#include "tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer_factory.h" #include <memory> #include "absl/container/flat_hash_set.h" #include "absl/types/span.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { void CheckSameTransposerForOps(absl::Span<const string> ops, TransposerFactory* factory, absl::flat_hash_set<Transposer*>* transposers) { absl::flat_hash_set<Transposer*> created_transposers; for (int i = 0; i < ops.size(); i++) { NodeDef node; node.set_op(ops[i]); std::shared_ptr<Transposer> transposer1 = factory->GetTransposer(node); ASSERT_NE(transposer1, nullptr); if (i == 0) { EXPECT_TRUE(transposers->insert(transposer1.get()).second); } else { EXPECT_FALSE(transposers->insert(transposer1.get()).second); } std::shared_ptr<Transposer> transposer2 = factory->GetTransposer(node); ASSERT_NE(transposer2, nullptr); EXPECT_EQ(transposer1.get(), transposer2.get()); created_transposers.insert(transposer1.get()); } if (!ops.empty()) { EXPECT_EQ(created_transposers.size(), 1); } } TEST(TransposerFactoryTest, SanityCheck) { TransposerFactory factory; absl::flat_hash_set<Transposer*> transposers; CheckSameTransposerForOps( {"Conv2D", "FusedBatchNorm", "DepthwiseConv2dNative"}, &factory, &transposers); CheckSameTransposerForOps({"AvgPoolGrad"}, &factory, &transposers); CheckSameTransposerForOps({"BiasAddGrad"}, &factory, &transposers); CheckSameTransposerForOps({"_FusedBatchNormEx"}, &factory, &transposers); CheckSameTransposerForOps({"FusedBatchNormGrad", "FusedBatchNormGradV2"}, &factory, &transposers); CheckSameTransposerForOps( {"Conv2DBackpropFilter", "DepthwiseConv2dNativeBackpropFilter"}, &factory, &transposers); CheckSameTransposerForOps( {"Conv2DBackpropInput", "DepthwiseConv2dNativeBackpropInput"}, &factory, &transposers); CheckSameTransposerForOps({"MaxPoolGrad", "MaxPoolGradGrad"}, &factory, &transposers); CheckSameTransposerForOps({"MaxPoolGradV2", "MaxPoolGradGradV2"}, &factory, &transposers); CheckSameTransposerForOps({"AddN"}, &factory, &transposers); CheckSameTransposerForOps({"IdentityN"}, &factory, &transposers); CheckSameTransposerForOps({"Merge", "RefMerge"}, &factory, &transposers); CheckSameTransposerForOps({"Select"}, &factory, &transposers); CheckSameTransposerForOps({"Switch", "RefSwitch"}, &factory, &transposers); CheckSameTransposerForOps({"Betainc"}, &factory, &transposers); CheckSameTransposerForOps({"TanhGrad"}, &factory, &transposers); CheckSameTransposerForOps({"Squeeze"}, &factory, &transposers); CheckSameTransposerForOps({"MaxPoolV2"}, &factory, &transposers); CheckSameTransposerForOps({"RealDiv", "Atan2", "Complex"}, &factory, &transposers); CheckSameTransposerForOps({"Concat", "ConcatV2"}, &factory, &transposers); CheckSameTransposerForOps({"Pad", "PadV2", "MirrorPad", "MirrorPadGrad"}, &factory, &transposers); CheckSameTransposerForOps({"ReverseV2"}, &factory, &transposers); CheckSameTransposerForOps({"Tile"}, &factory, &transposers); CheckSameTransposerForOps({"Shape"}, &factory, &transposers); CheckSameTransposerForOps({"ShapeN"}, &factory, &transposers); CheckSameTransposerForOps({"Fill"}, &factory, &transposers); CheckSameTransposerForOps({"Slice"}, &factory, &transposers); CheckSameTransposerForOps({"Split"}, &factory, &transposers); CheckSameTransposerForOps({"SplitV"}, &factory, &transposers); CheckSameTransposerForOps({"StridedSlice"}, &factory, &transposers); CheckSameTransposerForOps({"Sum", "Mean", "Prod", "Max", "Min", "All", "Any"}, &factory, &transposers); NodeDef node_unknown; node_unknown.set_op("UnknownOp"); std::shared_ptr<Transposer> transposer_unknown = factory.GetTransposer(node_unknown); EXPECT_TRUE(transposer_unknown == nullptr); } TEST(TransposerFactoryTest, ShouldUseAllOpTransposer) { TransposerFactory factory; std::vector<OpDef> op_defs; OpRegistry::Global()->GetRegisteredOps(&op_defs); NodeDef node; AttrValue value; value.set_type(DataType::DT_DOUBLE); node.mutable_attr()->insert({"T", value}); for (const OpDef& op_def : op_defs) { node.set_op(op_def.name()); std::shared_ptr<Transposer> transposer = factory.GetTransposer(node); if (transposer != nullptr) { EXPECT_TRUE(IsLayoutSensitiveOp(node) || IsLayoutAgnosticOp(node)) << "Transposer for op \"" << node.op() << "\" is created but not used. Add it to IsLayourSensitiveOp or " "IslayoutAgnosticOp."; } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer_factory.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer_factory_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7138f169-d580-4837-819f-9549d7cdbd74
cpp
tensorflow/tensorflow
memory_optimizer
tensorflow/core/grappler/optimizers/memory_optimizer.cc
tensorflow/core/grappler/optimizers/memory_optimizer_test.cc
#include "tensorflow/core/grappler/optimizers/memory_optimizer.h" #include <algorithm> #include <queue> #include <set> #include <unordered_map> #include <unordered_set> #include <vector> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/costs/graph_memory.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/costs/utils.h" #include "tensorflow/core/grappler/graph_topology_view.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/static_schedule.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/grappler/utils/traversal.h" #include "tensorflow/core/lib/math/math_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace grappler { namespace { const char* kRecomputedNodePrefix = "Recomputed"; const char* kRecomputeTriggerNodePrefix = "RecomputeTrigger"; const char* kRecomputeHint = "_recompute_hint"; std::unordered_set<string> GetCheapToRecomputeOps() { std::unordered_set<string> cheap_ops = {"Add", "AddN", "BiasAdd", "Cast", "Fill", "FloorDiv", "FloorMod", "FusedBatchNorm", "LeakyRelu", "Mul", "Neg", "RealDiv", "Reciprocal", "Relu", "Relu6", "Reshape", "Rsqrt", "Sigmoid", "Sqrt", "Square", "SquaredDifference", "Sub", "Tile", "Transpose"}; return cheap_ops; } std::unordered_set<const NodeDef*> FindCandidateRecomputeNodes( const NodeMap& node_map, const GraphDef* graph, const std::function<bool(const NodeDef&)>& is_candidate, const std::function<bool(const NodeDef&)>& is_target) { std::unordered_set<const NodeDef*> candidate_recompute_nodes; for (const auto& node : graph->node()) { if (!is_candidate(node)) { continue; } bool has_target_output = false; for (const NodeDef* output : node_map.GetOutputs(node.name())) { if (is_target(*output)) { has_target_output = true; break; } } if (!has_target_output) { continue; } bool has_target_input = false; for (const string& input_name : node.input()) { const NodeDef* input_node = node_map.GetNode(input_name); if (is_target(*input_node)) { has_target_input = true; break; } } if (has_target_input) { continue; } candidate_recompute_nodes.insert(&node); } return candidate_recompute_nodes; } void connected_subgraph(const NodeMap& node_map, bool collect_inputs, bool collect_outputs, const std::function<bool(const NodeDef&)>& is_candidate, std::unordered_set<const NodeDef*>* expanded_nodes) { std::queue<const NodeDef*> to_visit; for (const NodeDef* starting_node : *expanded_nodes) { to_visit.push(starting_node); } expanded_nodes->clear(); while (!to_visit.empty()) { const NodeDef* current_node = to_visit.front(); to_visit.pop(); if (!expanded_nodes->insert(current_node).second) { continue; } if (collect_inputs) { for (const string& input_name_raw : current_node->input()) { const NodeDef* input_node = node_map.GetNode(input_name_raw); if (expanded_nodes->count(input_node) == 0 && is_candidate(*input_node)) { to_visit.push(input_node); } } } if (collect_outputs) { for (const NodeDef* output : node_map.GetOutputs(current_node->name())) { if (expanded_nodes->count(output) == 0 && is_candidate(*output)) { to_visit.push(output); } } } } } struct RecomputedSubGraph { std::unordered_set<const NodeDef*> recomputed_source_nodes; std::unordered_set<NodeDef*> target_nodes; }; std::vector<RecomputedSubGraph> GetOpGroupsToRecompute( const GraphDef* graph, const NodeMap& node_map, const std::function<bool(const NodeDef&)>& should_recompute, const std::function<bool(const NodeDef&)>& is_target) { std::unordered_set<const NodeDef*> visited_nodes; std::vector<RecomputedSubGraph> subgraphs_to_recompute; std::unordered_set<const NodeDef*> candidate_recompute_nodes = FindCandidateRecomputeNodes(node_map, graph, should_recompute, is_target); for (const NodeDef* recompute_node : candidate_recompute_nodes) { if (visited_nodes.count(recompute_node) > 0) { continue; } RecomputedSubGraph current_recomputation; std::unordered_set<const NodeDef*> unpruned_recompute_nodes; unpruned_recompute_nodes.insert(recompute_node); connected_subgraph(node_map, true, true, should_recompute, &unpruned_recompute_nodes); visited_nodes.insert(unpruned_recompute_nodes.begin(), unpruned_recompute_nodes.end()); for (const NodeDef* unpruned_recompute_node : unpruned_recompute_nodes) { bool inserted_feed = false; for (NodeDef* output : node_map.GetOutputs(unpruned_recompute_node->name())) { if (is_target(*output)) { current_recomputation.target_nodes.insert(output); if (!inserted_feed) { current_recomputation.recomputed_source_nodes.insert( unpruned_recompute_node); inserted_feed = true; } } } } connected_subgraph( node_map, true, false, [&unpruned_recompute_nodes](const NodeDef& node) { return unpruned_recompute_nodes.count(&node) != 0; }, &current_recomputation.recomputed_source_nodes); if (current_recomputation.target_nodes.empty()) { continue; } subgraphs_to_recompute.push_back(current_recomputation); } return subgraphs_to_recompute; } std::unordered_map<const NodeDef*, int> GetMaxDownstreamComponents( const std::unordered_set<const NodeDef*>& recomputed_source_nodes, const std::unordered_set<NodeDef*>& target_nodes, const NodeMap& node_map, const std::unordered_map<const NodeDef*, int>& components) { std::unordered_map<const NodeDef*, int> recomputed_node_components; for (const NodeDef* original_recompute_node : recomputed_source_nodes) { int max_target_component = -1; for (NodeDef* output : node_map.GetOutputs(original_recompute_node->name())) { if (target_nodes.count(output) != 0) { int current_target_component = components.find(output)->second; if (current_target_component > max_target_component) { max_target_component = current_target_component; } } } if (max_target_component > -1) { recomputed_node_components[original_recompute_node] = max_target_component; } } std::vector<const NodeDef*> recomputed_source_nodes_topological( recomputed_source_nodes.begin(), recomputed_source_nodes.end()); std::sort(recomputed_source_nodes_topological.begin(), recomputed_source_nodes_topological.end(), [&components](const NodeDef* first, const NodeDef* second) { return components.find(first)->second < components.find(second)->second; }); for (const NodeDef* original_recompute_node : recomputed_source_nodes_topological) { int max_component; auto recomputed_component_iterator = recomputed_node_components.find(original_recompute_node); if (recomputed_component_iterator != recomputed_node_components.end()) { max_component = recomputed_component_iterator->second; } else { max_component = -1; } for (NodeDef* output : node_map.GetOutputs(original_recompute_node->name())) { if (recomputed_source_nodes.count(output) == 0) { continue; } auto child_component_iterator = recomputed_node_components.find(output); CHECK(child_component_iterator != recomputed_node_components.end()); int child_component = child_component_iterator->second; if (child_component > max_component) { max_component = child_component; } } CHECK_GE(max_component, 0); recomputed_node_components[original_recompute_node] = max_component; } return recomputed_node_components; } std::unordered_map<const NodeDef*, const NodeDef*> AddRecomputeControlDependencyNodes( const std::unordered_set<const NodeDef*>& recomputed_source_nodes, const std::unordered_set<NodeDef*>& target_nodes, const NodeMap& node_map, const std::unordered_map<const NodeDef*, int>& components, const std::unordered_map<const NodeDef*, int>& recomputed_node_max_feed_components, GraphDef* graph) { std::vector<const NodeDef*> recomputed_source_nodes_topological( recomputed_source_nodes.begin(), recomputed_source_nodes.end()); std::sort(recomputed_source_nodes_topological.begin(), recomputed_source_nodes_topological.end(), [&recomputed_node_max_feed_components](const NodeDef* first, const NodeDef* second) { int first_component = recomputed_node_max_feed_components.find(first)->second; int second_component = recomputed_node_max_feed_components.find(second)->second; return first_component > second_component || (first_component == second_component && first->name() > second->name()); }); std::vector<const NodeDef*> target_inputs_topological; for (const NodeDef* target_node : target_nodes) { for (const string& target_input_name_raw : target_node->input()) { const NodeDef* target_input = node_map.GetNode(target_input_name_raw); if (target_input == nullptr || recomputed_source_nodes.count(target_input) != 0 || components.find(target_node)->second == components.find(target_input)->second) { continue; } target_inputs_topological.push_back(target_input); } } std::sort(target_inputs_topological.begin(), target_inputs_topological.end(), [&components](const NodeDef* first, const NodeDef* second) { return components.find(first)->second > components.find(second)->second; }); auto target_input_iterator = target_inputs_topological.begin(); NodeDef* current_trigger_node = nullptr; std::unordered_map<const NodeDef*, const NodeDef*> triggers; for (const NodeDef* original_recomputed_node : recomputed_source_nodes_topological) { NodeDef* new_trigger_node = graph->add_node(); new_trigger_node->set_name(AddPrefixToNodeName( original_recomputed_node->name(), kRecomputeTriggerNodePrefix)); new_trigger_node->set_op("NoOp"); new_trigger_node->set_device(original_recomputed_node->device()); if (current_trigger_node != nullptr) { *new_trigger_node->add_input() = strings::StrCat("^", current_trigger_node->name()); } current_trigger_node = new_trigger_node; triggers[original_recomputed_node] = current_trigger_node; for (; target_input_iterator != target_inputs_topological.end() && components.find(*target_input_iterator)->second > recomputed_node_max_feed_components.find(original_recomputed_node) ->second; ++target_input_iterator) { *current_trigger_node->add_input() = strings::StrCat("^", (*target_input_iterator)->name()); VLOG(2) << " Recomputation trigger " << current_trigger_node->name() << " depends on " << (*target_input_iterator)->name(); } } return triggers; } string RecomputedOrOriginalNodeName( const std::unordered_set<string>& recomputed_node_names, const string& original_node_name) { if (recomputed_node_names.find(original_node_name) == recomputed_node_names.end()) { return original_node_name; } else { return AddPrefixToNodeName(original_node_name, kRecomputedNodePrefix); } } void RecomputeSubgraph( const std::unordered_set<const NodeDef*>& recomputed_source_nodes, const std::unordered_set<NodeDef*>& target_nodes, const NodeMap& node_map, const std::unordered_map<const NodeDef*, int>& components, GraphDef* graph) { std::unordered_set<string> recomputed_node_names; VLOG(1) << "Recomputing a " << recomputed_source_nodes.size() << " node subgraph"; std::unordered_map<const NodeDef*, int> recomputed_node_components = GetMaxDownstreamComponents(recomputed_source_nodes, target_nodes, node_map, components); for (const NodeDef* original_node : recomputed_source_nodes) { VLOG(2) << " " << original_node->name(); recomputed_node_names.insert(original_node->name()); } std::unordered_map<const NodeDef*, const NodeDef*> triggers = AddRecomputeControlDependencyNodes(recomputed_source_nodes, target_nodes, node_map, components, recomputed_node_components, graph); for (const NodeDef* original_node : recomputed_source_nodes) { NodeDef* copied_node = graph->add_node(); copied_node->set_name( AddPrefixToNodeName(original_node->name(), kRecomputedNodePrefix)); copied_node->set_op(original_node->op()); *copied_node->mutable_attr() = original_node->attr(); copied_node->set_device(original_node->device()); for (const string& original_input_name : original_node->input()) { *copied_node->add_input() = RecomputedOrOriginalNodeName( recomputed_node_names, original_input_name); } *copied_node->add_input() = strings::StrCat("^", triggers[original_node]->name()); } for (NodeDef* target_node : target_nodes) { for (string& target_input_name : *target_node->mutable_input()) { target_input_name = RecomputedOrOriginalNodeName(recomputed_node_names, target_input_name); } } } void RecomputationRewritingPass(RewriterConfig::MemOptType optimization_level, const string& recomputation_targets_name_scope, GraphDef* graph, const GrapplerItem& item) { TF_CHECK_OK(TopologicalSort(graph)); NodeMap node_map(graph); std::vector<RecomputedSubGraph> recomputed_subgraphs; std::unordered_set<string> feeds; for (const auto& feed : item.feed) { feeds.insert(NodeName(feed.first)); } std::function<bool(const NodeDef&)> is_target = [&recomputation_targets_name_scope](const NodeDef& node) { return absl::StartsWith(node.name(), recomputation_targets_name_scope) || static_cast<int>(node.name().find( "/" + recomputation_targets_name_scope)) != -1; }; if (optimization_level == RewriterConfig::RECOMPUTATION_HEURISTICS || optimization_level == RewriterConfig::HEURISTICS) { std::unordered_set<string> cheap_to_recompute_ops = GetCheapToRecomputeOps(); recomputed_subgraphs = GetOpGroupsToRecompute( graph, node_map, [&cheap_to_recompute_ops, &feeds, &is_target](const NodeDef& node) { return !is_target(node) && feeds.count(node.name()) == 0 && (cheap_to_recompute_ops.count(node.op()) > 0 || node.attr().count(kRecomputeHint) > 0); }, is_target); } else if (optimization_level == RewriterConfig::MANUAL) { recomputed_subgraphs = GetOpGroupsToRecompute( graph, node_map, [&feeds, &is_target](const NodeDef& node) { return !is_target(node) && feeds.count(node.name()) == 0 && node.attr().count(kRecomputeHint) > 0; }, is_target); } if (!recomputed_subgraphs.empty()) { std::unordered_map<const NodeDef*, int> topological_numbering; for (int node_number = 0; node_number < graph->node().size(); ++node_number) { topological_numbering[graph->mutable_node(node_number)] = graph->node().size() - node_number - 1; } for (const RecomputedSubGraph& subgraph : recomputed_subgraphs) { RecomputeSubgraph(subgraph.recomputed_source_nodes, subgraph.target_nodes, node_map, topological_numbering, graph); } } } bool SchedulingPass(Cluster* cluster, std::unique_ptr<GraphMemory>* memory_ptr, GrapplerItem* item) { MutableGraphView view(&item->graph); std::unordered_map<string, std::unordered_set<NodeDef*>> addn_list; for (NodeDef& node : *item->graph.mutable_node()) { if (!IsAddN(node) && node.op() != "AccumulateNV2") { continue; } if (view.NumFanins(node, false) <= 2) { continue; } for (const auto& input : view.GetFanins(node, false)) { if (input.node->device() == node.device()) { string tensor_name = strings::StrCat(input.node->name(), ":", input.port_id); addn_list[tensor_name].insert(&node); } } } if (addn_list.empty()) { return false; } if ((*memory_ptr) == nullptr) { memory_ptr->reset(new GraphMemory(*item)); Status s = (*memory_ptr)->InferStatically(cluster->GetDevices()); if (!s.ok()) { memory_ptr->reset(); VLOG(1) << "Failed to infer memory usage: " << s.message(); return false; } } const GraphMemory& memory = **memory_ptr; std::unordered_set<NodeDef*> addn_to_rewrite; for (const auto& device : cluster->GetDevices()) { const string& name = device.first; const DeviceProperties& prop = device.second; if (prop.memory_size() <= 0) { VLOG(1) << "Available memory unknown for device " << name; continue; } const GraphMemory::MemoryUsage& mem_usage = memory.GetPeakMemoryUsage(name); if (mem_usage.used_memory <= prop.memory_size() * 0.8) { continue; } for (const auto& live : mem_usage.live_tensors) { string tensor_name = strings::StrCat(live.node, ":", live.output_id); auto it = addn_list.find(tensor_name); if (it != addn_list.end()) { addn_to_rewrite.insert(it->second.begin(), it->second.end()); } } } if (addn_to_rewrite.empty()) { return false; } GraphProperties properties(*item); Status s = properties.InferStatically(false, false, false); if (!s.ok()) { VLOG(1) << "Failed to infer shapes: " << s.message(); return false; } GraphTopologyView graph_topology; Status initialized_topology = graph_topology.InitializeFromGraph(item->graph); if (!initialized_topology.ok()) { VLOG(1) << "Failed to initialize graph topology view: " << initialized_topology.message(); return false; } bool updated_graph = false; for (NodeDef* node : addn_to_rewrite) { if (!properties.HasOutputProperties(node->name())) { VLOG(1) << "Missing properties for " << node->name(); continue; } const TensorShapeProto& shape = properties.GetOutputProperties(node->name())[0].shape(); PartialTensorShape shp(shape); if (!shp.IsFullyDefined()) { VLOG(1) << "Shape not fully known for " << node->name(); continue; } DataType dtype = node->attr().at("T").type(); if (dtype != DT_HALF && dtype != DT_FLOAT && dtype != DT_DOUBLE && dtype != DT_INT64) { VLOG(1) << "Unsupported dtype for " << node->name(); continue; } std::unordered_map<const NodeDef*, int> topo_order; DfsTraversal(graph_topology, {node}, TraversalDirection::kFollowInputs, DfsCallbacks::PostOrder([&topo_order](const NodeDef* n) { int topo_index = static_cast<int>(topo_order.size()); topo_order[n] = topo_index; })); std::vector<int> input_topo_index; for (int i = 0; i < node->input_size(); ++i) { const string& input = node->input(i); const string node_name = NodeName(input); const NodeDef* node = view.GetNode(node_name); input_topo_index.push_back(topo_order.at(node)); } int min_input_topo_index = INT_MAX; int min_input_id = -1; for (int i = 0; i < node->input_size(); ++i) { if (IsControlInput(node->input(i))) { break; } const int current = input_topo_index[i]; if (current < min_input_topo_index) { min_input_topo_index = current; min_input_id = i; } } CHECK_LE(0, min_input_id); std::vector<string> pre_ctrl_deps; std::vector<string> post_ctrl_deps; for (int i = node->input_size() - 1; i >= 0; --i) { if (!IsControlInput(node->input(i))) { break; } if (input_topo_index[i] < min_input_topo_index) { pre_ctrl_deps.push_back(node->input(i)); } else { post_ctrl_deps.push_back(node->input(i)); } } const string& device = node->device(); const string tmp_var_name = strings::StrCat(node->name(), "/tmp_var"); if (view.GetNode(tmp_var_name) != nullptr) { VLOG(1) << "Temporary variable already exists " << tmp_var_name; return false; } NodeDef* tmp_var = item->graph.add_node(); tmp_var->set_name(tmp_var_name); tmp_var->set_op("TemporaryVariable"); tmp_var->set_device(device); (*tmp_var->mutable_attr())["dtype"].set_type(dtype); *(*tmp_var->mutable_attr())["shape"].mutable_shape() = shape; (*tmp_var->mutable_attr())["var_name"].set_s(tmp_var->name()); for (const string& ctrl_dep : pre_ctrl_deps) { *tmp_var->add_input() = ctrl_dep; } *tmp_var->add_input() = AsControlDependency(NodeName(node->input(min_input_id))); NodeDef* zeros = item->graph.add_node(); zeros->set_name(strings::StrCat(node->name(), "/tmp_var_zeros")); zeros->set_op("ZerosLike"); zeros->set_device(device); (*zeros->mutable_attr())["T"].set_type(dtype); *zeros->add_input() = node->input(min_input_id); NodeDef* initialize = item->graph.add_node(); initialize->set_name(strings::StrCat(node->name(), "/tmp_var_initializer")); initialize->set_op("Assign"); initialize->set_device(device); (*initialize->mutable_attr())["T"].set_type(dtype); (*initialize->mutable_attr())["use_locking"].set_b(false); (*initialize->mutable_attr())["validate_shape"].set_b(false); *initialize->add_input() = tmp_var->name(); *initialize->add_input() = zeros->name(); std::vector<NodeDef*> accumulates; for (int i = 0; i < node->input_size(); ++i) { const string& input = node->input(i); if (!IsControlInput(input)) { NodeDef* accumulate = item->graph.add_node(); accumulate->set_name( strings::StrCat(node->name(), "/tmp_var_accum_", i)); accumulate->set_op("AssignAdd"); accumulate->set_device(device); (*accumulate->mutable_attr())["T"].set_type(dtype); (*accumulate->mutable_attr())["use_locking"].set_b(true); *accumulate->add_input() = initialize->name(); *accumulate->add_input() = input; accumulates.push_back(accumulate); } } node->set_op("DestroyTemporaryVariable"); node->clear_input(); EraseRegularNodeAttributes(node); (*node->mutable_attr())["T"].set_type(dtype); (*node->mutable_attr())["var_name"].set_s(tmp_var->name()); *node->add_input() = initialize->name(); for (const NodeDef* accum : accumulates) { *node->add_input() = AsControlDependency(accum->name()); } for (const string& ctrl_dep : post_ctrl_deps) { *node->add_input() = ctrl_dep; } updated_graph = true; } return updated_graph; } Status BuildSwapPair(NodeDef* node, int input_to_swap, const std::unordered_map<string, const NodeDef*>& name_map, GraphDef* graph, std::pair<NodeDef*, NodeDef*>* swap_pair) { string task, device; if (!DeviceNameUtils::SplitDeviceName(node->device(), &task, &device) || !absl::StrContains(device, DEVICE_GPU)) { return errors::InvalidArgument("Can't swap input ", input_to_swap, " of node ", node->name(), " since it is not on GPU"); } const OpDef* op_def; TF_RETURN_IF_ERROR(OpRegistry::Global()->LookUpOpDef(node->op(), &op_def)); DataType input_type; TF_RETURN_IF_ERROR( InputTypeForNode(*node, *op_def, input_to_swap, &input_type)); if (IsRefType(input_type)) { return errors::InvalidArgument("Can't swap input ", input_to_swap, " of node ", node->name(), " since it expects a reference"); } string tensor_to_swap = strings::StrCat(node->name(), "_", input_to_swap); string swap_out_name = strings::StrCat("swap_out_", tensor_to_swap); string swap_in_name = strings::StrCat("swap_in_", tensor_to_swap); if (name_map.find(swap_out_name) != name_map.end() || name_map.find(swap_in_name) != name_map.end()) { return errors::InvalidArgument("Input ", input_to_swap, " of node ", node->name(), " is already swapped"); } NodeDef* swap_out_node = graph->add_node(); swap_out_node->set_name(swap_out_name); swap_out_node->set_op("_CopyFromGpuToHost"); NodeDef* swap_in_node = graph->add_node(); swap_in_node->set_name(swap_in_name); swap_in_node->set_op("_CopyFromHostToGpu"); *swap_in_node->add_input() = swap_out_node->name(); swap_out_node->set_device(node->device()); swap_in_node->set_device(node->device()); string coloc_group = strings::StrCat("loc@", tensor_to_swap); (*swap_out_node->mutable_attr())["_class"].mutable_list()->add_s(coloc_group); (*swap_in_node->mutable_attr())["_class"].mutable_list()->add_s(coloc_group); (*node->mutable_attr())["_class"].mutable_list()->add_s(coloc_group); (*swap_in_node->mutable_attr())["T"].set_type(input_type); (*swap_out_node->mutable_attr())["T"].set_type(input_type); *swap_pair = std::make_pair(swap_out_node, swap_in_node); return absl::OkStatus(); } struct SwapInfo { std::vector<int> inputs_to_swap; Costs::NanoSeconds time_to_swap = 0; }; static const NodeDef* FindSwapInTrigger( const NodeDef* node, const SwapInfo& swap_info, const std::unordered_map<string, const NodeDef*>& name_map, const std::unordered_map<const NodeDef*, Costs::NanoSeconds>& execution_times) { Costs::NanoSeconds max_trigger_time(0); std::set<string> possible_inputs; for (int i = 0; i < node->input_size(); ++i) { const string input_node_name = NodeName(node->input(i)); auto it1 = name_map.find(input_node_name); if (it1 == name_map.end()) { return nullptr; } const NodeDef* input_node = it1->second; auto it2 = execution_times.find(input_node); if (it2 == execution_times.end()) { return nullptr; } max_trigger_time = std::max(max_trigger_time, it2->second); possible_inputs.insert(input_node_name); } for (const int i : swap_info.inputs_to_swap) { const string input_node_name = NodeName(node->input(i)); possible_inputs.erase(input_node_name); } if (possible_inputs.empty()) { return nullptr; } max_trigger_time -= swap_info.time_to_swap; std::map<Costs::NanoSeconds, const NodeDef*> candidates; std::set<string> already_processed; while (!possible_inputs.empty()) { const string input_node_name = *possible_inputs.begin(); possible_inputs.erase(possible_inputs.begin()); already_processed.insert(input_node_name); auto it1 = name_map.find(input_node_name); if (it1 == name_map.end()) { return nullptr; } const NodeDef* input_node = it1->second; if (ModifiesFrameInfo(*input_node) || IsSwitch(*input_node) || IsMerge(*input_node)) { continue; } auto it2 = execution_times.find(input_node); if (it2 == execution_times.end()) { return nullptr; } if (it2->second < max_trigger_time) { candidates[it2->second] = input_node; } else { for (const string& fanin : input_node->input()) { string name = NodeName(fanin); if (already_processed.find(name) == already_processed.end()) { possible_inputs.insert(name); } } } } if (!candidates.empty()) { return candidates.rbegin()->second; } return nullptr; } static bool IsSwappable(const MutableGraphView& graph, MutableGraphView::OutputPort output) { const NodeDef& node = *output.node; if (IsPersistent(node)) { return false; } const OpDef* op_def; if (!OpRegistry::Global()->LookUpOpDef(node.op(), &op_def).ok()) { return false; } DataType dtype; if (!OutputTypeForNode(node, *op_def, output.port_id, &dtype).ok()) { return false; } if (IsRefType(dtype)) { return false; } if (output.node->op() == "Identity" || output.node->op() == "Reshape") { MutableGraphView::InputPort input; input.node = output.node; input.port_id = 0; MutableGraphView::OutputPort fanin = graph.GetRegularFanin(input); if (fanin.node->device() == node.device()) { return IsSwappable(graph, fanin); } } return true; } static NodeDef* FindSwapOutTrigger( const NodeDef* node, int input_id, const MutableGraphView& view, const std::unordered_map<const NodeDef*, Costs::NanoSeconds>& execution_times) { MutableGraphView::InputPort swap; swap.node = const_cast<NodeDef*>(node); swap.port_id = input_id; MutableGraphView::OutputPort generator = view.GetRegularFanin(swap); if (!generator.node) { return nullptr; } const absl::flat_hash_set<MutableGraphView::InputPort>& fanout = view.GetFanout(generator); NodeDef* trigger = nullptr; Costs::NanoSeconds earliest_fanout(Costs::NanoSeconds::infinity()); for (const auto& port : fanout) { if (port.node == node) { continue; } auto it = execution_times.find(port.node); if (it != execution_times.end() && it->second < earliest_fanout) { earliest_fanout = it->second; trigger = port.node; } } return trigger; } static bool IsSwappable(MutableGraphView::InputPort input) { const NodeDef& node = *input.node; const OpDef* op_def; if (!OpRegistry::Global()->LookUpOpDef(node.op(), &op_def).ok()) { return false; } DataType dtype; if (!InputTypeForNode(node, *op_def, input.port_id, &dtype).ok()) { return false; } return !IsRefType(dtype); } struct MemInfo { MutableGraphView::OutputPort port; int64_t memory_used; std::vector<MutableGraphView::InputPort> uses_left; double fitness; bool operator<(const MemInfo& other) const { return fitness < other.fitness; } }; static bool IdentifySwappingCandidates( Cluster* cluster, GrapplerItem* item, std::unique_ptr<GraphMemory>* memory_ptr, std::unordered_set<string>* skip_list, std::unordered_map<NodeDef*, SwapInfo>* nodes_to_swap) { if ((*memory_ptr) == nullptr) { memory_ptr->reset(new GraphMemory(*item)); Status s = (*memory_ptr)->InferStatically(cluster->GetDevices()); if (!s.ok()) { memory_ptr->reset(); VLOG(1) << "Failed to infer memory usage: " << s.message(); return false; } } const GraphMemory& memory = **memory_ptr; bool updated_graph = false; for (const auto& device : cluster->GetDevices()) { const string& name = device.first; const DeviceProperties& prop = device.second; if (prop.type() != "GPU") { continue; } if (prop.memory_size() <= 0) { VLOG(1) << "Peak memory usage unknown for device " << name; continue; } const GraphMemory::MemoryUsage& mem_usage = memory.GetPeakMemoryUsage(name); if (mem_usage.used_memory <= prop.memory_size()) { continue; } int64_t required_savings = mem_usage.used_memory - prop.memory_size(); std::unordered_map<string, Costs::NanoSeconds> op_completion_times; { VirtualCluster vcluster(cluster->GetDevices()); if (!vcluster.Provision().ok()) { return false; } if (!vcluster.Initialize(*item).ok()) { return false; } RunMetadata metadata; Status s = vcluster.Run(item->graph, item->feed, item->fetch, &metadata); if (!s.ok() && s.code() != error::RESOURCE_EXHAUSTED) { return false; } for (const auto& dev_stats : metadata.step_stats().dev_stats()) { for (const auto& node_stats : dev_stats.node_stats()) { Costs::NanoSeconds exec_time = Costs::NanoSeconds(1) + Costs::MicroSeconds(node_stats.all_start_micros() + node_stats.op_end_rel_micros()); op_completion_times.emplace(node_stats.node_name(), exec_time); } } } Costs::Duration peak_time = -1; for (const auto& live_tensor : mem_usage.live_tensors) { if (live_tensor.allocation_time > peak_time) { peak_time = live_tensor.allocation_time; } } std::vector<MemInfo> mem_state; MutableGraphView graph(&item->graph); for (const auto& live_tensor : mem_usage.live_tensors) { if (live_tensor.memory_used <= 1024) { continue; } if (live_tensor.deallocation_time - live_tensor.allocation_time <= Costs::Duration(1e6)) { VLOG(1) << "Not enough time to swap: skipping " << live_tensor.node; continue; } if (skip_list->find(live_tensor.node) != skip_list->end()) { continue; } MutableGraphView::OutputPort port = graph.GetOutputPort(live_tensor.node, live_tensor.output_id); if (!IsSwappable(graph, port)) { continue; } MemInfo mem_info; mem_info.port = port; mem_info.memory_used = live_tensor.memory_used; Costs::Duration allocation_time = live_tensor.allocation_time; Costs::Duration earliest_use(Costs::Duration::infinity()); bool valid = true; for (MutableGraphView::InputPort input : graph.GetFanout(port)) { auto it = op_completion_times.find(input.node->name()); if (it == op_completion_times.end()) { valid = false; break; } if (it->second <= peak_time) { continue; } if (skip_list->find(input.node->name()) != skip_list->end()) { valid = false; break; } string input_name = strings::StrCat(input.node->name(), ":", input.port_id); if (skip_list->find(input_name) != skip_list->end()) { valid = false; break; } if (!IsSwappable(input)) { valid = false; break; } mem_info.uses_left.emplace_back(input); earliest_use = std::min(earliest_use, it->second); } if (valid && !mem_info.uses_left.empty()) { mem_info.fitness = MathUtil::IPow<double>((earliest_use - peak_time).count(), 2) / MathUtil::IPow<double>(mem_info.uses_left.size(), 2) + MathUtil::IPow<double>((allocation_time - peak_time).count(), 2); mem_info.fitness = -mem_info.fitness; mem_state.push_back(mem_info); } } std::sort(mem_state.begin(), mem_state.end()); for (const MemInfo& mem_info : mem_state) { for (const MutableGraphView::InputPort fanout_to_swap : mem_info.uses_left) { VLOG(1) << "Will swap fanout " << fanout_to_swap.node->name() << ":" << fanout_to_swap.port_id << " of tensor " << mem_info.port.node->name() << ":" << mem_info.port.port_id << " of size " << mem_info.memory_used; (*nodes_to_swap)[fanout_to_swap.node].inputs_to_swap.push_back( fanout_to_swap.port_id); } required_savings -= mem_info.memory_used; updated_graph = true; if (required_savings < 0) { break; } } } return updated_graph; } bool SwappingPass(RewriterConfig::MemOptType optimization_level, Cluster* cluster, std::unique_ptr<GraphMemory>* memory, GrapplerItem* item, std::unordered_set<string>* skip_list) { std::unordered_map<NodeDef*, SwapInfo> nodes_to_swap; if (optimization_level == RewriterConfig::DEFAULT_MEM_OPT || optimization_level == RewriterConfig::SWAPPING_HEURISTICS || optimization_level == RewriterConfig::HEURISTICS) { IdentifySwappingCandidates(cluster, item, memory, skip_list, &nodes_to_swap); } for (auto& node : *item->graph.mutable_node()) { if (node.attr().count("_swap_to_host") != 0) { SwapInfo& swap_info = nodes_to_swap[&node]; const AttrValue& val = node.attr().at("_swap_to_host"); if (val.has_list()) { for (int64_t input_id : val.list().i()) { swap_info.inputs_to_swap.push_back(input_id); } } else { int64_t input_id = val.i(); swap_info.inputs_to_swap.push_back(input_id); } } } if (nodes_to_swap.empty()) { return false; } GraphProperties properties(*item); if (!properties .InferStatically(true, false, false) .ok()) { return false; } for (auto& swap : nodes_to_swap) { const NodeDef* node = swap.first; const std::vector<OpInfo::TensorProperties>& props = properties.GetInputProperties(node->name()); SwapInfo& swap_info = swap.second; int64_t bytes_to_swap = 0; for (int64_t input_id : swap_info.inputs_to_swap) { const OpInfo::TensorProperties& t = props[input_id]; bytes_to_swap += CalculateTensorSize(t); } swap_info.time_to_swap = bytes_to_swap / 16; } std::unordered_map<const NodeDef*, Costs::NanoSeconds> execution_times; if (!EstimateEarliestExecutionTimes(*item, cluster, &execution_times).ok()) { return false; } std::unordered_map<string, const NodeDef*> name_map; for (const auto& node : item->graph.node()) { name_map[node.name()] = &node; } MutableGraphView view(&item->graph); bool updated_graph = false; for (auto& swap : nodes_to_swap) { NodeDef* node = swap.first; const SwapInfo& swap_info = swap.second; if (skip_list->find(node->name()) != skip_list->end()) { continue; } const NodeDef* in_trigger = FindSwapInTrigger(node, swap_info, name_map, execution_times); if (!in_trigger) { skip_list->insert(node->name()); continue; } for (int input_id : swap_info.inputs_to_swap) { string input_name = strings::StrCat(node->name(), ":", input_id); if (skip_list->find(input_name) != skip_list->end()) { continue; } else { skip_list->insert(input_name); } NodeDef* out_trigger = FindSwapOutTrigger(node, input_id, view, execution_times); if (!out_trigger) { continue; } std::pair<NodeDef*, NodeDef*> swap_nodes; if (!BuildSwapPair(node, input_id, name_map, &item->graph, &swap_nodes) .ok()) { continue; } *swap_nodes.first->add_input() = node->input(input_id); *node->mutable_input(input_id) = swap_nodes.second->name(); out_trigger->add_input(strings::StrCat("^", swap_nodes.first->name())); swap_nodes.second->add_input(strings::StrCat("^", in_trigger->name())); skip_list->insert(swap_nodes.first->name()); skip_list->insert(swap_nodes.second->name()); } } return updated_graph; } bool CrossesTaskOrCpuGpuBoundary(const NodeDef& node1, const NodeDef& node2) { string task1; string device1; DeviceNameUtils::SplitDeviceName(node1.device(), &task1, &device1); string task2; string device2; DeviceNameUtils::SplitDeviceName(node2.device(), &task2, &device2); return task1 != task2 || (absl::StrContains(device1, DEVICE_CPU) && absl::StrContains(device2, DEVICE_GPU)) || (absl::StrContains(device1, DEVICE_GPU) && absl::StrContains(device2, DEVICE_CPU)); } void RelaxAssignNodes(const std::set<int>& nodes_to_relax, GraphDef* optimized_graph) { for (int idx : nodes_to_relax) { NodeDef* assign_node = optimized_graph->mutable_node(idx); (*assign_node->mutable_attr())["_grappler_relax_allocator_constraints"] .set_b(true); } } Status FindAssignNodesToRelax(const GraphDef& graph, std::set<int>* nodes_to_relax) { std::unordered_set<string> devices; std::vector<int> assign_nodes; bool found_send = false; for (int i = 0; i < graph.node_size(); ++i) { const NodeDef& node = graph.node(i); devices.insert(node.device()); if (IsAssign(node)) { assign_nodes.push_back(i); } if (IsSend(node)) { found_send = true; break; } } if (!found_send && devices.size() == 1) { nodes_to_relax->insert(assign_nodes.begin(), assign_nodes.end()); return absl::OkStatus(); } GraphTopologyView graph_view; TF_RETURN_IF_ERROR( graph_view.InitializeFromGraph(graph, true)); std::unordered_set<const NodeDef*> optimized_nodes; for (int i : assign_nodes) { const NodeDef& assign_node = graph.node(i); if (optimized_nodes.find(&assign_node) == optimized_nodes.end()) { std::vector<const NodeDef*> assign_nodes_in_fanout; optimized_nodes.insert(&assign_node); assign_nodes_in_fanout.push_back(&assign_node); std::vector<const NodeDef*> transitive_fanout; DfsTraversal(graph_view, {graph_view.GetNode(i)}, TraversalDirection::kFollowOutputs, DfsPredicates::Advance([&](const NodeDef* node) { return !NeverForwardsInputs(*node); }), DfsCallbacks::PreOrder([&](const NodeDef* node) { transitive_fanout.push_back(node); })); bool relax_constraint = true; for (const NodeDef* fanout_node : transitive_fanout) { if (relax_constraint && (IsSend(*fanout_node) || CrossesTaskOrCpuGpuBoundary(*fanout_node, assign_node))) { relax_constraint = false; break; } if (optimized_nodes.find(fanout_node) == optimized_nodes.end() && IsAssign(*fanout_node)) { assign_nodes_in_fanout.push_back(fanout_node); } } if (relax_constraint) { for (const NodeDef* assign_node_in_fanout : assign_nodes_in_fanout) { optimized_nodes.insert(assign_node_in_fanout); const absl::optional<int> assign_node_idx = graph_view.GetNodeIndex(*assign_node_in_fanout); nodes_to_relax->insert(assign_node_idx.value()); } } } } return absl::OkStatus(); } } Status MemoryOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { std::set<int> nodes_to_relax; TF_RETURN_IF_ERROR(FindAssignNodesToRelax(item.graph, &nodes_to_relax)); bool run_recomputation_pass = (optimization_level_ == RewriterConfig::RECOMPUTATION_HEURISTICS || optimization_level_ == RewriterConfig::HEURISTICS || optimization_level_ == RewriterConfig::MANUAL); if (!run_recomputation_pass && nodes_to_relax.empty() && item.fetch.empty()) { return errors::Aborted("Nothing to do."); } GrapplerItem optimized_item(item); RelaxAssignNodes(nodes_to_relax, &optimized_item.graph); if (run_recomputation_pass) { RecomputationRewritingPass(optimization_level_, recomputation_targets_name_scope_, &optimized_item.graph, item); } std::unordered_set<string> skip_list; std::unique_ptr<GraphMemory> memory; if (!item.fetch.empty() && cluster != nullptr) { bool updated_graph = true; for (int i = 0; i < 25 && updated_graph; ++i) { GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); updated_graph = false; if ((optimization_level_ == RewriterConfig::DEFAULT_MEM_OPT || optimization_level_ == RewriterConfig::SCHEDULING_HEURISTICS || optimization_level_ == RewriterConfig::HEURISTICS) && cluster != nullptr) { if (SchedulingPass(cluster, &memory, &optimized_item)) { memory.reset(); updated_graph = true; } } GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); if ((optimization_level_ == RewriterConfig::DEFAULT_MEM_OPT || optimization_level_ == RewriterConfig::SWAPPING_HEURISTICS || optimization_level_ == RewriterConfig::HEURISTICS || optimization_level_ == RewriterConfig::MANUAL) && cluster != nullptr) { if (SwappingPass(optimization_level_, cluster, &memory, &optimized_item, &skip_list)) { memory.reset(); updated_graph = true; } } } } optimized_graph->Swap(&optimized_item.graph); return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/memory_optimizer.h" #include <memory> #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/device_properties.pb.h" namespace tensorflow { namespace grappler { namespace { class RecomputeSubgraphTest : public GrapplerTest {}; TEST_F(RecomputeSubgraphTest, SimpleSubgraph) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Variable(s.WithOpName("a"), {2, 3, 4}, DT_FLOAT); Output b = ops::Identity(s.WithOpName("b"), a); Output c = ops::Identity(s.WithOpName("c"), b); Output d = ops::AddN(s.WithOpName("gradients/d"), {c}); Output e = ops::AddN(s.WithOpName("gradients/e"), {d, b}); Output f = ops::AddN(s.WithOpName("gradients/f"), {e, a}); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); EXPECT_EQ(6, item.graph.node_size()); NodeMap pre_transform_node_map(&item.graph); (*pre_transform_node_map.GetNode("b")->mutable_attr())["_recompute_hint"] .set_i(0); MemoryOptimizer optimizer(RewriterConfig::MANUAL); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); NodeMap post_transform_node_map(&output); EXPECT_EQ(8, output.node_size()); NodeDef* transformed_e = post_transform_node_map.GetNode(e.name()); EXPECT_EQ(2, transformed_e->input_size()); EXPECT_EQ("gradients/d", transformed_e->input(0)); EXPECT_EQ("Recomputed/b", transformed_e->input(1)); NodeDef* recomputed_b = post_transform_node_map.GetNode("Recomputed/b"); EXPECT_EQ(2, recomputed_b->input_size()); EXPECT_EQ("a", recomputed_b->input(0)); EXPECT_EQ("^RecomputeTrigger/b", recomputed_b->input(1)); NodeDef* recompute_trigger = post_transform_node_map.GetNode("RecomputeTrigger/b"); EXPECT_EQ(1, recompute_trigger->input_size()); EXPECT_EQ("^gradients/d", recompute_trigger->input(0)); } TEST_F(RecomputeSubgraphTest, NoFeedsRecomputed) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Variable(s.WithOpName("a"), {2, 3, 4}, DT_FLOAT); Output b = ops::Identity(s.WithOpName("b"), a); Output c = ops::Identity(s.WithOpName("c"), b); Output d = ops::AddN(s.WithOpName("gradients/d"), {c}); Output e = ops::AddN(s.WithOpName("gradients/e"), {d, b}); Output f = ops::AddN(s.WithOpName("gradients/f"), {e, a}); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.feed.emplace_back("b", Tensor()); EXPECT_EQ(6, item.graph.node_size()); NodeMap pre_transform_node_map(&item.graph); (*pre_transform_node_map.GetNode("b")->mutable_attr())["_recompute_hint"] .set_i(0); MemoryOptimizer optimizer(RewriterConfig::MANUAL); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(6, output.node_size()); } TEST_F(RecomputeSubgraphTest, TwoInputSubgraphs) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Variable(s.WithOpName("a"), {2, 3, 4}, DT_FLOAT); Output b = ops::Variable(s.WithOpName("b"), {2, 3, 4}, DT_FLOAT); Output d = ops::AddN( s.WithOpName("some_name_scope/gradients/two_subgraph_inputs"), {a, b}); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); EXPECT_EQ(3, item.graph.node_size()); NodeMap pre_transform_node_map(&item.graph); (*pre_transform_node_map.GetNode("a")->mutable_attr())["_recompute_hint"] .set_i(0); (*pre_transform_node_map.GetNode("b")->mutable_attr())["_recompute_hint"] .set_i(0); MemoryOptimizer optimizer(RewriterConfig::MANUAL, "some_name_scope/gradients"); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); NodeMap post_transform_node_map(&output); EXPECT_EQ(7, output.node_size()); EXPECT_NE(post_transform_node_map.GetNode("Recomputed/a"), nullptr); EXPECT_NE(post_transform_node_map.GetNode("Recomputed/b"), nullptr); EXPECT_NE(post_transform_node_map.GetNode("RecomputeTrigger/a"), nullptr); EXPECT_NE(post_transform_node_map.GetNode("RecomputeTrigger/b"), nullptr); } TEST_F(RecomputeSubgraphTest, MultiNode) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Variable(s.WithOpName("Conv"), {2, 3, 4}, DT_FLOAT); Output b = ops::Identity(s.WithOpName("BN"), a); Output c = ops::Identity(s.WithOpName("ReLU"), b); Output d = ops::Identity(s.WithOpName("Conv1"), c); Output trigger = ops::AddN(s.WithOpName("gradients/BN1Grad"), {d}); Output e = ops::AddN(s.WithOpName("gradients/Conv1Grad"), {trigger, c}); Output f = ops::AddN(s.WithOpName("gradients/ReLUGrad"), {e, c}); Output g = ops::AddN(s.WithOpName("gradients/BNGrad"), {f, a}); Output h = ops::AddN(s.WithOpName("gradients/ConvGrad"), {g}); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); EXPECT_EQ(9, item.graph.node_size()); NodeMap pre_transform_node_map(&item.graph); pre_transform_node_map.GetNode("BN")->set_op("FusedBatchNorm"); pre_transform_node_map.GetNode("ReLU")->set_op("Relu"); MemoryOptimizer optimizer(RewriterConfig::RECOMPUTATION_HEURISTICS); GraphDef first_pass_output; Status first_pass_status = optimizer.Optimize(nullptr, item, &first_pass_output); TF_EXPECT_OK(first_pass_status); NodeMap post_transform_node_map(&first_pass_output); EXPECT_EQ(13, first_pass_output.node_size()); NodeDef* transformed_e = post_transform_node_map.GetNode(e.name()); EXPECT_EQ(2, transformed_e->input_size()); EXPECT_EQ("gradients/BN1Grad", transformed_e->input(0)); EXPECT_EQ("Recomputed/ReLU", transformed_e->input(1)); NodeDef* transformed_f = post_transform_node_map.GetNode(f.name()); EXPECT_EQ(2, transformed_f->input_size()); EXPECT_EQ("gradients/Conv1Grad", transformed_f->input(0)); EXPECT_EQ("Recomputed/ReLU", transformed_f->input(1)); NodeDef* transformed_g = post_transform_node_map.GetNode(g.name()); EXPECT_EQ(2, transformed_g->input_size()); EXPECT_EQ("gradients/ReLUGrad", transformed_g->input(0)); EXPECT_EQ("Conv", transformed_g->input(1)); NodeDef* recomputed_b = post_transform_node_map.GetNode("Recomputed/BN"); EXPECT_EQ(2, recomputed_b->input_size()); EXPECT_EQ("Conv", recomputed_b->input(0)); EXPECT_EQ("^RecomputeTrigger/BN", recomputed_b->input(1)); NodeDef* recompute_trigger_b = post_transform_node_map.GetNode("RecomputeTrigger/BN"); EXPECT_EQ(1, recompute_trigger_b->input_size()); EXPECT_EQ("^RecomputeTrigger/ReLU", recompute_trigger_b->input(0)); NodeDef* recomputed_c = post_transform_node_map.GetNode("Recomputed/ReLU"); EXPECT_EQ(2, recomputed_c->input_size()); EXPECT_EQ("Recomputed/BN", recomputed_c->input(0)); EXPECT_EQ("^RecomputeTrigger/ReLU", recomputed_c->input(1)); NodeDef* recompute_trigger_c = post_transform_node_map.GetNode("RecomputeTrigger/ReLU"); EXPECT_EQ(1, recompute_trigger_c->input_size()); EXPECT_EQ("^gradients/BN1Grad", recompute_trigger_c->input(0)); } class MemoryOptimizerTest : public GrapplerTest { public: static std::unique_ptr<VirtualCluster> CreateVirtualCluster() { DeviceProperties cpu_device; cpu_device.set_type("CPU"); cpu_device.set_frequency(1000); cpu_device.set_num_cores(4); cpu_device.set_bandwidth(32); cpu_device.set_memory_size(1024 * 1024); DeviceProperties gpu_device; gpu_device.set_type("GPU"); gpu_device.set_frequency(1000); gpu_device.set_num_cores(24); gpu_device.set_bandwidth(128); gpu_device.set_memory_size(1024 * 1024); gpu_device.mutable_environment()->insert({"architecture", "6"}); std::unordered_map<string, DeviceProperties> devices; devices["/job:localhost/replica:0/task:0/cpu:0"] = cpu_device; devices["/job:localhost/replica:0/task:0/gpu:0"] = gpu_device; return std::unique_ptr<VirtualCluster>(new VirtualCluster(devices)); } }; TEST_F(MemoryOptimizerTest, SimpleSwapping) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Variable(s.WithOpName("a").WithDevice("/gpu:0"), {10, 10}, DT_FLOAT); Output b = ops::AddN(s.WithOpName("b").WithDevice("/gpu:0"), {a}); Output c = ops::AddN(s.WithOpName("c").WithDevice("/gpu:0"), {b}); Output d = ops::AddN(s.WithOpName("d").WithDevice("/gpu:0"), {c}); Output e = ops::AddN(s.WithOpName("e").WithDevice("/gpu:0"), {b, d}); Output constant = ops::Const(s.WithOpName("constant"), 0.0f, {10, 10}); Output init = ops::Assign(s.WithOpName("init"), a, constant); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"e"}; EXPECT_EQ(7, item.graph.node_size()); EXPECT_EQ(NodeName(e.name()), item.graph.node(4).name()); AttrValue& val = (*item.graph.mutable_node(4)->mutable_attr())["_swap_to_host"]; val.mutable_list()->add_i(0); std::unique_ptr<VirtualCluster> cluster(CreateVirtualCluster()); MemoryOptimizer optimizer(RewriterConfig::MANUAL); GraphDef output; Status status = optimizer.Optimize(cluster.get(), item, &output); TF_EXPECT_OK(status); EXPECT_EQ(9, output.node_size()); const NodeDef& new_e = output.node(6); EXPECT_EQ(NodeName(e.name()), new_e.name()); EXPECT_EQ(2, new_e.input_size()); EXPECT_EQ(NodeName(d.name()), new_e.input(1)); EXPECT_EQ("swap_in_e_0", new_e.input(0)); const NodeDef& swap_out = output.node(7); EXPECT_EQ("swap_out_e_0", swap_out.name()); EXPECT_EQ("_CopyFromGpuToHost", swap_out.op()); const NodeDef& swap_in = output.node(8); EXPECT_EQ("swap_in_e_0", swap_in.name()); EXPECT_EQ("_CopyFromHostToGpu", swap_in.op()); EXPECT_EQ(NodeName(b.name()), swap_out.input(0)); EXPECT_EQ(NodeName(swap_out.name()), swap_in.input(0)); EXPECT_EQ("^c", swap_in.input(1)); const NodeDef& new_c = output.node(4); EXPECT_EQ(NodeName(c.name()), new_c.name()); EXPECT_EQ("^swap_out_e_0", new_c.input(1)); GrapplerItem item_copy = item.WithGraph(std::move(output)); status = optimizer.Optimize(cluster.get(), item_copy, &output); TF_EXPECT_OK(status); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM item.fetch = {"e"}; item.init_ops = {init.name()}; auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); #endif } TEST_F(MemoryOptimizerTest, SwappingHeuristics) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output v = ops::Variable(s.WithOpName("v").WithDevice("/gpu:0"), {128, 128, 8}, DT_FLOAT); Output a = ops::Identity(s.WithOpName("a").WithDevice("/gpu:0"), v); Output b = ops::Square(s.WithOpName("b").WithDevice("/gpu:0"), v); Output c = ops::Sqrt(s.WithOpName("c").WithDevice("/gpu:0"), a); Output d = ops::Identity(s.WithOpName("d").WithDevice("/gpu:0"), b); Output axis = ops::Const(s.WithOpName("axis"), 0); Output e = ops::Concat(s.WithOpName("e").WithDevice("/gpu:0"), {a, b, c, d}, axis); Output f = ops::Square(s.WithOpName("f").WithDevice("/gpu:0"), a); Output g = ops::Sqrt(s.WithOpName("g").WithDevice("/gpu:0"), b); Output h = ops::Exp(s.WithOpName("h").WithDevice("/gpu:0"), c); Output i = ops::Log(s.WithOpName("i").WithDevice("/gpu:0"), d); Output constant = ops::Const(s.WithOpName("constant"), 0.0f, {128, 128, 8}); Output init = ops::Assign(s.WithOpName("init"), v, constant); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"e", "f", "g", "h", "i"}; item.init_ops = {init.name()}; std::unique_ptr<VirtualCluster> cluster(CreateVirtualCluster()); MemoryOptimizer optimizer(RewriterConfig::SWAPPING_HEURISTICS); GraphDef output; Status status = optimizer.Optimize(cluster.get(), item, &output); TF_EXPECT_OK(status); for (const auto& node : output.node()) { if (node.name() == "e") { EXPECT_EQ(5, node.input_size()); EXPECT_EQ("a", node.input(0)); EXPECT_EQ("swap_in_e_1", node.input(1)); EXPECT_EQ("swap_in_e_2", node.input(2)); EXPECT_EQ("swap_in_e_3", node.input(3)); EXPECT_EQ("axis", node.input(4)); } } #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorEqual<float>(tensors_expected[i], tensors[i]); } #endif } TEST_F(MemoryOptimizerTest, UnswappableInputs) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output v = ops::Variable(s.WithOpName("v").WithDevice("/gpu:0"), {128, 128, 8}, DT_FLOAT); Output a = ops::Square(s.WithOpName("a").WithDevice("/gpu:0"), v); Output b = ops::Identity(s.WithOpName("b").WithDevice("/gpu:0"), {a}); Output c = ops::Identity(s.WithOpName("c").WithDevice("/gpu:0"), {a}); Output index = ops::Const(s.WithOpName("index"), {0}); Output indices = ops::Tile(s.WithOpName("indices"), index, {128}); Output d = ops::ScatterAdd(s.WithOpName("d").WithDevice("/gpu:0"), v, indices, c); Output axis = ops::Const(s.WithOpName("axis"), 0); Output e = ops::Concat(s.WithOpName("e").WithDevice("/gpu:0"), {b, c, d}, axis); Output constant = ops::Const(s.WithOpName("constant"), 0.0f, {128, 128, 8}); Output init = ops::Assign(s.WithOpName("init"), v, constant); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"e"}; item.init_ops = {init.name()}; std::unique_ptr<VirtualCluster> cluster(CreateVirtualCluster()); MemoryOptimizer optimizer(RewriterConfig::SWAPPING_HEURISTICS); GraphDef output; Status status = optimizer.Optimize(cluster.get(), item, &output); TF_EXPECT_OK(status); for (const auto& node : output.node()) { if (node.name() == "e") { EXPECT_EQ(5, node.input_size()); EXPECT_EQ("d", node.input(2)); EXPECT_EQ("^swap_out_d_2", node.input(4)); } } #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); #endif } TEST_F(MemoryOptimizerTest, AccumulationRewrites) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::RandomNormal(s.WithOpName("a").WithDevice("/cpu:0"), {128, 128, 8}, DT_FLOAT); Output b = ops::RandomNormal(s.WithOpName("b").WithDevice("/cpu:0"), {128, 128, 8}, DT_FLOAT); Output c = ops::RandomNormal(s.WithOpName("c").WithDevice("/cpu:0"), {128, 128, 8}, DT_FLOAT); Output d = ops::AddN(s.WithOpName("d").WithDevice("/cpu:0"), {a, b, c}); Output e = ops::Square(s.WithOpName("e").WithDevice("/cpu:0"), d); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"e"}; std::unique_ptr<VirtualCluster> cluster(CreateVirtualCluster()); MemoryOptimizer optimizer(RewriterConfig::SCHEDULING_HEURISTICS); GraphDef output; Status status = optimizer.Optimize(cluster.get(), item, &output); TF_EXPECT_OK(status); int count = 0; for (const auto& node : output.node()) { if (node.name() == "d") { EXPECT_EQ("DestroyTemporaryVariable", node.op()); count++; } else if (node.name() == "d/tmp_var_initializer") { EXPECT_EQ("Assign", node.op()); count++; } else if (node.name() == "d/tmp_var") { EXPECT_EQ("TemporaryVariable", node.op()); count++; } else if (node.name() == "e") { EXPECT_EQ("Square", node.op()); EXPECT_EQ("d", node.input(0)); count++; } } EXPECT_EQ(4, count); std::vector<string> fetch = {"a", "b", "c", "e"}; auto tensors = EvaluateNodes(output, fetch, {}); EXPECT_EQ(4, tensors.size()); for (int i = 0; i < tensors[0].NumElements(); ++i) { float actual = tensors[3].flat<float>()(i); float expected = 0.0f; for (int j = 0; j < 3; ++j) { expected += tensors[j].flat<float>()(i); } expected *= expected; EXPECT_NEAR(actual, expected, 1e-4); } } class RelaxAllocatorConstraintsTest : public GrapplerTest {}; TEST_F(RelaxAllocatorConstraintsTest, SameDevice) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output constant = ops::Const(s.WithOpName("constant").WithDevice("/cpu:0"), -3.14f, {128, 128}); Output variable = ops::Variable(s.WithOpName("variable").WithDevice("/cpu:0"), {128, 128}, DT_FLOAT); Output assign = ops::Assign(s.WithOpName("assign").WithDevice("/cpu:0"), variable, constant); Output exp = ops::Exp(s.WithOpName("exp").WithDevice("/cpu:0"), assign); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); MemoryOptimizer optimizer(RewriterConfig::MANUAL); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto node = output.node(2); EXPECT_EQ("assign", node.name()); EXPECT_EQ(1, node.attr().count("_grappler_relax_allocator_constraints")); EXPECT_EQ(true, node.attr().at("_grappler_relax_allocator_constraints").b()); item.fetch = {"exp"}; item.init_ops = {"variable"}; auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(RelaxAllocatorConstraintsTest, DifferentDevice) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output constant = ops::Const(s.WithOpName("constant").WithDevice("/cpu:0"), -3.14f, {128, 128}); Output variable = ops::Variable(s.WithOpName("variable").WithDevice("/cpu:0"), {128, 128}, DT_FLOAT); Output assign = ops::Assign(s.WithOpName("assign").WithDevice("/cpu:0"), variable, constant); Output exp = ops::Exp(s.WithOpName("exp").WithDevice("/gpu:0"), assign); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); MemoryOptimizer optimizer(RewriterConfig::MANUAL); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto node = output.node(2); EXPECT_EQ("assign", node.name()); EXPECT_EQ(0, node.attr().count("_grappler_relax_allocator_constraints")); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM item.fetch = {"exp"}; item.init_ops = {"variable"}; auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); #endif } TEST_F(RelaxAllocatorConstraintsTest, SameDeviceType) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output constant = ops::Const(s.WithOpName("constant").WithDevice("/cpu:0"), -3.14f, {128, 128}); Output variable = ops::Variable(s.WithOpName("variable").WithDevice("/cpu:0"), {128, 128}, DT_FLOAT); Output assign = ops::Assign(s.WithOpName("assign").WithDevice("/cpu:0"), variable, constant); Output exp = ops::Exp(s.WithOpName("exp").WithDevice("/cpu:1"), assign); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); MemoryOptimizer optimizer(RewriterConfig::MANUAL); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto node = output.node(2); EXPECT_EQ("assign", node.name()); EXPECT_EQ(1, node.attr().count("_grappler_relax_allocator_constraints")); EXPECT_TRUE(node.attr().at("_grappler_relax_allocator_constraints").b()); } TEST_F(RelaxAllocatorConstraintsTest, SendNode) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output constant = ops::Const(s.WithOpName("constant").WithDevice("/cpu:0"), -3.14f, {128, 128}); Output variable = ops::Variable(s.WithOpName("variable").WithDevice("/cpu:0"), {128, 128}, DT_FLOAT); Output assign = ops::Assign(s.WithOpName("assign").WithDevice("/cpu:0"), variable, constant); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); NodeDef* send = item.graph.add_node(); send->set_name("send"); send->set_op("_Send"); send->add_input("assign"); MemoryOptimizer optimizer(RewriterConfig::MANUAL); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto node = output.node(2); EXPECT_EQ("assign", node.name()); EXPECT_EQ(0, node.attr().count("_grappler_relax_allocator_constraints")); } TEST_F(RelaxAllocatorConstraintsTest, AssignNodeInFanout) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output constant0 = ops::Const(s.WithOpName("constant0").WithDevice("/cpu:0"), -42.0f, {128, 128}); Output variable0 = ops::Variable( s.WithOpName("variable0").WithDevice("/cpu:0"), {128, 128}, DT_FLOAT); Output assign0 = ops::Assign(s.WithOpName("assign0").WithDevice("/cpu:0"), variable0, constant0); Output assign2 = ops::Assign(s.WithOpName("assign2").WithDevice("/cpu:0"), variable0, constant0); Output assign3 = ops::Assign(s.WithOpName("assign3").WithDevice("/cpu:0"), variable0, constant0); Output assign4 = ops::Assign(s.WithOpName("assign4").WithDevice("/cpu:0"), variable0, constant0); Output rank_cpu = ops::Rank(s.WithOpName("rank_cpu").WithDevice("/cpu:0"), assign3); Output exp_cpu = ops::Exp(s.WithOpName("exp_cpu").WithDevice("/cpu:0"), assign4); Output rank_gpu = ops::Rank(s.WithOpName("rank_gpu") .WithDevice("/gpu:0") .WithControlDependencies(assign2), assign0); Output id_gpu = ops::Identity(s.WithOpName("id_gpu"), rank_cpu); Output id_gpu2 = ops::Identity(s.WithOpName("id_gpu2"), exp_cpu); Output variable_gpu = ops::Variable( s.WithOpName("variable_gpu").WithDevice("/gpu:0"), {128, 128}, DT_FLOAT); Output assign_gpu = ops::Assign( s.WithOpName("assign_gpu").WithDevice("/gpu:0"), variable_gpu, exp_cpu); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"assign0", "assign_gpu", "rank_gpu", "id_gpu", "id_gpu2"}; MemoryOptimizer optimizer(RewriterConfig::MANUAL); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto node = output.node(3); EXPECT_EQ("assign0", node.name()); EXPECT_EQ(0, node.attr().count("_grappler_relax_allocator_constraints")); node = output.node(4); EXPECT_EQ("assign2", node.name()); EXPECT_EQ(1, node.attr().count("_grappler_relax_allocator_constraints")); EXPECT_EQ(true, node.attr().at("_grappler_relax_allocator_constraints").b()); node = output.node(5); EXPECT_EQ("assign3", node.name()); EXPECT_EQ(1, node.attr().count("_grappler_relax_allocator_constraints")); EXPECT_EQ(true, node.attr().at("_grappler_relax_allocator_constraints").b()); node = output.node(6); EXPECT_EQ("assign4", node.name()); EXPECT_EQ(0, node.attr().count("_grappler_relax_allocator_constraints")); node = output.node(12); EXPECT_EQ("assign_gpu", node.name()); EXPECT_EQ(1, node.attr().count("_grappler_relax_allocator_constraints")); EXPECT_EQ(true, node.attr().at("_grappler_relax_allocator_constraints").b()); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM item.init_ops = {"exp_cpu", "variable_gpu"}; auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); for (int i = 0; i < tensors_expected.size(); ++i) { if (i == 2 || i == 3) { test::ExpectTensorEqual<int>(tensors_expected[i], tensors[i]); } else { test::ExpectTensorEqual<float>(tensors_expected[i], tensors[i]); } } #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/memory_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/memory_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ecb37921-f9b0-4f3c-870b-c6cfd0c1c1f1
cpp
tensorflow/tensorflow
remapper
tensorflow/core/grappler/optimizers/remapper.cc
tensorflow/core/grappler/optimizers/remapper_test.cc
#include "tensorflow/core/grappler/optimizers/remapper.h" #include <algorithm> #include <cstdlib> #include <map> #include <set> #include <string> #include <unordered_set> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/graph_view.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/constant_folding.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/graph_view.h" #include "tensorflow/core/grappler/utils/pattern_utils.h" #include "tensorflow/core/grappler/utils/symbolic_shapes.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tensorflow/core/util/env_var.h" #include "tensorflow/core/util/use_cudnn.h" #include "tsl/platform/errors.h" #ifdef INTEL_MKL #include "tensorflow/core/util/mkl_heuristics.h" #endif #include "tensorflow/core/util/util.h" #if GOOGLE_CUDA #include "third_party/gpus/cudnn/cudnn.h" #endif namespace tensorflow { namespace grappler { namespace { constexpr char kFusedConv2D[] = "_FusedConv2D"; constexpr char kFusedConv3D[] = "_FusedConv3D"; constexpr char kFusedMatMul[] = "_FusedMatMul"; constexpr char kFusedDepthwiseConv2dNative[] = "_FusedDepthwiseConv2dNative"; constexpr char kFusedBatchNormEx[] = "_FusedBatchNormEx"; constexpr char kFusedBatchNormGradEx[] = "_FusedBatchNormGradEx"; constexpr char kTensorToHashBucket[] = "_TensorToHashBucketFast"; constexpr char kLeakyRelu[] = "LeakyRelu"; constexpr char kMklFusedMish[] = "_MklFusedMish"; constexpr char kRelu[] = "Relu"; constexpr char kRelu6[] = "Relu6"; constexpr char kElu[] = "Elu"; constexpr char kDataFormat[] = "data_format"; constexpr char kIsTraining[] = "is_training"; constexpr char kWidth[] = "width"; constexpr char kFill[] = "fill"; constexpr int kMissingIndex = -1; struct RemapperContext { explicit RemapperContext(GrapplerItem* item, Status* status, RewriterConfig::CpuLayout cpu_layout_conversion, bool xla_auto_clustering_on, bool xla_cpu_jit_disable_fusion) : nodes_to_preserve(item->NodesToPreserve()), graph_view(&item->graph, status), graph_properties(*item), inferred_graph_properties(false), cpu_layout_conversion(cpu_layout_conversion), xla_auto_clustering_on(xla_auto_clustering_on), xla_cpu_jit_disable_fusion(xla_cpu_jit_disable_fusion) {} std::unordered_set<string> nodes_to_preserve; utils::MutableGraphView graph_view; GraphProperties graph_properties; bool inferred_graph_properties; RewriterConfig::CpuLayout cpu_layout_conversion; bool xla_auto_clustering_on; bool xla_cpu_jit_disable_fusion; }; struct FusedBatchNorm { FusedBatchNorm() = default; explicit FusedBatchNorm(int fused_batch_norm) : fused_batch_norm(fused_batch_norm) {} int fused_batch_norm = kMissingIndex; }; struct FusedBatchNormEx { FusedBatchNormEx() = default; int fused_batch_norm = kMissingIndex; int side_input = kMissingIndex; int activation = kMissingIndex; int invalidated = kMissingIndex; }; struct FusedBatchNormGradEx { int fused_batch_norm_grad = kMissingIndex; int activation_grad = kMissingIndex; int side_input_grad = kMissingIndex; int fwd_fused_batch_norm = kMissingIndex; }; struct TensorToHashBucket { TensorToHashBucket() = default; explicit TensorToHashBucket(int op1, int op2, int op3) : pre_as_string(op1), as_string(op2), string_to_hash_bucket(op3) {} int pre_as_string = kMissingIndex; int as_string = kMissingIndex; int string_to_hash_bucket = kMissingIndex; }; struct PadWithConv3D { PadWithConv3D() = default; PadWithConv3D(int contraction_idx, int pad_idx, int padding_const_idx) : contraction_idx(contraction_idx), pad_idx(pad_idx), padding_const_idx(padding_const_idx) {} int contraction_idx = kMissingIndex; int pad_idx = kMissingIndex; int padding_const_idx = kMissingIndex; }; struct ContractionWithBiasAdd { ContractionWithBiasAdd() = default; ContractionWithBiasAdd(int contraction, int bias_add, int bias_port) : contraction(contraction), bias_add(bias_add), bias_port(bias_port) {} int contraction = kMissingIndex; int bias_add = kMissingIndex; int bias_port = 1; }; struct ContractionWithActivation { ContractionWithActivation() = default; ContractionWithActivation(int contraction, int activation) : contraction(contraction), activation(activation) {} int contraction = kMissingIndex; int activation = kMissingIndex; }; struct ContractionWithBiasAddAndActivation { ContractionWithBiasAddAndActivation() = default; ContractionWithBiasAddAndActivation(int contraction, int bias_add, int activation, int bias_port) : contraction(contraction), bias_add(bias_add), activation(activation), bias_port(bias_port) {} int contraction = kMissingIndex; int bias_add = kMissingIndex; int activation = kMissingIndex; int bias_port = 1; }; struct ContractionWithSqueezeAndBiasAdd { ContractionWithSqueezeAndBiasAdd() = default; ContractionWithSqueezeAndBiasAdd(int contraction, int squeeze, int bias_add) : contraction(contraction), squeeze(squeeze), bias_add(bias_add) {} int contraction = kMissingIndex; int squeeze = kMissingIndex; int bias_add = kMissingIndex; }; struct ContractionWithBatchNorm { ContractionWithBatchNorm() = default; ContractionWithBatchNorm(int contraction, int fused_batch_norm, float epsilon = 0.0) : contraction(contraction), fused_batch_norm(fused_batch_norm), epsilon(epsilon) {} int contraction = kMissingIndex; int fused_batch_norm = kMissingIndex; float epsilon = 0.0; }; struct ContractionWithBatchNormAndActivation { ContractionWithBatchNormAndActivation() = default; ContractionWithBatchNormAndActivation(int contraction, int fused_batch_norm, int activation, float epsilon = 0.0) : contraction(contraction), fused_batch_norm(fused_batch_norm), activation(activation), epsilon(epsilon) {} int contraction = kMissingIndex; int fused_batch_norm = kMissingIndex; int activation = kMissingIndex; float epsilon = 0.0; }; struct ContractionWithBiasAddAndAdd { ContractionWithBiasAddAndAdd() = default; ContractionWithBiasAddAndAdd(int contraction, int bias_add, int add, int port_id, int bias_port) : contraction(contraction), bias_add(bias_add), add(add), port_id(port_id), bias_port(bias_port) {} int contraction = kMissingIndex; int bias_add = kMissingIndex; int add = kMissingIndex; int port_id = 0; int bias_port = 1; }; struct ContractionWithBiasAndAddActivation { ContractionWithBiasAndAddActivation() = default; ContractionWithBiasAndAddActivation(int contraction, int bias_add, int add, int port_id, int activation, int bias_port) : contraction(contraction), bias_add(bias_add), add(add), port_id(port_id), activation(activation), bias_port(bias_port) {} int contraction = kMissingIndex; int bias_add = kMissingIndex; int add = kMissingIndex; int port_id = 0; int activation = kMissingIndex; int bias_port = 1; }; bool IsInPreserveSet(const RemapperContext& ctx, const NodeDef* node) { return ctx.nodes_to_preserve.count(node->name()) > 0; } bool HaveSameDataType(const NodeDef* lhs, const NodeDef* rhs, const string& type_attr = "T") { DataType lhs_attr = GetDataTypeFromAttr(*lhs, type_attr); DataType rhs_attr = GetDataTypeFromAttr(*rhs, type_attr); return lhs_attr != DT_INVALID && rhs_attr != DT_INVALID && lhs_attr == rhs_attr; } bool HasDataType(const NodeDef* node, const DataType& expected, const string& type_attr = "T") { DataType dtype = GetDataTypeFromAttr(*node, type_attr); return dtype == expected; } bool IsCpuCompatibleDataType(const NodeDef* contraction, const string& type_attr = "T") { DataType dtype = GetDataTypeFromAttr(*contraction, type_attr); bool is_one_dnn_enabled = IsMKLEnabled(); if (is_one_dnn_enabled) { bool is_supported_matmul = false; if (IsMatMul(*contraction)) { is_supported_matmul = (dtype == DT_BFLOAT16) ? contraction->attr().contains("transpose_a") && !contraction->attr().at("transpose_a").b() : true; } return ((IsConv2D(*contraction) || IsDepthwiseConv2dNative(*contraction) || IsConv3D(*contraction) || IsAnyBatchMatMul(*contraction) || is_supported_matmul) && IsDataTypeSupportedByOneDNNOnThisCPU(dtype)); } if (IsConv2D(*contraction)) { return dtype == DT_FLOAT || dtype == DT_DOUBLE; } else if (IsMatMul(*contraction)) { return dtype == DT_FLOAT; } else { return false; } } bool IsGpuCompatibleDataType(const NodeDef* contraction, const string& type_attr = "T") { DataType dtype = GetDataTypeFromAttr(*contraction, type_attr); if (IsConv2D(*contraction) || IsMatMul(*contraction)) { return dtype == DT_FLOAT || dtype == DT_HALF; } else { return false; } } bool IsCpuCompatibleDataFormat(const RemapperContext& ctx, const NodeDef* conv_node) { const string& data_format = conv_node->attr().at(kDataFormat).s(); if (IsConv2D(*conv_node)) { return data_format == "NHWC" || (IsMKLEnabled() && data_format == "NCHW") || (ctx.cpu_layout_conversion == RewriterConfig::NHWC_TO_NCHW && data_format == "NCHW"); } else if (IsConv3D(*conv_node)) { return data_format == "NDHWC" || (IsMKLEnabled() && data_format == "NCDHW"); } else { return false; } } bool BlasLtMatmulEnabled() { static bool is_enabled = [] { bool is_enabled = false; TF_CHECK_OK(tensorflow::ReadBoolFromEnvVar( "TF_USE_CUBLASLT", false, &is_enabled)); return is_enabled; }(); return is_enabled; } bool IsGpuCompatibleDataFormat(const RemapperContext& ctx, const NodeDef* conv2d) { DCHECK(IsConv2D(*conv2d)) << "Expected Conv2D op"; const string& data_format = conv2d->attr().at(kDataFormat).s(); return data_format == "NHWC" || data_format == "NCHW"; } bool IsCpuCompatibleConv2D(const RemapperContext& ctx, const NodeDef* conv2d) { DCHECK(IsConv2D(*conv2d)) << "Expected Conv2D op"; return NodeIsOnCpu(conv2d) && IsCpuCompatibleDataType(conv2d) && IsCpuCompatibleDataFormat(ctx, conv2d); } bool IsCpuCompatibleConv3D(const RemapperContext& ctx, const NodeDef* conv3d) { DCHECK(IsConv3D(*conv3d)) << "Expected Conv3D op"; return NodeIsOnCpu(conv3d) && IsCpuCompatibleDataType(conv3d) && IsCpuCompatibleDataFormat(ctx, conv3d); } bool IsGpuCompatibleConv2D(const RemapperContext& ctx, const NodeDef* conv2d, const NodeDef* activation) { DCHECK(IsConv2D(*conv2d)) << "Expected Conv2D op"; if (IsRelu(*activation)) { return NodeIsOnGpu(conv2d) && IsGpuCompatibleDataType(conv2d) && IsGpuCompatibleDataFormat(ctx, conv2d); } else if (IsRelu6(*activation) || IsElu(*activation) || IsLeakyRelu(*activation)) { DataType dtype = GetDataTypeFromAttr(*conv2d, "T"); const string& data_format = conv2d->attr().at(kDataFormat).s(); return NodeIsOnGpu(conv2d) && dtype == DT_HALF && data_format == "NHWC"; } return false; } bool IsGpuCompatibleMatMul(const RemapperContext& ctx, const NodeDef* matmul, const NodeDef* activation) { DCHECK(IsMatMul(*matmul)) << "Expected MatMul op"; if (activation == nullptr || IsRelu(*activation)) { return BlasLtMatmulEnabled() && NodeIsOnGpu(matmul) && IsGpuCompatibleDataType(matmul); } else if (IsTanh(*activation) || IsSigmoid(*activation)) { DataType dtype = GetDataTypeFromAttr(*matmul, "T"); return NodeIsOnGpu(matmul) && dtype == DT_HALF; } return false; } bool IsCpuCompatibleMatMul(const RemapperContext& ctx, const NodeDef* matmul) { DCHECK(IsMatMul(*matmul)) << "Expected MatMul op"; return NodeIsOnCpu(matmul) && IsCpuCompatibleDataType(matmul); } bool IsCpuCompatibleDepthwiseConv2dNative(const NodeDef* dw_conv2d) { DCHECK(IsDepthwiseConv2dNative(*dw_conv2d)) << "Expected DepthwiseConv2dNative op"; return NodeIsOnCpu(dw_conv2d) && IsCpuCompatibleDataType(dw_conv2d); } template <typename Pattern> bool IsCpuCompatible(const RemapperContext& ctx, const Pattern& matched) { if (ctx.xla_cpu_jit_disable_fusion) return false; const NodeDef& node = ctx.graph_view.graph()->node(matched.contraction); if (IsConv2D(node)) { return IsCpuCompatibleConv2D(ctx, &node); } else if (IsDepthwiseConv2dNative(node)) { return (IsMKLEnabled() && IsCpuCompatibleDepthwiseConv2dNative(&node)); } else if (IsMatMul(node)) { return IsCpuCompatibleMatMul(ctx, &node); } else if (IsConv3D(node)) { return (IsMKLEnabled() && IsCpuCompatibleConv3D(ctx, &node)); } else { return false; } } bool RuntimeFusionEnabled(const Cluster* cluster) { static bool is_enabled = [&] { #if CUDNN_VERSION >= 8400 if (!cluster) return false; auto devices = cluster->GetDevices(); int num_gpus = 0; int num_ampere = 0; for (const auto& d : devices) { if (d.second.type() == "GPU") { num_gpus++; auto cc_it = d.second.environment().find("architecture"); if (cc_it != d.second.environment().end()) { double compute_capability = 0.0; if (absl::SimpleAtod(cc_it->second, &compute_capability) && compute_capability >= 8.0) { num_ampere++; } } } } bool runtime_fusion_enabled = CudnnUseRuntimeFusion() && CudnnUseFrontend() && num_gpus > 0 && num_gpus == num_ampere; if (CudnnUseRuntimeFusion() && !runtime_fusion_enabled) { VLOG(1) << "Enabling Cudnn with runtime compilation requires the " << "Cudnn frontend and Ampere GPUs or later, but we got " << "Cudnn frontend is " << (CudnnUseFrontend() ? "enabled" : "disabled") << " and " << num_ampere << " Ampere GPU(s) out of total " << num_gpus << " GPU(s)"; } return runtime_fusion_enabled; #else return false; #endif }(); return is_enabled; } bool IsSupportedActivation(const NodeDef& node, const Cluster* cluster) { bool is_default_supported = IsRelu(node) || IsRelu6(node) || IsElu(node) || IsLeakyRelu(node); bool is_device_specific = (IsMKLEnabled() || RuntimeFusionEnabled(cluster)) && (IsTanh(node) || IsSigmoid(node)); return (is_default_supported || is_device_specific); } bool IsGpuCompatible(const RemapperContext& ctx, const ContractionWithBiasAddAndActivation& matched, const Cluster* cluster) { #if TENSORFLOW_USE_ROCM return false; #endif if (ctx.xla_auto_clustering_on) return false; const GraphDef* graph = ctx.graph_view.graph(); const NodeDef& activation_node = graph->node(matched.activation); if (!IsSupportedActivation(activation_node, cluster)) return false; const NodeDef& contraction_node = graph->node(matched.contraction); if (IsConv2D(contraction_node)) { const std::vector<OpInfo::TensorProperties>& input_props = ctx.graph_properties.GetInputProperties(contraction_node.name()); const TensorShapeProto& filter_shape = input_props.size() >= 2 ? input_props[1].shape() : TensorShapeProto(); bool is_spatial_conv = Rank(filter_shape) == 4 && IsKnown(filter_shape.dim(0)) && IsKnown(filter_shape.dim(1)) && filter_shape.dim(0).size() != 1 && filter_shape.dim(1).size() != 1; bool valid_channels = Rank(filter_shape) == 4 && IsKnown(filter_shape.dim(2)) && IsKnown(filter_shape.dim(3)) && filter_shape.dim(2).size() % 2 == 0 && filter_shape.dim(3).size() % 2 == 0; return is_spatial_conv && (IsRelu(activation_node) || (RuntimeFusionEnabled(cluster) && valid_channels)) && IsGpuCompatibleConv2D(ctx, &contraction_node, &activation_node); } else if (IsMatMul(contraction_node)) { const std::vector<OpInfo::TensorProperties>& input_props = ctx.graph_properties.GetInputProperties(contraction_node.name()); const TensorShapeProto& a_shape = !input_props.empty() ? input_props[0].shape() : TensorShapeProto(); const TensorShapeProto& b_shape = !input_props.empty() ? input_props[1].shape() : TensorShapeProto(); bool valid_dims = Rank(a_shape) == 2 && Rank(b_shape) == 2 && IsKnown(a_shape.dim(1)) && IsKnown(b_shape.dim(1)) && a_shape.dim(1).size() % 2 == 0 && b_shape.dim(1).size() % 2 == 0; return (IsRelu(activation_node) || (RuntimeFusionEnabled(cluster) && valid_dims)) && IsGpuCompatibleMatMul(ctx, &contraction_node, &activation_node); } return false; } bool IsGpuCompatible(const RemapperContext& ctx, const ContractionWithBiasAdd& matched, const Cluster* cluster) { #if TENSORFLOW_USE_ROCM && !TF_HIPBLASLT return false; #endif if (ctx.xla_auto_clustering_on) return false; const GraphDef* graph = ctx.graph_view.graph(); const NodeDef& contraction_node = graph->node(matched.contraction); if (!IsMatMul(contraction_node)) return false; return IsGpuCompatibleMatMul(ctx, &contraction_node, nullptr); } bool IsGpuCompatible(const RemapperContext& ctx, const ContractionWithSqueezeAndBiasAdd& matched, const Cluster* cluster) { return false; } template <typename Pattern> bool IsDeviceCompatible(const RemapperContext& ctx, Pattern& matched, Cluster* cluster = nullptr) { return IsCpuCompatible(ctx, matched) || IsGpuCompatible(ctx, matched, cluster); } std::string GetActivationName(const std::string& s) { if (s == kMklFusedMish) { return "Mish"; } else { return s; } } inline bool HasControlFaninOrFanout(const utils::MutableNodeView& node_view) { return node_view.NumControllingFanins() > 0 || node_view.NumControlledFanouts() > 0; } inline bool HasAtMostOneFanoutAtPort0(const utils::MutableNodeView& node_view) { return node_view.GetRegularFanout(0).size() <= 1; } inline bool HasAtMostOneDataFanoutAtPort0( const utils::MutableNodeView& node_view) { const auto predicate = [](const auto& fanout) -> bool { const NodeDef* node = fanout.node_view()->node(); return !IsShape(*node) && !IsRank(*node); }; return absl::c_count_if(node_view.GetRegularFanout(0), predicate) <= 1; } bool IsConvOrMatMul(const NodeDef& node) { return IsConv2D(node) || IsDepthwiseConv2dNative(node) || IsMatMul(node) || IsConv3D(node); } bool IsBiasSemanticAdd(const RemapperContext& ctx, const utils::MutableNodeView& node_view, int& bias_port) { if (!IsMKLEnabled()) return false; const auto* node_def = node_view.node(); if (!NodeIsOnCpu(node_def)) return false; if (!IsAdd(*node_def) || node_view.NumRegularFanins() != 2) return false; const auto& props = ctx.graph_properties.GetInputProperties(node_def->name()); if (props.size() < 2) return false; const auto& regular_fanin_0 = node_view.GetRegularFanin(0); const auto* node_view_0 = regular_fanin_0.node_view(); const auto* node_def_0 = node_view_0->node(); const auto& regular_fanin_1 = node_view.GetRegularFanin(1); const auto* node_view_1 = regular_fanin_1.node_view(); const auto* node_def_1 = node_view_1->node(); if (!IsConvOrMatMul(*node_def_0) && !IsConvOrMatMul(*node_def_1)) return false; auto is_channel_last_format = [](const NodeDef& node) -> bool { if (node.attr().contains("data_format")) { const string data_format = node.attr().at("data_format").s(); return (data_format == "NHWC" || data_format == "NDHWC"); } return true; }; if (!is_channel_last_format(*node_def_0) || !is_channel_last_format(*node_def_1)) return false; const TensorShapeProto& prot0_shape = props[0].shape(); const TensorShapeProto& prot1_shape = props[1].shape(); if (prot0_shape.unknown_rank() || prot1_shape.unknown_rank() || prot0_shape.dim_size() < 1 || prot1_shape.dim_size() < 1 || !IsKnown(prot0_shape.dim(prot0_shape.dim_size() - 1)) || !IsKnown(prot1_shape.dim(prot1_shape.dim_size() - 1))) return false; const auto is_supported_shape = [&](const TensorShapeProto& shape, const TensorShapeProto& bcast_shape) -> bool { int conv_channel_dim; conv_channel_dim = shape.dim(shape.dim_size() - 1).size(); if (shape.dim_size() == 4 && bcast_shape.dim_size() > 4) return false; if (shape.dim_size() == 5 && bcast_shape.dim_size() > 5) return false; if (shape.dim_size() < 2) return false; if (conv_channel_dim != bcast_shape.dim(bcast_shape.dim_size() - 1).size()) return false; for (int i = 0; i < bcast_shape.dim_size() - 1; i++) { if (1 != bcast_shape.dim(i).size()) return false; } return true; }; if (ShapesSymbolicallyEqual(prot0_shape, prot1_shape) || !ShapesBroadcastable(prot0_shape, prot1_shape)) return false; if (IsConvOrMatMul(*node_def_0)) { bias_port = 1; return (is_supported_shape(prot0_shape, prot1_shape)); } else if (IsConvOrMatMul(*node_def_1)) { bias_port = 0; return (is_supported_shape(prot1_shape, prot0_shape)); } return false; } void AddInputShapesAttr(const RemapperContext& ctx, int node_index) { auto mutable_node = ctx.graph_view.graph()->mutable_node(node_index); AttrValue attr_input_shape; auto tensor_properties = ctx.graph_properties.GetInputProperties(mutable_node->name()); for (const auto& tensor_property : tensor_properties) { TensorShapeProto* proto = attr_input_shape.mutable_list()->add_shape(); *proto = tensor_property.shape(); } if (IsMKLEnabled() && !tensor_properties.empty()) { (*mutable_node->mutable_attr())["_input_shapes"] = std::move(attr_input_shape); } } bool FindContractionWithBias(const RemapperContext& ctx, int node_index, ContractionWithBiasAdd* matched, bool check_device_compatible = true) { const auto* node_view = ctx.graph_view.GetNode(node_index); if (HasControlFaninOrFanout(*node_view)) return false; const auto* node_def = node_view->node(); int bias_port = 1; if (!IsBiasAdd(*node_def) && !IsBiasSemanticAdd(ctx, *node_view, bias_port)) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(1 - bias_port); const auto* contraction_node_view = regular_fanin_0.node_view(); const auto* contraction_node_def = contraction_node_view->node(); bool is_contraction = IsConv2D(*contraction_node_def) || (IsConv3D(*contraction_node_def) && IsMKLEnabled()) || IsMatMul(*contraction_node_def) || IsDepthwiseConv2dNative(*contraction_node_def); #ifdef DNNL_AARCH64_USE_ACL if (IsDepthwiseConv2dNative(*contraction_node_def)) is_contraction = false; #endif if (!is_contraction || !HaveSameDataType(node_def, contraction_node_def) || HasControlFaninOrFanout(*contraction_node_view) || !HasAtMostOneFanoutAtPort0(*contraction_node_view) || IsInPreserveSet(ctx, contraction_node_def)) return false; const ContractionWithBiasAdd pattern{contraction_node_view->node_index(), node_index, bias_port}; if (check_device_compatible && !IsDeviceCompatible(ctx, pattern)) return false; *matched = pattern; return true; } bool FindFusedConvWithFusedActivation(const RemapperContext& ctx, int node_index, ContractionWithActivation* matched) { const auto* node_view = ctx.graph_view.GetNode(node_index); if (HasControlFaninOrFanout(*node_view)) return false; const auto* node_def = node_view->node(); if (!NodeIsOnCpu(node_def) && !IsMKLEnabled()) return false; if (!IsLeakyRelu(*node_def) && !IsMklFusedMish(*node_def)) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* contraction_node_view = regular_fanin_0.node_view(); const auto* contraction_node_def = contraction_node_view->node(); if (!(contraction_node_def->op() == kFusedConv2D || contraction_node_def->op() == kFusedConv3D)) return false; auto contraction_fused_ops_list = contraction_node_def->attr().at("fused_ops").list().s(); for (auto it = contraction_fused_ops_list.begin(); it != contraction_fused_ops_list.end(); it++) { if (*it == kLeakyRelu || *it == kMklFusedMish || *it == kRelu || *it == kRelu6 || *it == kElu) { return false; } } const ContractionWithActivation pattern{contraction_node_view->node_index(), node_view->node_index()}; *matched = pattern; return true; } bool FindContractionWithBiasAndActivation( const RemapperContext& ctx, Cluster* cluster, int node_index, ContractionWithBiasAddAndActivation* matched) { const auto* node_view = ctx.graph_view.GetNode(node_index); if (HasControlFaninOrFanout(*node_view)) return false; const auto* node_def = node_view->node(); if (!IsSupportedActivation(*node_def, cluster)) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* bias_add_node_view = regular_fanin_0.node_view(); const auto* bias_add_node_def = bias_add_node_view->node(); ContractionWithBiasAdd base; if (!FindContractionWithBias(ctx, bias_add_node_view->node_index(), &base, false) || !HasAtMostOneFanoutAtPort0(*bias_add_node_view) || !HaveSameDataType(node_def, bias_add_node_def) || IsInPreserveSet(ctx, bias_add_node_def)) return false; const auto* contraction_node_view = bias_add_node_view->GetRegularFanin(1 - base.bias_port).node_view(); const auto* contraction_node_def = contraction_node_view->node(); if (!IsMatMul(*contraction_node_def) && (IsTanh(*node_def) || IsSigmoid(*node_def))) return false; if (!(IsConv2D(*contraction_node_def) || IsMatMul(*contraction_node_def) || (IsConv3D(*contraction_node_def) && IsMKLEnabled())) && IsLeakyRelu(*node_def)) return false; const ContractionWithBiasAddAndActivation pattern{ base.contraction, base.bias_add, node_index, base.bias_port}; if (!IsDeviceCompatible(ctx, pattern, cluster)) return false; *matched = pattern; return true; } bool FindConvWithSqueezeAndBias(const RemapperContext& ctx, int node_index, ContractionWithSqueezeAndBiasAdd* matched) { const auto* node_view = ctx.graph_view.GetNode(node_index); if (HasControlFaninOrFanout(*node_view)) return false; const auto* node_def = node_view->node(); if (!IsBiasAdd(*node_def)) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* squeeze_node_view = regular_fanin_0.node_view(); const auto* squeeze_node_def = squeeze_node_view->node(); if (!IsSqueeze(*squeeze_node_def) || !HaveSameDataType(node_def, squeeze_node_def, "T") || HasControlFaninOrFanout(*squeeze_node_view) || !HasAtMostOneFanoutAtPort0(*squeeze_node_view) || IsInPreserveSet(ctx, squeeze_node_def)) return false; if (squeeze_node_view->NumRegularFanins() < 1) return false; const auto& squeeze_regular_fanin_0 = squeeze_node_view->GetRegularFanin(0); const auto* conv_node_view = squeeze_regular_fanin_0.node_view(); const auto* conv_node_def = conv_node_view->node(); if (!(IsConv2D(*conv_node_def) || (IsConv3D(*conv_node_def) && IsMKLEnabled())) || !HaveSameDataType(node_def, conv_node_def, "T") || HasControlFaninOrFanout(*conv_node_view) || !HasAtMostOneFanoutAtPort0(*conv_node_view) || IsInPreserveSet(ctx, conv_node_def)) return false; std::vector<int32> dims; if (!TryGetNodeAttr(*squeeze_node_def, "squeeze_dims", &dims)) return false; for (auto dim : dims) { if ((dim == 3 && IsConv2D(*conv_node_def)) || (dim == 4 && IsConv3D(*conv_node_def))) return false; } const ContractionWithSqueezeAndBiasAdd pattern{ conv_node_view->node_index(), squeeze_node_view->node_index(), node_index}; if (!IsDeviceCompatible(ctx, pattern)) return false; *matched = pattern; return true; } bool FindConv2DWithBatchNorm(const RemapperContext& ctx, int node_index, ContractionWithBatchNorm* matched) { const auto* node_view = ctx.graph_view.GetNode(node_index); const auto* node_def = node_view->node(); if (!IsFusedBatchNorm(*node_def)) return false; bool dtypeU_is_float = HasDataType(node_def, DT_FLOAT, "U"); bool dtypeT_is_bf16 = HasDataType(node_def, DT_BFLOAT16, "T"); bool dtypeT_is_mkl_fp16 = IsMKLEnabled() && HasDataType(node_def, DT_HALF, "T"); if (node_view->GetOp() != "FusedBatchNorm" && (!dtypeU_is_float || dtypeT_is_bf16 || dtypeT_is_mkl_fp16)) { return false; } const auto* training_attr = node_view->GetAttr(kIsTraining); if (training_attr != nullptr && training_attr->b()) return false; if (HasControlFaninOrFanout(*node_view) || !node_view->GetRegularFanout(1).empty() || !node_view->GetRegularFanout(2).empty() || !node_view->GetRegularFanout(3).empty() || !node_view->GetRegularFanout(4).empty()) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* conv2d_node_view = regular_fanin_0.node_view(); const auto* conv2d_node_def = conv2d_node_view->node(); if (NodeIsOnCpu(conv2d_node_def) && ctx.xla_cpu_jit_disable_fusion) { return false; } if (!IsConv2D(*conv2d_node_def) || !NodeIsOnCpu(conv2d_node_def) || !HaveSameDataType(node_def, conv2d_node_def) || !IsCpuCompatibleDataType(conv2d_node_def) || !IsCpuCompatibleDataFormat(ctx, conv2d_node_def) || HasControlFaninOrFanout(*conv2d_node_view) || !HasAtMostOneFanoutAtPort0(*conv2d_node_view) || IsInPreserveSet(ctx, conv2d_node_def)) return false; matched->contraction = conv2d_node_view->node_index(); matched->fused_batch_norm = node_index; if (!TryGetNodeAttr(*node_def, "epsilon", &matched->epsilon)) return false; return true; } bool FindConv2DWithBatchNormAndActivation( const RemapperContext& ctx, int node_index, ContractionWithBatchNormAndActivation* matched) { const auto* node_view = ctx.graph_view.GetNode(node_index); if (HasControlFaninOrFanout(*node_view)) return false; const auto* node_def = node_view->node(); if (!IsSupportedActivation(*node_def, nullptr)) return false; if (IsSigmoid(*node_def)) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* batch_norm_node_view = regular_fanin_0.node_view(); ContractionWithBatchNorm base; if (!FindConv2DWithBatchNorm(ctx, batch_norm_node_view->node_index(), &base)) return false; const auto* fused_batch_norm_node_view = ctx.graph_view.GetNode(base.fused_batch_norm); const auto* fused_batch_norm_node_def = fused_batch_norm_node_view->node(); if (!HasAtMostOneFanoutAtPort0(*fused_batch_norm_node_view) || !HaveSameDataType(node_def, fused_batch_norm_node_def) || IsInPreserveSet(ctx, fused_batch_norm_node_def)) return false; matched->contraction = base.contraction; matched->fused_batch_norm = base.fused_batch_norm; matched->activation = node_index; matched->epsilon = base.epsilon; return true; } bool FindContractionWithBiasInPort(const RemapperContext& ctx, const utils::MutableNodeView& add_node_view, const NodeDef& add_node_def, int port_id, ContractionWithBiasAdd* base, const int allowed_fanouts = 1) { if (add_node_view.NumRegularFanins() < port_id + 1) return false; const auto& bias_add_node_view = add_node_view.GetRegularFanin(port_id).node_view(); if (bias_add_node_view == nullptr) return false; const auto* bias_add_node_def = bias_add_node_view->node(); if (!FindContractionWithBias(ctx, bias_add_node_view->node_index(), base, false)) return false; if (bias_add_node_view->GetRegularFanout(0).size() > allowed_fanouts || !HaveSameDataType(&add_node_def, bias_add_node_def) || IsInPreserveSet(ctx, bias_add_node_def)) return false; return true; } bool IsAddWithNoBroadcast(const RemapperContext& ctx, const NodeDef& node) { if (!IsAdd(node)) return false; const auto& props = ctx.graph_properties.GetInputProperties(node.name()); if (props.size() == 2 && ShapesSymbolicallyEqual(props[0].shape(), props[1].shape())) { return true; } return false; } bool FindPadWithConv3D(const RemapperContext& ctx, int node_index, PadWithConv3D* matched) { if (!IsMKLEnabled()) return false; const auto* node_view = ctx.graph_view.GetNode(node_index); const auto* node_def = node_view->node(); if (!NodeIsOnCpu(node_def)) return false; if (!(IsConv3D(*node_def) || node_def->op() == kFusedConv3D)) return false; if (!(HasDataType(node_def, DT_FLOAT) || HasDataType(node_def, DT_BFLOAT16) || HasDataType(node_def, DT_HALF))) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* pad_node_view = regular_fanin_0.node_view(); const auto* pad_node_def = pad_node_view->node(); const auto& padding_const = pad_node_view->GetRegularFanin(1); const auto* padding_const_node_view = padding_const.node_view(); if (!(pad_node_def->op() == "Pad") || !HaveSameDataType(node_def, pad_node_def)) return false; const PadWithConv3D pattern{node_view->node_index(), pad_node_view->node_index(), padding_const_node_view->node_index()}; *matched = pattern; return true; } bool FindContractionWithBiasAddAndAdd(const RemapperContext& ctx, const utils::MutableNodeView& node_view, ContractionWithBiasAddAndAdd* matched) { if (HasControlFaninOrFanout(node_view) || node_view.NumRegularFanins() != 2) return false; const auto* node_def = node_view.node(); if (!IsAddN(*node_def) && !IsAddWithNoBroadcast(ctx, *node_def)) return false; if (!NodeIsOnCpu(node_def)) return false; if (!(HasDataType(node_def, DT_FLOAT) || HasDataType(node_def, DT_BFLOAT16) || HasDataType(node_def, DT_HALF))) return false; ContractionWithBiasAdd base; matched->port_id = 0; if (!FindContractionWithBiasInPort(ctx, node_view, *node_def, matched->port_id, &base)) { matched->port_id = 1; if (!FindContractionWithBiasInPort(ctx, node_view, *node_def, matched->port_id, &base)) { return false; } } matched->contraction = base.contraction; matched->bias_add = base.bias_add; matched->add = node_view.node_index(); matched->bias_port = base.bias_port; return true; } bool FindContractionWithBiasAddAndAdd(const RemapperContext& ctx, int node_index, ContractionWithBiasAddAndAdd* matched) { const auto* node_view = ctx.graph_view.GetNode(node_index); return FindContractionWithBiasAddAndAdd(ctx, *node_view, matched); } bool FindContractionWithBiasAndAddActivation( const RemapperContext& ctx, int node_index, ContractionWithBiasAndAddActivation* matched) { const auto* node_view = ctx.graph_view.GetNode(node_index); if (HasControlFaninOrFanout(*node_view)) return false; const auto* node_def = node_view->node(); if (node_def == nullptr) return false; if (!IsSupportedActivation(*node_def, nullptr)) return false; if (!NodeIsOnCpu(node_def)) return false; if (IsTanh(*node_def)) return false; if (IsSigmoid(*node_def)) return false; if (!(HasDataType(node_def, DT_FLOAT) || HasDataType(node_def, DT_BFLOAT16) || HasDataType(node_def, DT_HALF))) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* add_node_view = regular_fanin_0.node_view(); ContractionWithBiasAddAndAdd base; if (!FindContractionWithBiasAddAndAdd(ctx, *add_node_view, &base)) { return false; } const auto* bias_add_node_view = add_node_view->GetRegularFanin(base.port_id).node_view(); const auto* contraction_node_view = bias_add_node_view->GetRegularFanin(0).node_view(); const auto* contraction_node_def = contraction_node_view->node(); if (!(IsConv2D(*contraction_node_def) || IsConv3D(*contraction_node_def)) && IsLeakyRelu(*node_def)) return false; if (IsConv3D(*contraction_node_def) && !IsMKLEnabled()) return false; const ContractionWithBiasAndAddActivation pattern{ base.contraction, base.bias_add, base.add, base.port_id, node_index, base.bias_port}; *matched = pattern; return true; } bool FindConv2DSwish(RemapperContext* ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices) { using utils::MatchingDirection; using utils::NodeStatus; utils::OpTypePattern conv2dbiasaddswish_pattern{ "Mul", "mulToswish", NodeStatus::kReplace, { { "Sigmoid", "sigmoid", NodeStatus::kRemove, { { "BiasAdd", "biasadd", NodeStatus::kRemove, { { "Conv2D", "conv", NodeStatus::kRemove}, { "*", "bias", NodeStatus::kRemain} } } } }, { "BiasAdd", "biasadd", NodeStatus::kRemove} } }; utils::OpTypePattern conv2dbatchnormswish_pattern{ "Mul", "mulToswish", NodeStatus::kReplace, { { "Sigmoid", "sigmoid", NodeStatus::kRemove, { { "FusedBatchNorm", "fusebatchnorm", NodeStatus::kRemove, { { "Conv2D", "conv", NodeStatus::kRemove}, { "*", "scale", NodeStatus::kRemain}, { "*", "offset", NodeStatus::kRemain}, { "*", "mean", NodeStatus::kRemain}, { "*", "var", NodeStatus::kRemain} } } } }, { "FusedBatchNorm", "fusebatchnorm", NodeStatus::kRemove} } }; utils::OpTypePattern conv2dbatchnormv2swish_pattern{ "Mul", "mulToswish", NodeStatus::kReplace, { { "Sigmoid", "sigmoid", NodeStatus::kRemove, { { "FusedBatchNormV2", "fusebatchnorm", NodeStatus::kRemove, { { "Conv2D", "conv", NodeStatus::kRemove}, { "*", "scale", NodeStatus::kRemain}, { "*", "offset", NodeStatus::kRemain}, { "*", "mean", NodeStatus::kRemain}, { "*", "var", NodeStatus::kRemain} } } } }, { "FusedBatchNormV2", "fusebatchnorm", NodeStatus::kRemove} } }; utils::OpTypePattern conv2dbatchnormv3swish_pattern{ "Mul", "mulToswish", NodeStatus::kReplace, { { "Sigmoid", "sigmoid", NodeStatus::kRemove, { { "FusedBatchNormV3", "fusebatchnorm", NodeStatus::kRemove, { { "Conv2D", "conv", NodeStatus::kRemove}, { "*", "scale", NodeStatus::kRemain}, { "*", "offset", NodeStatus::kRemain}, { "*", "mean", NodeStatus::kRemain}, { "*", "var", NodeStatus::kRemain} } } } }, { "FusedBatchNormV3", "fusebatchnorm", NodeStatus::kRemove} } }; auto* mul_node_def = ctx->graph_view.GetNode(node_index)->node(); if (!(HasDataType(mul_node_def, DT_FLOAT) || HasDataType(mul_node_def, DT_HALF) || HasDataType(mul_node_def, DT_BFLOAT16))) return false; if (!NodeIsOnCpu(mul_node_def)) return false; bool found_op_type_match = false; bool is_biasadd_pattern = false; utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = graph_matcher.GetMatchedNodes( conv2dbiasaddswish_pattern, {}, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); is_biasadd_pattern = found_op_type_match; if (!found_op_type_match) { utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = graph_matcher.GetMatchedNodes( conv2dbatchnormswish_pattern, {}, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); } if (!found_op_type_match) { utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = graph_matcher.GetMatchedNodes( conv2dbatchnormv2swish_pattern, {}, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); } if (!found_op_type_match) { utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = graph_matcher.GetMatchedNodes( conv2dbatchnormv3swish_pattern, {}, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); } if (found_op_type_match) { NodeDef* conv2d_node = ctx->graph_view.GetNode(matched_nodes_map->at("conv"))->node(); if (!IsCpuCompatibleConv2D(*ctx, conv2d_node)) return false; if (!is_biasadd_pattern) { NodeDef* fusedbatchnorm_node = ctx->graph_view.GetNode(matched_nodes_map->at("fusebatchnorm")) ->node(); bool is_training = true; if (!TryGetNodeAttr(*fusedbatchnorm_node, kIsTraining, &is_training) || is_training) return false; if (fusedbatchnorm_node->op() != "FusedBatchNorm" && (!HasDataType(fusedbatchnorm_node, DT_FLOAT, "U") || (HasDataType(fusedbatchnorm_node, DT_FLOAT, "U") && !HasDataType(fusedbatchnorm_node, DT_FLOAT, "T")))) { return false; } } } return found_op_type_match; } inline bool VerifyConstants(RemapperContext* ctx, std::map<string, int>* nodes_map, std::map<string, float>* values_map) { using utils::MutableNodeView; for (auto it = values_map->begin(); it != values_map->end(); ++it) { int node_idx = nodes_map->at(it->first); MutableNodeView* node_view = ctx->graph_view.GetNode(node_idx); NodeDef* node_def = node_view->node(); Tensor const_tensor; if (node_def != nullptr && node_def->op() == "Cast") { const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* regular_node_view = regular_fanin_0.node_view(); node_def = regular_node_view->node(); } if (node_def == nullptr || node_def->op() != "Const" || !const_tensor.FromProto(node_def->attr().at("value").tensor()) || const_tensor.NumElements() != 1) { return false; } DataType dtype = const_tensor.dtype(); float const_value; if (dtype == DT_FLOAT) { const_value = const_tensor.flat<float>()(0); } else if (dtype == DT_BFLOAT16) { const_value = static_cast<float>(const_tensor.flat<bfloat16>()(0)); } else if (dtype == DT_HALF) { const_value = static_cast<float>(const_tensor.flat<Eigen::half>()(0)); } else { return false; } if (std::abs(const_value - it->second) > 1e-2) return false; } return true; } bool IsMatchedMatMulBiasAddAndGeluExact( RemapperContext& ctx, int node_index, std::map<string, int>* matched_nodes_map = nullptr, std::set<int>* remove_node_indices = nullptr) { auto* node_view = ctx.graph_view.GetNode(node_index); using utils::MatchingDirection; using utils::NodeStatus; static utils::OpTypePattern* gelu_exact_pattern = new utils::OpTypePattern {"Mul", "output", NodeStatus::kReplace, { {"Mul", "erf_plus_one_times_one_half", NodeStatus::kRemove, { {"Add|AddV2", "erf_plus_one", NodeStatus::kRemove, { {"Erf", "erf", NodeStatus::kRemove, { {"Mul", "bias_add_x_sqrt_one_half", NodeStatus::kRemove, { {"BiasAdd", "bias_add", NodeStatus::kRemove}, {"Cast|Const", "sqrt_one_half", NodeStatus::kRemain} } } } }, {"Cast|Const", "one", NodeStatus::kRemain} } }, {"Cast|Const", "one_half", NodeStatus::kRemain} } }, {"BiasAdd", "bias_add", NodeStatus::kRemove, { {"MatMul", "matmul", NodeStatus::kRemove}, {"*", "bias", NodeStatus::kRemain} } } } }; static utils::OpTypePattern* gelu_exact_pattern2 = new utils::OpTypePattern {"Mul", "output", NodeStatus::kReplace, { {"Add|AddV2", "erf_plus_one", NodeStatus::kRemove, { {"Erf", "erf", NodeStatus::kRemove, { {"Mul", "bias_add_x_sqrt_one_half", NodeStatus::kRemove, { {"BiasAdd", "bias_add", NodeStatus::kRemove}, {"Cast|Const", "sqrt_one_half", NodeStatus::kRemain} } } } }, {"Cast|Const", "one", NodeStatus::kRemain} } }, {"Mul", "erf_plus_one_times_one_half", NodeStatus::kRemove, { {"BiasAdd", "bias_add", NodeStatus::kRemove, { {"MatMul", "matmul", NodeStatus::kRemove}, {"*", "bias", NodeStatus::kRemain} } }, {"Cast|Const", "one_half", NodeStatus::kRemain} } } } }; utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx.graph_view)); std::map<string, int> dummy_matched_nodes_map; std::set<int> dummy_remove_node_indices; if (!matched_nodes_map) matched_nodes_map = &dummy_matched_nodes_map; if (!remove_node_indices) remove_node_indices = &dummy_remove_node_indices; if (graph_matcher.GetMatchedNodes(*gelu_exact_pattern, ctx.nodes_to_preserve, node_view, matched_nodes_map, remove_node_indices)) { return true; } matched_nodes_map->clear(); remove_node_indices->clear(); return graph_matcher.GetMatchedNodes(*gelu_exact_pattern2, ctx.nodes_to_preserve, node_view, matched_nodes_map, remove_node_indices); } bool FindMatMulBiasAddAndGelu(RemapperContext* ctx, int node_index, const Cluster* cluster, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices, bool* is_gelu_approximate) { if (!IsMKLEnabled() && !BlasLtMatmulEnabled() && !RuntimeFusionEnabled(cluster)) return false; using utils::MatchingDirection; using utils::NodeStatus; bool found_gelu_exact = false; bool found_gelu_approximate = false; matched_nodes_map->clear(); remove_node_indices->clear(); found_gelu_exact = IsMatchedMatMulBiasAddAndGeluExact( *ctx, node_index, matched_nodes_map, remove_node_indices); if (!found_gelu_exact) { utils::OpTypePattern subgraph_gpu = {"Mul", "mul", NodeStatus::kRemove, { {"Pow", "pow", NodeStatus::kRemove, { {"_FusedMatMul", "matmul", NodeStatus::kRemove}, {"Const", "three", NodeStatus::kRemain} } }, {"Const", "empirical_const", NodeStatus::kRemain} } }; utils::OpTypePattern subgraph_cpu = {"Mul", "mul", NodeStatus::kRemove, { {"Mul", "empirical_const_times_matmul", NodeStatus::kRemove, { {"Const", "empirical_const", NodeStatus::kRemain}, {"_FusedMatMul", "matmul", NodeStatus::kRemove} } }, {"Square", "square", NodeStatus::kRemove, { {"_FusedMatMul", "matmul", NodeStatus::kRemove} } } } }; utils::MutableNodeView* node_view = ctx->graph_view.GetNode(node_index); const NodeDef* node_def = node_view->node(); bool root_on_gpu = NodeIsOnGpu(node_def); utils::OpTypePattern* subgraph_pattern = root_on_gpu ? &subgraph_gpu : &subgraph_cpu; utils::OpTypePattern gelu_approximate_pattern = {"Mul", "output", NodeStatus::kReplace, { {"Mul", "tanh_plus_one_times_one_half", NodeStatus::kRemove, { {"AddV2", "tanh_plus_one", NodeStatus::kRemove, { {"Tanh", "tanh", NodeStatus::kRemove, { {"Mul", "matmul_plus_mul_times_square_root_two_over_pi", NodeStatus::kRemove, { {"AddV2", "matmul_plus_mul", NodeStatus::kRemove, { {"_FusedMatMul", "matmul", NodeStatus::kRemove}, *subgraph_pattern } }, {"Const", "square_root_two_over_pi", NodeStatus::kRemain} } } } }, {"Const", "one", NodeStatus::kRemain} } }, {"Const", "one_half", NodeStatus::kRemain} } }, {"_FusedMatMul", "matmul", NodeStatus::kRemove} } }; utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); matched_nodes_map->clear(); remove_node_indices->clear(); found_gelu_approximate = graph_matcher.GetMatchedNodes( gelu_approximate_pattern, ctx->nodes_to_preserve, node_view, matched_nodes_map, remove_node_indices); } if (found_gelu_exact) { NodeDef* matmul_node = ctx->graph_view.GetNode(matched_nodes_map->at("matmul"))->node(); if (NodeIsOnCpu(matmul_node) && ctx->xla_cpu_jit_disable_fusion) { return false; } DataType matmul_dtype = GetDataTypeFromAttr(*matmul_node, "T"); bool cpu_ok = IsMKLEnabled() && IsCpuCompatibleMatMul(*ctx, matmul_node); cpu_ok = cpu_ok && matmul_node->attr().contains("transpose_a") && !matmul_node->attr().at("transpose_a").b(); bool gpu_ok = NodeIsOnGpu(matmul_node) && RuntimeFusionEnabled(cluster) && matmul_dtype == DT_HALF; if (!cpu_ok && !gpu_ok) return false; if (gpu_ok) { const std::vector<OpInfo::TensorProperties>& input_props = ctx->graph_properties.GetInputProperties(matmul_node->name()); const TensorShapeProto& a_shape = !input_props.empty() ? input_props[0].shape() : TensorShapeProto(); const TensorShapeProto& b_shape = !input_props.empty() ? input_props[1].shape() : TensorShapeProto(); bool valid_dims = Rank(a_shape) == 2 && Rank(b_shape) == 2 && IsKnown(a_shape.dim(1)) && IsKnown(b_shape.dim(1)) && a_shape.dim(1).size() % 2 == 0 && b_shape.dim(1).size() % 2 == 0; if (!valid_dims) return false; } std::map<string, float> values_map = { {"sqrt_one_half", 0.707106}, {"one", 1.0}, {"one_half", 0.5}}; if (!VerifyConstants(ctx, matched_nodes_map, &values_map)) return false; } else if (found_gelu_approximate) { NodeDef* matmul_node = ctx->graph_view.GetNode(matched_nodes_map->at("matmul"))->node(); if (NodeIsOnCpu(matmul_node) && ctx->xla_cpu_jit_disable_fusion) { return false; } if (!IsMKLEnabled() && !NodeIsOnGpu(matmul_node)) return false; if (NodeIsOnCpu(matmul_node) && matmul_node->attr().contains("transpose_a") && matmul_node->attr().at("transpose_a").b()) { return false; } auto fused_ops = matmul_node->attr().at("fused_ops").list().s(); if (fused_ops.size() == 1) { if (fused_ops.at(0) != "BiasAdd") return false; } else { return false; } std::map<string, float> values_map = {{"square_root_two_over_pi", 0.797884}, {"one", 1.0}, {"one_half", 0.5}, {"empirical_const", 0.044715}}; if (NodeIsOnGpu(matmul_node)) { values_map["three"] = 3.0; } if (!VerifyConstants(ctx, matched_nodes_map, &values_map)) return false; } else { return false; } *is_gelu_approximate = found_gelu_approximate ? true : false; return (found_gelu_exact || found_gelu_approximate); } bool FindMulAndMaximum(RemapperContext* ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices, float* alpha) { using utils::MatchingDirection; using utils::NodeStatus; utils::OpTypePattern mulmax_pattern{ "Maximum", "max_to_leakyrelu", NodeStatus::kReplace, { { "Mul", "mul", NodeStatus::kRemove, { { "*", "input", NodeStatus::kRemain}, { "Const|Cast", "alpha", NodeStatus::kRemain} } }, { "*", "input", NodeStatus::kRemain} } }; auto* max_node_def = ctx->graph_view.GetNode(node_index)->node(); if (!HasDataType(max_node_def, DT_HALF) && !HasDataType(max_node_def, DT_BFLOAT16) && !HasDataType(max_node_def, DT_FLOAT) && !HasDataType(max_node_def, DT_DOUBLE)) return false; if (!NodeIsOnCpu(max_node_def) && !IsMKLEnabled()) return false; bool found_op_type_match = false; utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = graph_matcher.GetMatchedNodes( mulmax_pattern, {}, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); if (found_op_type_match) { const auto* alpha_node_view = ctx->graph_view.GetNode(matched_nodes_map->at("alpha")); const auto* alpha_node_def = alpha_node_view->node(); if (alpha_node_def != nullptr && alpha_node_def->op() == "Cast") { const auto& regular_fanin_0 = alpha_node_view->GetRegularFanin(0); const auto* regular_node_view = regular_fanin_0.node_view(); alpha_node_def = regular_node_view->node(); } Tensor alpha_tensor; if (alpha_node_def == nullptr || alpha_node_def->op() != "Const" || !alpha_tensor.FromProto(alpha_node_def->attr().at("value").tensor()) || alpha_tensor.NumElements() != 1) { return false; } DataType dtype = alpha_tensor.dtype(); float alpha_val; if (dtype == DT_FLOAT) { alpha_val = alpha_tensor.flat<float>()(0); } else if (dtype == DT_BFLOAT16) { alpha_val = static_cast<float>(alpha_tensor.flat<bfloat16>()(0)); } else if (dtype == DT_HALF) { alpha_val = static_cast<float>(alpha_tensor.flat<Eigen::half>()(0)); } else { return false; } if (alpha_val < 0) return false; *alpha = alpha_val; } return found_op_type_match; } bool FindSigmoidAndMul(RemapperContext* ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices) { if (!IsMKLEnabled()) return false; using utils::MatchingDirection; using utils::NodeStatus; utils::OpTypePattern sigmoidmul_pattern{ "Mul", "mul_to_swish", NodeStatus::kReplace, { { "Sigmoid", "sigmoid", NodeStatus::kRemove, { { "*", "input", NodeStatus::kRemain} } }, { "*", "input", NodeStatus::kRemain} } }; auto* mul_node_def = ctx->graph_view.GetNode(node_index)->node(); if (!(HasDataType(mul_node_def, DT_FLOAT) || HasDataType(mul_node_def, DT_HALF) || HasDataType(mul_node_def, DT_BFLOAT16))) return false; if (!NodeIsOnCpu(mul_node_def)) return false; bool found_op_type_match = false; utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = graph_matcher.GetMatchedNodes( sigmoidmul_pattern, {}, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); if (found_op_type_match) { NodeDef* matched_sigmoid_node = ctx->graph_view.GetNode(matched_nodes_map->at("sigmoid"))->node(); auto in_tensor_sigmoid = matched_sigmoid_node->input(0); if ((mul_node_def->input(0) != in_tensor_sigmoid) && (mul_node_def->input(1) != in_tensor_sigmoid)) { found_op_type_match = false; } } return found_op_type_match; } bool IsCommonNormPattern(RemapperContext* ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices) { using utils::MatchingDirection; using utils::NodeStatus; utils::OpTypePattern subgraph_pattern = {"Rsqrt", "rsqrt", NodeStatus::kRemove, { {"AddV2|Add", "add", NodeStatus::kRemove, { {"Mean", "mean0", NodeStatus::kRemove, { {"SquaredDifference", "squareddiff", NodeStatus::kRemove, { {"*", "input", NodeStatus::kRemain}, {"Mean", "mean1", NodeStatus::kRemove, { {"*", "input", NodeStatus::kRemain}, {"Const", "r_indices1", NodeStatus::kRemain} } } } }, {"Const", "r_indices0", NodeStatus::kRemain} } }, {"Const", "epsilon", NodeStatus::kRemain} } } } }; utils::OpTypePattern common_norm_pattern = {"AddV2|Add", "output", NodeStatus::kReplace, { {"Mul", "mul0", NodeStatus::kRemove, { {"*", "input", NodeStatus::kRemain}, {"Mul", "mul1", NodeStatus::kRemove, { subgraph_pattern, {"Const", "gamma", NodeStatus::kRemain} } } } }, {"Sub", "sub0", NodeStatus::kRemove, { {"Const", "beta", NodeStatus::kRemain}, {"Mul", "mul2", NodeStatus::kRemove, { {"Mul", "mul1", NodeStatus::kRemove}, {"Mean", "mean1", NodeStatus::kRemove} } }, } } } }; utils::OpTypePattern common_norm_pattern_1 = {"AddV2|Add", "output", NodeStatus::kReplace, { {"Mul", "mul0", NodeStatus::kRemove, { {"Mul", "mul1", NodeStatus::kRemove, { {"Sub", "sub0", NodeStatus::kRemove, { {"*", "input", NodeStatus::kRemain}, {"Mean", "mean1", NodeStatus::kRemove, { {"*", "input", NodeStatus::kRemain}, {"Const", "r_indices1", NodeStatus::kRemain} } } } }, subgraph_pattern } }, {"*", "gamma", NodeStatus::kRemain} } }, {"*", "beta", NodeStatus::kRemain}, } }; utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); matched_nodes_map->clear(); remove_node_indices->clear(); bool found_op_type_match = graph_matcher.GetMatchedNodes(common_norm_pattern, {}, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices) || graph_matcher.GetMatchedNodes(common_norm_pattern_1, {}, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); return found_op_type_match; } bool FindMklLayerNorm(RemapperContext* ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices, std::vector<string>* input_node_names, float* epsilon) { if (!IsMKLEnabled()) return false; using utils::MatchingDirection; using utils::NodeStatus; utils::OpTypePattern layer_norm_pattern = {"AddV2", "output", NodeStatus::kReplace, { {"*", "beta", NodeStatus::kRemain}, {"Mul", "scale", NodeStatus::kRemove, { {"Reshape", "post_reshape", NodeStatus::kRemove, { {"FusedBatchNormV3", "fused_batch_norm", NodeStatus::kRemove, { {"Reshape", "pre_reshape", NodeStatus::kRemove, { {"*", "input", NodeStatus::kRemain}, {"*", "pre_shape", NodeStatus::kRemain} } }, {"Fill", "fill_scale", NodeStatus::kRemove, { {"*", "dims_fill_scale", NodeStatus::kRemain}, {"Const", "unit_gamma", NodeStatus::kRemain} } }, {"Fill", "fill_offset", NodeStatus::kRemove, { {"*", "dims_fill_offset", NodeStatus::kRemain}, {"Const", "zero_beta", NodeStatus::kRemain} } }, {"Const", "empty", NodeStatus::kRemain}, {"Const", "empty", NodeStatus::kRemain} } }, {"*", "post_shape", NodeStatus::kRemain} } }, {"*", "gamma", NodeStatus::kRemain} } } } }; utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); bool found_op_type_match = false; matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = graph_matcher.GetMatchedNodes(layer_norm_pattern, ctx->nodes_to_preserve, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); if (!found_op_type_match) { matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = IsCommonNormPattern( ctx, node_index, matched_nodes_map, remove_node_indices); } if (found_op_type_match) { if (!ctx->inferred_graph_properties) { Status s = ctx->graph_properties.InferStatically( true, false, true, true); if (!s.ok()) return false; ctx->inferred_graph_properties = true; } *epsilon = 0.001; if (matched_nodes_map->count("fused_batch_norm")) { NodeDef* fused_batch_norm_node = ctx->graph_view.GetNode(matched_nodes_map->at("fused_batch_norm")) ->node(); if (fused_batch_norm_node->attr().count("epsilon")) { *epsilon = fused_batch_norm_node->attr().at("epsilon").f(); } bool is_training = false; if (!TryGetNodeAttr(*fused_batch_norm_node, kIsTraining, &is_training) || !is_training) return false; NodeDef* empty_const_node = ctx->graph_view.GetNode(matched_nodes_map->at("empty"))->node(); Tensor const_tensor; if (empty_const_node != nullptr && empty_const_node->op() == "Const" && const_tensor.FromProto( empty_const_node->attr().at("value").tensor())) { if (const_tensor.NumElements() != 0) return false; } else { return false; } auto* pre_reshape_node = ctx->graph_view.GetNode(matched_nodes_map->at("pre_reshape"))->node(); auto* scale_node = ctx->graph_view.GetNode(matched_nodes_map->at("gamma"))->node(); auto* beta_node = ctx->graph_view.GetNode(matched_nodes_map->at("beta"))->node(); input_node_names->clear(); input_node_names->resize(3); input_node_names->at(0) = pre_reshape_node->input(0); input_node_names->at(1) = scale_node->name(); input_node_names->at(2) = beta_node->name(); } else { NodeDef* mean1_node = ctx->graph_view.GetNode(matched_nodes_map->at("mean1"))->node(); bool keep_dims = false; if (!mean1_node || !TryGetNodeAttr(*mean1_node, "keep_dims", &keep_dims) || !keep_dims) return false; NodeDef* mean_axis_node = ctx->graph_view.GetNode(matched_nodes_map->at("r_indices1"))->node(); if (!mean_axis_node) { VLOG(1) << "Unable to find reduction axis node"; return false; } Tensor mean_axis_tensor; if (!mean_axis_tensor.FromProto( mean_axis_node->attr().at("value").tensor())) { return false; } DataType dtype = mean_axis_tensor.dtype(); if (dtype != DT_INT32 && dtype != DT_INT64) return false; int expected_axis_count = 1; if (mean_axis_tensor.NumElements() != expected_axis_count) return false; NodeDef* input_node = ctx->graph_view.GetNode(matched_nodes_map->at("input"))->node(); auto input_node_props = ctx->graph_properties.GetOutputProperties(input_node->name()); int rank = Rank(input_node_props[0].shape()); if (dtype == DT_INT32) { if (static_cast<int32>(rank - 1) != mean_axis_tensor.flat<int32>()(0)) return false; } else { if (static_cast<int64>(rank - 1) != mean_axis_tensor.flat<int64>()(0)) return false; } auto* gamma_node = ctx->graph_view.GetNode(matched_nodes_map->at("gamma"))->node(); auto* beta_node = ctx->graph_view.GetNode(matched_nodes_map->at("beta"))->node(); input_node_names->clear(); input_node_names->resize(3); input_node_names->at(0) = mean1_node->input(0); input_node_names->at(1) = gamma_node->name(); input_node_names->at(2) = beta_node->name(); } NodeDef* input_node_def = ctx->graph_view.GetNode(matched_nodes_map->at("input"))->node(); auto input_props = ctx->graph_properties.GetOutputProperties(input_node_def->name()); NodeDef* output_node_def = ctx->graph_view.GetNode(matched_nodes_map->at("output"))->node(); auto output_props = ctx->graph_properties.GetOutputProperties(output_node_def->name()); if (ShapesSymbolicallyEqual(input_props[0].shape(), output_props[0].shape())) { int rank = Rank(input_props[0].shape()); if (rank < 2 || rank > 3) return false; } else { return false; } } return found_op_type_match; } bool FindFusedBatchNorm(const RemapperContext& ctx, int node_index, FusedBatchNorm* matched) { const auto* node_view = ctx.graph_view.GetNode(node_index); const auto* node_def = node_view->node(); if (ctx.xla_cpu_jit_disable_fusion && NodeIsOnCpu(node_def)) return false; if (!IsFusedBatchNorm(*node_def)) return false; if (GetDataTypeFromAttr(*node_def, "T") != DT_FLOAT) return false; bool is_training = true; if (!TryGetNodeAttr(*node_def, kIsTraining, &is_training)) return false; if (is_training) return false; const auto& props = ctx.graph_properties.GetInputProperties(node_def->name()); bool const_scaling_factor = props.size() == 5 && props[1].has_value() && props[4].has_value(); auto const_inputs = std::count_if( props.begin(), props.end(), [](const OpInfo::TensorProperties& props) { return props.has_value(); }); bool can_remap = const_scaling_factor || const_inputs >= 4; if (!can_remap) return false; if (node_view->GetRegularFanouts().size() > 1) { return false; } matched->fused_batch_norm = node_index; return true; } bool BatchnormSpatialPersistentEnabled() { #if CUDNN_VERSION >= 7402 static bool is_enabled = [] { bool is_enabled = false; TF_CHECK_OK(tensorflow::ReadBoolFromEnvVar( "TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT", false, &is_enabled)); return is_enabled; }(); return is_enabled; #else return false; #endif } bool FindFusedBatchNormEx(const RemapperContext& ctx, int node_index, FusedBatchNormEx* matched) { const auto* node_view = ctx.graph_view.GetNode(node_index); const auto* node_def = node_view->node(); if (!IsRelu(*node_def) || HasControlFaninOrFanout(*node_view)) return false; const auto valid_batch_norm = [&](const utils::MutableNodeView& fused_batch_norm) -> bool { const auto* fused_batch_norm_node_def = fused_batch_norm.node(); if (!IsFusedBatchNorm(*fused_batch_norm_node_def)) return false; if (!IsMKLEnabled() && !NodeIsOnGpu(fused_batch_norm_node_def)) return false; DataType t_dtype = GetDataTypeFromAttr(*fused_batch_norm_node_def, "T"); if (NodeIsOnGpu(fused_batch_norm_node_def)) { if (t_dtype != DT_FLOAT && t_dtype != DT_HALF) return false; } else { if (ctx.xla_cpu_jit_disable_fusion) return false; if (IsMKLEnabled() && !IsDataTypeSupportedByOneDNNOnThisCPU(t_dtype)) return false; } bool is_training; if (!GetNodeAttr(*fused_batch_norm_node_def, kIsTraining, &is_training) .ok()) return false; string data_format; if (!GetNodeAttr(*fused_batch_norm_node_def, kDataFormat, &data_format) .ok()) return false; if (data_format != "NHWC" && data_format != "NCHW") return false; if (is_training && NodeIsOnGpu(fused_batch_norm_node_def)) { if (data_format != "NHWC") return false; if (t_dtype != DT_HALF) return false; const auto& props = ctx.graph_properties.GetInputProperties( fused_batch_norm_node_def->name()); const bool valid_channel_dim = !props.empty() && props[0].shape().dim_size() == 4 && props[0].shape().dim(3).size() % 4 == 0; if (!valid_channel_dim) return false; if (!BatchnormSpatialPersistentEnabled()) return false; } if ((fused_batch_norm_node_def->op() != "FusedBatchNorm") && !HasDataType(fused_batch_norm_node_def, DT_FLOAT, "U")) return false; if (HasControlFaninOrFanout(fused_batch_norm) || !HasAtMostOneDataFanoutAtPort0(fused_batch_norm) || IsInPreserveSet(ctx, fused_batch_norm_node_def)) return false; return true; }; if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* relu_fanin_0_node_view = regular_fanin_0.node_view(); const auto* relu_fanin_0_node_def = relu_fanin_0_node_view->node(); if (valid_batch_norm(*relu_fanin_0_node_view)) { matched->activation = node_index; matched->fused_batch_norm = regular_fanin_0.node_index(); return true; } if (IsAdd(*relu_fanin_0_node_def)) { if (IsMKLEnabled() && !NodeIsOnGpu(node_def)) return false; if (HasControlFaninOrFanout(*relu_fanin_0_node_view) || !HasAtMostOneFanoutAtPort0(*relu_fanin_0_node_view) || IsInPreserveSet(ctx, relu_fanin_0_node_def)) return false; const auto& props = ctx.graph_properties.GetInputProperties(relu_fanin_0_node_def->name()); if (props.size() < 2 || !ShapesSymbolicallyEqual(props[0].shape(), props[1].shape())) return false; if (relu_fanin_0_node_view->NumRegularFanins() < 2) return false; const auto& add_regular_fanin_0 = relu_fanin_0_node_view->GetRegularFanin(0); const auto& add_regular_fanin_1 = relu_fanin_0_node_view->GetRegularFanin(1); if (valid_batch_norm(*add_regular_fanin_0.node_view())) { matched->activation = node_index; matched->side_input = add_regular_fanin_1.node_index(); matched->fused_batch_norm = add_regular_fanin_0.node_index(); matched->invalidated = regular_fanin_0.node_index(); return true; } if (valid_batch_norm(*add_regular_fanin_1.node_view())) { matched->activation = node_index; matched->side_input = add_regular_fanin_0.node_index(); matched->fused_batch_norm = add_regular_fanin_1.node_index(); matched->invalidated = regular_fanin_0.node_index(); return true; } } return false; } bool FindFusedBatchNormGradEx(const RemapperContext& ctx, int node_index, FusedBatchNormGradEx* matched) { const utils::MutableNodeView* node_view = ctx.graph_view.GetNode(node_index); const auto valid_batch_norm_grad = [&](const utils::MutableNodeView& fused_batch_norm_grad) -> bool { const NodeDef* node_def = fused_batch_norm_grad.node(); if (!IsFusedBatchNormGrad(*node_def) || HasControlFaninOrFanout(fused_batch_norm_grad)) return false; if (!NodeIsOnGpu(node_def)) return false; bool is_training; if (!GetNodeAttr(*node_def, kIsTraining, &is_training).ok() || !is_training) return false; DataType t_dtype = GetDataTypeFromAttr(*node_def, "T"); if (t_dtype != DT_HALF) return false; string data_format; if (!GetNodeAttr(*node_def, kDataFormat, &data_format).ok()) return false; if (data_format != "NHWC") return false; const auto& props = ctx.graph_properties.GetInputProperties(node_def->name()); const bool valid_channel_dim = !props.empty() && props[0].shape().dim_size() == 4 && props[0].shape().dim(3).size() % 4 == 0; if (!valid_channel_dim) return false; if (!BatchnormSpatialPersistentEnabled()) return false; if (node_def->op() != "FusedBatchNorm" && !HasDataType(node_def, DT_FLOAT, "U")) return false; return true; }; if (ctx.xla_auto_clustering_on) return false; if (!valid_batch_norm_grad(*node_view)) return false; if (node_view->NumRegularFanins() < 1) return false; const utils::MutableFanoutView& regular_fanin_0 = node_view->GetRegularFanin(0); const utils::MutableNodeView* relugrad_node_view = regular_fanin_0.node_view(); const NodeDef* relugrad_node_def = relugrad_node_view->node(); bool is_relugrad = IsReluGrad(*relugrad_node_def); if (!is_relugrad || HasControlFaninOrFanout(*relugrad_node_view) || IsInPreserveSet(ctx, relugrad_node_def)) return false; if (relugrad_node_view->NumRegularFanins() < 1) return false; const utils::MutableFanoutView& fanin_1 = relugrad_node_view->GetRegularFanin(1); const utils::MutableNodeView* fwd_node_view = fanin_1.node_view(); FusedBatchNormEx fwd_matched; FindFusedBatchNormEx(ctx, fwd_node_view->node_index(), &fwd_matched); bool fwd_bn_act_used = fwd_matched.activation != kMissingIndex && fwd_matched.side_input == kMissingIndex; bool fwd_bn_add_act_used = fwd_matched.activation != kMissingIndex && fwd_matched.side_input != kMissingIndex; if (fwd_bn_act_used && relugrad_node_view->GetRegularFanout(0).size() == 1) { matched->activation_grad = regular_fanin_0.node_index(); matched->fused_batch_norm_grad = node_index; matched->fwd_fused_batch_norm = fwd_matched.fused_batch_norm; return true; } if (fwd_bn_add_act_used && relugrad_node_view->GetRegularFanout(0).size() == 2) { const utils::MutableFanoutView& fwd_batch_norm_node = node_view->GetRegularFanin(5); if (fwd_matched.fused_batch_norm != fwd_batch_norm_node.node_index()) { return false; } const std::vector<utils::MutableFaninView>& fanouts_at_port_0 = relugrad_node_view->GetRegularFanouts()[0]; const utils::MutableNodeView* fanout_0_node_view = ctx.graph_view.GetNode(fanouts_at_port_0[0].node_view()->GetName()); const utils::MutableNodeView* fanout_1_node_view = ctx.graph_view.GetNode(fanouts_at_port_0[1].node_view()->GetName()); const NodeDef* fanout_0_node_def = fanout_0_node_view->node(); const NodeDef* fanout_1_node_def = fanout_1_node_view->node(); const NodeDef* node_def = node_view->node(); matched->activation_grad = regular_fanin_0.node_index(); matched->fused_batch_norm_grad = node_index; matched->fwd_fused_batch_norm = fwd_matched.fused_batch_norm; if (fanout_0_node_def == node_def) { matched->side_input_grad = fanout_1_node_view->node_index(); return true; } if (fanout_1_node_def == node_def) { matched->side_input_grad = fanout_0_node_view->node_index(); return true; } } return false; } bool FindTensorToHashBucket(const RemapperContext& ctx, int node_index, TensorToHashBucket* matched) { const auto* node_view = ctx.graph_view.GetNode(node_index); const auto* node_def = node_view->node(); if (!IsStringToHashBucketFast(*node_def) || HasControlFaninOrFanout(*node_view)) { return false; } if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* as_string_node_view = regular_fanin_0.node_view(); const auto* as_string_node_def = as_string_node_view->node(); bool is_as_string = IsAsString(*as_string_node_def); if (!is_as_string || HasControlFaninOrFanout(*as_string_node_view) || !HasAtMostOneFanoutAtPort0(*as_string_node_view) || IsInPreserveSet(ctx, as_string_node_def)) return false; if (!HasDataType(as_string_node_def, DT_INT8) && !HasDataType(as_string_node_def, DT_INT16) && !HasDataType(as_string_node_def, DT_INT32) && !HasDataType(as_string_node_def, DT_INT64)) { return false; } int width; if (!GetNodeAttr(*as_string_node_def, kWidth, &width).ok() || width != -1) { return false; } string fill; if (!GetNodeAttr(*as_string_node_def, kFill, &fill).ok() || !fill.empty()) { return false; } if (as_string_node_view->NumRegularFanins() < 1) return false; const auto& fanin_0 = as_string_node_view->GetRegularFanin(0); const auto* pre_node_view = fanin_0.node_view(); const TensorToHashBucket pattern{pre_node_view->node_index(), as_string_node_view->node_index(), node_index}; *matched = pattern; return true; } bool FindHardSwish(RemapperContext& ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices) { if (!IsMKLEnabled()) return false; using utils::MatchingDirection; using utils::NodeStatus; utils::OpTypePattern pattern {"Mul", "output", NodeStatus::kReplace, { {"Mul", "mul_one_sixth", NodeStatus::kRemove, { {"Const|Cast", "one_sixth", NodeStatus::kRemain}, {"*", "input", NodeStatus::kRemain} } }, {"Relu6", "relu6", NodeStatus::kRemove, { {"Add|AddV2", "add", NodeStatus::kRemove, { {"*", "input", NodeStatus::kRemain}, {"Const|Cast", "three", NodeStatus::kRemain} } } } }, } }; bool found_match = false; utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx.graph_view)); matched_nodes_map->clear(); remove_node_indices->clear(); found_match = graph_matcher.GetMatchedNodes( pattern, ctx.nodes_to_preserve, ctx.graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); if (found_match) { std::map<string, float> values_map = {{"three", 3.0}, {"one_sixth", 0.16666}}; if (!VerifyConstants(&ctx, matched_nodes_map, &values_map)) return false; } return found_match; } bool FindContractionWithBiasAddAndHardSwish( RemapperContext& ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices) { if (!IsMKLEnabled()) return false; const auto* node_view = ctx.graph_view.GetNode(node_index); if (HasControlFaninOrFanout(*node_view)) return false; if (!FindHardSwish(ctx, node_index, matched_nodes_map, remove_node_indices)) return false; const auto* add_node_view = ctx.graph_view.GetNode(matched_nodes_map->at("add")); const auto* add_node_def = add_node_view->node(); ContractionWithBiasAdd base; int port_id = 0; if (!FindContractionWithBiasInPort(ctx, *add_node_view, *add_node_def, port_id, &base, 2)) { port_id = 1; if (!FindContractionWithBiasInPort(ctx, *add_node_view, *add_node_def, port_id, &base, 2)) { VLOG(2) << "Contraction + BiasAdd pattern was not found although" << " HardSwish pattern was found, so fusion failed."; return false; } } const auto* bias_node_def = ctx.graph_view.GetNode(base.bias_add)->node(); if (!HaveSameDataType(add_node_def, bias_node_def)) return false; const auto* contraction_node_view = ctx.graph_view.GetNode(base.contraction); const auto* contraction_node_def = contraction_node_view->node(); if (!IsConv2D(*contraction_node_def) && !IsDepthwiseConv2dNative(*contraction_node_def)) return false; if (!IsCpuCompatibleConv2D(ctx, contraction_node_def) && !IsCpuCompatibleDepthwiseConv2dNative(contraction_node_def)) return false; matched_nodes_map->insert({"contraction", base.contraction}); matched_nodes_map->insert({"bias_add", base.bias_add}); remove_node_indices->insert(base.contraction); remove_node_indices->insert(base.bias_add); return true; } bool FindFusedBatchMatMul(RemapperContext* ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices, std::vector<string>* input_node_names) { if (!IsMKLEnabled()) return false; using utils::MatchingDirection; using utils::NodeStatus; int pattern = 0; utils::OpTypePattern fusion_pattern1 = {"Add|AddV2", "output", NodeStatus::kReplace, { {"Mul", "mul", NodeStatus::kRemove, { {"BatchMatMulV2", "batch_matmul", NodeStatus::kRemove}, {"*", "multiplicand", NodeStatus::kRemain} } }, {"*", "addend", NodeStatus::kRemain} } }; utils::OpTypePattern fusion_pattern2 = {"Add|AddV2", "output", NodeStatus::kReplace, { {"BatchMatMulV2", "batch_matmul", NodeStatus::kRemove, { {"Mul", "mul", NodeStatus::kRemove, { {"*", "mul_input0", NodeStatus::kRemain}, {"Const|Cast", "multiplicand", NodeStatus::kRemain} } }, {"*", "bmm_input1", NodeStatus::kRemain} } }, {"*", "addend", NodeStatus::kRemain} } }; utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); bool found_op_type_match = false; matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = graph_matcher.GetMatchedNodes(fusion_pattern1, ctx->nodes_to_preserve, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); if (found_op_type_match) pattern = 1; if (!found_op_type_match) { matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = graph_matcher.GetMatchedNodes(fusion_pattern2, ctx->nodes_to_preserve, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); if (found_op_type_match) pattern = 2; } if (!found_op_type_match) return false; if (!ctx->inferred_graph_properties) { Status s = ctx->graph_properties.InferStatically( true, false, false, true); if (!s.ok()) return false; ctx->inferred_graph_properties = true; } NodeDef* multiplicand_node_def = ctx->graph_view.GetNode(matched_nodes_map->at("multiplicand"))->node(); auto multiplicand_props = ctx->graph_properties.GetOutputProperties(multiplicand_node_def->name()); if (NumCoefficients(multiplicand_props[0].shape()) != 1) return false; NodeDef* batch_matmul_node_def = ctx->graph_view.GetNode(matched_nodes_map->at("batch_matmul"))->node(); if (!IsCpuCompatibleMatMul(*ctx, batch_matmul_node_def)) return false; auto batch_matmul_props = ctx->graph_properties.GetOutputProperties(batch_matmul_node_def->name()); if (Rank(batch_matmul_props[0].shape()) != 4) return false; NodeDef* addend_node_def = ctx->graph_view.GetNode(matched_nodes_map->at("addend"))->node(); auto addend_props = ctx->graph_properties.GetOutputProperties(addend_node_def->name()); auto addend_shape = addend_props[0].shape(); if (!(Rank(addend_shape) == 4 && addend_shape.dim(1).size() == 1)) { return false; } input_node_names->clear(); input_node_names->resize(4); if (pattern == 1) { input_node_names->at(0) = batch_matmul_node_def->input(0); input_node_names->at(1) = batch_matmul_node_def->input(1); input_node_names->at(2) = multiplicand_node_def->name(); input_node_names->at(3) = addend_node_def->name(); } else if (pattern == 2) { auto* mul_input0_node_def = ctx->graph_view.GetNode(matched_nodes_map->at("mul_input0"))->node(); input_node_names->at(0) = mul_input0_node_def->name(); input_node_names->at(1) = batch_matmul_node_def->input(1); input_node_names->at(2) = multiplicand_node_def->name(); input_node_names->at(3) = addend_node_def->name(); } return found_op_type_match; } template <typename T> bool IsInstanceNormReduction(const TensorShapeProto& input_shape, const Tensor& reduction_axes_data) { int input_dims = input_shape.dim_size(); int reduction_axes = reduction_axes_data.NumElements(); if ((input_dims != 4 && input_dims != 5) || (reduction_axes + 2) != input_dims) { return false; } if (input_dims == 4) { return ((reduction_axes_data.flat<T>()(0) == static_cast<T>(1) && reduction_axes_data.flat<T>()(1) == static_cast<T>(2)) || (reduction_axes_data.flat<T>()(0) == static_cast<T>(2) && reduction_axes_data.flat<T>()(1) == static_cast<T>(3))); } else { return ((reduction_axes_data.flat<T>()(0) == static_cast<T>(1) && reduction_axes_data.flat<T>()(1) == static_cast<T>(2) && reduction_axes_data.flat<T>()(2) == static_cast<T>(3)) || (reduction_axes_data.flat<T>()(0) == static_cast<T>(2) && reduction_axes_data.flat<T>()(1) == static_cast<T>(3) && reduction_axes_data.flat<T>()(2) == static_cast<T>(4))); } } bool FindInstanceNorm(RemapperContext* ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices) { if (!IsCommonNormPattern(ctx, node_index, matched_nodes_map, remove_node_indices)) { return false; } if (!ctx->inferred_graph_properties) { Status s = ctx->graph_properties.InferStatically( true, false, false, true); if (!s.ok()) return false; ctx->inferred_graph_properties = true; } NodeDef* mean1_node = ctx->graph_view.GetNode(matched_nodes_map->at("mean1"))->node(); bool keep_dims = false; if (!mean1_node || !TryGetNodeAttr(*mean1_node, "keep_dims", &keep_dims) || !keep_dims) { return false; } const auto& input_props = ctx->graph_properties.GetInputProperties(mean1_node->name()); const TensorShapeProto& input_shape = input_props[0].shape(); if (input_shape.unknown_rank()) return false; DataType dtype = GetDataTypeFromAttr(*mean1_node, "T"); if (dtype != DT_FLOAT && dtype != DT_HALF) return false; NodeDef* gamma_node = ctx->graph_view.GetNode(matched_nodes_map->at("gamma"))->node(); NodeDef* beta_node = ctx->graph_view.GetNode(matched_nodes_map->at("beta"))->node(); if (!gamma_node || !beta_node) { VLOG(2) << "Unexpected error to retrieve gamma or beta node"; return false; } Tensor gamma_tensor, beta_tensor; if (gamma_node->op() != "Const" || !gamma_tensor.FromProto(gamma_node->attr().at("value").tensor()) || beta_node->op() != "Const" || !beta_tensor.FromProto(beta_node->attr().at("value").tensor())) { return false; } if (!gamma_tensor.IsSameSize(beta_tensor)) return false; NodeDef* mean_axes_node = ctx->graph_view.GetNode(matched_nodes_map->at("r_indices1"))->node(); if (!mean_axes_node) { VLOG(2) << "Unexpected error to retrieve reduction axes node"; return false; } Tensor mean_axes_tensor; if (!mean_axes_tensor.FromProto( mean_axes_node->attr().at("value").tensor())) { return false; } dtype = mean_axes_tensor.dtype(); if (dtype != DT_INT32 && dtype != DT_INT64) return false; return (dtype == DT_INT32) ? IsInstanceNormReduction<int32>(input_shape, mean_axes_tensor) : IsInstanceNormReduction<int64>(input_shape, mean_axes_tensor); } bool FindInstanceNormWithActivation(RemapperContext* ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices) { const auto* node_view = ctx->graph_view.GetNode(node_index); if (HasControlFaninOrFanout(*node_view)) return false; const auto* node_def = node_view->node(); if (!IsLeakyRelu(*node_def) && !IsRelu(*node_def)) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& regular_fanin_0 = node_view->GetRegularFanin(0); const auto* base_node_view = regular_fanin_0.node_view(); int base_node_idx = base_node_view->node_index(); if (!FindInstanceNorm(ctx, base_node_idx, matched_nodes_map, remove_node_indices)) return false; remove_node_indices->insert(matched_nodes_map->at("output")); matched_nodes_map->insert(std::pair<string, int>("activation", node_index)); return true; } void CopyConv2DAttributes(const NodeDef& conv2d, NodeDef* fused_conv2d, const NodeDef* activation = nullptr) { DCHECK(IsConv2D(conv2d)) << "Input node must be a Conv2D"; auto* attr = fused_conv2d->mutable_attr(); auto& src_attr = conv2d.attr(); (*attr)["T"] = src_attr.at("T"); int num_args = fused_conv2d->input_size() - 2; for (int i = 0; i < num_args; ++i) { (*attr)["TArgs"].mutable_list()->add_type(src_attr.at("T").type()); } (*attr)["num_args"].set_i(num_args); (*attr)["num_host_args"].set_i(0); (*attr)["strides"] = src_attr.at("strides"); (*attr)["padding"] = src_attr.at("padding"); (*attr)["explicit_paddings"] = src_attr.at("explicit_paddings"); (*attr)["dilations"] = src_attr.at("dilations"); (*attr)["data_format"] = src_attr.at("data_format"); (*attr)["use_cudnn_on_gpu"] = src_attr.at("use_cudnn_on_gpu"); if (IsMKLEnabled() && src_attr.find("_input_shapes") != src_attr.end()) { (*attr)["_input_shapes"] = src_attr.at("_input_shapes"); } if (activation != nullptr && IsLeakyRelu(*activation)) { auto& activation_attr = activation->attr(); (*attr)["leakyrelu_alpha"] = activation_attr.at("alpha"); } } void CopyConv3DAttributes(const NodeDef& conv3d, NodeDef* fused_conv3d, const NodeDef* activation = nullptr) { DCHECK(IsConv3D(conv3d)) << "Input node must be a Conv3D"; auto* attr = fused_conv3d->mutable_attr(); auto& src_attr = conv3d.attr(); (*attr)["T"] = src_attr.at("T"); (*attr)["strides"] = src_attr.at("strides"); (*attr)["padding"] = src_attr.at("padding"); (*attr)["dilations"] = src_attr.at("dilations"); (*attr)["data_format"] = src_attr.at("data_format"); if (activation != nullptr && IsLeakyRelu(*activation)) { auto& activation_attr = activation->attr(); (*attr)["leakyrelu_alpha"] = activation_attr.at("alpha"); } } void CopyDepthwiseConv2dNativeAttributes(const NodeDef& dw_conv2d, NodeDef* fused_dw_conv2d, const NodeDef* activation = nullptr) { DCHECK(IsDepthwiseConv2dNative(dw_conv2d)) << "Input node must be a DepthwiseConv2dNative"; auto* attr = fused_dw_conv2d->mutable_attr(); auto& src_attr = dw_conv2d.attr(); (*attr)["T"] = src_attr.at("T"); (*attr)["strides"] = src_attr.at("strides"); (*attr)["padding"] = src_attr.at("padding"); (*attr)["dilations"] = src_attr.at("dilations"); (*attr)["data_format"] = src_attr.at("data_format"); if (activation != nullptr && IsLeakyRelu(*activation)) { auto& activation_attr = activation->attr(); (*attr)["leakyrelu_alpha"] = activation_attr.at("alpha"); } } void CopyFusedBatchNormAttributes(const NodeDef& fused_batch_norm, NodeDef* fused_batch_norm_ex) { DCHECK(IsFusedBatchNorm(fused_batch_norm)) << "Input node must be a FusedBatchNorm"; auto* attr = fused_batch_norm_ex->mutable_attr(); auto src_attr = fused_batch_norm.attr(); (*attr)["T"] = src_attr.at("T"); (*attr)["is_training"] = src_attr.at("is_training"); (*attr)["data_format"] = src_attr.at("data_format"); (*attr)["epsilon"] = src_attr.at("epsilon"); (*attr)["exponential_avg_factor"] = src_attr.at("exponential_avg_factor"); if (fused_batch_norm.op() != "FusedBatchNorm") { SetAttrValue(src_attr.at("U"), &(*attr)["U"]); } else { if (!IsMKLEnabled()) SetAttrValue(src_attr.at("T"), &(*attr)["U"]); else SetAttrValue(DT_FLOAT, &(*attr)["U"]); } } void CopyFusedBatchNormGradAttributes(const NodeDef& fused_batch_norm_grad, NodeDef* fused_batch_norm_grad_ex) { DCHECK(IsFusedBatchNormGrad(fused_batch_norm_grad)) << "Input node must be a FusedBatchNormGrad"; auto* attr = fused_batch_norm_grad_ex->mutable_attr(); auto src_attr = fused_batch_norm_grad.attr(); (*attr)["T"] = src_attr.at("T"); (*attr)["is_training"] = src_attr.at("is_training"); (*attr)["data_format"] = src_attr.at("data_format"); (*attr)["epsilon"] = src_attr.at("epsilon"); if (fused_batch_norm_grad.op() != "FusedBatchNormGrad") { SetAttrValue(src_attr.at("U"), &(*attr)["U"]); } else { SetAttrValue(DT_FLOAT, &(*attr)["U"]); } } void CopyMatMulAttributes(const NodeDef& matmul, NodeDef* fused_matmul, const NodeDef* activation = nullptr) { DCHECK(IsMatMul(matmul)) << "Input node must be a MatMul"; auto* attr = fused_matmul->mutable_attr(); auto& src_attr = matmul.attr(); (*attr)["T"] = src_attr.at("T"); (*attr)["transpose_a"] = src_attr.at("transpose_a"); (*attr)["transpose_b"] = src_attr.at("transpose_b"); if (activation != nullptr && IsLeakyRelu(*activation)) { auto& activation_attr = activation->attr(); (*attr)["leakyrelu_alpha"] = activation_attr.at("alpha"); } if (IsMKLEnabled()) { auto input_shapes = src_attr.find("_input_shapes"); if (input_shapes != src_attr.end()) { (*attr)["_input_shapes"] = input_shapes->second; } } } void CopyBatchMatMulAttributes(const NodeDef& batchmatmul, NodeDef* fused_batch_matmul) { DCHECK(IsAnyBatchMatMul(batchmatmul)) << "Input node must be a BatchMatMul"; auto* attr = fused_batch_matmul->mutable_attr(); auto& src_attr = batchmatmul.attr(); (*attr)["T"] = src_attr.at("T"); (*attr)["adj_x"] = src_attr.at("adj_x"); (*attr)["adj_y"] = src_attr.at("adj_y"); if (IsMKLEnabled()) { auto input_shapes = src_attr.find("_input_shapes"); if (input_shapes != src_attr.end()) { (*attr)["_input_shapes"] = input_shapes->second; } } } void SetFusedOpAttributes(NodeDef* fused, const absl::Span<const absl::string_view> fused_ops, int num_args = 1, float epsilon = 0.0) { auto* attr = fused->mutable_attr(); SetAttrValue(fused_ops, &(*attr)["fused_ops"]); SetAttrValue(num_args, &(*attr)["num_args"]); SetAttrValue(epsilon, &(*attr)["epsilon"]); } Status AddFusedContractionNode(RemapperContext* ctx, const ContractionWithBiasAdd& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { DCHECK(IsDeviceCompatible(*ctx, matched)) << "Unsupported fusion pattern"; const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& contraction = graph->node(matched.contraction); const NodeDef& bias_add = graph->node(matched.bias_add); VLOG(2) << "Fuse " << contraction.op() << " with BiasAdd: " << " bias_add=" << bias_add.name() << " contraction=" << contraction.name(); NodeDef fused_op; fused_op.set_name(bias_add.name()); fused_op.set_device(contraction.device()); fused_op.add_input(contraction.input(0)); fused_op.add_input(contraction.input(1)); fused_op.add_input(bias_add.input(matched.bias_port)); if (IsConv2D(contraction)) { fused_op.set_op(kFusedConv2D); AddInputShapesAttr(*ctx, matched.contraction); CopyConv2DAttributes(contraction, &fused_op); } else if (IsDepthwiseConv2dNative(contraction)) { fused_op.set_op(kFusedDepthwiseConv2dNative); CopyDepthwiseConv2dNativeAttributes(contraction, &fused_op); } else if (IsMatMul(contraction)) { fused_op.set_op(kFusedMatMul); AddInputShapesAttr(*ctx, matched.contraction); CopyMatMulAttributes(contraction, &fused_op); } else if (IsConv3D(contraction)) { fused_op.set_op(kFusedConv3D); CopyConv3DAttributes(contraction, &fused_op); } SetFusedOpAttributes(&fused_op, {"BiasAdd"}); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_op), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched.bias_add] = true; (*nodes_to_delete)[matched.contraction] = true; return absl::OkStatus(); } Status AddFusedContractionNode(RemapperContext* ctx, const ContractionWithActivation& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& contraction = graph->node(matched.contraction); const NodeDef& activation = graph->node(matched.activation); VLOG(2) << "Fuse " << contraction.op() << " and " << activation.op() << ":" << " activation=" << activation.name() << " contraction=" << contraction.name(); NodeDef fused_op; fused_op = contraction; auto* attr = fused_op.mutable_attr(); auto contraction_fused_ops_list = contraction.attr().at("fused_ops").list().s(); std::vector<std::string> fused_items; for (auto it = contraction_fused_ops_list.begin(); it != contraction_fused_ops_list.end(); it++) { fused_items.push_back(*it); } fused_items.push_back(GetActivationName(activation.op())); SetAttrValue(fused_items, &(*attr)["fused_ops"]); if (IsLeakyRelu(activation)) { auto& activation_attr = activation.attr(); (*attr)["leakyrelu_alpha"] = activation_attr.at("alpha"); } fused_op.set_name(activation.name()); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_op), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*nodes_to_delete)[matched.contraction] = true; (*invalidated_nodes)[matched.activation] = true; return absl::OkStatus(); } Status AddFusedContractionNode( RemapperContext* ctx, const ContractionWithBiasAddAndActivation& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { DCHECK(IsDeviceCompatible(*ctx, matched)) << "Unsupported fusion pattern"; const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& contraction = graph->node(matched.contraction); const NodeDef& bias_add = graph->node(matched.bias_add); const NodeDef& activation = graph->node(matched.activation); VLOG(2) << "Fuse " << contraction.op() << " with BiasAdd and " << activation.op() << ":" << " activation=" << activation.name() << " bias_add=" << bias_add.name() << " contraction=" << contraction.name(); NodeDef fused_op; fused_op.set_name(activation.name()); fused_op.set_device(contraction.device()); fused_op.add_input(contraction.input(0)); fused_op.add_input(contraction.input(1)); fused_op.add_input(bias_add.input(matched.bias_port)); if (IsConv2D(contraction)) { fused_op.set_op(kFusedConv2D); AddInputShapesAttr(*ctx, matched.contraction); CopyConv2DAttributes(contraction, &fused_op, &activation); } else if (IsDepthwiseConv2dNative(contraction)) { fused_op.set_op(kFusedDepthwiseConv2dNative); CopyDepthwiseConv2dNativeAttributes(contraction, &fused_op); } else if (IsMatMul(contraction)) { fused_op.set_op(kFusedMatMul); AddInputShapesAttr(*ctx, matched.contraction); CopyMatMulAttributes(contraction, &fused_op, &activation); } else if (IsConv3D(contraction)) { fused_op.set_op(kFusedConv3D); CopyConv3DAttributes(contraction, &fused_op, &activation); } SetFusedOpAttributes(&fused_op, {"BiasAdd", activation.op()}); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_op), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*nodes_to_delete)[matched.contraction] = true; (*nodes_to_delete)[matched.bias_add] = true; (*invalidated_nodes)[matched.activation] = true; return absl::OkStatus(); } Status AddFusedConvNode(RemapperContext* ctx, const ContractionWithSqueezeAndBiasAdd& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { DCHECK(IsDeviceCompatible(*ctx, matched)) << "Unsupported fusion pattern"; const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& contraction = graph->node(matched.contraction); const NodeDef& bias_add = graph->node(matched.bias_add); const NodeDef& squeeze = graph->node(matched.squeeze); VLOG(2) << "Fuse Conv2D/3D with Squeeze and BiasAdd: " << " bias_add=" << bias_add.name() << " squeeze=" << squeeze.name() << " conv=" << contraction.name(); NodeDef fused_conv; fused_conv.set_name(contraction.name()); fused_conv.set_device(contraction.device()); fused_conv.add_input(contraction.input(0)); fused_conv.add_input(contraction.input(1)); fused_conv.add_input(bias_add.input(1)); if (IsConv2D(contraction)) { fused_conv.set_op(kFusedConv2D); AddInputShapesAttr(*ctx, matched.contraction); CopyConv2DAttributes(contraction, &fused_conv); } else if (IsConv3D(contraction)) { fused_conv.set_op(kFusedConv3D); CopyConv3DAttributes(contraction, &fused_conv); } SetFusedOpAttributes(&fused_conv, {"BiasAdd"}); NodeDef remapped_squeeze = squeeze; remapped_squeeze.set_name(bias_add.name()); remapped_squeeze.set_input(0, contraction.name()); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_conv), &status); TF_RETURN_IF_ERROR(status); mutation->AddNode(std::move(remapped_squeeze), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched.contraction] = true; (*invalidated_nodes)[matched.bias_add] = true; (*nodes_to_delete)[matched.squeeze] = true; return absl::OkStatus(); } Status AddFusedConv2DNode(RemapperContext* ctx, const ContractionWithBatchNorm& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& contraction = graph->node(matched.contraction); DCHECK(IsConv2D(contraction)) << "Only Conv2D supported for now"; const NodeDef& fused_batch_norm = graph->node(matched.fused_batch_norm); VLOG(2) << "Fuse Conv2D with BatchNorm: batch_norm=" << fused_batch_norm.name() << " conv2d=" << contraction.name(); NodeDef fused_conv2d; fused_conv2d.set_name(fused_batch_norm.name()); fused_conv2d.set_op(kFusedConv2D); fused_conv2d.set_device(contraction.device()); fused_conv2d.add_input(contraction.input(0)); fused_conv2d.add_input(contraction.input(1)); fused_conv2d.add_input(fused_batch_norm.input(1)); fused_conv2d.add_input(fused_batch_norm.input(2)); fused_conv2d.add_input(fused_batch_norm.input(3)); fused_conv2d.add_input(fused_batch_norm.input(4)); AddInputShapesAttr(*ctx, matched.contraction); CopyConv2DAttributes(contraction, &fused_conv2d); SetFusedOpAttributes(&fused_conv2d, {"FusedBatchNorm"}, 4, matched.epsilon); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_conv2d), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched.fused_batch_norm] = true; (*nodes_to_delete)[matched.contraction] = true; return absl::OkStatus(); } Status AddFusedConv2DNode(RemapperContext* ctx, const ContractionWithBatchNormAndActivation& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& contraction = graph->node(matched.contraction); DCHECK(IsConv2D(contraction)) << "Only Conv2D supported for now"; const NodeDef& activation = graph->node(matched.activation); const NodeDef& fused_batch_norm = graph->node(matched.fused_batch_norm); VLOG(2) << "Fuse Conv2D with BatchNorm and " << activation.op() << ": activation=" << activation.name() << " batch_norm=" << fused_batch_norm.name() << " conv2d=" << contraction.name(); NodeDef fused_conv2d; fused_conv2d.set_name(activation.name()); fused_conv2d.set_op(kFusedConv2D); fused_conv2d.set_device(contraction.device()); fused_conv2d.add_input(contraction.input(0)); fused_conv2d.add_input(contraction.input(1)); fused_conv2d.add_input(fused_batch_norm.input(1)); fused_conv2d.add_input(fused_batch_norm.input(2)); fused_conv2d.add_input(fused_batch_norm.input(3)); fused_conv2d.add_input(fused_batch_norm.input(4)); AddInputShapesAttr(*ctx, matched.contraction); CopyConv2DAttributes(contraction, &fused_conv2d, &activation); SetFusedOpAttributes(&fused_conv2d, {"FusedBatchNorm", activation.op()}, 4, matched.epsilon); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_conv2d), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched.activation] = true; (*nodes_to_delete)[matched.contraction] = true; (*nodes_to_delete)[matched.fused_batch_norm] = true; return absl::OkStatus(); } Status AddFusedContractionNode(RemapperContext* ctx, const ContractionWithBiasAddAndAdd& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& contraction = graph->node(matched.contraction); const NodeDef& bias_add = graph->node(matched.bias_add); DCHECK(IsConv2D(contraction) || IsMatMul(contraction) || IsConv3D(contraction)); NodeDef contraction_node; const NodeDef& add = graph->node(matched.add); contraction_node.set_name(add.name()); contraction_node.set_device(contraction.device()); contraction_node.add_input( contraction.input(0)); contraction_node.add_input( contraction.input(1)); contraction_node.add_input(bias_add.input(matched.bias_port)); contraction_node.add_input(add.input(1 - matched.port_id)); if (IsConv2D(contraction)) { contraction_node.set_op(kFusedConv2D); AddInputShapesAttr(*ctx, matched.contraction); CopyConv2DAttributes(contraction, &contraction_node); } else if (IsMatMul(contraction)) { AddInputShapesAttr(*ctx, matched.contraction); contraction_node.set_op(kFusedMatMul); CopyMatMulAttributes(contraction, &contraction_node); } else if (IsConv3D(contraction)) { contraction_node.set_op(kFusedConv3D); CopyConv3DAttributes(contraction, &contraction_node); } SetFusedOpAttributes(&contraction_node, {"BiasAdd", "Add"}, 2); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(contraction_node), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched.add] = true; (*nodes_to_delete)[matched.contraction] = true; (*nodes_to_delete)[matched.bias_add] = true; return absl::OkStatus(); } Status AddFusedConv3DNode(RemapperContext* ctx, const PadWithConv3D& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& contraction = graph->node(matched.contraction_idx); const NodeDef& pad_node_def = graph->node(matched.pad_idx); const NodeDef& padding_const_node_def = graph->node(matched.padding_const_idx); VLOG(2) << "Fuse " << pad_node_def.op() << " with contraction: " << " contraction=" << contraction.name(); NodeDef fused_node; fused_node = contraction; fused_node.set_input(0, pad_node_def.input(0)); fused_node.set_op(kFusedConv3D); auto* attr = fused_node.mutable_attr(); if (!attr->contains("num_args")) { SetAttrValue(0, &(*attr)["num_args"]); } Tensor const_tensor; if (padding_const_node_def.op() == "Const" && const_tensor.FromProto( padding_const_node_def.attr().at("value").tensor())) { auto const_value = const_tensor.flat<int32>(); std::vector<int32> paddings; for (int i = 0; i < const_value.size(); ++i) { paddings.push_back(const_value(i)); SetAttrValue(paddings, &(*attr)["padding_list"]); } } else { VLOG(2) << "Pad fusion with " << contraction.op() << " is invalidated, " << "it requires padding dim sizes to be constant."; return absl::OkStatus(); } utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_node), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched.contraction_idx] = true; (*nodes_to_delete)[matched.pad_idx] = true; return absl::OkStatus(); } Status AddFusedContractionNode( RemapperContext* ctx, const ContractionWithBiasAndAddActivation& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& contraction = graph->node(matched.contraction); DCHECK(IsConv2D(contraction) || IsConv3D(contraction)); const NodeDef& activation = graph->node(matched.activation); NodeDef fused_conv; fused_conv.set_name(activation.name()); fused_conv.set_device(contraction.device()); fused_conv.add_input(contraction.input(0)); fused_conv.add_input(contraction.input(1)); const NodeDef& bias_add = graph->node(matched.bias_add); fused_conv.add_input(bias_add.input(matched.bias_port)); const NodeDef& add = graph->node(matched.add); fused_conv.add_input(add.input(1 - matched.port_id)); if (IsConv2D(contraction)) { fused_conv.set_op(kFusedConv2D); AddInputShapesAttr(*ctx, matched.contraction); CopyConv2DAttributes(contraction, &fused_conv); } else if (IsConv3D(contraction)) { fused_conv.set_op(kFusedConv3D); CopyConv3DAttributes(contraction, &fused_conv); } SetFusedOpAttributes(&fused_conv, {"BiasAdd", "Add", activation.op()}, 2); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_conv), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched.activation] = true; (*nodes_to_delete)[matched.add] = true; (*nodes_to_delete)[matched.bias_add] = true; (*nodes_to_delete)[matched.contraction] = true; return absl::OkStatus(); } Status FuseContractionWithBiasAddAndHardSwish( RemapperContext* ctx, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { auto* output_node = ctx->graph_view.GetNode(matched_nodes_map->at("output"))->node(); auto* contraction_node = ctx->graph_view.GetNode(matched_nodes_map->at("contraction"))->node(); auto* bias_add_node = ctx->graph_view.GetNode(matched_nodes_map->at("bias_add"))->node(); bool is_conv2d = IsConv2D(*contraction_node); NodeDef fused_node; fused_node.set_name(output_node->name()); fused_node.set_op(is_conv2d ? kFusedConv2D : kFusedDepthwiseConv2dNative); fused_node.set_device(contraction_node->device()); fused_node.add_input(contraction_node->input(0)); fused_node.add_input(contraction_node->input(1)); fused_node.add_input(bias_add_node->input(1)); if (is_conv2d) { CopyConv2DAttributes(*contraction_node, &fused_node); } else { CopyDepthwiseConv2dNativeAttributes(*contraction_node, &fused_node); } SetFusedOpAttributes(&fused_node, {"BiasAdd", "_FusedHardSwish"}); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_node), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched_nodes_map->at("output")] = true; for (const auto& node_idx : *remove_node_indices) { (*nodes_to_delete)[node_idx] = true; } return absl::OkStatus(); } Status FuseConv2DSwish(RemapperContext* ctx, const std::map<string, int>& matched_nodes_map, const std::set<int>& remove_node_indices, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const NodeDef* mul = ctx->graph_view.GetNode(matched_nodes_map.at("mulToswish"))->node(); const NodeDef* conv2d = ctx->graph_view.GetNode(matched_nodes_map.at("conv"))->node(); NodeDef fused_op; fused_op.set_name(mul->name()); fused_op.set_op(kFusedConv2D); fused_op.set_device(mul->device()); fused_op.add_input(conv2d->input(0)); fused_op.add_input(conv2d->input(1)); if (matched_nodes_map.find("biasadd") != matched_nodes_map.end()) { auto* bias_add_node = ctx->graph_view.GetNode(matched_nodes_map.at("biasadd"))->node(); fused_op.add_input(bias_add_node->input(1)); SetFusedOpAttributes(&fused_op, {"BiasAdd", "_MklSwish"}); } else { auto* fusebatchnorm_node = ctx->graph_view.GetNode(matched_nodes_map.at("fusebatchnorm"))->node(); fused_op.add_input(fusebatchnorm_node->input(1)); fused_op.add_input(fusebatchnorm_node->input(2)); fused_op.add_input(fusebatchnorm_node->input(3)); fused_op.add_input(fusebatchnorm_node->input(4)); float epsilon; TF_CHECK_OK(GetNodeAttr(*fusebatchnorm_node, "epsilon", &epsilon)); SetFusedOpAttributes(&fused_op, {"FusedBatchNorm", "_MklSwish"}, 4, epsilon); } AddInputShapesAttr(*ctx, matched_nodes_map.at("conv")); CopyConv2DAttributes(*conv2d, &fused_op); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_op), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched_nodes_map.at("mulToswish")] = true; for (const auto& node_index : remove_node_indices) { (*nodes_to_delete)[node_index] = true; } return absl::OkStatus(); } Status AddFusedMatMulBiasAddAndGelu( RemapperContext* ctx, const std::map<string, int>& matched_nodes_map, const std::set<int>& remove_node_indices, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete, bool is_gelu_approximate) { auto* output_node = ctx->graph_view.GetNode(matched_nodes_map.at("output"))->node(); auto* matmul_node = ctx->graph_view.GetNode(matched_nodes_map.at("matmul"))->node(); NodeDef fused_node; fused_node.set_name(output_node->name()); fused_node.set_op("_FusedMatMul"); fused_node.set_device(matmul_node->device()); fused_node.add_input(matmul_node->input(0)); fused_node.add_input(matmul_node->input(1)); if (is_gelu_approximate) { fused_node.add_input(matmul_node->input(2)); } else { auto* bias_add_node = ctx->graph_view.GetNode(matched_nodes_map.at("bias_add"))->node(); fused_node.add_input(bias_add_node->input(1)); } CopyMatMulAttributes(*matmul_node, &fused_node); if (is_gelu_approximate) SetFusedOpAttributes(&fused_node, {"BiasAdd", "GeluApproximate"}); else SetFusedOpAttributes(&fused_node, {"BiasAdd", "GeluExact"}); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_node), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched_nodes_map.at("output")] = true; for (const auto& node_idx : remove_node_indices) { (*nodes_to_delete)[node_idx] = true; } return absl::OkStatus(); } Status AddMklLayerNorm(RemapperContext* ctx, const std::map<string, int>& matched_nodes_map, const std::set<int>& remove_node_indices, const std::vector<string>& input_node_names, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete, const float epsilon) { auto* output_node = ctx->graph_view.GetNode(matched_nodes_map.at("output"))->node(); NodeDef fused_node; fused_node.set_name(output_node->name()); fused_node.set_op("_MklLayerNorm"); fused_node.set_device(output_node->device()); for (const auto& name : input_node_names) fused_node.add_input(name); auto* attr = fused_node.mutable_attr(); auto& src_attr = output_node->attr(); (*attr)["T"] = src_attr.at("T"); SetAttrValue(epsilon, &(*attr)["epsilon"]); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_node), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched_nodes_map.at("output")] = true; for (const auto& node_idx : remove_node_indices) { (*nodes_to_delete)[node_idx] = true; } return absl::OkStatus(); } Status ReplaceMulMaximumWithLeakyRelu( RemapperContext* ctx, const std::map<string, int>& matched_nodes_map, const std::set<int>& remove_node_indices, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete, float alpha) { const NodeDef* maximum = ctx->graph_view.GetNode(matched_nodes_map.at("max_to_leakyrelu"))->node(); const NodeDef* input = ctx->graph_view.GetNode(matched_nodes_map.at("input"))->node(); const auto* alpha_node_view = ctx->graph_view.GetNode(matched_nodes_map.at("alpha")); NodeDef fused_op; fused_op.set_name(maximum->name()); fused_op.set_op("LeakyRelu"); fused_op.set_device(maximum->device()); fused_op.add_input(input->name()); if (alpha_node_view->NumControllingFanins() > 0) { const auto& control_fanins = alpha_node_view->GetControllingFanins(); for (int i = 0; i < alpha_node_view->NumControllingFanins(); i++) { const auto* control_node_view = control_fanins[i].node_view(); *fused_op.add_input() = AsControlDependency(control_node_view->node()->name()); } } auto* attr = fused_op.mutable_attr(); (*attr)["T"] = maximum->attr().at("T"); SetAttrValue(alpha, &(*attr)["alpha"]); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_op), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched_nodes_map.at("max_to_leakyrelu")] = true; for (const auto& node_index : remove_node_indices) { (*nodes_to_delete)[node_index] = true; } return absl::OkStatus(); } Status ReplaceSigmoidMulWithSwish( RemapperContext* ctx, const std::map<string, int>& matched_nodes_map, const std::set<int>& remove_node_indices, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const NodeDef* mul = ctx->graph_view.GetNode(matched_nodes_map.at("mul_to_swish"))->node(); const NodeDef* sigmoid = ctx->graph_view.GetNode(matched_nodes_map.at("sigmoid"))->node(); NodeDef fused_op; fused_op.set_name(mul->name()); fused_op.set_op("_MklSwish"); fused_op.set_device(mul->device()); fused_op.add_input(sigmoid->input(0)); auto* attr = fused_op.mutable_attr(); (*attr)["T"] = mul->attr().at("T"); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_op), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched_nodes_map.at("mul_to_swish")] = true; for (const auto& node_index : remove_node_indices) { (*nodes_to_delete)[node_index] = true; } return absl::OkStatus(); } Status AddFusedBatchNormExNode(RemapperContext* ctx, const FusedBatchNormEx& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& fused_batch_norm = graph->node(matched.fused_batch_norm); const NodeDef& activation = graph->node(matched.activation); VLOG(2) << "Fuse " << activation.op() << " with FusedBatchNorm:" << " activation=" << activation.name() << " side_input=" << (matched.side_input != kMissingIndex ? graph->node(matched.side_input).name() : "<none>") << " invalidated=" << (matched.invalidated != kMissingIndex ? graph->node(matched.invalidated).name() : "<none>") << " fused_batch_norm=" << fused_batch_norm.name(); NodeDef fused_op; fused_op.set_op(kFusedBatchNormEx); fused_op.set_name(fused_batch_norm.name()); fused_op.set_device(fused_batch_norm.device()); fused_op.add_input(fused_batch_norm.input(0)); fused_op.add_input(fused_batch_norm.input(1)); fused_op.add_input(fused_batch_norm.input(2)); fused_op.add_input(fused_batch_norm.input(3)); fused_op.add_input(fused_batch_norm.input(4)); CopyFusedBatchNormAttributes(fused_batch_norm, &fused_op); auto* attrs = fused_op.mutable_attr(); SetAttrValue(activation.op(), &(*attrs)["activation_mode"]); if (matched.side_input != kMissingIndex) { SetAttrValue(1, &(*attrs)["num_side_inputs"]); const NodeDef& side_input = graph->node(matched.side_input); fused_op.add_input(side_input.name()); } else { SetAttrValue(0, &(*attrs)["num_side_inputs"]); } NodeDef identity_op; identity_op.set_op("Identity"); identity_op.set_name(activation.name()); identity_op.set_device(fused_batch_norm.device()); identity_op.add_input(fused_batch_norm.name()); (*identity_op.mutable_attr())["T"] = attrs->at("T"); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_op), &status); TF_RETURN_IF_ERROR(status); mutation->AddNode(std::move(identity_op), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched.fused_batch_norm] = true; (*invalidated_nodes)[matched.activation] = true; if (matched.side_input != kMissingIndex) { (*nodes_to_delete)[matched.invalidated] = true; } return absl::OkStatus(); } Status AddFusedBatchNormGradExNode(RemapperContext* ctx, const FusedBatchNormGradEx& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& fused_batch_norm_grad = graph->node(matched.fused_batch_norm_grad); const NodeDef& activation_grad = graph->node(matched.activation_grad); const NodeDef& fwd_fused_batch_norm = graph->node(matched.fwd_fused_batch_norm); VLOG(2) << "Fuse FusedBatchNormGrad with " << activation_grad.op() << ": " << " fused_batch_norm_grad=" << fused_batch_norm_grad.name() << " side_input=" << (matched.side_input_grad != kMissingIndex ? graph->node(matched.side_input_grad).name() : "<none>") << " activation=" << activation_grad.name() << " corresponding FusedBatchNorm=" << fwd_fused_batch_norm.name(); NodeDef fused_op; fused_op.set_op(kFusedBatchNormGradEx); fused_op.set_name(fused_batch_norm_grad.name()); fused_op.set_device(fused_batch_norm_grad.device()); fused_op.add_input(activation_grad.input(0)); fused_op.add_input(fused_batch_norm_grad.input(1)); fused_op.add_input(fused_batch_norm_grad.input(2)); fused_op.add_input(fused_batch_norm_grad.input(3)); fused_op.add_input(fused_batch_norm_grad.input(4)); fused_op.add_input(fused_batch_norm_grad.input(5)); fused_op.add_input(fwd_fused_batch_norm.input(2)); fused_op.add_input(activation_grad.input(1)); CopyFusedBatchNormGradAttributes(fused_batch_norm_grad, &fused_op); auto* attrs = fused_op.mutable_attr(); SetAttrValue("Relu", &(*attrs)["activation_mode"]); if (matched.side_input_grad != kMissingIndex) { SetAttrValue(1, &(*attrs)["num_side_inputs"]); } else { SetAttrValue(0, &(*attrs)["num_side_inputs"]); } NodeDef identity_op; identity_op.set_op("Identity"); identity_op.set_name(activation_grad.name()); identity_op.set_device(fused_batch_norm_grad.device()); identity_op.add_input(absl::StrCat(fused_batch_norm_grad.name(), ":5")); (*identity_op.mutable_attr())["T"] = attrs->at("T"); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_op), &status); TF_RETURN_IF_ERROR(status); if (matched.side_input_grad != kMissingIndex) { mutation->AddNode(std::move(identity_op), &status); TF_RETURN_IF_ERROR(status); } TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched.fused_batch_norm_grad] = true; if (matched.side_input_grad != kMissingIndex) { (*invalidated_nodes)[matched.activation_grad] = true; } else { (*nodes_to_delete)[matched.activation_grad] = true; } return absl::OkStatus(); } Status AddBatchNormNodes(RemapperContext* ctx, const FusedBatchNorm& matched) { const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& fused_node = graph->node(matched.fused_batch_norm); VLOG(2) << "Optimizing fused batch norm node " << SummarizeNodeDef(fused_node); const string& x = fused_node.input(0); string scale = fused_node.input(1); string offset = fused_node.input(2); string mean = fused_node.input(3); string variance = fused_node.input(4); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; string x_format = fused_node.attr().at(kDataFormat).s(); if (x_format == "NCHW" || x_format == "NCDHW") { NodeDef new_shape; const string new_shape_name = AddPrefixToNodeName(x_format + "Shape", fused_node.name()); new_shape.set_name(new_shape_name); new_shape.set_op("Const"); new_shape.set_device(fused_node.device()); *new_shape.add_input() = AsControlDependency(scale); (*new_shape.mutable_attr())["dtype"].set_type(DT_INT32); if (x_format == "NCHW") { Tensor t(DT_INT32, {4}); t.flat<int32>()(0) = 1; t.flat<int32>()(1) = -1; t.flat<int32>()(2) = 1; t.flat<int32>()(3) = 1; t.AsProtoTensorContent( (*new_shape.mutable_attr())["value"].mutable_tensor()); } else { Tensor t(DT_INT32, {5}); t.flat<int32>()(0) = 1; t.flat<int32>()(1) = -1; t.flat<int32>()(2) = 1; t.flat<int32>()(3) = 1; t.flat<int32>()(4) = 1; t.AsProtoTensorContent( (*new_shape.mutable_attr())["value"].mutable_tensor()); } mutation->AddNode(std::move(new_shape), &status); TF_RETURN_IF_ERROR(status); NodeDef reshaped_scale; reshaped_scale.set_name( AddPrefixToNodeName(x_format + "ShapedScale", fused_node.name())); reshaped_scale.set_op("Reshape"); reshaped_scale.set_device(fused_node.device()); *reshaped_scale.add_input() = scale; *reshaped_scale.add_input() = new_shape_name; (*reshaped_scale.mutable_attr())["T"] = fused_node.attr().at("T"); (*reshaped_scale.mutable_attr())["Tshape"].set_type(DT_INT32); scale = reshaped_scale.name(); mutation->AddNode(std::move(reshaped_scale), &status); TF_RETURN_IF_ERROR(status); NodeDef reshaped_offset; reshaped_offset.set_name( AddPrefixToNodeName(x_format + "ShapedOffset", fused_node.name())); reshaped_offset.set_op("Reshape"); reshaped_offset.set_device(fused_node.device()); *reshaped_offset.add_input() = offset; *reshaped_offset.add_input() = new_shape_name; (*reshaped_offset.mutable_attr())["T"] = fused_node.attr().at("T"); (*reshaped_offset.mutable_attr())["Tshape"].set_type(DT_INT32); offset = reshaped_offset.name(); mutation->AddNode(std::move(reshaped_offset), &status); TF_RETURN_IF_ERROR(status); NodeDef reshaped_mean; reshaped_mean.set_name( AddPrefixToNodeName(x_format + "ShapedMean", fused_node.name())); reshaped_mean.set_op("Reshape"); reshaped_mean.set_device(fused_node.device()); *reshaped_mean.add_input() = mean; *reshaped_mean.add_input() = new_shape_name; (*reshaped_mean.mutable_attr())["T"] = fused_node.attr().at("T"); (*reshaped_mean.mutable_attr())["Tshape"].set_type(DT_INT32); mean = reshaped_mean.name(); mutation->AddNode(std::move(reshaped_mean), &status); TF_RETURN_IF_ERROR(status); NodeDef reshaped_variance; reshaped_variance.set_name( AddPrefixToNodeName(x_format + "ShapedVariance", fused_node.name())); reshaped_variance.set_op("Reshape"); reshaped_variance.set_device(fused_node.device()); *reshaped_variance.add_input() = variance; *reshaped_variance.add_input() = new_shape_name; (*reshaped_variance.mutable_attr())["T"] = fused_node.attr().at("T"); (*reshaped_variance.mutable_attr())["Tshape"].set_type(DT_INT32); variance = reshaped_variance.name(); mutation->AddNode(std::move(reshaped_variance), &status); TF_RETURN_IF_ERROR(status); } float epsilon = 0.0f; if (fused_node.attr().count("epsilon")) { epsilon = fused_node.attr().at("epsilon").f(); } DataType dtype = fused_node.attr().at("T").type(); Tensor value(dtype, TensorShape()); value.scalar<float>()() = epsilon; NodeDef variance_epsilon; const string variance_epsilon_name = AddPrefixToNodeName("Const", fused_node.name()); TF_RETURN_IF_ERROR(ConstantFolding::CreateNodeDef( variance_epsilon_name, TensorValue(&value), &variance_epsilon)); variance_epsilon.set_device(fused_node.device()); mutation->AddNode(std::move(variance_epsilon), &status); TF_RETURN_IF_ERROR(status); NodeDef variance_plus_epsilon; const string variance_plus_epsilon_name = AddPrefixToNodeName("VarPlusEpsilon", fused_node.name()); variance_plus_epsilon.set_name(variance_plus_epsilon_name); variance_plus_epsilon.set_op("Add"); (*variance_plus_epsilon.mutable_attr())["T"].set_type(dtype); variance_plus_epsilon.set_device(fused_node.device()); *variance_plus_epsilon.add_input() = variance; *variance_plus_epsilon.add_input() = variance_epsilon_name; mutation->AddNode(std::move(variance_plus_epsilon), &status); TF_RETURN_IF_ERROR(status); NodeDef inv; const string inv_name = AddPrefixToNodeName("Inv", fused_node.name()); inv.set_name(inv_name); inv.set_op("Rsqrt"); inv.set_device(fused_node.device()); (*inv.mutable_attr())["T"].set_type(dtype); *inv.add_input() = variance_plus_epsilon_name; mutation->AddNode(std::move(inv), &status); TF_RETURN_IF_ERROR(status); NodeDef scaled; const string scaled_name = AddPrefixToNodeName("Scaled", fused_node.name()); scaled.set_name(scaled_name); scaled.set_op("Mul"); scaled.set_device(fused_node.device()); (*scaled.mutable_attr())["T"].set_type(dtype); *scaled.add_input() = inv_name; *scaled.add_input() = scale; mutation->AddNode(std::move(scaled), &status); TF_RETURN_IF_ERROR(status); NodeDef a; const string a_name = AddPrefixToNodeName("Mul", fused_node.name()); a.set_name(a_name); a.set_op("Mul"); a.set_device(fused_node.device()); (*a.mutable_attr())["T"].set_type(dtype); *a.add_input() = x; *a.add_input() = scaled_name; mutation->AddNode(std::move(a), &status); TF_RETURN_IF_ERROR(status); NodeDef b; const string b_name = AddPrefixToNodeName("Mul2", fused_node.name()); b.set_name(b_name); b.set_op("Mul"); b.set_device(fused_node.device()); (*b.mutable_attr())["T"].set_type(dtype); *b.add_input() = mean; *b.add_input() = scaled_name; mutation->AddNode(std::move(b), &status); TF_RETURN_IF_ERROR(status); NodeDef c; const string c_name = AddPrefixToNodeName("Offset", fused_node.name()); c.set_name(c_name); c.set_op("Sub"); c.set_device(fused_node.device()); (*c.mutable_attr())["T"].set_type(dtype); *c.add_input() = offset; *c.add_input() = b_name; mutation->AddNode(std::move(c), &status); TF_RETURN_IF_ERROR(status); NodeDef r; r.set_name(fused_node.name()); r.set_op("Add"); r.set_device(fused_node.device()); (*r.mutable_attr())["T"].set_type(dtype); *r.add_input() = a_name; *r.add_input() = c_name; mutation->AddNode(std::move(r), &status); TF_RETURN_IF_ERROR(status); return mutation->Apply(); } Status AddTensorToHashBucketNode(RemapperContext* ctx, const TensorToHashBucket& matched, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { const GraphDef* graph = ctx->graph_view.graph(); const NodeDef& pre_as_string = graph->node(matched.pre_as_string); const NodeDef& as_string = graph->node(matched.as_string); const NodeDef& string_to_hash_bucket = graph->node(matched.string_to_hash_bucket); VLOG(2) << "Fuse AsString with StringToHashBucketFast:" << " as_string=" << as_string.name() << " string_to_hash_bucket=" << string_to_hash_bucket.name() << " on device=" << pre_as_string.device(); NodeDef fused_op; fused_op.set_name(string_to_hash_bucket.name()); fused_op.set_device(pre_as_string.device()); fused_op.add_input(as_string.input(0)); fused_op.set_op(kTensorToHashBucket); auto* attr = fused_op.mutable_attr(); auto& src_attr0 = as_string.attr(); auto& src_attr1 = string_to_hash_bucket.attr(); (*attr)["T"] = src_attr0.at("T"); (*attr)["num_buckets"] = src_attr1.at("num_buckets"); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_op), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched.string_to_hash_bucket] = true; (*nodes_to_delete)[matched.as_string] = true; return absl::OkStatus(); } Status AddFusedBatchMatMul(RemapperContext* ctx, const std::map<string, int>& matched_nodes_map, const std::set<int>& remove_node_indices, const std::vector<string>& input_node_names, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { auto* output_node = ctx->graph_view.GetNode(matched_nodes_map.at("output"))->node(); auto* batch_matmul_node = ctx->graph_view.GetNode(matched_nodes_map.at("batch_matmul"))->node(); NodeDef fused_node; fused_node.set_name(output_node->name()); fused_node.set_op("_MklFusedBatchMatMulV2"); fused_node.set_device(batch_matmul_node->device()); for (const auto& name : input_node_names) fused_node.add_input(name); CopyBatchMatMulAttributes(*batch_matmul_node, &fused_node); SetFusedOpAttributes(&fused_node, {"Mul", "Add"}, 2); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_node), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched_nodes_map.at("output")] = true; for (const auto& node_idx : remove_node_indices) { (*nodes_to_delete)[node_idx] = true; } return absl::OkStatus(); } template <typename T, typename U> std::vector<U> GetTensorValues(const Tensor& tensor) { std::vector<U> result_vector; int item_count = tensor.flat<T>().size(); result_vector.reserve(item_count); for (int i = 0; i < item_count; i++) { result_vector.push_back((U)(tensor.flat<T>()(i))); } return result_vector; } Status AddMklFusedInstanceNorm(RemapperContext* ctx, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete, bool fuse_activation) { auto* output_node = ctx->graph_view.GetNode(matched_nodes_map->at("output"))->node(); auto* input_node = ctx->graph_view.GetNode(matched_nodes_map->at("input"))->node(); auto* gamma_node = ctx->graph_view.GetNode(matched_nodes_map->at("gamma"))->node(); auto* beta_node = ctx->graph_view.GetNode(matched_nodes_map->at("beta"))->node(); auto* epsilon_node = ctx->graph_view.GetNode(matched_nodes_map->at("epsilon"))->node(); auto* mean_axes_node = ctx->graph_view.GetNode(matched_nodes_map->at("r_indices1"))->node(); if (!mean_axes_node || mean_axes_node->op() != "Const") { VLOG(2) << "Mean reduction axes node is not valid, abort fusion"; return absl::OkStatus(); } DataType dtype; Tensor mean_axes_tensor; if (!mean_axes_tensor.FromProto( mean_axes_node->attr().at("value").tensor())) { VLOG(2) << "Unable to get mean reduction axes, abort fusion"; return absl::OkStatus(); } dtype = mean_axes_tensor.dtype(); if (dtype != DT_INT32 && dtype != DT_INT64) { VLOG(2) << "Unexpected mean reduction axes data type, abort fusion"; return absl::OkStatus(); } std::vector<int> reduction_axes = (dtype == DT_INT32) ? GetTensorValues<int32, int>(mean_axes_tensor) : GetTensorValues<int64, int>(mean_axes_tensor); NodeDef* activation_node = nullptr; if (fuse_activation) { activation_node = ctx->graph_view.GetNode(matched_nodes_map->at("activation"))->node(); if (!activation_node) { VLOG(2) << "Error to retrieve activation node, abort fusion"; return absl::OkStatus(); } if (!IsLeakyRelu(*activation_node) && !IsRelu(*activation_node)) { VLOG(2) << "Unsupported activation node, abort fusion"; return absl::OkStatus(); } } NodeDef fused_node; fused_node.set_op("_MklFusedInstanceNorm"); fused_node.set_device(output_node->device()); fused_node.add_input(input_node->name()); fused_node.add_input(gamma_node->name()); fused_node.add_input(beta_node->name()); auto* attr = fused_node.mutable_attr(); auto& src_attr = output_node->attr(); (*attr)["T"] = src_attr.at("T"); Tensor epsilon_tensor; float epsilon_value = 0.0001; if (epsilon_node != nullptr && epsilon_node->op() == "Const" && epsilon_tensor.FromProto(epsilon_node->attr().at("value").tensor())) { dtype = epsilon_tensor.dtype(); if (dtype == DT_BFLOAT16) { epsilon_value = static_cast<float>(epsilon_tensor.flat<bfloat16>()(0)); } else if (dtype == DT_HALF) { epsilon_value = static_cast<float>(epsilon_tensor.flat<Eigen::half>()(0)); } else if (dtype == DT_FLOAT) { epsilon_value = epsilon_tensor.flat<float>()(0); } SetAttrValue(epsilon_value, &(*attr)["epsilon"]); } SetAttrValue(reduction_axes, &(*attr)["reduction_axes"]); if (fuse_activation) { fused_node.set_name(activation_node->name()); string activation_op = activation_node->op(); absl::string_view fused_items[] = {activation_op}; SetAttrValue(absl::Span<absl::string_view>(fused_items), &(*attr)["fused_ops"]); if (activation_op == "LeakyRelu") { auto& activation_attr = activation_node->attr(); (*attr)["leakyrelu_alpha"] = activation_attr.at("alpha"); } } else { fused_node.set_name(output_node->name()); } utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_node), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); if (fuse_activation) { (*invalidated_nodes)[matched_nodes_map->at("activation")] = true; } else { (*invalidated_nodes)[matched_nodes_map->at("output")] = true; } for (const auto& node_idx : *remove_node_indices) { (*nodes_to_delete)[node_idx] = true; } return absl::OkStatus(); } bool IsContractionWithAdd(const RemapperContext& ctx, int node_index) { const auto* node_view = ctx.graph_view.GetNode(node_index); auto is_supported_add_input = [](const auto* node_view) -> bool { if (IsConvOrMatMul(*node_view->node())) return true; if (IsBiasAdd(*node_view->node()) || IsAdd(*node_view->node())) { if (node_view->NumRegularFanins() < 2) return false; const auto& bias_add_fanin_0 = node_view->GetRegularFanin(0); const auto& bias_add_fanin_1 = node_view->GetRegularFanin(1); return IsConvOrMatMul(*bias_add_fanin_0.node_view()->node()) || IsConvOrMatMul(*bias_add_fanin_1.node_view()->node()); } return false; }; auto is_supported_add = [&](const auto* node_view) -> bool { const auto* node_def = node_view->node(); if (IsAdd(*node_def)) { if (node_view->NumRegularFanins() < 2) return false; const auto& add_fanin_0 = node_view->GetRegularFanin(0); const auto& add_fanin_1 = node_view->GetRegularFanin(1); return is_supported_add_input(add_fanin_0.node_view()) || is_supported_add_input(add_fanin_1.node_view()); } return false; }; if (is_supported_add(node_view)) { return true; } if (IsSupportedActivation(*node_view->node(), nullptr)) { for (int i = 0; i < node_view->NumRegularFanins(); i++) { const auto& fanin_i = node_view->GetRegularFanin(i); if (is_supported_add(fanin_i.node_view())) return true; } } return false; } bool FindSoftplusAndTanhAndMul(RemapperContext* ctx, int node_index, std::map<string, int>* matched_nodes_map, std::set<int>* remove_node_indices) { if (!IsMKLEnabled()) return false; using utils::MatchingDirection; using utils::NodeStatus; utils::OpTypePattern softplustanhmul_pattern { "Mul", "mul_to_mish", NodeStatus::kReplace, { { "Tanh", "tanh", NodeStatus::kRemove, { { "Softplus", "softplus", NodeStatus::kRemove, { {"*", "input", NodeStatus::kRemain} } } } }, {"*", "input", NodeStatus::kRemain} } }; auto* mul_node_def = ctx->graph_view.GetNode(node_index)->node(); if (!HasDataType(mul_node_def, DT_FLOAT) && !HasDataType(mul_node_def, DT_HALF) && !HasDataType(mul_node_def, DT_BFLOAT16)) return false; if (!NodeIsOnCpu(mul_node_def)) return false; bool found_op_type_match = false; utils::SubGraphMatcher<MatchingDirection::kFollowInputs> graph_matcher( &(ctx->graph_view)); matched_nodes_map->clear(); remove_node_indices->clear(); found_op_type_match = graph_matcher.GetMatchedNodes( softplustanhmul_pattern, {}, ctx->graph_view.GetNode(node_index), matched_nodes_map, remove_node_indices); if (found_op_type_match) { NodeDef* matched_softplus_node = ctx->graph_view.GetNode(matched_nodes_map->at("softplus"))->node(); auto in_tensor_softplus = matched_softplus_node->input(0); if ((mul_node_def->input(0) != in_tensor_softplus) && (mul_node_def->input(1) != in_tensor_softplus)) { found_op_type_match = false; } } return found_op_type_match; } Status ReplaceSoftplusTanhAndMulWithMish( RemapperContext* ctx, const std::map<string, int>* matched_nodes_map, const std::set<int>* remove_node_indices, std::vector<bool>* invalidated_nodes, std::vector<bool>* nodes_to_delete) { auto* old_mul_node = ctx->graph_view.GetNode(matched_nodes_map->at("mul_to_mish"))->node(); auto* softplus_node = ctx->graph_view.GetNode(matched_nodes_map->at("softplus"))->node(); NodeDef fused_node; fused_node.set_name(old_mul_node->name()); fused_node.set_op("_MklFusedMish"); fused_node.set_device(old_mul_node->device()); fused_node.add_input(softplus_node->input(0)); auto* fused_node_attr = fused_node.mutable_attr(); (*fused_node_attr)["T"] = old_mul_node->attr().at("T"); utils::Mutation* mutation = ctx->graph_view.GetMutationBuilder(); Status status; mutation->AddNode(std::move(fused_node), &status); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR(mutation->Apply()); (*invalidated_nodes)[matched_nodes_map->at("mul_to_mish")] = true; for (const auto& node_index : *remove_node_indices) { (*nodes_to_delete)[node_index] = true; } return absl::OkStatus(); } bool RequiresInferredShapes(const RemapperContext& ctx, int node_index, const Cluster* cluster) { const auto* node_view = ctx.graph_view.GetNode(node_index); const auto* node_def = node_view->node(); const auto is_batch_norm_candidate = [&]() -> bool { if (!IsFusedBatchNorm(*node_def)) return false; if (GetDataTypeFromAttr(*node_def, "T") != DT_FLOAT) return false; bool is_training = true; if (!TryGetNodeAttr(*node_def, kIsTraining, &is_training)) return false; if (is_training) return false; return true; }; const auto is_act_biasadd_conv_candidate = [&]() -> bool { if (!IsSupportedActivation(*node_def, cluster)) return false; if (!RuntimeFusionEnabled(cluster) && !IsRelu(*node_def)) return false; const auto is_compatible_dtype = [&](const NodeDef& node) -> bool { bool fp16_only = IsRelu6(*node_def) || IsElu(*node_def) || IsLeakyRelu(*node_def); DataType dtype = GetDataTypeFromAttr(node, "T"); return dtype == DT_HALF || (!fp16_only && dtype == DT_FLOAT); }; if (!is_compatible_dtype(*node_def)) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& relu_fanin_0 = node_view->GetRegularFanin(0); const auto* relu_fanin_0_node_view = relu_fanin_0.node_view(); const auto* relu_fanin_0_node_def = relu_fanin_0_node_view->node(); if (!IsBiasAdd(*relu_fanin_0_node_def) && !IsAdd(*relu_fanin_0_node_def)) return false; if (!is_compatible_dtype(*relu_fanin_0_node_def)) return false; if (relu_fanin_0_node_view->NumRegularFanins() < 1) return false; const auto& biasadd_fanin_0 = relu_fanin_0_node_view->GetRegularFanin(0); const auto* biasadd_fanin_0_node_def = biasadd_fanin_0.node_view()->node(); if (!IsConv2D(*biasadd_fanin_0_node_def) && !IsConv3D(*biasadd_fanin_0_node_def)) return false; if (!is_compatible_dtype(*biasadd_fanin_0_node_def)) return false; return true; }; const auto is_batch_norm_fusion_candidate = [&]() -> bool { if (!IsRelu(*node_def)) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& relu_fanin_0 = node_view->GetRegularFanin(0); const auto* relu_fanin_0_node_view = relu_fanin_0.node_view(); const auto* relu_fanin_0_node_def = relu_fanin_0_node_view->node(); if (IsFusedBatchNorm(*relu_fanin_0_node_def)) { return true; } else if (IsAdd(*relu_fanin_0_node_def)) { if (relu_fanin_0_node_view->NumRegularFanins() < 2) return false; const auto& add_regular_fanin_0 = relu_fanin_0_node_view->GetRegularFanin(0); if (IsFusedBatchNorm(*add_regular_fanin_0.node_view()->node())) return true; const auto& add_regular_fanin_1 = relu_fanin_0_node_view->GetRegularFanin(1); if (IsFusedBatchNorm(*add_regular_fanin_1.node_view()->node())) return true; } return false; }; const auto is_batch_norm_grad_fusion_candidate = [&]() -> bool { if (!IsFusedBatchNormGrad(*node_def)) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& bn_fanin_0 = node_view->GetRegularFanin(0); const auto* bn_fanin_0_node_view = bn_fanin_0.node_view(); const auto* bn_fanin_0_node_def = bn_fanin_0_node_view->node(); if (IsReluGrad(*bn_fanin_0_node_def)) { return true; } return false; }; const auto is_matmul_gelu_exact_fusion_candidate = [&]() -> bool { if (!RuntimeFusionEnabled(cluster)) return false; DataType node_dtype = GetDataTypeFromAttr(*node_def, "T"); if (node_dtype != DT_HALF) return false; return IsMatchedMatMulBiasAddAndGeluExact(const_cast<RemapperContext&>(ctx), node_index); }; const auto is_act_biasadd_matmul_candidate = [&]() -> bool { if (!IsTanh(*node_def) && !IsSigmoid(*node_def)) return false; if (!RuntimeFusionEnabled(cluster)) return false; DataType act_dtype = GetDataTypeFromAttr(*node_def, "T"); if (act_dtype != DT_HALF) return false; if (node_view->NumRegularFanins() < 1) return false; const auto& relu_fanin_0 = node_view->GetRegularFanin(0); const auto* relu_fanin_0_node_view = relu_fanin_0.node_view(); const auto* relu_fanin_0_node_def = relu_fanin_0_node_view->node(); if (!IsBiasAdd(*relu_fanin_0_node_def) && !IsAdd(*relu_fanin_0_node_def)) { return false; } DataType biasadd_dtype = GetDataTypeFromAttr(*relu_fanin_0_node_def, "T"); if (biasadd_dtype != DT_HALF) return false; if (relu_fanin_0_node_view->NumRegularFanins() < 1) return false; const auto& biasadd_fanin_0 = relu_fanin_0_node_view->GetRegularFanin(0); const auto* biasadd_fanin_0_node_def = biasadd_fanin_0.node_view()->node(); if (!IsMatMul(*biasadd_fanin_0_node_def)) return false; DataType matmul_dtype = GetDataTypeFromAttr(*biasadd_fanin_0_node_def, "T"); if (matmul_dtype != DT_HALF) return false; return true; }; if (IsMKLEnabled()) return is_batch_norm_candidate() || is_batch_norm_fusion_candidate() || IsContractionWithAdd(ctx, node_index) || is_act_biasadd_conv_candidate() || IsBiasAdd(*node_def) || IsTranspose(*node_def); return is_act_biasadd_conv_candidate() || is_batch_norm_candidate() || is_batch_norm_fusion_candidate() || is_batch_norm_grad_fusion_candidate() || is_matmul_gelu_exact_fusion_candidate() || is_act_biasadd_matmul_candidate(); } inline bool IsXlaCpuGlobalJitOn() { std::vector<string> tf_xla_flags; const std::string tf_xla_cpu_global_jit = "--tf_xla_cpu_global_jit"; TF_CHECK_OK(ReadStringsFromEnvVar("TF_XLA_FLAGS", "", &tf_xla_flags)); return std::find(tf_xla_flags.begin(), tf_xla_flags.end(), tf_xla_cpu_global_jit) != tf_xla_flags.end(); } } Status Remapper::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { GrapplerItem mutable_item = item; Status status; bool xla_cpu_jit_disable_fusion = xla_auto_clustering_on_ && IsXlaCpuGlobalJitOn(); #ifdef DNNL_AARCH64_USE_ACL xla_cpu_jit_disable_fusion = false; #endif RemapperContext ctx(&mutable_item, &status, cpu_layout_conversion_, xla_auto_clustering_on_, xla_cpu_jit_disable_fusion); TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR( ctx.graph_view.SortTopologically(false, {})); const int num_nodes = item.graph.node_size(); std::vector<bool> invalidated_nodes(num_nodes); std::vector<bool> nodes_to_delete(num_nodes); bool allow_non_differentiable_rewrites = item.optimization_options().allow_non_differentiable_rewrites; for (int i = num_nodes - 1; i >= 0; --i) { if (invalidated_nodes[i] || nodes_to_delete[i]) { continue; } if (!ctx.inferred_graph_properties && RequiresInferredShapes(ctx, i, cluster)) { const bool assume_valid_feeds = opt_level_ == RewriterConfig::AGGRESSIVE; TF_RETURN_IF_ERROR(ctx.graph_properties.InferStatically( assume_valid_feeds, false, true, false)); ctx.inferred_graph_properties = true; } ContractionWithBiasAddAndAdd contract_with_bias_and_add; ContractionWithActivation contract_with_activation; ContractionWithBiasAndAddActivation contract_with_bias_and_add_activation; if (IsConv2D(ctx.graph_view.graph()->node(i)) || IsFusedBatchNorm(ctx.graph_view.graph()->node(i)) || IsDepthwiseConv2dNative(ctx.graph_view.graph()->node(i)) || IsBiasAdd(ctx.graph_view.graph()->node(i)) || IsTranspose(ctx.graph_view.graph()->node(i)) || IsSigmoid(ctx.graph_view.graph()->node(i)) || IsMatMul(ctx.graph_view.graph()->node(i))) { AddInputShapesAttr(ctx, i); } if (IsMKLEnabled() && !ctx.xla_cpu_jit_disable_fusion) { const auto* node_view = ctx.graph_view.GetNode(i); const auto* node_def = node_view->node(); const string& type_attr = "T"; DataType dtype = GetDataTypeFromAttr(*node_def, type_attr); if ((dtype == DT_BFLOAT16 || dtype == DT_HALF) && !IsDataTypeSupportedByOneDNNOnThisCPU(dtype)) continue; if (FindContractionWithBiasAndAddActivation( ctx, i, &contract_with_bias_and_add_activation)) { TF_RETURN_IF_ERROR( AddFusedContractionNode(&ctx, contract_with_bias_and_add_activation, &invalidated_nodes, &nodes_to_delete)); continue; } if (FindFusedConvWithFusedActivation(ctx, i, &contract_with_activation)) { TF_RETURN_IF_ERROR( AddFusedContractionNode(&ctx, contract_with_activation, &invalidated_nodes, &nodes_to_delete)); continue; } #ifndef DNNL_AARCH64_USE_ACL if (FindContractionWithBiasAddAndAdd(ctx, i, &contract_with_bias_and_add)) { TF_RETURN_IF_ERROR( AddFusedContractionNode(&ctx, contract_with_bias_and_add, &invalidated_nodes, &nodes_to_delete)); continue; } #endif PadWithConv3D pad_with_conv3d; if (FindPadWithConv3D(ctx, i, &pad_with_conv3d)) { TF_RETURN_IF_ERROR(AddFusedConv3DNode( &ctx, pad_with_conv3d, &invalidated_nodes, &nodes_to_delete)); continue; } std::map<string, int> matched_nodes_map; std::set<int> remove_node_indices; std::vector<string> input_node_names; if (FindContractionWithBiasAddAndHardSwish(ctx, i, &matched_nodes_map, &remove_node_indices)) { TF_RETURN_IF_ERROR(FuseContractionWithBiasAddAndHardSwish( &ctx, &matched_nodes_map, &remove_node_indices, &invalidated_nodes, &nodes_to_delete)); continue; } matched_nodes_map.clear(); remove_node_indices.clear(); if (FindSoftplusAndTanhAndMul(&ctx, i, &matched_nodes_map, &remove_node_indices)) { TF_RETURN_IF_ERROR(ReplaceSoftplusTanhAndMulWithMish( &ctx, &matched_nodes_map, &remove_node_indices, &invalidated_nodes, &nodes_to_delete)); continue; } matched_nodes_map.clear(); remove_node_indices.clear(); input_node_names.clear(); if (FindFusedBatchMatMul(&ctx, i, &matched_nodes_map, &remove_node_indices, &input_node_names)) { TF_RETURN_IF_ERROR(AddFusedBatchMatMul( &ctx, matched_nodes_map, remove_node_indices, input_node_names, &invalidated_nodes, &nodes_to_delete)); continue; } #ifndef DNNL_AARCH64_USE_ACL std::map<string, int> fusedconv2dSwish_matched_nodes_map; std::set<int> fusedconv2dSwish_remove_node_indices; if (FindConv2DSwish(&ctx, i, &fusedconv2dSwish_matched_nodes_map, &fusedconv2dSwish_remove_node_indices)) { TF_RETURN_IF_ERROR( FuseConv2DSwish(&ctx, fusedconv2dSwish_matched_nodes_map, fusedconv2dSwish_remove_node_indices, &invalidated_nodes, &nodes_to_delete)); continue; } #endif std::map<string, int> mulmax_matched_nodes_map; std::set<int> mulmax_remove_node_indices; float alpha; if (FindMulAndMaximum(&ctx, i, &mulmax_matched_nodes_map, &mulmax_remove_node_indices, &alpha)) { TF_RETURN_IF_ERROR(ReplaceMulMaximumWithLeakyRelu( &ctx, mulmax_matched_nodes_map, mulmax_remove_node_indices, &invalidated_nodes, &nodes_to_delete, alpha)); continue; } std::map<string, int> sigmoidmul_matched_nodes_map; std::set<int> sigmoidmul_remove_node_indices; if (FindSigmoidAndMul(&ctx, i, &sigmoidmul_matched_nodes_map, &sigmoidmul_remove_node_indices)) { bool replace = true; #ifdef DNNL_AARCH64_USE_ACL const int sigmoid_idx = sigmoidmul_matched_nodes_map.at("sigmoid"); AddInputShapesAttr(ctx, sigmoid_idx); const NodeDef* sigmoid = ctx.graph_view.GetNode(sigmoid_idx)->node(); const int intra_op_parallelism_threads = item.optimization_options().intra_op_parallelism_threads; double total_mflops = CalculateNodeMFlops(AttrSlice(*sigmoid), "Sigmoid"); double thr = FindRewriteThreshold("Sigmoid", intra_op_parallelism_threads); if (total_mflops != -1 && total_mflops < thr) { replace = false; } #endif if (replace) { TF_RETURN_IF_ERROR( ReplaceSigmoidMulWithSwish(&ctx, sigmoidmul_matched_nodes_map, sigmoidmul_remove_node_indices, &invalidated_nodes, &nodes_to_delete)); continue; } } matched_nodes_map.clear(); remove_node_indices.clear(); input_node_names.clear(); float epsilon = 0.001; if (FindMklLayerNorm(&ctx, i, &matched_nodes_map, &remove_node_indices, &input_node_names, &epsilon)) { TF_RETURN_IF_ERROR(AddMklLayerNorm( &ctx, matched_nodes_map, remove_node_indices, input_node_names, &invalidated_nodes, &nodes_to_delete, epsilon)); continue; } matched_nodes_map.clear(); remove_node_indices.clear(); if (FindInstanceNormWithActivation(&ctx, i, &matched_nodes_map, &remove_node_indices)) { TF_RETURN_IF_ERROR(AddMklFusedInstanceNorm( &ctx, &matched_nodes_map, &remove_node_indices, &invalidated_nodes, &nodes_to_delete, true)); continue; } matched_nodes_map.clear(); remove_node_indices.clear(); if (FindInstanceNorm(&ctx, i, &matched_nodes_map, &remove_node_indices)) { TF_RETURN_IF_ERROR(AddMklFusedInstanceNorm( &ctx, &matched_nodes_map, &remove_node_indices, &invalidated_nodes, &nodes_to_delete, false)); continue; } } std::map<string, int> matched_nodes_map; std::set<int> remove_node_indices; bool is_gelu_approximate = false; if (FindMatMulBiasAddAndGelu(&ctx, i, cluster, &matched_nodes_map, &remove_node_indices, &is_gelu_approximate)) { TF_RETURN_IF_ERROR(AddFusedMatMulBiasAddAndGelu( &ctx, matched_nodes_map, remove_node_indices, &invalidated_nodes, &nodes_to_delete, is_gelu_approximate)); continue; } ContractionWithBiasAdd contract_with_bias; if (allow_non_differentiable_rewrites && FindContractionWithBias(ctx, i, &contract_with_bias)) { TF_RETURN_IF_ERROR(AddFusedContractionNode( &ctx, contract_with_bias, &invalidated_nodes, &nodes_to_delete)); continue; } ContractionWithBiasAddAndActivation contract_with_bias_and_activation; if (allow_non_differentiable_rewrites && FindContractionWithBiasAndActivation( ctx, cluster, i, &contract_with_bias_and_activation)) { TF_RETURN_IF_ERROR( AddFusedContractionNode(&ctx, contract_with_bias_and_activation, &invalidated_nodes, &nodes_to_delete)); continue; } ContractionWithSqueezeAndBiasAdd contract_with_squeeze_and_bias; if (allow_non_differentiable_rewrites && FindConvWithSqueezeAndBias(ctx, i, &contract_with_squeeze_and_bias)) { TF_RETURN_IF_ERROR(AddFusedConvNode(&ctx, contract_with_squeeze_and_bias, &invalidated_nodes, &nodes_to_delete)); continue; } #ifndef DNNL_AARCH64_USE_ACL ContractionWithBatchNorm contract_with_batch_norm; if (allow_non_differentiable_rewrites && FindConv2DWithBatchNorm(ctx, i, &contract_with_batch_norm)) { TF_RETURN_IF_ERROR(AddFusedConv2DNode(&ctx, contract_with_batch_norm, &invalidated_nodes, &nodes_to_delete)); continue; } ContractionWithBatchNormAndActivation contract_with_batch_norm_and_activation; if (allow_non_differentiable_rewrites && FindConv2DWithBatchNormAndActivation( ctx, i, &contract_with_batch_norm_and_activation)) { TF_RETURN_IF_ERROR( AddFusedConv2DNode(&ctx, contract_with_batch_norm_and_activation, &invalidated_nodes, &nodes_to_delete)); continue; } #endif FusedBatchNormEx fused_batch_norm_ex; if (allow_non_differentiable_rewrites && FindFusedBatchNormEx(ctx, i, &fused_batch_norm_ex)) { TF_RETURN_IF_ERROR(AddFusedBatchNormExNode( &ctx, fused_batch_norm_ex, &invalidated_nodes, &nodes_to_delete)); continue; } FusedBatchNormGradEx fused_batch_norm_grad_ex; if (allow_non_differentiable_rewrites && FindFusedBatchNormGradEx(ctx, i, &fused_batch_norm_grad_ex)) { TF_RETURN_IF_ERROR( AddFusedBatchNormGradExNode(&ctx, fused_batch_norm_grad_ex, &invalidated_nodes, &nodes_to_delete)); continue; } TensorToHashBucket tensor_to_hash_bucket; if (allow_non_differentiable_rewrites && FindTensorToHashBucket(ctx, i, &tensor_to_hash_bucket)) { TF_RETURN_IF_ERROR(AddTensorToHashBucketNode( &ctx, tensor_to_hash_bucket, &invalidated_nodes, &nodes_to_delete)); continue; } FusedBatchNorm fused_batch_norm; if (FindFusedBatchNorm(ctx, i, &fused_batch_norm)) { TF_RETURN_IF_ERROR(AddBatchNormNodes(&ctx, fused_batch_norm)); continue; } } utils::Mutation* mutation = ctx.graph_view.GetMutationBuilder(); for (int i = 0; i < num_nodes; ++i) { if (nodes_to_delete[i]) { mutation->RemoveNode(ctx.graph_view.GetNode(i)); } } TF_RETURN_IF_ERROR(mutation->Apply()); *optimized_graph = std::move(mutable_item.graph); return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/remapper.h" #include "tensorflow/cc/ops/nn_ops_internal.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/devices.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/utils/graph_view.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/util.h" #if GOOGLE_CUDA #include "third_party/gpus/cudnn/cudnn.h" #endif namespace tensorflow { namespace grappler { class RemapperTest : public GrapplerTest { protected: void SetUp() override { setenv("TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT", "1", 1 ); setenv("TF_USE_CUBLASLT", "1", 1 ); } }; TEST_F(RemapperTest, FusedBatchNorm) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output dflt = ops::Const(s.WithOpName("dflt"), {3.14f, 2.7f}, {2, 1, 1, 1}); Output x = ops::PlaceholderWithDefault(s.WithOpName("x"), dflt, {2, 1, 1, 1}); Output scale = ops::Const(s.WithOpName("scale"), {0.3f}, {1}); Output offset = ops::Const(s.WithOpName("offset"), {0.123f}, {1}); Output mean = ops::Const(s.WithOpName("mean"), {7.3f}, {1}); Output variance = ops::Const(s.WithOpName("variance"), {0.57f}, {1}); ops::FusedBatchNorm::Attrs attr; attr = attr.IsTraining(false); ops::FusedBatchNorm bn(s.WithOpName("batch_norm"), x, scale, offset, mean, variance, attr); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); item.fetch = {"batch_norm"}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(RemapperTest, FusedBatchNormNCHW) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output dflt = ops::Const(s.WithOpName("dflt"), {3.14f, 2.7f, 1.0f, 2.0f, 3.0f, 100.0f}, {1, 3, 1, 2}); Output x = ops::PlaceholderWithDefault(s.WithOpName("x"), dflt, {1, 3, 1, 2}); Output scale = ops::Const(s.WithOpName("scale"), {0.3f, 7.0f, 123.0f}, {3}); Output offset = ops::Const(s.WithOpName("offset"), {0.123f, 2.1f, 0.55f}, {3}); Output mean = ops::Const(s.WithOpName("mean"), {7.3f, 8.3f, 3.1f}, {3}); Output variance = ops::Const(s.WithOpName("variance"), {0.57f, 1.0f, 2.0f}, {3}); ops::FusedBatchNorm::Attrs attr; attr = attr.IsTraining(false); attr = attr.DataFormat("NCHW"); ops::FusedBatchNorm bn(s.WithOpName("batch_norm").WithDevice("/device:GPU:0"), x, scale, offset, mean, variance, attr); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); item.fetch = {"batch_norm"}; Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); if (GetNumAvailableGPUs() > 0) { auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-3); } } TEST_F(RemapperTest, FuseBatchNormWithRelu) { if (IsMKLEnabled()) GTEST_SKIP() << "Fusion not available with oneDNN."; using ::tensorflow::ops::Placeholder; for (bool is_training : {true, false}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); #if !defined(GOOGLE_CUDA) || !(CUDNN_VERSION >= 7402) if (is_training) { LOG(INFO) << "Skip FuseBatchNormWithRelu" << "[is_training=" << is_training << "] " << "test. It requires CUDNN_VERSION >= 7402."; continue; } #endif #if !defined(GOOGLE_CUDA) if (!is_training) { LOG(INFO) << "Skip FuseBatchNormWithRelu" << "[is_training=" << is_training << "]"; continue; } #endif const int num_channels = 24; TensorShape channel_shape({num_channels}); TensorShape empty_shape({0}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, ops::Placeholder::Shape({2, 8, 8, num_channels})); auto input_cast = ops::Cast(s.WithOpName("input_cast"), input, DT_HALF); auto scale = Placeholder(s.WithOpName("scale"), DT_FLOAT); auto offset = Placeholder(s.WithOpName("offset"), DT_FLOAT); auto mean = Placeholder(s.WithOpName("mean"), DT_FLOAT); auto var = Placeholder(s.WithOpName("var"), DT_FLOAT); float epsilon = 0.1f; auto fbn = ops::FusedBatchNormV3( s.WithOpName("fused_batch_norm"), input_cast, scale, offset, mean, var, ops::FusedBatchNormV3::IsTraining(is_training) .Epsilon(epsilon) .DataFormat("NHWC")); auto relu = ops::Relu(s.WithOpName("relu"), fbn.y); auto fetch = ops::Identity(s.WithOpName("fetch"), relu); auto input_t = GenerateRandomTensor<DT_FLOAT>({2, 8, 8, num_channels}); auto scale_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto offset_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto mean_t = GenerateRandomTensor<DT_FLOAT>(is_training ? empty_shape : channel_shape); auto var_t = GenerateRandomTensor<DT_FLOAT>(is_training ? empty_shape : channel_shape); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"scale", scale_t}, {"offset", offset_t}, {"mean", mean_t}, {"var", var_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:GPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "relu") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "fused_batch_norm"); found++; } if (node.name() == "fused_batch_norm") { EXPECT_EQ(node.op(), "_FusedBatchNormEx"); ASSERT_EQ(node.input_size(), 5); EXPECT_EQ(node.input(0), "input_cast"); EXPECT_EQ(node.input(1), "scale"); EXPECT_EQ(node.input(2), "offset"); EXPECT_EQ(node.input(3), "mean"); EXPECT_EQ(node.input(4), "var"); auto attr = node.attr(); EXPECT_EQ(attr["num_side_inputs"].i(), 0); EXPECT_EQ(attr["activation_mode"].s(), "Relu"); found++; } } EXPECT_EQ(found, 2); if (GetNumAvailableGPUs() > 0) { auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); } } } #if defined(GOOGLE_CUDA) && CUDNN_VERSION >= 7402 TEST_F(RemapperTest, FuseBatchNormGradWithReluGrad) { if (IsMKLEnabled()) GTEST_SKIP() << "Fusion not available with oneDNN."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); bool is_training = true; const int num_channels = 24; TensorShape channel_shape({num_channels}); TensorShape empty_shape({0}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, ops::Placeholder::Shape({2, 8, 8, num_channels})); auto input_cast = ops::Cast(s.WithOpName("input_cast"), input, DT_HALF); auto scale = Placeholder(s.WithOpName("scale"), DT_FLOAT); auto offset = Placeholder(s.WithOpName("offset"), DT_FLOAT); auto mean = Placeholder(s.WithOpName("mean"), DT_FLOAT); auto var = Placeholder(s.WithOpName("var"), DT_FLOAT); float epsilon = 0.1f; auto fbn = ops::FusedBatchNormV3( s.WithOpName("fused_batch_norm"), input_cast, scale, offset, mean, var, ops::FusedBatchNormV3::IsTraining(is_training) .Epsilon(epsilon) .DataFormat("NHWC")); auto relu = ops::Relu(s.WithOpName("relu"), fbn.y); auto output_grad = Placeholder(s.WithOpName("output_grad"), DT_FLOAT, ops::Placeholder::Shape({2, 8, 8, num_channels})); auto output_grad_cast = ops::Cast(s.WithOpName("output_grad_cast"), output_grad, DT_HALF); auto relu_grad = ops::internal::ReluGrad(s.WithOpName("relu_grad"), output_grad_cast, relu); auto fbn_grad = ops::FusedBatchNormGradV3( s.WithOpName("fused_batch_norm_grad"), relu_grad, input_cast, scale, fbn.reserve_space_1, fbn.reserve_space_2, fbn.reserve_space_3, ops::FusedBatchNormGradV3::IsTraining(is_training) .Epsilon(epsilon) .DataFormat("NHWC")); auto fetch0 = ops::Identity(s.WithOpName("fetch0"), fbn_grad.x_backprop); auto fetch1 = ops::Identity(s.WithOpName("fetch1"), fbn_grad.scale_backprop); auto fetch2 = ops::Identity(s.WithOpName("fetch2"), fbn_grad.offset_backprop); auto input_t = GenerateRandomTensor<DT_FLOAT>({2, 8, 8, num_channels}); auto scale_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto offset_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto mean_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto var_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto output_grad_t = GenerateRandomTensor<DT_FLOAT>({2, 8, 8, num_channels}); GrapplerItem item; item.fetch = {"fetch0", "fetch1", "fetch2"}; item.feed = {{"input", input_t}, {"scale", scale_t}, {"offset", offset_t}, {"mean", mean_t}, {"var", var_t}, {"output_grad", output_grad_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:GPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "relu") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "fused_batch_norm"); found++; } if (node.name() == "fused_batch_norm") { EXPECT_EQ(node.op(), "_FusedBatchNormEx"); ASSERT_EQ(node.input_size(), 5); EXPECT_EQ(node.input(0), "input_cast"); EXPECT_EQ(node.input(1), "scale"); EXPECT_EQ(node.input(2), "offset"); EXPECT_EQ(node.input(3), "mean"); EXPECT_EQ(node.input(4), "var"); auto attr = node.attr(); EXPECT_EQ(attr["num_side_inputs"].i(), 0); EXPECT_EQ(attr["activation_mode"].s(), "Relu"); found++; } if (node.name() == "fused_batch_norm_grad") { EXPECT_EQ(node.op(), "_FusedBatchNormGradEx"); ASSERT_EQ(node.input_size(), 8); EXPECT_EQ(node.input(0), "output_grad_cast"); EXPECT_EQ(node.input(1), "input_cast"); EXPECT_EQ(node.input(2), "scale"); EXPECT_EQ(node.input(3), "fused_batch_norm:3"); EXPECT_EQ(node.input(4), "fused_batch_norm:4"); EXPECT_EQ(node.input(5), "fused_batch_norm:5"); EXPECT_EQ(node.input(6), "offset"); EXPECT_EQ(node.input(7), "relu"); auto attr = node.attr(); EXPECT_EQ(attr["num_side_inputs"].i(), 0); EXPECT_EQ(attr["activation_mode"].s(), "Relu"); found++; } } EXPECT_EQ(found, 3); if (GetNumAvailableGPUs() > 0) { auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 3); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 3); test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); test::ExpectClose(tensors[1], tensors_expected[1], 1e-2, 1e-2); test::ExpectClose(tensors[2], tensors_expected[2], 1e-2, 1e-2); } } #endif TEST_F(RemapperTest, FuseBatchNormWithAddAndRelu) { if (IsMKLEnabled()) GTEST_SKIP() << "Fusion not available with oneDNN."; using ::tensorflow::ops::Placeholder; for (bool is_training : {true, false}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); #if !defined(GOOGLE_CUDA) || !(CUDNN_VERSION >= 7402) if (is_training) { LOG(INFO) << "Skip FuseBatchNormWithAddAndRelu" << "[is_training=" << is_training << "] " << "test. It requires CUDNN_VERSION >= 7402."; continue; } #endif #if !defined(GOOGLE_CUDA) if (!is_training) { LOG(INFO) << "Skip FuseBatchNormWithAddAndRelu" << "[is_training=" << is_training << "]"; continue; } #endif const int num_channels = 24; TensorShape input_shape({2, 8, 8, num_channels}); TensorShape channel_shape({num_channels}); TensorShape empty_shape({0}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, ops::Placeholder::Shape(input_shape)); auto input_cast = ops::Cast(s.WithOpName("input_cast"), input, DT_HALF); auto scale = Placeholder(s.WithOpName("scale"), DT_FLOAT); auto offset = Placeholder(s.WithOpName("offset"), DT_FLOAT); auto mean = Placeholder(s.WithOpName("mean"), DT_FLOAT); auto var = Placeholder(s.WithOpName("var"), DT_FLOAT); auto side_input = Placeholder(s.WithOpName("side_input"), DT_FLOAT, ops::Placeholder::Shape(input_shape)); auto side_input_cast = ops::Cast(s.WithOpName("side_input_cast"), side_input, DT_HALF); float epsilon = 0.1f; auto fbn = ops::FusedBatchNormV3( s.WithOpName("fused_batch_norm"), input_cast, scale, offset, mean, var, ops::FusedBatchNormV3::IsTraining(is_training) .Epsilon(epsilon) .DataFormat("NHWC")); auto add = ops::Add(s.WithOpName("add"), fbn.y, side_input_cast); auto relu = ops::Relu(s.WithOpName("relu"), add); auto fetch = ops::Identity(s.WithOpName("fetch"), relu); auto input_t = GenerateRandomTensor<DT_FLOAT>(input_shape); auto scale_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto offset_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto mean_t = GenerateRandomTensor<DT_FLOAT>(is_training ? empty_shape : channel_shape); auto var_t = GenerateRandomTensor<DT_FLOAT>(is_training ? empty_shape : channel_shape); auto side_input_t = GenerateRandomTensor<DT_FLOAT>({2, 8, 8, num_channels}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"scale", scale_t}, {"offset", offset_t}, {"mean", mean_t}, {"var", var_t}, {"side_input", side_input_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:GPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "relu") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "fused_batch_norm"); found++; } if (node.name() == "fused_batch_norm") { EXPECT_EQ(node.op(), "_FusedBatchNormEx"); ASSERT_EQ(node.input_size(), 6); EXPECT_EQ(node.input(0), "input_cast"); EXPECT_EQ(node.input(1), "scale"); EXPECT_EQ(node.input(2), "offset"); EXPECT_EQ(node.input(3), "mean"); EXPECT_EQ(node.input(4), "var"); EXPECT_EQ(node.input(5), "side_input_cast"); auto attr = node.attr(); EXPECT_EQ(attr["num_side_inputs"].i(), 1); EXPECT_EQ(attr["activation_mode"].s(), "Relu"); found++; } } EXPECT_EQ(found, 2); if (GetNumAvailableGPUs() > 0) { auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); } } } #if defined(GOOGLE_CUDA) && CUDNN_VERSION >= 7402 TEST_F(RemapperTest, FuseBatchNormGradWithAddAndReluGrad) { if (IsMKLEnabled()) GTEST_SKIP() << "Fusion not available with oneDNN."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); bool is_training = true; const int num_channels = 24; TensorShape input_shape({2, 8, 8, num_channels}); TensorShape channel_shape({num_channels}); TensorShape empty_shape({0}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, ops::Placeholder::Shape(input_shape)); auto input_cast = ops::Cast(s.WithOpName("input_cast"), input, DT_HALF); auto scale = Placeholder(s.WithOpName("scale"), DT_FLOAT); auto offset = Placeholder(s.WithOpName("offset"), DT_FLOAT); auto mean = Placeholder(s.WithOpName("mean"), DT_FLOAT); auto var = Placeholder(s.WithOpName("var"), DT_FLOAT); auto side_input = Placeholder(s.WithOpName("side_input"), DT_FLOAT, ops::Placeholder::Shape(input_shape)); auto side_input_cast = ops::Cast(s.WithOpName("side_input_cast"), side_input, DT_HALF); float epsilon = 0.1f; auto fbn = ops::FusedBatchNormV3( s.WithOpName("fused_batch_norm"), input_cast, scale, offset, mean, var, ops::FusedBatchNormV3::IsTraining(is_training) .Epsilon(epsilon) .DataFormat("NHWC")); auto fbn_side_input = ops::FusedBatchNormV3(s.WithOpName("fused_batch_norm_side_input"), side_input_cast, scale, offset, mean, var, ops::FusedBatchNormV3::IsTraining(is_training) .Epsilon(epsilon) .DataFormat("NHWC")); auto add = ops::Add(s.WithOpName("add"), fbn.y, fbn_side_input.y); auto relu = ops::Relu(s.WithOpName("relu"), add); auto output_grad = Placeholder(s.WithOpName("output_grad"), DT_FLOAT, ops::Placeholder::Shape({2, 8, 8, num_channels})); auto output_grad_cast = ops::Cast(s.WithOpName("output_grad_cast"), output_grad, DT_HALF); auto relu_grad = ops::internal::ReluGrad(s.WithOpName("relu_grad"), output_grad_cast, relu); auto fbn_grad = ops::FusedBatchNormGradV3( s.WithOpName("fused_batch_norm_grad"), relu_grad, input_cast, scale, fbn.reserve_space_1, fbn.reserve_space_2, fbn.reserve_space_3, ops::FusedBatchNormGradV3::IsTraining(is_training) .Epsilon(epsilon) .DataFormat("NHWC")); auto fbn_side_input_grad = ops::FusedBatchNormGradV3( s.WithOpName("fused_batch_norm_side_input_grad"), relu_grad, side_input_cast, scale, fbn_side_input.reserve_space_1, fbn_side_input.reserve_space_2, fbn_side_input.reserve_space_3, ops::FusedBatchNormGradV3::IsTraining(is_training) .Epsilon(epsilon) .DataFormat("NHWC")); auto fetch0 = ops::Identity(s.WithOpName("fetch0"), fbn_grad.x_backprop); auto fetch1 = ops::Identity(s.WithOpName("fetch1"), fbn_grad.scale_backprop); auto fetch2 = ops::Identity(s.WithOpName("fetch2"), fbn_grad.offset_backprop); auto fetch3 = ops::Identity(s.WithOpName("fetch3"), fbn_side_input_grad.x_backprop); auto fetch4 = ops::Identity(s.WithOpName("fetch4"), fbn_side_input_grad.scale_backprop); auto fetch5 = ops::Identity(s.WithOpName("fetch5"), fbn_side_input_grad.offset_backprop); auto input_t = GenerateRandomTensor<DT_FLOAT>(input_shape); auto scale_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto offset_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto mean_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto var_t = GenerateRandomTensor<DT_FLOAT>(channel_shape); auto side_input_t = GenerateRandomTensor<DT_FLOAT>({2, 8, 8, num_channels}); auto output_grad_t = GenerateRandomTensor<DT_FLOAT>({2, 8, 8, num_channels}); GrapplerItem item; item.fetch = {"fetch0", "fetch1", "fetch2", "fetch3", "fetch4", "fetch5"}; item.feed = {{"input", input_t}, {"scale", scale_t}, {"offset", offset_t}, {"mean", mean_t}, {"var", var_t}, {"side_input", side_input_t}, {"output_grad", output_grad_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:GPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "relu") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "fused_batch_norm"); found++; } if (node.name() == "fused_batch_norm") { EXPECT_EQ(node.op(), "_FusedBatchNormEx"); ASSERT_EQ(node.input_size(), 6); EXPECT_EQ(node.input(0), "input_cast"); EXPECT_EQ(node.input(1), "scale"); EXPECT_EQ(node.input(2), "offset"); EXPECT_EQ(node.input(3), "mean"); EXPECT_EQ(node.input(4), "var"); EXPECT_EQ(node.input(5), "fused_batch_norm_side_input"); auto attr = node.attr(); EXPECT_EQ(attr["num_side_inputs"].i(), 1); EXPECT_EQ(attr["activation_mode"].s(), "Relu"); found++; } if (node.name() == "relu_grad") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "fused_batch_norm_grad:5"); found++; } if (node.name() == "fused_batch_norm_grad") { EXPECT_EQ(node.op(), "_FusedBatchNormGradEx"); ASSERT_EQ(node.input_size(), 8); EXPECT_EQ(node.input(0), "output_grad_cast"); EXPECT_EQ(node.input(1), "input_cast"); EXPECT_EQ(node.input(2), "scale"); EXPECT_EQ(node.input(3), "fused_batch_norm:3"); EXPECT_EQ(node.input(4), "fused_batch_norm:4"); EXPECT_EQ(node.input(5), "fused_batch_norm:5"); EXPECT_EQ(node.input(6), "offset"); EXPECT_EQ(node.input(7), "relu"); auto attr = node.attr(); EXPECT_EQ(attr["num_side_inputs"].i(), 1); EXPECT_EQ(attr["activation_mode"].s(), "Relu"); found++; } } EXPECT_EQ(found, 4); if (GetNumAvailableGPUs() > 0) { auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 6); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 6); test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); test::ExpectClose(tensors[1], tensors_expected[1], 1e-2, 1e-2); test::ExpectClose(tensors[2], tensors_expected[2], 1e-2, 1e-2); test::ExpectClose(tensors[3], tensors_expected[3], 1e-2, 1e-2); test::ExpectClose(tensors[4], tensors_expected[4], 1e-2, 1e-2); test::ExpectClose(tensors[5], tensors_expected[5], 1e-2, 1e-2); } } #endif class RemapperFuseConvWithBias : public RemapperTest { public: template <int dim, DataType DTYPE> void RunTest() { using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 3, 128}); auto bias_shape = ops::Placeholder::Shape({128}); std::vector<int> strides = {1, 1, 1, 1}; auto input_t = GenerateTensorWithSetRandom<DTYPE>({8, 32, 32, 3}); auto filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 3, 128}); auto bias_t = GenerateTensorWithSetRandom<DTYPE>({128}); if (dim == 3) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to oneDNN."; input_shape = ops::Placeholder::Shape({8, 4, 32, 32, 3}); filter_shape = ops::Placeholder::Shape({1, 1, 1, 3, 128}); bias_shape = ops::Placeholder::Shape({128}); strides = {1, 1, 1, 1, 1}; input_t = GenerateTensorWithSetRandom<DTYPE>({8, 4, 32, 32, 3}); filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 1, 3, 128}); bias_t = GenerateTensorWithSetRandom<DTYPE>({128}); } auto input = Placeholder(s.WithOpName("input"), DTYPE, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DTYPE, filter_shape); auto bias = Placeholder(s.WithOpName("bias"), DTYPE, bias_shape); if (dim == 2) { auto conv = ops::Conv2D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); auto fetch = ops::Identity(s.WithOpName("fetch"), bias_add); } else if (dim == 3) { auto conv = ops::Conv3D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); auto fetch = ops::Identity(s.WithOpName("fetch"), bias_add); } GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "bias_add") { if (dim == 2) { EXPECT_EQ(node.op(), "_FusedConv2D"); } else if (dim == 3) { EXPECT_EQ(node.op(), "_FusedConv3D"); } ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 1); EXPECT_EQ(fused_ops[0], "BiasAdd"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); if (DTYPE == DT_BFLOAT16) test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); else test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } }; TEST_F(RemapperFuseConvWithBias, Conv2D_F32) { RunTest<2, DT_FLOAT>(); } TEST_F(RemapperFuseConvWithBias, Conv3D_F32) { RunTest<3, DT_FLOAT>(); } TEST_F(RemapperFuseConvWithBias, Conv2D_BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "FuseConv2DWithBias with bfloat16."; RunTest<2, DT_BFLOAT16>(); } TEST_F(RemapperFuseConvWithBias, Conv3D_BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "FuseConv3DWithBias with bfloat16."; RunTest<3, DT_BFLOAT16>(); } class RemapperFuseConvWithBiasAndActivation : public RemapperTest { public: template <int dim, DataType DTYPE> void RunTest() { using ::tensorflow::ops::Placeholder; for (const string& activation : {"Relu", "Relu6", "Elu", "LeakyRelu"}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = Placeholder::Shape({8, 32, 32, 3}); auto filter_shape = Placeholder::Shape({1, 1, 3, 128}); auto bias_shape = Placeholder::Shape({128}); std::vector<int> strides = {1, 1, 1, 1}; auto input_t = GenerateTensorWithSetRandom<DTYPE>({8, 32, 32, 3}); auto filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 3, 128}); auto bias_t = GenerateTensorWithSetRandom<DTYPE>({128}); if (dim == 3) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to oneDNN."; input_shape = Placeholder::Shape({8, 4, 32, 32, 3}); filter_shape = Placeholder::Shape({1, 1, 1, 3, 128}); bias_shape = Placeholder::Shape({128}); strides = {1, 1, 1, 1, 1}; input_t = GenerateTensorWithSetRandom<DTYPE>({8, 4, 32, 32, 3}); filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 1, 3, 128}); bias_t = GenerateTensorWithSetRandom<DTYPE>({128}); } float leakyrelu_alpha = 0.5; auto input = Placeholder(s.WithOpName("input"), DTYPE, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DTYPE, filter_shape); auto bias = Placeholder(s.WithOpName("bias"), DTYPE, bias_shape); if (dim == 2) { auto conv = ops::Conv2D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); if (activation == "Relu") { return ops::Identity(fetch, ops::Relu(activate, bias_add)); } else if (activation == "Relu6") { return ops::Identity(fetch, ops::Relu6(activate, bias_add)); } else if (activation == "Elu") { return ops::Identity(fetch, ops::Elu(activate, bias_add)); } else if (activation == "LeakyRelu") { auto attr = ops::internal::LeakyRelu::Alpha(leakyrelu_alpha); return ops::Identity( fetch, ops::internal::LeakyRelu(activate, bias_add, attr)); } return ops::Identity(fetch, bias); }(); } else if (dim == 3) { auto conv = ops::Conv3D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); if (activation == "Relu") { return ops::Identity(fetch, ops::Relu(activate, bias_add)); } else if (activation == "Relu6") { return ops::Identity(fetch, ops::Relu6(activate, bias_add)); } else if (activation == "Elu") { return ops::Identity(fetch, ops::Elu(activate, bias_add)); } else if (activation == "LeakyRelu") { auto attr = ops::internal::LeakyRelu::Alpha(leakyrelu_alpha); return ops::Identity( fetch, ops::internal::LeakyRelu(activate, bias_add, attr)); } return ops::Identity(fetch, bias); }(); } GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "activation") { if (dim == 2) { EXPECT_EQ(node.op(), "_FusedConv2D"); } else if (dim == 3) { EXPECT_EQ(node.op(), "_FusedConv3D"); } ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 2); EXPECT_EQ(fused_ops[0], "BiasAdd"); EXPECT_EQ(fused_ops[1], activation); if (activation == "LeakyRelu") { EXPECT_EQ(node.attr().at("leakyrelu_alpha").f(), leakyrelu_alpha); } found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); if (DTYPE == DT_BFLOAT16) test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); else test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } } }; TEST_F(RemapperFuseConvWithBiasAndActivation, Conv2D_F32) { RunTest<2, DT_FLOAT>(); } TEST_F(RemapperFuseConvWithBiasAndActivation, Conv3D_F32) { RunTest<3, DT_FLOAT>(); } TEST_F(RemapperFuseConvWithBiasAndActivation, Conv2D_BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "FuseConv2DWithBiasAndActivation with bfloat16."; RunTest<2, DT_BFLOAT16>(); } TEST_F(RemapperFuseConvWithBiasAndActivation, Conv3D_BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "FuseConv3DWithBiasAndActivation with bfloat16."; RunTest<3, DT_BFLOAT16>(); } class RemapperFuseConvWithBiasAndAddActivation : public RemapperTest { public: template <int dim, DataType DTYPE> void RunTest() { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to oneDNN."; using ::tensorflow::ops::Placeholder; for (const string& activation : {"Relu", "Relu6", "Elu", "LeakyRelu"}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = Placeholder::Shape({8, 32, 32, 3}); auto filter_shape = Placeholder::Shape({1, 1, 3, 128}); auto bias_shape = Placeholder::Shape({128}); auto add_shape = ops::Placeholder::Shape({8, 32, 32, 128}); auto input_t = GenerateRandomTensor<DT_FLOAT>({8, 32, 32, 3}); auto filter_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 3, 128}); auto bias_t = GenerateRandomTensor<DT_FLOAT>({128}); auto add_t = GenerateRandomTensor<DT_FLOAT>({8, 32, 32, 128}); float leakyrelu_alpha = 0.5; std::vector<int> strides = {1, 1, 1, 1}; if (dim == 3) { input_shape = Placeholder::Shape({8, 4, 32, 32, 3}); filter_shape = Placeholder::Shape({1, 1, 1, 3, 128}); bias_shape = Placeholder::Shape({128}); add_shape = ops::Placeholder::Shape({8, 4, 32, 32, 128}); strides = {1, 1, 1, 1, 1}; input_t = GenerateRandomTensor<DT_FLOAT>({8, 4, 32, 32, 3}); filter_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 1, 3, 128}); bias_t = GenerateRandomTensor<DT_FLOAT>({128}); add_t = GenerateRandomTensor<DT_FLOAT>({8, 4, 32, 32, 128}); } auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); auto bias = Placeholder(s.WithOpName("bias"), DT_FLOAT, bias_shape); auto input_add = Placeholder(s.WithOpName("input_add"), DT_FLOAT, add_shape); if (dim == 2) { auto conv = ops::Conv2D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); auto add = ops::Add(s.WithOpName("add_op"), input_add, bias_add); ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); if (activation == "Relu") { return ops::Identity(fetch, ops::Relu(activate, add)); } else if (activation == "Relu6") { return ops::Identity(fetch, ops::Relu6(activate, add)); } else if (activation == "Elu") { return ops::Identity(fetch, ops::Elu(activate, add)); } else if (activation == "LeakyRelu") { auto attr = ops::internal::LeakyRelu::Alpha(leakyrelu_alpha); return ops::Identity(fetch, ops::internal::LeakyRelu(activate, add, attr)); } return ops::Identity(fetch, bias); }(); } else if (dim == 3) { auto conv = ops::Conv3D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); auto add = ops::Add(s.WithOpName("add_op"), input_add, bias_add); ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); if (activation == "Relu") { return ops::Identity(fetch, ops::Relu(activate, add)); } else if (activation == "Relu6") { return ops::Identity(fetch, ops::Relu6(activate, add)); } else if (activation == "Elu") { return ops::Identity(fetch, ops::Elu(activate, add)); } else if (activation == "LeakyRelu") { auto attr = ops::internal::LeakyRelu::Alpha(leakyrelu_alpha); return ops::Identity(fetch, ops::internal::LeakyRelu(activate, add, attr)); } return ops::Identity(fetch, bias); }(); } GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias", bias_t}, {"input_add", add_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "activation") { if (dim == 2) { EXPECT_EQ(node.op(), "_FusedConv2D"); } else if (dim == 3) { EXPECT_EQ(node.op(), "_FusedConv3D"); } ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 2); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 3); EXPECT_EQ("BiasAdd", fused_ops[0]); EXPECT_EQ("Add", fused_ops[1]); EXPECT_EQ(activation, fused_ops[2]); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectClose(tensors[0], tensors_expected[0], 0, 1e-6); } } }; TEST_F(RemapperFuseConvWithBiasAndAddActivation, Conv2D_F32) { RunTest<2, DT_FLOAT>(); } TEST_F(RemapperFuseConvWithBiasAndAddActivation, Conv3D_F32) { RunTest<3, DT_FLOAT>(); } TEST_F(RemapperFuseConvWithBiasAndAddActivation, Conv2D_BF16) { RunTest<2, DT_BFLOAT16>(); } TEST_F(RemapperFuseConvWithBiasAndAddActivation, Conv3D_BF16) { RunTest<3, DT_BFLOAT16>(); } class RemapperFuseConvWithSqueezeAndBias : public RemapperTest { public: template <int dim, DataType DTYPE> void RunTest() { using ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 32, 1, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 3, 128}); auto bias_shape = ops::Placeholder::Shape({128}); std::vector<int> strides = {1, 1, 1, 1}; auto input_t = GenerateTensorWithSetRandom<DTYPE>({8, 32, 1, 3}); auto filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 3, 128}); auto bias_t = GenerateTensorWithSetRandom<DTYPE>({128}); if (dim == 3) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to oneDNN."; input_shape = ops::Placeholder::Shape({8, 4, 32, 1, 3}); filter_shape = ops::Placeholder::Shape({1, 1, 1, 3, 128}); bias_shape = ops::Placeholder::Shape({128}); strides = {1, 1, 1, 1, 1}; input_t = GenerateTensorWithSetRandom<DTYPE>({8, 4, 32, 1, 3}); filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 1, 3, 128}); bias_t = GenerateTensorWithSetRandom<DTYPE>({128}); } auto input = Placeholder(s.WithOpName("input"), DTYPE, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DTYPE, filter_shape); auto bias = Placeholder(s.WithOpName("bias"), DTYPE, bias_shape); if (dim == 2) { auto conv = ops::Conv2D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto squeeze = ops::Squeeze(s.WithOpName("squeeze"), conv, ops::Squeeze::Attrs().Axis({2})); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), squeeze, bias); auto fetch = ops::Identity(s.WithOpName("fetch"), bias_add); } else if (dim == 3) { auto conv = ops::Conv3D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto squeeze = ops::Squeeze(s.WithOpName("squeeze"), conv, ops::Squeeze::Attrs().Axis({3})); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), squeeze, bias); auto fetch = ops::Identity(s.WithOpName("fetch"), bias_add); } GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "conv") { if (dim == 2) { EXPECT_EQ(node.op(), "_FusedConv2D"); } else if (dim == 3) { EXPECT_EQ(node.op(), "_FusedConv3D"); } ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 1); EXPECT_EQ(fused_ops[0], "BiasAdd"); found++; } else if (node.name() == "bias_add") { EXPECT_EQ(node.op(), "Squeeze"); ASSERT_GE(node.input_size(), 1); EXPECT_EQ(node.input(0), "conv"); found++; } } EXPECT_EQ(found, 2); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); if (DTYPE == DT_BFLOAT16) test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); else test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } }; TEST_F(RemapperFuseConvWithSqueezeAndBias, Conv2D_FP32) { RunTest<2, DT_FLOAT>(); } TEST_F(RemapperFuseConvWithSqueezeAndBias, Conv3D_FP32) { RunTest<3, DT_FLOAT>(); } TEST_F(RemapperFuseConvWithSqueezeAndBias, Conv2D_BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "FuseConvWithSqueezeAndBias with bfloat16."; RunTest<2, DT_BFLOAT16>(); } TEST_F(RemapperFuseConvWithSqueezeAndBias, Conv3D_BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "FuseConvWithSqueezeAndBias with bfloat16."; RunTest<3, DT_BFLOAT16>(); } TEST_F(RemapperTest, FusePadPrecededConv2DWithBias) { using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 224, 224, 3}); auto filter_shape = ops::Placeholder::Shape({7, 7, 3, 64}); auto paddings_shape = ops::Placeholder::Shape({4, 2}); auto bias_shape = ops::Placeholder::Shape({64}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); auto bias_in = Placeholder(s.WithOpName("bias_in"), DT_FLOAT, bias_shape); std::vector<int> strides = {1, 2, 2, 1}; auto padding_const = ops::Const(s.WithOpName("padding"), {0, 0, 3, 3, 3, 3, 0, 0}, {4, 2}); auto pad = ops::Pad(s.WithOpName("pad"), input, padding_const); auto conv = ops::Conv2D(s.WithOpName("conv"), pad, filter, strides, "VALID"); auto bias = ops::BiasAdd(s.WithOpName("bias"), conv, bias_in); auto fetch = ops::Identity(s.WithOpName("fetch"), bias); auto input_t = GenerateTensorWithSetRandom<DT_FLOAT>({8, 224, 224, 3}); auto filter_t = GenerateTensorWithSetRandom<DT_FLOAT>({7, 7, 3, 64}); auto bias_t = GenerateTensorWithSetRandom<DT_FLOAT>({64}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias_in", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "bias") { EXPECT_EQ(node.op(), "_FusedConv2D"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "pad"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.input(2), "bias_in"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } #ifdef INTEL_MKL TEST_F(RemapperTest, FuseConv3DWithBias) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 4, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 1, 3, 6}); auto add_shape = ops::Placeholder::Shape({6}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); std::vector<int> strides = {1, 1, 1, 1, 1}; auto conv = ops::Conv3D(s.WithOpName("conv"), input, filter, strides, "VALID"); auto add_const = ops::Const(s.WithOpName("add_const"), {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, {6}); auto add = ops::Add(s.WithOpName("b_add"), add_const, conv); auto fetch = ops::Identity(s.WithOpName("fetch"), add); auto input_t = GenerateRandomTensor<DT_FLOAT>({8, 4, 32, 32, 3}); auto filter_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 1, 3, 6}); auto add_t = GenerateRandomTensor<DT_FLOAT>({6}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "b_add") { EXPECT_EQ(node.op(), "_FusedConv3D"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "add_const"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 1); EXPECT_EQ(fused_ops[0], "BiasAdd"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(RemapperTest, FuseConv3DWithAdd) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 4, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 1, 3, 6}); auto add_shape = ops::Placeholder::Shape({1, 1, 1, 1, 6}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); auto a_placeholder = Placeholder(s.WithOpName("add_placeholder"), DT_FLOAT, add_shape); std::vector<int> strides = {1, 1, 1, 1, 1}; auto conv = ops::Conv3D(s.WithOpName("conv"), input, filter, strides, "VALID"); auto add_const = ops::Const(s.WithOpName("add_const"), 1.0f, {1, 1, 1, 1, 6}); auto add = ops::Add(s.WithOpName("add"), add_const, conv); auto fetch = ops::Identity(s.WithOpName("fetch"), add); auto input_t = GenerateRandomTensor<DT_FLOAT>({8, 4, 32, 32, 3}); auto filter_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 1, 3, 6}); auto add_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 1, 1, 6}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "add") { EXPECT_EQ(node.op(), "_FusedConv3D"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "add_const"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 1); EXPECT_EQ(fused_ops[0], "BiasAdd"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(RemapperTest, FuseConv2DWithAdd) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 3, 6}); auto add_shape = ops::Placeholder::Shape({1, 1, 6}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); auto a_placeholder = Placeholder(s.WithOpName("add_placeholder"), DT_FLOAT, add_shape); std::vector<int> strides = {1, 1, 1, 1}; auto conv = ops::Conv2D(s.WithOpName("conv"), input, filter, strides, "VALID"); auto add_const = ops::Const(s.WithOpName("add_const"), 1.0f, {1, 1, 6}); auto add = ops::Add(s.WithOpName("add"), add_const, conv); auto fetch = ops::Identity(s.WithOpName("fetch"), add); auto input_t = GenerateRandomTensor<DT_FLOAT>({8, 32, 32, 3}); auto filter_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 3, 6}); auto add_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 6}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "add") { EXPECT_EQ(node.op(), "_FusedConv2D"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "add_const"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 1); EXPECT_EQ(fused_ops[0], "BiasAdd"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(RemapperTest, FuseMatmulWithAdd) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto lhs_shape = ops::Placeholder::Shape({8, 32}); auto rhs_shape = ops::Placeholder::Shape({32, 64}); auto lhs = Placeholder(s.WithOpName("lhs"), DT_FLOAT, lhs_shape); auto rhs = Placeholder(s.WithOpName("rhs"), DT_FLOAT, rhs_shape); auto matmul = ops::MatMul(s.WithOpName("matmul"), lhs, rhs); auto add_const = ops::Const(s.WithOpName("add_const"), 1.0f, {1, 64}); auto add = ops::Add(s.WithOpName("add"), matmul, add_const); auto fetch = ops::Identity(s.WithOpName("fetch"), add); auto lhs_t = GenerateTensorWithSetRandom<DT_FLOAT>({8, 32}); auto rhs_t = GenerateTensorWithSetRandom<DT_FLOAT>({32, 64}); auto add_t = GenerateTensorWithSetRandom<DT_FLOAT>({1, 64}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"lhs", lhs_t}, {"rhs", rhs_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "add") { EXPECT_EQ(node.op(), "_FusedMatMul"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "lhs"); EXPECT_EQ(node.input(1), "rhs"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "add_const"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 1); EXPECT_EQ(fused_ops[0], "BiasAdd"); found++; } } EXPECT_EQ(1, found); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } class RemapperFuseSoftplusTanhMul : public RemapperTest { public: template <DataType DTYPE> void RunTest() { using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 3, 128}); auto bias_shape = ops::Placeholder::Shape({128}); auto input = Placeholder(s.WithOpName("input"), DTYPE, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DTYPE, filter_shape); auto bias = Placeholder(s.WithOpName("bias"), DTYPE, bias_shape); std::vector<int> strides = {1, 1, 1, 1}; auto conv = ops::Conv2D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); auto softplus = ops::Softplus(s.WithOpName("softplus"), bias_add); auto tanh = ops::Tanh(s.WithOpName("tanh"), softplus); auto mul = ops::Mul(s.WithOpName("mul"), tanh, bias_add); auto fetch = ops::Identity(s.WithOpName("fetch"), mul); auto input_t = GenerateTensorWithSetRandom<DTYPE>({8, 32, 32, 3}); auto filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 3, 128}); auto bias_t = GenerateTensorWithSetRandom<DTYPE>({128}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "mul") { EXPECT_EQ(node.op(), "_MklFusedMish"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "bias_add"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); if (DTYPE == DT_BFLOAT16) { test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); } else { test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } } }; TEST_F(RemapperFuseSoftplusTanhMul, FP32) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL."; RunTest<DT_FLOAT>(); } TEST_F(RemapperFuseSoftplusTanhMul, BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Test only applicable to oneDNN."; RunTest<DT_BFLOAT16>(); } #endif TEST_F(RemapperTest, FuseMklLayerNorm) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TensorShape input_shape = TensorShape({2, 4}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, ops::Placeholder::Shape(input_shape)); auto add_const = ops::Const(s.WithOpName("add_const"), 1.0f, {2, 4}); auto add = ops::Add(s.WithOpName("b_add"), add_const, input); auto r_indices = ops::Const(s.WithOpName("r_indices"), {1}, {1}); ops::Mean::Attrs attrs; attrs = attrs.KeepDims(true); auto mean = ops::Mean(s.WithOpName("mean"), add, r_indices, attrs); auto s_diff = ops::SquaredDifference(s.WithOpName("s_diff"), mean, add); auto variance = ops::Mean(s.WithOpName("variance"), s_diff, r_indices, attrs); auto e_const = ops::Const(s.WithOpName("e_const"), {0.001f}, {}); auto add_1 = ops::Add(s.WithOpName("add_1"), e_const, variance); auto rsqrt = ops::Rsqrt(s.WithOpName("rsqrt"), add_1); auto g_const = ops::Const(s.WithOpName("g_const"), 1.0f, {4}); auto mul = ops::Mul(s.WithOpName("mul"), rsqrt, g_const); auto mul_1 = ops::Mul(s.WithOpName("mul_1"), mul, add); auto mul_2 = ops::Mul(s.WithOpName("mul_2"), mul, mean); auto b_const = ops::Const(s.WithOpName("b_const"), 0.0f, {4}); auto sub = ops::Sub(s.WithOpName("sub"), b_const, mul_2); auto add_2 = ops::Add(s.WithOpName("add_2"), mul_1, sub); auto fetch = ops::Identity(s.WithOpName("fetch"), add_2); auto input_t = GenerateTensorWithSetRandom<DT_FLOAT>({2, 4}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "add_2") { EXPECT_EQ(node.op(), "_MklLayerNorm"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "b_add"); EXPECT_EQ(node.input(1), "g_const"); EXPECT_EQ(node.input(2), "b_const"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-4); } class FuseMklLayerNormPattern : public RemapperTest { public: template <DataType DTYPE> void RunTest() { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TensorShape input_shape = TensorShape({2, 4}); auto input = Placeholder(s.WithOpName("input"), DTYPE, ops::Placeholder::Shape(input_shape)); auto add_const = ops::Const(s.WithOpName("add_const"), 1.0f, {2, 4}); auto add = ops::Add(s.WithOpName("b_add"), add_const, input); auto r_indices = ops::Const(s.WithOpName("r_indices"), {1}, {1}); ops::Mean::Attrs attrs; attrs = attrs.KeepDims(true); auto mean = ops::Mean(s.WithOpName("mean"), add, r_indices, attrs); auto sub = ops::Sub(s.WithOpName("sub"), add, mean); auto s_diff = ops::SquaredDifference(s.WithOpName("s_diff"), mean, add); auto variance = ops::Mean(s.WithOpName("variance"), s_diff, r_indices, attrs); auto e_const = ops::Const(s.WithOpName("e_const"), {0.001f}, {}); auto add_1 = ops::AddV2(s.WithOpName("add_1"), e_const, variance); auto rsqrt = ops::Rsqrt(s.WithOpName("rsqrt"), add_1); auto mul = ops::Mul(s.WithOpName("mul"), sub, rsqrt); auto g_const = ops::Const(s.WithOpName("g_const"), 1.0f, {4}); auto mul_1 = ops::Mul(s.WithOpName("mul_1"), g_const, mul); auto b_const = ops::Const(s.WithOpName("b_const"), 0.0f, {4}); auto add_2 = ops::AddV2(s.WithOpName("add_2"), mul_1, b_const); auto fetch = ops::Identity(s.WithOpName("fetch"), add_2); auto input_t = GenerateTensorWithSetRandom<DTYPE>({2, 4}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "add_2") { EXPECT_EQ(node.op(), "_MklLayerNorm"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "b_add"); EXPECT_EQ(node.input(1), "g_const"); EXPECT_EQ(node.input(2), "b_const"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-4); } }; TEST_F(FuseMklLayerNormPattern, F32) { RunTest<DT_FLOAT>(); } class RemapperTensorToHashBucketTest : public RemapperTest { public: template <DataType DTYPE> void RunTest() { using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 32, 32, 3}); auto input = Placeholder(s.WithOpName("input"), DTYPE, input_shape); int num_buckets = 100; auto to_string = ops::AsString(s.WithOpName("to_string"), input); auto to_bucket = ops::StringToHashBucketFast(s.WithOpName("to_bucket"), to_string, num_buckets); auto fetch = ops::Identity(s.WithOpName("fetch"), to_bucket); auto input_t = GenerateRandomTensor<DTYPE>({8, 32, 32, 3}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); const string input_device = GetNumAvailableGPUs() > 0 ? "/device:GPU:0" : "/device:CPU:0"; for (int i = 0; i < item.graph.node_size(); ++i) { if (item.graph.node(i).name() == "input") { item.graph.mutable_node(i)->set_device(input_device); } else { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "to_bucket") { EXPECT_EQ(node.op(), "_TensorToHashBucketFast"); ASSERT_GE(node.input_size(), 1); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.attr().at("num_buckets").i(), num_buckets); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<int64_t>(tensors[0], tensors_expected[0]); } }; TEST_F(RemapperTensorToHashBucketTest, I8) { RunTest<DT_INT8>(); } TEST_F(RemapperTensorToHashBucketTest, I16) { RunTest<DT_INT16>(); } TEST_F(RemapperTensorToHashBucketTest, I32) { RunTest<DT_INT32>(); } TEST_F(RemapperTensorToHashBucketTest, I64) { RunTest<DT_INT64>(); } class RemapperFuseMatMulWithBiasTest : public RemapperTest { public: template <DataType DTYPE> void RunTest() { using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto lhs_shape = ops::Placeholder::Shape({8, 32}); auto rhs_shape = ops::Placeholder::Shape({32, 64}); auto bias_shape = ops::Placeholder::Shape({64}); auto lhs = Placeholder(s.WithOpName("lhs"), DTYPE, lhs_shape); auto rhs = Placeholder(s.WithOpName("rhs"), DTYPE, rhs_shape); auto bias = Placeholder(s.WithOpName("bias"), DTYPE, bias_shape); auto matmul = ops::MatMul(s.WithOpName("matmul"), lhs, rhs); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), matmul, bias); auto fetch = ops::Identity(s.WithOpName("fetch"), bias_add); auto lhs_t = GenerateTensorWithSetRandom<DTYPE>({8, 32}); auto rhs_t = GenerateTensorWithSetRandom<DTYPE>({32, 64}); auto bias_t = GenerateTensorWithSetRandom<DTYPE>({64}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"lhs", lhs_t}, {"rhs", rhs_t}, {"bias", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); const string device = GetNumAvailableGPUs() > 0 && (DTYPE == DT_HALF || DTYPE == DT_FLOAT) ? "/device:GPU:0" : "/device:CPU:0"; for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device(device); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "bias_add") { EXPECT_EQ(node.op(), "_FusedMatMul"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "lhs"); EXPECT_EQ(node.input(1), "rhs"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 1); EXPECT_EQ(fused_ops[0], "BiasAdd"); found++; } } EXPECT_EQ(1, found); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); if (DTYPE == DT_BFLOAT16 || DTYPE == DT_HALF) test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); else test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } }; TEST_F(RemapperFuseMatMulWithBiasTest, F16) { bool skip_test = false; #if !defined(GOOGLE_CUDA) || !TF_HIPBLASLT skip_test = true; #endif if (skip_test || GetNumAvailableGPUs() == 0) { GTEST_SKIP() << "Skipping FuseMatMulWithBias with half, which is only " "supported in CUDA."; } RunTest<DT_HALF>(); } TEST_F(RemapperFuseMatMulWithBiasTest, F32) { bool skip_test = false; #if !defined(GOOGLE_CUDA) skip_test = true; #endif if (skip_test || GetNumAvailableGPUs() == 0) { GTEST_SKIP() << "Skipping FuseMatMulWithBias with float, which is only " "supported in CUDA."; } RunTest<DT_FLOAT>(); } TEST_F(RemapperFuseMatMulWithBiasTest, Bf16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "FuseMatMulWithBias with bfloat16."; RunTest<DT_BFLOAT16>(); } TEST_F(RemapperTest, DISABLED_FuseConv2DWithBiasAndActivationOnGPU) { #if !(GOOGLE_CUDA) GTEST_SKIP() << "No CUDA, skip FuseConv2DWithBiasAndActivation on GPU"; #endif using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = Placeholder::Shape({8, 32, 32, 3}); auto filter_shape = Placeholder::Shape({3, 3, 3, 128}); auto bias_shape = Placeholder::Shape({128}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); auto bias = Placeholder(s.WithOpName("bias"), DT_FLOAT, bias_shape); std::vector<int> strides = {1, 1, 1, 1}; auto conv = ops::Conv2D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); return ops::Identity(fetch, ops::Relu(activate, bias_add)); }(); auto input_t = GenerateRandomTensor<DT_FLOAT>({8, 32, 32, 3}); auto filter_t = GenerateRandomTensor<DT_FLOAT>({3, 3, 3, 128}); auto bias_t = GenerateRandomTensor<DT_FLOAT>({128}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:GPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "activation") { EXPECT_EQ(node.op(), "_FusedConv2D"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 2); EXPECT_EQ(fused_ops[0], "BiasAdd"); EXPECT_EQ(fused_ops[1], "Relu"); found++; } } EXPECT_EQ(found, 1); if (GetNumAvailableGPUs() > 0) { auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } } class RemapperFuseMatMulWithBiasAndActivationTest : public RemapperTest { public: template <DataType DTYPE> void RunTest() { using ::tensorflow::ops::Placeholder; std::vector<string> activations = {"Relu", "Relu6", "Elu", "LeakyRelu"}; #if !defined(GOOGLE_CUDA) activations.push_back("Tanh"); #endif for (const string& activation : activations) { if (DTYPE == DT_HALF && activation != "Relu") continue; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto lhs_shape = ops::Placeholder::Shape({8, 32}); auto rhs_shape = ops::Placeholder::Shape({32, 64}); auto bias_shape = ops::Placeholder::Shape({64}); auto lhs = Placeholder(s.WithOpName("lhs"), DTYPE, lhs_shape); auto rhs = Placeholder(s.WithOpName("rhs"), DTYPE, rhs_shape); auto bias = Placeholder(s.WithOpName("bias"), DTYPE, bias_shape); auto matmul = ops::MatMul(s.WithOpName("matmul"), lhs, rhs); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), matmul, bias); float leakyrelu_alpha = 0.5; ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); if (activation == "Relu") { return ops::Identity(fetch, ops::Relu(activate, bias_add)); } else if (activation == "Relu6") { return ops::Identity(fetch, ops::Relu6(activate, bias_add)); } else if (activation == "Elu") { return ops::Identity(fetch, ops::Elu(activate, bias_add)); #if !defined(GOOGLE_CUDA) } else if (activation == "Tanh") { return ops::Identity(fetch, ops::Tanh(activate, bias_add)); #endif } else if (activation == "LeakyRelu") { auto attr = ops::internal::LeakyRelu::Alpha(leakyrelu_alpha); return ops::Identity( fetch, ops::internal::LeakyRelu(activate, bias_add, attr)); } return ops::Identity(fetch, bias); }(); auto lhs_t = GenerateTensorWithSetRandom<DTYPE>({8, 32}); auto rhs_t = GenerateTensorWithSetRandom<DTYPE>({32, 64}); auto bias_t = GenerateTensorWithSetRandom<DTYPE>({64}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"lhs", lhs_t}, {"rhs", rhs_t}, {"bias", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); const string device = GetNumAvailableGPUs() > 0 && (DTYPE == DT_HALF || DTYPE == DT_FLOAT) && activation == "Relu" ? "/device:GPU:0" : "/device:CPU:0"; for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device(device); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "activation") { EXPECT_EQ(node.op(), "_FusedMatMul"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "lhs"); EXPECT_EQ(node.input(1), "rhs"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 2); EXPECT_EQ(fused_ops[0], "BiasAdd"); EXPECT_EQ(fused_ops[1], activation); if (activation == "LeakyRelu") { EXPECT_EQ(node.attr().at("leakyrelu_alpha").f(), leakyrelu_alpha); } found++; } } EXPECT_EQ(1, found); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); if (DTYPE == DT_BFLOAT16 || DTYPE == DT_HALF) test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); else test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } } }; TEST_F(RemapperFuseMatMulWithBiasAndActivationTest, F16) { bool skip_test = false; #if !defined(GOOGLE_CUDA) || !TF_HIPBLASLT skip_test = true; #endif if (skip_test || GetNumAvailableGPUs() == 0) { GTEST_SKIP() << "Skipping FuseMatMulWithBiasAndActivationTest with half, " "which is only supported in CUDA."; } RunTest<DT_HALF>(); } TEST_F(RemapperFuseMatMulWithBiasAndActivationTest, F32) { bool skip_test = false; #if !defined(GOOGLE_CUDA) skip_test = true; #endif if (skip_test || GetNumAvailableGPUs() == 0) { GTEST_SKIP() << "Skipping FuseMatMulWithBiasAndActivationTest with float, " "which is only supported in CUDA."; } RunTest<DT_FLOAT>(); } TEST_F(RemapperFuseMatMulWithBiasAndActivationTest, Bf16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "FuseMatMulWithBiasAndActivation with bfloat16."; RunTest<DT_BFLOAT16>(); } TEST_F(RemapperTest, FuseConv2DWithBatchNorm) { #ifdef DNNL_AARCH64_USE_ACL GTEST_SKIP() << "Skipping test due to different behaviour on AARCH64"; #endif using ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 3, 128}); auto scale_shape = ops::Placeholder::Shape({128}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); auto scale = Placeholder(s.WithOpName("scale"), DT_FLOAT, scale_shape); auto offset = Placeholder(s.WithOpName("offset"), DT_FLOAT, scale_shape); auto mean = Placeholder(s.WithOpName("mean"), DT_FLOAT, scale_shape); auto variance = Placeholder(s.WithOpName("variance"), DT_FLOAT, scale_shape); std::vector<int> strides = {1, 1, 1, 1}; auto conv = ops::Conv2D( s.WithOpName("conv"), input, filter, strides, "EXPLICIT", ops::Conv2D::Attrs().ExplicitPaddings({0, 0, 1, 2, 3, 4, 0, 0})); ops::FusedBatchNorm::Attrs attrs; attrs = attrs.IsTraining(false); auto batch_norm = ops::FusedBatchNorm(s.WithOpName("batch_norm"), conv, scale, offset, mean, variance, attrs); auto fetch = ops::Identity(s.WithOpName("fetch"), batch_norm.y); auto input_t = GenerateRandomTensor<DT_FLOAT>({8, 32, 32, 3}); auto filter_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 3, 128}); auto scale_t = GenerateRandomTensor<DT_FLOAT>({128}); auto offset_t = GenerateRandomTensor<DT_FLOAT>({128}); auto mean_t = GenerateRandomTensor<DT_FLOAT>({128}); auto variance_t = GenerateRandomTensor<DT_FLOAT>({128}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"scale", scale_t}, {"offset", offset_t}, {"mean", mean_t}, {"variance", variance_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "batch_norm") { EXPECT_EQ(node.op(), "_FusedConv2D"); ASSERT_GE(node.input_size(), 6); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 4); EXPECT_EQ(node.input(2), "scale"); EXPECT_EQ(node.input(3), "offset"); EXPECT_EQ(node.input(4), "mean"); EXPECT_EQ(node.input(5), "variance"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 1); EXPECT_EQ(fused_ops[0], "FusedBatchNorm"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectClose(tensors[0], tensors_expected[0], 1e-6, 1e-4); } TEST_F(RemapperTest, FuseConv2DWithBatchNormAndActivation) { #ifdef DNNL_AARCH64_USE_ACL GTEST_SKIP() << "Skipping test due to different behaviour on AARCH64"; #endif using ops::Placeholder; for (const string& activation : {"Relu", "Relu6", "Elu", "LeakyRelu"}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 3, 128}); auto scale_shape = ops::Placeholder::Shape({128}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); auto scale = Placeholder(s.WithOpName("scale"), DT_FLOAT, scale_shape); auto offset = Placeholder(s.WithOpName("offset"), DT_FLOAT, scale_shape); auto mean = Placeholder(s.WithOpName("mean"), DT_FLOAT, scale_shape); auto variance = Placeholder(s.WithOpName("variance"), DT_FLOAT, scale_shape); std::vector<int> strides = {1, 1, 1, 1}; auto conv = ops::Conv2D(s.WithOpName("conv"), input, filter, strides, "SAME"); ops::FusedBatchNorm::Attrs attrs; attrs = attrs.IsTraining(false); auto batch_norm = ops::FusedBatchNorm(s.WithOpName("batch_norm"), conv, scale, offset, mean, variance, attrs); float leakyrelu_alpha = 0.5; ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); if (activation == "Relu") { return ops::Identity(fetch, ops::Relu(activate, batch_norm.y)); } else if (activation == "Relu6") { return ops::Identity(fetch, ops::Relu6(activate, batch_norm.y)); } else if (activation == "Elu") { return ops::Identity(fetch, ops::Elu(activate, batch_norm.y)); } else if (activation == "LeakyRelu") { auto attr = ops::internal::LeakyRelu::Alpha(leakyrelu_alpha); return ops::Identity( fetch, ops::internal::LeakyRelu(activate, batch_norm.y, attr)); } return ops::Identity(fetch, batch_norm.y); }(); auto input_t = GenerateRandomTensor<DT_FLOAT>({8, 32, 32, 3}); auto filter_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 3, 128}); auto scale_t = GenerateRandomTensor<DT_FLOAT>({128}); auto offset_t = GenerateRandomTensor<DT_FLOAT>({128}); auto mean_t = GenerateRandomTensor<DT_FLOAT>({128}); auto variance_t = GenerateRandomTensor<DT_FLOAT>({128}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"scale", scale_t}, {"offset", offset_t}, {"mean", mean_t}, {"variance", variance_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "activation") { EXPECT_EQ(node.op(), "_FusedConv2D"); ASSERT_GE(node.input_size(), 6); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 4); EXPECT_EQ(node.input(2), "scale"); EXPECT_EQ(node.input(3), "offset"); EXPECT_EQ(node.input(4), "mean"); EXPECT_EQ(node.input(5), "variance"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 2); EXPECT_EQ(fused_ops[0], "FusedBatchNorm"); EXPECT_EQ(fused_ops[1], activation); if (activation == "LeakyRelu") { EXPECT_EQ(node.attr().at("leakyrelu_alpha").f(), leakyrelu_alpha); } found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectClose(tensors[0], tensors_expected[0], 1e-6, 1e-4); } } #ifdef INTEL_MKL TEST_F(RemapperTest, FuseConv3DWithBiasAndAddN) { #ifdef DNNL_AARCH64_USE_ACL GTEST_SKIP() << "Skipping test due to different behaviour on AARCH64"; #endif if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to oneDNN."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 4, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 1, 3, 128}); auto bias_shape = ops::Placeholder::Shape({128}); auto add_shape = ops::Placeholder::Shape({8, 4, 32, 32, 128}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); auto bias = Placeholder(s.WithOpName("bias"), DT_FLOAT, bias_shape); auto input_add = Placeholder(s.WithOpName("input_add"), DT_FLOAT, add_shape); std::vector<int> strides = {1, 1, 1, 1, 1}; auto conv = ops::Conv3D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); auto add = ops::AddN(s.WithOpName("add_op"), std::initializer_list<Input>{input_add, bias_add}); auto fetch = ops::Identity(s.WithOpName("fetch"), add); auto input_t = GenerateRandomTensor<DT_FLOAT>({8, 4, 32, 32, 3}); auto filter_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 1, 3, 128}); auto add_t = GenerateRandomTensor<DT_FLOAT>({8, 4, 32, 32, 128}); auto bias_t = GenerateRandomTensor<DT_FLOAT>({128}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias", bias_t}, {"input_add", add_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "add_op") { EXPECT_EQ(node.op(), "_FusedConv3D"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 2); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 2); EXPECT_EQ(fused_ops[0], "BiasAdd"); EXPECT_EQ(fused_ops[1], "Add"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectClose(tensors[0], tensors_expected[0], 0, 1e-6); } TEST_F(RemapperTest, FuseConv3DWithBiasAndAdd) { #ifdef DNNL_AARCH64_USE_ACL GTEST_SKIP() << "Skipping test due to different behaviour on AARCH64"; #endif if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to oneDNN."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 4, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 1, 3, 128}); auto bias_shape = ops::Placeholder::Shape({128}); auto add_shape = ops::Placeholder::Shape({8, 4, 32, 32, 128}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); auto bias = Placeholder(s.WithOpName("bias"), DT_FLOAT, bias_shape); auto input_add = Placeholder(s.WithOpName("input_add"), DT_FLOAT, add_shape); std::vector<int> strides = {1, 1, 1, 1, 1}; auto conv = ops::Conv3D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); auto add = ops::Add(s.WithOpName("add_op"), input_add, bias_add); auto fetch = ops::Identity(s.WithOpName("fetch"), add); auto input_t = GenerateRandomTensor<DT_FLOAT>({8, 4, 32, 32, 3}); auto filter_t = GenerateRandomTensor<DT_FLOAT>({1, 1, 1, 3, 128}); auto add_t = GenerateRandomTensor<DT_FLOAT>({8, 4, 32, 32, 128}); auto bias_t = GenerateRandomTensor<DT_FLOAT>({128}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias", bias_t}, {"input_add", add_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "add_op") { EXPECT_EQ(node.op(), "_FusedConv3D"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 2); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 2); EXPECT_EQ(fused_ops[0], "BiasAdd"); EXPECT_EQ(fused_ops[1], "Add"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectClose(tensors[0], tensors_expected[0], 0, 1e-6); } TEST_F(RemapperTest, FuseConv2DWithSemanticAdd) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 3, 6}); auto filter_shape_1 = ops::Placeholder::Shape({1, 1, 6, 6}); auto semanticadd_shape = ops::Placeholder::Shape({6}); auto bias_shape = ops::Placeholder::Shape({6}); auto input = Placeholder(s.WithOpName("input"), DT_FLOAT, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DT_FLOAT, filter_shape); auto filter_1 = Placeholder(s.WithOpName("filter_1"), DT_FLOAT, filter_shape_1); auto semanticadd = Placeholder(s.WithOpName("semanticadd"), DT_FLOAT, semanticadd_shape); auto bias = Placeholder(s.WithOpName("bias"), DT_FLOAT, bias_shape); std::vector<int> strides = {1, 1, 1, 1}; auto conv = ops::Conv2D(s.WithOpName("conv"), input, filter, strides, "VALID"); auto add = ops::Add(s.WithOpName("add"), semanticadd, conv); auto conv_1 = ops::Conv2D(s.WithOpName("conv_1"), add, filter_1, strides, "VALID"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv_1, bias); auto fetch = ops::Identity(s.WithOpName("fetch"), bias_add); auto input_tensor = GenerateRandomTensor<DT_FLOAT>( TensorShape(input_shape.shape_.dim_sizes())); auto filter_tensor = GenerateRandomTensor<DT_FLOAT>( TensorShape(filter_shape.shape_.dim_sizes())); auto filter_tensor_1 = GenerateRandomTensor<DT_FLOAT>( TensorShape(filter_shape_1.shape_.dim_sizes())); auto semanticadd_tensor = GenerateRandomTensor<DT_FLOAT>( TensorShape(semanticadd_shape.shape_.dim_sizes())); auto bias_tensor = GenerateRandomTensor<DT_FLOAT>( TensorShape(bias_shape.shape_.dim_sizes())); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_tensor}, {"filter", filter_tensor}, {"filter_1", filter_tensor_1}, {"semanticadd", semanticadd_tensor}, {"bias", bias_tensor}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "bias_add") { EXPECT_EQ(node.op(), "_FusedConv2D"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "add"); EXPECT_EQ(node.input(1), "filter_1"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 1); EXPECT_EQ(fused_ops[0], "BiasAdd"); found++; } if (node.name() == "add") { EXPECT_EQ(node.op(), "_FusedConv2D"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "semanticadd"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 1); EXPECT_EQ(fused_ops[0], "BiasAdd"); found++; } } EXPECT_EQ(found, 2); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } class RemapperFusePadConv3D : public RemapperTest { public: template <DataType DTYPE> void RunTest() { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 4, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 1, 3, 6}); auto paddings_shape = ops::Placeholder::Shape({5, 2}); auto input = Placeholder(s.WithOpName("input"), DTYPE, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DTYPE, filter_shape); std::vector<int> strides = {1, 1, 1, 1, 1}; auto padding_const = ops::Const(s.WithOpName("padding"), {0, 0, 1, 1, 1, 1, 1, 1, 0, 0}, {5, 2}); auto pad = ops::Pad(s.WithOpName("pad"), input, padding_const); auto conv = ops::Conv3D(s.WithOpName("conv"), pad, filter, strides, "VALID"); auto fetch = ops::Identity(s.WithOpName("fetch"), conv); auto input_t = GenerateTensorWithSetRandom<DTYPE>({8, 4, 32, 32, 3}); auto filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 1, 3, 6}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::AGGRESSIVE); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "conv") { EXPECT_EQ(node.op(), "_FusedConv3D"); ASSERT_GE(node.input_size(), 2); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); if (DTYPE == DT_BFLOAT16) test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); else test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } }; TEST_F(RemapperFusePadConv3D, Conv3D_FP32) { if (!IsMKLEnabled()) GTEST_SKIP() << "Pad fusion with Conv3D is only enabled with oneDNN, skipping " "RemapperFusePadConv3D with FP32."; RunTest<DT_FLOAT>(); } TEST_F(RemapperFusePadConv3D, Conv3D_BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "RemapperFusePadConv3D with bfloat16."; RunTest<DT_BFLOAT16>(); } class RemapperFusePadWithFusedConv3D : public RemapperTest { public: template <DataType DTYPE> void RunTest() { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to oneDNN."; using ::tensorflow::ops::Placeholder; for (const string& activation : {"", "Relu", "Relu6", "Elu", "LeakyRelu"}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 4, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 1, 3, 128}); auto bias_shape = ops::Placeholder::Shape({128}); auto paddings_shape = ops::Placeholder::Shape({5, 2}); auto strides = {1, 1, 1, 1, 1}; auto input_t = GenerateTensorWithSetRandom<DTYPE>({8, 4, 32, 32, 3}); auto filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 1, 3, 128}); auto bias_t = GenerateTensorWithSetRandom<DTYPE>({128}); auto input = Placeholder(s.WithOpName("input"), DTYPE, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DTYPE, filter_shape); auto bias = Placeholder(s.WithOpName("bias"), DTYPE, bias_shape); auto padding_const = ops::Const(s.WithOpName("padding"), {0, 0, 1, 1, 1, 1, 1, 1, 0, 0}, {5, 2}); auto pad = ops::Pad(s.WithOpName("pad"), input, padding_const); auto conv = ops::Conv3D(s.WithOpName("conv"), pad, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); float leakyrelu_alpha = 0.5; ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); if (activation == "Relu") { return ops::Identity(fetch, ops::Relu(activate, bias_add)); } else if (activation == "Relu6") { return ops::Identity(fetch, ops::Relu6(activate, bias_add)); } else if (activation == "Elu") { return ops::Identity(fetch, ops::Elu(activate, bias_add)); } else if (activation == "LeakyRelu") { auto attr = ops::internal::LeakyRelu::Alpha(leakyrelu_alpha); return ops::Identity( fetch, ops::internal::LeakyRelu(activate, bias_add, attr)); } return ops::Identity(fetch, bias); }(); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output_1; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output_1)); item.graph = std::move(output_1); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); string fused_node_name; std::vector<string> expected_fused_ops = {"BiasAdd"}; if (activation.empty()) { fused_node_name = "bias_add"; } else { fused_node_name = "activation"; expected_fused_ops.push_back(activation); } int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == fused_node_name) { EXPECT_EQ(node.op(), "_FusedConv3D"); ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), expected_fused_ops.size()); for (int i = 0; i < fused_ops.size(); ++i) { EXPECT_EQ(fused_ops[i], expected_fused_ops[i]); } if (activation == "LeakyRelu") { EXPECT_EQ(node.attr().at("leakyrelu_alpha").f(), leakyrelu_alpha); } found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); if (DTYPE == DT_BFLOAT16) test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); else test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } } }; TEST_F(RemapperFusePadWithFusedConv3D, FusedConv3D_FP32) { if (!IsMKLEnabled()) GTEST_SKIP() << "Pad fusion with FusedConv3D is only enabled with oneDNN, skipping " "RemapperFusePadWithFusedConv3D with FP32."; RunTest<DT_FLOAT>(); } TEST_F(RemapperFusePadWithFusedConv3D, FusedConv3D_BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "RemapperFusePadWithFusedConv3D with bfloat16."; RunTest<DT_BFLOAT16>(); } #endif class RemapperLeakyReluTest : public GrapplerTest { protected: template <DataType DTYPE> void RunTest() { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to oneDNN."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto max_shape = ops::Placeholder::Shape({64, 64}); auto input = Placeholder(s.WithOpName("input"), DTYPE, max_shape); float epsilon = 0.3f; typedef typename EnumToDataType<DTYPE>::Type CType; auto leakyrelu_alpha = ops::Const<CType>(s.WithOpName("alpha"), epsilon); auto mul = ops::Mul(s.WithOpName("Mul"), input, leakyrelu_alpha); auto max = ops::Maximum(s.WithOpName("Maximum"), mul, input); auto fetch = ops::Identity(s.WithOpName("fetch"), max); auto max_t = GenerateTensorWithSetRandom<DTYPE>({64, 64}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", max_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "Maximum") { EXPECT_EQ(node.op(), "LeakyRelu"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "input"); ++found; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); float atol = 1e-6, rtol = 1e-6; if (DTYPE == DT_BFLOAT16) { atol = 1e-2; rtol = 1e-2; } test::ExpectClose(tensors[0], tensors_expected[0], atol, rtol); } }; TEST_F(RemapperLeakyReluTest, F32) { RunTest<DT_FLOAT>(); } TEST_F(RemapperLeakyReluTest, BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "RemapperLeakyRelu with bfloat16."; RunTest<DT_BFLOAT16>(); } class RemapperFuseFusedConvWithFusedActivation : public RemapperTest { public: template <int dim, DataType DTYPE> void RunTest() { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to oneDNN."; using ::tensorflow::ops::Placeholder; for (const string& activation : {"LeakyRelu", "Mish"}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input_shape = ops::Placeholder::Shape({8, 32, 32, 3}); auto filter_shape = ops::Placeholder::Shape({1, 1, 3, 128}); auto bias_shape = ops::Placeholder::Shape({128}); std::vector<int> strides = {1, 1, 1, 1}; auto input_t = GenerateTensorWithSetRandom<DTYPE>({8, 32, 32, 3}); auto filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 3, 128}); auto bias_t = GenerateTensorWithSetRandom<DTYPE>({128}); if (dim == 3) { input_shape = ops::Placeholder::Shape({8, 4, 32, 32, 3}); filter_shape = ops::Placeholder::Shape({1, 1, 1, 3, 128}); bias_shape = ops::Placeholder::Shape({128}); strides = {1, 1, 1, 1, 1}; input_t = GenerateTensorWithSetRandom<DTYPE>({8, 4, 32, 32, 3}); filter_t = GenerateTensorWithSetRandom<DTYPE>({1, 1, 1, 3, 128}); bias_t = GenerateTensorWithSetRandom<DTYPE>({128}); } auto input = Placeholder(s.WithOpName("input"), DTYPE, input_shape); auto filter = Placeholder(s.WithOpName("filter"), DTYPE, filter_shape); auto bias = Placeholder(s.WithOpName("bias"), DTYPE, bias_shape); float leakyrelu_alpha = 0.5; if (dim == 2) { auto conv = ops::Conv2D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); if (activation == "LeakyRelu") { ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); auto attr = ops::internal::LeakyRelu::Alpha(leakyrelu_alpha); return ops::Identity( fetch, ops::internal::LeakyRelu(activate, bias_add, attr)); }(); } else if (activation == "Mish") { ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); auto softplus = ops::Softplus(s.WithOpName("softplus"), bias_add); auto tanh = ops::Tanh(s.WithOpName("tanh"), softplus); return ops::Identity(fetch, ops::Mul(activate, bias_add, tanh)); }(); } } else if (dim == 3) { auto conv = ops::Conv3D(s.WithOpName("conv"), input, filter, strides, "SAME"); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), conv, bias); if (activation == "LeakyRelu") { ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); auto attr = ops::internal::LeakyRelu::Alpha(leakyrelu_alpha); return ops::Identity( fetch, ops::internal::LeakyRelu(activate, bias_add, attr)); }(); } else if (activation == "Mish") { ops::Identity fetch = [&]() -> ops::Identity { auto activate = s.WithOpName("activation"); auto fetch = s.WithOpName("fetch"); auto softplus = ops::Softplus(s.WithOpName("softplus"), bias_add); auto tanh = ops::Tanh(s.WithOpName("tanh"), softplus); return ops::Identity(fetch, ops::Mul(activate, bias_add, tanh)); }(); } } GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input", input_t}, {"filter", filter_t}, {"bias", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output_1; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output_1)); item.graph = std::move(output_1); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "activation") { if (dim == 2) { EXPECT_EQ(node.op(), "_FusedConv2D"); } else if (dim == 3) { EXPECT_EQ(node.op(), "_FusedConv3D"); } ASSERT_GE(node.input_size(), 3); EXPECT_EQ(node.input(0), "input"); EXPECT_EQ(node.input(1), "filter"); EXPECT_EQ(node.attr().at("num_args").i(), 1); EXPECT_EQ(node.input(2), "bias"); const auto fused_ops = node.attr().at("fused_ops").list().s(); ASSERT_EQ(fused_ops.size(), 2); EXPECT_EQ(fused_ops[0], "BiasAdd"); EXPECT_EQ(fused_ops[1], activation); if (activation == "LeakyRelu") { EXPECT_EQ(node.attr().at("leakyrelu_alpha").f(), leakyrelu_alpha); } found++; } } EXPECT_EQ(found, 1); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); if (DTYPE == DT_BFLOAT16) test::ExpectClose(tensors[0], tensors_expected[0], 1e-2, 1e-2); else test::ExpectClose(tensors[0], tensors_expected[0], 1e-6); } } }; TEST_F(RemapperFuseFusedConvWithFusedActivation, Conv2D_F32) { RunTest<2, DT_FLOAT>(); } TEST_F(RemapperFuseFusedConvWithFusedActivation, Conv2D_BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "RemapperFuseFusedConvWithFusedActivation with bfloat16."; RunTest<2, DT_BFLOAT16>(); } TEST_F(RemapperFuseFusedConvWithFusedActivation, Conv3D_F32) { RunTest<3, DT_FLOAT>(); } TEST_F(RemapperFuseFusedConvWithFusedActivation, Conv3D_BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "RemapperFuseFusedConvWithFusedActivation with bfloat16."; RunTest<3, DT_BFLOAT16>(); } class RemapperControlDependencyPatternMatcher : public RemapperTest { public: template <DataType DTYPE> void RunTest() { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to oneDNN."; using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input0_shape = ops::Placeholder::Shape({1}); auto input0 = Placeholder(s.WithOpName("input_0"), DTYPE, input0_shape); auto input0_t = GenerateTensorWithSetRandom<DTYPE>({1}); auto input1_shape = ops::Placeholder::Shape({1}); auto input1 = Placeholder(s.WithOpName("input_1"), DTYPE, input1_shape); auto input1_t = GenerateTensorWithSetRandom<DTYPE>({1}); auto add0 = ops::Add(s.WithOpName("add_0"), input0, input1); auto add1 = ops::Add(s.WithOpName("add_1"), input0, input1); float leakyrelu_alpha = 0.18; typedef typename EnumToDataType<DTYPE>::Type CType; auto const1 = ops::Const<CType>( s.WithOpName("alpha").WithControlDependencies( std::vector<Operation>{add0.operation, add1.operation}), leakyrelu_alpha); auto sub = ops::Subtract(s.WithOpName("sub_0"), input0, input1); auto mul = ops::Mul(s.WithOpName("mul_0"), const1, sub); auto max = ops::Maximum(s.WithOpName("max_0"), mul, sub); auto softplus = ops::Softplus(s.WithOpName("softplus"), max); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"input_0", input0_t}, {"input_1", input1_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } Remapper optimizer(RewriterConfig::ON); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); Status status; utils::MutableGraphView graph_view(&output, &status); const int num_nodes = output.node_size(); int found = 0; for (int i = 0; i < num_nodes; i++) { auto* node = graph_view.GetNode(i)->node(); if (node->name() == "max_0") { EXPECT_EQ(node->op(), "LeakyRelu"); EXPECT_EQ(node->attr().at("alpha").f(), leakyrelu_alpha); ASSERT_EQ(node->input_size(), 3); EXPECT_EQ(node->input(0), "sub_0"); auto* node_view = graph_view.GetNode(i); EXPECT_EQ(node_view->NumControllingFanins(), 2); if (node->input(1).compare("^add_0")) { if (node->input(2).compare("^add_1")) found++; } else if (node->input(1).compare("^add_1")) { if (node->input(2).compare("^add_0")) found++; } } } EXPECT_EQ(found, 1); } }; TEST_F(RemapperControlDependencyPatternMatcher, F32) { RunTest<DT_FLOAT>(); } TEST_F(RemapperControlDependencyPatternMatcher, BF16) { if (!IsMKLEnabled() || !IsDataTypeSupportedByOneDNNOnThisCPU(DT_BFLOAT16)) GTEST_SKIP() << "Intel oneDNN with bfloat16 is not supported, skipping " "RemapperControlDependencyPatternMatcher with bfloat16."; RunTest<DT_BFLOAT16>(); } class XlaCpuJitDisableFusionTest : public RemapperTest { protected: void SetUp() override { setenv("TF_XLA_FLAGS", "--tf_xla_cpu_global_jit", 1); } template <DataType DTYPE> void RunTest() { using ::tensorflow::ops::Placeholder; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto lhs_shape = ops::Placeholder::Shape({8, 32}); auto rhs_shape = ops::Placeholder::Shape({32, 64}); auto bias_shape = ops::Placeholder::Shape({64}); auto lhs = Placeholder(s.WithOpName("lhs"), DTYPE, lhs_shape); auto rhs = Placeholder(s.WithOpName("rhs"), DTYPE, rhs_shape); auto bias = Placeholder(s.WithOpName("bias"), DTYPE, bias_shape); auto matmul = ops::MatMul(s.WithOpName("matmul"), lhs, rhs); auto bias_add = ops::BiasAdd(s.WithOpName("bias_add"), matmul, bias); auto fetch = ops::Identity(s.WithOpName("fetch"), bias_add); auto lhs_t = GenerateTensorWithSetRandom<DTYPE>({8, 32}); auto rhs_t = GenerateTensorWithSetRandom<DTYPE>({32, 64}); auto bias_t = GenerateTensorWithSetRandom<DTYPE>({64}); GrapplerItem item; item.fetch = {"fetch"}; item.feed = {{"lhs", lhs_t}, {"rhs", rhs_t}, {"bias", bias_t}}; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); const string device = "/device:CPU:0"; for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device(device); } Remapper optimizer(RewriterConfig::ON, RewriterConfig::NO_CONVERSION_ON_CPU, true); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "bias_add") { EXPECT_EQ(node.op(), "BiasAdd"); found++; } else if (node.name() == "matmul") { EXPECT_EQ(node.op(), "MatMul"); found++; } } EXPECT_EQ(2, found); } }; #if !(DNNL_AARCH64_USE_ACL || GOOGLE_CUDA || TENSORFLOW_USE_ROCM) TEST_F(XlaCpuJitDisableFusionTest, MatMulWithBias) { RunTest<DT_FLOAT>(); } #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/remapper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/remapper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b935a03c-90c5-43fc-8348-cf2a6b8dcea3
cpp
tensorflow/tensorflow
generic_layout_optimizer
tensorflow/core/grappler/optimizers/generic_layout_optimizer.cc
tensorflow/core/grappler/optimizers/generic_layout_optimizer_test.cc
#include "tensorflow/core/grappler/optimizers/generic_layout_optimizer.h" #include <utility> #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer.h" #include "tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer_factory.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/tensor_float_32_utils.h" namespace tensorflow { namespace grappler { namespace { constexpr char kNHWC[] = "NHWC"; constexpr char kNCHW[] = "NCHW"; constexpr float kGPURatioThreshold = 0.5; constexpr float kConvGPUExpectedDtypeThreshold = 0.5; struct MutableNodeViewFormatter { void operator()(std::string* out, utils::MutableNodeView* node_view) const { absl::StrAppend(out, node_view->node()->name()); } }; struct GpuStats { int num_gpus; int num_voltas; int num_amperes; }; inline GpuStats GetNumGPUs(const Cluster& cluster) { auto devices = cluster.GetDevices(); GpuStats gpu_stats{}; for (const auto& device : devices) { if (device.second.type() != kGPU) { continue; } gpu_stats.num_gpus++; auto compute_capability_it = device.second.environment().find("architecture"); if (compute_capability_it == device.second.environment().end()) { continue; } double compute_capability = 0.0; if (absl::SimpleAtod(compute_capability_it->second, &compute_capability)) { if (compute_capability >= 7.0) gpu_stats.num_voltas++; if (compute_capability >= 8.0) gpu_stats.num_amperes++; } } return gpu_stats; } inline bool ConvBackpropExists(const TransposeContext& context, absl::string_view device, const DataType& data_type) { for (const auto& node : context.graph_view->GetNodes()) { const auto* node_def = node.node(); if (!IsConv2DBackpropFilter(*node_def) && !IsConv2DBackpropInput(*node_def) && !IsConv3DBackpropFilterV2(*node_def) && !IsConv3DBackpropInputV2(*node_def)) { continue; } const string& device_name = GetDeviceName(*node_def); string device_type; string task; if (!DeviceNameUtils::SplitDeviceName(device_name, &task, &device_type) || !absl::StrContains(absl::AsciiStrToLower(device_type), absl::AsciiStrToLower(device))) { continue; } const auto* t_attr = node.GetAttr("T"); if (t_attr == nullptr) { continue; } if (t_attr->type() == data_type) { return true; } } return false; } inline std::pair<string, string> GetSrcAndDstDataFormats( const TransposeContext& context, GpuStats gpu_stats) { string src_format = kNHWC; string dst_format = kNCHW; const bool is_NHWC_enforced = (!context.enforced_layout.empty() && context.enforced_layout == "NHWC"); const bool volta_ready = (static_cast<float>(gpu_stats.num_voltas) / static_cast<float>(gpu_stats.num_gpus)) >= kGPURatioThreshold; const bool ampere_ready = (static_cast<float>(gpu_stats.num_amperes) / static_cast<float>(gpu_stats.num_gpus)) >= kGPURatioThreshold; int num_conv_gpu = 0; int num_conv_gpu_prefer_swap = 0; bool fp32_backprop = ConvBackpropExists(context, kGPU, DT_FLOAT); for (const auto& node : context.graph_view->GetNodes()) { const auto* node_def = node.node(); if (!IsConv2D(*node_def) && !IsConv3D(*node_def)) { continue; } const string& device_name = GetDeviceName(*node_def); string device_type; string task; if (!DeviceNameUtils::SplitDeviceName(device_name, &task, &device_type) || !absl::StrContains(absl::AsciiStrToLower(device_type), absl::AsciiStrToLower(kGPU))) { continue; } num_conv_gpu++; const auto* t_attr = node.GetAttr("T"); if (t_attr == nullptr) { continue; } const DataType dtype = t_attr->type(); if ((volta_ready && dtype == DT_HALF) || (ampere_ready && dtype == DT_BFLOAT16) || (ampere_ready && dtype == DT_FLOAT && tsl::tensor_float_32_execution_enabled() && !fp32_backprop)) { num_conv_gpu_prefer_swap++; } } const bool should_swap = num_conv_gpu > 0 && (static_cast<float>(num_conv_gpu_prefer_swap) / static_cast<float>(num_conv_gpu)) >= kConvGPUExpectedDtypeThreshold; if (is_NHWC_enforced || (context.enforced_layout.empty() && should_swap)) { std::swap(src_format, dst_format); } VLOG(2) << "Layout conversion of " << src_format << " to " << dst_format << " will take place."; return {src_format, dst_format}; } Status ExpandLayoutSensitiveOp(TransposeContext* context, TransposerFactory* transposer_factory) { const int num_nodes = context->num_nodes; for (int i = 0; i < num_nodes; ++i) { auto* node_view = context->graph_view->GetNode(i); auto* node_def = node_view->node(); if (IsLayoutSensitiveOp(*node_def)) { std::shared_ptr<Transposer> transposer = transposer_factory->GetTransposer(*node_def); if (transposer == nullptr) { return Status( absl::StatusCode::kNotFound, absl::StrCat( "Layout sensitive operation should have a transposer. Node: ", node_def->DebugString())); } TF_RETURN_IF_ERROR(transposer->TransposeNode(context, node_view)); } } return absl::OkStatus(); } Status ExpandLayoutAgnosticOp(TransposeContext* context, TransposerFactory* transposer_factory) { const int num_nodes = context->num_nodes; for (int i = 0; i < num_nodes; ++i) { auto* node_view = context->graph_view->GetNode(i); auto* node_def = node_view->node(); if (IsLayoutAgnosticOp(*node_def)) { const auto& transposer = transposer_factory->GetTransposer(*node_def); if (transposer == nullptr) { return Status( absl::StatusCode::kNotFound, absl::StrCat( "Layout agnostic operation should have a transposer. Node: ", node_def->DebugString())); } TF_RETURN_IF_ERROR(transposer->TransposeNode(context, node_view)); } } return absl::OkStatus(); } inline bool IsCancellableConstPermTransposeNodePair( const utils::MutableNodeView& fanout_transpose, const utils::MutableNodeView& fanin_transpose) { Tensor fanout_tensor; if (!GetValueAttrFromConstInputNode(fanout_transpose, IsTranspose, 1, &fanout_tensor)) { return false; } Tensor fanin_tensor; if (!GetValueAttrFromConstInputNode(fanin_transpose, IsTranspose, 1, &fanin_tensor)) { return false; } if (fanout_tensor.NumElements() != fanin_tensor.NumElements()) { return false; } const auto& fanout_tensor_data = fanout_tensor.unaligned_flat<int32>(); const auto& fanin_tensor_data = fanin_tensor.unaligned_flat<int32>(); const int num_elements = fanout_tensor.NumElements(); for (int i = 0; i < num_elements; ++i) { if (fanout_tensor_data(fanin_tensor_data(i)) != i) { return false; } } return true; } inline bool IsCancellableDataFormatNodePair( const utils::MutableNodeView& fanout_transpose, const utils::MutableNodeView& fanin_transpose) { if (!IsDataFormatOp(fanout_transpose) || !IsDataFormatOp(fanin_transpose)) { return false; } auto src_dst_match = [](const utils::MutableNodeView& src, const utils::MutableNodeView& dst) { const auto* src_format = src.GetAttr(kAttrSrcFormat); if (src_format == nullptr) { return false; } const auto* dst_format = dst.GetAttr(kAttrDstFormat); if (dst_format == nullptr) { return false; } return src_format->s() == dst_format->s(); }; return src_dst_match(fanin_transpose, fanout_transpose) && src_dst_match(fanout_transpose, fanin_transpose); } inline bool IsCancellableNodePair( const utils::MutableNodeView& fanout_transpose, const utils::MutableNodeView& fanin_transpose) { return IsCancellableConstPermTransposeNodePair(fanout_transpose, fanin_transpose) || IsCancellableDataFormatNodePair(fanout_transpose, fanin_transpose); } Status EraseCancellableNodes(TransposeContext* context) { const int original_num_nodes = context->num_nodes; utils::MutableGraphView* graph_view = context->graph_view.get(); utils::Mutation* mutation = graph_view->GetMutationBuilder(); const int num_nodes = graph_view->NumNodes(); for (int i = original_num_nodes; i < num_nodes; ++i) { auto* node = graph_view->GetNode(i); if (node->NumRegularFanins() < 1) { continue; } const auto& regular_fanin_0 = node->GetRegularFanin(0); auto* fanin_node = regular_fanin_0.node_view(); if (fanin_node->node_index() < original_num_nodes) { continue; } if (!IsCancellableNodePair(*node, *fanin_node)) { continue; } const auto& fanin_to_forward = fanin_node->GetRegularFanin(0); TensorId fanin_id_to_forward(fanin_to_forward.node_view()->GetName(), fanin_to_forward.index()); for (const auto& regular_fanout : node->GetRegularFanout(0)) { mutation->AddOrUpdateRegularFanin(regular_fanout.node_view(), regular_fanout.index(), fanin_id_to_forward); } mutation->RemoveNode(node); if (node->NumRegularFanins() > 1) { mutation->RemoveNode(node->GetRegularFanin(1).node_view()); } mutation->RemoveNode(fanin_node); if (fanin_node->NumRegularFanins() > 1) { mutation->RemoveNode(fanin_node->GetRegularFanin(1).node_view()); } } return mutation->Apply(); } Status EraseCancellableNodesAroundPad(TransposeContext* context) { utils::MutableGraphView* graph_view = context->graph_view.get(); utils::Mutation* mutation = graph_view->GetMutationBuilder(); absl::flat_hash_set<utils::MutableNodeView*> cancelled_transposes; const int num_nodes = graph_view->NumNodes(); for (int i = 0; i < num_nodes; ++i) { auto* transpose_after = graph_view->GetNode(i); if (!IsTranspose(*transpose_after->node())) continue; if (cancelled_transposes.contains(transpose_after)) continue; const auto& transpose_after_fanin = transpose_after->GetRegularFanin(0); auto* pad = transpose_after_fanin.node_view(); if (!IsPad(*pad->node())) continue; const auto& pad_fanin_0 = pad->GetRegularFanin(0); auto* transpose_before = pad_fanin_0.node_view(); if (!IsTranspose(*transpose_before->node())) continue; if (transpose_before->NumRegularFanouts() != 1) continue; if (!IsCancellableConstPermTransposeNodePair(*transpose_after, *transpose_before)) continue; Tensor paddings_t; if (!GetValueAttrFromConstInputNode(*pad, IsPad, 1, &paddings_t)) continue; const auto& pad_fanin_1 = pad->GetRegularFanin(1); auto* paddings = pad_fanin_1.node_view(); if (paddings->NumRegularFanouts() != 1) continue; Tensor permute_t; if (!GetValueAttrFromConstInputNode(*transpose_after, IsTranspose, 1, &permute_t)) continue; std::vector<utils::MutableNodeView*> pad_fanout_transposes; pad_fanout_transposes.emplace_back(transpose_after); bool pad_has_unsupported_fanout = false; for (auto& fanout : pad->GetRegularFanout(0)) { auto* extra_transpose = fanout.node_view(); if (extra_transpose == transpose_after) continue; Tensor extra_permute_t; if (!GetValueAttrFromConstInputNode(*extra_transpose, IsTranspose, 1, &extra_permute_t) || extra_permute_t.tensor_data() != permute_t.tensor_data()) { pad_has_unsupported_fanout = true; break; } pad_fanout_transposes.emplace_back(extra_transpose); } if (pad_has_unsupported_fanout) continue; VLOG(0) << "Cancel Transpose nodes around Pad:" << " transpose_before=" << transpose_before->node()->name() << " pad=" << pad->node()->name() << " transpose_after=" << absl::StrJoin(pad_fanout_transposes, ",", MutableNodeViewFormatter()); auto permutation_s = absl::Span<int32>(permute_t.flat<int32>().data(), permute_t.NumElements()); auto paddings_s = absl::Span<int32>(paddings_t.flat<int32>().data(), paddings_t.NumElements()); TF_RETURN_IF_ERROR( PermuteDouble(absl::StrCat("paddings in ", pad->GetName()), permutation_s, &paddings_s)); AttrValue permuted_paddings_tensor; paddings_t.AsProtoTensorContent(permuted_paddings_tensor.mutable_tensor()); mutation->AddOrUpdateNodeAttr(paddings, "value", permuted_paddings_tensor); const auto transpose_to_identity = [&cancelled_transposes, &mutation](utils::MutableNodeView* transpose) -> void { mutation->UpdateNodeOp(transpose, "Identity"); mutation->RemoveNodeAttr(transpose, "Tperm"); mutation->RemoveRegularFanin(transpose, 1); cancelled_transposes.insert(transpose); }; transpose_to_identity(transpose_before); absl::c_for_each(pad_fanout_transposes, transpose_to_identity); } return mutation->Apply(); } Status EraseOutputShapeAttrs(TransposeContext* context) { utils::MutableGraphView* graph_view = context->graph_view.get(); utils::Mutation* mutation = graph_view->GetMutationBuilder(); const int num_nodes = graph_view->NumNodes(); for (int i = 0; i < num_nodes; ++i) { auto* node = graph_view->GetNode(i); if (IsArg(*node->node())) { continue; } mutation->RemoveNodeAttr(node, kAttrOutputShape); TF_RETURN_IF_ERROR(mutation->Apply()); } return absl::OkStatus(); } } Status GenericLayoutOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* output) { if (cluster == nullptr) { LOG(WARNING) << "generic layout optimizer was called with cluster == nullptr"; return errors::Aborted("cluster == nullptr."); } if (!enforced_layout_.empty() && enforced_layout_ != "NHWC" && enforced_layout_ != "NCHW") { return Status( absl::StatusCode::kInvalidArgument, absl::StrCat("Invalid value for enforced_layout: ", enforced_layout_, ". Supported layouts: 'NHWC', 'NCHW'.")); } const auto gpu_stats = GetNumGPUs(*cluster); const bool is_aggressive = opt_level_ == RewriterConfig::AGGRESSIVE; TransposeContext context; context.enforced_layout = enforced_layout_; if (gpu_stats.num_gpus > 0) { TF_RETURN_IF_ERROR(TransposeContext::InitializeTransposeContext( is_aggressive, item, cluster, &context)); const auto src_dst_formats = GetSrcAndDstDataFormats(context, gpu_stats); context.AssignDeviceAndDataFormats(kGPU, src_dst_formats.first, src_dst_formats.second); } else { TF_RETURN_IF_ERROR(TransposeContext::InitializeTransposeContext( is_aggressive, item, cluster, &context)); switch (cpu_layout_conversion_) { case RewriterConfig::NCHW_TO_NHWC: context.AssignDeviceAndDataFormats(kCPU, kNCHW, kNHWC); break; case RewriterConfig::NHWC_TO_NCHW: return errors::Aborted( "Conversion from NHWC to NCHW is currently not available for " "CPU."); default: *output = item.graph; VLOG(2) << "No layout conversion will take place for CPU."; return absl::OkStatus(); } } TransposerFactory transposer_factory; TF_RETURN_IF_ERROR(ExpandLayoutSensitiveOp(&context, &transposer_factory)); if (context.graph.node_size() > context.num_nodes || is_aggressive) { TF_RETURN_IF_ERROR(ExpandLayoutAgnosticOp(&context, &transposer_factory)); TF_RETURN_IF_ERROR(EraseCancellableNodes(&context)); TF_RETURN_IF_ERROR(EraseCancellableNodesAroundPad(&context)); TF_RETURN_IF_ERROR( context.graph_view->SortTopologically(false, {})); } TF_RETURN_IF_ERROR(EraseOutputShapeAttrs(&context)); *output = context.graph; return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/generic_layout_optimizer.h" #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/clusters/single_machine.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/devices.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/utils/graph_view.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/tensor_float_32_utils.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { using ::tensorflow::Scope; using ::tensorflow::ops::Conv2D; using ::tensorflow::ops::Conv3D; using ::tensorflow::ops::Identity; using ::tensorflow::ops::RandomUniform; constexpr int kBatchSize = 32; constexpr int kWidth = 10; constexpr int kHeight = 10; constexpr int kDepthIn = 8; constexpr int kKernel = 3; constexpr int kDepthOut = 16; #if (GOOGLE_CUDA || TENSORFLOW_USE_ROCM) #define DIMS(n, h, w, c) \ { n, h, w, c } #define SRC_DATA_FORMAT "NHWC" #define DST_DATA_FORMAT "NCHW" #define DEVICE "GPU" #define REWRITER_CONFIG \ RewriterConfig::DEFAULT, RewriterConfig::NO_CONVERSION_ON_CPU #define PERMUTATION_SRC_TO_DST \ { 0, 3, 1, 2 } #define PERMUTATION_DST_TO_SRC \ { 0, 2, 3, 1 } #define DIMS_5D(n, d, h, w, c) \ { n, d, h, w, c } #define SRC_DATA_FORMAT_5D "NDHWC" #define DST_DATA_FORMAT_5D "NCDHW" #else #define DIMS(n, h, w, c) \ { n, c, h, w } #define SRC_DATA_FORMAT "NCHW" #define DST_DATA_FORMAT "NHWC" #define DEVICE "CPU" #define REWRITER_CONFIG RewriterConfig::DEFAULT, RewriterConfig::NCHW_TO_NHWC #define PERMUTATION_SRC_TO_DST \ { 0, 2, 3, 1 } #define PERMUTATION_DST_TO_SRC \ { 0, 3, 1, 2 } #define DIMS_5D(n, d, h, w, c) \ { n, c, d, h, w } #define SRC_DATA_FORMAT_5D "NCDHW" #define DST_DATA_FORMAT_5D "NDHWC" #endif template <typename T = float> Output SimpleConv2D(tensorflow::Scope* s, int input_size, int filter_size, const string& padding, const string& device) { int batch_size = 8; int input_height = input_size; int input_width = input_size; int input_depth = 3; int filter_count = 2; int stride = 1; TensorShape input_shape( DIMS(batch_size, input_height, input_width, input_depth)); Tensor input_data(DataTypeToEnum<T>::value, input_shape); test::FillIota<T>(&input_data, static_cast<T>(1)); Output input = ops::Const(s->WithOpName("Input"), Input::Initializer(input_data)); TensorShape filter_shape( {filter_size, filter_size, input_depth, filter_count}); Tensor filter_data(DataTypeToEnum<T>::value, filter_shape); test::FillIota<T>(&filter_data, static_cast<T>(1)); Output filter = ops::Const(s->WithOpName("Filter"), Input::Initializer(filter_data)); Output conv = ops::Conv2D(s->WithOpName("Conv2D").WithDevice(device), input, filter, DIMS(1, stride, stride, 1), padding, ops::Conv2D::Attrs().DataFormat(SRC_DATA_FORMAT)); return conv; } Output SimpleConv2DBackpropInput(tensorflow::Scope* s, int input_size, int filter_size, const string& padding, bool dilated, const int input_sizes_length) { int batch_size = 128; int input_height = input_size; int input_width = input_size; int input_depth = 3; int filter_count = 2; int stride = 1; TensorShape input_sizes_shape({input_sizes_length}); Tensor input_data(DT_INT32, input_sizes_shape); if (input_sizes_length == 4) { test::FillValues<int>( &input_data, DIMS(batch_size, input_height, input_width, input_depth)); } else { test::FillValues<int>(&input_data, {input_height, input_width}); } Output input_sizes = ops::Const(s->WithOpName("InputSizes"), Input::Initializer(input_data)); TensorShape filter_shape( {filter_size, filter_size, input_depth, filter_count}); Output filter = ops::Variable(s->WithOpName("Filter"), filter_shape, DT_FLOAT); int output_height = input_height; int output_width = input_width; TensorShape output_shape( DIMS(batch_size, output_height, output_width, filter_count)); Tensor output_data(DT_FLOAT, output_shape); test::FillIota<float>(&output_data, 1.0f); Output output = ops::Const(s->WithOpName("Output"), Input::Initializer(output_data)); Output conv_backprop_input; Output input_sizes_i = ops::Identity(s->WithOpName("InputSizesIdentity"), input_sizes); ops::Conv2DBackpropInput::Attrs attrs; attrs = attrs.DataFormat(SRC_DATA_FORMAT); if (dilated) { attrs = attrs.Dilations(DIMS(1, 2, 2, 1)); } conv_backprop_input = ops::Conv2DBackpropInput( s->WithOpName("Conv2DBackpropInput"), input_sizes_i, filter, output, DIMS(1, stride, stride, 1), padding, attrs); return conv_backprop_input; } template <typename T = float> Output SimpleConv3D(tensorflow::Scope* s, int input_size, int filter_size, const string& padding, const string& device) { int batch_size = 8; int input_height = input_size; int input_width = input_size; int input_depth = 4; int input_channel = 3; int filter_count = 6; int stride = 1; TensorShape input_shape(DIMS_5D(batch_size, input_depth, input_height, input_width, input_channel)); Tensor input_data(DataTypeToEnum<T>::value, input_shape); test::FillIota<T>(&input_data, static_cast<T>(1)); Output input = ops::Const(s->WithOpName("Input"), Input::Initializer(input_data)); TensorShape filter_shape( {filter_size, filter_size, filter_size, input_channel, filter_count}); Tensor filter_data(DataTypeToEnum<T>::value, filter_shape); test::FillIota<T>(&filter_data, static_cast<T>(1)); Output filter = ops::Const(s->WithOpName("Filter"), Input::Initializer(filter_data)); Output conv = ops::Conv3D(s->WithOpName("Conv3D").WithDevice(device), input, filter, DIMS_5D(1, stride, stride, stride, 1), padding, ops::Conv3D::Attrs().DataFormat(SRC_DATA_FORMAT_5D)); return conv; } class GenericLayoutOptimizerTest : public GrapplerTest { protected: void SetUp() override { bool gpu_available = GetNumAvailableGPUs() > 0; if (gpu_available) { virtual_cluster_ = std::make_unique<SingleMachine>(10, 1, 1); } else { DeviceProperties cpu_device; cpu_device.set_type("CPU"); cpu_device.set_frequency(1000); cpu_device.set_num_cores(4); cpu_device.set_bandwidth(32); cpu_device.set_l1_cache_size(32 * 1024); cpu_device.set_l2_cache_size(256 * 1024); cpu_device.set_l3_cache_size(4 * 1024 * 1024); cpu_device.set_memory_size(1024 * 1024); #if (GOOGLE_CUDA || TENSORFLOW_USE_ROCM) DeviceProperties gpu_device; gpu_device.set_type("GPU"); gpu_device.mutable_environment()->insert({"architecture", "6"}); virtual_cluster_ = absl::WrapUnique(new VirtualCluster({{"/CPU:0", cpu_device}, { "/GPU:1", gpu_device }})); #else virtual_cluster_ = absl::WrapUnique(new VirtualCluster({{"/CPU:0", cpu_device}})); #endif } TF_ASSERT_OK(virtual_cluster_->Provision()); } void TearDown() override { TF_ASSERT_OK(virtual_cluster_->Shutdown()); tsl::enable_tensor_float_32_execution(true); } std::unique_ptr<Cluster> virtual_cluster_; }; void VerifyRegularFaninMatch(const utils::NodeView* node, int port, absl::string_view fanin_name, int fanin_port) { ASSERT_GE(node->NumRegularFanins(), port); const auto& fanin = node->GetRegularFanin(port); EXPECT_EQ(fanin.node_view()->GetName(), fanin_name); EXPECT_EQ(fanin.index(), fanin_port); } void VerifyRegularFanoutMatch(const utils::NodeView* node, int port, absl::string_view fanout_name, int fanout_port) { bool found = false; for (const auto& regular_fanout : node->GetRegularFanout(port)) { if (regular_fanout.node_view()->GetName() == fanout_name && regular_fanout.index() == fanout_port) { found = true; } } EXPECT_TRUE(found); } void VerifyDataFormatAttributeMatch(const utils::NodeView* node, absl::string_view attr_value) { const auto* attr = node->GetAttr("data_format"); ASSERT_NE(attr, nullptr); EXPECT_EQ(attr->s(), attr_value); } TEST_F(GenericLayoutOptimizerTest, OptimizeSimpleConv2DGraph) { Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope, 4, 2, "VALID", ""); auto identity = Identity(scope.WithOpName("Output"), conv2d); GrapplerItem item; TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); GenericLayoutOptimizer optimizer(REWRITER_CONFIG); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* conv2d_node = graph_view.GetNode("Conv2D"); ASSERT_NE(conv2d_node, nullptr); ASSERT_EQ(conv2d_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(conv2d_node, 1, "Filter", 0); VerifyDataFormatAttributeMatch(conv2d_node, SRC_DATA_FORMAT); auto* output_node = graph_view.GetNode("Output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); } TEST_F(GenericLayoutOptimizerTest, PreserveFetch) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto conv = SimpleConv2D(&s, 4, 2, "VALID", ""); auto i = ops::Identity(s.WithOpName("i"), conv); GrapplerItem item; item.fetch.push_back("Conv2D"); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GenericLayoutOptimizer optimizer(REWRITER_CONFIG); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* conv_node = graph_view.GetNode("Conv2D"); ASSERT_NE(conv_node, nullptr); VerifyDataFormatAttributeMatch(conv_node, SRC_DATA_FORMAT); } TEST_F(GenericLayoutOptimizerTest, EmptyDevice) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto conv = SimpleConv2D(&s, 4, 2, "VALID", ""); Output fetch = ops::Identity(s.WithOpName("Fetch"), {conv}); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GenericLayoutOptimizer optimizer(REWRITER_CONFIG); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* conv_node = graph_view.GetNode("Conv2D"); ASSERT_NE(conv_node, nullptr); VerifyDataFormatAttributeMatch(conv_node, SRC_DATA_FORMAT); } TEST_F(GenericLayoutOptimizerTest, GPUDevice) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif tsl::enable_tensor_float_32_execution(false); tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto conv = SimpleConv2D(&s, 4, 2, "VALID", "/job:w/replica:0/task:0/device:GPU:0"); Output fetch = ops::Identity(s.WithOpName("Fetch"), {conv}); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GenericLayoutOptimizer optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* conv_node = graph_view.GetNode("Conv2D"); ASSERT_NE(conv_node, nullptr); VerifyDataFormatAttributeMatch(conv_node, "NCHW"); } TEST_F(GenericLayoutOptimizerTest, CPUDevice) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto conv = SimpleConv2D(&s, 4, 2, "VALID", "/CPU:0"); Output fetch = ops::Identity(s.WithOpName("Fetch"), {conv}); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GenericLayoutOptimizer optimizer(REWRITER_CONFIG); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* conv_node = graph_view.GetNode("Conv2D"); ASSERT_NE(conv_node, nullptr); #if (GOOGLE_CUDA || TENSORFLOW_USE_ROCM) VerifyDataFormatAttributeMatch(conv_node, "NHWC"); #else VerifyDataFormatAttributeMatch(conv_node, DST_DATA_FORMAT); #endif } TEST_F(GenericLayoutOptimizerTest, NoOptimizeIntegerConvolution) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto conv = SimpleConv2D<int32>(&s, 4, 2, "VALID", ""); Output fetch = ops::Identity(s.WithOpName("Fetch"), {conv}); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GenericLayoutOptimizer optimizer(REWRITER_CONFIG); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* conv_node = graph_view.GetNode("Conv2D"); ASSERT_NE(conv_node, nullptr); VerifyDataFormatAttributeMatch(conv_node, SRC_DATA_FORMAT); } TEST_F(GenericLayoutOptimizerTest, Connectivity) { Scope scope = Scope::NewRootScope(); auto conv = SimpleConv2D(&scope, 4, 2, "VALID", absl::StrCat("/device:", DEVICE, ":0")); auto i1 = ops::Identity(scope.WithOpName("i1"), conv); auto i2 = ops::Identity(scope.WithOpName("i2"), i1); auto i3 = ops::Identity(scope.WithOpName("i3"), i2); GrapplerItem item; TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); Status status; utils::GraphView graph_view_original(&item.graph, &status); const int i1_index = graph_view_original.GetNode("i1")->node_index(); const int i2_index = graph_view_original.GetNode("i2")->node_index(); item.graph.mutable_node()->SwapElements(i1_index, i2_index); GenericLayoutOptimizer optimizer(REWRITER_CONFIG); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* node_i2_output = graph_view.GetNode("i2"); ASSERT_NE(node_i2_output, nullptr); ASSERT_EQ(node_i2_output->NumRegularFanins(), 1); VerifyRegularFaninMatch(node_i2_output, 0, "i1", 0); } TEST_F(GenericLayoutOptimizerTest, Conv2DBackpropInputNonConstInputSizes) { for (const int input_sizes_length : {2, 4}) { Scope s = Scope::NewRootScope(); auto conv = SimpleConv2DBackpropInput(&s, 7, 2, "SAME", false, input_sizes_length); Output fetch = ops::Identity(s.WithOpName("Fetch"), {conv}); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GenericLayoutOptimizer optimizer(REWRITER_CONFIG); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* conv2d_backprop_node = graph_view.GetNode("Conv2DBackpropInput"); ASSERT_NE(conv2d_backprop_node, nullptr); ASSERT_EQ(conv2d_backprop_node->NumRegularFanins(), 3); VerifyRegularFaninMatch(conv2d_backprop_node, 0, "InputSizesIdentity", 0); } } TEST_F(GenericLayoutOptimizerTest, Conv2DDataFormatVecPermuteCollapse) { tsl::enable_tensor_float_32_execution(false); Scope scope = Scope::NewRootScope().WithDevice(absl::StrCat("/device:", DEVICE, ":0")); auto conv = SimpleConv2D(&scope, 4, 2, "VALID", absl::StrCat("/device:", DEVICE, ":0")); auto shape = ops::Shape(scope.WithOpName("shape"), conv); auto value = ops::Const(scope.WithOpName("value"), 0, {}); auto fill = ops::Fill(scope.WithOpName("fill"), shape, value); auto i = ops::Identity(scope.WithOpName("i"), fill); GrapplerItem item; TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); GenericLayoutOptimizer optimizer(REWRITER_CONFIG); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* conv2d_node = graph_view.GetNode("Conv2D"); ASSERT_NE(conv2d_node, nullptr); ASSERT_EQ(conv2d_node->NumRegularFanins(), 2); VerifyRegularFaninMatch( conv2d_node, 0, absl::StrCat("Conv2D-0-Transpose", SRC_DATA_FORMAT, "To", DST_DATA_FORMAT, "-LayoutOptimizer"), 0); auto* shape_node = graph_view.GetNode("shape"); ASSERT_NE(shape_node, nullptr); ASSERT_EQ(shape_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(shape_node, 0, conv2d_node->GetName(), 0); auto* fill_node = graph_view.GetNode("fill"); ASSERT_NE(fill_node, nullptr); ASSERT_EQ(fill_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(fill_node, 0, shape_node->GetName(), 0); VerifyRegularFanoutMatch( fill_node, 0, absl::StrCat("fill-0-0-Transpose", DST_DATA_FORMAT, "To", SRC_DATA_FORMAT, "-LayoutOptimizer"), 0); auto* graph_output = graph_view.GetNode("i"); ASSERT_NE(graph_output, nullptr); ASSERT_EQ(graph_output->NumRegularFanins(), 1); VerifyRegularFaninMatch( graph_output, 0, absl::StrCat("fill-0-0-Transpose", DST_DATA_FORMAT, "To", SRC_DATA_FORMAT, "-LayoutOptimizer"), 0); } TEST_F(GenericLayoutOptimizerTest, DoNotPruneNonAddedCancellableTransposes) { GrapplerItem item; { Scope scope = Scope::NewRootScope().WithDevice( absl::StrCat("/device:", DEVICE, ":0")); auto input = ops::RandomUniform(scope.WithOpName("input"), DIMS(kBatchSize, kHeight, kWidth, kDepthIn), DT_FLOAT); auto input_in_transpose = ops::Transpose(scope.WithOpName("input_in_transpose"), input, ops::Const(scope, PERMUTATION_SRC_TO_DST, {4})); auto input_out_transpose = ops::Transpose( scope.WithOpName("input_out_transpose"), input_in_transpose, ops::Const(scope, PERMUTATION_DST_TO_SRC, {4})); Tensor bias_data(DT_FLOAT, TensorShape({kDepthIn})); test::FillIota<float>(&bias_data, 1.0f); auto bias_add = ops::BiasAdd( scope.WithOpName("bias_add"), input_out_transpose, bias_data, ops::BiasAdd::Attrs().DataFormat(SRC_DATA_FORMAT)); auto output_in_transpose = ops::Transpose(scope.WithOpName("output_in_transpose"), bias_add, ops::Const(scope, PERMUTATION_SRC_TO_DST, {4})); auto output_out_transpose = ops::Transpose( scope.WithOpName("output_out_transpose"), output_in_transpose, ops::Const(scope, PERMUTATION_DST_TO_SRC, {4})); auto output = ops::Identity(scope.WithOpName("output"), output_out_transpose); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); } GenericLayoutOptimizer optimizer(REWRITER_CONFIG); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* input_node = graph_view.GetNode("input"); ASSERT_NE(input_node, nullptr); auto* input_in_transpose_node = graph_view.GetNode("input_in_transpose"); ASSERT_NE(input_in_transpose_node, nullptr); ASSERT_EQ(input_in_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_in_transpose_node, 0, input_node->GetName(), 0); auto* input_out_transpose_node = graph_view.GetNode("input_out_transpose"); ASSERT_NE(input_out_transpose_node, nullptr); ASSERT_EQ(input_out_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_out_transpose_node, 0, input_in_transpose_node->GetName(), 0); auto* bias_add_in_transpose_node = graph_view.GetNode( absl::StrCat("bias_add-0-Transpose", SRC_DATA_FORMAT, "To", DST_DATA_FORMAT, "-LayoutOptimizer")); ASSERT_NE(bias_add_in_transpose_node, nullptr); ASSERT_EQ(bias_add_in_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(bias_add_in_transpose_node, 0, input_out_transpose_node->GetName(), 0); auto* bias_add_node = graph_view.GetNode("bias_add"); ASSERT_NE(bias_add_node, nullptr); ASSERT_EQ(bias_add_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(bias_add_node, 0, bias_add_in_transpose_node->GetName(), 0); auto* bias_add_out_transpose_node = graph_view.GetNode( absl::StrCat("bias_add-0-0-Transpose", DST_DATA_FORMAT, "To", SRC_DATA_FORMAT, "-LayoutOptimizer")); ASSERT_NE(bias_add_out_transpose_node, nullptr); ASSERT_EQ(bias_add_out_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(bias_add_out_transpose_node, 0, bias_add_node->GetName(), 0); auto* output_in_transpose_node = graph_view.GetNode("output_in_transpose"); ASSERT_NE(output_in_transpose_node, nullptr); ASSERT_EQ(output_in_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_in_transpose_node, 0, bias_add_out_transpose_node->GetName(), 0); auto* output_out_transpose_node = graph_view.GetNode("output_out_transpose"); ASSERT_NE(output_out_transpose_node, nullptr); ASSERT_EQ(output_out_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_out_transpose_node, 0, output_in_transpose_node->GetName(), 0); auto* output_node = graph_view.GetNode("output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, output_out_transpose_node->GetName(), 0); } TEST_F(GenericLayoutOptimizerTest, CancelTransposeAroundPad) { using test::function::NDef; GenericLayoutOptimizer optimizer( RewriterConfig::AGGRESSIVE, RewriterConfig::NCHW_TO_NHWC ); const Tensor kPermuteNhwcToNchw = test::AsTensor<int32>({0, 3, 1, 2}); const Tensor kPermuteNchwToNhwc = test::AsTensor<int32>({0, 2, 3, 1}); const Tensor kPad = test::AsTensor<int32>({1, 2, 3, 4, 5, 6, 7, 8}, {4, 2}); GrapplerItem item; item.graph = test::function::GDef({ NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}), NDef("paddings", "Const", {}, {{"dtype", DT_INT32}, {"value", kPad}}), NDef("perm_nhwc_to_nchw", "Const", {}, {{"dtype", DT_INT32}, {"value", kPermuteNhwcToNchw}}), NDef("perm_nchw_to_nhwc", "Const", {}, {{"dtype", DT_INT32}, {"value", kPermuteNchwToNhwc}}), NDef("transpose_0", "Transpose", {"x", "perm_nhwc_to_nchw"}, {{"T", DT_FLOAT}, {"Tperm", DT_INT32}}), NDef("pad", "Pad", {"transpose_0", "paddings"}, {{"T", DT_FLOAT}, {"Tpaddings", DT_INT32}}), NDef("transpose_1", "Transpose", {"pad", "perm_nchw_to_nhwc"}, {{"T", DT_FLOAT}, {"Tperm", DT_INT32}}), NDef("transpose_2", "Transpose", {"pad", "perm_nchw_to_nhwc"}, {{"T", DT_FLOAT}, {"Tperm", DT_INT32}}), }); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); const Tensor kPermutedPaddings = test::AsTensor<int32>({1, 2, 5, 6, 7, 8, 3, 4}, {4, 2}); GraphDef expected = test::function::GDef({ NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}), NDef("paddings", "Const", {}, {{"dtype", DT_INT32}, {"value", kPermutedPaddings}}), NDef("perm_nhwc_to_nchw", "Const", {}, {{"dtype", DT_INT32}, {"value", kPermuteNhwcToNchw}}), NDef("perm_nchw_to_nhwc", "Const", {}, {{"dtype", DT_INT32}, {"value", kPermuteNchwToNhwc}}), NDef("transpose_0", "Identity", {"x"}, {{"T", DT_FLOAT}}), NDef("pad", "Pad", {"transpose_0", "paddings"}, {{"T", DT_FLOAT}, {"Tpaddings", DT_INT32}}), NDef("transpose_1", "Identity", {"pad"}, {{"T", DT_FLOAT}}), NDef("transpose_2", "Identity", {"pad"}, {{"T", DT_FLOAT}}), }); CompareGraphs(expected, output); Tensor x = GenerateRandomTensor<DT_FLOAT>({2, 6, 6, 8}); item.fetch = {"transpose_1", "transpose_2"}; item.feed.emplace_back("x", x); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors.size(), 2); ASSERT_EQ(tensors_expected.size(), 2); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); test::ExpectTensorEqual<float>(tensors_expected[1], tensors[1]); } TEST_F(GenericLayoutOptimizerTest, PreserveInputShapes) { using test::function::NDef; GenericLayoutOptimizer optimizer(RewriterConfig::AGGRESSIVE); AttrValue output_shapes; auto* shape = output_shapes.mutable_list()->add_shape(); shape->add_dim()->set_size(-1); GrapplerItem item; item.graph = test::function::GDef({NDef( "x", "_Arg", {}, {{"T", DT_FLOAT}, {"index", 0}, {"_output_shapes", output_shapes}})}); item.feed.emplace_back("x", Tensor(DT_FLOAT)); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* arg = graph_view.GetNode("x"); ASSERT_NE(arg, nullptr); EXPECT_TRUE(arg->HasAttr("_output_shapes")); EXPECT_EQ(arg->GetAttr("_output_shapes")->DebugString(), output_shapes.DebugString()); } TEST_F(GenericLayoutOptimizerTest, OptimizeSimpleConv3DGraph_CPU) { Scope scope = Scope::NewRootScope(); auto conv3d = SimpleConv3D(&scope, 32, 1, "VALID", "/CPU:0"); auto identity = Identity(scope.WithOpName("Output"), conv3d); GrapplerItem item; TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); GenericLayoutOptimizer optimizer(REWRITER_CONFIG); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); Status status; utils::GraphView graph_view(&output, &status); TF_ASSERT_OK(status); auto* conv3d_node = graph_view.GetNode("Conv3D"); ASSERT_NE(conv3d_node, nullptr); ASSERT_EQ(conv3d_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(conv3d_node, 1, "Filter", 0); auto* output_node = graph_view.GetNode("Output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); #if (GOOGLE_CUDA || TENSORFLOW_USE_ROCM) VerifyDataFormatAttributeMatch(conv3d_node, SRC_DATA_FORMAT_5D); #else auto* input_transpose_node = graph_view.GetNode( absl::StrCat("Conv3D-0-Transpose", SRC_DATA_FORMAT_5D, "To", DST_DATA_FORMAT_5D, "-LayoutOptimizer")); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "Input", 0); VerifyRegularFaninMatch(conv3d_node, 0, input_transpose_node->GetName(), 0); VerifyDataFormatAttributeMatch(conv3d_node, DST_DATA_FORMAT_5D); auto* output_transpose_node = graph_view.GetNode( absl::StrCat("Conv3D-0-0-Transpose", DST_DATA_FORMAT_5D, "To", SRC_DATA_FORMAT_5D, "-LayoutOptimizer")); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, conv3d_node->GetName(), 0); VerifyRegularFaninMatch(output_node, 0, output_transpose_node->GetName(), 0); #endif } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/generic_layout_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/generic_layout_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3d1a82c8-f54e-44c5-b05f-f68fb87ecf6e
cpp
tensorflow/tensorflow
meta_optimizer
tensorflow/core/grappler/optimizers/data/meta_optimizer.cc
tensorflow/core/grappler/optimizers/meta_optimizer_test.cc
#include "tensorflow/core/grappler/optimizers/data/meta_optimizer.h" #include <array> #include "absl/status/status.h" #include "absl/strings/str_split.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/utils/functions.h" #include "tensorflow/core/lib/gtl/map_util.h" namespace tensorflow { namespace grappler { namespace { using ConfigMap = std::map<string, tensorflow::RewriterConfig_CustomGraphOptimizer>; constexpr std::array<const char*, 22> kTFDataOptimizations = { "noop_elimination", "disable_intra_op_parallelism", "use_private_thread_pool", "shuffle_and_repeat_fusion", "map_parallelization", "map_fusion", "filter_fusion", "map_and_filter_fusion", "map_and_batch_fusion", "batch_parallelization", "filter_parallelization", "make_sloppy", "parallel_batch", "slack", "autotune_buffer_sizes", "seq_interleave_prefetch", "inject_prefetch", "inject_io_prefetch_eligible", "inject_io_prefetch", "disable_prefetch_legacy_autotune", "enable_gradient_descent", "make_deterministic"}; Status ToConfigMap( const tensorflow::RewriterConfig_CustomGraphOptimizer* config, ConfigMap* result) { auto found = gtl::FindOrNull(config->parameter_map(), "optimizer_configs"); if (!found) return absl::OkStatus(); auto& options = found->list().s(); for (const auto& option_string : options) { std::vector<string> split = absl::StrSplit(option_string, ':'); if (split.size() != 3) { return errors::Internal( "Wrong format for optimizer options. Expect <optimizer name>:<config " "key>:<config value>, received: ", option_string); } const string& optimizer_name = split[0]; const string& config_key = split[1]; const string& config_value = split[2]; auto optimizer_config = gtl::FindOrNull(*result, optimizer_name); if (!optimizer_config) { (*result)[optimizer_name] = tensorflow::RewriterConfig_CustomGraphOptimizer(); optimizer_config = gtl::FindOrNull(*result, optimizer_name); } (*optimizer_config->mutable_parameter_map())[config_key].set_s( config_value); } return absl::OkStatus(); } } Status TFDataMetaOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* output) { GrapplerItem optimized_item = item; for (const auto& optimization : kTFDataOptimizations) { tensorflow::metrics::ScopedCounter<2> timings( tensorflow::metrics::GetGraphOptimizationCounter(), {"TFData", optimization}); Status status = ApplyOptimization(optimization, cluster, &optimized_item); timings.ReportAndStop(); if (!status.ok()) return status; } output->Swap(&optimized_item.graph); FunctionLibraryDefinition flib = FunctionLibraryDefinition(OpRegistry::Global(), output->library()) .ReachableDefinitions(*output); const auto producer = output->versions().producer(); bool optimized_functions = false; for (const auto& name : flib.ListFunctionNames()) { auto* func = flib.Find(name); if (!data::IsTFDataFunction(*func)) continue; VLOG(3) << "Optimize function: function=" << func->signature().name(); optimized_functions = true; GrapplerFunctionItem func_item; TF_RETURN_IF_ERROR( MakeGrapplerFunctionItem(*func, flib, producer, &func_item)); GraphDef optimized_func_graph; TF_RETURN_IF_ERROR(Optimize(cluster, func_item, &optimized_func_graph)); for (const FunctionDef& func_def : optimized_func_graph.library().function()) { if (flib.Find(func_def.signature().name()) == nullptr) { TF_RETURN_IF_ERROR(flib.AddFunctionDef(func_def)); } } FunctionDef optimized_func; func_item.SwapFunctionBody(std::move(optimized_func_graph)); TF_RETURN_IF_ERROR(MakeFunctionDef(func_item, flib, &optimized_func)); TF_RETURN_IF_ERROR( flib.ReplaceFunction(func->signature().name(), optimized_func)); } if (optimized_functions) { *output->mutable_library() = flib.ToProto(); } return absl::OkStatus(); } Status TFDataMetaOptimizer::ApplyOptimization(const string& name, Cluster* cluster, GrapplerItem* item) const { GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); const auto* optimizer = gtl::FindOrNull(enabled_optimizers_, name); if (!optimizer) { return absl::OkStatus(); } GraphDef result; (*optimizer)->set_deadline_usec(this->deadline_usec()); Status status = (*optimizer)->Optimize(cluster, *item, &result); if (status.ok()) { item->graph.Swap(&result); } else if (absl::IsAborted(status)) { status = absl::OkStatus(); } return status; } Status TFDataMetaOptimizer::Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) { if (!config) return absl::OkStatus(); auto& optimizers = config->parameter_map().at("optimizers").list().s(); ConfigMap optimizer_configs; TF_RETURN_IF_ERROR(ToConfigMap(config, &optimizer_configs)); for (const auto& optimizer_name : optimizers) { auto optimizer = CustomGraphOptimizerRegistry::CreateByNameOrNull(optimizer_name); if (optimizer) { TF_RETURN_IF_ERROR( optimizer->Init(gtl::FindOrNull(optimizer_configs, optimizer_name))); enabled_optimizers_[optimizer_name] = std::move(optimizer); } else { return errors::Internal( "Tried to register a dataset optimizer that doesn't exist: ", optimizer_name); } } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(TFDataMetaOptimizer, "tf_data_meta_optimizer"); } }
#include "tensorflow/core/grappler/optimizers/meta_optimizer.h" #include <atomic> #include "absl/strings/match.h" #include "absl/strings/substitute.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" namespace tensorflow { namespace grappler { namespace { constexpr char kDevice[] = "/device:CPU:0"; class TestOptimizer : public CustomGraphOptimizer { public: static void SetOptimized(const bool flag_value) { optimized_ = flag_value; } static bool IsOptimized() { return optimized_; } TestOptimizer() {} string name() const override { return "test_optimizer"; } bool UsesFunctionLibrary() const override { return false; } Status Init(const tensorflow::RewriterConfig_CustomGraphOptimizer* config = nullptr) override { return absl::OkStatus(); } Status Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) override { optimized_ = true; *optimized_graph = item.graph; return absl::OkStatus(); } private: static bool optimized_; }; bool TestOptimizer::optimized_; REGISTER_GRAPH_OPTIMIZER(TestOptimizer); class TestGraphOptimizer : public TestOptimizer { public: string name() const override { return "test_graph_optimizer"; } }; REGISTER_GRAPH_OPTIMIZER(TestGraphOptimizer); class TestOptimizerWithParams : public TestOptimizer { public: Status Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) override { CHECK(config != nullptr); return absl::OkStatus(); } }; REGISTER_GRAPH_OPTIMIZER(TestOptimizerWithParams); class GrapplerItemPropertiesAccumulator : public CustomGraphOptimizer { public: static void SetOptimizationOptions( gtl::FlatMap<string, GrapplerItem::OptimizationOptions>* optimization_options) { optimization_options_ = optimization_options; } static void ResetOptimizationOptions() { optimization_options_ = nullptr; } GrapplerItemPropertiesAccumulator() {} string name() const override { return "grappler_item_properties_accumulator"; } bool UsesFunctionLibrary() const override { return false; } Status Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) override { return absl::OkStatus(); } Status Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) override { *optimized_graph = item.graph; if (optimization_options_) { optimization_options_->insert({item.id, item.optimization_options()}); } return absl::OkStatus(); } private: static gtl::FlatMap<string, GrapplerItem::OptimizationOptions>* optimization_options_; }; gtl::FlatMap<string, GrapplerItem::OptimizationOptions>* GrapplerItemPropertiesAccumulator::optimization_options_; REGISTER_GRAPH_OPTIMIZER(GrapplerItemPropertiesAccumulator); class MetaOptimizerTest : public GrapplerTest {}; TEST_F(MetaOptimizerTest, RunsCustomOptimizer) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {kDevice}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); TestOptimizer::SetOptimized(false); ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.add_optimizers("TestOptimizer"); rewriter_config.set_min_graph_nodes(-1); MetaOptimizer optimizer(nullptr, config_proto); GraphDef output; const Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_TRUE(TestOptimizer::IsOptimized()); } TEST_F(MetaOptimizerTest, RunsCustomOptimizerWithParams) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {kDevice}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); TestOptimizer::SetOptimized(false); ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.add_optimizers("TestOptimizerWithParams"); auto* custom_config = rewriter_config.add_custom_optimizers(); custom_config->set_name("TestOptimizerWithParams"); (*custom_config->mutable_parameter_map())["foo"] = AttrValue(); MetaOptimizer optimizer(nullptr, config_proto); GraphDef output; const Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_TRUE(TestOptimizer::IsOptimized()); } TEST_F(MetaOptimizerTest, RunsCustomOptimizerAndCustomGraphOptimizer) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {kDevice}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); TestOptimizer::SetOptimized(false); TestGraphOptimizer::SetOptimized(false); ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.add_optimizers("TestOptimizer"); auto customGraphOptimizer = rewriter_config.add_custom_optimizers(); customGraphOptimizer->set_name("TestGraphOptimizer"); rewriter_config.set_min_graph_nodes(-1); MetaOptimizer optimizer(nullptr, config_proto); GraphDef output; const Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_TRUE(TestOptimizer::IsOptimized()); EXPECT_TRUE(TestGraphOptimizer::IsOptimized()); } TEST_F(MetaOptimizerTest, RunsPluginOptimizer) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {"/device:GPU:0"}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); TestOptimizer::SetOptimized(false); ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.set_min_graph_nodes(-1); const auto creator = []() { return new TestOptimizer; }; ConfigList config_list; config_list.disable_model_pruning = true; PluginGraphOptimizerRegistry::RegisterPluginOptimizerOrDie(creator, "GPU", config_list); MetaOptimizer optimizer(nullptr, config_proto); GraphDef output; const Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_TRUE(TestOptimizer::IsOptimized()); } TEST_F(MetaOptimizerTest, RunOptimizersTwice) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {kDevice}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO); rewriter_config.set_min_graph_nodes(-1); MetaOptimizer optimizer(nullptr, config_proto); GraphDef output; const Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); } TEST_F(MetaOptimizerTest, RunToggleOptimizersAndCustomGraphOptimizerTwice) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {kDevice}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); auto customGraphOptimizer = rewriter_config.add_custom_optimizers(); customGraphOptimizer->set_name("TestGraphOptimizer"); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO); rewriter_config.set_min_graph_nodes(-1); MetaOptimizer optimizer(nullptr, config_proto); GraphDef output; const Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_TRUE(TestGraphOptimizer::IsOptimized()); } TEST_F(MetaOptimizerTest, OptimizeFunctionLibrary) { using test::function::NDef; ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO); rewriter_config.set_function_optimization(RewriterConfig::ON); rewriter_config.add_optimizers("function"); rewriter_config.set_min_graph_nodes(-1); MetaOptimizer optimizer(nullptr, config_proto); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "mul:z:0"}}); FunctionDef square_func = FunctionDefHelper::Create( "MySquare", {"x:T"}, {"z:T"}, {"T: {float, double}"}, {{{"my_mul"}, "MyMul", {"x", "x"}, {{"T", "$T"}}}}, {{"z", "my_mul:z:0"}}); (*square_func.mutable_attr())["_noinline"].set_b(true); FunctionDef quadratic_func = FunctionDefHelper::Create( "MyQuadratic", {"x:T"}, {"z:T"}, {"T: {float, double}"}, {{{"square"}, "MySquare", {"x"}, {{"T", "$T"}}}, {{"quadratic"}, "MySquare", {"square:z"}, {{"T", "$T"}}}}, {{"z", "quadratic:z:0"}}); (*quadratic_func.mutable_attr())["_noinline"].set_b(true); GrapplerItem item; item.id = "tf_graph"; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_INT32}}, kDevice), NDef("square", "MySquare", {"a"}, {{"T", DT_FLOAT}}, kDevice), NDef("quadratic", "MyQuadratic", {"b"}, {{"T", DT_INT32}}, kDevice), NDef("out_s", "Identity", {"square:0"}, {{"T", DT_FLOAT}}, kDevice), NDef("out_q", "Identity", {"quadratic:0"}, {{"T", DT_INT32}}, kDevice)}, {mul_func, square_func, quadratic_func}); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); FunctionLibraryDefinition optimized_flib(OpRegistry::Global(), output.library()); EXPECT_EQ(3, optimized_flib.num_functions()); const auto specialized_name = [](const string& fn, const string& node, const string& id) { return absl::Substitute("$0_specialized_for_$1_at_$2", fn, node, id); }; const string optimized_0 = specialized_name("MyQuadratic", "quadratic", "tf_graph"); const string optimized_1 = specialized_name("MySquare", "square", "tf_graph"); const string optimized_2 = specialized_name("MySquare", "square", optimized_0); const FunctionDef* optimized_func_0 = optimized_flib.Find(optimized_0); const FunctionDef* optimized_func_1 = optimized_flib.Find(optimized_1); const FunctionDef* optimized_func_2 = optimized_flib.Find(optimized_2); ASSERT_NE(optimized_func_0, nullptr); ASSERT_NE(optimized_func_1, nullptr); ASSERT_NE(optimized_func_2, nullptr); int count = 0; for (const NodeDef& node : output.node()) { if (node.name() == "square" && ++count) { EXPECT_EQ(optimized_1, node.op()); } else if (node.name() == "quadratic" && ++count) { EXPECT_EQ(optimized_0, node.op()); } } EXPECT_EQ(2, count); count = 0; for (const NodeDef& node : optimized_func_0->node_def()) { if (node.name() == "square" && ++count) { EXPECT_EQ(optimized_2, node.op()); } else if (node.name() == "quadratic" && ++count) { EXPECT_EQ(optimized_2, node.op()); } } EXPECT_EQ(2, count); const std::vector<const FunctionDef*> optimized_funcs = {optimized_func_1, optimized_func_2}; for (const FunctionDef* optimized_func : optimized_funcs) { count = 0; for (const NodeDef& node : optimized_func->node_def()) { if (node.name() == "Func/my_mul/input/_0" && ++count) { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("x", node.input(0)); } else if (node.name() == "Func/my_mul/input/_1" && ++count) { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("x", node.input(0)); } else if (node.name() == "my_mul/mul" && ++count) { EXPECT_EQ("Mul", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("Func/my_mul/input/_0:output:0", node.input(0)); EXPECT_EQ("Func/my_mul/input/_1:output:0", node.input(1)); } EXPECT_TRUE(node.device().empty()); } EXPECT_EQ(3, count); ASSERT_EQ(1, optimized_func->ret().size()); EXPECT_EQ("Func/my_mul/output/_2:output:0", optimized_func->ret().at("z")); } item.fetch = {"out_s", "out_q"}; item.feed.emplace_back("a", test::AsScalar<float>(2.0f)); item.feed.emplace_back("b", test::AsScalar<int>(4)); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); test::ExpectTensorEqual<int>(tensors_expected[1], tensors[1]); } TEST_F(MetaOptimizerTest, OptimizeFunctionLibraryPruneUnusedOutputs) { using test::function::NDef; ConfigProto config_proto; MetaOptimizer optimizer(nullptr, config_proto); FunctionDef my_mul = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z0:T", "z1:T", "z2:T"}, {"T: {float, int32}"}, {{{"output0"}, "Mul", {"x", "y"}, {{"T", "$T"}}}, {{"output1"}, "Mul", {"x", "y"}, {{"T", "$T"}}}, {{"output2"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z0", "output0:z:0"}, {"z1", "output1:z:0"}, {"z2", "output2:z:0"}}); FunctionDef my_fwd = FunctionDefHelper::Create( "Fwd", {"x:T", "y:T"}, {"z0:T", "z1:T", "z2:T"}, {"T: {float, int32}"}, {{{"output"}, "MyMul", {"x", "y"}, {{"T", "$T"}}}}, {{"z0", "output:z0:0"}, {"z1", "output:z1:0"}, {"z2", "output:z2:0"}}); (*my_mul.mutable_attr())["_noinline"].set_b(true); (*my_fwd.mutable_attr())["_noinline"].set_b(true); std::vector<FunctionDef> function_library = {my_mul, my_fwd}; GrapplerItem item; item.id = "tf_graph"; item.fetch = {"ret"}; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("fwd", "Fwd", {"a", "b"}, {{"T", DT_FLOAT}}, kDevice), NDef("ret", "Identity", {"fwd:2"}, {{"T", DT_FLOAT}}, kDevice)}, function_library); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); FunctionLibraryDefinition optimized_flib(OpRegistry::Global(), output.library()); EXPECT_EQ(2, optimized_flib.num_functions()); const string specialized_my_fwd = "Fwd_specialized_for_fwd_at_tf_graph"; const string specialized_my_mul = absl::StrCat("MyMul_specialized_for_output_at_", specialized_my_fwd); FunctionDef expected_my_mul = FunctionDefHelper::Create( specialized_my_mul, {"x:float", "y:float"}, {"z2:float"}, {}, {{{"output2"}, "Mul", {"x", "y"}, {{"T", DT_FLOAT}}}}, {{"z2", "output2:z:0"}}); FunctionDef expected_my_fwd = FunctionDefHelper::Create( specialized_my_fwd, {"x:float", "y:float"}, {"z2:float"}, {}, {{{"output"}, specialized_my_mul, {"x", "y"}, {{"T", DT_FLOAT}}}}, {{"z2", "output:z2:0"}}); const FunctionDef* my_mul_spec = optimized_flib.Find(specialized_my_mul); const FunctionDef* my_fwd_spec = optimized_flib.Find(specialized_my_fwd); ASSERT_NE(my_mul_spec, nullptr); ASSERT_NE(my_fwd_spec, nullptr); CompareFunctions(expected_my_mul, *my_mul_spec); CompareFunctions(expected_my_fwd, *my_fwd_spec); item.feed.emplace_back("a", test::AsScalar<float>(2.0f)); item.feed.emplace_back("b", test::AsScalar<float>(4.0f)); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(MetaOptimizerTest, OptimizeFunctionLibraryPruneFunctionBody) { using test::function::NDef; ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO); rewriter_config.set_function_optimization(RewriterConfig::ON); rewriter_config.add_optimizers("function"); rewriter_config.add_optimizers("pruning"); rewriter_config.set_min_graph_nodes(-1); MetaOptimizer optimizer(nullptr, config_proto); FunctionDef my_func = FunctionDefHelper::Create( "MyFunc", {"x:T", "y:T"}, {"z1:T", "z2:T"}, {"T: {float, double}"}, {{{"mul1"}, "Mul", {"x", "y"}, {{"T", "$T"}}}, {{"mul2"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z1", "mul1:z:0"}, {"z2", "mul2:z:0"}}); (*my_func.mutable_attr())["_noinline"].set_b(true); GrapplerItem item; item.id = "tf_graph"; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("fn1", "MyFunc", {"a", "b"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn2", "MyFunc", {"a", "b"}, {{"T", DT_FLOAT}}, kDevice), NDef("out_fn1", "Identity", {"fn1:0"}, {{"T", DT_FLOAT}}, kDevice), NDef("out_fn2", "Identity", {"fn2:1"}, {{"T", DT_FLOAT}}, kDevice)}, {my_func}); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); FunctionLibraryDefinition optimized_flib(OpRegistry::Global(), output.library()); EXPECT_EQ(2, optimized_flib.num_functions()); const string optimized_fn1 = "MyFunc_specialized_for_fn1_at_tf_graph"; const string optimized_fn2 = "MyFunc_specialized_for_fn2_at_tf_graph"; const FunctionDef* optimized_func_fn1 = optimized_flib.Find(optimized_fn1); const FunctionDef* optimized_func_fn2 = optimized_flib.Find(optimized_fn2); ASSERT_NE(optimized_func_fn1, nullptr); ASSERT_NE(optimized_func_fn2, nullptr); int count = 0; for (const NodeDef& node : output.node()) { if (node.name() == "fn1" && ++count) { EXPECT_EQ(optimized_fn1, node.op()); } else if (node.name() == "fn2" && ++count) { EXPECT_EQ(optimized_fn2, node.op()); } } EXPECT_EQ(2, count); ASSERT_EQ(1, optimized_func_fn1->node_def_size()); EXPECT_EQ(1, optimized_func_fn1->signature().output_arg_size()); EXPECT_EQ("z1", optimized_func_fn1->signature().output_arg(0).name()); EXPECT_EQ("mul1", optimized_func_fn1->node_def(0).name()); ASSERT_EQ(1, optimized_func_fn2->node_def_size()); EXPECT_EQ(1, optimized_func_fn2->signature().output_arg_size()); EXPECT_EQ("z2", optimized_func_fn2->signature().output_arg(0).name()); EXPECT_EQ("mul2", optimized_func_fn2->node_def(0).name()); item.fetch = {"out_fn1", "out_fn2"}; item.feed.emplace_back("a", test::AsScalar<float>(2.0f)); item.feed.emplace_back("b", test::AsScalar<float>(3.123f)); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); test::ExpectTensorEqual<float>(tensors_expected[1], tensors[1]); } TEST_F(MetaOptimizerTest, OptimizeFunctionLibraryWithRestrictions) { using test::function::NDef; using FDH = FunctionDefHelper; gtl::FlatMap<string, GrapplerItem::OptimizationOptions> optimization_options; GrapplerItemPropertiesAccumulator::SetOptimizationOptions( &optimization_options); ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO); rewriter_config.add_optimizers("GrapplerItemPropertiesAccumulator"); rewriter_config.set_min_graph_nodes(-1); MetaOptimizer optimizer(nullptr, config_proto); FunctionDef mul_func_1 = FunctionDefHelper::Create( "MyMul1", {"x:float", "y:float"}, {"z:float"}, {}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", DT_FLOAT}}}}, {{"z", "mul:z:0"}}); FunctionDef mul_func_2 = FunctionDefHelper::Create( "MyMul2", {"x:float", "y:float"}, {"z:float"}, {}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", DT_FLOAT}}}}, {{"z", "mul:z:0"}}); GrapplerItem item; item.id = "main"; item.graph = test::function::GDef( {NDef("x0", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("x1", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("dy", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("mul_1", "MyMul1", {"x0", "x1"}, {}, kDevice), NDef("mul_2", "MyMul2", {"x0", "x1"}, {}, kDevice), NDef("dx", "SymbolicGradient", {"x0", "x1", "dy"}, {{"f", FDH::FunctionRef("MyMul2", {})}, {"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT, DT_FLOAT}}}, kDevice)}, {mul_func_1, mul_func_2}); item.fetch = {"mul_1", "mul_2", "dx"}; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); ASSERT_EQ(optimization_options.size(), 3); auto optimization_options_main = gtl::FindOrNull(optimization_options, "main"); ASSERT_NE(optimization_options_main, nullptr); EXPECT_TRUE(optimization_options_main->allow_non_differentiable_rewrites); auto optimization_options_my_mul_1 = gtl::FindOrNull(optimization_options, "MyMul1"); ASSERT_NE(optimization_options_my_mul_1, nullptr); EXPECT_TRUE(optimization_options_my_mul_1->allow_non_differentiable_rewrites); auto optimization_options_my_mul_2 = gtl::FindOrNull(optimization_options, "MyMul2"); ASSERT_NE(optimization_options_my_mul_2, nullptr); EXPECT_FALSE( optimization_options_my_mul_2->allow_non_differentiable_rewrites); } class SleepingOptimizer : public CustomGraphOptimizer { public: SleepingOptimizer() {} string name() const override { return "test_optimizer"; } bool UsesFunctionLibrary() const override { return false; } Status Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) override { return absl::OkStatus(); } Status Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) override { *optimized_graph = item.graph; Env::Default()->SleepForMicroseconds(1000000); GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); optimized_graph->add_node(); return absl::OkStatus(); } }; REGISTER_GRAPH_OPTIMIZER(SleepingOptimizer); TEST_F(MetaOptimizerTest, OptimizerTimesOut) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {kDevice}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); ConfigProto config; RewriterConfig& rewriter_config = *config.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.add_optimizers("SleepingOptimizer"); rewriter_config.set_min_graph_nodes(-1); rewriter_config.set_meta_optimizer_timeout_ms(500); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::ONE); GraphDef output; GraphDef original = item.graph; const Status status = RunMetaOptimizer(std::move(item), config, nullptr, nullptr, &output); EXPECT_EQ(status.message(), "meta_optimizer exceeded deadline."); CompareGraphs(original, output); } TEST_F(MetaOptimizerTest, MetaOptimizerTimesOut) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {kDevice}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); ConfigProto config; RewriterConfig& rewriter_config = *config.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.add_optimizers("SleepingOptimizer"); rewriter_config.set_min_graph_nodes(-1); rewriter_config.set_meta_optimizer_timeout_ms(1500); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO); GraphDef output; const int original_node_size = item.graph.node_size(); const Status status = RunMetaOptimizer(std::move(item), config, nullptr, nullptr, &output); EXPECT_EQ(status.message(), "meta_optimizer exceeded deadline."); EXPECT_EQ(original_node_size + 1, output.node_size()); } TEST_F(MetaOptimizerTest, OptimizerDoesNotTimeOut) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {kDevice}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); ConfigProto config; RewriterConfig& rewriter_config = *config.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.add_optimizers("SleepingOptimizer"); rewriter_config.set_min_graph_nodes(-1); rewriter_config.set_meta_optimizer_timeout_ms(2500); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO); GraphDef output; const int original_node_size = item.graph.node_size(); const Status status = RunMetaOptimizer(std::move(item), config, nullptr, nullptr, &output); TF_EXPECT_OK(status); EXPECT_EQ(original_node_size + 2, output.node_size()); } TEST_F(MetaOptimizerTest, RunPostOptimizationVerifiersOnValidGraph) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {kDevice}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); ConfigProto config_proto; auto& post_optimization_verifier_config = *config_proto.mutable_graph_options() ->mutable_rewrite_options() ->mutable_post_optimization_verifier_config(); post_optimization_verifier_config.set_structure_verifier(VerifierConfig::ON); MetaOptimizer optimizer(nullptr, config_proto); GraphDef output; const Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); } TEST_F(MetaOptimizerTest, RunInterOptimizerVerifiersOnValidGraph) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {kDevice}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); ConfigProto config_proto; auto& inter_optimizer_verifier_config = *config_proto.mutable_graph_options() ->mutable_rewrite_options() ->mutable_inter_optimizer_verifier_config(); inter_optimizer_verifier_config.set_structure_verifier(VerifierConfig::ON); MetaOptimizer optimizer(nullptr, config_proto); GraphDef output; const Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); } TEST_F(MetaOptimizerTest, RunPostOptimizationVerifiersOnInvalidGraph) { using test::function::NDef; using FDH = FunctionDefHelper; gtl::FlatMap<string, GrapplerItem::OptimizationOptions> optimization_options; GrapplerItemPropertiesAccumulator::SetOptimizationOptions( &optimization_options); FunctionDef mul_func_1 = FunctionDefHelper::Create("MyMul1", {"x:float", "y:float"}, {"z:float"}, {}, {{{"mul"}, "Mul", {"x", "y"}, {}}}, {{"z", "mul:z:0"}}); FunctionDef mul_func_2 = FunctionDefHelper::Create("MyMul2", {"x:float", "y:float"}, {"z:float"}, {}, {{{"mul"}, "Mul", {"x", "y"}, {}}}, {{"z", "mul:z:0"}}); GrapplerItem item; item.id = "main"; item.graph = test::function::GDef( {NDef("x0", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("x1", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("dy", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("mul_1", "MyMul1", {"x0", "x1"}, {}, kDevice), NDef("mul_2", "MyMul2", {"x0", "x1"}, {}, kDevice), NDef("dx", "SymbolicGradient", {"x0", "x1", "dy"}, {{"f", FDH::FunctionRef("MyMul2", {})}, {"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT, DT_FLOAT}}}, kDevice)}, {mul_func_1, mul_func_2}); item.fetch = {"mul_1", "mul_2", "dx"}; GraphDef output; ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO); rewriter_config.add_optimizers("GrapplerItemPropertiesAccumulator"); rewriter_config.set_min_graph_nodes(-1); auto& post_optimization_verifier_config = *config_proto.mutable_graph_options() ->mutable_rewrite_options() ->mutable_post_optimization_verifier_config(); post_optimization_verifier_config.set_structure_verifier(VerifierConfig::ON); MetaOptimizer optimizer_with_post_verifiers(nullptr, config_proto); Status status = optimizer_with_post_verifiers.Optimize(nullptr, item, &output); EXPECT_TRUE(errors::IsInvalidArgument(status)); EXPECT_TRUE(absl::StrContains( status.message(), "NodeDef expected inputs 'float' do not match 3 inputs specified")); } TEST_F(MetaOptimizerTest, RunInterOptimizerVerifiersOnInvalidGraph) { using test::function::NDef; using FDH = FunctionDefHelper; gtl::FlatMap<string, GrapplerItem::OptimizationOptions> optimization_options; GrapplerItemPropertiesAccumulator::SetOptimizationOptions( &optimization_options); FunctionDef mul_func_1 = FunctionDefHelper::Create("MyMul1", {"x:float", "y:float"}, {"z:float"}, {}, {{{"mul"}, "Mul", {"x", "y"}, {}}}, {{"z", "mul:z:0"}}); FunctionDef mul_func_2 = FunctionDefHelper::Create("MyMul2", {"x:float", "y:float"}, {"z:float"}, {}, {{{"mul"}, "Mul", {"x", "y"}, {}}}, {{"z", "mul:z:0"}}); GrapplerItem item; item.id = "main"; item.graph = test::function::GDef( {NDef("x0", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("x1", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("dy", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("x1", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("mul_1", "MyMul1", {"x0", "x1"}, {}, kDevice), NDef("mul_2", "MyMul2", {"x0", "x1"}, {}, kDevice), NDef("dx", "SymbolicGradient", {"x0", "x1", "dy"}, {{"f", FDH::FunctionRef("MyMul2", {})}, {"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT, DT_FLOAT}}}, kDevice)}, {mul_func_1, mul_func_2}); item.fetch = {"mul_1", "mul_2", "dx"}; GraphDef output; ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO); rewriter_config.add_optimizers("GrapplerItemPropertiesAccumulator"); rewriter_config.set_min_graph_nodes(-1); auto& inter_optimizer_verifier_config = *config_proto.mutable_graph_options() ->mutable_rewrite_options() ->mutable_inter_optimizer_verifier_config(); inter_optimizer_verifier_config.set_structure_verifier(VerifierConfig::ON); MetaOptimizer optimizer_with_inter_verifiers(nullptr, config_proto); Status status = optimizer_with_inter_verifiers.Optimize(nullptr, item, &output); EXPECT_EQ(status.code(), absl::StatusCode::kInvalidArgument); EXPECT_TRUE(absl::StrContains( status.message(), "NodeDef expected inputs 'float' do not match 3 inputs specified")); } TEST_F(MetaOptimizerTest, CompressConstants) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); Tensor zeros_t(DT_FLOAT, TensorShape({64})); Tensor ones_t(DT_FLOAT, TensorShape({64})); for (int i = 0; i < 64; ++i) { zeros_t.flat<float>()(i) = 0.0f; ones_t.flat<float>()(i) = 1.0f; } Output zeros = ops::Const(scope.WithOpName("zeros"), zeros_t); Output host_ones = ops::Const(scope.WithOpName("host_ones"), ones_t); GrapplerItem item; TF_CHECK_OK(scope.ToGraphDef(&item.graph)); ASSERT_EQ(item.graph.node(1).name(), "host_ones"); item.graph.mutable_node(1)->set_op("HostConst"); item.fetch = {"zeros", "host_ones"}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, {}); ConfigProto config_proto; auto& rewriter_config = *config_proto.mutable_graph_options()->mutable_rewrite_options(); rewriter_config.set_min_graph_nodes(-1); MetaOptimizer optimizer(nullptr, config_proto); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); bool found_zeros = false; bool found_host_ones = false; ASSERT_EQ(output.node_size(), 2); for (const auto& node : output.node()) { if (node.name() == "zeros") { found_zeros = true; EXPECT_EQ(node.op(), "Const"); const TensorProto& zeroes_t = node.attr().at("value").tensor(); EXPECT_EQ(zeroes_t.float_val_size(), 0); } else if (node.name() == "host_ones") { found_host_ones = true; EXPECT_EQ(node.op(), "HostConst"); const TensorProto& ones_t = node.attr().at("value").tensor(); EXPECT_EQ(ones_t.float_val_size(), 1); EXPECT_EQ(ones_t.float_val(0), 1.0f); } } EXPECT_TRUE(found_zeros); EXPECT_TRUE(found_host_ones); auto tensors = EvaluateNodes(output, item.fetch, {}); ASSERT_EQ(tensors.size(), 2); ASSERT_EQ(tensors_expected.size(), 2); for (int i = 0; i < 2; ++i) { test::ExpectTensorEqual<float>(tensors[i], tensors_expected[i]); } } TEST_F(MetaOptimizerTest, TestTFGRemoveDeadArguments) { using test::function::NDef; gtl::FlatMap<string, GrapplerItem::OptimizationOptions> optimization_options; GrapplerItemPropertiesAccumulator::SetOptimizationOptions( &optimization_options); FunctionDef case_func = FunctionDefHelper::Create( "branch_func", {"x:float", "y:float"}, {"z:float"}, {}, {{{"mul"}, "Mul", {"x", "x"}, {{"T", DT_FLOAT}}}}, {{"z", "mul:z:0"}}); GrapplerItem item; item.id = "main"; AttrValue branches; branches.mutable_list()->add_func()->set_name("branch_func"); AttrValue output_shapes; output_shapes.mutable_list()->add_shape(); item.graph = test::function::GDef( {NDef("idx", "Placeholder", {}, {{"dtype", DT_INT32}}, kDevice), NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("y", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("case", "Case", {"idx", "x", "y"}, {{"branches", std::move(branches)}, {"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"output_shapes", std::move(output_shapes)}}, kDevice)}, {case_func}); item.fetch = {"case"}; GraphDef output; ConfigProto config_proto; config_proto.mutable_graph_options() ->mutable_rewrite_options() ->set_experimental_conditional_code_motion(RewriterConfig::OFF); MetaOptimizer optimizer(nullptr, config_proto); Status status = optimizer.Optimize(nullptr, item, &output); EXPECT_TRUE(status.ok()); EXPECT_EQ(output.library().function_size(), 1); auto& func = output.library().function(0); EXPECT_EQ(func.signature().input_arg_size(), 1); EXPECT_EQ(func.signature().input_arg(0).name(), "x_tfg_result_0"); } TEST_F(MetaOptimizerTest, TestTFGControlFlowSink) { using test::function::NDef; gtl::FlatMap<string, GrapplerItem::OptimizationOptions> optimization_options; GrapplerItemPropertiesAccumulator::SetOptimizationOptions( &optimization_options); FunctionDef case_func = FunctionDefHelper::Create( "branch_func", {"x:float", "y:float"}, {"z:float"}, {}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", DT_FLOAT}}}}, {{"z", "mul:z:0"}}); AttrValue branches; branches.mutable_list()->add_func()->set_name("branch_func"); AttrValue output_shapes; output_shapes.mutable_list()->add_shape(); FunctionDef foo_func = FunctionDefHelper::Create( "Foo", {"idx:int32", "a:float", "b:float"}, {"c:float"}, {}, {{{"add"}, "Add", {"a", "b"}, {{"T", DT_FLOAT}}}, {{"mul"}, "Mul", {"a", "b"}, {{"T", DT_FLOAT}}}, {{"case"}, "Case", {"idx", "add:z:0", "mul:z:0"}, {{"branches", std::move(branches)}, {"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"output_shapes", std::move(output_shapes)}}}}, {{"c", "case:output:0"}}); (*foo_func.mutable_attr())["_noinline"].set_b(true); GrapplerItem item; item.id = "main"; item.graph = test::function::GDef( {NDef("idx", "Placeholder", {}, {{"dtype", DT_INT32}}, kDevice), NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("foo", "Foo", {"idx", "a", "b"}, {}, kDevice)}, {case_func, foo_func}); item.fetch = {"foo"}; GraphDef output; ConfigProto config_proto; MetaOptimizer optimizer(nullptr, config_proto); Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(output.library().function_size(), 2); const FunctionDef* optimized_foo_func = nullptr; const FunctionDef* specialized_branch_func = nullptr; for (const FunctionDef& func : output.library().function()) { if (func.signature().name() == "Foo") optimized_foo_func = &func; else if (absl::StartsWith(func.signature().name(), "branch_func")) specialized_branch_func = &func; } ASSERT_TRUE(optimized_foo_func); EXPECT_EQ(optimized_foo_func->node_def_size(), 1); ASSERT_TRUE(specialized_branch_func); EXPECT_EQ(specialized_branch_func->node_def_size(), 3); } class TfDataTestOptimizer : public CustomGraphOptimizer { public: static void InitCount() { count_ = 0; } static int GetCount() { return count_; } TfDataTestOptimizer() = default; ~TfDataTestOptimizer() override = default; TfDataTestOptimizer(const TfDataTestOptimizer&) = delete; TfDataTestOptimizer& operator=(const TfDataTestOptimizer& other) = delete; std::string name() const override { return "tf_data_test_optimizer"; } bool UsesFunctionLibrary() const override { return false; } Status Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) override { return absl::OkStatus(); } Status Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) override { ++count_; *optimized_graph = item.graph; return absl::OkStatus(); } private: static std::atomic<int> count_; }; std::atomic<int> TfDataTestOptimizer::count_; REGISTER_GRAPH_OPTIMIZER(TfDataTestOptimizer); enum class FuncNestingType { CallFromNode = 0, CallFromAttr = 1, CallFromList = 2 }; class TfDataTestFixture : public ::testing::TestWithParam<std::tuple<bool, bool, FuncNestingType>> { protected: void SetUp() override { is_inner_func_tf_data_ = std::get<0>(GetParam()); is_outer_func_tf_data_ = std::get<1>(GetParam()); func_nesting_type_ = std::get<2>(GetParam()); } bool is_inner_func_tf_data_ = false; bool is_outer_func_tf_data_ = false; FuncNestingType func_nesting_type_ = FuncNestingType::CallFromNode; }; void SetUpCallFromNode(FunctionDef& outer_func) { outer_func = FunctionDefHelper::Create( "outer_func", {"x:float"}, {"z:float"}, {}, {{{"inner_func"}, "inner_func", {"x", "x"}, {{"T", DT_FLOAT}}}}, {{"z", "inner_func:z:0"}}); } void SetUpCallFromAttr(FunctionDef& outer_func) { outer_func = FunctionDefHelper::Create( "outer_func", {"x:float"}, {"z:float"}, {}, {{{"identity"}, "Identity", {"x"}, {{"T", DT_FLOAT}, {"f", FunctionDefHelper::FunctionRef("inner_func", {})}}}}, {{"z", "x"}}); } void SetUpCallFromList(FunctionDef& outer_func) { outer_func = FunctionDefHelper::Create( "outer_func", {"x:float"}, {"z:float"}, {}, {{{"identity"}, "Identity", {"x"}, {{"T", DT_FLOAT}}}}, {{"z", "x"}}); AttrValue_ListValue* list_value = (*outer_func.mutable_node_def(0)->mutable_attr())["list"].mutable_list(); NameAttrList* entry = list_value->add_func(); entry->set_name("inner_func"); } TEST_P(TfDataTestFixture, TfDataTests) { using test::function::NDef; FunctionDef inner_func = FunctionDefHelper::Create( "inner_func", {"x:float", "y:float"}, {"z:float"}, {}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", DT_FLOAT}}}}, {{"z", "mul:z:0"}}); (*inner_func.mutable_attr())[data::kTFDataFunction].set_b( is_inner_func_tf_data_); FunctionDef outer_func; switch (func_nesting_type_) { case FuncNestingType::CallFromNode: SetUpCallFromNode(outer_func); break; case FuncNestingType::CallFromAttr: SetUpCallFromAttr(outer_func); break; case FuncNestingType::CallFromList: SetUpCallFromList(outer_func); break; default: break; } (*outer_func.mutable_attr())[data::kTFDataFunction].set_b( is_outer_func_tf_data_); GrapplerItem item; item.id = "tf_graph"; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("outer_func_node", "outer_func", {"a"}, {{"T", DT_FLOAT}}, kDevice), NDef("out_s", "Identity", {"outer_func_node:0"}, {{"T", DT_FLOAT}}, kDevice)}, {inner_func, outer_func}); TfDataTestOptimizer::InitCount(); ConfigProto config_proto; auto& rewriter_config = *(config_proto.mutable_graph_options()->mutable_rewrite_options()); rewriter_config.add_optimizers("TfDataTestOptimizer"); rewriter_config.set_min_graph_nodes(-1); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::ONE); MetaOptimizer optimizer(nullptr, config_proto); GraphDef output; const Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); int expected_count = 3; if (is_outer_func_tf_data_) expected_count = 1; else if (is_inner_func_tf_data_) expected_count = 2; EXPECT_EQ(TfDataTestOptimizer::GetCount(), expected_count); FunctionLibraryDefinition flib(OpRegistry::Global(), output.library()); const FunctionDef* outer_func_after_opt = flib.Find("outer_func"); const FunctionDef* inner_func_after_opt = flib.Find("inner_func"); EXPECT_EQ(data::IsTFDataFunction(*outer_func_after_opt), is_outer_func_tf_data_); if (is_outer_func_tf_data_ || is_inner_func_tf_data_) { EXPECT_EQ(data::IsTFDataFunction(*inner_func_after_opt), true); } else { EXPECT_EQ(data::IsTFDataFunction(*inner_func_after_opt), false); } } INSTANTIATE_TEST_SUITE_P( MetaOptimizerTest, TfDataTestFixture, ::testing::Combine(::testing::Bool(), ::testing::Bool(), ::testing::Values(FuncNestingType::CallFromNode, FuncNestingType::CallFromAttr, FuncNestingType::CallFromList)), [](const ::testing::TestParamInfo<TfDataTestFixture::ParamType>& info) { bool is_inner_func_tf_data = std::get<0>(info.param); bool is_outer_func_tf_data = std::get<1>(info.param); FuncNestingType func_nesting_type = std::get<2>(info.param); std::string test_name; if (is_inner_func_tf_data && is_outer_func_tf_data) test_name = "both_funcs_tf_data"; else if (is_inner_func_tf_data) test_name = "inner_func_tf_data"; else if (is_outer_func_tf_data) test_name = "outer_func_tf_data"; else test_name = "no_func_tf_data"; switch (func_nesting_type) { case FuncNestingType::CallFromNode: test_name += "_call_from_node"; break; case FuncNestingType::CallFromAttr: test_name += "_call_from_attribute"; break; case FuncNestingType::CallFromList: test_name += "_call_from_list"; break; default: break; } return test_name; }); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/meta_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/meta_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
12911963-3d86-43d4-9313-02b2ed479c8a
cpp
tensorflow/tensorflow
shape_optimizer
tensorflow/core/grappler/optimizers/shape_optimizer.cc
tensorflow/core/grappler/optimizers/shape_optimizer_test.cc
#include "tensorflow/core/grappler/optimizers/shape_optimizer.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/symbolic_shapes.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { namespace grappler { Status ShapeOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { bool can_optimize = false; bool has_div = false; bool has_size = false; bool has_shape = false; bool has_prod = false; auto is_int = [](const NodeDef& node) -> bool { return node.attr().at("T").type() == DT_INT32 || node.attr().at("T").type() == DT_INT64; }; for (const NodeDef& node : item.graph.node()) { if (IsShape(node)) { has_shape = true; } else if (IsProd(node) && is_int(node)) { has_prod = true; } else if (IsDiv(node) && is_int(node)) { has_div = true; } else if (IsSize(node)) { has_size = true; } if ((has_shape && has_prod) || (has_div && has_size)) { can_optimize = true; break; } } if (!can_optimize) { return absl::AbortedError("Nothing to do."); } *optimized_graph = item.graph; GraphProperties properties(item); bool inferred_properties = false; { MutableGraphView graph(optimized_graph); for (auto& node : *optimized_graph->mutable_node()) { if (!IsShape(node)) { continue; } for (MutableGraphView::InputPort fanout : graph.GetFanout(MutableGraphView::OutputPort(&node, 0))) { if (fanout.node->op() != "Prod") { continue; } if (fanout.node->attr().count("keep_dims") != 0 && fanout.node->attr().at("keep_dims").b()) { continue; } const MutableGraphView::OutputPort reduce_indices = graph.GetRegularFanin(MutableGraphView::InputPort(fanout.node, 1)); if (!inferred_properties) { TF_RETURN_IF_ERROR( properties.InferStatically(false, false, false)); inferred_properties = true; } const auto& prop = properties.GetOutputProperties(reduce_indices.node->name()); const int prop_size = prop.size(); if (prop_size <= reduce_indices.port_id) { continue; } const TensorShapeProto& reduction_indices_shape = prop[reduce_indices.port_id].shape(); if (NumCoefficients(reduction_indices_shape) == 1) { const auto& input_props = properties.GetInputProperties(node.name()); if (input_props.size() != 1) { continue; } NodeDef size_node(*fanout.node); const DataType type = input_props[0].dtype(); size_node.set_op("Size"); size_node.set_input(0, node.input(0)); size_node.set_input(1, AsControlDependency(node)); size_node.mutable_attr()->erase("Tidx"); size_node.mutable_attr()->erase("keep_dims"); (*size_node.mutable_attr())["out_type"] = fanout.node->attr().at("T"); (*size_node.mutable_attr())["T"].set_type(type); size_node.set_device(node.device()); Status s = IsKernelRegisteredForNode(size_node); if (!s.ok()) { continue; } fanout.node->Swap(&size_node); } } } } { MutableGraphView graph(optimized_graph); for (auto& node : *optimized_graph->mutable_node()) { if (node.op() == "Div") { const MutableGraphView::OutputPort input1 = graph.GetRegularFanin(MutableGraphView::InputPort(&node, 0)); const MutableGraphView::OutputPort input2 = graph.GetRegularFanin(MutableGraphView::InputPort(&node, 1)); if (input1.node == nullptr || input2.node == nullptr) continue; if (!IsSize(*input1.node) || !IsSize(*input2.node)) { continue; } if (!inferred_properties) { TF_RETURN_IF_ERROR( properties.InferStatically(false, false, false)); inferred_properties = true; } const auto& prop1 = properties.GetInputProperties(input1.node->name()); const auto& prop2 = properties.GetInputProperties(input2.node->name()); if (prop1.size() != 1 || prop2.size() != 1) { continue; } const TensorShapeProto& shape1 = prop1[0].shape(); const TensorShapeProto& shape2 = prop2[0].shape(); int64_t result = ComputeSizeRatio(shape1, shape2); if (result >= 0) { node.set_op("Const"); DataType dtype = node.attr().at("T").type(); node.mutable_attr()->erase("T"); (*node.mutable_attr())["dtype"].set_type(dtype); TensorProto* t = (*node.mutable_attr())["value"].mutable_tensor(); t->set_dtype(dtype); *t->mutable_tensor_shape() = TensorShapeProto(); if (dtype == DT_INT32) { t->add_int_val(result); } else { t->add_int64_val(result); } node.set_input(0, AsControlDependency(node.input(0))); node.set_input(1, AsControlDependency(node.input(1))); } } } } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/shape_optimizer.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class ShapeOptimizerTest : public GrapplerTest {}; TEST_F(ShapeOptimizerTest, OptimizeShapeProduct) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/cpu:0"); Output a = ops::Const(s.WithOpName("a"), 3.14f, {32, 16}); Output c = ops::Shape(s.WithOpName("c"), a); Output d = ops::Const(s.WithOpName("d"), 0, {1}); ops::ReduceProd::Attrs attrs; Output e = ops::ReduceProd(s.WithOpName("e"), c, d, attrs.KeepDims(false)); Output f = ops::ReduceProd(s.WithOpName("f"), c, d, attrs.KeepDims(true)); GrapplerItem item; item.fetch = {"e", "f"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; ShapeOptimizer optimizer; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "e") { found++; EXPECT_EQ("Size", node.op()); EXPECT_EQ("a", node.input(0)); } else if (node.name() == "f") { found++; EXPECT_EQ("Prod", node.op()); EXPECT_EQ("c", node.input(0)); } } EXPECT_EQ(2, found); auto tensors_actual = EvaluateNodes(output, item.fetch); EXPECT_NEAR(tensors_expected[0].scalar<int>()(), tensors_actual[0].scalar<int>()(), 0); EXPECT_NEAR(tensors_expected[1].scalar<int>()(), tensors_actual[1].scalar<int>()(), 0); } TEST_F(ShapeOptimizerTest, OptimizeShapeProductMissingKernel) { { std::vector<std::unique_ptr<Device>> devices; SessionOptions session_options; session_options.config.mutable_gpu_options() ->set_per_process_gpu_memory_fraction(0.1); session_options.env = Env::Default(); TF_CHECK_OK(DeviceFactory::GetFactory(DEVICE_GPU) ->AddDevices(session_options, "", &devices)); bool found_gpu = false; for (const auto& d : devices) { if (d->device_type() == DEVICE_GPU) { found_gpu = true; break; } } if (!found_gpu) { LOG(INFO) << "Skipping test that requires GPU."; return; } } tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/cpu:0"); Output a = ops::Const(s.WithOpName("a"), string("Hello"), {32, 16}); Output c = ops::Shape(s.WithOpName("c"), a); Output d = ops::Const(s.WithOpName("d"), 0, {1}); ops::ReduceProd::Attrs attrs; Output e = ops::ReduceProd(s.WithDevice("/gpu:0").WithOpName("e"), c, d, attrs.KeepDims(false)); GrapplerItem item; item.fetch = {"e"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; ShapeOptimizer optimizer; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "e") { found++; EXPECT_EQ("Size", node.op()); EXPECT_EQ("a", node.input(0)); EXPECT_EQ("/cpu:0", node.device()); } } EXPECT_EQ(1, found); auto tensors_actual = EvaluateNodes(output, item.fetch); EXPECT_NEAR(tensors_expected[0].scalar<int>()(), tensors_actual[0].scalar<int>()(), 0); } TEST_F(ShapeOptimizerTest, OptimizeShapeRatio) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 3.14f, {32, 32}); Output b = ops::Const(s.WithOpName("b"), 3.14f, {32, 16}); Output c = ops::Size(s.WithOpName("c"), a); Output d = ops::Size(s.WithOpName("d"), b); Output e = ops::Div(s.WithOpName("e"), c, d); GrapplerItem item; item.fetch = {"e"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; ShapeOptimizer optimizer; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "e") { found++; EXPECT_EQ("Const", node.op()); } } EXPECT_EQ(1, found); auto tensors_actual = EvaluateNodes(output, item.fetch); EXPECT_NEAR(tensors_expected[0].scalar<int>()(), tensors_actual[0].scalar<int>()(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/shape_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/shape_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
761b914e-0551-49f0-83ab-8e512d88d3fe
cpp
tensorflow/tensorflow
tfg_optimizer_hook
tensorflow/core/grappler/optimizers/tfg_optimizer_hook.cc
tensorflow/core/grappler/optimizers/tfg_optimizer_hook_test.cc
#include "tensorflow/core/grappler/optimizers/tfg_optimizer_hook.h" #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "llvm/Support/ThreadPool.h" #include "llvm/Support/Threading.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Pass/PassManager.h" #include "mlir/Pass/PassRegistry.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/ir/importexport/graphdef_export.h" #include "tensorflow/core/ir/importexport/graphdef_import.h" #include "tensorflow/core/ir/tf_op_registry.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/dump_graph.h" using tensorflow::Status; using tensorflow::errors::InvalidArgument; namespace mlir { namespace tfg { class TFGGrapplerOptimizer::Impl { public: explicit Impl(TFGPassPipelineBuilder builder, unsigned num_tfg_threads) : ctx_(MLIRContext::Threading::DISABLED), mgr_(&ctx_) { DialectRegistry registry; registry.addExtension(+[](MLIRContext* ctx, TFGraphDialect* dialect) { dialect->addInterfaces<TensorFlowOpRegistryInterface>(); }); ctx_.appendDialectRegistry(registry); builder(mgr_); if (num_tfg_threads) { llvm::ThreadPoolStrategy strategy; strategy.ThreadsRequested = num_tfg_threads; threadpool_ = std::make_unique<llvm::DefaultThreadPool>(strategy); ctx_.setThreadPool(*threadpool_); } } LogicalResult RunPipeline(ModuleOp module) { return mgr_.run(module); } MLIRContext* GetContext() { return &ctx_; } std::string GetPipelineString() { std::string pipeline; llvm::raw_string_ostream os(pipeline); mgr_.printAsTextualPipeline(os); return os.str(); } private: std::unique_ptr<llvm::DefaultThreadPool> threadpool_; MLIRContext ctx_; PassManager mgr_; }; TFGGrapplerOptimizer::TFGGrapplerOptimizer(TFGPassPipelineBuilder builder, unsigned num_tfg_threads) : impl_(std::make_unique<Impl>(std::move(builder), num_tfg_threads)) {} TFGGrapplerOptimizer::~TFGGrapplerOptimizer() = default; std::string TFGGrapplerOptimizer::name() const { return absl::StrCat("tfg_optimizer{", impl_->GetPipelineString(), "}"); } Status TFGGrapplerOptimizer::Optimize( tensorflow::grappler::Cluster* cluster, const tensorflow::grappler::GrapplerItem& item, tensorflow::GraphDef* optimized_graph) { if (VLOG_IS_ON(4)) { tensorflow::DumpGraphDefToFile( absl::StrCat("tfg_before_graph_", item.id, "_", std::hash<std::string>()(name())), item.graph); } VLOG(5) << "TFG Before Graph: \n" << item.graph.DebugString(); tensorflow::GraphDebugInfo debug_info; tensorflow::metrics::ScopedCounter<2> metrics( tensorflow::metrics::GetGraphOptimizationCounter(), {"TfgOptimizer", "convert_graphdef_to_tfg"}); auto error_or_module = ImportGraphDef(impl_->GetContext(), debug_info, item.graph); if (!error_or_module.ok()) { auto status = error_or_module.status(); tensorflow::errors::AppendToMessage( &status, "when importing GraphDef to MLIR module in GrapplerHook"); LOG(ERROR) << name() << " failed: " << status.ToString(); return absl::AbortedError(status.message()); } metrics.ReportAndStop(); ModuleOp module = (*error_or_module).get(); if (failed(impl_->RunPipeline(module))) { return absl::InvalidArgumentError("MLIR Graph Optimizer failed: "); } tensorflow::GraphDef graphdef; metrics.Reset({"TfgOptimizer", "convert_tfg_to_graphdef"}); TF_RETURN_WITH_CONTEXT_IF_ERROR( ConvertToGraphDef(module, &graphdef), "when exporting MLIR module to GraphDef in GrapplerHook"); (void)graphdef.mutable_library(); metrics.ReportAndStop(); *optimized_graph = std::move(graphdef); if (VLOG_IS_ON(4)) { tensorflow::DumpGraphDefToFile( absl::StrCat("tfg_after_graph_", item.id, "_", std::hash<std::string>()(name())), *optimized_graph); } if (VLOG_IS_ON(5)) { VLOG(5) << "TFG After Graph: \n" << optimized_graph->DebugString() << "\nMLIR module: \n"; module.dump(); } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/tfg_optimizer_hook.h" #include <utility> #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassManager.h" #include "mlir/Pass/PassRegistry.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/graph_optimizer.h" #include "tensorflow/core/grappler/optimizers/meta_optimizer.h" #include "tensorflow/core/ir/ops.h" #include "tensorflow/core/ir/tf_op_wrapper.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace tfg { namespace { class TestPass : public PassWrapper<TestPass, OperationPass<GraphOp>> { public: MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPass); StringRef getArgument() const override { return "grappler-hook-test-pass"; } void runOnOperation() override { GraphOp graph = getOperation(); for (TFOp op : graph.getOps()) op.setName(op.name() + "_visited"); } }; class AlwaysFailPass : public PassWrapper<AlwaysFailPass, OperationPass<GraphOp>> { public: MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(AlwaysFailPass); StringRef getArgument() const override { return "grappler-hook-fail-pass"; } void runOnOperation() override { signalPassFailure(); } }; } } } namespace tensorflow { namespace grappler { namespace { TEST(TFGOptimizerTest, TestCustomPipeline) { Scope s = Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Const(s.WithOpName("b"), 1.0f, {10, 10}); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); EXPECT_EQ("a", item.graph.node(0).name()); EXPECT_EQ("b", item.graph.node(1).name()); mlir::tfg::TFGGrapplerOptimizer optimizer([](mlir::PassManager &mgr) { mgr.addNestedPass<mlir::tfg::GraphOp>( std::make_unique<mlir::tfg::TestPass>()); }); GraphDef output; const Status status = optimizer.Optimize(nullptr, item, &output); TF_ASSERT_OK(status); EXPECT_EQ("a_visited", output.node(0).name()); EXPECT_EQ("b_visited", output.node(1).name()); } TEST(TFGOptimizerTest, TestCustomPipelineName) { mlir::tfg::TFGGrapplerOptimizer optimizer([](mlir::PassManager &mgr) { mgr.addNestedPass<mlir::tfg::GraphOp>( std::make_unique<mlir::tfg::TestPass>()); }); EXPECT_EQ(optimizer.name(), "tfg_optimizer{any(tfg.graph(grappler-hook-test-pass))}"); } TEST(TFGOptimizerTest, TestImportErrorReturnsAborted) { Scope s = Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); AttrValue attr; attr.set_i(0); item.graph.mutable_node(0)->mutable_attr()->insert({"", std::move(attr)}); mlir::tfg::TFGGrapplerOptimizer optimizer([](mlir::PassManager &mgr) {}); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); EXPECT_FALSE(status.ok()); EXPECT_TRUE(errors::IsAborted(status)); } TEST(TFGOptimizerTest, TestPassErrorIsFatal) { Scope s = Scope::NewRootScope(); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); mlir::tfg::TFGGrapplerOptimizer optimizer([](mlir::PassManager &mgr) { mgr.addNestedPass<mlir::tfg::GraphOp>( std::make_unique<mlir::tfg::AlwaysFailPass>()); }); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); EXPECT_FALSE(status.ok()); EXPECT_FALSE(errors::IsAborted(status)); EXPECT_TRUE(errors::IsInvalidArgument(status)); } TEST(TFGOptimizerTest, TestImportErrorMetaOptimizerIsNotFatal) { Scope s = Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); AttrValue attr; attr.set_i(0); item.graph.mutable_node(0)->mutable_attr()->insert({"", std::move(attr)}); std::vector<std::unique_ptr<GraphOptimizer>> optimizers; optimizers.push_back(std::make_unique<mlir::tfg::TFGGrapplerOptimizer>( [](mlir::PassManager &mgr) {})); GraphDef output; Status status = RunMetaOptimizer(std::move(item), {}, nullptr, nullptr, &output); TF_EXPECT_OK(status); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/tfg_optimizer_hook.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/tfg_optimizer_hook_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
98f4b3b6-d6bd-46a5-be18-068ea7853607
cpp
tensorflow/tensorflow
function_api_info
tensorflow/core/grappler/optimizers/function_api_info.cc
tensorflow/core/grappler/optimizers/function_api_info_test.cc
#include "tensorflow/core/grappler/optimizers/function_api_info.h" #include <string> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { namespace grappler { FunctionApiInfo::FunctionApiInfo() {} FunctionApiInfo::~FunctionApiInfo() {} Status FunctionApiInfo::Init(const FunctionDef& function_def) { function_type_ = FunctionApiInfo::FunctionType::INFERENCE; for (const auto& attr : function_def.attr()) { if (attr.first == "api_preferred_device") { preferred_device_ = attr.second.s(); } if (attr.first == "api_implements") { interface_name_ = attr.second.s(); } if (attr.first == "forward_function_name") { function_type_ = FunctionApiInfo::FunctionType::BACKWARD; pairing_function_name_ = attr.second.s(); } if (attr.first == "backward_function_name") { function_type_ = FunctionApiInfo::FunctionType::FORWARD; pairing_function_name_ = attr.second.s(); } } input_arg_dtypes_.reserve(function_def.signature().input_arg_size()); for (const auto& input_arg : function_def.signature().input_arg()) { input_arg_dtypes_.emplace_back(input_arg.type()); } output_arg_dtypes_.reserve(function_def.signature().output_arg_size()); for (const auto& output_arg : function_def.signature().output_arg()) { output_arg_dtypes_.emplace_back(output_arg.type()); } if (interface_name_.empty() && !preferred_device_.empty()) { return errors::InvalidArgument( "Function '", function_def.signature().name(), "' has a preferred device, but does not implement an interface"); } return absl::OkStatus(); } const string& FunctionApiInfo::preferred_device() const { return preferred_device_; } const string& FunctionApiInfo::interface_name() const { return interface_name_; } const FunctionApiInfo::FunctionType FunctionApiInfo::function_type() const { return function_type_; } const string& FunctionApiInfo::pairing_function_name() const { return pairing_function_name_; } const DataTypeVector& FunctionApiInfo::input_arg_dtypes() const { return input_arg_dtypes_; } const DataTypeVector& FunctionApiInfo::output_arg_dtypes() const { return output_arg_dtypes_; } FunctionLibraryApiInfo::FunctionLibraryApiInfo() {} FunctionLibraryApiInfo::~FunctionLibraryApiInfo() {} namespace { bool IsSameArgDef(const OpDef::ArgDef& arg1, const OpDef::ArgDef& arg2) { if (arg1.type() != arg2.type()) return false; if (arg1.type_attr() != arg2.type_attr()) return false; if (arg1.number_attr() != arg2.number_attr()) return false; if (arg1.type_list_attr() != arg2.type_list_attr()) return false; if (arg1.is_ref() != arg2.is_ref()) return false; return true; } bool IsSameSignature(const FunctionDef& f1, const FunctionDef& f2, const bool check_inputs, const bool check_outputs) { const auto& sig1 = f1.signature(); const auto& sig2 = f2.signature(); if (check_inputs) { if (sig1.input_arg_size() != sig2.input_arg_size()) return false; for (int k = 0; k < sig1.input_arg_size(); ++k) { if (!IsSameArgDef(sig1.input_arg(k), sig2.input_arg(k))) return false; } } if (check_outputs) { if (f1.ret().size() != f2.ret().size()) return false; if (sig1.output_arg_size() != sig2.output_arg_size()) return false; for (int k = 0; k < sig1.output_arg_size(); ++k) { if (!IsSameArgDef(sig1.output_arg(k), sig2.output_arg(k))) return false; } } return true; } Status ValidateSignature(const string& interface_name, const std::vector<const FunctionDef*>& equiv_funcs, const FunctionApiInfo::FunctionType function_type) { if (equiv_funcs.size() < 2) return absl::OkStatus(); for (size_t k = 1; k < equiv_funcs.size(); ++k) { const bool check_input = (function_type == FunctionApiInfo::FunctionType::INFERENCE || function_type == FunctionApiInfo::FunctionType::FORWARD); const bool check_output = (function_type == FunctionApiInfo::FunctionType::INFERENCE || function_type == FunctionApiInfo::FunctionType::BACKWARD); if (!IsSameSignature(*equiv_funcs[0], *equiv_funcs[k], check_input, check_output)) { return errors::InvalidArgument( "Functions '", equiv_funcs[0]->signature().name(), "' and '", equiv_funcs[k]->signature().name(), "' both implement '", interface_name, "' but their signatures do not match."); } } return absl::OkStatus(); } Status ValidateSignatures( const std::unordered_map<string, std::vector<const FunctionDef*>>& intf_to_func, const FunctionApiInfo::FunctionType function_type) { for (const auto& item : intf_to_func) TF_RETURN_IF_ERROR( ValidateSignature(item.first, item.second, function_type)); return absl::OkStatus(); } } Status FunctionLibraryApiInfo::Init( const FunctionDefLibrary& function_library) { std::unordered_map<string, std::vector<const FunctionDef*>> infer_funcs; std::unordered_map<string, std::vector<const FunctionDef*>> fwd_funcs; std::unordered_map<string, std::vector<const FunctionDef*>> bwd_funcs; for (const auto& function : function_library.function()) { std::unique_ptr<FunctionApiInfo> func_info(new FunctionApiInfo); TF_RETURN_IF_ERROR(func_info->Init(function)); if (func_info->interface_name().empty()) continue; const string& function_name = function.signature().name(); const string& interface_name = func_info->interface_name(); VLOG(3) << "Got " << func_info->function_type() << " function: " << function_name << " with interface: " << interface_name; switch (func_info->function_type()) { case FunctionApiInfo::FunctionType::INFERENCE: intf_to_inference_funcs_[interface_name].emplace_back(function_name); infer_funcs[interface_name].emplace_back(&function); break; case FunctionApiInfo::FunctionType::FORWARD: intf_to_forward_funcs_[interface_name].emplace_back(function_name); fwd_funcs[interface_name].emplace_back(&function); break; case FunctionApiInfo::FunctionType::BACKWARD: intf_to_backward_funcs_[interface_name].emplace_back(function_name); bwd_funcs[interface_name].emplace_back(&function); break; default: return errors::InvalidArgument("Unrecognized function type: ", func_info->function_type()); } func_info_[function_name] = std::move(func_info); } TF_RETURN_IF_ERROR(ValidateSignatures( infer_funcs, FunctionApiInfo::FunctionType::INFERENCE)); TF_RETURN_IF_ERROR( ValidateSignatures(fwd_funcs, FunctionApiInfo::FunctionType::FORWARD)); TF_RETURN_IF_ERROR( ValidateSignatures(bwd_funcs, FunctionApiInfo::FunctionType::BACKWARD)); return absl::OkStatus(); } Status FunctionLibraryApiInfo::GetEquivalentImplementations( const string& function_name, std::vector<string>* other_functions) const { const auto func_it = func_info_.find(function_name); if (func_it == func_info_.end()) return absl::OkStatus(); const FunctionApiInfo* func_info = func_it->second.get(); absl::flat_hash_map<string, std::vector<string>>::const_iterator it; switch (func_info->function_type()) { case FunctionApiInfo::FunctionType::INFERENCE: it = intf_to_inference_funcs_.find(func_info->interface_name()); break; case FunctionApiInfo::FunctionType::FORWARD: it = intf_to_forward_funcs_.find(func_info->interface_name()); break; case FunctionApiInfo::FunctionType::BACKWARD: it = intf_to_backward_funcs_.find(func_info->interface_name()); break; default: return errors::InvalidArgument("Unrecognized function type: ", func_info->function_type()); } for (const auto& func_name : it->second) { if (func_name == function_name) continue; other_functions->emplace_back(func_name); } return absl::OkStatus(); } const FunctionApiInfo* FunctionLibraryApiInfo::GetApiInfo( const string& function_name) const { const auto it = func_info_.find(function_name); if (it == func_info_.end()) return nullptr; return it->second.get(); } } }
#include "tensorflow/core/grappler/optimizers/function_api_info.h" #include <string> #include <unordered_set> #include <vector> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { void SetArg(const string& name, const string& type_name, OpDef::ArgDef* arg_def) { arg_def->set_name(name); arg_def->set_type_attr(type_name); } typedef std::pair<string, string> ArgSpec; void SetArgs(const std::vector<ArgSpec>& input_args_spec, const std::vector<ArgSpec>& output_args_spec, OpDef* sig) { for (const auto& arg_spec : input_args_spec) SetArg(arg_spec.first, arg_spec.second, sig->add_input_arg()); for (const auto& arg_spec : output_args_spec) SetArg(arg_spec.first, arg_spec.second, sig->add_output_arg()); } void PopulateFunction(const string& name, const string& api_interface_name, const string& preferred_device, const std::vector<ArgSpec>& input_args, const std::vector<ArgSpec>& output_args, const string& forward_function_name, const string& backward_function_name, FunctionDef* func_def) { OpDef* sig = func_def->mutable_signature(); sig->set_name(name); SetArgs(input_args, output_args, sig); auto* func_attr = func_def->mutable_attr(); if (!api_interface_name.empty()) (*func_attr)["api_implements"].set_s(api_interface_name); if (!preferred_device.empty()) (*func_attr)["api_preferred_device"].set_s(preferred_device); if (!forward_function_name.empty()) (*func_attr)["forward_function_name"].set_s(forward_function_name); if (!backward_function_name.empty()) (*func_attr)["backward_function_name"].set_s(backward_function_name); } void PopulateSampleLibrary(const bool mismatch_args, FunctionDefLibrary* func_lib) { const std::vector<ArgSpec> func_args{{"in1", "float32"}, {"in2", "int32"}}; const std::vector<ArgSpec> func_wrong_args{{"in1", "int32"}, {"in2", "int32"}}; const std::vector<ArgSpec> output_args{{"out", "float32"}}; PopulateFunction("DoStuffCpu", "DoStuff", "CPU", func_args, output_args, "", "", func_lib->add_function()); PopulateFunction("DoStuffGpu", "DoStuff", "GPU", mismatch_args ? func_wrong_args : func_args, output_args, "", "", func_lib->add_function()); PopulateFunction("DoThings", "DoThings", "", func_args, output_args, "", "", func_lib->add_function()); PopulateFunction("OneOff", "", "", func_args, output_args, "", "", func_lib->add_function()); PopulateFunction("AnotherOneOff", "", "", func_args, output_args, "", "", func_lib->add_function()); } void PopulateComplexLibrary(FunctionDefLibrary* func_lib) { const std::vector<ArgSpec> input_args{{"in1", "float32"}, {"in2", "int32"}}; const std::vector<ArgSpec> output_args{{"out", "float32"}}; const std::vector<ArgSpec> output_with_state{ {"out", "float32"}, {"state1", "int32"}, {"state2", "int32"}}; PopulateFunction("DoStuffCpu", "DoStuff", "CPU", input_args, output_args, "", "DoStuffCpu_gradient", func_lib->add_function()); PopulateFunction("DoStuffCpu_gradient", "DoStuff", "CPU", output_args, input_args, "DoStuffCpu", "", func_lib->add_function()); PopulateFunction("DoStuffGpu", "DoStuff", "GPU", input_args, output_with_state, "", "DoStuffGpu_gradient", func_lib->add_function()); PopulateFunction("DoStuffGpu_gradient", "DoStuff", "GPU", output_with_state, input_args, "DoStuffGpu", "", func_lib->add_function()); } bool CheckEquivImpl(const FunctionLibraryApiInfo& lib_api_info, const string& func_name, const std::vector<string>& expected_other) { std::vector<string> other_impl; Status status = lib_api_info.GetEquivalentImplementations(func_name, &other_impl); EXPECT_EQ(status, absl::OkStatus()); const std::unordered_set<string> actual(other_impl.begin(), other_impl.end()); const std::unordered_set<string> expected(expected_other.begin(), expected_other.end()); return actual == expected; } string GetInterfaceName(const FunctionLibraryApiInfo& lib_api_info, const string& func_name) { auto* info = lib_api_info.GetApiInfo(func_name); CHECK_NOTNULL(info); return info->interface_name(); } string GetPreferredDevice(const FunctionLibraryApiInfo& lib_api_info, const string& func_name) { auto* info = lib_api_info.GetApiInfo(func_name); CHECK_NOTNULL(info); return info->preferred_device(); } TEST(FunctionApiInfoTest, ParseTags) { FunctionDefLibrary func_lib; PopulateSampleLibrary( false, &func_lib); FunctionLibraryApiInfo lib_api_info; TF_ASSERT_OK(lib_api_info.Init(func_lib)); EXPECT_EQ("DoStuff", GetInterfaceName(lib_api_info, "DoStuffCpu")); EXPECT_EQ("DoStuff", GetInterfaceName(lib_api_info, "DoStuffGpu")); EXPECT_EQ("DoThings", GetInterfaceName(lib_api_info, "DoThings")); EXPECT_EQ("CPU", GetPreferredDevice(lib_api_info, "DoStuffCpu")); EXPECT_EQ("GPU", GetPreferredDevice(lib_api_info, "DoStuffGpu")); EXPECT_EQ("", GetPreferredDevice(lib_api_info, "DoThings")); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "DoStuffCpu", {"DoStuffGpu"})); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "DoStuffGpu", {"DoStuffCpu"})); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "Undefined", {})); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "OneOff", {})); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "AnotherOneOff", {})); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "DoThings", {})); } TEST(FunctionApiInfoTest, ComplexFunctionLib) { FunctionDefLibrary func_lib; PopulateComplexLibrary(&func_lib); FunctionLibraryApiInfo lib_api_info; TF_ASSERT_OK(lib_api_info.Init(func_lib)); EXPECT_EQ("DoStuff", GetInterfaceName(lib_api_info, "DoStuffCpu")); EXPECT_EQ("DoStuff", GetInterfaceName(lib_api_info, "DoStuffCpu_gradient")); EXPECT_EQ("DoStuff", GetInterfaceName(lib_api_info, "DoStuffGpu")); EXPECT_EQ("DoStuff", GetInterfaceName(lib_api_info, "DoStuffGpu_gradient")); EXPECT_EQ("CPU", GetPreferredDevice(lib_api_info, "DoStuffCpu")); EXPECT_EQ("CPU", GetPreferredDevice(lib_api_info, "DoStuffCpu_gradient")); EXPECT_EQ("GPU", GetPreferredDevice(lib_api_info, "DoStuffGpu")); EXPECT_EQ("GPU", GetPreferredDevice(lib_api_info, "DoStuffGpu_gradient")); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "DoStuffCpu", {"DoStuffGpu"})); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "DoStuffGpu", {"DoStuffCpu"})); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "DoStuffCpu_gradient", {"DoStuffGpu_gradient"})); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "DoStuffGpu_gradient", {"DoStuffCpu_gradient"})); EXPECT_TRUE(CheckEquivImpl(lib_api_info, "Undefined", {})); } TEST(FunctionApiInfoTest, MismatchedArguments) { FunctionDefLibrary func_lib; PopulateSampleLibrary( true, &func_lib); FunctionLibraryApiInfo lib_api_info; const Status ret = lib_api_info.Init(func_lib); EXPECT_FALSE(ret.ok()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/function_api_info.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/function_api_info_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7fbb648b-bae7-4997-9456-1c16ed08c53c
cpp
tensorflow/tensorflow
dependency_optimizer
tensorflow/core/grappler/optimizers/dependency_optimizer.cc
tensorflow/core/grappler/optimizers/dependency_optimizer_test.cc
#include "tensorflow/core/grappler/optimizers/dependency_optimizer.h" #include <unordered_set> #include "absl/container/flat_hash_map.h" #include "absl/strings/match.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/constant_folding.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace grappler { namespace { bool RemoveControlInput(NodeDef* node, const string& control_input_to_remove, NodeMap* node_map) { for (int pos = node->input_size() - 1; pos >= 0; --pos) { const string& input = node->input(pos); if (input[0] != '^') break; if (input == control_input_to_remove) { node->mutable_input()->SwapElements(pos, node->input_size() - 1); node->mutable_input()->RemoveLast(); node_map->RemoveOutput(NodeName(input), node->name()); return true; } } return false; } } bool DependencyOptimizer::SafeToRemoveIdentity(const NodeDef& node) const { if (!IsIdentity(node) && !IsIdentityN(node)) { return true; } if (nodes_to_preserve_.find(node.name()) != nodes_to_preserve_.end()) { return false; } if (!fetch_nodes_known_) { return false; } if (node.input_size() < 1) { return false; } const NodeDef* input = node_map_->GetNode(NodeName(node.input(0))); if (input == nullptr) { VLOG(1) << "node = " << node.name() << " input = " << node.input(0); return false; } if (IsVariable(*input) || IsRecv(*input)) { return false; } for (const auto& consumer : node_map_->GetOutputs(node.name())) { if (node.input_size() > 1 && (IsRetval(*consumer) || IsMerge(*consumer))) { return false; } if (IsSwitch(*input)) { for (const string& consumer_input : consumer->input()) { if (consumer_input == AsControlDependency(node.name())) { return false; } } } } return true; } bool DependencyOptimizer::SafeToConvertToNoOp(const NodeDef& node) const { if (HasRegularOutputs(node, *node_map_)) { VLOG(3) << "Not safe to convert '" << node.name() << " to NoOp. Node has outputs."; return false; } if (!fetch_nodes_known_) { VLOG(3) << "Not safe to convert '" << node.name() << " to NoOp. Fetches unknown."; return false; } if (nodes_to_preserve_.find(node.name()) != nodes_to_preserve_.end()) { VLOG(3) << "Not safe to convert to NoOp: " << node.name() << " is in preserve set."; return false; } if (IsMerge(node) || IsSwitch(node) || ModifiesFrameInfo(node)) { VLOG(3) << "Not safe to convert '" << node.name() << " to NoOp. Node modifies frame info."; return false; } static const absl::flat_hash_set<string>* gather_ops = new absl::flat_hash_set<string>{"Gather", "GatherV2", "GatherNd", "ResourceGather", "ResourceGatherNd"}; const bool is_variable_read = IsReadVariableOp(node) || IsReadVariablesOp(node) || gather_ops->find(node.op()) != gather_ops->end(); if (!is_variable_read && !IsFreeOfSideEffect(node)) { VLOG(3) << "Not safe to convert '" << node.name() << " to NoOp. Node has side effect."; return false; } if (absl::StartsWith(node.op(), "Submodel")) { return false; } const OpDef* op_def = nullptr; Status status = OpRegistry::Global()->LookUpOpDef(node.op(), &op_def); if (!status.ok() || op_def->output_arg_size() == 0) { return false; } const std::unordered_set<string> do_not_rewrite_ops{ "Assert", "CheckNumerics", "_Retval", "_Arg", "_ParallelConcatUpdate", "TPUExecute", "TPUCompile", "ControlTrigger"}; if (do_not_rewrite_ops.find(node.op()) != do_not_rewrite_ops.end()) { return false; } if (!SafeToRemoveIdentity(node)) { return false; } return true; } int DependencyOptimizer::NumEdgesIfBypassed( const NodeDef& node, const std::vector<NodeDef*>& output_nodes) const { const bool is_multi_input_identity_n = IsIdentityN(node) && !IsIdentityNSingleInput(node); const int num_outputs = output_nodes.size(); const int num_inputs = node.input_size(); if (is_multi_input_identity_n) { int num_edges_if_bypassed(0); for (const string& input_node_name : node.input()) { if (IsControlInput(input_node_name)) { num_edges_if_bypassed += num_outputs; } else { ++num_edges_if_bypassed; } } for (auto consumer : output_nodes) { for (int j = 0; j < consumer->input_size(); ++j) { const TensorId consumer_input = ParseTensorName(consumer->input(j)); if (consumer_input.node() == node.name()) { if (IsControlInput(consumer_input)) { num_edges_if_bypassed += num_inputs; } else { ++num_edges_if_bypassed; } } } } return num_edges_if_bypassed; } else { return num_inputs * num_outputs; } } bool DependencyOptimizer::BypassingNodeIsBeneficial( const NodeDef& node, const std::vector<NodeDef*>& input_nodes, const std::vector<NodeDef*>& output_nodes) const { const bool is_identity = IsIdentity(node) || IsIdentityNSingleInput(node); const bool is_multi_input_identity_n = IsIdentityN(node) && !IsIdentityNSingleInput(node); const int num_outputs = output_nodes.size(); const int num_inputs = node.input_size(); if (NumEdgesIfBypassed(node, output_nodes) > num_inputs + num_outputs) { return false; } if ((num_inputs == 1 && num_outputs > 1 && input_nodes[0]->device() != node.device()) || (num_inputs > 1 && num_outputs == 1 && output_nodes[0]->device() != node.device())) { return false; } const string& node_dev = node.device(); int num_cross_in = 0; for (NodeDef* input_node : input_nodes) { num_cross_in += static_cast<int>(input_node->device() != node_dev); } int num_cross_out = 0; for (NodeDef* output_node : output_nodes) { num_cross_out += static_cast<int>(output_node->device() != node_dev); } const int num_cross_before = num_cross_in + num_cross_out; int num_cross_after = 0; for (NodeDef* input_node : input_nodes) { for (NodeDef* output_node : output_nodes) { num_cross_after += static_cast<int>(input_node->device() != output_node->device()); } } if (num_cross_after > num_cross_before) { return false; } if ((is_identity || is_multi_input_identity_n) && num_cross_in > 0 && num_cross_out > 0 && num_cross_after > 0) { return false; } return true; } void DependencyOptimizer::OptimizeNode(int node_idx, SetVector<int>* nodes_to_simplify, std::set<int>* nodes_to_delete) { NodeDef* node = optimized_graph_->mutable_node(node_idx); const bool is_noop = IsNoOp(*node); const bool is_identity = IsIdentity(*node) || IsIdentityNSingleInput(*node); const bool is_multi_input_identity = IsIdentityN(*node) && !IsIdentityNSingleInput(*node); const string node_name = node->name(); if (IsConstant(*node) && node->input_size() == 0) { const auto output_nodes = node_map_->GetOutputs(node_name); for (NodeDef* fanout : output_nodes) { bool optimize_fanout = false; bool data_connection = false; for (int i = fanout->input_size() - 1; i >= 0; --i) { const TensorId input_tensor = ParseTensorName(fanout->input(i)); if (input_tensor.node() == node_name) { if (input_tensor.index() < 0) { fanout->mutable_input()->SwapElements(i, fanout->input_size() - 1); fanout->mutable_input()->RemoveLast(); optimize_fanout = true; } else { data_connection = true; } } } if (optimize_fanout) { nodes_to_simplify->PushBack(node_to_idx_[fanout]); if (!data_connection) { node_map_->RemoveOutput(node_name, fanout->name()); } } } if (node_map_->GetOutputs(node_name).empty() && fetch_nodes_known_ && nodes_to_preserve_.find(node_name) == nodes_to_preserve_.end()) { nodes_to_delete->insert(node_to_idx_[node]); } return; } if (!is_noop && SafeToConvertToNoOp(*node)) { VLOG(2) << "***** Replacing " << node_name << " (" << node->op() << ") with NoOp."; std::unordered_set<string> ctrl_inputs; int pos = 0; while (pos < node->input_size()) { const string old_input = node->input(pos); if (IsControlInput(old_input)) { if (!ctrl_inputs.insert(old_input).second) { node->mutable_input()->SwapElements(pos, node->input_size() - 1); node->mutable_input()->RemoveLast(); } else { ++pos; } continue; } const string ctrl_input = ConstantFolding::AddControlDependency( old_input, optimized_graph_, node_map_.get()); ctrl_inputs.insert(ctrl_input); node->set_input(pos, ctrl_input); node_map_->UpdateInput(node_name, old_input, ctrl_input); const NodeDef* old_input_node = node_map_->GetNode(old_input); nodes_to_simplify->PushBack(node_to_idx_[old_input_node]); ++pos; } ChangeToNoOp(node); EraseRegularNodeAttributes(node); DedupControlInputs(node); nodes_to_simplify->PushBack(node_to_idx_[node]); return; } if (is_noop || ((is_identity || is_multi_input_identity) && SafeToRemoveIdentity(*node))) { const int num_inputs = node->input_size(); std::vector<NodeDef*> input_nodes; for (int i = 0; i < num_inputs; ++i) { NodeDef* input_node = node_map_->GetNode(node->input(i)); if (input_node == nullptr) { LOG(ERROR) << "Invalid input " << node->input(i); return; } input_nodes.push_back(input_node); } const auto& output_node_set = node_map_->GetOutputs(node_name); const std::vector<NodeDef*> output_nodes(output_node_set.begin(), output_node_set.end()); if (!BypassingNodeIsBeneficial(*node, input_nodes, output_nodes)) { return; } VLOG(2) << "***** Rerouting input around\n" << node->DebugString(); for (auto consumer : output_nodes) { bool updated_consumer = false; VLOG(2) << "consumer before:\n" << consumer->DebugString(); for (int i = 0; i < num_inputs; ++i) { const NodeDef* input = input_nodes[i]; if ((is_identity && i == 0) || (is_multi_input_identity && !IsControlInput(node->input(i)))) { string new_input; const string& input_to_forward = node->input(i); CHECK(!IsControlInput(input_to_forward)); for (int j = 0; j < consumer->input_size(); ++j) { const TensorId old_input = ParseTensorName(consumer->input(j)); if (old_input.node() == node_name) { if (old_input.index() == i) { new_input = input_to_forward; node_map_->UpdateInput(consumer->name(), string(old_input.node()), new_input); consumer->set_input(j, new_input); } else if (old_input.index() == -1) { new_input = AsControlDependency(NodeName(input_to_forward)); node_map_->UpdateInput(consumer->name(), string(old_input.node()), new_input); consumer->set_input(j, new_input); } } } updated_consumer = true; } else { if (node_map_->GetOutputs(input->name()).count(consumer) == 0) { consumer->add_input(AsControlDependency(input->name())); node_map_->AddOutput(input->name(), consumer->name()); nodes_to_simplify->PushBack(node_to_idx_[input]); updated_consumer = true; } } } updated_consumer |= RemoveControlInput( consumer, AsControlDependency(node_name), node_map_.get()); if (updated_consumer) { nodes_to_simplify->PushBack(node_to_idx_[consumer]); } VLOG(2) << "consumer after:\n" << consumer->DebugString(); } node_map_->RemoveOutputs(node_name); if (fetch_nodes_known_ && nodes_to_preserve_.find(node_name) == nodes_to_preserve_.end()) { nodes_to_delete->insert(node_idx); node_map_->RemoveInputs(node_name); node->clear_input(); } } } void DependencyOptimizer::CleanControlInputs() { for (int i = 0; i < optimized_graph_->node_size(); ++i) { DedupControlInputs(optimized_graph_->mutable_node(i)); } } Status DependencyOptimizer::OptimizeDependencies() { SetVector<int> nodes_to_simplify; std::set<int> nodes_to_delete; for (int i = 0; i < optimized_graph_->node_size(); ++i) { const NodeDef& node = optimized_graph_->node(i); if (IsNoOp(node) || IsIdentity(node) || IsIdentityN(node) || IsConstant(node) || SafeToConvertToNoOp(node)) { nodes_to_simplify.PushBack(i); } } while (!nodes_to_simplify.Empty()) { int node_to_simplify = nodes_to_simplify.PopBack(); while (nodes_to_delete.find(node_to_simplify) != nodes_to_delete.end()) { node_to_simplify = nodes_to_simplify.PopBack(); } OptimizeNode(node_to_simplify, &nodes_to_simplify, &nodes_to_delete); } if (fetch_nodes_known_) { VLOG(1) << "Deleted " << nodes_to_delete.size() << " out of " << optimized_graph_->node_size() << " nodes."; EraseNodesFromGraph(nodes_to_delete, optimized_graph_); node_map_.reset(new NodeMap(optimized_graph_)); BuildNodeToIdx(); } return absl::OkStatus(); } namespace { enum DistanceFromSource : uint8 { ZERO = 0, ONE = 1, TWO_OR_GREATER = 2 }; void LongestPathsLowerBounds( int source, const std::pair<int, int>& target_range, const std::vector<std::vector<int>>& outputs, std::vector<DistanceFromSource>* longest_distance) { std::deque<int> queue; queue.emplace_front(source); while (!queue.empty()) { int node = queue.front(); queue.pop_front(); for (int fanout : outputs[node]) { if (fanout >= target_range.first && fanout <= target_range.second && (*longest_distance)[fanout] != TWO_OR_GREATER) { (*longest_distance)[fanout] = (*longest_distance)[fanout] == ZERO ? ONE : TWO_OR_GREATER; queue.emplace_front(fanout); } } } } } Status DependencyOptimizer::TransitiveReduction() { const int num_nodes = optimized_graph_->node_size(); int num_controls = 0; std::vector<std::vector<int>> outputs(num_nodes); std::vector<absl::InlinedVector<std::pair<int, int>, 2UL>> control_outputs( num_nodes); std::vector<std::pair<int, int>> target_range(num_nodes, {num_nodes, -1}); for (int node_idx = 0; node_idx < num_nodes; ++node_idx) { const NodeDef& node = optimized_graph_->node(node_idx); if (ModifiesFrameInfo(node) || !HasOpDef(node)) { continue; } for (int input_slot = 0; input_slot < node.input_size(); ++input_slot) { const string& input = node.input(input_slot); const NodeDef* input_node = node_map_->GetNode(input); if (ModifiesFrameInfo(*input_node) || IsMerge(*input_node)) { continue; } const int input_node_idx = node_to_idx_[input_node]; outputs[input_node_idx].push_back(node_idx); target_range[input_node_idx].first = std::min(target_range[input_node_idx].first, node_idx); if (IsControlInput(input)) { ++num_controls; control_outputs[input_node_idx].emplace_back(node_idx, input_slot); target_range[input_node_idx].second = std::max(target_range[input_node_idx].second, node_idx); } } } int num_controls_removed = 0; std::vector<DistanceFromSource> longest_distance(num_nodes); typedef std::pair<int, int> InputSlotAndSource; absl::flat_hash_map< int, std::set<InputSlotAndSource, std::greater<InputSlotAndSource>>> control_edges_to_remove; for (int source = 0; source < num_nodes; ++source) { if (target_range[source].first >= target_range[source].second || target_range[source].second <= source) { continue; } std::fill(longest_distance.begin() + target_range[source].first, longest_distance.begin() + target_range[source].second + 1, ZERO); LongestPathsLowerBounds(source, target_range[source], outputs, &longest_distance); for (const auto& control_output : control_outputs[source]) { const int target = control_output.first; if (longest_distance[target] == TWO_OR_GREATER) { const int input_slot = control_output.second; control_edges_to_remove[target].emplace(input_slot, source); } } } for (const auto& it : control_edges_to_remove) { const int target = it.first; NodeDef* target_node = optimized_graph_->mutable_node(target); for (const InputSlotAndSource& slot_and_source : it.second) { const int input_slot = slot_and_source.first; const int source = slot_and_source.second; const NodeDef& source_node = optimized_graph_->node(source); CHECK_LT(input_slot, target_node->input_size()); target_node->mutable_input()->SwapElements(input_slot, target_node->input_size() - 1); node_map_->RemoveOutput(source_node.name(), target_node->name()); target_node->mutable_input()->RemoveLast(); ++num_controls_removed; } } VLOG(1) << "Removed " << num_controls_removed << " out of " << num_controls << " control dependencies"; return absl::OkStatus(); } void DependencyOptimizer::BuildNodeToIdx() { node_to_idx_.clear(); for (int i = 0; i < optimized_graph_->node_size(); ++i) { const NodeDef& node = optimized_graph_->node(i); node_to_idx_[&node] = i; } } void DependencyOptimizer::GroupCrossDeviceControlEdges(bool host_granularity) { VLOG(1) << "DependencyOptimizer::GroupCrossDeviceControlEdges host_granularity=" << host_granularity; const int num_nodes = optimized_graph_->node_size(); for (int i = 0; i < num_nodes; ++i) { NodeDef* node = optimized_graph_->mutable_node(i); if (node->device().empty()) continue; string rest, node_device = node->device(); if (host_granularity) { DeviceNameUtils::SplitDeviceName(node->device(), &node_device, &rest); } std::map<string, NodeDef*> noops; int num_noops = 0; for (int j = 0; j < node->input_size(); ++j) { if (IsControlInput(node->input(j))) { const NodeDef* input = node_map_->GetNode(node->input(j)); if (input == nullptr || input->device().empty()) continue; string input_device = input->device(); if (host_granularity) { DeviceNameUtils::SplitDeviceName(input->device(), &input_device, &rest); } if (input_device != node_device) { VLOG(2) << "Cross-device " << node->name() << " " << input->device() << " -> " << node->device(); auto emplace_result = noops.emplace(input_device, nullptr); if (!emplace_result.second && emplace_result.first->second == nullptr) { VLOG(2) << "Duplicate input device from " << node->name(); string group_name; NodeDef* noop; do { group_name = AddPrefixToNodeName( node->name(), strings::StrCat("GroupCrossDeviceControlEdges_", num_noops)); noop = node_map_->GetNode(group_name); ++num_noops; } while (noop != nullptr); noop = optimized_graph_->add_node(); noop->set_name(group_name); noop->set_device(input->device()); noop->set_op("NoOp"); node_map_->AddNode(noop->name(), noop); emplace_result.first->second = noop; VLOG(1) << "GroupCrossDeviceControlEdges: Added " << SummarizeNodeDef(*noop); } } } } int pos = 0; while (pos < node->input_size()) { const string& input_name = node->input(pos); if (IsControlInput(input_name)) { NodeDef* input = node_map_->GetNode(input_name); if (input == nullptr) { ++pos; } else { string input_device = input->device(); if (host_granularity) { DeviceNameUtils::SplitDeviceName(input->device(), &input_device, &rest); } auto it = noops.find(input_device); if (it == noops.end() || it->second == nullptr) { ++pos; } else { VLOG(2) << "Rewriting input from " << input_name; node->mutable_input()->SwapElements(pos, node->input_size() - 1); node->mutable_input()->RemoveLast(); it->second->add_input(AsControlDependency(*input)); node_map_->UpdateOutput(input_name, node->name(), it->second->name()); } } } else { ++pos; } } for (const auto& entry : noops) { if (entry.second) { node->add_input(AsControlDependency(*entry.second)); node_map_->AddOutput(entry.second->name(), node->name()); } } } } Status DependencyOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { optimized_graph_ = optimized_graph; *optimized_graph_ = item.graph; nodes_to_preserve_ = item.NodesToPreserve(); fetch_nodes_known_ = !item.fetch.empty(); CleanControlInputs(); const int num_iterations = 2; for (int iteration = 0; iteration < num_iterations; ++iteration) { GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); Status topo_sort_status; topo_sort_status = TopologicalSort(optimized_graph_); node_map_.reset(new NodeMap(optimized_graph_)); BuildNodeToIdx(); if (topo_sort_status.ok()) { TF_RETURN_IF_ERROR(TransitiveReduction()); } else { LOG(ERROR) << "Iteration = " << iteration << ", topological sort failed with message: " << topo_sort_status.message(); } TF_RETURN_IF_ERROR(OptimizeDependencies()); CleanControlInputs(); GroupCrossDeviceControlEdges(false); GroupCrossDeviceControlEdges(true); } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/dependency_optimizer.h" #include "absl/strings/match.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/optimizers/constant_folding.h" #include "tensorflow/core/grappler/optimizers/model_pruner.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class DependencyOptimizerTest : public GrapplerTest {}; void VerifyGraphsEqual(const GraphDef& original_graph, const GraphDef& optimized_graph, const string& func) { EXPECT_EQ(original_graph.node_size(), optimized_graph.node_size()) << func; for (int i = 0; i < original_graph.node_size(); ++i) { const NodeDef& original = original_graph.node(i); const NodeDef& optimized = optimized_graph.node(i); EXPECT_EQ(original.name(), optimized.name()) << func; EXPECT_EQ(original.op(), optimized.op()) << func; EXPECT_EQ(original.input_size(), optimized.input_size()) << func; for (int j = 0; j < original.input_size(); ++j) { EXPECT_EQ(original.input(j), optimized.input(j)) << func; } } } TEST_F(DependencyOptimizerTest, NoOp) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {"CPU:0"}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); VerifyGraphsEqual(item.graph, output, __FUNCTION__); } TEST_F(DependencyOptimizerTest, DependenciesDrivenByConstants) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output y = ops::Const(s.WithOpName("y"), {1.0f, 2.0f}, {1, 2}); Output z = ops::Const(s.WithOpName("z"), {1.0f, 2.0f}, {1, 2}); Output add = ops::Add(s.WithOpName("add"), x, y); Output id1 = ops::Identity(s.WithOpName("id1").WithControlDependencies(x), add); Output id2 = ops::Identity( s.WithOpName("id2").WithControlDependencies(y).WithControlDependencies(z), add); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("id1"); item.fetch.push_back("id2"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); item.graph.Swap(&output); status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(5, output.node_size()); for (const NodeDef& node : item.graph.node()) { if (node.name() == "id1" || node.name() == "id2") { EXPECT_EQ(1, node.input_size()); EXPECT_EQ("add", node.input(0)); } } } TEST_F(DependencyOptimizerTest, ChangeToNoop) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::RandomUniform(s.WithOpName("x"), {1, 2}, DT_FLOAT); Output y = ops::RandomUniform(s.WithOpName("y"), {1, 2}, DT_FLOAT); Output add = ops::Add(s.WithOpName("add"), x, y); Output id1 = ops::Identity(s.WithOpName("id1").WithControlDependencies(add), x); Output id2 = ops::Identity(s.WithOpName("id2").WithControlDependencies(add), y); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("id1"); item.fetch.push_back("id2"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); item.graph.Swap(&output); status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size(), output.node_size()); int found = 0; for (int i = 0; i < item.graph.node_size(); ++i) { const NodeDef& node = item.graph.node(i); EXPECT_NE("add", node.name()); if (node.name() == "id1") { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("^y", node.input(1)); ++found; } else if (node.name() == "id2") { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("y", node.input(0)); EXPECT_EQ("^x", node.input(1)); ++found; } } EXPECT_EQ(2, found); } TEST_F(DependencyOptimizerTest, FullTypeForKeptNoop) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::RandomUniform(s.WithOpName("x"), {1, 2}, DT_FLOAT); Output y = ops::RandomUniform(s.WithOpName("y"), {1, 2}, DT_FLOAT); Output add = ops::Add(s.WithOpName("add"), x, y); Output id1 = ops::Identity(s.WithOpName("id1").WithControlDependencies(add), x); Output id2 = ops::Identity(s.WithOpName("id2").WithControlDependencies(add), y); Output id3 = ops::Identity(s.WithOpName("id3").WithControlDependencies(add), y); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("id1"); item.fetch.push_back("id2"); item.fetch.push_back("id3"); for (int i = 0; i < item.graph.node_size(); ++i) { NodeDef* node = item.graph.mutable_node(i); if (node->name() == "add") { FullTypeDef t; t.set_type_id(TFT_PRODUCT); t.add_args()->set_type_id(TFT_TENSOR); t.mutable_args(0)->add_args()->set_type_id(TFT_FLOAT); *node->mutable_experimental_type() = t; break; } } DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); item.graph.Swap(&output); status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size(), output.node_size()); int found = 0; for (int i = 0; i < item.graph.node_size(); ++i) { const NodeDef& node = item.graph.node(i); if (node.name() == "id1") { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("^add", node.input(1)); ++found; } else if (node.name() == "id2") { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("y", node.input(0)); EXPECT_EQ("^add", node.input(1)); ++found; } else if (node.name() == "id3") { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("y", node.input(0)); EXPECT_EQ("^add", node.input(1)); ++found; } else if (node.name() == "add") { EXPECT_EQ(node.op(), "NoOp"); FullTypeDef t = node.experimental_type(); EXPECT_TRUE((t.type_id() == TFT_UNSET) || ((t.type_id() == TFT_PRODUCT) && (t.args_size() == 0))); ++found; } } EXPECT_EQ(4, found); } TEST_F(DependencyOptimizerTest, ChangeToNoop_RepeatedInput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::RandomUniform(s.WithOpName("x"), {1, 2}, DT_FLOAT); Output add = ops::Add(s.WithOpName("add"), x, x); Output id1 = ops::Identity(s.WithOpName("id1").WithControlDependencies(add), x); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"id1"}; DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); item.graph.Swap(&output); status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size(), output.node_size()); int found = 0; for (int i = 0; i < item.graph.node_size(); ++i) { const NodeDef& node = item.graph.node(i); EXPECT_NE("add", node.name()); if (node.name() == "id1") { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("x", node.input(0)); ++found; } } EXPECT_EQ(1, found); } TEST_F(DependencyOptimizerTest, ChangeToNoop_SwitchIdentity) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); ops::Variable v_in(scope.WithOpName("v_in"), {3}, DT_FLOAT); ops::Variable v_ctrl(scope.WithOpName("v_ctrl"), {}, DT_BOOL); ops::Switch s(scope.WithOpName("switch"), v_in, v_ctrl); Output neg = ops::Neg(scope.WithOpName("neg"), s.output_true); Output c1 = ops::Const(scope.WithOpName("c1").WithControlDependencies(neg), {1.0f, 2.0f}, {1, 2}); Output ctrl_dep_id = ops::Identity( scope.WithOpName("ConstantFoldingCtrl/switch_1"), s.output_true); Output c2 = ops::Const(scope.WithOpName("c2").WithControlDependencies(ctrl_dep_id), {1.0f, 2.0f}, {1, 2}); Output neg1 = ops::Neg(scope.WithOpName("neg1"), s.output_false); Output neg2 = ops::Neg(scope.WithOpName("neg2"), ctrl_dep_id); GrapplerItem item; TF_CHECK_OK(scope.ToGraphDef(&item.graph)); item.fetch.push_back("c1"); item.fetch.push_back("c2"); item.fetch.push_back("neg1"); item.fetch.push_back("neg2"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size() - 1, output.node_size()); for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); EXPECT_NE("neg", node.name()); if (node.name() == "c1") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("^ConstantFoldingCtrl/switch_1", node.input(0)); } } } TEST_F(DependencyOptimizerTest, ChangeToNoop_NoFetch) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::RandomUniform(s.WithOpName("x"), {1, 2}, DT_FLOAT); Output y = ops::RandomUniform(s.WithOpName("y"), {1, 2}, DT_FLOAT); Output add = ops::Add(s.WithOpName("add"), x, y); Output id1 = ops::Identity(s.WithOpName("id1").WithControlDependencies(add), x); Output id2 = ops::Identity(s.WithOpName("id2").WithControlDependencies(add), y); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); TF_CHECK_OK(TopologicalSort(&item.graph)); VerifyGraphsEqual(item.graph, output, __FUNCTION__); } TEST_F(DependencyOptimizerTest, RemoveNoOps_EmptyInputOrOutput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::RandomUniform(s, {1, 2}, DT_FLOAT); auto noop1 = ops::NoOp(s); auto noop2 = ops::NoOp(s.WithControlDependencies(x)); Output id = ops::Identity(s.WithControlDependencies({noop1.operation}), x); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("Identity"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); item.graph.Swap(&output); status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size(), output.node_size()); for (const NodeDef& node : output.node()) { if (node.name() == "NoOp" || node.name() == "NoOp_1") { EXPECT_EQ(0, node.input_size()); } else if (node.name() == "Identity") { EXPECT_EQ(1, node.input_size()); EXPECT_EQ("RandomUniform", node.input(0)); } } } TEST_F(DependencyOptimizerTest, RemoveNoOps_DeviceBoundaries) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::RandomUniform(s.WithOpName("x").WithDevice("/CPU:0"), {1, 2}, DT_FLOAT); Output y = ops::RandomUniform(s.WithOpName("y").WithDevice("/CPU:0"), {1, 2}, DT_FLOAT); auto noop = ops::NoOp(s.WithControlDependencies(x).WithDevice("/CPU:1")); auto noop_1 = ops::NoOp( s.WithControlDependencies(x).WithControlDependencies(y).WithDevice( "/CPU:0")); Output id = ops::Identity( s.WithControlDependencies({noop.operation}).WithDevice("/CPU:1"), x); Output id_1 = ops::Identity( s.WithControlDependencies({noop.operation, noop_1.operation}) .WithDevice("/CPU:1"), y); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("Identity"); item.fetch.push_back("Identity_1"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); TF_CHECK_OK(TopologicalSort(&item.graph)); VerifyGraphsEqual(item.graph, output, __FUNCTION__); } TEST_F(DependencyOptimizerTest, RemoveIdentityOps_DeviceBoundaries) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::RandomUniform(s.WithOpName("x").WithDevice("/CPU:0"), {1, 2}, DT_FLOAT); Output y = ops::RandomUniform(s.WithOpName("y").WithDevice("/CPU:0"), {1, 2}, DT_FLOAT); auto id_a = ops::Identity(s.WithOpName("id_a").WithDevice("/CPU:1"), x); auto id_b = ops::Identity( s.WithOpName("id_b").WithControlDependencies(y).WithDevice("/CPU:0"), x); Output id = ops::Identity(s.WithControlDependencies(id_a).WithDevice("/CPU:1"), id_b); Output id_1 = ops::Identity(s.WithDevice("/CPU:1"), id_a); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("Identity"); item.fetch.push_back("Identity_1"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); TF_CHECK_OK(TopologicalSort(&item.graph)); VerifyGraphsEqual(item.graph, output, __FUNCTION__); } TEST_F(DependencyOptimizerTest, RemoveIdentityOps_IdenticalDevices) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::RandomUniform(s.WithOpName("x").WithDevice("/CPU:0"), {1, 2}, DT_FLOAT); auto id_a = ops::Identity(s.WithOpName("id_a").WithDevice("/CPU:1"), x); Output id = ops::Identity(s.WithControlDependencies(id_a).WithDevice("/CPU:0"), id_a); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("Identity"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size() - 1, output.node_size()); for (const NodeDef& node : output.node()) { EXPECT_NE(node.name(), "id_a"); if (node.name() == "Identity") { EXPECT_EQ(node.input(0), "x"); } } } TEST_F(DependencyOptimizerTest, RemoveNoOps_SingleInputOrOutput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::RandomUniform(s.WithOpName("x"), {1, 2}, DT_FLOAT); Output y = ops::RandomUniform(s.WithOpName("y"), {1, 2}, DT_FLOAT); auto noop = ops::NoOp(s.WithControlDependencies(x)); auto noop_1 = ops::NoOp(s.WithControlDependencies(x).WithControlDependencies(y)); Output id = ops::Identity(s.WithControlDependencies({noop.operation}), x); Output id_1 = ops::Identity( s.WithControlDependencies({noop.operation, noop_1.operation}), y); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("Identity"); item.fetch.push_back("Identity_1"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); item.graph.Swap(&output); status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size(), output.node_size()); for (const NodeDef& node : output.node()) { if (node.name() == "NoOp" || node.name() == "NoOp_1") { EXPECT_EQ(0, node.input_size()); } else if (node.name() == "Identity") { EXPECT_EQ("x", node.input(0)); } else if (node.name() == "Identity_1") { EXPECT_EQ("y", node.input(0)); EXPECT_EQ("^x", node.input(1)); } } } TEST_F(DependencyOptimizerTest, RemoveIdentity) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::RandomUniform(s.WithOpName("x"), {1, 2}, DT_FLOAT); Output y = ops::RandomUniform(s.WithOpName("y"), {1, 2}, DT_FLOAT); Output z = ops::RandomUniform(s.WithOpName("z"), {1, 2}, DT_FLOAT); auto id_a = ops::Identity(s.WithOpName("id_a"), x); auto id_b = ops::Identity( s.WithOpName("id_b").WithControlDependencies(y).WithControlDependencies( z), x); auto id_c = ops::Identity(s.WithOpName("id_c").WithControlDependencies(y), x); Output a_a = ops::Identity(s.WithOpName("a_a"), id_a); Output a_b = ops::Identity(s.WithOpName("a_b"), id_a); Output a_c = ops::Identity(s.WithOpName("a_c").WithControlDependencies(id_a), z); Output a_d = ops::Identity(s.WithOpName("a_d").WithControlDependencies(id_a), z); Output b_a = ops::Identity(s.WithOpName("b_a"), id_b); Output c_a = ops::Identity(s.WithOpName("c_a"), id_c); Output c_b = ops::Identity(s.WithOpName("c_b").WithControlDependencies(id_c), z); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"a_a", "a_b", "a_c", "a_d", "b_a", "c_a", "c_b"}; DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size() - 3, output.node_size()); int found = 0; for (const NodeDef& node : output.node()) { EXPECT_NE("id_a", node.name()); EXPECT_NE("id_b", node.name()); EXPECT_NE("id_c", node.name()); if (node.name() == "a_a" || node.name() == "a_b") { ASSERT_EQ(1, node.input_size()); EXPECT_EQ("x", node.input(0)); ++found; } if (node.name() == "a_c" || node.name() == "a_d") { ASSERT_EQ(2, node.input_size()); EXPECT_EQ("z", node.input(0)); EXPECT_EQ("^x", node.input(1)); ++found; } if (node.name() == "b_a") { ASSERT_EQ(3, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("^y", node.input(1)); EXPECT_EQ("^z", node.input(2)); ++found; } if (node.name() == "c_a") { ASSERT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("^y", node.input(1)); ++found; } if (node.name() == "c_b") { ASSERT_EQ(3, node.input_size()); EXPECT_EQ("z", node.input(0)); EXPECT_EQ("^x", node.input(1)); EXPECT_EQ("^y", node.input(2)); ++found; } } EXPECT_EQ(found, 7); } TEST_F(DependencyOptimizerTest, RemoveIdentity_RepeatedInputs) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); ops::Variable x(scope.WithOpName("x"), {}, DT_BOOL); ops::Variable y(scope.WithOpName("y"), {}, DT_BOOL); ops::Switch sw(scope.WithOpName("switch"), x, x); Output id0 = ops::Identity(scope.WithOpName("id0"), sw.output_true); Output id1 = ops::Identity(scope.WithOpName("id1"), sw.output_false); Output or0 = ops::LogicalOr(scope.WithOpName("or0"), id0, id0); Output or1 = ops::LogicalOr(scope.WithOpName("or1"), id0, y); Output or2 = ops::LogicalOr( scope.WithOpName("or2").WithControlDependencies(id1), y, y); GrapplerItem item; TF_CHECK_OK(scope.ToGraphDef(&item.graph)); item.fetch.push_back("or0"); item.fetch.push_back("or1"); item.fetch.push_back("or2"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size() - 1, output.node_size()); int found = 0; for (const NodeDef& node : output.node()) { EXPECT_NE("id0", node.name()); if (node.name() == "or0") { EXPECT_EQ(2, node.input_size()); EXPECT_EQ("switch:1", node.input(0)); EXPECT_EQ("switch:1", node.input(1)); ++found; } if (node.name() == "or1") { EXPECT_EQ(2, node.input_size()); EXPECT_EQ("switch:1", node.input(0)); EXPECT_EQ("y", node.input(1)); ++found; } if (node.name() == "or2") { EXPECT_EQ(3, node.input_size()); EXPECT_EQ("y", node.input(0)); EXPECT_EQ("y", node.input(1)); EXPECT_EQ("^id1", node.input(2)); ++found; } } EXPECT_EQ(found, 3); } TEST_F(DependencyOptimizerTest, Transitive_Reduction_Simple) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output c = ops::Const(s.WithOpName("c"), {1.0f, 2.0f}, {1, 2}); Output x = ops::Square(s.WithOpName("x"), c); Output neg1 = ops::Neg(s.WithOpName("neg1"), x); Output neg2 = ops::Neg(s.WithOpName("neg2").WithControlDependencies({x}), neg1); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("neg2"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(4, output.node_size()); EXPECT_EQ("neg2", output.node(3).name()); EXPECT_EQ(1, output.node(3).input_size()); EXPECT_EQ("neg1", output.node(3).input(0)); } TEST_F(DependencyOptimizerTest, ChangeToNoop_Identity) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); ops::Variable v_in(scope.WithOpName("v_in"), {3}, DT_FLOAT); Output id_after_var = ops::Identity(scope.WithOpName("id_after_var"), v_in); ops::Variable v_ctrl(scope.WithOpName("v_ctrl"), {}, DT_BOOL); ops::Switch s( scope.WithOpName("switch").WithControlDependencies(id_after_var), v_in, v_ctrl); Output id0 = ops::Identity(scope.WithOpName("id0"), s.output_true); Output grappler_added_id = ops::Identity( scope.WithOpName("ConstantFoldingCtrl/switch_1"), s.output_true); Output c1 = ops::Const(scope.WithOpName("c1") .WithControlDependencies(id_after_var) .WithControlDependencies(grappler_added_id), {1.0f, 2.0f}, {1, 2}); Output id1 = ops::Identity(scope.WithOpName("id1"), c1); Output id2 = ops::Identity(scope.WithOpName("id2"), id0); Output fetch = ops::Identity(scope.WithOpName("fetch").WithControlDependencies(id1), c1); GrapplerItem item; TF_CHECK_OK(scope.ToGraphDef(&item.graph)); item.fetch.push_back("c1"); item.fetch.push_back("id2"); item.fetch.push_back("fetch"); DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size() - 2, output.node_size()); bool found = false; for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); EXPECT_NE("id0", node.name()); EXPECT_NE("id1", node.name()); if (node.name() == "c1") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("^ConstantFoldingCtrl/switch_1", node.input(0)); found = true; } } EXPECT_TRUE(found); } TEST_F(DependencyOptimizerTest, IdentityInputs) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); Output b = ops::Placeholder(scope.WithOpName("b"), DT_BOOL); Output x = ops::RandomUniform(scope.WithOpName("x"), {1, 2}, DT_FLOAT); auto s = ops::Switch(scope.WithOpName("s"), x, b); auto id_f = ops::Identity(scope.WithOpName("id_f"), s.output_false); auto id_t = ops::Identity(scope.WithOpName("id_t"), s.output_true); Output out1 = ops::Identity(scope.WithOpName("out1"), id_f); Output out2 = ops::Identity(scope.WithOpName("out2"), id_t); GrapplerItem item; TF_CHECK_OK(scope.ToGraphDef(&item.graph)); item.fetch = {"out1", "out2"}; DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(6, output.node_size()); EXPECT_EQ("out1", output.node(4).name()); EXPECT_EQ(1, output.node(4).input_size()); EXPECT_EQ("s", output.node(4).input(0)); EXPECT_EQ("out2", output.node(5).name()); EXPECT_EQ(1, output.node(5).input_size()); EXPECT_EQ("s:1", output.node(5).input(0)); } TEST_F(DependencyOptimizerTest, RemoveIdentityN_SwitchInput) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); Output b = ops::Placeholder(scope.WithOpName("b"), DT_BOOL); Output x = ops::RandomUniform(scope.WithOpName("x"), {1, 2}, DT_FLOAT); auto s = ops::Switch(scope.WithOpName("s"), x, b); auto id_f = ops::IdentityN(scope.WithOpName("id_f"), {s.output_false}); auto id_t = ops::IdentityN(scope.WithOpName("id_t"), {s.output_true}); auto id_b = ops::IdentityN(scope.WithOpName("id_b"), {s.output_false, s.output_true}); Output out1 = ops::Identity(scope.WithOpName("out1"), id_f[0]); Output out2 = ops::Identity(scope.WithOpName("out2"), id_t[0]); Output out3 = ops::Identity(scope.WithOpName("out3"), id_b[0]); Output out4 = ops::Identity(scope.WithOpName("out4"), id_b[1]); GrapplerItem item; TF_CHECK_OK(scope.ToGraphDef(&item.graph)); item.fetch = {"out1", "out2", "out3", "out4"}; DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(8, output.node_size()); auto out1_node = output.node(7); EXPECT_EQ("out1", out1_node.name()); EXPECT_EQ(1, out1_node.input_size()); EXPECT_EQ("s", out1_node.input(0)); auto out2_node = output.node(4); EXPECT_EQ("out2", out2_node.name()); EXPECT_EQ(1, out2_node.input_size()); EXPECT_EQ("s:1", out2_node.input(0)); auto out3_node = output.node(5); EXPECT_EQ("out3", out3_node.name()); EXPECT_EQ(1, out3_node.input_size()); EXPECT_EQ("s", out3_node.input(0)); auto out4_node = output.node(6); EXPECT_EQ("out4", out4_node.name()); EXPECT_EQ(1, out4_node.input_size()); EXPECT_EQ("s:1", out4_node.input(0)); } TEST_F(DependencyOptimizerTest, DoNotRemoveIdentityNWithControlDependency) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); Output input1 = ops::Placeholder(scope.WithOpName("input1"), DT_BOOL); Output input2 = ops::Const(scope.WithOpName("input2"), {1, 2}); auto id_n = ops::IdentityN(scope.WithOpName("id_n"), {input1, input2}); Output out1 = ops::Identity(scope.WithOpName("out1"), id_n[0]); Output out2 = ops::Identity(scope.WithOpName("out2"), id_n[1]); auto out3 = ops::NoOp(scope.WithOpName("out3").WithControlDependencies(id_n[1])); GrapplerItem item; TF_CHECK_OK(scope.ToGraphDef(&item.graph)); item.fetch = {"out1", "out2", "out3"}; DependencyOptimizer optimizer; GraphDef optimized_graph_def; Status status = optimizer.Optimize(nullptr, item, &optimized_graph_def); TF_EXPECT_OK(status); EXPECT_EQ(6, optimized_graph_def.node_size()); } TEST_F(DependencyOptimizerTest, Identity_DeviceCrossing_ConsumerOnDifferentDevice) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x_on_1 = ops::Const(s.WithOpName("x_on_1").WithDevice("/gpu:1"), {1.0f}, {}); Output one_on_3 = ops::Const(s.WithOpName("one_on_3").WithDevice("/gpu:3"), {1.0f}, {}); Output x_on_2 = ops::Identity(s.WithOpName("x_on_2").WithDevice("/gpu:2"), x_on_1); Output result = ops::Add(s.WithOpName("result").WithDevice("/gpu:3"), x_on_2, one_on_3); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"result"}; DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); VerifyGraphsEqual(item.graph, output, __FUNCTION__); } TEST_F(DependencyOptimizerTest, Identity_DeviceCrossing_ConsumerOnSameDevice) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x_on_1 = ops::Const(s.WithOpName("x_on_1").WithDevice("/gpu:1"), {1.0f}, {}); Output one_on_2 = ops::Const(s.WithOpName("one_on_2").WithDevice("/gpu:2"), {1.0f}, {}); Output x_on_2 = ops::Identity(s.WithOpName("x_on_2").WithDevice("/gpu:2"), x_on_1); Output result = ops::Add(s.WithOpName("result").WithDevice("/gpu:2"), x_on_2, one_on_2); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"result"}; DependencyOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(3, output.node_size()); for (const auto& node : output.node()) { EXPECT_NE("x_on_2", node.name()); if (node.name() == "result") { EXPECT_EQ("x_on_1", node.input(0)); } } } TEST_F(DependencyOptimizerTest, RemoveGreaterEqualWithNoOp) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Placeholder(s.WithOpName("x"), DT_FLOAT, ops::Placeholder::Shape({})); Output y = ops::Placeholder(s.WithOpName("y"), DT_FLOAT, ops::Placeholder::Shape({})); auto greaterequal = ops::GreaterEqual(s.WithOpName("GreaterEqual"), x, y); auto noop = ops::NoOp(s.WithOpName("NoOp").WithControlDependencies(greaterequal)); Output add = ops::Add( s.WithOpName("z").WithControlDependencies({noop.operation}), x, y); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); DependencyOptimizer optimizer; GraphDef output; item.fetch.push_back("z"); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); int count = 0; for (const NodeDef& node : output.node()) { if (node.name() == "x") { count++; EXPECT_EQ("Placeholder", node.op()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "y") { count++; EXPECT_EQ("Placeholder", node.op()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "GreaterEqual") { count++; } else if (node.name() == "NoOp") { count++; } else if (node.name() == "z") { count++; EXPECT_EQ("Add", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("y", node.input(1)); } } EXPECT_EQ(3, count); } TEST_F(DependencyOptimizerTest, GroupCrossDeviceControlDeps) { GrapplerItem item; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::RandomUniform(s.WithOpName("a").WithDevice("/CPU:1"), {1, 2}, DT_FLOAT); Output b = ops::RandomUniform(s.WithOpName("b").WithDevice("/CPU:2"), {1, 2}, DT_FLOAT); Output c = ops::RandomUniform(s.WithOpName("c").WithDevice("/CPU:1"), {1, 2}, DT_FLOAT); Output d = ops::RandomUniform(s.WithOpName("d").WithDevice("/CPU:3"), {1, 2}, DT_FLOAT); Output e = ops::RandomUniform(s.WithOpName("e").WithDevice("/CPU:0"), {1, 2}, DT_FLOAT); auto fetch = ops::Identity( s.WithOpName("f") .WithControlDependencies({a.op(), b.op(), c.op(), d.op()}) .WithDevice("/GPU:0"), {e}); TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("f"); } GraphDef expected; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::RandomUniform(s.WithOpName("a").WithDevice("/CPU:1"), {1, 2}, DT_FLOAT); Output b = ops::RandomUniform(s.WithOpName("b").WithDevice("/CPU:2"), {1, 2}, DT_FLOAT); Output c = ops::RandomUniform(s.WithOpName("c").WithDevice("/CPU:1"), {1, 2}, DT_FLOAT); Output d = ops::RandomUniform(s.WithOpName("d").WithDevice("/CPU:3"), {1, 2}, DT_FLOAT); Output e = ops::RandomUniform(s.WithOpName("e").WithDevice("/CPU:0"), {1, 2}, DT_FLOAT); auto noop = ops::NoOp(s.WithOpName("GroupCrossDeviceControlEdges_0/f") .WithDevice("/CPU:1") .WithControlDependencies({a.op(), c.op()})); auto fetch = ops::Identity(s.WithOpName("f") .WithControlDependencies({b.op(), d.op(), noop}) .WithDevice("/GPU:0"), {e}); TF_CHECK_OK(s.ToGraphDef(&expected)); } DependencyOptimizer optimizer; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); CompareGraphs(expected, output); item.graph.Swap(&output); output.Clear(); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); CompareGraphs(expected, output); } TEST_F(DependencyOptimizerTest, GroupCrossHostControlDeps) { GrapplerItem item; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); std::vector<Operation> ops; Output a = ops::RandomUniform(s.WithOpName("a").WithDevice("/CPU:0"), {1, 2}, DT_FLOAT); for (int t = 0; t < 4; ++t) { for (int c = 0; c < 8; ++c) { string opname = absl::StrCat("t", t, "/c", c); string device = absl::StrCat("/task:", t, "/device:TPU:", c); Output output = ops::RandomUniform( s.WithOpName(opname).WithDevice(device), {1, 2}, DT_FLOAT); ops.push_back(output.op()); } } auto fetch = ops::Identity( s.WithOpName("f").WithControlDependencies(ops).WithDevice("/CPU:0"), {a}); TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("f"); } GraphDef expected; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TF_CHECK_OK(s.ToGraphDef(&expected)); } DependencyOptimizer optimizer; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(output.node_size(), item.graph.node_size() + 4); std::set<string> tasks; for (const auto& n : output.node()) { if (n.op() == "NoOp") { EXPECT_TRUE(absl::StartsWith(n.name(), "GroupCrossDeviceControlEdges")); EXPECT_EQ(n.input_size(), 8); tasks.insert(n.device()); } if (n.name() == "f") { EXPECT_EQ(n.input_size(), 5); for (const auto& i : n.input()) { EXPECT_TRUE(i == "a" || absl::StartsWith(i, "^GroupCrossDeviceControlEdges")); } } } EXPECT_EQ(tasks.size(), 4); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/dependency_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/dependency_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
63260427-ab90-4995-b751-c43123973239
cpp
tensorflow/tensorflow
model_pruner
tensorflow/core/grappler/optimizers/model_pruner.cc
tensorflow/core/grappler/optimizers/model_pruner_test.cc
#include "tensorflow/core/grappler/optimizers/model_pruner.h" #include <unordered_set> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/transitive_fanin.h" namespace tensorflow { namespace grappler { namespace { bool IsTrivialIdentity(const NodeDef& node, const GraphView& graph_view) { for (const auto input : graph_view.GetFanins(node, true)) { if (input.port_id == Graph::kControlSlot) { return false; } else if (IsSwitch(*input.node)) { return false; } } for (const auto output : graph_view.GetFanouts(node, true)) { if (output.port_id == Graph::kControlSlot) { return false; } else if (IsMerge(*output.node)) { return false; } } return true; } bool IsTrivialOp(const NodeDef& node, const GraphView& graph_view) { if (IsStopGradient(node)) { return true; } if (IsIdentity(node) || IsIdentityNSingleInput(node)) { return IsTrivialIdentity(node, graph_view); } if (IsNoOp(node) && node.input().empty()) { return true; } if (IsConstant(node) && node.input().empty() && graph_view.NumFanouts(node, false) == 0) { return true; } return IsAddN(node) && NumNonControlInputs(node) <= 1; } bool RemovalIncreasesEdgeCount(const NodeDef& node, const GraphView& graph_view) { int in_degree = graph_view.NumFanins(node, true); int out_degree = graph_view.NumFanouts(node, true); return in_degree * out_degree > in_degree + out_degree; } bool IsOutputPortRefValue(const NodeDef& node, int port_id, const OpRegistryInterface& op_registry) { const OpRegistrationData* op_reg_data = nullptr; Status s = op_registry.LookUp(node.op(), &op_reg_data); if (s.ok()) { DataType output_type; s = OutputTypeForNode(node, op_reg_data->op_def, port_id, &output_type); if (s.ok() && IsRefType(output_type)) { return true; } } return false; } bool CanRemoveNode(const NodeDef& node, const GraphView& graph_view, const absl::flat_hash_set<string>& function_names, const OpRegistryInterface& op_registry) { if (IsNoOp(node) && (node.input().empty() || graph_view.NumFanouts(node, true) == 0)) { return true; } if (IsConstant(node) && node.input().empty() && graph_view.NumFanouts(node, false) == 0) { return true; } if (RemovalIncreasesEdgeCount(node, graph_view)) { return false; } for (const auto input : graph_view.GetFanins(node, true)) { if (node.device() != input.node->device()) { return false; } else if (input.port_id == Graph::kControlSlot) { continue; } else if (function_names.find(input.node->op()) != function_names.end()) { return false; } else if (IsOutputPortRefValue(*input.node, input.port_id, op_registry)) { return false; } } for (const auto output : graph_view.GetFanouts(node, false)) { if (function_names.find(output.node->op()) != function_names.end()) { return false; } } return true; } void ForwardInputsInternal( const NodeDef& node, const absl::flat_hash_set<const NodeDef*>& nodes_to_delete, bool add_as_control, NodeDef* new_node, const absl::flat_hash_map<string, const NodeDef*>& optimized_nodes, const GraphView& graph_view) { auto itr = optimized_nodes.find(node.name()); if (itr != optimized_nodes.end()) { for (const string& input : itr->second->input()) { *new_node->add_input() = add_as_control ? AsControlDependency(NodeName(input)) : input; } return; } for (const auto& input : node.input()) { const NodeDef* input_node = graph_view.GetNode(NodeName(input)); if (input_node == nullptr) { *new_node->add_input() = add_as_control ? AsControlDependency(NodeName(input)) : input; continue; } if (nodes_to_delete.find(input_node) != nodes_to_delete.end()) { ForwardInputsInternal(*input_node, nodes_to_delete, add_as_control || IsControlInput(input), new_node, optimized_nodes, graph_view); } else { *new_node->add_input() = add_as_control ? AsControlDependency(NodeName(input)) : input; } } } void ForwardInputs(const NodeDef& original_node, const absl::flat_hash_set<const NodeDef*>& nodes_to_delete, NodeDef* new_node, absl::flat_hash_map<string, const NodeDef*>* optimized_nodes, const GraphView& graph_view) { ForwardInputsInternal(original_node, nodes_to_delete, false, new_node, *optimized_nodes, graph_view); if (!new_node->name().empty()) { (*optimized_nodes)[new_node->name()] = new_node; } int pos = 0; for (int i = 0; i < new_node->input_size(); ++i) { if (!IsControlInput(new_node->input(i))) { new_node->mutable_input()->SwapElements(pos, i); ++pos; } } DedupControlInputs(new_node); } absl::flat_hash_map<string, absl::flat_hash_set<int>> IdentityNTerminalPorts( const NodeMap& node_map, const std::vector<string>& terminal_nodes, int graph_size) { std::vector<string> to_visit; to_visit.reserve(graph_size); absl::flat_hash_set<string> visited(terminal_nodes.begin(), terminal_nodes.end()); for (const string& terminal_node : terminal_nodes) { NodeDef* node = node_map.GetNode(terminal_node); if (node == nullptr) { continue; } for (const string& input : node->input()) { to_visit.push_back(input); } } absl::flat_hash_set<string> identity_n_fanouts; while (!to_visit.empty()) { string curr = to_visit.back(); to_visit.pop_back(); NodeDef* curr_node = node_map.GetNode(curr); if (curr_node == nullptr || visited.find(curr_node->name()) != visited.end()) { continue; } if (IsIdentityN(*curr_node)) { if (identity_n_fanouts.find(curr) == identity_n_fanouts.end()) { identity_n_fanouts.emplace(curr); int pos = NodePositionIfSameNode(curr, curr_node->name()); if (pos >= 0) { to_visit.push_back(curr_node->input(pos)); } for (const string& input : curr_node->input()) { if (IsControlInput(input) && identity_n_fanouts.find(input) == identity_n_fanouts.end()) { to_visit.push_back(input); } } } } else { for (const string& input : curr_node->input()) { to_visit.push_back(input); } visited.emplace(curr_node->name()); } } absl::flat_hash_map<string, absl::flat_hash_set<int>> identity_n_ports; for (const auto& fanout : identity_n_fanouts) { int pos; string node_name = ParseNodeName(fanout, &pos); if (node_name.empty() || pos < 0) { continue; } if (identity_n_ports.find(node_name) == identity_n_ports.end()) { identity_n_ports[node_name] = {pos}; } else { identity_n_ports[node_name].emplace(pos); } } return identity_n_ports; } string NewIdentityFromIdentityN(int pos, const NodeDef& identity_n, GraphDef* graph, NodeMap* node_map) { string new_node_name = strings::StrCat(identity_n.name(), "-", pos, "-grappler-ModelPruner"); if (node_map->NodeExists(new_node_name)) { return ""; } NodeDef* new_node = graph->add_node(); Status status = NodeDefBuilder(new_node_name, "Identity") .Input(identity_n.input(pos), 0, identity_n.attr().at("T").list().type(pos)) .Device(identity_n.device()) .Finalize(new_node); if (!status.ok()) { return ""; } node_map->AddNode(new_node->name(), new_node); node_map->AddOutput(NodeName(new_node->input(0)), new_node->name()); return new_node->name(); } Status RewriteIdentityNAndInputsOutputs( NodeDef* node, int num_non_control_inputs, const absl::flat_hash_set<int>& terminal_ports, GraphDef* graph, NodeMap* node_map) { struct NodeOutputUpdate { string input; string output; }; absl::flat_hash_map<int, int> terminal_input_pos; absl::flat_hash_map<int, string> new_identities; int new_idx = 0; for (int i = 0; i < num_non_control_inputs; i++) { if (terminal_ports.find(i) != terminal_ports.end()) { terminal_input_pos[i] = new_idx++; } else { string identity = NewIdentityFromIdentityN(i, *node, graph, node_map); if (identity.empty()) { return errors::Internal( "Could not create Identity node from IdentityN node ", node->name(), " at port ", i); } new_identities[i] = identity; } } std::vector<NodeOutputUpdate> updates; for (NodeDef* output : node_map->GetOutputs(node->name())) { for (int i = 0; i < output->input_size(); i++) { string input = output->input(i); if (IsControlInput(input)) { continue; } TensorId input_tensor = ParseTensorName(input); if (input_tensor.node() == node->name()) { if (terminal_ports.find(input_tensor.index()) == terminal_ports.end()) { string new_identity = new_identities[input_tensor.index()]; output->set_input(i, new_identity); updates.push_back({new_identity, output->name()}); } else { int new_pos = terminal_input_pos[input_tensor.index()]; string updated_input_name = new_pos > 0 ? strings::StrCat(node->name(), ":", new_pos) : node->name(); output->set_input(i, updated_input_name); } } } } for (const NodeOutputUpdate& update : updates) { node_map->AddOutput(update.input, update.output); } const int num_inputs = node->input_size(); int curr_pos = 0; auto mutable_inputs = node->mutable_input(); auto mutable_types = node->mutable_attr()->at("T").mutable_list()->mutable_type(); for (int i = 0; i < num_non_control_inputs; i++) { if (terminal_input_pos.find(i) != terminal_input_pos.end()) { mutable_inputs->SwapElements(i, curr_pos); mutable_types->SwapElements(i, curr_pos); curr_pos++; } } mutable_types->Truncate(curr_pos); for (int i = num_non_control_inputs; i < num_inputs; i++) { mutable_inputs->SwapElements(i, curr_pos++); } mutable_inputs->DeleteSubrange(curr_pos, num_inputs - curr_pos); return absl::OkStatus(); } Status SplitIdentityNInputs(GraphDef* graph, const std::vector<string>& terminal_nodes, bool* updated_graph) { NodeMap node_map(graph); for (auto const& terminal : IdentityNTerminalPorts(node_map, terminal_nodes, graph->node_size())) { NodeDef* node = node_map.GetNode(terminal.first); if (node == nullptr) { continue; } const int num_non_control_inputs = NumNonControlInputs(*node); const int terminal_second_size = terminal.second.size(); if (node->attr().count("T") == 0 || node->attr().at("T").list().type_size() != num_non_control_inputs || terminal_second_size >= num_non_control_inputs) { continue; } TF_RETURN_IF_ERROR(RewriteIdentityNAndInputsOutputs( node, num_non_control_inputs, terminal.second, graph, &node_map)); *updated_graph = true; } return absl::OkStatus(); } } Status ModelPruner::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { const std::unordered_set<string> nodes_to_preserve = item.NodesToPreserve(); std::unique_ptr<GraphDef> pruned_graph_release; GraphDef* pruned_graph; if (!nodes_to_preserve.empty()) { pruned_graph_release.reset(new GraphDef()); pruned_graph = pruned_graph_release.get(); pruned_graph->mutable_node()->Reserve(item.graph.node_size()); std::vector<string> terminal_nodes(nodes_to_preserve.begin(), nodes_to_preserve.end()); std::sort(terminal_nodes.begin(), terminal_nodes.end()); TF_RETURN_IF_ERROR( SetTransitiveFaninGraph(item.graph, pruned_graph, terminal_nodes)); bool did_split_identity_n = false; TF_RETURN_IF_ERROR(SplitIdentityNInputs(pruned_graph, terminal_nodes, &did_split_identity_n)); if (did_split_identity_n) { GraphDef fanin_split_identity_n_graph; TF_RETURN_IF_ERROR(SetTransitiveFaninGraph( *pruned_graph, &fanin_split_identity_n_graph, terminal_nodes)); pruned_graph->Swap(&fanin_split_identity_n_graph); } GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); } else { pruned_graph = const_cast<GraphDef*>(&item.graph); } GraphView graph_view(pruned_graph); absl::flat_hash_set<string> function_names; for (const auto& function : item.graph.library().function()) { function_names.insert(function.signature().name()); } OpRegistryInterface* op_registry = OpRegistry::Global(); absl::flat_hash_set<const NodeDef*> nodes_to_delete; for (int i = 0; i < pruned_graph->node_size(); ++i) { NodeDef* node = pruned_graph->mutable_node(i); DedupControlInputs(node); if (!IsTrivialOp(*node, graph_view)) { VLOG(3) << node->name() << " is not trivial."; continue; } if (nodes_to_preserve.find(node->name()) != nodes_to_preserve.end()) { continue; } if (CanRemoveNode(*node, graph_view, function_names, *op_registry)) { nodes_to_delete.insert(node); } else { VLOG(3) << node->name() << " cannot be removed"; } } if (nodes_to_delete.empty() && nodes_to_preserve.empty()) { return errors::Aborted("Nothing to do."); } optimized_graph->Clear(); *optimized_graph->mutable_library() = item.graph.library(); *optimized_graph->mutable_versions() = item.graph.versions(); if (nodes_to_delete.empty()) { optimized_graph->mutable_node()->Swap(pruned_graph->mutable_node()); return absl::OkStatus(); } const bool fetches_are_known = !item.fetch.empty(); absl::flat_hash_map<string, const NodeDef*> optimized_nodes; optimized_graph->mutable_node()->Reserve(pruned_graph->node_size()); for (const auto& node : pruned_graph->node()) { if (!fetches_are_known || nodes_to_delete.find(&node) == nodes_to_delete.end()) { NodeDef* new_node = optimized_graph->add_node(); *new_node = node; new_node->clear_input(); ForwardInputs(node, nodes_to_delete, new_node, &optimized_nodes, graph_view); } } VLOG(1) << "Pruned " << nodes_to_delete.size() << " nodes from the graph. The graph now contains " << optimized_graph->node_size() << " nodes."; if (optimized_graph->node_size() > item.graph.node_size()) { return errors::Internal("Pruning increased graph size."); } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/model_pruner.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/no_op.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/devices.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { constexpr char kDeviceCPU0[] = "/device:CPU:0"; constexpr char kDeviceGPU0[] = "/device:GPU:0"; class ModelPrunerTest : public GrapplerTest {}; TEST_F(ModelPrunerTest, NoPruning) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {"CPU:0"}); GrapplerItem item; ASSERT_TRUE(fake_input.NextItem(&item)); ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); CompareGraphs(item.graph, output); } TEST_F(ModelPrunerTest, StopGradientPruning) { GrapplerItem item; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Sqrt(s.WithOpName("b"), {a}); Output c = ops::StopGradient(s.WithOpName("c"), b); Output d = ops::StopGradient(s.WithOpName("d"), c); Output e = ops::Sqrt(s.WithOpName("e"), {d}); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); } ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); GraphDef expected; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Sqrt(s.WithOpName("b"), {a}); Output c = ops::StopGradient(s.WithOpName("c"), b); Output d = ops::StopGradient(s.WithOpName("d"), b); Output e = ops::Sqrt(s.WithOpName("e"), {b}); TF_ASSERT_OK(s.ToGraphDef(&expected)); } CompareGraphs(expected, output); std::vector<string> fetch = {"e"}; auto expected_tensors = EvaluateNodes(item.graph, fetch); auto actual_tensors = EvaluateNodes(output, fetch); ASSERT_EQ(expected_tensors.size(), 1); ASSERT_EQ(actual_tensors.size(), 1); test::ExpectTensorEqual<float>(actual_tensors[0], expected_tensors[0]); } TEST_F(ModelPrunerTest, IdentityPruning) { GrapplerItem item; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Sqrt(s.WithOpName("b"), {a}); Output c = ops::Identity(s.WithOpName("c").WithControlDependencies(b), b); Output d = ops::Identity(s.WithOpName("d"), c); Output e = ops::Sqrt(s.WithOpName("e"), {d}); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); } item.fetch.push_back("e"); ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); GraphDef expected; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Sqrt(s.WithOpName("b"), {a}); Output e = ops::Sqrt(s.WithOpName("e"), {b}); TF_ASSERT_OK(s.ToGraphDef(&expected)); } CompareGraphs(expected, output); auto actual_tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(actual_tensors.size(), 1); auto expected_tensors = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(expected_tensors.size(), 1); test::ExpectTensorEqual<float>(actual_tensors[0], expected_tensors[0]); } TEST_F(ModelPrunerTest, IdentityNInputPruning) { GrapplerItem item; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Const(s.WithOpName("a"), 2.0f, {10, 10}); Output b = ops::Sqrt(s.WithOpName("b"), {a}); Output c = ops::Const(s.WithOpName("c"), 3.0f, {10, 10}); Output d = ops::Const(s.WithOpName("d"), 4.0f, {10, 10}); auto e = ops::IdentityN(s.WithOpName("e").WithControlDependencies(d), {a, b, c}); auto f = ops::IdentityN(s.WithOpName("f"), {e[2], e[1], e[0]}); Output g = ops::Sqrt(s.WithOpName("g"), {f[1]}); Output h = ops::Sqrt(s.WithOpName("h"), {f[2]}); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); } item.fetch = {"g", "h"}; ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); GraphDef expected; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Const(s.WithOpName("a"), 2.0f, {10, 10}); Output b = ops::Sqrt(s.WithOpName("b"), {a}); auto e = ops::IdentityN(s.WithOpName("e"), {a, b}); auto f = ops::IdentityN(s.WithOpName("f"), {e[1], e[0]}); Output g = ops::Sqrt(s.WithOpName("g"), {f[0]}); Output h = ops::Sqrt(s.WithOpName("h"), {f[1]}); TF_ASSERT_OK(s.ToGraphDef(&expected)); } CompareGraphs(expected, output); auto actual_tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(actual_tensors.size(), 2); auto expected_tensors = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(expected_tensors.size(), 2); for (int i = 0; i < actual_tensors.size(); i++) { test::ExpectTensorEqual<float>(actual_tensors[i], expected_tensors[i]); } } TEST_F(ModelPrunerTest, IdentityNInputPruningWithIdentityNInFetch) { GrapplerItem item; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Const(s.WithOpName("a"), 2.0f, {10, 10}); Output b = ops::Sqrt(s.WithOpName("b"), {a}); Output c = ops::Const(s.WithOpName("c"), 3.0f, {10, 10}); Output d = ops::Const(s.WithOpName("d"), 4.0f, {10, 10}); auto e = ops::IdentityN(s.WithOpName("e").WithControlDependencies(d), {a, b, c}); auto f = ops::IdentityN(s.WithOpName("f"), {e[0], e[1], e[2]}); auto g = ops::IdentityN(s.WithOpName("g"), {f[1]}); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); } item.fetch = {"g"}; ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); GraphDef expected; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Const(s.WithOpName("a"), 2.0f, {10, 10}); Output b = ops::Sqrt(s.WithOpName("b"), {a}); auto e = ops::IdentityN(s.WithOpName("e"), {b}); auto g = ops::IdentityN(s.WithOpName("g"), {e[0]}); TF_ASSERT_OK(s.ToGraphDef(&expected)); } CompareGraphs(expected, output); auto actual_tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(actual_tensors.size(), 1); auto expected_tensors = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(expected_tensors.size(), 1); test::ExpectTensorEqual<float>(actual_tensors[0], expected_tensors[0]); } TEST_F(ModelPrunerTest, NoOpPruning) { GrapplerItem item; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::AddN(s.WithOpName("b"), {a}); Output c = ops::AddN(s.WithOpName("c"), {b}); Output d = ops::AddN(s.WithOpName("d").WithControlDependencies(b), {c}); Output e = ops::AddN(s.WithOpName("e"), {d}); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); } ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); GraphDef expected; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::AddN(s.WithOpName("b"), {a}); Output c = ops::AddN(s.WithOpName("c"), {a}); Output d = ops::AddN(s.WithOpName("d"), {a}); Output e = ops::AddN(s.WithOpName("e"), {a}); TF_ASSERT_OK(s.ToGraphDef(&expected)); } CompareGraphs(expected, output); std::vector<string> fetch = {"e"}; auto actual_tensors = EvaluateNodes(output, fetch); ASSERT_EQ(actual_tensors.size(), 1); auto expected_tensors = EvaluateNodes(item.graph, fetch); ASSERT_EQ(expected_tensors.size(), 1); test::ExpectTensorEqual<float>(actual_tensors[0], expected_tensors[0]); } TEST_F(ModelPrunerTest, PreserveIdentities) { GrapplerItem item; { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); ops::Variable v_in(scope.WithOpName("v_in"), {3}, DT_FLOAT); ops::Variable v_ctrl(scope.WithOpName("v_ctrl"), {}, DT_BOOL); ops::Switch s(scope.WithOpName("switch"), v_in, v_ctrl); Output id0 = ops::Identity(scope.WithOpName("id0"), s.output_true); Output id1 = ops::Identity(scope.WithOpName("id1").WithControlDependencies(v_ctrl), s.output_false); Output id2 = ops::Identity(scope.WithOpName("id2"), id0); Output id3 = ops::Identity( scope.WithOpName("id3").WithControlDependencies(id0), id1); auto merge = ops::Merge(scope.WithOpName("merge"), {id0, id1}); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); } item.fetch = {"id2", "id3", "merge"}; ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); CompareGraphs(item.graph, output); auto v_in_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({3})); Tensor v_ctrl_t(DT_BOOL, TensorShape({})); v_ctrl_t.flat<bool>()(0) = true; auto actual_tensors = EvaluateNodes(output, {"merge", "id2"}, {{"v_in", v_in_t}, {"v_ctrl", v_ctrl_t}}); ASSERT_EQ(actual_tensors.size(), 2); auto expected_tensors = EvaluateNodes( item.graph, {"merge", "id2"}, {{"v_in", v_in_t}, {"v_ctrl", v_ctrl_t}}); ASSERT_EQ(expected_tensors.size(), 2); for (int i = 0; i < actual_tensors.size(); i++) { test::ExpectTensorEqual<float>(actual_tensors[i], expected_tensors[i]); } } TEST_F(ModelPrunerTest, PruningSkipsRefOutputs) { GrapplerItem item; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Variable(s.WithOpName("a"), {}, DT_INT64); Output b = ops::Identity(s.WithOpName("b"), a); Output c = ops::Identity(s.WithOpName("c"), b); Output d = ops::Identity(s.WithOpName("d"), c); Output e = ops::Identity(s.WithOpName("e"), d); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); } ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); GraphDef expected; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output a = ops::Variable(s.WithOpName("a"), {}, DT_INT64); Output b = ops::Identity(s.WithOpName("b"), a); Output c = ops::Identity(s.WithOpName("c"), b); Output d = ops::Identity(s.WithOpName("d"), b); Output e = ops::Identity(s.WithOpName("e"), b); TF_ASSERT_OK(s.ToGraphDef(&expected)); } CompareGraphs(expected, output); std::vector<string> fetch = {"e"}; auto a_t = GenerateRandomTensor<DT_INT64>(TensorShape({})); auto actual_tensors = EvaluateNodes(output, fetch, {{"a", a_t}}); ASSERT_EQ(actual_tensors.size(), 1); auto expected_tensors = EvaluateNodes(item.graph, fetch, {{"a", a_t}}); ASSERT_EQ(expected_tensors.size(), 1); test::ExpectTensorEqual<int64_t>(actual_tensors[0], expected_tensors[0]); } TEST_F(ModelPrunerTest, PruningPreservesFetch) { GrapplerItem item; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Sqrt(s.WithOpName("b"), {a}); Output c = ops::Identity(s.WithOpName("c"), b); Output d = ops::Identity(s.WithOpName("d"), c); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); } item.fetch = {"c"}; ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); GraphDef expected; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Sqrt(s.WithOpName("b"), {a}); Output c = ops::Identity(s.WithOpName("c"), b); TF_ASSERT_OK(s.ToGraphDef(&expected)); } CompareGraphs(expected, output); auto actual_tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(actual_tensors.size(), 1); auto expected_tensors = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(expected_tensors.size(), 1); test::ExpectTensorEqual<float>(actual_tensors[0], expected_tensors[0]); } TEST_F(ModelPrunerTest, PruningPreservesCrossDeviceIdentity) { GrapplerItem item; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output c = ops::Const(s.WithOpName("c").WithDevice(kDeviceCPU0), 0.0f, {10, 10}); Output i1 = ops::Identity(s.WithOpName("i1").WithDevice(kDeviceGPU0), c); Output a1 = ops::Identity(s.WithOpName("a1").WithDevice(kDeviceGPU0), i1); Output a2 = ops::Identity(s.WithOpName("a2").WithDevice(kDeviceGPU0), i1); Output i2 = ops::Identity(s.WithOpName("i2").WithDevice(kDeviceCPU0), c); Output a3 = ops::Identity(s.WithOpName("a3").WithDevice(kDeviceGPU0), i2); Output a4 = ops::Identity(s.WithOpName("a4").WithDevice(kDeviceGPU0), i2); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); } item.fetch = {"a1", "a2", "a3", "a4"}; ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); GraphDef expected; { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output c = ops::Const(s.WithOpName("c").WithDevice(kDeviceCPU0), 0.0f, {10, 10}); Output i1 = ops::Identity(s.WithOpName("i1").WithDevice(kDeviceGPU0), c); Output a1 = ops::Identity(s.WithOpName("a1").WithDevice(kDeviceGPU0), i1); Output a2 = ops::Identity(s.WithOpName("a2").WithDevice(kDeviceGPU0), i1); Output a3 = ops::Identity(s.WithOpName("a3").WithDevice(kDeviceGPU0), c); Output a4 = ops::Identity(s.WithOpName("a4").WithDevice(kDeviceGPU0), c); TF_ASSERT_OK(s.ToGraphDef(&expected)); } CompareGraphs(expected, output); if (GetNumAvailableGPUs() > 0) { auto actual_tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(actual_tensors.size(), 4); auto expected_tensors = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(expected_tensors.size(), 4); for (int i = 0; i < actual_tensors.size(); i++) { test::ExpectTensorNear<float>(actual_tensors[i], expected_tensors[i], 1e-6); } } } TEST_F(ModelPrunerTest, PruneNoOpsWithoutInputs) { GrapplerItem item; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); auto n1 = ops::NoOp(s.WithOpName("no_op1")); Output c1 = ops::Const(s.WithOpName("c1"), 0.0f, {1, 1}); auto n2 = ops::NoOp(s.WithOpName("no_op2").WithControlDependencies(c1)); Output id1 = ops::Identity( s.WithOpName("id1").WithControlDependencies({n1, n2}), c1); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); } item.fetch = {"id1"}; ModelPruner pruner; GraphDef output; TF_ASSERT_OK(pruner.Optimize(nullptr, item, &output)); GraphDef expected; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output c1 = ops::Const(s.WithOpName("c1"), 0.0f, {1, 1}); auto n2 = ops::NoOp(s.WithOpName("no_op2").WithControlDependencies(c1)); Output id1 = ops::Identity(s.WithOpName("id1").WithControlDependencies({n2}), c1); TF_ASSERT_OK(s.ToGraphDef(&expected)); } CompareGraphs(expected, output); } TEST_F(ModelPrunerTest, PruneConstantsWithoutInputsAndOutputs) { GrapplerItem item; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output c0 = ops::Const(s.WithOpName("c0"), 0.0f, {1, 1}); Output c1 = ops::Const(s.WithOpName("c1"), 1.0f, {1, 1}); Output c2 = ops::Const(s.WithOpName("c2").WithControlDependencies({c0}), 2.0f, {1, 1}); Output c3 = ops::Const(s.WithOpName("c3"), 3.0f, {1, 1}); Output id1 = ops::Identity(s.WithOpName("id1") .WithControlDependencies({c2}) .WithControlDependencies({c3}), c0); TF_ASSERT_OK(s.ToGraphDef(&item.graph)); } item.fetch = {"id1"}; ModelPruner pruner; GraphDef output; Status status = pruner.Optimize(nullptr, item, &output); TF_ASSERT_OK(status); GraphDef expected; { tensorflow::Scope s = CreateScopeWithDevice(kDeviceCPU0); Output c0 = ops::Const(s.WithOpName("c0"), 0.0f, {1, 1}); Output c2 = ops::Const(s.WithOpName("c2").WithControlDependencies({c0}), 2.0f, {1, 1}); Output id1 = ops::Identity(s.WithOpName("id1").WithControlDependencies({c2}), c0); TF_ASSERT_OK(s.ToGraphDef(&expected)); } CompareGraphs(expected, output); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/model_pruner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/model_pruner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
397218b9-d790-4fc3-b0cd-29f95b4e35f6
cpp
tensorflow/tensorflow
custom_graph_optimizer_registry
tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc
tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry_test.cc
#include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include <string> #include <unordered_map> #include "absl/base/call_once.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace grappler { namespace { typedef std::unordered_map<string, CustomGraphOptimizerRegistry::Creator> RegistrationMap; RegistrationMap* registered_optimizers = nullptr; RegistrationMap* GetRegistrationMap() { if (registered_optimizers == nullptr) registered_optimizers = new RegistrationMap; return registered_optimizers; } typedef std::unordered_map<string, PluginGraphOptimizerRegistry::Creator> PluginRegistrationMap; PluginRegistrationMap* GetPluginRegistrationMap() { static PluginRegistrationMap* registered_plugin_optimizers = new PluginRegistrationMap; return registered_plugin_optimizers; } typedef std::unordered_map<string, ConfigList> PluginConfigMap; PluginConfigMap* GetPluginConfigMap() { static PluginConfigMap* plugin_config_map = new PluginConfigMap; return plugin_config_map; } const ConfigList& DefaultPluginConfigs() { static ConfigList* default_plugin_configs = new ConfigList( false, {{"implementation_selector", RewriterConfig::ON}, {"function_optimization", RewriterConfig::ON}, {"common_subgraph_elimination", RewriterConfig::ON}, {"arithmetic_optimization", RewriterConfig::ON}, {"debug_stripper", RewriterConfig::ON}, {"constant_folding", RewriterConfig::ON}, {"shape_optimization", RewriterConfig::ON}, {"auto_mixed_precision", RewriterConfig::ON}, {"auto_mixed_precision_onednn_bfloat16", RewriterConfig::ON}, {"auto_mixed_precision_mkl", RewriterConfig::ON}, {"auto_mixed_precision_cpu", RewriterConfig::ON}, {"pin_to_host_optimization", RewriterConfig::ON}, {"layout_optimizer", RewriterConfig::ON}, {"remapping", RewriterConfig::ON}, {"loop_optimization", RewriterConfig::ON}, {"dependency_optimization", RewriterConfig::ON}, {"auto_parallel", RewriterConfig::ON}, {"memory_optimization", RewriterConfig::ON}, {"scoped_allocator_optimization", RewriterConfig::ON}}); return *default_plugin_configs; } } std::unique_ptr<CustomGraphOptimizer> CustomGraphOptimizerRegistry::CreateByNameOrNull(const string& name) { const auto it = GetRegistrationMap()->find(name); if (it == GetRegistrationMap()->end()) return nullptr; return std::unique_ptr<CustomGraphOptimizer>(it->second()); } std::vector<string> CustomGraphOptimizerRegistry::GetRegisteredOptimizers() { std::vector<string> optimizer_names; optimizer_names.reserve(GetRegistrationMap()->size()); for (const auto& opt : *GetRegistrationMap()) optimizer_names.emplace_back(opt.first); return optimizer_names; } void CustomGraphOptimizerRegistry::RegisterOptimizerOrDie( const Creator& optimizer_creator, const string& name) { const auto it = GetRegistrationMap()->find(name); if (it != GetRegistrationMap()->end()) { LOG(FATAL) << "CustomGraphOptimizer is registered twice: " << name; } GetRegistrationMap()->insert({name, optimizer_creator}); } std::vector<std::unique_ptr<CustomGraphOptimizer>> PluginGraphOptimizerRegistry::CreateOptimizers( const std::set<string>& device_types) { std::vector<std::unique_ptr<CustomGraphOptimizer>> optimizer_list; for (auto it = GetPluginRegistrationMap()->begin(); it != GetPluginRegistrationMap()->end(); ++it) { if (device_types.find(it->first) == device_types.end()) continue; static absl::once_flag plugin_optimizer_flag; absl::call_once(plugin_optimizer_flag, [&]() { LOG(INFO) << "Plugin optimizer for device_type " << it->first << " is enabled."; }); optimizer_list.emplace_back( std::unique_ptr<CustomGraphOptimizer>(it->second())); } return optimizer_list; } void PluginGraphOptimizerRegistry::RegisterPluginOptimizerOrDie( const Creator& optimizer_creator, const std::string& device_type, ConfigList& configs) { auto ret = GetPluginConfigMap()->insert({device_type, configs}); if (!ret.second) { LOG(FATAL) << "PluginGraphOptimizer with device_type " << device_type << " is registered twice."; } GetPluginRegistrationMap()->insert({device_type, optimizer_creator}); } void PluginGraphOptimizerRegistry::PrintPluginConfigsIfConflict( const std::set<string>& device_types) { bool init = false, conflict = false; ConfigList plugin_configs; for (const auto& device_type : device_types) { const auto it = GetPluginConfigMap()->find(device_type); if (it == GetPluginConfigMap()->end()) continue; auto cur_plugin_configs = it->second; if (!init) { plugin_configs = cur_plugin_configs; init = true; } else { if (!(plugin_configs == cur_plugin_configs)) { conflict = true; break; } } } if (!conflict) return; LOG(WARNING) << "Plugins have conflicting configs. Potential performance " "regression may happen."; for (const auto& device_type : device_types) { const auto it = GetPluginConfigMap()->find(device_type); if (it == GetPluginConfigMap()->end()) continue; auto cur_plugin_configs = it->second; string logs = ""; strings::StrAppend(&logs, "disable_model_pruning\t\t", cur_plugin_configs.disable_model_pruning, "\n"); for (auto const& pair : cur_plugin_configs.toggle_config) { strings::StrAppend(&logs, pair.first, string(32 - pair.first.size(), ' '), (pair.second != RewriterConfig::OFF), "\n"); } LOG(WARNING) << "Plugin's configs for device_type " << device_type << ":\n" << logs; } } ConfigList PluginGraphOptimizerRegistry::GetPluginConfigs( bool use_plugin_optimizers, const std::set<string>& device_types) { if (!use_plugin_optimizers) return DefaultPluginConfigs(); ConfigList ret_plugin_configs = DefaultPluginConfigs(); for (const auto& device_type : device_types) { const auto it = GetPluginConfigMap()->find(device_type); if (it == GetPluginConfigMap()->end()) continue; auto cur_plugin_configs = it->second; if (cur_plugin_configs.disable_model_pruning == true) ret_plugin_configs.disable_model_pruning = true; for (auto& pair : cur_plugin_configs.toggle_config) { if (cur_plugin_configs.toggle_config[pair.first] == RewriterConfig::OFF) ret_plugin_configs.toggle_config[pair.first] = RewriterConfig::OFF; } } return ret_plugin_configs; } bool PluginGraphOptimizerRegistry::IsConfigsConflict( ConfigList& user_config, ConfigList& plugin_config) { if (plugin_config == DefaultPluginConfigs()) return false; if (user_config.disable_model_pruning != plugin_config.disable_model_pruning) return true; for (auto& pair : user_config.toggle_config) { if ((user_config.toggle_config[pair.first] == RewriterConfig::ON) && (plugin_config.toggle_config[pair.first] == RewriterConfig::OFF)) return true; } return false; } } }
#include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include <algorithm> #include <memory> #include <string> #include <vector> #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { static const char* kTestOptimizerName = "Test"; static const char* kTestPluginOptimizerName = "TestPlugin"; class TestGraphOptimizer : public CustomGraphOptimizer { public: Status Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) override { return absl::OkStatus(); } string name() const override { return kTestOptimizerName; } bool UsesFunctionLibrary() const override { return false; } Status Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) override { return absl::OkStatus(); } }; REGISTER_GRAPH_OPTIMIZER_AS(TestGraphOptimizer, "StaticRegister"); TEST(CustomGraphOptimizerRegistryTest, DynamicRegistration) { std::vector<string> optimizers = CustomGraphOptimizerRegistry::GetRegisteredOptimizers(); std::unique_ptr<const CustomGraphOptimizer> test_optimizer; ASSERT_EQ( 0, std::count(optimizers.begin(), optimizers.end(), "DynamicRegister")); test_optimizer = CustomGraphOptimizerRegistry::CreateByNameOrNull("DynamicRegister"); EXPECT_EQ(nullptr, test_optimizer); CustomGraphOptimizerRegistry::RegisterOptimizerOrDie( []() { return new TestGraphOptimizer; }, "DynamicRegister"); optimizers = CustomGraphOptimizerRegistry::GetRegisteredOptimizers(); ASSERT_EQ( 1, std::count(optimizers.begin(), optimizers.end(), "DynamicRegister")); test_optimizer = CustomGraphOptimizerRegistry::CreateByNameOrNull("DynamicRegister"); ASSERT_NE(nullptr, test_optimizer); EXPECT_EQ(kTestOptimizerName, test_optimizer->name()); } TEST(CustomGraphOptimizerRegistryTest, StaticRegistration) { const std::vector<string> optimizers = CustomGraphOptimizerRegistry::GetRegisteredOptimizers(); EXPECT_EQ(1, std::count(optimizers.begin(), optimizers.end(), "StaticRegister")); std::unique_ptr<const CustomGraphOptimizer> test_optimizer = CustomGraphOptimizerRegistry::CreateByNameOrNull("StaticRegister"); ASSERT_NE(nullptr, test_optimizer); EXPECT_EQ(kTestOptimizerName, test_optimizer->name()); } TEST(GraphOptimizerRegistryTest, CrashesOnDuplicateRegistration) { const auto creator = []() { return new TestGraphOptimizer; }; EXPECT_DEATH(CustomGraphOptimizerRegistry::RegisterOptimizerOrDie( creator, "StaticRegister"), "twice"); } class TestPluginGraphOptimizer : public CustomGraphOptimizer { public: Status Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) override { return absl::OkStatus(); } string name() const override { return kTestPluginOptimizerName; } bool UsesFunctionLibrary() const override { return false; } Status Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) override { return absl::OkStatus(); } }; TEST(PluginGraphOptimizerRegistryTest, CrashesOnDuplicateRegistration) { const auto creator = []() { return new TestPluginGraphOptimizer; }; ConfigList config_list; PluginGraphOptimizerRegistry::RegisterPluginOptimizerOrDie(creator, "GPU", config_list); PluginGraphOptimizerRegistry::RegisterPluginOptimizerOrDie(creator, "CPU", config_list); EXPECT_DEATH(PluginGraphOptimizerRegistry::RegisterPluginOptimizerOrDie( creator, "GPU", config_list), "twice"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b429e49a-77aa-4098-91af-c00083cc61fb
cpp
tensorflow/tensorflow
debug_stripper
tensorflow/core/grappler/optimizers/debug_stripper.cc
tensorflow/core/grappler/optimizers/debug_stripper_test.cc
#include "tensorflow/core/grappler/optimizers/debug_stripper.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { Status DebugStripper::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* output) { bool can_optimize = false; for (const NodeDef& node : item.graph.node()) { if (IsAssert(node) || IsCheckNumerics(node) || IsPrint(node)) { can_optimize = true; break; } } if (!can_optimize) { return errors::Aborted("Nothing to do."); } *output = item.graph; for (NodeDef& node : *output->mutable_node()) { if (IsAssert(node) || node.op() == "PrintV2") { node.set_op("NoOp"); EraseRegularNodeAttributes(&node); for (string& inp : *node.mutable_input()) { if (!IsControlInput(inp)) { inp = AsControlDependency(NodeName(inp)); } } } else if (IsCheckNumerics(node) || node.op() == "Print") { node.set_op("Identity"); protobuf::Map<string, AttrValue> new_attr; if (node.attr().find("T") != node.attr().end()) { new_attr.insert({"T", node.attr().at("T")}); } node.mutable_attr()->swap(new_attr); for (int i = 1, end = node.input_size(); i < end; ++i) { if (!IsControlInput(node.input(i))) { *node.mutable_input(i) = AsControlDependency(NodeName(node.input(i))); } } } } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/debug_stripper.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class DebugStripperTest : public GrapplerTest {}; TEST_F(DebugStripperTest, OutputEqualToInput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({})); Output y = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({})); Output add = ops::Add(s, x, y); Output result = ops::Identity(s, add); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); DebugStripper optimizer; GraphDef output; EXPECT_EQ(optimizer.Optimize(nullptr, item, &output), errors::Aborted("Nothing to do.")); } TEST_F(DebugStripperTest, StripAssertOnTwoOutputs) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Placeholder(s.WithOpName("input"), DT_FLOAT, ops::Placeholder::Shape({6})); auto split = ops::Split(s.WithOpName("split"), 0, input, 2); Output x = split[0]; Output y = split[1]; Output ge = ops::GreaterEqual(s.WithOpName("GreaterEqual"), x, y); auto assert = ops::Assert(s.WithOpName("Assert"), ge, {x, y}); Output add = ops::Add( s.WithOpName("add").WithControlDependencies({assert.operation}), x, y); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); DebugStripper optimizer; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { for (const string& input : node.input()) { if (IsControlInput(input)) { EXPECT_EQ(input.find(':'), -1); } } } } TEST_F(DebugStripperTest, StripAssertFromGraph) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Placeholder(s.WithOpName("x"), DT_FLOAT, ops::Placeholder::Shape({})); Output y = ops::Placeholder(s.WithOpName("y"), DT_FLOAT, ops::Placeholder::Shape({})); auto greaterequal = ops::GreaterEqual(s.WithOpName("GreaterEqual"), x, y); auto assert = ops::Assert(s.WithOpName("Assert"), greaterequal, {x, y}); Output add = ops::Add( s.WithOpName("z").WithControlDependencies({assert.operation}), x, y); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); DebugStripper optimizer; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); int count = 0; for (const NodeDef& node : output.node()) { if (node.name() == "x") { count++; EXPECT_EQ("Placeholder", node.op()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "y") { count++; EXPECT_EQ("Placeholder", node.op()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "GreaterEqual") { count++; EXPECT_EQ("GreaterEqual", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("y", node.input(1)); } else if (node.name() == "Assert") { count++; EXPECT_EQ("NoOp", node.op()); EXPECT_EQ(3, node.input_size()); EXPECT_EQ("^GreaterEqual", node.input(0)); EXPECT_EQ("^x", node.input(1)); EXPECT_EQ("^y", node.input(2)); } else if (node.name() == "z") { count++; EXPECT_EQ("Add", node.op()); EXPECT_EQ(3, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("y", node.input(1)); EXPECT_EQ("^Assert", node.input(2)); } } EXPECT_EQ(5, count); Tensor x_t(DT_FLOAT, TensorShape({})); Tensor y_t(DT_FLOAT, TensorShape({})); x_t.flat<float>()(0) = 1.0f; y_t.flat<float>()(0) = 0.5f; std::vector<Tensor> expected = EvaluateNodes(item.graph, {"z"}, {{"x", x_t}, {"y", y_t}}); std::vector<Tensor> optimized = EvaluateNodes(output, {"z"}, {{"x", x_t}, {"y", y_t}}); test::ExpectTensorEqual<float>(expected[0], optimized[0]); } TEST_F(DebugStripperTest, StripCheckNumericsFromGraph) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Placeholder(s.WithOpName("x"), DT_FLOAT, ops::Placeholder::Shape({})); Output y = ops::Placeholder(s.WithOpName("y"), DT_FLOAT, ops::Placeholder::Shape({})); auto check1 = ops::CheckNumerics(s.WithOpName("CheckNumerics1"), x, "foo"); auto check2 = ops::CheckNumerics(s.WithOpName("CheckNumerics2"), y, "foo"); Output add = ops::Add(s.WithOpName("z"), check1, check2); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); DebugStripper optimizer; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); int count = 0; for (const NodeDef& node : output.node()) { if (node.name() == "x") { count++; EXPECT_EQ("Placeholder", node.op()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "y") { count++; EXPECT_EQ("Placeholder", node.op()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "CheckNumerics1") { count++; EXPECT_EQ("Identity", node.op()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ(1, node.attr_size()); } else if (node.name() == "CheckNumerics2") { count++; EXPECT_EQ("Identity", node.op()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("y", node.input(0)); EXPECT_EQ(1, node.attr_size()); } else if (node.name() == "z") { count++; EXPECT_EQ("Add", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("CheckNumerics1", node.input(0)); EXPECT_EQ("CheckNumerics2", node.input(1)); } } EXPECT_EQ(5, count); Tensor x_t(DT_FLOAT, TensorShape({})); Tensor y_t(DT_FLOAT, TensorShape({})); x_t.flat<float>()(0) = 1.0f; y_t.flat<float>()(0) = 0.5f; std::vector<Tensor> expected = EvaluateNodes(item.graph, {"z"}, {{"x", x_t}, {"y", y_t}}); std::vector<Tensor> optimized = EvaluateNodes(output, {"z"}, {{"x", x_t}, {"y", y_t}}); test::ExpectTensorEqual<float>(expected[0], optimized[0]); } TEST_F(DebugStripperTest, StripPrintFromGraph) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Placeholder(s.WithOpName("x"), DT_FLOAT, ops::Placeholder::Shape({})); Output print = ops::Print(s.WithOpName("Print"), x, {x}); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); DebugStripper optimizer; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { if (node.name() == "x") { EXPECT_EQ("Placeholder", node.op()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "Print") { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("^x", node.input(1)); EXPECT_EQ(1, node.attr_size()); } } EXPECT_EQ(2, output.node_size()); Tensor x_t(DT_FLOAT, TensorShape({})); x_t.flat<float>()(0) = 1.0f; std::vector<Tensor> expected = EvaluateNodes(item.graph, {"Print"}, {{"x", x_t}}); std::vector<Tensor> optimized = EvaluateNodes(output, {"Print"}, {{"x", x_t}}); test::ExpectTensorEqual<float>(expected[0], optimized[0]); } TEST_F(DebugStripperTest, StripPrintV2FromGraph) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Const(s.WithOpName("x"), string("Hello"), {}); Operation print = ops::PrintV2(s.WithOpName("PrintV2"), x); Output y = ops::Identity(s.WithOpName("y").WithControlDependencies({print}), x); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); DebugStripper optimizer; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { if (node.name() == "x") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(0, node.input_size()); } else if (node.name() == "PrintV2") { EXPECT_EQ("NoOp", node.op()); EXPECT_EQ(1, node.input_size()); EXPECT_EQ("^x", node.input(0)); EXPECT_EQ(0, node.attr_size()); } else if (node.name() == "y") { EXPECT_EQ("Identity", node.op()); EXPECT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("^PrintV2", node.input(1)); } } EXPECT_EQ(3, output.node_size()); Tensor expected = EvaluateNodes(item.graph, {"y"}, {})[0]; Tensor optimized = EvaluateNodes(output, {"y"}, {})[0]; EXPECT_EQ(expected.scalar<tstring>()(), optimized.scalar<tstring>()()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/debug_stripper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/debug_stripper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e6415567-b938-42d5-9086-3264067878f8
cpp
tensorflow/tensorflow
implementation_selector
tensorflow/core/grappler/optimizers/implementation_selector.cc
tensorflow/core/grappler/optimizers/implementation_selector_test.cc
#include "tensorflow/core/grappler/optimizers/implementation_selector.h" #include <string> #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/function_api_info.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/graph_view.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace grappler { constexpr char kConstOp[] = "Const"; constexpr char kCaseOp[] = "Case"; constexpr char kStatelessCaseOp[] = "StatelessCase"; constexpr char kDeviceIndexOp[] = "DeviceIndex"; string FindForwardNode(utils::MutableNodeView* backward_node) { const int last_input_index = backward_node->NumRegularFanins() - 1; const utils::MutableFanoutView& input = backward_node->GetRegularFanin(last_input_index); if (IsIdentity(*input.node_view()->node())) { return input.node_view()->node()->input(0); } else if (IsPartitionedCall(*input.node_view()->node()) || IsStatefulPartitionedCall(*input.node_view()->node())) { return backward_node->node()->input(last_input_index); } else { return ""; } } void UpdateForwardIdentityNodeDtype(utils::MutableNodeView* forward_node, const DataTypeVector& dtypes) { const auto& fanouts_vector = forward_node->GetRegularFanouts(); for (int pos = 0, pos_limit = fanouts_vector.size(); pos < pos_limit; ++pos) { const auto& fanouts_at_pos = fanouts_vector[pos]; for (const auto& fanout : fanouts_at_pos) { if ("Identity" == fanout.node_view()->GetOp()) { (*fanout.node_view()->node()->mutable_attr())["T"].set_type( dtypes[pos]); VLOG(3) << "Updated DTYPE for Identity node: " << fanout.node_view()->node()->DebugString(); } } } } Status UpdateNodeDef(utils::MutableNodeView* node_view, const string& funcName, const FunctionApiInfo& apiInfo) { NodeDef* node_def = node_view->node(); VLOG(3) << "Node def before swap is: " << node_def->DebugString(); node_def->mutable_attr()->find("f")->second.mutable_func()->set_name( funcName); auto tin = node_def->mutable_attr()->find("Tin"); tin->second.mutable_list()->clear_type(); for (const auto& tin_dtype : apiInfo.input_arg_dtypes()) { tin->second.mutable_list()->add_type(tin_dtype); } auto tout = node_def->mutable_attr()->find("Tout"); tout->second.mutable_list()->clear_type(); for (const auto& tout_dtype : apiInfo.output_arg_dtypes()) { tout->second.mutable_list()->add_type(tout_dtype); } if (apiInfo.function_type() == FunctionApiInfo::BACKWARD) { std::vector<std::string> control_deps; for (int i = node_def->input_size() - 1; i >= 0; --i) { if (!IsControlInput(node_def->input(i))) break; control_deps.push_back(node_def->input(i)); node_def->mutable_input()->RemoveLast(); } const int prev_input_size = node_def->input_size(); const int diff = prev_input_size - apiInfo.input_arg_dtypes().size(); if (diff >= 0) { for (int i = 0; i < diff; ++i) node_def->mutable_input()->RemoveLast(); } else { const string last_input = FindForwardNode(node_view); const std::vector<string> name_index = ::absl::StrSplit(last_input, ':'); if (name_index.size() != 2) { return errors::InvalidArgument( "Invalid format of input node name: ", last_input, " Expected: {forward_node_name}:{index}"); } const absl::string_view node_name = name_index[0]; int last_index; if (!::absl::SimpleAtoi(name_index[1], &last_index)) { return errors::InvalidArgument( "The index of input node is expected to be number, got: ", name_index[1]); } for (int i = 1; i <= -diff; ++i) node_def->add_input(strings::StrCat(node_name, ":", i + last_index)); } for (std::string& control : control_deps) node_def->add_input(std::move(control)); } else if (apiInfo.function_type() == FunctionApiInfo::FORWARD) { UpdateForwardIdentityNodeDtype(node_view, apiInfo.output_arg_dtypes()); } VLOG(3) << "Node def after swap is: " << node_def->DebugString(); return absl::OkStatus(); } Status ImplementationSelector::LoadFunctions(const GraphDef& graph) { lib_info_ = std::make_unique<FunctionLibraryApiInfo>(); TF_RETURN_IF_ERROR(lib_info_->Init(graph.library())); return absl::OkStatus(); } Status ImplementationSelector::MaybeOptimizeFunctionCall( utils::MutableNodeView* node_view) const { NodeDef* node_def = node_view->node(); std::vector<string> function_attribute_names; for (const auto& attr : node_def->attr()) { if (attr.second.has_func() && lib_info_->GetApiInfo(attr.second.func().name()) != nullptr) { function_attribute_names.emplace_back(attr.first); } } if (function_attribute_names.empty() && lib_info_->GetApiInfo(node_def->op()) == nullptr) { return absl::OkStatus(); } DeviceNameUtils::ParsedName parsed_name; if (!DeviceNameUtils::ParseFullName(node_def->device(), &parsed_name) || !parsed_name.has_type) { return errors::Internal("Could not parse device name:", node_def->device()); } VLOG(2) << "Op " << node_def->name() << " runs on " << node_def->device() << " = (" << parsed_name.type << ")"; for (const auto& attr_name : function_attribute_names) { string function_name = node_def->attr().at(attr_name).func().name(); if (::absl::StrContains(function_name, "_specialized_for_")) continue; std::vector<string> equiv_func_names; TF_RETURN_IF_ERROR(lib_info_->GetEquivalentImplementations( function_name, &equiv_func_names)); for (const auto& func_name : equiv_func_names) { const auto& func_api_info = lib_info_->GetApiInfo(func_name); if (func_api_info->preferred_device() == parsed_name.type) { VLOG(2) << "Swapping: " << function_name << " TO: " << func_name; TF_RETURN_IF_ERROR(UpdateNodeDef(node_view, func_name, *func_api_info)); break; } } } if (lib_info_->GetApiInfo(node_def->op()) != nullptr && !::absl::StrContains(node_def->op(), "_specialized_for_")) { std::vector<string> equiv_func_names; TF_RETURN_IF_ERROR(lib_info_->GetEquivalentImplementations( node_def->op(), &equiv_func_names)); for (const string& func_name : equiv_func_names) { const auto func_api_info = lib_info_->GetApiInfo(func_name); if (func_api_info->preferred_device() == parsed_name.type) { node_def->set_op(func_name); break; } } } return absl::OkStatus(); } Status FindDeviceIndex(const utils::MutableNodeView* device_index_node, const string& device, int* index) { DeviceNameUtils::ParsedName parsed_name; if (!DeviceNameUtils::ParseFullName(device, &parsed_name) || !parsed_name.has_type) { return errors::Internal("Could not parse device name:", device); } const auto& device_list = device_index_node->GetAttr("device_names")->list().s(); auto it = absl::c_find(device_list, parsed_name.type); if (it != device_list.end()) { *index = it - device_list.begin(); } else { *index = device_list.size(); } return absl::OkStatus(); } void RewriteDeviceIndexOp(utils::MutableNodeView* device_index_node, int index) { auto node = device_index_node->node(); node->set_op(kConstOp); EraseRegularNodeAttributes(node); (*node->mutable_attr())["dtype"].set_type(DT_INT32); auto* tensor = (*node->mutable_attr())["value"].mutable_tensor(); tensor->set_dtype(DT_INT32); tensor->add_int_val(index); VLOG(2) << "Node after rewriting:" << node->DebugString(); } Status ImplementationSelector::SelectDeviceIndex(GraphDef* graph) const { Status status; VLOG(2) << "graph before rewriting device index:" << graph->DebugString(); utils::MutableGraphView graph_view(graph, &status); TF_RETURN_IF_ERROR(status); const int num_nodes = graph_view.NumNodes(); for (int k = 0; k < num_nodes; ++k) { auto* node_view = graph_view.GetNode(k); if (node_view->GetOp() != kDeviceIndexOp) { continue; } VLOG(2) << "Found a node to rewrite the device index"; for (const auto& fanouts : node_view->GetRegularFanouts()) { for (const auto& fanout : fanouts) { if (fanout.node_view()->GetOp() != kCaseOp && fanout.node_view()->GetOp() != kStatelessCaseOp) continue; int index; Status status = FindDeviceIndex(node_view, fanout.node_view()->GetDevice(), &index); if (status.ok()) { RewriteDeviceIndexOp(node_view, index); } } } } return absl::OkStatus(); } Status ImplementationSelector::SelectImplementation(GraphDef* graph) const { if (!graph->has_library()) { VLOG(2) << "Skipping graph since it does not have function def"; return absl::OkStatus(); } if (lib_info_->empty()) { VLOG(2) << "Skipping optimization since lib_info is empty"; return absl::OkStatus(); } Status status; utils::MutableGraphView graph_view(graph, &status); TF_RETURN_IF_ERROR(status); const int num_nodes = graph_view.NumNodes(); for (int k = 0; k < num_nodes; ++k) { TF_RETURN_IF_ERROR(MaybeOptimizeFunctionCall(graph_view.GetNode(k))); } return absl::OkStatus(); } Status ImplementationSelector::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { auto status = LoadFunctions(item.graph); if (!status.ok()) { VLOG(2) << "Skipping optimization due to error while loading function " << "libraries: " << status; return errors::Aborted("Skipped Optimization"); } *optimized_graph = item.graph; status = SelectDeviceIndex(optimized_graph); if (!status.ok()) { *optimized_graph = item.graph; VLOG(2) << "Could not rewrite device index due to error:" << status; } return SelectImplementation(optimized_graph); } } }
#include "tensorflow/core/grappler/optimizers/implementation_selector.h" #include <algorithm> #include <memory> #include <string> #include <vector> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { constexpr char CpuDevice[] = "/device:CPU:0"; constexpr char GpuDevice[] = "/device:GPU:0"; constexpr char TpuDevice[] = "/device:TPU_REPLICATED_CORE"; class ImplementationSelectorTest : public GrapplerTest {}; TEST_F(ImplementationSelectorTest, NoUpdate) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {CpuDevice}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); std::unique_ptr<CustomGraphOptimizer> optimizer(new ImplementationSelector); ASSERT_NE(nullptr, optimizer); TF_ASSERT_OK(optimizer->Init()); GraphDef output; const Status status = optimizer->Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size(), output.node_size()); } TEST_F(ImplementationSelectorTest, SelectDeviceIndex) { using test::function::NDef; ImplementationSelector optimizer; GraphDef output; GrapplerItem item; AttrValue device_names; device_names.mutable_list()->add_s("CPU"); device_names.mutable_list()->add_s("GPU"); item.graph = test::function::GDef( {NDef("x", "DeviceIndex", {}, {{"device_names", device_names}}, CpuDevice), NDef("case", "Case", {"x"}, {{"T", DT_FLOAT}}, GpuDevice)}); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { if (node.name() == "x") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(1, node.attr().at("value").tensor().int_val(0)); } } } TEST_F(ImplementationSelectorTest, SelectDeviceIndexStatelessCase) { using test::function::NDef; ImplementationSelector optimizer; GraphDef output; GrapplerItem item; AttrValue device_names; device_names.mutable_list()->add_s("CPU"); device_names.mutable_list()->add_s("GPU"); item.graph = test::function::GDef( {NDef("x", "DeviceIndex", {}, {{"device_names", device_names}}, CpuDevice), NDef("case", "StatelessCase", {"x"}, {{"T", DT_FLOAT}}, GpuDevice)}); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { if (node.name() == "x") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(1, node.attr().at("value").tensor().int_val(0)); } } } TEST_F(ImplementationSelectorTest, SelectDeviceIndexMultiOps) { using test::function::NDef; ImplementationSelector optimizer; GraphDef output; GrapplerItem item; AttrValue device_names; device_names.mutable_list()->add_s("CPU"); device_names.mutable_list()->add_s("TPU_REPLICATED_CORE"); device_names.mutable_list()->add_s("GPU"); item.graph = test::function::GDef( {NDef("x", "DeviceIndex", {}, {{"device_names", device_names}}, CpuDevice), NDef("case", "Case", {"x"}, {{"T", DT_FLOAT}}, GpuDevice), NDef("y", "DeviceIndex", {}, {{"device_names", device_names}}, GpuDevice), NDef("case_y", "Case", {"y"}, {{"T", DT_FLOAT}}, TpuDevice)}); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { if (node.name() == "x") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(2, node.attr().at("value").tensor().int_val(0)); } if (node.name() == "y") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(1, node.attr().at("value").tensor().int_val(0)); } } } TEST_F(ImplementationSelectorTest, SelectDeviceIndexNotFound) { using test::function::NDef; ImplementationSelector optimizer; GraphDef output; GrapplerItem item; AttrValue device_names; device_names.mutable_list()->add_s("CPU"); device_names.mutable_list()->add_s("GPU"); item.graph = test::function::GDef( {NDef("x", "DeviceIndex", {}, {{"device_names", device_names}}, CpuDevice), NDef("case", "Case", {"x"}, {{"T", DT_FLOAT}}, TpuDevice)}); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { if (node.name() == "x") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(2, node.attr().at("value").tensor().int_val(0)); } } } TEST_F(ImplementationSelectorTest, SelectDeviceIndexError) { using test::function::NDef; ImplementationSelector optimizer; GraphDef output; GrapplerItem item; AttrValue device_names; device_names.mutable_list()->add_s("CPU"); device_names.mutable_list()->add_s("GPU"); item.graph = test::function::GDef( {NDef("x", "DeviceIndex", {}, {{"device_names", device_names}}, CpuDevice), NDef("case", "Case", {"x"}, {{"T", DT_FLOAT}}, "")}); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { if (node.name() == "x") { EXPECT_EQ("DeviceIndex", node.op()); } } } TEST_F(ImplementationSelectorTest, TwoTypesOfSwapImplementation) { using test::function::NDef; ImplementationSelector optimizer; GraphDef output; GrapplerItem item; AttrValue device_names; device_names.mutable_list()->add_s("CPU"); device_names.mutable_list()->add_s("TPU_REPLICATED_CORE"); device_names.mutable_list()->add_s("GPU"); auto cpu_def = test::function::XTimesTwo(); auto* func_attr = cpu_def.mutable_attr(); (*func_attr)["api_implements"].set_s("times_two"); (*func_attr)["api_preferred_device"].set_s("CPU"); auto gpu_def = test::function::XAddX(); auto* func2_attr = gpu_def.mutable_attr(); (*func2_attr)["api_implements"].set_s("times_two"); (*func2_attr)["api_preferred_device"].set_s("GPU"); item.graph = test::function::GDef( {NDef("x", "DeviceIndex", {}, {{"device_names", device_names}}, CpuDevice), NDef("case", "Case", {"x"}, {{"T", DT_FLOAT}}, GpuDevice), NDef("y", "DeviceIndex", {}, {{"device_names", device_names}}, GpuDevice), NDef("case_y", "Case", {"y"}, {{"T", DT_FLOAT}}, TpuDevice), NDef("y1", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, GpuDevice), NDef("z1", "Identity", {"y1"}, {{"T", DT_FLOAT}}, GpuDevice), NDef("y2", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, CpuDevice), NDef("z2", "Identity", {"y2"}, {{"T", DT_FLOAT}}, CpuDevice)}, {cpu_def, gpu_def}); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { if (node.name() == "x") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(2, node.attr().at("value").tensor().int_val(0)); } if (node.name() == "y") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(1, node.attr().at("value").tensor().int_val(0)); } if (node.name() == "y1") { EXPECT_EQ("XAddX", node.op()); } else if (node.name() == "y2") { EXPECT_EQ("XTimesTwo", node.op()); } } } TEST_F(ImplementationSelectorTest, NoSwapWithImplementsOnly) { using test::function::NDef; ImplementationSelector optimizer; GraphDef output; GrapplerItem item; AttrValue device_names; device_names.mutable_list()->add_s("CPU"); device_names.mutable_list()->add_s("TPU_REPLICATED_CORE"); device_names.mutable_list()->add_s("GPU"); auto cpu_def = test::function::XTimesTwo(); auto* func_attr = cpu_def.mutable_attr(); (*func_attr)["api_implements"].set_s("times_two"); auto gpu_def = test::function::XAddX(); auto* func2_attr = gpu_def.mutable_attr(); (*func2_attr)["api_implements"].set_s("times_two"); item.graph = test::function::GDef( {NDef("x", "DeviceIndex", {}, {{"device_names", device_names}}, CpuDevice), NDef("case", "Case", {"x"}, {{"T", DT_FLOAT}}, GpuDevice), NDef("y", "DeviceIndex", {}, {{"device_names", device_names}}, GpuDevice), NDef("case_y", "Case", {"y"}, {{"T", DT_FLOAT}}, TpuDevice), NDef("y1", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, GpuDevice), NDef("z1", "Identity", {"y1"}, {{"T", DT_FLOAT}}, GpuDevice), NDef("y2", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, CpuDevice), NDef("z2", "Identity", {"y2"}, {{"T", DT_FLOAT}}, CpuDevice)}, {cpu_def, gpu_def}); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { if (node.name() == "x") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(2, node.attr().at("value").tensor().int_val(0)); } if (node.name() == "y") { EXPECT_EQ("Const", node.op()); EXPECT_EQ(1, node.attr().at("value").tensor().int_val(0)); } if (node.name() == "y1") { EXPECT_EQ("XTimesTwo", node.op()); } else if (node.name() == "y2") { EXPECT_EQ("XTimesTwo", node.op()); } } } TEST_F(ImplementationSelectorTest, SwapImplementation) { using test::function::NDef; auto cpu_def = test::function::XTimesTwo(); auto* func_attr = cpu_def.mutable_attr(); (*func_attr)["api_implements"].set_s("times_two"); (*func_attr)["api_preferred_device"].set_s("CPU"); auto gpu_def = test::function::XAddX(); auto* func2_attr = gpu_def.mutable_attr(); (*func2_attr)["api_implements"].set_s("times_two"); (*func2_attr)["api_preferred_device"].set_s("GPU"); ImplementationSelector optimizer; GraphDef output; GrapplerItem item; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, GpuDevice), NDef("y1", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, GpuDevice), NDef("z1", "Identity", {"y1"}, {{"T", DT_FLOAT}}, GpuDevice), NDef("y2", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, CpuDevice), NDef("z2", "Identity", {"y2"}, {{"T", DT_FLOAT}}, CpuDevice)}, {cpu_def, gpu_def}); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(output.node_size(), 5); for (const NodeDef& node : output.node()) { if (node.name() == "y1") { EXPECT_EQ("XAddX", node.op()); } else if (node.name() == "y2") { EXPECT_EQ("XTimesTwo", node.op()); } } } TEST_F(ImplementationSelectorTest, SwapImplementationTpu) { using test::function::NDef; auto cpu_def = test::function::XTimesTwo(); auto* func_attr = cpu_def.mutable_attr(); (*func_attr)["api_implements"].set_s("times_two"); (*func_attr)["api_preferred_device"].set_s("CPU"); auto tpu_def = test::function::XAddX(); auto* func2_attr = tpu_def.mutable_attr(); (*func2_attr)["api_implements"].set_s("times_two"); (*func2_attr)["api_preferred_device"].set_s("TPU_REPLICATED_CORE"); ImplementationSelector optimizer; GraphDef output; GrapplerItem item; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, TpuDevice), NDef("y1", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, TpuDevice), NDef("z1", "Identity", {"y1"}, {{"T", DT_FLOAT}}, TpuDevice), NDef("y2", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, CpuDevice), NDef("z2", "Identity", {"y2"}, {{"T", DT_FLOAT}}, CpuDevice)}, {cpu_def, tpu_def}); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(output.node_size(), 5); for (const NodeDef& node : output.node()) { if (node.name() == "y1") { EXPECT_EQ("XAddX", node.op()); } else if (node.name() == "y2") { EXPECT_EQ("XTimesTwo", node.op()); } } } TEST_F(ImplementationSelectorTest, SwapImplementationEval) { using test::function::NDef; auto cpu_def = test::function::XTimesTwo(); auto* func_attr = cpu_def.mutable_attr(); (*func_attr)["api_implements"].set_s("random_boost"); (*func_attr)["api_preferred_device"].set_s("CPU"); auto gpu_def = test::function::XTimesFour(); auto* func2_attr = gpu_def.mutable_attr(); (*func2_attr)["api_implements"].set_s("random_boost"); (*func2_attr)["api_preferred_device"].set_s("GPU"); ImplementationSelector optimizer; GraphDef output; GrapplerItem item; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, CpuDevice), NDef("y", "XTimesFour", {"x"}, {{"T", DT_FLOAT}}, CpuDevice), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, CpuDevice)}, {cpu_def, gpu_def}); const Tensor input = test::AsScalar<float>(1.0f); item.fetch = {"z"}; item.feed.emplace_back("x", input); const auto four_times_boosted_tensor = EvaluateFetchNodes(item); test::ExpectTensorEqual<float>(four_times_boosted_tensor[0], test::AsScalar<float>(4.0f)); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); GrapplerItem optimized = item.WithGraph(std::move(output)); const auto twice_boosted_tensor = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(twice_boosted_tensor[0], test::AsScalar<float>(2.0f)); } TEST_F(ImplementationSelectorTest, SwapImplementationWithGradient) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionDef boost_1 = FDH::Create( "Boost1", {"x:float"}, {"z:float", "s:float"}, {}, {{{"boost"}, "Add", {"x", "x"}, {{"T", DT_FLOAT}}}, FDH::Const("one", 1.0f)}, {{"z", "boost:z:0"}, {"s", "one:output:0"}}); auto* boost_1_attr = boost_1.mutable_attr(); (*boost_1_attr)["api_implements"].set_s("random_boost"); (*boost_1_attr)["api_preferred_device"].set_s("CPU"); (*boost_1_attr)["backward_function_name"].set_s("BoostCpuGradient"); FunctionDef boost_1_gradient = FDH::Create( "Boost1Gradient", {"x:float", "s:float"}, {"dx:float"}, {}, {FDH::Const("two", 2.0f), {{"grad"}, "Mul", {"x", "two:output:0"}, {{"T", DT_FLOAT}}}}, {{"dx", "grad:z:0"}}); auto* boost_1_grad_attr = boost_1_gradient.mutable_attr(); (*boost_1_grad_attr)["api_implements"].set_s("random_boost"); (*boost_1_grad_attr)["api_preferred_device"].set_s("CPU"); (*boost_1_grad_attr)["forward_function_name"].set_s("BoostCpu"); FunctionDef boost_2_func = FDH::Create( "Boost2", {"x:float"}, {"z:float", "s1:float", "s2:float"}, {}, {FDH::Const("four", 4.0f), {{"boost"}, "Mul", {"x", "four:output:0"}, {{"T", DT_FLOAT}}}, FDH::Const("one", 1.0f), FDH::Const("two", 2.0f)}, {{"z", "boost:z:0"}, {"s1", "one:output:0"}, {"s2", "two:output:0"}}); auto* boost_2_attr = boost_2_func.mutable_attr(); (*boost_2_attr)["api_implements"].set_s("random_boost"); (*boost_2_attr)["api_preferred_device"].set_s("GPU"); (*boost_2_attr)["backward_function_name"].set_s("BoostGpuGradient"); FunctionDef boost_2_gradient = FDH::Create( "Boost2Gradient", {"x:float", "s1:float", "s2:float"}, {"dx:float"}, {}, {FDH::Const("four", 4.0f), {{"grad"}, "Mul", {"x", "four:output:0"}, {{"T", DT_FLOAT}}}}, {{"dx", "grad:z:0"}}); auto* boost_2_grad_attr = boost_2_gradient.mutable_attr(); (*boost_2_grad_attr)["api_implements"].set_s("random_boost"); (*boost_2_grad_attr)["api_preferred_device"].set_s("GPU"); (*boost_2_grad_attr)["forward_function_name"].set_s("BoostGpu"); const auto forward = NDef("lstm/StatefulPartitionedCall", "StatefulPartitionedCall", {"input"}, {{"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT, DT_FLOAT, DT_FLOAT}}, {"f", FDH::FunctionRef("Boost2")}}, CpuDevice); const auto backward = NDef("gradient/lstm/StatefulPartitionedCall", "StatefulPartitionedCall", {"input", "lstm/StatefulPartitionedCall:1", "lstm/StatefulPartitionedCall:2"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("Boost2Gradient")}}, CpuDevice); ImplementationSelector optimizer; GraphDef output; GrapplerItem item; item.graph = test::function::GDef( {NDef("input", "Placeholder", {}, {{"dtype", DT_FLOAT}}, CpuDevice), forward, backward, NDef("output", "Identity", {"lstm/StatefulPartitionedCall:0"}, {{"T", DT_FLOAT}}, CpuDevice)}, {boost_1, boost_1_gradient, boost_2_func, boost_2_gradient}); const Tensor input = test::AsScalar<float>(1.0f); item.fetch = {"output"}; item.feed.emplace_back("input", input); const auto four_times_boosted_tensor = EvaluateFetchNodes(item); test::ExpectTensorEqual<float>(four_times_boosted_tensor[0], test::AsScalar<float>(4.0f)); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); GrapplerItem optimized = item.WithGraph(std::move(output)); const auto twice_boosted_tensor = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(twice_boosted_tensor[0], test::AsScalar<float>(2.0f)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/implementation_selector.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/implementation_selector_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
de5fe46c-970f-4768-becc-1f57168e0534
cpp
tensorflow/tensorflow
auto_mixed_precision
tensorflow/core/grappler/optimizers/auto_mixed_precision.cc
tensorflow/core/grappler/optimizers/auto_mixed_precision_test.cc
#include "tensorflow/core/grappler/optimizers/auto_mixed_precision.h" #include <fstream> #include <memory> #include <string> #include <unordered_map> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/costs/virtual_placer.h" #include "tensorflow/core/grappler/devices.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/auto_mixed_precision_lists.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/numbers.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/util/env_var.h" #include "tensorflow/core/util/util.h" namespace tensorflow { namespace grappler { namespace { bool ShouldSimulateGpu() { bool is_enabled = [] { bool ret = false; string var; TF_CHECK_OK(ReadStringFromEnvVar( "TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_SIMULATE_GPU", "", &var)); TF_CHECK_OK( ReadBoolFromEnvVar("TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_SIMULATE_GPU", false, &ret)); return ret; }(); return is_enabled; } #if GOOGLE_CUDA const std::pair<int, int> kMinGPUArch = {7, 0}; #else const std::pair<int, int> kMinGPUArch = {0, 0}; #endif const char kSuffix[] = "AutoMixedPrecision"; const char kCastToFp16[] = "CastToFp16"; const char kCastToBf16[] = "CastToBf16"; const char kCastToFp32[] = "CastToFp32"; #if GOOGLE_CUDA std::pair<int, int> GetDeviceGPUArch( const DeviceProperties& device_properties) { if (device_properties.type() != "GPU") return {0, 0}; string arch_str = device_properties.environment().at("architecture"); std::vector<string> split_arch_str = str_util::Split(arch_str, '.'); if (split_arch_str.empty()) { return {0, 0}; } int major, minor; if (!strings::safe_strto32(split_arch_str[0], &major)) { return {0, 0}; } if (split_arch_str.size() > 1) { if (strings::safe_strto32(split_arch_str[1], &minor)) { return {major, minor}; } else { return {0, 0}; } } else { return {major, 0}; } } #endif bool HasFastFP16Support(const DeviceProperties& props) { #if GOOGLE_CUDA return GetDeviceGPUArch(props) >= kMinGPUArch; #elif TENSORFLOW_USE_ROCM absl::flat_hash_set<std::string> FP16SupportedDevices = {{"gfx906"}, {"gfx908"}}; std::string gcnArchName = props.environment().at("architecture"); std::vector<std::string> gpu_arch = absl::StrSplit(gcnArchName, ":"); return !gpu_arch.empty() && FP16SupportedDevices.contains(gpu_arch[0]); #endif return ShouldSimulateGpu(); } struct TypeAttrId { static constexpr int kSingleType = -1; explicit TypeAttrId(const string& _attr_name, int _type_index = kSingleType) : attr_name(_attr_name), type_index(_type_index), fixed_type(DT_INVALID) {} explicit TypeAttrId(DataType _fixed_type) : attr_name(), type_index(kSingleType), fixed_type(_fixed_type) {} bool operator==(const TypeAttrId& other) const { return attr_name == other.attr_name && type_index == other.type_index && fixed_type == other.fixed_type; } bool operator<(const TypeAttrId& other) const { return std::make_tuple(attr_name, type_index, fixed_type) < std::make_tuple(other.attr_name, other.type_index, other.fixed_type); } template <typename H> friend H AbslHashValue(H h, const TypeAttrId& ta) { return H::combine(std::move(h), ta.attr_name, ta.type_index, ta.fixed_type); } string DebugString() const { if (!attr_name.empty()) { if (type_index == kSingleType) { return attr_name; } else { return strings::StrCat(attr_name, "[", type_index, "]"); } } else { return tensorflow::DataTypeString(fixed_type); } } string attr_name; int type_index; DataType fixed_type; }; DataType GetDataType(const NodeDef& node, const TypeAttrId& type_attr) { if (type_attr.attr_name.empty()) { return type_attr.fixed_type; } if (!node.attr().count(type_attr.attr_name)) { return DT_INVALID; } const AttrValue& attr_value = node.attr().at(type_attr.attr_name); if (type_attr.type_index == TypeAttrId::kSingleType) { return attr_value.type(); } else { if (type_attr.type_index < 0 || type_attr.type_index >= attr_value.list().type_size()) { return DT_INVALID; } return attr_value.list().type(type_attr.type_index); } } bool SetDataType(NodeDef* node, const TypeAttrId& type_attr, DataType type) { if (type_attr.attr_name.empty() || !node->attr().count(type_attr.attr_name)) { return false; } AttrValue& attr_value = node->mutable_attr()->at(type_attr.attr_name); if (type_attr.type_index == TypeAttrId::kSingleType) { attr_value.set_type(type); } else { if (type_attr.type_index < 0 || type_attr.type_index >= attr_value.list().type_size()) { return false; } attr_value.mutable_list()->set_type(type_attr.type_index, type); } return true; } std::vector<std::pair<int, int>> ArgDefIndexes(const NodeDef& node, int arg_idx, const OpDef::ArgDef& arg_def) { std::vector<std::pair<int, int>> argdef_inds; if (!arg_def.type_list_attr().empty()) { int num_types = node.attr().at(arg_def.type_list_attr()).list().type_size(); for (int type_idx = 0; type_idx < num_types; ++type_idx) { argdef_inds.push_back({arg_idx, type_idx}); } } else { int num_repeat = 1; if (node.attr().count(arg_def.number_attr())) { num_repeat = node.attr().at(arg_def.number_attr()).i(); } argdef_inds.insert(argdef_inds.end(), num_repeat, {arg_idx, -1}); } return argdef_inds; } std::vector<std::pair<int, int>> InputPortArgDefIndexes(const NodeDef& node, const OpDef& op_def) { std::vector<std::pair<int, int>> argdef_inds; argdef_inds.reserve(op_def.input_arg_size()); for (int arg_idx = 0; arg_idx < op_def.input_arg_size(); ++arg_idx) { const OpDef::ArgDef& arg_def = op_def.input_arg(arg_idx); auto arg_results = ArgDefIndexes(node, arg_idx, arg_def); argdef_inds.insert(argdef_inds.end(), arg_results.begin(), arg_results.end()); } return argdef_inds; } std::vector<std::pair<int, int>> OutputPortArgDefIndexes(const NodeDef& node, const OpDef& op_def) { std::vector<std::pair<int, int>> argdef_inds; argdef_inds.reserve(op_def.output_arg_size()); for (int arg_idx = 0; arg_idx < op_def.output_arg_size(); ++arg_idx) { const OpDef::ArgDef& arg_def = op_def.output_arg(arg_idx); auto arg_results = ArgDefIndexes(node, arg_idx, arg_def); argdef_inds.insert(argdef_inds.end(), arg_results.begin(), arg_results.end()); } return argdef_inds; } TypeAttrId GetTypeAttrId(const OpDef::ArgDef& arg_def, int arg_type_index) { if (!arg_def.type_list_attr().empty()) { return TypeAttrId(arg_def.type_list_attr(), arg_type_index); } else if (!arg_def.type_attr().empty()) { return TypeAttrId(arg_def.type_attr()); } else { return TypeAttrId(arg_def.type()); } } std::vector<int> NonControlInputs(const NodeDef& node) { std::vector<int> pos; for (int i = 0; i < node.input_size(); i++) { if (!IsControlInput(node.input(i))) { pos.push_back(i); } } return pos; } class NodeTypeAttrMap { public: NodeTypeAttrMap() {} explicit NodeTypeAttrMap(const GraphDef& graph) { TF_CHECK_OK(Init(graph)); } Status Init(const GraphDef& graph) { if (graph_ != nullptr) { return errors::InvalidArgument("NodeTypeAttrMap is already initialized."); } graph_ = &graph; function_library_.reset( new FunctionLibraryDefinition(OpRegistry::Global(), graph.library())); for (const NodeDef& node : graph.node()) { TF_RETURN_IF_ERROR(AddNode(node)); } return absl::OkStatus(); } bool is_initialized() const { return graph_ != nullptr; } absl::flat_hash_set<TypeAttrId> GetTypeAttrs(const NodeDef& node) const { DCHECK(is_initialized()) << "NodeTypeAttrMap is not initialized"; absl::flat_hash_set<TypeAttrId> type_attrs; const auto iter = type2io_.find(&node); CHECK(iter != type2io_.end()); for (const auto& key_value : iter->second) { type_attrs.insert(key_value.first); } return type_attrs; } const absl::flat_hash_set<int>& GetInputPorts( const NodeDef& node, const TypeAttrId& type_attr) const { DCHECK(is_initialized()) << "NodeTypeAttrMap is not initialized"; return type2io_.at(&node).at(type_attr).first; } const absl::flat_hash_set<int>& GetOutputPorts( const NodeDef& node, const TypeAttrId& type_attr) const { DCHECK(is_initialized()) << "NodeTypeAttrMap is not initialized"; return type2io_.at(&node).at(type_attr).second; } TypeAttrId GetInputTypeAttr(const NodeDef& node, int port) const { DCHECK(is_initialized()) << "NodeTypeAttrMap is not initialized"; const auto iter = io2type_.find(&node); DCHECK(iter != io2type_.end()) << "Node " << node.name() << " doesn't exist in a graph"; auto type_vec = io2type_.at(&node).first; CHECK_GE(port, 0); CHECK_LT(port, type_vec.size()); return type_vec[port]; } TypeAttrId GetOutputTypeAttr(const NodeDef& node, int port) const { DCHECK(is_initialized()) << "NodeTypeAttrMap is not initialized"; auto type_vec = io2type_.at(&node).second; CHECK_GE(port, 0); CHECK_LT(port, type_vec.size()); return type_vec[port]; } private: Status AddNode(const NodeDef& node) { const OpDef* op_def_ptr = nullptr; TF_RETURN_IF_ERROR(function_library_->LookUpOpDef(node.op(), &op_def_ptr)); const OpDef& op_def = *op_def_ptr; auto& type2io_entry = type2io_[&node]; auto& io2type_entry = io2type_[&node]; auto input_arg_inds = InputPortArgDefIndexes(node, op_def); if (NonControlInputs(node).size() != input_arg_inds.size()) { return errors::InvalidArgument( "Expected ", node.op(), " node ", node.name(), " to have ", input_arg_inds.size(), " non-control input(s), but got ", node.input_size()); } io2type_entry.first.reserve(input_arg_inds.size()); for (int i = 0; i < static_cast<int>(input_arg_inds.size()); ++i) { const auto& arg_inds = input_arg_inds[i]; const OpDef::ArgDef& arg_def = op_def.input_arg(arg_inds.first); TypeAttrId type_attr = GetTypeAttrId(arg_def, arg_inds.second); if (!type_attr.attr_name.empty() && !node.attr().count(type_attr.attr_name)) { return errors::InvalidArgument("Type attribute ", type_attr.attr_name, " is not present in node ", node.name()); } type2io_entry[type_attr].first.insert(i); io2type_entry.first.push_back(type_attr); } auto output_arg_inds = OutputPortArgDefIndexes(node, op_def); io2type_entry.second.reserve(output_arg_inds.size()); for (int i = 0; i < static_cast<int>(output_arg_inds.size()); ++i) { const auto& arg_inds = output_arg_inds[i]; const OpDef::ArgDef& arg_def = op_def.output_arg(arg_inds.first); TypeAttrId type_attr = GetTypeAttrId(arg_def, arg_inds.second); if (!type_attr.attr_name.empty() && !node.attr().count(type_attr.attr_name)) { return errors::InvalidArgument("Type attribute ", type_attr.attr_name, " is not present in node ", node.name()); } type2io_entry[type_attr].second.insert(i); io2type_entry.second.push_back(type_attr); } for (const auto& attr : node.attr()) { const string& attr_name = attr.first; if (!attr_name.empty() && attr_name[0] == '_') continue; const AttrValue& attr_value = attr.second; const OpDef::AttrDef* attr_def = FindAttr(attr_name, op_def); if (!attr_def) { return errors::InvalidArgument("AttrDef not found for attribute ", attr_name, " of node ", node.name()); } if (attr_def->type() == "type") { type2io_entry[TypeAttrId(attr_name)]; } else if (attr_def->type() == "list(type)") { for (int i = 0; i < attr_value.list().type_size(); ++i) { type2io_entry[TypeAttrId(attr_name, i)]; } } } return absl::OkStatus(); } const GraphDef* graph_ = nullptr; std::unique_ptr<FunctionLibraryDefinition> function_library_; typedef absl::flat_hash_set<int> IntSet; typedef absl::flat_hash_map<TypeAttrId, std::pair<IntSet, IntSet>> Type2IOMap; absl::flat_hash_map<const NodeDef*, Type2IOMap> type2io_; typedef std::vector<TypeAttrId> TypeAttrIdVec; absl::flat_hash_map<const NodeDef*, std::pair<TypeAttrIdVec, TypeAttrIdVec>> io2type_; }; struct NodeTypeId { NodeTypeId(const NodeDef* _node, const TypeAttrId& _type_attr) : node(_node), type_attr(_type_attr) {} const NodeDef* node; TypeAttrId type_attr; bool operator==(const NodeTypeId& other) const { return node == other.node && type_attr == other.type_attr; } template <typename H> friend H AbslHashValue(H h, const NodeTypeId& nt) { return H::combine(std::move(h), nt.node, nt.type_attr); } }; struct NodeTypeIdEdge { NodeTypeIdEdge(const NodeTypeId& _src, const NodeTypeId& _dst) : src(_src), dst(_dst) {} NodeTypeId src; NodeTypeId dst; }; class GraphTypeTopologyView { public: GraphTypeTopologyView() = default; explicit GraphTypeTopologyView(bool skip_invalid_edges) : skip_invalid_edges_(skip_invalid_edges) {} Status InitializeFromGraph(const GraphDef& graph, const NodeTypeAttrMap& node_type_map); Status AddEphemeralEdges(absl::Span<const NodeTypeIdEdge> ephemeral_edges); bool is_initialized() const { return graph_ != nullptr; } int num_nodes() const { return num_nodes_; } const GraphDef* graph() const { return graph_; } bool HasNode(absl::string_view node_name, const TypeAttrId& type_attr) const; const NodeTypeId* GetNode(absl::string_view node_name, const TypeAttrId& type_attr) const; const NodeTypeId* GetNode(int node_idx) const; const absl::optional<int> GetNodeIndex(absl::string_view node_name, const TypeAttrId& type_attr) const; const absl::optional<int> GetNodeIndex(const NodeTypeId& node) const; const absl::InlinedVector<int, 4>& GetFanin(int node_idx) const; const absl::InlinedVector<int, 2>& GetFanout(int node_idx) const; private: struct NodeTypeKey : public std::pair<absl::string_view, TypeAttrId> { typedef std::pair<absl::string_view, TypeAttrId> Base; using Base::pair; template <typename H> friend H AbslHashValue(H h, const NodeTypeKey& nt) { return H::combine(std::move(h), nt.first, nt.second); } }; bool skip_invalid_edges_ = false; const GraphDef* graph_ = nullptr; int num_nodes_ = 0; std::vector<NodeTypeId> node_type_attrs_; absl::flat_hash_map<absl::string_view, int> node_name_to_index_; absl::flat_hash_map<NodeTypeKey, int> node_type_name_to_index_; std::vector<absl::InlinedVector<int, 4>> fanins_; std::vector<absl::InlinedVector<int, 2>> fanouts_; absl::InlinedVector<int, 4> empty_fanin_; absl::InlinedVector<int, 2> empty_fanout_; }; template <typename T> inline void SortAndRemoveDuplicates(T* v) { std::sort(v->begin(), v->end()); v->erase(std::unique(v->begin(), v->end()), v->end()); } Status GraphTypeTopologyView::InitializeFromGraph( const GraphDef& graph, const NodeTypeAttrMap& node_type_map) { if (graph_ != nullptr) { return errors::InvalidArgument( "GraphTypeTopologyView is already initialized."); } graph_ = &graph; int num_nodedefs = graph.node_size(); node_name_to_index_.rehash(num_nodedefs); node_type_attrs_.reserve(num_nodedefs); node_type_name_to_index_.rehash(num_nodedefs); for (int node_idx = 0; node_idx < num_nodedefs; ++node_idx) { const NodeDef& node = graph.node(node_idx); node_name_to_index_.emplace(node.name(), node_idx); for (const TypeAttrId& type_attr : node_type_map.GetTypeAttrs(node)) { int node_type_idx = node_type_attrs_.size(); node_type_name_to_index_.emplace(NodeTypeKey(node.name(), type_attr), node_type_idx); node_type_attrs_.emplace_back(&node, type_attr); } } num_nodes_ = node_type_attrs_.size(); fanins_.resize(num_nodes_); fanouts_.resize(num_nodes_); for (int node_type_idx = 0; node_type_idx < num_nodes_; ++node_type_idx) { const NodeTypeId& node_type = node_type_attrs_.at(node_type_idx); auto input_ports = node_type_map.GetInputPorts(*node_type.node, node_type.type_attr); fanins_[node_type_idx].reserve(input_ports.size()); for (int port : input_ports) { const string& input = node_type.node->input(port); TensorId tensor = ParseTensorName(input); const auto it = node_name_to_index_.find(tensor.node()); const bool valid_input = it != node_name_to_index_.end(); if (!valid_input) { const string error_message = absl::StrCat( "Non-existent input ", input, " in node ", node_type.node->name()); if (skip_invalid_edges_) { VLOG(3) << "Skip error: " << error_message; } else { return errors::InvalidArgument(error_message); } } if (valid_input) { const int input_idx = it->second; const NodeDef& input_node = graph_->node(input_idx); TypeAttrId input_type_attr = node_type_map.GetOutputTypeAttr(input_node, tensor.index()); const auto it2 = node_type_name_to_index_.find( NodeTypeKey(input_node.name(), input_type_attr)); if (it2 == node_type_name_to_index_.end()) { if (!skip_invalid_edges_) { return errors::InvalidArgument("Did not find type attr ", input_type_attr.DebugString(), " in node ", input_node.name()); } continue; } int input_node_type_idx = it2->second; fanins_[node_type_idx].push_back(input_node_type_idx); fanouts_[input_node_type_idx].push_back(node_type_idx); } } SortAndRemoveDuplicates(&fanins_[node_type_idx]); } for (int node_type_idx = 0; node_type_idx < num_nodes_; ++node_type_idx) { SortAndRemoveDuplicates(&fanouts_[node_type_idx]); } return absl::OkStatus(); } Status GraphTypeTopologyView::AddEphemeralEdges( absl::Span<const NodeTypeIdEdge> ephemeral_edges) { for (const NodeTypeIdEdge& edge : ephemeral_edges) { const auto src = node_name_to_index_.find(edge.src.node->name()); const bool valid_src = src != node_name_to_index_.end(); if (!valid_src) { const string error_message = absl::StrCat("Non-existent src node: ", edge.src.node->name()); if (skip_invalid_edges_) { VLOG(0) << "Skip error: " << error_message; } else { return errors::InvalidArgument(error_message); } } const auto dst = node_name_to_index_.find(edge.dst.node->name()); const bool valid_dst = dst != node_name_to_index_.end(); if (!valid_dst) { const string error_message = absl::StrCat("Non-existent dst node: ", edge.dst.node->name()); if (skip_invalid_edges_) { VLOG(0) << "Skip error: " << error_message; } else { return errors::InvalidArgument(error_message); } } if (valid_dst && valid_src) { int src_node_type_idx = node_type_name_to_index_.at( NodeTypeKey(edge.src.node->name(), edge.src.type_attr)); int dst_node_type_idx = node_type_name_to_index_.at( NodeTypeKey(edge.dst.node->name(), edge.dst.type_attr)); fanins_[dst_node_type_idx].push_back(src_node_type_idx); fanouts_[src_node_type_idx].push_back(dst_node_type_idx); } } for (int node_type_idx = 0; node_type_idx < num_nodes_; ++node_type_idx) { SortAndRemoveDuplicates(&fanins_[node_type_idx]); SortAndRemoveDuplicates(&fanouts_[node_type_idx]); } return absl::OkStatus(); } bool GraphTypeTopologyView::HasNode(absl::string_view node_name, const TypeAttrId& type_attr) const { DCHECK(is_initialized()) << "GraphTypeTopologyView is not initialized"; NodeTypeKey key(node_name, type_attr); const auto it = node_type_name_to_index_.find(key); return it != node_type_name_to_index_.end(); } const NodeTypeId* GraphTypeTopologyView::GetNode( absl::string_view node_name, const TypeAttrId& type_attr) const { DCHECK(is_initialized()) << "GraphTypeTopologyView is not initialized"; NodeTypeKey key(node_name, type_attr); const auto it = node_type_name_to_index_.find(key); return it == node_type_name_to_index_.end() ? nullptr : &node_type_attrs_.at(it->second); } const NodeTypeId* GraphTypeTopologyView::GetNode(int node_idx) const { DCHECK(is_initialized()) << "GraphTypeTopologyView is not initialized"; DCHECK(node_idx >= 0 && node_idx < num_nodes_) << "node_idx is out of range"; return &node_type_attrs_.at(node_idx); } const absl::optional<int> GraphTypeTopologyView::GetNodeIndex( absl::string_view node_name, const TypeAttrId& type_attr) const { DCHECK(is_initialized()) << "GraphTypeTopologyView is not initialized"; NodeTypeKey key(node_name, type_attr); const auto it = node_type_name_to_index_.find(key); DCHECK(it != node_type_name_to_index_.end()) << "Node doesn't exist in a graph"; return it == node_type_name_to_index_.end() ? absl::nullopt : absl::make_optional(it->second); } const absl::optional<int> GraphTypeTopologyView::GetNodeIndex( const NodeTypeId& node) const { return GetNodeIndex(node.node->name(), node.type_attr); } const absl::InlinedVector<int, 4>& GraphTypeTopologyView::GetFanin( int node_idx) const { DCHECK(is_initialized()) << "GraphTypeTopologyView is not initialized"; const bool is_valid_node_idx = node_idx >= 0 && node_idx < num_nodes_; DCHECK(is_valid_node_idx) << "node_idx is out of range"; return is_valid_node_idx ? fanins_[node_idx] : empty_fanin_; } const absl::InlinedVector<int, 2>& GraphTypeTopologyView::GetFanout( int node_idx) const { DCHECK(is_initialized()) << "GraphTypeTopologyView is not initialized"; const bool is_valid_node_idx = node_idx >= 0 && node_idx < num_nodes_; DCHECK(is_valid_node_idx) << "node_idx is out of range"; return is_valid_node_idx ? fanouts_[node_idx] : empty_fanout_; } enum class TypeTraversalDirection { kFollowInputs, kFollowOutputs, kFollowInputsAndOutputs, }; struct DfsTypeCallbacks { DfsTypeCallbacks() = default; DfsTypeCallbacks(std::function<void(int)> pre, std::function<void(int)> post, std::function<void(int, int)> back_edge) : pre_order(std::move(pre)), post_order(std::move(post)), on_back_edge(std::move(back_edge)) {} static DfsTypeCallbacks PreOrder(std::function<void(int)> pre) { return DfsTypeCallbacks(std::move(pre), nullptr, nullptr); } static DfsTypeCallbacks PostOrder(std::function<void(int)> post) { return DfsTypeCallbacks(nullptr, std::move(post), nullptr); } std::function<void(int)> pre_order; std::function<void(int)> post_order; std::function<void(int, int)> on_back_edge; }; struct DfsTypePredicates { DfsTypePredicates() = default; DfsTypePredicates(std::function<bool(int)> enter, std::function<bool(int)> advance) : enter(std::move(enter)), advance(std::move(advance)) {} static DfsTypePredicates Enter(std::function<bool(int)> enter) { return DfsTypePredicates(std::move(enter), nullptr); } static DfsTypePredicates Advance(std::function<bool(int)> advance) { return DfsTypePredicates(nullptr, std::move(advance)); } std::function<bool(int)> enter; std::function<bool(int)> advance; }; struct DfsStackElem { DfsStackElem(int node, bool children_visited, int src) : node(node), children_visited(children_visited), src(src) {} explicit DfsStackElem(int node) : DfsStackElem(node, false, -1) {} int node; bool children_visited; int src; }; enum class NodeState { kNotVisited, kVisiting, kDone }; void DfsTypeTraversal(const GraphTypeTopologyView& graph_type_view, const absl::Span<const NodeTypeId* const> from, const TypeTraversalDirection direction, const DfsTypePredicates& predicates, const DfsTypeCallbacks& callbacks) { std::vector<DfsStackElem> stack; stack.reserve(from.size()); for (const NodeTypeId* node : from) { const absl::optional<int> node_idx = graph_type_view.GetNodeIndex(*node); DCHECK(node_idx.has_value()) << "Illegal start node: " << node->node->name(); if (node_idx.has_value()) { stack.emplace_back(node_idx.value()); } } absl::flat_hash_map<int, NodeState> node_state; while (!stack.empty()) { DfsStackElem w = stack.back(); stack.pop_back(); NodeState& state = node_state[w.node]; if (state == NodeState::kDone) continue; if (predicates.enter && !predicates.enter(w.node)) { state = NodeState::kDone; continue; } if (w.children_visited) { state = NodeState::kDone; if (callbacks.post_order) { callbacks.post_order(w.node); } continue; } if (state == NodeState::kVisiting) { if (callbacks.on_back_edge) { callbacks.on_back_edge(w.src, w.node); } continue; } state = NodeState::kVisiting; if (callbacks.pre_order) { callbacks.pre_order(w.node); } stack.emplace_back(w.node, true, w.src); if (predicates.advance && !predicates.advance(w.node)) { continue; } if (direction == TypeTraversalDirection::kFollowInputs || direction == TypeTraversalDirection::kFollowInputsAndOutputs) { for (const int fanin : graph_type_view.GetFanin(w.node)) { stack.emplace_back(fanin, false, w.node); } } if (direction == TypeTraversalDirection::kFollowOutputs || direction == TypeTraversalDirection::kFollowInputsAndOutputs) { for (const int fanout : graph_type_view.GetFanout(w.node)) { stack.emplace_back(fanout, false, w.node); } } } } DataTypeSet AllowedDataTypes(const OpDef::AttrDef& attr_def) { const auto& allowed_types = attr_def.allowed_values().list().type(); if (allowed_types.empty()) { return AllTypes(); } uint32 dtype_mask = 0; for (int dtype : allowed_types) { dtype_mask |= 1u << dtype; } return DataTypeSet(dtype_mask); } DataTypeSet AllowedDataTypes(const OpDef& op_def, const TypeAttrId& t_attr_id) { if (t_attr_id.attr_name.empty()) { return ToSet(t_attr_id.fixed_type); } const OpDef::AttrDef* attr_def = FindAttr(t_attr_id.attr_name, op_def); CHECK(attr_def); return AllowedDataTypes(*attr_def); } Status ValidateLists(const gtl::FlatSet<string>& allow_list, const gtl::FlatSet<string>& deny_list, const gtl::FlatSet<string>& infer_list, const gtl::FlatSet<string>& clear_list) { std::vector<gtl::FlatSet<string>> lists{allow_list, deny_list, infer_list, clear_list}; std::multiset<string> counts; for (const auto& list : lists) { counts.insert(list.begin(), list.end()); } bool duplicates = false; for (const auto& s : counts) { if (counts.count(s) > 1) { duplicates = true; LOG(ERROR) << "Op present in multiple lists: " << s; } } if (duplicates) { return errors::InvalidArgument("Op lists have conflicting entries"); } else { return absl::OkStatus(); } } bool HasInputOrOutputRefs(const NodeDef& node) { const OpDef* op_def; Status status = OpRegistry::Global()->LookUpOpDef(node.op(), &op_def); if (!status.ok()) { return true; } for (const auto& input : op_def->input_arg()) { if (input.is_ref()) { return true; } } for (const auto& output : op_def->output_arg()) { if (output.is_ref()) { return true; } } return false; } bool CanForceFP16(const NodeDef& node) { return node.op() != "Const" && node.op() != "SoftmaxCrossEntropyWithLogits" && !IsStateful(node) && !HasInputOrOutputRefs(node); } int GetCudaVersion( const std::unordered_map<string, DeviceProperties>& devices) { for (const auto& device : devices) { const DeviceProperties& device_properties = device.second; if (device_properties.type() == "GPU") { const auto& device_env = device_properties.environment(); auto it = device_env.find("cuda"); if (it != device_env.end()) { string cuda_version_str = it->second; return std::stoi(cuda_version_str); } } } return 0; } int GetCudnnVersion( const std::unordered_map<string, DeviceProperties>& devices) { for (const auto& device : devices) { const DeviceProperties& device_properties = device.second; if (device_properties.type() == "GPU") { const auto& device_env = device_properties.environment(); auto it = device_env.find("cudnn"); if (it != device_env.end()) { string cudnn_version_str = it->second; return std::stoi(cudnn_version_str); } } } return 0; } std::unordered_map<string, DeviceProperties> GetDevices(Cluster* cluster) { if (!ShouldSimulateGpu()) { return cluster->GetDevices(); } bool has_gpu = false; for (const auto& device : cluster->GetDevices()) { const DeviceProperties& device_properties = device.second; if (device_properties.type() == "GPU") { has_gpu = true; break; } } if (has_gpu) { return cluster->GetDevices(); } std::unordered_map<string, DeviceProperties> devices(cluster->GetDevices()); DeviceProperties gpu_device_properies; gpu_device_properies.set_type("GPU"); #if GOOGLE_CUDA gpu_device_properies.set_vendor("NVIDIA"); gpu_device_properies.mutable_environment()->insert({"architecture", "8.0"}); gpu_device_properies.mutable_environment()->insert({"cuda", "11050"}); gpu_device_properies.mutable_environment()->insert({"cudnn", "8302"}); #elif TENSORFLOW_USE_ROCM gpu_device_properies.set_vendor("Advanced Micro Devices, Inc"); gpu_device_properies.mutable_environment()->insert( {"architecture", "gfx908"}); #endif devices.emplace(std::make_pair("/job:localhost/replica:0/task:0/device:GPU:0", gpu_device_properies)); return devices; } class AutoMixedPrecisionImpl { public: enum class CastType { FP16, FP32, AUTO }; AutoMixedPrecisionImpl(Cluster* cluster, const std::unordered_set<string>& nodes_to_preserve, GraphDef* graph, string id, AutoMixedPrecisionMode mode) : devices_(GetDevices(cluster)), virtual_placer_(devices_), nodes_to_preserve_(nodes_to_preserve), graph_(graph), function_library_(OpRegistry::Global(), graph->library()), id_(id), graph_view_(graph), cuda_version_(GetCudaVersion(devices_)), cudnn_version_(GetCudnnVersion(devices_)), num_nonvar_casts_to_f16_(0), mode_(mode), target_dtype_((mode_ == AutoMixedPrecisionMode::CUDA || mode_ == AutoMixedPrecisionMode::CPU || mode_ == AutoMixedPrecisionMode::FP16_CPU) ? DT_HALF : DT_BFLOAT16) {} Status Optimize(); private: typedef absl::flat_hash_set<NodeTypeId> NodeTypeIdSet; std::unique_ptr<AutoMixedPrecisionLists> get_mixed_precision_lists() const { switch (mode_) { case AutoMixedPrecisionMode::CUDA: return std::make_unique<AutoMixedPrecisionListsFp16>( cuda_version_, cudnn_version_, AutoMixedPrecisionMode::CUDA); case AutoMixedPrecisionMode::BF16: return std::make_unique<AutoMixedPrecisionListsMkl>(); case AutoMixedPrecisionMode::CPU: return std::make_unique<AutoMixedPrecisionListsFp16>( 10000, 8000, AutoMixedPrecisionMode::CPU); case AutoMixedPrecisionMode::FP16_CPU: return std::make_unique<AutoMixedPrecisionListsFp16>( 0, 0, AutoMixedPrecisionMode::FP16_CPU); } } Status PrintDebugLogs(bool preop, size_t timestamp); void LogSkippedNode(const NodeDef& node, const string& device_type) const; bool MustPreserve(const NodeDef& node) const; bool IsOnDevice(const NodeDef& node, const string& device_type) const; bool IsOnSuitableGPUArch(const NodeDef& node) const; bool ShouldProcess(const NodeDef& node) const; bool NodeHasF16KernelForTypeAttr(const NodeDef& node, TypeAttrId taid) const; bool NodeImplicitlyReadsNonResourceVariable(const NodeDef& node) const; void ConvertBatchNormOpsToV2(); bool SupportsF16(const NodeTypeId& node_type) const; bool SupportsF16DataType(const NodeTypeId& node_type) const; bool IsQuantized(const NodeTypeId& node_type) const; const NodeTypeId* GetTensorListFloat32NodeTypeId(const NodeDef& node) const; bool IsSourceOrSinkOp(const string& op) const; void FindFloat32TensorListOpClustersAndDenylistUnsafe( std::vector<absl::flat_hash_set<const NodeDef*>>* clusters, absl::flat_hash_set<int>* deny_set) const; void FindTensorListImplicitFloat32Edges( const absl::flat_hash_set<const NodeDef*>& tensor_list_nodes, std::vector<NodeTypeIdEdge>* implicit_fp32_edges) const; void AddAllowlistOps(absl::flat_hash_set<int>* allow_set) const; void RemoveAllowsetWithFp32(absl::flat_hash_set<int>* allow_set) const; void PropagateDenyFwdThroughClearAndInfer( absl::flat_hash_set<int>* deny_set) const; void ForceColorMatchBetweenTensorListOps( const absl::flat_hash_set<const NodeDef*>& tensor_list_nodes, absl::flat_hash_set<int>* allow_set, absl::flat_hash_set<int>* deny_set) const; void AddClearAndInferToAllowIfBetweenAllow( const absl::flat_hash_set<int>& deny_set, absl::flat_hash_set<int>* allow_set) const; void AddInferToAllowIfFollowAllow(const absl::flat_hash_set<int>& deny_set, absl::flat_hash_set<int>* allow_set) const; void PropagateAllowThroughClear(const absl::flat_hash_set<int>& deny_set, absl::flat_hash_set<int>* allow_set) const; Status ForceColorMatchOnRecurrentEdges( absl::flat_hash_set<int>* allow_set) const; void MakeCastsAllowIfAllOutputsAllow( absl::flat_hash_set<int>* allow_set) const; NodeDef BuildCastNode(const MutableGraphView::OutputPort& src, bool to_f16, const string& device) const; absl::StatusOr<NodeDef*> InsertCastNodeAtFanout( const absl::flat_hash_set<int>& allow_set, const bool src_is_allow, const CastType& cast_type, MutableGraphView::OutputPort& src); absl::StatusOr<DataType> GetCastToType(const NodeDef* node) const; void CollectOutputPorts( const TypeAttrId& type_attr, NodeDef* node, std::vector<MutableGraphView::OutputPort>& output_ports) const; Status ChangeTypeAttrsAndAddCasts(const absl::flat_hash_set<int>& allow_set); std::unordered_map<string, DeviceProperties> devices_; VirtualPlacer virtual_placer_; std::unordered_set<string> nodes_to_preserve_; GraphDef* graph_; FunctionLibraryDefinition function_library_; string id_; MutableGraphView graph_view_; int cuda_version_; int cudnn_version_; int num_nonvar_casts_to_f16_; NodeTypeAttrMap node_type_map_; GraphTypeTopologyView graph_type_view_; bool force_all_fp16_; bool treat_infer_as_deny_; AutoMixedPrecisionMode mode_; gtl::FlatSet<string> f16_allowlist_; gtl::FlatSet<string> f16_denylist_; gtl::FlatSet<string> f16_inferlist_; gtl::FlatSet<string> f16_clearlist_; absl::flat_hash_set<const NodeDef*> should_process_nodes_; DataType target_dtype_; }; NodeDef AutoMixedPrecisionImpl::BuildCastNode( const MutableGraphView::OutputPort& src, bool to_f16, const string& device) const { DataType src_type = to_f16 ? DT_FLOAT : target_dtype_; DataType dst_type = to_f16 ? target_dtype_ : DT_FLOAT; const char* cast_string = !to_f16 ? kCastToFp32 : target_dtype_ == DT_HALF ? kCastToFp16 : kCastToBf16; int id = 0; std::string name; do { name = absl::StrCat(src.node->name(), "-", src.port_id, "-", cast_string, "-", id, "-", kSuffix); ++id; } while (graph_view_.GetNode(name)); NodeDef node; node.set_name(name); node.set_op("Cast"); node.set_device(device); node.add_input(strings::StrCat(src.node->name(), ":", src.port_id)); (*node.mutable_attr())["SrcT"].set_type(src_type); (*node.mutable_attr())["DstT"].set_type(dst_type); (*node.mutable_attr())["Truncate"].set_b(false); return node; } bool AutoMixedPrecisionImpl::NodeHasF16KernelForTypeAttr( const NodeDef& node, TypeAttrId taid) const { NodeDef node_copy(node); if (node.device().empty()) { string device_name = virtual_placer_.get_canonical_device_name(node); node_copy.set_device(device_name); } if (!SetDataType(&node_copy, taid, target_dtype_)) { return false; } return IsKernelRegisteredForNode(node_copy).ok(); } Status AutoMixedPrecisionImpl::PrintDebugLogs(bool preop, size_t timestamp) { string prepend_path; TF_RETURN_IF_ERROR(ReadStringFromEnvVar( "TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_LOG_PATH", "", &prepend_path)); if (prepend_path.empty()) return absl::OkStatus(); string suffix = strings::StrCat("_", preop ? "preop" : kSuffix, "_", id_, "_", timestamp); string fname = io::JoinPath(prepend_path, strings::StrCat("graphdef", suffix, ".pb")); std::fstream f; f.open(fname.c_str(), std::fstream::out | std::fstream::binary); f << graph_->SerializeAsString(); f.close(); LOG(INFO) << "Saved " << (preop ? "pre-optimization" : "post-optimization") << " graph as binary to " << fname; fname = io::JoinPath(prepend_path, strings::StrCat("graphdef", suffix, ".pb.txt")); f.open(fname.c_str(), std::fstream::out); f << graph_->DebugString(); f.close(); LOG(INFO) << "Saved " << (preop ? "pre-optimization" : "post-optimization") << " graph as text to " << fname; if (!preop) { fname = io::JoinPath(prepend_path, strings::StrCat("paintbuckets", suffix, ".txt")); f.open(fname.c_str(), std::fstream::out); std::unique_ptr<AutoMixedPrecisionLists> mp_lists = get_mixed_precision_lists(); f << "AllowList:\n"; for (const auto& x : mp_lists->AllowList()) { f << x << "\n"; } f << "\nDenyList:\n"; for (const auto& x : mp_lists->DenyList()) { f << x << "\n"; } f << "\nInferList:\n"; for (const auto& x : mp_lists->InferList()) { f << x << "\n"; } f << "\nClearList:\n"; for (const auto& x : mp_lists->ClearList()) { f << x << "\n"; } f.close(); LOG(INFO) << "Saved paint bucket info to " << fname; } return absl::OkStatus(); } void AutoMixedPrecisionImpl::LogSkippedNode(const NodeDef& node, const string& device_type) const { VLOG(2) << "Skipping " << node.op() << " node " << node.name() << " because it " << (MustPreserve(node) ? "must be preserved" : absl::StrFormat( "is not on the %s, or the %s arch is not suitable", device_type, device_type)); } bool AutoMixedPrecisionImpl::MustPreserve(const NodeDef& node) const { return nodes_to_preserve_.count(node.name()); } bool AutoMixedPrecisionImpl::IsOnDevice(const NodeDef& node, const string& device_type) const { string device_name; if (node.device().empty()) { device_name = virtual_placer_.get_canonical_device_name(node); } else { device_name = node.device(); } string device; string not_used; if (DeviceNameUtils::SplitDeviceName(device_name, &not_used, &device) && absl::StrContains(absl::AsciiStrToLower(device), absl::AsciiStrToLower(device_type))) { return true; } return false; } bool AutoMixedPrecisionImpl::IsOnSuitableGPUArch(const NodeDef& node) const { return HasFastFP16Support(virtual_placer_.get_device(node)); } bool AutoMixedPrecisionImpl::ShouldProcess(const NodeDef& node) const { return should_process_nodes_.count(&node); } bool IsFloat32(const NodeTypeId& node_type) { return GetDataType(*node_type.node, node_type.type_attr) == DataType::DT_FLOAT; } bool IsTensorListOp(const string& op) { return absl::StrContains(op, "TensorList"); } bool IsTensorListReaderOp(const string& op) { static const gtl::FlatSet<string> tensor_list_reader_ops = { "TensorListConcat", "TensorListConcatV2", "TensorListGather", "TensorListGetItem", "TensorListPopBack", "TensorListStack"}; return tensor_list_reader_ops.count(op); } bool IsTensorListWriterOp(const string& op) { static const gtl::FlatSet<string> tensor_list_writer_ops = { "TensorListFromTensor", "TensorListPushBack", "TensorListPushBackBatch", "TensorListScatter", "TensorListScatterV2", "TensorListScatterIntoExistingList", "TensorListSetItem", "TensorListSplit"}; return tensor_list_writer_ops.count(op); } bool AutoMixedPrecisionImpl::SupportsF16(const NodeTypeId& node_type) const { const OpDef* op_def; Status status = OpRegistry::Global()->LookUpOpDef(node_type.node->op(), &op_def); if (!status.ok()) return false; return AllowedDataTypes(*op_def, node_type.type_attr) .Contains(target_dtype_) && NodeHasF16KernelForTypeAttr(*node_type.node, node_type.type_attr); } bool AutoMixedPrecisionImpl::SupportsF16DataType( const NodeTypeId& node_type) const { const OpDef* op_def; Status status = OpRegistry::Global()->LookUpOpDef(node_type.node->op(), &op_def); if (!status.ok()) return false; return AllowedDataTypes(*op_def, node_type.type_attr).Contains(target_dtype_); } bool AutoMixedPrecisionImpl::IsQuantized(const NodeTypeId& node_type) const { for (const TypeAttrId& type_attr : node_type_map_.GetTypeAttrs(*node_type.node)) { if (DataTypeIsQuantized(GetDataType(*node_type.node, type_attr))) { return true; } } return false; } void AutoMixedPrecisionImpl::ConvertBatchNormOpsToV2() { for (int node_idx = 0; node_idx < graph_->node_size(); ++node_idx) { NodeDef* node = graph_->mutable_node(node_idx); if (!ShouldProcess(*node)) continue; bool changed = false; if (node->op() == "FusedBatchNorm") { VLOG(2) << "Changing op of " << node->op() << " node " << node->name() << " to FusedBatchNormV2"; node->set_op("FusedBatchNormV2"); changed = true; } else if (node->op() == "FusedBatchNormGrad") { VLOG(2) << "Changing op of " << node->op() << " node " << node->name() << " to FusedBatchNormGradV2"; node->set_op("FusedBatchNormGradV2"); changed = true; } if (changed) { (*node->mutable_attr())["U"].set_type(DT_FLOAT); } } } bool ShouldIgnorePerformance() { static bool is_enabled = [] { bool ret = false; TF_CHECK_OK(ReadBoolFromEnvVar( "TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE", false, &ret)); return ret; }(); return is_enabled; } Status AutoMixedPrecisionImpl::Optimize() { string optimization_level; TF_RETURN_IF_ERROR(ReadStringFromEnvVar( "TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_LEVEL", "", &optimization_level)); optimization_level = absl::AsciiStrToUpper(optimization_level); force_all_fp16_ = optimization_level == "UNSAFE_FORCE_ALL"; if (force_all_fp16_ && (mode_ == AutoMixedPrecisionMode::BF16 || mode_ == AutoMixedPrecisionMode::FP16_CPU)) { return errors::InvalidArgument( "TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_LEVEL cannot be set to " "UNSAFE_FORCE_ALL when oneDNN is used"); } treat_infer_as_deny_ = optimization_level == "TREAT_INFER_AS_DENY"; VLOG(2) << "Optimization Level: " << optimization_level; std::unique_ptr<AutoMixedPrecisionLists> mp_lists = get_mixed_precision_lists(); f16_allowlist_ = mp_lists->AllowList(); f16_denylist_ = mp_lists->DenyList(); if (treat_infer_as_deny_) { for (const auto& op : mp_lists->InferList()) { f16_denylist_.insert(op); } } else { f16_inferlist_ = mp_lists->InferList(); } f16_clearlist_ = mp_lists->ClearList(); TF_RETURN_IF_ERROR(ValidateLists(f16_allowlist_, f16_denylist_, f16_inferlist_, f16_clearlist_)); size_t timestamp = Env::Default()->NowMicros() / 1000; TF_RETURN_IF_ERROR(PrintDebugLogs( true, timestamp)); VLOG(2) << "Identifying nodes that should be processed"; for (const NodeDef& node : graph_->node()) { bool should_process; string device_type; switch (mode_) { case AutoMixedPrecisionMode::CUDA: device_type = DEVICE_GPU; should_process = !MustPreserve(node) && IsOnDevice(node, device_type) && (ShouldIgnorePerformance() || IsOnSuitableGPUArch(node)); break; case AutoMixedPrecisionMode::BF16: case AutoMixedPrecisionMode::CPU: case AutoMixedPrecisionMode::FP16_CPU: device_type = DEVICE_CPU; should_process = !MustPreserve(node) && IsOnDevice(node, device_type); break; } if (should_process) { should_process_nodes_.insert(&node); } else { LogSkippedNode(node, device_type); } } VLOG(2) << "Converting FusedBatchNorm* ops to V2"; ConvertBatchNormOpsToV2(); VLOG(2) << "Building node type map for graph"; TF_RETURN_IF_ERROR(node_type_map_.Init(*graph_)); VLOG(2) << "Constructing graph type attribute topology view"; TF_RETURN_IF_ERROR( graph_type_view_.InitializeFromGraph(*graph_, node_type_map_)); absl::flat_hash_set<int> deny_set; std::vector<absl::flat_hash_set<const NodeDef*>> tensor_list_clusters; FindFloat32TensorListOpClustersAndDenylistUnsafe(&tensor_list_clusters, &deny_set); std::vector<NodeTypeIdEdge> ephemeral_edges; for (const auto& cluster : tensor_list_clusters) { VLOG(1) << "Found safe Tensor List cluster of size " << cluster.size(); for (const NodeDef* node : cluster) { VLOG(2) << " Cluster member: " << node->op() << " node " << node->name(); } FindTensorListImplicitFloat32Edges(cluster, &ephemeral_edges); } TF_RETURN_IF_ERROR(graph_type_view_.AddEphemeralEdges(ephemeral_edges)); absl::flat_hash_set<int> allow_set; VLOG(2) << "Beginning pass 1 to add allowlist ops"; AddAllowlistOps(&allow_set); VLOG(2) << "Finished pass 1"; if (allow_set.empty()) { LOG(INFO) << "No allowlist ops found, nothing to do"; return absl::OkStatus(); } VLOG(2) << "Beginning pass 2 to propagate deny forwards from denylist ops " "through clear/inferlist ops"; PropagateDenyFwdThroughClearAndInfer(&deny_set); VLOG(2) << "Finished pass 2"; VLOG(2) << "Forcing color match between data structure ops"; for (const auto& cluster : tensor_list_clusters) { ForceColorMatchBetweenTensorListOps(cluster, &allow_set, &deny_set); } VLOG(2) << "Beginning pass 3 to set clear and infer nodes to allow if they " "are between allow ops"; AddClearAndInferToAllowIfBetweenAllow(deny_set, &allow_set); VLOG(2) << "Finished pass 3"; VLOG(2) << "Beginning pass 4 to add infer list ops to allow if they " "directly follow allow nodes"; AddInferToAllowIfFollowAllow(deny_set, &allow_set); VLOG(2) << "Finished pass 4"; VLOG(2) << "Beginning pass 5 to propagate allow from allow nodes through " "clearlist ops"; PropagateAllowThroughClear(deny_set, &allow_set); VLOG(2) << "Finished pass 5"; VLOG(2) << "Beginning pass 6 to remove some nodes which could not be changed " "to F16" "from allow set"; RemoveAllowsetWithFp32(&allow_set); VLOG(2) << "Finished pass 6"; VLOG(2) << "Forcing color match between data structure ops"; for (const auto& cluster : tensor_list_clusters) { ForceColorMatchBetweenTensorListOps(cluster, &allow_set, &deny_set); } VLOG(2) << "Forcing color match on loop edges"; TF_RETURN_IF_ERROR(ForceColorMatchOnRecurrentEdges(&allow_set)); VLOG(2) << "Finding existing casts that can be made allow"; MakeCastsAllowIfAllOutputsAllow(&allow_set); VLOG(2) << "Beginning final pass to change type attributes and insert Cast " "ops at paint boundaries"; TF_RETURN_IF_ERROR(ChangeTypeAttrsAndAddCasts(allow_set)); VLOG(2) << "Finished final pass"; TF_RETURN_IF_ERROR(PrintDebugLogs( false, timestamp)); return absl::OkStatus(); } const NodeTypeId* AutoMixedPrecisionImpl::GetTensorListFloat32NodeTypeId( const NodeDef& node) const { if (!IsTensorListOp(node.op())) return nullptr; for (const TypeAttrId& type_attr : node_type_map_.GetTypeAttrs(node)) { const NodeTypeId* node_type = graph_type_view_.GetNode(node.name(), type_attr); if (node_type && node_type->type_attr.fixed_type == DT_INVALID && node_type->type_attr.type_index == TypeAttrId::kSingleType && IsFloat32(*node_type)) { return node_type; } } return nullptr; } bool AutoMixedPrecisionImpl::IsSourceOrSinkOp(const string& op) const { const gtl::FlatSet<string> source_and_sink_ops = { "_Arg", "_Retval", "OptionalFromValue", "OptionalGetValue", "PartitionedCall", "Placeholder", "StatefulPartitionedCall", }; return source_and_sink_ops.count(op) || function_library_.Find(op); } void AutoMixedPrecisionImpl::FindFloat32TensorListOpClustersAndDenylistUnsafe( std::vector<absl::flat_hash_set<const NodeDef*>>* tensor_list_clusters, absl::flat_hash_set<int>* deny_set) const { absl::flat_hash_set<const NodeDef*> tensor_list_prop_set; for (int root_idx = 0; root_idx < graph_type_view_.num_nodes(); ++root_idx) { const NodeTypeId& root = *graph_type_view_.GetNode(root_idx); if (!ShouldProcess(*root.node) || root.type_attr.fixed_type != DataType::DT_VARIANT || !GetTensorListFloat32NodeTypeId(*root.node) || tensor_list_prop_set.count(root.node)) { continue; } const NodeTypeId* root_fp32 = GetTensorListFloat32NodeTypeId(*root.node); const absl::optional<int> maybe_root_fp32_idx = graph_type_view_.GetNodeIndex(*root_fp32); DCHECK(maybe_root_fp32_idx.has_value()) << "Type attribute " << root_fp32->type_attr.DebugString() << " of node " << root.node->name() << " not found in graph view"; int root_fp32_idx = maybe_root_fp32_idx.value(); absl::flat_hash_set<const NodeDef*> cluster({root.node}); DfsTypeTraversal(graph_type_view_, {&root}, TypeTraversalDirection::kFollowInputsAndOutputs, DfsTypePredicates::Enter([&](int idx) -> bool { const NodeTypeId& item = *graph_type_view_.GetNode(idx); return !tensor_list_prop_set.count(item.node); }), DfsTypeCallbacks::PreOrder([&](int idx) { const NodeTypeId& item = *graph_type_view_.GetNode(idx); const NodeDef* node = item.node; if (GetTensorListFloat32NodeTypeId(*node)) { cluster.insert(node); if (!ShouldProcess(*node)) { deny_set->insert(root_fp32_idx); } } else if (IsSourceOrSinkOp(node->op())) { deny_set->insert(root_fp32_idx); } })); tensor_list_clusters->push_back(cluster); } } void AutoMixedPrecisionImpl::FindTensorListImplicitFloat32Edges( const absl::flat_hash_set<const NodeDef*>& tensor_list_nodes, std::vector<NodeTypeIdEdge>* implicit_fp32_edges) const { for (const NodeDef* root_node : tensor_list_nodes) { if (!IsTensorListReaderOp(root_node->op())) continue; NodeTypeId root(root_node, TypeAttrId(DataType::DT_VARIANT)); const NodeTypeId* root_fp32 = GetTensorListFloat32NodeTypeId(*root.node); CHECK(root_fp32) << "No float32 type attribute found for " << root.node->op() << " node " << root.node->name(); DfsTypeTraversal( graph_type_view_, {&root}, TypeTraversalDirection::kFollowInputs, DfsTypePredicates::Enter([&](int idx) -> bool { const NodeTypeId& item = *graph_type_view_.GetNode(idx); return ShouldProcess(*item.node); }), DfsTypeCallbacks::PreOrder([&](int idx) { const NodeTypeId& item = *graph_type_view_.GetNode(idx); if (IsTensorListWriterOp(item.node->op())) { const NodeTypeId* item_fp32 = GetTensorListFloat32NodeTypeId(*item.node); CHECK(item_fp32) << "No float32 type attribute found for " << item.node->op() << " node " << item.node->name(); VLOG(2) << "Adding ephemeral float32 edge from " << item_fp32->node->op() << " node " << item_fp32->node->name() << " to " << root_fp32->node->op() << " node " << root_fp32->node->name(); implicit_fp32_edges->emplace_back(*item_fp32, *root_fp32); } })); } } void AutoMixedPrecisionImpl::AddAllowlistOps( absl::flat_hash_set<int>* allow_set) const { for (int root_idx = 0; root_idx < graph_type_view_.num_nodes(); ++root_idx) { const NodeTypeId& root = *graph_type_view_.GetNode(root_idx); if (!ShouldProcess(*root.node)) continue; bool force_allow = force_all_fp16_ && CanForceFP16(*root.node); if (f16_allowlist_.count(root.node->op()) || force_allow) { bool inserted = allow_set->insert(root_idx).second; if (VLOG_IS_ON(2) && inserted) { VLOG(2) << "Painting type " << root.type_attr.DebugString() << " of node " << root.node->name() << " ALLOW because its op " << root.node->op() << " is on the allowlist"; } } } } void AutoMixedPrecisionImpl::PropagateDenyFwdThroughClearAndInfer( absl::flat_hash_set<int>* deny_set) const { if (force_all_fp16_) return; absl::flat_hash_set<int> upstream_of_deny_or_infer_set; for (int root_idx = 0; root_idx < graph_type_view_.num_nodes(); ++root_idx) { const NodeTypeId& root = *graph_type_view_.GetNode(root_idx); if (!(f16_denylist_.count(root.node->op()) || f16_inferlist_.count(root.node->op()))) { continue; } DfsTypeTraversal(graph_type_view_, {&root}, TypeTraversalDirection::kFollowInputs, DfsTypePredicates::Enter([&](int idx) -> bool { const NodeTypeId& item = *graph_type_view_.GetNode(idx); return idx == root_idx || (!upstream_of_deny_or_infer_set.count(idx) && f16_clearlist_.count(item.node->op())); }), DfsTypeCallbacks::PreOrder([&](int idx) { upstream_of_deny_or_infer_set.insert(idx); })); } for (int root_idx = 0; root_idx < graph_type_view_.num_nodes(); ++root_idx) { const NodeTypeId& root = *graph_type_view_.GetNode(root_idx); if (deny_set->count(root_idx) || !f16_denylist_.count(root.node->op())) { continue; } DfsTypeTraversal( graph_type_view_, {&root}, TypeTraversalDirection::kFollowOutputs, DfsTypePredicates::Enter([&](int idx) -> bool { return idx == root_idx || (!deny_set->count(idx) && upstream_of_deny_or_infer_set.count(idx)); }), DfsTypeCallbacks::PreOrder([&](int idx) { bool inserted = deny_set->insert(idx).second; if (VLOG_IS_ON(2) && inserted) { const NodeTypeId& item = *graph_type_view_.GetNode(idx); VLOG(2) << "Painting type " << item.type_attr.DebugString() << " of " << item.node->op() << " node " << item.node->name() << " DENY"; } })); } } void AutoMixedPrecisionImpl::AddClearAndInferToAllowIfBetweenAllow( const absl::flat_hash_set<int>& deny_set, absl::flat_hash_set<int>* allow_set) const { absl::flat_hash_set<int> downstream_of_allow_set; for (int root_idx = 0; root_idx < graph_type_view_.num_nodes(); ++root_idx) { const NodeTypeId& root = *graph_type_view_.GetNode(root_idx); if (!ShouldProcess(*root.node) || !f16_allowlist_.count(root.node->op())) { continue; } DfsTypeTraversal( graph_type_view_, {&root}, TypeTraversalDirection::kFollowOutputs, DfsTypePredicates::Enter([&](int idx) -> bool { const NodeTypeId& item = *graph_type_view_.GetNode(idx); return idx == root_idx || (!downstream_of_allow_set.count(idx) && !f16_allowlist_.count(item.node->op()) && !deny_set.count(idx) && ShouldProcess(*item.node) && IsFloat32(item) && SupportsF16(item) && (f16_clearlist_.count(item.node->op()) || f16_inferlist_.count(item.node->op()))); }), DfsTypeCallbacks::PreOrder( [&](int idx) { downstream_of_allow_set.insert(idx); })); } absl::flat_hash_set<int> upstream_of_allow_set; for (int root_idx = 0; root_idx < graph_type_view_.num_nodes(); ++root_idx) { const NodeTypeId& root = *graph_type_view_.GetNode(root_idx); if (!ShouldProcess(*root.node) || upstream_of_allow_set.count(root_idx) || !f16_allowlist_.count(root.node->op())) { continue; } DfsTypeTraversal( graph_type_view_, {&root}, TypeTraversalDirection::kFollowInputs, DfsTypePredicates::Enter([&](int idx) -> bool { return idx == root_idx || (!upstream_of_allow_set.count(idx) && downstream_of_allow_set.count(idx)); }), DfsTypeCallbacks::PreOrder([&](int idx) { upstream_of_allow_set.insert(idx); bool inserted = allow_set->insert(idx).second; if (VLOG_IS_ON(2) && inserted) { const NodeTypeId& item = *graph_type_view_.GetNode(idx); VLOG(2) << "Painting type " << item.type_attr.DebugString() << " of " << item.node->op() << " node " << item.node->name() << " ALLOW"; } })); } } void AutoMixedPrecisionImpl::PropagateAllowThroughClear( const absl::flat_hash_set<int>& deny_set, absl::flat_hash_set<int>* allow_set) const { absl::flat_hash_set<int> clear_prop_set; for (int root_idx = 0; root_idx < graph_type_view_.num_nodes(); ++root_idx) { const NodeTypeId& root = *graph_type_view_.GetNode(root_idx); if (!ShouldProcess(*root.node) || clear_prop_set.count(root_idx) || !allow_set->count(root_idx)) { continue; } DfsTypeTraversal( graph_type_view_, {&root}, TypeTraversalDirection::kFollowInputsAndOutputs, DfsTypePredicates::Enter([&](int idx) -> bool { const NodeTypeId& item = *graph_type_view_.GetNode(idx); return idx == root_idx || (!allow_set->count(idx) && !deny_set.count(idx) && ShouldProcess(*item.node) && IsFloat32(item) && SupportsF16(item) && (f16_clearlist_.count(item.node->op())) && !NodeImplicitlyReadsNonResourceVariable(*item.node)); }), DfsTypeCallbacks::PreOrder([&](int idx) { clear_prop_set.insert(idx); bool inserted = allow_set->insert(idx).second; if (VLOG_IS_ON(2) && inserted) { const NodeTypeId& item = *graph_type_view_.GetNode(idx); VLOG(2) << "Painting type " << item.type_attr.DebugString() << " of " << item.node->op() << " node " << item.node->name() << " ALLOW"; } })); } } void AutoMixedPrecisionImpl::AddInferToAllowIfFollowAllow( const absl::flat_hash_set<int>& deny_set, absl::flat_hash_set<int>* allow_set) const { if (mode_ != AutoMixedPrecisionMode::BF16) { return; } for (int item_idx = 0; item_idx < graph_type_view_.num_nodes(); ++item_idx) { const NodeTypeId& item = *graph_type_view_.GetNode(item_idx); if (!ShouldProcess(*item.node) || deny_set.count(item_idx) || allow_set->count(item_idx) || !f16_inferlist_.count(item.node->op()) || !IsFloat32(item) || !SupportsF16DataType(item)) { continue; } bool has_allow_fanin = false; for (const int fanin : graph_type_view_.GetFanin(item_idx)) { if (deny_set.count(fanin)) { has_allow_fanin = false; break; } if (allow_set->count(fanin)) { has_allow_fanin = true; } } if (has_allow_fanin) { bool inserted = allow_set->insert(item_idx).second; if (VLOG_IS_ON(2) && inserted) { VLOG(2) << "Painting type " << item.type_attr.DebugString() << " of " << item.node->op() << " node " << item.node->name() << " ALLOW"; } } } } void AutoMixedPrecisionImpl::RemoveAllowsetWithFp32( absl::flat_hash_set<int>* allow_set) const { for (int root_idx = 0; root_idx < graph_type_view_.num_nodes(); ++root_idx) { const NodeTypeId& root = *graph_type_view_.GetNode(root_idx); if (f16_allowlist_.count(root.node->op()) && allow_set->count(root_idx) && (!SupportsF16DataType(root) || IsQuantized(root))) { auto erased = allow_set->erase(root_idx); if (VLOG_IS_ON(2) && erased) { VLOG(2) << "UnPainting type " << root.type_attr.DebugString() << " of node " << root.node->name() << " ALLOW because its op " << root.node->op() << " is not support F16 DataType"; } } } } Status AutoMixedPrecisionImpl::ForceColorMatchOnRecurrentEdges( absl::flat_hash_set<int>* allow_set) const { for (const NodeDef& node : graph_->node()) { if (node.op() == "NextIteration") { GraphView::OutputPort output_port(&node, 0); const auto& fanout = graph_view_.GetFanout(output_port); std::vector<int> merge_idxs; merge_idxs.reserve(fanout.size()); bool any_merge_is_not_allow = false; for (const auto& output : fanout) { const NodeDef& merge_node = *output.node; if (merge_node.op() != "Merge") { return errors::FailedPrecondition( "Expected Merge node after NextIteration, got ", merge_node.op()); } const absl::optional<int> maybe_merge_idx = graph_type_view_.GetNodeIndex(merge_node.name(), TypeAttrId("T")); if (!maybe_merge_idx.has_value()) { return errors::Internal("Type attribute T of Merge node ", merge_node.name(), " not found in graph view"); } int merge_idx = maybe_merge_idx.value(); merge_idxs.push_back(merge_idx); any_merge_is_not_allow = any_merge_is_not_allow || !allow_set->count(merge_idx); } const absl::optional<int> maybe_nextiter_idx = graph_type_view_.GetNodeIndex(node.name(), TypeAttrId("T")); if (!maybe_nextiter_idx.has_value()) { return errors::Internal("Type attribute T of NextIteration node ", node.name(), " not found in graph view"); } int nextiter_idx = maybe_nextiter_idx.value(); if (any_merge_is_not_allow) { for (int merge_idx : merge_idxs) { if (allow_set->erase(merge_idx)) { VLOG(2) << "Painting type T of Merge node " << graph_type_view_.GetNode(merge_idx)->node->name() << " DENY to match the color of its sibling Merge nodes " "with common NextIteration node " << node.name(); } } if (allow_set->erase(nextiter_idx)) { VLOG(2) << "Painting type T of NextIteration node " << node.name() << " DENY to match the color of its output Merge node(s)"; } } else { if (allow_set->insert(nextiter_idx).second) { VLOG(2) << "Painting type T of NextIteration node " << node.name() << " ALLOW to match the color of its output Merge node(s)"; } } } } return absl::OkStatus(); } void AutoMixedPrecisionImpl::ForceColorMatchBetweenTensorListOps( const absl::flat_hash_set<const NodeDef*>& tensor_list_nodes, absl::flat_hash_set<int>* allow_set, absl::flat_hash_set<int>* deny_set) const { bool any_deny = false; bool any_allow = false; std::vector<int> node_type_idxs; node_type_idxs.reserve(tensor_list_nodes.size()); for (const NodeDef* node : tensor_list_nodes) { const NodeTypeId& node_type = *GetTensorListFloat32NodeTypeId(*node); const absl::optional<int> maybe_node_type_idx = graph_type_view_.GetNodeIndex(node_type); DCHECK(maybe_node_type_idx.has_value()) << "Type attribute " << node_type.type_attr.DebugString() << " of node " << node->name() << " not found in graph view"; node_type_idxs.push_back(maybe_node_type_idx.value()); } for (int node_type_idx : node_type_idxs) { if (deny_set->count(node_type_idx)) { any_deny = true; break; } else if (allow_set->count(node_type_idx)) { any_allow = true; } } if (!any_deny && !any_allow) return; for (int node_type_idx : node_type_idxs) { const NodeTypeId& node_type = *graph_type_view_.GetNode(node_type_idx); VLOG(2) << "Painting type " << node_type.type_attr.DebugString() << " of " << node_type.node->op() << " node " << node_type.node->name() << " " << (any_deny ? "DENY" : "ALLOW") << " because at least one of its siblings is " << (any_deny ? "DENY" : "ALLOW"); if (any_deny) { allow_set->erase(node_type_idx); deny_set->insert(node_type_idx); } else { allow_set->insert(node_type_idx); } } } bool AutoMixedPrecisionImpl::NodeImplicitlyReadsNonResourceVariable( const NodeDef& node) const { if (node.op() == "Identity" || node.op() == "Enter") { GraphView::InputPort node_input(&node, 0); MutableGraphView::OutputPort prev_output = graph_view_.GetRegularFanin(node_input); const NodeDef* input = prev_output.node; if (input && ((node.op() == "Identity" && (input->op() == "Variable" || input->op() == "VariableV2")) || (node.op() == "Enter" && NodeImplicitlyReadsNonResourceVariable(*input)))) { return true; } } return false; } void AutoMixedPrecisionImpl::MakeCastsAllowIfAllOutputsAllow( absl::flat_hash_set<int>* allow_set) const { int num_nodes_preop = graph_->node_size(); for (int node_idx = 0; node_idx < num_nodes_preop; ++node_idx) { NodeDef* node = graph_->mutable_node(node_idx); NodeTypeId node_type(node, TypeAttrId("DstT")); if (node->op() != "Cast" || !IsFloat32(node_type)) { continue; } bool all_fanouts_allow = true; MutableGraphView::OutputPort src(node, 0); const auto& fanout = graph_view_.GetFanout(src); for (const MutableGraphView::InputPort& dst : fanout) { TypeAttrId dst_type_attr = node_type_map_.GetInputTypeAttr(*dst.node, dst.port_id); const absl::optional<int> maybe_dst_type_idx = graph_type_view_.GetNodeIndex(dst.node->name(), dst_type_attr); DCHECK(maybe_dst_type_idx.has_value()) << "Type attribute " << dst_type_attr.DebugString() << " of node " << dst.node->name() << " not found in graph view"; int dst_type_idx = maybe_dst_type_idx.value(); bool dst_is_allow = allow_set->count(dst_type_idx); if (!dst_is_allow) { all_fanouts_allow = false; break; } } if (!fanout.empty() && all_fanouts_allow) { const absl::optional<int> maybe_node_type_idx = graph_type_view_.GetNodeIndex(node_type); DCHECK(maybe_node_type_idx.has_value()) << "Type attribute " << node_type.type_attr.DebugString() << " of node " << node_type.node->name() << " not found in graph view"; int node_type_idx = maybe_node_type_idx.value(); allow_set->insert(node_type_idx); } } } absl::StatusOr<NodeDef*> AutoMixedPrecisionImpl::InsertCastNodeAtFanout( const absl::flat_hash_set<int>& allow_set, const bool src_is_allow, const CastType& cast_type, MutableGraphView::OutputPort& src) { NodeDef* added_cast_node = nullptr; auto fanout = graph_view_.GetFanout(src); for (const MutableGraphView::InputPort& dst : fanout) { TypeAttrId dst_type_attr = node_type_map_.GetInputTypeAttr(*dst.node, dst.port_id); const absl::optional<int> maybe_dst_type_idx = graph_type_view_.GetNodeIndex(dst.node->name(), dst_type_attr); if (!maybe_dst_type_idx.has_value()) { return errors::Internal("Type attribute ", dst_type_attr.DebugString(), " of ", dst.node->op(), " node ", dst.node->name(), " not found in graph view"); } int dst_type_idx = maybe_dst_type_idx.value(); bool dst_is_allow = allow_set.count(dst_type_idx); bool to_f16 = false; bool should_cast = false; switch (cast_type) { case CastType::AUTO: if (src_is_allow != dst_is_allow) { to_f16 = dst_is_allow; should_cast = true; } break; case CastType::FP16: to_f16 = true; should_cast = true; break; case CastType::FP32: to_f16 = false; should_cast = true; break; default: return errors::Internal("Invalid Cast Type: ", static_cast<int>(cast_type)); } if (!should_cast) continue; if (added_cast_node == nullptr) { VLOG(1) << "Inserting cast to " << (to_f16 ? DataTypeString(target_dtype_) : "DT_FLOAT") << " at " << src.node->op() << " " << src.node->name() << ":" << src.port_id; added_cast_node = graph_view_.AddNode(BuildCastNode(src, to_f16, src.node->device())); if (to_f16 && !IsConstant(*src.node) && !IsVariable(*src.node) && !NodeImplicitlyReadsNonResourceVariable(*src.node)) { ++num_nonvar_casts_to_f16_; } } TF_RETURN_IF_ERROR(graph_view_.UpdateRegularFaninByPort( dst.node->name(), dst.port_id, {added_cast_node->name(), 0})); } return added_cast_node; } absl::StatusOr<DataType> AutoMixedPrecisionImpl::GetCastToType( const NodeDef* node) const { CHECK_EQ(node->op(), "Cast") << "Node " << node->name() << " is not a Cast op"; return node->attr().at("DstT").type(); } void AutoMixedPrecisionImpl::CollectOutputPorts( const TypeAttrId& type_attr, NodeDef* node, std::vector<MutableGraphView::OutputPort>& output_ports) const { for (int port_id : node_type_map_.GetOutputPorts(*node, type_attr)) { output_ports.emplace_back(node, port_id); } } Status AutoMixedPrecisionImpl::ChangeTypeAttrsAndAddCasts( const absl::flat_hash_set<int>& allow_set) { int num_nodes_changed = 0; const int num_nodes_preop = graph_->node_size(); bool emulate_f16 = false; if (mode_ == AutoMixedPrecisionMode::CPU) { TF_CHECK_OK( ReadBoolFromEnvVar("TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_EMULATE_FP16", true, &emulate_f16)); } VLOG(1) << "Setting emulate_f16 = " << emulate_f16; for (int node_idx = 0; node_idx < num_nodes_preop; ++node_idx) { NodeDef* node = graph_->mutable_node(node_idx); for (const TypeAttrId& type_attr : node_type_map_.GetTypeAttrs(*node)) { const absl::optional<int> maybe_node_type_idx = graph_type_view_.GetNodeIndex(node->name(), type_attr); if (!maybe_node_type_idx.has_value()) { return errors::Internal("Type attribute ", type_attr.DebugString(), " of ", node->op(), " node ", node->name(), " not found in graph view"); } int node_type_idx = maybe_node_type_idx.value(); if (!IsFloat32(*graph_type_view_.GetNode(node_type_idx))) continue; bool src_is_allow = allow_set.count(node_type_idx); std::vector<MutableGraphView::OutputPort> output_ports; if (src_is_allow) { if (emulate_f16) { for (int port_id : node_type_map_.GetInputPorts(*node, type_attr)) { VLOG(2) << "Cast to F32 at fanin of node " << node->name() << ":" << port_id; MutableGraphView::InputPort dst(node, port_id); MutableGraphView::OutputPort src = graph_view_.GetRegularFanin(dst); NodeDef* added_cast_node = graph_view_.AddNode( BuildCastNode(src, false, src.node->device())); VLOG(1) << "Inserting cast to DT_FLOAT at " << src.node->op() << " " << src.node->name() << ":" << src.port_id; TF_RETURN_IF_ERROR(graph_view_.UpdateRegularFaninByPort( dst.node->name(), dst.port_id, {added_cast_node->name(), 0})); } for (int port_id : node_type_map_.GetOutputPorts(*node, type_attr)) { MutableGraphView::OutputPort src(node, port_id); VLOG(2) << "Cast to F16 at fanout of node " << node->name() << ":" << port_id; TF_ASSIGN_OR_RETURN(NodeDef * added_cast_node, InsertCastNodeAtFanout(allow_set, src_is_allow, CastType::FP16, src)); if (added_cast_node != nullptr) { output_ports.emplace_back(added_cast_node, 0); } } } else { VLOG(1) << "Changing type " << type_attr.DebugString() << " of " << node->op() << " node " << node->name() << " to " << DataTypeString(target_dtype_); if (!SetDataType(node, type_attr, target_dtype_)) { return errors::Internal("Failed to set type attribute"); } ++num_nodes_changed; CollectOutputPorts(type_attr, node, output_ports); } } else { CollectOutputPorts(type_attr, node, output_ports); } for (auto output_port : output_ports) { VLOG(2) << "Cast to required data type at fanout of node " << output_port.node->name() << ":" << output_port.port_id; TF_RETURN_IF_ERROR(InsertCastNodeAtFanout(allow_set, src_is_allow, CastType::AUTO, output_port) .status()); } } } const char* type_str = target_dtype_ == DT_HALF ? "float16" : "bfloat16"; LOG(INFO) << "Converted " << num_nodes_changed << "/" << num_nodes_preop << " nodes to " << type_str << " precision using " << num_nonvar_casts_to_f16_ << " cast(s) to " << type_str << " (excluding Const and Variable casts)"; return absl::OkStatus(); } int GetNumGPUs(const Cluster& cluster) { if (ShouldSimulateGpu()) { return 1; } auto devices = cluster.GetDevices(); int num_gpus = 0; for (const auto& device : devices) { const DeviceProperties& device_properties = device.second; if (device_properties.type() == "GPU" && (ShouldIgnorePerformance() || HasFastFP16Support(device_properties))) { num_gpus++; } } return num_gpus; } } Status AutoMixedPrecision::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* output) { if (cluster == nullptr) { return errors::InvalidArgument("cluster == nullptr"); } #if !defined(INTEL_MKL) if (mode_ == AutoMixedPrecisionMode::BF16) { return errors::Unimplemented( "The auto_mixed_precision_onednn_bfloat16 optimizer cannot be used " "since this build of TensorFlow is not compiled with oneDNN support " "for bfloat16. " "For information on oneDNN builds, see: " "https: "tensorflow-installation-guide"); } #endif *output = item.graph; int num_gpus = GetNumGPUs(*cluster); if (num_gpus < 1 && mode_ == AutoMixedPrecisionMode::CUDA) { VLOG(1) << "No (suitable) GPUs detected, skipping " << name() << " graph optimizer"; return absl::OkStatus(); } if (mode_ == AutoMixedPrecisionMode::FP16_CPU && !IsAMXDataTypeSupportedByOneDNNOnThisCPU(DT_HALF) && !IsAVXConvertSupportedByOneDNNOnThisCPU()) { VLOG(1) << "No support for " << name() << " graph optimizer on CPU"; return absl::OkStatus(); } if (num_gpus >= 1 && mode_ == AutoMixedPrecisionMode::BF16) { LOG(WARNING) << "Note: GPUs detected. Using " << name() << " graph optimizer configured for BFloat16 on CPUs"; } AutoMixedPrecisionImpl optimizer(cluster, item.NodesToPreserve(), output, item.id, mode_); if (item.id == "tf_graph") { LOG(INFO) << "Running " << name() << " graph optimizer"; } else { VLOG(1) << "Running " << name() << " graph optimizer on " << item.id; } Status status = optimizer.Optimize(); if (!status.ok()) { *output = item.graph; LOG(WARNING) << name() << " graph optimizer FAILED: " << status.ToString(); } return status; } } }
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM || INTEL_MKL #include "tensorflow/core/grappler/optimizers/auto_mixed_precision.h" #include <utility> #include <vector> #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/list_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/clusters/single_machine.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/devices.h" #include "tensorflow/core/grappler/graph_view.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/util/util.h" namespace tensorflow { namespace grappler { namespace { using ::testing::ContainsRegex; using ::testing::SizeIs; template <DataType DTYPE> Tensor GenerateIdentityMatrix(int64_t height, int64_t width) { typedef typename EnumToDataType<DTYPE>::Type T; Tensor tensor(DTYPE, TensorShape{height, width}); for (int64_t i = 0; i < height; ++i) { for (int64_t j = 0; j < width; ++j) { tensor.matrix<T>()(i, j) = i == j; } } return tensor; } template <DataType DTYPE> Tensor GenerateRandomTensorInRange(const TensorShape& shape, double minval, double maxval) { typedef typename EnumToDataType<DTYPE>::Type T; Tensor tensor(DTYPE, shape); for (auto i = 0; i < tensor.NumElements(); i++) tensor.flat<T>()(i) = (random::New64() % 65536 / 65536.0) * (maxval - minval) + minval; return tensor; } void VerifyGraphsEquivalent(const GraphDef& original_graph, const GraphDef& optimized_graph, const string& func) { EXPECT_EQ(original_graph.node_size(), optimized_graph.node_size()) << func; GraphView optimized_view(&optimized_graph); for (int i = 0; i < original_graph.node_size(); ++i) { const NodeDef& original = original_graph.node(i); const NodeDef& optimized = *optimized_view.GetNode(original.name()); EXPECT_EQ(original.name(), optimized.name()) << func; EXPECT_EQ(original.op(), optimized.op()) << func; EXPECT_EQ(original.input_size(), optimized.input_size()) << func; if (original.input_size() == optimized.input_size()) { for (int j = 0; j < original.input_size(); ++j) { EXPECT_EQ(original.input(j), optimized.input(j)) << func; } } } } const std::pair<int, int> kMinGPUArch = {7, 0}; class AutoMixedPrecisionTest : public GrapplerTest { protected: void SetMode(AutoMixedPrecisionMode mode) { mode_ = mode; } void SetUp() override { if (mode_ == AutoMixedPrecisionMode::CUDA) { int num_gpus = GetNumAvailableGPUs(); gpu_available_ = (num_gpus > 0); #if GOOGLE_CUDA gpu_available_ = gpu_available_ && (num_gpus == GetNumAvailableGPUs(kMinGPUArch)); #else gpu_available_ = false; #endif if (gpu_available_) { virtual_cluster_.reset(new SingleMachine( 10, 1, 1)); } else { DeviceProperties device_properties; device_properties.set_type("GPU"); #if GOOGLE_CUDA device_properties.mutable_environment()->insert({"architecture", "7"}); device_properties.mutable_environment()->insert({"cuda", "9010"}); #else device_properties.mutable_environment()->insert( {"architecture", "gfx906"}); #endif virtual_cluster_.reset( new VirtualCluster({{"/GPU:1", device_properties}})); } } else if (mode_ == AutoMixedPrecisionMode::FP16_CPU) { DeviceProperties device_properties; device_properties.set_type("CPU"); virtual_cluster_.reset(new SingleMachine( 10, 1, 0)); bool is_fp16_enabled_on_cpu = false; #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) is_fp16_enabled_on_cpu = IsAMXDataTypeSupportedByOneDNNOnThisCPU(DT_HALF) || IsAVXConvertSupportedByOneDNNOnThisCPU(); #endif if (!IsMKLEnabled() || !is_fp16_enabled_on_cpu) { GTEST_SKIP() << "This device doesn't support FP16"; } } TF_CHECK_OK(virtual_cluster_->Provision()); } void TearDown() override { TF_CHECK_OK(virtual_cluster_->Shutdown()); } NodeDef* AddSimpleNode(const string& name, const string& op, const std::vector<string>& inputs, GraphDef* graph) const { std::vector<std::pair<string, AttrValue>> attributes; if (op == "AddN" || op == "ShapeN") { AttrValue num_inputs; num_inputs.set_i(inputs.size()); attributes.emplace_back("N", num_inputs); } if (op == "ShapeN") { AttrValue out_type; out_type.set_type(DT_INT32); attributes.emplace_back("out_type", out_type); } AttrValue type; type.set_type(DT_FLOAT); if (op == "Const" || op == "Placeholder" || op == "VariableV2" || op == "VarHandleOp" || op == "ReadVariableOp") { attributes.emplace_back("dtype", type); } else if (op == "SparseMatMul") { attributes.emplace_back("Ta", type); attributes.emplace_back("Tb", type); } else if (op == "IdentityN") { AttrValue type_list; for (int i = 0; i < static_cast<int>(inputs.size()); ++i) { type_list.mutable_list()->add_type(DT_FLOAT); } attributes.emplace_back("T", type_list); } else if (op == "StackV2" || op == "StackPopV2") { attributes.emplace_back("elem_type", type); } else if (op == "Cast") { attributes.emplace_back("SrcT", type); attributes.emplace_back("DstT", type); } else { attributes.emplace_back("T", type); } return AddNode(name, op, inputs, attributes, graph); } void TestSimpleUnaryInferOp( double input_min, double input_max, double atol, double rtol, const std::function<Output(const tensorflow::Scope&, Output)>& test_op_factory) { int size = 128; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output eye = ops::Const(s.WithOpName("eye"), GenerateIdentityMatrix<DT_FLOAT>(size, size)); Output input = ops::Placeholder(s.WithOpName("input"), DT_FLOAT); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input, eye); Output infer1 = test_op_factory(s.WithOpName("infer1"), allow1); Output allow2 = ops::MatMul(s.WithOpName("allow2"), infer1, eye); Output fetch1 = ops::Identity(s.WithOpName("fetch1"), allow2); GrapplerItem item; item.fetch = {"fetch1"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto input_tensor = GenerateRandomTensorInRange<DT_FLOAT>( TensorShape({size, size}), input_min, input_max); std::vector<std::pair<string, Tensor>> feed = {{"input", input_tensor}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); auto tensors = EvaluateNodes(output, item.fetch, feed); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], atol, rtol); } } std::unique_ptr<Cluster> virtual_cluster_; bool gpu_available_; AutoMixedPrecisionMode mode_; }; class AutoMixedPrecisionParamTest : public AutoMixedPrecisionTest, public ::testing::WithParamInterface<AutoMixedPrecisionMode> { protected: void SetUp() override { mode_ = GetParam(); AutoMixedPrecisionTest::SetMode(mode_); AutoMixedPrecisionTest::SetUp(); } AutoMixedPrecisionMode mode_; }; TEST_P(AutoMixedPrecisionParamTest, NoOp) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.234f, {32}); Output deny1 = ops::Exp(s.WithOpName("deny1"), input); Output clr1 = ops::Relu(s.WithOpName("clr1"), deny1); Output infer1 = ops::Sqrt(s.WithOpName("infer1"), clr1); Output clr2 = ops::Relu(s.WithOpName("clr2"), infer1); Output fetch = ops::Identity(s.WithOpName("fetch"), clr2); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); VerifyGraphsEquivalent(item.graph, output, __FUNCTION__); GraphView output_view(&output); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors_expected[i], tensors[i], 1e-6); } } TEST_P(AutoMixedPrecisionParamTest, AlreadyFp16) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f, {32, 32}); Output cst1 = ops::Cast(s.WithOpName("cst1"), input, DT_HALF); Output allow1 = ops::MatMul(s.WithOpName("allow1"), cst1, cst1); Output clr1 = ops::Relu(s.WithOpName("clr1"), allow1); Output cst2 = ops::Cast(s.WithOpName("cst2"), clr1, DT_FLOAT); Output clr2 = ops::Relu(s.WithOpName("clr2"), cst2); Output fetch = ops::Identity(s.WithOpName("fetch"), clr2); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); VerifyGraphsEquivalent(item.graph, output, __FUNCTION__); GraphView output_view(&output); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("cst1")->attr().at("DstT").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("cst2")->attr().at("SrcT").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("cst2")->attr().at("DstT").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors_expected[i], tensors[i], 1e-6); } } TEST_P(AutoMixedPrecisionParamTest, Simple) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output deny1 = ops::Exp(s.WithOpName("deny1"), input); Output clr1 = ops::Relu(s.WithOpName("clr1"), deny1); Output infer1 = ops::Sqrt(s.WithOpName("infer1"), clr1); Output clr2 = ops::Relu(s.WithOpName("clr2"), infer1); Output allow1 = ops::MatMul(s.WithOpName("allow1"), clr2, clr2); Output clr3 = ops::Relu(s.WithOpName("clr3"), allow1); Output infer2 = ops::Log(s.WithOpName("infer2"), clr3); Output clr4 = ops::Relu(s.WithOpName("clr4"), infer2); Output deny2 = ops::SparseMatMul(s.WithOpName("deny2"), clr4, clr4); Output clr5 = ops::Relu(s.WithOpName("clr5"), deny2); Output fetch = ops::Identity(s.WithOpName("fetch"), clr5); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("clr3")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("infer2")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr4")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny2")->attr().at("Ta").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny2")->attr().at("Tb").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr5")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 5e-4); } } TEST_P(AutoMixedPrecisionParamTest, NoInferOp) { setenv("TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_LEVEL", "TREAT_INFER_AS_DENY", 1 ); tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output deny1 = ops::Exp(s.WithOpName("deny1"), input); Output clr1 = ops::Relu(s.WithOpName("clr1"), deny1); Output infer1 = ops::Sqrt(s.WithOpName("infer1"), clr1); Output clr2 = ops::Relu(s.WithOpName("clr2"), infer1); Output allow1 = ops::MatMul(s.WithOpName("allow1"), clr2, clr2); Output clr3 = ops::Relu(s.WithOpName("clr3"), allow1); Output infer2 = ops::Log(s.WithOpName("infer2"), clr3); Output clr4 = ops::Relu(s.WithOpName("clr4"), infer2); Output allow2 = ops::MatMul(s.WithOpName("allow2"), clr4, clr4); Output infer3 = ops::Log(s.WithOpName("infer3"), allow2); Output fetch = ops::Identity(s.WithOpName("fetch"), infer3); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 4); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("clr3")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("infer2")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr4")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("infer3")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 5e-4); } unsetenv("TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_LEVEL"); } TEST_P(AutoMixedPrecisionParamTest, BidirectionalClearChain) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output clr1 = ops::Relu(s.WithOpName("clr1"), input); Output clr2 = ops::Relu(s.WithOpName("clr2"), input); Output allow1 = ops::MatMul(s.WithOpName("allow1"), clr1, clr1); auto clr3 = ops::ShapeN(s.WithOpName("clr3"), {clr1, clr2}); Output clr4 = ops::Relu(s.WithOpName("clr4"), clr2); Output fetch1 = ops::Identity(s.WithOpName("fetch1"), allow1); Output fetch2 = ops::Identity(s.WithOpName("fetch2"), clr4); GrapplerItem item; item.fetch = {"fetch1", "fetch2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 3); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("clr3")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("clr4")->attr().at("T").type(), DT_HALF); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors_expected[i], tensors[i], 1e-6); } } TEST_P(AutoMixedPrecisionParamTest, PreserveFetches) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input, input); Output clr1 = ops::Relu(s.WithOpName("clr1"), allow1); Output infer1 = ops::Sqrt(s.WithOpName("infer1"), clr1); Output deny1 = ops::Exp(s.WithOpName("deny1"), infer1); Output clr2 = ops::Relu(s.WithOpName("clr2"), deny1); Output allow2 = ops::MatMul(s.WithOpName("allow2"), clr2, clr2); Output clr3 = ops::Relu(s.WithOpName("clr3"), allow2); Output deny2 = ops::Exp(s.WithOpName("deny2"), clr3); Output clr4 = ops::Relu(s.WithOpName("clr4"), deny2); GrapplerItem item; item.fetch = {"allow1", "clr2", "clr3"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("clr3")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny2")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr4")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 5e-3); } } TEST_P(AutoMixedPrecisionParamTest, PreserveCPUNodes) { if (mode_ == AutoMixedPrecisionMode::FP16_CPU) { GTEST_SKIP() << "This test is not required on CPU"; } tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output clr1 = ops::Relu(s.WithOpName("clr1"), input); Output allow1 = ops::MatMul(s.WithOpName("allow1"), clr1, clr1); Output infer1 = ops::Tanh(s.WithOpName("infer1"), allow1); Output allow2 = ops::MatMul(s.WithOpName("allow2").WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"), infer1, infer1); Output clr2 = ops::Relu(s.WithOpName("clr2"), allow2); Output fetch = ops::Identity(s.WithOpName("fetch"), clr2); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors_expected[i], tensors[i], 1e-6); } } TEST_P(AutoMixedPrecisionParamTest, PreserveIdentityAfterVariable) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output var1 = ops::Variable(s.WithOpName("var1"), {32, 32}, DT_FLOAT); Output clr1 = ops::Identity(s.WithOpName("clr1"), var1); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input, clr1); Output input2 = ops::Const(s.WithOpName("input2"), 1.f / 32, {32, 32}); Output clr2 = ops::Identity(s.WithOpName("clr2"), input2); Output allow2 = ops::MatMul(s.WithOpName("allow2"), input, clr2); Output fetch1 = ops::Identity(s.WithOpName("fetch1"), allow1); Output fetch2 = ops::Identity(s.WithOpName("fetch2"), allow2); GrapplerItem item; item.fetch = {"fetch1", "fetch2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto var1_tensor = GenerateConstantTensor<DT_FLOAT>(TensorShape({32, 32}), 3.141593f); std::vector<std::pair<string, Tensor>> feed = {{"var1", var1_tensor}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 5); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("var1")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("input2")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); auto tensors = EvaluateNodes(output, item.fetch, feed); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 5e-3); } } TEST_P(AutoMixedPrecisionParamTest, FusedBatchNorm) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {8, 56, 56, 16}); Output weight = ops::Const(s.WithOpName("weight"), 2.f, {3, 3, 16, 16}); Output scale = ops::Const(s.WithOpName("scale"), 3.f, {16}); Output offset = ops::Const(s.WithOpName("offset"), 4.f, {16}); Output mean = ops::Const(s.WithOpName("mean"), 5.f, {0}); Output variance = ops::Const(s.WithOpName("variance"), 6.f, {0}); Output allow1 = ops::Conv2D(s.WithOpName("allow1"), input, weight, {1, 1, 1, 1}, "SAME", ops::Conv2D::DataFormat("NHWC")); auto fbn1_op = ops::FusedBatchNorm(s.WithOpName("fbn1"), allow1, scale, offset, mean, variance, ops::FusedBatchNorm::DataFormat("NHWC")); Output fbn1 = fbn1_op.y; Output fbn1_rs1 = fbn1_op.reserve_space_1; Output fbn1_rs2 = fbn1_op.reserve_space_2; Output bng1 = ops::FusedBatchNormGrad( s.WithOpName("bng1"), fbn1, allow1, scale, fbn1_rs1, fbn1_rs2, ops::FusedBatchNormGrad::DataFormat("NHWC")) .x_backprop; Output infer1 = ops::Add(s.WithOpName("infer1"), fbn1, bng1); Output allow2 = ops::Conv2D(s.WithOpName("allow2"), infer1, weight, {1, 1, 1, 1}, "SAME", ops::Conv2D::DataFormat("NHWC")); Output fetch = ops::Identity(s.WithOpName("fetch"), allow2); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 3); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("fbn1")->op(), "FusedBatchNormV2"); EXPECT_EQ(output_view.GetNode("fbn1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("fbn1")->attr().at("U").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("bng1")->op(), "FusedBatchNormGradV2"); EXPECT_EQ(output_view.GetNode("bng1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("bng1")->attr().at("U").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 1e-2); } } TEST_P(AutoMixedPrecisionParamTest, RepeatedAndListTypeAttrs) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input, input); auto clr1_op = ops::IdentityN(s.WithOpName("clr1"), {allow1, allow1, allow1}); Output infer1 = ops::AddN(s.WithOpName("infer1"), {clr1_op.output[0], clr1_op.output[1], clr1_op.output[2]}); Output allow2 = ops::MatMul(s.WithOpName("allow2"), infer1, infer1); Output fetch = ops::Identity(s.WithOpName("fetch"), allow2); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); for (auto type : output_view.GetNode("clr1")->attr().at("T").list().type()) { EXPECT_EQ(type, DT_HALF); } EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors_expected[i], tensors[i], 1e-6); } } TEST_P(AutoMixedPrecisionParamTest, ExistingCast) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), true, {32, 32}); Output cst1 = ops::Cast(s.WithOpName("cst1"), input, DT_FLOAT); Output allow1 = ops::MatMul(s.WithOpName("allow1"), cst1, cst1); Output fetch = ops::Identity(s.WithOpName("fetch"), allow1); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 1); EXPECT_EQ(output_view.GetNode("cst1")->attr().at("SrcT").type(), DT_BOOL); EXPECT_EQ(output_view.GetNode("cst1")->attr().at("DstT").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors_expected[i], tensors[i], 1e-6); } } TEST_P(AutoMixedPrecisionParamTest, RecurrentEdgeColorMismatch) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output deny1 = ops::Exp(s.WithOpName("deny1"), input); Output ent1 = ops::internal::Enter(s.WithOpName("ent1"), deny1, "loop1").output; Output mrg1 = ops::Merge(s.WithOpName("mrg1"), {ent1, ent1}).output; Output con1 = ops::Const(s.WithOpName("con1"), false, {}); Output lpc1 = ops::LoopCond(s.WithOpName("lpc1"), con1).output; auto swt1 = ops::Switch(s.WithOpName("swt1"), mrg1, lpc1); Output infer1 = ops::Sqrt(s.WithOpName("infer1"), swt1.output_true); Output allow1 = ops::MatMul(s.WithOpName("allow1"), infer1, infer1); Output nxt1 = ops::NextIteration(s.WithOpName("nxt1"), allow1); Output ext1 = ops::internal::Exit(s.WithOpName("ext1"), swt1.output_false); Output fetch = ops::Identity(s.WithOpName("fetch"), ext1); auto mrg2 = ops::Merge(s.WithOpName("mrg2"), {ent1, nxt1}); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); NodeMap node_map_original(&item.graph); auto merge_node = node_map_original.GetNode("mrg1"); merge_node->set_input(1, "nxt1"); auto const_node = node_map_original.GetNode("con1"); const_node->add_input("^mrg1"); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); EXPECT_EQ(output_view.GetNode("deny1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("ent1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("mrg1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("swt1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("nxt1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("ext1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("mrg2")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors_expected[i], tensors[i], 1e-6); } } TEST_P(AutoMixedPrecisionParamTest, TensorListSetGet) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); tensorflow::Input shape = {32, 32}; auto tl1 = ops::TensorListReserve(s.WithOpName("tl1"), {32, 32}, 8, DT_FLOAT); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output idx1 = ops::Const(s.WithOpName("idx1"), 1); Output idx2 = ops::Const(s.WithOpName("idx2"), 2); Output idx3 = ops::Const(s.WithOpName("idx3"), 3); auto tl1w1 = ops::TensorListSetItem(s.WithOpName("tl1w1"), tl1.handle, idx1, input); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input, input); auto tl1w2 = ops::TensorListSetItem(s.WithOpName("tl1w2"), tl1.handle, idx2, allow1); Output tl1rs = ops::TensorListResize(s.WithOpName("tl1rs"), tl1w2.output_handle, 6); Output tl1r1 = ops::TensorListGetItem(s.WithOpName("tl1r1"), tl1rs, idx2, shape, DT_FLOAT) .item; Output infer1 = ops::Tanh(s.WithOpName("infer1"), tl1r1); Output allow2 = ops::MatMul(s.WithOpName("allow2"), infer1, infer1); auto tl1w3 = ops::TensorListSetItem(s.WithOpName("tl1w3"), tl1.handle, idx3, allow2); Output tl1r2 = ops::TensorListGetItem(s.WithOpName("tl1r2"), tl1w3.output_handle, idx3, shape, DT_FLOAT) .item; auto tl2 = ops::TensorListReserve(s.WithOpName("tl2"), shape, 8, DT_FLOAT); auto tl2w1 = ops::TensorListSetItem(s.WithOpName("tl2w1"), tl2.handle, idx1, input); Output tl2r1 = ops::TensorListGetItem(s.WithOpName("tl2r1"), tl2w1.output_handle, idx1, shape, DT_FLOAT) .item; Output fetch1 = ops::Identity(s.WithOpName("fetch1"), tl1r2); Output fetch2 = ops::Identity(s.WithOpName("fetch2"), tl2r1); GrapplerItem item; item.fetch = {"fetch1", "fetch2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); const char* type_key = "element_dtype"; EXPECT_EQ(output_view.GetNode("tl1")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1w1")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1w2")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1r1")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1w3")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl2")->attr().at(type_key).type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("tl2w1")->attr().at(type_key).type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("tl2r1")->attr().at(type_key).type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 5e-4); } } TEST_P(AutoMixedPrecisionParamTest, TensorListPushPop) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); tensorflow::Input shape = {32, 32}; auto tl1 = ops::EmptyTensorList(s.WithOpName("tl1"), {32, 32}, 8, DT_FLOAT); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); auto tl1w1 = ops::TensorListPushBack(s.WithOpName("tl1w1"), tl1.handle, input); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input, input); auto tl1w2 = ops::TensorListPushBack(s.WithOpName("tl1w2"), tl1w1.output_handle, allow1); Output tl1r1 = ops::TensorListPopBack(s.WithOpName("tl1r1"), tl1w2.output_handle, shape, DT_FLOAT) .tensor; Output infer1 = ops::Tanh(s.WithOpName("infer1"), tl1r1); Output allow2 = ops::MatMul(s.WithOpName("allow2"), infer1, infer1); auto tl1w3 = ops::TensorListPushBack(s.WithOpName("tl1w3"), tl1.handle, allow2); Output tl1r2 = ops::TensorListPopBack(s.WithOpName("tl1r2"), tl1w3.output_handle, shape, DT_FLOAT) .tensor; auto tl2 = ops::EmptyTensorList(s.WithOpName("tl2"), shape, 8, DT_FLOAT); auto tl2w1 = ops::TensorListPushBack(s.WithOpName("tl2w1"), tl2.handle, input); Output tl2r1 = ops::TensorListPopBack(s.WithOpName("tl2r1"), tl2w1.output_handle, shape, DT_FLOAT) .tensor; Output fetch1 = ops::Identity(s.WithOpName("fetch1"), tl1r2); Output fetch2 = ops::Identity(s.WithOpName("fetch2"), tl2r1); GrapplerItem item; item.fetch = {"fetch1", "fetch2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); const char* type_key = "element_dtype"; EXPECT_EQ(output_view.GetNode("tl1")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1w1")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1w2")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1r1")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1w3")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl2")->attr().at(type_key).type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("tl2w1")->attr().at(type_key).type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("tl2r1")->attr().at(type_key).type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 5e-4); } } TEST_P(AutoMixedPrecisionParamTest, TensorListFromTensor) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); tensorflow::Input shape = {32}; Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input, input); auto tl1 = ops::TensorListFromTensor(s.WithOpName("tl1"), allow1, shape); Output tl1r1 = ops::TensorListStack(s.WithOpName("tl1r1"), tl1.output_handle, shape, DT_FLOAT) .tensor; Output infer1 = ops::Tanh(s.WithOpName("infer1"), tl1r1); Output allow2 = ops::MatMul(s.WithOpName("allow2"), infer1, infer1); Output fetch1 = ops::Identity(s.WithOpName("fetch1"), allow2); auto tl2 = ops::TensorListFromTensor(s.WithOpName("tl2"), allow1, shape); auto tl2w1 = ops::TensorListPushBack(s.WithOpName("tl2w1"), tl2.output_handle, input); GrapplerItem item; item.fetch = {"fetch1"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); const char* type_key = "element_dtype"; EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1r1")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl2")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl2w1")->attr().at(type_key).type(), DT_HALF); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 4e-4); } } TEST_P(AutoMixedPrecisionParamTest, TensorListPushBackBatchAndConcatLists) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); tensorflow::Input shape = {32, 32}; auto tl1 = ops::EmptyTensorList(s.WithOpName("tl1"), {32, 32}, 8, DT_FLOAT); auto tl2 = ops::EmptyTensorList(s.WithOpName("tl2"), {32, 32}, 8, DT_FLOAT); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input, input); Output tl1_tl2 = ops::Stack(s.WithOpName("tl1_tl2"), {tl1.handle, tl2.handle}); Output allow1_allow1 = ops::Stack(s.WithOpName("allow1_allow1"), {allow1, allow1}); auto tl12w1 = ops::TensorListPushBackBatch(s.WithOpName("tl12w1"), tl1_tl2, allow1_allow1); OutputList tl12w1_outputs = ops::Split(s.WithOpName("tl12w1_outputs"), 0, tl12w1.output_handles, 2) .output; Output scalar_shape = ops::Const(s.WithOpName("scalar_shape"), 0, {0}); Output tl12w1_output0 = ops::Reshape(s.WithOpName("tl12w1_output0"), tl12w1_outputs[0], scalar_shape); Output tl12w1_output1 = ops::Reshape(s.WithOpName("tl12w1_output1"), tl12w1_outputs[1], scalar_shape); Output tl3 = ops::TensorListConcatLists(s.WithOpName("tl3"), tl12w1_output0, tl12w1_output1, DT_FLOAT); Output tl3r1 = ops::TensorListPopBack(s.WithOpName("tl3r1"), tl3, shape, DT_FLOAT) .tensor; Output infer1 = ops::Tanh(s.WithOpName("infer1"), tl3r1); Output allow2 = ops::MatMul(s.WithOpName("allow2"), infer1, infer1); Output fetch1 = ops::Identity(s.WithOpName("fetch1"), allow2); GrapplerItem item; item.fetch = {"fetch1"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); const char* type_key = "element_dtype"; EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl1")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl2")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl3")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl3r1")->attr().at(type_key).type(), DT_HALF); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 5e-4); } } TEST_P(AutoMixedPrecisionParamTest, TensorListThroughFunction) { FunctionDefLibrary function_lib; const Tensor kShape = test::AsTensor<int32>({32, 32}); FunctionDef func1 = FunctionDefHelper::Define( "Func1", {"ihandle: variant", "x: float"}, {"ohandle: variant", "y: float"}, {}, { {{"tl1w1_handle"}, "TensorListPushBack", {"ihandle", "x"}, {{"element_dtype", DT_FLOAT}}}, {{"shape"}, "Const", {}, {{"value", kShape}, {"dtype", DT_INT32}}}, {{"tl1r1_handle", "tl1r1_data"}, "TensorListPopBack", {"tl1w1_handle", "shape"}, {{"element_dtype", DT_FLOAT}}}, {{"ohandle"}, "Identity", {"tl1r1_handle"}, {{"T", DT_VARIANT}}}, {{"y"}, "Identity", {"tl1r1_data"}, {{"T", DT_FLOAT}}}, }); function_lib.add_function()->Swap(&func1); tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TF_CHECK_OK(s.graph()->AddFunctionLibrary(function_lib)); tensorflow::Input shape = {32, 32}; Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input, input); Output infer1 = ops::Tanh(s.WithOpName("infer1"), allow1); auto tl1 = ops::EmptyTensorList(s.WithOpName("tl1"), {32, 32}, 8, DT_FLOAT); auto tl1w1 = ops::TensorListPushBack(s.WithOpName("tl1w1"), tl1.handle, infer1); auto _infer1 = tensorflow::ops::AsNodeOut(s, infer1); auto _tl1w1_handle = tensorflow::ops::AsNodeOut(s, tl1w1.output_handle); auto builder = tensorflow::NodeBuilder("Func1", "Func1", s.graph()->op_registry()); tensorflow::Node* func1_op; TF_CHECK_OK(builder.Input(_tl1w1_handle) .Input(_infer1) .Finalize(s.graph(), &func1_op)); Output func1_handle(func1_op, 0); Output tl1r1 = ops::TensorListPopBack(s.WithOpName("tl1r1"), func1_handle, shape, DT_FLOAT) .tensor; auto tl2 = ops::EmptyTensorList(s.WithOpName("tl2"), {32, 32}, 8, DT_FLOAT); auto tl2w1 = ops::TensorListPushBack(s.WithOpName("tl2w1"), tl2.handle, infer1); Output tl2r1 = ops::TensorListPopBack(s.WithOpName("tl2r1"), tl2w1.output_handle, shape, DT_FLOAT) .tensor; Output allow2 = ops::MatMul(s.WithOpName("allow2"), tl1r1, tl2r1); Output fetch1 = ops::Identity(s.WithOpName("fetch1"), allow2); GrapplerItem item; item.fetch = {"fetch1"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); const char* type_key = "element_dtype"; EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl2")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl2w1")->attr().at(type_key).type(), DT_HALF); EXPECT_EQ(output_view.GetNode("tl2r1")->attr().at(type_key).type(), DT_HALF); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 5e-4); } } int GetCudaVersion(const Cluster& cluster) { auto devices = cluster.GetDevices(); for (const auto& device : devices) { const DeviceProperties& device_properties = device.second; if (device_properties.type() == "GPU") { const auto& device_env = device_properties.environment(); auto it = device_env.find("cuda"); if (it != device_env.end()) { string cuda_version_str = it->second; return std::stoi(cuda_version_str); } } } return 0; } bool IsSupportedGPU(const Cluster& cluster) { #ifdef GOOGLE_CUDA return GetCudaVersion(cluster) >= 9010; #else return true; #endif } TEST_P(AutoMixedPrecisionParamTest, BatchMatMul) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Const(s.WithOpName("input"), 1.f / 33, {64, 32, 32}); Output allow1 = ops::BatchMatMul(s.WithOpName("allow1"), input, input); Output fetch1 = ops::Identity(s.WithOpName("fetch1"), allow1); GrapplerItem item; item.fetch = {"fetch1"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer(mode_); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); if (IsSupportedGPU(*virtual_cluster_.get())) { EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_HALF); } else { EXPECT_EQ(output.node_size(), item.graph.node_size()); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_FLOAT); } auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 3.0e-3); } } TEST_P(AutoMixedPrecisionParamTest, EluOp) { TestSimpleUnaryInferOp( -5, 5, 1.0e-3, 1.0e-3, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Elu(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, ErfOp) { TestSimpleUnaryInferOp( -5, 5, 1.0e-3, -1, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Erf(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, ErfcOp) { TestSimpleUnaryInferOp( -5, 5, 1.0e-3, -1, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Erfc(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, InvOp) { TestSimpleUnaryInferOp( 0.01, 10, -1, 1.0e-3, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Inv(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, LogOp) { TestSimpleUnaryInferOp( 0.01, 10, 1.0e-3, 2.0e-3, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Log(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, Log1pOp) { TestSimpleUnaryInferOp( -0.99, 9, 1.0e-3, 5.0e-3, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Log1p(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, LogSoftmaxOp) { TestSimpleUnaryInferOp( -8, 8, -1, 1.0e-2, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::LogSoftmax(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, ReciprocalOp) { TestSimpleUnaryInferOp( 0.01, 10, -1, 1.0e-3, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Reciprocal(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, SigmoidOp) { TestSimpleUnaryInferOp( -5, 5, 1.0e-3, -1, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Sigmoid(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, SoftmaxOp) { TestSimpleUnaryInferOp( -8, 8, 2.0e-3, -1, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Softmax(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, SoftplusOp) { TestSimpleUnaryInferOp( -5, 5, 2.0e-3, 2.0e-3, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Softplus(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, SqrtOp) { TestSimpleUnaryInferOp( 0, 10, 1.0e-3, 1.0e-3, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Sqrt(scope, input); }); } TEST_P(AutoMixedPrecisionParamTest, TanhOp) { TestSimpleUnaryInferOp( -5, 5, 1.0e-3, -1, [](const tensorflow::Scope& scope, Output input) -> Output { return ops::Tanh(scope, input); }); } constexpr AutoMixedPrecisionMode kTestValues[] = { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM AutoMixedPrecisionMode::CUDA, #endif #if INTEL_MKL AutoMixedPrecisionMode::FP16_CPU, #endif }; INSTANTIATE_TEST_SUITE_P(AutoMixedPrecisionTest, AutoMixedPrecisionParamTest, ::testing::ValuesIn(kTestValues)); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM class AutoMixedPrecisionCpuTest : public GrapplerTest { protected: void SetUp() override { virtual_cluster_.reset(new SingleMachine( 10, 1, 0)); TF_CHECK_OK(virtual_cluster_->Provision()); } void TearDown() override { TF_CHECK_OK(virtual_cluster_->Shutdown()); } std::unique_ptr<Cluster> virtual_cluster_; }; TEST_F(AutoMixedPrecisionCpuTest, Simple) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output deny1 = ops::Exp(s.WithOpName("deny1"), input); Output clr1 = ops::Relu(s.WithOpName("clr1"), deny1); Output infer1 = ops::Sqrt(s.WithOpName("infer1"), clr1); Output clr2 = ops::Relu(s.WithOpName("clr2"), infer1); Output allow1 = ops::MatMul(s.WithOpName("allow1"), clr2, clr2); Output clr3 = ops::Relu(s.WithOpName("clr3"), allow1); Output infer2 = ops::Log(s.WithOpName("infer2"), clr3); Output clr4 = ops::Relu(s.WithOpName("clr4"), infer2); Output deny2 = ops::SparseMatMul(s.WithOpName("deny2"), clr4, clr4); Output clr5 = ops::Relu(s.WithOpName("clr5"), deny2); Output fetch = ops::Identity(s.WithOpName("fetch"), clr5); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer{AutoMixedPrecisionMode::CPU}; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); const int expected_cast_ops = 9; EXPECT_EQ(output.node_size(), item.graph.node_size() + expected_cast_ops); GraphView output_view(&output); auto matmul_op = output_view.GetNode("allow1"); EXPECT_EQ(matmul_op->attr().at("T").type(), DT_FLOAT); for (auto edge : output_view.GetFaninEdges(*matmul_op, false)) { EXPECT_EQ(edge.src.node->op(), "Cast"); auto cast_input_edges = output_view.GetFaninEdges( *output_view.GetNode(edge.src.node->name()), false); EXPECT_THAT(cast_input_edges, SizeIs(1)); EXPECT_THAT(edge.src.node->name(), ContainsRegex("^" + cast_input_edges.begin()->src.node->name() + "-0-CastToFp32-[0-9]-AutoMixedPrecision$")); EXPECT_EQ(edge.src.node->attr().at("SrcT").type(), DT_HALF); EXPECT_EQ(edge.src.node->attr().at("DstT").type(), DT_FLOAT); } for (auto edge : output_view.GetFanoutEdges(*matmul_op, false)) { EXPECT_EQ(edge.dst.node->op(), "Cast"); EXPECT_THAT(edge.dst.node->name(), ContainsRegex("^" + matmul_op->name() + "-0-CastToFp16-[0-9]-AutoMixedPrecision$")); EXPECT_EQ(edge.dst.node->attr().at("SrcT").type(), DT_FLOAT); EXPECT_EQ(edge.dst.node->attr().at("DstT").type(), DT_HALF); } } TEST_F(AutoMixedPrecisionCpuTest, MixedFanout) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); Output input1 = ops::Const(s.WithOpName("input1"), 1.f / 32, {32, 32}); Output input2 = ops::Const(s.WithOpName("input2"), 2.f / 32, {32, 32}); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input1, input2); Output allow2 = ops::MatMul(s.WithOpName("allow2"), allow1, input2); Output deny = ops::Exp(s.WithOpName("deny"), allow1); Output infer = ops::Add(s.WithOpName("infer"), deny, allow2); Output fetch = ops::Identity(s.WithOpName("fetch"), infer); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer{AutoMixedPrecisionMode::CPU}; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); const int expected_cast_ops = 10; EXPECT_EQ(output.node_size(), item.graph.node_size() + expected_cast_ops); GraphView output_view(&output); auto allow1_op = output_view.GetNode("allow1"); for (auto edge : output_view.GetFaninEdges(*allow1_op, false)) { EXPECT_EQ(edge.src.node->op(), "Cast"); EXPECT_EQ(edge.src.node->attr().at("SrcT").type(), DT_HALF); EXPECT_EQ(edge.src.node->attr().at("DstT").type(), DT_FLOAT); } for (auto edge : output_view.GetFanoutEdges(*allow1_op, false)) { EXPECT_EQ(edge.dst.node->op(), "Cast"); EXPECT_EQ(edge.dst.node->attr().at("SrcT").type(), DT_FLOAT); EXPECT_EQ(edge.dst.node->attr().at("DstT").type(), DT_HALF); } auto deny_op = output_view.GetNode("deny"); for (auto edge : output_view.GetFaninEdges(*deny_op, false)) { EXPECT_EQ(edge.src.node->op(), "Cast"); EXPECT_EQ(edge.src.node->attr().at("SrcT").type(), DT_HALF); EXPECT_EQ(edge.src.node->attr().at("DstT").type(), DT_FLOAT); } for (auto edge : output_view.GetFanoutEdges(*deny_op, false)) { EXPECT_NE(edge.dst.node->op(), "Cast"); } } class AutoMixedPrecisionSimulateGpuTest : public GrapplerTest { protected: void SetUp() override { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); cpu_device.set_frequency(1000); cpu_device.set_num_cores(4); cpu_device.set_memory_size(1024 * 1024); devices["/job:localhost/replica:0/task:0/device:CPU:0"] = cpu_device; virtual_cluster_.reset(new VirtualCluster(devices)); TF_CHECK_OK(virtual_cluster_->Provision()); } void TearDown() override { unsetenv("TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_SIMULATE_GPU"); TF_CHECK_OK(virtual_cluster_->Shutdown()); } std::unique_ptr<Cluster> virtual_cluster_; void TestSimple(tensorflow::Scope s, bool is_optimized) { Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output deny1 = ops::Exp(s.WithOpName("deny1"), input); Output clr1 = ops::Relu(s.WithOpName("clr1"), deny1); Output infer1 = ops::Sqrt(s.WithOpName("infer1"), clr1); Output clr2 = ops::Relu(s.WithOpName("clr2"), infer1); Output allow1 = ops::MatMul(s.WithOpName("allow1"), clr2, clr2); Output clr3 = ops::Relu(s.WithOpName("clr3"), allow1); Output infer2 = ops::Log(s.WithOpName("infer2"), clr3); Output clr4 = ops::Relu(s.WithOpName("clr4"), infer2); Output deny2 = ops::SparseMatMul(s.WithOpName("deny2"), clr4, clr4); Output clr5 = ops::Relu(s.WithOpName("clr5"), deny2); Output fetch = ops::Identity(s.WithOpName("fetch"), clr5); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; AutoMixedPrecision optimizer; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); DataType expected_data_type = is_optimized ? DT_HALF : DT_FLOAT; int expected_graph_size = is_optimized ? item.graph.node_size() + 2 : item.graph.node_size(); EXPECT_EQ(output.node_size(), expected_graph_size); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), expected_data_type); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), expected_data_type); EXPECT_EQ(output_view.GetNode("clr3")->attr().at("T").type(), expected_data_type); EXPECT_EQ(output_view.GetNode("infer2")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr4")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny2")->attr().at("Ta").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny2")->attr().at("Tb").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr5")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 5e-4); } } }; TEST_F(AutoMixedPrecisionSimulateGpuTest, Simple_NoGpu) { TestSimple(tensorflow::Scope::NewRootScope(), false); } TEST_F(AutoMixedPrecisionSimulateGpuTest, Simple_SimulatedGpu) { setenv("TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_SIMULATE_GPU", "true", 1 ); TestSimple(tensorflow::Scope::NewRootScope(), true); } TEST_F(AutoMixedPrecisionSimulateGpuTest, Simple_SimulatedGpu_CpuScope) { setenv("TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_SIMULATE_GPU", "true", 1 ); TestSimple(tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"), false); } #endif #if INTEL_MKL class AutoMixedPrecisionMklTest : public GrapplerTest { protected: void SetUp() override { virtual_cluster_.reset(new SingleMachine( 10, 1, 0)); TF_CHECK_OK(virtual_cluster_->Provision()); } void TearDown() override { TF_CHECK_OK(virtual_cluster_->Shutdown()); } std::unique_ptr<Cluster> virtual_cluster_; }; TEST_F(AutoMixedPrecisionMklTest, AlreadyBf16) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); Output input = ops::Const(s.WithOpName("input"), 1.f, {32, 32}); Output cst1 = ops::Cast(s.WithOpName("cst1"), input, DT_BFLOAT16); Output allow1 = ops::MatMul(s.WithOpName("allow1"), cst1, cst1); Output clr1 = ops::Relu(s.WithOpName("clr1"), allow1); Output cst2 = ops::Cast(s.WithOpName("cst2"), clr1, DT_FLOAT); Output clr2 = ops::Relu(s.WithOpName("clr2"), cst2); Output fetch = ops::Identity(s.WithOpName("fetch"), clr2); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer{AutoMixedPrecisionMode::BF16}; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); VerifyGraphsEquivalent(item.graph, output, __FUNCTION__); GraphView output_view(&output); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("cst1")->attr().at("DstT").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("cst2")->attr().at("SrcT").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("cst2")->attr().at("DstT").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors_expected[i], tensors[i], 1e-6); } } TEST_F(AutoMixedPrecisionMklTest, Simple) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output deny1 = ops::Exp(s.WithOpName("deny1"), input); Output clr1 = ops::Relu(s.WithOpName("clr1"), deny1); Output infer1 = ops::Sqrt(s.WithOpName("infer1"), clr1); Output clr2 = ops::Relu(s.WithOpName("clr2"), infer1); Output allow1 = ops::MatMul(s.WithOpName("allow1"), clr2, clr2); Output clr3 = ops::Relu(s.WithOpName("clr3"), allow1); Output deny2 = ops::Log(s.WithOpName("deny2"), clr3); Output clr4 = ops::Relu(s.WithOpName("clr4"), deny2); Output deny3 = ops::SparseMatMul(s.WithOpName("deny3"), clr4, clr4); Output clr5 = ops::Relu(s.WithOpName("clr5"), deny3); Output fetch = ops::Identity(s.WithOpName("fetch"), clr5); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer{AutoMixedPrecisionMode::BF16}; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); EXPECT_EQ(output_view.GetNode("input")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr2")->attr().at("T").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("clr3")->attr().at("T").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("deny2")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr4")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny3")->attr().at("Ta").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny3")->attr().at("Tb").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr5")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 5e-4); } } TEST_F(AutoMixedPrecisionMklTest, TensorListSetGet) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); tensorflow::Input shape = {32, 32}; auto tl1 = ops::TensorListReserve(s.WithOpName("tl1"), {32, 32}, 8, DT_FLOAT); Output input = ops::Const(s.WithOpName("input"), 1.f / 32, {32, 32}); Output idx1 = ops::Const(s.WithOpName("idx1"), 1); Output idx2 = ops::Const(s.WithOpName("idx2"), 2); Output idx3 = ops::Const(s.WithOpName("idx3"), 3); auto tl1w1 = ops::TensorListSetItem(s.WithOpName("tl1w1"), tl1.handle, idx1, input); Output allow1 = ops::MatMul(s.WithOpName("allow1"), input, input); auto tl1w2 = ops::TensorListSetItem(s.WithOpName("tl1w2"), tl1.handle, idx2, allow1); Output tl1rs = ops::TensorListResize(s.WithOpName("tl1rs"), tl1w2.output_handle, 6); Output tl1r1 = ops::TensorListGetItem(s.WithOpName("tl1r1"), tl1rs, idx2, shape, DT_FLOAT) .item; Output infer1 = ops::Mul(s.WithOpName("infer1"), tl1r1, tl1r1); Output allow2 = ops::MatMul(s.WithOpName("allow2"), infer1, infer1); auto tl1w3 = ops::TensorListSetItem(s.WithOpName("tl1w3"), tl1.handle, idx3, allow2); Output tl1r2 = ops::TensorListGetItem(s.WithOpName("tl1r2"), tl1w3.output_handle, idx3, shape, DT_FLOAT) .item; auto tl2 = ops::TensorListReserve(s.WithOpName("tl2"), shape, 8, DT_FLOAT); auto tl2w1 = ops::TensorListSetItem(s.WithOpName("tl2w1"), tl2.handle, idx1, input); Output tl2r1 = ops::TensorListGetItem(s.WithOpName("tl2r1"), tl2w1.output_handle, idx1, shape, DT_FLOAT) .item; Output fetch1 = ops::Identity(s.WithOpName("fetch1"), tl1r2); Output fetch2 = ops::Identity(s.WithOpName("fetch2"), tl2r1); GrapplerItem item; item.fetch = {"fetch1", "fetch2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer{AutoMixedPrecisionMode::BF16}; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 2); const char* type_key = "element_dtype"; EXPECT_EQ(output_view.GetNode("tl1")->attr().at(type_key).type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("tl1w1")->attr().at(type_key).type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("allow1")->attr().at("T").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("tl1w2")->attr().at(type_key).type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("tl1r1")->attr().at(type_key).type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("infer1")->attr().at("T").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("allow2")->attr().at("T").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("tl1w3")->attr().at(type_key).type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("tl2")->attr().at(type_key).type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("tl2w1")->attr().at(type_key).type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("tl2r1")->attr().at(type_key).type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 1e-2); } } TEST_F(AutoMixedPrecisionMklTest, InferFollowUpStreamAllow) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL auto-mixed precision."; tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); Output input1 = ops::Const(s.WithOpName("input1"), 1.f / 32, {8, 56, 56, 16}); Output weight = ops::Const(s.WithOpName("weight"), 2.f, {3, 3, 16, 16}); Output allow = ops::Conv2D(s.WithOpName("allow"), input1, weight, {1, 1, 1, 1}, "SAME", ops::Conv2D::DataFormat("NHWC")); Output input2 = ops::Const(s.WithOpName("input2"), 1.f / 32, {16}); Output infer = ops::BiasAdd(s.WithOpName("infer"), allow, input2); Output clr = ops::Relu(s.WithOpName("clr"), infer); Output fetch = ops::Identity(s.WithOpName("fetch"), clr); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer{AutoMixedPrecisionMode::BF16}; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size() + 4); EXPECT_EQ(output_view.GetNode("input1")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("weight")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("input2")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("allow")->attr().at("T").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("infer")->attr().at("T").type(), DT_BFLOAT16); EXPECT_EQ(output_view.GetNode("clr")->attr().at("T").type(), DT_BFLOAT16); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i], -1, 1e-2); } } TEST_F(AutoMixedPrecisionMklTest, InferFollowUpStreamDeny) { if (!IsMKLEnabled()) GTEST_SKIP() << "Test only applicable to MKL auto-mixed precision."; tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); Output input1 = ops::Const(s.WithOpName("input1"), 1.f / 32, {8, 56, 56, 16}); Output input2 = ops::Const(s.WithOpName("input2"), 1.f, {16}); Output input3 = ops::Const(s.WithOpName("input3"), 1.f / 32, {16}); Output deny = ops::Pow(s.WithOpName("deny"), input1, input2); Output infer = ops::BiasAdd(s.WithOpName("infer"), deny, input3); Output clr = ops::Relu(s.WithOpName("clr"), infer); Output fetch = ops::Identity(s.WithOpName("fetch"), clr); GrapplerItem item; item.fetch = {"fetch"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); AutoMixedPrecision optimizer{AutoMixedPrecisionMode::BF16}; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(virtual_cluster_.get(), item, &output)); VLOG(1) << output.DebugString(); GraphView output_view(&output); EXPECT_EQ(output.node_size(), item.graph.node_size()); EXPECT_EQ(output_view.GetNode("input1")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("input2")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("input3")->attr().at("dtype").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("deny")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("infer")->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(output_view.GetNode("clr")->attr().at("T").type(), DT_FLOAT); auto tensors = EvaluateNodes(output, item.fetch); EXPECT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectClose(tensors_expected[i], tensors[i]); } } #endif } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/auto_mixed_precision.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/auto_mixed_precision_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ecb8d878-03fe-44f2-9ce6-ad2285013004
cpp
tensorflow/tensorflow
graph_optimizer_stage
tensorflow/core/grappler/optimizers/graph_optimizer_stage.cc
tensorflow/core/grappler/optimizers/graph_optimizer_stage_test.cc
#include "tensorflow/core/grappler/optimizers/graph_optimizer_stage.h" #include "tensorflow/core/graph/tensor_id.h" namespace tensorflow { namespace grappler { const NodeScopeAndName ParseNodeScopeAndName(const string& node_name) { auto pos = node_name.find_last_of('/'); if (pos == string::npos) { return {"", node_name}; } else { return {node_name.substr(0, pos), node_name.substr(pos + 1)}; } }; Status GetInputNode(const GraphOptimizerContext& ctx, const string& input, NodeDef** node) { string node_name = NodeName(input); NodeDef* node_by_name = ctx.node_map->GetNode(node_name); if (node_by_name == nullptr) { return errors::FailedPrecondition("Node ", node_name, " doesn't exists in a node map"); } *node = node_by_name; return absl::OkStatus(); } Status GetTensorProperties(const GraphOptimizerContext& ctx, const string& tensor, const OpInfo::TensorProperties** properties) { if (ctx.graph_properties == nullptr) { return errors::InvalidArgument("Graph properties are unknown."); } SafeTensorId tensor_id = ParseTensorName(tensor); if (tensor_id.index() < 0) { return errors::InvalidArgument( "Can't get tensor properties of control dependency ", tensor); } const auto& output_properties = ctx.graph_properties->GetOutputProperties(tensor_id.node()); int num_outputs = output_properties.size(); if (num_outputs == 0 || tensor_id.index() > num_outputs - 1) { return errors::InvalidArgument( "Node ", tensor_id.node(), " is missing output properties at position :", tensor_id.index(), " (num_outputs=", num_outputs, ")"); } *properties = &output_properties[tensor_id.index()]; return absl::OkStatus(); } NodeDef* AddCopyNode(const GraphOptimizerContext& ctx, const string& name, const NodeDef* node_to_copy) { CHECK(node_to_copy != nullptr); CHECK(!ctx.node_map->NodeExists(name)) << "Node " << name << " already exists in a graph"; NodeDef* new_node = ctx.optimized_graph->add_node(); *new_node = *node_to_copy; new_node->set_name(name); ctx.node_map->AddNode(name, new_node); return new_node; } NodeDef* AddEmptyNode(const GraphOptimizerContext& ctx, const string& name) { std::string new_name = name; for (int count = 0; ctx.node_map->NodeExists(new_name); ++count) { LOG(WARNING) << name << " already exists in the graph."; new_name = absl::StrCat(name, "_", count); } NodeDef* new_node = ctx.optimized_graph->add_node(); new_node->set_name(new_name); ctx.node_map->AddNode(new_name, new_node); return new_node; } const string MakeOptimizedNodeName(const NodeScopeAndName& node, const string& sub_scope, const string& prefix) { CHECK(!sub_scope.empty() || !prefix.empty()) << "Either optimized node name prefix or sub-scope must be non-empty"; string optimized_node_name; if (!node.scope.empty()) { strings::StrAppend(&optimized_node_name, node.scope, "/"); } if (!sub_scope.empty()) { strings::StrAppend(&optimized_node_name, sub_scope, "/"); } if (!prefix.empty()) { strings::StrAppend(&optimized_node_name, prefix, "_"); } strings::StrAppend(&optimized_node_name, node.name); return optimized_node_name; } const string MakeOptimizedNodeName(const NodeScopeAndName& root, const std::vector<string> node_names, const string& sub_scope, const string& prefix) { string optimized_node_name = MakeOptimizedNodeName(root, sub_scope, prefix); for (const string& node_name : node_names) { auto name_and_scope = ParseNodeScopeAndName(node_name); strings::StrAppend(&optimized_node_name, "_", name_and_scope.name); } return optimized_node_name; } } }
#include "tensorflow/core/grappler/optimizers/graph_optimizer_stage.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace grappler { namespace { using ::tensorflow::test::function::GDef; using ::tensorflow::test::function::NDef; class GraphOptimizerStageTest : public ::testing::Test {}; struct FakeResult {}; class FakeOptimizerStage : public GraphOptimizerStage<FakeResult> { public: explicit FakeOptimizerStage(const string& optimizer_name, const string& stage_name, const GraphOptimizerContext& ctx) : GraphOptimizerStage(optimizer_name, stage_name, ctx) {} ~FakeOptimizerStage() override = default; bool IsSupported(const NodeDef* node) const override { return true; } Status TrySimplify(NodeDef* node, FakeResult* result) override { return absl::OkStatus(); } }; TEST_F(GraphOptimizerStageTest, ParseNodeNameAndScopeInRoot) { const auto scope_and_name = ParseNodeScopeAndName("Add"); EXPECT_EQ(scope_and_name.scope, ""); EXPECT_EQ(scope_and_name.name, "Add"); } TEST_F(GraphOptimizerStageTest, ParseNodeNameAndScopeInScope) { const auto scope_and_name = ParseNodeScopeAndName("a/b/c/Add"); EXPECT_EQ(scope_and_name.scope, "a/b/c"); EXPECT_EQ(scope_and_name.name, "Add"); } TEST_F(GraphOptimizerStageTest, OptimizedNodeName) { GraphOptimizerContext ctx( nullptr, nullptr, nullptr, nullptr, nullptr, RewriterConfig::ON); FakeOptimizerStage stage("my_opt", "my_stg", ctx); const auto node = ParseNodeScopeAndName("a/b/c/Add"); EXPECT_EQ(stage.OptimizedNodeName(node), "a/b/c/my_opt/my_stg_Add"); EXPECT_EQ(stage.OptimizedNodeName(node, std::vector<string>({"Mul", "Sqrt"})), "a/b/c/my_opt/my_stg_Add_Mul_Sqrt"); const string rewrite = "my_rewrite"; EXPECT_EQ(stage.OptimizedNodeName(node, rewrite), "a/b/c/my_opt/my_stg_my_rewrite_Add"); } TEST_F(GraphOptimizerStageTest, UniqueOptimizedNodeName) { GraphDef graph = GDef({NDef("a/b/c/A", "NotImportant", {}), NDef("a/b/c/my_opt/my_stg_A", "NotImportant", {}), NDef("a/b/c/my_opt/my_stg_my_rewrite_A", "NotImportant", {})}, {}); NodeMap node_map(&graph); GraphOptimizerContext ctx( nullptr, nullptr, nullptr, &node_map, nullptr, RewriterConfig::ON); FakeOptimizerStage stage("my_opt", "my_stg", ctx); const auto node = ParseNodeScopeAndName("a/b/c/A"); EXPECT_EQ(stage.UniqueOptimizedNodeName(node), "a/b/c/my_opt/my_stg_A_unique0"); const string rewrite = "my_rewrite"; EXPECT_EQ(stage.UniqueOptimizedNodeName(node, rewrite), "a/b/c/my_opt/my_stg_my_rewrite_A_unique1"); } TEST_F(GraphOptimizerStageTest, UniqueOptimizedNodeNameWithUsedNodeNames) { GraphDef graph = GDef( {NDef("a/b/c/A", "NotImportant", {}), NDef("a/b/c/my_opt/my_stg_A", "NotImportant", {}), NDef("a/b/c/my_opt/my_stg_A_unique0", "NotImportant", {}), NDef("a/b/c/my_opt/my_stg_my_rewrite_A", "NotImportant", {}), NDef("a/b/c/my_opt/my_stg_my_rewrite_A_unique1", "NotImportant", {})}, {}); NodeMap node_map(&graph); GraphOptimizerContext ctx( nullptr, nullptr, nullptr, &node_map, nullptr, RewriterConfig::ON); FakeOptimizerStage stage("my_opt", "my_stg", ctx); const auto node = ParseNodeScopeAndName("a/b/c/A"); EXPECT_EQ(stage.UniqueOptimizedNodeName(node), "a/b/c/my_opt/my_stg_A_unique1"); const string rewrite = "my_rewrite"; EXPECT_EQ(stage.UniqueOptimizedNodeName(node, rewrite), "a/b/c/my_opt/my_stg_my_rewrite_A_unique2"); } TEST_F(GraphOptimizerStageTest, GetInputNodeAndProperties) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a = ops::Variable(s.WithOpName("a"), {2, 2}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("b"), {2, 2}, DT_FLOAT); auto add = ops::Add(s.WithOpName("Add"), a, b); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_CHECK_OK(properties.InferStatically( false)); NodeMap node_map(&item.graph); GraphOptimizerContext ctx( nullptr, &item.graph, &properties, &node_map, nullptr, RewriterConfig::ON); FakeOptimizerStage stage("my_opt", "my_stg", ctx); NodeDef* add_node; TF_CHECK_OK(stage.GetInputNode("Add", &add_node)); ASSERT_EQ(add_node->input_size(), 2); EXPECT_EQ(add_node->input(0), "a"); EXPECT_EQ(add_node->input(1), "b"); const OpInfo::TensorProperties* add_properties; TF_CHECK_OK(stage.GetTensorProperties("Add", &add_properties)); EXPECT_EQ(add_properties->dtype(), DT_FLOAT); const OpInfo::TensorProperties* a_properties; TF_CHECK_OK(stage.GetTensorProperties("a:0", &a_properties)); EXPECT_EQ(a_properties->dtype(), DT_FLOAT_REF); const OpInfo::TensorProperties* b_properties; TF_CHECK_OK(stage.GetTensorProperties("b:0", &b_properties)); EXPECT_EQ(b_properties->dtype(), DT_FLOAT_REF); } TEST_F(GraphOptimizerStageTest, AddNodes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a = ops::Variable(s.WithOpName("a"), {2, 2}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("b"), {2, 2}, DT_FLOAT); auto add = ops::Add(s.WithOpName("Add"), a, b); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_CHECK_OK(properties.InferStatically( false)); NodeMap node_map(&item.graph); GraphOptimizerContext ctx( nullptr, &item.graph, &properties, &node_map, nullptr, RewriterConfig::ON); FakeOptimizerStage stage("my_opt", "my_stg", ctx); NodeDef* add_node; TF_CHECK_OK(stage.GetInputNode("Add", &add_node)); NodeDef* add_node_copy = stage.AddCopyNode("Add_1", add_node); EXPECT_EQ(add_node_copy->name(), "Add_1"); EXPECT_EQ(add_node_copy->op(), "Add"); ASSERT_EQ(add_node->input_size(), 2); EXPECT_EQ(add_node_copy->input(0), "a"); EXPECT_EQ(add_node_copy->input(1), "b"); NodeDef* add_node_copy_by_name; TF_CHECK_OK(stage.GetInputNode("Add_1", &add_node_copy_by_name)); EXPECT_EQ(add_node_copy, add_node_copy_by_name); NodeDef* empty_node = stage.AddEmptyNode("Add_2"); EXPECT_EQ(empty_node->name(), "Add_2"); EXPECT_EQ(empty_node->input_size(), 0); NodeDef* empty_node_by_name; TF_CHECK_OK(stage.GetInputNode("Add_2", &empty_node_by_name)); EXPECT_EQ(empty_node, empty_node_by_name); NodeDef* unique_empty_node = stage.AddEmptyNode("Add_2"); EXPECT_EQ(unique_empty_node->name(), "Add_2_0"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/graph_optimizer_stage.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/graph_optimizer_stage_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2cc773d3-be6d-4d81-99e4-e20270add2d0
cpp
tensorflow/tensorflow
common_subgraph_elimination
tensorflow/core/grappler/optimizers/common_subgraph_elimination.cc
tensorflow/core/grappler/optimizers/common_subgraph_elimination_test.cc
#include "tensorflow/core/grappler/optimizers/common_subgraph_elimination.h" #include <set> #include <string> #include <unordered_set> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/grappler/graph_topology_view.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/graph_optimizer.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/canonicalizer.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/grappler/utils/traversal.h" #include "tensorflow/core/lib/gtl/flatset.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/hash.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace grappler { class Cluster; } } using tensorflow::strings::StrCat; namespace tensorflow { namespace grappler { class UniqueNodes { public: NodeDef* FindOrAddRepresentative(NodeDef* node) { uint64 sig = ComputeSignature(*node); std::vector<NodeDef*>& candidates = rep_[sig]; for (auto& candidate : candidates) { if ((candidate == node) || SameNode(*candidate, *node)) { return candidate; } } candidates.push_back(node); return node; } void RemoveRepresentative(NodeDef* node) { auto it = memoized_signatures_.find(node); if (it == memoized_signatures_.end()) return; std::vector<NodeDef*>& candidates = rep_[it->second]; for (int i = 0, end = candidates.size(); i < end; ++i) { if (candidates[i] == node) { std::swap(candidates[i], candidates[candidates.size() - 1]); candidates.resize(candidates.size() - 1); break; } } memoized_signatures_.erase(node); } private: uint64 ComputeSignature(const NodeDef& node); bool SameNode(const NodeDef& node1, const NodeDef& node2) const; absl::flat_hash_map<uint64, std::vector<NodeDef*>> rep_; absl::flat_hash_map<const NodeDef*, uint64> memoized_signatures_; }; uint64 UniqueNodes::ComputeSignature(const NodeDef& node) { auto it = memoized_signatures_.find(&node); if (it != memoized_signatures_.end()) return it->second; uint64 h = Hash64(node.op()); h = Hash64Combine(Hash64(node.device()), h); for (const auto& input : node.input()) { const TensorId input_tensor = ParseTensorName(input); uint64 input_hash = Hash64Combine( Hash64(input_tensor.node().data(), input_tensor.node().size()), std::hash<int>()(input_tensor.index())); h = Hash64CombineUnordered(input_hash, h); } for (const auto& attr : node.attr()) { uint64 attr_hash = Hash64Combine(Hash64(attr.first), FastAttrValueHash(attr.second)); h = Hash64CombineUnordered(attr_hash, h); } memoized_signatures_.emplace(&node, h); return h; } bool UniqueNodes::SameNode(const NodeDef& node1, const NodeDef& node2) const { if (node1.op() != node2.op()) { return false; } if (node1.device() != node2.device()) { return false; } if (node1.input_size() != node2.input_size()) { return false; } if (node1.attr_size() != node2.attr_size()) { return false; } auto it1 = node1.input().begin(); auto it2 = node2.input().begin(); for (; it1 != node1.input().end(); ++it1, ++it2) { if (*it1 != *it2) return false; } for (const auto& attr1 : node1.attr()) { auto it = node2.attr().find(attr1.first); if (it == node2.attr().end()) return false; if (!AreAttrValuesEqual(attr1.second, it->second, true)) { return false; } } return true; } bool CommonSubgraphElimination::CanDedup(const NodeDef& node) const { if (nodes_to_preserve_.find(node.name()) != nodes_to_preserve_.end()) { return false; } if (IsEnter(node) || IsExit(node)) { return false; } if (node.device().find("SPU") != string::npos) { return false; } if (IsAssert(node) || IsPrint(node)) { return true; } return IsFreeOfSideEffect(node); } Status CommonSubgraphElimination::DedupComputations(GraphDef* optimized_graph) { CanonicalizeGraph(optimized_graph); GraphTopologyView graph_view; if (!graph_view.InitializeFromGraph(*optimized_graph).ok()) { LOG(WARNING) << "Failed to initialize GraphTopologyView."; return absl::OkStatus(); } absl::flat_hash_set<const NodeDef*> feeds_inplace_op; for (int i = 0; i < optimized_graph->node_size(); ++i) { const NodeDef& root = optimized_graph->node(i); if (feeds_inplace_op.find(&root) != feeds_inplace_op.end()) continue; if (ModifiesInputsInPlace(root)) { const auto is_continue_traversal = [&](const NodeDef* node) -> bool { return node->op() == root.op() || !NeverForwardsInputs(*node); }; DfsTraversal(graph_view, {&root}, TraversalDirection::kFollowInputs, DfsPredicates::Advance(is_continue_traversal), DfsCallbacks::PreOrder([&](const NodeDef* node) { feeds_inplace_op.insert(node); })); } } std::vector<bool> can_dedup(optimized_graph->node_size()); for (int i = 0; i < optimized_graph->node_size(); ++i) { const NodeDef& node = optimized_graph->node(i); can_dedup[i] = (feeds_inplace_op.find(&node) == feeds_inplace_op.end()) && CanDedup(node); } bool stop = true; std::set<int> duplicates; UniqueNodes nodes; NodeMap node_map(optimized_graph); do { stop = true; for (int i = 0; i < optimized_graph->node_size(); ++i) { if (!can_dedup[i] || duplicates.find(i) != duplicates.end()) { continue; } NodeDef* node = optimized_graph->mutable_node(i); NodeDef* rep = nodes.FindOrAddRepresentative(node); if (rep == node) { continue; } const auto fanouts = node_map.GetOutputs(node->name()); for (NodeDef* fanout : fanouts) { bool updated_fanout = false; for (int i = 0; i < fanout->input_size(); ++i) { string* fanout_input = fanout->mutable_input(i); const int position = NodePositionIfSameNode(*fanout_input, node->name()); if (position < -1) { continue; } else { if (!updated_fanout) { nodes.RemoveRepresentative(fanout); } updated_fanout = true; if (position > 0) { *fanout_input = StrCat(rep->name(), ":", position); } else if (position == 0) { *fanout_input = rep->name(); } else { *fanout_input = StrCat("^", rep->name()); } } } if (updated_fanout) { node_map.UpdateInput(fanout->name(), node->name(), rep->name()); CanonicalizeNode(fanout); } } if (fetch_nodes_known_) { node->Clear(); } duplicates.insert(i); stop = false; } } while (!stop); if (fetch_nodes_known_ && !duplicates.empty()) { EraseNodesFromGraph(duplicates, optimized_graph); } return absl::OkStatus(); } Status CommonSubgraphElimination::Optimize(Cluster* , const GrapplerItem& item, GraphDef* optimized_graph) { nodes_to_preserve_ = item.NodesToPreserve(); fetch_nodes_known_ = !item.fetch.empty(); *optimized_graph = item.graph; TF_RETURN_IF_ERROR(TopologicalSort(optimized_graph)); GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); return DedupComputations(optimized_graph); } } }
#include "tensorflow/core/grappler/optimizers/common_subgraph_elimination.h" #include "absl/strings/str_cat.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/optimizers/arithmetic_optimizer_test_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { void VerifyGraphsMatch(const GraphDef& original_graph, const GraphDef& optimized_graph, int line) { EXPECT_EQ(original_graph.node_size(), optimized_graph.node_size()) << line; for (int i = 0; i < original_graph.node_size(); ++i) { const NodeDef& original = original_graph.node(i); const NodeDef& optimized = optimized_graph.node(i); EXPECT_EQ(original.name(), optimized.name()) << line; EXPECT_EQ(original.op(), optimized.op()) << line; EXPECT_EQ(original.input_size(), optimized.input_size()) << line; for (int j = 0; j < original.input_size(); ++j) { EXPECT_EQ(original.input(j), optimized.input(j)) << line; } } } } class CommonSubgraphEliminationTest : public ArithmeticOptimizerTest {}; TEST_F(CommonSubgraphEliminationTest, NoOp) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {"CPU:0"}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); CommonSubgraphElimination optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); VerifyGraphsMatch(item.graph, output, __LINE__); } TEST_F(CommonSubgraphEliminationTest, OpDedupping) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output c1 = ops::Const(s.WithOpName("c1"), {3.14, 2.7}, {1, 2}); Output c2 = ops::Const(s.WithOpName("c2"), {3.14, 2.7}, {1, 2}); Output div = ops::Div(s.WithOpName("div"), c1, c2); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"div"}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); CommonSubgraphElimination optimizer; GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 2); const NodeDef* new_c1 = node_map.GetNode("c1"); ASSERT_NE(new_c1, nullptr); const NodeDef* new_div = node_map.GetNode("div"); ASSERT_NE(new_div, nullptr); ASSERT_EQ(new_div->input_size(), 2); EXPECT_EQ(new_div->input(0), "c1"); EXPECT_EQ(new_div->input(1), "c1"); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<double>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(CommonSubgraphEliminationTest, OpDeduppingAssertAndCheckNumerics) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output p = ops::Placeholder(s, DT_BOOL, ops::Placeholder::Shape({})); Output c = ops::Const(s.WithOpName("c"), {3.14, 2.7}, {1, 2}); auto check1 = ops::CheckNumerics(s.WithOpName("check1"), c, "foo"); auto check2 = ops::CheckNumerics(s.WithOpName("check2"), c, "foo"); auto assert1 = ops::Assert(s.WithOpName("assert1"), p, {c}); auto assert2 = ops::Assert(s.WithOpName("assert2"), p, {c}); Output div = ops::Div(s.WithOpName("div").WithControlDependencies( {assert1.operation, assert2.operation}), check1, check2); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"div"}; Tensor bool_t(DT_BOOL, TensorShape({})); bool_t.scalar<bool>().setConstant(true); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", bool_t}}); ASSERT_EQ(tensors_expected.size(), 1); CommonSubgraphElimination optimizer; GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 6); const NodeDef* new_div = node_map.GetNode("div"); ASSERT_NE(new_div, nullptr); ASSERT_EQ(new_div->input_size(), 3); EXPECT_EQ(new_div->input(0), "check1"); EXPECT_EQ(new_div->input(1), "check2"); EXPECT_EQ(new_div->input(2), "^assert1"); auto tensors = EvaluateNodes(output, item.fetch, {{"Placeholder", bool_t}}); EXPECT_EQ(tensors.size(), 1); test::ExpectTensorNear<double>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(CommonSubgraphEliminationTest, OpDedupCommutative) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output c1 = ops::Const(s.WithOpName("c1"), {1.0f, 2.0f}, {1, 2}); Output c2 = ops::Const(s.WithOpName("c2"), {3.0f, 4.0f}, {1, 2}); Output mul1 = ops::Mul(s.WithOpName("mul1"), c1, c2); Output mul2 = ops::Mul(s.WithOpName("mul2"), c2, c1); Output div1 = ops::Div(s.WithOpName("div1"), mul1, mul2); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"div1"}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); CommonSubgraphElimination optimizer; GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 4); const NodeDef* new_c1 = node_map.GetNode("c1"); ASSERT_NE(new_c1, nullptr); const NodeDef* new_c2 = node_map.GetNode("c2"); ASSERT_NE(new_c2, nullptr); const NodeDef* new_mul1 = node_map.GetNode("mul1"); ASSERT_NE(new_mul1, nullptr); ASSERT_EQ(new_mul1->input_size(), 2); EXPECT_EQ(new_mul1->input(0), "c1"); EXPECT_EQ(new_mul1->input(1), "c2"); const NodeDef* new_div1 = node_map.GetNode("div1"); ASSERT_NE(new_div1, nullptr); ASSERT_EQ(new_div1->input_size(), 2); EXPECT_EQ(new_div1->input(0), "mul1"); EXPECT_EQ(new_div1->input(1), "mul1"); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/common_subgraph_elimination.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/common_subgraph_elimination_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4e7bdc26-f49d-4dd4-b20e-93050f04e4da
cpp
tensorflow/tensorflow
static_schedule
tensorflow/core/grappler/optimizers/static_schedule.cc
tensorflow/core/grappler/optimizers/static_schedule_test.cc
#include "tensorflow/core/grappler/optimizers/static_schedule.h" #include <deque> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/costs/op_level_cost_estimator.h" #include "tensorflow/core/grappler/costs/virtual_placer.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/strcat.h" namespace tensorflow { namespace grappler { static Costs::NanoSeconds PredictExecutionTime( const GraphProperties& properties, const OpLevelCostEstimator& estimator, const VirtualPlacer& placer, const NodeDef& node) { OpContext op_context; op_context.op_info.set_op(node.op()); *op_context.op_info.mutable_attr() = node.attr(); std::vector<OpInfo::TensorProperties> inputs = properties.GetInputProperties(node.name()); for (auto& input : inputs) { op_context.op_info.add_inputs()->Swap(&input); } std::vector<OpInfo::TensorProperties> outputs = properties.GetOutputProperties(node.name()); for (auto& output : outputs) { op_context.op_info.add_outputs()->Swap(&output); } DeviceProperties device = placer.get_device(node); op_context.op_info.mutable_device()->Swap(&device); Costs::NanoSeconds estimate = estimator.PredictCosts(op_context).execution_time; return std::max(estimate, Costs::NanoSeconds(1)); } Status EstimateEarliestExecutionTimes( const GrapplerItem& item, const Cluster* cluster, std::unordered_map<const NodeDef*, Costs::NanoSeconds>* completion_times) { std::unordered_map<string, const NodeDef*> name_map; std::unordered_map<const NodeDef*, int> pending_inputs; std::deque<const NodeDef*> ready_nodes; for (const NodeDef& node : item.graph.node()) { name_map[node.name()] = &node; if (node.input_size() == 0) { ready_nodes.push_back(&node); (*completion_times)[&node] = 0; } else if (IsMerge(node)) { pending_inputs[&node] = 1; } else { pending_inputs[&node] = node.input_size(); } } std::unordered_map<const NodeDef*, std::vector<const NodeDef*>> fanouts; for (const NodeDef& node : item.graph.node()) { for (const string& input : node.input()) { string node_name = NodeName(input); auto it = name_map.find(node_name); if (it == name_map.end()) { return errors::InvalidArgument( strings::StrCat("Unknown input node ", input)); } const NodeDef* fanin = it->second; fanouts[fanin].push_back(&node); } } name_map.clear(); GraphProperties properties(item); TF_RETURN_IF_ERROR( properties.InferStatically(true, false, false)); OpLevelCostEstimator estimator; VirtualPlacer placer(cluster->GetDevices()); while (!ready_nodes.empty()) { const NodeDef* node = ready_nodes.front(); ready_nodes.pop_front(); Costs::NanoSeconds execution_time = PredictExecutionTime(properties, estimator, placer, *node); Costs::NanoSeconds completion_time = execution_time + (*completion_times)[node]; (*completion_times)[node] = completion_time; for (const NodeDef* fanout : fanouts[node]) { int pending = pending_inputs[fanout]; if (pending == 0) { continue; } else if (pending == 1) { ready_nodes.push_back(fanout); } pending_inputs[fanout]--; Costs::NanoSeconds ready_time = std::max(completion_time, (*completion_times)[fanout]); (*completion_times)[fanout] = ready_time; } } return absl::OkStatus(); } Status EstimateRequiredTimes( const GrapplerItem& item, const Cluster* cluster, const std::unordered_map<const NodeDef*, Costs::NanoSeconds>& execution_times, std::unordered_map<const NodeDef*, Costs::NanoSeconds>* required_times) { std::unordered_map<string, const NodeDef*> name_map; for (const NodeDef& node : item.graph.node()) { name_map[node.name()] = &node; (*required_times)[&node] = Costs::NanoSeconds::max(); } std::unordered_map<const NodeDef*, int> pending_fanouts; for (const NodeDef& node : item.graph.node()) { for (const string& input : node.input()) { string node_name = NodeName(input); auto it = name_map.find(node_name); if (it == name_map.end()) { return errors::InvalidArgument( strings::StrCat("Unknown input node ", input)); } const NodeDef* fanin = it->second; pending_fanouts[fanin] += 1; } } std::deque<const NodeDef*> ready_nodes; for (const NodeDef& node : item.graph.node()) { if (pending_fanouts[&node] == 0) { auto it = execution_times.find(&node); if (it != execution_times.end()) { (*required_times)[&node] = it->second; } ready_nodes.push_back(&node); } } GraphProperties properties(item); TF_RETURN_IF_ERROR( properties.InferStatically(true, false, false)); OpLevelCostEstimator estimator; VirtualPlacer placer(cluster->GetDevices()); while (!ready_nodes.empty()) { const NodeDef* node = ready_nodes.front(); ready_nodes.pop_front(); Costs::NanoSeconds execution_time = PredictExecutionTime(properties, estimator, placer, *node); Costs::NanoSeconds required_time = (*required_times)[node] - execution_time; for (const string& fanin_name : node->input()) { const NodeDef* fanin = name_map[NodeName(fanin_name)]; (*required_times)[fanin] = std::min((*required_times)[fanin], required_time); int pending = pending_fanouts[fanin]; if (pending == 0) { continue; } else if (pending == 1) { ready_nodes.push_back(fanin); } pending_fanouts[fanin]--; } } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/static_schedule.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class StaticScheduleTest : public ::testing::Test { public: std::unique_ptr<VirtualCluster> CreateVirtualCluster() const { DeviceProperties cpu_device; cpu_device.set_type("CPU"); cpu_device.set_frequency(1000); cpu_device.set_num_cores(4); cpu_device.set_bandwidth(32); cpu_device.set_l1_cache_size(32 * 1024); cpu_device.set_l2_cache_size(256 * 1024); cpu_device.set_l3_cache_size(4 * 1024 * 1024); std::unordered_map<string, DeviceProperties> devices; devices["/job:localhost/replica:0/task:0/cpu:0"] = cpu_device; return std::unique_ptr<VirtualCluster>(new VirtualCluster(devices)); } }; std::vector<Costs::NanoSeconds> GetOrderedTimes( const std::unordered_map<const NodeDef*, Costs::NanoSeconds> completion_times) { std::map<Costs::NanoSeconds, std::string> ordered_completion_times; for (const auto& node_def_time : completion_times) { ordered_completion_times[node_def_time.second] = node_def_time.first->name(); } std::vector<Costs::NanoSeconds> ordered_times; for (const auto& time_node_name : ordered_completion_times) { ordered_times.push_back(time_node_name.first); } return ordered_times; } std::vector<std::string> GetOrderedNodeNames( const std::unordered_map<const NodeDef*, Costs::NanoSeconds> completion_times) { std::map<Costs::NanoSeconds, std::string> ordered_completion_times; for (const auto& node_def_time : completion_times) { ordered_completion_times[node_def_time.second] = node_def_time.first->name(); } std::vector<std::string> ordered_node_names; for (const auto& time_node_name : ordered_completion_times) { ordered_node_names.push_back(time_node_name.second); } return ordered_node_names; } TEST_F(StaticScheduleTest, BasicGraph) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {"CPU:0"}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); std::unique_ptr<VirtualCluster> cluster(CreateVirtualCluster()); std::unordered_map<const NodeDef*, Costs::NanoSeconds> completion_times; Status status = EstimateEarliestExecutionTimes(item, cluster.get(), &completion_times); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size(), completion_times.size()); std::vector<Costs::NanoSeconds> ordered_times = GetOrderedTimes(completion_times); for (int i = 0; i < ordered_times.size(); ++i) { if (i > 0) { EXPECT_GT(ordered_times[i], ordered_times[i - 1]); } } EXPECT_EQ(ordered_times[0], Costs::NanoSeconds(1)); std::vector<std::string> ordered_node_names = GetOrderedNodeNames(completion_times); EXPECT_EQ(ordered_node_names, (std::vector<std::string>{"Const/Const", "x", "Sign", "Sign_1", "Sign_2", "Sign_3", "y"})); } TEST_F(StaticScheduleTest, BasicGraphWithCtrlDependencies) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::AddN(s.WithOpName("b"), {a}); Output c = ops::Identity(s.WithOpName("c"), b); Output d = ops::Identity(s.WithOpName("d"), c); Output e = ops::AddN(s.WithOpName("e"), {d}); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); EXPECT_EQ("c", item.graph.node(2).name()); EXPECT_EQ("e", item.graph.node(4).name()); *item.graph.mutable_node(4)->add_input() = "^c"; std::unique_ptr<VirtualCluster> cluster(CreateVirtualCluster()); std::unordered_map<const NodeDef*, Costs::NanoSeconds> completion_times; Status status = EstimateEarliestExecutionTimes(item, cluster.get(), &completion_times); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size(), completion_times.size()); std::vector<Costs::NanoSeconds> ordered_times = GetOrderedTimes(completion_times); for (int i = 0; i < ordered_times.size(); ++i) { if (i > 0) { EXPECT_GT(ordered_times[i], ordered_times[i - 1]); } } EXPECT_EQ(ordered_times[0], Costs::NanoSeconds(1)); std::vector<std::string> ordered_node_names = GetOrderedNodeNames(completion_times); EXPECT_EQ(ordered_node_names, (std::vector<std::string>{"a", "b", "c", "d", "e"})); } TEST_F(StaticScheduleTest, RequiredTimes) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {"CPU:0"}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); std::unique_ptr<VirtualCluster> cluster(CreateVirtualCluster()); std::unordered_map<const NodeDef*, Costs::NanoSeconds> execution_times; for (const NodeDef& node : item.graph.node()) { execution_times[&node] = 0; } std::unordered_map<const NodeDef*, Costs::NanoSeconds> required_times; Status status = EstimateRequiredTimes(item, cluster.get(), execution_times, &required_times); TF_EXPECT_OK(status); EXPECT_EQ(item.graph.node_size(), required_times.size()); std::vector<Costs::NanoSeconds> ordered_times = GetOrderedTimes(required_times); for (int i = 0; i < ordered_times.size(); ++i) { if (i > 0) { EXPECT_GT(ordered_times[i], ordered_times[i - 1]); } } EXPECT_EQ(ordered_times[ordered_times.size() - 1], Costs::NanoSeconds(0)); std::vector<std::string> ordered_node_names = GetOrderedNodeNames(required_times); EXPECT_EQ(ordered_node_names, (std::vector<std::string>{"Const/Const", "x", "Sign", "Sign_1", "Sign_2", "Sign_3", "y"})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/static_schedule.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/static_schedule_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
36acac8a-49c4-4e97-8cea-2d5a67db0444
cpp
tensorflow/tensorflow
loop_optimizer
tensorflow/core/grappler/optimizers/loop_optimizer.cc
tensorflow/core/grappler/optimizers/loop_optimizer_test.cc
#include "tensorflow/core/grappler/optimizers/loop_optimizer.h" #include <algorithm> #include <deque> #include <limits> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/grappler/graph_topology_view.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/constant_folding.h" #include "tensorflow/core/grappler/optimizers/evaluation_utils.h" #include "tensorflow/core/grappler/utils/frame.h" #include "tensorflow/core/grappler/utils/traversal.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/tensor_coding.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/saved_tensor_slice_util.h" using tensorflow::strings::StrCat; namespace tensorflow { namespace grappler { namespace { using TensorVector = absl::InlinedVector<TensorValue, 4UL>; class LoopInvariantNodeMotionOptimizer { public: explicit LoopInvariantNodeMotionOptimizer(GraphDef* optimized_graph) : optimized_graph_(optimized_graph) {} virtual ~LoopInvariantNodeMotionOptimizer() = default; Status Optimize(); private: Status FindInvariantNodes(NodeDef* node); Status RevertInvariantNodes(); Status MoveInvariantNodes(const int frame_id); Status HandleInvariantNode(NodeDef* node, const int num_outputs, const int frame_id); Status HandleConst(NodeDef* node, const int num_outputs, const int frame_id); Status HandleInvariantEnter(NodeDef* node, const int num_outputs); GraphDef* optimized_graph_; std::unique_ptr<NodeMap> node_map_; std::map<NodeDef*, int> invariant_nodes_; std::set<int> empty_set_; std::vector<std::set<int>> frame_children_; std::vector<int> frame_parent_; std::map<int, const NodeDef*> loop_cond_; std::map<int, std::vector<NodeDef*>> invariant_enters_; int new_enter_id_; }; Status LoopInvariantNodeMotionOptimizer::HandleInvariantEnter( NodeDef* node, const int num_outputs) { auto consumers = node_map_->GetOutputs(node->name()); std::vector<string> enter_control_inputs; string enter_input; for (auto& input : node->input()) { if (IsControlInput(input)) { enter_control_inputs.push_back(input); } else { enter_input = input; } } for (auto* consumer : consumers) { if (invariant_nodes_.count(consumer)) { for (int i = 0; i < consumer->input_size(); ++i) { if (NodeName(consumer->input(i)) == node->name()) { consumer->set_input(i, enter_input); node_map_->AddOutput(NodeName(enter_input), consumer->name()); node_map_->RemoveOutput(node->name(), consumer->name()); } } for (auto& control_input : enter_control_inputs) { consumer->add_input(control_input); node_map_->AddOutput(NodeName(control_input), consumer->name()); } } } return absl::OkStatus(); } Status LoopInvariantNodeMotionOptimizer::HandleConst(NodeDef* node, const int num_outputs, const int frame_id) { NodeDef* const_node = nullptr; if (num_outputs == 0) { const_node = node; node_map_->RemoveInputs(node->name()); node->clear_input(); } else { const string const_node_name = AddPrefixToNodeName(node->name(), kLoopOptimizer); const_node = node_map_->GetNode(const_node_name); if (const_node == nullptr) { const_node = optimized_graph_->add_node(); const_node->set_name(const_node_name); const_node->set_op("Const"); const_node->set_device(node->device()); *const_node->mutable_attr() = node->attr(); node_map_->AddNode(const_node->name(), const_node); } auto consumers = node_map_->GetOutputs(node->name()); for (auto* consumer : consumers) { if (invariant_nodes_.count(consumer)) { for (int i = 0; i < consumer->input_size(); ++i) { if (NodeName(consumer->input(i)) == node->name()) { if (IsControlInput(consumer->input(i))) { *consumer->mutable_input(i) = AsControlDependency(*const_node); } else { *consumer->mutable_input(i) = const_node->name(); } node_map_->AddOutput(const_node->name(), consumer->name()); node_map_->RemoveOutput(node->name(), consumer->name()); } } } } } if (frame_parent_[frame_id] != -1) { int parent_id = frame_parent_[frame_id]; auto loop_cond_it = loop_cond_.find(parent_id); if (loop_cond_it == loop_cond_.end()) { return errors::InvalidArgument("Frame ", frame_id, " doesn't have a LoopCond node"); } auto& loop_cond_name = loop_cond_it->second->name(); NodeDef* switch_node = nullptr; for (auto* node : node_map_->GetOutputs(loop_cond_name)) { if (node->op() == "Switch") { switch_node = node; break; } } if (!switch_node) { return errors::InvalidArgument("LoopCond node of Frame ", frame_id, " doesn't connect to any Switch node"); } string switch_output = StrCat(switch_node->name(), ":1"); const string ctrl_dep = ConstantFolding::AddControlDependency( switch_output, optimized_graph_, node_map_.get()); const_node->add_input(ctrl_dep); node_map_->AddOutput(NodeName(ctrl_dep), const_node->name()); } return absl::OkStatus(); } Status LoopInvariantNodeMotionOptimizer::HandleInvariantNode( NodeDef* node, const int num_outputs, const int frame_id) { for (int i = 0; i < node->input_size(); ++i) { if (IsControlInput(node->input(i))) { node->mutable_input()->SwapElements(i, node->input_size() - 1); node->mutable_input()->RemoveLast(); } } if (num_outputs == 0) { return absl::OkStatus(); } DataTypeVector input_types; DataTypeVector output_types; OpRegistryInterface* op_registry = OpRegistry::Global(); const OpRegistrationData* op_reg_data = nullptr; TF_RETURN_IF_ERROR(op_registry->LookUp(node->op(), &op_reg_data)); TF_RETURN_IF_ERROR(InOutTypesForNode(*node, op_reg_data->op_def, &input_types, &output_types)); auto consumers = node_map_->GetOutputs(node->name()); string fname = invariant_enters_[frame_id][0]->attr().at("frame_name").s(); int piterations = invariant_enters_[frame_id][0]->attr().at("parallel_iterations").i(); for (auto* consumer : consumers) { if (!invariant_nodes_.count(consumer)) { for (int i = 0; i < consumer->input_size(); ++i) { int port; string node_name = ParseNodeName(consumer->input(i), &port); if (node_name != node->name()) { continue; } if (port < 0) { return errors::InvalidArgument( "Invariant node should not have control outputs " "to variant node"); } DataType output_type = output_types[port]; NodeDef* new_enter = optimized_graph_->add_node(); new_enter->set_op("Enter"); new_enter->set_device(node->device()); new_enter->set_name(AddPrefixToNodeName( StrCat(fname, "_enter_", new_enter_id_++), kLoopOptimizer)); AttrValue data_type; data_type.set_type(output_type); new_enter->mutable_attr()->insert({"T", data_type}); AttrValue frame_name; frame_name.set_s(fname); new_enter->mutable_attr()->insert({"frame_name", frame_name}); AttrValue is_const; is_const.set_b(true); new_enter->mutable_attr()->insert({"is_constant", is_const}); AttrValue parallel_iterations; parallel_iterations.set_i(piterations); new_enter->mutable_attr()->insert( {"parallel_iterations", parallel_iterations}); new_enter->add_input(consumer->input(i)); *consumer->mutable_input(i) = new_enter->name(); node_map_->AddNode(new_enter->name(), new_enter); node_map_->AddOutput(node->name(), new_enter->name()); node_map_->AddOutput(new_enter->name(), consumer->name()); } } } return absl::OkStatus(); } Status LoopInvariantNodeMotionOptimizer::MoveInvariantNodes( const int frame_id) { for (auto iter = invariant_nodes_.begin(); iter != invariant_nodes_.end(); ++iter) { auto* invariant_node = iter->first; const int num_outputs = iter->second; if (IsEnter(*invariant_node)) { TF_RETURN_IF_ERROR(HandleInvariantEnter(invariant_node, num_outputs)); } else if (IsConstant(*invariant_node)) { TF_RETURN_IF_ERROR(HandleConst(invariant_node, num_outputs, frame_id)); } else { TF_RETURN_IF_ERROR( HandleInvariantNode(invariant_node, num_outputs, frame_id)); } } return absl::OkStatus(); } Status LoopInvariantNodeMotionOptimizer::RevertInvariantNodes() { std::deque<const NodeDef*> reverted_nodes; for (auto iter = invariant_nodes_.begin(); iter != invariant_nodes_.end();) { bool erased = false; const auto* node = iter->first; if (!IsConstant(*node) && !IsEnter(*node) && iter->second > 0) { auto& consumers = node_map_->GetOutputs(node->name()); for (auto* consumer : consumers) { if (!invariant_nodes_.count(consumer)) { for (const auto& input : consumer->input()) { if (IsControlInput(input) && NodeName(input) == node->name()) { reverted_nodes.push_back(node); invariant_nodes_.erase(iter++); erased = true; break; } } if (erased) break; } } } if (!erased) ++iter; } while (!reverted_nodes.empty()) { const auto* node = reverted_nodes.front(); reverted_nodes.pop_front(); std::set<NodeDef*> producers; for (const auto& input : node->input()) { auto* producer = node_map_->GetNode(input); auto iter = invariant_nodes_.find(producer); if (iter != invariant_nodes_.end()) { if (IsControlInput(input) && !IsConstant(*producer) && !IsEnter(*producer)) { reverted_nodes.push_back(producer); invariant_nodes_.erase(iter); } else { producers.insert(producer); } } } for (auto* producer : producers) { auto iter = invariant_nodes_.find(producer); if (iter != invariant_nodes_.end()) { ++iter->second; } } for (auto* consumer : node_map_->GetOutputs(node->name())) { auto iter = invariant_nodes_.find(consumer); if (iter != invariant_nodes_.end()) { reverted_nodes.push_back(consumer); invariant_nodes_.erase(iter); } } } return absl::OkStatus(); } Status LoopInvariantNodeMotionOptimizer::FindInvariantNodes( NodeDef* start_node) { std::vector<NodeDef*> stack; stack.reserve(32); stack.push_back(start_node); while (!stack.empty()) { NodeDef* node = stack.back(); stack.pop_back(); auto consumers = node_map_->GetOutputs(node->name()); invariant_nodes_.emplace(node, consumers.size()); for (auto* consumer : consumers) { if (invariant_nodes_.count(consumer) || ModifiesFrameInfo(*consumer)) { continue; } bool is_invariant = true; for (const auto& input : consumer->input()) { if (!IsControlInput(input)) { const string name = NodeName(input); auto* producer = node_map_->GetNode(name); if (!invariant_nodes_.count(producer)) { if (IsConstant(*producer)) { invariant_nodes_.insert( std::make_pair(producer, node_map_->GetOutputs(name).size())); } else { is_invariant = false; break; } } } } if (is_invariant) { std::set<NodeDef*> producers; for (const auto& input : consumer->input()) { auto* producer = node_map_->GetNode(input); producers.insert(producer); } for (auto* producer : producers) { auto iter = invariant_nodes_.find(producer); if (iter != invariant_nodes_.end()) { --iter->second; } } stack.push_back(consumer); } } } return absl::OkStatus(); } Status LoopInvariantNodeMotionOptimizer::Optimize() { node_map_.reset(new NodeMap(optimized_graph_)); FrameView frame_view; TF_RETURN_IF_ERROR(frame_view.InferFromGraph(*optimized_graph_)); frame_parent_.resize(frame_view.num_frames(), -1); frame_children_.resize(frame_view.num_frames()); std::deque<int> worklist; for (const NodeDef& node : optimized_graph_->node()) { const std::vector<int>& frame_ids = frame_view.Frames(node); if (frame_ids.size() >= 3) { for (unsigned int i = 1; i < frame_ids.size() - 1; ++i) { frame_parent_[frame_ids[i]] = frame_ids[i - 1]; frame_children_[frame_ids[i]].insert(frame_ids[i + 1]); } } if (frame_ids.size() >= 2) { frame_children_[frame_ids[0]].insert(frame_ids[1]); frame_parent_[frame_ids.back()] = frame_ids[frame_ids.size() - 2]; } if (!frame_ids.empty()) { frame_children_[frame_ids.back()] = empty_set_; if (node.op() == "LoopCond") { if (loop_cond_.count(frame_ids.back())) { return errors::InvalidArgument( "Loop ", frame_ids.back(), " has more than one LoopCond node: ", node.name(), " and ", loop_cond_[frame_ids.back()]->name()); } loop_cond_[frame_ids.back()] = &node; } if (IsEnter(node) && node.attr().at("is_constant").b()) { invariant_enters_[frame_ids.back()].push_back( const_cast<NodeDef*>(&node)); } } } for (size_t i = 0; i < frame_children_.size(); i++) { if (frame_children_[i].empty()) { worklist.push_back(i); } } while (!worklist.empty()) { int frame_id = worklist.front(); new_enter_id_ = 0; worklist.pop_front(); if (frame_parent_[frame_id] != -1) { int parent_id = frame_parent_[frame_id]; frame_children_[parent_id].erase(frame_id); if (frame_children_[parent_id].empty()) { worklist.push_back(parent_id); } } if (invariant_enters_[frame_id].empty()) { continue; } invariant_nodes_.clear(); for (auto* enter : invariant_enters_[frame_id]) { TF_RETURN_IF_ERROR(FindInvariantNodes(enter)); } TF_RETURN_IF_ERROR(RevertInvariantNodes()); TF_RETURN_IF_ERROR(MoveInvariantNodes(frame_id)); } return absl::OkStatus(); } std::vector<int> GetStackPushNodesToConvert( const GraphTopologyView& graph_view, const std::unordered_set<string>& nodes_to_preserve, int stack_node_idx) { VLOG(1) << "Stack node: " << graph_view.graph()->node(stack_node_idx).name(); const std::unordered_set<string> op_types_to_traverse( {"Stack", "StackV2", "Enter", "RefEnter", "Switch", "RefSwitch", "_SwitchN", "Identity", "RefIdentity"}); const auto is_op_to_traverse = [&](const NodeDef* node) -> bool { return op_types_to_traverse.find(node->op()) != op_types_to_traverse.end(); }; std::vector<int> nodes_to_convert; std::vector<int> fanouts; DfsTraversal(graph_view, {graph_view.GetNode(stack_node_idx)}, TraversalDirection::kFollowOutputs, DfsPredicates::Advance(is_op_to_traverse), DfsCallbacks::PreOrder([&](const NodeDef* node) { const absl::optional<int> idx = graph_view.GetNodeIndex(*node); fanouts.push_back(idx.value()); })); for (int fanout_idx : fanouts) { const NodeDef& fanout_node = graph_view.graph()->node(fanout_idx); VLOG(1) << "Fanout " << fanout_idx << " : " << fanout_node.name(); if (IsStackPushOp(fanout_node)) { if (graph_view.HasNode(fanout_node.input(0))) { const NodeDef* stack_node = graph_view.GetNode(fanout_node.input(0)); while (stack_node->op() != "Stack" && stack_node->op() != "StackV2" && stack_node->input_size() > 0 && graph_view.HasNode(stack_node->input(0))) { stack_node = graph_view.GetNode(stack_node->input(0)); } if (nodes_to_preserve.find(stack_node->name()) == nodes_to_preserve.end()) { nodes_to_convert.push_back(fanout_idx); } } else { nodes_to_convert.push_back(fanout_idx); } } else if (IsStackOp(fanout_node) || IsStackCloseOp(fanout_node) || op_types_to_traverse.find(fanout_node.op()) != op_types_to_traverse.end()) { continue; } else if (!IsStackPopOp(fanout_node) || (!graph_view.GetFanout(fanout_idx).empty() || nodes_to_preserve.find(fanout_node.name()) != nodes_to_preserve.end())) { nodes_to_convert.clear(); break; } } return nodes_to_convert; } Status RemoveStackOps(const std::unordered_set<string>& nodes_to_preserve, GraphDef* optimized_graph) { NodeMap node_map(optimized_graph); GraphTopologyView graph_view; TF_RETURN_IF_ERROR(graph_view.InitializeFromGraph(*optimized_graph)); for (int node_idx = 0; node_idx < optimized_graph->node_size(); ++node_idx) { if (IsStackOp(optimized_graph->node(node_idx))) { for (int push_node_idx : GetStackPushNodesToConvert( graph_view, nodes_to_preserve, node_idx)) { NodeDef* push_node = optimized_graph->mutable_node(push_node_idx); VLOG(1) << "Converting " << push_node_idx << " : " << push_node->DebugString(); if (push_node->attr().count("swap_memory") != 0) { push_node->mutable_attr()->erase("swap_memory"); } push_node->set_op("Identity"); push_node->mutable_input()->SwapElements(0, 1); const string ctrl_dep = ConstantFolding::AddControlDependency( push_node->input(1), optimized_graph, &node_map); push_node->set_input(1, ctrl_dep); VLOG(1) << "After converting: " << push_node->DebugString(); } } } return absl::OkStatus(); } bool IsSimpleBinaryOperator(const NodeDef& node) { return (IsLess(node) || IsLessEqual(node) || IsGreater(node) || IsGreaterEqual(node) || IsEqual(node)); } Status EvaluateBoolOpForConstantOperands(const NodeDef& op_node, const NodeDef& constant_operand_0, const NodeDef& constant_operand_1, DeviceBase* cpu_device, ResourceMgr* resource_mgr, bool* value) { VLOG(4) << "Evaluate bool op: op_node=" << op_node.name() << " input0=" << constant_operand_0.name() << " input1=" << constant_operand_1.name(); TensorVector inputs; const TensorProto& raw_val_0 = constant_operand_0.attr().at("value").tensor(); Tensor value_0(raw_val_0.dtype(), raw_val_0.tensor_shape()); CHECK(value_0.FromProto(raw_val_0)); inputs.emplace_back(&value_0); const TensorProto& raw_val_1 = constant_operand_1.attr().at("value").tensor(); Tensor value_1(raw_val_1.dtype(), raw_val_1.tensor_shape()); CHECK(value_1.FromProto(raw_val_1)); inputs.emplace_back(&value_1); TensorVector outputs; TF_RETURN_IF_ERROR( EvaluateNode(op_node, inputs, cpu_device, resource_mgr, &outputs)); if (outputs.size() != 1 || outputs[0].tensor == nullptr) { return Status(absl::StatusCode::kInvalidArgument, "Expected one output."); } *value = outputs[0].tensor->scalar<bool>()(); delete outputs[0].tensor; return absl::OkStatus(); } bool IsReallyConstant(const NodeDef& node, const absl::flat_hash_set<string>& feed_nodes) { if (!IsConstant(node)) { return false; } return feed_nodes.find(node.name()) == feed_nodes.end(); } Status CheckForDeadFanout(const MutableGraphView& view, const NodeDef& switch_node, const NodeMap& node_map, const absl::flat_hash_set<string>& feed_nodes, DeviceBase* cpu_device, ResourceMgr* resource_mgr, bool* has_dead_fanout, int* dead_fanout) { *has_dead_fanout = false; GraphView::InputPort switch_loopcond_port(&switch_node, 1); const NodeDef* switch_predicate = view.GetRegularFanin(switch_loopcond_port).node; if (IsReallyConstant(*switch_predicate, feed_nodes)) { VLOG(3) << "Found switch node with constant predicate:" << " switch_node=" << switch_node.name() << " switch_predicate=" << switch_predicate->name(); Tensor selector; CHECK(selector.FromProto(switch_predicate->attr().at("value").tensor())); *has_dead_fanout = true; *dead_fanout = selector.scalar<bool>()() ? 0 : 1; return absl::OkStatus(); } GraphView::InputPort switch_input_port(&switch_node, 0); const NodeDef* switch_input = view.GetRegularFanin(switch_input_port).node; if (!IsMerge(*switch_input) || !IsLoopCond(*switch_predicate)) { return absl::OkStatus(); } VLOG(4) << "Try to find a zero iteration while loop:" << " switch_node=" << switch_node.name(); NodeDef* switch_ctrl_node = view.GetRegularFanin({switch_predicate, 0}).node; if (!switch_ctrl_node || !IsSimpleBinaryOperator(*switch_ctrl_node)) { return absl::OkStatus(); } NodeDef* merge_node = nullptr; NodeDef* constant_ctrl_input = nullptr; int constant_index = 0; for (int i = 0; i < switch_ctrl_node->input().size(); ++i) { const string& input = switch_ctrl_node->input(i); if (IsControlInput(input)) continue; NodeDef* node = view.GetNode(switch_ctrl_node->input(i)); if (IsMerge(*node)) { merge_node = node; } if (IsReallyConstant(*node, feed_nodes)) { constant_ctrl_input = node; constant_index = i; } } if (merge_node == nullptr || constant_ctrl_input == nullptr) { return absl::OkStatus(); } NodeDef* enter_node = nullptr; NodeDef* constant_init_node = nullptr; for (const auto& input : merge_node->input()) { NodeDef* node = node_map.GetNode(input); if (IsEnter(*node)) { enter_node = node; } if (IsReallyConstant(*node, feed_nodes)) { constant_init_node = node; } } if (enter_node != nullptr) { if (constant_init_node != nullptr) return absl::OkStatus(); for (const auto& input : enter_node->input()) { NodeDef* node = node_map.GetNode(input); if (IsReallyConstant(*node, feed_nodes)) { constant_init_node = node; } } } if (constant_init_node == nullptr) { return absl::OkStatus(); } VLOG(4) << "Check if loop will be 0 iterations:" << "\n| switch_node : " << switch_node.name() << "\n| switch_ctrl_node : " << switch_ctrl_node->name() << "\n| merge_node : " << merge_node->name() << "\n| constant_ctrl_input: " << constant_ctrl_input->name() << "\n| enter_node : " << (enter_node ? enter_node->name() : "<n/a>") << "\n| constant_init_node : " << constant_init_node->name(); NodeDef* operand_0 = constant_index ? constant_init_node : constant_ctrl_input; NodeDef* operand_1 = constant_index ? constant_ctrl_input : constant_init_node; bool constant_switch_value; TF_RETURN_IF_ERROR(EvaluateBoolOpForConstantOperands( *switch_ctrl_node, *operand_0, *operand_1, cpu_device, resource_mgr, &constant_switch_value)); if (constant_switch_value == false) { VLOG(3) << "Remove 0 iteration while loop:" << " switch_node=" << switch_node.name(); *has_dead_fanout = true; *dead_fanout = 1; } else { VLOG(4) << "Was not able to prove that loop has 0 iterations."; } return absl::OkStatus(); } } LoopOptimizer::LoopOptimizer() : opt_level_(RewriterConfig::ON), cpu_device_(nullptr), options_(LoopOptimizerOptions::Default(RewriterConfig::ON)) {} LoopOptimizer::LoopOptimizer(RewriterConfig::Toggle opt_level, DeviceBase* cpu_device) : opt_level_(opt_level), cpu_device_(cpu_device), options_(LoopOptimizerOptions::Default(RewriterConfig::ON)) { resource_mgr_.reset(new ResourceMgr()); } Status LoopOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { if (!options_.enable_loop_invariant_node_motion && !options_.enable_stack_push_removal && !options_.enable_dead_branch_removal) { return errors::Aborted("Nothing to do."); } *optimized_graph = item.graph; if (options_.enable_loop_invariant_node_motion) { LoopInvariantNodeMotionOptimizer linm_optimizer(optimized_graph); TF_RETURN_IF_ERROR(linm_optimizer.Optimize()); } if (options_.enable_stack_push_removal) { TF_RETURN_IF_ERROR(RemoveStackOps(item.NodesToPreserve(), optimized_graph)); } if (options_.enable_dead_branch_removal) { NodeMap node_map(optimized_graph); absl::flat_hash_set<string> feed_nodes; for (const auto& feed : item.feed) { feed_nodes.insert(NodeName(feed.first)); } TF_RETURN_IF_ERROR(RemoveDeadBranches(item.NodesToPreserve(), node_map, feed_nodes, optimized_graph)); } return absl::OkStatus(); } static Status update_identity_node_type(NodeDef* sw_node) { if (sw_node->has_experimental_type() && (sw_node->experimental_type().type_id() == TFT_PRODUCT)) { FullTypeDef old_t = sw_node->experimental_type(); if (old_t.args_size() != 2) { return errors::Internal( "When converting Switch or Merge node '", sw_node->name(), "' to Identity, full type of original node describes ", old_t.args_size(), " outputs, not 2.\n", old_t.DebugString()); } FullTypeDef new_t; new_t.set_type_id(TFT_PRODUCT); *(new_t.add_args()) = old_t.args()[0]; *(sw_node->mutable_experimental_type()) = new_t; } return absl::OkStatus(); } Status LoopOptimizer::RemoveDeadBranches( const std::unordered_set<string>& nodes_to_preserve, NodeMap& node_map, const absl::flat_hash_set<string>& feed_nodes, GraphDef* optimized_graph) { std::unordered_set<const NodeDef*> dead_nodes; std::unordered_map<NodeDef*, std::set<int>> dead_merge_inputs; absl::flat_hash_set<GraphView::OutputPort> identity_switches; MutableGraphView view(optimized_graph); for (const NodeDef& node : optimized_graph->node()) { if (!IsSwitch(node)) { continue; } if (node.op() == "_SwitchN") { continue; } if (nodes_to_preserve.find(node.name()) != nodes_to_preserve.end()) { continue; } int dead_fanout; bool has_dead_fanout; TF_RETURN_IF_ERROR(CheckForDeadFanout(view, node, node_map, feed_nodes, cpu_device_, resource_mgr_.get(), &has_dead_fanout, &dead_fanout)); if (!has_dead_fanout) { continue; } GraphView::OutputPort dead(&node, dead_fanout); SetVector<MutableGraphView::InputPort, absl::Hash<MutableGraphView::Port>> zombie_inputs; for (const MutableGraphView::InputPort& port : view.GetFanout(dead)) { if (dead_nodes.find(port.node) == dead_nodes.end()) { zombie_inputs.PushBack(port); } } std::unordered_set<const NodeDef*> local_dead_nodes = dead_nodes; std::unordered_map<NodeDef*, std::set<int>> local_dead_merge_inputs = dead_merge_inputs; bool found_node_to_preserve = false; while (!found_node_to_preserve && !zombie_inputs.Empty()) { MutableGraphView::InputPort dead = zombie_inputs.PopBack(); if (nodes_to_preserve.find(dead.node->name()) != nodes_to_preserve.end()) { found_node_to_preserve = true; break; } if (local_dead_nodes.find(dead.node) != local_dead_nodes.end()) { continue; } if (IsMerge(*dead.node)) { const int num_data_inputs = dead.node->attr().at("N").i(); if (num_data_inputs > 2) { found_node_to_preserve = true; break; } MutableGraphView::OutputPort value_index(dead.node, 1); const absl::flat_hash_set<MutableGraphView::InputPort>& index_fanout = view.GetFanout(value_index); if (!index_fanout.empty()) { found_node_to_preserve = true; break; } bool fully_dead = false; if (dead.port_id >= 0) { local_dead_merge_inputs[dead.node].insert(dead.port_id); if (local_dead_merge_inputs[dead.node].size() == num_data_inputs) { fully_dead = true; } } else { local_dead_merge_inputs.insert({dead.node, {}}); } if (fully_dead) { local_dead_merge_inputs.erase(dead.node); local_dead_nodes.insert(dead.node); for (const MutableGraphView::InputPort& port : view.GetFanouts(*dead.node, true)) { zombie_inputs.PushBack(port); } } } else if (dead.node->op() == "ControlTrigger") { found_node_to_preserve = true; break; } else { if (local_dead_nodes.insert(dead.node).second) { for (const MutableGraphView::InputPort& dead_fanout : view.GetFanouts(*dead.node, true)) { zombie_inputs.PushBack(dead_fanout); } } } } if (!found_node_to_preserve) { std::swap(dead_nodes, local_dead_nodes); std::swap(dead_merge_inputs, local_dead_merge_inputs); identity_switches.insert(dead); VLOG(3) << "Found no nodes to preserve in fanout of switch node: " << node.name() << ", fanout port: " << dead_fanout; } } std::vector<int> nodes_idx_to_delete; nodes_idx_to_delete.reserve(dead_nodes.size()); for (int i = 0; i < optimized_graph->node_size(); ++i) { if (dead_nodes.count(&optimized_graph->node(i))) nodes_idx_to_delete.push_back(i); } absl::flat_hash_set<absl::string_view> dead_node_names; dead_node_names.reserve(dead_nodes.size()); for (const NodeDef* dead_node : dead_nodes) { dead_node_names.insert(dead_node->name()); } for (const auto& itr : dead_merge_inputs) { NodeDef* merge_node = itr.first; if (dead_nodes.find(merge_node) != dead_nodes.end()) { continue; } const std::set<int>& dead_inputs = itr.second; const int num_data_inputs = merge_node->attr().at("N").i(); if (merge_node->input_size() != num_data_inputs) { LOG(WARNING) << "Skipping loop optimization for Merge node with control input: " << merge_node->name(); return absl::OkStatus(); } else if (dead_inputs.size() != 1 || num_data_inputs != 2) { LOG(WARNING) << "Skipping loop optimization for Merge node (" << merge_node->name() << ") with unexpected dead_inputs.size() (" << dead_inputs.size() << " or num_data_inputs" << num_data_inputs; return absl::OkStatus(); } } for (const auto& itr : dead_merge_inputs) { NodeDef* merge_node = itr.first; if (dead_nodes.find(merge_node) != dead_nodes.end()) { continue; } VLOG(3) << "Merge node before cleanup: " << merge_node->DebugString(); const std::set<int>& dead_inputs = itr.second; int index = *dead_inputs.begin(); auto* inputs = merge_node->mutable_input(); inputs->SwapElements(1, index); inputs->SwapElements(1, merge_node->input_size() - 1); inputs->RemoveLast(); merge_node->set_op("Identity"); merge_node->mutable_attr()->erase("N"); TF_RETURN_IF_ERROR(update_identity_node_type(merge_node)); VLOG(3) << "Merge node after cleanup: " << merge_node->DebugString(); } for (const auto& id_switch : identity_switches) { NodeDef* sw_node = const_cast<NodeDef*>((id_switch.node)); int dead_port_id = id_switch.port_id; NodeDef* pred = node_map.GetNode(sw_node->input(1)); if (IsReallyConstant(*pred, feed_nodes) && sw_node->op() == "Switch") { int live_port_id = (dead_port_id + 1) % 2; string live_output_name = sw_node->name(); if (live_port_id == 1) { live_output_name = StrCat(sw_node->name(), ":1"); } auto consumers = node_map.GetOutputs(sw_node->name()); for (auto* consumer : consumers) { for (int i = 0; i < consumer->input_size(); ++i) { if (consumer->input(i) == live_output_name) { consumer->set_input(i, sw_node->name()); node_map.UpdateInput(consumer->name(), live_output_name, sw_node->name()); } } } VLOG(3) << "Switch node before cleanup: " << sw_node->DebugString(); const string ctrl_dep = ConstantFolding::AddControlDependency( pred->name(), optimized_graph, &node_map); node_map.UpdateInput(sw_node->name(), pred->name(), ctrl_dep); sw_node->set_input(1, ctrl_dep); sw_node->set_op("Identity"); TF_RETURN_IF_ERROR(update_identity_node_type(sw_node)); VLOG(3) << "Switch node after cleanup: " << sw_node->DebugString(); } } EraseNodesFromGraph(std::move(nodes_idx_to_delete), optimized_graph); return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/loop_optimizer.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/graph_view.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { class LoopOptimizerTest : public GrapplerTest { protected: void AddEnterNode(const string& name, const string& frame, const bool is_constant, const int piterations, const std::vector<string>& inputs, GraphDef* graph) const { std::vector<std::pair<string, AttrValue>> attributes; AttrValue type; type.set_type(DT_FLOAT); attributes.emplace_back("T", type); AttrValue frame_name; frame_name.set_s(frame); attributes.emplace_back("frame_name", frame_name); AttrValue is_const; is_const.set_b(is_constant); attributes.emplace_back("is_constant", is_const); AttrValue parallel_iterations; parallel_iterations.set_i(piterations); attributes.emplace_back("parallel_iterations", parallel_iterations); AddNode(name, "Enter", inputs, attributes, graph); } void AddSimpleNode(const string& name, const string& op, const std::vector<string>& inputs, GraphDef* graph) const { std::vector<std::pair<string, AttrValue>> attributes; AttrValue type; type.set_type(DT_FLOAT); attributes.emplace_back("T", type); AddNode(name, op, inputs, attributes, graph); } void EnableOnlyLoopInvariantNodeMotion(LoopOptimizer* optimizer) { DisableAllStages(optimizer); optimizer->options_.enable_loop_invariant_node_motion = true; } void EnableOnlyStackPushRemoval(LoopOptimizer* optimizer) { DisableAllStages(optimizer); optimizer->options_.enable_stack_push_removal = true; } private: void DisableAllStages(LoopOptimizer* optimizer) { LoopOptimizer::LoopOptimizerOptions options; options.enable_loop_invariant_node_motion = false; options.enable_stack_push_removal = false; optimizer->options_ = options; } }; TEST_F(LoopOptimizerTest, Basic) { GraphDef graph; AddSimpleNode("In", "Identity", {}, &graph); AddEnterNode("InvariantEnter", "while/while_context", true, 1, {"In"}, &graph); AddSimpleNode("InvariantAdd", "Add", {"InvariantEnter", "InvariantEnter"}, &graph); AddSimpleNode("VariantAdd", "Add", {"InvariantAdd", "Identity"}, &graph); AddEnterNode("VariantEnter", "while/while_context", false, 1, {"In"}, &graph); AddSimpleNode("Merge", "Merge", {"VariantEnter", "NextIteration"}, &graph); AddSimpleNode("Less/y", "Const", {"^Identity"}, &graph); AddSimpleNode("Less", "Less", {"VariantAdd", "Less/y"}, &graph); AddSimpleNode("LoopCond", "LoopCond", {"Less"}, &graph); AddSimpleNode("Switch", "Switch", {"Merge", "LoopCond"}, &graph); AddSimpleNode("Identity", "Identity", {"Switch:1"}, &graph); AddSimpleNode("NextIteration", "NextIteration", {"VariantAdd"}, &graph); AddSimpleNode("Exit", "Exit", {"Switch"}, &graph); AddSimpleNode("Out", "Identity", {"Exit"}, &graph); GrapplerItem item; item.graph = graph; LoopOptimizer optimizer; EnableOnlyLoopInvariantNodeMotion(&optimizer); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); { Status status; utils::GraphView view(&graph, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 1); const auto* invariant_add_node = view.GetNode("InvariantAdd"); ASSERT_NE(invariant_add_node, nullptr); const auto* invariant_add_node_def = invariant_add_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_node_def).size(), 1); EXPECT_EQ(frames.Frames(*invariant_add_node_def).back(), 0); const auto* variant_add_node = view.GetNode("VariantAdd"); ASSERT_NE(variant_add_node, nullptr); const auto* variant_add_node_def = variant_add_node->node(); ASSERT_EQ(frames.Frames(*variant_add_node_def).size(), 1); EXPECT_EQ(frames.Frames(*variant_add_node_def).back(), 0); } { Status status; utils::GraphView view(&output, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 1); const auto* invariant_add_node = view.GetNode("InvariantAdd"); ASSERT_NE(invariant_add_node, nullptr); const auto* invariant_add_node_def = invariant_add_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_node_def).size(), 0); const auto* variant_add_node = view.GetNode("VariantAdd"); ASSERT_NE(variant_add_node, nullptr); const auto* variant_add_node_def = variant_add_node->node(); ASSERT_EQ(frames.Frames(*variant_add_node_def).size(), 1); EXPECT_EQ(frames.Frames(*variant_add_node_def).back(), 0); } } TEST_F(LoopOptimizerTest, Const) { GraphDef graph; AddSimpleNode("In", "Identity", {}, &graph); AddEnterNode("InvariantEnter", "while/while_context", true, 1, {"In"}, &graph); AddSimpleNode("Const", "Const", {"^Identity"}, &graph); AddSimpleNode("InvariantAdd", "Add", {"InvariantEnter", "Const"}, &graph); AddSimpleNode("VariantAdd", "Add", {"InvariantAdd", "Identity"}, &graph); AddEnterNode("VariantEnter", "while/while_context", false, 1, {"In"}, &graph); AddSimpleNode("Merge", "Merge", {"VariantEnter", "NextIteration"}, &graph); AddSimpleNode("Less/y", "Const", {"^Identity"}, &graph); AddSimpleNode("Less", "Less", {"VariantAdd", "Less/y"}, &graph); AddSimpleNode("LoopCond", "LoopCond", {"Less"}, &graph); AddSimpleNode("Switch", "Switch", {"Merge", "LoopCond"}, &graph); AddSimpleNode("Identity", "Identity", {"Switch:1"}, &graph); AddSimpleNode("NextIteration", "NextIteration", {"VariantAdd"}, &graph); AddSimpleNode("Exit", "Exit", {"Switch"}, &graph); AddSimpleNode("Out", "Identity", {"Exit"}, &graph); GrapplerItem item; item.graph = graph; LoopOptimizer optimizer; EnableOnlyLoopInvariantNodeMotion(&optimizer); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); { Status status; utils::GraphView view(&graph, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 1); const auto* invariant_add_node = view.GetNode("InvariantAdd"); ASSERT_NE(invariant_add_node, nullptr); const auto* invariant_add_node_def = invariant_add_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_node_def).size(), 1); EXPECT_EQ(frames.Frames(*invariant_add_node_def).back(), 0); const auto* const_node = view.GetNode("Const"); ASSERT_NE(const_node, nullptr); const auto* const_node_node_def = const_node->node(); ASSERT_EQ(frames.Frames(*const_node_node_def).size(), 1); EXPECT_EQ(frames.Frames(*const_node_node_def).back(), 0); } { Status status; utils::GraphView view(&output, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 1); const auto* invariant_add_node = view.GetNode("InvariantAdd"); ASSERT_NE(invariant_add_node, nullptr); const auto* invariant_add_node_def = invariant_add_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_node_def).size(), 0); const auto* const_node = view.GetNode("Const"); ASSERT_NE(const_node, nullptr); const auto* const_node_node_def = const_node->node(); ASSERT_EQ(frames.Frames(*const_node_node_def).size(), 0); } } TEST_F(LoopOptimizerTest, ControlOutput) { GraphDef graph; AddSimpleNode("In", "Identity", {}, &graph); AddEnterNode("InvariantEnter", "while/while_context", true, 1, {"In"}, &graph); AddSimpleNode("InvariantAdd", "Add", {"InvariantEnter", "InvariantEnter"}, &graph); AddSimpleNode("VariantAdd", "Add", {"InvariantAdd", "Identity"}, &graph); AddEnterNode("VariantEnter", "while/while_context", false, 1, {"In"}, &graph); AddSimpleNode("Merge", "Merge", {"VariantEnter", "NextIteration"}, &graph); AddSimpleNode("Less/y", "Const", {"^Identity"}, &graph); AddSimpleNode("Less", "Less", {"VariantAdd", "Less/y", "^InvariantAdd"}, &graph); AddSimpleNode("LoopCond", "LoopCond", {"Less"}, &graph); AddSimpleNode("Switch", "Switch", {"Merge", "LoopCond"}, &graph); AddSimpleNode("Identity", "Identity", {"Switch:1"}, &graph); AddSimpleNode("NextIteration", "NextIteration", {"VariantAdd"}, &graph); AddSimpleNode("Exit", "Exit", {"Switch"}, &graph); AddSimpleNode("Out", "Identity", {"Exit"}, &graph); GrapplerItem item; item.graph = graph; LoopOptimizer optimizer; EnableOnlyLoopInvariantNodeMotion(&optimizer); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); { Status status; utils::GraphView view(&graph, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 1); const auto* invariant_add_node = view.GetNode("InvariantAdd"); ASSERT_NE(invariant_add_node, nullptr); const auto* invariant_add_node_def = invariant_add_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_node_def).size(), 1); EXPECT_EQ(frames.Frames(*invariant_add_node_def).back(), 0); } { Status status; utils::GraphView view(&output, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 1); const auto* invariant_add_node = view.GetNode("InvariantAdd"); ASSERT_NE(invariant_add_node, nullptr); const auto* invariant_add_node_def = invariant_add_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_node_def).size(), 1); EXPECT_EQ(frames.Frames(*invariant_add_node_def).back(), 0); } } TEST_F(LoopOptimizerTest, NestedLoop1) { GraphDef graph; AddSimpleNode("In", "Identity", {}, &graph); AddEnterNode("InvariantEnter", "while/while_context", true, 1, {"In"}, &graph); AddSimpleNode("InvariantAdd", "Add", {"InvariantEnter", "InvariantEnter"}, &graph); AddSimpleNode("VariantAdd", "Add", {"InvariantAdd", "Identity"}, &graph); AddEnterNode("VariantEnter", "while/while_context", false, 1, {"In"}, &graph); AddSimpleNode("Merge", "Merge", {"VariantEnter", "NextIteration"}, &graph); AddSimpleNode("Less/y", "Const", {"^Identity"}, &graph); AddSimpleNode("Less", "Less", {"Exit2", "Less/y"}, &graph); AddSimpleNode("LoopCond", "LoopCond", {"Less"}, &graph); AddSimpleNode("Switch", "Switch", {"Merge", "LoopCond"}, &graph); AddSimpleNode("Identity", "Identity", {"Switch:1"}, &graph); AddSimpleNode("NextIteration", "NextIteration", {"Exit2"}, &graph); AddSimpleNode("Exit", "Exit", {"Switch"}, &graph); AddSimpleNode("Out", "Identity", {"Exit"}, &graph); AddEnterNode("InvariantEnter2", "while/while/while_context", true, 1, {"VariantAdd"}, &graph); AddSimpleNode("InvariantAdd2", "Add", {"InvariantEnter2", "InvariantEnter2"}, &graph); AddSimpleNode("VariantAdd2", "Add", {"InvariantAdd2", "Identity2"}, &graph); AddEnterNode("VariantEnter2", "while/while/while_context", false, 1, {"VariantEnter"}, &graph); AddSimpleNode("Merge2", "Merge", {"VariantEnter2", "NextIteration2"}, &graph); AddSimpleNode("Less2/y", "Const", {"^Identity2"}, &graph); AddSimpleNode("Less2", "Less", {"VariantAdd2", "Less2/y"}, &graph); AddSimpleNode("LoopCond2", "LoopCond", {"Less2"}, &graph); AddSimpleNode("Switch2", "Switch", {"Merge2", "LoopCond2"}, &graph); AddSimpleNode("Identity2", "Identity", {"Switch2:1"}, &graph); AddSimpleNode("NextIteration2", "NextIteration", {"VariantAdd2"}, &graph); AddSimpleNode("Exit2", "Exit", {"Switch2"}, &graph); GrapplerItem item; item.graph = graph; LoopOptimizer optimizer; EnableOnlyLoopInvariantNodeMotion(&optimizer); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); { Status status; utils::GraphView view(&graph, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 2); const auto* invariant_add_2_node = view.GetNode("InvariantAdd2"); ASSERT_NE(invariant_add_2_node, nullptr); const auto* invariant_add_2_node_def = invariant_add_2_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_2_node_def).size(), 2); EXPECT_EQ(frames.Frames(*invariant_add_2_node_def).back(), 1); const auto* variant_add_2_node = view.GetNode("VariantAdd2"); ASSERT_NE(variant_add_2_node, nullptr); const auto* variant_add_2_node_def = variant_add_2_node->node(); ASSERT_EQ(frames.Frames(*variant_add_2_node_def).size(), 2); EXPECT_EQ(frames.Frames(*variant_add_2_node_def).back(), 1); const auto* invariant_add_node = view.GetNode("InvariantAdd"); ASSERT_NE(invariant_add_node, nullptr); const auto* invariant_add_node_def = invariant_add_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_node_def).size(), 1); EXPECT_EQ(frames.Frames(*invariant_add_node_def).back(), 0); } { Status status; utils::GraphView view(&output, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 2); const auto* invariant_add_2_node = view.GetNode("InvariantAdd2"); ASSERT_NE(invariant_add_2_node, nullptr); const auto* invariant_add_2_node_def = invariant_add_2_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_2_node_def).size(), 1); EXPECT_EQ(frames.Frames(*invariant_add_2_node_def).back(), 0); const auto* variant_add_2_node = view.GetNode("VariantAdd2"); ASSERT_NE(variant_add_2_node, nullptr); const auto* variant_add_2_node_def = variant_add_2_node->node(); ASSERT_EQ(frames.Frames(*variant_add_2_node_def).size(), 2); EXPECT_EQ(frames.Frames(*variant_add_2_node_def).back(), 1); const auto* invariant_add_node = view.GetNode("InvariantAdd"); ASSERT_NE(invariant_add_node, nullptr); const auto* invariant_add_node_def = invariant_add_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_node_def).size(), 0); } } TEST_F(LoopOptimizerTest, NestedLoop2) { GraphDef graph; AddSimpleNode("In", "Identity", {}, &graph); AddEnterNode("InvariantEnter", "while/while_context", true, 1, {"In"}, &graph); AddSimpleNode("InvariantAdd", "Add", {"InvariantEnter", "InvariantEnter"}, &graph); AddSimpleNode("VariantAdd", "Add", {"InvariantAdd", "Identity"}, &graph); AddEnterNode("VariantEnter", "while/while_context", false, 1, {"In"}, &graph); AddSimpleNode("Merge", "Merge", {"VariantEnter", "NextIteration"}, &graph); AddSimpleNode("Less/y", "Const", {"^Identity"}, &graph); AddSimpleNode("Less", "Less", {"Exit2", "Less/y"}, &graph); AddSimpleNode("LoopCond", "LoopCond", {"Less"}, &graph); AddSimpleNode("Switch", "Switch", {"Merge", "LoopCond"}, &graph); AddSimpleNode("Identity", "Identity", {"Switch:1"}, &graph); AddSimpleNode("NextIteration", "NextIteration", {"Exit2"}, &graph); AddSimpleNode("Exit", "Exit", {"Switch"}, &graph); AddSimpleNode("Out", "Identity", {"Exit"}, &graph); AddEnterNode("InvariantEnter2", "while/while/while_context", true, 1, {"InvariantAdd"}, &graph); AddSimpleNode("InvariantAdd2", "Add", {"InvariantEnter2", "InvariantEnter2"}, &graph); AddSimpleNode("VariantAdd2", "Add", {"InvariantAdd2", "Identity2"}, &graph); AddEnterNode("VariantEnter2", "while/while/while_context", false, 1, {"VariantEnter"}, &graph); AddSimpleNode("Merge2", "Merge", {"VariantEnter2", "NextIteration2"}, &graph); AddSimpleNode("Less2/y", "Const", {"^Identity2"}, &graph); AddSimpleNode("Less2", "Less", {"VariantAdd2", "Less2/y"}, &graph); AddSimpleNode("LoopCond2", "LoopCond", {"Less2"}, &graph); AddSimpleNode("Switch2", "Switch", {"Merge2", "LoopCond2"}, &graph); AddSimpleNode("Identity2", "Identity", {"Switch2:1"}, &graph); AddSimpleNode("NextIteration2", "NextIteration", {"VariantAdd2"}, &graph); AddSimpleNode("Exit2", "Exit", {"Switch2"}, &graph); GrapplerItem item; item.graph = graph; LoopOptimizer optimizer; EnableOnlyLoopInvariantNodeMotion(&optimizer); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); { Status status; utils::GraphView view(&graph, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 2); const auto* invariant_add_2_node = view.GetNode("InvariantAdd2"); ASSERT_NE(invariant_add_2_node, nullptr); const auto* invariant_add_2_node_def = invariant_add_2_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_2_node_def).size(), 2); EXPECT_EQ(frames.Frames(*invariant_add_2_node_def).back(), 1); const auto* variant_add_2_node = view.GetNode("VariantAdd2"); ASSERT_NE(variant_add_2_node, nullptr); const auto* variant_add_2_node_def = variant_add_2_node->node(); ASSERT_EQ(frames.Frames(*variant_add_2_node_def).size(), 2); EXPECT_EQ(frames.Frames(*variant_add_2_node_def).back(), 1); } { Status status; utils::GraphView view(&output, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 2); const auto* invariant_add_2_node = view.GetNode("InvariantAdd2"); ASSERT_NE(invariant_add_2_node, nullptr); const auto* invariant_add_2_node_def = invariant_add_2_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_2_node_def).size(), 0); const auto* variant_add_2_node = view.GetNode("VariantAdd2"); ASSERT_NE(variant_add_2_node, nullptr); const auto* variant_add_2_node_def = variant_add_2_node->node(); ASSERT_EQ(frames.Frames(*variant_add_2_node_def).size(), 2); EXPECT_EQ(frames.Frames(*variant_add_2_node_def).back(), 1); } } TEST_F(LoopOptimizerTest, NestedLoopConst1) { GraphDef graph; AddSimpleNode("In", "Identity", {}, &graph); AddEnterNode("InvariantEnter", "while/while_context", true, 1, {"In"}, &graph); AddSimpleNode("InvariantAdd", "Add", {"InvariantEnter", "InvariantEnter"}, &graph); AddSimpleNode("VariantAdd", "Add", {"InvariantAdd", "Identity"}, &graph); AddEnterNode("VariantEnter", "while/while_context", false, 1, {"In"}, &graph); AddSimpleNode("Merge", "Merge", {"VariantEnter", "NextIteration"}, &graph); AddSimpleNode("Less/y", "Const", {"^Identity"}, &graph); AddSimpleNode("Less", "Less", {"Exit2", "Less/y"}, &graph); AddSimpleNode("LoopCond", "LoopCond", {"Less"}, &graph); AddSimpleNode("Switch", "Switch", {"Merge", "LoopCond"}, &graph); AddSimpleNode("Identity", "Identity", {"Switch:1"}, &graph); AddSimpleNode("NextIteration", "NextIteration", {"Exit2"}, &graph); AddSimpleNode("Exit", "Exit", {"Switch"}, &graph); AddSimpleNode("Out", "Identity", {"Exit"}, &graph); AddEnterNode("InvariantEnter2", "while/while/while_context", true, 1, {"VariantAdd"}, &graph); AddSimpleNode("Const2", "Const", {"^Identity2"}, &graph); AddSimpleNode("InvariantAdd2", "Add", {"InvariantEnter2", "Const2"}, &graph); AddSimpleNode("VariantAdd2", "Add", {"InvariantAdd2", "Identity2"}, &graph); AddEnterNode("VariantEnter2", "while/while/while_context", false, 1, {"VariantEnter"}, &graph); AddSimpleNode("Merge2", "Merge", {"VariantEnter2", "NextIteration2"}, &graph); AddSimpleNode("Less2/y", "Const", {"^Identity2"}, &graph); AddSimpleNode("Less2", "Less", {"VariantAdd2", "Less2/y"}, &graph); AddSimpleNode("LoopCond2", "LoopCond", {"Less2"}, &graph); AddSimpleNode("Switch2", "Switch", {"Merge2", "LoopCond2"}, &graph); AddSimpleNode("Identity2", "Identity", {"Switch2:1"}, &graph); AddSimpleNode("NextIteration2", "NextIteration", {"VariantAdd2"}, &graph); AddSimpleNode("Exit2", "Exit", {"Switch2"}, &graph); GrapplerItem item; item.graph = graph; LoopOptimizer optimizer; EnableOnlyLoopInvariantNodeMotion(&optimizer); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); { Status status; utils::GraphView view(&graph, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 2); const auto* invariant_add_2_node = view.GetNode("InvariantAdd2"); ASSERT_NE(invariant_add_2_node, nullptr); const auto* invariant_add_2_node_def = invariant_add_2_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_2_node_def).size(), 2); EXPECT_EQ(frames.Frames(*invariant_add_2_node_def).back(), 1); const auto* const_2_node = view.GetNode("Const2"); ASSERT_NE(const_2_node, nullptr); const auto* const_2_node_def = const_2_node->node(); ASSERT_EQ(frames.Frames(*const_2_node_def).size(), 2); EXPECT_EQ(frames.Frames(*const_2_node_def).back(), 1); } { Status status; utils::GraphView view(&output, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 2); const auto* invariant_add_2_node = view.GetNode("InvariantAdd2"); ASSERT_NE(invariant_add_2_node, nullptr); const auto* invariant_add_2_node_def = invariant_add_2_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_2_node_def).size(), 1); EXPECT_EQ(frames.Frames(*invariant_add_2_node_def).back(), 0); const auto* const_2_node = view.GetNode("Const2"); ASSERT_NE(const_2_node, nullptr); const auto* const_2_node_def = const_2_node->node(); ASSERT_EQ(frames.Frames(*const_2_node_def).size(), 1); EXPECT_EQ(frames.Frames(*const_2_node_def).back(), 0); } } TEST_F(LoopOptimizerTest, NestedLoopConst2) { GraphDef graph; AddSimpleNode("In", "Identity", {}, &graph); AddEnterNode("InvariantEnter", "while/while_context", true, 1, {"In"}, &graph); AddSimpleNode("InvariantAdd", "Add", {"InvariantEnter", "InvariantEnter"}, &graph); AddSimpleNode("VariantAdd", "Add", {"InvariantAdd", "Identity"}, &graph); AddEnterNode("VariantEnter", "while/while_context", false, 1, {"In"}, &graph); AddSimpleNode("Merge", "Merge", {"VariantEnter", "NextIteration"}, &graph); AddSimpleNode("Less/y", "Const", {"^Identity"}, &graph); AddSimpleNode("Less", "Less", {"Exit2", "Less/y"}, &graph); AddSimpleNode("LoopCond", "LoopCond", {"Less"}, &graph); AddSimpleNode("Switch", "Switch", {"Merge", "LoopCond"}, &graph); AddSimpleNode("Identity", "Identity", {"Switch:1"}, &graph); AddSimpleNode("NextIteration", "NextIteration", {"Exit2"}, &graph); AddSimpleNode("Exit", "Exit", {"Switch"}, &graph); AddSimpleNode("Out", "Identity", {"Exit"}, &graph); AddEnterNode("InvariantEnter2", "while/while/while_context", true, 1, {"InvariantAdd"}, &graph); AddSimpleNode("Const2", "Const", {"^Identity2"}, &graph); AddSimpleNode("InvariantAdd2", "Add", {"InvariantEnter2", "Const2"}, &graph); AddSimpleNode("VariantAdd2", "Add", {"InvariantAdd2", "Identity2"}, &graph); AddEnterNode("VariantEnter2", "while/while/while_context", false, 1, {"VariantEnter"}, &graph); AddSimpleNode("Merge2", "Merge", {"VariantEnter2", "NextIteration2"}, &graph); AddSimpleNode("Less2/y", "Const", {"^Identity2"}, &graph); AddSimpleNode("Less2", "Less", {"VariantAdd2", "Less2/y"}, &graph); AddSimpleNode("LoopCond2", "LoopCond", {"Less2"}, &graph); AddSimpleNode("Switch2", "Switch", {"Merge2", "LoopCond2"}, &graph); AddSimpleNode("Identity2", "Identity", {"Switch2:1"}, &graph); AddSimpleNode("NextIteration2", "NextIteration", {"VariantAdd2"}, &graph); AddSimpleNode("Exit2", "Exit", {"Switch2"}, &graph); GrapplerItem item; item.graph = graph; LoopOptimizer optimizer; EnableOnlyLoopInvariantNodeMotion(&optimizer); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); { Status status; utils::GraphView view(&graph, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 2); const auto* invariant_add_2_node = view.GetNode("InvariantAdd2"); ASSERT_NE(invariant_add_2_node, nullptr); const auto* invariant_add_2_node_def = invariant_add_2_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_2_node_def).size(), 2); EXPECT_EQ(frames.Frames(*invariant_add_2_node_def).back(), 1); const auto* const_2_node = view.GetNode("Const2"); ASSERT_NE(const_2_node, nullptr); const auto* const_2_node_def = const_2_node->node(); ASSERT_EQ(frames.Frames(*const_2_node_def).size(), 2); EXPECT_EQ(frames.Frames(*const_2_node_def).back(), 1); } { Status status; utils::GraphView view(&output, &status); TF_ASSERT_OK(status); FrameView frames; TF_EXPECT_OK(frames.InferFromGraphView(view)); EXPECT_EQ(frames.num_frames(), 2); const auto* invariant_add_2_node = view.GetNode("InvariantAdd2"); ASSERT_NE(invariant_add_2_node, nullptr); const auto* invariant_add_2_node_def = invariant_add_2_node->node(); ASSERT_EQ(frames.Frames(*invariant_add_2_node_def).size(), 0); const auto* const_2_node = view.GetNode("Const2"); ASSERT_NE(const_2_node, nullptr); const auto* const_2_node_def = const_2_node->node(); ASSERT_EQ(frames.Frames(*const_2_node_def).size(), 0); } } void VerifyGraphsEqual(const GraphDef& original_graph, const GraphDef& optimized_graph, const string& func) { EXPECT_EQ(original_graph.node_size(), optimized_graph.node_size()) << func; for (int i = 0; i < original_graph.node_size(); ++i) { const NodeDef& original = original_graph.node(i); const NodeDef& optimized = optimized_graph.node(i); EXPECT_EQ(optimized.name(), original.name()) << func; EXPECT_EQ(optimized.op(), original.op()) << func; ASSERT_EQ(optimized.input_size(), original.input_size()) << func; for (int j = 0; j < original.input_size(); ++j) { EXPECT_EQ(optimized.input(j), original.input(j)) << func; } } } TEST_F(LoopOptimizerTest, NoOp) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {"CPU:0"}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); LoopOptimizer optimizer; EnableOnlyStackPushRemoval(&optimizer); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); VerifyGraphsEqual(item.graph, output, __FUNCTION__); } TEST_F(LoopOptimizerTest, RemovePushNoOp) { GrapplerItem item; GraphDef& graph = item.graph; AddSimpleNode("c", "Const", {}, &graph); AddSimpleNode("stack1", "StackV2", {}, &graph); AddSimpleNode("push1", "StackPushV2", {"stack1", "c"}, &graph); AddSimpleNode("pop1", "StackPopV2", {"stack1"}, &graph); AddSimpleNode("id1", "Identity", {"pop1"}, &graph); AddSimpleNode("stack2", "StackV2", {}, &graph); AddEnterNode("enter2_c", "frame_name", false, 1, {"c"}, &graph); AddEnterNode("enter2_stack2", "frame_name", false, 1, {"stack2"}, &graph); AddSimpleNode("push2", "StackPushV2", {"enter2_stack2", "enter2_c"}, &graph); AddSimpleNode("pop2", "StackPopV2", {"enter2_stack2"}, &graph); AddSimpleNode("id2", "Identity", {"pop2"}, &graph); AddSimpleNode("stack3", "StackV2", {}, &graph); AddSimpleNode("push3", "StackPushV2", {"stack3", "c"}, &graph); AddSimpleNode("stop", "StopGradient", {"stack3"}, &graph); LoopOptimizer optimizer; EnableOnlyStackPushRemoval(&optimizer); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); VerifyGraphsEqual(item.graph, output, __FUNCTION__); } TEST_F(LoopOptimizerTest, RemovePushNoPopButStackLives) { GrapplerItem item; GraphDef& graph = item.graph; AddSimpleNode("c", "Const", {}, &graph); AddSimpleNode("stack1", "StackV2", {}, &graph); AddSimpleNode("push1", "StackPushV2", {"stack1", "c"}, &graph); AddSimpleNode("stack2", "StackV2", {}, &graph); AddEnterNode("enter2_c", "frame_name", false, 1, {"c"}, &graph); AddEnterNode("enter2_stack2", "frame_name", false, 1, {"stack2"}, &graph); AddSimpleNode("push2", "StackPushV2", {"enter2_stack2", "enter2_c"}, &graph); item.keep_ops.push_back("stack1"); item.keep_ops.push_back("stack2"); LoopOptimizer optimizer; EnableOnlyStackPushRemoval(&optimizer); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); VerifyGraphsEqual(item.graph, output, __FUNCTION__); } TEST_F(LoopOptimizerTest, RemovePushWithoutMatchingPop) { GrapplerItem item; GraphDef& graph = item.graph; AddSimpleNode("c", "Const", {}, &graph); AddSimpleNode("stack1", "StackV2", {}, &graph); AddSimpleNode("push1", "StackPushV2", {"stack1", "c"}, &graph); AddSimpleNode("stack2", "StackV2", {}, &graph); AddEnterNode("enter_c", "frame_name", false, 1, {"c"}, &graph); AddEnterNode("enter_stack2", "frame_name", false, 1, {"stack2"}, &graph); AddSimpleNode("push2", "StackPushV2", {"enter_stack2", "enter_c"}, &graph); AddSimpleNode("stack3", "StackV2", {}, &graph); AddSimpleNode("push3", "StackPushV2", {"stack3", "c"}, &graph); AddSimpleNode("pop3", "StackPopV2", {"stack3"}, &graph); AddSimpleNode("stack4", "StackV2", {}, &graph); AddSimpleNode("push4", "StackPushV2", {"stack4", "c"}, &graph); AddSimpleNode("pop4", "StackPopV2", {"stack4"}, &graph); item.fetch.push_back("pop4"); LoopOptimizer optimizer; EnableOnlyStackPushRemoval(&optimizer); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(output.node_size(), 13); for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "push1") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "c"); EXPECT_EQ(node.input(1), "^stack1"); } else if (node.name() == "push2") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "enter_c"); EXPECT_EQ(node.input(1), "^enter_stack2"); } else if (node.name() == "push3") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "c"); EXPECT_EQ(node.input(1), "^stack3"); } else { const NodeDef& orig_node = item.graph.node(i); EXPECT_EQ(node.ShortDebugString(), orig_node.ShortDebugString()); } } } TEST_F(LoopOptimizerTest, RemoveDeadBranchesConstantCondition) { Scope scope = Scope::NewRootScope(); Output v_in = ops::Const<float>(scope.WithOpName("v_in"), {123.0}, {}); Output ctrl1 = ops::Const(scope.WithOpName("ctrl1"), false, TensorShape({})); ops::Switch s1(scope.WithOpName("switch1"), v_in, ctrl1); Output square1 = ops::Square(scope.WithOpName("square1"), s1.output_false); Output sqrt1 = ops::Sqrt(scope.WithOpName("sqrt1"), s1.output_true); FullTypeDef* s1_t = s1.operation.node()->mutable_def()->mutable_experimental_type(); s1_t->set_type_id(TFT_PRODUCT); s1_t->add_args()->set_type_id(TFT_TENSOR); s1_t->mutable_args(0)->add_args()->set_type_id(TFT_FLOAT); s1_t->add_args()->set_type_id(TFT_TENSOR); s1_t->mutable_args(1)->add_args()->set_type_id(TFT_FLOAT); EXPECT_EQ(s1.operation.node()->num_outputs(), s1.operation.node()->def().experimental_type().args_size()); Output ctrl2 = ops::Const(scope.WithOpName("ctrl2"), true, TensorShape({})); ops::Switch s2(scope.WithOpName("switch2"), v_in, ctrl2); Output square2 = ops::Square(scope.WithOpName("square2"), s2.output_false); Output sqrt2 = ops::Sqrt(scope.WithOpName("sqrt2"), s2.output_true); Output ctrl3 = ops::Const(scope.WithOpName("ctrl3"), false, TensorShape({})); ops::Switch s3(scope.WithOpName("switch3"), v_in, ctrl3); Output square3 = ops::Square(scope.WithOpName("square3"), s3.output_false); Output sqrt3 = ops::Sqrt(scope.WithOpName("sqrt3"), s3.output_true); Output ctrl4 = ops::Const(scope.WithOpName("ctrl4"), false, TensorShape({})); ops::Switch s4(scope.WithOpName("switch4"), v_in, ctrl4); Output square4 = ops::Square(scope.WithOpName("square4"), s4.output_false); Output sqrt4 = ops::Sqrt(scope.WithOpName("sqrt4"), s4.output_true); ops::Merge m1(scope.WithOpName("m1"), {square1, sqrt1}); FullTypeDef* m1_t = m1.operation.node()->mutable_def()->mutable_experimental_type(); m1_t->set_type_id(TFT_PRODUCT); m1_t->add_args()->set_type_id(TFT_TENSOR); m1_t->mutable_args(0)->add_args()->set_type_id(TFT_FLOAT); m1_t->add_args()->set_type_id(TFT_TENSOR); m1_t->mutable_args(1)->add_args()->set_type_id(TFT_INT32); EXPECT_EQ(m1.operation.node()->num_outputs(), m1.operation.node()->def().experimental_type().args_size()); ops::Merge m2(scope.WithOpName("m2"), {v_in, square1}); ops::Merge m3(scope.WithOpName("m3"), {v_in, sqrt1}); ops::Merge m4(scope.WithOpName("m4"), {square1, sqrt2}); ops::Merge m5(scope.WithOpName("m5"), {square2, sqrt1}); ops::Switch s5(scope.WithOpName("switch5"), v_in, ctrl1); Output id1 = ops::Identity(scope.WithOpName("id1"), s5.output_false); Output id2 = ops::Identity(scope.WithOpName("id2"), s5.output_true); ops::Merge m8(scope.WithOpName("m8"), {id1, id2}); ops::Switch s6(scope.WithOpName("switch6"), v_in, ctrl1); Output id3 = ops::Identity(scope.WithOpName("id3"), s6.output_false); Output id4 = ops::Identity(scope.WithOpName("id4"), s6.output_true); ops::Merge m9(scope.WithOpName("m9"), {id3, id4}); GrapplerItem item; item.fetch.push_back("m8"); item.fetch.push_back("id4"); TF_CHECK_OK(scope.ToGraphDef(&item.graph)); LoopOptimizer optimizer(RewriterConfig::AGGRESSIVE, nullptr); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_CHECK_OK(status); for (const NodeDef& node : output.node()) { EXPECT_NE(node.name(), "Square1"); EXPECT_NE(node.name(), "Sqrt2"); EXPECT_NE(node.name(), "m5"); if (node.name() == "m1") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "square1"); EXPECT_EQ(node.experimental_type().args_size(), 1); } else if (node.name() == "m2") { EXPECT_EQ(node.op(), "Merge"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "v_in"); EXPECT_EQ(node.input(1), "square1"); } else if (node.name() == "m3") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "v_in"); } else if (node.name() == "m4") { EXPECT_EQ(node.op(), "Merge"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "square1"); EXPECT_EQ(node.input(1), "sqrt2"); } else if (node.name() == "m8") { EXPECT_EQ(node.op(), "Merge"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "id1"); EXPECT_EQ(node.input(1), "id2"); } else if (node.name() == "m9") { EXPECT_EQ(node.op(), "Merge"); ASSERT_EQ(2, node.input_size()); EXPECT_EQ(node.input(0), "id3"); EXPECT_EQ(node.input(1), "id4"); } else if (node.name() == "switch1") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "v_in"); EXPECT_EQ(node.input(1), "^ctrl1"); EXPECT_EQ(node.experimental_type().args_size(), 1); } else if (node.name() == "switch2") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "v_in"); EXPECT_EQ(node.input(1), "^ctrl2"); } else if (node.name() == "switch3") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "v_in"); EXPECT_EQ(node.input(1), "^ctrl3"); } else if (node.name() == "switch4") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "v_in"); EXPECT_EQ(node.input(1), "^ctrl4"); } else if (node.name() == "switch5") { EXPECT_EQ(node.op(), "Switch"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "v_in"); EXPECT_EQ(node.input(1), "ctrl1"); } else if (node.name() == "switch6") { EXPECT_EQ(node.op(), "Switch"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "v_in"); EXPECT_EQ(node.input(1), "ctrl1"); } } auto tensors_expected = EvaluateNodes(item.graph, {"m8", "m9"}); ASSERT_EQ(tensors_expected.size(), 2); auto tensors = EvaluateNodes(output, {"m8", "m9"}); ASSERT_EQ(tensors.size(), 2); test::ExpectTensorNear<float>(tensors_expected[0], tensors[0], 1e-6); test::ExpectTensorNear<float>(tensors_expected[1], tensors[1], 1e-6); } TEST_F(LoopOptimizerTest, RemoveDeadBranchesConstantCondition2) { Scope scope = Scope::NewRootScope(); Output v_in = ops::Const<float>(scope.WithOpName("v_in"), {123.0}, {}); Output ctrl1 = ops::Const(scope.WithOpName("ctrl1"), true, TensorShape({})); ops::Switch s1(scope.WithOpName("switch1"), v_in, ctrl1); Output square1 = ops::Square(scope.WithOpName("square1"), s1.output_false); Output add1 = ops::Add(scope.WithOpName("add1"), s1.output_true, s1.output_true); Output const2 = ops::Const<float>(scope.WithOpName("const2"), {20.0}, {}); Output add2 = ops::Add(scope.WithOpName("add2"), s1.output_true, const2); Output sub1 = ops::Sub(scope.WithOpName("sub1"), add1, add2); ops::Merge m1(scope.WithOpName("m1"), {square1, sub1}); Output add3 = ops::Add(scope.WithOpName("add3"), m1.output, const2); GrapplerItem item; item.fetch.push_back("add3"); TF_CHECK_OK(scope.ToGraphDef(&item.graph)); LoopOptimizer optimizer(RewriterConfig::AGGRESSIVE, nullptr); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_CHECK_OK(status); for (const NodeDef& node : output.node()) { EXPECT_NE(node.name(), "Square1"); if (node.name() == "m1") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "sub1"); } else if (node.name() == "switch1") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "v_in"); EXPECT_EQ(node.input(1), "^ctrl1"); } } } TEST_F(LoopOptimizerTest, RemoveDeadBranchesFullyRemoveDeadBranches) { const string gdef_ascii = R"EOF( node { name: "episodicreplaybuffer_add_readvariableop_resource" op: "_Arg" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_RESOURCE } } attr { key: "index" value { i: 0 } } } node { name: "EpisodicReplayBuffer/add/and_1/x" op: "Const" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_BOOL } } attr { key: "value" value { tensor { dtype: DT_BOOL tensor_shape { } bool_val: true } } } } node { name: "EpisodicReplayBuffer/add/begin_episode" op: "Const" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_BOOL } } attr { key: "value" value { tensor { dtype: DT_BOOL tensor_shape { } bool_val: false } } } } node { name: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Switch" op: "Switch" input: "EpisodicReplayBuffer/add/and_1/x" input: "EpisodicReplayBuffer/add/and_1/x" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_BOOL } } } node { name: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/NoOp" op: "NoOp" input: "^EpisodicReplayBuffer/add/and_1/x" device: "/job:localhost/replica:0/task:0/device:CPU:0" } node { name: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Assert/Switch" op: "Switch" input: "EpisodicReplayBuffer/add/and_1/x" input: "EpisodicReplayBuffer/add/and_1/x" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_BOOL } } attr { key: "_class" value { list { s: "loc:@EpisodicReplayBuffer/add/assert_equal/All" } } } } node { name: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Assert/Switch_1" op: "Switch" input: "EpisodicReplayBuffer/add/begin_episode" input: "EpisodicReplayBuffer/add/and_1/x" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_BOOL } } attr { key: "_class" value { list { s: "loc:@EpisodicReplayBuffer/add/begin_episode" } } } } node { name: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Assert/Switch_2" op: "Switch" input: "EpisodicReplayBuffer/add/begin_episode" input: "EpisodicReplayBuffer/add/and_1/x" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_BOOL } } attr { key: "_class" value { list { s: "loc:@EpisodicReplayBuffer/add/end_episode" } } } } node { name: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/switch_f" op: "Identity" input: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Switch" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_BOOL } } } node { name: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/control_dependency" op: "Const" input: "^EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/NoOp" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_BOOL } } attr { key: "value" value { tensor { dtype: DT_BOOL tensor_shape { } tensor_content: "\001" } } } } node { name: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Assert" op: "Assert" input: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Assert/Switch" input: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Assert/Switch_1" input: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Assert/Switch_2" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { list { type: DT_BOOL type: DT_BOOL } } } attr { key: "summarize" value { i: 3 } } } node { name: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/control_dependency_1" op: "Identity" input: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/switch_f" input: "^EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Assert" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_BOOL } } attr { key: "_class" value { list { s: "loc:@EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/switch_f" } } } } node { name: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Merge" op: "Merge" input: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/control_dependency_1" input: "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/control_dependency" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_BOOL } } } node { name: "EpisodicReplayBuffer/add/FloorMod/y" op: "Const" input: "^EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Merge" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape { } int64_val: 5000 } } } } node { name: "EpisodicReplayBuffer/add/ReadVariableOp" op: "ReadVariableOp" input: "episodicreplaybuffer_add_readvariableop_resource" input: "^EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Merge" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_INT64 } } } node { name: "EpisodicReplayBuffer/add/Less/y" op: "Const" input: "^EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Merge" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape { } int64_val: 0 } } } } node { name: "EpisodicReplayBuffer/add/Less" op: "Less" input: "EpisodicReplayBuffer/add/ReadVariableOp" input: "EpisodicReplayBuffer/add/Less/y" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_INT64 } } } node { name: "EpisodicReplayBuffer/add/or" op: "LogicalOr" input: "EpisodicReplayBuffer/add/begin_episode" input: "EpisodicReplayBuffer/add/Less" device: "/job:localhost/replica:0/task:0/device:CPU:0" } node { name: "EpisodicReplayBuffer/add/get_episode_id/pred_id" op: "Identity" input: "EpisodicReplayBuffer/add/or" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_BOOL } } } node { name: "EpisodicReplayBuffer/add/get_episode_id/Switch" op: "Switch" input: "EpisodicReplayBuffer/add/or" input: "EpisodicReplayBuffer/add/or" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_BOOL } } } node { name: "EpisodicReplayBuffer/add/get_episode_id/critical_section_execute/AssignVariableOp/Switch" op: "Switch" input: "episodicreplaybuffer_add_readvariableop_resource" input: "EpisodicReplayBuffer/add/get_episode_id/pred_id" input: "^EpisodicReplayBuffer/add/ReadVariableOp" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_RESOURCE } } attr { key: "_class" value { list { s: "loc:@EpisodicReplayBuffer/add/ReadVariableOp/resource" } } } } node { name: "EpisodicReplayBuffer/add/get_episode_id/critical_section_execute/ReadVariableOp_3" op: "ReadVariableOp" input: "^EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Merge" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_INT64 } } } library { } versions { producer: 27 } )EOF"; GrapplerItem item; CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &item.graph)); item.fetch = { "EpisodicReplayBuffer/add/get_episode_id/critical_section_execute/" "ReadVariableOp_3"}; LoopOptimizer optimizer(RewriterConfig::AGGRESSIVE, nullptr); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_CHECK_OK(status); bool found_merge = false; for (const auto& node : output.node()) { if (node.name() == "EpisodicReplayBuffer/add/assert_equal/Assert/AssertGuard/Merge") { found_merge = true; } } EXPECT_TRUE(found_merge) << "Merge node was deleted, but it shouldn't have been."; } TEST_F(LoopOptimizerTest, RemoveDeadBranchesZeroIterWhile) { const string gdef_ascii = R"EOF( node { name: "Const" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 20 } } } } node { name: "while/Enter" op: "Enter" input: "Const" attr { key: "T" value { type: DT_INT32 } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 1 } } } node { name: "while/Merge" op: "Merge" input: "while/Enter" input: "while/NextIteration" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Less/y" op: "Const" input: "^while/Merge" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 10 } } } } node { name: "while/Less" op: "Less" input: "while/Merge" input: "while/Less/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/LoopCond" op: "LoopCond" input: "while/Less" } node { name: "while/Switch" op: "Switch" input: "while/Merge" input: "while/LoopCond" attr { key: "T" value { type: DT_INT32 } } attr { key: "_class" value { list { s: "loc:@while/Merge" } } } } node { name: "while/Identity" op: "Identity" input: "while/Switch:1" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/add/y" op: "Const" input: "^while/Identity" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 1 } } } } node { name: "while/add" op: "Add" input: "while/Identity" input: "while/add/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/NextIteration" op: "NextIteration" input: "while/add" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Exit" op: "Exit" input: "while/Switch" attr { key: "T" value { type: DT_INT32 } } } versions { producer: 21 } )EOF"; GrapplerItem item; CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &item.graph)); item.fetch = {"while/Exit"}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); LoopOptimizer optimizer(RewriterConfig::AGGRESSIVE, nullptr); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_CHECK_OK(status); auto tensors_got = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors_got.size(), 1); test::ExpectTensorEqual<int32>(tensors_got[0], tensors_expected[0]); int nodes_present = 0; for (const NodeDef& node : output.node()) { if (node.name() == "while/add") { LOG(ERROR) << "while/add is present after optimization"; } else if (node.name() == "while/add/y") { LOG(ERROR) << "while/add/y is present after optimization"; } else if (node.name() == "while/NextIteration") { LOG(ERROR) << "while/NextIteration is present after optimization"; } else if (node.name() == "while/Identity") { LOG(ERROR) << "while/Identity is present after optimization"; } ++nodes_present; } EXPECT_EQ(nodes_present, 8); } TEST_F(LoopOptimizerTest, RemoveDeadBranchesConstantFeed) { const string gdef_ascii = R"EOF( node { name: "Const" op: "Const" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_STRING } } attr { key: "value" value { tensor { dtype: DT_STRING tensor_shape { dim { size: 1 } } string_val: "I\'m a value!" } } } } node { name: "cond/Switch_1" op: "Switch" input: "Const" input: "Const_1" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_STRING } } attr { key: "_class" value { list { s: "loc:@Const" } } } } node { name: "Const_1" op: "Const" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_BOOL } } attr { key: "value" value { tensor { dtype: DT_BOOL tensor_shape { } bool_val: true } } } } node { name: "cond/Switch" op: "Switch" input: "Const_1" input: "Const_1" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_BOOL } } } node { name: "cond/switch_t" op: "Identity" input: "cond/Switch:1" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_BOOL } } } node { name: "cond/Const" op: "Const" input: "^cond/switch_t" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_STRING } } attr { key: "value" value { tensor { dtype: DT_STRING tensor_shape { dim { size: 1 } } string_val: "" } } } } node { name: "cond/Merge" op: "Merge" input: "cond/Switch_1" input: "cond/Const" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_STRING } } } node { name: "Identity" op: "Identity" input: "cond/Merge" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_STRING } } } library { } versions { producer: 27 } )EOF"; GrapplerItem item; CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &item.graph)); item.fetch = {"Identity"}; Tensor feed_tensor(DT_BOOL, {}); feed_tensor.flat<bool>()(0) = false; item.feed.push_back({"Const_1", feed_tensor}); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); LoopOptimizer optimizer(RewriterConfig::AGGRESSIVE, nullptr); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_CHECK_OK(status); auto tensors_got = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors_got.size(), 1); test::ExpectTensorEqual<tstring>(tensors_got[0], tensors_expected[0]); EXPECT_EQ(output.node_size(), 8); bool found = false; for (const NodeDef& node : output.node()) { if (node.name() == "cond/Merge") { EXPECT_EQ(node.op(), "Merge"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "cond/Switch_1"); EXPECT_EQ(node.input(1), "cond/Const"); found = true; break; } } EXPECT_TRUE(found); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/loop_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/loop_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9fab66cc-e819-44fc-9536-dadf7e67c235
cpp
tensorflow/tensorflow
generic_layout_optimizer_transposer
tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer.cc
tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer_test.cc
#include "tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer.h" #include <algorithm> #include <numeric> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/substitute.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/memory_types.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/frame.h" #include "tensorflow/core/grappler/utils/graph_view.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/protobuf/device_properties.pb.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace grappler { namespace { constexpr char kOptimizedSuffix[] = "LayoutOptimizer"; constexpr char kAttrKSize[] = "ksize"; constexpr char kAttrStrides[] = "strides"; constexpr char kAttrDilations[] = "dilations"; constexpr char kAttrExplicitPaddings[] = "explicit_paddings"; constexpr char kAttrDataFormat[] = "data_format"; constexpr char kAttrIsTraining[] = "is_training"; constexpr char kAttrValue[] = "value"; constexpr char kAttrN[] = "N"; constexpr char kAttrT[] = "T"; constexpr char kAttrNumSplit[] = "num_split"; constexpr char kAttrNumOuts[] = "num_outs"; constexpr char kAttrKeepDims[] = "keep_dims"; constexpr char kAttrSqueezeDims[] = "squeeze_dims"; constexpr char kOpTranspose[] = "Transpose"; constexpr char kOpDataFormatVecPermute[] = "DataFormatVecPermute"; constexpr char kOpDataFormatDimMap[] = "DataFormatDimMap"; constexpr char kOpConst[] = "Const"; constexpr char kReshape[] = "Reshape"; constexpr char kReshapeConst[] = "ReshapeConst"; constexpr int kRank = 4; constexpr int kUnknownRank = -1; constexpr int kInvalidRank = -2; inline bool AttrDataFormatMatch(const utils::MutableNodeView& node, absl::string_view src_data_format, bool* missing) { const auto* attr = node.GetAttr(kAttrDataFormat); if (attr != nullptr) { return attr->s() == src_data_format; } *missing = true; return false; } inline bool AttrDataFormatMatch(const utils::MutableNodeView& node, absl::string_view src_data_format) { bool missing = false; return AttrDataFormatMatch(node, src_data_format, &missing); } bool IsNonFloatingConv2D(const utils::MutableNodeView& node) { if (IsConv2D(*node.node()) || IsConv2DBackpropInput(*node.node())) { const auto* attr = node.GetAttr(kAttrT); if (attr != nullptr) { return !kDataTypeIsFloating.Contains(attr->type()); } } return false; } bool IsNonFloatingConv3D(const utils::MutableNodeView& node) { if (IsConv3D(*node.node())) { const auto* attr = node.GetAttr(kAttrT); if (attr != nullptr) { return !kDataTypeIsFloating.Contains(attr->type()); } } return false; } bool IsComparisonOp(const NodeDef& node) { bool is_compare = IsApproximateEqual(node) || IsEqual(node) || IsGreater(node) || IsGreaterEqual(node) || IsLess(node) || IsLessEqual(node) || IsNotEqual(node); return is_compare; } std::vector<int> GetRegularFaninPorts(const utils::MutableNodeView& node) { const int num_regular_fanins = node.NumRegularFanins(); std::vector<int> values(num_regular_fanins); std::iota(values.begin(), values.end(), 0); return values; } std::vector<int> GetConcatDataFaninPorts(const utils::MutableNodeView& node) { const auto* n_attr = node.GetAttr(kAttrN); const int n = n_attr != nullptr ? n_attr->i() : 0; const int start = (node.GetOp() == "Concat") ? 1 : 0; const int end = start + n; std::vector<int> values(end - start); std::iota(values.begin(), values.end(), start); return values; } struct ComparatorByNodeNameAndIndex { bool operator()(const utils::MutableFaninView& node1, const utils::MutableFaninView& node2) const { auto* node1_view = node1.node_view(); auto* node2_view = node2.node_view(); auto name_compare = node1_view->GetName().compare(node2_view->GetName()); if (name_compare == 0) { return node1.index() < node2.index(); } return name_compare < 0; } }; bool IsHostMemory(const NodeDef& node, int output_port) { if (node.attr().contains("_xla_input") && node.attr().at("_xla_input").b()) return false; DeviceNameUtils::ParsedName parsed_name; if (DeviceNameUtils::ParseFullName(node.device(), &parsed_name)) { DeviceType device_type(parsed_name.type); Status s = FindKernelDef(device_type, node, nullptr, nullptr); if (s.ok()) { tensorflow::MemoryTypeVector in_mtypes; tensorflow::MemoryTypeVector out_mtypes; s = tensorflow::MemoryTypesForNode(OpRegistry::Global(), device_type, node, &in_mtypes, &out_mtypes); if (s.ok()) { if (out_mtypes[output_port] == HOST_MEMORY) { return true; } } } else { return true; } } return false; } std::vector<int> GetDimensionIndicesFromLabel( const absl::flat_hash_map<char, int>& dim_indices, absl::Span<const char> labels) { std::vector<int> indices; indices.reserve(labels.size()); for (const auto& label : labels) { indices.push_back(dim_indices.at(label)); } return indices; } class ScopedDataFormatUpgrader { public: ScopedDataFormatUpgrader(TransposeContext* context, int rank) : context_(context) { if (rank == 5 && IsSupportedDataFormat(context_->src_format) && IsSupportedDataFormat(context_->dst_format)) { old_src_format_ = context_->src_format; old_dst_format_ = context_->dst_format; std::string new_src_format = GetUpgradedDataFormat(context_->src_format); std::string new_dst_format = GetUpgradedDataFormat(context_->dst_format); context_->AssignDeviceAndDataFormats(context_->target_device, new_src_format, new_dst_format); upgraded_ = true; } } ScopedDataFormatUpgrader(const ScopedDataFormatUpgrader&) = delete; ScopedDataFormatUpgrader& operator=(const ScopedDataFormatUpgrader&) = delete; ~ScopedDataFormatUpgrader() { if (upgraded_) { context_->AssignDeviceAndDataFormats(context_->target_device, old_src_format_, old_dst_format_); } } private: bool IsSupportedDataFormat(absl::string_view data_format) { return data_format == "NHWC" || data_format == "NCHW"; } std::string GetUpgradedDataFormat(absl::string_view data_format) { if (data_format == "NHWC") { return "NDHWC"; } DCHECK_EQ(data_format, "NCHW"); return "NCDHW"; } TransposeContext* context_ = nullptr; bool upgraded_ = false; std::string old_src_format_; std::string old_dst_format_; }; } Status TransposeContext::InitializeTransposeContext(bool assume_valid_feeds, const GrapplerItem& item, const Cluster* cluster, TransposeContext* context) { DCHECK(context != nullptr); context->graph_properties = std::make_unique<GraphProperties>(item); TF_RETURN_IF_ERROR( context->graph_properties->InferStatically(assume_valid_feeds)); TF_RETURN_IF_ERROR( context->graph_properties->AnnotateOutputShapes(&context->graph)); Status status; context->graph_view = std::make_unique<utils::MutableGraphView>(&context->graph, &status); TF_RETURN_IF_ERROR(status); context->num_nodes = context->graph.node_size(); const auto& nodes_to_preserve = item.NodesToPreserve(); context->nodes_to_preserve = absl::flat_hash_set<string>( nodes_to_preserve.begin(), nodes_to_preserve.end()); TF_RETURN_IF_ERROR(context->frames.InferFromGraph(context->graph)); return absl::OkStatus(); } void TransposeContext::AssignDeviceAndDataFormats( absl::string_view target_device, absl::string_view src_format, absl::string_view dst_format) { this->target_device = string(target_device); this->src_format = string(src_format); this->dst_format = string(dst_format); this->src_dim_indices = GetDimensionIndices(src_format); this->dst_dim_indices = GetDimensionIndices(dst_format); this->src_to_dst = GetPermutation(this->src_dim_indices, dst_format); this->dst_to_src = GetPermutation(this->dst_dim_indices, src_format); } bool Transposer::ShouldProcess(const TransposeContext& context, const utils::MutableNodeView& node) const { const auto* node_def = node.node(); const string& device_name = GetDeviceName(*node_def); string device; string task; const bool is_on_target_device = DeviceNameUtils::SplitDeviceName(device_name, &task, &device) && absl::StrContains(absl::AsciiStrToLower(device), absl::AsciiStrToLower(context.target_device)); const bool data_format_match = !IsLayoutSensitiveOp(*node_def) || AttrDataFormatMatch(node, context.src_format); const bool is_integer_conv2d = IsNonFloatingConv2D(node); const bool is_integer_conv3d = IsNonFloatingConv3D(node); return is_on_target_device && data_format_match && !is_integer_conv2d && !is_integer_conv3d && !context.nodes_to_preserve.contains(node_def->name()) && !(node.NumRegularFanouts() == 0 && node.NumControlledFanouts() == 0); } Status Transposer::CreateConstPermNode(TransposeContext* context, absl::string_view node_name, absl::string_view device, absl::Span<const int> permutation, absl::string_view control_node_name, utils::MutationNewNode* added_node) { auto* graph_view = context->graph_view.get(); DCHECK(!graph_view->HasNode(node_name)); NodeDef node; node.set_name(string(node_name)); node.set_op(kOpConst); node.set_device(string(device)); if (!control_node_name.empty()) { node.add_input(string(control_node_name)); } AttrValue attr_data_type; attr_data_type.set_type(DT_INT32); node.mutable_attr()->insert({"dtype", attr_data_type}); AttrValue attr_tensor; Tensor tensor(DT_INT32, TensorShape({(long long)permutation.size()})); for (int i = 0, end = permutation.size(); i < end; i++) { tensor.flat<int>()(i) = permutation[i]; } tensor.AsProtoTensorContent(attr_tensor.mutable_tensor()); node.mutable_attr()->insert({"value", attr_tensor}); Status status; *added_node = graph_view->GetMutationBuilder()->AddNode(std::move(node), &status); return status; } Status Transposer::CreateTransposeNode( TransposeContext* context, absl::string_view name_format, const DataType& data_type, absl::string_view device, TensorShapeProto fanin_shape, absl::Span<const int> permutation, absl::string_view control_node_name, utils::MutationNewNode* added_node, string* transpose_node_name) { const string node_name = absl::Substitute(name_format, kOpTranspose); auto* graph_view = context->graph_view.get(); DCHECK(!graph_view->HasNode(node_name)); *transpose_node_name = node_name; NodeDef node; node.set_name(node_name); node.set_op(kOpTranspose); node.set_device(string(device)); AttrValue attr_data_type; attr_data_type.set_type(data_type); node.mutable_attr()->insert({"T", attr_data_type}); AttrValue attr_data_type_perm; attr_data_type_perm.set_type(DT_INT32); node.mutable_attr()->insert({"Tperm", attr_data_type_perm}); if (!fanin_shape.unknown_rank()) { TF_RETURN_IF_ERROR( PermuteSingle(absl::StrCat("fanin shape in", node.name()), permutation, fanin_shape.mutable_dim())); AttrValue attr_output_shape; *attr_output_shape.mutable_list()->add_shape() = fanin_shape; node.mutable_attr()->insert({kAttrOutputShape, attr_output_shape}); } utils::MutationNewNode const_perm_added_node; const string const_perm_node_name = absl::Substitute(name_format, "PermConst"); TF_RETURN_IF_ERROR(CreateConstPermNode(context, const_perm_node_name, device, permutation, control_node_name, &const_perm_added_node)); node.add_input(""); node.add_input(const_perm_node_name); Status status; *added_node = graph_view->GetMutationBuilder()->AddNode(std::move(node), &status); return status; } Status Transposer::UpdateFaninEdgesWithOp(TransposeContext* context, absl::Span<const int> dst_ports, utils::MutableNodeView* dst_node, absl::string_view op) { const bool is_in_frame = context->frames.IsInFrame(*dst_node->node()); for (int dst_port : dst_ports) { auto& fanin_port = dst_node->GetRegularFanin(dst_port); auto* fanin_node_view = fanin_port.node_view(); TF_RETURN_IF_ERROR( UpdateEdge(context, GetFaninNameFormat(dst_node->GetName(), dst_port, context->src_format, context->dst_format), op, nullptr, is_in_frame, true, fanin_port.index(), dst_port, fanin_node_view, dst_node)); } return absl::OkStatus(); } Status Transposer::UpdateFanoutEdgesWithOp(TransposeContext* context, absl::Span<const int> src_ports, utils::MutableNodeView* src_node, absl::string_view op) { const auto* output_shape_attr = src_node->GetAttr(kAttrOutputShape); AttrValue shape_attr_copy; if (op == kOpTranspose && output_shape_attr != nullptr) { shape_attr_copy = *output_shape_attr; for (int port : src_ports) { auto* shape = shape_attr_copy.mutable_list()->mutable_shape(port); if (shape->unknown_rank()) continue; TF_RETURN_IF_ERROR( PermuteSingle(absl::StrCat("output shape attribute at port ", port, " in", src_node->GetName()), context->src_to_dst, shape->mutable_dim())); } context->graph_view->GetMutationBuilder()->AddOrUpdateNodeAttr( src_node, kAttrOutputShape, shape_attr_copy); } const bool is_in_frame = context->frames.IsInFrame(*src_node->node()); for (int src_port : src_ports) { const auto& fanouts_src_port = src_node->GetRegularFanout(src_port); std::vector<utils::MutableFaninView> sorted_fanouts( fanouts_src_port.begin(), fanouts_src_port.end()); std::sort(sorted_fanouts.begin(), sorted_fanouts.end(), ComparatorByNodeNameAndIndex()); int num_downstream_transposers = 0; for (const auto& fanout : sorted_fanouts) { TF_RETURN_IF_ERROR(UpdateEdge( context, GetFanoutNameFormat(src_node->GetName(), src_port, num_downstream_transposers++, context->src_format, context->dst_format), op, &shape_attr_copy, is_in_frame, false, src_port, fanout.index(), src_node, fanout.node_view())); } } return absl::OkStatus(); } Status Transposer::CreateDataFormatNode( TransposeContext* context, absl::string_view node_name, absl::string_view op, absl::string_view device, const DataType& data_type, bool is_fanin_on_host, bool is_src_format_to_dst_format, utils::MutationNewNode* added_node) { auto* graph_view = context->graph_view.get(); DCHECK(!graph_view->HasNode(node_name)); NodeDef node; node.set_name(string(node_name)); node.set_op(string(op)); node.set_device(string(device)); AttrValue attr_data_type; attr_data_type.set_type(data_type); node.mutable_attr()->insert({"T", attr_data_type}); if (is_fanin_on_host) { AttrValue attr_kernel; attr_kernel.set_s("host"); node.mutable_attr()->insert({"_kernel", attr_kernel}); } AttrValue src_format; src_format.set_s(is_src_format_to_dst_format ? context->src_format : context->dst_format); node.mutable_attr()->insert({kAttrSrcFormat, src_format}); AttrValue dst_format; dst_format.set_s(is_src_format_to_dst_format ? context->dst_format : context->src_format); node.mutable_attr()->insert({kAttrDstFormat, dst_format}); node.add_input(""); Status status; *added_node = graph_view->GetMutationBuilder()->AddNode(std::move(node), &status); return status; } Status Transposer::UpdateEdge( TransposeContext* context, absl::string_view name_format, absl::string_view op, const AttrValue* input_shape, bool is_in_frame, bool is_src_format_to_dst_format, const int src_port, const int dst_port, utils::MutableNodeView* src_node, utils::MutableNodeView* dst_node) { DCHECK(src_node != nullptr); DCHECK(dst_node != nullptr); auto* src_node_def = src_node->node(); auto* dst_node_def = dst_node->node(); const string device = GetDeviceName( is_src_format_to_dst_format ? *dst_node_def : *src_node_def); DataType data_type = is_src_format_to_dst_format ? context->graph_properties ->GetInputProperties(dst_node->GetName())[dst_port] .dtype() : context->graph_properties ->GetOutputProperties(src_node->GetName())[src_port] .dtype(); utils::MutationNewNode added_node; string added_node_name; if (op == kOpTranspose) { TensorShapeProto input_shape_proto; input_shape_proto.set_unknown_rank(true); if (input_shape != nullptr) { input_shape_proto = input_shape->list().shape(src_port); } else { const auto* src_node_shape_attr = src_node->GetAttr(kAttrOutputShape); if (src_node_shape_attr != nullptr) { input_shape_proto = src_node_shape_attr->list().shape(src_port); } } const string control_node_name = is_in_frame ? AsControlDependency(src_node_def->name()) : ""; const std::vector<int>& permutation = is_src_format_to_dst_format ? context->src_to_dst : context->dst_to_src; TF_RETURN_IF_ERROR(CreateTransposeNode( context, name_format, data_type, device, input_shape_proto, permutation, control_node_name, &added_node, &added_node_name)); } else if (op == kOpDataFormatVecPermute || op == kOpDataFormatDimMap) { DeviceNameUtils::ParsedName parsed_name; bool is_fanin_on_host = DeviceNameUtils::ParseFullName( GetDeviceName(*src_node_def), &parsed_name) && parsed_name.type != "CPU" && IsHostMemory(*src_node_def, src_port); const string node_name = absl::Substitute(name_format, op); TF_RETURN_IF_ERROR(CreateDataFormatNode( context, node_name, op, device, data_type, is_fanin_on_host, is_src_format_to_dst_format, &added_node)); added_node_name = node_name; } else { return Status(absl::StatusCode::kInvalidArgument, absl::StrCat("Unsupported op \"", op, "\". Supported ops are Transpose, " "DataFormatVecPerm, DataFormatDimMap.")); } utils::Mutation* mutation = context->graph_view->GetMutationBuilder(); mutation->AddOrUpdateRegularFanin(added_node, 0, {src_node->GetName(), src_port}); mutation->AddOrUpdateRegularFanin(dst_node, dst_port, {added_node_name, 0}); return absl::OkStatus(); } int Transposer::GetFanoutPortRank(const utils::MutableNodeView& node, int port) const { const auto* output_shape_attr = node.GetAttr(kAttrOutputShape); if (output_shape_attr == nullptr || output_shape_attr->list().shape_size() <= port) { return kInvalidRank; } const auto& shape = output_shape_attr->list().shape(port); if (shape.unknown_rank()) { return kUnknownRank; } return shape.dim_size(); } bool Transposer::IsFanoutPortRankN(const utils::MutableNodeView& node, int port, int n) const { return GetFanoutPortRank(node, port) == n; } bool Transposer::IsFanoutPortsRankN(const utils::MutableNodeView& node, absl::Span<const int> ports, int n) const { for (const auto& port : ports) { if (!IsFanoutPortRankN(node, port, n)) { return false; } } return true; } int Transposer::GetFaninPortRank(const utils::MutableNodeView& node, int port) const { if (port < node.NumRegularFanins() && port >= 0) { const auto& regular_fanin = node.GetRegularFanin(port); return GetFanoutPortRank(*regular_fanin.node_view(), regular_fanin.index()); } return kInvalidRank; } bool Transposer::IsFaninPortRankN(const utils::MutableNodeView& node, int port, int n) const { return GetFaninPortRank(node, port) == n; } bool Transposer::IsFaninPortDimsNIfConst(const utils::MutableNodeView& node, int port, absl::Span<const int> dims) const { if (port < node.NumRegularFanins() && port >= 0) { const auto& regular_fanin = node.GetRegularFanin(port); const auto* fanin_node_view = regular_fanin.node_view(); if (!IsConstant(*fanin_node_view->node())) { return true; } const auto* value_attr = fanin_node_view->GetAttr(kAttrValue); if (value_attr == nullptr) { return false; } Tensor tensor; if (!tensor.FromProto(value_attr->tensor())) { return false; } const int dims_size = dims.size(); if (tensor.dims() != dims_size) { return false; } for (int i = 0; i < dims_size; ++i) { if (tensor.dim_size(i) != dims[i]) { return false; } } return true; } return false; } bool Transposer::IsFaninPortsDimsNIfConst(const utils::MutableNodeView& node, absl::Span<const int> ports, absl::Span<const int> dims) const { for (const auto& port : ports) { if (!IsFaninPortDimsNIfConst(node, port, dims)) { return false; } } return true; } bool Transposer::CanProcessNode(const TransposeContext& context, const utils::MutableNodeView& node) const { return !context.nodes_to_preserve.contains(node.GetName()) && !(node.NumRegularFanouts() == 0 && node.NumControlledFanouts() == 0); } string Transposer::GetFaninNameFormat(absl::string_view node_name, int port, absl::string_view src_format, absl::string_view dst_format) { return absl::StrCat(node_name, "-", port, "-$0", src_format, "To", dst_format, "-", kOptimizedSuffix); } string Transposer::GetFanoutNameFormat(absl::string_view node_name, int port, int index, absl::string_view src_format, absl::string_view dst_format) { return absl::StrCat(node_name, "-", port, "-", index, "-$0", dst_format, "To", src_format, "-", kOptimizedSuffix); } string Transposer::LayoutOptimizerNode(absl::string_view node_name) { return absl::StrCat(node_name, "-", kOptimizedSuffix); } string Transposer::GetReshapeNodeNameFormat(absl::string_view node_name, int index, absl::string_view src_format, absl::string_view dst_format) { return absl::StrCat(node_name, "-", index, "-", kReshape, src_format, "To", dst_format); } string Transposer::GetShapeConstNodeNameFormat(absl::string_view node_name, int index) { return absl::StrCat(node_name, "-", index, "-", kReshapeConst); } inline string GetLayoutSensitiveNodeDataFormat( const utils::MutableNodeView& node) { const auto* attr = node.GetAttr(kAttrDataFormat); if (attr != nullptr) { return attr->s(); } return ""; } Status LayoutSensitiveOpTransposer::UpdateNode(TransposeContext* context, utils::MutableNodeView* node) { utils::Mutation* mutation = context->graph_view->GetMutationBuilder(); AttrValue data_format_attr; data_format_attr.set_s(context->dst_format); mutation->AddOrUpdateNodeAttr(node, kAttrDataFormat, data_format_attr); auto permute_attr = [&context, &node, &mutation](absl::string_view attr_name) { const auto* attr = node->GetAttr(attr_name); if (attr != nullptr) { AttrValue attr_copy(*attr); TF_RETURN_IF_ERROR(PermuteSingle( absl::StrCat(attr_name, " attribute in", node->GetName()), context->src_to_dst, attr_copy.mutable_list()->mutable_i())); mutation->AddOrUpdateNodeAttr(node, attr_name, attr_copy); } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(permute_attr(kAttrStrides)); TF_RETURN_IF_ERROR(permute_attr(kAttrKSize)); TF_RETURN_IF_ERROR(permute_attr(kAttrDilations)); const auto* explicit_paddings_attr = node->GetAttr(kAttrExplicitPaddings); if (explicit_paddings_attr != nullptr && explicit_paddings_attr->has_list() && explicit_paddings_attr->list().i_size() > 0) { AttrValue explicit_paddings_attr_copy(*explicit_paddings_attr); TF_RETURN_IF_ERROR(PermuteDouble( absl::StrCat("explicit_paddings attribute in", node->GetName()), context->src_to_dst, explicit_paddings_attr_copy.mutable_list()->mutable_i())); mutation->AddOrUpdateNodeAttr(node, kAttrExplicitPaddings, explicit_paddings_attr_copy); } return absl::OkStatus(); } Status DefaultLayoutSensitiveOpTransposer::TransposeNode( TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsDefaultLayoutSensitiveOp(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status AvgPoolGradTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsAvgPoolGrad(*node->node())); if (!ShouldProcess(*context, *node) || !IsFaninPortRankN(*node, 1, 4)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0}, node, kOpDataFormatVecPermute)); TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {1}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status BiasAddTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsBiasAddV2(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, rank)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); ScopedDataFormatUpgrader data_format_upgrader(context, rank); TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status BiasAddGradTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsBiasAddGrad(*node->node())); const int rank = GetFaninPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } if (!ShouldProcess(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); ScopedDataFormatUpgrader data_format_upgrader(context, rank); TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status Conv2DBackpropFilterTransposer::TransposeNode( TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsConv2DBackpropFilter(*node->node()) || IsDepthwiseConv2dNativeBackpropFilter(*node->node())); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, 4)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0, 2}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status Conv2DBackpropInputTransposer::TransposeNode( TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsConv2DBackpropInput(*node->node()) || IsDepthwiseConv2dNativeBackpropInput(*node->node())); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, 4)) { return absl::OkStatus(); } const auto& fanin = node->GetRegularFanin(0); auto* fanin_node = fanin.node_view(); const auto* output_shape_attr = fanin_node->GetAttr(kAttrOutputShape); if (output_shape_attr == nullptr) { VLOG(3) << "Cannot compute the shape of " << fanin_node->GetName() << " because it is missing attribute " << kAttrOutputShape; return absl::OkStatus(); } TensorShapeProto fanin_shape = output_shape_attr->list().shape(fanin.index()); if (fanin_shape.dim_size() != 1) { VLOG(3) << fanin_node->GetName() << " is not a vector."; return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0}, node, kOpDataFormatVecPermute)); TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {2}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status Conv3DTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsConv3D(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status Conv3DBackpropFilterTransposer::TransposeNode( TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsConv3DBackpropFilterV2(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0, 2}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status Conv3DBackpropInputTransposer::TransposeNode( TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsConv3DBackpropInputV2(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0}, node, kOpDataFormatVecPermute)); TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {2}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status FusedBatchNormExTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsFusedBatchNormEx(*node->node())); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, 4)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); if (node->NumRegularFanins() == 6) { TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0, 5}, node, kOpTranspose)); } else { TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); } TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } bool FusedBatchNormGradTransposer::IsTraining( const utils::MutableNodeView& node) const { const auto* is_training_attr = node.GetAttr(kAttrIsTraining); if (is_training_attr != nullptr) { return is_training_attr->b(); } return false; } Status FusedBatchNormGradTransposer::TransposeNode( TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsFusedBatchNormGrad(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsTraining(*node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0, 1}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status MaxPoolV2Transposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsMaxPoolV2(*node->node())); const auto& data_fanin = node->GetRegularFanin(0); auto* data_fanin_node = data_fanin.node_view(); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*data_fanin_node, data_fanin.index(), 4)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {1, 2}, node, kOpDataFormatVecPermute)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status MaxPool3DTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsMaxPool3D(*node->node())); const auto& data_fanin = node->GetRegularFanin(0); auto* data_fanin_node = data_fanin.node_view(); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*data_fanin_node, data_fanin.index(), 5)) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, 5); VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status MaxPoolGradTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsMaxPoolGrad(*node->node()) || IsMaxPoolGradGradV1(*node->node())); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, 4)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0, 1, 2}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status MaxPoolGradV2Transposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsMaxPoolGradV2(*node->node()) || IsMaxPoolGradGradV2(*node->node())); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, 4)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateNode(context, node)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0, 1, 2}, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {3, 4}, node, kOpDataFormatVecPermute)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } inline bool IsValidConstPermTransposeNode(const utils::MutableNodeView& node, absl::Span<const int> permutation) { Tensor tensor; if (!GetValueAttrFromConstInputNode(node, IsTranspose, 1, &tensor)) { return false; } const int permutation_size = permutation.size(); if (tensor.NumElements() != permutation_size) { return false; } const auto& tensor_data = tensor.unaligned_flat<int32>(); for (int i = 0; i < permutation_size; i++) { if (permutation[i] != tensor_data(i)) { return false; } } return true; } inline bool IsValidDataFormatNode(const utils::MutableNodeView& node, absl::string_view src_format, absl::string_view dst_format) { if (!IsDataFormatOp(node)) { return false; } const auto* src_format_attr = node.GetAttr(kAttrSrcFormat); if (src_format_attr == nullptr || src_format_attr->s() != src_format) { return false; } const auto* dst_format_attr = node.GetAttr(kAttrDstFormat); if (dst_format_attr == nullptr || dst_format_attr->s() != dst_format) { return false; } return true; } inline bool IsLayoutOptimizerAddedDstToSrcTranspose( const TransposeContext& context, const utils::MutableNodeView& node) { return node.node_index() >= context.num_nodes && IsValidConstPermTransposeNode(node, context.dst_to_src); } inline bool IsLayoutOptimizerAddedDstToSrcTransform( const TransposeContext& context, const utils::MutableNodeView& node) { return node.node_index() >= context.num_nodes && (IsValidConstPermTransposeNode(node, context.dst_to_src) || IsValidDataFormatNode(node, context.dst_format, context.src_format)); } bool LayoutAgnosticOpTransposer::IsAfterDstToSrcTransform( const TransposeContext& context, const utils::MutableNodeView& node) const { std::deque<utils::MutableNodeView*> queue; absl::flat_hash_set<utils::MutableNodeView*> visited_nodes; auto data_node_pos = GetDataFaninPorts(node); for (const int pos : data_node_pos) { const auto& fanin = node.GetRegularFanin(pos); auto* fanin_node = fanin.node_view(); queue.push_back(fanin_node); visited_nodes.insert(fanin_node); } while (!queue.empty()) { utils::MutableNodeView* current_node = queue.front(); queue.pop_front(); if (IsLayoutOptimizerAddedDstToSrcTransform(context, *current_node)) { return true; } if (IsLayoutAgnosticOp(*current_node->node())) { auto current_node_pos = GetDataFaninPorts(*current_node); for (const auto& pos : current_node_pos) { const auto& fanin = current_node->GetRegularFanin(pos); auto* fanin_node = fanin.node_view(); if (visited_nodes.insert(fanin_node).second) { queue.push_back(fanin_node); } } } } return false; } std::vector<int> LayoutAgnosticOpTransposer::GetVariadicNDFaninPorts( const TransposeContext& context, const utils::MutableNodeView& node, int rank) const { std::vector<int> ports; const int num_regular_fanins = node.NumRegularFanins(); ports.reserve(num_regular_fanins); for (int i = 0; i < num_regular_fanins; ++i) { const auto& regular_fanin = node.GetRegularFanin(i); auto* regular_fanin_node = regular_fanin.node_view(); int regular_fanin_port = regular_fanin.index(); if ((IsFanoutPortRankN(*regular_fanin_node, regular_fanin_port, rank)) && ((IsAfterDstToSrcTransform(context, *regular_fanin_node) && IsLayoutAgnosticOp(*regular_fanin_node->node())) || IsLayoutOptimizerAddedDstToSrcTranspose(context, *regular_fanin_node))) { ports.push_back(i); } } return ports; } Status DefaultLayoutAgnosticOpTransposer::TransposeNode( TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsDefaultLayoutAgnosticOp(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status AddNTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsAddN(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, GetDataFaninPorts(*node), node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } bool BinaryOpTransposer::IsNDOperateWithMD(const utils::MutableNodeView& node, int n, int m) { return IsFaninPortRankN(node, 0, n) && IsFaninPortRankN(node, 1, m); } bool BinaryOpTransposer::IsFaninShapeSupported( const utils::MutableNodeView& node, int rank) { return (IsNDOperateWithMD(node, rank, 0) || IsNDOperateWithMD(node, rank, 1) || IsNDOperateWithMD(node, rank, rank) || IsNDOperateWithMD(node, 0, rank) || IsNDOperateWithMD(node, 1, rank)); } std::vector<int> BinaryOpTransposer::GetNDDataFaninPorts( const utils::MutableNodeView& node, int rank) { std::vector<int> values; if (IsFaninPortRankN(node, 0, rank)) { values.push_back(0); } if (IsFaninPortRankN(node, 1, rank)) { values.push_back(1); } return values; } Status BinaryOpTransposer::AddNodeReshape( utils::Mutation* mutation, absl::string_view node_name, absl::string_view node_device, absl::string_view input_name, absl::string_view shape_const_node_name, const DataType& data_type) { NodeDef new_node; new_node.set_name(string(node_name)); new_node.add_input(string(input_name)); new_node.add_input(string(shape_const_node_name)); new_node.set_op(kReshape); new_node.set_device(string(node_device)); AttrValue attr_type_indices; attr_type_indices.set_type(DT_INT32); new_node.mutable_attr()->insert({"Tshape", attr_type_indices}); AttrValue attr_type_params; attr_type_params.set_type(data_type); new_node.mutable_attr()->insert({"T", attr_type_params}); Status status; mutation->AddNode(std::move(new_node), &status); return status; } Status BinaryOpTransposer::AddNodeShapeConst( utils::Mutation* mutation, absl::string_view node_name, absl::string_view node_device, bool node_in_frame, int num_channels, absl::string_view depended_node, int rank) { NodeDef new_node; new_node.set_name(string(node_name)); new_node.set_op(kOpConst); new_node.set_device(string(node_device)); AttrValue attr_data_type; attr_data_type.set_type(DT_INT32); new_node.mutable_attr()->insert({"dtype", attr_data_type}); AttrValue attr_tensor; Tensor tensor(DT_INT32, TensorShape({rank})); std::vector<int> shape(rank, 1); shape[1] = num_channels; for (int i = 0; i < static_cast<int>(shape.size()); i++) { tensor.flat<int>()(i) = shape[i]; } tensor.AsProtoTensorContent(attr_tensor.mutable_tensor()); new_node.mutable_attr()->insert({"value", attr_tensor}); if (node_in_frame) { new_node.add_input(AsControlDependency(string(depended_node))); } Status status; mutation->AddNode(std::move(new_node), &status); return status; } Status BinaryOpTransposer::MaybeReshapeVectorFanin(TransposeContext* context, utils::MutableNodeView* node, int rank) { int vector_index = -1; if (IsNDOperateWithMD(*node, rank, 1)) { vector_index = 1; } else if (IsNDOperateWithMD(*node, 1, rank)) { vector_index = 0; } if (vector_index != -1) { const string& node_name = node->GetName(); const string& node_device = node->GetDevice(); string reshape_node_name = LayoutOptimizerNode(GetReshapeNodeNameFormat( node_name, vector_index, context->src_format, context->dst_format)); string shape_const_node_name = LayoutOptimizerNode( GetShapeConstNodeNameFormat(node_name, vector_index)); const auto& fanin = node->GetRegularFanin(vector_index); auto* fanin_node = fanin.node_view(); const auto* output_shape_attr = fanin_node->GetAttr(kAttrOutputShape); if (output_shape_attr == nullptr) { return errors::InvalidArgument("Missing attribute ", kAttrOutputShape); } int vector_size = output_shape_attr->list().shape(fanin.index()).dim(0).size(); utils::Mutation* mutation = context->graph_view->GetMutationBuilder(); TF_RETURN_IF_ERROR( AddNodeShapeConst(mutation, shape_const_node_name, node_device, context->frames.IsInFrame(*node->node()), vector_size, fanin_node->GetName(), rank)); const auto* t_attr = node->GetAttr(kAttrT); if (t_attr == nullptr) { return errors::InvalidArgument("Missing attribute ", kAttrT); } TF_RETURN_IF_ERROR( AddNodeReshape(mutation, reshape_node_name, node_device, TensorIdToString({fanin_node->GetName(), fanin.index()}), shape_const_node_name, t_attr->type())); mutation->AddOrUpdateRegularFanin(node, vector_index, {reshape_node_name, 0}); } return absl::OkStatus(); } Status BinaryOpTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsBinaryOp(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsFaninShapeSupported(*node, rank) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp( context, GetNDDataFaninPorts(*node, rank), node, kOpTranspose)); TF_RETURN_IF_ERROR(MaybeReshapeVectorFanin(context, node, rank)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status ConcatOpTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsConcat(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp( context, GetConcatDataFaninPorts(*node), node, kOpTranspose)); int axis_node = 0; if (node->GetOp() == "ConcatV2") { const auto* n_attr = node->GetAttr(kAttrN); if (n_attr != nullptr) { axis_node = n_attr->i(); } } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {axis_node}, node, kOpDataFormatDimMap)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status FillOpTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsFill(*node->node())); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, 4) || !IsFaninPortDimsNIfConst(*node, 0, {4}) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0}, node, kOpDataFormatVecPermute)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status IdentityNTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsIdentityN(*node->node())); const auto ports_4d = GetVariadicNDFaninPorts(*context, *node, 4); std::vector<int> ports_5d; { ScopedDataFormatUpgrader data_format_upgrader(context, 5); ports_5d = GetVariadicNDFaninPorts(*context, *node, 5); } if (!ShouldProcess(*context, *node)) { return absl::OkStatus(); } if (!ports_4d.empty()) { TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, ports_4d, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFanoutEdgesWithOp(context, ports_4d, node, kOpTranspose)); } if (!ports_5d.empty()) { ScopedDataFormatUpgrader data_format_upgrader(context, 5); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, ports_5d, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFanoutEdgesWithOp(context, ports_5d, node, kOpTranspose)); } return context->graph_view->GetMutationBuilder()->Apply(); } bool MergeTransposer::IsEveryFaninAfterDstToSrcTransform( const TransposeContext& context, const utils::MutableNodeView& node) const { for (const auto& regular_fanin : node.GetRegularFanins()) { auto* regular_fanin_node = regular_fanin.node_view(); if ((IsFanoutPortRankN(*regular_fanin_node, regular_fanin.index(), 4) || IsFanoutPortRankN(*regular_fanin_node, regular_fanin.index(), 5)) && ((IsAfterDstToSrcTransform(context, *regular_fanin_node) && IsLayoutAgnosticOp(*regular_fanin_node->node())) || IsLayoutOptimizerAddedDstToSrcTranspose(context, *regular_fanin_node))) { continue; } return false; } return true; } Status MergeTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsMerge(*node->node())); const int rank = GetFaninPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsEveryFaninAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, GetDataFaninPorts(*node), node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status PadTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsMirrorPad(*node->node()) || IsMirrorPadGrad(*node->node()) || IsPad(*node->node())); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, 4) || !IsFaninPortDimsNIfConst(*node, 1, {4, 2}) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {1}, node, kOpDataFormatVecPermute)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } bool ReduceTransposer::KeepDims(const utils::MutableNodeView& node) { const auto* keep_dims_attr = node.GetAttr(kAttrKeepDims); if (keep_dims_attr != nullptr) { return keep_dims_attr->b(); } return false; } bool ReduceTransposer::IsAlongAxis(const Tensor& tensor, absl::Span<const int> axis, int rank) { const int axis_size = axis.size(); if (tensor.dims() != 1 || tensor.dim_size(0) != axis_size) { return false; } for (int i = 0; i < axis_size; ++i) { int local_axis = 0; if (tensor.dtype() == DT_INT32) { local_axis = tensor.flat<int32>()(i); } else { local_axis = tensor.flat<int64_t>()(i); } if (local_axis < 0) { local_axis += rank; } bool along_axis = false; for (int dim : axis) { if (local_axis == dim) { along_axis = true; break; } } if (!along_axis) { return false; } } return true; } bool ReduceTransposer::IsReduceAxisSupported(const TransposeContext& context, const utils::MutableNodeView& node, int rank) { if (KeepDims(node)) { return true; } const auto& regular_fanin_1 = node.GetRegularFanin(1); auto* axis_node = regular_fanin_1.node_view(); if (!IsConstant(*axis_node->node())) { return false; } const auto* value_attr = axis_node->GetAttr(kAttrValue); if (value_attr == nullptr) { return false; } Tensor tensor; if (!tensor.FromProto(value_attr->tensor())) { LOG(ERROR) << "Failed to parse TensorProto."; return false; } auto indices = [&context](absl::Span<const char> labels) { return GetDimensionIndicesFromLabel(context.src_dim_indices, labels); }; if (rank == 5) { return IsAlongAxis(tensor, indices({'N', 'D', 'H', 'W', 'C'}), 5) || IsAlongAxis(tensor, indices({'D', 'H', 'W', 'C'}), 5) || IsAlongAxis(tensor, indices({'N', 'D', 'H', 'W'}), 5) || IsAlongAxis(tensor, indices({'D', 'H', 'W'}), 5) || IsAlongAxis(tensor, indices({'C'}), 5); } DCHECK_EQ(rank, 4); return IsAlongAxis(tensor, indices({'N', 'H', 'W', 'C'}), 4) || IsAlongAxis(tensor, indices({'H', 'W', 'C'}), 4) || IsAlongAxis(tensor, indices({'N', 'H', 'W'}), 4) || IsAlongAxis(tensor, indices({'H', 'W'}), 4) || IsAlongAxis(tensor, indices({'C'}), 4); } Status ReduceTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsReduceOp(*node->node())); const int rank = GetFaninPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsReduceAxisSupported(*context, *node, rank) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {1}, node, kOpDataFormatDimMap)); if (KeepDims(*node)) { TF_RETURN_IF_ERROR( UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); } return context->graph_view->GetMutationBuilder()->Apply(); } Status ReverseV2Transposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsReverseV2(*node->node())); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, 4) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {1}, node, kOpDataFormatDimMap)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } bool SelectTransposer::IsFaninScalarVector4D( const utils::MutableNodeView& fanin, int port) { return IsFanoutPortRankN(fanin, port, 0) || IsFanoutPortRankN(fanin, port, 1) || IsFanoutPortRankN(fanin, port, 4); } std::vector<int> SelectTransposer::GetFaninPorts( const utils::MutableNodeView& fanin, int port) { if (IsFanoutPortRankN(fanin, port, 4)) { return {0, 1, 2}; } return {1, 2}; } Status SelectTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsSelect(*node->node())); const auto& regular_fanin_0 = node->GetRegularFanin(0); auto* regular_fanin_0_node = regular_fanin_0.node_view(); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, 4) || !IsFaninScalarVector4D(*regular_fanin_0_node, regular_fanin_0.index()) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp( context, GetFaninPorts(*regular_fanin_0_node, regular_fanin_0.index()), node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status ShapeTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsShape(*node->node())); const int rank = GetFaninPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFanoutEdgesWithOp(context, {0}, node, kOpDataFormatVecPermute)); return context->graph_view->GetMutationBuilder()->Apply(); } Status ShapeNTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsShapeN(*node->node())); const int rank = GetFaninPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); const auto ports = GetVariadicNDFaninPorts(*context, *node, rank); if (!ShouldProcess(*context, *node) || ports.empty()) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, ports, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFanoutEdgesWithOp(context, ports, node, kOpDataFormatVecPermute)); return context->graph_view->GetMutationBuilder()->Apply(); } Status SliceTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsSlice(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsFaninPortsDimsNIfConst(*node, {1, 2}, {rank}) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {1, 2}, node, kOpDataFormatVecPermute)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status SplitTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsSplit(*node->node())); const auto ports = GetDataFanoutPorts(*node); int rank = 4; if (!IsFanoutPortsRankN(*node, ports, 4)) { if (!IsFanoutPortsRankN(*node, ports, 5)) { return absl::OkStatus(); } else { rank = 5; } } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {1}, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0}, node, kOpDataFormatDimMap)); TF_RETURN_IF_ERROR( UpdateFanoutEdgesWithOp(context, ports, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status SplitVTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsSplitV(*node->node())); const auto ports = GetDataFanoutPorts(*node); int rank = 4; if (!IsFanoutPortsRankN(*node, ports, 4)) { if (!IsFanoutPortsRankN(*node, ports, 5)) { return absl::OkStatus(); } else { rank = 5; } } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {2}, node, kOpDataFormatDimMap)); TF_RETURN_IF_ERROR( UpdateFanoutEdgesWithOp(context, ports, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } bool SqueezeTransposer::IsInputConvertible( const TransposeContext& context, const utils::MutableNodeView& node) const { const auto& regular_fanin_0 = node.GetRegularFanin(0); auto* regular_fanin_0_node = regular_fanin_0.node_view(); const auto* output_shape_attr = regular_fanin_0_node->GetAttr(kAttrOutputShape); if (output_shape_attr != nullptr) { auto& shape = output_shape_attr->list().shape(regular_fanin_0.index()); if (shape.dim_size() != kRank) { return false; } const int height_dim = context.src_dim_indices.at('H'); const int width_dim = context.src_dim_indices.at('W'); if (shape.dim(height_dim).size() == 1 && shape.dim(width_dim).size() == 1) { return true; } } return false; } bool SqueezeTransposer::IsAlongAxis(const AttrValue& attr, absl::Span<const int> axis, int rank) const { const auto& list = attr.list(); int axis_size = axis.size(); if (list.i_size() == 0) { return true; } else if (list.i_size() != axis_size) { return false; } for (int i = 0; i < axis_size; ++i) { int local_axis = list.i(i); if (local_axis < 0) { local_axis += rank; } bool along_axis = false; for (int dim : axis) { if (local_axis == dim) { along_axis = true; break; } } if (!along_axis) { return false; } } return true; } bool SqueezeTransposer::IsDimsSupported( const TransposeContext& context, const utils::MutableNodeView& node) const { auto indices = [&context](absl::Span<const char> labels) { return GetDimensionIndicesFromLabel(context.src_dim_indices, labels); }; const auto* squeeze_dims_attr = node.GetAttr(kAttrSqueezeDims); if (squeeze_dims_attr == nullptr) { return false; } return (IsFanoutPortRankN(node, 0, 2) && IsAlongAxis(*squeeze_dims_attr, indices({'H', 'W'}), kRank)) || (IsFanoutPortRankN(node, 0, 1) && IsAlongAxis(*squeeze_dims_attr, indices({'N', 'H', 'W'}), kRank)); } Status SqueezeTransposer::UpdateSqueezeDims(TransposeContext* context, utils::MutableNodeView* node) { const auto* squeeze_dims_attr = node->GetAttr(kAttrSqueezeDims); if (squeeze_dims_attr == nullptr) { return errors::InvalidArgument("Missing attribute ", kAttrSqueezeDims); } const int num_input_dims = context->src_format.length(); const int min_squeeze_dim = -num_input_dims; std::vector<int> squeeze_dims_mapped; const int squeeze_dims_size = squeeze_dims_attr->list().i_size(); squeeze_dims_mapped.reserve(squeeze_dims_size); for (int i = 0; i < squeeze_dims_size; ++i) { int dim = squeeze_dims_attr->list().i(i); if (dim < min_squeeze_dim || dim >= num_input_dims) { return errors::InvalidArgument( "Attribute '", kAttrSqueezeDims, "' contains out of range index '", dim, "', index must be between [", min_squeeze_dim, ", ", num_input_dims, ")"); } if (dim < 0) { dim += num_input_dims; } squeeze_dims_mapped.push_back(context->dst_to_src[dim]); } std::sort(squeeze_dims_mapped.begin(), squeeze_dims_mapped.end()); AttrValue squeeze_dims; squeeze_dims.mutable_list()->mutable_i()->Reserve(squeeze_dims_size); for (const auto& dim : squeeze_dims_mapped) { squeeze_dims.mutable_list()->mutable_i()->Add(dim); } context->graph_view->GetMutationBuilder()->AddOrUpdateNodeAttr( node, kAttrSqueezeDims, squeeze_dims); return absl::OkStatus(); } Status SqueezeTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsSqueeze(*node->node())); if (!ShouldProcess(*context, *node) || !IsDimsSupported(*context, *node) || !IsInputConvertible(*context, *node) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateSqueezeDims(context, node)); return context->graph_view->GetMutationBuilder()->Apply(); } bool StridedSliceTransposer::IsMaskZero(const utils::MutableNodeView& node, absl::string_view mask) { const auto* mask_attr = node.GetAttr(mask); if (mask_attr != nullptr) { return mask_attr->i() == 0; } return true; } bool StridedSliceTransposer::HasOnlyBeginEndMask( const utils::MutableNodeView& node) { return IsMaskZero(node, "ellipsis_mask") && IsMaskZero(node, "new_axis_mask") && IsMaskZero(node, "shrink_axis_mask"); } Status StridedSliceTransposer::PermuteMask(TransposeContext* context, utils::MutableNodeView* node, absl::string_view mask) { const auto* mask_attr = node->GetAttr(mask); const int mask_i = mask_attr != nullptr ? mask_attr->i() : 0; if (mask_i < 0 || mask_i > 15) { return errors::InvalidArgument("invalid mask value: ", mask_i); } int result = 0; for (int i = 0, end = context->src_to_dst.size(); i < end; i++) { const int final_pos = context->src_to_dst[i]; const int position_mask = 1 << final_pos; const int bit_i = (mask_i & position_mask) >> final_pos; result |= bit_i << i; } AttrValue new_mask_attr; new_mask_attr.set_i(result); context->graph_view->GetMutationBuilder()->AddOrUpdateNodeAttr(node, mask, new_mask_attr); return absl::OkStatus(); } Status StridedSliceTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsStridedSlice(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !HasOnlyBeginEndMask(*node) || !IsAfterDstToSrcTransform(*context, *node) || (!IsFaninPortsDimsNIfConst(*node, {1, 2, 3}, {4}) && !IsFaninPortsDimsNIfConst(*node, {1, 2, 3, 4}, {5}))) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR(PermuteMask(context, node, "begin_mask")); TF_RETURN_IF_ERROR(PermuteMask(context, node, "end_mask")); if (rank == 4) { TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {1, 2, 3}, node, kOpDataFormatVecPermute)); } else if (rank == 5) { TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {1, 2, 3, 4}, node, kOpDataFormatVecPermute)); } TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status SwitchTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsSwitch(*node->node())); const int rank = GetFaninPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, GetDataFanoutPorts(*node), node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status TernaryOpTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsTernaryOp(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0, 1, 2}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status TileTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsTile(*node->node())); if (!ShouldProcess(*context, *node) || !IsFanoutPortRankN(*node, 0, 4) || !IsFaninPortDimsNIfConst(*node, 1, {4}) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFaninEdgesWithOp(context, {0}, node, kOpTranspose)); TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {1}, node, kOpDataFormatVecPermute)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } Status UnaryGradTransposer::TransposeNode(TransposeContext* context, utils::MutableNodeView* node) { DCHECK(IsUnaryGrad(*node->node())); const int rank = GetFanoutPortRank(*node, 0); if (rank != 4 && rank != 5) { return absl::OkStatus(); } ScopedDataFormatUpgrader data_format_upgrader(context, rank); if (!ShouldProcess(*context, *node) || !IsAfterDstToSrcTransform(*context, *node)) { return absl::OkStatus(); } VLOG(3) << "GenericLayoutOptimizer: transforming node '" << node->GetName() << "' with op '" << node->GetOp() << "' from data format '" << context->src_format << "' to '" << context->dst_format << "'"; TF_RETURN_IF_ERROR( UpdateFaninEdgesWithOp(context, {0, 1}, node, kOpTranspose)); TF_RETURN_IF_ERROR(UpdateFanoutEdgesWithOp(context, {0}, node, kOpTranspose)); return context->graph_view->GetMutationBuilder()->Apply(); } string GetDeviceName(const NodeDef& node) { return node.device(); } bool IsDefaultLayoutSensitiveOp(const NodeDef& node) { static absl::flat_hash_set<string>* default_layout_sensitive_ops = new absl::flat_hash_set<std::string>( {"AvgPool", "Conv2D", "DepthwiseConv2dNative", "DepthToSpace", "FusedBatchNorm", "FusedBatchNormV2", "FusedBatchNormV3", "FusedConv2DBiasActivation", "MaxPool", "SpaceToDepth"}); return default_layout_sensitive_ops->find(node.op()) != default_layout_sensitive_ops->end(); } bool IsLayoutSensitiveOp(const NodeDef& node) { return IsDefaultLayoutSensitiveOp(node) || IsAvgPoolGrad(node) || IsBiasAddV2(node) || IsBiasAddGrad(node) || IsConv2DBackpropFilter(node) || IsConv2DBackpropInput(node) || IsDepthwiseConv2dNativeBackpropFilter(node) || IsDepthwiseConv2dNativeBackpropInput(node) || IsFusedBatchNormEx(node) || IsFusedBatchNormGrad(node) || IsMaxPoolV2(node) || IsMaxPoolGrad(node) || IsMaxPoolGradV2(node) || IsMaxPoolGradGradV1(node) || IsMaxPoolGradGradV2(node) || IsConv3D(node) || IsConv3DBackpropInputV2(node) || IsConv3DBackpropFilterV2(node) || IsMaxPool3D(node); } bool IsDefaultLayoutAgnosticOp(const NodeDef& node) { static absl::flat_hash_set<string>* agnostic_nodes = new absl::flat_hash_set<std::string>({"Abs", "Acos", "Acosh", "Angle", "Asin", "Asinh", "Atan", "Atanh", "Bitcast", "Cast", "Ceil", "CheckNumerics", "ComplexAbs", "Conj", "Cos", "Cosh", "Digamma", "Elu", "Enter", "Erf", "Erfc", "Exit", "Exp", "Expm1", "FakeQuantWithMinMaxVars", "FakeQuantWithMinMaxArgs", "Floor", "GuaranteeConst", "Identity", "Imag", "Inv", "IsFinite", "IsInf", "IsNan", "LeakyRelu", "Lgamma", "Log", "LogicalNot", "Log1p", "Neg", "NextIteration", "OnesLike", "PreventGradient", "QuantizeAndDequantizeV2", "QuantizeAndDequantizeV3", "QuantizeAndDequantizeV4", "Real", "Reciprocal", "Relu", "Relu6", "Rint", "Selu", "Sigmoid", "Sign", "Sin", "Sinh", "Snapshot", "Softplus", "Round", "Rsqrt", "Sqrt", "Square", "StopGradient", "Tan", "Tanh", "ZerosLike"}); return agnostic_nodes->find(node.op()) != agnostic_nodes->end(); } bool IsLayoutAgnosticOp(const NodeDef& node) { return IsDefaultLayoutAgnosticOp(node) || IsAddN(node) || IsBinaryOp(node) || IsIdentityN(node) || IsMerge(node) || IsMirrorPad(node) || IsMirrorPadGrad(node) || IsPad(node) || IsSelect(node) || IsSwitch(node) || IsTernaryOp(node) || IsUnaryGrad(node) || IsConcat(node) || IsReverseV2(node) || IsTile(node) || IsShape(node) || IsShapeN(node) || IsFill(node) || IsSlice(node) || IsSplit(node) || IsSqueeze(node) || IsSplitV(node) || IsStridedSlice(node) || IsReduceOp(node); } bool IsTernaryOp(const NodeDef& node) { return IsBetainc(node); } bool IsUnaryGrad(const NodeDef& node) { bool is_unary_grad = IsEluGrad(node) || IsInvGrad(node) || IsLeakyReluGrad(node) || IsReciprocalGrad(node) || IsRelu6Grad(node) || IsReluGrad(node) || IsRsqrtGrad(node) || IsSeluGrad(node) || IsSigmoidGrad(node) || IsSoftplusGrad(node) || IsSoftsignGrad(node) || IsSqrtGrad(node) || IsTanhGrad(node); return is_unary_grad; } bool IsMaxPoolV2(const NodeDef& node) { return node.op() == "MaxPoolV2"; } bool IsMaxPool3D(const NodeDef& node) { return node.op() == "MaxPool3D"; } bool IsMaxPoolGradV2(const NodeDef& node) { return node.op() == "MaxPoolGradV2"; } bool IsMaxPoolGradGradV1(const NodeDef& node) { return node.op() == "MaxPoolGradGrad"; } bool IsMaxPoolGradGradV2(const NodeDef& node) { return node.op() == "MaxPoolGradGradV2"; } bool IsBinaryOp(const NodeDef& node) { bool is_binary = IsAdd(node) || IsAtan2(node) || IsComparisonOp(node) || IsComplex(node) || IsDiv(node) || IsFloorDiv(node) || IsIgamma(node) || IsIgammac(node) || IsLogicalAnd(node) || IsLogicalOr(node) || IsMaximum(node) || IsMinimum(node) || IsMod(node) || IsMul(node) || IsPolygamma(node) || IsPow(node) || IsRealDiv(node) || IsSquaredDifference(node) || IsSub(node) || IsTruncateDiv(node) || IsTruncateMod(node) || IsZeta(node); return is_binary; } bool IsReduceOp(const NodeDef& node) { return IsSum(node) || IsMean(node) || IsProd(node) || IsMax(node) || IsMin(node) || IsAll(node) || IsAny(node); } std::vector<int> GetDataFaninPorts(const utils::MutableNodeView& node) { const auto* node_def = node.node(); if (IsAvgPoolGrad(*node_def) || IsSplit(*node_def)) { return {1}; } if (IsStridedSliceGrad(*node_def)) { return {4}; } if (IsBinaryOp(*node_def) || IsUnaryGrad(*node_def)) { return {0, 1}; } if (IsTernaryOp(*node_def) || IsSelect(*node_def) || IsMaxPoolGrad(*node_def) || IsMaxPoolGradV2(*node_def) || IsMaxPoolGradGradV1(*node_def) || IsMaxPoolGradGradV2(*node_def)) { return {0, 1, 2}; } if (IsShapeN(*node_def) || IsIdentityN(*node_def) || IsAddN(*node_def) || IsMerge(*node_def)) { return GetRegularFaninPorts(node); } if (IsConcat(*node_def)) { return GetConcatDataFaninPorts(node); } if (node.NumRegularFanins() > 0) { return {0}; } return {}; } std::vector<int> GetDataFanoutPorts(const utils::MutableNodeView& node) { const auto* node_def = node.node(); if (IsIdentityN(*node_def) || IsShape(*node_def) || IsShapeN(*node_def)) { return GetDataFaninPorts(node); } if (IsSplit(*node_def) || IsSplitV(*node_def)) { const auto* num_split_attr = node.GetAttr(kAttrNumSplit); if (num_split_attr == nullptr) { return {0}; } std::vector<int> values(num_split_attr->i()); std::iota(values.begin(), values.end(), 0); return values; } if (IsSwitch(*node_def)) { const auto* num_outs_attr = node.GetAttr(kAttrNumOuts); const int num_outs = num_outs_attr != nullptr ? num_outs_attr->i() : 2; std::vector<int> values(num_outs); std::iota(values.begin(), values.end(), 0); return values; } return {0}; } bool GetValueAttrFromConstInputNode( const utils::MutableNodeView& node, const std::function<bool(const NodeDef&)>& predicate, int index, Tensor* tensor) { if (!predicate(*node.node())) { return false; } const auto& regular_fanin = node.GetRegularFanin(index); auto* regular_fanin_node = regular_fanin.node_view(); if (!IsConstant(*regular_fanin_node->node())) { return false; } const auto* value_attr = regular_fanin_node->GetAttr(kAttrValue); if (value_attr == nullptr || value_attr->tensor().dtype() != DT_INT32) { return false; } if (!tensor->FromProto(value_attr->tensor())) { return false; } return true; } bool IsDataFormatOp(const utils::MutableNodeView& node) { const string& op = node.GetOp(); return op == kOpDataFormatDimMap || op == kOpDataFormatVecPermute; } absl::flat_hash_map<char, int> GetDimensionIndices( absl::string_view data_format) { const int size = data_format.size(); absl::flat_hash_map<char, int> index; index.reserve(size); for (int i = 0; i < size; i++) { index[data_format[i]] = i; } return index; } std::vector<int> GetPermutation( const absl::flat_hash_map<char, int>& src_dim_indices, absl::string_view dst_format) { DCHECK(src_dim_indices.size() == dst_format.size()); std::vector<int> permutation; const int size = dst_format.size(); permutation.reserve(size); for (int i = 0; i < size; i++) { permutation.push_back(src_dim_indices.at(dst_format[i])); } return permutation; } } }
#include "tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/math_ops_internal.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/nn_ops_internal.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/clusters/single_machine.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/devices.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/utils/graph_view.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using ::tensorflow::test::ExpectTensorEqual; constexpr int kBatchSize = 32; constexpr int kWidth = 10; constexpr int kHeight = 10; constexpr int kDepthIn = 8; constexpr int kKernel = 2; constexpr int kStride1 = 2; constexpr int kStride2 = 4; constexpr int kOutWidth = 5; constexpr int kOutHeight = 5; constexpr int kDepthOut = 16; constexpr int kDilation = 2; constexpr int kPaddingTop = 1; constexpr int kPaddingBottom = 2; constexpr int kPaddingLeft = 3; constexpr int kPaddingRight = 4; constexpr char kSrcFormat[] = "NHWC"; constexpr char kDstFormat[] = "NCHW"; constexpr char kGPU[] = "GPU"; constexpr char kAttrOutputShapes[] = "_output_shapes"; constexpr char kAttrDataFormat[] = "data_format"; constexpr char kOpTranspose[] = "Transpose"; class TransposerImpl : public Transposer { public: explicit TransposerImpl() : Transposer() {} Status TransposeNode(TransposeContext*, utils::MutableNodeView*) override { return absl::OkStatus(); } }; void VerifyRegularFaninMatch(const utils::MutableNodeView* node, int port, absl::string_view fanin_name, int fanin_port) { ASSERT_GT(node->NumRegularFanins(), port); const auto& fanin = node->GetRegularFanin(port); EXPECT_EQ(fanin.node_view()->GetName(), fanin_name); EXPECT_EQ(fanin.index(), fanin_port); } void VerifyShapeAttributeMatch(const utils::MutableNodeView* node, absl::string_view attr_value) { const auto* attr = node->GetAttr(kAttrOutputShapes); ASSERT_NE(attr, nullptr); EXPECT_EQ(attr->shape().DebugString(), attr_value); } void VerifyShapeAttributeMatch(const utils::MutableNodeView* node, int shape_index, absl::string_view attr_value) { const auto* attr = node->GetAttr(kAttrOutputShapes); ASSERT_NE(attr, nullptr); ASSERT_GT(attr->list().shape_size(), shape_index); EXPECT_EQ(attr->list().shape(shape_index).DebugString(), attr_value); } void VerifyDataFormatAttributeMatch(const utils::MutableNodeView* node, absl::string_view attr_value) { const auto* attr = node->GetAttr(kAttrDataFormat); ASSERT_NE(attr, nullptr); EXPECT_EQ(attr->s(), attr_value); } Output SimpleConv2D(const Scope* scope, const DataType& data_type = DT_FLOAT) { auto input = ops::RandomUniform(scope->WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, data_type); auto filter = ops::RandomUniform(scope->WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, data_type); auto conv2d = ops::Conv2D( scope->WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, kStride1, kStride2, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); return conv2d; } Status CreateSimpleConv2DGraph(GraphDef* graph, const DataType& data_type = DT_FLOAT) { Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope, data_type); auto output = ops::Identity(scope.WithOpName("output"), conv2d); return scope.ToGraphDef(graph); } Status CreateSimpleFusedBatchNorm(GraphDef* graph, const DataType& data_type = DT_FLOAT) { Scope scope = Scope::NewRootScope(); auto x = ops::RandomUniform(scope.WithOpName("x"), {kBatchSize, kHeight, kWidth, kDepthIn}, data_type); auto scale = ops::RandomUniform(scope.WithOpName("scale"), {kDepthIn}, DT_FLOAT); auto offset = ops::RandomUniform(scope.WithOpName("offset"), {kDepthIn}, DT_FLOAT); auto mean = ops::RandomUniform(scope.WithOpName("mean"), {kDepthIn}, DT_FLOAT); auto var = ops::RandomUniform(scope.WithOpName("var"), {kDepthIn}, DT_FLOAT); auto batch_norm = ops::FusedBatchNormV2( scope.WithOpName("bn").WithDevice("/device:GPU:0"), x, scale, offset, mean, var, ops::FusedBatchNormV2::IsTraining(false).Epsilon(0.1f)); auto output_y = ops::Identity(scope.WithOpName("output_y"), batch_norm.y); auto output_mean = ops::Identity(scope.WithOpName("output_mean"), batch_norm.batch_mean); auto output_variance = ops::Identity(scope.WithOpName("output_variance"), batch_norm.batch_variance); return scope.ToGraphDef(graph); } Status CreateSimpleMaxPoolGrad(GraphDef* graph, bool use_grad_grad) { Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("orig_input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto output_data = ops::RandomUniform( scope.WithOpName("orig_output"), {kBatchSize, kOutHeight, kOutWidth, kDepthIn}, DT_FLOAT); auto output_grad = ops::RandomUniform(scope.WithOpName("grad"), {kBatchSize, use_grad_grad ? kHeight : kOutHeight, use_grad_grad ? kWidth : kOutWidth, kDepthIn}, DT_FLOAT); Output maxpool_grad; if (use_grad_grad) { maxpool_grad = ops::MaxPoolGradGrad( scope.WithOpName("maxpool_grad").WithDevice("/device:GPU:0"), input, output_data, output_grad, {1, kKernel, kKernel, 1}, {1, kStride1, kStride1, 1}, "VALID"); } else { maxpool_grad = ops::internal::MaxPoolGrad( scope.WithOpName("maxpool_grad").WithDevice("/device:GPU:0"), input, output_data, output_grad, {1, kKernel, kKernel, 1}, {1, kStride1, kStride1, 1}, "VALID"); } auto output = ops::Identity(scope.WithOpName("output"), maxpool_grad); return scope.ToGraphDef(graph); } Status CreateSimpleBiasAddGrad(GraphDef* graph, const Input& shape) { Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), shape, DT_FLOAT); auto bag = ops::BiasAddGrad(scope.WithOpName("bag").WithDevice("/device:GPU:0"), input, ops::BiasAddGrad::DataFormat(kSrcFormat)); auto output = ops::Identity(scope.WithOpName("output"), bag); return scope.ToGraphDef(graph); } Status CreateSimpleConv2DBackpropFilter(GraphDef* graph, const DataType& data_type = DT_FLOAT, absl::string_view padding = "SAME") { Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, data_type); auto out_backprop = ops::RandomUniform(scope.WithOpName("out_backprop"), {kBatchSize, kHeight, kWidth, kDepthOut}, data_type); if (padding == "EXPLICIT") { auto conv2d_backprop_filter = ops::Conv2DBackpropFilter( scope.WithOpName("conv2d_backprop_filter").WithDevice("/device:GPU:0"), input, {kHeight, kWidth, kDepthIn, kDepthOut}, out_backprop, {1, 2, 4, 1}, padding, ops::Conv2DBackpropFilter::Attrs() .Dilations({1, kDilation, kDilation, 1}) .ExplicitPaddings({0, 0, kPaddingTop, kPaddingBottom, kPaddingLeft, kPaddingRight, 0, 0}) .DataFormat(kSrcFormat)); auto output = ops::Identity(scope.WithOpName("output"), conv2d_backprop_filter); } else { auto conv2d_backprop_filter = ops::Conv2DBackpropFilter( scope.WithOpName("conv2d_backprop_filter").WithDevice("/device:GPU:0"), input, {kHeight, kWidth, kDepthIn, kDepthOut}, out_backprop, {1, 2, 4, 1}, padding, ops::Conv2DBackpropFilter::DataFormat(kSrcFormat)); auto output = ops::Identity(scope.WithOpName("output"), conv2d_backprop_filter); } return scope.ToGraphDef(graph); } Status CreateSimpleConv2DBackpropInput(GraphDef* graph, const DataType& data_type = DT_FLOAT) { Scope scope = Scope::NewRootScope(); auto input_sizes = ops::Const(scope.WithOpName("input_sizes"), {kBatchSize, kHeight, kWidth, kDepthIn}); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, data_type); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, data_type); auto out_backprop = ops::RandomUniform(scope.WithOpName("out_backprop"), {kBatchSize, kHeight, kWidth, kDepthOut}, data_type); auto conv2d_backprop_input = ops::Conv2DBackpropInput( scope.WithOpName("conv2d_backprop_input").WithDevice("/device:GPU:0"), input_sizes, filter, out_backprop, {1, kStride1, kStride1, 1}, "VALID"); auto output = ops::Identity(scope.WithOpName("output"), conv2d_backprop_input); return scope.ToGraphDef(graph); } Status CreateSimpleFusedBatchNormGrad(GraphDef* graph, bool is_training, const DataType& data_type = DT_FLOAT) { Scope scope = Scope::NewRootScope(); auto y_backprop = ops::RandomUniform(scope.WithOpName("y_backprop"), {kBatchSize, kHeight, kWidth, kDepthIn}, data_type); auto x = ops::RandomUniform(scope.WithOpName("x"), {kBatchSize, kHeight, kWidth, kDepthIn}, data_type); auto scale = ops::RandomUniform(scope.WithOpName("scale"), {kDepthIn}, DT_FLOAT); auto reserve_space_1 = ops::RandomUniform(scope.WithOpName("reserve_space_1"), {kDepthIn}, DT_FLOAT); auto reserve_space_2 = ops::RandomUniform(scope.WithOpName("reserve_space_2"), {kDepthIn}, DT_FLOAT); auto fused_batch_norm_grad = ops::FusedBatchNormGradV2( scope.WithOpName("fused_batch_norm_grad").WithDevice("/device:GPU:0"), y_backprop, x, scale, reserve_space_1, reserve_space_2, ops::FusedBatchNormGradV2::DataFormat(kSrcFormat) .IsTraining(is_training) .Epsilon(0.1f)); auto x_backprop = ops::Identity(scope.WithOpName("x_backprop"), fused_batch_norm_grad.x_backprop); auto scale_backprop = ops::Identity(scope.WithOpName("scale_backprop"), fused_batch_norm_grad.scale_backprop); auto offset_backprop = ops::Identity(scope.WithOpName("offset_backprop"), fused_batch_norm_grad.offset_backprop); auto reserve_space_3 = ops::Identity(scope.WithOpName("reserve_space_3"), fused_batch_norm_grad.reserve_space_3); auto reserve_space_4 = ops::Identity(scope.WithOpName("reserve_space_4"), fused_batch_norm_grad.reserve_space_4); return scope.ToGraphDef(graph); } Status CreateSimpleAddN(GraphDef* graph) { Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); Output a = ops::RandomUniform(scope.WithOpName("a"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); Output b = ops::RandomUniform(scope.WithOpName("b"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); Output c = ops::RandomUniform(scope.WithOpName("c"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); auto add_n = ops::AddN(scope.WithOpName("add_n").WithDevice("/device:GPU:0"), {a, b, c, conv2d}); auto output = ops::Identity(scope.WithOpName("output"), add_n); return scope.ToGraphDef(graph); } Status CreateSimpleIdentityN(GraphDef* graph) { Scope scope = Scope::NewRootScope(); auto conv2d_1_input = ops::RandomUniform(scope.WithOpName("conv2d_1_input"), {kBatchSize, kDepthIn, kHeight, kWidth}, DT_FLOAT); auto conv2d_1_filter = ops::RandomUniform(scope.WithOpName("conv2d_1_filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d_1 = ops::Conv2D(scope.WithOpName("conv2d_1").WithDevice("/device:GPU:0"), conv2d_1_input, conv2d_1_filter, {1, 1, 2, 4}, "SAME", ops::Conv2D::DataFormat(kDstFormat)); auto conv2d_2_input = ops::RandomUniform(scope.WithOpName("conv2d_2_input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto conv2d_2_filter = ops::RandomUniform(scope.WithOpName("conv2d_2_filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d_2 = ops::Conv2D(scope.WithOpName("conv2d_2").WithDevice("/device:GPU:0"), conv2d_2_input, conv2d_2_filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); Output a = ops::RandomUniform( scope.WithOpName("a"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); Output b = ops::RandomUniform(scope.WithOpName("b"), {kBatchSize, kDepthIn}, DT_FLOAT); auto identity_n = ops::IdentityN(scope.WithOpName("identity_n").WithDevice("/device:GPU:0"), {conv2d_1, conv2d_2, a, b}); auto conv2d_1_output = ops::Identity(scope.WithOpName("conv2d_1_output"), identity_n.output[0]); auto conv2d_2_output = ops::Identity(scope.WithOpName("conv2d_2_output"), identity_n.output[1]); auto a_output = ops::Identity(scope.WithOpName("a_output"), identity_n.output[2]); auto b_output = ops::Identity(scope.WithOpName("b_output"), identity_n.output[3]); return scope.ToGraphDef(graph); } class TransposerTest : public ::testing::Test { protected: void SetUp() override { bool gpu_available = GetNumAvailableGPUs() > 0; if (gpu_available) { virtual_cluster_ = std::make_unique<SingleMachine>(10, 1, 1); } else { DeviceProperties gpu_device; gpu_device.set_type(kGPU); gpu_device.mutable_environment()->insert({"architecture", "6"}); virtual_cluster_ = absl::WrapUnique(new VirtualCluster({{"/GPU:1", gpu_device}})); } TF_ASSERT_OK(virtual_cluster_->Provision()); } void TearDown() override { TF_ASSERT_OK(virtual_cluster_->Shutdown()); } template <typename T> void ReduceTransposerKeepDims() { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto axis = ops::Const<T>(scope.WithOpName("axis"), {0, 1, 2}, {3}); auto attrs = ops::Sum::Attrs().KeepDims(true); auto sum_op = ops::Sum(scope.WithOpName("sum").WithDevice("/device:GPU:0"), conv2d, axis, attrs); auto z = ops::Identity(scope.WithOpName("z"), sum_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); ReduceTransposer reducer_transposer; auto* sum = context.graph_view->GetNode("sum"); ASSERT_NE(sum, nullptr); TF_ASSERT_OK(reducer_transposer.TransposeNode(&context, sum)); auto* input_transpose_node = context.graph_view->GetNode( "sum-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); auto* updated_sum_node = context.graph_view->GetNode("sum"); ASSERT_NE(updated_sum_node, nullptr); ASSERT_EQ(updated_sum_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(updated_sum_node, 0, input_transpose_node->GetName(), 0); auto* axis_node = context.graph_view->GetNode( "sum-1-DataFormatDimMapNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(axis_node, nullptr); ASSERT_EQ(axis_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(axis_node, 0, "axis", 0); auto* output_transpose_node = context.graph_view->GetNode( "sum-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } template <typename T> void ReduceTransposerValidAxisNode() { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto axis = ops::Const<T>(scope.WithOpName("axis"), {0, 1, 2}, {3}); auto sum_op = ops::Max(scope.WithOpName("max").WithDevice("/device:GPU:0"), conv2d, axis); auto z = ops::Identity(scope.WithOpName("z"), sum_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); ReduceTransposer reducer_transposer; auto* max = context.graph_view->GetNode("max"); ASSERT_NE(max, nullptr); TF_ASSERT_OK(reducer_transposer.TransposeNode(&context, max)); auto* input_transpose_node = context.graph_view->GetNode( "max-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); auto* updated_max_node = context.graph_view->GetNode("max"); ASSERT_NE(updated_max_node, nullptr); ASSERT_EQ(updated_max_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(updated_max_node, 0, input_transpose_node->GetName(), 0); auto* axis_node = context.graph_view->GetNode( "max-1-DataFormatDimMapNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(axis_node, nullptr); ASSERT_EQ(axis_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(axis_node, 0, "axis", 0); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, updated_max_node->GetName(), 0); } std::unique_ptr<Cluster> virtual_cluster_; }; TEST_F(TransposerTest, CreateConstPermNode) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleConv2DGraph(&item.graph)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); TransposerImpl transposer; constexpr char kNodeName[] = "const_perm_node"; constexpr char kDevice[] = "/device:GPU:0"; utils::MutationNewNode added_node; EXPECT_FALSE(context.graph_view->HasNode(kNodeName)); TF_ASSERT_OK(transposer.CreateConstPermNode(&context, kNodeName, kDevice, {0, 3, 1, 2}, "", &added_node)); TF_ASSERT_OK(context.graph_view->GetMutationBuilder()->Apply()); utils::MutableNodeView* const_perm_node = context.graph_view->GetNode(kNodeName); EXPECT_EQ(const_perm_node->GetName(), kNodeName); EXPECT_EQ(const_perm_node->GetDevice(), kDevice); const auto* value_attr = const_perm_node->GetAttr("value"); ASSERT_NE(value_attr, nullptr); Tensor tensor; ASSERT_TRUE(tensor.FromProto(value_attr->tensor())); Tensor expected(DT_INT32, {4}); ::tensorflow::test::FillValues<int32>(&expected, {0, 3, 1, 2}); ExpectTensorEqual<int32>(tensor, expected); } TensorShapeProto MakeTensorShapeFromDimensions(absl::Span<const int> dims) { TensorShapeProto shape_proto = TensorShapeProto(); for (const int dim : dims) { TensorShapeProto_Dim dim_proto = TensorShapeProto_Dim(); dim_proto.set_size(dim); *shape_proto.add_dim() = std::move(dim_proto); } return shape_proto; } TEST_F(TransposerTest, CreateTransposeNode) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleConv2DGraph(&item.graph)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); TransposerImpl transposer; constexpr char kNodeNameFormat[] = "transpose_node-0-$0-NWCHToNCWH-LayoutOptimizer"; constexpr char kDevice[] = "/device:GPU:0"; TensorShapeProto input_shape = MakeTensorShapeFromDimensions({1, 2, 3, 4}); TensorShapeProto expected_shape = MakeTensorShapeFromDimensions({1, 4, 2, 3}); utils::MutationNewNode added_node; string transpose_node_name; TF_ASSERT_OK(transposer.CreateTransposeNode( &context, kNodeNameFormat, DT_DOUBLE, kDevice, input_shape, {0, 3, 1, 2}, "", &added_node, &transpose_node_name)); EXPECT_EQ(transpose_node_name, "transpose_node-0-Transpose-NWCHToNCWH-LayoutOptimizer"); utils::Mutation* mutation = context.graph_view->GetMutationBuilder(); Status status; mutation->AddNode({}, &status); TF_ASSERT_OK(status); TF_ASSERT_OK(context.graph_view->GetMutationBuilder()->Apply()); auto* transpose_node = context.graph_view->GetNode(transpose_node_name); ASSERT_NE(transpose_node, nullptr); EXPECT_EQ(transpose_node->GetDevice(), kDevice); const auto* output_shapes_attr = transpose_node->GetAttr("_output_shapes"); EXPECT_EQ(output_shapes_attr->list().shape(0).DebugString(), expected_shape.DebugString()); } TEST_F(TransposerTest, UpdateNode) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleConv2DGraph(&item.graph)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer transposer; auto* conv2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(conv2d, nullptr); TF_ASSERT_OK(transposer.UpdateNode(&context, conv2d)); TF_ASSERT_OK(context.graph_view->GetMutationBuilder()->Apply()); auto* updated_conv2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(updated_conv2d, nullptr); VerifyDataFormatAttributeMatch(updated_conv2d, kDstFormat); } AttrValue_ListValue MakeAttrValueListValueFromVector( absl::Span<const int> vec) { AttrValue_ListValue list_proto = AttrValue_ListValue(); for (const int i : vec) { list_proto.add_i(i); } return list_proto; } TEST_F(TransposerTest, UpdateStrides) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleConv2DGraph(&item.graph)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, "ABCD", "ACBD"); AttrValue_ListValue expected_original_strides = MakeAttrValueListValueFromVector({1, 2, 4, 1}); AttrValue_ListValue expected_updated_strides = MakeAttrValueListValueFromVector({1, 4, 2, 1}); auto* conv2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(conv2d, nullptr); const auto& strides_attr = conv2d->GetAttr("strides"); ASSERT_NE(strides_attr, nullptr); EXPECT_EQ(strides_attr->list().DebugString(), expected_original_strides.DebugString()); AttrValue data_format_attr; data_format_attr.set_s("ABCD"); context.graph_view->GetMutationBuilder()->AddOrUpdateNodeAttr( conv2d, "data_format", data_format_attr); TF_ASSERT_OK(context.graph_view->GetMutationBuilder()->Apply()); DefaultLayoutSensitiveOpTransposer transposer; TF_ASSERT_OK(transposer.UpdateNode(&context, conv2d)); TF_ASSERT_OK(context.graph_view->GetMutationBuilder()->Apply()); auto* updated_conv2d = context.graph_view->GetNode("conv2d"); const auto& updated_strides_attr = updated_conv2d->GetAttr("strides"); ASSERT_NE(updated_strides_attr, nullptr); EXPECT_EQ(updated_strides_attr->list().DebugString(), expected_updated_strides.DebugString()); } TEST_F(TransposerTest, UpdateFaninEdgesTranspose) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleFusedBatchNormGrad(&item.graph, true)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); FusedBatchNormGradTransposer transposer; auto* fbng = context.graph_view->GetNode("fused_batch_norm_grad"); ASSERT_NE(fbng, nullptr); const auto& fbng_output_shapes_attr = fbng->GetAttr("_output_shapes"); ASSERT_NE(fbng_output_shapes_attr, nullptr); const TensorShapeProto& expected_shape = fbng_output_shapes_attr->shape(); TF_ASSERT_OK( transposer.UpdateFaninEdgesWithOp(&context, {0, 1}, fbng, kOpTranspose)); TF_ASSERT_OK(context.graph_view->GetMutationBuilder()->Apply()); auto* transpose_node1 = context.graph_view->GetNode( "fused_batch_norm_grad-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(transpose_node1, nullptr); VerifyShapeAttributeMatch(transpose_node1, expected_shape.DebugString()); auto* transpose_node2 = context.graph_view->GetNode( "fused_batch_norm_grad-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(transpose_node2, nullptr); VerifyShapeAttributeMatch(transpose_node2, expected_shape.DebugString()); auto* const_node1 = context.graph_view->GetNode( "fused_batch_norm_grad-0-PermConstNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(const_node1, nullptr); auto* const_node2 = context.graph_view->GetNode( "fused_batch_norm_grad-1-PermConstNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(const_node2, nullptr); auto* y_backprop = context.graph_view->GetNode("y_backprop"); ASSERT_NE(y_backprop, nullptr); ASSERT_EQ(transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(transpose_node1, 0, y_backprop->GetName(), 0); VerifyRegularFaninMatch(transpose_node1, 1, const_node1->GetName(), 0); auto* x = context.graph_view->GetNode("x"); ASSERT_NE(x, nullptr); ASSERT_EQ(transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(transpose_node2, 0, x->GetName(), 0); VerifyRegularFaninMatch(transpose_node2, 1, const_node2->GetName(), 0); auto* updated_fbng = context.graph_view->GetNode("fused_batch_norm_grad"); ASSERT_NE(updated_fbng, nullptr); ASSERT_EQ(updated_fbng->NumRegularFanins(), 5); VerifyRegularFaninMatch(updated_fbng, 0, transpose_node1->GetName(), 0); VerifyRegularFaninMatch(updated_fbng, 1, transpose_node2->GetName(), 0); } TEST_F(TransposerTest, UpdateFanoutEdgesTranspose) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleConv2DGraph(&item.graph)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); TransposerImpl transposer; TensorShapeProto expected_original_shape = MakeTensorShapeFromDimensions({32, 5, 3, 16}); TensorShapeProto expected_updated_shape = MakeTensorShapeFromDimensions({32, 16, 5, 3}); auto* conv2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(conv2d, nullptr); VerifyShapeAttributeMatch(conv2d, 0, expected_original_shape.DebugString()); TF_ASSERT_OK( transposer.UpdateFanoutEdgesWithOp(&context, {0}, conv2d, kOpTranspose)); TF_ASSERT_OK(context.graph_view->GetMutationBuilder()->Apply()); auto* updated_conv2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(updated_conv2d, nullptr); VerifyShapeAttributeMatch(updated_conv2d, 0, expected_updated_shape.DebugString()); auto* transpose_node = context.graph_view->GetNode( "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(transpose_node, nullptr); VerifyShapeAttributeMatch(transpose_node, 0, expected_original_shape.DebugString()); auto* const_node = context.graph_view->GetNode( "conv2d-0-0-PermConstNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(const_node, nullptr); ASSERT_EQ(transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(transpose_node, 0, updated_conv2d->GetName(), 0); VerifyRegularFaninMatch(transpose_node, 1, const_node->GetName(), 0); auto* output = context.graph_view->GetNode("output"); ASSERT_NE(output, nullptr); ASSERT_EQ(output->NumRegularFanins(), 1); VerifyRegularFaninMatch(output, 0, transpose_node->GetName(), 0); } TEST_F(TransposerTest, DefaultLayoutSensitiveOpTransposerTestFusedBatchNorm) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleFusedBatchNorm(&item.graph)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer transposer; auto* bn = context.graph_view->GetNode("bn"); TF_ASSERT_OK(transposer.TransposeNode(&context, bn)); auto* input_transpose_node = context.graph_view->GetNode("bn-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "x", 0); auto* bn_node = context.graph_view->GetNode("bn"); ASSERT_NE(bn_node, nullptr); ASSERT_EQ(bn_node->NumRegularFanins(), 5); VerifyRegularFaninMatch(bn_node, 0, input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(bn_node, 1, "scale", 0); VerifyRegularFaninMatch(bn_node, 2, "offset", 0); VerifyRegularFaninMatch(bn_node, 3, "mean", 0); VerifyRegularFaninMatch(bn_node, 4, "var", 0); VerifyDataFormatAttributeMatch(bn_node, kDstFormat); auto* output_transpose_node = context.graph_view->GetNode("bn-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, bn_node->GetName(), 0); auto* output_y = context.graph_view->GetNode("output_y"); ASSERT_NE(output_y, nullptr); ASSERT_EQ(output_y->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_y, 0, output_transpose_node->GetName(), 0); auto* output_mean = context.graph_view->GetNode("output_mean"); ASSERT_NE(output_mean, nullptr); ASSERT_EQ(output_mean->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_mean, 0, bn_node->GetName(), 1); auto* output_variance = context.graph_view->GetNode("output_variance"); ASSERT_NE(output_variance, nullptr); ASSERT_EQ(output_variance->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_variance, 0, bn_node->GetName(), 2); } TEST_F(TransposerTest, DefaultLayoutSensitiveOpTransposerTestConv2D) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleConv2DGraph(&item.graph)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer transposer; auto* conv2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(conv2d, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, conv2d)); auto* input_transpose_node = context.graph_view->GetNode( "conv2d-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "input", 0); auto* conv2d_node = context.graph_view->GetNode("conv2d"); ASSERT_NE(conv2d_node, nullptr); ASSERT_EQ(conv2d_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(conv2d_node, 0, input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(conv2d_node, 1, "filter", 0); VerifyDataFormatAttributeMatch(conv2d_node, kDstFormat); const auto* strides_attr = conv2d_node->GetAttr("strides"); ASSERT_NE(strides_attr, nullptr); ASSERT_EQ(strides_attr->list().i_size(), 4); EXPECT_EQ(strides_attr->list().i(0), 1); EXPECT_EQ(strides_attr->list().i(1), 1); EXPECT_EQ(strides_attr->list().i(2), kStride1); EXPECT_EQ(strides_attr->list().i(3), kStride2); auto* output_transpose_node = context.graph_view->GetNode( "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, conv2d_node->GetName(), 0); auto* output_node = context.graph_view->GetNode("output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, MaxPoolGradTransposerTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif for (bool use_grad_grad : {false, true}) { GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleMaxPoolGrad(&item.graph, use_grad_grad)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); MaxPoolGradTransposer transposer; auto* maxpool_grad = context.graph_view->GetNode("maxpool_grad"); ASSERT_NE(maxpool_grad, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, maxpool_grad)); auto* input_transpose_node1 = context.graph_view->GetNode( "maxpool_grad-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "orig_input", 0); auto* input_transpose_node2 = context.graph_view->GetNode( "maxpool_grad-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node2, nullptr); ASSERT_EQ(input_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node2, 0, "orig_output", 0); auto* input_transpose_node3 = context.graph_view->GetNode( "maxpool_grad-2-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node3, nullptr); ASSERT_EQ(input_transpose_node3->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node3, 0, "grad", 0); auto* updated_maxpool_grad = context.graph_view->GetNode("maxpool_grad"); VerifyDataFormatAttributeMatch(updated_maxpool_grad, kDstFormat); ASSERT_EQ(updated_maxpool_grad->NumRegularFanins(), 3); VerifyRegularFaninMatch(updated_maxpool_grad, 0, input_transpose_node1->GetName(), 0); VerifyRegularFaninMatch(updated_maxpool_grad, 1, input_transpose_node2->GetName(), 0); VerifyRegularFaninMatch(updated_maxpool_grad, 2, input_transpose_node3->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "maxpool_grad-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, updated_maxpool_grad->GetName(), 0); } } TEST_F(TransposerTest, BiasAddGradTransposerTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleBiasAddGrad( &item.graph, {kBatchSize, kHeight, kWidth, kDepthIn})); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); BiasAddGradTransposer transposer; auto* bag = context.graph_view->GetNode("bag"); ASSERT_NE(bag, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, bag)); auto* input_transpose_node = context.graph_view->GetNode("bag-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "input", 0); auto* bag_node = context.graph_view->GetNode("bag"); ASSERT_NE(bag_node, nullptr); VerifyDataFormatAttributeMatch(bag_node, kDstFormat); auto* output_transpose_node = context.graph_view->GetNode( "bag-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* output_node = context.graph_view->GetNode("output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, bag_node->GetName(), 0); } TEST_F(TransposerTest, BiasAddGradTransposerIncorrectInputTest) { GrapplerItem item; TransposeContext context; TF_ASSERT_OK( CreateSimpleBiasAddGrad(&item.graph, {kHeight, kWidth, kDepthIn})); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); BiasAddGradTransposer transposer; auto* bag = context.graph_view->GetNode("bag"); ASSERT_NE(bag, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, bag)); auto* input_transpose_node = context.graph_view->GetNode("bag-0-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node, nullptr); auto* bag_node = context.graph_view->GetNode("bag"); ASSERT_NE(bag_node, nullptr); VerifyDataFormatAttributeMatch(bag_node, kSrcFormat); auto* output_transpose_node = context.graph_view->GetNode( "bag-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* output_node = context.graph_view->GetNode("output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, bag_node->GetName(), 0); } TEST_F(TransposerTest, Conv2DBackpropFilterTransposerTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleConv2DBackpropFilter(&item.graph)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); Conv2DBackpropFilterTransposer transposer; auto* conv2d_bf = context.graph_view->GetNode("conv2d_backprop_filter"); ASSERT_NE(conv2d_bf, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, conv2d_bf)); auto* input_transpose_node1 = context.graph_view->GetNode( "conv2d_backprop_filter-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "input", 0); auto* input_transpose_node_filter_sizes = context.graph_view->GetNode( "conv2d_backprop_filter-1-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node_filter_sizes, nullptr); auto* input_transpose_node2 = context.graph_view->GetNode( "conv2d_backprop_filter-2-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node2, nullptr); ASSERT_EQ(input_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node2, 0, "out_backprop", 0); auto* conv2d_bf_node = context.graph_view->GetNode("conv2d_backprop_filter"); ASSERT_NE(conv2d_bf_node, nullptr); ASSERT_EQ(conv2d_bf_node->NumRegularFanins(), 3); VerifyRegularFaninMatch(conv2d_bf_node, 0, input_transpose_node1->GetName(), 0); VerifyRegularFaninMatch(conv2d_bf_node, 2, input_transpose_node2->GetName(), 0); VerifyDataFormatAttributeMatch(conv2d_bf_node, kDstFormat); auto* output_transpose_node = context.graph_view->GetNode( "conv2d_backprop_filter-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* output_node = context.graph_view->GetNode("output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, conv2d_bf_node->GetName(), 0); } TEST_F(TransposerTest, NodeAttributes) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK( CreateSimpleConv2DBackpropFilter(&item.graph, DT_FLOAT, "EXPLICIT")); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); Conv2DBackpropFilterTransposer transposer; auto* conv2d_bf = context.graph_view->GetNode("conv2d_backprop_filter"); ASSERT_NE(conv2d_bf, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, conv2d_bf)); auto* conv2d_bf_node = context.graph_view->GetNode("conv2d_backprop_filter"); ASSERT_NE(conv2d_bf_node, nullptr); ASSERT_EQ(conv2d_bf_node->NumRegularFanins(), 3); VerifyDataFormatAttributeMatch(conv2d_bf_node, kDstFormat); auto* dilations_attr = conv2d_bf_node->GetAttr("dilations"); ASSERT_NE(dilations_attr, nullptr); ASSERT_EQ(dilations_attr->list().i_size(), 4); EXPECT_EQ(dilations_attr->list().i(0), 1); EXPECT_EQ(dilations_attr->list().i(1), 1); EXPECT_EQ(dilations_attr->list().i(2), kDilation); EXPECT_EQ(dilations_attr->list().i(3), kDilation); auto* explicit_paddings_attr = conv2d_bf_node->GetAttr("explicit_paddings"); ASSERT_NE(explicit_paddings_attr, nullptr); ASSERT_EQ(explicit_paddings_attr->list().i_size(), 8); EXPECT_EQ(explicit_paddings_attr->list().i(0), 0); EXPECT_EQ(explicit_paddings_attr->list().i(1), 0); EXPECT_EQ(explicit_paddings_attr->list().i(2), 0); EXPECT_EQ(explicit_paddings_attr->list().i(3), 0); EXPECT_EQ(explicit_paddings_attr->list().i(4), kPaddingTop); EXPECT_EQ(explicit_paddings_attr->list().i(5), kPaddingBottom); EXPECT_EQ(explicit_paddings_attr->list().i(6), kPaddingLeft); EXPECT_EQ(explicit_paddings_attr->list().i(7), kPaddingRight); } TEST_F(TransposerTest, Conv2DBackpropInputTransposerTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleConv2DBackpropInput(&item.graph)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); Conv2DBackpropInputTransposer transposer; auto* conv2d_i = context.graph_view->GetNode("conv2d_backprop_input"); ASSERT_NE(conv2d_i, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, conv2d_i)); auto* input_vec_permute_node = context.graph_view->GetNode( "conv2d_backprop_input-0-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_vec_permute_node, nullptr); ASSERT_EQ(input_vec_permute_node->NumRegularFanins(), 1); const auto* src_format_attr = input_vec_permute_node->GetAttr(kAttrSrcFormat); ASSERT_NE(src_format_attr, nullptr); EXPECT_EQ(src_format_attr->s(), kSrcFormat); const auto* dst_format_attr = input_vec_permute_node->GetAttr(kAttrDstFormat); ASSERT_NE(dst_format_attr, nullptr); EXPECT_EQ(dst_format_attr->s(), kDstFormat); auto* input_transpose_node = context.graph_view->GetNode( "conv2d_backprop_input-2-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "out_backprop", 0); auto* conv2d_i_node = context.graph_view->GetNode("conv2d_backprop_input"); ASSERT_NE(conv2d_i_node, nullptr); ASSERT_EQ(conv2d_i_node->NumRegularFanins(), 3); VerifyRegularFaninMatch(conv2d_i_node, 0, input_vec_permute_node->GetName(), 0); VerifyRegularFaninMatch(conv2d_i_node, 1, "filter", 0); VerifyRegularFaninMatch(conv2d_i_node, 2, input_transpose_node->GetName(), 0); VerifyDataFormatAttributeMatch(conv2d_i_node, kDstFormat); auto* output_transpose_node = context.graph_view->GetNode( "conv2d_backprop_input-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, conv2d_i_node->GetName(), 0); auto* output_node = context.graph_view->GetNode("output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, FusedBatchNormGradTransposerIsTrainingTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleFusedBatchNormGrad(&item.graph, true)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); FusedBatchNormGradTransposer transposer; auto* fbng = context.graph_view->GetNode("fused_batch_norm_grad"); ASSERT_NE(fbng, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, fbng)); auto* input_transpose_node1 = context.graph_view->GetNode( "fused_batch_norm_grad-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "y_backprop", 0); auto* input_transpose_node2 = context.graph_view->GetNode( "fused_batch_norm_grad-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node2, nullptr); ASSERT_EQ(input_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node2, 0, "x", 0); auto* fbng_node = context.graph_view->GetNode("fused_batch_norm_grad"); ASSERT_NE(fbng_node, nullptr); ASSERT_EQ(fbng_node->NumRegularFanins(), 5); VerifyRegularFaninMatch(fbng_node, 0, input_transpose_node1->GetName(), 0); VerifyRegularFaninMatch(fbng_node, 1, input_transpose_node2->GetName(), 0); VerifyRegularFaninMatch(fbng_node, 2, "scale", 0); VerifyRegularFaninMatch(fbng_node, 3, "reserve_space_1", 0); VerifyRegularFaninMatch(fbng_node, 4, "reserve_space_2", 0); VerifyDataFormatAttributeMatch(fbng_node, kDstFormat); auto* output_transpose_node = context.graph_view->GetNode( "fused_batch_norm_grad-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, fbng_node->GetName(), 0); auto* x_backprop = context.graph_view->GetNode("x_backprop"); ASSERT_NE(x_backprop, nullptr); ASSERT_EQ(x_backprop->NumRegularFanins(), 1); VerifyRegularFaninMatch(x_backprop, 0, output_transpose_node->GetName(), 0); auto* scale_backprop = context.graph_view->GetNode("scale_backprop"); ASSERT_NE(scale_backprop, nullptr); ASSERT_EQ(scale_backprop->NumRegularFanins(), 1); VerifyRegularFaninMatch(scale_backprop, 0, fbng_node->GetName(), 1); auto* offset_backprop = context.graph_view->GetNode("offset_backprop"); ASSERT_NE(offset_backprop, nullptr); ASSERT_EQ(offset_backprop->NumRegularFanins(), 1); VerifyRegularFaninMatch(offset_backprop, 0, fbng_node->GetName(), 2); auto* reserve_space_3 = context.graph_view->GetNode("reserve_space_3"); ASSERT_NE(reserve_space_3, nullptr); ASSERT_EQ(reserve_space_3->NumRegularFanins(), 1); VerifyRegularFaninMatch(reserve_space_3, 0, fbng_node->GetName(), 3); auto* reserve_space_4 = context.graph_view->GetNode("reserve_space_4"); ASSERT_NE(reserve_space_4, nullptr); ASSERT_EQ(reserve_space_4->NumRegularFanins(), 1); VerifyRegularFaninMatch(reserve_space_4, 0, fbng_node->GetName(), 4); } TEST_F(TransposerTest, FusedBatchNormGradTransposerNotTrainingTest) { GrapplerItem item; TransposeContext context; TF_ASSERT_OK(CreateSimpleFusedBatchNormGrad(&item.graph, false)); TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); FusedBatchNormGradTransposer transposer; auto* fbng = context.graph_view->GetNode("fused_batch_norm_grad"); ASSERT_NE(fbng, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, fbng)); auto* input_transpose_node1 = context.graph_view->GetNode( "fused_batch_norm_grad-0-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node1, nullptr); auto* input_transpose_node2 = context.graph_view->GetNode( "fused_batch_norm_grad-1-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node2, nullptr); auto* fbng_node = context.graph_view->GetNode("fused_batch_norm_grad"); ASSERT_NE(fbng_node, nullptr); ASSERT_EQ(fbng_node->NumRegularFanins(), 5); VerifyRegularFaninMatch(fbng_node, 0, "y_backprop", 0); VerifyRegularFaninMatch(fbng_node, 1, "x", 0); VerifyRegularFaninMatch(fbng_node, 2, "scale", 0); VerifyRegularFaninMatch(fbng_node, 3, "reserve_space_1", 0); VerifyRegularFaninMatch(fbng_node, 4, "reserve_space_2", 0); VerifyDataFormatAttributeMatch(fbng_node, kSrcFormat); auto* output_transpose_node = context.graph_view->GetNode( "fused_batch_norm_grad-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* x_backprop = context.graph_view->GetNode("x_backprop"); ASSERT_NE(x_backprop, nullptr); ASSERT_EQ(x_backprop->NumRegularFanins(), 1); VerifyRegularFaninMatch(x_backprop, 0, fbng_node->GetName(), 0); auto* scale_backprop = context.graph_view->GetNode("scale_backprop"); ASSERT_NE(scale_backprop, nullptr); ASSERT_EQ(scale_backprop->NumRegularFanins(), 1); VerifyRegularFaninMatch(scale_backprop, 0, fbng_node->GetName(), 1); auto* offset_backprop = context.graph_view->GetNode("offset_backprop"); ASSERT_NE(offset_backprop, nullptr); ASSERT_EQ(offset_backprop->NumRegularFanins(), 1); VerifyRegularFaninMatch(offset_backprop, 0, fbng_node->GetName(), 2); auto* reserve_space_3 = context.graph_view->GetNode("reserve_space_3"); ASSERT_NE(reserve_space_3, nullptr); ASSERT_EQ(reserve_space_3->NumRegularFanins(), 1); VerifyRegularFaninMatch(reserve_space_3, 0, fbng_node->GetName(), 3); auto* reserve_space_4 = context.graph_view->GetNode("reserve_space_4"); ASSERT_NE(reserve_space_4, nullptr); ASSERT_EQ(reserve_space_4->NumRegularFanins(), 1); VerifyRegularFaninMatch(reserve_space_4, 0, fbng_node->GetName(), 4); } TEST_F(TransposerTest, DefaultLayoutAgnosticOpTransposerIdentityTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope); auto identity = ops::Identity( scope.WithOpName("identity").WithDevice("/device:GPU:0"), conv2d); auto output = ops::Identity(scope.WithOpName("output"), identity); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); DefaultLayoutAgnosticOpTransposer transposer; auto* i = context.graph_view->GetNode("identity"); ASSERT_NE(i, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, i)); auto* input_transpose_node = context.graph_view->GetNode( "identity-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* i_node = context.graph_view->GetNode("identity"); ASSERT_NE(i_node, nullptr); ASSERT_EQ(i_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(i_node, 0, input_transpose_node->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "identity-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, i_node->GetName(), 0); auto* output_node = context.graph_view->GetNode("output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, DefaultLayoutAgnosticOpTransposerIdentityBadInputTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope); auto sum = ops::Sum(scope.WithOpName("sum"), conv2d, {0, 1}); auto identity = ops::Identity( scope.WithOpName("identity").WithDevice("/device:GPU:0"), sum); auto output = ops::Identity(scope.WithOpName("output"), identity); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); DefaultLayoutAgnosticOpTransposer transposer; auto* i = context.graph_view->GetNode("identity"); ASSERT_NE(i, nullptr); TF_ASSERT_OK(transposer.TransposeNode(&context, i)); auto* input_transpose_node = context.graph_view->GetNode( "identity-0-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node, nullptr); auto* i_node = context.graph_view->GetNode("identity"); ASSERT_NE(i_node, nullptr); ASSERT_EQ(i_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(i_node, 0, "sum", 0); auto* output_transpose_node = context.graph_view->GetNode( "identity-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* output_node = context.graph_view->GetNode("output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, i_node->GetName(), 0); } TEST_F(TransposerTest, AddNTransposerTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TF_ASSERT_OK(CreateSimpleAddN(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* conv2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(conv2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, conv2d)); AddNTransposer addn_transposer; auto* an = context.graph_view->GetNode("add_n"); ASSERT_NE(an, nullptr); TF_ASSERT_OK(addn_transposer.TransposeNode(&context, an)); auto* input_transpose_node1 = context.graph_view->GetNode( "add_n-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "a", 0); auto* input_transpose_node2 = context.graph_view->GetNode( "add_n-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node2, nullptr); ASSERT_EQ(input_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node2, 0, "b", 0); auto* input_transpose_node3 = context.graph_view->GetNode( "add_n-2-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node3, nullptr); ASSERT_EQ(input_transpose_node3->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node3, 0, "c", 0); auto* input_transpose_node4 = context.graph_view->GetNode( "add_n-3-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node4, nullptr); ASSERT_EQ(input_transpose_node4->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node4, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* an_node = context.graph_view->GetNode("add_n"); ASSERT_NE(an_node, nullptr); ASSERT_EQ(an_node->NumRegularFanins(), 4); VerifyRegularFaninMatch(an_node, 0, input_transpose_node1->GetName(), 0); VerifyRegularFaninMatch(an_node, 1, input_transpose_node2->GetName(), 0); VerifyRegularFaninMatch(an_node, 2, input_transpose_node3->GetName(), 0); VerifyRegularFaninMatch(an_node, 3, input_transpose_node4->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "add_n-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, an_node->GetName(), 0); auto* output_node = context.graph_view->GetNode("output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, AddNTransposerNotAfterTransformTest) { GrapplerItem item; TF_ASSERT_OK(CreateSimpleAddN(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); AddNTransposer addn_transposer; auto* an = context.graph_view->GetNode("add_n"); ASSERT_NE(an, nullptr); TF_ASSERT_OK(addn_transposer.TransposeNode(&context, an)); auto* input_transpose_node1 = context.graph_view->GetNode( "add_n-0-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node1, nullptr); auto* input_transpose_node2 = context.graph_view->GetNode( "add_n-1-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node2, nullptr); auto* input_transpose_node3 = context.graph_view->GetNode( "add_n-2-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node3, nullptr); auto* input_transpose_node4 = context.graph_view->GetNode( "add_n-3-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node4, nullptr); auto* an_node = context.graph_view->GetNode("add_n"); ASSERT_NE(an_node, nullptr); ASSERT_EQ(an_node->NumRegularFanins(), 4); VerifyRegularFaninMatch(an_node, 0, "a", 0); VerifyRegularFaninMatch(an_node, 1, "b", 0); VerifyRegularFaninMatch(an_node, 2, "c", 0); VerifyRegularFaninMatch(an_node, 3, "conv2d", 0); auto* output_transpose_node = context.graph_view->GetNode( "add_n-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* output_node = context.graph_view->GetNode("output"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, an_node->GetName(), 0); } TEST_F(TransposerTest, IdentityNTransposerTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; TF_ASSERT_OK(CreateSimpleIdentityN(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* conv2d_1 = context.graph_view->GetNode("conv2d_1"); ASSERT_NE(conv2d_1, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, conv2d_1)); auto* conv2d_2 = context.graph_view->GetNode("conv2d_2"); ASSERT_NE(conv2d_2, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, conv2d_2)); IdentityNTransposer identityn_transposer; auto* in = context.graph_view->GetNode("identity_n"); ASSERT_NE(in, nullptr); TF_ASSERT_OK(identityn_transposer.TransposeNode(&context, in)); auto* input_transpose_node1 = context.graph_view->GetNode( "identity_n-0-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node1, nullptr); auto* input_transpose_node2 = context.graph_view->GetNode( "identity_n-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node2, nullptr); ASSERT_EQ(input_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node2, 0, "conv2d_2-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* input_transpose_node3 = context.graph_view->GetNode( "identity_n-2-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node3, nullptr); auto* input_transpose_node4 = context.graph_view->GetNode( "identity_n-3-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node4, nullptr); auto* in_node = context.graph_view->GetNode("identity_n"); ASSERT_NE(in_node, nullptr); ASSERT_EQ(in_node->NumRegularFanins(), 4); VerifyRegularFaninMatch(in_node, 0, "conv2d_1", 0); VerifyRegularFaninMatch(in_node, 1, input_transpose_node2->GetName(), 0); VerifyRegularFaninMatch(in_node, 2, "a", 0); VerifyRegularFaninMatch(in_node, 3, "b", 0); auto* output_transpose_node1 = context.graph_view->GetNode( "identity_n-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node1, nullptr); auto* output_transpose_node2 = context.graph_view->GetNode( "identity_n-1-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node2, nullptr); ASSERT_EQ(output_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node2, 0, in_node->GetName(), 1); auto* output_transpose_node3 = context.graph_view->GetNode( "identity_n-2-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node3, nullptr); auto* output_transpose_node4 = context.graph_view->GetNode( "identity_n-3-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node4, nullptr); auto* conv2d_1_output_node = context.graph_view->GetNode("conv2d_1_output"); ASSERT_NE(conv2d_1_output_node, nullptr); ASSERT_EQ(conv2d_1_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(conv2d_1_output_node, 0, in_node->GetName(), 0); auto* conv2d_2_output_node = context.graph_view->GetNode("conv2d_2_output"); ASSERT_NE(conv2d_2_output_node, nullptr); ASSERT_EQ(conv2d_2_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(conv2d_2_output_node, 0, output_transpose_node2->GetName(), 0); auto* a_output_node = context.graph_view->GetNode("a_output"); ASSERT_NE(a_output_node, nullptr); ASSERT_EQ(a_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(a_output_node, 0, in_node->GetName(), 2); auto* b_output_node = context.graph_view->GetNode("b_output"); ASSERT_NE(b_output_node, nullptr); ASSERT_EQ(b_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(b_output_node, 0, in_node->GetName(), 3); } TEST_F(TransposerTest, MergeTransposerTestMergeBothInputsConvertible) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope); Output i1 = ops::Identity(scope.WithOpName("i1"), conv2d); auto merge = ops::Merge(scope.WithOpName("merge").WithDevice("/device:GPU:0"), {conv2d, i1}); auto i2 = ops::Identity(scope.WithOpName("i2"), merge.output); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); MergeTransposer merge_transposer; auto* m = context.graph_view->GetNode("merge"); ASSERT_NE(m, nullptr); TF_ASSERT_OK(merge_transposer.TransposeNode(&context, m)); auto* input_transpose_node1 = context.graph_view->GetNode( "merge-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "conv2d-0-1-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* input_transpose_node2 = context.graph_view->GetNode( "merge-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node2, nullptr); ASSERT_EQ(input_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node2, 0, "i1", 0); auto* m_node = context.graph_view->GetNode("merge"); ASSERT_NE(m_node, nullptr); ASSERT_EQ(m_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(m_node, 0, input_transpose_node1->GetName(), 0); VerifyRegularFaninMatch(m_node, 1, input_transpose_node2->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "merge-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, m_node->GetName(), 0); auto* output_node = context.graph_view->GetNode("i2"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, MergeTransposerTestMergeOneInputNotConvertible) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope); auto tensor_4d = ops::Const(scope.WithOpName("tensor_4d"), 3.0f, {1, 1, 1, 3}); auto merge = ops::Merge(scope.WithOpName("merge").WithDevice("/device:GPU:0"), {conv2d, tensor_4d}); auto i2 = ops::Identity(scope.WithOpName("i2"), merge.output); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); MergeTransposer merge_transposer; auto* m = context.graph_view->GetNode("merge"); ASSERT_NE(m, nullptr); TF_ASSERT_OK(merge_transposer.TransposeNode(&context, m)); auto* input_transpose_node1 = context.graph_view->GetNode( "merge-0-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node1, nullptr); auto* input_transpose_node2 = context.graph_view->GetNode( "merge-1-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node2, nullptr); auto* m_node = context.graph_view->GetNode("merge"); ASSERT_NE(m_node, nullptr); ASSERT_EQ(m_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(m_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); VerifyRegularFaninMatch(m_node, 1, "tensor_4d", 0); auto* output_transpose_node = context.graph_view->GetNode( "merge-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* output_node = context.graph_view->GetNode("i2"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, m_node->GetName(), 0); } TEST_F(TransposerTest, PadTransposerTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope); auto c = ops::Const(scope.WithOpName("c"), {1, 2, 3, 4, 5, 6, 7, 8}, {4, 2}); auto p = ops::Pad(scope.WithOpName("p").WithDevice("/device:GPU:0"), conv2d, c); auto o = ops::Identity(scope.WithOpName("o"), p); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); PadTransposer pad_transposer; auto* pad = context.graph_view->GetNode("p"); ASSERT_NE(pad, nullptr); TF_ASSERT_OK(pad_transposer.TransposeNode(&context, pad)); auto* input_transpose_node = context.graph_view->GetNode("p-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* padding_transpose_node = context.graph_view->GetNode( "p-1-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(padding_transpose_node, nullptr); ASSERT_EQ(padding_transpose_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(padding_transpose_node, 0, "c", 0); auto* pad_node = context.graph_view->GetNode("p"); ASSERT_NE(pad_node, nullptr); ASSERT_EQ(pad_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(pad_node, 0, input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(pad_node, 1, padding_transpose_node->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode("p-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, pad_node->GetName(), 0); auto* output_node = context.graph_view->GetNode("o"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, SwitchTransposerTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope); ops::Variable ctrl(scope.WithOpName("ctrl"), {}, DT_BOOL); auto sw = ops::Switch(scope.WithOpName("switch").WithDevice("/device:GPU:0"), conv2d, ctrl); auto i1 = ops::Identity(scope.WithOpName("i1"), sw.output_false); auto i2 = ops::Identity(scope.WithOpName("i2"), sw.output_true); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SwitchTransposer switch_transposer; auto* sw_node = context.graph_view->GetNode("switch"); ASSERT_NE(sw_node, nullptr); TF_ASSERT_OK(switch_transposer.TransposeNode(&context, sw_node)); auto* input_transpose_node = context.graph_view->GetNode( "switch-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* switch_node = context.graph_view->GetNode("switch"); ASSERT_NE(switch_node, nullptr); ASSERT_EQ(switch_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(switch_node, 0, input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(switch_node, 1, "ctrl", 0); auto* output_transpose_node1 = context.graph_view->GetNode( "switch-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node1, nullptr); ASSERT_EQ(output_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node1, 0, switch_node->GetName(), 0); auto* output_transpose_node2 = context.graph_view->GetNode( "switch-1-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node2, nullptr); ASSERT_EQ(output_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node2, 0, switch_node->GetName(), 1); auto* i1_node = context.graph_view->GetNode("i1"); ASSERT_NE(i1_node, nullptr); ASSERT_EQ(i1_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(i1_node, 0, output_transpose_node1->GetName(), 0); auto* i2_node = context.graph_view->GetNode("i2"); ASSERT_NE(i2_node, nullptr); ASSERT_EQ(i2_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(i2_node, 0, output_transpose_node2->GetName(), 0); } TEST_F(TransposerTest, TernaryOpTransposerTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope); auto a = ops::RandomUniform(scope.WithOpName("a"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); auto b = ops::RandomUniform(scope.WithOpName("b"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); auto beta_inc = ops::Betainc( scope.WithOpName("beta_inc").WithDevice("/device:GPU:0"), a, b, conv2d); auto z = ops::Identity(scope.WithOpName("z"), beta_inc); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); TernaryOpTransposer ternary_op_transposer; auto* bi = context.graph_view->GetNode("beta_inc"); ASSERT_NE(bi, nullptr); TF_ASSERT_OK(ternary_op_transposer.TransposeNode(&context, bi)); auto* input_transpose_node1 = context.graph_view->GetNode( "beta_inc-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "a", 0); auto* input_transpose_node2 = context.graph_view->GetNode( "beta_inc-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node2, nullptr); ASSERT_EQ(input_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node2, 0, "b", 0); auto* input_transpose_node3 = context.graph_view->GetNode( "beta_inc-2-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node3, nullptr); ASSERT_EQ(input_transpose_node3->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node3, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* bi_node = context.graph_view->GetNode("beta_inc"); ASSERT_NE(bi_node, nullptr); ASSERT_EQ(bi_node->NumRegularFanins(), 3); VerifyRegularFaninMatch(bi_node, 0, input_transpose_node1->GetName(), 0); VerifyRegularFaninMatch(bi_node, 1, input_transpose_node2->GetName(), 0); VerifyRegularFaninMatch(bi_node, 2, input_transpose_node3->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "beta_inc-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, bi_node->GetName(), 0); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, UnaryGradTransposerTestTanhGrad) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope); auto a = ops::RandomUniform(scope.WithOpName("a"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); auto tanh_grad_op = ops::internal::TanhGrad( scope.WithOpName("tanh_grad").WithDevice("/device:GPU:0"), conv2d, a); auto z = ops::Identity(scope.WithOpName("z"), tanh_grad_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); UnaryGradTransposer unary_grad_transposer; auto* tanh_grad = context.graph_view->GetNode("tanh_grad"); ASSERT_NE(tanh_grad, nullptr); TF_ASSERT_OK(unary_grad_transposer.TransposeNode(&context, tanh_grad)); auto* input_transpose_node1 = context.graph_view->GetNode( "tanh_grad-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* input_transpose_node2 = context.graph_view->GetNode( "tanh_grad-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node2, nullptr); ASSERT_EQ(input_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node2, 0, "a", 0); auto* tanh_grad_node = context.graph_view->GetNode("tanh_grad"); ASSERT_NE(tanh_grad_node, nullptr); ASSERT_EQ(tanh_grad_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(tanh_grad_node, 0, input_transpose_node1->GetName(), 0); VerifyRegularFaninMatch(tanh_grad_node, 1, input_transpose_node2->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "tanh_grad-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, tanh_grad_node->GetName(), 0); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, UnaryGradTransposerTestRelu6Grad) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto conv2d = SimpleConv2D(&scope); auto a = ops::RandomUniform(scope.WithOpName("a"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); auto relu6_grad_op = ops::internal::SigmoidGrad( scope.WithOpName("relu6_grad").WithDevice("/device:GPU:0"), conv2d, a); auto z = ops::Identity(scope.WithOpName("z"), relu6_grad_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); UnaryGradTransposer unary_grad_transposer; auto* relu6_grad = context.graph_view->GetNode("relu6_grad"); ASSERT_NE(relu6_grad, nullptr); TF_ASSERT_OK(unary_grad_transposer.TransposeNode(&context, relu6_grad)); auto* input_transpose_node1 = context.graph_view->GetNode( "relu6_grad-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* input_transpose_node2 = context.graph_view->GetNode( "relu6_grad-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node2, nullptr); ASSERT_EQ(input_transpose_node2->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node2, 0, "a", 0); auto* relu6_grad_node = context.graph_view->GetNode("relu6_grad"); ASSERT_NE(relu6_grad_node, nullptr); ASSERT_EQ(relu6_grad_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(relu6_grad_node, 0, input_transpose_node1->GetName(), 0); VerifyRegularFaninMatch(relu6_grad_node, 1, input_transpose_node2->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "relu6_grad-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); ASSERT_EQ(output_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_transpose_node, 0, relu6_grad_node->GetName(), 0); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, SqueezeTransposerTest) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {32, 1, 1, 8}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {1, 1, 8, 16}, DT_FLOAT); auto conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 1, 1, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto squeeze_op = ops::Squeeze( scope.WithOpName("squeeze").WithDevice("/device:GPU:0"), conv2d); auto z = ops::Identity(scope.WithOpName("z"), squeeze_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SqueezeTransposer squeeze_transposer; auto* squeeze = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze, nullptr); TF_ASSERT_OK(squeeze_transposer.TransposeNode(&context, squeeze)); auto* input_transpose_node1 = context.graph_view->GetNode( "squeeze-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* squeeze_node = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze_node, nullptr); ASSERT_EQ(squeeze_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(squeeze_node, 0, input_transpose_node1->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "squeeze-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, squeeze_node->GetName(), 0); } TEST_F(TransposerTest, SqueezeTransposerTestUnsupportedInputShape) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {32, 5, 5, 8}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {5, 5, 8, 16}, DT_FLOAT); auto conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 1, 1, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto squeeze_op = ops::Squeeze( scope.WithOpName("squeeze").WithDevice("/device:GPU:0"), conv2d); auto z = ops::Identity(scope.WithOpName("z"), squeeze_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SqueezeTransposer squeeze_transposer; auto* squeeze = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze, nullptr); TF_ASSERT_OK(squeeze_transposer.TransposeNode(&context, squeeze)); auto* input_transpose_node1 = context.graph_view->GetNode( "squeeze-0-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node1, nullptr); } TEST_F(TransposerTest, SqueezeTransposerTestInvalidHWAxis) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {32, 1, 1, 8}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {1, 1, 8, 16}, DT_FLOAT); auto conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 1, 1, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto squeeze_op = ops::Squeeze(scope.WithOpName("squeeze").WithDevice("/device:GPU:0"), conv2d, ops::Squeeze::Attrs().Axis({1})); auto z = ops::Identity(scope.WithOpName("z"), squeeze_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SqueezeTransposer squeeze_transposer; auto* squeeze = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze, nullptr); TF_ASSERT_OK(squeeze_transposer.TransposeNode(&context, squeeze)); auto* input_transpose_node1 = context.graph_view->GetNode( "squeeze-0-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node1, nullptr); } TEST_F(TransposerTest, SqueezeTransposerTestInvalidNHWAxis) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {32, 1, 1, 8}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {1, 1, 8, 1}, DT_FLOAT); auto conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 1, 1, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto squeeze_op = ops::Squeeze(scope.WithOpName("squeeze").WithDevice("/device:GPU:0"), conv2d, ops::Squeeze::Attrs().Axis({1, 2, 3})); auto z = ops::Identity(scope.WithOpName("z"), squeeze_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SqueezeTransposer squeeze_transposer; auto* squeeze = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze, nullptr); TF_ASSERT_OK(squeeze_transposer.TransposeNode(&context, squeeze)); auto* input_transpose_node1 = context.graph_view->GetNode( "squeeze-0-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(input_transpose_node1, nullptr); } TEST_F(TransposerTest, SqueezeTransposerTestSqueezeDimsUpdated) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {1, 1, 1, 8}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {1, 1, 8, 1}, DT_FLOAT); auto conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 1, 1, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto squeeze_op = ops::Squeeze(scope.WithOpName("squeeze").WithDevice("/device:GPU:0"), conv2d, ops::Squeeze::Attrs().Axis({1, 2})); auto z = ops::Identity(scope.WithOpName("z"), squeeze_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SqueezeTransposer squeeze_transposer; auto* squeeze = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze, nullptr); TF_ASSERT_OK(squeeze_transposer.TransposeNode(&context, squeeze)); auto* input_transpose_node1 = context.graph_view->GetNode( "squeeze-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* squeeze_node = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze_node, nullptr); ASSERT_EQ(squeeze_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(squeeze_node, 0, input_transpose_node1->GetName(), 0); const auto* squeeze_dims_attr = squeeze_node->GetAttr("squeeze_dims"); const auto& list = squeeze_dims_attr->list(); ASSERT_EQ(list.i_size(), 2); EXPECT_EQ(list.i(0), 2); EXPECT_EQ(list.i(1), 3); auto* output_transpose_node = context.graph_view->GetNode( "squeeze-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, squeeze_node->GetName(), 0); } TEST_F(TransposerTest, SqueezeTransposerTestNegativeSqueezeDimsUpdated) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {1, 1, 1, 8}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {1, 1, 8, 1}, DT_FLOAT); auto conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 1, 1, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto squeeze_op = ops::Squeeze(scope.WithOpName("squeeze").WithDevice("/device:GPU:0"), conv2d, ops::Squeeze::Attrs().Axis({-3, -2})); auto z = ops::Identity(scope.WithOpName("z"), squeeze_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SqueezeTransposer squeeze_transposer; auto* squeeze = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze, nullptr); TF_ASSERT_OK(squeeze_transposer.TransposeNode(&context, squeeze)); auto* input_transpose_node1 = context.graph_view->GetNode( "squeeze-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* squeeze_node = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze_node, nullptr); ASSERT_EQ(squeeze_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(squeeze_node, 0, input_transpose_node1->GetName(), 0); const auto* squeeze_dims_attr = squeeze_node->GetAttr("squeeze_dims"); const auto& list = squeeze_dims_attr->list(); ASSERT_EQ(list.i_size(), 2); EXPECT_EQ(list.i(0), 2); EXPECT_EQ(list.i(1), 3); auto* output_transpose_node = context.graph_view->GetNode( "squeeze-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, squeeze_node->GetName(), 0); } TEST_F(TransposerTest, SqueezeTransposerTestNCHWToNHWCSqueezeDimsUpdated) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {1, 8, 1, 1}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {1, 1, 8, 1}, DT_FLOAT); auto conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 1, 1, 1}, "SAME", ops::Conv2D::DataFormat(kDstFormat)); auto squeeze_op = ops::Squeeze(scope.WithOpName("squeeze").WithDevice("/device:GPU:0"), conv2d, ops::Squeeze::Attrs().Axis({2, 3})); auto z = ops::Identity(scope.WithOpName("z"), squeeze_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kDstFormat, kSrcFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SqueezeTransposer squeeze_transposer; auto* squeeze = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze, nullptr); TF_ASSERT_OK(squeeze_transposer.TransposeNode(&context, squeeze)); auto* input_transpose_node1 = context.graph_view->GetNode( "squeeze-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "conv2d-0-0-TransposeNHWCToNCHW-LayoutOptimizer", 0); auto* squeeze_node = context.graph_view->GetNode("squeeze"); ASSERT_NE(squeeze_node, nullptr); ASSERT_EQ(squeeze_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(squeeze_node, 0, input_transpose_node1->GetName(), 0); const auto* squeeze_dims_attr = squeeze_node->GetAttr("squeeze_dims"); const auto& list = squeeze_dims_attr->list(); ASSERT_EQ(list.i_size(), 2); EXPECT_EQ(list.i(0), 1); EXPECT_EQ(list.i(1), 2); auto* output_transpose_node = context.graph_view->GetNode( "squeeze-0-0-TransposeNHWCToNCHW-LayoutOptimizer"); EXPECT_EQ(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, squeeze_node->GetName(), 0); } TEST_F(TransposerTest, MaxPoolV2Transposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kWidth, kHeight, kDepthIn}, DT_FLOAT); auto ksize = ops::Const(scope.WithOpName("ksize"), {1, kKernel, kKernel, 1}); auto strides = ops::Const(scope.WithOpName("strides"), {1, kKernel, kKernel, 1}); auto maxpool_op = ops::MaxPoolV2(scope.WithOpName("maxpoolv2").WithDevice("/device:GPU:0"), input, ksize, strides, "VALID"); auto z = ops::Identity(scope.WithOpName("z"), maxpool_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); MaxPoolV2Transposer maxpool_transposer; auto* maxpool = context.graph_view->GetNode("maxpoolv2"); ASSERT_NE(maxpool, nullptr); TF_ASSERT_OK(maxpool_transposer.TransposeNode(&context, maxpool)); auto* input_transpose_node1 = context.graph_view->GetNode( "maxpoolv2-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); auto* input_transpose_node2 = context.graph_view->GetNode( "maxpoolv2-1-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node2, nullptr); auto* input_transpose_node3 = context.graph_view->GetNode( "maxpoolv2-2-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node3, nullptr); auto* updated_maxpool = context.graph_view->GetNode("maxpoolv2"); ASSERT_NE(updated_maxpool, nullptr); ASSERT_EQ(updated_maxpool->NumRegularFanins(), 3); VerifyRegularFaninMatch(updated_maxpool, 0, input_transpose_node1->GetName(), 0); VerifyRegularFaninMatch(updated_maxpool, 1, input_transpose_node2->GetName(), 0); VerifyRegularFaninMatch(updated_maxpool, 2, input_transpose_node3->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "maxpoolv2-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, MaxPoolGradV2Transposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif for (bool use_grad_grad : {false, true}) { GrapplerItem item; Scope scope = Scope::NewRootScope(); auto orig_input = ops::RandomUniform(scope.WithOpName("orig_input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto orig_output = ops::RandomUniform(scope.WithOpName("orig_output"), {kBatchSize, use_grad_grad ? kOutHeight : kHeight, use_grad_grad ? kOutWidth : kWidth, kDepthIn}, DT_FLOAT); auto grad = ops::RandomUniform(scope.WithOpName("grad_input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto ksize = ops::Const(scope.WithOpName("ksize"), {1, kKernel, kKernel, 1}); auto strides = ops::Const(scope.WithOpName("strides"), {1, kKernel, kKernel, 1}); Output maxpoolgrad_op; if (use_grad_grad) { maxpoolgrad_op = ops::MaxPoolGradGradV2( scope.WithOpName("maxpoolgradv2").WithDevice("/device:GPU:0"), orig_input, orig_output, grad, ksize, strides, "VALID"); } else { maxpoolgrad_op = ops::MaxPoolGradV2( scope.WithOpName("maxpoolgradv2").WithDevice("/device:GPU:0"), orig_input, orig_output, grad, ksize, strides, "VALID"); } auto z = ops::Identity(scope.WithOpName("z"), maxpoolgrad_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); MaxPoolGradV2Transposer maxpoolgrad_transposer; auto* maxpoolgrad = context.graph_view->GetNode("maxpoolgradv2"); ASSERT_NE(maxpoolgrad, nullptr); TF_ASSERT_OK(maxpoolgrad_transposer.TransposeNode(&context, maxpoolgrad)); auto* orig_input_transpose_node = context.graph_view->GetNode( "maxpoolgradv2-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(orig_input_transpose_node, nullptr); auto* orig_output_transpose_node = context.graph_view->GetNode( "maxpoolgradv2-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(orig_output_transpose_node, nullptr); auto* grad_input_transpose_node = context.graph_view->GetNode( "maxpoolgradv2-2-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(grad_input_transpose_node, nullptr); auto* size_node = context.graph_view->GetNode( "maxpoolgradv2-3-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(size_node, nullptr); auto* stride_node = context.graph_view->GetNode( "maxpoolgradv2-4-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(stride_node, nullptr); auto* updated_maxpoolgrad = context.graph_view->GetNode("maxpoolgradv2"); ASSERT_NE(updated_maxpoolgrad, nullptr); ASSERT_EQ(updated_maxpoolgrad->NumRegularFanins(), 5); VerifyRegularFaninMatch(updated_maxpoolgrad, 0, orig_input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(updated_maxpoolgrad, 1, orig_output_transpose_node->GetName(), 0); VerifyRegularFaninMatch(updated_maxpoolgrad, 2, grad_input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(updated_maxpoolgrad, 3, size_node->GetName(), 0); VerifyRegularFaninMatch(updated_maxpoolgrad, 4, stride_node->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "maxpoolgradv2-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } } TEST_F(TransposerTest, BinaryOpTransposerAdd) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); auto conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto a = ops::RandomUniform(scope.WithOpName("a"), {1}, DT_FLOAT); auto add = ops::Add(scope.WithOpName("Add").WithDevice("/device:GPU:0"), a, conv2d); auto z = ops::Identity(scope.WithOpName("z"), add); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); auto* addop = context.graph_view->GetNode("Add"); ASSERT_NE(addop, nullptr); BinaryOpTransposer binaryop_transposer; TF_ASSERT_OK(binaryop_transposer.TransposeNode(&context, addop)); auto* input_const_node = context.graph_view->GetNode("Add-0-ReshapeConst-LayoutOptimizer"); ASSERT_NE(input_const_node, nullptr); EXPECT_EQ(input_const_node->NumRegularFanins(), 0); auto* input_reshape_node = context.graph_view->GetNode("Add-0-ReshapeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_reshape_node, nullptr); ASSERT_EQ(input_reshape_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_reshape_node, 0, "a", 0); VerifyRegularFaninMatch(input_reshape_node, 1, input_const_node->GetName(), 0); auto* input_transpose_node = context.graph_view->GetNode("Add-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* updated_add = context.graph_view->GetNode("Add"); ASSERT_NE(updated_add, nullptr); ASSERT_EQ(updated_add->NumRegularFanins(), 2); VerifyRegularFaninMatch(updated_add, 0, input_reshape_node->GetName(), 0); VerifyRegularFaninMatch(updated_add, 1, input_transpose_node->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "Add-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, BinaryOpTransposerMul) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); auto conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto a = ops::RandomUniform(scope.WithOpName("a"), {1}, DT_FLOAT); auto mul = ops::Mul(scope.WithOpName("Mul").WithDevice("/device:GPU:0"), conv2d, a); auto z = ops::Identity(scope.WithOpName("z"), mul); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); auto* mulop = context.graph_view->GetNode("Mul"); ASSERT_NE(mulop, nullptr); BinaryOpTransposer binaryop_transposer; TF_ASSERT_OK(binaryop_transposer.TransposeNode(&context, mulop)); auto* input_const_node = context.graph_view->GetNode("Mul-1-ReshapeConst-LayoutOptimizer"); ASSERT_NE(input_const_node, nullptr); EXPECT_EQ(input_const_node->NumRegularFanins(), 0); auto* input_reshape_node = context.graph_view->GetNode("Mul-1-ReshapeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_reshape_node, nullptr); ASSERT_EQ(input_reshape_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_reshape_node, 0, "a", 0); VerifyRegularFaninMatch(input_reshape_node, 1, input_const_node->GetName(), 0); auto* input_transpose_node = context.graph_view->GetNode("Mul-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* updated_mul = context.graph_view->GetNode("Mul"); ASSERT_NE(updated_mul, nullptr); ASSERT_EQ(updated_mul->NumRegularFanins(), 2); VerifyRegularFaninMatch(updated_mul, 1, input_reshape_node->GetName(), 0); VerifyRegularFaninMatch(updated_mul, 0, input_transpose_node->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "Mul-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, BinaryOpTransposerPolygamma) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); auto conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto a = ops::RandomUniform(scope.WithOpName("a"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); auto polygamma = ops::Polygamma( scope.WithOpName("polygamma").WithDevice("/device:GPU:0"), conv2d, a); auto z = ops::Identity(scope.WithOpName("z"), polygamma); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); BinaryOpTransposer binaryop_transposer; auto* polygamma_op = context.graph_view->GetNode("polygamma"); ASSERT_NE(polygamma_op, nullptr); TF_ASSERT_OK(binaryop_transposer.TransposeNode(&context, polygamma_op)); auto* input_transpose_node1 = context.graph_view->GetNode( "polygamma-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node1, nullptr); ASSERT_EQ(input_transpose_node1->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node1, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* updated_polygamma = context.graph_view->GetNode("polygamma"); ASSERT_NE(updated_polygamma, nullptr); ASSERT_EQ(updated_polygamma->NumRegularFanins(), 2); VerifyRegularFaninMatch(updated_polygamma, 0, input_transpose_node1->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "polygamma-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } bool CreateConcatV1Op(const Scope& scope, const InputList& tensors, const Input& concat_axis, Output* output) { if (!scope.ok()) { return false; } auto values = ops::AsNodeOutList(scope, tensors); if (!scope.ok()) { return false; } auto axis = ops::AsNodeOut(scope, concat_axis); if (!scope.ok()) { return false; } Node* ret; const auto unique_name = scope.GetUniqueNameForOp("Concat"); auto builder = NodeBuilder(unique_name, "Concat").Input(axis).Input(values); scope.UpdateBuilder(&builder); scope.UpdateStatus(builder.Finalize(scope.graph(), &ret)); if (!scope.ok()) { return false; } scope.UpdateStatus(scope.DoShapeInference(ret)); *output = Output(ret, 0); return true; } TEST_F(TransposerTest, ConcatOpTransposerConcat) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); Output input_1 = ops::RandomUniform(scope.WithOpName("input_1"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); Output input_2 = ops::RandomUniform(scope.WithOpName("input_2"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto axis = ops::Const(scope.WithOpName("axis"), 2, {}); Output concat_op; ASSERT_TRUE( CreateConcatV1Op(scope.WithOpName("concat").WithDevice("/device:GPU:0"), {input_1, input_2, conv2d}, axis, &concat_op)); auto z = ops::Identity(scope.WithOpName("z"), concat_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); ConcatOpTransposer concat_transposer; auto* concat = context.graph_view->GetNode("concat"); ASSERT_NE(concat, nullptr); TF_ASSERT_OK(concat_transposer.TransposeNode(&context, concat)); auto* conv2d_transpose_node = context.graph_view->GetNode( "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(conv2d_transpose_node, nullptr); auto* conv2d_concat_input_node = context.graph_view->GetNode( "concat-3-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(conv2d_concat_input_node, nullptr); ASSERT_EQ(conv2d_concat_input_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(conv2d_concat_input_node, 0, conv2d_transpose_node->GetName(), 0); auto* axis_dim_node = context.graph_view->GetNode( "concat-0-DataFormatDimMapNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(axis_dim_node, nullptr); auto* updated_concat = context.graph_view->GetNode("concat"); ASSERT_NE(updated_concat, nullptr); ASSERT_EQ(updated_concat->NumRegularFanins(), 4); VerifyRegularFaninMatch(updated_concat, 0, axis_dim_node->GetName(), 0); VerifyRegularFaninMatch(updated_concat, 1, "concat-1-TransposeNHWCToNCHW-LayoutOptimizer", 0); VerifyRegularFaninMatch(updated_concat, 2, "concat-2-TransposeNHWCToNCHW-LayoutOptimizer", 0); VerifyRegularFaninMatch(updated_concat, 3, conv2d_concat_input_node->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "concat-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, ConcatOpTransposerConcatV2) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); Output input_1 = ops::RandomUniform(scope.WithOpName("input_1"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); Output input_2 = ops::RandomUniform(scope.WithOpName("input_2"), {kBatchSize, 5, 3, kDepthOut}, DT_FLOAT); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto axis = ops::Const(scope.WithOpName("axis"), 2, {}); auto concat_op = ops::Concat(scope.WithOpName("concat").WithDevice("/device:GPU:0"), {input_1, input_2, conv2d}, axis); auto z = ops::Identity(scope.WithOpName("z"), concat_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); ConcatOpTransposer concat_transposer; auto* concat = context.graph_view->GetNode("concat"); ASSERT_NE(concat, nullptr); TF_ASSERT_OK(concat_transposer.TransposeNode(&context, concat)); auto* conv2d_transpose_node = context.graph_view->GetNode( "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(conv2d_transpose_node, nullptr); auto* conv2d_concat_input_node = context.graph_view->GetNode( "concat-2-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(conv2d_concat_input_node, nullptr); ASSERT_EQ(conv2d_concat_input_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(conv2d_concat_input_node, 0, conv2d_transpose_node->GetName(), 0); auto* axis_dim_node = context.graph_view->GetNode( "concat-3-DataFormatDimMapNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(axis_dim_node, nullptr); auto* updated_concat = context.graph_view->GetNode("concat"); ASSERT_NE(updated_concat, nullptr); ASSERT_EQ(updated_concat->NumRegularFanins(), 4); VerifyRegularFaninMatch(updated_concat, 0, "concat-0-TransposeNHWCToNCHW-LayoutOptimizer", 0); VerifyRegularFaninMatch(updated_concat, 1, "concat-1-TransposeNHWCToNCHW-LayoutOptimizer", 0); VerifyRegularFaninMatch(updated_concat, 2, conv2d_concat_input_node->GetName(), 0); VerifyRegularFaninMatch(updated_concat, 3, axis_dim_node->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "concat-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, ReverseV2Transposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto axis = ops::Const(scope.WithOpName("axis"), {0, 3}, {2}); auto reverse_op = ops::Reverse( scope.WithOpName("reverse_v2").WithDevice("/device:GPU:0"), conv2d, axis); auto z = ops::Identity(scope.WithOpName("z"), reverse_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); ReverseV2Transposer reverse_v2_transposer; auto* reverse_v2 = context.graph_view->GetNode("reverse_v2"); ASSERT_NE(reverse_v2, nullptr); TF_ASSERT_OK(reverse_v2_transposer.TransposeNode(&context, reverse_v2)); auto* input_transpose_node = context.graph_view->GetNode( "reverse_v2-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* axis_node = context.graph_view->GetNode( "reverse_v2-1-DataFormatDimMapNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(axis_node, nullptr); ASSERT_EQ(axis_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(axis_node, 0, "axis", 0); auto* updated_reverse_v2 = context.graph_view->GetNode("reverse_v2"); ASSERT_NE(updated_reverse_v2, nullptr); ASSERT_EQ(updated_reverse_v2->NumRegularFanins(), 2); VerifyRegularFaninMatch(updated_reverse_v2, 0, input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(updated_reverse_v2, 1, axis_node->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "reverse_v2-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, TileTransposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto multiple = ops::Const(scope.WithOpName("multiple"), {1, 1, 2, 3}, {4}); auto tile_op = ops::Tile(scope.WithOpName("tile").WithDevice("/device:GPU:0"), conv2d, multiple); auto z = ops::Identity(scope.WithOpName("z"), tile_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); TileTransposer tile_transposer; auto* tile = context.graph_view->GetNode("tile"); ASSERT_NE(tile, nullptr); TF_ASSERT_OK(tile_transposer.TransposeNode(&context, tile)); auto* input_transpose_node = context.graph_view->GetNode("tile-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* multiple_node = context.graph_view->GetNode( "tile-1-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(multiple_node, nullptr); ASSERT_EQ(multiple_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(multiple_node, 0, "multiple", 0); auto* updated_tile = context.graph_view->GetNode("tile"); ASSERT_NE(updated_tile, nullptr); ASSERT_EQ(updated_tile->NumRegularFanins(), 2); VerifyRegularFaninMatch(updated_tile, 0, input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(updated_tile, 1, multiple_node->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "tile-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, ShapeTransposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto shape = ops::Shape(scope.WithOpName("shape").WithDevice("/device:GPU:0"), conv2d); auto z = ops::Identity(scope.WithOpName("z"), shape); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); ShapeTransposer shape_transposer; auto* shape_node = context.graph_view->GetNode("shape"); ASSERT_NE(shape_node, nullptr); TF_ASSERT_OK(shape_transposer.TransposeNode(&context, shape_node)); auto* conv2d_transpose_node = context.graph_view->GetNode( "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(conv2d_transpose_node, nullptr); auto* shape_input_node = context.graph_view->GetNode( "shape-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(shape_input_node, nullptr); ASSERT_EQ(shape_input_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(shape_input_node, 0, conv2d_transpose_node->GetName(), 0); auto* output_vec_perm_node = context.graph_view->GetNode( "shape-0-0-DataFormatVecPermuteNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_vec_perm_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_vec_perm_node->GetName(), 0); } TEST_F(TransposerTest, ShapeNTransposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d_1 = ops::Conv2D( scope.WithOpName("conv2d_1").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); Output conv2d_2 = ops::Conv2D( scope.WithOpName("conv2d_2").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); Output conv2d_3 = ops::Conv2D( scope.WithOpName("conv2d_3").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto shape = ops::ShapeN(scope.WithOpName("shape").WithDevice("/device:GPU:0"), {conv2d_1, conv2d_2, conv2d_3}); auto z_1 = ops::Identity(scope.WithOpName("z_1"), shape.output[0]); auto z_2 = ops::Identity(scope.WithOpName("z_2"), shape.output[1]); auto z_3 = ops::Identity(scope.WithOpName("z_3"), shape.output[2]); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d_1 = context.graph_view->GetNode("conv2d_1"); ASSERT_NE(c2d_1, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d_1)); auto* c2d_2 = context.graph_view->GetNode("conv2d_2"); ASSERT_NE(c2d_2, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d_2)); ShapeNTransposer shape_transposer; auto* shape_node = context.graph_view->GetNode("shape"); ASSERT_NE(shape_node, nullptr); TF_ASSERT_OK(shape_transposer.TransposeNode(&context, shape_node)); auto* conv2d_1_transpose_node = context.graph_view->GetNode( "conv2d_1-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(conv2d_1_transpose_node, nullptr); auto* conv2d_2_transpose_node = context.graph_view->GetNode( "conv2d_2-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(conv2d_2_transpose_node, nullptr); auto* shape_input_1_node = context.graph_view->GetNode( "shape-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(shape_input_1_node, nullptr); ASSERT_EQ(shape_input_1_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(shape_input_1_node, 0, conv2d_1_transpose_node->GetName(), 0); auto* shape_input_2_node = context.graph_view->GetNode( "shape-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(shape_input_2_node, nullptr); ASSERT_EQ(shape_input_2_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(shape_input_2_node, 0, conv2d_2_transpose_node->GetName(), 0); auto* updated_shape_node = context.graph_view->GetNode("shape"); ASSERT_NE(updated_shape_node, nullptr); ASSERT_EQ(updated_shape_node->NumRegularFanins(), 3); VerifyRegularFaninMatch(updated_shape_node, 0, shape_input_1_node->GetName(), 0); VerifyRegularFaninMatch(updated_shape_node, 1, shape_input_2_node->GetName(), 0); VerifyRegularFaninMatch(updated_shape_node, 2, "conv2d_3", 0); auto* output_vec_perm_node_1 = context.graph_view->GetNode( "shape-0-0-DataFormatVecPermuteNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_vec_perm_node_1, nullptr); auto* output_vec_perm_node_2 = context.graph_view->GetNode( "shape-1-0-DataFormatVecPermuteNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_vec_perm_node_2, nullptr); auto* z_output_node_1 = context.graph_view->GetNode("z_1"); ASSERT_NE(z_output_node_1, nullptr); ASSERT_EQ(z_output_node_1->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node_1, 0, output_vec_perm_node_1->GetName(), 0); auto* z_output_node_2 = context.graph_view->GetNode("z_2"); ASSERT_NE(z_output_node_2, nullptr); ASSERT_EQ(z_output_node_2->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node_2, 0, output_vec_perm_node_2->GetName(), 0); auto* z_output_node_3 = context.graph_view->GetNode("z_3"); ASSERT_NE(z_output_node_3, nullptr); ASSERT_EQ(z_output_node_3->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node_3, 0, updated_shape_node->GetName(), 2); } TEST_F(TransposerTest, FillOpTransposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto shape = ops::Shape(scope.WithOpName("conv2d"), conv2d); auto value = ops::Const(scope.WithOpName("value"), 0, {}); auto fill = ops::Fill(scope.WithOpName("fill").WithDevice("/device:GPU:0"), shape, value); auto z = ops::Identity(scope.WithOpName("z"), fill); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); FillOpTransposer fill_op_transposer; auto* fill_node = context.graph_view->GetNode("fill"); ASSERT_NE(fill_node, nullptr); TF_ASSERT_OK(fill_op_transposer.TransposeNode(&context, fill_node)); auto* input_node = context.graph_view->GetNode( "fill-0-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_node, nullptr); auto* updated_fill_node = context.graph_view->GetNode("fill"); ASSERT_NE(updated_fill_node, nullptr); ASSERT_EQ(updated_fill_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(updated_fill_node, 0, input_node->GetName(), 0); VerifyRegularFaninMatch(updated_fill_node, 1, "value", 0); auto* output_node = context.graph_view->GetNode( "fill-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_node, nullptr); ASSERT_EQ(output_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(output_node, 0, updated_fill_node->GetName(), 0); auto* z_node = context.graph_view->GetNode("z"); ASSERT_NE(z_node, nullptr); ASSERT_EQ(z_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_node, 0, output_node->GetName(), 0); } TEST_F(TransposerTest, SliceTransposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto begin = ops::Const(scope.WithOpName("begin"), {0, 0, 2, 1}, {4}); auto size = ops::Const(scope.WithOpName("size"), {1, 1, 2, 3}, {4}); auto slice_op = ops::Slice(scope.WithOpName("slice").WithDevice("/device:GPU:0"), conv2d, begin, size); auto z = ops::Identity(scope.WithOpName("z"), slice_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SliceTransposer slice_transposer; auto* slice = context.graph_view->GetNode("slice"); ASSERT_NE(slice, nullptr); TF_ASSERT_OK(slice_transposer.TransposeNode(&context, slice)); auto* input_transpose_node = context.graph_view->GetNode( "slice-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* begin_node = context.graph_view->GetNode( "slice-1-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(begin_node, nullptr); ASSERT_EQ(begin_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(begin_node, 0, "begin", 0); auto* size_node = context.graph_view->GetNode( "slice-2-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(size_node, nullptr); ASSERT_EQ(size_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(size_node, 0, "size", 0); auto* updated_slice_node = context.graph_view->GetNode("slice"); ASSERT_NE(updated_slice_node, nullptr); ASSERT_EQ(updated_slice_node->NumRegularFanins(), 3); VerifyRegularFaninMatch(updated_slice_node, 0, input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(updated_slice_node, 1, begin_node->GetName(), 0); VerifyRegularFaninMatch(updated_slice_node, 2, size_node->GetName(), 0); auto* output_transpose_node = context.graph_view->GetNode( "slice-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, SplitTransposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto axis = ops::Const(scope.WithOpName("axis"), 2, {}); auto split_op = ops::Split( scope.WithOpName("split").WithDevice("/device:GPU:0"), axis, conv2d, 3); auto z_1 = ops::Identity(scope.WithOpName("z_1"), split_op.output[0]); auto z_2 = ops::Identity(scope.WithOpName("z_2"), split_op.output[1]); auto z_3 = ops::Identity(scope.WithOpName("z_3"), split_op.output[2]); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SplitTransposer split_transposer; auto* split = context.graph_view->GetNode("split"); ASSERT_NE(split, nullptr); TF_ASSERT_OK(split_transposer.TransposeNode(&context, split)); auto* input_transpose_node = context.graph_view->GetNode( "split-1-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* axis_node = context.graph_view->GetNode( "split-0-DataFormatDimMapNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(axis_node, nullptr); ASSERT_EQ(axis_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(axis_node, 0, "axis", 0); auto* updated_split_node = context.graph_view->GetNode("split"); ASSERT_NE(updated_split_node, nullptr); ASSERT_EQ(updated_split_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(updated_split_node, 0, axis_node->GetName(), 0); VerifyRegularFaninMatch(updated_split_node, 1, input_transpose_node->GetName(), 0); auto* output_transpose_node_1 = context.graph_view->GetNode( "split-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node_1, nullptr); auto* output_transpose_node_2 = context.graph_view->GetNode( "split-1-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node_2, nullptr); auto* output_transpose_node_3 = context.graph_view->GetNode( "split-2-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node_3, nullptr); auto* z_output_node_1 = context.graph_view->GetNode("z_1"); ASSERT_NE(z_output_node_1, nullptr); ASSERT_EQ(z_output_node_1->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node_1, 0, output_transpose_node_1->GetName(), 0); auto* z_output_node_2 = context.graph_view->GetNode("z_2"); ASSERT_NE(z_output_node_2, nullptr); ASSERT_EQ(z_output_node_2->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node_2, 0, output_transpose_node_2->GetName(), 0); auto* z_output_node_3 = context.graph_view->GetNode("z_3"); ASSERT_NE(z_output_node_3, nullptr); ASSERT_EQ(z_output_node_3->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node_3, 0, output_transpose_node_3->GetName(), 0); } TEST_F(TransposerTest, SplitVTransposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto axis = ops::Const(scope.WithOpName("axis"), 1, {}); auto size_splits = ops::Const(scope.WithOpName("size_splits"), {2, 2, 1}, {3}); auto splitv_op = ops::SplitV(scope.WithOpName("splitv").WithDevice("/device:GPU:0"), conv2d, size_splits, axis, 3); auto z_1 = ops::Identity(scope.WithOpName("z_1"), splitv_op.output[0]); auto z_2 = ops::Identity(scope.WithOpName("z_2"), splitv_op.output[1]); auto z_3 = ops::Identity(scope.WithOpName("z_3"), splitv_op.output[2]); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); SplitVTransposer splitv_transposer; auto* splitv = context.graph_view->GetNode("splitv"); ASSERT_NE(splitv, nullptr); TF_ASSERT_OK(splitv_transposer.TransposeNode(&context, splitv)); auto* input_transpose_node = context.graph_view->GetNode( "splitv-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* axis_node = context.graph_view->GetNode( "splitv-2-DataFormatDimMapNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(axis_node, nullptr); ASSERT_EQ(axis_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(axis_node, 0, "axis", 0); auto* updated_splitv_node = context.graph_view->GetNode("splitv"); ASSERT_NE(updated_splitv_node, nullptr); ASSERT_EQ(updated_splitv_node->NumRegularFanins(), 3); VerifyRegularFaninMatch(updated_splitv_node, 0, input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(updated_splitv_node, 1, "size_splits", 0); VerifyRegularFaninMatch(updated_splitv_node, 2, axis_node->GetName(), 0); auto* output_transpose_node_1 = context.graph_view->GetNode( "splitv-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node_1, nullptr); auto* output_transpose_node_2 = context.graph_view->GetNode( "splitv-1-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node_2, nullptr); auto* output_transpose_node_3 = context.graph_view->GetNode( "splitv-2-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node_3, nullptr); auto* z_output_node_1 = context.graph_view->GetNode("z_1"); ASSERT_NE(z_output_node_1, nullptr); ASSERT_EQ(z_output_node_1->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node_1, 0, output_transpose_node_1->GetName(), 0); auto* z_output_node_2 = context.graph_view->GetNode("z_2"); ASSERT_NE(z_output_node_2, nullptr); ASSERT_EQ(z_output_node_2->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node_2, 0, output_transpose_node_2->GetName(), 0); auto* z_output_node_3 = context.graph_view->GetNode("z_3"); ASSERT_NE(z_output_node_3, nullptr); ASSERT_EQ(z_output_node_3->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node_3, 0, output_transpose_node_3->GetName(), 0); } TEST_F(TransposerTest, StridedSliceTransposer) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto attrs = ops::StridedSlice::Attrs().BeginMask(0xB).EndMask(0x7); auto begin = ops::Const(scope.WithOpName("begin"), {2, 0, 2, 1}, {4}); auto end = ops::Const(scope.WithOpName("end"), {34, 4, 3, 1}, {4}); auto strides = ops::Const(scope.WithOpName("strides"), {7, 2, 1, 1}, {4}); auto strided_slice_op = ops::StridedSlice( scope.WithOpName("stridedslice").WithDevice("/device:GPU:0"), conv2d, begin, end, strides, attrs); auto z = ops::Identity(scope.WithOpName("z"), strided_slice_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); StridedSliceTransposer stridedslice_transposer; auto* stridedslice = context.graph_view->GetNode("stridedslice"); ASSERT_NE(stridedslice, nullptr); TF_ASSERT_OK(stridedslice_transposer.TransposeNode(&context, stridedslice)); auto* input_transpose_node = context.graph_view->GetNode( "stridedslice-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(input_transpose_node, nullptr); ASSERT_EQ(input_transpose_node->NumRegularFanins(), 2); VerifyRegularFaninMatch(input_transpose_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); auto* begin_node = context.graph_view->GetNode( "stridedslice-1-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(begin_node, nullptr); auto* end_node = context.graph_view->GetNode( "stridedslice-2-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(end_node, nullptr); auto* strides_node = context.graph_view->GetNode( "stridedslice-3-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_NE(strides_node, nullptr); auto* updated_stridedslice_node = context.graph_view->GetNode("stridedslice"); ASSERT_NE(updated_stridedslice_node, nullptr); ASSERT_EQ(updated_stridedslice_node->NumRegularFanins(), 4); VerifyRegularFaninMatch(updated_stridedslice_node, 0, input_transpose_node->GetName(), 0); VerifyRegularFaninMatch(updated_stridedslice_node, 1, begin_node->GetName(), 0); VerifyRegularFaninMatch(updated_stridedslice_node, 2, end_node->GetName(), 0); VerifyRegularFaninMatch(updated_stridedslice_node, 3, strides_node->GetName(), 0); const auto* begin_mask_attr = updated_stridedslice_node->GetAttr("begin_mask"); ASSERT_NE(begin_mask_attr, nullptr); EXPECT_EQ(begin_mask_attr->i(), 0x7); const auto* end_mask_attr = updated_stridedslice_node->GetAttr("end_mask"); ASSERT_NE(end_mask_attr, nullptr); EXPECT_EQ(end_mask_attr->i(), 0xD); auto* output_transpose_node = context.graph_view->GetNode( "stridedslice-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_NE(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, output_transpose_node->GetName(), 0); } TEST_F(TransposerTest, StridedSliceTransposerEllipsisMaskPresent) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto attrs = ops::StridedSlice::Attrs().BeginMask(0xB).EndMask(0x7).EllipsisMask(0x2); auto begin = ops::Const(scope.WithOpName("begin"), {2, 0, 2, 1}, {4}); auto end = ops::Const(scope.WithOpName("end"), {34, 4, 3, 1}, {4}); auto strides = ops::Const(scope.WithOpName("strides"), {7, 2, 1, 1}, {4}); auto strided_slice_op = ops::StridedSlice( scope.WithOpName("stridedslice").WithDevice("/device:GPU:0"), conv2d, begin, end, strides, attrs); auto z = ops::Identity(scope.WithOpName("z"), strided_slice_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); StridedSliceTransposer stridedslice_transposer; auto* stridedslice = context.graph_view->GetNode("stridedslice"); ASSERT_NE(stridedslice, nullptr); TF_ASSERT_OK(stridedslice_transposer.TransposeNode(&context, stridedslice)); auto* updated_stridedslice_node = context.graph_view->GetNode("stridedslice"); ASSERT_NE(updated_stridedslice_node, nullptr); ASSERT_EQ(updated_stridedslice_node->NumRegularFanins(), 4); VerifyRegularFaninMatch(updated_stridedslice_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); VerifyRegularFaninMatch(updated_stridedslice_node, 1, "begin", 0); VerifyRegularFaninMatch(updated_stridedslice_node, 2, "end", 0); VerifyRegularFaninMatch(updated_stridedslice_node, 3, "strides", 0); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, updated_stridedslice_node->GetName(), 0); } TEST_F(TransposerTest, StridedSliceTransposerConstFaninBadRank) { #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) GTEST_SKIP() << "Neither CUDA nor ROCm is enabled"; #endif GrapplerItem item; Scope scope = Scope::NewRootScope(); auto input = ops::RandomUniform(scope.WithOpName("input"), {kBatchSize, kHeight, kWidth, kDepthIn}, DT_FLOAT); auto filter = ops::RandomUniform(scope.WithOpName("filter"), {kHeight, kWidth, kDepthIn, kDepthOut}, DT_FLOAT); Output conv2d = ops::Conv2D( scope.WithOpName("conv2d").WithDevice("/device:GPU:0"), input, filter, {1, 2, 4, 1}, "SAME", ops::Conv2D::DataFormat(kSrcFormat)); auto attrs = ops::StridedSlice::Attrs().BeginMask(0xB).EndMask(0x7); auto begin = ops::Const(scope.WithOpName("begin"), {2, 0, 2}, {3}); auto end = ops::Const(scope.WithOpName("end"), {34, 4, 3}, {3}); auto strides = ops::Const(scope.WithOpName("strides"), {7, 2, 1}, {3}); auto strided_slice_op = ops::StridedSlice( scope.WithOpName("stridedslice").WithDevice("/device:GPU:0"), conv2d, begin, end, strides, attrs); auto z = ops::Identity(scope.WithOpName("z"), strided_slice_op); TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); TransposeContext context; TF_ASSERT_OK(TransposeContext::InitializeTransposeContext( item, virtual_cluster_.get(), &context)); context.AssignDeviceAndDataFormats(kGPU, kSrcFormat, kDstFormat); DefaultLayoutSensitiveOpTransposer conv2d_transposer; auto* c2d = context.graph_view->GetNode("conv2d"); ASSERT_NE(c2d, nullptr); TF_ASSERT_OK(conv2d_transposer.TransposeNode(&context, c2d)); StridedSliceTransposer stridedslice_transposer; auto* stridedslice = context.graph_view->GetNode("stridedslice"); ASSERT_NE(stridedslice, nullptr); TF_ASSERT_OK(stridedslice_transposer.TransposeNode(&context, stridedslice)); auto* input_transpose_node = context.graph_view->GetNode( "stridedslice-0-TransposeNHWCToNCHW-LayoutOptimizer"); ASSERT_EQ(input_transpose_node, nullptr); auto* begin_node = context.graph_view->GetNode( "stridedslice-1-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_EQ(begin_node, nullptr); auto* end_node = context.graph_view->GetNode( "stridedslice-2-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_EQ(end_node, nullptr); auto* strides_node = context.graph_view->GetNode( "stridedslice-3-DataFormatVecPermuteNHWCToNCHW-LayoutOptimizer"); ASSERT_EQ(strides_node, nullptr); auto* updated_stridedslice_node = context.graph_view->GetNode("stridedslice"); ASSERT_NE(updated_stridedslice_node, nullptr); ASSERT_EQ(updated_stridedslice_node->NumRegularFanins(), 4); VerifyRegularFaninMatch(updated_stridedslice_node, 0, "conv2d-0-0-TransposeNCHWToNHWC-LayoutOptimizer", 0); VerifyRegularFaninMatch(updated_stridedslice_node, 1, "begin", 0); VerifyRegularFaninMatch(updated_stridedslice_node, 2, "end", 0); VerifyRegularFaninMatch(updated_stridedslice_node, 3, "strides", 0); const auto* begin_mask_attr = updated_stridedslice_node->GetAttr("begin_mask"); ASSERT_NE(begin_mask_attr, nullptr); EXPECT_EQ(begin_mask_attr->i(), 0xB); const auto* end_mask_attr = updated_stridedslice_node->GetAttr("end_mask"); ASSERT_NE(end_mask_attr, nullptr); EXPECT_EQ(end_mask_attr->i(), 0x7); auto* output_transpose_node = context.graph_view->GetNode( "stridedslice-0-0-TransposeNCHWToNHWC-LayoutOptimizer"); ASSERT_EQ(output_transpose_node, nullptr); auto* z_output_node = context.graph_view->GetNode("z"); ASSERT_NE(z_output_node, nullptr); ASSERT_EQ(z_output_node->NumRegularFanins(), 1); VerifyRegularFaninMatch(z_output_node, 0, updated_stridedslice_node->GetName(), 0); } TEST_F(TransposerTest, ReduceTransposerKeepDims) { ReduceTransposerKeepDims<int32>(); ReduceTransposerKeepDims<int64_t>(); } TEST_F(TransposerTest, ReduceTransposerValidAxisNode) { ReduceTransposerValidAxisNode<int32>(); ReduceTransposerValidAxisNode<int64_t>(); } TEST(PermutationTest, PermutesVector) { std::vector<int64_t> input{32, 16, 8, 4}; std::vector<int64_t> expected{4, 8, 16, 32}; TF_ASSERT_OK(PermuteSingle("test", {3, 2, 1, 0}, &input)); ASSERT_EQ(input.size(), 4); for (int i = 0; i < input.size(); ++i) { EXPECT_EQ(input[i], expected[i]); } } TEST(PermutationTest, PermutesRepeatedField) { TensorShapeProto input_shape = MakeTensorShapeFromDimensions({1, 2, 3, 4}); TensorShapeProto expected_shape = MakeTensorShapeFromDimensions({1, 4, 2, 3}); TF_ASSERT_OK(PermuteSingle("test", {0, 3, 1, 2}, input_shape.mutable_dim())); EXPECT_EQ(input_shape.DebugString(), expected_shape.DebugString()); } TEST(PermutationTest, PermutesDoubleRepeatedField) { { TensorShapeProto input = MakeTensorShapeFromDimensions({1, 2, 3, 4, 5, 6, 7, 8}); TensorShapeProto expected = MakeTensorShapeFromDimensions({1, 2, 7, 8, 3, 4, 5, 6}); TF_ASSERT_OK(PermuteDouble("test", {0, 3, 1, 2}, input.mutable_dim())); EXPECT_EQ(input.DebugString(), expected.DebugString()); } { TensorShapeProto input = MakeTensorShapeFromDimensions({1, 2, 3, 4, 5, 6, 7, 8}); TensorShapeProto expected = MakeTensorShapeFromDimensions({1, 2, 5, 6, 7, 8, 3, 4}); TF_ASSERT_OK(PermuteDouble("test", {0, 2, 3, 1}, input.mutable_dim())); EXPECT_EQ(input.DebugString(), expected.DebugString()); } } TEST(PermutationTest, PermutesDataFormat) { string input = "NHWC"; string expected = "NCHW"; TF_ASSERT_OK(PermuteSingle("test", {0, 3, 1, 2}, &input)); EXPECT_EQ(input, expected); } TEST(PermutationTest, PermutesString) { string input = "ABCD"; string expected = "ACBD"; TF_ASSERT_OK(PermuteSingle("test", {0, 2, 1, 3}, &input)); EXPECT_EQ(input, expected); } TEST(PermutationTest, GetNHWCToNCHWPermutation) { string src_format = "NHWC"; absl::flat_hash_map<char, int> src_dim_indices = GetDimensionIndices(src_format); EXPECT_EQ(src_dim_indices.size(), 4); EXPECT_EQ(src_dim_indices['N'], 0); EXPECT_EQ(src_dim_indices['H'], 1); EXPECT_EQ(src_dim_indices['W'], 2); EXPECT_EQ(src_dim_indices['C'], 3); string dst_format = "NCHW"; std::vector<int> permutation = GetPermutation(src_dim_indices, dst_format); ASSERT_EQ(permutation.size(), 4); EXPECT_EQ(permutation[0], 0); EXPECT_EQ(permutation[1], 3); EXPECT_EQ(permutation[2], 1); EXPECT_EQ(permutation[3], 2); } TEST(PermutationTest, GetNCHWToNHWCPermutation) { string src_format = "NCHW"; absl::flat_hash_map<char, int> src_dim_indices = GetDimensionIndices(src_format); EXPECT_EQ(src_dim_indices.size(), 4); EXPECT_EQ(src_dim_indices['N'], 0); EXPECT_EQ(src_dim_indices['C'], 1); EXPECT_EQ(src_dim_indices['H'], 2); EXPECT_EQ(src_dim_indices['W'], 3); string dst_format = "NHWC"; std::vector<int> permutation = GetPermutation(src_dim_indices, dst_format); ASSERT_EQ(permutation.size(), 4); EXPECT_EQ(permutation[0], 0); EXPECT_EQ(permutation[1], 2); EXPECT_EQ(permutation[2], 3); EXPECT_EQ(permutation[3], 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/generic_layout_optimizer_transposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d0ab4aa0-9e5d-4a2f-8263-c618612be419
cpp
tensorflow/tensorflow
evaluation_utils
tensorflow/core/grappler/optimizers/evaluation_utils.cc
tensorflow/core/grappler/optimizers/evaluation_utils_test.cc
#include "tensorflow/core/grappler/optimizers/evaluation_utils.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/denormal.h" #include "tensorflow/core/platform/setround.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace grappler { using TensorVector = absl::InlinedVector<TensorValue, 4UL>; const int kDeviceSimpleThreads = 2; DeviceSimple::DeviceSimple() : DeviceBase(Env::Default()) { eigen_worker_threads_.num_threads = kDeviceSimpleThreads; eigen_worker_threads_.workers = new thread::ThreadPool( Env::Default(), "evaluation_utils", eigen_worker_threads_.num_threads); eigen_device_.reset(new Eigen::ThreadPoolDevice( eigen_worker_threads_.workers->AsEigenThreadPool(), eigen_worker_threads_.num_threads)); set_tensorflow_cpu_worker_threads(&eigen_worker_threads_); set_eigen_cpu_device(eigen_device_.get()); } DeviceSimple::~DeviceSimple() { eigen_device_.reset(); delete eigen_worker_threads_.workers; } Status DeviceSimple::MakeTensorFromProto(const TensorProto& tensor_proto, const AllocatorAttributes alloc_attrs, Tensor* tensor) { Tensor parsed(tensor_proto.dtype()); if (!parsed.FromProto(cpu_allocator(), tensor_proto)) { return errors::InvalidArgument("Cannot parse tensor from tensor_proto."); } *tensor = parsed; return absl::OkStatus(); } Status EvaluateNode(const NodeDef& node, const TensorVector& inputs, DeviceBase* cpu_device, ResourceMgr* resource_mgr, TensorVector* output) { Status status; std::unique_ptr<DeviceBase> device; if (cpu_device == nullptr) { device.reset(new DeviceSimple()); cpu_device = device.get(); } std::unique_ptr<OpKernel> op_kernel( CreateOpKernel(DEVICE_CPU, cpu_device, cpu_device->GetAllocator({}), node, TF_GRAPH_DEF_VERSION, &status)); TF_RETURN_IF_ERROR(status); OpKernelContext::Params params; params.device = cpu_device; params.frame_iter = FrameAndIter(0, 0); params.inputs = inputs; params.op_kernel = op_kernel.get(); params.resource_manager = resource_mgr; absl::InlinedVector<AllocatorAttributes, 4UL> output_attrs; const int num_outputs = op_kernel->num_outputs(); for (int i = 0; i < num_outputs; i++) { AllocatorAttributes attr; attr.set_on_host(true); output_attrs.push_back(attr); } params.output_attr_array = output_attrs.data(); OpKernelContext op_context(&params); op_kernel->Compute(&op_context); for (int i = 0; i < num_outputs; i++) { output->push_back(op_context.release_output(i)); } return op_context.status(); } } }
#include "tensorflow/core/platform/cpu_info.h" #define EIGEN_USE_THREADS #include "unsupported/Eigen/CXX11/ThreadPool" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/grappler/optimizers/evaluation_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { TEST(EvaluationUtilsTest, DeviceSimple_BasicProperties) { DeviceSimple dsimple; ASSERT_TRUE(dsimple.has_eigen_cpu_device()); const Eigen::ThreadPoolInterface* pool = dsimple.eigen_cpu_device()->getPool(); ASSERT_NE(pool, nullptr); } TEST(EvaluationUtilsTest, DeviceSimple_MakeTensorFromProto) { DeviceSimple dsimple; TensorProto proto; Tensor tensor; EXPECT_FALSE(dsimple.MakeTensorFromProto(proto, {}, &tensor).ok()); Tensor original(tensorflow::DT_INT16, TensorShape{4, 2}); original.flat<int16>().setRandom(); original.AsProtoTensorContent(&proto); TF_ASSERT_OK(dsimple.MakeTensorFromProto(proto, {}, &tensor)); ASSERT_EQ(tensor.dtype(), original.dtype()); ASSERT_EQ(tensor.shape(), original.shape()); auto buf0 = original.flat<int16>(); auto buf1 = tensor.flat<int16>(); ASSERT_EQ(buf0.size(), buf1.size()); for (int i = 0; i < buf0.size(); ++i) { EXPECT_EQ(buf0(i), buf1(i)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/evaluation_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/evaluation_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
84795ad2-e755-44a1-8402-5295dc75e04e
cpp
tensorflow/tensorflow
function_optimizer
tensorflow/core/grappler/optimizers/function_optimizer.cc
tensorflow/core/grappler/optimizers/function_optimizer_test.cc
#include "tensorflow/core/grappler/optimizers/function_optimizer.h" #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/substitute.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/lower_case_op.h" #include "tensorflow/core/common_runtime/lower_functional_ops.h" #include "tensorflow/core/common_runtime/lower_if_op.h" #include "tensorflow/core/common_runtime/lower_while_op.h" #include "tensorflow/core/common_runtime/placer.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/control_flow.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/grappler/graph_view.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/functions.h" #include "tensorflow/core/lib/gtl/map_util.h" namespace tensorflow { namespace grappler { namespace { constexpr const char* const kFuncAttr = FunctionLibraryDefinition::kFuncAttr; constexpr const char* const kNoSpecializeAttr = "_nospecialize"; constexpr const char* const kGrapplerSpecializedFuncAttr = "_GrapplerSpecializedFunc"; bool IsDirectFunctionCall(const FunctionDef& func, const NodeDef& func_node) { return func_node.op() == func.signature().name(); } bool IsIndirectFunctionCall(const FunctionDef& func, const NodeDef& func_node) { if (!IsPartitionedCall(func_node) && !IsStatefulPartitionedCall(func_node)) { return false; } auto* func_attr = AttrSlice(func_node).Find(kFuncAttr); return func_attr != nullptr && func_attr->has_func() && func_attr->func().name() == func.signature().name(); } AttrSlice FunctionInstantiationAttributes(const FunctionDef& func, const NodeDef& func_node) { if (IsDirectFunctionCall(func, func_node)) { return AttrSlice(func_node); } else if (IsIndirectFunctionCall(func, func_node)) { auto* func_attr = AttrSlice(func_node).Find(kFuncAttr); return AttrSlice(&func_attr->func().attr()); } else { LOG(WARNING) << "Can't resolve function instantiation attributes: " << SummarizeNodeDef(func_node); return AttrSlice(); } } class FakeDevice : public Device { public: FakeDevice(Env* env, const string& device) : Device(env, attr(device)) {} explicit FakeDevice(const string& device) : FakeDevice(nullptr, device) {} Status Sync() override { return absl::OkStatus(); } private: static DeviceAttributes attr(const string& device) { DeviceNameUtils::ParsedName parsed_name; bool parsed = DeviceNameUtils::ParseFullName(device, &parsed_name); DCHECK(parsed) << "Failed to parse full device name: " << device; DeviceAttributes attr; attr.set_name(device); attr.set_device_type(parsed_name.type); return attr; } }; bool MarkedNoSpecialize(const FunctionDef& fdef) { const auto attr = AttrSlice(&fdef.attr()); bool nospecialize = false; return TryGetNodeAttr(attr, kNoSpecializeAttr, &nospecialize) && nospecialize; } struct FunctionSpecializationSignature { using InputPort = int; using OutputPort = int; string func_name; bool is_in_fetch_set; absl::flat_hash_set<OutputPort> active_outputs; absl::flat_hash_map<string, DataType> type_parameters; absl::flat_hash_map<string, AttrValue> body_parameters; absl::flat_hash_map<InputPort, string> const_inputs; bool operator==(const FunctionSpecializationSignature& other) const { bool equals = func_name == other.func_name && is_in_fetch_set == other.is_in_fetch_set && active_outputs == other.active_outputs && type_parameters == other.type_parameters && const_inputs == other.const_inputs; if (!equals) return false; if (body_parameters.size() != other.body_parameters.size()) return false; for (const auto& lhs : body_parameters) { auto it = other.body_parameters.find(lhs.first); if (it == other.body_parameters.end()) return false; if (!AreAttrValuesEqual(lhs.second, (*it).second, true)) { return false; } } return true; } template <typename H> friend H AbslHashValue(H h, const FunctionSpecializationSignature& s) { H base = H::combine(std::move(h), s.func_name, s.is_in_fetch_set); std::vector<uint64> hashes; hashes.reserve(s.active_outputs.size() + s.type_parameters.size() * 2 + s.body_parameters.size() * 2 + s.const_inputs.size() * 2); absl::c_transform(s.active_outputs, std::back_inserter(hashes), hash<OutputPort>()); using TypeParam = std::pair<const string, DataType>; absl::c_for_each(s.type_parameters, [&hashes](const TypeParam& type_param) { AttrValue attr_value; attr_value.set_type(type_param.second); hashes.push_back(Hash64(type_param.first)); hashes.push_back(AttrValueHash(attr_value)); }); using BodyParam = std::pair<const string, AttrValue>; absl::c_for_each(s.body_parameters, [&hashes](const BodyParam& body_param) { hashes.push_back(Hash64(body_param.first)); hashes.push_back(FastAttrValueHash(body_param.second)); }); using ConstInput = std::pair<const InputPort, string>; absl::c_for_each(s.const_inputs, [&hashes](const ConstInput& const_input) { hashes.push_back(hash<InputPort>()(const_input.first)); hashes.push_back(Hash64(const_input.second)); }); absl::c_sort(hashes); return H::combine_contiguous(std::move(base), hashes.data(), hashes.size()); } }; struct FunctionSpecialization { string specialized_func_name; bool is_in_fetch_set; absl::flat_hash_set<string> const_inputs; absl::flat_hash_set<string> control_deps; absl::flat_hash_set<int> active_outputs; std::vector<std::pair<int, int>> output_mapping; }; class FunctionOptimizerContext { public: explicit FunctionOptimizerContext(const GrapplerItem& item, RewriterConfig::Toggle opt_level, const GraphDef& graph) : item_(&item), opt_level_(opt_level), function_library_(OpRegistry::Global(), graph.library()), truly_const_nodes_(InferTrulyConstNodes(item, graph)), graph_view_(&graph) {} const GrapplerItem& item() const { return *item_; } const int graph_version() const { return item_->graph.versions().producer(); } RewriterConfig::Toggle opt_level() const { return opt_level_; } const FunctionLibraryDefinition& function_library() const { return function_library_; } FunctionLibraryDefinition& function_library() { return function_library_; } const absl::flat_hash_map<SafeTensorId, SafeTensorId, SafeTensorId::Hasher>& tensor_mapping() const { return tensor_mapping_; } const GraphView& graph_view() const { return graph_view_; } bool IsFeedNode(const string& node_name) const { return absl::c_any_of( item_->feed, [&](const std::pair<std::string, Tensor>& feed) { return ParseTensorName(feed.first).node() == node_name; }); } bool IsFetchNode(const string& node_name) const { return absl::c_any_of(item_->fetch, [&](const string& fetch) { return ParseTensorName(fetch).node() == node_name; }); } bool IsTrulyConst(const string& name) const { return TrulyConstNode(name) != nullptr; } const NodeDef* TrulyConstNode(const string& name) const { return gtl::FindWithDefault(truly_const_nodes_, name, nullptr); } const FunctionSpecialization* FindFunctionSpecialization( const FunctionSpecializationSignature& sig) const { return gtl::FindOrNull(specialized_functions_, sig); } void AddSpecializedFunction(const FunctionSpecializationSignature& sig, const FunctionSpecialization& specialized_func) { specialized_functions_.emplace(sig, specialized_func); } void AddTensorMapping(const SafeTensorId& from, const SafeTensorId& to) { DCHECK(from.index() != Graph::kControlSlot) << "Tensor mapping must be from regular tensor"; DCHECK(to.index() != Graph::kControlSlot) << "Tensor mapping must be to regular tensor"; auto inserted = tensor_mapping_.insert({from, to}); DCHECK(inserted.second) << "Failed to insert duplicated tensor mapping: " << "from=" << from.ToString() << " to=" << to.ToString(); } void AddTensorMapping(const string& func_node, const FunctionSpecialization& specialized_func) { for (const auto& pair : specialized_func.output_mapping) { int from_idx = pair.first; int to_idx = pair.second; if (from_idx != to_idx) { SafeTensorId from_tensor(func_node, from_idx); SafeTensorId to_tensor(func_node, to_idx); AddTensorMapping(from_tensor, to_tensor); } } } private: static absl::flat_hash_map<string, const NodeDef*> InferTrulyConstNodes( const GrapplerItem& item, const GraphDef& graph) { absl::flat_hash_set<absl::string_view> feed_nodes; for (const auto& feed : item.feed) { feed_nodes.insert(feed.first); } absl::flat_hash_map<string, const NodeDef*> const_nodes; for (const NodeDef& node : graph.node()) { if (IsConstant(node) && !feed_nodes.contains(node.name())) { const_nodes[node.name()] = &node; } } return const_nodes; } const GrapplerItem* item_; RewriterConfig::Toggle opt_level_; FunctionLibraryDefinition function_library_; absl::flat_hash_map<string, const NodeDef*> truly_const_nodes_; absl::flat_hash_map<FunctionSpecializationSignature, const FunctionSpecialization> specialized_functions_; absl::flat_hash_map<SafeTensorId, SafeTensorId, SafeTensorId::Hasher> tensor_mapping_; GraphView graph_view_; FunctionOptimizerContext(const FunctionOptimizerContext&) = delete; void operator=(const FunctionOptimizerContext&) = delete; }; const FunctionDef* FindFunctionCall(const FunctionOptimizerContext& ctx, const NodeDef& node) { if (IsPartitionedCall(node) || IsStatefulPartitionedCall(node)) { const AttrValue* func_attr = AttrSlice(node).Find("f"); return (func_attr != nullptr && func_attr->has_func()) ? ctx.function_library().Find(func_attr->func().name()) : nullptr; } return ctx.function_library().Find(node.op()); } absl::flat_hash_set<int> GetActiveOutputs(const NodeDef& node, const FunctionOptimizerContext& ctx, int size_hint = 0) { absl::flat_hash_set<int> active_outputs; active_outputs.reserve(static_cast<size_t>(size_hint)); const auto node_fanout_edges = ctx.graph_view().GetFanoutEdges(node, false); for (const GraphView::Edge& edge : node_fanout_edges) { active_outputs.insert(edge.src.port_id); } for (const string& fetch : ctx.item().fetch) { TensorId fetch_tensor = ParseTensorName(fetch); if (fetch_tensor.node() == node.name()) { active_outputs.insert(fetch_tensor.index()); } } return active_outputs; } bool HasTrulyConstInputs(const NodeDef& node, const FunctionOptimizerContext& ctx) { const auto is_truly_const = [&ctx](const string& input) { return ctx.IsTrulyConst(NodeName(input)); }; return absl::c_any_of(node.input(), is_truly_const); } bool HasUnusedOutputs(const NodeDef& func_node, const FunctionDef& func, const FunctionOptimizerContext& ctx) { int num_outputs = func.signature().output_arg_size(); const absl::flat_hash_set<int> active_outputs = GetActiveOutputs(func_node, ctx, num_outputs); int active_outputs_size = active_outputs.size(); return active_outputs_size != num_outputs; } FunctionDefLibrary PruneFunctionLibrary(const FunctionLibraryDefinition& flib, const GraphDef& optimized_graph) { FunctionLibraryDefinition pruned_flib = flib.ReachableDefinitions(optimized_graph); int pruned_functions = static_cast<int>(pruned_flib.num_functions()) - static_cast<int>(flib.num_functions()); VLOG(3) << "Pruned function library: " << pruned_flib.num_functions() << " functions (" << pruned_functions << ")"; return pruned_flib.ToProto(); } Status PushDownConstInputs(const NodeDef& func_node, const FunctionOptimizerContext& ctx, GrapplerFunctionItem* item, absl::flat_hash_set<string>* const_inputs, absl::flat_hash_set<string>* control_deps) { const auto record_control_deps = [&](const NodeDef* const_input) { for (int i = const_input->input_size() - 1; i >= 0; --i) { const string& input = const_input->input(i); if (IsControlInput(input)) control_deps->insert(input); else break; } }; for (int i = func_node.input_size() - 1; i >= 0; --i) { const string& input = func_node.input(i); if (IsControlInput(input)) continue; const string node_name = NodeName(input); if (ctx.IsTrulyConst(node_name)) { VLOG(3) << "Push const into function body: input=" << input; const auto* const_input = CHECK_NOTNULL(ctx.TrulyConstNode(node_name)); const_inputs->insert(input); record_control_deps(const_input); TF_RETURN_IF_ERROR(ReplaceInputWithConst(*const_input, i, item)); } } return absl::OkStatus(); } void RemovePushedDownConstInputs(const FunctionSpecialization& specialization, NodeDef* specialized_func_node) { if (specialization.const_inputs.empty()) return; std::vector<string> keep_inputs; const auto& inputs = specialized_func_node->input(); absl::c_copy_if(inputs, std::back_inserter(keep_inputs), [&](const string& input) { return !specialization.const_inputs.contains(input); }); specialized_func_node->clear_input(); for (const auto& keep : keep_inputs) specialized_func_node->add_input(keep); if (!specialization.control_deps.empty()) { absl::flat_hash_set<string> existing_control_deps; for (const string& input : keep_inputs) { existing_control_deps.insert(AsControlDependency(NodeName(input))); } for (const string& ctrl : specialization.control_deps) { if (!existing_control_deps.contains(ctrl)) { VLOG(3) << "Forward control dependency: input=" << ctrl; specialized_func_node->add_input(ctrl); } } } } void RemovePushedDownConstInputTypes( const FunctionSpecialization& specialization, const NodeDef& func_node, NodeDef* specialized_func_node) { if (specialization.const_inputs.empty()) return; const AttrValue* tin = AttrSlice(func_node).Find("Tin"); if (tin == nullptr || !tin->has_list()) return; auto* attr = specialized_func_node->mutable_attr(); (*attr)["Tin"].mutable_list()->clear_type(); for (int i = 0; i < func_node.input_size(); ++i) { const string& input = func_node.input(i); if (IsControlInput(input)) break; if (!specialization.const_inputs.contains(input)) { DataType dt = tin->list().type(i); (*attr)["Tin"].mutable_list()->add_type(dt); } } } void RemoveUnusedOutputsTypes(const FunctionSpecialization& specialization, const NodeDef& func_node, NodeDef* specialized_func_node) { const AttrValue* tout = AttrSlice(func_node).Find("Tout"); if (tout == nullptr || !tout->has_list()) return; int specialization_active_outputs_size = specialization.active_outputs.size(); if (specialization_active_outputs_size == tout->list().type_size()) return; auto* attr = specialized_func_node->mutable_attr(); (*attr)["Tout"].mutable_list()->clear_type(); for (int i = 0; i < tout->list().type_size(); ++i) { if (specialization.active_outputs.contains(i)) { DataType dt = tout->list().type(i); (*attr)["Tout"].mutable_list()->add_type(dt); } } } Status UpdateSpecializedFunctionCallSite(const FunctionDef& func, const NodeDef& func_node, const string& specialized_func_name, NodeDef* specialized_func_node) { if (IsDirectFunctionCall(func, func_node)) { specialized_func_node->set_op(specialized_func_name); } else if (IsIndirectFunctionCall(func, func_node)) { auto* attr = specialized_func_node->mutable_attr(); (*attr)[kFuncAttr].mutable_func()->set_name(specialized_func_name); } else { return absl::InvalidArgumentError("Unknown function call site"); } return absl::OkStatus(); } Status UpdateSpecializedFunctionNode( const FunctionDef& func, const NodeDef& func_node, const FunctionSpecialization& specialization, NodeDef* specialized_func_node) { bool is_indirect_call = IsIndirectFunctionCall(func, func_node); TF_RETURN_IF_ERROR(UpdateSpecializedFunctionCallSite( func, func_node, specialization.specialized_func_name, specialized_func_node)); RemovePushedDownConstInputs(specialization, specialized_func_node); if (is_indirect_call) { RemovePushedDownConstInputTypes(specialization, func_node, specialized_func_node); } if (is_indirect_call && !specialization.is_in_fetch_set) { RemoveUnusedOutputsTypes(specialization, func_node, specialized_func_node); } specialized_func_node->mutable_attr()->erase("_gradient_op_type"); return absl::OkStatus(); } Status InitializeFunctionSpecializationSignature( const NodeDef& func_node, const FunctionDef& func, const AttrSlice& func_instantiation_attr, const FunctionOptimizerContext& ctx, FunctionSpecializationSignature* sig) { DCHECK(sig->const_inputs.empty()); DCHECK(sig->active_outputs.empty()); sig->func_name = func.signature().name(); sig->is_in_fetch_set = ctx.IsFetchNode(func_node.name()); sig->active_outputs = GetActiveOutputs(func_node, ctx); TF_RETURN_IF_ERROR(InstantiationTypeParameters(func, func_instantiation_attr, &sig->type_parameters)); TF_RETURN_IF_ERROR(InstantiationBodyParameters(func, func_instantiation_attr, &sig->body_parameters)); for (int i = 0; i < func_node.input_size(); ++i) { const string& input = func_node.input(i); if (IsControlInput(input)) break; if (ctx.IsTrulyConst(input)) { sig->const_inputs.emplace(i, input); } } return absl::OkStatus(); } string SpecializedFunctionName(const FunctionOptimizerContext& ctx, const FunctionDef& func, const NodeDef& func_node) { return absl::Substitute( "$0_specialized_for_$1_at_$2", func.signature().name(), absl::StrReplaceAll(func_node.name(), {{"/", "_"}}), ctx.item().id); } Status SpecializeFunction(const NodeDef& func_node, const FunctionDef& func, FunctionOptimizerContext* ctx, GraphDef* optimized_graph) { VLOG(2) << "Specialize function call: " << SummarizeNodeDef(func_node); const AttrSlice func_instantiation_attr = FunctionInstantiationAttributes(func, func_node); FunctionSpecializationSignature signature; TF_RETURN_IF_ERROR(InitializeFunctionSpecializationSignature( func_node, func, func_instantiation_attr, *ctx, &signature)); const FunctionSpecialization* already_specialized = ctx->FindFunctionSpecialization(signature); if (already_specialized) { VLOG(2) << "Function was already specialized in identical context: " "specialized_name=" << already_specialized->specialized_func_name; NodeDef* specialized_func_node = optimized_graph->add_node(); *specialized_func_node = func_node; TF_RETURN_IF_ERROR(UpdateSpecializedFunctionNode( func, func_node, *already_specialized, specialized_func_node)); ctx->AddTensorMapping(specialized_func_node->name(), *already_specialized); return absl::OkStatus(); } const auto& flib = ctx->function_library(); GrapplerFunctionItem item; TF_RETURN_IF_ERROR(MakeGrapplerFunctionItem( func, func_instantiation_attr, flib, ctx->graph_version(), &item)); absl::flat_hash_set<string> const_inputs; absl::flat_hash_set<string> control_deps; TF_RETURN_IF_ERROR(PushDownConstInputs(func_node, *ctx, &item, &const_inputs, &control_deps)); std::vector<std::pair<int, int>> output_mapping; if (!signature.is_in_fetch_set) { int num_func_outputs = item.output_size(); absl::flat_hash_set<int> remove; for (int i = 0; i < num_func_outputs; ++i) { if (!signature.active_outputs.count(i)) remove.insert(i); } TF_RETURN_IF_ERROR(RemoveFunctionOutputs(remove, &item, &output_mapping)); } FunctionDef specialized_func; TF_RETURN_IF_ERROR(MakeFunctionDef(item, flib, &specialized_func)); const string specialized_func_name = SpecializedFunctionName(*ctx, func, func_node); if (flib.Contains(specialized_func_name)) { return absl::InternalError("Created duplicate function specialization"); } specialized_func.mutable_signature()->set_name(specialized_func_name); auto* specialized_attr = specialized_func.mutable_attr(); (*specialized_attr)[kGrapplerSpecializedFuncAttr].set_b(true); TF_RETURN_IF_ERROR(ctx->function_library().AddFunctionDef(specialized_func)); NodeDef* specialized_func_node = optimized_graph->add_node(); *specialized_func_node = func_node; FunctionSpecialization func_specialization = { specialized_func_name, signature.is_in_fetch_set, const_inputs, control_deps, signature.active_outputs, output_mapping}; TF_RETURN_IF_ERROR(UpdateSpecializedFunctionNode( func, func_node, func_specialization, specialized_func_node)); ctx->AddSpecializedFunction(signature, func_specialization); ctx->AddTensorMapping(specialized_func_node->name(), func_specialization); return absl::OkStatus(); } constexpr const char* const kLowerUsingSwitchMergeAttr = LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr; constexpr const char* const kLowerAsMultiDeviceFunctionAttr = LowerFunctionalOpsPass::kLowerAsMultiDeviceFunctionAttr; using KeepCallerNode = InlineFunctionBodyOptions::KeepCallerNode; using OutputControlSource = InlineFunctionBodyOptions::OutputControlSource; bool CheckBoolAttr(const Node* n, absl::string_view attr_name) { bool match; bool found = TryGetNodeAttr(n->attrs(), attr_name, &match); return found && match; } bool CheckStringAttr(const Node* n, absl::string_view attr_name) { const string& value = GetNodeAttrString(n->attrs(), attr_name); return !value.empty(); } bool LowerUsingSwitchMergeIsOn(const Node* n) { return CheckBoolAttr(n, kLowerUsingSwitchMergeAttr); } bool LowerAsMultiDeviceFunctionIsOn(const Node* n) { return CheckBoolAttr(n, kLowerAsMultiDeviceFunctionAttr); } bool MarkedForXlaCompilation(const NodeDef& n) { auto is_enabled = [&](std::string attr_name) -> bool { auto it = n.attr().find(attr_name); return it != n.attr().end() && (!it->second.s().empty() || it->second.b()); }; return is_enabled("_xla_compile_id") || is_enabled("_tpu_replicate") || is_enabled(kXlaMustCompileAttr); } const bool IsExemptFromSideEffectsExecutionValidation(const string& op) { static const auto* exemption = new absl::flat_hash_set<string>( { "CollectiveGather", "CollectiveReduce", "CollectiveBcastSend", "CollectiveBcastRecv", "CollectiveBcastSendV2", "CollectiveBcastRecvV2", "NcclAllReduce", "Send", "Recv", "CollectiveAssignGroupsV2", "CollectiveInitializeCommunicator", "RandomUniform", "RandomUniformInt", "RandomStandardNormal", "ParameterizedTruncatedNormal", "TruncatedNormal", "RandomShuffle", "Multinomial", "RandomGamma", "RandomGammaGrad", "RandomPoisson", "RandomPoissonV2", "ReadVariableOp", "CudnnRNN", "CudnnRNNBackprop", "CudnnRNNV2", "CudnnRNNV3", "CudnnRNNBackpropV2", "CudnnRNNBackpropV3", "EnqueueTPUEmbeddingSparseBatch", "EnqueueTPUEmbeddingIntegerBatch", "EnqueueTPUEmbeddingSparseTensorBatch", "EnqueueTPUEmbeddingRaggedTensorBatch", "EnqueueTPUEmbeddingArbitraryTensorBatch", "DynamicEnqueueTPUEmbeddingArbitraryTensorBatch", "SaveV2", "RestoreV2", "InfeedEnqueue", "InfeedEnqueueTuple"}); return exemption->contains(op); } Status ValidateSideEffectsExecution( const FunctionBody& fbody, OutputControlSource output_control_source, bool has_outgoing_control_edges, bool validate_outgoing_control_edge = true) { std::vector<const Node*> fbody_side_effects; absl::c_copy_if( fbody.graph->nodes(), std::back_inserter(fbody_side_effects), [](const Node* n) { return n->op_def().is_stateful() && !n->IsArg() && !n->IsRetval() && !IsExemptFromSideEffectsExecutionValidation(n->type_string()); }); if (!fbody_side_effects.empty() && !has_outgoing_control_edges) { const string error_message = "Can't guarantee execution of function side-effects after inlining. " "Function call node has no outgoing control edges."; if (validate_outgoing_control_edge) { return absl::InternalError(error_message); } else { VLOG(3) << error_message; } } absl::flat_hash_set<const Node*> control_sources; if (output_control_source == OutputControlSource::kDataOutputs) { control_sources = {fbody.ret_nodes.begin(), fbody.ret_nodes.end()}; } else if (output_control_source == OutputControlSource::kControlOutputs) { control_sources = {fbody.control_ret_nodes.begin(), fbody.control_ret_nodes.end()}; } for (const Node* side_effect : fbody_side_effects) { VLOG(4) << "Check that node " << side_effect->name() << " will execute after inlining."; bool will_execute = false; const auto is_control_source = [&](const Node* n) -> void { const auto it = control_sources.find(n); if (it != control_sources.end()) { VLOG(4) << "Found a path to control source: " << side_effect->name() << " ---> " << (*it)->name(); will_execute = true; } }; DFSFrom(*fbody.graph, {side_effect}, is_control_source, {}, NodeComparatorName{}); if (!will_execute) { return absl::InternalError(absl::StrCat( "Can't guarantee execution of a side-effectful node, that is not " "reachable from function control source. Function body node: ", SummarizeNode(*side_effect))); } } return absl::OkStatus(); } Status ValidateNoDeadOutputs(const FunctionLibraryDefinition& flib_def, const FunctionBody& fbody) { absl::flat_hash_set<const Node*> output_nodes = {fbody.ret_nodes.begin(), fbody.ret_nodes.end()}; std::vector<const Node*> dead_tensor_sources; for (const Node* n : fbody.graph->nodes()) { if (n->IsSwitch()) { VLOG(4) << "Add dead tensors source. Switch node: " << n->name(); dead_tensor_sources.push_back(n); continue; } const FunctionDef* fdef = flib_def.Find(n->type_string()); if (fdef != nullptr) { std::unique_ptr<FunctionBody> nested_fbody; NameAttrList func; TF_RETURN_IF_ERROR(NameAndAttrsFromFunctionCall(n->def(), &func)); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*fdef, AttrSlice(&func.attr()), &flib_def, &nested_fbody)); if (!ValidateNoDeadOutputs(flib_def, *nested_fbody).ok()) { VLOG(4) << "Add dead tensors source. Function call: " << func.name() << " node=" << n->name(); dead_tensor_sources.push_back(n); } } } for (const Node* dead_tensor_source : dead_tensor_sources) { bool has_dead_output = false; const auto is_output_node = [&](const Node* n) -> void { const auto it = output_nodes.find(n); if (it != output_nodes.end()) { VLOG(4) << "Found a path to output node from dead tensor source: " << dead_tensor_source->name() << " ---> " << (*it)->name(); has_dead_output = true; } }; const auto stop_traversal = [&has_dead_output](const Edge& edge) -> bool { return !edge.src()->IsMerge() || has_dead_output; }; DFSFrom(*fbody.graph, {dead_tensor_source}, is_output_node, {}, NodeComparatorName{}, stop_traversal); if (has_dead_output) { return absl::InternalError(absl::StrCat( "Can't inline a function with dead outputs. Dead tensor source: ", SummarizeNode(*dead_tensor_source))); } } return absl::OkStatus(); } Status MakeFunctionBodyForInlining(const Node& node, const FunctionLibraryDefinition& flib_def, std::unique_ptr<FunctionBody>* fbody) { VLOG(3) << "Make function body for inlining: " << SummarizeNode(node); const auto find_fdef = [&flib_def, &node]( const string& name, const FunctionDef** fdef) -> Status { if ((*fdef = flib_def.Find(name)) == nullptr) { return absl::InternalError(absl::StrCat( "Was not able to find a function definition (name=", name, ") for a function call: ", SummarizeNode(node))); } return absl::OkStatus(); }; if (node.type_string() == FunctionLibraryDefinition::kGradientOp) { NameAttrList func; TF_RETURN_IF_ERROR(GetNodeAttr(node.attrs(), kFuncAttr, &func)); const string grad = flib_def.FindGradient(func.name()); if (!grad.empty()) { const FunctionDef* grad_fdef; TF_RETURN_IF_ERROR(find_fdef(grad, &grad_fdef)); VLOG(4) << "Instantiate a custom SymbolicGradient: gradient=" << grad << " (function=" << func.name() << ")"; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *grad_fdef, AttrSlice(&func.attr()), &flib_def, fbody)); } else if (flib_def.Find(func.name()) == nullptr) { gradient::Creator creator; TF_RETURN_IF_ERROR(gradient::GetOpGradientCreator(func.name(), &creator)); if (creator == nullptr) { return absl::InvalidArgumentError( absl::StrCat("No gradient is defined for ", func.name())); } FunctionDef grad_fdef; TF_RETURN_IF_ERROR(creator(AttrSlice(&func.attr()), &grad_fdef)); VLOG(4) << "Instantiate a SymbolicGradient for a primitive op: " << func.name(); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( grad_fdef, AttrSlice(&func.attr()), &flib_def, fbody)); } else { const FunctionDef* fdef; TF_RETURN_IF_ERROR(find_fdef(func.name(), &fdef)); VLOG(4) << "Instantiate a SymbolicGradient for a function: " << func.name(); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*fdef, AttrSlice(&func.attr()), &flib_def, fbody)); *fbody = SymbolicGradient(**fbody); } } else { NameAttrList func; TF_RETURN_IF_ERROR(NameAndAttrsFromFunctionCall(node.def(), &func)); const FunctionDef* fdef; TF_RETURN_IF_ERROR(find_fdef(func.name(), &fdef)); VLOG(4) << "Instantiate a function call: function=" << func.name(); TF_RETURN_IF_ERROR(FunctionDefToBodyHelper(*fdef, AttrSlice(&func.attr()), &flib_def, fbody)); } return absl::OkStatus(); } void AddStrictInputSemantics(Node* caller, Graph* g) { absl::flat_hash_set<const Node*> existing_control_sources; for (const Edge* edge : caller->in_edges()) { if (edge->IsControlEdge()) { existing_control_sources.insert(edge->src()); } } const bool has_incoming_control_edges = !existing_control_sources.empty(); const bool has_resource_input = absl::c_any_of(caller->input_types(), [](const DataType dtype) { return dtype == DT_RESOURCE; }); const bool has_constant_enter_input = absl::c_any_of(caller->in_edges(), [](const Edge* edge) { Node* src = edge->src(); return src->IsEnter() && CheckBoolAttr(src, "is_constant"); }); const bool requires_strict_semantics = (!has_incoming_control_edges && has_resource_input) || (has_constant_enter_input); if (!requires_strict_semantics) return; std::set<const Node*> data_inputs; for (const Edge* edge : caller->in_edges()) { if (!edge->IsControlEdge() && !existing_control_sources.contains(edge->src())) { data_inputs.insert(edge->src()); } } VLOG(3) << "Add control edges from all data inputs to enforce strict " "semantics with regard to function inputs"; const auto is_placeholder = [](const Node* node) -> bool { return node->type_string() == "Placeholder"; }; for (const Node* node : data_inputs) { if (is_placeholder(node)) continue; g->AddControlEdge(g->FindNodeId(node->id()), caller, true); } } void AddFrameForwardingControlEdge(const std::vector<ControlFlowInfo>& info, Node* caller, Graph* g) { int info_size = info.size(); if (caller->id() >= info_size) return; const Node* frame = info[caller->id()].frame; const bool is_in_while_loop = frame->id() != Graph::kSourceId; if (!is_in_while_loop) return; const bool has_incoming_control_edges = absl::c_any_of(caller->in_edges(), [](const Edge* edge) { return edge->IsControlEdge(); }); if (has_incoming_control_edges) return; VLOG(3) << "Add a frame forwarding control edge: from=" << frame->name() << " to=" << caller->name(); Node* enter = g->FindNodeId(frame->id()); bool is_constant_enter = enter->attrs().Find("is_constant")->b(); if (is_constant_enter) { g->AddControlEdge(enter, caller); } else { auto it = absl::c_find_if(enter->out_edges(), [](const Edge* e) { return !e->IsControlEdge() && e->dst()->IsMerge(); }); if (it != enter->out_edges().end()) { g->AddControlEdge((*it)->dst(), caller); } else { LOG(WARNING) << "Enter[is_constant=false] node: " << enter->name() << " does not have an outgoing edge to a Merge."; } } } Status InlineFunctionCalls(const GrapplerItem& item, const RewriterConfig::Toggle opt_level, const bool lower_control_flow, GraphDef* output_graph) { bool is_aggressive = opt_level == RewriterConfig::AGGRESSIVE; VLOG(2) << "Inline function calls: grappler_item_id=" << item.id << " (aggressive_mode=" << is_aggressive << ")"; FunctionLibraryDefinition flib_def = FunctionLibraryDefinition(OpRegistry::Global(), item.graph.library()); std::unique_ptr<Graph> graph = std::make_unique<Graph>(flib_def); GraphConstructorOptions graph_constructor_options; graph_constructor_options.allow_internal_ops = true; TF_RETURN_IF_ERROR(ConvertGraphDefToGraph(graph_constructor_options, item.graph, graph.get())); using NodeNames = absl::flat_hash_set<absl::string_view>; NodeNames fetch_nodes; fetch_nodes.reserve(item.fetch.size()); for (const string& fetch : item.fetch) { fetch_nodes.insert(ParseTensorName(fetch).node()); } NodeNames keep_nodes(item.keep_ops.begin(), item.keep_ops.end()); if (item.save_op.size() > 0) { keep_nodes.insert(item.save_op); } if (item.restore_op.size() > 0) { keep_nodes.insert(item.restore_op); } std::vector<string> inlined_function_names; NodeNames feed_nodes; feed_nodes.reserve(item.feed.size()); for (const std::pair<std::string, Tensor>& feed : item.feed) { feed_nodes.insert(ParseTensorName(feed.first).node()); } std::vector<ControlFlowInfo> control_flow_info; TF_RETURN_IF_ERROR(BuildControlFlowInfo(graph.get(), &control_flow_info)); for (int i = 2; i < graph->num_node_ids(); ++i) { Node* n = graph->FindNodeId(i); if (n == nullptr) continue; if (lower_control_flow && LowerUsingSwitchMergeIsOn(n)) { VLOG(2) << "Lower functional control flow op: " << SummarizeNode(*n); AddStrictInputSemantics(n, graph.get()); AddFrameForwardingControlEdge(control_flow_info, n, graph.get()); if (n->IsIfNode()) { TF_RETURN_IF_ERROR(RewriteIfNode(n, graph.get(), false)); } else if (n->IsCaseNode()) { TF_RETURN_IF_ERROR(RewriteCaseNode(n, graph.get(), false)); } else if (n->IsWhileNode()) { TF_RETURN_IF_ERROR(RewriteWhileNode(n, graph.get(), &flib_def, false)); } continue; } if (!IsFunctionCall(flib_def, *n)) continue; if (MarkedForXlaCompilation(n->def())) continue; if (feed_nodes.contains(n->name())) continue; if (n->name() == item.restore_op || n->name() == item.save_op) continue; std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR(MakeFunctionBodyForInlining(*n, flib_def, &fbody)); InlineFunctionBodyOptions inline_options; inline_options.ignore_noinline = is_aggressive; bool force_inline_as_multi_device = LowerAsMultiDeviceFunctionIsOn(n); if (n->IsPartitionedCall() || force_inline_as_multi_device) { inline_options.output_control_src = OutputControlSource::kControlOutputs; inline_options.inlined_function_body_placer = InlinedFunctionBodyPlacer::MultiDevice(); } else { inline_options.output_control_src = OutputControlSource::kDataOutputs; inline_options.inlined_function_body_placer = InlinedFunctionBodyPlacer::SingleDevice(); } if (fetch_nodes.contains(n->name())) { inline_options.keep_caller_node = KeepCallerNode::kFetchable; } else if (keep_nodes.contains(n->name())) { inline_options.keep_caller_node = KeepCallerNode::kTargetable; } else { inline_options.keep_caller_node = KeepCallerNode::kDoNotKeep; } Status can_inline_function_call = ValidateInlining(n, fbody.get(), inline_options); if (can_inline_function_call.ok()) { bool has_outgoing_control_edges = absl::c_any_of( n->out_edges(), [](const Edge* edge) { return edge->IsControlEdge(); }); can_inline_function_call = ValidateSideEffectsExecution( *fbody, inline_options.output_control_src, has_outgoing_control_edges); if (!can_inline_function_call.ok() && (is_aggressive || force_inline_as_multi_device)) { VLOG(2) << "Ignore error: " << can_inline_function_call.message(); can_inline_function_call = absl::OkStatus(); } } if (can_inline_function_call.ok()) { can_inline_function_call = ValidateNoDeadOutputs(flib_def, *fbody); } if (can_inline_function_call.ok()) { VLOG(2) << "Inline function call node: " << n->name(); AddStrictInputSemantics(n, graph.get()); AddFrameForwardingControlEdge(control_flow_info, n, graph.get()); TF_RETURN_IF_ERROR(InlineFunctionBody(flib_def, graph.get(), n, fbody.get(), inline_options)); inlined_function_names.push_back( fbody->record->fdef().signature().name()); } else { VLOG(2) << "Failed to inline function call node: " << can_inline_function_call.message(); } } VLOG(4) << "Inlined " << inlined_function_names.size() << " function calls: " << absl::StrJoin(inlined_function_names, ", "); if (inlined_function_names.empty()) { VLOG(3) << "Not placing graph after function inlining" << " (did not inline any of the function calls)."; } else if (item.devices().empty()) { VLOG(3) << "Not placing graph after function inlining" << " (device set is empty)"; } else { VLOG(3) << "Run placer for the graph after function inlining. " << "Devices: [" << absl::StrJoin(item.devices(), ", ") << "]"; DeviceSet device_set; std::vector<std::unique_ptr<Device>> fake_devices; for (const string& name : item.devices()) { auto device = std::make_unique<FakeDevice>(name); device_set.AddDevice(device.get()); fake_devices.push_back(std::move(device)); } Placer placer(graph.get(), item.id, &flib_def, &device_set); TF_RETURN_IF_ERROR(placer.Run()); } graph->ToGraphDef(output_graph); return absl::OkStatus(); } void RestoreTensorMapping(const FunctionOptimizerContext& ctx, GraphDef* optimized_graph) { if (ctx.tensor_mapping().empty()) return; for (NodeDef& node : *optimized_graph->mutable_node()) { for (int idx = 0; idx < node.input_size(); ++idx) { TensorId input_tensor = ParseTensorName(node.input(idx)); if (input_tensor.index() == Graph::kControlSlot) break; auto mapping = ctx.tensor_mapping().find(input_tensor); if (mapping != ctx.tensor_mapping().end()) { node.set_input(idx, TensorIdToString(mapping->second)); } } } } } Status FunctionOptimizer::RunFunctionOptimizerPass( const GrapplerItem& item, GraphDef* optimized_graph) const { VLOG(3) << "Run function optimizer pass: grappler_item_id=" << item.id; GraphDef graph_after_inlining; TF_RETURN_IF_ERROR(InlineFunctionCalls(item, opt_level_, lower_control_flow_, &graph_after_inlining)); FunctionOptimizerContext ctx(item, opt_level_, graph_after_inlining); for (const NodeDef& node : graph_after_inlining.node()) { const int num_nodes_before = optimized_graph->node_size(); const auto is_graph_modified = [&]() { int num_nodes = optimized_graph->node_size(); DCHECK_GE(num_nodes, num_nodes_before) << "Nodes should not be removed"; return num_nodes > num_nodes_before; }; const auto copy_node = [&]() { *optimized_graph->add_node() = node; }; const FunctionDef* func = FindFunctionCall(ctx, node); if (func == nullptr) { copy_node(); continue; } const string& func_name = func->signature().name(); const bool specialization_worthy = IsParametrized(*func) || HasTrulyConstInputs(node, ctx) || HasUnusedOutputs(node, *func, ctx); const string grad_func = ctx.function_library().FindGradient(func_name); const bool no_specialize = !grad_func.empty() || ctx.IsFeedNode(node.name()) || MarkedNoSpecialize(*func) || MarkedForXlaCompilation(node); if (specialization_worthy && !no_specialize) { Status status = SpecializeFunction(node, *func, &ctx, optimized_graph); if (!status.ok() && is_graph_modified()) { return status; } else if (!status.ok() && !is_graph_modified()) { VLOG(3) << "Skip specialization error: " << status.message(); copy_node(); } continue; } else { VLOG(2) << "Skip function specialization: " << func->signature().name(); copy_node(); } } RestoreTensorMapping(ctx, optimized_graph); *optimized_graph->mutable_versions() = item.graph.versions(); *optimized_graph->mutable_library() = PruneFunctionLibrary(ctx.function_library(), *optimized_graph); return absl::OkStatus(); } Status FunctionOptimizer::Optimize(Cluster*, const GrapplerItem& item, GraphDef* optimized_graph) { if (item.graph.library().function_size() == 0) { return absl::AbortedError("Nothing to do."); } TF_RETURN_IF_ERROR(RunFunctionOptimizerPass(item, optimized_graph)); return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/function_optimizer.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/gtl/flatset.h" namespace tensorflow { namespace grappler { namespace { constexpr char kDevice[] = "/job:localhost/replica:0/task:0/device:CPU:0"; } class FunctionOptimizerTest : public GrapplerTest {}; TEST_F(FunctionOptimizerTest, InlineFunction_SimpleFunction) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); GrapplerItem item; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("y", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, kDevice), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, kDevice)}, { test::function::XTimesTwo(), }); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); const string arg0 = "Func/y/input/_0"; const string ret0 = "Func/y/output/_1"; const Tensor kTwo = test::AsScalar<int64_t>(2); GraphDef expected = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}), NDef(arg0, "Identity", {"x"}, {{"T", DT_FLOAT}}), NDef("y/two", "Const", {}, {{"dtype", DT_INT64}, {"value", kTwo}}), NDef("y/scale", "Cast", {"y/two"}, {{"DstT", DT_FLOAT}, {"SrcT", DT_INT64}}), NDef("y/y", "Mul", {arg0, "y/scale"}, {{"T", DT_FLOAT}}), NDef(ret0, "Identity", {"y/y"}, {{"T", DT_FLOAT}}), NDef("z", "Identity", {ret0}, {{"T", DT_FLOAT}})}, {}); for (NodeDef& node : *expected.mutable_node()) node.set_device(kDevice); CompareGraphs(expected, output); Tensor pi = test::AsScalar<float>(3.14f); item.fetch = {"z"}; item.feed.emplace_back("x", pi); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(FunctionOptimizerTest, InlineFunction_FixedTypeFunction) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); const Tensor kTwo = test::AsScalar<float>(2.0f); FunctionDef x_times_two = FunctionDefHelper::Define( "XTimesTwo", {"x: float"}, {"y: float"}, {}, { {{"two"}, "Const", {}, {{"value", kTwo}, {"dtype", DT_FLOAT}}}, {{"enter"}, "Enter", {"x"}, {{"T", DT_FLOAT}, {"frame_name", "frame"}}}, {{"y"}, "Mul", {"x", "two"}, {{"T", DT_FLOAT}}}, }); GrapplerItem item; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("y", "XTimesTwo", {"x"}, {}, kDevice), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, kDevice)}, { x_times_two, }); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); for (const NodeDef& node : output.node()) { EXPECT_NE(node.op(), "XTimesTwo"); } EXPECT_EQ(output.library().function_size(), 0); Tensor pi = test::AsScalar<float>(3.14f); item.fetch = {"z"}; item.feed.emplace_back("x", pi); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(FunctionOptimizerTest, InlineFunction_FunctionWithOutputMapping) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); FunctionDef func = FunctionDefHelper::Create( "Exp_func", {"in: float"}, {"out: float"}, {}, {{{"Linear_func"}, "Identity", {"in"}, {{"T", DT_FLOAT}}}, {{"Exp"}, "Exp", {"Linear_func:output:0"}, {{"T", DT_FLOAT}}}}, {{"out", "Exp:y:0"}}); GrapplerItem item; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("y", "Exp_func", {"x"}, {}, kDevice), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, kDevice)}, { func, }); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { EXPECT_NE(node.op(), "Exp_func"); } EXPECT_EQ(output.library().function_size(), 0); Tensor pi = test::AsScalar<float>(3.14f); item.fetch = {"z"}; item.feed.emplace_back("x", pi); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(FunctionOptimizerTest, InlineFunction_FunctionWithInputForwarding) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); FunctionDef func = FunctionDefHelper::Create( "ForwardInputs", {"in0: float", "in1: float", "arg2: float", "arg3: int32", "arg4: float"}, {"out0: float", "arg2: float", "arg3: int32"}, {}, {}, {{"out0", "in0"}, {"arg2", "arg2"}, {"arg3", "arg3"}}); GrapplerItem item; item.graph = test::function::GDef( {NDef("x0", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("x1", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("x2", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("x3", "Placeholder", {}, {{"dtype", DT_INT32}}, kDevice), NDef("x4", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("y", "ForwardInputs", {"x0", "x1", "x2", "x3", "x4"}, {}, kDevice), NDef("z0", "Identity", {"y:0"}, {{"T", DT_FLOAT}}, kDevice), NDef("z1", "Identity", {"y:1"}, {{"T", DT_FLOAT}}, kDevice), NDef("z2", "Identity", {"y:2"}, {{"T", DT_INT32}}, kDevice)}, { func, }); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { EXPECT_NE(node.op(), "ForwardInputs"); } EXPECT_EQ(output.library().function_size(), 0); item.fetch = {"z0", "z1", "z2"}; item.feed.emplace_back("x0", test::AsScalar<float>(3.14f)); item.feed.emplace_back("x1", test::AsScalar<float>(2.7f)); item.feed.emplace_back("x2", test::AsScalar<float>(1.0f)); item.feed.emplace_back("x4", test::AsScalar<float>(-1.0f)); item.feed.emplace_back("x3", test::AsScalar<int>(1234)); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); test::ExpectTensorEqual<float>(tensors_expected[1], tensors[1]); test::ExpectTensorEqual<int>(tensors_expected[2], tensors[2]); } TEST_F(FunctionOptimizerTest, InlineFunction_FunctionWithoutInput) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); const Tensor kTwo = test::AsScalar<int64_t>(2); FunctionDef func = FunctionDefHelper::Define( "GenerateTwo", {}, {"o: T"}, {"T: {float, double}"}, {{{"two"}, "Const", {}, {{"value", kTwo}, {"dtype", DT_INT64}}}, {{"o"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", "$T"}}}}); GrapplerItem item; item.graph = test::function::GDef( {NDef("y", "GenerateTwo", {}, {{"T", DT_FLOAT}}, kDevice), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, kDevice)}, { func, }); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { EXPECT_NE(node.op(), "GenerateTwo"); } EXPECT_EQ(output.library().function_size(), 0); item.fetch = {"z"}; auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(FunctionOptimizerTest, InlineFunction_FunctionWithNestedFunctionCall) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"output"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "output:z:0"}}); FunctionDef square_func = FunctionDefHelper::Create( "MySquare", {"x:T"}, {"z:T"}, {"T: {float, double}"}, {{{"output"}, "MyMul", {"x", "x"}, {{"T", "$T"}}}}, {{"z", "output:z:0"}}); GrapplerItem item; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("square", "MySquare", {"a"}, {{"T", DT_FLOAT}}, kDevice), NDef("outputs", "Identity", {"square:0"}, {{"T", DT_FLOAT}}, kDevice)}, {mul_func, square_func}); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { EXPECT_NE(node.op(), "MySquare"); EXPECT_NE(node.op(), "MyMul"); } EXPECT_EQ(output.library().function_size(), 0); item.fetch = {"outputs"}; item.feed.emplace_back("a", test::AsScalar<float>(2.0f)); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(FunctionOptimizerTest, InlineSymbolicGradient_TestFunc) { FunctionOptimizer optimizer(RewriterConfig::ON, true); tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); FunctionDef func = FunctionDefHelper::Define( "TestFunc", {"x:float", "y:float"}, {"l:float"}, {}, { {{"z"}, "Add", {"x", "y"}, {{"T", DT_FLOAT}}}, FunctionDefHelper::Const("zero", 0), FunctionDefHelper::Const("one", 1), {{"r"}, "Rank", {"z"}, {{"T", DT_FLOAT}}}, {{"indices"}, "Range", {"zero", "r", "one"}}, {{"l"}, "Sum", {"z", "indices"}, {{"T", DT_FLOAT}}}, }); auto x = ops::Const(scope, 1.0f); auto y = ops::Const(scope, 2.0f); auto dl = ops::Const(scope, 3.0f); NameAttrList fn; fn.set_name("TestFunc"); (*fn.mutable_attr())["T"].set_type(DT_FLOAT); auto g0 = ops::SymbolicGradient(scope, std::initializer_list<Input>{x, y, dl}, {DT_FLOAT, DT_FLOAT}, fn); auto out1 = ops::Identity(scope.WithOpName("out1"), g0.output[0]); auto out2 = ops::Identity(scope.WithOpName("out2"), g0.output[1]); GrapplerItem item; TF_EXPECT_OK(scope.ToGraphDef(&item.graph)); *item.graph.mutable_library()->add_function() = func; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { EXPECT_NE(node.op(), "SymbolicGradient"); } EXPECT_EQ(output.library().function_size(), 0); std::vector<Tensor> expected = EvaluateNodes(item.graph, {"out1", "out2"}, {}); std::vector<Tensor> optimized = EvaluateNodes(output, {"out1", "out2"}, {}); test::ExpectTensorEqual<float>(expected[0], optimized[0]); test::ExpectTensorEqual<float>(expected[1], optimized[1]); } TEST_F(FunctionOptimizerTest, InlineSymbolicGradient_IdentityFunc) { FunctionOptimizer optimizer(RewriterConfig::ON, true); tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); FunctionDef func = FunctionDefHelper::Create( "Identity_func", {"in: float"}, {"out: float"}, {}, {{{"Identity"}, "Identity", {"in"}, {{"T", DT_FLOAT}}}}, {{"out", "Identity:output:0"}}); auto x = ops::Const(scope, 1.0f, {3, 5, 7}); auto z = ops::Const(scope, 3.0f, {3, 5, 7}); NameAttrList fn; fn.set_name("Identity_func"); auto g0 = ops::SymbolicGradient(scope, std::initializer_list<Input>{x, z}, {DT_FLOAT}, fn); auto out = ops::Identity(scope.WithOpName("out"), g0.output[0]); GrapplerItem item; TF_EXPECT_OK(scope.ToGraphDef(&item.graph)); *item.graph.mutable_library()->add_function() = func; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); for (const NodeDef& node : output.node()) { EXPECT_NE(node.op(), "SymbolicGradient"); } EXPECT_EQ(output.library().function_size(), 0); std::vector<Tensor> expected = EvaluateNodes(item.graph, {"out"}, {}); std::vector<Tensor> optimized = EvaluateNodes(output, {"out"}, {}); test::ExpectTensorEqual<float>(expected[0], optimized[0]); } TEST_F(FunctionOptimizerTest, InlineSymbolicGradientNoInlineFunc) { FunctionOptimizer optimizer(RewriterConfig::ON, true); FunctionDef func = FunctionDefHelper::Define( "TestFunc", {"x:float", "y:float"}, {"l:float"}, {}, { {{"z"}, "Add", {"x", "y"}, {{"T", DT_FLOAT}}}, FunctionDefHelper::Const("zero", 0), FunctionDefHelper::Const("one", 1), {{"r"}, "Rank", {"z"}, {{"T", DT_FLOAT}}}, {{"indices"}, "Range", {"zero", "r", "one"}}, {{"l"}, "Sum", {"z", "indices"}, {{"T", DT_FLOAT}}}, }); (*func.mutable_attr())["_noinline"].set_b(true); tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); auto x = ops::Const(scope, 1.0f); auto y = ops::Const(scope, 2.0f); auto dl = ops::Const(scope, 3.0f); NameAttrList fn; fn.set_name("TestFunc"); (*fn.mutable_attr())["T"].set_type(DT_FLOAT); auto g0 = ops::SymbolicGradient(scope, std::initializer_list<Input>{x, y, dl}, {DT_FLOAT, DT_FLOAT}, fn); auto out1 = ops::Identity(scope.WithOpName("out1"), g0.output[0]); auto out2 = ops::Identity(scope.WithOpName("out2"), g0.output[1]); GrapplerItem item; TF_EXPECT_OK(scope.ToGraphDef(&item.graph)); *item.graph.mutable_library()->add_function() = func; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); CompareGraphs(item.graph, output); } TEST_F(FunctionOptimizerTest, InlineIndirectFunctionSimpleFunction) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::AGGRESSIVE, true); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "mul:z:0"}}); GrapplerItem item; item.fetch = {"d"}; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("c", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}}, kDevice), NDef("d", "Identity", {"c"}, {{"T", DT_FLOAT}}, kDevice)}, {mul_func} ); Tensor pi = test::AsScalar<float>(3.14f); item.feed.emplace_back("a", pi); item.feed.emplace_back("b", pi); const string input_x = "Func/c/input/_0"; const string input_y = "Func/c/input/_1"; const string output_z = "Func/c/output/_2"; { GraphDef optimized_graph; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef(input_x, "Identity", {"a"}, {{"T", DT_FLOAT}}, kDevice), NDef(input_y, "Identity", {"b"}, {{"T", DT_FLOAT}}, kDevice), NDef("c/mul", "Mul", {input_x, input_y}, {{"T", DT_FLOAT}}, kDevice), NDef(output_z, "Identity", {"c/mul"}, {{"T", DT_FLOAT}}), NDef("d", "Identity", {output_z}, {{"T", DT_FLOAT}}, kDevice)}, {mul_func}); CompareGraphs(expected, optimized_graph); GrapplerItem optimized = item.WithGraph(std::move(optimized_graph)); auto tensors_expected = EvaluateFetchNodes(item); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors_expected.size(), 1); ASSERT_EQ(tensors.size(), tensors_expected.size()); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } { GraphDef optimized_graph; TF_EXPECT_OK(item.AddDevice(kDevice)); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef(input_x, "Identity", {"a"}, {{"T", DT_FLOAT}}, kDevice), NDef(input_y, "Identity", {"b"}, {{"T", DT_FLOAT}}, kDevice), NDef("c/mul", "Mul", {input_x, input_y}, {{"T", DT_FLOAT}}, kDevice), NDef(output_z, "Identity", {"c/mul"}, {{"T", DT_FLOAT}}, kDevice), NDef("d", "Identity", {output_z}, {{"T", DT_FLOAT}}, kDevice)}, {mul_func}); CompareGraphs(expected, optimized_graph); GrapplerItem optimized = item.WithGraph(std::move(optimized_graph)); auto tensors_expected = EvaluateFetchNodes(item); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors_expected.size(), 1); ASSERT_EQ(tensors.size(), tensors_expected.size()); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } } TEST_F(FunctionOptimizerTest, InlineIndirectFunctionWithControlDependencies) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::ON, true); const Tensor kOne = test::AsScalar<float>(1.0); const Tensor kTwo = test::AsScalar<float>(2.0); const TensorShape scalar = TensorShape({}); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T", "v: resource"}, {"z:T"}, {"T: {float, double}"}, {{{"one"}, "Const", {}, {{"value", kOne}, {"dtype", DT_FLOAT}}}, {{"add"}, "AssignAddVariableOp", {"v", "one:output:0"}, {{"dtype", DT_FLOAT}}}, {{"mul"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "mul:z:0"}}, {{"size_effects", "add"}}); GrapplerItem item; TF_EXPECT_OK(item.AddDevice(kDevice)); item.fetch = {"out_1", "out_2"}; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("v", "VarHandleOp", {}, {{"dtype", DT_FLOAT}, {"shape", scalar}}), NDef("init_v", "AssignVariableOp", {"v", "a"}, {{"dtype", DT_FLOAT}}, kDevice), NDef("f1", "PartitionedCall", {"a", "b", "v", "^init_v"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}}, kDevice), NDef("f2", "PartitionedCall", {"f1", "f1", "v", "^f1"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}}, kDevice), NDef("out_1", "Identity", {"f2"}, {{"T", DT_FLOAT}}, kDevice), NDef("out_2", "ReadVariableOp", {"v", "^f1", "^f2"}, {{"dtype", DT_FLOAT}}, kDevice)}, {mul_func}); GraphDef optimized_graph; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("v", "VarHandleOp", {}, {{"dtype", DT_FLOAT}, {"shape", scalar}}, kDevice), NDef("init_v", "AssignVariableOp", {"v", "a"}, {{"dtype", DT_FLOAT}}, kDevice), NDef("Func/f1/input_control_node/_0", "NoOp", {"^init_v"}, {}, kDevice), NDef("Func/f1/input/_1", "Identity", {"a", "^Func/f1/input_control_node/_0"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f1/input/_2", "Identity", {"b", "^Func/f1/input_control_node/_0"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f1/input/_3", "Identity", {"v", "^Func/f1/input_control_node/_0"}, {{"T", DT_RESOURCE}}, kDevice), NDef("f1/one", "Const", {"^Func/f1/input_control_node/_0"}, {{"dtype", DT_FLOAT}, {"value", kOne}}, kDevice), NDef("f1/mul", "Mul", {"Func/f1/input/_1", "Func/f1/input/_2"}, {{"T", DT_FLOAT}}, kDevice), NDef("f1/add", "AssignAddVariableOp", {"Func/f1/input/_3", "f1/one"}, {{"dtype", DT_FLOAT}}, kDevice), NDef("Func/f1/output/_4", "Identity", {"f1/mul"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f1/output_control_node/_5", "NoOp", {"^f1/add"}, {}, kDevice), NDef("Func/f2/input_control_node/_6", "NoOp", {"^Func/f1/output_control_node/_5"}, {}, kDevice), NDef("Func/f2/input/_7", "Identity", {"Func/f1/output/_4", "^Func/f2/input_control_node/_6"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f2/input/_8", "Identity", {"Func/f1/output/_4", "^Func/f2/input_control_node/_6"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f2/input/_9", "Identity", {"v", "^Func/f2/input_control_node/_6"}, {{"T", DT_RESOURCE}}, kDevice), NDef("f2/one", "Const", {"^Func/f2/input_control_node/_6"}, {{"dtype", DT_FLOAT}, {"value", kOne}}, kDevice), NDef("f2/add", "AssignAddVariableOp", {"Func/f2/input/_9", "f2/one"}, {{"dtype", DT_FLOAT}}, kDevice), NDef("f2/mul", "Mul", {"Func/f2/input/_7", "Func/f2/input/_8"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f2/output/_10", "Identity", {"f2/mul"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f2/output_control_node/_11", "NoOp", {"^f2/add"}, {}, kDevice), NDef("out_1", "Identity", {"Func/f2/output/_10"}, {{"T", DT_FLOAT}}, kDevice), NDef("out_2", "ReadVariableOp", {"v", "^Func/f1/output_control_node/_5", "^Func/f2/output_control_node/_11"}, {{"dtype", DT_FLOAT}}, kDevice)}, {mul_func}); CompareGraphs(expected, optimized_graph); item.feed.emplace_back("a", kOne); item.feed.emplace_back("b", kTwo); auto tensors_expected = EvaluateFetchNodes(item); ASSERT_EQ(tensors_expected.size(), 2); EXPECT_EQ(tensors_expected[0].flat<float>()(0), 4.0); EXPECT_EQ(tensors_expected[1].flat<float>()(0), 3.0); GrapplerItem optimized = item.WithGraph(std::move(optimized_graph)); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors.size(), 2); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); test::ExpectTensorEqual<float>(tensors_expected[1], tensors[1]); } TEST_F(FunctionOptimizerTest, InlineIndirectFunctionWithDevicePlacement) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::AGGRESSIVE, true); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "mul:z:0"}}); (*mul_func.mutable_node_def())[0].set_device("/device:CPU:1"); const string cpu0 = "/job:work/replica:1/task:1/device:CPU:0"; const string cpu1 = "/job:work/replica:1/task:1/device:CPU:1"; GrapplerItem item; item.fetch = {"d"}; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu0), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu1), NDef("c", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}}, cpu0), NDef("d", "Identity", {"c"}, {{"T", DT_FLOAT}}, cpu0)}, {mul_func}); ASSERT_TRUE(item.InferDevicesFromGraph().ok()); GraphDef optimized_graph; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); const string input_x = "Func/c/input/_0"; const string input_y = "Func/c/input/_1"; const string output_z = "Func/c/output/_2"; GraphDef expected = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu0), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu1), NDef(input_x, "Identity", {"a"}, {{"T", DT_FLOAT}}, cpu0), NDef(input_y, "Identity", {"b"}, {{"T", DT_FLOAT}}, cpu1), NDef("c/mul", "Mul", {input_x, input_y}, {{"T", DT_FLOAT}}, cpu1), NDef(output_z, "Identity", {"c/mul"}, {{"T", DT_FLOAT}}, cpu1), NDef("d", "Identity", {output_z}, {{"T", DT_FLOAT}}, cpu0)}, {mul_func}); CompareGraphs(expected, optimized_graph); } TEST_F(FunctionOptimizerTest, InlineMultipleIndirectFunctionWithDevicePlacement) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::AGGRESSIVE, true); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "mul:z:0"}}); (*mul_func.mutable_node_def())[0].set_device("/device:CPU:1"); const string cpu0 = "/job:work/replica:1/task:1/device:CPU:0"; const string cpu1 = "/job:work/replica:1/task:1/device:CPU:1"; GrapplerItem item; item.fetch = {"e"}; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu0), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu1), NDef("c", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}}, cpu0), NDef("d", "PartitionedCall", {"a", "c"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}}, cpu0), NDef("e", "Identity", {"d"}, {{"T", DT_FLOAT}}, cpu0)}, {mul_func}); ASSERT_TRUE(item.InferDevicesFromGraph().ok()); GraphDef optimized_graph; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); const string input_c_x = "Func/c/input/_0"; const string input_c_y = "Func/c/input/_1"; const string output_c_z = "Func/c/output/_2"; const string input_d_x = "Func/d/input/_3"; const string input_d_y = "Func/d/input/_4"; const string output_d_z = "Func/d/output/_5"; GraphDef expected = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu0), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu1), NDef(input_c_x, "Identity", {"a"}, {{"T", DT_FLOAT}}, cpu0), NDef(input_c_y, "Identity", {"b"}, {{"T", DT_FLOAT}}, cpu1), NDef("c/mul", "Mul", {input_c_x, input_c_y}, {{"T", DT_FLOAT}}, cpu1), NDef(output_c_z, "Identity", {"c/mul"}, {{"T", DT_FLOAT}}, cpu1), NDef(input_d_x, "Identity", {"a"}, {{"T", DT_FLOAT}}, cpu0), NDef(input_d_y, "Identity", {output_c_z}, {{"T", DT_FLOAT}}, cpu1), NDef("d/mul", "Mul", {input_d_x, input_d_y}, {{"T", DT_FLOAT}}, cpu1), NDef(output_d_z, "Identity", {"d/mul"}, {{"T", DT_FLOAT}}, cpu1), NDef("e", "Identity", {output_d_z}, {{"T", DT_FLOAT}}, cpu0)}, {mul_func}); CompareGraphs(expected, optimized_graph); } TEST_F(FunctionOptimizerTest, InlineIndirectFunctionWithControlDependencyAndNoSideEffects) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::AGGRESSIVE, true); const Tensor kOne = test::AsScalar<float>(1.0); const Tensor kTwo = test::AsScalar<float>(2.0); const TensorShape scalar = TensorShape({}); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "mul:z:0"}}); GrapplerItem item; TF_EXPECT_OK(item.AddDevice(kDevice)); item.fetch = {"out"}; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("c", "NoOp", {}, {}, kDevice), NDef("f1", "PartitionedCall", {"a", "b", "^c"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}}, kDevice), NDef("f2", "PartitionedCall", {"f1", "f1", "^f1"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}}, kDevice), NDef("out", "Identity", {"f2"}, {{"T", DT_FLOAT}}, kDevice)}, {mul_func}); GraphDef optimized_graph; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("c", "NoOp", {}, {}, kDevice), NDef("Func/f1/input_control_node/_0", "NoOp", {"^c"}, {}, kDevice), NDef("Func/f1/input/_1", "Identity", {"a", "^Func/f1/input_control_node/_0"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f1/input/_2", "Identity", {"b", "^Func/f1/input_control_node/_0"}, {{"T", DT_FLOAT}}, kDevice), NDef("f1/mul", "Mul", {"Func/f1/input/_1", "Func/f1/input/_2"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f1/output/_3", "Identity", {"f1/mul"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f1/output_control_node/_4", "NoOp", {"^Func/f1/input_control_node/_0"}, {}, kDevice), NDef("Func/f2/input_control_node/_5", "NoOp", {"^Func/f1/output_control_node/_4"}, {}, kDevice), NDef("Func/f2/input/_6", "Identity", {"Func/f1/output/_3", "^Func/f2/input_control_node/_5"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f2/input/_7", "Identity", {"Func/f1/output/_3", "^Func/f2/input_control_node/_5"}, {{"T", DT_FLOAT}}, kDevice), NDef("f2/mul", "Mul", {"Func/f2/input/_6", "Func/f2/input/_7"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/f2/output/_8", "Identity", {"f2/mul"}, {{"T", DT_FLOAT}}, kDevice), NDef("out", "Identity", {"Func/f2/output/_8"}, {{"T", DT_FLOAT}}, kDevice)}, {mul_func}); CompareGraphs(expected, optimized_graph); item.feed.emplace_back("a", kOne); item.feed.emplace_back("b", kTwo); auto tensors_expected = EvaluateFetchNodes(item); ASSERT_EQ(tensors_expected.size(), 1); GrapplerItem optimized = item.WithGraph(std::move(optimized_graph)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(FunctionOptimizerTest, InlineIndirectFunctionDoNotInlineDeadOutputs) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::AGGRESSIVE, true); FunctionDef dead_outputs = FunctionDefHelper::Create( "DeadOutputs", {"x:T", "cond:bool"}, {"z:T"}, {"T: {float, double}"}, { {{"switch"}, "Switch", {"x", "cond"}, {{"T", "$T"}}}, {{"if_false"}, "Identity", {"switch:output_false:0"}, {{"T", "$T"}}}, {{"if_true"}, "Identity", {"switch:output_true:0"}, {{"T", "$T"}}}, }, {{"z", "if_false:output:0"}}); FunctionDef proxy_func = FunctionDefHelper::Create( "Proxy", {"x:T", "cond:bool"}, {"z:T"}, {"T: {float, double}"}, {{{"dead"}, "DeadOutputs", {"x", "cond"}, {{"T", "$T"}}}}, {{"z", "dead:z:0"}}); GrapplerItem item; item.fetch = {"out0", "out1"}; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_BOOL}}, kDevice), NDef("fn0", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_BOOL}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("DeadOutputs", {{"T", DT_FLOAT}})}}, kDevice), NDef("fn1", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_BOOL}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("Proxy", {{"T", DT_FLOAT}})}}, kDevice), NDef("out0", "Identity", {"fn0"}, {{"T", DT_FLOAT}}, kDevice), NDef("out1", "Identity", {"fn1"}, {{"T", DT_FLOAT}}, kDevice)}, {dead_outputs, proxy_func}); GraphDef optimized_graph; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected = item.graph; CompareGraphs(expected, optimized_graph); const Tensor one = test::AsScalar<float>(1.0); item.feed.emplace_back("a", one); item.feed.emplace_back("b", test::AsScalar<bool>(false)); auto tensors = EvaluateFetchNodes(item); ASSERT_EQ(tensors.size(), 2); test::ExpectTensorEqual<float>(tensors[0], one); test::ExpectTensorEqual<float>(tensors[1], one); } TEST_F(FunctionOptimizerTest, InlineIndirectFunctionWithMergedDeadTensors) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::AGGRESSIVE, true); FunctionDef no_dead_outputs = FunctionDefHelper::Create( "NoDeadOutputs", {"x:T", "cond:bool"}, {"z:T"}, {"T: {float, double}"}, { {{"switch"}, "Switch", {"x", "cond"}, {{"T", "$T"}}}, {{"if_false"}, "Identity", {"switch:output_false:0"}, {{"T", "$T"}}}, {{"if_true"}, "Identity", {"switch:output_true:0"}, {{"T", "$T"}}}, {{"merge"}, "Merge", {"if_false:output:0", "if_true:output:0"}, {{"T", "$T"}, {"N", 2}}}, }, {{"z", "merge:output:0"}}); GrapplerItem item; TF_EXPECT_OK(item.AddDevice(kDevice)); item.fetch = {"out"}; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_BOOL}}, kDevice), NDef("fn", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_BOOL}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("NoDeadOutputs", {{"T", DT_FLOAT}})}}, kDevice), NDef("out", "Identity", {"fn"}, {{"T", DT_FLOAT}}, kDevice)}, {no_dead_outputs}); GraphDef optimized_graph; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_BOOL}}, kDevice), NDef("Func/fn/input/_0", "Identity", {"a"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/fn/input/_1", "Identity", {"b"}, {{"T", DT_BOOL}}, kDevice), NDef("fn/switch", "Switch", {"Func/fn/input/_0", "Func/fn/input/_1"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn/if_false", "Identity", {"fn/switch"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn/if_true", "Identity", {"fn/switch:1"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn/merge", "Merge", {"fn/if_false", "fn/if_true"}, {{"T", DT_FLOAT}, {"N", 2}}, kDevice), NDef("Func/fn/output/_2", "Identity", {"fn/merge"}, {{"T", DT_FLOAT}}, kDevice), NDef("out", "Identity", {"Func/fn/output/_2"}, {{"T", DT_FLOAT}}, kDevice)}, {no_dead_outputs}); CompareGraphs(expected, optimized_graph); const Tensor one = test::AsScalar<float>(1.0); item.feed.emplace_back("a", one); item.feed.emplace_back("b", test::AsScalar<bool>(false)); auto tensors_expected = EvaluateFetchNodes(item); ASSERT_EQ(tensors_expected.size(), 1); GrapplerItem optimized = item.WithGraph(std::move(optimized_graph)); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<float>(tensors[0], tensors_expected[0]); } TEST_F(FunctionOptimizerTest, InlineIndirectFunctionWithNestedFunctionCall) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::AGGRESSIVE, true); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "mul:z:0"}}); FunctionDef square_func = FunctionDefHelper::Create( "MySquare", {"x:T"}, {"output:T"}, {"T: {float, double}"}, {{{"square"}, "PartitionedCall", {"x", "x"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}}}}, {{"output", "square:output:0"}}); GrapplerItem item; TF_EXPECT_OK(item.AddDevice(kDevice)); item.fetch = {"c"}; item.graph = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "PartitionedCall", {"a"}, {{"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MySquare", {{"T", DT_FLOAT}})}}, kDevice), NDef("c", "Identity", {"b"}, {{"T", DT_FLOAT}}, kDevice)}, {mul_func, square_func}); GraphDef optimized_graph; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected = test::function::GDef( {NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("Func/b/input/_0", "Identity", {"a"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/b/square/input/_2", "Identity", {"Func/b/input/_0"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/b/square/input/_3", "Identity", {"Func/b/input/_0"}, {{"T", DT_FLOAT}}, kDevice), NDef("b/square/mul", "Mul", {"Func/b/square/input/_2", "Func/b/square/input/_3"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/b/square/output/_4", "Identity", {"b/square/mul"}, {{"T", DT_FLOAT}}, kDevice), NDef("Func/b/output/_1", "Identity", {"Func/b/square/output/_4"}, {{"T", DT_FLOAT}}, kDevice), NDef("c", "Identity", {"Func/b/output/_1"}, {{"T", DT_FLOAT}}, kDevice)}, {mul_func}); CompareGraphs(expected, optimized_graph); Tensor three = test::AsScalar<float>(3.0f); item.feed.emplace_back("a", three); GrapplerItem optimized = item.WithGraph(std::move(optimized_graph)); auto tensors_expected = EvaluateFetchNodes(item); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors_expected.size(), 1); ASSERT_EQ(tensors.size(), tensors_expected.size()); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } GrapplerItem ConditionalAdd() { using test::function::NDef; using FDH = FunctionDefHelper; FunctionDef add_func = FDH::Create( "MyAdd", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"add"}, "Add", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "add:z:0"}}); FunctionDef mul_func = FDH::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"mul"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "mul:z:0"}}); FunctionDef add_or_mul_func = FDH::Create( "AddOrMul", {"cond:bool", "x:float", "y:float"}, {"z:float"}, {}, { {{"if_node"}, "If", {"cond", "x", "y"}, { {"Tcond", DT_BOOL}, {"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"then_branch", FDH::FunctionRef("MyAdd", {{"T", DT_FLOAT}})}, {"else_branch", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}, {"_lower_using_switch_merge", true}, }}, }, {{"z", "if_node:output:0"}}, {{"side_effect", "if_node"}}); GrapplerItem item; item.fetch = {"d"}; item.graph = test::function::GDef( {NDef("is_add", "Placeholder", {}, {{"dtype", DT_BOOL}}, kDevice), NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("c", "PartitionedCall", {"is_add", "a", "b"}, {{"Tin", DataTypeSlice{DT_BOOL, DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("AddOrMul")}}, kDevice), NDef("d", "Identity", {"c", "^c"}, {{"T", DT_FLOAT}}, kDevice)}, {add_or_mul_func, add_func, mul_func}); return item; } TEST_F(FunctionOptimizerTest, InlineIndirectFunctionWithFunctionalControlFlow) { FunctionOptimizer optimizer(RewriterConfig::AGGRESSIVE, true); GrapplerItem item = ConditionalAdd(); GraphDef optimized_graph; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); const auto count_nodes_with_op = [&](const string& op) { return absl::c_count_if(optimized_graph.node(), [&](const NodeDef& node) { return node.op() == op; }); }; EXPECT_EQ(count_nodes_with_op("PartitionedCall"), 0); EXPECT_EQ(count_nodes_with_op("If"), 0); EXPECT_EQ(count_nodes_with_op("Switch"), 3); EXPECT_EQ(count_nodes_with_op("Merge"), 2); GrapplerItem optimized = item.WithGraph(std::move(optimized_graph)); Tensor one = test::AsScalar<float>(1.0); Tensor two = test::AsScalar<float>(2.0); Tensor three = test::AsScalar<float>(3.0); const auto feed_args = [&](bool is_add) { std::vector<std::pair<string, Tensor>> feed; feed.emplace_back("a", one); feed.emplace_back("b", two); feed.emplace_back("is_add", test::AsScalar<bool>(is_add)); return feed; }; { item.feed = feed_args(true); optimized.feed = feed_args(true); auto tensors_expected = EvaluateFetchNodes(item); ASSERT_EQ(tensors_expected.size(), 1); test::ExpectTensorEqual<float>(tensors_expected[0], three); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors.size(), tensors_expected.size()); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } { item.feed = feed_args(false); optimized.feed = feed_args(false); auto tensors_expected = EvaluateFetchNodes(item); ASSERT_EQ(tensors_expected.size(), 1); test::ExpectTensorEqual<float>(tensors_expected[0], two); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors.size(), tensors_expected.size()); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } } TEST_F(FunctionOptimizerTest, InlineIndirectFunctionDontLowerControlFlow) { FunctionOptimizer optimizer(RewriterConfig::AGGRESSIVE, false); GrapplerItem item = ConditionalAdd(); GraphDef optimized_graph; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); const auto count_nodes_with_op = [&](const string& op) { return absl::c_count_if(optimized_graph.node(), [&](const NodeDef& node) { return node.op() == op; }); }; EXPECT_EQ(count_nodes_with_op("PartitionedCall"), 0); EXPECT_EQ(count_nodes_with_op("If"), 1); EXPECT_EQ(count_nodes_with_op("Switch"), 0); EXPECT_EQ(count_nodes_with_op("Merge"), 0); GrapplerItem optimized = item.WithGraph(std::move(optimized_graph)); Tensor one = test::AsScalar<float>(1.0); Tensor two = test::AsScalar<float>(2.0); Tensor three = test::AsScalar<float>(3.0); const auto feed_args = [&](bool is_add) { std::vector<std::pair<string, Tensor>> feed; feed.emplace_back("a", one); feed.emplace_back("b", two); feed.emplace_back("is_add", test::AsScalar<bool>(is_add)); return feed; }; { item.feed = feed_args(true); optimized.feed = feed_args(true); auto tensors_expected = EvaluateFetchNodes(item); ASSERT_EQ(tensors_expected.size(), 1); test::ExpectTensorEqual<float>(tensors_expected[0], three); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors.size(), tensors_expected.size()); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } { item.feed = feed_args(false); optimized.feed = feed_args(false); auto tensors_expected = EvaluateFetchNodes(item); ASSERT_EQ(tensors_expected.size(), 1); test::ExpectTensorEqual<float>(tensors_expected[0], two); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors.size(), tensors_expected.size()); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } } TEST_F(FunctionOptimizerTest, SpecializeFunctionXTimesTwo) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); FunctionDef x_times_two = test::function::XTimesTwo(); (*x_times_two.mutable_attr())["_noinline"].set_b(true); std::vector<FunctionDef> function_library = {x_times_two}; GrapplerItem item; item.id = "tf_graph"; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("y", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, kDevice), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, kDevice)}, function_library); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(1, output.library().function_size()); EXPECT_EQ("XTimesTwo_specialized_for_y_at_tf_graph", output.library().function(0).signature().name()); int count = 0; for (const NodeDef& node : output.node()) { if (node.name() == "y" && ++count) { EXPECT_EQ("XTimesTwo_specialized_for_y_at_tf_graph", node.op()); } } EXPECT_EQ(1, count); Tensor pi = test::AsScalar<float>(3.14f); item.fetch = {"z"}; item.feed.emplace_back("x", pi); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(FunctionOptimizerTest, SpecializeIndirectFunctionXTimesTwo) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); FunctionDef x_times_two = test::function::XTimesTwo(); (*x_times_two.mutable_attr())["_noinline"].set_b(true); std::vector<FunctionDef> function_library = {x_times_two}; GrapplerItem item; item.id = "tf_graph"; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("y", "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("XTimesTwo", {{"T", DT_FLOAT}})}}, kDevice), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, kDevice)}, function_library); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(1, output.library().function_size()); EXPECT_EQ("XTimesTwo_specialized_for_y_at_tf_graph", output.library().function(0).signature().name()); int count = 0; for (const NodeDef& node : output.node()) { if (node.name() == "y" && ++count) { EXPECT_EQ("PartitionedCall", node.op()); auto& func = AttrSlice(node).Find("f")->func(); EXPECT_EQ("XTimesTwo_specialized_for_y_at_tf_graph", func.name()); auto& tin = AttrSlice(node).Find("Tin")->list(); auto& tout = AttrSlice(node).Find("Tout")->list(); ASSERT_EQ(1, tin.type_size()); ASSERT_EQ(1, tout.type_size()); EXPECT_EQ(DT_FLOAT, tin.type(0)); EXPECT_EQ(DT_FLOAT, tout.type(0)); } } EXPECT_EQ(1, count); Tensor pi = test::AsScalar<float>(3.14f); item.fetch = {"z"}; item.feed.emplace_back("x", pi); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(FunctionOptimizerTest, SpecializeFunctionPushDownConstInput) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"output"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "output:z:0"}}); (*mul_func.mutable_attr())["_noinline"].set_b(true); std::vector<FunctionDef> function_library = {mul_func}; const Tensor kTwo = test::AsScalar<float>(2.0); GrapplerItem item; item.id = "tf_graph"; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("init", "NoOp", {}, {}, kDevice), NDef("two", "Const", {"^init", "^x"}, {{"dtype", DT_FLOAT}, {"value", kTwo}}, kDevice), NDef("y", "MyMul", {"x", "two"}, {{"T", DT_FLOAT}}, kDevice), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, kDevice)}, function_library); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); ASSERT_EQ(1, output.library().function_size()); const FunctionDef& specialized = output.library().function(0); EXPECT_EQ("MyMul_specialized_for_y_at_tf_graph", specialized.signature().name()); EXPECT_EQ(1, specialized.signature().input_arg_size()); int count = 0; for (const NodeDef& node : output.node()) { if (node.name() == "y" && ++count) { ASSERT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("^init", node.input(1)); } } EXPECT_EQ(1, count); Tensor pi = test::AsScalar<float>(3.14f); item.fetch = {"z"}; item.feed.emplace_back("x", pi); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(FunctionOptimizerTest, SpecializeIndirectFunctionPushDownConstInput) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, double}"}, {{{"output"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "output:z:0"}}); (*mul_func.mutable_attr())["_noinline"].set_b(true); std::vector<FunctionDef> function_library = {mul_func}; const Tensor kTwo = test::AsScalar<float>(2.0); GrapplerItem item; item.id = "tf_graph"; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("init", "NoOp", {}, {}, kDevice), NDef("two", "Const", {"^init", "^x"}, {{"dtype", DT_FLOAT}, {"value", kTwo}}, kDevice), NDef("y", "PartitionedCall", {"x", "two"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("MyMul", {{"T", DT_FLOAT}})}}, kDevice), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, kDevice)}, function_library); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); ASSERT_EQ(1, output.library().function_size()); const FunctionDef& specialized = output.library().function(0); EXPECT_EQ("MyMul_specialized_for_y_at_tf_graph", specialized.signature().name()); EXPECT_EQ(1, specialized.signature().input_arg_size()); int count = 0; for (const NodeDef& node : output.node()) { if (node.name() == "y" && ++count) { EXPECT_EQ("PartitionedCall", node.op()); ASSERT_EQ(2, node.input_size()); EXPECT_EQ("x", node.input(0)); EXPECT_EQ("^init", node.input(1)); auto& func = AttrSlice(node).Find("f")->func(); EXPECT_EQ("MyMul_specialized_for_y_at_tf_graph", func.name()); auto& tin = AttrSlice(node).Find("Tin")->list(); auto& tout = AttrSlice(node).Find("Tout")->list(); ASSERT_EQ(1, tin.type_size()); ASSERT_EQ(1, tout.type_size()); EXPECT_EQ(DT_FLOAT, tin.type(0)); EXPECT_EQ(DT_FLOAT, tout.type(0)); } } ASSERT_EQ(1, count); Tensor pi = test::AsScalar<float>(3.14f); item.fetch = {"z"}; item.feed.emplace_back("x", pi); auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); } TEST_F(FunctionOptimizerTest, SpecializeFunction_OncePerUniqueContext) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); FunctionDef mul_func = FunctionDefHelper::Create( "MyMul", {"x:T", "y:T"}, {"z:T"}, {"T: {float, int32}"}, {{{"output"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z", "output:z:0"}}); (*mul_func.mutable_attr())["_noinline"].set_b(true); std::vector<FunctionDef> function_library = {mul_func}; const Tensor kTwo = test::AsScalar<float>(2.0); const Tensor kThree = test::AsScalar<float>(3.0); GrapplerItem item; item.id = "tf_graph"; item.graph = test::function::GDef( {NDef("init", "NoOp", {}, {}, kDevice), NDef("xf", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("yf", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("xi", "Placeholder", {}, {{"dtype", DT_INT32}}, kDevice), NDef("yi", "Placeholder", {}, {{"dtype", DT_INT32}}, kDevice), NDef("two", "Const", {"^init", "^xf"}, {{"dtype", DT_FLOAT}, {"value", kTwo}}, kDevice), NDef("three", "Const", {"^init", "^xf"}, {{"dtype", DT_FLOAT}, {"value", kThree}}, kDevice), NDef("mul_1", "MyMul", {"xf", "yf"}, {{"T", DT_FLOAT}}, kDevice), NDef("mul_2", "MyMul", {"yf", "xf"}, {{"T", DT_FLOAT}}, kDevice), NDef("mul_3", "MyMul", {"xi", "yi"}, {{"T", DT_INT32}}, kDevice), NDef("mul_4", "MyMul", {"xf", "two"}, {{"T", DT_FLOAT}}, kDevice), NDef("mul_5", "MyMul", {"yf", "two"}, {{"T", DT_FLOAT}}, kDevice), NDef("mul_6", "MyMul", {"three", "xf"}, {{"T", DT_FLOAT}}, kDevice)}, function_library); item.fetch = {"mul_1", "mul_2", "mul_3", "mul_4", "mul_5", "mul_6"}; GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(4, output.library().function_size()); int count = 0; for (const NodeDef& node : output.node()) { if (node.name() == "mul_1" && ++count) { EXPECT_EQ("MyMul_specialized_for_mul_1_at_tf_graph", node.op()); ASSERT_EQ(2, node.input_size()); EXPECT_EQ("xf", node.input(0)); EXPECT_EQ("yf", node.input(1)); } else if (node.name() == "mul_2" && ++count) { EXPECT_EQ("MyMul_specialized_for_mul_1_at_tf_graph", node.op()); ASSERT_EQ(2, node.input_size()); EXPECT_EQ("yf", node.input(0)); EXPECT_EQ("xf", node.input(1)); } else if (node.name() == "mul_3" && ++count) { EXPECT_EQ("MyMul_specialized_for_mul_3_at_tf_graph", node.op()); ASSERT_EQ(2, node.input_size()); EXPECT_EQ("xi", node.input(0)); EXPECT_EQ("yi", node.input(1)); } else if (node.name() == "mul_4" && ++count) { EXPECT_EQ("MyMul_specialized_for_mul_4_at_tf_graph", node.op()); ASSERT_EQ(2, node.input_size()); EXPECT_EQ("xf", node.input(0)); EXPECT_EQ("^init", node.input(1)); } else if (node.name() == "mul_5" && ++count) { EXPECT_EQ("MyMul_specialized_for_mul_4_at_tf_graph", node.op()); ASSERT_EQ(3, node.input_size()); EXPECT_EQ("yf", node.input(0)); gtl::FlatSet<string> expected_ctrl = {"^init", "^xf"}; gtl::FlatSet<string> actual_ctrl = {node.input(1), node.input(2)}; EXPECT_EQ(expected_ctrl, actual_ctrl); } else if (node.name() == "mul_6" && ++count) { EXPECT_EQ("MyMul_specialized_for_mul_6_at_tf_graph", node.op()); ASSERT_EQ(2, node.input_size()); EXPECT_EQ("xf", node.input(0)); EXPECT_EQ("^init", node.input(1)); } } EXPECT_EQ(6, count); Tensor pi = test::AsScalar<float>(3.14f); Tensor four = test::AsScalar<int32>(4); item.feed = {{"xf", pi}, {"yf", pi}, {"xi", four}, {"yi", four}}; auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); test::ExpectTensorEqual<float>(tensors_expected[0], tensors[0]); test::ExpectTensorEqual<float>(tensors_expected[1], tensors[1]); test::ExpectTensorEqual<int32>(tensors_expected[2], tensors[2]); test::ExpectTensorEqual<float>(tensors_expected[3], tensors[3]); test::ExpectTensorEqual<float>(tensors_expected[4], tensors[4]); test::ExpectTensorEqual<float>(tensors_expected[5], tensors[5]); } TEST_F(FunctionOptimizerTest, SpecializeFunctionForUsedOutputTensors) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); FunctionDef my_func = FunctionDefHelper::Create( "MyFunc", {"x:T", "y:T"}, {"z1:T", "z2:T", "z3:T"}, {"T: {float, int32}"}, {{{"output1"}, "Mul", {"x", "y"}, {{"T", "$T"}}}, {{"output2"}, "Mul", {"x", "y"}, {{"T", "$T"}}}, {{"output3"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z1", "output1:z:0"}, {"z2", "output2:z:0"}, {"z3", "output3:z:0"}}); (*my_func.mutable_attr())["_noinline"].set_b(true); std::vector<FunctionDef> function_library = {my_func}; GrapplerItem item; item.id = "tf_graph"; item.graph = test::function::GDef( {NDef("init", "NoOp", {}, {}, kDevice), NDef("xf", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("yf", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("fn1", "MyFunc", {"xf", "yf"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn1_0", "Identity", {"fn1:0"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn1_1", "Identity", {"fn1:1"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn1_2", "Identity", {"fn1:2"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn2", "MyFunc", {"xf", "yf"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn2_0", "Identity", {"fn2:0"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn3", "MyFunc", {"xf", "yf"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn3_1", "Identity", {"fn3:1"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn4", "MyFunc", {"xf", "yf"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn4_2", "Identity", {"fn4:2"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn5", "MyFunc", {"xf", "yf"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn5_0", "Identity", {"fn5:0"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn5_2", "Identity", {"fn5:2"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn6", "MyFunc", {"xf", "yf"}, {{"T", DT_FLOAT}}, kDevice)}, function_library); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(6, output.library().function_size()); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "fn1" && ++found) { EXPECT_EQ("MyFunc_specialized_for_fn1_at_tf_graph", node.op()); } else if (node.name() == "fn2" && ++found) { EXPECT_EQ("MyFunc_specialized_for_fn2_at_tf_graph", node.op()); } else if (node.name() == "fn3" && ++found) { EXPECT_EQ("MyFunc_specialized_for_fn3_at_tf_graph", node.op()); } else if (node.name() == "fn4" && ++found) { EXPECT_EQ("MyFunc_specialized_for_fn4_at_tf_graph", node.op()); } else if (node.name() == "fn5" && ++found) { EXPECT_EQ("MyFunc_specialized_for_fn5_at_tf_graph", node.op()); } else if (node.name() == "fn6" && ++found) { EXPECT_EQ("MyFunc_specialized_for_fn6_at_tf_graph", node.op()); } if (node.name() == "use_fn3_1" && ++found) { EXPECT_EQ("fn3", node.input(0)); } else if (node.name() == "use_fn4_2" && ++found) { EXPECT_EQ("fn4", node.input(0)); } else if (node.name() == "use_fn5_0" && ++found) { EXPECT_EQ("fn5", node.input(0)); } else if (node.name() == "use_fn5_2" && ++found) { EXPECT_EQ("fn5:1", node.input(0)); } } EXPECT_EQ(10, found); Tensor pi = test::AsScalar<float>(3.14f); item.fetch = {"use_fn1_0", "use_fn1_1", "use_fn1_2", "use_fn2_0", "use_fn3_1", "use_fn4_2", "use_fn5_0", "use_fn5_2"}; item.feed = {{"xf", pi}, {"yf", pi}}; auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorEqual<float>(tensors_expected[i], tensors[i]); } } TEST_F(FunctionOptimizerTest, SpecializeIndirectFunctionForUsedOutputTensors) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); FunctionDef my_func = FunctionDefHelper::Create( "MyFunc", {"x:T", "y:T"}, {"z1:T", "z2:T", "z3:T"}, {"T: {float, int32}"}, {{{"output1"}, "Mul", {"x", "y"}, {{"T", "$T"}}}, {{"output2"}, "Mul", {"x", "y"}, {{"T", "$T"}}}, {{"output3"}, "Mul", {"x", "y"}, {{"T", "$T"}}}}, {{"z1", "output1:z:0"}, {"z2", "output2:z:0"}, {"z3", "output3:z:0"}}); (*my_func.mutable_attr())["_noinline"].set_b(true); std::vector<FunctionDef> function_library = {my_func}; GrapplerItem item; item.id = "tf_graph"; item.graph = test::function::GDef( {NDef("init", "NoOp", {}, {}, kDevice), NDef("xf", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("yf", "Placeholder", {}, {{"dtype", DT_FLOAT}}, kDevice), NDef("fn1", "PartitionedCall", {"xf", "yf"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT, DT_FLOAT, DT_FLOAT}}, {"f", FDH::FunctionRef("MyFunc", {{"T", DT_FLOAT}})}}, kDevice), NDef("use_fn1_0", "Identity", {"fn1:0"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn1_1", "Identity", {"fn1:1"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn1_2", "Identity", {"fn1:2"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn2", "PartitionedCall", {"xf", "yf"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT, DT_FLOAT, DT_FLOAT}}, {"f", FDH::FunctionRef("MyFunc", {{"T", DT_FLOAT}})}}, kDevice), NDef("use_fn2_0", "Identity", {"fn2:0"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn3", "PartitionedCall", {"xf", "yf"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT, DT_FLOAT, DT_FLOAT}}, {"f", FDH::FunctionRef("MyFunc", {{"T", DT_FLOAT}})}}, kDevice), NDef("use_fn3_1", "Identity", {"fn3:1"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn4", "PartitionedCall", {"xf", "yf"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT, DT_FLOAT, DT_FLOAT}}, {"f", FDH::FunctionRef("MyFunc", {{"T", DT_FLOAT}})}}, kDevice), NDef("use_fn4_2", "Identity", {"fn4:2"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn5", "PartitionedCall", {"xf", "yf"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT, DT_FLOAT, DT_FLOAT}}, {"f", FDH::FunctionRef("MyFunc", {{"T", DT_FLOAT}})}}, kDevice), NDef("use_fn5_0", "Identity", {"fn5:0"}, {{"T", DT_FLOAT}}, kDevice), NDef("use_fn5_2", "Identity", {"fn5:2"}, {{"T", DT_FLOAT}}, kDevice), NDef("fn6", "PartitionedCall", {"xf", "yf"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT, DT_FLOAT, DT_FLOAT}}, {"f", FDH::FunctionRef("MyFunc", {{"T", DT_FLOAT}})}}, kDevice)}, function_library); GraphDef output; TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(6, output.library().function_size()); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "fn1" && ++found) { auto& func = AttrSlice(node).Find("f")->func(); auto& tout = AttrSlice(node).Find("Tout")->list(); EXPECT_EQ("PartitionedCall", node.op()); EXPECT_EQ("MyFunc_specialized_for_fn1_at_tf_graph", func.name()); ASSERT_EQ(3, tout.type_size()); } else if (node.name() == "fn2" && ++found) { auto& func = AttrSlice(node).Find("f")->func(); auto& tout = AttrSlice(node).Find("Tout")->list(); EXPECT_EQ("PartitionedCall", node.op()); EXPECT_EQ("MyFunc_specialized_for_fn2_at_tf_graph", func.name()); ASSERT_EQ(1, tout.type_size()); } else if (node.name() == "fn3" && ++found) { auto& func = AttrSlice(node).Find("f")->func(); auto& tout = AttrSlice(node).Find("Tout")->list(); EXPECT_EQ("PartitionedCall", node.op()); EXPECT_EQ("MyFunc_specialized_for_fn3_at_tf_graph", func.name()); ASSERT_EQ(1, tout.type_size()); } else if (node.name() == "fn4" && ++found) { auto& func = AttrSlice(node).Find("f")->func(); auto& tout = AttrSlice(node).Find("Tout")->list(); EXPECT_EQ("PartitionedCall", node.op()); EXPECT_EQ("MyFunc_specialized_for_fn4_at_tf_graph", func.name()); ASSERT_EQ(1, tout.type_size()); } else if (node.name() == "fn5" && ++found) { auto& func = AttrSlice(node).Find("f")->func(); auto& tout = AttrSlice(node).Find("Tout")->list(); EXPECT_EQ("PartitionedCall", node.op()); EXPECT_EQ("MyFunc_specialized_for_fn5_at_tf_graph", func.name()); ASSERT_EQ(2, tout.type_size()); } else if (node.name() == "fn6" && ++found) { auto& func = AttrSlice(node).Find("f")->func(); auto& tout = AttrSlice(node).Find("Tout")->list(); EXPECT_EQ("PartitionedCall", node.op()); EXPECT_EQ("MyFunc_specialized_for_fn6_at_tf_graph", func.name()); ASSERT_EQ(0, tout.type_size()); } if (node.name() == "use_fn3_1" && ++found) { EXPECT_EQ("fn3", node.input(0)); } else if (node.name() == "use_fn4_2" && ++found) { EXPECT_EQ("fn4", node.input(0)); } else if (node.name() == "use_fn5_0" && ++found) { EXPECT_EQ("fn5", node.input(0)); } else if (node.name() == "use_fn5_2" && ++found) { EXPECT_EQ("fn5:1", node.input(0)); } } EXPECT_EQ(10, found); Tensor pi = test::AsScalar<float>(3.14f); item.fetch = {"use_fn1_0", "use_fn1_1", "use_fn1_2", "use_fn2_0", "use_fn3_1", "use_fn4_2", "use_fn5_0", "use_fn5_2"}; item.feed = {{"xf", pi}, {"yf", pi}}; auto tensors_expected = EvaluateFetchNodes(item); GrapplerItem optimized = item.WithGraph(std::move(output)); auto tensors = EvaluateFetchNodes(optimized); ASSERT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorEqual<float>(tensors_expected[i], tensors[i]); } } TEST_F(FunctionOptimizerTest, PruningUselessLibraryFunctions) { using test::function::NDef; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); auto func = test::function::XTimesTwo(); (*func.mutable_attr())["_noinline"].set_b(true); GrapplerItem item; item.id = "test_graph"; item.graph = test::function::GDef( {NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, "/device:CPU:0"), NDef("y", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, "/device:CPU:0"), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, "/device:CPU:0")}, { func, test::function::XTimesTwoInt32(), test::function::XTimes16(), }); GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); ASSERT_EQ(output.library().function().size(), 1); EXPECT_EQ(output.library().function(0).signature().name(), "XTimesTwo_specialized_for_y_at_test_graph"); } TEST_F(FunctionOptimizerTest, PreserveSaverDefFunctions) { using test::function::NDef; using FDH = FunctionDefHelper; FunctionOptimizer optimizer(RewriterConfig::DEFAULT, true); auto func = test::function::XTimesTwo(); (*func.mutable_attr())["_noinline"].set_b(true); GrapplerItem item; item.id = "test_graph"; item.graph = test::function::GDef( { NDef("x", "Placeholder", {}, {{"dtype", DT_FLOAT}}, "/device:CPU:0"), NDef("y", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, "/device:CPU:0"), NDef("z", "Identity", {"y"}, {{"T", DT_FLOAT}}, "/device:CPU:0"), NDef("Restore", "StatefulPartitionedCall", {}, {{"Tin", {}}, {"Tout", {}}, {"f", FDH::FunctionRef("RestoreFn", {})}}, "/device:CPU:0"), NDef("Save", "StatefulPartitionedCall", {}, {{"Tin", {}}, {"Tout", {}}, {"f", FDH::FunctionRef("SaveFn", {})}}, "/device:CPU:0"), }, { func, test::function::XTimesTwoInt32(), test::function::XTimes16(), FDH::Create("RestoreFn", {}, {}, {}, {}, {}), FDH::Create("SaveFn", {}, {}, {}, {}, {}), }); item.restore_op = "Restore"; item.save_op = "Save"; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); ASSERT_EQ(output.library().function().size(), 3); std::vector<std::string> signature_names; for (const auto& function : output.library().function()) { signature_names.push_back(function.signature().name()); } EXPECT_THAT(signature_names, ::testing::UnorderedElementsAre( "XTimesTwo_specialized_for_y_at_test_graph", "RestoreFn", "SaveFn")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/function_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/function_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f1ff1941-455f-40bb-b02a-d14a5a2cd4cb
cpp
tensorflow/tensorflow
scoped_allocator_optimizer
tensorflow/core/grappler/optimizers/scoped_allocator_optimizer.cc
tensorflow/core/grappler/optimizers/scoped_allocator_optimizer_test.cc
#include "tensorflow/core/grappler/optimizers/scoped_allocator_optimizer.h" #include "tensorflow/core/common_runtime/scoped_allocator.h" #include "tensorflow/core/common_runtime/scoped_allocator_mgr.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils/frame.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #define LOG_WARNING_AND_RETURN_IF_ERROR(...) \ do { \ const ::tensorflow::Status _status = (__VA_ARGS__); \ if (TF_PREDICT_FALSE(!_status.ok())) { \ LOG(WARNING) << "error: " << _status; \ return _status; \ } \ } while (0) namespace tensorflow { namespace grappler { namespace { const char kScopedAllocatorAttrName[] = "_scoped_allocator"; bool HasOpName(const string& node_name, const string& op_name) { size_t begin = node_name.rfind('/'); if (begin == string::npos) { begin = 0; } else { ++begin; } size_t end = node_name.rfind('_'); if (end != string::npos) { size_t p = end + 1; while (p < node_name.size()) { if (!isdigit(node_name[p])) { end = node_name.size(); break; } ++p; } } else { end = node_name.size(); } return node_name.substr(begin, end - begin) == op_name; } Status GetOutputDataType( const std::vector<OpInfo::TensorProperties>& output_props, int output_index, DataType* dtype) { int output_props_size = output_props.size(); if (output_index >= output_props_size) { return errors::Internal("Invalid output index ", output_index, " size of output_props ", output_props.size()); } *dtype = output_props[output_index].dtype(); return absl::OkStatus(); } Status CheckTypesAndGetShapes(const GraphProperties& graph_properties, const std::vector<NodeDef*>& ops, DataType* type, std::vector<TensorShape>* shapes) { VLOG(1) << "CheckTypesAndGetShapes"; *type = DT_INVALID; for (NodeDef* n : ops) { AttrSlice n_attrs = AttrSlice(*n); DataType dtype; LOG_WARNING_AND_RETURN_IF_ERROR(GetNodeAttr(n_attrs, "T", &dtype)); VLOG(2) << "op " << n->name() << " has type " << dtype << " shapes.size() " << shapes->size(); if (!graph_properties.HasOutputProperties(n->name())) { LOG(ERROR) << "Node " << n->DebugString() << " lacks output shape."; return errors::Aborted("Node ", n->name(), " lacks output shape."); } const std::vector<OpInfo::TensorProperties>& prop_list = graph_properties.GetOutputProperties(n->name()); if (prop_list.size() != 1) { return errors::Aborted("Node ", n->name(), " does not have exactly one output as expected " "by ScopedAllocatorOptimizer"); } const OpInfo::TensorProperties& props = prop_list[0]; if (shapes->empty()) { *type = props.dtype(); } else if (*type != props.dtype()) { return errors::Aborted("Group ops don't all have same type"); } if (*type != dtype) { return errors::Internal( "Type mismatch: type in op attr = ", DataTypeString(dtype), ", type in output props = ", DataTypeString(*type)); } if (!TensorShape::IsValid(props.shape()) || props.shape().unknown_rank()) { return errors::Aborted("Complete shape not known for ", n->name()); } VLOG(2) << "Adding shape " << props.shape().DebugString(); shapes->push_back(TensorShape(props.shape())); } return absl::OkStatus(); } struct InputDesc { NodeDef* from_node_def; int output_slot; NodeDef* to_node_def; InputDesc(NodeDef* f, int os, NodeDef* t) : from_node_def(f), output_slot(os), to_node_def(t) {} }; void RemoveNode(NodeDef* nd, GraphDef* graph, NodeMap* node_map) { node_map->RemoveNode(nd->name()); protobuf::RepeatedPtrField<NodeDef>* nodes = graph->mutable_node(); for (int i = 0; i < nodes->size(); ++i) { if (nd->name() == (*nodes)[i].name()) { nodes->SwapElements(i, nodes->size() - 1); nodes->RemoveLast(); return; } } LOG(FATAL) << "Failed to find node " << nd->name() << " in graph"; } Status RemoveEdge(const string& input_edge_name, const string& from_node_name, NodeDef* to_node, NodeMap* node_map) { protobuf::RepeatedPtrField<string>* inputs = to_node->mutable_input(); int edge_index = -1; for (edge_index = 0; edge_index < inputs->size(); ++edge_index) { VLOG(2) << " consider edge " << (*inputs)[edge_index]; if ((*inputs)[edge_index] == input_edge_name) { break; } } if (edge_index >= inputs->size()) { return errors::Internal("Could not find input name ", input_edge_name, " at node ", to_node->name()); } if (node_map) { node_map->RemoveOutput(from_node_name, to_node->name()); } inputs->DeleteSubrange(edge_index, 1); return absl::OkStatus(); } Status MaybeRewriteInput(ScopedAllocatorOptimizer* sa_opti, int64_t invocation_count, GraphDef* graph, NodeMap* node_map, const DataType& dtype, NodeDef* input, const string& edge_name, int output_index, NodeDef* op, NodeDef** new_input, int* new_output_index, bool* rewrite) { *rewrite = IsConstant(*input) || IsExit(*input) || (sa_opti->repeated_outputs().find(edge_name) != sa_opti->repeated_outputs().end()); if (!(*rewrite)) { *new_input = input; *new_output_index = output_index; return absl::OkStatus(); } int unique_id; LOG_WARNING_AND_RETURN_IF_ERROR(sa_opti->NewIdentityId(&unique_id)); string identity_name = strings::StrCat("scoped_allocator_identity_", unique_id, "_", invocation_count); NodeDefBuilder identity_builder(identity_name, "Identity"); identity_builder.Device(op->device()); identity_builder.Attr("T", dtype); identity_builder.Input( NodeDefBuilder::NodeOut(input->name(), output_index, dtype)); NodeDef* identity = graph->add_node(); LOG_WARNING_AND_RETURN_IF_ERROR(identity_builder.Finalize(identity)); node_map->AddNode(identity_name, identity); node_map->AddOutput(input->name(), identity_name); node_map->UpdateInput(op->name(), input->name(), identity_name); *op->mutable_input(0) = identity_name; *new_input = identity; *new_output_index = 0; VLOG(1) << "Rewrite input " << edge_name << " op " << op->name() << " old output index " << output_index << " with identity " << identity_name << " new output index 0"; return absl::OkStatus(); } Status GetInputs(ScopedAllocatorOptimizer* sa_opti, int64_t invocation_count, GraphDef* graph, const GraphProperties& graph_properties, NodeMap* node_map, const std::vector<NodeDef*>& ops, DataType dtype, std::vector<InputDesc>* inputs) { VLOG(1) << "Getinputs"; for (NodeDef* n : ops) { NodeDef* inode = nullptr; int output_index = 0; DataType inode_dtype = DT_INVALID; VLOG(2) << "for node " << n->name(); for (const auto& input_name : n->input()) { if (!IsControlInput(input_name)) { if (inode) { return errors::Internal("Found more than one input for node ", n->name()); } ParseNodeName(input_name, &output_index); inode = node_map->GetNode(input_name); if (inode == nullptr) { return errors::Internal("Did not find node ", input_name); } VLOG(2) << "inode " << inode->DebugString() << " output_index " << output_index; bool rewrite; LOG_WARNING_AND_RETURN_IF_ERROR(MaybeRewriteInput( sa_opti, invocation_count, graph, node_map, dtype, inode, input_name, output_index, n, &inode, &output_index, &rewrite)); if (rewrite) { inode_dtype = dtype; } VLOG(2) << "inode after rewrite " << inode->DebugString() << " output_index " << output_index; } } if (inode == nullptr) { return errors::Internal("Did not find node"); } if (inode_dtype == DT_INVALID) { if (!graph_properties.HasOutputProperties(inode->name())) { return errors::Internal("Input node ", inode->name(), " does not have output properties"); } const auto& inode_output_props = graph_properties.GetOutputProperties(inode->name()); LOG_WARNING_AND_RETURN_IF_ERROR( GetOutputDataType(inode_output_props, output_index, &inode_dtype)); } if (inode_dtype != dtype) { return errors::Aborted("ScopedAllocatorOptimizer expected input type ", dtype, " but found ", inode_dtype); } inputs->emplace_back(inode, output_index, n); } return absl::OkStatus(); } Status GetDataInputs(GraphDef* graph, NodeMap* node_map, NodeDef* op, std::vector<InputDesc>* inputs) { VLOG(2) << "GetDataInputs for node " << op->name(); NodeDef* inode = nullptr; int output_index = 0; for (const auto& input_name : op->input()) { if (IsControlInput(input_name)) { continue; } ParseNodeName(input_name, &output_index); inode = nullptr; inode = node_map->GetNode(input_name); if (inode == nullptr) { return errors::Internal("Did not find node ", input_name); } VLOG(2) << "inode " << inode->DebugString() << " output_index " << output_index; inputs->emplace_back(inode, output_index, op); } return absl::OkStatus(); } void DumpGraphToVLOG(const GraphDef& graph, int log_level) { if (VLOG_IS_ON(log_level)) { for (const auto& line : str_util::Split(graph.DebugString(), "\n\r")) { VLOG(log_level) << line; } } } } void ScopedAllocatorOptimizer::ExtendNodeAttr(StringPiece name, const std::vector<int32>& values, NodeDef* node_def) { if (HasNodeAttr(*node_def, name)) { VLOG(2) << "extending"; AttrValue* existing = &(*node_def->mutable_attr())[string(name)]; for (int32_t i : values) { existing->mutable_list()->add_i(i); } } else { VLOG(2) << "setting new attr value"; AddNodeAttr(name, values, node_def); } } class UnaryElementwiseRewriter : public ScopedAllocatorOptimizer::Rewriter { public: ~UnaryElementwiseRewriter() override {} Status CheckUsesAllocatorAttributes(const std::vector<InputDesc>& inputs) { for (const InputDesc& nd : inputs) { if (IsConstant(*nd.from_node_def)) { return errors::Aborted( "Abandoning ScopedAllocatorOptimizer because input ", nd.from_node_def->name(), " is a Const op which does not use AllocatorAttributes"); } } return absl::OkStatus(); } Status CheckExistingScopedAllocator(const std::vector<InputDesc>& inputs) { for (const InputDesc& nd : inputs) { VLOG(2) << "get attrs for " << nd.from_node_def->name(); AttrSlice n_attrs = AttrSlice(*nd.from_node_def); std::vector<int32> scope_ids; Status ss = GetNodeAttr(n_attrs, kScopedAllocatorAttrName, &scope_ids); if (ss.ok() && scope_ids[0] == nd.output_slot) { LOG(INFO) << "Abandoning ScopedAllocatorOptimizer because input " << nd.from_node_def->name() << " output " << scope_ids[0] << " is already assigned to scope_id " << scope_ids[1]; return errors::Aborted( "Abandoning ScopedAllocatorOptimizer because input ", nd.from_node_def->name(), " output ", scope_ids[0], " is already ", "assigned to scope_id ", scope_ids[1]); } } return absl::OkStatus(); } Status CheckInternalDataDependency(const std::set<string>& op_set, const std::vector<InputDesc>& inputs) { for (const InputDesc& nd : inputs) { if (op_set.find(nd.from_node_def->name()) != op_set.end()) { if (nd.output_slot != tensorflow::Graph::kControlSlot) { return errors::Aborted("Data edge exists between ", nd.from_node_def->name(), " and another " "node in the set"); } } } return absl::OkStatus(); } void ClearInternalControlInputs(const std::set<string>& op_set, const std::vector<NodeDef*>& ops, NodeMap* node_map) { for (NodeDef* n : ops) { for (const auto& input_name : n->input()) { if (IsControlInput(input_name)) { int position = 0; string input_node_name = ParseNodeName(input_name, &position); CHECK_EQ(position, -1); if (op_set.find(input_node_name) != op_set.end()) { VLOG(1) << "Remove control output from " << input_node_name << " via edge " << input_name << " to " << n->name(); TF_CHECK_OK(RemoveEdge(input_name, input_node_name, n, node_map)); } } } } } Status AnalyzeInputs(ScopedAllocatorOptimizer* sa_opti, int64_t invocation_count, GraphDef* graph, NodeMap* node_map, const std::vector<NodeDef*>& ops, const std::set<string>& op_instance_names, string* device_name, DataType* dtype, std::vector<TensorShape>* input_shapes, std::vector<InputDesc>* inputs, TensorShape* sa_shape) { CHECK(graph_properties_); LOG_WARNING_AND_RETURN_IF_ERROR( CheckTypesAndGetShapes(*graph_properties_, ops, dtype, input_shapes)); LOG_WARNING_AND_RETURN_IF_ERROR( GetInputs(sa_opti, invocation_count, graph, *graph_properties_, sa_opti->node_map(), ops, *dtype, inputs)); LOG_WARNING_AND_RETURN_IF_ERROR(CheckUsesAllocatorAttributes(*inputs)); LOG_WARNING_AND_RETURN_IF_ERROR(CheckExistingScopedAllocator(*inputs)); LOG_WARNING_AND_RETURN_IF_ERROR( CheckInternalDataDependency(op_instance_names, *inputs)); ClearInternalControlInputs(op_instance_names, ops, node_map); *device_name = ops[0]->device(); CHECK(!device_name->empty()); CHECK(!input_shapes->empty()); CHECK_EQ(0, Allocator::kAllocatorAlignment % DataTypeSize(*dtype)) << "ScopedAllocatorOptimizer only applies to types that evenly " << "divide kAllocatorAlignment"; std::vector<ScopedAllocator::Field> sa_fields; int64_t num_bytes = ScopedAllocatorMgr::PopulateFields( 0 , *input_shapes, *dtype, &sa_fields); int64_t num_elts = num_bytes / DataTypeSize(*dtype); VLOG(2) << "num_bytes " << num_bytes << " num_elts=" << num_elts; *sa_shape = TensorShape({num_elts}); return absl::OkStatus(); } Status TransitiveFanoutWithinFrame( GraphDef* graph, NodeMap* node_map, const std::vector<const NodeDef*>& source_nodes, absl::flat_hash_set<const NodeDef*>* fanout) { std::deque<const NodeDef*> queue(source_nodes.begin(), source_nodes.end()); absl::flat_hash_set<const NodeDef*> visited; while (!queue.empty()) { const NodeDef* node = queue.front(); queue.pop_front(); if (!visited.insert(node).second) { continue; } fanout->insert(node); for (const NodeDef* output : node_map->GetOutputs(node->name())) { if (!ModifiesFrameInfo(*output)) { queue.push_back(output); } VLOG(2) << "TransitiveFanout parent: " << node->name() << " child: " << output->name() << " of type " << output->op(); } } return absl::OkStatus(); } Status ConstructScopedAllocatorNode( ScopedAllocatorOptimizer* sa_opti, GraphDef* graph, NodeMap* node_map, const std::vector<NodeDef*>& ops, const string& device_name, DataType dtype, int sa_id, const string& sa_name, const std::vector<TensorShape>& input_shapes, const std::vector<InputDesc>& inputs, const TensorShape& sa_shape) { VLOG(2) << "ConstructScopedAllocatorNode " << sa_name; NodeDefBuilder sa_builder(sa_name, "_ScopedAllocator"); sa_builder.Device(device_name); sa_builder.Attr("sa_name", sa_name); sa_builder.Attr("T", dtype); sa_builder.Attr("id", sa_id); sa_builder.Attr("shapes", input_shapes); sa_builder.Attr("shape", sa_shape); sa_builder.Attr("expected_call_count", static_cast<int64_t>(ops.size())); NodeDef* sa_node = graph->add_node(); LOG_WARNING_AND_RETURN_IF_ERROR(sa_builder.Finalize(sa_node)); node_map->AddNode(sa_name, sa_node); std::vector<const NodeDef*> fanout_sources; fanout_sources.reserve(inputs.size()); for (const auto& input : inputs) { fanout_sources.push_back(input.from_node_def); } absl::flat_hash_set<const NodeDef*> fanout; TF_RETURN_IF_ERROR( TransitiveFanoutWithinFrame(graph, node_map, fanout_sources, &fanout)); for (int i = 0, end = inputs.size(); i < end; ++i) { auto& nd = inputs[i]; if (IsArg(*nd.from_node_def)) { return errors::Aborted( "ScopedAllocatorOptimizer does not work well when the op inputs " "are _Arg ops; skipping this optimizer for this function"); } VLOG(2) << "To input " << i << ": " << nd.from_node_def->name() << " add control input " << "^" << sa_name; nd.from_node_def->add_input(strings::StrCat("^", sa_name)); ScopedAllocatorOptimizer::ExtendNodeAttr(kScopedAllocatorAttrName, {nd.output_slot, sa_id + 1 + i}, nd.from_node_def); node_map->AddOutput(sa_name, nd.from_node_def->name()); } bool added_delay_edge = false; for (auto& nd : inputs) { std::vector<InputDesc> inputs_to_first; LOG_WARNING_AND_RETURN_IF_ERROR(GetDataInputs( graph, sa_opti->node_map(), nd.from_node_def, &inputs_to_first)); for (int i = 0, end = inputs_to_first.size(); i < end; ++i) { if (fanout.find(inputs_to_first[i].from_node_def) != fanout.end()) { VLOG(2) << "Found node " << inputs_to_first[i].from_node_def->name() << " in the fanout of " << sa_name; continue; } sa_node->add_input( strings::StrCat("^", inputs_to_first[i].from_node_def->name())); node_map->AddOutput(inputs_to_first[i].from_node_def->name(), sa_name); added_delay_edge = true; VLOG(2) << "Adding control dependency from " << inputs_to_first[i].from_node_def->name() << " to " << sa_node->name(); break; } if (added_delay_edge) { break; } } if (!added_delay_edge) { LOG(WARNING) << "Found no node from which a control edge can be added to " "scoped allocator node. If you run into issues with " "graphs that contain control flow, turn off the " "ScopedAllocatorOptimizer and file a bug."; } return absl::OkStatus(); } Status BuildSAConcatNode(GraphDef* graph, NodeMap* node_map, const std::vector<NodeDef*>& ops, const std::set<string>& op_instance_names, const string& device_name, DataType dtype, int sa_id, const string& sa_name, const string& sac_name, const TensorShape& sa_shape, std::vector<NodeDefBuilder::NodeOut>* sac_inputs) { VLOG(2) << "BuildSAConcatNode " << sac_name; absl::flat_hash_map<string, string> sac_ctl_inputs; for (int i = 0, end = ops.size(); i < end; ++i) { NodeDef* old_op = ops[i]; for (const string& old_op_input : old_op->input()) { int position = 0; string input_name = ParseNodeName(old_op_input, &position); if (position == -1) { if (op_instance_names.find(old_op_input) == op_instance_names.end()) { sac_ctl_inputs.emplace(old_op_input, input_name); } } else { if (op_instance_names.find(old_op_input) != op_instance_names.end()) { LOG(ERROR) << "Data edge between " << old_op_input << " and " << old_op->name() << " cannot build ScopedAllocator."; return errors::Aborted("Data edge between ", old_op_input, " and ", old_op->name(), " cannot build ScopedAllocator."); } sac_inputs->push_back( NodeDefBuilder::NodeOut(old_op_input, 0, dtype)); } VLOG(3) << "from op " << i << ": " << old_op->name() << " sac_inputs append " << old_op_input; } } NodeDefBuilder sac_builder(sac_name, "_ScopedAllocatorConcat"); VLOG(2) << "New sac_name " << sac_name << " shape " << sa_shape.DebugString(); sac_builder.Device(device_name); sac_builder.Attr("sa_name", sa_name); sac_builder.Attr("id", sa_id); sac_builder.Attr("T", dtype); sac_builder.Attr("shape", sa_shape); sac_builder.Attr("N", static_cast<int>(sac_inputs->size())); sac_builder.Input(NodeDefBuilder::NodeOut(sa_name, 0, dtype)); sac_builder.Input(*sac_inputs); NodeDef* sac_node = graph->add_node(); LOG_WARNING_AND_RETURN_IF_ERROR(sac_builder.Finalize(sac_node)); node_map->AddNode(sac_name, sac_node); node_map->AddOutput(sa_name, sac_name); for (const auto& ctl_input : sac_ctl_inputs) { const auto& ctl_edge = ctl_input.first; const auto& input_name = ctl_input.second; sac_node->add_input(ctl_edge); node_map->AddOutput(input_name, sac_node->name()); } return absl::OkStatus(); } Status BuildReplacementOp(GraphDef* graph, NodeMap* node_map, const std::vector<NodeDef*>& ops, const string& device_name, DataType dtype, const string& op_name, const string& sac_name, const string& sa_op_name) { VLOG(2) << "BuildReplacementOp " << sa_op_name; NodeDefBuilder op_builder(sa_op_name, op_name); op_builder.Device(device_name); AttrSlice first_slice(*ops[0]); for (auto& it : first_slice) { op_builder.Attr(it.first, it.second); } op_builder.Attr("_forward_input", {0, 0}); op_builder.Input(sac_name, 0, dtype); NodeDef* sa_op_node = graph->add_node(); LOG_WARNING_AND_RETURN_IF_ERROR(op_builder.Finalize(sa_op_node)); node_map->AddNode(sa_op_name, sa_op_node); node_map->AddOutput(sac_name, sa_op_name); return absl::OkStatus(); } Status BuildSplitNode(GraphDef* graph, NodeMap* node_map, const std::vector<NodeDef*>& ops, const std::vector<TensorShape>& input_shapes, const std::vector<NodeDefBuilder::NodeOut>& sac_inputs, const string& device_name, DataType dtype, const string& op_name, int sa_id, const string& sas_name, const string& sa_name, const string& sa_op_name) { VLOG(2) << "new ScopedAllocatorSplit " << sas_name; NodeDefBuilder sas_builder(sas_name, "_ScopedAllocatorSplit"); sas_builder.Device(device_name); sas_builder.Attr("sa_name", sa_name); sas_builder.Attr("id", sa_id); sas_builder.Attr("T", dtype); sas_builder.Attr("shapes", input_shapes); std::vector<NodeDefBuilder::NodeOut> sas_inputs = sac_inputs; sas_builder.Attr("N", static_cast<int>(sas_inputs.size())); sas_builder.Input(NodeDefBuilder::NodeOut(sa_op_name, 0, dtype)); sas_builder.Input(sas_inputs); NodeDef* sas_node = graph->add_node(); LOG_WARNING_AND_RETURN_IF_ERROR(sas_builder.Finalize(sas_node)); node_map->AddNode(sas_name, sas_node); node_map->AddOutput(sa_op_name, sas_name); for (const auto& input : sas_inputs) { node_map->AddOutput(input.node, sas_name); } return absl::OkStatus(); } Status RewireSubgraph(GraphDef* graph, NodeMap* node_map, const std::vector<NodeDef*>& ops, const std::set<string>& op_instance_names, const string& op_name, const string& sas_name) { VLOG(2) << "RewireSubgraph"; for (int op_idx = 0, idx_limit = ops.size(); op_idx < idx_limit; ++op_idx) { NodeDef* old_op = ops[op_idx]; auto output_nodes = node_map->GetOutputs(old_op->name()); VLOG(3) << "old_op " << old_op->name() << " had " << output_nodes.size() << " outputs. Moving them to the ScopedAllocatorSplit node."; if (VLOG_IS_ON(2)) { for (NodeDef* n : output_nodes) { VLOG(3) << " output: " << n->name(); } } for (NodeDef* n : output_nodes) { VLOG(3) << "really checking old output " << n->name() << " for corresponding input."; if (op_instance_names.find(n->name()) != op_instance_names.end()) { VLOG(3) << "Dropping control output from " << old_op->name() << " to " << n->name(); Status ignore = RemoveEdge(strings::StrCat("^", old_op->name()), old_op->name(), n, node_map); continue; } bool found = false; VLOG(3) << "about to iterate over " << n->input_size() << " inputs"; for (int i = 0; i < n->input_size(); ++i) { VLOG(3) << "input " << n->input(i); int position = 0; string input_node = ParseNodeName(n->input(i), &position); if (input_node == old_op->name()) { found = true; VLOG(3) << "match pos=" << position; if (position == -1) { *n->mutable_input(i) = strings::StrCat("^", sas_name); } else { CHECK_EQ(0, position) << "name " << n->input(i) << " pos " << position; *n->mutable_input(i) = strings::StrCat(sas_name, ":", op_idx); } node_map->UpdateInput(n->name(), old_op->name(), sas_name); VLOG(3) << "breaking on success"; break; } else { VLOG(3) << "other input " << n->input(i); } } VLOG(3) << "before HasOp"; if (!HasOpName(n->name(), op_name)) { CHECK(found) << "old_op " << old_op->name() << " node " << " could not find input edge on " << n->DebugString() << " to replace." << " " << op_name << " not in " << n->name(); } VLOG(3) << "bottom of for output_nodes"; } VLOG(3) << "Clearing all inputs of " << old_op->name(); node_map->RemoveInputs(old_op->name()); old_op->clear_input(); node_map->RemoveOutputs(old_op->name()); VLOG(3) << "after clear: " << old_op->DebugString(); RemoveNode(old_op, graph, node_map); } return absl::OkStatus(); } Status Rewrite(ScopedAllocatorOptimizer* sa_opti, int64_t invocation_count, GraphDef* graph, const string& op_name, const std::vector<NodeDef*>& ops, bool* applied) override { if (VLOG_IS_ON(1)) { VLOG(1) << "Rewrite"; string op_names; for (auto& nd : ops) { strings::StrAppend(&op_names, nd->name(), ", "); } VLOG(1) << "UnaryElementwiseRewriter::Rewrite " << op_name << " to: " << op_names; } NodeMap* node_map = sa_opti->node_map(); std::set<string> op_instance_names; for (auto& nd : ops) { op_instance_names.insert(nd->name()); VLOG(2) << "op_instance_name " << nd->name(); } DataType dtype; std::vector<TensorShape> input_shapes; std::vector<InputDesc> inputs; TensorShape sa_shape; string device_name; TF_RETURN_IF_ERROR(AnalyzeInputs( sa_opti, invocation_count, graph, node_map, ops, op_instance_names, &device_name, &dtype, &input_shapes, &inputs, &sa_shape)); int sa_id = sa_opti->NewScopedAllocatorId(input_shapes.size()); string sa_name = strings::StrCat("scoped_allocator_", sa_id, "_", invocation_count); TF_RETURN_IF_ERROR(ConstructScopedAllocatorNode( sa_opti, graph, node_map, ops, device_name, dtype, sa_id, sa_name, input_shapes, inputs, sa_shape)); std::vector<NodeDefBuilder::NodeOut> sac_inputs; string sac_name = strings::StrCat("scoped_allocator_concat_", sa_id, "_", invocation_count); TF_RETURN_IF_ERROR(BuildSAConcatNode( graph, node_map, ops, op_instance_names, device_name, dtype, sa_id, sa_name, sac_name, sa_shape, &sac_inputs)); string sa_op_name = strings::StrCat(sa_name, "_", op_name); TF_RETURN_IF_ERROR(BuildReplacementOp(graph, node_map, ops, device_name, dtype, op_name, sac_name, sa_op_name)); string sas_name = strings::StrCat("scoped_allocator_split_", sa_id, "_", invocation_count); TF_RETURN_IF_ERROR(BuildSplitNode(graph, node_map, ops, input_shapes, sac_inputs, device_name, dtype, op_name, sa_id, sas_name, sa_name, sa_op_name)); TF_RETURN_IF_ERROR(RewireSubgraph(graph, node_map, ops, op_instance_names, op_name, sas_name)); *applied = true; return absl::OkStatus(); } }; ScopedAllocatorOptimizer::ScopedAllocatorOptimizer( RewriterConfig::Toggle opt_level, const ScopedAllocatorOptions& opts) : opt_level_(opt_level) { VLOG(1) << "ScopedAllocatorOptimizer::ScopedAllocatorOptimizer"; Rewriter* r = new UnaryElementwiseRewriter(); to_delete_.push_back(r); if (opts.enable_op_size() == 0) { for (const auto& op_name : {"CollectiveReduce"}) { op_name_set_.insert(op_name); rewriters_[op_name] = r; } } else { for (const auto& op_name : opts.enable_op()) { op_name_set_.insert(op_name); rewriters_[op_name] = r; } } } Status ScopedAllocatorOptimizer::Optimize(Cluster* , const GrapplerItem& item, GraphDef* optimized_graph) { VLOG(3) << "Input graph:"; DumpGraphToVLOG(item.graph, 3); nodes_to_preserve_ = item.NodesToPreserve(); GraphProperties graph_properties(item); const bool assume_valid_feeds = opt_level_ == RewriterConfig::AGGRESSIVE; LOG_WARNING_AND_RETURN_IF_ERROR(graph_properties.InferStatically( assume_valid_feeds, false, false)); *optimized_graph = item.graph; node_map_ = std::make_unique<NodeMap>(optimized_graph); LOG_WARNING_AND_RETURN_IF_ERROR(ScopedAllocatorOptimizer::ProcessGraphDef( optimized_graph, graph_properties)); VLOG(1) << "ScopedAllocatorOptimizer::Optimize() done"; VLOG(3) << "Optimized graph:"; DumpGraphToVLOG(*optimized_graph, 3); return absl::OkStatus(); } ScopedAllocatorOptimizer::Rewriter* ScopedAllocatorOptimizer::GetRewriter( const string& op_name) { auto it = rewriters_.find(op_name); if (it != rewriters_.end()) { return it->second; } return nullptr; } int ScopedAllocatorOptimizer::NewScopedAllocatorId(int num_fields) { CHECK_GT(num_fields, 0); int id = next_sa_id_; next_sa_id_ += (num_fields + 1); CHECK_GT(next_sa_id_, 0); return id; } Status ScopedAllocatorOptimizer::NewIdentityId(int* id) { *id = next_identity_id_++; if (next_identity_id_ < 0) { return errors::Aborted("NewIdentityId overflow"); } return absl::OkStatus(); } ScopedAllocatorOptimizer::~ScopedAllocatorOptimizer() { for (auto ptr : to_delete_) { delete ptr; } } void ScopedAllocatorOptimizer::FindOpOccurrences(GraphDef* graph, const OpNameSet& op_names, GraphOpOccurrences* occs) { VLOG(1) << "FindOpOccurrences "; for (const auto& it : op_names) { VLOG(1) << "search target " << it; } for (int ni = 0; ni < graph->node_size(); ++ni) { NodeDef* node = graph->mutable_node(ni); const string& op_name = node->op(); if (op_names.find(op_name) != op_names.end()) { VLOG(1) << "found " << op_name << " on dev " << node->device(); (*occs)[node->device()][op_name].push_back(node); } } } namespace { struct OpNameOrder { bool operator()(const NodeDef* a, const NodeDef* b) { return a->name() <= b->name(); } }; class Tree { public: Tree(const string& edge, int depth) : edge_(edge), depth_(depth) {} ~Tree() { for (const auto& it : subtrees_) delete it.second; } Tree* GetSubTree(const string& edge) { auto it = subtrees_.find(edge); if (it != subtrees_.end()) { return it->second; } Tree* t = new Tree(edge, depth_ + 1); subtrees_[edge] = t; return t; } void InsertNode(NodeDef* n) { nodes_.push_back(n); } string edge_; int depth_; std::vector<NodeDef*> nodes_; absl::flat_hash_map<string, Tree*> subtrees_; }; Status ApplyToAll(Tree* tree, const std::function<Status(Tree*)>& func) { Status s; for (const auto& it : tree->subtrees_) { s = ApplyToAll(it.second, func); if (!s.ok()) return s; } s = func(tree); return s; } Tree* ComputeScopeTree(const string& op_name, const std::vector<NodeDef*>& node_vec) { Tree* root = new Tree("", 0); for (NodeDef* n : node_vec) { std::vector<string> pieces = str_util::Split(n->name(), "/"); int depth = pieces.size() - 1; Tree* subtree = root; for (int i = 0; i < depth; ++i) { subtree = subtree->GetSubTree(pieces[i]); } subtree->InsertNode(n); } return root; } void PartitionByLoopStructure(const FrameView& frame_view, std::vector<NodeDef*> nodes, std::vector<std::vector<NodeDef*>>* loop_groups) { absl::flat_hash_map<uint64, std::vector<NodeDef*>> loop_sets; for (NodeDef* nd : nodes) { uint64 hash = 0; const std::vector<int>& loop_ids = frame_view.Frames(*nd); for (int id : loop_ids) { hash = Hash64Combine(hash, static_cast<uint64>(id)); } loop_sets[hash].push_back(nd); } for (auto it : loop_sets) { loop_groups->push_back(std::move(it.second)); } } void IdentifyRepeatedInputs(const std::vector<NodeDef*>& nodes, absl::flat_hash_set<string>* seen_outputs, absl::flat_hash_set<string>* repeated_outputs) { for (NodeDef* node : nodes) { for (const auto& input_name : node->input()) { if (!seen_outputs->insert(input_name).second) { repeated_outputs->insert(input_name); } } } } } Status ScopedAllocatorOptimizer::ProcessGraphDef( GraphDef* graph, const GraphProperties& graph_properties) { static std::atomic<int64_t> invocation_counter(1); const int64_t invocation_count = invocation_counter.fetch_add(1, std::memory_order_seq_cst); VLOG(1) << "ProcessGraphDef " << invocation_count; Status status; GraphOpOccurrences occ; FindOpOccurrences(graph, op_name_set_, &occ); if (!occ.empty()) { FrameView frame_view; LOG_WARNING_AND_RETURN_IF_ERROR(frame_view.InferFromGraph(*graph)); for (auto& dt : occ) { VLOG(2) << "Processing device " << dt.first; const DevOpOccurrences& dev_occ = dt.second; for (auto& it : dev_occ) { string op_name = it.first; VLOG(1) << "Processing " << op_name << " set size " << it.second.size(); Rewriter* rewriter = GetRewriter(op_name); if (!rewriter) { LOG(ERROR) << "Failed to find Rewriter in ScopedAllocatorOptimizer " << "for op_name " << op_name; continue; } rewriter->SetGraphProperties(graph_properties); std::unique_ptr<Tree> root(ComputeScopeTree(it.first, it.second)); absl::flat_hash_set<string> seen_outputs; status = ApplyToAll(root.get(), [this, &seen_outputs](Tree* t) { IdentifyRepeatedInputs(t->nodes_, &seen_outputs, &repeated_outputs_); return absl::OkStatus(); }); if (!status.ok()) { break; } status = ApplyToAll(root.get(), [this, rewriter, graph, &frame_view, &op_name, invocation_count](Tree* t) { VLOG(2) << "applied to tree node " << t->edge_ << " at depth " << t->depth_ << " of size " << t->nodes_.size(); if (t->nodes_.size() > 1) { std::vector<std::vector<NodeDef*>> loop_groups; PartitionByLoopStructure(frame_view, t->nodes_, &loop_groups); for (auto& lg : loop_groups) { if (lg.size() > 1) { bool applied = false; Status s = OrderNodeSet(&lg); TF_RETURN_IF_ERROR(s); VLOG(1) << "Applying Rewriter for " << op_name; s = rewriter->Rewrite(this, invocation_count, graph, op_name, lg, &applied); LOG_WARNING_AND_RETURN_IF_ERROR(s); } } } return absl::OkStatus(); }); if (!status.ok()) { break; } } if (!status.ok()) { break; } } } VLOG(1) << "ScopedAllocatorOptimizer returning " << status; if (!status.ok()) { LOG(ERROR) << "ScopedAllocatorOptimizer: " << status; } return status; } namespace { struct InstanceKeyLess { bool operator()(const NodeDef* a, const NodeDef* b) const { AttrSlice a_attrs = AttrSlice(*a); AttrSlice b_attrs = AttrSlice(*b); int32_t a_key = -1; int32_t b_key = -1; Status s = GetNodeAttr(a_attrs, "instance_key", &a_key); CHECK(s.ok()); s = GetNodeAttr(b_attrs, "instance_key", &b_key); CHECK(s.ok()); return a_key < b_key; } }; struct NameLess { bool operator()(const NodeDef* a, const NodeDef* b) const { return a->name() < b->name(); } }; bool IsCollectiveNode(const NodeDef& n) { AttrSlice attrs = AttrSlice(n); int key = -1; if (!IsCollective(n)) return false; Status s = GetNodeAttr(attrs, "instance_key", &key); if (s.ok() && key >= 0) { return true; } return false; } } Status ScopedAllocatorOptimizer::OrderNodeSet( std::vector<NodeDef*>* nodes) const { if (nodes->size() <= 1) return absl::OkStatus(); if (IsCollectiveNode(*nodes->at(0))) { std::sort(nodes->begin(), nodes->end(), InstanceKeyLess()); } else { std::sort(nodes->begin(), nodes->end(), NameLess()); } return absl::OkStatus(); } } } #undef LOG_WARNING_AND_RETURN_IF_ERROR
#include "tensorflow/core/grappler/optimizers/scoped_allocator_optimizer.h" #include <unordered_set> #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace grappler { namespace { class ScopedAllocatorOptimizerTest : public ::testing::Test { public: std::unique_ptr<Session> CreateSession(const GraphDef& graph, const ConfigProto& config) { SessionOptions options; options.config = config; (*options.config.mutable_device_count())["CPU"] = 2; Session* session = NewSession(options); TF_CHECK_OK(session->Create(graph)); return std::unique_ptr<Session>(session); } std::vector<Tensor> EvaluateNodes(const GraphDef& graph, const std::vector<string>& fetch) { SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph)); RunOptions run_options; std::vector<Tensor> output_tensors; TF_CHECK_OK( session->Run(run_options, {}, fetch, fetch, &output_tensors, nullptr)); TF_CHECK_OK(session->Close()); return output_tensors; } void BuildAbsGraph(GraphDef* graph_def, bool forward) { Scope s = Scope::NewRootScope(); s = s.WithDevice("/job:localhost/replica:0/task:0/device:CPU:0"); Output a = ops::Const<float>(s.WithOpName("a"), {1.0, 0.0, 0.0, -1.0}, {2, 2}); Output b = ops::Const<float>(s.WithOpName("b"), {1.0, -2.0, 3.0, 4.0}, {2, 2}); Output c = ops::Const<float>(s.WithOpName("c"), {-5.0, -2.0, 0.0, -2.0}, {2, 2}); Output s1 = ops::Add(s.WithOpName("s1"), a, b); Output s2 = ops::Add(s.WithOpName("s2"), b, c); Output int1, int2; if (forward) { int1 = ops::Identity(s.WithOpName("i1"), s1); int2 = ops::Identity(s.WithOpName("i2"), s2); } else { int1 = s1; int2 = s2; } Output a1 = ops::Abs(s.WithOpName("a1"), int1); Output a2 = ops::Abs(s.WithOpName("a2"), int2); Output r1 = ops::Reshape(s.WithOpName("r1"), a1, {1, 4}); Output r2 = ops::Reshape(s.WithOpName("r2"), a2, {4, 1}); TF_CHECK_OK(s.ToGraphDef(graph_def)); } void BuildAbsGraphWithInputDependencies(GraphDef* graph_def) { Scope s = Scope::NewRootScope(); s = s.WithDevice("/job:localhost/replica:0/task:0/device:CPU:0"); Output a = ops::Placeholder(s.WithOpName("a"), DT_FLOAT, ops::Placeholder::Shape({2, 2})); Output b = ops::Placeholder(s.WithOpName("b"), DT_FLOAT, ops::Placeholder::Shape({2, 2})); Output c = ops::Placeholder(s.WithOpName("c"), DT_FLOAT, ops::Placeholder::Shape({2, 2})); Output s1 = ops::Add(s.WithOpName("s1"), b, c); Output a1 = ops::Abs(s.WithOpName("a1"), a); Output a2 = ops::Abs(s.WithOpName("a2"), b); Output a3 = ops::Abs(s.WithOpName("a3"), s1); Output r1 = ops::Reshape(s.WithOpName("r1"), a1, {1, 4}); Output r2 = ops::Reshape(s.WithOpName("r2"), a2, {4, 1}); Output r3 = ops::Reshape(s.WithOpName("r3"), a3, {4, 1}); TF_CHECK_OK(s.ToGraphDef(graph_def)); } void BuildAbsGraphWithInputAndOutputControlEdges(GraphDef* graph_def) { Scope s = Scope::NewRootScope(); s = s.WithDevice("/job:localhost/replica:0/task:0/device:CPU:0"); Output a = ops::Placeholder(s.WithOpName("a"), DT_FLOAT, ops::Placeholder::Shape({2, 2})); Output b = ops::Placeholder(s.WithOpName("b"), DT_FLOAT, ops::Placeholder::Shape({2, 2})); Output ctl1 = ops::Placeholder(s.WithOpName("ctl1"), DT_FLOAT, ops::Placeholder::Shape({2, 2})); Output ctl2 = ops::Placeholder(s.WithOpName("ctl2"), DT_FLOAT, ops::Placeholder::Shape({2, 2})); Output a1 = ops::Abs(s.WithOpName("a1").WithControlDependencies({ctl1}), a); Output a2 = ops::Abs(s.WithOpName("a2").WithControlDependencies({ctl2}), b); Output o1 = ops::Reshape(s.WithOpName("o1"), a1, {1, 4}); Output o2 = ops::Reshape(s.WithOpName("o2"), a2, {4, 1}); Output ctl3 = ops::Const<float>(s.WithOpName("ctl3").WithControlDependencies({a1}), {0.0, 0.0, 0.0, 0.0}, {2, 2}); Output ctl4 = ops::Const<float>(s.WithOpName("ctl4").WithControlDependencies({a2}), {0.0, 0.0, 0.0, 0.0}, {2, 2}); TF_CHECK_OK(s.ToGraphDef(graph_def)); } void BuildGraphWithMultipleScopes(GraphDef* graph_def) { Scope root_scope = Scope::NewRootScope(); root_scope = root_scope.WithDevice("/job:localhost/replica:0/task:0/device:CPU:0"); Output a = ops::Const<float>(root_scope.WithOpName("a"), {1.0, 0.0, 0.0, -1.0}, {2, 2}); Output b = ops::Const<float>(root_scope.WithOpName("b"), {1.0, -2.0, 3.0, 4.0}, {2, 2}); Output c = ops::Const<float>(root_scope.WithOpName("c"), {-5.0, -2.0, 0.0, -2.0}, {2, 2}); Output s1 = ops::Add(root_scope.WithOpName("s1"), a, b); Output s2 = ops::Add(root_scope.WithOpName("s2"), b, c); Output a1 = ops::Abs(root_scope.WithOpName("a1"), s1); Output a2 = ops::Abs(root_scope.WithOpName("a2"), s2); Output r1 = ops::Reshape(root_scope.WithOpName("r1"), a1, {1, 4}); Output r2 = ops::Reshape(root_scope.WithOpName("r2"), a2, {4, 1}); Scope sub_scope = root_scope.NewSubScope("sub"); Output s3 = ops::Add(sub_scope.WithOpName("s3"), a, b); Output a3 = ops::Abs(sub_scope.WithOpName("a3"), s3); Output a4 = ops::Abs(sub_scope.WithOpName("a4"), s2); Output r3 = ops::Reshape(sub_scope.WithOpName("r3"), a3, {1, 4}); Output r4 = ops::Reshape(sub_scope.WithOpName("r4"), a4, {4, 1}); TF_CHECK_OK(root_scope.ToGraphDef(graph_def)); } void BuildConstGraph(GraphDef* graph_def, bool forward) { Scope s = Scope::NewRootScope(); s = s.WithDevice("/job:localhost/replica:0/task:0/device:CPU:0"); Output c1 = ops::Const<float>(s.WithOpName("c1"), {1.0, 0.0, 0.0, -1.0}, {2, 2}); Output c2 = ops::Const<float>(s.WithOpName("c2"), {1.0, -2.0, 3.0, 4.0}, {2, 2}); Output a1 = ops::Abs(s.WithOpName("a1"), c1); Output a2 = ops::Abs(s.WithOpName("a2"), c2); Output r1 = ops::Reshape(s.WithOpName("r1"), a1, {1, 4}); Output r2 = ops::Reshape(s.WithOpName("r2"), a2, {4, 1}); TF_CHECK_OK(s.ToGraphDef(graph_def)); } void SetShapes(GraphDef* graph_def) { TensorShapeProto shape_proto; shape_proto.add_dim()->set_size(2); shape_proto.add_dim()->set_size(2); for (NodeDef& n : *graph_def->mutable_node()) { if (n.op() == "Add" || n.op() == "Abs") { AddNodeAttr("_output_shapes", {shape_proto}, &n); } } } void ExecuteGraph(const GraphDef& graph_def, const std::vector<string>& output_names, std::vector<Tensor>* outputs) { ConfigProto config; GraphOptions* gopt = config.mutable_graph_options(); OptimizerOptions* opts = gopt->mutable_optimizer_options(); opts->set_do_common_subexpression_elimination(false); opts->set_do_constant_folding(false); opts->set_do_function_inlining(false); opts->set_opt_level(OptimizerOptions::L0); RewriterConfig* rwcfg = gopt->mutable_rewrite_options(); rwcfg->clear_optimizers(); (*rwcfg->add_optimizers()) = "scoped_allocator"; rwcfg->mutable_scoped_allocator_opts()->add_enable_op("Abs"); std::unique_ptr<Session> session(CreateSession(graph_def, config)); std::vector<std::pair<string, Tensor>> inputs; std::vector<string> target_nodes = {}; Status s = session->Run(inputs, output_names, target_nodes, outputs); TF_ASSERT_OK(s); ASSERT_EQ(outputs->size(), output_names.size()); } void ValidateValues(const std::vector<Tensor>& outputs, const std::vector<std::vector<float>>& expected) { for (int i = 0; i < expected.size(); ++i) { EXPECT_EQ(expected[i].size(), outputs[i].NumElements()); for (int j = 0; j < expected[i].size(); ++j) { EXPECT_EQ(expected[i][j], outputs[i].flat<float>()(j)); } } } void GetNode(NodeMap* node_map, const string& node_name, NodeDef** node_def) { *node_def = node_map->GetNode(node_name); ASSERT_TRUE(*node_def); } NodeDef* ValidateSAControlInput(GraphDef* graph, NodeMap* node_map, const string& node_name) { NodeDef* node = nullptr; GetNode(node_map, node_name, &node); int num_control_inputs = 0; string control_input_name; for (const auto& input : node->input()) { if (IsControlInput(input)) { ++num_control_inputs; control_input_name = input; } } EXPECT_EQ(num_control_inputs, 1); NodeDef* control_input_node = nullptr; GetNode(node_map, control_input_name, &control_input_node); EXPECT_EQ(control_input_node->op(), "_ScopedAllocator"); return control_input_node; } int NumControlInputs(NodeMap* node_map, const string& node_name) { NodeDef* node = nullptr; GetNode(node_map, node_name, &node); int num_control_inputs = 0; for (const auto& input : node->input()) { if (IsControlInput(input)) { ++num_control_inputs; } } return num_control_inputs; } }; #ifndef ENABLE_MKL TEST_F(ScopedAllocatorOptimizerTest, UnaryRewriteOnly) { GrapplerItem item; BuildAbsGraph(&item.graph, false); SetShapes(&item.graph); ScopedAllocatorOptions opts; opts.add_enable_op("Abs"); ScopedAllocatorOptimizer sao(RewriterConfig::ON, opts); ScopedAllocatorOptimizer::OpNameSet ons; ons.insert("Abs"); GraphDef optimized_graph; TF_ASSERT_OK(sao.Optimize(nullptr , item, &optimized_graph)); NodeMap node_map(&optimized_graph); NodeDef* nd = nullptr; GetNode(&node_map, "scoped_allocator_1_1", &nd); { auto& nd_set = node_map.GetOutputs(nd->name()); ASSERT_EQ(3, nd_set.size()); std::unordered_set<string> expected = {"scoped_allocator_concat_1_1", "s1", "s2"}; for (auto it : nd_set) { ASSERT_NE(expected.find(it->name()), expected.end()) << "Failed to find " << it->name(); } } { auto& nd_set = node_map.GetOutputs("scoped_allocator_concat_1_1"); ASSERT_EQ(1, nd_set.size()); for (auto it : nd_set) { ASSERT_EQ("scoped_allocator_1_1_Abs", it->name()); } } { auto& nd_set = node_map.GetOutputs("scoped_allocator_1_1_Abs"); ASSERT_EQ(1, nd_set.size()); for (auto it : nd_set) { ASSERT_EQ("scoped_allocator_split_1_1", it->name()); } } { auto& nd_set = node_map.GetOutputs("scoped_allocator_split_1_1"); ASSERT_EQ(2, nd_set.size()); std::unordered_set<string> name_set; for (auto it : nd_set) { name_set.insert(it->name()); } ASSERT_TRUE(name_set.find("r1") != name_set.end()); ASSERT_TRUE(name_set.find("r2") != name_set.end()); } } TEST_F(ScopedAllocatorOptimizerTest, UnaryExecute) { GraphDef graph_def; BuildAbsGraph(&graph_def, false); SetShapes(&graph_def); std::vector<Tensor> outputs; ExecuteGraph(graph_def, {"r1:0", "r2:0"}, &outputs); ValidateValues(outputs, {{2, 2, 3, 3}, {4, 4, 3, 2}}); } TEST_F(ScopedAllocatorOptimizerTest, MultipleScopes) { GraphDef graph_def; BuildGraphWithMultipleScopes(&graph_def); SetShapes(&graph_def); std::vector<Tensor> outputs; ExecuteGraph(graph_def, {"r1:0", "r2:0", "sub/r3:0", "sub/r4:0"}, &outputs); ValidateValues( outputs, {{2, 2, 3, 3}, {4, 4, 3, 2}, {2, 2, 3, 3}, {4, 4, 3, 2}}); } TEST_F(ScopedAllocatorOptimizerTest, Extend) { NodeDef nd; ScopedAllocatorOptimizer::ExtendNodeAttr("_scoped_allocator", {0, 2}, &nd); ScopedAllocatorOptimizer::ExtendNodeAttr("_scoped_allocator", {6, 7}, &nd); ScopedAllocatorOptimizer::ExtendNodeAttr("_scoped_allocator", {2, 3}, &nd); VLOG(0) << "nd: " << nd.DebugString(); std::vector<int> scoped_allocator_attrs; AttrSlice slice(nd); Status sa_status = GetNodeAttr(slice, "_scoped_allocator", &scoped_allocator_attrs); for (int i : scoped_allocator_attrs) { VLOG(0) << "extracted: " << i; } NodeDef nd2; AddNodeAttr("_scoped_allocator", {0, 2}, &nd2); AddNodeAttr("_scoped_allocator", {6, 7}, &nd2); AddNodeAttr("_scoped_allocator", {2, 3}, &nd2); VLOG(0) << "nd2: " << nd2.DebugString(); } TEST_F(ScopedAllocatorOptimizerTest, ForwardInputToOutput) { GraphDef graph_def; BuildAbsGraph(&graph_def, true); SetShapes(&graph_def); std::vector<Tensor> outputs; ExecuteGraph(graph_def, {"r1:0", "r2:0"}, &outputs); ValidateValues(outputs, {{2, 2, 3, 3}, {4, 4, 3, 2}}); } TEST_F(ScopedAllocatorOptimizerTest, InputDependencies) { GrapplerItem item; BuildAbsGraphWithInputDependencies(&item.graph); SetShapes(&item.graph); ScopedAllocatorOptions opts; opts.add_enable_op("Abs"); ScopedAllocatorOptimizer sao(RewriterConfig::ON, opts); ScopedAllocatorOptimizer::OpNameSet ons; ons.insert("Add"); GraphDef optimized_graph; TF_ASSERT_OK(sao.Optimize(nullptr, item, &optimized_graph)); NodeMap node_map(&optimized_graph); NodeDef* scoped_allocator_node = ValidateSAControlInput(&optimized_graph, &node_map, "a"); VLOG(1) << scoped_allocator_node->DebugString(); EXPECT_TRUE(ValidateSAControlInput(&optimized_graph, &node_map, "b")); EXPECT_TRUE(ValidateSAControlInput(&optimized_graph, &node_map, "s1")); EXPECT_EQ(scoped_allocator_node->input_size(), 1); EXPECT_EQ(scoped_allocator_node->input(0), "^c"); } TEST_F(ScopedAllocatorOptimizerTest, ControlEdgeRewire) { GrapplerItem item; BuildAbsGraphWithInputAndOutputControlEdges(&item.graph); SetShapes(&item.graph); LOG(INFO) << item.graph.DebugString(); ScopedAllocatorOptions opts; opts.add_enable_op("Abs"); ScopedAllocatorOptimizer sao(RewriterConfig::ON, opts); ScopedAllocatorOptimizer::OpNameSet ons; ons.insert("Const"); GraphDef optimized_graph; TF_ASSERT_OK(sao.Optimize(nullptr, item, &optimized_graph)); TF_ASSERT_OK(TopologicalSort(&optimized_graph)); NodeMap node_map(&optimized_graph); LOG(INFO) << optimized_graph.DebugString(); NodeDef* ctl1 = nullptr; GetNode(&node_map, "ctl1", &ctl1); const auto& ctl1_outputs = node_map.GetOutputs("ctl1"); EXPECT_EQ(ctl1_outputs.size(), 1); NodeDef* sa_concat = *ctl1_outputs.begin(); EXPECT_EQ(sa_concat->op(), "_ScopedAllocatorConcat"); NodeDef* ctl2 = nullptr; GetNode(&node_map, "ctl2", &ctl2); const auto& ctl2_outputs = node_map.GetOutputs("ctl2"); EXPECT_EQ(ctl2_outputs.size(), 1); EXPECT_EQ(*ctl2_outputs.begin(), sa_concat); EXPECT_EQ(NumControlInputs(&node_map, sa_concat->name()), 2); const auto& sa_concat_outputs = node_map.GetOutputs(sa_concat->name()); EXPECT_EQ(sa_concat_outputs.size(), 1); NodeDef* fused_abs = *sa_concat_outputs.begin(); EXPECT_EQ(NumControlInputs(&node_map, fused_abs->name()), 0); const auto& fused_abs_outputs = node_map.GetOutputs(fused_abs->name()); EXPECT_EQ(fused_abs_outputs.size(), 1); NodeDef* sa_split = *fused_abs_outputs.begin(); EXPECT_EQ(NumControlOutputs(*sa_split, node_map), 2); EXPECT_EQ(NumControlInputs(&node_map, "ctl3"), 1); EXPECT_EQ(NumControlInputs(&node_map, "ctl4"), 1); } TEST_F(ScopedAllocatorOptimizerTest, ConstInput) { GrapplerItem item; BuildConstGraph(&item.graph, false); SetShapes(&item.graph); ScopedAllocatorOptions opts; opts.add_enable_op("Abs"); ScopedAllocatorOptimizer sao(RewriterConfig::ON, opts); ScopedAllocatorOptimizer::OpNameSet ons; ons.insert("Abs"); GraphDef optimized_graph; TF_ASSERT_OK(sao.Optimize(nullptr , item, &optimized_graph)); const NodeDef* sa_node = nullptr; for (const NodeDef& node : optimized_graph.node()) { if (node.op() == "_ScopedAllocator") { sa_node = &node; break; } } ASSERT_NE(sa_node, nullptr); int num_identity_ops = 0; NodeMap node_map(&optimized_graph); for (NodeDef* sa_output : node_map.GetOutputs(sa_node->name())) { EXPECT_FALSE(IsConstant(*sa_output)); if (IsIdentity(*sa_output)) { ++num_identity_ops; } } EXPECT_EQ(num_identity_ops, 2); } #endif } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/scoped_allocator_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/scoped_allocator_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cba17e35-f5cf-4369-abac-57976f000bab
cpp
tensorflow/tensorflow
pin_to_host_optimizer
tensorflow/core/grappler/optimizers/pin_to_host_optimizer.cc
tensorflow/core/grappler/optimizers/pin_to_host_optimizer_test.cc
#include "tensorflow/core/grappler/optimizers/pin_to_host_optimizer.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/grappler/graph_view.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils/symbolic_shapes.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/grappler/utils/tpu.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { namespace grappler { namespace internal { constexpr int64_t kTensorMaxSize = 64; bool IsDenylisted(const NodeDef& node) { return IsCollective(node) || IsControlFlow(node) || IsNoOp(node); } bool IsTensorSmall(const OpInfo::TensorProperties& prop) { if (prop.dtype() == DataType::DT_STRING) { return true; } if (prop.dtype() != DataType::DT_INT32 && prop.dtype() != DataType::DT_INT64 && prop.dtype() != DataType::DT_FLOAT) { return false; } const int64_t size = NumCoefficients(prop.shape()); if (size < 0 || size > kTensorMaxSize) { return false; } return true; } Status TryFindKernelDef(const std::vector<DeviceType>& devices, const NodeDef& node, const KernelDef** kdef) { for (const DeviceType& device : devices) { const KernelDef* kernel = nullptr; Status s = FindKernelDef(device, node, &kernel, nullptr); if (s.ok()) { if (kdef) { *kdef = kernel; } return absl::OkStatus(); } } return errors::NotFound("Could not find KernelDef for op: ", node.op()); } Status IsNodeOutputPortHostFriendly(const GraphView& graph, GraphProperties* properties, const NodeDef& node, int port_id, bool* is_candidate) { *is_candidate = false; if (IsDenylisted(node)) { return absl::OkStatus(); } if (!properties->has_properties()) { TF_RETURN_IF_ERROR(properties->InferStatically( false, false, false)); } const auto& output_properties = properties->GetOutputProperties(node.name()); int output_properties_size = output_properties.size(); if (port_id >= output_properties_size) { LOG(WARNING) << "port_id=" << port_id << " but output_properties.size()=" << output_properties.size() << "\n" << node.DebugString(); return absl::OkStatus(); } if (!IsTensorSmall(output_properties[port_id])) { return absl::OkStatus(); } if (IsIdentity(node) || IsIdentityNSingleInput(node)) { for (const auto& fanin : graph.GetFanins(node, false)) { bool fanin_candidate = false; TF_RETURN_IF_ERROR(IsNodeOutputPortHostFriendly( graph, properties, *fanin.node, fanin.port_id, &fanin_candidate)); if (!fanin_candidate) { return absl::OkStatus(); } } *is_candidate = true; return absl::OkStatus(); } if (absl::StrContains(node.device(), DEVICE_CPU)) { *is_candidate = true; return absl::OkStatus(); } const OpDef* op = nullptr; Status s = OpRegistry::Global()->LookUpOpDef(node.op(), &op); if (!s.ok()) { LOG(WARNING) << "Could not find OpDef for : " << node.op(); return absl::OkStatus(); } const int output_arg_id = OpOutputPortIdToArgId(node, *op, port_id); if (output_arg_id < 0) { LOG(WARNING) << "Invalid port: " << port_id << "!\n" << node.DebugString() << "\n" << op->DebugString(); return absl::OkStatus(); } const KernelDef* kernel = nullptr; s = TryFindKernelDef({node.device().c_str(), DEVICE_GPU, DEVICE_CPU}, node, &kernel); if (!s.ok()) { LOG(INFO) << "Could not find KernelDef for: " << node.op(); return absl::OkStatus(); } for (const string& host_memory_arg : kernel->host_memory_arg()) { if (op->output_arg(output_arg_id).name() == host_memory_arg) { *is_candidate = true; break; } } return absl::OkStatus(); } bool IsNodeInputPortHostFriendly(const NodeDef& node, int port_id) { if (absl::StrContains(node.device(), DEVICE_CPU)) { return true; } const OpDef* op = nullptr; Status s = OpRegistry::Global()->LookUpOpDef(node.op(), &op); if (!s.ok()) { LOG(WARNING) << "Could not find OpDef for : " << node.op(); return false; } const int input_arg_id = OpInputPortIdToArgId(node, *op, port_id); const KernelDef* kernel = nullptr; s = internal::TryFindKernelDef( {node.device().c_str(), DEVICE_GPU, DEVICE_CPU}, node, &kernel); if (!s.ok()) { LOG(INFO) << "Could not find KernelDef for: " << node.op(); return false; } for (const string& host_memory_arg : kernel->host_memory_arg()) { if (op->input_arg(input_arg_id).name() == host_memory_arg) { return true; } } return false; } Status IsNodeHostCandidate(const GraphView& graph, GraphProperties* properties, const NodeDef& node, bool* is_candidate) { *is_candidate = false; if (absl::StrContains(node.device(), DEVICE_CPU)) { *is_candidate = true; return absl::OkStatus(); } if (IsDenylisted(node)) { return absl::OkStatus(); } Status s = TryFindKernelDef({DEVICE_CPU}, node, nullptr); if (!s.ok()) { return absl::OkStatus(); } for (const GraphView::OutputPort& fanin : graph.GetFanins(node, false)) { bool fanin_candidate = false; TF_RETURN_IF_ERROR(IsNodeOutputPortHostFriendly( graph, properties, *fanin.node, fanin.port_id, &fanin_candidate)); if (!fanin_candidate) { return absl::OkStatus(); } } if (!properties->has_properties()) { TF_RETURN_IF_ERROR(properties->InferStatically( false, false, false)); } for (const auto& prop : properties->GetOutputProperties(node.name())) { if (!IsTensorSmall(prop)) { return absl::OkStatus(); } } *is_candidate = true; return absl::OkStatus(); } string TryFindHostDevice(const gtl::FlatSet<string>& devices, bool has_device_cpu, const string& device) { if (device.empty() && has_device_cpu) { return "/device:CPU:0"; } else if (absl::StrContains(device, DEVICE_GPU)) { for (const auto& device_match : {std::pair<string, string>("GPU", "CPU:0"), std::pair<string, string>("/device", "/device:CPU:0")}) { const string device_host = strings::StrCat(device.substr(0, device.rfind(device_match.first)), device_match.second); if (devices.find(device_host) != devices.end()) { return device_host; } } } return ""; } } Status PinToHostOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { *optimized_graph = item.graph; if (IsLegacyTPUBridgeGraphDef(*optimized_graph)) { return absl::OkStatus(); } GraphProperties properties(item); GraphView graph(optimized_graph); gtl::FlatSet<string> devices; if (cluster) { const std::vector<string> device_names = cluster->GetDeviceNames(); devices.insert(device_names.begin(), device_names.end()); } else { devices = {"/device:CPU:0"}; } const bool has_device_cpu = devices.find("/device:CPU:0") != devices.end(); TF_RETURN_IF_ERROR(TopologicalSort(optimized_graph)); std::vector<std::pair<NodeDef*, string>> const_nodes; for (auto& node : *optimized_graph->mutable_node()) { GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); bool is_candidate = false; TF_RETURN_IF_ERROR( internal::IsNodeHostCandidate(graph, &properties, node, &is_candidate)); if (!is_candidate) { continue; } string device = internal::TryFindHostDevice(devices, has_device_cpu, node.device()); if (!device.empty()) { if (IsConstant(node)) { const_nodes.emplace_back(&node, node.device()); } VLOG(2) << "Moving node " << node.name() << " to device " << device; *node.mutable_device() = std::move(device); } } for (auto& it : const_nodes) { GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); NodeDef* node = it.first; const string& device = it.second; for (const GraphView::InputPort& fanout : graph.GetFanouts(*node, false)) { if (!internal::IsNodeInputPortHostFriendly(*fanout.node, fanout.port_id)) { VLOG(2) << "Swapping node " << node->name() << " back to device " << device; node->set_device(device); break; } } } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/pin_to_host_optimizer.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class PinToHostOptimizerTest : public GrapplerTest {}; TEST_F(PinToHostOptimizerTest, TryFindHostDeviceNoDevices) { gtl::FlatSet<string> devices = {}; EXPECT_EQ(internal::TryFindHostDevice(devices, false, "ABC"), ""); } TEST_F(PinToHostOptimizerTest, TryFindHostDeviceCpuXlaGpu) { gtl::FlatSet<string> devices = {"/device:CPU:0", "/device:XLA_GPU:0"}; EXPECT_EQ(internal::TryFindHostDevice(devices, true, ""), "/device:CPU:0"); EXPECT_EQ(internal::TryFindHostDevice(devices, true, "/device:XLA_GPU:0"), "/device:CPU:0"); EXPECT_EQ(internal::TryFindHostDevice(devices, true, "/device:XLA_GPU:*"), "/device:CPU:0"); } TEST_F(PinToHostOptimizerTest, OptimizeSmallOpsToHost) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1, {1024, 1024}); Output c = ops::Shape(s.WithOpName("c"), a); Output d = ops::Const(s.WithOpName("d"), 0, {1}); Output e = ops::ReduceProd(s.WithOpName("e"), c, d); int num_int32 = 4; Output f = ops::Const(s.WithOpName("f"), {"test"}); GrapplerItem item; item.fetch = {"a", "c", "d", "e", "f"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < tensors.size(); ++i) { if (i < num_int32) { test::ExpectTensorEqual<int32>(tensors[i], tensors_expected[i]); } else { test::ExpectTensorEqual<tstring>(tensors[i], tensors_expected[i]); } } int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "a" || node.name() == "c") { EXPECT_TRUE(node.device().empty()); } else if (node.name() == "d" || node.name() == "e" || node.name() == "f") { EXPECT_EQ(node.device(), "/device:CPU:0"); } ++found; } EXPECT_EQ(found, 5); } TEST_F(PinToHostOptimizerTest, OptimizeSmallFloatOpsToHost) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 0.0f, {1024, 1024}); Output input_min = ops::Const(s.WithOpName("input_min"), 0.0f); Output input_max = ops::Const(s.WithOpName("input_max"), 6.0f); Output b = ops::QuantizeAndDequantizeV2(s.WithOpName("b"), a, input_min, input_max); GrapplerItem item; item.fetch = {"b"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < tensors.size(); ++i) { test::ExpectTensorEqual<float>(tensors[i], tensors_expected[i]); } for (const NodeDef& node : output.node()) { if (node.name() == "input_min" || node.name() == "input_max") { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM EXPECT_EQ(node.device(), "/device:CPU:0"); #else EXPECT_TRUE(node.device().empty()); #endif } } } TEST_F(PinToHostOptimizerTest, TopologicalSort) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1, {1024, 1024}); Output c = ops::Shape(s.WithOpName("c"), a); Output d = ops::Const(s.WithOpName("d"), 0, {1}); Output e = ops::ReduceProd(s.WithOpName("e"), c, d); GrapplerItem item; item.fetch = {"a", "c", "d", "e"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); std::reverse(item.graph.mutable_node()->begin(), item.graph.mutable_node()->end()); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < tensors.size(); ++i) { test::ExpectTensorEqual<int32>(tensors[i], tensors_expected[i]); } int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "a" || node.name() == "c") { EXPECT_TRUE(node.device().empty()); } else if (node.name() == "d" || node.name() == "e") { EXPECT_EQ(node.device(), "/device:CPU:0"); } ++found; } EXPECT_EQ(found, 4); } TEST_F(PinToHostOptimizerTest, NoSwap) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1, {1, 1}); Output b = ops::Const(s.WithOpName("b"), 1, {1, 1024 * 1024}); Output c = ops::MatMul(s.WithOpName("c"), a, b); GrapplerItem item; item.fetch = {"a", "b", "c"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < tensors.size(); ++i) { test::ExpectTensorEqual<int32>(tensors[i], tensors_expected[i]); } int found = 0; for (const NodeDef& node : output.node()) { EXPECT_TRUE(node.device().empty()); ++found; } EXPECT_EQ(found, 3); } TEST_F(PinToHostOptimizerTest, Identity) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a").WithDevice("/device:GPU:0"), 1, {64, 64}); Output b = ops::Const(s.WithOpName("b"), {0, 1}, {2}); Output c = ops::ReduceProd(s.WithOpName("c").WithDevice("/device:GPU:0"), a, b); Output d = ops::Identity(s.WithDevice("/device:CPU:0").WithOpName("d"), c); Output e = ops::Multiply(s.WithOpName("e"), d, d); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "a" || node.name() == "c") { EXPECT_EQ(node.device(), "/device:GPU:0"); } else if (node.name() == "b") { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM EXPECT_EQ(node.device(), "/device:CPU:0"); #else EXPECT_TRUE(node.device().empty()); #endif } else if (node.name() == "d") { EXPECT_EQ(node.device(), "/device:CPU:0"); } else if (node.name() == "e") { EXPECT_TRUE(node.device().empty()); } ++found; } EXPECT_EQ(found, 5); } TEST_F(PinToHostOptimizerTest, PortIdToArgId) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1, {1, 2, 3}); ops::ShapeN b(s.WithOpName("b"), {a, a, a}); GrapplerItem item; item.fetch = {"a", "b"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; PinToHostOptimizer optimizer(RewriterConfig::ON); TF_EXPECT_OK(optimizer.Optimize(nullptr, item, &output)); auto tensors = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), tensors.size()); for (int i = 0; i < tensors.size(); ++i) { test::ExpectTensorEqual<int32>(tensors[i], tensors_expected[i]); } int found = 0; for (const NodeDef& node : output.node()) { EXPECT_EQ(node.device(), "/device:CPU:0"); ++found; } EXPECT_EQ(found, 2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/pin_to_host_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/pin_to_host_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9b10400e-2167-4933-8c90-81af979ac416
cpp
tensorflow/tensorflow
arithmetic_optimizer
tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc
tensorflow/core/grappler/optimizers/arithmetic_optimizer_test.cc
#include "tensorflow/core/grappler/optimizers/arithmetic_optimizer.h" #include <algorithm> #include <deque> #include <limits> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_join.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/graph_topology_view.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/constant_folding.h" #include "tensorflow/core/grappler/optimizers/graph_optimizer_stage.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/canonicalizer.h" #include "tensorflow/core/grappler/utils/symbolic_shapes.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/grappler/utils/traversal.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/tensor_coding.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/saved_tensor_slice_util.h" #include "tensorflow/core/util/strided_slice_op.h" using tensorflow::strings::StrCat; namespace tensorflow { namespace grappler { namespace { constexpr char kAddOpsRewriteTag[] = "_grappler_ArithmeticOptimizer_AddOpsRewriteStage"; constexpr char kMinimizeBroadcastsTag[] = "_grappler_ArithmeticOptimizer_MinimizeBroadcasts"; template <typename T> bool ValuesFromConstNode(const NodeDef& node, std::vector<T>* values) { if (node.op() != "Const") { return false; } if (node.attr().count("dtype") == 0 || node.attr().count("value") == 0 || node.attr().at("dtype").type() != DataTypeToEnum<T>::value) { return false; } const TensorProto& tensor = node.attr().at("value").tensor(); typename checkpoint::SaveTypeTraits<T>::RepeatedField* tensor_values = checkpoint::MutableTensorProtoData<T>(const_cast<TensorProto*>(&tensor)); if (!tensor_values->empty() && tensor.has_tensor_shape()) { const TensorShapeProto& shape = tensor.tensor_shape(); if (shape.dim_size() == 1 && shape.dim(0).size() == tensor_values->size()) { values->insert(values->end(), tensor_values->begin(), tensor_values->end()); return true; } } const auto tensor_content_size = tensor.tensor_content().size(); if (tensor_content_size > 0) { CHECK_EQ(0, tensor_content_size % sizeof(T)) << "tensor_content_size (" << tensor_content_size << ") is not a multiple of " << sizeof(T); values->resize(tensor_content_size / sizeof(T)); port::CopyToArray(tensor.tensor_content(), reinterpret_cast<char*>(values->data())); return true; } return false; } bool MaybeAddControlInput(const string& new_input, NodeDef* node, GraphDef* graph, NodeMap* node_map) { bool already_exists = false; for (const string& input : node->input()) { if (input == new_input || AsControlDependency(input) == new_input) { already_exists = true; break; } } if (!already_exists) { const string ctrl_dep = ConstantFolding::AddControlDependency(new_input, graph, node_map); node->add_input(ctrl_dep); node_map->AddOutput(NodeName(new_input), node->name()); } return !already_exists; } void SetDataTypeToAttr(DataType dtype, const string& attr_name, NodeDef* node) { (*node->mutable_attr())[attr_name].set_type(dtype); } NodeDef* GetTailOfValuePreservingChain( const NodeDef& node, const NodeMap& node_map, const std::unordered_set<string>& nodes_to_preserve) { auto is_value_preserving_non_branching = [&](const NodeDef& node) { return nodes_to_preserve.find(node.name()) == nodes_to_preserve.end() && IsValuePreserving(node) && NumNonControlOutputs(node, node_map) == 1; }; return GetTailOfChain(node, node_map, false, is_value_preserving_non_branching); } NodeDef* GetTailOfIdempotentChain( const NodeDef& node, const NodeMap& node_map, const std::unordered_set<string>& nodes_to_preserve) { auto is_idempotent_non_branching = [&](const NodeDef& node) { return nodes_to_preserve.find(node.name()) == nodes_to_preserve.end() && IsIdempotent(node) && NumNonControlOutputs(node, node_map) == 1; }; return GetTailOfChain(node, node_map, false, is_idempotent_non_branching); } bool GetElementUnexhaustive(const Tensor& t, int i, const std::set<int>& dtypes, complex128* element) { if (dtypes.find(t.dtype()) == dtypes.end()) return false; switch (t.dtype()) { case DT_BFLOAT16: *element = complex128(t.flat<bfloat16>()(i)); return true; case DT_HALF: *element = complex128(static_cast<double>(t.flat<Eigen::half>()(i)), 0); return true; case DT_INT32: *element = complex128(t.flat<int32>()(i)); return true; case DT_INT64: *element = complex128(t.flat<int64_t>()(i)); return true; case DT_FLOAT: *element = complex128(t.flat<float>()(i)); return true; case DT_DOUBLE: *element = complex128(t.flat<double>()(i)); return true; case DT_COMPLEX64: *element = complex128(t.flat<complex64>()(i)); return true; case DT_COMPLEX128: *element = t.flat<complex128>()(i); return true; default: return false; } } bool NodeIsOnCpu(const NodeDef& node) { string task; string device; return DeviceNameUtils::SplitDeviceName(node.device(), &task, &device) && absl::StrContains(device, DEVICE_CPU); } bool AllRegularInputsEqual(const NodeDef& node) { if (!HasRegularInputs(node)) return true; for (int i = 1; i < node.input_size(); ++i) { if (IsControlInput(node.input(i))) { break; } if (node.input(0) != node.input(i)) { return false; } } return true; } void ReplaceWithNoOp(NodeDef* node, const GraphOptimizerContext& ctx) { ctx.node_map->RemoveInputs(node->name()); ctx.graph_properties->ClearInputProperties(node->name()); ctx.graph_properties->ClearOutputProperties(node->name()); ChangeToNoOp(node); EraseRegularNodeAttributes(node); node->clear_input(); } struct ArithmeticOptimizerContext { explicit ArithmeticOptimizerContext(SetVector<NodeDef*>* nodes_to_simplify) : nodes_to_simplify(nodes_to_simplify) {} SetVector<NodeDef*>* nodes_to_simplify; }; class ArithmeticOptimizerStage : public GraphOptimizerStage<string> { public: explicit ArithmeticOptimizerStage(const string& name, const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext ctx_ext) : GraphOptimizerStage("ArithmeticOptimizer", name, ctx), ctx_ext_(ctx_ext) {} ~ArithmeticOptimizerStage() override = default; protected: void AddToOptimizationQueue(NodeDef* node) { ctx_ext_.nodes_to_simplify->PushBack(node); } Status UpdateConsumers(NodeDef* node, const string& new_input) { const auto consumers = ctx().node_map->GetOutputs(node->name()); if (consumers.empty()) return absl::OkStatus(); const TensorId new_tensor = ParseTensorName(new_input); for (NodeDef* consumer : consumers) { if (consumer->name() == new_tensor.node()) continue; bool updated = false; for (int i = 0; i < consumer->input_size(); ++i) { const TensorId input_tensor = ParseTensorName(consumer->input(i)); if (input_tensor.node() == node->name()) { if (new_tensor.index() < 0 && input_tensor.index() >= 0) { return errors::InvalidArgument( "Cannot override data input ", input_tensor.ToString(), " with control input ", new_tensor.ToString()); } consumer->set_input(i, input_tensor.index() < 0 ? absl::StrCat("^", new_tensor.node()) : new_input); ctx().node_map->UpdateInput(consumer->name(), node->name(), new_input); updated = true; } } if (updated) { DedupControlInputs(consumer); AddToOptimizationQueue(consumer); } } return absl::OkStatus(); } void ForwardControlDependencies( NodeDef* target_node, const std::vector<const NodeDef*>& src_nodes) { for (const auto& src : src_nodes) { for (int i = src->input_size() - 1; i >= 0; --i) { if (IsControlInput(src->input(i))) { *target_node->add_input() = src->input(i); ctx().node_map->AddOutput(NodeName(src->input(i)), target_node->name()); } else { break; } } } DedupControlInputs(target_node); } bool IsReallyConstant(const NodeDef& node) const { if (!IsConstant(node)) { return false; } return ctx().feed_nodes->find(node.name()) == ctx().feed_nodes->end(); } bool IsInPreserveSet(const NodeDef& node) const { return ctx().nodes_to_preserve->find(node.name()) != ctx().nodes_to_preserve->end(); } bool IsDrivenByControlDependency(const NodeDef& node) const { return std::any_of( node.input().begin(), node.input().end(), [](const string& input) { return IsControlInput(input); }); } bool DrivesControlDependency(const NodeDef& node) const { for (const NodeDef* output : ctx().node_map->GetOutputs(node.name())) { for (int i = 0; i < output->input_size(); ++i) { const TensorId tensor = ParseTensorName(output->input(i)); if (tensor.node() == node.name() && tensor.index() < 0) { return true; } } } return false; } bool GetTensorFromConstNode(const string& node_name_or_input, Tensor* tensor) { const NodeDef* node = ctx().node_map->GetNode(node_name_or_input); return node != nullptr && IsReallyConstant(*node) && CheckAttrExists(*node, "value").ok() && tensor->FromProto(node->attr().at("value").tensor()); } private: const ArithmeticOptimizerContext ctx_ext_; }; class ArithmeticNodesGroupOptimizerStage : public ArithmeticOptimizerStage { public: explicit ArithmeticNodesGroupOptimizerStage( const string& name, const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext ctx_ext) : ArithmeticOptimizerStage(name, ctx, ctx_ext) {} ~ArithmeticNodesGroupOptimizerStage() override = default; struct InputAndShape { InputAndShape(const string& input, const TensorShapeProto& shape) : input(input), shape(shape) {} string input; TensorShapeProto shape; }; struct OptimizedNodesGroup { NodeDef* root_node; TensorShapeProto root_shape; std::vector<NodeDef*> optimized_nodes; std::vector<InputAndShape> inputs; }; Status TrySimplify(NodeDef* node, string* simplified_node_name) override { TF_RETURN_IF_ERROR(EnsureNodeIsSupported(node)); OptimizedNodesGroup group; TF_RETURN_IF_ERROR(CreateOptimizedNodesGroup(node, &group)); if (!group.optimized_nodes.empty()) { *simplified_node_name = RewriteOptimizedNodesGroup(group); } return absl::OkStatus(); } protected: virtual string RewriteOptimizedNodesGroup( const OptimizedNodesGroup& group) = 0; virtual bool IsAbsorbableByOptimizedNodesGroup( const OptimizedNodesGroup& group, const NodeDef& node) const = 0; Status AbsorbInputByOptimizedNodesGroup(const string& input, OptimizedNodesGroup* group) const { std::deque<const string*> input_tensors; input_tensors.push_front(&input); while (!input_tensors.empty()) { const string* input_tensor = input_tensors.front(); input_tensors.pop_front(); NodeDef* input_node; TF_RETURN_IF_ERROR(GetInputNode(*input_tensor, &input_node)); if (IsAbsorbableByOptimizedNodesGroup(*group, *input_node)) { group->optimized_nodes.push_back(input_node); for (int i = input_node->input_size() - 1; i >= 0; --i) { const string& absorbed_node_input = input_node->input(i); if (IsControlInput(absorbed_node_input)) continue; input_tensors.push_front(&absorbed_node_input); } } else { const OpInfo::TensorProperties* properties; TF_RETURN_IF_ERROR(GetTensorProperties(*input_tensor, &properties)); group->inputs.emplace_back(*input_tensor, properties->shape()); } } return absl::OkStatus(); } Status CreateOptimizedNodesGroup(NodeDef* root_node, OptimizedNodesGroup* group) const { const OpInfo::TensorProperties* root_node_output_properties; TF_RETURN_IF_ERROR( GetTensorProperties(root_node->name(), &root_node_output_properties)); group->root_node = root_node; group->root_shape = root_node_output_properties->shape(); group->optimized_nodes.reserve(root_node->input_size()); for (int i = 0; i < root_node->input_size(); ++i) { const string& input_i = root_node->input(i); if (IsControlInput(input_i)) continue; TF_RETURN_IF_ERROR(AbsorbInputByOptimizedNodesGroup(input_i, group)); } return absl::OkStatus(); } bool HasAllInputsBroadcastableToShape( const NodeDef& node, const OpInfo::TensorProperties& properties) const { auto is_broadcastable = [this, &properties](const string& input) { const OpInfo::TensorProperties* input_props; Status has_input_properties = GetTensorProperties(input, &input_props); return has_input_properties.ok() && ShapesBroadcastable(properties, *input_props); }; return std::all_of(node.input().begin(), node.input().end(), is_broadcastable); } string ShapeSignature(const TensorShapeProto& shape) const { string signature = strings::StrCat("rank:", shape.dim_size(), ":dim"); for (int i = 0; i < shape.dim_size(); ++i) strings::StrAppend(&signature, ":", shape.dim(i).size()); return signature; } void MarkWithTag(const StringPiece tag, NodeDef* node) { AddNodeAttr(tag, true, node); } void MarkAllMembersWithTag(const OptimizedNodesGroup& group, const StringPiece tag) const { AddNodeAttr(tag, true, group.root_node); for (NodeDef* optimized_node : group.optimized_nodes) { AddNodeAttr(tag, true, optimized_node); } } bool IsOnTheSameDevice(const OptimizedNodesGroup& group, const NodeDef& node) const { return group.root_node->device() == node.device(); } bool IsInPreserveSet(const NodeDef& node) const { return ctx().nodes_to_preserve->find(node.name()) != ctx().nodes_to_preserve->end(); } bool IsMarkedWithTag(const NodeDef& node, const StringPiece tag) const { return HasNodeAttr(node, tag); } bool IsMarkedWithAnyTag(const NodeDef& node, const StringPiece tag1, const StringPiece tag2) const { return IsMarkedWithTag(node, tag1) || IsMarkedWithTag(node, tag2); } }; class AddOpsRewriteStage : public ArithmeticNodesGroupOptimizerStage { public: explicit AddOpsRewriteStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticNodesGroupOptimizerStage("AddOpsRewrite", ctx, ctx_ext) {} ~AddOpsRewriteStage() override = default; bool IsSupported(const NodeDef* node) const override { if (!CanOptimize(*node)) return false; const OpInfo::TensorProperties* properties; Status has_properties = GetTensorProperties(node->name(), &properties); return has_properties.ok() && ShapeIsSymbolicallyDefined(*properties) && HasAllInputsBroadcastableToShape(*node, *properties); } protected: bool IsAbsorbableByOptimizedNodesGroup(const OptimizedNodesGroup& group, const NodeDef& node) const override { if (!CanOptimize(node)) return false; if (!IsOnTheSameDevice(group, node)) { return false; } if (NumNonControlDataOutputs(node, *ctx().node_map) != 1) { return false; } const OpInfo::TensorProperties* properties; Status has_properties = GetTensorProperties(node.name(), &properties); return has_properties.ok() && HasAllInputsBroadcastableToShape(node, *properties); } bool CanOptimize(const NodeDef& node) const { if (!IsAdd(node) && !IsAddN(node)) { return false; } if (IsInPreserveSet(node) || IsMarkedWithTag(node, kAddOpsRewriteTag)) { return false; } return !(IsDrivenByControlDependency(node) || DrivesControlDependency(node)); } string RewriteOptimizedNodesGroup(const OptimizedNodesGroup& group) override { VLOG(2) << "Collapse Add/AddN: root=" << group.root_node->name() << " op=" << group.root_node->op() << " num_optimized_nodes=" << group.optimized_nodes.size() << " num_inputs=" << group.inputs.size(); MarkAllMembersWithTag(group, kAddOpsRewriteTag); auto root_scope_and_name = ParseNodeScopeAndName(group.root_node->name()); std::unordered_map<string, std::vector<InputAndShape>> shape_sig_to_inputs; for (const auto& input : group.inputs) { shape_sig_to_inputs[ShapeSignature(input.shape)].push_back(input); } using SigKV = decltype(shape_sig_to_inputs)::value_type; VLOG(3) << "Add/AddN group has " << shape_sig_to_inputs.size() << " unique shapes: " << absl::StrJoin(shape_sig_to_inputs, ", ", [](string* out, SigKV p) { strings::StrAppend(out, p.first); }); std::vector<TensorShapeProto> shapes; shapes.reserve(shape_sig_to_inputs.size()); for (const auto& el : shape_sig_to_inputs) shapes.push_back(el.second[0].shape); if (shapes.size() == 1) { string node_name = UniqueOptimizedNodeName(root_scope_and_name); AddInputsOfSymbolicallyEqualShape(*group.root_node, node_name, group.inputs); return node_name; } std::sort(shapes.begin(), shapes.end(), [](const TensorShapeProto& left, const TensorShapeProto& right) { return CompareSymbolicallyShapedTensorSizes(left, right); }); auto leaf_node_name = [&root_scope_and_name, this](int i) { return UniqueOptimizedNodeName(root_scope_and_name, strings::StrCat("Leaf_", i)); }; auto internal_node_name = [&root_scope_and_name, this](int i) { return UniqueOptimizedNodeName(root_scope_and_name, strings::StrCat("Internal_", i)); }; std::deque<InputAndShape> add_ops; for (int i = 0, end = shapes.size(); i < end; ++i) { const auto node_name = leaf_node_name(i); const auto& inputs = shape_sig_to_inputs[ShapeSignature(shapes[i])]; add_ops.push_back(AddInputsOfSymbolicallyEqualShape(*group.root_node, node_name, inputs)); } int internal_nodes = 0; do { const InputAndShape lhs = add_ops.front(); add_ops.pop_front(); const InputAndShape rhs = add_ops.front(); add_ops.pop_front(); string name = add_ops.empty() ? UniqueOptimizedNodeName(root_scope_and_name) : internal_node_name(internal_nodes++); InputAndShape add = AddAggregatedInputs(*group.root_node, name, lhs, rhs); add_ops.push_front(add); } while (add_ops.size() > 1); InputAndShape optimized_root_node = add_ops.front(); return optimized_root_node.input; } InputAndShape AddInputsOfSymbolicallyEqualShape( const NodeDef& root_node, const string& node_name, const std::vector<InputAndShape>& inputs) { CHECK(!inputs.empty()) << "Inputs must be non-empty"; if (inputs.size() == 1 || root_node.attr().count("T") == 0) { return inputs[0]; } auto shape = inputs[0].shape; DataType dtype = root_node.attr().at("T").type(); NodeDef* node = AddEmptyNode(node_name); node->set_op("AddN"); node->set_device(root_node.device()); (*node->mutable_attr())["T"].set_type(dtype); (*node->mutable_attr())["N"].set_i(inputs.size()); for (const auto& inputAndShape : inputs) { ctx().node_map->AddOutput(inputAndShape.input, node_name); node->add_input(inputAndShape.input); } MarkWithTag(kAddOpsRewriteTag, node); return InputAndShape(node_name, shape); } InputAndShape AddAggregatedInputs(const NodeDef& root_node, const string& node_name, const InputAndShape& left, const InputAndShape& right) { DataType dtype = root_node.attr().at("T").type(); NodeDef* node = AddEmptyNode(node_name); node->set_op((dtype == DT_STRING || dtype == DT_STRING_REF) ? "Add" : "AddV2"); node->set_device(root_node.device()); (*node->mutable_attr())["T"].set_type(dtype); node->add_input(left.input); node->add_input(right.input); ctx().node_map->AddOutput(left.input, node_name); ctx().node_map->AddOutput(right.input, node_name); MarkWithTag(kAddOpsRewriteTag, node); return InputAndShape( node_name, TensorShapeProto()); } }; class HoistCommonFactorOutOfAggregation : public ArithmeticOptimizerStage { public: explicit HoistCommonFactorOutOfAggregation( const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("HoistCommonFactor", ctx, ctx_ext) {} ~HoistCommonFactorOutOfAggregation() override = default; bool IsSupported(const NodeDef* node) const override { return IsAggregate(*node) && NumNonControlInputs(*node) > 1 && !IsRewritten(node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { TF_RETURN_IF_ERROR(EnsureNodeIsSupported(node)); bool common_factor_is_denominator = false; std::set<string> common_factors; std::vector<string> ctrl_deps; TF_RETURN_IF_ERROR(GetCommonFactors( node, &common_factors, &common_factor_is_denominator, &ctrl_deps)); if (common_factors.size() == 1) { const string& common_factor = *common_factors.begin(); bool shapes_match = true; std::vector<string> unique_factors; TF_RETURN_IF_ERROR(GetUniqueFactors(node, common_factor, common_factor_is_denominator, &shapes_match, &unique_factors)); if (shapes_match) { NodeDef* input_0; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &input_0)); NodeDef* new_outer_node = AddCopyNode( OuterNodeName(node, common_factor_is_denominator), input_0); NodeDef* new_add_node = AddCopyNode(InnerAddNodeName(node), node); new_outer_node->set_device(node->device()); if (common_factor_is_denominator) { new_outer_node->set_input(0, new_add_node->name()); new_outer_node->set_input(1, common_factor); } else { new_outer_node->set_input(0, common_factor); new_outer_node->set_input(1, new_add_node->name()); } ctx().node_map->AddOutput(common_factor, new_outer_node->name()); ctx().node_map->AddOutput(new_add_node->name(), new_outer_node->name()); for (int i = 0, end = unique_factors.size(); i < end; ++i) { const string& unique_factor_i = unique_factors[i]; new_add_node->set_input(i, unique_factor_i); ctx().node_map->AddOutput(unique_factor_i, new_add_node->name()); } for (const string& ctrl_dep : ctrl_deps) { *new_add_node->add_input() = ctrl_dep; ctx().node_map->AddOutput(NodeName(ctrl_dep), new_add_node->name()); } AddToOptimizationQueue(new_add_node); rewritten_nodes_.insert(node->name()); *simplified_node_name = new_outer_node->name(); } } return absl::OkStatus(); } private: string OuterNodeName(const NodeDef* node, bool is_div) const { auto scope_and_name = ParseNodeScopeAndName(node->name()); return is_div ? OptimizedNodeName(scope_and_name, "Div") : OptimizedNodeName(scope_and_name, "Mul"); } string InnerAddNodeName(const NodeDef* node) const { auto scope_and_name = ParseNodeScopeAndName(node->name()); return OptimizedNodeName(scope_and_name, "AddV2"); } Status GetCommonFactors(const NodeDef* node, std::set<string>* common_factors, bool* common_factor_is_denominator, std::vector<string>* ctrl_deps) const { CHECK(common_factors->empty()); CHECK_NOTNULL(common_factor_is_denominator); *common_factor_is_denominator = false; bool has_mul = false; bool has_div = false; for (int i = 0; i < node->input_size(); ++i) { if (i > 0 && common_factors->empty()) break; if (IsControlInput(node->input(i))) { ctrl_deps->push_back(node->input(i)); continue; } NodeDef* input; TF_RETURN_IF_ERROR(GetInputNode(node->input(i), &input)); if ((!IsMul(*input) && !IsAnyDiv(*input)) || (IsMul(*input) && has_div) || (IsAnyDiv(*input) && has_mul)) { common_factors->clear(); break; } else if (IsAnyDiv(*input)) { has_div = true; const OpInfo::TensorProperties* properties0; const OpInfo::TensorProperties* properties1; TF_RETURN_IF_ERROR(GetTensorProperties(input->input(0), &properties0)); TF_RETURN_IF_ERROR(GetTensorProperties(input->input(1), &properties1)); if (properties0->dtype() != DT_FLOAT && properties0->dtype() != DT_DOUBLE && properties1->dtype() != DT_FLOAT && properties1->dtype() != DT_DOUBLE) { common_factors->clear(); break; } } else if (IsMul(*input)) { has_mul = true; } std::set<string> factors_i = has_mul ? std::set<string>{input->input(0), input->input(1)} : std::set<string>{input->input(1)}; if (i == 0) { std::swap(*common_factors, factors_i); } else { std::set<string> intersection; std::set_intersection( factors_i.begin(), factors_i.end(), common_factors->begin(), common_factors->end(), std::inserter(intersection, intersection.begin())); std::swap(*common_factors, intersection); } for (int i = 2; i < input->input_size(); ++i) { ctrl_deps->push_back(input->input(i)); } } *common_factor_is_denominator = has_div; return absl::OkStatus(); } Status GetUniqueFactors(const NodeDef* node, const string& common_factor, const bool common_factor_is_denominator, bool* shapes_match, std::vector<string>* unique_factors) const { *shapes_match = true; unique_factors->reserve(node->input_size()); for (int i = 0; i < node->input_size() && *shapes_match; ++i) { const string& input = node->input(i); if (IsControlInput(input)) { break; } NodeDef* inner_node; TF_RETURN_IF_ERROR(GetInputNode(input, &inner_node)); const int unique_factor_index = common_factor_is_denominator ? 0 : (inner_node->input(0) == common_factor ? 1 : 0); unique_factors->push_back(inner_node->input(unique_factor_index)); if (i > 0 && !IsAdd(*node)) { const OpInfo::TensorProperties* lhs; const OpInfo::TensorProperties* rhs; TF_RETURN_IF_ERROR(GetTensorProperties(unique_factors->front(), &lhs)); TF_RETURN_IF_ERROR(GetTensorProperties(unique_factors->back(), &rhs)); *shapes_match = ShapesSymbolicallyEqual(*lhs, *rhs); } } return absl::OkStatus(); } bool IsRewritten(const NodeDef* node) const { return rewritten_nodes_.find(node->name()) != rewritten_nodes_.end() || ctx().node_map->NodeExists(OuterNodeName(node, false)) || ctx().node_map->NodeExists(OuterNodeName(node, true)) || ctx().node_map->NodeExists(InnerAddNodeName(node)); } std::unordered_set<string> rewritten_nodes_; }; class MinimizeBroadcasts : public ArithmeticNodesGroupOptimizerStage { public: explicit MinimizeBroadcasts(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticNodesGroupOptimizerStage("MinimizeBroadcasts", ctx, ctx_ext) { } ~MinimizeBroadcasts() override = default; bool IsSupported(const NodeDef* node) const override { if (!IsBinaryAssociative(*node)) return false; if (IsMarkedWithAnyTag(*node, kMinimizeBroadcastsTag, kAddOpsRewriteTag)) return false; const OpInfo::TensorProperties* properties; Status has_properties = GetTensorProperties(node->name(), &properties); return has_properties.ok() && ShapeIsSymbolicallyDefined(*properties) && HasAllInputsBroadcastableToShape(*node, *properties); } protected: bool IsBinaryAssociative(const NodeDef& node) const { return IsMul(node) || IsAdd(node); } bool IsSameOp(const OptimizedNodesGroup& group, const NodeDef& node) const { return group.root_node->op() == node.op(); } bool IsAbsorbableByOptimizedNodesGroup(const OptimizedNodesGroup& group, const NodeDef& node) const override { if (!IsSameOp(group, node)) { return false; } if (IsInPreserveSet(node)) { return false; } if (IsMarkedWithAnyTag(node, kMinimizeBroadcastsTag, kAddOpsRewriteTag)) { return false; } if (IsDrivenByControlDependency(node) || DrivesControlDependency(node)) { return false; } if (!IsOnTheSameDevice(group, node)) { return false; } if (NumNonControlOutputs(node, *ctx().node_map) != 1) { return false; } const OpInfo::TensorProperties* properties; Status has_properties = GetTensorProperties(node.name(), &properties); return has_properties.ok() && HasAllInputsBroadcastableToShape(node, *properties); } std::size_t CountUniqueShapes(const std::vector<InputAndShape>& inputs) { std::set<string> sigs; for (const auto& ias : inputs) { sigs.insert(ShapeSignature(ias.shape)); } return sigs.size(); } string RewriteOptimizedNodesGroup(const OptimizedNodesGroup& group) override { VLOG(2) << "Minimize broadcast: root=" << group.root_node->name() << " op=" << group.root_node->op() << " num_optimized_nodes=" << group.optimized_nodes.size(); MarkAllMembersWithTag(group, kMinimizeBroadcastsTag); if (CountUniqueShapes(group.inputs) <= 1) { VLOG(3) << "Skip min-bcast group with single unique shape"; return group.root_node->name(); } auto num_nodes = 1 + group.optimized_nodes.size(); auto num_inputs = group.inputs.size(); CHECK_EQ(num_nodes, num_inputs - 1) << "Can't build a tree with " << num_inputs << " inputs, using " << num_nodes << "binary op nodes."; std::deque<InputAndShape> add_ops(group.inputs.begin(), group.inputs.end()); std::deque<NodeDef*> optimized_nodes(group.optimized_nodes.begin(), group.optimized_nodes.end()); std::stable_sort(add_ops.begin(), add_ops.end(), [](const InputAndShape& lhs, const InputAndShape& rhs) { return CompareSymbolicallyShapedTensorSizes(lhs.shape, rhs.shape); }); std::deque<InputAndShape> add_ops_leftover; if (add_ops.size() % 2 != 0) { add_ops_leftover.push_back(add_ops.back()); add_ops.pop_back(); } do { const InputAndShape lhs = add_ops.front(); add_ops.pop_front(); const InputAndShape rhs = add_ops.front(); add_ops.pop_front(); NodeDef* node; if (!optimized_nodes.empty()) { node = optimized_nodes.back(); optimized_nodes.pop_back(); } else { node = group.root_node; } InputAndShape updated_node = UpdateInputs(lhs.input, rhs.input, node); if (add_ops.size() >= 2 && CompareSymbolicallyShapedTensorSizes(add_ops.at(0).shape, add_ops.at(1).shape)) { add_ops.push_front(updated_node); } else { add_ops.push_back(updated_node); } } while (add_ops.size() > 1); CHECK_EQ(1, add_ops.size()); if (!add_ops_leftover.empty()) { const InputAndShape lhs = add_ops.front(); add_ops.pop_front(); const InputAndShape rhs = add_ops_leftover.front(); InputAndShape updated_node = UpdateInputs(lhs.input, rhs.input, group.root_node); add_ops.push_back(updated_node); } return add_ops.front().input; } InputAndShape UpdateInputs(const string& input_0, const string& input_1, NodeDef* node) { string old_input_0 = node->input(0); string old_input_1 = node->input(1); if (old_input_0 != input_0 || old_input_1 != input_1) { node->set_input(0, input_0); node->set_input(1, input_1); ctx().graph_properties->ClearOutputProperties(node->name()); ctx().graph_properties->ClearInputProperties(node->name()); ctx().node_map->RemoveOutput(NodeName(old_input_0), node->name()); ctx().node_map->RemoveOutput(NodeName(old_input_1), node->name()); ctx().node_map->AddOutput(NodeName(input_0), node->name()); ctx().node_map->AddOutput(NodeName(input_1), node->name()); AddToOptimizationQueue(node); } TensorShapeProto shape; return InputAndShape(node->name(), shape); } }; class RemoveIdentityTranspose : public ArithmeticOptimizerStage { public: explicit RemoveIdentityTranspose(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("RemoveIdentityTranspose", ctx, ctx_ext) {} ~RemoveIdentityTranspose() override = default; bool IsSupported(const NodeDef* node) const override { return IsTranspose(*node) || IsConjugateTranspose(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { TF_RETURN_IF_ERROR(EnsureNodeIsSupported(node)); NodeDef* tail = node; tail = GetTailOfIdempotentChain(*tail, *ctx().node_map, *ctx().nodes_to_preserve); NodeDef* first_transpose; TF_RETURN_IF_ERROR(GetInputNode(tail->input(0), &first_transpose)); NodeDef* node_perm; TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &node_perm)); if (!IsConstant(*node_perm)) { return absl::OkStatus(); } std::vector<int64_t> node_perm_values; TF_RETURN_IF_ERROR(GetPermutation(*node_perm, &node_perm_values)); if (first_transpose->op() == node->op()) { NodeDef* first_transpose_perm; TF_RETURN_IF_ERROR( GetInputNode(first_transpose->input(1), &first_transpose_perm)); if (!IsConstant(*first_transpose_perm)) { return absl::OkStatus(); } std::vector<int64_t> first_transpose_perm_values; TF_RETURN_IF_ERROR( GetPermutation(*first_transpose_perm, &first_transpose_perm_values)); if (AreInversePermutations(node_perm_values, first_transpose_perm_values)) { if (tail == node) { *simplified_node_name = first_transpose->input(0); } else { tail->set_input(0, first_transpose->input(0)); ctx().node_map->UpdateInput(tail->name(), first_transpose->name(), first_transpose->input(0)); ForwardControlDependencies(tail, {first_transpose}); *simplified_node_name = node->input(0); } } } else { if (IsIdentityPermutation(node_perm_values)) { if (IsConjugateTranspose(*node)) { const NodeScopeAndName transpose = ParseNodeScopeAndName(node->name()); const string optimized_node_name = OptimizedNodeName(transpose); NodeDef* new_op = AddCopyNode(optimized_node_name, node); new_op->set_op("Conj"); new_op->mutable_input()->RemoveLast(); new_op->mutable_attr()->erase("Tperm"); ForwardControlDependencies(new_op, {node}); *simplified_node_name = new_op->name(); } else { *simplified_node_name = node->input(0); } } } return absl::OkStatus(); } private: Status GetPermutation(const NodeDef& node_perm, std::vector<int64_t>* perm64) const { std::vector<int> perm32; if (ValuesFromConstNode(node_perm, &perm32)) { perm64->reserve(perm32.size()); for (int val : perm32) { perm64->push_back(static_cast<int64_t>(val)); } return absl::OkStatus(); } if (ValuesFromConstNode(node_perm, perm64)) { return absl::OkStatus(); } return errors::InvalidArgument("Couldn't extract permutation from ", node_perm.name()); } bool AreInversePermutations(const std::vector<int64_t>& a, const std::vector<int64_t>& b) { if (a.size() != b.size()) { return false; } for (int i = 0, end = a.size(); i < end; ++i) { if (a[b[i]] != i) { return false; } } return true; } bool IsIdentityPermutation(const std::vector<int64_t>& perm) { for (int64_t i = 0, end = perm.size(); i < end; ++i) { if (i != perm[i]) { return false; } } return true; } }; class RemoveInvolution : public ArithmeticOptimizerStage { public: explicit RemoveInvolution(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("RemoveInvolution", ctx, ctx_ext) {} ~RemoveInvolution() override = default; bool IsSupported(const NodeDef* node) const override { return IsInvolution(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef* tail = GetTailOfValuePreservingChain(*node, *ctx().node_map, *ctx().nodes_to_preserve); NodeDef* involution; TF_RETURN_IF_ERROR(GetInputNode(tail->input(0), &involution)); if (involution->op() == node->op()) { if (tail == node) { *simplified_node_name = involution->input(0); } else { tail->set_input(0, involution->input(0)); ctx().node_map->UpdateInput(tail->name(), involution->name(), involution->input(0)); *simplified_node_name = node->input(0); } } return absl::OkStatus(); } }; class RemoveRedundantBitcastStage : public ArithmeticOptimizerStage { public: explicit RemoveRedundantBitcastStage( const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("RemoveRedundantBitcast", ctx, ctx_ext) {} ~RemoveRedundantBitcastStage() override = default; bool IsSupported(const NodeDef* node) const override { return IsBitcast(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { TF_RETURN_IF_ERROR(EnsureNodeIsSupported(node)); AttrSlice attrs(*node); DataType input_type; TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "T", &input_type)); DataType output_type; TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "type", &output_type)); if ((input_type == output_type) && !IsInPreserveSet(*node)) { *simplified_node_name = node->input(0); return absl::OkStatus(); } NodeDef* bitcast; TF_RETURN_IF_ERROR(GetInputNode(node->name(), &bitcast)); NodeDef* operand; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &operand)); if (IsBitcast(*operand) && !IsInPreserveSet(*operand)) { AttrSlice operand_attrs(*operand); DataType operand_input_type; TF_RETURN_IF_ERROR(GetNodeAttr(operand_attrs, "T", &operand_input_type)); bitcast->set_input(0, operand->input(0)); SetDataTypeToAttr(operand_input_type, "T", bitcast); ctx().node_map->UpdateInput(bitcast->name(), bitcast->input(0), operand->input(0)); AddToOptimizationQueue(bitcast); *simplified_node_name = bitcast->name(); } return absl::OkStatus(); } }; class RemoveRedundantCastStage : public ArithmeticOptimizerStage { public: explicit RemoveRedundantCastStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("RemoveRedundantCast", ctx, ctx_ext) {} ~RemoveRedundantCastStage() override = default; bool IsSupported(const NodeDef* node) const override { return IsCast(*node) && !IsInPreserveSet(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { TF_RETURN_IF_ERROR(EnsureNodeIsSupported(node)); AttrSlice attrs(*node); DataType input_type; TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "SrcT", &input_type)); DataType output_type; TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "DstT", &output_type)); if (input_type == output_type) { *simplified_node_name = node->input(0); } return absl::OkStatus(); } }; class RemoveNegationStage : public ArithmeticOptimizerStage { public: explicit RemoveNegationStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("RemoveNegation", ctx, ctx_ext) {} ~RemoveNegationStage() override = default; bool IsSupported(const NodeDef* node) const override { return (IsAdd(*node) || IsSub(*node)) && !IsInPreserveSet(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef* x; NodeDef* y; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &x)); TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &y)); bool updated = false; if (IsNeg(*y)) { ForwardControlDependencies(node, {y}); ctx().node_map->UpdateInput(node->name(), node->input(1), y->input(0)); node->set_op(IsAdd(*node) ? "Sub" : "AddV2"); node->set_input(1, y->input(0)); updated = true; } else if (IsAdd(*node) && IsNeg(*x)) { ForwardControlDependencies(node, {x}); ctx().node_map->UpdateInput(node->name(), node->input(0), x->input(0)); node->set_op("Sub"); node->mutable_input()->SwapElements(0, 1); node->set_input(1, x->input(0)); updated = true; } if (updated) { AddToOptimizationQueue(node); } return absl::OkStatus(); } }; class RemoveLogicalNotStage : public ArithmeticOptimizerStage { public: explicit RemoveLogicalNotStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("RemoveLogicalNot", ctx, ctx_ext) {} ~RemoveLogicalNotStage() override = default; bool IsSupported(const NodeDef* node) const override { return IsLogicalNot(*node) && !IsInPreserveSet(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { const string node_name = node->name(); NodeDef* input; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &input)); if (IsInPreserveSet(*input) || NumNonControlOutputs(*input, *ctx().node_map) > 1) { return absl::OkStatus(); } string new_op; if (IsEqual(*input)) { new_op = "NotEqual"; } else if (IsNotEqual(*input)) { new_op = "Equal"; } else if (IsLess(*input)) { new_op = "GreaterEqual"; } else if (IsLessEqual(*input)) { new_op = "Greater"; } else if (IsGreater(*input)) { new_op = "LessEqual"; } else if (IsGreaterEqual(*input)) { new_op = "Less"; } if (!new_op.empty()) { input->set_op(new_op); *simplified_node_name = input->name(); } return absl::OkStatus(); } }; class HoistCWiseUnaryChainsStage : public ArithmeticOptimizerStage { public: explicit HoistCWiseUnaryChainsStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("", ctx, ctx_ext) {} ~HoistCWiseUnaryChainsStage() override = default; struct ChainLink { ChainLink() = default; ChainLink(NodeDef* _node, int _port_origin) : node(_node), port_origin(_port_origin) {} NodeDef* node; int port_origin; bool operator<(const ChainLink& other) const { if (port_origin < other.port_origin) { return true; } else if (port_origin > other.port_origin) { return false; } else { return node->name() < other.node->name(); } } }; using ChainLinkSet = std::set<ChainLink>; bool IsSupported(const NodeDef* node) const override { if (IsInPreserveSet(*node)) return false; if (IsConcat(*node) && node->attr().count("N") != 0) { const int n = node->attr().at("N").i(); return n > 1 && FirstNInputsAreUnique(*node, n); } else if ((IsSplit(*node) || IsSplitV(*node)) && node->attr().count("num_split") != 0) { const int num_split = node->attr().at("num_split").i(); if (NumNonControlOutputs(*node, *ctx().node_map) > num_split) { return false; } if (NumControlOutputs(*node, *ctx().node_map) > 0) { return false; } return num_split > 1 && !IsAlreadyOptimized(*node); } return false; } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { node_is_concat_ = IsConcat(*node); int prefix_length; std::set<string> ctrl_inputs; ChainLinkSet tails; TF_RETURN_IF_ERROR( FindCommonUnaryOpChain(*node, &prefix_length, &tails, &ctrl_inputs)); if (prefix_length > 0 && !tails.empty()) { TF_RETURN_IF_ERROR( HoistUnaryOpChain(prefix_length, tails, &ctrl_inputs, node)); } return absl::OkStatus(); } private: bool FirstNInputsAreUnique(const NodeDef& node, int n) const { if (n > node.input_size()) return false; absl::flat_hash_set<string> unique_inputs; const int start = node.op() == "Concat" ? 1 : 0; const int end = start + n; for (int i = start; i < end; ++i) { unique_inputs.insert(node.input(i)); } int unique_input_size = unique_inputs.size(); return unique_input_size == n; } Status FindCommonUnaryOpChain(const NodeDef& root_node, int* prefix_length, ChainLinkSet* tails, std::set<string>* ctrl_inputs) const { *prefix_length = 0; ChainLinkSet cur_tails; TF_RETURN_IF_ERROR(InitializeChains(root_node, &cur_tails)); if (cur_tails.size() < 2) { return absl::OkStatus(); } ctrl_inputs->clear(); bool stop = false; while (!stop && !cur_tails.empty() && OpsAreSafeToHoist(root_node, cur_tails)) { ++(*prefix_length); tails->swap(cur_tails); GatherControlInputs(ctrl_inputs, *tails); TF_RETURN_IF_ERROR(AdvanceTails(*tails, &cur_tails, &stop)); } return absl::OkStatus(); } Status HoistUnaryOpChain(const int prefix_length, const ChainLinkSet& tails, std::set<string>* ctrl_inputs, NodeDef* root_node) { VLOG(3) << "Hoist unary op chain:" << " root=" << root_node->DebugString() << " prefix_length=" << prefix_length << " ctrl_inputs=[" << absl::StrJoin(*ctrl_inputs, ", ") << "]"; if (tails.empty()) { return absl::OkStatus(); } AddToOptimizationQueue(root_node); optimized_nodes_.insert(root_node->name()); if (node_is_concat_) { AddControlInputs(ctrl_inputs, root_node); return HoistChainForConcat(prefix_length, tails, root_node); } else { return HoistChainForSplit(prefix_length, tails, ctrl_inputs, root_node); } } void GatherControlInputs(std::set<string>* ctrl_inputs, const ChainLinkSet& ops) const { for (const auto& link : ops) { const NodeDef* node = link.node; for (int i = node->input_size() - 1; i >= 0; --i) { const string& input = node->input(i); if (!IsControlInput(input)) break; ctrl_inputs->insert(input); } } } void AddControlInputs(std::set<string>* new_ctrl_inputs, NodeDef* node) const { for (int i = node->input_size() - 1; i >= 0; --i) { const string& existing_input = node->input(i); if (!IsControlInput(existing_input)) break; new_ctrl_inputs->erase(existing_input); } for (const string& new_input : *new_ctrl_inputs) { ctx().node_map->AddOutput(NodeName(new_input), node->name()); node->add_input(new_input); } } Status InitializeChains(const NodeDef& node, ChainLinkSet* tails) const { if (node_is_concat_) { TF_RETURN_IF_ERROR(CheckAttrExists(node, "N")); const int n = node.attr().at("N").i(); const int start = node.op() == "Concat" ? 1 : 0; const int end = start + n; if (end > node.input_size()) { return errors::FailedPrecondition("Got attr N=", n, " without enough inputs."); } for (int input_port = start; input_port < end; ++input_port) { if (IsControlInput(node.input(input_port))) { return errors::FailedPrecondition( "Got control input ", node.input(input_port), " where normal input was expected."); } NodeDef* tail; TF_RETURN_IF_ERROR(GetInputNode(node.input(input_port), &tail)); tails->insert(ChainLink(tail, input_port)); } return absl::OkStatus(); } else { const auto& outputs = ctx().node_map->GetOutputs(node.name()); for (NodeDef* output : outputs) { if (output->input_size() == 0 || IsControlInput(output->input(0))) { continue; } TensorId tensor_id = ParseTensorName(output->input(0)); if (tensor_id.node() == node.name()) { tails->insert(ChainLink(output, tensor_id.index())); } else { tails->clear(); return absl::OkStatus(); } } } return absl::OkStatus(); } bool OpsAreSafeToHoist(const NodeDef& root_node, const ChainLinkSet& ops) const { if (ops.empty()) return true; const NodeDef* op0 = ops.begin()->node; if (ModifiesFrameInfo(*op0) || !IsUnaryElementWise(*op0)) return false; for (const auto& link : ops) { const NodeDef* op = link.node; if (op->device() != root_node.device() || op->op() != op0->op() || IsInPreserveSet(*op)) { return false; } if (ctx().node_map->GetOutputs(op->name()).size() > 1) { return false; } if (IsRelu(*op) || IsRelu6(*op)) { NodeDef* operand = nullptr; if (!GetInputNode(op->input(0), &operand).ok()) { return false; } if (IsFusedBatchNorm(*operand) || IsBiasAdd(*operand)) { return false; } } } return true; } Status AdvanceTails(const ChainLinkSet& tails, ChainLinkSet* new_tails, bool* stop) const { *stop = true; new_tails->clear(); for (const auto& link : tails) { const NodeDef* tail = link.node; if (node_is_concat_) { if (tail->input_size() == 0 || IsControlInput(tail->input(0))) { return absl::OkStatus(); } NodeDef* new_tail; TF_RETURN_IF_ERROR(GetInputNode(tail->input(0), &new_tail)); new_tails->insert(ChainLink(new_tail, link.port_origin)); } else { for (NodeDef* new_tail : ctx().node_map->GetOutputs(tail->name())) { const TensorId tensor = ParseTensorName(new_tail->input(0)); if (tensor.node() != tail->name()) { return absl::OkStatus(); } if (tensor.index() >= 0) { new_tails->insert(ChainLink(new_tail, link.port_origin)); } } } } *stop = false; return absl::OkStatus(); } Status HoistChainForConcat(const int prefix_length, const ChainLinkSet& tails, NodeDef* concat_node) { const string& concat_name = concat_node->name(); const int first_input = concat_node->op() == "Concat" ? 1 : 0; for (const auto& link : tails) { NodeDef* tail = CHECK_NOTNULL(link.node); const int concat_port = link.port_origin; CHECK_GE(concat_port, 0); CHECK_LT(concat_port, concat_node->input_size()); const string concat_input = concat_node->input(concat_port); const string tail_input = tail->input(0); concat_node->set_input(concat_port, tail_input); ctx().node_map->UpdateInput(concat_name, concat_input, tail_input); if (concat_port == first_input) { TF_RETURN_IF_ERROR(UpdateConsumers(concat_node, concat_input)); tail->set_input(0, concat_name); ctx().node_map->UpdateInput(tail->name(), tail_input, concat_name); } } return absl::OkStatus(); } Status HoistChainForSplit(const int prefix_length, const ChainLinkSet& tails, std::set<string>* ctrl_inputs, NodeDef* split_node) { const string& split_name = split_node->name(); auto root_scope_and_name = ParseNodeScopeAndName(split_name); NodeDef* cur_tail = tails.begin()->node; NodeDef* cur_copy = AddCopyNode( OptimizedNodeName(root_scope_and_name, cur_tail->name()), cur_tail); cur_copy->clear_input(); const int value_slot = split_node->op() == "SplitV" ? 0 : 1; const string orig_input = split_node->input(value_slot); split_node->set_input(value_slot, cur_copy->name()); ctx().node_map->UpdateInput(split_node->name(), orig_input, cur_copy->name()); TF_RETURN_IF_ERROR(GetInputNode(cur_tail->input(0), &cur_tail)); while (cur_tail != split_node) { NodeDef* new_copy = AddCopyNode( OptimizedNodeName(root_scope_and_name, cur_tail->name()), cur_tail); new_copy->clear_input(); cur_copy->add_input(new_copy->name()); ctx().node_map->AddOutput(new_copy->name(), cur_copy->name()); cur_copy = new_copy; TF_RETURN_IF_ERROR(GetInputNode(cur_tail->input(0), &cur_tail)); } cur_copy->add_input(orig_input); ctx().node_map->UpdateOutput(NodeName(orig_input), split_name, cur_copy->name()); AddControlInputs(ctrl_inputs, cur_copy); for (const auto& link : tails) { TF_RETURN_IF_ERROR(UpdateConsumers( link.node, link.port_origin == 0 ? split_name : strings::StrCat(split_name, ":", link.port_origin))); } return absl::OkStatus(); } bool IsAlreadyOptimized(const NodeDef& node) const { return optimized_nodes_.find(node.name()) != optimized_nodes_.end(); } private: bool node_is_concat_; std::unordered_set<string> optimized_nodes_; }; class RemoveIdempotentStage : public ArithmeticOptimizerStage { public: explicit RemoveIdempotentStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("RemoveIdempotent", ctx, ctx_ext) {} ~RemoveIdempotentStage() override = default; bool IsSupported(const NodeDef* node) const override { return node->input_size() == 1 && IsIdempotent(*node) && !IsInPreserveSet(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef* input; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &input)); if (input->op() == node->op() && input->device() == node->device()) { *simplified_node_name = node->input(0); } return absl::OkStatus(); } }; class SqrtDivToRsqrtMulStage : public ArithmeticOptimizerStage { public: explicit SqrtDivToRsqrtMulStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("SqrtDivToRsqrtMul", ctx, ctx_ext) {} ~SqrtDivToRsqrtMulStage() override = default; bool IsSupported(const NodeDef* node) const override { return IsAnyDiv(*node) && !IsDivNoNan(*node) && !IsFloorDiv(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef* y; TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &y)); if (IsSqrt(*y) && !IsInPreserveSet(*y) && (NumNonControlOutputs(*y, *ctx().node_map) == 1)) { if (IsXdivy(*node)) { node->set_op("MulNoNan"); node->mutable_input()->SwapElements(0, 1); } else { node->set_op("Mul"); } y->set_op("Rsqrt"); AddToOptimizationQueue(node); AddToOptimizationQueue(y); } return absl::OkStatus(); } }; class FuseSquaredDiffStage : public ArithmeticOptimizerStage { public: explicit FuseSquaredDiffStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("FuseSquaredDiffStage", ctx, ctx_ext) {} ~FuseSquaredDiffStage() override = default; bool IsSupported(const NodeDef* node) const override { return IsSquare(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef* b; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &b)); if (IsSub(*b) && !IsInPreserveSet(*b) && (NumNonControlOutputs(*b, *ctx().node_map) == 1)) { const DataType type = GetDataTypeFromAttr(*b, "T"); if ((type == DT_COMPLEX64) || (type == DT_COMPLEX128)) return absl::OkStatus(); node->set_op("Identity"); b->set_op("SquaredDifference"); AddToOptimizationQueue(node); AddToOptimizationQueue(b); } return absl::OkStatus(); } }; class LogSoftmaxStage : public ArithmeticOptimizerStage { public: explicit LogSoftmaxStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("LogSoftmaxStage", ctx, ctx_ext) {} ~LogSoftmaxStage() override = default; bool IsSupported(const NodeDef* node) const override { return IsLog(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef* x; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &x)); if (IsSoftmax(*x) && !IsInPreserveSet(*x) && (NumNonControlOutputs(*x, *ctx().node_map) == 1)) { node->set_op("LogSoftmax"); x->set_op("Identity"); AddToOptimizationQueue(node); AddToOptimizationQueue(x); } return absl::OkStatus(); } }; class RemoveRedundantReshapeOrBroadcastTo : public ArithmeticOptimizerStage { public: explicit RemoveRedundantReshapeOrBroadcastTo( const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("RemoveRedundantReshapeOrBroadcastTo", ctx, ctx_ext) {} ~RemoveRedundantReshapeOrBroadcastTo() override = default; bool IsSupported(const NodeDef* node) const override { return IsReshape(*node) || IsBroadcastTo(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { if (!IsInPreserveSet(*node) && InputMatchesTargetShape(*node) && !HasControlInputs(*node)) { *simplified_node_name = node->input(0); return absl::OkStatus(); } if (IsReshape(*node)) { bool skip = false; absl::InlinedVector<const NodeDef*, 4UL> nodes_in_chain; const auto predicate_fn = [this, node, &skip, &nodes_in_chain](const NodeDef& input) { nodes_in_chain.push_back(&input); if ((input.name() != node->name() && NumNonControlOutputs(input, *ctx().node_map) > 1) || IsInPreserveSet(input) || ModifiesFrameInfo(input)) { skip = true; return false; } return IsUnaryElementWise(input); }; NodeDef* tail = GetTailOfChain(*node, *ctx().node_map, false, predicate_fn); if (!skip && tail != nullptr && !IsInPreserveSet(*tail)) { NodeDef* reshape_to_bypass; TF_RETURN_IF_ERROR(GetInputNode(tail->input(0), &reshape_to_bypass)); if (reshape_to_bypass == nullptr || (!IsReshape(*reshape_to_bypass) || NumNonControlOutputs(*reshape_to_bypass, *ctx().node_map) > 1 || IsInPreserveSet(*reshape_to_bypass))) { return absl::OkStatus(); } for (const NodeDef* node_in_chain : nodes_in_chain) { ctx().graph_properties->ClearInputProperties(node_in_chain->name()); if (node_in_chain != node) { ctx().graph_properties->ClearOutputProperties( node_in_chain->name()); } } TF_RETURN_IF_ERROR( UpdateConsumers(reshape_to_bypass, reshape_to_bypass->input(0))); ForwardControlDependencies(tail, {reshape_to_bypass}); ReplaceWithNoOp(reshape_to_bypass, ctx()); *simplified_node_name = node->name(); return absl::OkStatus(); } } return absl::OkStatus(); } private: bool InputMatchesTargetShape(const NodeDef& reshape) { const OpInfo::TensorProperties* reshape_props; const OpInfo::TensorProperties* input_props; if (!GetTensorProperties(reshape.name(), &reshape_props).ok() || !GetTensorProperties(reshape.input(0), &input_props).ok()) { return false; } return ShapesSymbolicallyEqual(input_props->shape(), reshape_props->shape()); } }; class ReorderCastLikeAndValuePreserving : public ArithmeticOptimizerStage { public: explicit ReorderCastLikeAndValuePreserving( const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("ReorderCastLikeAndValuePreserving", ctx, ctx_ext) {} ~ReorderCastLikeAndValuePreserving() override = default; bool IsSupported(const NodeDef* node) const override { return (IsValuePreserving(*node) || IsCastLike(*node)) && !IsCheckNumerics(*node) && NodeIsOnCpuOrGpu(node) && !IsControlFlow(*node) && !IsInPreserveSet(*node); } Status TrySimplify(NodeDef* consumer, string* simplified_node_name) override { NodeDef* producer; if (consumer->input_size() < 1) { return errors::FailedPrecondition("Node ", simplified_node_name, " lacks inputs"); } TF_RETURN_IF_ERROR(GetInputNode(consumer->input(0), &producer)); const bool producer_is_cast = IsCastLike(*producer); const bool can_optimize = !IsCheckNumerics(*producer) && ((producer_is_cast && IsValuePreserving(*consumer)) || (IsValuePreserving(*producer) && IsCastLike(*consumer))); if (!can_optimize || IsControlFlow(*producer) || IsInPreserveSet(*producer) || producer->device() != consumer->device()) { return absl::OkStatus(); } const NodeDef* cast_like_node = producer_is_cast ? producer : consumer; const OpDef* cast_like_op_def = nullptr; TF_RETURN_IF_ERROR(OpRegistry::Global()->LookUpOpDef(cast_like_node->op(), &cast_like_op_def)); DataType cast_src_type; TF_RETURN_IF_ERROR(InputTypeForNode(*cast_like_node, *cast_like_op_def, 0, &cast_src_type)); DataType cast_dst_type; TF_RETURN_IF_ERROR(OutputTypeForNode(*cast_like_node, *cast_like_op_def, 0, &cast_dst_type)); if (!IsFixedSizeType(cast_src_type) || !IsFixedSizeType(cast_dst_type)) { return absl::OkStatus(); } else if (producer_is_cast && DataTypeSize(cast_dst_type) <= DataTypeSize(cast_src_type)) { return absl::OkStatus(); } else if (!producer_is_cast && DataTypeSize(cast_dst_type) >= DataTypeSize(cast_src_type)) { return absl::OkStatus(); } const string optimized_producer_name = OptimizedNodeName( ParseNodeScopeAndName(producer->name()), DataTypeString(cast_dst_type)); const string optimized_consumer_name = OptimizedNodeName( ParseNodeScopeAndName(consumer->name()), DataTypeString(cast_src_type)); const bool is_already_optimized = ctx().node_map->NodeExists(optimized_consumer_name) || ctx().node_map->NodeExists(optimized_producer_name); if (is_already_optimized) { return absl::OkStatus(); } NodeDef* input; TF_RETURN_IF_ERROR(GetInputNode(producer->input(0), &input)); NodeDef* new_producer = AddCopyNode(optimized_consumer_name, consumer); new_producer->set_input(0, producer->input(0)); ctx().node_map->AddOutput(input->name(), new_producer->name()); NodeDef* new_consumer = AddCopyNode(optimized_producer_name, producer); new_consumer->set_input(0, new_producer->name()); NodeDef* new_value_preserving = producer_is_cast ? new_producer : new_consumer; const DataType new_input_type = producer_is_cast ? cast_src_type : cast_dst_type; TF_RETURN_IF_ERROR(SetInputType(new_input_type, new_value_preserving)); TF_RETURN_IF_ERROR(IsKernelRegisteredForNode(*new_value_preserving)); ctx().node_map->AddOutput(new_producer->name(), new_consumer->name()); AddToOptimizationQueue(new_producer); *simplified_node_name = new_consumer->name(); return absl::OkStatus(); } private: Status SetInputType(DataType dtype, NodeDef* node) { const OpDef* op_def = nullptr; TF_RETURN_IF_ERROR(OpRegistry::Global()->LookUpOpDef(node->op(), &op_def)); const OpDef::ArgDef& input_arg = op_def->input_arg(0); const string& type_attr_name = input_arg.type_attr(); if (type_attr_name.empty()) { if (input_arg.type() == DT_INVALID || input_arg.type() != dtype) { return errors::InvalidArgument("Could not set input type of ", node->op(), " op to ", DataTypeString(dtype)); } else { return absl::OkStatus(); } } SetDataTypeToAttr(dtype, type_attr_name, node); return absl::OkStatus(); } bool NodeIsOnCpuOrGpu(const NodeDef* node) const { using absl::StrContains; string task; string device; return DeviceNameUtils::SplitDeviceName(node->device(), &task, &device) && (StrContains(device, DEVICE_CPU) || StrContains(device, DEVICE_GPU)); } bool IsFixedSizeType(DataType dtype) { return dtype != DT_STRING && dtype != DT_VARIANT && dtype != DT_RESOURCE && !kQuantizedTypes.Contains(dtype); } }; class FoldMultiplyIntoConv : public ArithmeticOptimizerStage { public: explicit FoldMultiplyIntoConv(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("FoldMultiplyIntoConv", ctx, ctx_ext) {} ~FoldMultiplyIntoConv() override = default; bool IsSupported(const NodeDef* node) const override { return IsConv2D(*node) || IsConv3D(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { #define TF_RETURN_IF_TRUE(...) \ if ((__VA_ARGS__)) return OkStatus() NodeDef* conv = node; NodeDef* weights; TF_RETURN_IF_ERROR(GetInputNode(conv->input(1), &weights)); TF_RETURN_IF_TRUE(!IsConstant(*weights)); const string scaled_weights_node_name = OptimizedNodeName(ParseNodeScopeAndName(weights->name()), strings::StrCat("scaled", "_", conv->name())); TF_RETURN_IF_TRUE(ctx().node_map->NodeExists(scaled_weights_node_name)); NodeDef* tail = GetTailOfValuePreservingChain(*conv, *ctx().node_map, *ctx().nodes_to_preserve); NodeDef* source; TF_RETURN_IF_ERROR(GetInputNode(tail->input(0), &source)); TF_RETURN_IF_TRUE(!IsAnyMul(*source)); TF_RETURN_IF_TRUE(NumNonControlOutputs(*source, *ctx().node_map) != 1); TF_RETURN_IF_TRUE(IsInPreserveSet(*source)); const NodeDef* mul = source; int input_idx = 0; int scale_idx = 1; NodeDef* scale; NodeDef* input; TF_RETURN_IF_ERROR(GetInputNode(mul->input(scale_idx), &scale)); TF_RETURN_IF_ERROR(GetInputNode(mul->input(input_idx), &input)); if (!IsConstant(*scale) && IsConstant(*input)) { VLOG(3) << "Swapped inputs to mul"; std::swap(scale_idx, input_idx); std::swap(scale, input); } TF_RETURN_IF_TRUE(!IsConstant(*scale)); const TensorProto& scale_tensor = scale->attr().at("value").tensor(); bool scale_is_a_scalar = scale_tensor.has_tensor_shape() && scale_tensor.tensor_shape().dim_size() == 0; TF_RETURN_IF_TRUE(!scale_is_a_scalar); TF_RETURN_IF_TRUE(!IsConstant(*scale)); TF_RETURN_IF_ERROR(CheckAttrsExist(*scale, {"dtype"})); TF_RETURN_IF_ERROR(CheckAttrExists(*weights, "dtype")); TF_RETURN_IF_TRUE(scale->attr().at("dtype").type() != weights->attr().at("dtype").type()); VLOG(3) << "Fold multiply into conv: conv=" << conv->name() << " mul=" << mul->name() << " weights=" << weights->name(); NodeDef* scaled_weights = AddEmptyNode(scaled_weights_node_name); scaled_weights->set_op(source->op()); scaled_weights->set_device(weights->device()); (*scaled_weights->mutable_attr())["T"] = weights->attr().at("dtype"); AddToOptimizationQueue(scaled_weights); scaled_weights->add_input(conv->input(1)); ctx().node_map->AddOutput(weights->name(), scaled_weights->name()); scaled_weights->add_input(mul->input(scale_idx)); ctx().node_map->AddOutput(scale->name(), scaled_weights->name()); ForwardControlDependencies(scaled_weights, {source}); conv->set_input(1, scaled_weights->name()); ctx().node_map->UpdateInput(conv->name(), weights->name(), scaled_weights->name()); AddToOptimizationQueue(conv); tail->set_input(0, mul->input(input_idx)); ctx().node_map->UpdateInput(tail->name(), mul->name(), input->name()); AddToOptimizationQueue(tail); *simplified_node_name = conv->name(); return absl::OkStatus(); #undef TF_RETURN_IF_TRUE } }; class FoldTransposeIntoMatMul : public ArithmeticOptimizerStage { public: explicit FoldTransposeIntoMatMul(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("FoldTransposeIntoMatMul", ctx, ctx_ext) {} ~FoldTransposeIntoMatMul() override = default; bool IsSupported(const NodeDef* node) const override { return IsAnyMatMul(*node) && !IsInPreserveSet(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { const NodeScopeAndName matmul = ParseNodeScopeAndName(node->name()); const string optimized_node_name = OptimizedNodeName(matmul); if (ctx().node_map->NodeExists(optimized_node_name)) return absl::OkStatus(); NodeDef* a; NodeDef* b; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &a)); TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &b)); bool is_complex = false; if (node->op() != "SparseMatMul") { const DataType type = GetDataTypeFromAttr(*node, "T"); is_complex = (type == DT_COMPLEX64) || (type == DT_COMPLEX128); } const std::set<string> foldable_transpose_ops = !is_complex ? std::set<string>{"ConjugateTranspose", "Transpose"} : (IsAnyBatchMatMul(*node) ? std::set<string>{"ConjugateTranspose"} : std::set<string>{"Transpose"}); const bool a_is_foldable = foldable_transpose_ops.count(a->op()) > 0 && IsInnerMatrixTransposeNode(*a, ctx().node_map); const bool b_is_foldable = foldable_transpose_ops.count(b->op()) > 0 && IsInnerMatrixTransposeNode(*b, ctx().node_map); if (!a_is_foldable && !b_is_foldable) return absl::OkStatus(); NodeDef* new_op = AddCopyNode(optimized_node_name, node); if (a_is_foldable) { const string attr_a = IsAnyBatchMatMul(*node) ? "adj_x" : "transpose_a"; FlipBooleanAttr(attr_a, new_op); new_op->set_input(0, a->input(0)); ctx().node_map->UpdateInput(new_op->name(), a->name(), a->input(0)); } else { ctx().node_map->UpdateOutput(a->name(), node->name(), new_op->name()); } if (b_is_foldable) { const string attr_b = IsAnyBatchMatMul(*node) ? "adj_y" : "transpose_b"; FlipBooleanAttr(attr_b, new_op); new_op->set_input(1, b->input(0)); ctx().node_map->UpdateInput(new_op->name(), b->name(), b->input(0)); } else { ctx().node_map->UpdateOutput(b->name(), node->name(), new_op->name()); } std::vector<const NodeDef*> deps_to_forward = {node}; if (a_is_foldable) deps_to_forward.push_back(a); if (b_is_foldable) deps_to_forward.push_back(b); ForwardControlDependencies(new_op, deps_to_forward); *simplified_node_name = new_op->name(); return absl::OkStatus(); } private: void FlipBooleanAttr(const string& attr_name, NodeDef* node) { const bool old_value = !node->attr().count(attr_name) ? false : node->attr().at(attr_name).b(); (*node->mutable_attr())[attr_name].set_b(!old_value); } template <typename T> bool IsInnerMatrixTranspose(const std::vector<T>& perm) { const T n = perm.size(); if (n < 2) { return false; } for (T i = 0; i < n - 2; ++i) { if (perm[i] != i) { return false; } } return perm[n - 1] == n - 2 && perm[n - 2] == n - 1; } bool IsInnerMatrixTransposeNode(const NodeDef& transpose_node, const NodeMap* node_map) { if (transpose_node.op() != "Transpose" && transpose_node.op() != "ConjugateTranspose") { return false; } const NodeDef* perm_node = node_map->GetNode(transpose_node.input(1)); std::vector<int> perm32; if (ValuesFromConstNode(*perm_node, &perm32)) { return IsInnerMatrixTranspose(perm32); } std::vector<int64_t> perm64; if (ValuesFromConstNode(*perm_node, &perm64)) { return IsInnerMatrixTranspose(perm64); } return false; } }; class FoldConjugateIntoTranspose : public ArithmeticOptimizerStage { public: explicit FoldConjugateIntoTranspose(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("FoldConjugateIntoTranspose", ctx, ctx_ext) {} ~FoldConjugateIntoTranspose() override = default; bool IsSupported(const NodeDef* node) const override { return IsConj(*node) || IsTranspose(*node) || IsConjugateTranspose(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { const NodeScopeAndName matmul = ParseNodeScopeAndName(node->name()); const string optimized_node_name = OptimizedNodeName(matmul); if (ctx().node_map->NodeExists(optimized_node_name)) return absl::OkStatus(); NodeDef* input; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &input)); const NodeDef* transpose_op = node->op() == "Conj" ? input : node; const NodeDef* conj_op = node->op() == "Conj" ? node : input; if ((IsTranspose(*transpose_op) || IsConjugateTranspose(*transpose_op)) && IsConj(*conj_op)) { NodeDef* new_op = AddCopyNode(optimized_node_name, transpose_op); new_op->set_op(transpose_op->op() == "Transpose" ? "ConjugateTranspose" : "Transpose"); new_op->set_input(0, input->input(0)); ctx().node_map->UpdateInput(new_op->name(), node->name(), input->input(0)); ForwardControlDependencies(new_op, {node, input}); *simplified_node_name = new_op->name(); } return absl::OkStatus(); } }; class ReplaceMulWithSquare : public ArithmeticOptimizerStage { public: explicit ReplaceMulWithSquare(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("ReplaceMulWithSquare", ctx, ctx_ext) {} ~ReplaceMulWithSquare() override = default; bool IsSupported(const NodeDef* node) const override { if (!node || node->input_size() < 2) { return false; } return IsAnyMul(*node) && node->input(0) == node->input(1); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { const NodeScopeAndName mul = ParseNodeScopeAndName(node->name()); const string optimized_node_name = OptimizedNodeName(mul); if (ctx().node_map->NodeExists(optimized_node_name)) return absl::OkStatus(); const DataType type = GetDataTypeFromAttr(*node, "T"); bool is_complex = (type == DT_COMPLEX64) || (type == DT_COMPLEX128); if (!is_complex || NodeIsOnCpu(*node)) { NodeDef* new_square_node = AddCopyNode(optimized_node_name, node); new_square_node->set_op("Square"); for (int i = 1; i < new_square_node->input_size(); ++i) { new_square_node->set_input(i - 1, new_square_node->input(i)); } new_square_node->mutable_input()->RemoveLast(); for (const string& input : new_square_node->input()) { ctx().node_map->AddOutput(NodeName(input), new_square_node->name()); } *simplified_node_name = new_square_node->name(); } return absl::OkStatus(); } }; class ReplaceMulWithBroadcastByTile : public ArithmeticOptimizerStage { public: explicit ReplaceMulWithBroadcastByTile( const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("ReplaceMulWithBroadcastByTile", ctx, ctx_ext) {} ~ReplaceMulWithBroadcastByTile() override = default; bool IsSupported(const NodeDef* node) const override { return IsMul(*node) && !IsInPreserveSet(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef *input, *ones; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &input)); TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &ones)); if (IsInPreserveSet(*node) || IsInPreserveSet(*input) || IsInPreserveSet(*ones)) { return absl::OkStatus(); } if (IsConstant(*input) || !IsOnes(*ones)) return absl::OkStatus(); const NodeScopeAndName scope_and_name = ParseNodeScopeAndName(node->name()); const string tile_node_name = OptimizedNodeName(scope_and_name, "Tile"); const string const_node_name = OptimizedNodeName(scope_and_name, "Const"); if (ctx().node_map->NodeExists(tile_node_name) || ctx().node_map->NodeExists(const_node_name)) { return absl::OkStatus(); } const std::vector<OpInfo::TensorProperties>& props = ctx().graph_properties->GetInputProperties(node->name()); if (props.size() != 2) return absl::OkStatus(); const TensorShapeProto& input_shape = props[0].shape(); const TensorShapeProto& ones_shape = props[1].shape(); TensorShapeProto output_shape; if (!ShapeAfterBroadcast(input_shape, ones_shape, &output_shape)) { return absl::OkStatus(); } if (ShapesSymbolicallyEqual(input_shape, output_shape)) { return absl::OkStatus(); } if (input_shape.dim_size() != output_shape.dim_size() || ones_shape.dim_size() != output_shape.dim_size()) return absl::OkStatus(); VLOG(3) << "Simplify multiply with all ones input: node=" << node->name() << "@" << output_shape << " ones=" << ones->name() << "@" << ones_shape << " input=" << input->name() << "@" << input_shape; Tensor multiples(DT_INT32, TensorShape({output_shape.dim_size()})); for (int i = 0; i < output_shape.dim_size(); ++i) { int64_t size = output_shape.dim(i).size() / input_shape.dim(i).size(); if (TF_PREDICT_FALSE(size >= INT_MAX)) { return Status(absl::StatusCode::kOutOfRange, "int32 overflow"); } multiples.flat<int32>()(i) = static_cast<int32>(size); } NodeDef* const_node = AddEmptyNode(const_node_name); TF_RETURN_IF_ERROR(ConstantFolding::CreateNodeDef( const_node->name(), TensorValue(&multiples), const_node)); const_node->set_device(node->device()); ForwardControlDependencies(const_node, {ones}); AddToOptimizationQueue(const_node); const DataType type = GetDataTypeFromAttr(*node, "T"); NodeDef* tile_node = AddEmptyNode(tile_node_name); tile_node->set_op("Tile"); tile_node->set_device(node->device()); SetDataTypeToAttr(type, "T", tile_node); SetDataTypeToAttr(DT_INT32, "Tmultiples", tile_node); tile_node->add_input(input->name()); tile_node->add_input(const_node->name()); ForwardControlDependencies(tile_node, {node}); *simplified_node_name = tile_node->name(); return absl::OkStatus(); } protected: bool IsOnes(const NodeDef& node) const { if (!IsReallyConstant(node)) return false; if (node.attr().at("dtype").type() != DT_FLOAT) return false; Tensor tensor; if (!tensor.FromProto(node.attr().at("value").tensor())) { return false; } auto values = tensor.flat<float>(); for (int i = 0; i < tensor.NumElements(); ++i) { if (values(i) != 1.0f) { return false; } } return true; } }; class ReduceUpsamplingDims : public ArithmeticOptimizerStage { public: explicit ReduceUpsamplingDims(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("ReduceUpsamplingDims", ctx, ctx_ext) {} ~ReduceUpsamplingDims() override = default; bool IsSupported(const NodeDef* node) const override { return IsReshape(*node) && !IsInPreserveSet(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef* tile; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &tile)); if (!IsTile(*tile) || IsInPreserveSet(*tile)) { return absl::OkStatus(); } if (NumNonControlOutputs(*tile, *ctx().node_map) != 1) { return absl::OkStatus(); } NodeDef* reshape; TF_RETURN_IF_ERROR(GetInputNode(tile->input(0), &reshape)); if (!IsReshape(*reshape) || IsInPreserveSet(*reshape)) { return absl::OkStatus(); } NodeDef* multiples; TF_RETURN_IF_ERROR(GetInputNode(tile->input(1), &multiples)); NodeDef* shape; TF_RETURN_IF_ERROR(GetInputNode(reshape->input(1), &shape)); const NodeScopeAndName scope_and_name = ParseNodeScopeAndName(node->name()); const string new_reshape_name = OptimizedNodeName(scope_and_name, "Reshape"); const string new_tile_name = OptimizedNodeName(scope_and_name, "Tile"); const string new_multiples_name = OptimizedNodeName(scope_and_name, "Multiples"); const string new_shape_name = OptimizedNodeName(scope_and_name, "Shape"); if (ctx().node_map->NodeExists(new_reshape_name) || ctx().node_map->NodeExists(new_tile_name) || ctx().node_map->NodeExists(new_shape_name) || ctx().node_map->NodeExists(new_multiples_name)) { return absl::OkStatus(); } AttrValue new_multiples_attr; if (!CreateUpdatedMultiplesProto(multiples, new_multiples_attr.mutable_tensor())) { return absl::OkStatus(); } AttrValue new_shape_attr; if (!CreateUpdatedShapeProto(shape, new_shape_attr.mutable_tensor())) { return absl::OkStatus(); } NodeDef* new_multiples = AddEmptyNode(new_multiples_name); new_multiples->set_op("Const"); SetDataTypeToAttr(DT_INT32, "dtype", new_multiples); new_multiples->mutable_attr()->insert({"value", new_multiples_attr}); new_multiples->set_device(multiples->device()); NodeDef* new_shape = AddEmptyNode(new_shape_name); new_shape->set_op("Const"); SetDataTypeToAttr(DT_INT32, "dtype", new_shape); new_shape->mutable_attr()->insert({"value", new_shape_attr}); new_shape->set_device(shape->device()); NodeDef* new_reshape = AddEmptyNode(new_reshape_name); CopyReshapeWithInput(reshape, new_reshape, reshape->input(0), new_shape->name()); NodeDef* new_tile = AddEmptyNode(new_tile_name); CopyTileWithInput(tile, new_tile, new_reshape->name(), new_multiples->name()); node->set_input(0, new_tile->name()); ctx().node_map->UpdateInput(node->name(), tile->name(), new_tile->name()); ForwardControlDependencies(new_tile, {tile}); ForwardControlDependencies(new_multiples, {multiples}); ForwardControlDependencies(new_reshape, {reshape}); ForwardControlDependencies(new_shape, {shape}); *simplified_node_name = node->name(); return absl::OkStatus(); } private: bool CreateUpdatedMultiplesProto(const NodeDef* node, TensorProto* proto) { Tensor multiples; if (!GetTensorFromConstNode(node->name(), &multiples)) { return false; } if (multiples.dtype() != DT_INT32 || multiples.NumElements() != 6) { return false; } const auto& multiples_values = multiples.flat<int32>(); if (multiples_values(3) != 1 || multiples_values(5) != 1) { return false; } Tensor new_multiples(DT_INT32, {4}); new_multiples.flat<int32>()(0) = multiples_values(0); new_multiples.flat<int32>()(1) = multiples_values(1); new_multiples.flat<int32>()(2) = multiples_values(2); new_multiples.flat<int32>()(3) = multiples_values(4); new_multiples.AsProtoTensorContent(proto); return true; } bool CreateUpdatedShapeProto(const NodeDef* node, TensorProto* proto) { Tensor shape; if (!GetTensorFromConstNode(node->name(), &shape)) { return false; } if (shape.dtype() != DT_INT32 || shape.NumElements() != 6) { return false; } const auto& shape_values = shape.flat<int32>(); if (shape_values(2) != 1 || shape_values(4) != 1) { return false; } Tensor new_shape(DT_INT32, {4}); new_shape.flat<int32>()(0) = shape_values(0); new_shape.flat<int32>()(1) = shape_values(1); new_shape.flat<int32>()(2) = shape_values(3); new_shape.flat<int32>()(3) = shape_values(5); new_shape.AsProtoTensorContent(proto); return true; } void CopyReshapeWithInput(const NodeDef* reshape, NodeDef* new_reshape, const string& input, const string& shape) { new_reshape->set_op("Reshape"); new_reshape->set_device(reshape->device()); SetDataTypeToAttr(GetDataTypeFromAttr(*reshape, "T"), "T", new_reshape); SetDataTypeToAttr(GetDataTypeFromAttr(*reshape, "Tshape"), "Tshape", new_reshape); new_reshape->add_input(input); ctx().node_map->AddOutput(NodeName(input), new_reshape->name()); new_reshape->add_input(shape); ctx().node_map->AddOutput(NodeName(shape), new_reshape->name()); AddToOptimizationQueue(new_reshape); } void CopyTileWithInput(const NodeDef* tile, NodeDef* new_tile, const string& input, const string& multiples) { new_tile->set_op("Tile"); new_tile->set_device(tile->device()); SetDataTypeToAttr(GetDataTypeFromAttr(*tile, "T"), "T", new_tile); SetDataTypeToAttr(GetDataTypeFromAttr(*tile, "Tmultiples"), "Tmultiples", new_tile); new_tile->add_input(input); ctx().node_map->AddOutput(NodeName(input), new_tile->name()); new_tile->add_input(multiples); ctx().node_map->AddOutput(NodeName(multiples), new_tile->name()); AddToOptimizationQueue(new_tile); } }; class ReplacePackWithTileReshape : public ArithmeticOptimizerStage { public: explicit ReplacePackWithTileReshape(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("ReplacePackWithTileReshape", ctx, ctx_ext) {} ~ReplacePackWithTileReshape() override = default; bool IsSupported(const NodeDef* node) const override { return IsPack(*node) && NumNonControlInputs(*node) > 1 && !IsInPreserveSet(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef* input = node; std::vector<const NodeDef*> chain; while (IsPack(*input) && NumNonControlInputs(*node) > 1 && !IsInPreserveSet(*input)) { if (!AllRegularInputsEqual(*input)) { break; } chain.push_back(input); TF_RETURN_IF_ERROR(GetInputNode(input->input(0), &input)); } if (chain.empty()) { return absl::OkStatus(); } const NodeScopeAndName node_scope_and_name = ParseNodeScopeAndName(node->name()); const string new_const_name = OptimizedNodeName(node_scope_and_name, "Multiples"); const string new_tile_name = OptimizedNodeName(node_scope_and_name, "Tile"); const string new_shape_name = OptimizedNodeName(node_scope_and_name, "Shape"); const string new_reshape_name = OptimizedNodeName(node_scope_and_name, "Reshape"); if (ctx().node_map->NodeExists(new_const_name) || ctx().node_map->NodeExists(new_tile_name) || ctx().node_map->NodeExists(new_shape_name) || ctx().node_map->NodeExists(new_reshape_name)) { return absl::OkStatus(); } const OpInfo::TensorProperties* input_props; TF_RETURN_IF_ERROR(GetTensorProperties(input->name(), &input_props)); const TensorShapeProto& input_shape = input_props->shape(); if (!PartialTensorShape(input_shape).IsFullyDefined()) { return absl::OkStatus(); } Tensor multiples(DT_INT32, TensorShape({input_shape.dim_size()})); TF_RETURN_IF_ERROR(CalculateMultiplesFromChain(chain, &multiples)); const OpInfo::TensorProperties* output_props; TF_RETURN_IF_ERROR(GetTensorProperties(node->name(), &output_props)); const TensorShapeProto& output_shape = output_props->shape(); if (!PartialTensorShape(output_shape).IsFullyDefined()) { return absl::OkStatus(); } Tensor output_shape_tensor(DT_INT32, TensorShape({output_shape.dim_size()})); for (int i = 0; i < output_shape.dim_size(); ++i) { output_shape_tensor.flat<int32>()(i) = output_shape.dim(i).size(); } NodeDef* new_const_node = AddEmptyNode(new_const_name); TF_RETURN_IF_ERROR(ConstantFolding::CreateNodeDef( new_const_node->name(), TensorValue(&multiples), new_const_node)); new_const_node->set_device(node->device()); MaybeAddControlInput(input->name(), new_const_node, ctx().optimized_graph, ctx().node_map); AddToOptimizationQueue(new_const_node); DataType dtype = GetDataTypeFromAttr(*node, "T"); NodeDef* new_tile_node = AddEmptyNode(new_tile_name); new_tile_node->set_op("Tile"); new_tile_node->set_device(node->device()); SetDataTypeToAttr(dtype, "T", new_tile_node); SetDataTypeToAttr(DT_INT32, "Tmultiples", new_tile_node); new_tile_node->add_input(input->name()); ctx().node_map->AddOutput(input->name(), new_tile_node->name()); new_tile_node->add_input(new_const_node->name()); ctx().node_map->AddOutput(new_const_node->name(), new_tile_node->name()); ForwardControlDependencies(new_tile_node, chain); AddToOptimizationQueue(new_tile_node); NodeDef* new_shape_node = AddEmptyNode(new_shape_name); TF_RETURN_IF_ERROR(ConstantFolding::CreateNodeDef( new_shape_node->name(), TensorValue(&output_shape_tensor), new_shape_node)); new_shape_node->set_device(node->device()); MaybeAddControlInput(input->name(), new_shape_node, ctx().optimized_graph, ctx().node_map); AddToOptimizationQueue(new_shape_node); NodeDef* new_reshape_node = AddEmptyNode(new_reshape_name); new_reshape_node->set_op("Reshape"); new_reshape_node->set_device(node->device()); SetDataTypeToAttr(dtype, "T", new_reshape_node); SetDataTypeToAttr(DT_INT32, "Tshape", new_reshape_node); new_reshape_node->add_input(new_tile_node->name()); ctx().node_map->AddOutput(new_tile_node->name(), new_reshape_node->name()); new_reshape_node->add_input(new_shape_node->name()); ctx().node_map->AddOutput(new_shape_node->name(), new_reshape_node->name()); *simplified_node_name = new_reshape_node->name(); return absl::OkStatus(); } protected: Status CalculateMultiplesFromChain(const std::vector<const NodeDef*>& chain, Tensor* multiples) { std::vector<int32> dims(multiples->NumElements()); std::iota(dims.begin(), dims.end(), 0); for (int i = 0; i < multiples->NumElements(); ++i) { multiples->flat<int32>()(i) = 1; } for (auto it = chain.rbegin(); it != chain.rend(); ++it) { AttrSlice attrs(**it); int64_t axis, n; TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "axis", &axis)); TF_RETURN_IF_ERROR(GetNodeAttr(attrs, "N", &n)); if (axis >= dims.size()) { return Status(absl::StatusCode::kOutOfRange, "axis value out of range of dims"); } int64_t m = multiples->flat<int32>()(dims[axis]) * n; if (TF_PREDICT_FALSE(m > INT_MAX)) { return Status(absl::StatusCode::kOutOfRange, "int32 overflow"); } multiples->flat<int32>()(dims[axis]) = static_cast<int32>(m); dims.insert(dims.begin() + axis, dims[axis]); } return absl::OkStatus(); } }; class SimplifyAggregation : public ArithmeticOptimizerStage { public: explicit SimplifyAggregation(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("SimplifyAggregation", ctx, ctx_ext) {} ~SimplifyAggregation() override = default; bool IsSupported(const NodeDef* node) const override { return IsAggregate(*node) && HasRegularInputs(*node) && GetDataTypeFromAttr(*node, "T") != DT_VARIANT; } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { if (node->input_size() == 1) { *simplified_node_name = node->input(0); return absl::OkStatus(); } bool all_equal = true; int num_inputs = 1; for (int i = 1; i < node->input_size(); ++i) { if (IsControlInput(node->input(i))) break; ++num_inputs; if (node->input(i) != node->input(0)) { all_equal = false; break; } } if (!all_equal) return absl::OkStatus(); const NodeScopeAndName node_scope_and_name = ParseNodeScopeAndName(node->name()); const string optimized_const_name = OptimizedNodeName(node_scope_and_name, "Const"); const string optimized_mul_name = OptimizedNodeName(node_scope_and_name, "Mul"); bool is_already_optimized = ctx().node_map->NodeExists(optimized_const_name) || ctx().node_map->NodeExists(optimized_mul_name); if (is_already_optimized) return absl::OkStatus(); VLOG(3) << "Simplify aggregation with identical inputs: node=" << node->name() << " num_inputs=" << num_inputs; const auto type = GetDataTypeFromAttr(*node, "T"); Tensor t(type, TensorShape({})); Status status = SetTensorValue(type, num_inputs, &t); if (!status.ok()) { return errors::Internal("Failed to create const node: ", status.message()); } TensorValue value(&t); NodeDef* new_const_node = AddEmptyNode(optimized_const_name); status = ConstantFolding::CreateNodeDef(new_const_node->name(), value, new_const_node); if (!status.ok()) { return errors::Internal("Failed to create const node: ", status.message()); } new_const_node->set_device(node->device()); MaybeAddControlInput(NodeName(node->input(0)), new_const_node, ctx().optimized_graph, ctx().node_map); AddToOptimizationQueue(new_const_node); NodeDef* new_mul_node = AddEmptyNode(optimized_mul_name); new_mul_node->set_op("Mul"); new_mul_node->set_device(node->device()); SetDataTypeToAttr(type, "T", new_mul_node); new_mul_node->add_input(new_const_node->name()); ctx().node_map->AddOutput(new_const_node->name(), new_mul_node->name()); new_mul_node->add_input(node->input(0)); ctx().node_map->AddOutput(node->input(0), new_mul_node->name()); ForwardControlDependencies(new_mul_node, {node}); *simplified_node_name = new_mul_node->name(); return absl::OkStatus(); } }; class ConvertPowStage : public ArithmeticOptimizerStage { public: explicit ConvertPowStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("ConvertPow", ctx, ctx_ext) {} bool IsSupported(const NodeDef* node) const override { return IsPow(*node) && ctx().graph_properties->HasOutputProperties(node->name()) && ctx().graph_properties->HasInputProperties(node->name()); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { Tensor pow; if (!GetTensorFromConstNode(node->input(1), &pow)) return absl::OkStatus(); complex128 prev, curr; for (int i = 0; i < pow.NumElements(); ++i) { if (!GetElementUnexhaustive(pow, i, {pow.dtype()}, &curr)) { return absl::OkStatus(); } if (i != 0 && curr != prev) { return absl::OkStatus(); } prev = curr; } NodeDef *x, *y; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &x)); TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &y)); const auto& value_props = ctx().graph_properties->GetInputProperties(node->name())[0]; const TensorShapeProto& output_shape = ctx().graph_properties->GetOutputProperties(node->name())[0].shape(); if (curr == complex128(2, 0)) { node->set_op("Square"); node->set_input(1, AsControlDependency(y->name())); AddToOptimizationQueue(node); AddToOptimizationQueue(y); } else if (curr == complex128(3, 0)) { if (NodeIsOnCpu(*node)) { const NodeScopeAndName scope_and_name = ParseNodeScopeAndName(node->name()); const string inner_square_name = OptimizedNodeName(scope_and_name, "_inner"); NodeDef* inner_square_node = ctx().node_map->GetNode(inner_square_name); if (inner_square_node == nullptr) { inner_square_node = AddCopyNode(inner_square_name, node); inner_square_node->set_op("Square"); inner_square_node->mutable_input()->RemoveLast(); } ctx().node_map->AddOutput(x->name(), inner_square_node->name()); node->set_op("Mul"); node->set_input(1, inner_square_node->name()); node->add_input(AsControlDependency(y->name())); AddToOptimizationQueue(node); AddToOptimizationQueue(inner_square_node); AddToOptimizationQueue(y); } } else if (curr == complex128(1, 0) && ShapesSymbolicallyEqual(value_props.shape(), output_shape)) { node->set_op("Identity"); node->set_input(1, AsControlDependency(y->name())); AddToOptimizationQueue(node); AddToOptimizationQueue(y); } else if (curr == complex128(0.5, 0)) { node->set_op("Sqrt"); node->set_input(1, AsControlDependency(y->name())); AddToOptimizationQueue(node); AddToOptimizationQueue(y); } else if (curr == complex128(0, 0) && ShapesSymbolicallyEqual(value_props.shape(), output_shape) && PartialTensorShape(output_shape).IsFullyDefined()) { const auto dtype = node->attr().at("T").type(); Tensor ones(dtype, output_shape); for (int i = 0; i < ones.NumElements(); ++i) { TF_RETURN_IF_ERROR(SetElementToOne(i, &ones)); } node->set_op("Const"); (*node->mutable_attr())["dtype"].set_type(dtype); node->mutable_attr()->erase("T"); ones.AsProtoTensorContent( (*node->mutable_attr())["value"].mutable_tensor()); node->set_input(0, AsControlDependency(x->name())); node->set_input(1, AsControlDependency(y->name())); AddToOptimizationQueue(node); AddToOptimizationQueue(x); AddToOptimizationQueue(y); } else if (curr == complex128(-0.5, 0)) { node->set_op("Rsqrt"); node->set_input(1, AsControlDependency(y->name())); AddToOptimizationQueue(node); AddToOptimizationQueue(y); } else if (curr == complex128(-1, 0)) { node->set_op("Reciprocal"); node->set_input(1, AsControlDependency(y->name())); AddToOptimizationQueue(node); AddToOptimizationQueue(y); } return absl::OkStatus(); } private: Status SetElementToOne(int i, Tensor* t) { switch (t->dtype()) { case DT_INT32: t->flat<int32>()(i) = 1; return absl::OkStatus(); case DT_INT64: t->flat<int64_t>()(i) = 1L; return absl::OkStatus(); case DT_FLOAT: t->flat<float>()(i) = 1.0f; return absl::OkStatus(); case DT_DOUBLE: t->flat<double>()(i) = 1.0; return absl::OkStatus(); case DT_COMPLEX64: t->flat<complex64>()(i) = complex64(1); return absl::OkStatus(); case DT_COMPLEX128: t->flat<complex128>()(i) = complex128(1); return absl::OkStatus(); default: return errors::InvalidArgument("Invalid data type: ", t->dtype()); } } }; class ConvertLog1pStage : public ArithmeticOptimizerStage { public: explicit ConvertLog1pStage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("ConvertLog1p", ctx, ctx_ext) {} ~ConvertLog1pStage() override = default; bool IsSupported(const NodeDef* node) const override { return IsLog(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef* input; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &input)); if (!IsAdd(*input)) { return absl::OkStatus(); } if (ctx().graph_properties->GetInputProperties(input->name()).size() < 2) { return absl::OkStatus(); } bool modified = false; TF_RETURN_IF_ERROR(TrySimplifyInternal(node, input, 0, 1, &modified)); if (!modified) { TF_RETURN_IF_ERROR(TrySimplifyInternal(node, input, 1, 0, &modified)); } if (modified) { *simplified_node_name = node->name(); } return absl::OkStatus(); } private: Status TrySimplifyInternal(NodeDef* node, NodeDef* add_node, int i, int j, bool* modified) { const auto& t = ctx().graph_properties->GetInputProperties(add_node->name())[i]; const auto& c = ctx().graph_properties->GetInputProperties(add_node->name())[j]; for (int k = 0; k < c.shape().dim_size(); ++k) { if (c.shape().dim(k).size() < 0) { return absl::OkStatus(); } } TensorShapeProto broadcast_shape; if (!ShapeAfterBroadcast(t.shape(), c.shape(), &broadcast_shape)) { return absl::OkStatus(); } if (!ShapesSymbolicallyEqual(t.shape(), broadcast_shape)) { return absl::OkStatus(); } Tensor constant; if (GetTensorFromConstNode(add_node->input(j), &constant)) { complex128 element; for (int k = 0; k < constant.NumElements(); ++k) { if (!GetElementUnexhaustive(constant, k, {DT_BFLOAT16, DT_HALF, DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128}, &element)) { return absl::OkStatus(); } if (element != complex128(1)) { return absl::OkStatus(); } } NodeDef *x, *y; TF_RETURN_IF_ERROR(GetInputNode(add_node->input(i), &x)); TF_RETURN_IF_ERROR(GetInputNode(add_node->input(j), &y)); node->set_op("Log1p"); node->set_input(0, add_node->input(i)); node->add_input(AsControlDependency(y->name())); ForwardControlDependencies(node, {add_node}); AddToOptimizationQueue(node); AddToOptimizationQueue(add_node); AddToOptimizationQueue(x); AddToOptimizationQueue(y); *modified = true; } return absl::OkStatus(); } }; class ConvertExpm1Stage : public ArithmeticOptimizerStage { public: explicit ConvertExpm1Stage(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("ConvertExpm1", ctx, ctx_ext) {} ~ConvertExpm1Stage() override = default; bool IsSupported(const NodeDef* node) const override { if (!IsSub(*node)) return false; NodeDef* input; if (!GetInputNode(node->input(0), &input).ok()) return false; return IsExp(*input); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { if (ctx().graph_properties->GetInputProperties(node->name()).size() < 2) { return absl::OkStatus(); } const auto& t = ctx().graph_properties->GetInputProperties(node->name())[0]; const auto& c = ctx().graph_properties->GetInputProperties(node->name())[1]; TensorShapeProto broadcast_shape; if (!ShapeAfterBroadcast(t.shape(), c.shape(), &broadcast_shape)) { return absl::OkStatus(); } if (!ShapesSymbolicallyEqual(t.shape(), broadcast_shape)) { return absl::OkStatus(); } Tensor constant; if (!GetTensorFromConstNode(node->input(1), &constant)) return absl::OkStatus(); complex128 element; for (int k = 0; k < constant.NumElements(); ++k) { if (!GetElementUnexhaustive(constant, k, {DT_BFLOAT16, DT_HALF, DT_FLOAT, DT_DOUBLE, DT_COMPLEX64, DT_COMPLEX128}, &element)) { return absl::OkStatus(); } if (element != complex128(1)) { return absl::OkStatus(); } } NodeDef* exp; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &exp)); NodeDef *exp_input, *ones; TF_RETURN_IF_ERROR(GetInputNode(exp->input(0), &exp_input)); TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &ones)); node->set_op("Expm1"); node->set_input(0, exp->input(0)); node->set_input(1, AsControlDependency(ones->name())); ForwardControlDependencies(node, {exp}); AddToOptimizationQueue(node); AddToOptimizationQueue(exp); AddToOptimizationQueue(exp_input); AddToOptimizationQueue(ones); *simplified_node_name = node->name(); return absl::OkStatus(); } }; class OptimizeMaxOrMinOfMonotonicStage : public ArithmeticOptimizerStage { public: explicit OptimizeMaxOrMinOfMonotonicStage( const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("OptimizeMaxOrMinOfMonotonicStage", ctx, ctx_ext) {} ~OptimizeMaxOrMinOfMonotonicStage() override = default; bool IsSupported(const NodeDef* node) const override { return IsMax(*node) || IsMin(*node) || IsAnyMaxPool(*node) || IsArgMax(*node) || IsArgMin(*node); } Status TrySimplify(NodeDef* reduction_node, string* simplified_node_name) override { if (IsInPreserveSet(*reduction_node)) { return absl::OkStatus(); } NodeDef* inner_function; TF_RETURN_IF_ERROR(GetInputNode(reduction_node->input(0), &inner_function)); NodeDef* inner_function_input = nullptr; if (inner_function->input_size() > 0) { TF_RETURN_IF_ERROR( GetInputNode(inner_function->input(0), &inner_function_input)); } auto can_be_fused_by_remapper = [](const NodeDef& consumer, const NodeDef& producer) -> bool { if (IsRelu(consumer) || IsRelu6(consumer)) { if (IsFusedBatchNorm(producer) || IsBiasAdd(producer)) { return true; } } return false; }; bool is_non_decreasing = false; if (!IsInPreserveSet(*inner_function) && IsElementWiseMonotonic(*inner_function, &is_non_decreasing) && ctx().node_map->GetOutputs(inner_function->name()).size() == 1 && (is_non_decreasing || !IsAnyMaxPool(*reduction_node)) && !can_be_fused_by_remapper(*inner_function, *inner_function_input)) { NodeDef* inner_input; TF_RETURN_IF_ERROR(GetInputNode(inner_function->input(0), &inner_input)); reduction_node->set_input(0, inner_input->name()); ctx().node_map->UpdateInput(reduction_node->name(), inner_function->name(), inner_input->name()); inner_function->set_input(0, reduction_node->name()); TF_RETURN_IF_ERROR( UpdateConsumers(reduction_node, inner_function->name())); ctx().node_map->UpdateInput(inner_function->name(), inner_input->name(), reduction_node->name()); if (!is_non_decreasing) { const string opposite = FlipMinMax(*reduction_node); reduction_node->set_op(opposite); } if (IsArgMax(*reduction_node) || IsArgMin(*reduction_node)) { inner_function->set_op("Identity"); } AddToOptimizationQueue(reduction_node); AddToOptimizationQueue(inner_function); AddToOptimizationQueue(inner_input); } return absl::OkStatus(); } private: string FlipMinMax(const NodeDef& node) { const string& op = node.op(); if (IsAnyMax(node) || IsArgMax(node)) { return str_util::StringReplace(op, "Max", "Min", false); } else { return str_util::StringReplace(op, "Min", "Max", false); } } }; class UnaryOpsComposition : public ArithmeticOptimizerStage { public: explicit UnaryOpsComposition(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("UnaryOpsComposition", ctx, ctx_ext) { supported_ops_ = { {"Abs", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Acos", {DT_FLOAT, DT_DOUBLE}}, {"Acosh", {DT_FLOAT, DT_DOUBLE}}, {"Asin", {DT_FLOAT, DT_DOUBLE}}, {"Asinh", {DT_FLOAT, DT_DOUBLE}}, {"Atan", {DT_FLOAT, DT_DOUBLE}}, {"Atanh", {DT_FLOAT, DT_DOUBLE}}, {"Ceil", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Cos", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Cosh", {DT_FLOAT, DT_DOUBLE}}, {"Expm1", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Exp", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Floor", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Inv", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Log", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Log1p", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Neg", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Reciprocal", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Rint", {DT_FLOAT, DT_DOUBLE}}, {"Round", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Rsqrt", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Sigmoid", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Sin", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Sinh", {DT_FLOAT, DT_DOUBLE}}, {"Sqrt", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Square", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Tan", {DT_FLOAT, DT_DOUBLE}}, {"Tanh", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Elu", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Relu", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Relu6", {DT_FLOAT, DT_HALF, DT_DOUBLE}}, {"Selu", {DT_FLOAT, DT_HALF, DT_DOUBLE}}}; } ~UnaryOpsComposition() override = default; bool IsSupported(const NodeDef* node) const override { return CanOptimize(*node) && !ctx().node_map->NodeExists(OptimizedNodeName(*node)); } Status TrySimplify(NodeDef* root, string* simplified_node_name) override { TF_RETURN_IF_ERROR(CheckAttrExists(*root, "T")); DataType dtype = root->attr().at("T").type(); std::vector<string> op_nodes = {root->name()}; std::vector<string> op_names = {root->op()}; const auto predicate_fn = [&](const NodeDef& input) { if (input.name() == root->name()) return true; bool follow_input_node = dtype == GetDataTypeFromAttr(input, "T") && NumNonControlDataOutputs(input, *ctx().node_map) == 1 && CanOptimize(input); if (follow_input_node) { op_nodes.push_back(input.name()); op_names.push_back(input.op()); } return follow_input_node; }; NodeDef* last_op = GetTailOfChain( *root, *ctx().node_map, false, predicate_fn); if (op_names.size() == 1) return absl::OkStatus(); std::for_each(op_nodes.begin(), op_nodes.end(), [this](const string& name) { AddToFusedNodes(name); }); std::reverse(op_names.begin(), op_names.end()); VLOG(2) << "Fuse unary ops: root=" << root->name() << " op_names=[" << absl::StrJoin(op_names, ", ") << "]"; NodeDef* composition_node = ctx().optimized_graph->add_node(); composition_node->set_name(OptimizedNodeName(*root)); composition_node->set_op("_UnaryOpsComposition"); composition_node->add_input(last_op->input(0)); composition_node->set_device(root->device()); auto attr = composition_node->mutable_attr(); SetAttrValue(dtype, &(*attr)["T"]); SetAttrValue(op_names, &(*attr)["op_names"]); ctx().node_map->AddNode(composition_node->name(), composition_node); ctx().node_map->AddOutput(NodeName(last_op->input(0)), composition_node->name()); *simplified_node_name = composition_node->name(); return absl::OkStatus(); } private: bool CanOptimize(const NodeDef& node) const { DataType dtype = GetDataTypeFromAttr(node, "T"); if (!IsSupported(node.op(), dtype)) { return false; } if (IsInPreserveSet(node)) { return false; } if (!NodeIsOnCpu(node)) { return false; } if (NodeIsAlreadyFused(node)) { return false; } return !(IsDrivenByControlDependency(node) || DrivesControlDependency(node)); } bool NodeIsAlreadyFused(const NodeDef& node) const { return fused_nodes_.count(node.name()) > 0; } string OptimizedNodeName(const NodeDef& node) const { return strings::StrCat(node.name(), "/unary_ops_composition"); } void AddToFusedNodes(const string& name) { fused_nodes_.insert(name); } bool IsSupported(const string& op_name, DataType dtype) const { const auto it = supported_ops_.find(op_name); return it != supported_ops_.end() && it->second.count(dtype) > 0; } std::unordered_map<string, std::set<DataType>> supported_ops_; std::unordered_set<string> fused_nodes_; }; class RemoveStackSliceSameAxis : public ArithmeticOptimizerStage { public: explicit RemoveStackSliceSameAxis(const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("RemoveStackStridedSliceSameAxis", ctx, ctx_ext) {} ~RemoveStackSliceSameAxis() override = default; bool IsSupported(const NodeDef* node) const override { return (IsStridedSlice(*node) || IsSlice(*node)) && !IsInPreserveSet(*node); } Status TrySimplify(NodeDef* node, string* simplified_node_name) override { NodeDef* pack; TF_RETURN_IF_ERROR(GetInputNode(node->input(0), &pack)); if (!IsPack(*pack)) return absl::OkStatus(); bool return_early; PartialTensorShape pack_output_shape; int pack_axis; TF_RETURN_IF_ERROR( CheckInputs(node, pack, &pack_output_shape, &pack_axis, &return_early)); if (return_early) return absl::OkStatus(); int64_t slice_start_value; bool found; bool must_expand_dims; TF_RETURN_IF_ERROR(GetSliceAxis(node, pack, pack_output_shape, pack_axis, &slice_start_value, &found, &must_expand_dims)); if (!found) return absl::OkStatus(); return RewriteGraph(node, pack, slice_start_value, pack_axis, must_expand_dims, simplified_node_name); } protected: Status CheckInputs(const NodeDef* node, const NodeDef* pack, PartialTensorShape* pack_output_shape, int* pack_axis, bool* return_early) { *return_early = true; TF_RETURN_IF_ERROR(CheckAttrExists(*pack, "axis")); *pack_axis = pack->attr().at("axis").i(); auto slice_properties = ctx().graph_properties->GetInputProperties(node->name()); if (slice_properties.empty() || slice_properties[0].shape().unknown_rank()) { return absl::OkStatus(); } *pack_output_shape = slice_properties[0].shape(); const int pack_output_rank = pack_output_shape->dims(); if (*pack_axis < 0) { *pack_axis += pack_output_rank; } if (*pack_axis < 0 || *pack_axis >= pack_output_rank) { return errors::InvalidArgument( "Pack node (", pack->name(), ") axis attribute is out of bounds: ", pack->attr().at("axis").i()); } *return_early = false; return absl::OkStatus(); } Status GetSliceAxis(const NodeDef* node, const NodeDef* pack, const PartialTensorShape& pack_output_shape, int pack_axis, int64_t* slice_start_value, bool* found, bool* must_expand_dims) { *found = false; if (IsSlice(*node)) { *must_expand_dims = true; return GetSimpleSliceAxis(node, pack, pack_output_shape, pack_axis, slice_start_value, found); } else { return GetStridedSliceAxis(node, pack, pack_output_shape, pack_axis, slice_start_value, found, must_expand_dims); } } Status GetSimpleSliceAxis(const NodeDef* node, const NodeDef* pack, const PartialTensorShape& pack_output_shape, int pack_axis, int64_t* slice_start_value, bool* found) { NodeDef* slice_begin; NodeDef* slice_size; TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &slice_begin)); TF_RETURN_IF_ERROR(GetInputNode(node->input(2), &slice_size)); for (const auto* n : {slice_begin, slice_size}) { if (!IsReallyConstant(*n)) return absl::OkStatus(); } Tensor slice_begin_t; Tensor slice_size_t; TF_RETURN_IF_ERROR(CheckAttrExists(*slice_begin, "value")); if (!slice_begin_t.FromProto(slice_begin->attr().at("value").tensor())) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(CheckAttrExists(*slice_size, "value")); if (!slice_size_t.FromProto(slice_size->attr().at("value").tensor())) { return absl::OkStatus(); } auto copy_tensor_values_to_vector = [node](const Tensor& t, absl::InlinedVector<int64, 4UL>* vec) { if (t.dtype() == DT_INT32) { auto t_flat = t.flat<int32>(); vec->assign(&t_flat(0), &t_flat(t.NumElements())); } else if (t.dtype() == DT_INT64) { auto t_flat = t.flat<int64_t>(); vec->assign(&t_flat(0), &t_flat(t.NumElements())); } else { return errors::InvalidArgument("Node ", node->name(), " has invalid type for Index attr: ", DataTypeString(t.dtype())); } return absl::OkStatus(); }; absl::InlinedVector<int64_t, 4UL> slice_begin_vec; absl::InlinedVector<int64_t, 4UL> slice_size_vec; TF_RETURN_IF_ERROR( copy_tensor_values_to_vector(slice_begin_t, &slice_begin_vec)); TF_RETURN_IF_ERROR( copy_tensor_values_to_vector(slice_size_t, &slice_size_vec)); if (slice_begin_vec.size() != slice_size_vec.size()) { return errors::InvalidArgument("Node ", node->name(), " has mismatched lengths for begin (", slice_begin_vec.size(), ") and size (", slice_size_vec.size(), ") vectors."); } int slice_begin_vec_size = slice_begin_vec.size(); if (!pack_output_shape.unknown_rank() && slice_begin_vec_size != pack_output_shape.dims()) { return absl::OkStatus(); } if (pack_axis >= slice_begin_vec_size) { return errors::InvalidArgument( "Input to node ", node->name(), " had pack_axis ", pack_axis, " but rank was ", slice_begin_vec_size, "."); } *slice_start_value = slice_begin_vec[pack_axis]; if (slice_size_vec[pack_axis] != 1) { return absl::OkStatus(); } for (int i = 0; i < slice_begin_vec_size; ++i) { if (i != pack_axis) { if (slice_begin_vec[i] != 0 || !(slice_size_vec[i] == -1 || slice_size_vec[i] == pack_output_shape.dim_size(i))) { return absl::OkStatus(); } } } if (*slice_start_value < 0 || *slice_start_value >= pack->input_size()) { return errors::InvalidArgument( "Node ", node->name(), " requested invalid slice index ", *slice_start_value, " on axis ", pack_axis, " from tensor of shape: ", pack_output_shape.DebugString()); } *found = true; return absl::OkStatus(); } Status GetStridedSliceAxis(const NodeDef* node, const NodeDef* pack, const PartialTensorShape& pack_output_shape, int pack_axis, int64_t* slice_start_value, bool* found, bool* must_expand_dims) { TF_RETURN_IF_ERROR( CheckAttrsExist(*node, {"begin_mask", "end_mask", "ellipsis_mask", "new_axis_mask", "shrink_axis_mask"})); const int begin_mask = node->attr().at("begin_mask").i(); const int end_mask = node->attr().at("end_mask").i(); const int ellipsis_mask = node->attr().at("ellipsis_mask").i(); const int new_axis_mask = node->attr().at("new_axis_mask").i(); const int shrink_axis_mask = node->attr().at("shrink_axis_mask").i(); NodeDef* slice_begin; NodeDef* slice_end; NodeDef* slice_strides; TF_RETURN_IF_ERROR(GetInputNode(node->input(1), &slice_begin)); TF_RETURN_IF_ERROR(GetInputNode(node->input(2), &slice_end)); TF_RETURN_IF_ERROR(GetInputNode(node->input(3), &slice_strides)); for (const auto* n : {slice_begin, slice_end, slice_strides}) { if (!IsReallyConstant(*n)) return absl::OkStatus(); } Tensor slice_begin_t; Tensor slice_end_t; Tensor slice_strides_t; TF_RETURN_IF_ERROR(CheckAttrExists(*slice_begin, "value")); if (!slice_begin_t.FromProto(slice_begin->attr().at("value").tensor())) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(CheckAttrExists(*slice_end, "value")); if (!slice_end_t.FromProto(slice_end->attr().at("value").tensor())) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(CheckAttrExists(*slice_strides, "value")); if (!slice_strides_t.FromProto( slice_strides->attr().at("value").tensor())) { return absl::OkStatus(); } TensorShape processing_shape; TensorShape final_shape; bool is_identity; bool is_simple_slice; bool slice_dim0; absl::InlinedVector<int64_t, 4UL> slice_begin_vec; absl::InlinedVector<int64_t, 4UL> slice_end_vec; absl::InlinedVector<int64_t, 4UL> slice_strides_vec; TF_RETURN_IF_ERROR(ValidateStridedSliceOp( &slice_begin_t, &slice_end_t, slice_strides_t, pack_output_shape, begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask, &processing_shape, &final_shape, &is_identity, &is_simple_slice, &slice_dim0, &slice_begin_vec, &slice_end_vec, &slice_strides_vec)); if (!is_simple_slice) return absl::OkStatus(); int begin_index = -1; int64_t begin_value = 0; for (int i = 0, end = slice_begin_vec.size(); i < end; ++i) { const int64_t v = slice_begin_vec[i]; if (v != 0) { if (begin_index != -1) { return absl::OkStatus(); } begin_index = i; begin_value = v; } } int end_index = -1; int64_t end_value = 0; for (int i = 0, end = slice_begin_vec.size(); i < end; ++i) { const int64_t v = slice_end_vec[i]; if (v != pack_output_shape.dim_size(i)) { if (end_index != -1) { return absl::OkStatus(); } end_index = i; end_value = v; } } if (begin_index == -1 && end_index == -1) return absl::OkStatus(); if (begin_index != -1 && end_index != -1 && begin_index != end_index) { return absl::OkStatus(); } const int slice_axis = (begin_index == -1) ? end_index : begin_index; if (slice_axis != pack_axis) { return absl::OkStatus(); } *slice_start_value = (begin_index == -1) ? 0 : begin_value; const int64_t slice_end_value = (end_index == -1) ? pack_output_shape.dim_size(slice_axis) : end_value; if (slice_end_value != *slice_start_value + 1) { return absl::OkStatus(); } if (*slice_start_value < 0 || *slice_start_value >= pack->input_size()) { return errors::InvalidArgument( "Node ", node->name(), " requested invalid slice index ", *slice_start_value, " on axis ", slice_axis, " from tensor of shape: ", pack_output_shape.DebugString()); } if (shrink_axis_mask == 0) { *must_expand_dims = true; } else if (shrink_axis_mask == (1 << slice_axis)) { *must_expand_dims = false; } else { return absl::OkStatus(); } *found = true; return absl::OkStatus(); } Status RewriteGraph(const NodeDef* node, const NodeDef* pack, int64_t slice_start_value, int pack_axis, bool must_expand_dims, string* simplified_node_name) { const string& input_slice = pack->input(slice_start_value); const OpInfo::TensorProperties* input_slice_properties; TF_RETURN_IF_ERROR(GetTensorProperties(pack->input(slice_start_value), &input_slice_properties)); PartialTensorShape input_slice_shape(input_slice_properties->shape()); const OpInfo::TensorProperties* output_properties; TF_RETURN_IF_ERROR(GetTensorProperties( strings::StrCat(node->name(), ":", 0), &output_properties)); PartialTensorShape output_shape(output_properties->shape()); NodeDef* output = AddEmptyNode(OptimizedNodeName(ParseNodeScopeAndName(node->name()))); if (!must_expand_dims) { output->set_op("Identity"); output->set_device(node->device()); SetDataTypeToAttr(output_properties->dtype(), "T", output); output->add_input(input_slice); } else { NodeDef* axis = AddEmptyNode( OptimizedNodeName(ParseNodeScopeAndName(node->name()), "Axis")); axis->set_op("Const"); axis->set_device(node->device()); axis->add_input(absl::StrCat("^", ParseTensorName(input_slice).node())); auto axis_attr = axis->mutable_attr(); SetDataTypeToAttr(DT_INT32, "dtype", axis); auto* axis_t = (*axis_attr)["value"].mutable_tensor(); axis_t->set_dtype(DT_INT32); axis_t->add_int_val(pack_axis); AddToOptimizationQueue(axis); output->set_op("ExpandDims"); output->set_device(node->device()); SetDataTypeToAttr(output_properties->dtype(), "T", output); SetDataTypeToAttr(DT_INT32, "Tdim", output); output->add_input(input_slice); output->add_input(axis->name()); } ForwardControlDependencies(output, {node, pack}); AddToOptimizationQueue(output); *simplified_node_name = output->name(); return absl::OkStatus(); } }; class SimplifyEmbeddingLookupStage : public ArithmeticOptimizerStage { public: explicit SimplifyEmbeddingLookupStage( const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("SimplifyEmbeddingLookupStage", ctx, ctx_ext) { } ~SimplifyEmbeddingLookupStage() override = default; bool IsSupported(const NodeDef* node) const override { return IsAnySparseSegmentReduction(*node); } Status TrySimplify(NodeDef* reduction_node, string* simplified_node_name) override { if (IsInPreserveSet(*reduction_node)) return absl::OkStatus(); NodeDef* gather_node = nullptr; TF_RETURN_IF_ERROR(GetInputNode(reduction_node->input(0), &gather_node)); if (!IsGather(*gather_node) || IsInPreserveSet(*gather_node) || gather_node->device() != reduction_node->device()) return absl::OkStatus(); if (gather_node->op() == "GatherV2" && !IsAxis0(*gather_node, 2)) return absl::OkStatus(); NodeDef* unique_node = nullptr; TF_RETURN_IF_ERROR(GetInputNode(gather_node->input(1), &unique_node)); if (!IsUnique(*unique_node) || IsInPreserveSet(*unique_node) || unique_node->device() != gather_node->device()) return absl::OkStatus(); if (unique_node->op() == "UniqueV2" && !IsAxis0(*unique_node, 1)) return absl::OkStatus(); DataType unique_element_type; TF_RETURN_IF_ERROR(GetNodeAttr(*unique_node, "T", &unique_element_type)); const TensorId idx_tensor = ParseTensorName(reduction_node->input(1)); if (idx_tensor != TensorId(unique_node->name(), 1)) return absl::OkStatus(); reduction_node->set_input(1, unique_node->input(0)); ctx().node_map->UpdateInput(reduction_node->name(), reduction_node->input(1), unique_node->input(0)); SetDataTypeToAttr(unique_element_type, "Tidx", reduction_node); const OpInfo::TensorProperties* gather_input_properties; TF_RETURN_IF_ERROR( GetTensorProperties(gather_node->input(0), &gather_input_properties)); if (gather_input_properties->dtype() == DT_RESOURCE) { NodeDef* variable_node = nullptr; TF_RETURN_IF_ERROR(GetInputNode(gather_node->input(0), &variable_node)); NodeDef* read_var_node = ctx().optimized_graph->add_node(); read_var_node->set_name(OptimizedNodeName( ParseNodeScopeAndName(reduction_node->name()), "ReadVar")); read_var_node->set_op("ReadVariableOp"); read_var_node->add_input(gather_node->input(0)); read_var_node->set_device(variable_node->device()); auto attr = read_var_node->mutable_attr(); if (variable_node->attr().count("dtype")) { SetAttrValue(variable_node->attr().at("dtype").type(), &(*attr)["dtype"]); } if (gather_node->attr().count("dtype")) { SetAttrValue(gather_node->attr().at("dtype").type(), &(*attr)["dtype"]); } if (gather_node->attr().count("_class")) { (*attr)["_class"] = gather_node->attr().at("_class"); } if (variable_node->attr().count("shape")) { SetAttrValue(variable_node->attr().at("shape").shape(), &(*attr)["_output_shapes"]); } ctx().node_map->AddNode(read_var_node->name(), read_var_node); reduction_node->set_input(0, read_var_node->name()); ctx().node_map->UpdateInput(reduction_node->name(), reduction_node->input(0), read_var_node->name()); } else { reduction_node->set_input(0, gather_node->input(0)); ctx().node_map->UpdateInput(reduction_node->name(), reduction_node->input(0), gather_node->input(0)); } *simplified_node_name = reduction_node->name(); return absl::OkStatus(); } private: bool IsAxis0(const NodeDef& node, int axis_input) { Tensor axis_tensor; if (!GetTensorFromConstNode(node.input(axis_input), &axis_tensor)) return false; if (axis_tensor.NumElements() != 1) return false; if (axis_tensor.dtype() == DT_INT32) { return axis_tensor.flat<int32>()(0) == 0; } else if (axis_tensor.dtype() == DT_INT64) { return axis_tensor.flat<int64_t>()(0) == 0; } else { return false; } } }; class RemoveCastIntoSegmentReductionStage : public ArithmeticOptimizerStage { public: explicit RemoveCastIntoSegmentReductionStage( const GraphOptimizerContext& ctx, const ArithmeticOptimizerContext& ctx_ext) : ArithmeticOptimizerStage("RemoveCastIntoSegmentReductionStage", ctx, ctx_ext) {} ~RemoveCastIntoSegmentReductionStage() override = default; bool IsSupported(const NodeDef* node) const override { return IsAnySparseSegmentReduction(*node); } Status TrySimplify(NodeDef* reduction_node, string* simplified_node_name) override { if (IsInPreserveSet(*reduction_node)) return absl::OkStatus(); bool optimized = false; std::array<std::pair<int, string>, 2> input_details = { std::make_pair(1, "Tidx"), std::make_pair(2, "Tsegmentids")}; for (const auto& input : input_details) { int input_index = input.first; const string& type_attr_name = input.second; NodeDef* cast_node = nullptr; TF_RETURN_IF_ERROR( GetInputNode(reduction_node->input(input_index), &cast_node)); DataType original_index_type; if (IsCastFromSupportedType(*cast_node, &original_index_type)) { reduction_node->set_input(input_index, cast_node->input(0)); ctx().node_map->UpdateInput(reduction_node->name(), reduction_node->input(1), cast_node->input(0)); SetDataTypeToAttr(original_index_type, type_attr_name, reduction_node); optimized = true; } } if (optimized) *simplified_node_name = reduction_node->name(); return absl::OkStatus(); } private: bool IsCastFromSupportedType(const NodeDef& node, DataType* out_input_type) { if (!IsCast(node)) return false; if (!GetNodeAttr(node, "SrcT", out_input_type).ok()) return false; return *out_input_type == DT_INT32 || *out_input_type == DT_INT64; } }; } Status ArithmeticOptimizer::SimplifyArithmeticOps(bool can_use_shapes) { SetVector<NodeDef*> nodes_to_simplify; nodes_to_simplify.Reserve(optimized_graph_->node_size()); for (int i = 0; i < optimized_graph_->node_size(); ++i) { nodes_to_simplify.PushBack(optimized_graph_->mutable_node(i)); } const GraphOptimizerContext ctx(&nodes_to_preserve_, optimized_graph_, graph_properties_.get(), node_map_.get(), &feed_nodes_, opt_level_); const ArithmeticOptimizerContext ctx_ext(&nodes_to_simplify); const auto stop = [](const string& result) { return !result.empty(); }; GraphOptimizerStagePipeline<string> pipeline(stop); const bool is_aggressive = opt_level_ == RewriterConfig::AGGRESSIVE; if (options_.combine_add_to_addn && can_use_shapes) pipeline.AddStage<AddOpsRewriteStage>(ctx, ctx_ext); if (options_.fold_conjugate_into_transpose) pipeline.AddStage<FoldConjugateIntoTranspose>(ctx, ctx_ext); if (options_.fold_multiply_into_conv) pipeline.AddStage<FoldMultiplyIntoConv>(ctx, ctx_ext); if (options_.fold_transpose_into_matmul) pipeline.AddStage<FoldTransposeIntoMatMul>(ctx, ctx_ext); if (is_aggressive && options_.hoist_common_factor_out_of_aggregation && can_use_shapes) pipeline.AddStage<HoistCommonFactorOutOfAggregation>(ctx, ctx_ext); if (options_.minimize_broadcasts && can_use_shapes) pipeline.AddStage<MinimizeBroadcasts>(ctx, ctx_ext); if (options_.remove_identity_transpose && can_use_shapes) pipeline.AddStage<RemoveIdentityTranspose>(ctx, ctx_ext); if (options_.remove_involution) pipeline.AddStage<RemoveInvolution>(ctx, ctx_ext); if (options_.remove_redundant_bitcast) pipeline.AddStage<RemoveRedundantBitcastStage>(ctx, ctx_ext); if (options_.remove_redundant_cast) pipeline.AddStage<RemoveRedundantCastStage>(ctx, ctx_ext); if (options_.replace_pack_with_tile_reshape) pipeline.AddStage<ReplacePackWithTileReshape>(ctx, ctx_ext); if (options_.replace_mul_with_tile && can_use_shapes) pipeline.AddStage<ReplaceMulWithBroadcastByTile>(ctx, ctx_ext); if (options_.reduce_upsampling_dims) pipeline.AddStage<ReduceUpsamplingDims>(ctx, ctx_ext); if (options_.remove_redundant_reshape && can_use_shapes) pipeline.AddStage<RemoveRedundantReshapeOrBroadcastTo>(ctx, ctx_ext); if (options_.remove_negation) pipeline.AddStage<RemoveNegationStage>(ctx, ctx_ext); if (options_.replace_mul_with_square) pipeline.AddStage<ReplaceMulWithSquare>(ctx, ctx_ext); if (options_.remove_logical_not) pipeline.AddStage<RemoveLogicalNotStage>(ctx, ctx_ext); if (options_.reorder_cast_like_and_value_preserving) pipeline.AddStage<ReorderCastLikeAndValuePreserving>(ctx, ctx_ext); if (options_.simplify_aggregation) pipeline.AddStage<SimplifyAggregation>(ctx, ctx_ext); if (options_.hoist_cwise_unary_chains) pipeline.AddStage<HoistCWiseUnaryChainsStage>(ctx, ctx_ext); if (options_.convert_sqrt_div_to_rsqrt_mul) pipeline.AddStage<SqrtDivToRsqrtMulStage>(ctx, ctx_ext); if (options_.remove_idempotent) pipeline.AddStage<RemoveIdempotentStage>(ctx, ctx_ext); if (options_.convert_pow) pipeline.AddStage<ConvertPowStage>(ctx, ctx_ext); if (options_.convert_log1p) pipeline.AddStage<ConvertLog1pStage>(ctx, ctx_ext); if (options_.convert_log_softmax) pipeline.AddStage<LogSoftmaxStage>(ctx, ctx_ext); if (options_.optimize_max_or_min_of_monotonic) pipeline.AddStage<OptimizeMaxOrMinOfMonotonicStage>(ctx, ctx_ext); if (options_.convert_expm1) pipeline.AddStage<ConvertExpm1Stage>(ctx, ctx_ext); if (options_.unary_ops_composition) pipeline.AddStage<UnaryOpsComposition>(ctx, ctx_ext); if (options_.remove_stack_slice_same_axis) pipeline.AddStage<RemoveStackSliceSameAxis>(ctx, ctx_ext); if (options_.simplify_embedding_lookup) pipeline.AddStage<SimplifyEmbeddingLookupStage>(ctx, ctx_ext); if (options_.remove_cast_into_segment_reduction) pipeline.AddStage<RemoveCastIntoSegmentReductionStage>(ctx, ctx_ext); if (options_.fuse_squared_diff) pipeline.AddStage<FuseSquaredDiffStage>(ctx, ctx_ext); VLOG(1) << "Run " << pipeline.NumStages() << " arithmetic optimizer stages: " << absl::StrJoin(pipeline.StageNames(), ", "); while (!nodes_to_simplify.Empty()) { GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); NodeDef* node = nodes_to_simplify.PopBack(); string simplified_tensor = ""; bool optimized = pipeline.PassThroughAllStages(node, &simplified_tensor); if (!optimized) continue; if (NodeName(simplified_tensor) != node->name()) { NodeDef* simplified_node = node_map_->GetNode(simplified_tensor); if (simplified_node != nullptr) { nodes_to_simplify.PushBack(simplified_node); } const std::vector<NodeDef*> consumers = node_map_->GetOutputsOrderedByNodeName(node->name()); for (NodeDef* consumer : consumers) { for (int i = 0; i < consumer->input_size(); ++i) { int operand_pos; string operand_node_name = ParseNodeName(consumer->input(i), &operand_pos); if (operand_node_name == node->name()) { *consumer->mutable_input(i) = (operand_pos < 0 ? AsControlDependency(NodeName(simplified_tensor)) : simplified_tensor); } } node_map_->UpdateInput(consumer->name(), node->name(), simplified_tensor); nodes_to_simplify.PushBack(consumer); } } } return absl::OkStatus(); } Status ArithmeticOptimizer::Optimize(Cluster* , const GrapplerItem& item, GraphDef* optimized_graph) { nodes_to_preserve_ = item.NodesToPreserve(); fetch_nodes_known_ = !item.fetch.empty(); GrapplerItem optimized_item(item); optimized_graph_ = &optimized_item.graph; node_map_.reset(new NodeMap(optimized_graph_)); for (const auto& feed : item.feed) { feed_nodes_.insert(NodeName(feed.first)); } options_.unary_ops_composition &= item.optimization_options().allow_non_differentiable_rewrites; TF_RETURN_IF_ERROR(TopologicalSort(optimized_graph_)); GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED(); graph_properties_.reset(new GraphProperties(optimized_item)); const bool assume_valid_feeds = opt_level_ == RewriterConfig::AGGRESSIVE; const Status status = graph_properties_->InferStatically(assume_valid_feeds, false, false); const bool can_use_shapes = status.ok(); if (!can_use_shapes) { VLOG(1) << "Shape inference failed." << status.message(); } TF_RETURN_IF_ERROR(SimplifyArithmeticOps(can_use_shapes)); *optimized_graph = std::move(*optimized_graph_); return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/arithmetic_optimizer.h" #include <complex> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/optimizers/arithmetic_optimizer_test_utils.h" #include "tensorflow/core/grappler/optimizers/model_pruner.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { constexpr char kHoistFactorOptimizerDiv[] = "ArithmeticOptimizer/HoistCommonFactor_Div_"; constexpr char kHoistFactorOptimizerMul[] = "ArithmeticOptimizer/HoistCommonFactor_Mul_"; constexpr char kHoistFactorOptimizerAdd[] = "ArithmeticOptimizer/HoistCommonFactor_AddV2_"; constexpr char kSimplifyAggregationConst[] = "ArithmeticOptimizer/SimplifyAggregation_Const_"; constexpr char kSimplifyAggregationMul[] = "ArithmeticOptimizer/SimplifyAggregation_Mul_"; string HoistMulName(const string& name) { return AddPrefixToNodeName(name, kHoistFactorOptimizerMul, ""); } string HoistDivName(const string& name) { return AddPrefixToNodeName(name, kHoistFactorOptimizerDiv, ""); } string HoistAddName(const string& name) { return AddPrefixToNodeName(name, kHoistFactorOptimizerAdd, ""); } string AggregationConstName(const string& name) { return AddPrefixToNodeName(name, kSimplifyAggregationConst, ""); } string AggregationMulName(const string& name) { return AddPrefixToNodeName(name, kSimplifyAggregationMul, ""); } void VerifyGraphsMatch(const GraphDef& original_graph, const GraphDef& optimized_graph, int line) { EXPECT_EQ(original_graph.node_size(), optimized_graph.node_size()) << line; for (int i = 0; i < original_graph.node_size(); ++i) { const NodeDef& original = original_graph.node(i); const NodeDef& optimized = optimized_graph.node(i); EXPECT_EQ(original.name(), optimized.name()) << line; EXPECT_EQ(original.op(), optimized.op()) << line; EXPECT_EQ(original.input_size(), optimized.input_size()) << line; for (int j = 0; j < original.input_size(); ++j) { EXPECT_EQ(original.input(j), optimized.input(j)) << line; } } } } TEST_F(ArithmeticOptimizerTest, NoOp) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {"CPU:0"}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); ArithmeticOptimizer optimizer; GraphDef output; Status status = optimizer.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); VerifyGraphsMatch(item.graph, output, __LINE__); } TEST_F(ArithmeticOptimizerTest, ReplaceMulWithBroadcastByTile) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Placeholder(s.WithOpName("input"), DT_FLOAT, ops::Placeholder::Shape({1, 44, 1, 96, 1, 64})); Output ones = ops::Const(s.WithOpName("ones"), 1.0f, {1, 1, 2, 1, 2, 1}); Output multiply = ops::Mul(s.WithOpName("mul"), input, ones); Output output = ops::Identity(s.WithOpName("output"), multiply); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensor = GenerateRandomTensor<DT_FLOAT>(TensorShape({1, 44, 1, 96, 1, 64})); auto expected = EvaluateNodes(item.graph, item.fetch, {{"input", tensor}}); ASSERT_EQ(expected.size(), 1); GraphDef g; ArithmeticOptimizer optimizer; EnableOnlyReplaceMulWithBroadcastByTile(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 4); ASSERT_EQ(CountOpNodes(g, "Mul"), 0); ASSERT_EQ(CountOpNodes(g, "Tile"), 1); NodeMap node_map(&g); const string p = "ArithmeticOptimizer/ReplaceMulWithBroadcastByTile"; const NodeDef* t = node_map.GetNode(absl::StrCat(p, "_", "Tile_mul")); const NodeDef* c = node_map.GetNode(absl::StrCat(p, "_", "Const_mul")); ASSERT_NE(t, nullptr); ASSERT_NE(c, nullptr); EXPECT_EQ(t->op(), "Tile"); ASSERT_EQ(t->input_size(), 2); EXPECT_EQ(t->input(0), "input"); EXPECT_EQ(t->input(1), c->name()); EXPECT_EQ(t->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(t->attr().at("Tmultiples").type(), c->attr().at("dtype").type()); auto result = EvaluateNodes(g, item.fetch, {{"input", tensor}}); ASSERT_EQ(result.size(), 1); test::ExpectTensorNear<float>(result[0], expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, ReplaceMulWithBroadcastByTilePreserveControl) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Placeholder(s.WithOpName("input"), DT_FLOAT, ops::Placeholder::Shape({1, 1, 1})); Output ones = ops::Const(s.WithOpName("ones").WithControlDependencies(input), 1.0f, {1, 2, 1}); Output multiply = ops::Mul(s.WithOpName("mul"), input, ones); Output output = ops::Identity(s.WithOpName("output"), multiply); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensor = GenerateRandomTensor<DT_FLOAT>(TensorShape({1, 1, 1})); auto expected = EvaluateNodes(item.graph, item.fetch, {{"input", tensor}}); ASSERT_EQ(expected.size(), 1); GraphDef g; ArithmeticOptimizer optimizer; EnableOnlyReplaceMulWithBroadcastByTile(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 4); ASSERT_EQ(CountOpNodes(g, "Mul"), 0); ASSERT_EQ(CountOpNodes(g, "Tile"), 1); NodeMap node_map(&g); const string p = "ArithmeticOptimizer/ReplaceMulWithBroadcastByTile"; const NodeDef* c = node_map.GetNode(absl::StrCat(p, "_", "Const_mul")); ASSERT_NE(c, nullptr); ASSERT_EQ(c->input_size(), 1); EXPECT_TRUE(IsControlInput(c->input(0))); EXPECT_EQ(c->input(0), "^input"); } TEST_F(ArithmeticOptimizerTest, ReplaceMulWithBroadcastByTileNoBroadcast) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({1, 2, 1})); Output ones = ops::Const(s.WithOpName("ones"), 1.0f, {1, 2, 1}); Output multiply = ops::Mul(s.WithOpName("multiply"), input, ones); Output output = ops::Identity(s.WithOpName("output"), multiply); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensor = GenerateRandomTensor<DT_FLOAT>(TensorShape({1, 2, 1})); auto expected = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", tensor}}); ASSERT_EQ(expected.size(), 1); GraphDef g; ArithmeticOptimizer optimizer; EnableOnlyReplaceMulWithBroadcastByTile(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 4); VerifyGraphsMatch(item.graph, g, __LINE__); auto result = EvaluateNodes(g, item.fetch, {{"Placeholder", tensor}}); ASSERT_EQ(result.size(), 1); test::ExpectTensorNear<float>(result[0], expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, ReplaceMulWithBroadcastByTileNotConst) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input1 = ops::Placeholder(s.WithOpName("input1"), DT_FLOAT, ops::Placeholder::Shape({1, 1, 1})); Output input2 = ops::Placeholder(s.WithOpName("input2"), DT_FLOAT, ops::Placeholder::Shape({1, 2, 1})); Output multiply = ops::Mul(s.WithOpName("multiply"), input1, input2); Output output = ops::Identity(s.WithOpName("output"), multiply); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensor1 = GenerateRandomTensor<DT_FLOAT>(TensorShape({1, 1, 1})); auto tensor2 = GenerateRandomTensor<DT_FLOAT>(TensorShape({1, 2, 1})); auto expected = EvaluateNodes(item.graph, item.fetch, {{"input1", tensor1}, {"input2", tensor2}}); ASSERT_EQ(expected.size(), 1); GraphDef g; ArithmeticOptimizer optimizer; EnableOnlyReplaceMulWithBroadcastByTile(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 4); VerifyGraphsMatch(item.graph, g, __LINE__); auto result = EvaluateNodes(item.graph, item.fetch, {{"input1", tensor1}, {"input2", tensor2}}); ASSERT_EQ(result.size(), 1); test::ExpectTensorNear<float>(result[0], expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, ReplaceMulWithBroadcastByTileNotOnes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({1, 1, 1})); Output ones = ops::Const(s.WithOpName("ones"), 2.0f, {1, 2, 1}); Output multiply = ops::Mul(s.WithOpName("multiply"), input, ones); Output output = ops::Identity(s.WithOpName("output"), multiply); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensor = GenerateRandomTensor<DT_FLOAT>(TensorShape({1, 1, 1})); auto expected = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", tensor}}); ASSERT_EQ(expected.size(), 1); GraphDef g; ArithmeticOptimizer optimizer; EnableOnlyReplaceMulWithBroadcastByTile(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 4); VerifyGraphsMatch(item.graph, g, __LINE__); auto result = EvaluateNodes(g, item.fetch, {{"Placeholder", tensor}}); ASSERT_EQ(result.size(), 1); test::ExpectTensorNear<float>(result[0], expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, ReduceUpsamplingDims) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output input = ops::Placeholder(s.WithOpName("input"), DT_FLOAT, ops::Placeholder::Shape({1, 22, 48, 64})); Output reshape_a = ops::Reshape( s.WithOpName("reshape_a"), input, ops::Const(s.WithOpName("shape_a"), {1, 22, 1, 48, 1, 64}, {6})); Output tile = ops::Tile(s.WithOpName("tile"), reshape_a, ops::Const(s.WithOpName("multiples"), {1, 1, 2, 1, 2, 1}, {6})); Output reshape_b = ops::Reshape(s.WithOpName("reshape_b"), tile, ops::Const(s.WithOpName("shape_b"), {1, 44, 96, 64})); Output output = ops::Identity(s.WithOpName("output"), reshape_b); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensor = GenerateRandomTensor<DT_FLOAT>(TensorShape({1, 22, 48, 64})); auto expected = EvaluateNodes(item.graph, item.fetch, {{"input", tensor}}); ASSERT_EQ(expected.size(), 1); GraphDef g; ArithmeticOptimizer optimizer; EnableOnlyReduceUpsamplingDims(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 8); ASSERT_EQ(CountOpNodes(g, "Tile"), 1); ASSERT_EQ(CountOpNodes(g, "Reshape"), 2); ASSERT_EQ(CountOpNodes(g, "Const"), 3); NodeMap node_map(&g); const string p = "ArithmeticOptimizer/ReduceUpsamplingDims"; const NodeDef* ra = node_map.GetNode(absl::StrCat(p, "_", "Reshape_reshape_b")); const NodeDef* rb = node_map.GetNode("reshape_b"); const NodeDef* t = node_map.GetNode(absl::StrCat(p, "_", "Tile_reshape_b")); ASSERT_NE(ra, nullptr); ASSERT_NE(rb, nullptr); ASSERT_NE(t, nullptr); ASSERT_EQ(rb->input_size(), 2); EXPECT_EQ(rb->input(0), t->name()); ASSERT_EQ(t->input_size(), 2); EXPECT_EQ(t->input(0), ra->name()); ASSERT_EQ(ra->input_size(), 2); EXPECT_EQ(ra->input(0), "input"); { auto result = EvaluateNodes(g, item.fetch, {{"input", tensor}}); ASSERT_EQ(result.size(), 1); test::ExpectTensorNear<float>(result[0], expected[0], 1e-6); } EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 6); { auto result = EvaluateNodes(g, item.fetch, {{"input", tensor}}); ASSERT_EQ(result.size(), 1); test::ExpectTensorNear<float>(result[0], expected[0], 1e-6); } } TEST_F(ArithmeticOptimizerTest, ReplaceMulWithSquare) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output c = ops::Const(s.WithOpName("c"), {1.0f, 2.0f}, {1, 2}); Output d = ops::Const(s.WithOpName("d"), {3.0f, 4.0f}, {1, 2}); Output mul = ops::Mul(s.WithControlDependencies(d).WithOpName("mul"), c, c); Output mul_no_nan = ops::MulNoNan(s.WithOpName("mul_no_nan"), d, d); Output id = ops::Identity(s.WithOpName("id"), mul); Output id2 = ops::Identity(s.WithOpName("id2"), mul_no_nan); GrapplerItem item; item.fetch = {"id", "id2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 2); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyReplaceMulWithSquare(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 6); NodeMap node_map(&output); const string p = "ArithmeticOptimizer/ReplaceMulWithSquare"; const NodeDef* square_node = node_map.GetNode(absl::StrCat(p, "_", "mul")); ASSERT_NE(square_node, nullptr); EXPECT_EQ(square_node->op(), "Square"); ASSERT_EQ(square_node->input_size(), 2); EXPECT_EQ(square_node->input(0), "c"); EXPECT_EQ(square_node->input(1), "^d"); const NodeDef* square_node2 = node_map.GetNode(absl::StrCat(p, "_", "mul_no_nan")); ASSERT_NE(square_node2, nullptr); EXPECT_EQ(square_node2->op(), "Square"); ASSERT_EQ(square_node2->input_size(), 1); EXPECT_EQ(square_node2->input(0), "d"); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 2); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, ReplacePackWithTileReshape) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Placeholder(s.WithOpName("a"), DT_FLOAT, ops::Placeholder::Shape({3, 5, 7, 11})); Output b = ops::Stack(s.WithOpName("b"), {a, a}, ops::Stack::Axis(3)); Output c = ops::Stack(s.WithOpName("c"), {b, b}, ops::Stack::Axis(2)); Output o = ops::Identity(s.WithOpName("output"), c); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto a_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({3, 5, 7, 11})); auto expected = EvaluateNodes(item.graph, item.fetch, {{"a", a_t}}); ASSERT_EQ(expected.size(), 1); GraphDef g; ArithmeticOptimizer optimizer; EnableOnlyReplacePackWithTileReshape(&optimizer); OptimizeAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 6); EXPECT_EQ(CountOpNodes(g, "Pack"), 0); EXPECT_EQ(CountOpNodes(g, "Tile"), 1); EXPECT_EQ(CountOpNodes(g, "Const"), 2); EXPECT_EQ(CountOpNodes(g, "Reshape"), 1); NodeMap node_map(&g); const string p = "ArithmeticOptimizer/ReplacePackWithTileReshape"; const NodeDef* t_node = node_map.GetNode(absl::StrCat(p, "_", "Tile_c")); const NodeDef* c_node = node_map.GetNode(absl::StrCat(p, "_", "Multiples_c")); const NodeDef* s_node = node_map.GetNode(absl::StrCat(p, "_", "Shape_c")); const NodeDef* r_node = node_map.GetNode(absl::StrCat(p, "_", "Reshape_c")); const NodeDef* a_node = node_map.GetNode("a"); ASSERT_NE(t_node, nullptr); ASSERT_NE(c_node, nullptr); ASSERT_NE(s_node, nullptr); ASSERT_NE(r_node, nullptr); ASSERT_NE(a_node, nullptr); EXPECT_EQ(c_node->op(), "Const"); EXPECT_EQ(s_node->op(), "Const"); ASSERT_EQ(r_node->input_size(), 2); EXPECT_EQ(r_node->op(), "Reshape"); EXPECT_EQ(r_node->input(0), t_node->name()); EXPECT_EQ(r_node->input(1), s_node->name()); ASSERT_EQ(t_node->input_size(), 2); EXPECT_EQ(t_node->op(), "Tile"); EXPECT_EQ(t_node->input(0), a_node->name()); EXPECT_EQ(t_node->input(1), c_node->name()); EXPECT_EQ(t_node->attr().at("T").type(), DT_FLOAT); EXPECT_EQ(t_node->attr().at("Tmultiples").type(), c_node->attr().at("dtype").type()); auto result = EvaluateNodes(g, item.fetch, {{"a", a_t}}); ASSERT_EQ(result.size(), 1); test::ExpectTensorNear<float>(result[0], expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, ReplacePackWithTileReshapeControlDeps) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Placeholder(s.WithOpName("a"), DT_FLOAT, ops::Placeholder::Shape({3, 5, 7, 11})); Output x = ops::Identity(s.WithOpName("x"), a); Output y = ops::Identity(s.WithOpName("y"), a); Output b = ops::Stack(s.WithOpName("b").WithControlDependencies(x), {a, a}, ops::Stack::Axis(3)); Output c = ops::Stack(s.WithOpName("c").WithControlDependencies(y), {b, b}, ops::Stack::Axis(2)); Output o = ops::Identity(s.WithOpName("output"), c); GrapplerItem item; item.fetch = {"output"}; item.keep_ops = {"x", "y"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto a_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({3, 5, 7, 11})); auto expected = EvaluateNodes(item.graph, item.fetch, {{"a", a_t}}); ASSERT_EQ(expected.size(), 1); GraphDef g; ArithmeticOptimizer optimizer; EnableOnlyReplacePackWithTileReshape(&optimizer); OptimizeAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 8); EXPECT_EQ(CountOpNodes(g, "Pack"), 0); EXPECT_EQ(CountOpNodes(g, "Tile"), 1); EXPECT_EQ(CountOpNodes(g, "Const"), 2); EXPECT_EQ(CountOpNodes(g, "Reshape"), 1); EXPECT_EQ(CountOpNodes(g, "Identity"), 3); NodeMap node_map(&g); const string p = "ArithmeticOptimizer/ReplacePackWithTileReshape"; const NodeDef* t_node = node_map.GetNode(absl::StrCat(p, "_", "Tile_c")); const NodeDef* c_node = node_map.GetNode(absl::StrCat(p, "_", "Multiples_c")); const NodeDef* s_node = node_map.GetNode(absl::StrCat(p, "_", "Shape_c")); const NodeDef* a_node = node_map.GetNode("a"); ASSERT_NE(t_node, nullptr); ASSERT_NE(c_node, nullptr); ASSERT_NE(s_node, nullptr); ASSERT_NE(a_node, nullptr); ASSERT_EQ(t_node->input_size(), 4); EXPECT_EQ(t_node->op(), "Tile"); EXPECT_EQ(t_node->input(0), a_node->name()); EXPECT_EQ(t_node->input(1), c_node->name()); EXPECT_EQ(t_node->input(2), "^y"); EXPECT_EQ(t_node->input(3), "^x"); ASSERT_EQ(c_node->input_size(), 1); EXPECT_EQ(c_node->input(0), "^a"); ASSERT_EQ(s_node->input_size(), 1); ASSERT_EQ(s_node->input(0), "^a"); auto result = EvaluateNodes(g, item.fetch, {{"a", a_t}}); ASSERT_EQ(result.size(), 1); test::ExpectTensorNear<float>(result[0], expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, ReplacePackWithTileRemoveReshape) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Placeholder(s.WithOpName("a"), DT_FLOAT, ops::Placeholder::Shape({3, 5, 7, 11})); Output b = ops::Stack(s.WithOpName("b"), {a, a}, ops::Stack::Axis(3)); Output c = ops::Stack(s.WithOpName("c"), {b, b}, ops::Stack::Axis(2)); Output r = ops::Reshape(s.WithOpName("r"), c, ops::Const(s, {3, 10, 14, 11}, {4})); Output o = ops::Identity(s.WithOpName("output"), r); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto a_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({3, 5, 7, 11})); auto expected = EvaluateNodes(item.graph, item.fetch, {{"a", a_t}}); ASSERT_EQ(expected.size(), 1); GraphDef g; ArithmeticOptimizer optimizer; EnableOnlyReplacePackWithTileReshape(&optimizer); OptimizeAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 8); EXPECT_EQ(CountOpNodes(g, "Pack"), 0); EXPECT_EQ(CountOpNodes(g, "Tile"), 1); EXPECT_EQ(CountOpNodes(g, "Const"), 3); EXPECT_EQ(CountOpNodes(g, "Reshape"), 2); EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeAndPrune(&optimizer, &item, &g); EXPECT_EQ(g.node_size(), 6); EXPECT_EQ(CountOpNodes(g, "Pack"), 0); EXPECT_EQ(CountOpNodes(g, "Tile"), 1); EXPECT_EQ(CountOpNodes(g, "Const"), 2); EXPECT_EQ(CountOpNodes(g, "Reshape"), 1); auto result = EvaluateNodes(g, item.fetch, {{"a", a_t}}); ASSERT_EQ(result.size(), 1); test::ExpectTensorNear<float>(result[0], expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, ReplacePackWithTileReshapeOutOfRange) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Placeholder(s.WithOpName("a"), DT_FLOAT, ops::Placeholder::Shape({3, 5, 7, 11})); Output b = ops::Stack(s.WithOpName("b"), {a, a}, ops::Stack::Axis(4)); Output o = ops::Identity(s.WithOpName("output"), b); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef g; ArithmeticOptimizer optimizer; EnableOnlyReplacePackWithTileReshape(&optimizer); OptimizeAndPrune(&optimizer, &item, &g); VerifyGraphsMatch(item.graph, g, __LINE__); } TEST_F(ArithmeticOptimizerTest, RemoveInvolutionAdjacentNodes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto c = ops::Const(s.WithOpName("c"), {1.0f, 2.0f}, {1, 2}); auto neg1 = ops::Neg(s.WithOpName("neg1"), c); auto neg2 = ops::Neg(s.WithOpName("neg2"), neg1); auto recip1 = ops::Reciprocal(s.WithOpName("recip1"), neg2); auto recip2 = ops::Reciprocal(s.WithOpName("recip2"), recip1); auto id = ops::Identity(s.WithOpName("id"), recip2); GrapplerItem item; item.fetch = {"id"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveInvolution(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); ASSERT_EQ(output.node_size(), 2); EXPECT_EQ(output.node(1).name(), "id"); ASSERT_EQ(output.node(1).input_size(), 1); EXPECT_EQ(output.node(1).input(0), "c"); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, RemoveInvolutionAroundValuePreservingChain) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto c = ops::Const(s.WithOpName("c"), {1.0f, 2.0f}, {1, 2}); auto recip1 = ops::Reciprocal(s.WithOpName("recip1"), c); auto id1 = ops::Identity(s.WithOpName("id1"), recip1); auto squeeze = ops::Squeeze(s.WithOpName("squeeze"), id1); auto recip2 = ops::Reciprocal(s.WithOpName("recip2"), squeeze); auto id2 = ops::Identity(s.WithOpName("id2"), recip2); std::vector<string> fetch = {"id2"}; GrapplerItem item; item.fetch = fetch; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveInvolution(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 3); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "squeeze") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "c"); found++; } else if (node.name() == "id2") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "squeeze"); found++; } } EXPECT_EQ(found, 2); auto tensors = EvaluateNodes(output, fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, RemoveInvolutionSkipControlDependencies) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto c = ops::Const(s.WithOpName("c"), {1.0f, 2.0f}, {1, 2}); auto recip1 = ops::Reciprocal(s.WithOpName("recip1"), c); auto id1 = ops::Identity(s.WithOpName("id1"), recip1); auto squeeze = ops::Squeeze(s.WithOpName("squeeze"), id1); auto recip2 = ops::Reciprocal( s.WithOpName("recip2").WithControlDependencies(squeeze), c); auto id2 = ops::Identity(s.WithOpName("id2"), recip2); std::vector<string> fetch = {"id2"}; GrapplerItem item; item.fetch = fetch; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveInvolution(&optimizer); OptimizeTwice(&optimizer, &item, &output); VerifyGraphsMatch(item.graph, output, __LINE__); auto tensors = EvaluateNodes(output, fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, TrivialSumsSimple) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output add = ops::Add(s.WithOpName("add"), x, x); Output id = ops::Identity(s.WithOpName("id"), add); GrapplerItem item; item.fetch = {"id"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); ArithmeticOptimizer optimizer; GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 5); const string optimized_const_name = AggregationConstName("add"); const string optimized_mul_name = AggregationMulName("add"); const NodeDef* new_const = node_map.GetNode(optimized_const_name); ASSERT_NE(new_const, nullptr); ASSERT_EQ(new_const->input_size(), 1); EXPECT_EQ(new_const->input(0), "^x"); EXPECT_EQ(new_const->attr().at("value").tensor().tensor_content(), string("\0\0\0@", 4)); const NodeDef* new_mul = node_map.GetNode(optimized_mul_name); ASSERT_NE(new_mul, nullptr); ASSERT_EQ(new_mul->input_size(), 2); EXPECT_EQ(new_mul->input(0), optimized_const_name); EXPECT_EQ(new_mul->input(1), "x"); const NodeDef* new_id = node_map.GetNode("id"); ASSERT_NE(new_id, nullptr); ASSERT_EQ(new_id->input_size(), 1); EXPECT_EQ(new_id->input(0), optimized_mul_name); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, TrivialSumsSimpleWithControlDep) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output y = ops::Const(s.WithOpName("y"), {1.0f, 2.0f}, {1, 2}); Output x = ops::Const(s.WithOpName("x"), {3.0f, 4.0f}, {1, 2}); Output add = ops::Add(s.WithOpName("add").WithControlDependencies(y), x, x); Output id = ops::Identity(s.WithOpName("id"), add); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); std::vector<string> fetch = {"id"}; auto tensors_expected = EvaluateNodes(item.graph, fetch); ASSERT_EQ(tensors_expected.size(), 1); ArithmeticOptimizer optimizer; GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 6); const string optimized_const_name = AggregationConstName("add"); const string optimized_mul_name = AggregationMulName("add"); const NodeDef* new_const = node_map.GetNode(optimized_const_name); ASSERT_NE(new_const, nullptr); ASSERT_EQ(new_const->input_size(), 1); EXPECT_EQ(new_const->input(0), "^x"); EXPECT_EQ(new_const->attr().at("value").tensor().tensor_content(), string("\0\0\0@", 4)); const NodeDef* new_mul = node_map.GetNode(optimized_mul_name); ASSERT_NE(new_mul, nullptr); ASSERT_EQ(new_mul->input_size(), 3); EXPECT_EQ(new_mul->input(0), optimized_const_name); EXPECT_EQ(new_mul->input(1), "x"); EXPECT_EQ(new_mul->input(2), "^y"); const NodeDef* new_id = node_map.GetNode("id"); ASSERT_NE(new_id, nullptr); ASSERT_EQ(new_id->input_size(), 1); EXPECT_EQ(new_id->input(0), optimized_mul_name); auto tensors = EvaluateNodes(output, fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, TrivialSumsRepeatedAdd) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output p = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({10, 10})); Output add = ops::Add(s.WithOpName("Add"), p, p); Output add1 = ops::Add(s.WithOpName("Add_1"), p, p); Output add4 = ops::Add(s.WithOpName("Add_4"), add, add1); Output add5 = ops::Add(s.WithOpName("Add_5"), add, add1); Output add6 = ops::Add(s.WithOpName("Add_6"), add4, add5); Output id = ops::Identity(s.WithOpName("id"), add6); GrapplerItem item; item.fetch = {"id"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); const std::vector<string> devices{ "/device:CPU:0", "/device:GPU:0", "/device:CPU:0", "/device:GPU:1", "/device:CPU:0", "/device:CPU:0", "/device:CPU:0", }; for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device(devices[i]); } ArithmeticOptimizer optimizer(RewriterConfig::AGGRESSIVE); DisableAddToAddNCombining(&optimizer); GraphDef output; DedupAndOptimizeTwiceAndPrune(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 8); const NodeDef* id_node = node_map.GetNode("id"); ASSERT_NE(id_node, nullptr); ASSERT_EQ(id_node->input_size(), 1); EXPECT_EQ(id_node->input(0), HoistMulName("Add_6")); const NodeDef* mul_node = node_map.GetNode(HoistMulName("Add_6")); ASSERT_NE(mul_node, nullptr); ASSERT_EQ(mul_node->input_size(), 2); EXPECT_EQ(mul_node->input(0), "Placeholder"); EXPECT_EQ(mul_node->input(1), HoistAddName("Add_6")); const NodeDef* add_6_node = node_map.GetNode(HoistAddName("Add_6")); ASSERT_NE(add_6_node, nullptr); ASSERT_EQ(add_6_node->input_size(), 2); EXPECT_EQ(add_6_node->input(0), HoistAddName("Add_4")); EXPECT_EQ(add_6_node->input(1), HoistAddName("Add_5")); const NodeDef* add_4_node = node_map.GetNode(HoistAddName("Add_4")); ASSERT_NE(add_4_node, nullptr); EXPECT_EQ(add_4_node->op(), "Add"); ASSERT_EQ(2, add_4_node->input_size()); EXPECT_EQ(add_4_node->input(0), AggregationConstName("Add")); EXPECT_EQ(add_4_node->input(1), AggregationConstName("Add_1")); const NodeDef* add_5_node = node_map.GetNode(HoistAddName("Add_5")); ASSERT_NE(add_5_node, nullptr); EXPECT_EQ(add_5_node->op(), "Add"); ASSERT_EQ(add_5_node->input_size(), 2); EXPECT_EQ(add_5_node->input(0), AggregationConstName("Add")); EXPECT_EQ(add_5_node->input(1), AggregationConstName("Add_1")); const NodeDef* add_const_node = node_map.GetNode(AggregationConstName("Add")); ASSERT_NE(add_const_node, nullptr); EXPECT_EQ(add_const_node->op(), "Const"); ASSERT_EQ(add_const_node->input_size(), 1); EXPECT_EQ(add_const_node->input(0), "^Placeholder"); const NodeDef* add_1_const_node = node_map.GetNode(AggregationConstName("Add_1")); ASSERT_NE(add_1_const_node, nullptr); EXPECT_EQ(add_1_const_node->op(), "Const"); ASSERT_EQ(add_1_const_node->input_size(), 1); EXPECT_EQ(add_1_const_node->input(0), "^Placeholder"); } TEST_F(ArithmeticOptimizerTest, HoistFactorMul) { for (bool matching_shapes : {true, false}) { for (bool use_addn : {true, false}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output y1 = ops::Const(s.WithOpName("y1"), {3.0f, 4.0f}, {1, 2}); Output y2 = matching_shapes ? ops::Const(s.WithOpName("y2"), {5.0f, 6.0f}, {1, 2}) : ops::Const(s.WithOpName("y2"), {5.0f}, {1, 1}); Output mul1 = ops::Mul(s.WithOpName("mul1"), x, y1); Output mul2 = ops::Mul(s.WithOpName("mul2"), y2, x); Output id = use_addn ? ops::Identity(s.WithOpName("id"), ops::AddN(s.WithOpName("add"), {mul1, mul2})) : ops::Identity(s.WithOpName("id"), ops::Add(s.WithOpName("add"), mul1, mul2)); GrapplerItem item; item.fetch = {"id"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); ArithmeticOptimizer optimizer(RewriterConfig::AGGRESSIVE); EnableOnlyHoistCommonFactor(&optimizer); GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); if (use_addn && !matching_shapes) { VerifyGraphsMatch(item.graph, output, __LINE__); } else { EXPECT_EQ(output.node_size(), 9); const NodeDef* new_add_node = node_map.GetNode(HoistAddName("add")); ASSERT_NE(new_add_node, nullptr) << "Hoisted Add node not found"; ASSERT_EQ(new_add_node->input_size(), 2); EXPECT_EQ(new_add_node->input(0), "y1"); EXPECT_EQ(new_add_node->input(1), "y2"); const NodeDef* new_mul_node = node_map.GetNode(HoistMulName("add")); ASSERT_NE(new_mul_node, nullptr) << "Hoisted Mul node not found"; ASSERT_EQ(new_mul_node->input_size(), 2); EXPECT_EQ(new_mul_node->input(0), "x"); EXPECT_EQ(new_mul_node->input(1), new_add_node->name()); const NodeDef* id_node = node_map.GetNode("id"); ASSERT_NE(id_node, nullptr) << "Id node not found"; EXPECT_EQ(id_node->name(), "id"); ASSERT_EQ(id_node->input_size(), 1); EXPECT_EQ(id_node->input(0), HoistMulName("add")); } auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } } } TEST_F(ArithmeticOptimizerTest, HoistFactorDiv) { for (bool matching_shapes : {true, false}) { for (bool use_addn : {true, false}) { for (bool use_ints : {true, false}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = use_ints ? ops::Const(s.WithOpName("x"), {1, 2}, {1, 2}) : ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output y1 = use_ints ? ops::Const(s.WithOpName("y1"), {3, 4}, {1, 2}) : ops::Const(s.WithOpName("y1"), {3.0f, 4.0f}, {1, 2}); Output y2; if (matching_shapes) { y2 = use_ints ? ops::Const(s.WithOpName("y2"), {5, 6}, {1, 2}) : ops::Const(s.WithOpName("y2"), {5.0f, 6.0f}, {1, 2}); } else { y2 = use_ints ? ops::Const(s.WithOpName("y2"), {5}, {1, 1}) : ops::Const(s.WithOpName("y2"), {5.0f}, {1, 1}); } Output div1 = ops::Div(s.WithOpName("div1"), y1, x); Output div2 = ops::Div(s.WithOpName("div2"), y2, x); Output id = use_addn ? ops::Identity(s.WithOpName("id"), ops::AddN(s.WithOpName("add"), {div1, div2})) : ops::Identity(s.WithOpName("id"), ops::Add(s.WithOpName("add"), div1, div2)); GrapplerItem item; item.fetch = {"id"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); ArithmeticOptimizer optimizer(RewriterConfig::AGGRESSIVE); EnableOnlyHoistCommonFactor(&optimizer); GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); if ((use_addn && !matching_shapes) || use_ints) { VerifyGraphsMatch(item.graph, output, __LINE__); } else { EXPECT_EQ(output.node_size(), 9); const NodeDef* new_add_node = node_map.GetNode(HoistAddName("add")); ASSERT_TRUE(new_add_node != nullptr) << "Hoisted Add node not found"; ASSERT_EQ(new_add_node->input_size(), 2); EXPECT_EQ(new_add_node->input(0), "y1"); EXPECT_EQ(new_add_node->input(1), "y2"); const NodeDef* new_div_node = node_map.GetNode(HoistDivName("add")); ASSERT_TRUE(new_div_node != nullptr) << "Hoisted Div node not found"; ASSERT_EQ(new_div_node->input_size(), 2); EXPECT_EQ(new_div_node->input(0), new_add_node->name()); EXPECT_EQ(new_div_node->input(1), "x"); const NodeDef* id_node = node_map.GetNode("id"); ASSERT_TRUE(id_node != nullptr) << "Id node not found"; EXPECT_EQ("id", id_node->name()); ASSERT_EQ(id_node->input_size(), 1); EXPECT_EQ(id_node->input(0), HoistDivName("add")); } auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); if (use_ints) { test::ExpectTensorEqual<int32>(tensors[0], tensors_expected[0]); } else { test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } } } } } TEST_F(ArithmeticOptimizerTest, FuseConjAndTranspose) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output re = ops::Const(s.WithOpName("re"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); Output im = ops::Const(s.WithOpName("im"), {5.0f, 6.0f, 7.0f, 8.0f}, {2, 2}); Output z = ops::Complex(s.WithOpName("z"), re, im); Output perm = ops::Const(s.WithOpName("perm"), {1, 0}, {2}); Output conj = ops::Conj(s.WithOpName("conj"), z); Output transp = ops::Transpose(s.WithOpName("trans"), conj, perm); GrapplerItem item; item.fetch = {"trans"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); ArithmeticOptimizer optimizer; GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 7); const string p = "ArithmeticOptimizer/FoldConjugateIntoTranspose"; const string optimized_name = absl::StrCat(p, "_", "trans"); const NodeDef* trans_fused_node = node_map.GetNode(optimized_name); ASSERT_NE(trans_fused_node, nullptr); EXPECT_EQ(trans_fused_node->op(), "ConjugateTranspose"); ASSERT_EQ(trans_fused_node->input_size(), 2); EXPECT_EQ(trans_fused_node->input(0), "z"); EXPECT_EQ(trans_fused_node->input(1), "perm"); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<complex64>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, FuseConjAndConjugateTranspose) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output re = ops::Const(s.WithOpName("re"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); Output im = ops::Const(s.WithOpName("im"), {5.0f, 6.0f, 7.0f, 8.0f}, {2, 2}); Output z = ops::Complex(s.WithOpName("z"), re, im); Output perm = ops::Const(s.WithOpName("perm"), {1, 0}, {2}); Output conj = ops::Conj(s.WithOpName("conj"), z); Output transp = ops::ConjugateTranspose(s.WithOpName("conjugate_trans"), conj, perm); GrapplerItem item; item.fetch = {"conjugate_trans"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); ArithmeticOptimizer optimizer; GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 7); const string p = "ArithmeticOptimizer/FoldConjugateIntoTranspose"; const string optimized_name = absl::StrCat(p, "_", "conjugate_trans"); const NodeDef* conjugate_trans_fused_node = node_map.GetNode(optimized_name); ASSERT_NE(conjugate_trans_fused_node, nullptr); EXPECT_EQ(conjugate_trans_fused_node->op(), "Transpose"); ASSERT_EQ(conjugate_trans_fused_node->input_size(), 2); EXPECT_EQ(conjugate_trans_fused_node->input(0), "z"); EXPECT_EQ(conjugate_trans_fused_node->input(1), "perm"); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<complex64>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, FuseTransposeAndConj) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output re = ops::Const(s.WithOpName("re"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); Output im = ops::Const(s.WithOpName("im"), {5.0f, 6.0f, 7.0f, 8.0f}, {2, 2}); Output z = ops::Complex(s.WithOpName("z"), re, im); Output perm = ops::Const(s.WithOpName("perm"), {1, 0}, {2}); Output trans = ops::Transpose(s.WithOpName("trans"), z, perm); Output conj = ops::Conj(s.WithOpName("conj"), trans); GrapplerItem item; item.fetch = {"conj"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); ArithmeticOptimizer optimizer; GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 7); const string p = "ArithmeticOptimizer/FoldConjugateIntoTranspose"; const string optimized_name = absl::StrCat(p, "_", "conj"); const NodeDef* conj_fused_node = node_map.GetNode(optimized_name); ASSERT_NE(conj_fused_node, nullptr); EXPECT_EQ(conj_fused_node->op(), "ConjugateTranspose"); ASSERT_EQ(conj_fused_node->input_size(), 2); EXPECT_EQ(conj_fused_node->input(0), "z"); EXPECT_EQ(conj_fused_node->input(1), "perm"); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<complex64>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, FoldTransposeIntoMatMul) { for (const string matmul_type : {"MatMul", "SparseMatMul", "BatchMatMul", "BatchMatMulV2"}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); Output b = ops::Const(s.WithOpName("b"), {5.0f, 6.0f, 7.0f, 8.0f}, {2, 2}); Output perm = ops::Const(s.WithOpName("perm"), {1, 0}, {2}); Output trans_a = ops::Transpose(s.WithOpName("trans_a"), a, perm); Output trans_b = ops::Transpose(s.WithOpName("trans_b"), b, perm); Output matmul; auto matmul_op = s.WithOpName("matmul"); if (matmul_type == "MatMul") { matmul = ops::MatMul(matmul_op, trans_a, trans_b); } else if (matmul_type == "SparseMatMul") { matmul = ops::SparseMatMul(matmul_op, trans_a, trans_b); } else if (matmul_type == "BatchMatMul") { matmul = ops::BatchMatMul(matmul_op, trans_a, trans_b); } else if (matmul_type == "BatchMatMulV2") { matmul = ops::BatchMatMulV2(matmul_op, trans_a, trans_b); } auto identity = ops::Identity(s.WithOpName("identity"), matmul); GrapplerItem item; item.fetch = {"identity"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); ArithmeticOptimizer optimizer; EnableOnlyFoldTransposeIntoMatMul(&optimizer); GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 8); const string p = "ArithmeticOptimizer/FoldTransposeIntoMatMul"; const string optimized_name = absl::StrCat(p, "_", "matmul"); const NodeDef* matmul_fused_node = node_map.GetNode(optimized_name); ASSERT_NE(matmul_fused_node, nullptr); ASSERT_EQ(matmul_fused_node->input_size(), 2); EXPECT_EQ(matmul_fused_node->input(0), "a"); EXPECT_EQ(matmul_fused_node->input(1), "b"); if (matmul_type == "BatchMatMul" || matmul_type == "BatchMatMulV2") { EXPECT_TRUE(matmul_fused_node->attr().at("adj_x").b()); EXPECT_TRUE(matmul_fused_node->attr().at("adj_y").b()); } else { EXPECT_TRUE(matmul_fused_node->attr().at("transpose_a").b()); EXPECT_TRUE(matmul_fused_node->attr().at("transpose_b").b()); } const NodeDef* identity_node = node_map.GetNode("identity"); ASSERT_NE(identity_node, nullptr); ASSERT_EQ(identity_node->input_size(), 1); EXPECT_EQ(identity_node->input(0), optimized_name); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } } TEST_F(ArithmeticOptimizerTest, FoldConjugateTransposeIntoBatchMatMul) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output re_a = ops::Const(s.WithOpName("re_a"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); Output im_a = ops::Const(s.WithOpName("im_a"), {-1.0f, -2.0f, -3.0f, -4.0f}, {2, 2}); Output re_b = ops::Const(s.WithOpName("re_b"), {5.0f, 6.0f, 7.0f, 8.0f}, {2, 2}); Output im_b = ops::Const(s.WithOpName("im_b"), {-5.0f, -6.0f, -7.0f, -8.0f}, {2, 2}); Output a = ops::Complex(s.WithOpName("a"), re_a, im_a); Output b = ops::Complex(s.WithOpName("b"), re_b, im_b); Output perm = ops::Const(s.WithOpName("perm"), {1, 0}, {2}); Output trans_a = ops::ConjugateTranspose(s.WithOpName("trans_a"), a, perm); Output trans_b = ops::ConjugateTranspose(s.WithOpName("trans_b"), b, perm); Output matmul = ops::BatchMatMul(s.WithOpName("matmul"), trans_a, trans_b); Output identity = ops::Identity(s.WithOpName("identity"), matmul); GrapplerItem item; item.fetch = {"identity"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); ArithmeticOptimizer optimizer; GraphDef output; OptimizeTwice(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 12); const string p = "ArithmeticOptimizer/FoldTransposeIntoMatMul"; const string optimized_name = absl::StrCat(p, "_", "matmul"); const NodeDef* optimized_matmul = node_map.GetNode(optimized_name); ASSERT_NE(optimized_matmul, nullptr); ASSERT_EQ(optimized_matmul->input_size(), 2); EXPECT_EQ(optimized_matmul->input(0), "a"); EXPECT_EQ(optimized_matmul->input(1), "b"); EXPECT_TRUE(optimized_matmul->attr().at("adj_x").b()); EXPECT_TRUE(optimized_matmul->attr().at("adj_y").b()); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<complex64>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, RemoveRedundantReshapeIdentityReshape) { for (bool is_broadcastto : {false, true}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({-1, 3, 28, 28})); Output inputs_shape = ops::Shape(s, inputs); Output batch_size = ops::Slice(s, inputs_shape, ops::Const(s, {0}, {1}), ops::Const(s, {1}, {1})); Output target_shape = ops::Concat( s.WithOpName("target_shape"), {batch_size, ops::Const(s, {3, 28, 28}, {3})}, ops::Const(s, {0}, {})); if (is_broadcastto) { Output outputs = ops::Identity(s.WithOpName("outputs"), ops::BroadcastTo(s, inputs, target_shape)); } else { Output outputs = ops::Identity(s.WithOpName("outputs"), ops::Reshape(s, inputs, target_shape)); } GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({3, 3, 28, 28})); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", x_t}}); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); EXPECT_EQ(CountOpNodes(output, "Reshape"), 0); EXPECT_EQ(CountOpNodes(output, "BroadcastTo"), 0); auto tensors = EvaluateNodes(output, item.fetch, {{"Placeholder", x_t}}); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } } TEST_F(ArithmeticOptimizerTest, RemoveRedundantReshapeIdentityReshapeBetweenSymbolicShapes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({-1, 3, -1, -1})); Output inputs_shape = ops::Shape(s, inputs); Output batch_size = ops::Slice(s, inputs_shape, ops::Const(s, {0}, {1}), ops::Const(s, {1}, {1})); Output height = ops::Slice(s, inputs_shape, ops::Const(s, {2}, {1}), ops::Const(s, {1}, {1})); Output width = ops::Slice(s, inputs_shape, ops::Const(s, {3}, {1}), ops::Const(s, {1}, {1})); Output target_shape = ops::Concat(s.WithOpName("target_shape"), {batch_size, ops::Const(s, {3}, {1}), height, width}, ops::Const(s, {0}, {})); Output reshape = ops::Reshape(s, inputs, target_shape); Output outputs = ops::Identity(s.WithOpName("outputs"), reshape); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({3, 3, 28, 28})); GrapplerItem item; item.fetch = {"outputs"}; item.feed = {{"Placeholder", x_t}}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer(RewriterConfig::AGGRESSIVE); EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); EXPECT_EQ(CountOpNodes(output, "Reshape"), 0); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, RemoveRedundantReshapeNotAssumeValidFeeds) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({4, 3, 28, 28})); Output target_shape = ops::Const(s, {4, 3, 28, 28}, {4}); Output reshape = ops::Reshape(s, inputs, target_shape); Output outputs = ops::Identity(s.WithOpName("outputs"), reshape); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({4, 3, 28, 28})); GrapplerItem item; item.fetch = {"outputs"}; item.feed = {{"Placeholder", x_t}}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); EXPECT_EQ(CountOpNodes(output, "Reshape"), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, RemoveRedundantReshapeAssumeValidFeedsInAggressiveMode) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({4, 3, 28, 28})); Output target_shape = ops::Const(s, {4, 3, 28, 28}, {4}); Output reshape = ops::Reshape(s, inputs, target_shape); Output outputs = ops::Identity(s.WithOpName("outputs"), reshape); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({4, 3, 28, 28})); GrapplerItem item; item.fetch = {"outputs"}; item.feed = {{"Placeholder", x_t}}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer(RewriterConfig::AGGRESSIVE); EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); EXPECT_EQ(CountOpNodes(output, "Reshape"), 0); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, RemoveRedundantReshapeNotIdentityReshape) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({-1, 3, 28, 28})); Output reshape = ops::Reshape(s, inputs, ops::Const(s, {8, -1, 28, 28}, {4})); Output outputs = ops::Identity(s.WithOpName("outputs"), reshape); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({8, 3, 28, 28})); item.feed = {{"Placeholder", x_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); EXPECT_EQ(CountOpNodes(output, "Reshape"), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, RemoveRedundantReshapeNotIdentityReshapeTooManyUnknownDimSizes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({4, 3})); Output reshape = ops::Reshape(s, inputs, ops::Const(s, {-1, -1}, {2})); Output outputs = ops::Identity(s.WithOpName("outputs"), reshape); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); EXPECT_EQ(CountOpNodes(output, "Reshape"), 1); } TEST_F(ArithmeticOptimizerTest, RemoveRedundantReshapeCombineReshapes) { for (bool include_unary_chain : {false, true}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output nchw_vect_c = ops::Placeholder(s.WithOpName("nchw_vect_c"), DT_FLOAT, ops::Placeholder::Shape({8, 3, 28, 28, 4})); Output transpose = ops::Transpose(s.WithOpName("transpose"), nchw_vect_c, ops::Const(s.WithOpName("perm"), {0, 2, 3, 1, 4}, {5})); Output nhwc = ops::Reshape( s.WithOpName("nhwc"), transpose, ops::Const( s.WithControlDependencies(nchw_vect_c).WithOpName("nhwc_shape"), {8, 28, 28, 12}, {4})); Output flatten = ops::Reshape( s.WithOpName("flatten"), (include_unary_chain ? ops::Cos(s.WithOpName("Cos"), nhwc) : nhwc), ops::Const(s.WithOpName("flatten_shape"), {8, 28 * 28 * 12}, {2})); Output output0 = ops::Identity(s.WithOpName("output0"), flatten); Output output1 = ops::Identity(s.WithOpName("output1"), flatten); GraphDef graph; TF_CHECK_OK(s.ToGraphDef(&graph)); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({8, 3, 28, 28, 4})); auto eval = EvaluateNodes(graph, {"output0", "nhwc"}, {{"nchw_vect_c", x_t}}); ASSERT_EQ(eval.size(), 2); auto expected_output_t = eval[0]; auto nhwc_t = eval[1]; { GrapplerItem item; item.graph = graph; item.fetch = {"output0", "output1"}; item.feed = {{"nchw_vect_c", x_t}}; GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); EXPECT_EQ(CountOpNodes(output, "Reshape"), 1); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 2); test::ExpectTensorEqual<float>(tensors[0], expected_output_t); test::ExpectTensorEqual<float>(tensors[1], expected_output_t); } { GrapplerItem item; item.graph = graph; item.fetch = {"output0", "output1"}; item.feed = {{"nhwc", nhwc_t}}; GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); EXPECT_EQ(CountOpNodes(output, "Reshape"), 2); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 2); test::ExpectTensorEqual<float>(tensors[0], expected_output_t); test::ExpectTensorEqual<float>(tensors[1], expected_output_t); } { Output output2 = ops::Identity(s.WithOpName("output2"), nhwc); GraphDef graph; TF_CHECK_OK(s.ToGraphDef(&graph)); GrapplerItem item; item.graph = graph; item.fetch = {"output0", "output1", "output2"}; item.feed = {{"nchw_vect_c", x_t}}; GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveRedundantReshape(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); EXPECT_EQ(CountOpNodes(output, "Reshape"), 2); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 3); test::ExpectTensorEqual<float>(tensors[0], expected_output_t); test::ExpectTensorEqual<float>(tensors[1], expected_output_t); test::ExpectTensorEqual<float>(tensors[2], nhwc_t); } } } TEST_F(ArithmeticOptimizerTest, ReorderTransposeCastProducerIsCast) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/CPU:0"); Output nhwc_uint8 = ops::Placeholder(s, DT_UINT8, ops::Placeholder::Shape({8, 28, 28, 3})); Output nhwc_fp32 = ops::Cast(s, nhwc_uint8, DT_FLOAT); Output nchw_fp32 = ops::Transpose(s, nhwc_fp32, ops::Const(s, {0, 3, 1, 2}, {4})); Output outputs = ops::Identity(s.WithOpName("outputs"), nchw_fp32); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto input_t = GenerateRandomTensor<DT_UINT8>(TensorShape({8, 28, 28, 3})); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", input_t}}); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; OptimizeAndPrune(&optimizer, &item, &output); const NodeDef* transpose_node = nullptr; for (const NodeDef& node : output.node()) { if (node.op() == "Transpose") { EXPECT_EQ(transpose_node, nullptr); EXPECT_EQ(node.attr().at("T").type(), DT_UINT8); transpose_node = &node; } } ASSERT_NE(transpose_node, nullptr); for (const NodeDef& node : output.node()) { if (node.op() == "Cast") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(transpose_node->name(), NodeName(node.input(0))); } } auto tensors = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", input_t}}); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<float>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, ReorderS2DCastProducerIsCast) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/CPU:0"); Output outputs = ops::Placeholder(s, DT_UINT8, ops::Placeholder::Shape({8, 28, 28, 3})); outputs = ops::Cast(s, outputs, DT_FLOAT); outputs = ops::SpaceToDepth(s, outputs, 2); outputs = ops::Identity(s.WithOpName("outputs"), outputs); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto input_t = GenerateRandomTensor<DT_UINT8>(TensorShape({8, 28, 28, 3})); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", input_t}}); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; OptimizeAndPrune(&optimizer, &item, &output); const NodeDef* s2d_node = nullptr; for (const NodeDef& node : output.node()) { if (node.op() == "SpaceToDepth") { EXPECT_EQ(s2d_node, nullptr); EXPECT_EQ(node.attr().at("T").type(), DT_UINT8); s2d_node = &node; } } ASSERT_NE(s2d_node, nullptr); for (const NodeDef& node : output.node()) { if (node.op() == "Cast") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(s2d_node->name(), NodeName(node.input(0))); } } auto tensors = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", input_t}}); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<float>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, ReorderTransposeCastProducerIsTranspose) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/CPU:0"); Output nhwc_fp32 = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({8, 28, 28, 3})); Output nchw_fp32 = ops::Transpose(s, nhwc_fp32, ops::Const(s, {0, 3, 1, 2}, {4})); Output nchw_uint8 = ops::Cast(s, nchw_fp32, DT_UINT8); Output outputs = ops::Identity(s.WithOpName("outputs"), nchw_uint8); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto input_t = GenerateConstantTensor<DT_FLOAT>(TensorShape({8, 28, 28, 3}), 42.0f); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", input_t}}); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; OptimizeAndPrune(&optimizer, &item, &output); const NodeDef* cast_node = nullptr; for (const NodeDef& node : output.node()) { if (node.op() == "Cast") { EXPECT_EQ(cast_node, nullptr); cast_node = &node; ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(NodeName(node.input(0)), "Placeholder"); } } ASSERT_NE(cast_node, nullptr); for (const NodeDef& node : output.node()) { if (node.op() == "Transpose") { EXPECT_EQ(node.attr().at("T").type(), DT_UINT8); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(cast_node->name(), NodeName(node.input(0))); } } auto tensors = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", input_t}}); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<uint8>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, ReorderTransposeReverseCast) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/CPU:0"); Output nhwc_uint8 = ops::Placeholder(s, DT_UINT8, ops::Placeholder::Shape({8, 28, 28, 3})); Output nhwc_fp32 = ops::Cast(s, nhwc_uint8, DT_FLOAT); Output nhwc_fp32_reversed = ops::Reverse(s, nhwc_fp32, ops::Const(s, {0}, {1})); Output nchw_fp32_reversed = ops::Transpose(s, nhwc_fp32_reversed, ops::Const(s, {0, 3, 1, 2}, {4})); Output outputs = ops::Identity(s.WithOpName("outputs"), nchw_fp32_reversed); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto input_t = GenerateRandomTensor<DT_UINT8>(TensorShape({8, 28, 28, 3})); auto tensors_expected = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", input_t}}); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; OptimizeAndPrune(&optimizer, &item, &output); const NodeDef* reverse_node = nullptr; const NodeDef* transpose_node = nullptr; const NodeDef* cast_node = nullptr; for (const NodeDef& node : output.node()) { if (node.op() == "Transpose") { EXPECT_EQ(transpose_node, nullptr); EXPECT_EQ(node.attr().at("T").type(), DT_UINT8); transpose_node = &node; } else if (node.op() == "ReverseV2") { EXPECT_EQ(reverse_node, nullptr); EXPECT_EQ(node.attr().at("T").type(), DT_UINT8); reverse_node = &node; } else if (node.op() == "Cast") { cast_node = &node; } } ASSERT_NE(cast_node, nullptr); ASSERT_NE(reverse_node, nullptr); ASSERT_NE(transpose_node, nullptr); ASSERT_EQ(reverse_node->input_size(), 2); EXPECT_EQ(NodeName(reverse_node->input(0)), "Placeholder"); ASSERT_EQ(transpose_node->input_size(), 2); EXPECT_EQ(NodeName(transpose_node->input(0)), reverse_node->name()); ASSERT_EQ(cast_node->input_size(), 1); EXPECT_EQ(NodeName(cast_node->input(0)), transpose_node->name()); auto tensors = EvaluateNodes(item.graph, item.fetch, {{"Placeholder", input_t}}); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<float>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, ReorderTransposeCastCheckNumericsToIdentity) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/CPU:0"); Output nhwc_uint8 = ops::Placeholder(s, DT_UINT8, ops::Placeholder::Shape({8, 28, 28, 3})); Output nhwc_fp32 = ops::Cast(s, nhwc_uint8, DT_FLOAT); Output nchw_fp32 = ops::CheckNumerics(s, nhwc_fp32, "foo"); Output outputs = ops::Identity(s.WithOpName("outputs"), nchw_fp32); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; TF_EXPECT_OK(ArithmeticOptimizer().Optimize(nullptr, item, &output)); CompareGraphs(item.graph, output); } TEST_F(ArithmeticOptimizerTest, NoReorderTransposeCastProducerIsCast) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/CPU:0"); Output nhwc_fp32 = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({8, 28, 28, 3})); Output nhwc_uint8 = ops::Cast(s, nhwc_fp32, DT_UINT8); Output nchw_uint8 = ops::Transpose(s, nhwc_uint8, ops::Const(s, {0, 3, 1, 2}, {4})); Output outputs = ops::Identity(s.WithOpName("outputs"), nchw_uint8); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; TF_EXPECT_OK(ArithmeticOptimizer().Optimize(nullptr, item, &output)); CompareGraphs(item.graph, output); } TEST_F(ArithmeticOptimizerTest, NoReorderTransposeCastProducerIsTranspose) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/CPU:0"); Output nhwc_uint8 = ops::Placeholder(s, DT_UINT8, ops::Placeholder::Shape({8, 28, 28, 3})); Output nchw_uint8 = ops::Transpose(s, nhwc_uint8, ops::Const(s, {0, 3, 1, 2}, {4})); Output nchw_fp32 = ops::Cast(s, nchw_uint8, DT_FLOAT); Output outputs = ops::Identity(s.WithOpName("outputs"), nchw_fp32); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; TF_EXPECT_OK(ArithmeticOptimizer().Optimize(nullptr, item, &output)); CompareGraphs(item.graph, output); } TEST_F(ArithmeticOptimizerTest, RemoveIdentityTransposes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs_shape = ops::Const(s.WithOpName("inputs_shape"), {8, 3, 28, 28}, {4}); Output inputs = ops::RandomUniform(s.WithOpName("inputs"), inputs_shape, DT_FLOAT); Output perm1 = ops::Const(s.WithOpName("perm1"), {0, 2, 3, 1}, {4}); Output perm2 = ops::Const(s.WithOpName("perm2"), {0, 3, 1, 2}, {4}); Output perm3 = ops::Const(s.WithOpName("perm3"), {0, 1, 2, 3}, {4}); Output transpose1 = ops::Transpose(s.WithOpName("transpose1"), inputs, perm1); Output transpose2 = ops::Transpose(s.WithOpName("transpose2"), transpose1, perm2); Output transpose3 = ops::Transpose(s.WithOpName("transpose3"), inputs, perm3); Output id1 = ops::Identity(s.WithOpName("id1"), transpose2); Output id2 = ops::Identity(s.WithOpName("id2"), transpose3); GrapplerItem item; item.fetch = {"id1", "id2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveIdentityTranspose(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); std::set<string> nodes_after_optimization; for (const NodeDef& node : output.node()) { nodes_after_optimization.insert(node.name()); } EXPECT_EQ(nodes_after_optimization, std::set<string>({"id1", "id2", "inputs_shape", "inputs"})); } TEST_F(ArithmeticOptimizerTest, RemoveIdentityConjugateTransposes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output re = ops::Const(s.WithOpName("re"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); Output im = ops::Const(s.WithOpName("im"), {5.0f, 6.0f, 7.0f, 8.0f}, {2, 2}); Output z = ops::Complex(s.WithOpName("z"), re, im); Output perm = ops::Const(s.WithOpName("perm"), {0, 1}, {2}); Output transpose = ops::ConjugateTranspose(s.WithOpName("trans"), z, perm); Output id = ops::Identity(s.WithOpName("id"), transpose); GrapplerItem item; item.fetch = {"id"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveIdentityTranspose(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 5); const string p = "ArithmeticOptimizer/RemoveIdentityTranspose"; const string optimized_name = absl::StrCat(p, "_", "trans"); const NodeDef* conj = node_map.GetNode(optimized_name); ASSERT_NE(conj, nullptr); EXPECT_EQ(conj->op(), "Conj"); ASSERT_EQ(conj->input_size(), 1); EXPECT_EQ(conj->input(0), "z"); } TEST_F(ArithmeticOptimizerTest, RemoveIdentityTransposesMultipleOutputs) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs_shape = ops::Const(s.WithOpName("inputs_shape"), {8, 9, 28, 28}, {4}); Output inputs = ops::Placeholder(s.WithOpName("inputs"), DT_FLOAT, ops::Placeholder::Shape({8, 12, 28, 28})); OutputList split = ops::Split(s, ops::Const(s, 1), inputs, 3).output; Output perm1 = ops::Const(s, {0, 2, 3, 1}, {4}); Output perm2 = ops::Const(s, {0, 3, 1, 2}, {4}); Output branch0 = split[0]; Output branch1 = ops::Transpose(s, ops::Transpose(s, split[1], perm1), perm2); Output branch2 = split[2]; Output concat = ops::Concat(s, {branch0, branch1, branch2}, ops::Const(s, 1)); Output outputs = ops::Identity(s.WithOpName("outputs"), concat); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({8, 12, 28, 28})); item.feed = {{"inputs", x_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveIdentityTranspose(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); for (const NodeDef& node : output.node()) { if (node.op() == "Concat") { ASSERT_EQ(node.input_size(), 3); EXPECT_EQ(node.input(0), "Split"); EXPECT_EQ(node.input(1), "Split:1"); EXPECT_EQ(node.input(2), "Split:2"); } } auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, RemoveTransposesWithControlDependency) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({2, 3})); Output transpose1 = ops::Transpose(s, inputs, ops::Const(s, {1, 0})); Output transpose2 = ops::Transpose(s, transpose1, ops::Const(s, {1, 0})); Output outputs = ops::Identity(s.WithOpName("outputs").WithControlDependencies(transpose2), ops::Const(s.WithOpName("outputs_const"), 1.0f)); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 3})); item.feed = {{"Placeholder", x_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveIdentityTranspose(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); NodeMap node_map(&output); const NodeDef* outputs_node = node_map.GetNode("outputs"); ASSERT_EQ(outputs_node->input_size(), 2); EXPECT_EQ(outputs_node->input(0), "outputs_const"); EXPECT_EQ(outputs_node->input(1), "^Placeholder"); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, NotRemoveTransposes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs_shape = ops::Const(s.WithOpName("inputs_shape"), {8, 3, 28, 28}, {4}); Output inputs = ops::RandomUniform(s.WithOpName("inputs"), inputs_shape, DT_FLOAT); Output perm = ops::Const(s.WithOpName("perm"), {1, 2, 3, 0}, {4}); Output transpose1 = ops::Transpose(s.WithOpName("transpose1"), inputs, perm); Output transpose2 = ops::Transpose(s.WithOpName("transpose2"), transpose1, perm); Output outputs = ops::Identity(s.WithOpName("outputs"), transpose2); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveIdentityTranspose(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 6); } TEST_F(ArithmeticOptimizerTest, RemoveIdentityTransposesThroughChain) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs_shape = ops::Const(s.WithOpName("inputs_shape"), {8, 3, 28, 28}, {4}); Output inputs = ops::RandomUniform(s.WithOpName("inputs"), inputs_shape, DT_FLOAT); Output perm1 = ops::Const(s.WithOpName("perm1"), {0, 2, 3, 1}, {4}); Output perm2 = ops::Const(s.WithOpName("perm2"), {0, 3, 1, 2}, {4}); Output transpose1 = ops::Transpose( s.WithOpName("transpose1").WithControlDependencies(perm2), inputs, perm1); Output identity = ops::Identity(s.WithOpName("id"), transpose1); Output transpose2 = ops::Transpose(s.WithOpName("transpose2"), identity, perm2); Output id1 = ops::Identity(s.WithOpName("id1"), transpose2); GrapplerItem item; item.fetch = {"id1"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; ArithmeticOptimizer optimizer(RewriterConfig::AGGRESSIVE); EnableOnlyRemoveIdentityTranspose(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); std::set<string> nodes_after_optimization; for (const NodeDef& node : output.node()) { nodes_after_optimization.insert(node.name()); if (node.name() == "id") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "inputs"); } if (node.name() == "id1") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "id"); } } EXPECT_EQ(nodes_after_optimization, std::set<string>({"id", "id1", "inputs_shape", "inputs"})); } TEST_F(ArithmeticOptimizerTest, FoldMulToTransposeConv) { for (bool swap_inputs : {false, true}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s.WithOpName("inputs"), DT_FLOAT, ops::Placeholder::Shape({1, 28, 28, 3})); Output scale = ops::Const(s.WithOpName("scale"), 1.0f / 255.0f, {}); Output scaled_inputs = ops::Multiply(s.WithOpName("scaled_inputs"), swap_inputs ? scale : inputs, swap_inputs ? inputs : scale); Output perm_nhwc_to_nchw = ops::Const(s.WithOpName("perm_nhwc_to_nchw"), {0, 3, 1, 2}, {4}); Output inputs_nchw = ops::Transpose(s.WithOpName("inputs_nchw"), scaled_inputs, perm_nhwc_to_nchw); Output weights = ops::Const(s.WithOpName("weights"), Input::Initializer(127.0f, {5, 5, 3, 4})); Output conv = ops::Conv2D(s.WithOpName("conv"), inputs_nchw, weights, {1, 1, 1, 1}, "VALID", ops::Conv2D::DataFormat("NCHW")); Output outputs = ops::Identity(s.WithOpName("outputs"), conv); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyFoldMultipleIntoConv(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); NodeMap node_map(&output); const NodeDef* folded_conv = node_map.GetNode(conv.node()->name()); ASSERT_NE(folded_conv, nullptr); const NodeDef* folded_conv_weights = node_map.GetNode(folded_conv->input(1)); ASSERT_NE(folded_conv_weights, nullptr); EXPECT_EQ(folded_conv_weights->op(), "Mul"); const NodeDef* transpose = node_map.GetNode(NodeName(folded_conv->input(0))); ASSERT_NE(transpose, nullptr); ASSERT_EQ(transpose->input_size(), 2); EXPECT_EQ(transpose->input(0), "inputs"); } } TEST_F(ArithmeticOptimizerTest, NotFoldMulAcrossPreservedTranspose) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s.WithOpName("inputs"), DT_FLOAT, ops::Placeholder::Shape({8, 28, 28, 3})); Output scale = ops::Const(s.WithOpName("scale"), 1.0f / 255.0f, {}); Output scaled_inputs = ops::Multiply(s.WithOpName("scaled_inputs"), inputs, scale); Output perm_nhwc_to_nchw = ops::Const(s.WithOpName("perm_nhwc_to_nchw"), {0, 3, 1, 2}, {4}); Output inputs_nchw = ops::Transpose(s.WithOpName("inputs_nchw"), scaled_inputs, perm_nhwc_to_nchw); Output weights = ops::Const(s.WithOpName("weights"), Input::Initializer(127.0f, {5, 5, 3, 16})); Output conv = ops::Conv2D(s.WithOpName("conv"), inputs_nchw, weights, {1, 1, 1, 1}, "VALID", ops::Conv2D::DataFormat("NCHW")); Output outputs = ops::Identity(s.WithOpName("outputs"), conv); Tensor inputs_nchw_tensor(DT_FLOAT, {8, 3, 28, 28}); memset(const_cast<char*>(inputs_nchw_tensor.tensor_data().data()), 0, inputs_nchw_tensor.tensor_data().size()); GrapplerItem item; item.fetch = {"outputs"}; item.feed = {{"inputs_nchw", inputs_nchw_tensor}}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; TF_EXPECT_OK(ArithmeticOptimizer().Optimize(nullptr, item, &output)); item.graph.Swap(&output); TF_EXPECT_OK(ModelPruner().Optimize(nullptr, item, &output)); NodeMap node_map(&output); const NodeDef* inputs_nchw_node_def = node_map.GetNode(inputs_nchw.node()->name()); ASSERT_NE(inputs_nchw_node_def, nullptr); ASSERT_EQ(inputs_nchw_node_def->input_size(), 2); EXPECT_EQ(NodeName(inputs_nchw_node_def->input(0)), scaled_inputs.node()->name()); } TEST_F(ArithmeticOptimizerTest, FoldMulToConv) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s.WithOpName("inputs"), DT_FLOAT, ops::Placeholder::Shape({8, 28, 28, 28, 3})); Output scale = ops::Const(s.WithOpName("scale"), 1.0f / 255.0f, {}); Output scaled_inputs = ops::Multiply(s.WithOpName("scaled_inputs"), inputs, scale); Output weights = ops::Const(s.WithOpName("weights"), Input::Initializer(127.0f, {5, 5, 5, 3, 16})); Output conv = ops::Conv3D(s.WithOpName("conv"), scaled_inputs, weights, {1, 1, 1, 1, 1}, "VALID"); Output outputs = ops::Identity(s.WithOpName("outputs"), conv); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; TF_EXPECT_OK(ArithmeticOptimizer().Optimize(nullptr, item, &output)); item.graph.Swap(&output); TF_EXPECT_OK(ModelPruner().Optimize(nullptr, item, &output)); NodeMap node_map(&output); const NodeDef* folded_conv = node_map.GetNode(conv.node()->name()); ASSERT_NE(folded_conv, nullptr); ASSERT_EQ(folded_conv->input_size(), 2); CHECK_EQ(NodeName(folded_conv->input(0)), inputs.node()->name()); const NodeDef* folded_conv_input_1 = node_map.GetNode(NodeName(folded_conv->input(1))); ASSERT_NE(folded_conv_input_1, nullptr); CHECK_EQ(folded_conv_input_1->op(), "Mul"); } TEST_F(ArithmeticOptimizerTest, OptimizeCastMulTransposeConv) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/cpu:0"); Output inputs = ops::Placeholder(s, DT_UINT8, ops::Placeholder::Shape({8, 28, 28, 3})); Output cast = ops::Cast(s, inputs, DT_FLOAT); Output mul = ops::Mul(s, cast, ops::Const(s, 1.0f / 255.0f)); Output transpose = ops::Transpose(s, mul, ops::Const(s.WithOpName("perm"), {0, 3, 1, 2})); Output weights = ops::Const(s.WithOpName("weights"), Input::Initializer(127.0f, {5, 5, 3, 16})); Output conv = ops::Conv2D(s, transpose, weights, {1, 1, 1, 1}, "VALID", ops::Conv2D::DataFormat("NCHW")); Output outputs = ops::Identity(s.WithOpName("outputs"), conv); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; ArithmeticOptimizer optimizer; OptimizeTwiceAndPrune(&optimizer, &item, &output, true); NodeMap node_map(&output); const string p = "ArithmeticOptimizer/ReorderCastLikeAndValuePreserving_"; const string optimized_cast_name = absl::StrCat(p, "float_Cast"); const string optimized_transpose_name = absl::StrCat(p, "uint8_Transpose"); const string optimized_weights = "ArithmeticOptimizer/FoldMultiplyIntoConv_scaled_Conv2D_weights"; const NodeDef* inputs_node = node_map.GetNode("Placeholder"); const NodeDef* transpose_node = node_map.GetNode(optimized_transpose_name); const NodeDef* cast_node = node_map.GetNode(optimized_cast_name); const NodeDef* weights_node = node_map.GetNode(optimized_weights); const NodeDef* conv_node = node_map.GetNode("Conv2D"); ASSERT_NE(inputs_node, nullptr); ASSERT_NE(transpose_node, nullptr); ASSERT_NE(cast_node, nullptr); ASSERT_NE(weights_node, nullptr); ASSERT_NE(conv_node, nullptr); EXPECT_EQ(output.node_size(), 7); ASSERT_EQ(transpose_node->input_size(), 2); EXPECT_EQ(transpose_node->input(0), inputs_node->name()); ASSERT_EQ(cast_node->input_size(), 1); EXPECT_EQ(cast_node->input(0), transpose_node->name()); ASSERT_EQ(conv_node->input_size(), 2); EXPECT_EQ(conv_node->input(0), cast_node->name()); EXPECT_EQ(conv_node->input(1), weights_node->name()); } TEST_F(ArithmeticOptimizerTest, OptimizeMultipleMulTransposeConv) { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice("/cpu:0"); GrapplerItem item; Output conv[2]; for (int i = 0; i < 2; ++i) { Output inputs = ops::Placeholder(s, DT_FLOAT, ops::Placeholder::Shape({8, 3, 28, 28})); Output mul = ops::Mul(s, inputs, ops::Const(s, 1.0f / 255.0f)); Output weights = ops::Const(s.WithOpName("weights"), Input::Initializer(127.0f, {5, 5, 3, 16})); conv[i] = ops::Conv2D(s, mul, weights, {1, 1, 1, 1}, "VALID", ops::Conv2D::DataFormat("NCHW")); } Output outputs = ops::Add(s.WithOpName("outputs"), conv[0], conv[1]); item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyFoldMultipleIntoConv(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output, true); NodeMap node_map(&output); using absl::StrCat; const string p = "ArithmeticOptimizer/FoldMultiplyIntoConv_"; const string optimized_weights = StrCat(p, "scaled_Conv2D_weights"); const string optimized_weights_1 = StrCat(p, "scaled_Conv2D_1_weights_1"); const NodeDef* weights_node = node_map.GetNode(optimized_weights); const NodeDef* weights_node_1 = node_map.GetNode(optimized_weights_1); const NodeDef* conv_node = node_map.GetNode("Conv2D"); const NodeDef* conv_node_1 = node_map.GetNode("Conv2D_1"); ASSERT_NE(weights_node, nullptr); ASSERT_NE(weights_node_1, nullptr); ASSERT_NE(conv_node, nullptr); ASSERT_NE(conv_node_1, nullptr); ASSERT_EQ(conv_node->input_size(), 2); ASSERT_EQ(conv_node_1->input_size(), 2); EXPECT_EQ(conv_node->input(1), weights_node->name()); EXPECT_EQ(conv_node_1->input(1), weights_node_1->name()); } TEST_F(ArithmeticOptimizerTest, CombineBitcasts) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s.WithOpName("inputs"), DT_UINT8, ops::Placeholder::Shape({2, 3})); Output bc1 = ops::Bitcast(s.WithOpName("bc1"), inputs, DT_QINT8); Output bc2 = ops::Bitcast(s.WithOpName("bc2"), bc1, DT_INT8); Output outputs = ops::Identity(s.WithOpName("outputs"), bc2); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto x_t = GenerateRandomTensor<DT_UINT8>(TensorShape({2, 3})); item.feed = {{"inputs", x_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveRedundantBitcast(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 3); EXPECT_EQ(CountOpNodes(output, "Bitcast"), 1); EXPECT_TRUE(IsNodesDirectlyConnected(node_map, "inputs", "bc2")); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<int8>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, CombineAndRemoveBitcasts) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s.WithOpName("inputs"), DT_INT8, ops::Placeholder::Shape({2, 3})); Output bc1 = ops::Bitcast(s, inputs, DT_QINT8); Output bc2 = ops::Bitcast(s, bc1, DT_INT8); Output outputs = ops::Identity(s.WithOpName("outputs"), bc2); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto x_t = GenerateRandomTensor<DT_INT8>(TensorShape({2, 3})); item.feed = {{"inputs", x_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveRedundantBitcast(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 2); EXPECT_EQ(CountOpNodes(output, "Bitcast"), 0); EXPECT_TRUE(IsNodesDirectlyConnected(node_map, "inputs", "outputs")); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<int8>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, RemoveRedundantCast) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output inputs = ops::Placeholder(s.WithOpName("inputs"), DT_INT8, ops::Placeholder::Shape({2, 3})); Output cast = ops::Cast(s, inputs, DT_INT8); Output outputs = ops::Identity(s.WithOpName("outputs"), cast); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto x_t = GenerateRandomTensor<DT_INT8>(TensorShape({2, 3})); item.feed = {{"inputs", x_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, item.feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveRedundantCast(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); NodeMap node_map(&output); EXPECT_EQ(output.node_size(), 2); EXPECT_EQ(CountOpNodes(output, "Cast"), 0); EXPECT_TRUE(IsNodesDirectlyConnected(node_map, "inputs", "outputs")); auto tensors = EvaluateNodes(output, item.fetch, item.feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<int8>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, AddOpsRewriteAddOpsOfIdenticalShape) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); tensorflow::Scope sx = s.NewSubScope("x"); tensorflow::Scope sy = s.NewSubScope("y"); auto a = ops::Variable(s.WithOpName("a"), {2, 2}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("b"), {2, 2}, DT_FLOAT); auto c = ops::Variable(s.WithOpName("c"), {2, 2}, DT_FLOAT); auto add_bc = ops::Add(sx.WithOpName("Add_bc"), b, c); auto add_abc = ops::Add(sy.WithOpName("Add_abc"), a, add_bc); auto outputs = ops::Identity(s.WithOpName("outputs"), add_abc); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto a_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); auto b_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); auto c_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); std::vector<std::pair<string, Tensor>> feed = { {"a", a_t}, {"b", b_t}, {"c", c_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyAddToAddNCombining(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 5); NodeMap node_map(&output); const NodeDef* collapsed_add = node_map.GetNode("y/ArithmeticOptimizer/AddOpsRewrite_Add_abc"); ASSERT_NE(collapsed_add, nullptr); EXPECT_EQ(collapsed_add->op(), "AddN"); ASSERT_EQ(collapsed_add->input_size(), 3); EXPECT_EQ(collapsed_add->input(0), "a"); EXPECT_EQ(collapsed_add->input(1), "b"); EXPECT_EQ(collapsed_add->input(2), "c"); const NodeDef* updated_outputs = node_map.GetNode("outputs"); ASSERT_NE(updated_outputs, nullptr); ASSERT_EQ(updated_outputs->input_size(), 1); EXPECT_EQ(updated_outputs->input(0), collapsed_add->name()); auto tensors = EvaluateNodes(output, item.fetch, feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, AddOpsRewriteMultiplePasses) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a = ops::Variable(s.WithOpName("a"), {2, 2}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("b"), {2, 2}, DT_FLOAT); auto c = ops::Variable(s.WithOpName("c"), {2, 2}, DT_FLOAT); auto add_ab = ops::Add(s.WithOpName("Add_ab"), a, b); auto add_abc = ops::Add(s.WithOpName("Add_abc"), add_ab, c); auto x = ops::Variable(s.WithOpName("x"), {2, 2}, DT_FLOAT); auto y = ops::Variable(s.WithOpName("y"), {2, 2}, DT_FLOAT); auto z = ops::Variable(s.WithOpName("z"), {2, 2}, DT_FLOAT); auto add_xy = ops::Add(s.WithOpName("Add_xy"), x, y); auto add_xyz = ops::Add(s.WithOpName("Add_xyz"), add_xy, z); auto mul = ops::Multiply(s.WithOpName("Mul"), add_abc, add_xyz); auto outputs = ops::Identity(s.WithOpName("outputs"), mul); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto a_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); auto b_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); auto c_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); auto y_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); auto z_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); std::vector<std::pair<string, Tensor>> feed = { {"a", a_t}, {"b", b_t}, {"c", c_t}, {"x", x_t}, {"y", y_t}, {"z", z_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyAddToAddNCombining(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 10); NodeMap node_map(&output); const NodeDef* collapsed_left = node_map.GetNode("ArithmeticOptimizer/AddOpsRewrite_Add_abc"); ASSERT_NE(collapsed_left, nullptr); EXPECT_EQ(collapsed_left->op(), "AddN"); ASSERT_EQ(collapsed_left->input_size(), 3); EXPECT_EQ(collapsed_left->input(0), "a"); EXPECT_EQ(collapsed_left->input(1), "b"); EXPECT_EQ(collapsed_left->input(2), "c"); const NodeDef* collapsed_right = node_map.GetNode("ArithmeticOptimizer/AddOpsRewrite_Add_xyz"); ASSERT_NE(collapsed_right, nullptr); EXPECT_EQ(collapsed_right->op(), "AddN"); ASSERT_EQ(collapsed_right->input_size(), 3); EXPECT_EQ(collapsed_right->input(0), "x"); EXPECT_EQ(collapsed_right->input(1), "y"); EXPECT_EQ(collapsed_right->input(2), "z"); const NodeDef* updated_mul = node_map.GetNode("Mul"); ASSERT_NE(updated_mul, nullptr); EXPECT_EQ(updated_mul->op(), "Mul"); ASSERT_EQ(updated_mul->input_size(), 2); EXPECT_EQ(updated_mul->input(0), collapsed_left->name()); EXPECT_EQ(updated_mul->input(1), collapsed_right->name()); auto tensors = EvaluateNodes(output, item.fetch, feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, AddOpsRewriteAddInputMultipleTimes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a = ops::Variable(s.WithOpName("a"), {2, 2}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("b"), {2, 2}, DT_FLOAT); auto c = ops::Variable(s.WithOpName("c"), {2, 2}, DT_FLOAT); auto add_ab = ops::Add(s.WithOpName("Add_ab"), a, b); auto add_bc = ops::Add(s.WithOpName("Add_bc"), b, c); auto add_all = ops::Add(s.WithOpName("Add_all"), add_ab, add_bc); auto outputs = ops::Identity(s.WithOpName("outputs"), add_all); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto a_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); auto b_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); auto c_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); std::vector<std::pair<string, Tensor>> feed = { {"a", a_t}, {"b", b_t}, {"c", c_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyAddToAddNCombining(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 5); NodeMap node_map(&output); const NodeDef* collapsed_add = node_map.GetNode("ArithmeticOptimizer/AddOpsRewrite_Add_all"); ASSERT_NE(collapsed_add, nullptr); EXPECT_EQ(collapsed_add->op(), "AddN"); ASSERT_EQ(collapsed_add->input_size(), 4); EXPECT_EQ(collapsed_add->input(0), "a"); EXPECT_EQ(collapsed_add->input(1), "b"); EXPECT_EQ(collapsed_add->input(2), "b"); EXPECT_EQ(collapsed_add->input(3), "c"); auto tensors = EvaluateNodes(output, item.fetch, feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, AddOpsRewriteAddOpsOfSymbolicallyEqualShape) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto input = ops::Variable(s.WithOpName("input"), {-1, 2}, DT_FLOAT); auto a = ops::Sqrt(s.WithOpName("a"), input); auto b = ops::Square(s.WithOpName("b"), input); auto c = ops::Round(s.WithOpName("c"), input); auto add_ab = ops::Add(s.WithOpName("Add_ab"), a, b); auto add_abc = ops::Add(s.WithOpName("Add_abc"), add_ab, c); auto outputs = ops::Identity(s.WithOpName("outputs"), add_abc); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); std::vector<std::pair<string, Tensor>> feed = {{"input", x_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyAddToAddNCombining(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 6); NodeMap node_map(&output); const NodeDef* collapsed_add = node_map.GetNode("ArithmeticOptimizer/AddOpsRewrite_Add_abc"); ASSERT_NE(collapsed_add, nullptr); EXPECT_EQ(collapsed_add->op(), "AddN"); ASSERT_EQ(collapsed_add->input_size(), 3); EXPECT_EQ(collapsed_add->input(0), "a"); EXPECT_EQ(collapsed_add->input(1), "b"); EXPECT_EQ(collapsed_add->input(2), "c"); const NodeDef* updated_outputs = node_map.GetNode("outputs"); ASSERT_NE(updated_outputs, nullptr); ASSERT_EQ(updated_outputs->input_size(), 1); EXPECT_EQ(updated_outputs->input(0), collapsed_add->name()); auto tensors = EvaluateNodes(output, item.fetch, feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, AddOpsRewriteMinimizeBCast) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a = ops::Variable(s.WithOpName("a"), {32}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("b"), {32, 32}, DT_FLOAT); auto c = ops::Variable(s.WithOpName("c"), {32, 32, 32}, DT_FLOAT); auto add_ab = ops::Add(s.WithOpName("Add_ab"), a, b); auto add_abc = ops::Add(s.WithOpName("Add_abc"), add_ab, c); auto x = ops::Variable(s.WithOpName("x"), {32}, DT_FLOAT); auto y = ops::Variable(s.WithOpName("y"), {32, 32}, DT_FLOAT); auto z = ops::Variable(s.WithOpName("z"), {32, 32, 32}, DT_FLOAT); auto add_xy = ops::Add(s.WithOpName("Add_xy"), x, y); auto add_xyz = ops::Add(s.WithOpName("Add_xyz"), add_xy, z); auto add_all = ops::Add(s.WithOpName("AddAll"), add_abc, add_xyz); auto outputs = ops::Identity(s.WithOpName("outputs"), add_all); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto a_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32})); auto b_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32, 32})); auto c_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32, 32, 32})); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32})); auto y_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32, 32})); auto z_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32, 32, 32})); std::vector<std::pair<string, Tensor>> feed = { {"a", a_t}, {"b", b_t}, {"c", c_t}, {"x", x_t}, {"y", y_t}, {"z", z_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyAddToAddNCombining(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 12); NodeMap node_map(&output); string outer_add_name = "ArithmeticOptimizer/AddOpsRewrite_AddAll"; string outer_0_add_name = "ArithmeticOptimizer/AddOpsRewrite_Internal_0_AddAll"; string inner_0_add_name = "ArithmeticOptimizer/AddOpsRewrite_Leaf_0_AddAll"; string inner_1_add_name = "ArithmeticOptimizer/AddOpsRewrite_Leaf_1_AddAll"; string inner_2_add_name = "ArithmeticOptimizer/AddOpsRewrite_Leaf_2_AddAll"; const NodeDef* add_ax_node = node_map.GetNode(inner_0_add_name); ASSERT_NE(add_ax_node, nullptr); EXPECT_EQ(add_ax_node->op(), "AddN"); ASSERT_EQ(add_ax_node->input_size(), 2); EXPECT_EQ(add_ax_node->input(0), "a"); EXPECT_EQ(add_ax_node->input(1), "x"); const NodeDef* add_by_node = node_map.GetNode(inner_1_add_name); ASSERT_NE(add_by_node, nullptr); EXPECT_EQ(add_by_node->op(), "AddN"); ASSERT_EQ(2, add_by_node->input_size()); EXPECT_EQ(add_by_node->input(0), "b"); EXPECT_EQ(add_by_node->input(1), "y"); const NodeDef* add_cz_node = node_map.GetNode(inner_2_add_name); ASSERT_NE(add_cz_node, nullptr); EXPECT_EQ(add_cz_node->op(), "AddN"); ASSERT_EQ(add_cz_node->input_size(), 2); EXPECT_EQ(add_cz_node->input(0), "c"); EXPECT_EQ(add_cz_node->input(1), "z"); const NodeDef* outer_0_node = node_map.GetNode(outer_0_add_name); ASSERT_NE(outer_0_node, nullptr); EXPECT_EQ(outer_0_node->op(), "AddV2"); ASSERT_EQ(outer_0_node->input_size(), 2); EXPECT_EQ(outer_0_node->input(0), inner_0_add_name); EXPECT_EQ(outer_0_node->input(1), inner_1_add_name); const NodeDef* outer_node = node_map.GetNode(outer_add_name); ASSERT_NE(outer_node, nullptr); EXPECT_EQ(outer_node->op(), "AddV2"); ASSERT_EQ(outer_node->input_size(), 2); EXPECT_EQ(outer_node->input(0), outer_0_add_name); EXPECT_EQ(outer_node->input(1), inner_2_add_name); const NodeDef* updated_outputs = node_map.GetNode("outputs"); ASSERT_NE(updated_outputs, nullptr); ASSERT_EQ(updated_outputs->input_size(), 1); EXPECT_EQ(updated_outputs->input(0), outer_add_name); auto tensors = EvaluateNodes(output, item.fetch, feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, AddOpsRewriteMinimizeBCastWithSymbolicShapes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto small = ops::Variable(s.WithOpName("small"), {-1, 1, 1}, DT_DOUBLE); auto d = "/device:CPU:0"; auto v = ops::Variable(s.WithOpName("v"), {1, 32, 32}, DT_DOUBLE); auto large = ops::Add(s.WithOpName("large").WithDevice(d), small, v); auto a = ops::Sqrt(s.WithOpName("a"), small); auto b = ops::Square(s.WithOpName("b"), large); auto c = ops::Round(s.WithOpName("c"), small); auto add_ab = ops::Add(s.WithOpName("Add_ab"), a, b); auto add_abc = ops::Add(s.WithOpName("Add_abc"), add_ab, c); auto outputs = ops::Identity(s.WithOpName("outputs"), add_abc); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto s_t = GenerateRandomTensor<DT_DOUBLE>(TensorShape({8, 1, 1})); auto v_t = GenerateRandomTensor<DT_DOUBLE>(TensorShape({1, 32, 32})); std::vector<std::pair<string, Tensor>> feed = {{"small", s_t}, {"v", v_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyAddToAddNCombining(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 9); NodeMap node_map(&output); string outer_add_name = "ArithmeticOptimizer/AddOpsRewrite_Add_abc"; string inner_add_name = "ArithmeticOptimizer/AddOpsRewrite_Leaf_0_Add_abc"; const NodeDef* outer_add = node_map.GetNode(outer_add_name); ASSERT_NE(outer_add, nullptr); EXPECT_EQ(outer_add->op(), "AddV2"); ASSERT_EQ(outer_add->input_size(), 2); EXPECT_EQ(outer_add->input(0), inner_add_name); EXPECT_EQ(outer_add->input(1), "b"); const NodeDef* inner_add = node_map.GetNode(inner_add_name); ASSERT_NE(inner_add, nullptr); ASSERT_EQ(inner_add->input_size(), 2); EXPECT_EQ(inner_add->input(0), "a"); EXPECT_EQ(inner_add->input(1), "c"); const NodeDef* updated_outputs = node_map.GetNode("outputs"); ASSERT_NE(updated_outputs, nullptr); ASSERT_EQ(updated_outputs->input_size(), 1); EXPECT_EQ(updated_outputs->input(0), outer_add_name); auto tensors = EvaluateNodes(output, item.fetch, feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<double>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, RemoveNegation) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Variable(s.WithOpName("x"), {2, 2}, DT_FLOAT); auto y = ops::Variable(s.WithOpName("y"), {2, 2}, DT_FLOAT); Output neg_x = ops::Neg(s.WithOpName("Neg_x"), x); Output neg_y = ops::Neg(s.WithOpName("Neg_y"), y); Output add_x_y = ops::Add(s.WithOpName("Add_x_y"), x, y); Output add_negx_y = ops::Add(s.WithOpName("Add_negx_y"), neg_x, y); Output add_x_negy = ops::Add(s.WithOpName("Add_x_negy"), x, neg_y); Output add_negx_negy = ops::Add(s.WithOpName("Add_negx_negy"), neg_x, neg_y); Output sub_x_y = ops::Sub(s.WithOpName("Sub_x_y"), x, y); Output sub_negx_y = ops::Sub(s.WithOpName("Sub_negx_y"), neg_x, y); Output sub_x_negy = ops::Sub(s.WithOpName("Sub_x_negy"), x, neg_y); Output sub_negx_negy = ops::Sub(s.WithOpName("Sub_negx_negy"), neg_x, neg_y); Output neg_x_with_dep = ops::Neg( s.WithOpName("Neg_x_with_dep").WithControlDependencies({add_x_y}), x); Output add_negx_with_dep_y = ops::Add(s.WithOpName("Add_negx_with_dep_y"), neg_x_with_dep, y); auto add_all = ops::AddN(s.WithOpName("add_all"), {add_x_y, add_negx_y, add_x_negy, add_negx_negy, sub_x_y, sub_negx_y, sub_x_negy, sub_negx_negy, add_negx_with_dep_y}); GrapplerItem item; item.fetch = {"add_all"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); auto y_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); std::vector<std::pair<string, Tensor>> feed = {{"x", x_t}, {"y", y_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveNegation(&optimizer); OptimizeTwice(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), item.graph.node_size()); int found = 0; for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "Add_negx_y") { ++found; EXPECT_EQ(node.op(), "Sub"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "y"); EXPECT_EQ(node.input(1), "x"); } else if (node.name() == "Add_x_negy") { ++found; EXPECT_EQ(node.op(), "Sub"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "x"); EXPECT_EQ(node.input(1), "y"); } else if (node.name() == "Add_negx_negy") { ++found; EXPECT_EQ(node.op(), "Sub"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "Neg_x"); EXPECT_EQ(node.input(1), "y"); } else if (node.name() == "Sub_x_negy") { ++found; EXPECT_EQ(node.op(), "AddV2"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "x"); EXPECT_EQ(node.input(1), "y"); } else if (node.name() == "Sub_negx_negy") { ++found; EXPECT_EQ(node.op(), "Sub"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "y"); EXPECT_EQ(node.input(1), "x"); } else if (node.name() == "Add_negx_with_dep_y") { ++found; EXPECT_EQ(node.op(), "Sub"); ASSERT_EQ(node.input_size(), 3); EXPECT_EQ(node.input(0), "y"); EXPECT_EQ(node.input(1), "x"); EXPECT_EQ(node.input(2), "^Add_x_y"); } } EXPECT_EQ(found, 6); auto tensors = EvaluateNodes(output, item.fetch, feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, ConvertSqrtDivToRsqrtMul) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); auto y = ops::Const(s.WithOpName("y"), {3.0f, 4.0f}, {1, 2}); Output sqrt_y = ops::Sqrt(s.WithOpName("sqrt_y"), y); Output div_x_sqrt_y = ops::Div(s.WithOpName("output"), x, sqrt_y); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlySqrtDivToRsqrtMul(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); EXPECT_EQ(output.node_size(), item.graph.node_size()); for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "output") { EXPECT_EQ(node.op(), "Mul"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "x"); EXPECT_EQ(node.input(1), "sqrt_y"); } else if (node.name() == "sqrt_y") { EXPECT_EQ(node.op(), "Rsqrt"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "y"); } } } TEST_F(ArithmeticOptimizerTest, DoNotConvertSqrtDivToRsqrtMulDivisorFetchNode) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output floats = ops::Const(s.WithOpName("floats"), {0.7423212f, 0.19757693f, 0.53124744f}, {1, 3}); Output output0 = ops::Sqrt(s.WithOpName("output0"), floats); Output const1 = ops::Const(s.WithOpName("const1"), 1.0f, {3}); Output mul1 = ops::Multiply(s.WithOpName("mul1"), const1, 0.5f); Output grad = ops::Div(s.WithOpName("grad"), mul1, output0); GrapplerItem item; item.fetch = {"grad", "output0"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 2); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlySqrtDivToRsqrtMul(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 2); for (int i = 0; i < tensors.size(); i++) { EXPECT_EQ(tensors[i].NumElements(), tensors_expected[i].NumElements()); test::ExpectTensorNear<float>(tensors[i], tensors_expected[i], 1e-6); } EXPECT_EQ(output.node_size(), item.graph.node_size()); for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "grad") { EXPECT_EQ(node.op(), "Div"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "mul1"); EXPECT_EQ(node.input(1), "output0"); } else if (node.name() == "output0") { EXPECT_EQ(node.op(), "Sqrt"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "floats"); } } } TEST_F(ArithmeticOptimizerTest, ConvertSqrtDivToRsqrtMulExcludeFloorDiv) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); auto y = ops::Const(s.WithOpName("y"), {3.0f, 4.0f}, {1, 2}); Output sqrt_y = ops::Sqrt(s.WithOpName("sqrt_y"), y); Output div_x_sqrt_y = ops::FloorDiv(s.WithOpName("output"), x, sqrt_y); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlySqrtDivToRsqrtMul(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); EXPECT_EQ(output.node_size(), item.graph.node_size()); for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "output") { EXPECT_EQ(node.op(), "FloorDiv"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "x"); EXPECT_EQ(node.input(1), "sqrt_y"); } else if (node.name() == "sqrt_y") { EXPECT_EQ(node.op(), "Sqrt"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "y"); } } } TEST_F(ArithmeticOptimizerTest, FuseSquaredDiff) { for (bool is_complex : {false, true}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output y = ops::Const(s.WithOpName("y"), {3.0f, 4.0f}, {1, 2}); Output complex_x = ops::Complex(s.WithOpName("complex_x"), x, x); Output complex_y = ops::Complex(s.WithOpName("complex_y"), y, y); Output sub_x_y = is_complex ? ops::Sub(s.WithOpName("sub_x_y"), complex_x, complex_y) : ops::Sub(s.WithOpName("sub_x_y"), x, y); Output square_sub_x_y = ops::Square(s.WithOpName("output"), sub_x_y); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); const auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyFuseSquaredDiff(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); const auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); if (is_complex) { test::ExpectTensorNear<std::complex<float>>(tensors[0], tensors_expected[0], 1e-6); EXPECT_EQ(output.node_size(), item.graph.node_size()); } else { test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); EXPECT_EQ(output.node_size(), item.graph.node_size() - 2); } for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "output") { EXPECT_EQ(node.op(), is_complex ? "Square" : "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "sub_x_y"); } else if (node.name() == "sub_x_y") { EXPECT_EQ(node.op(), is_complex ? "Sub" : "SquaredDifference"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), is_complex ? "complex_x" : "x"); EXPECT_EQ(node.input(1), is_complex ? "complex_y" : "y"); } } } } TEST_F(ArithmeticOptimizerTest, DoNotFuseSquaredDiffFetchNode) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); auto y = ops::Const(s.WithOpName("y"), {3.0f, 4.0f}, {1, 2}); Output sub_x_y = ops::Sub(s.WithOpName("sub_x_y"), x, y); Output square_sub_x_y = ops::Square(s.WithOpName("output"), sub_x_y); GrapplerItem item; item.fetch = {"output", "sub_x_y"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); const auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 2); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyFuseSquaredDiff(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); const auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 2); for (int i = 0; i < tensors.size(); i++) { EXPECT_EQ(tensors[i].NumElements(), tensors_expected[i].NumElements()); test::ExpectTensorNear<float>(tensors[i], tensors_expected[i], 1e-6); } EXPECT_EQ(output.node_size(), item.graph.node_size()); for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "output") { EXPECT_EQ(node.op(), "Square"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "sub_x_y"); } else if (node.name() == "sub_x_y") { EXPECT_EQ(node.op(), "Sub"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "x"); EXPECT_EQ(node.input(1), "y"); } } } TEST_F(ArithmeticOptimizerTest, ConvertLogSoftmax) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output softmax = ops::Softmax(s.WithOpName("softmax"), x); Output logsoftmax = ops::Log(s.WithOpName("output"), softmax); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); const auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyLogSoftmax(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); const auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); EXPECT_EQ(output.node_size(), item.graph.node_size() - 1); for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "output") { EXPECT_EQ(node.op(), "LogSoftmax"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "x"); } } } TEST_F(ArithmeticOptimizerTest, DoNotConvertLogSoftmaxArgFetchNode) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output floats = ops::Const(s.WithOpName("floats"), {0.7423212f, 0.19757693f, 0.53124744f}, {1, 3}); Output softmax = ops::Softmax(s.WithOpName("softmax"), floats); Output final_output = ops::Log(s.WithOpName("final_output"), softmax); GrapplerItem item; item.fetch = {"softmax", "final_output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); const auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 2); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyLogSoftmax(&optimizer); OptimizeTwice(&optimizer, &item, &output); const auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 2); VerifyGraphsMatch(item.graph, output, __LINE__); for (int i = 0; i < tensors.size(); i++) { EXPECT_EQ(tensors[i].NumElements(), tensors_expected[i].NumElements()); test::ExpectTensorNear<float>(tensors[i], tensors_expected[i], 1e-6); } } TEST_F(ArithmeticOptimizerTest, ConvertPow) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); auto y2 = ops::Const(s.WithOpName("y2"), {2.0f, 2.0f}, {1, 2}); auto y3 = ops::Const(s.WithOpName("y3"), {3.0f, 3.0f}, {1, 2}); auto y1 = ops::Const(s.WithOpName("y1"), {1.0f, 1.0f}, {1, 2}); auto yPoint5 = ops::Const(s.WithOpName("y.5"), {0.5f, 0.5f}, {1, 2}); auto y0 = ops::Const(s.WithOpName("y0"), {0.0f, 0.0f}, {1, 2}); auto y_Point5 = ops::Const(s.WithOpName("y_.5"), {-0.5f, -0.5f}, {1, 2}); auto y_1 = ops::Const(s.WithOpName("y_1"), {-1.0f, -1.0f}, {1, 2}); auto y = ops::Const(s.WithOpName("y"), {3.0f, 4.0f}, {1, 2}); auto z = ops::Const(s.WithOpName("z"), {42.0f}, {}); auto ones = ops::Const(s.WithOpName("ones"), {1.0f, 1.0f, 1.0f}, {1, 3}); auto zeros = ops::Const(s.WithOpName("zeros"), {0.0f, 0.0f, 0.0f}, {1, 3}); Output out2 = ops::Pow(s.WithOpName("out2"), x, y2); Output out3 = ops::Pow(s.WithOpName("out3").WithDevice("/device:CPU:0"), x, y3); Output out1 = ops::Pow(s.WithOpName("out1"), x, y1); Output outPoint5 = ops::Pow(s.WithOpName("out.5"), x, yPoint5); Output out0 = ops::Pow(s.WithOpName("out0"), x, y0); Output out_Point5 = ops::Pow(s.WithOpName("out_.5"), x, y_Point5); Output out_1 = ops::Pow(s.WithOpName("out_1"), x, y_1); Output out = ops::Pow(s.WithOpName("out"), x, y); Output out_bcast1 = ops::Pow(s.WithOpName("out_bcast1"), z, ones); Output out_bcast2 = ops::Pow(s.WithOpName("out_bcast2"), z, zeros); GrapplerItem item; item.fetch = {"out2", "out3", "out1", "out.5", "out0", "out_.5", "out_1", "out", "out_bcast1", "out_bcast2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 10); GraphDef got; ArithmeticOptimizer optimizer; EnableOnlyConvertPow(&optimizer); OptimizeAndPrune(&optimizer, &item, &got); auto tensors = EvaluateNodes(got, item.fetch); ASSERT_EQ(tensors.size(), 10); for (int i = 0; i < tensors.size(); ++i) { EXPECT_EQ(tensors[i].NumElements(), tensors_expected[i].NumElements()); test::ExpectTensorNear<float>(tensors[i], tensors_expected[i], 1e-6); } GraphDef want; AddNode("x", "Const", {}, {}, &want); AddNode("y", "Const", {}, {}, &want); AddNode("z", "Const", {}, {}, &want); AddNode("ones", "Const", {}, {}, &want); AddNode("zeros", "Const", {}, {}, &want); AddNode("out2", "Square", {"x"}, {}, &want); AddNode("ArithmeticOptimizer/ConvertPow__inner_out3", "Square", {"x"}, {}, &want) ->set_device("/device:CPU:0"); AddNode("out3", "Mul", {"x", "ArithmeticOptimizer/ConvertPow__inner_out3"}, {}, &want) ->set_device("/device:CPU:0"); AddNode("out1", "Identity", {"x"}, {}, &want); AddNode("out.5", "Sqrt", {"x"}, {}, &want); AddNode("out0", "Const", {AsControlDependency("x")}, {}, &want); AddNode("out_.5", "Rsqrt", {"x"}, {}, &want); AddNode("out_1", "Reciprocal", {"x"}, {}, &want); AddNode("out", "Pow", {"x", "y"}, {}, &want); AddNode("out_bcast1", "Pow", {"z", "ones"}, {}, &want); AddNode("out_bcast2", "Pow", {"z", "zeros"}, {}, &want); CompareGraphs(want, got); } TEST_F(ArithmeticOptimizerTest, Log1p) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x1 = ops::Const(s.WithOpName("x1"), {1.0f, 1.0f}, {1, 2}); auto x2 = ops::Const(s.WithOpName("x2"), {2.0f, 2.0f}, {1, 2}); auto x3 = ops::Const(s.WithOpName("x3"), {3.0f, 3.0f}, {1, 2}); auto a12 = ops::Add(s.WithOpName("a12").WithControlDependencies(x3), x1, x2); auto a23 = ops::Add(s.WithOpName("a23"), x2, x3); Output out1 = ops::Log(s.WithOpName("out1"), a12); Output out2 = ops::Log(s.WithOpName("out2"), a23); GrapplerItem item; item.fetch = {"out1", "out2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 2); GraphDef got; ArithmeticOptimizer optimizer; EnableOnlyLog1p(&optimizer); OptimizeAndPrune(&optimizer, &item, &got); auto tensors = EvaluateNodes(got, item.fetch); ASSERT_EQ(tensors.size(), 2); for (int i = 0; i < 2; ++i) { EXPECT_EQ(tensors[i].NumElements(), tensors_expected[i].NumElements()); test::ExpectTensorNear<float>(tensors[i], tensors_expected[i], 1e-6); } GraphDef want; AddNode("x2", "Const", {}, {}, &want); AddNode("x3", "Const", {}, {}, &want); AddNode("a23", "Add", {"x2", "x3"}, {}, &want); AddNode("out1", "Log1p", {"x2", AsControlDependency("x3")}, {}, &want); AddNode("out2", "Log", {"a23"}, {}, &want); CompareGraphs(want, got); } TEST_F(ArithmeticOptimizerTest, Expm1) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x1 = ops::Const(s.WithOpName("x1"), {2.0f, 2.0f}, {1, 2}); auto x2 = ops::Const(s.WithOpName("x2"), {1.0f, 1.0f}, {1, 2}); auto x3 = ops::Const(s.WithOpName("x3"), {3.0f, 3.0f}, {1, 2}); auto exp1 = ops::Exp(s.WithOpName("exp1").WithControlDependencies(x3), x1); Output out1 = ops::Sub(s.WithOpName("out1"), exp1, x2); Output out2 = ops::Sub(s.WithOpName("out2"), exp1, x3); GrapplerItem item; item.fetch = {"out1", "out2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 2); GraphDef got; ArithmeticOptimizer optimizer; EnableOnlyExpm1(&optimizer); OptimizeAndPrune(&optimizer, &item, &got); auto tensors = EvaluateNodes(got, item.fetch); ASSERT_EQ(tensors.size(), 2); for (int i = 0; i < 2; ++i) { EXPECT_EQ(tensors[i].NumElements(), tensors_expected[i].NumElements()); test::ExpectTensorNear<float>(tensors[i], tensors_expected[i], 1e-6); } GraphDef want; AddNode("x1", "Const", {}, {}, &want); AddNode("x3", "Const", {}, {}, &want); AddNode("exp1", "Exp", {"x1", AsControlDependency("x3")}, {}, &want); AddNode("out1", "Expm1", {"x1", AsControlDependency("x3")}, {}, &want); AddNode("out2", "Sub", {"exp1", "x3"}, {}, &want); CompareGraphs(want, got); } TEST_F(ArithmeticOptimizerTest, MinimizeBroadcasts_SimpleSwap) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a = ops::Variable(s.WithOpName("a"), {32}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("b"), {32, 32}, DT_FLOAT); auto c = ops::Variable(s.WithOpName("c"), {32}, DT_FLOAT); auto mul1 = ops::Mul(s.WithOpName("mul1"), a, b); auto mul2 = ops::Mul(s.WithOpName("mul2"), mul1, c); auto outputs = ops::Identity(s.WithOpName("outputs"), mul2); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto a_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32})); auto b_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32, 32})); auto c_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32})); std::vector<std::pair<string, Tensor>> feed = { {"a", a_t}, {"b", b_t}, {"c", c_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyMinimizeBroadcasts(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); NodeMap node_map(&output); const NodeDef* mul1_node = node_map.GetNode("mul1"); ASSERT_NE(mul1_node, nullptr); ASSERT_EQ(mul1_node->input_size(), 2); EXPECT_EQ(mul1_node->input(0), "a"); EXPECT_EQ(mul1_node->input(1), "c"); const NodeDef* mul2_node = node_map.GetNode("mul2"); ASSERT_NE(mul2_node, nullptr); ASSERT_EQ(mul2_node->input_size(), 2); EXPECT_EQ(mul2_node->input(0), "mul1"); EXPECT_EQ(mul2_node->input(1), "b"); auto tensors = EvaluateNodes(output, item.fetch, feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, MinimizeBroadcasts_FlattenTallGraph) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a = ops::Variable(s.WithOpName("a"), {32}, DT_DOUBLE); auto b = ops::Variable(s.WithOpName("b"), {32, 32}, DT_DOUBLE); auto c = ops::Variable(s.WithOpName("c"), {32}, DT_DOUBLE); auto d = ops::Variable(s.WithOpName("d"), {32}, DT_DOUBLE); auto e = ops::Variable(s.WithOpName("e"), {32}, DT_DOUBLE); auto mul1 = ops::Mul(s.WithOpName("mul1"), a, b); auto mul2 = ops::Mul(s.WithOpName("mul2"), mul1, c); auto mul3 = ops::Mul(s.WithOpName("mul3"), mul2, d); auto mul4 = ops::Mul(s.WithOpName("mul4"), mul3, e); auto outputs = ops::Identity(s.WithOpName("outputs"), mul4); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto a_t = GenerateRandomTensor<DT_DOUBLE>(TensorShape({32})); auto b_t = GenerateRandomTensor<DT_DOUBLE>(TensorShape({32, 32})); auto c_t = GenerateRandomTensor<DT_DOUBLE>(TensorShape({32})); auto d_t = GenerateRandomTensor<DT_DOUBLE>(TensorShape({32})); auto e_t = GenerateRandomTensor<DT_DOUBLE>(TensorShape({32})); std::vector<std::pair<string, Tensor>> feed = { {"a", a_t}, {"b", b_t}, {"c", c_t}, {"d", d_t}, {"e", e_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyMinimizeBroadcasts(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); NodeMap node_map(&output); const NodeDef* mul1_node = node_map.GetNode("mul1"); ASSERT_NE(mul1_node, nullptr); ASSERT_EQ(mul1_node->input_size(), 2); EXPECT_EQ(mul1_node->input(0), "a"); EXPECT_EQ(mul1_node->input(1), "c"); const NodeDef* mul2_node = node_map.GetNode("mul2"); ASSERT_NE(mul2_node, nullptr); ASSERT_EQ(mul2_node->input_size(), 2); EXPECT_EQ(mul2_node->input(0), "d"); EXPECT_EQ(mul2_node->input(1), "e"); const NodeDef* mul3_node = node_map.GetNode("mul3"); ASSERT_NE(mul3_node, nullptr); ASSERT_EQ(mul3_node->input_size(), 2); EXPECT_EQ(mul3_node->input(0), "mul1"); EXPECT_EQ(mul3_node->input(1), "mul2"); const NodeDef* mul4_node = node_map.GetNode("mul4"); ASSERT_NE(mul4_node, nullptr); ASSERT_EQ(mul4_node->input_size(), 2); EXPECT_EQ(mul4_node->input(0), "mul3"); EXPECT_EQ(mul4_node->input(1), "b"); auto tensors = EvaluateNodes(output, item.fetch, feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<double>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, MinimizeBroadcasts_BuildTreeUp) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a = ops::Variable(s.WithOpName("a"), {32}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("b"), {32}, DT_FLOAT); auto c = ops::Variable(s.WithOpName("c"), {32}, DT_FLOAT); auto d = ops::Variable(s.WithOpName("D"), {32, 32}, DT_FLOAT); auto mul1 = ops::Mul(s.WithOpName("mul1"), a, b); auto mul2 = ops::Mul(s.WithOpName("mul2"), c, d); auto mul3 = ops::Mul(s.WithOpName("mul3"), mul1, mul2); auto outputs = ops::Identity(s.WithOpName("outputs"), mul3); GrapplerItem item; item.fetch = {"outputs"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto a_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32})); auto b_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32})); auto c_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32})); auto d_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({32, 32})); std::vector<std::pair<string, Tensor>> feed = { {"a", a_t}, {"b", b_t}, {"c", c_t}, {"D", d_t}}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch, feed); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyMinimizeBroadcasts(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); NodeMap node_map(&output); const NodeDef* mul1_node = node_map.GetNode("mul2"); ASSERT_NE(mul1_node, nullptr); ASSERT_EQ(mul1_node->input_size(), 2); EXPECT_EQ(mul1_node->input(0), "a"); EXPECT_EQ(mul1_node->input(1), "b"); const NodeDef* mul2_node = node_map.GetNode("mul1"); ASSERT_NE(mul2_node, nullptr); ASSERT_EQ(mul2_node->input_size(), 2); EXPECT_EQ(mul2_node->input(0), "mul2"); EXPECT_EQ(mul2_node->input(1), "c"); const NodeDef* mul3_node = node_map.GetNode("mul3"); ASSERT_NE(mul3_node, nullptr); ASSERT_EQ(mul3_node->input_size(), 2); EXPECT_EQ(mul3_node->input(0), "D"); EXPECT_EQ(mul3_node->input(1), "mul1"); auto tensors = EvaluateNodes(output, item.fetch, feed); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, DoNotHoistReluFromConcat) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output weights1 = ops::Const(s.WithOpName("weights1"), Input::Initializer(1.0f, {5, 5, 3, 4})); Output weights2 = ops::Const(s.WithOpName("weights2"), Input::Initializer(2.0f, {5, 5, 3, 4})); Output biases = ops::Const(s.WithOpName("biases"), Input::Initializer(2.0f, {4})); Output axis = ops::Const(s.WithOpName("axis"), 3, {}); Output input = ops::Const(s.WithOpName("input"), Input::Initializer(1.0f, {1, 28, 28, 3})); Output branch1 = ops::Conv2D(s.WithOpName("conv1"), input, weights1, {1, 1, 1, 1}, "SAME"); branch1 = ops::BiasAdd(s.WithOpName("biasadd1"), branch1, biases); branch1 = ops::Relu(s.WithOpName("relu1"), branch1); Output branch2 = ops::Conv2D(s.WithOpName("conv2"), input, weights2, {1, 1, 1, 1}, "SAME"); branch2 = ops::BiasAdd(s.WithOpName("biasadd2"), branch2, biases); branch2 = ops::Relu(s.WithOpName("relu2"), branch2); Output concat = ops::Concat(s.WithOpName("concat"), {branch1, branch2}, axis); Output output = ops::Identity(s.WithOpName("output"), concat); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef new_graph; ArithmeticOptimizer optimizer; OptimizeAndPrune(&optimizer, &item, &new_graph); EXPECT_EQ(CountOpNodes(new_graph, "Relu"), 2); auto tensors = EvaluateNodes(new_graph, item.fetch); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors[i], tensors_expected[i], 1e-6); } } TEST_F(ArithmeticOptimizerTest, HoistCWiseUnaryFromConcat) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 3.14f, {32}); Output b = ops::Const(s.WithOpName("b"), 1.0f, {32}); Output c = ops::Const(s.WithOpName("c"), 42.0f, {32}); Output axis = ops::Const(s.WithOpName("axis"), 0, {}); Output ctrl1 = ops::Const(s.WithOpName("ctrl1"), 1, {}); Output ctrl2 = ops::Const(s.WithOpName("ctrl2"), 2, {}); Output ctrl3 = ops::Const(s.WithOpName("ctrl3"), 3, {}); Output sin_a = ops::Sin(s.WithOpName("sin_a").WithControlDependencies(ctrl3), a); Output exp_a = ops::Exp(s.WithOpName("exp_a").WithControlDependencies(ctrl1), sin_a); Output exp_b = ops::Exp(s.WithOpName("exp_b"), b); Output exp_c = ops::Exp(s.WithOpName("exp_c").WithControlDependencies(ctrl2), c); Output concat = ops::Concat(s.WithOpName("concat"), {exp_a, exp_b, exp_c}, axis); Output id = ops::Identity(s.WithOpName("id"), concat); Output exp_a2 = ops::Exp(s.WithOpName("exp_a2").WithControlDependencies(ctrl1), sin_a); Output exp_b2 = ops::Exp(s.WithOpName("exp_b2"), b); Output exp_c2 = ops::Exp(s.WithOpName("exp_c2").WithControlDependencies(ctrl2), c); Output cos_exp_a2 = ops::Cos( s.WithOpName("cos_exp_a2").WithControlDependencies(ctrl1), exp_a2); Output cos_exp_b2 = ops::Cos( s.WithOpName("cos_exp_b2").WithControlDependencies(ctrl3), exp_b2); Output cos_exp_c2 = ops::Cos(s.WithOpName("cos_exp_c2"), exp_c2); Output concat2 = ops::Concat(s.WithOpName("concat2"), {cos_exp_a2, cos_exp_b2, cos_exp_c2}, axis); Output id2 = ops::Identity(s.WithOpName("id2"), concat2); GrapplerItem item; item.fetch = {"id", "id2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyHoistCWiseUnaryChains(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "concat") { ASSERT_EQ(node.input_size(), 4); EXPECT_EQ(node.input(0), "sin_a"); EXPECT_EQ(node.input(1), "b"); EXPECT_EQ(node.input(2), "c"); EXPECT_EQ(node.input(3), "axis"); found++; } if (node.name() == "exp_a") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "concat"); found++; } if (node.name() == "id") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "exp_a"); found++; } if (node.name() == "concat2") { ASSERT_EQ(node.input_size(), 4); EXPECT_EQ(node.input(0), "sin_a"); EXPECT_EQ(node.input(1), "b"); EXPECT_EQ(node.input(2), "c"); EXPECT_EQ(node.input(3), "axis"); found++; } if (node.name() == "exp_a2") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "concat2"); found++; } if (node.name() == "cos_exp_a2") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "exp_a2"); found++; } if (node.name() == "id2") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "cos_exp_a2"); found++; } } EXPECT_EQ(found, 7); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors[i], tensors_expected[i], 1e-6); } } TEST_F(ArithmeticOptimizerTest, HoistCWiseUnaryIntoSplit) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Const(s.WithOpName("x"), 3.1415f, {32}); Output axis = ops::Const(s.WithOpName("axis"), 0, {}); Output ctrl1 = ops::Const(s.WithOpName("ctrl1"), 1, {}); Output ctrl2 = ops::Const(s.WithOpName("ctrl2"), 2, {}); Output ctrl3 = ops::Const(s.WithOpName("ctrl3"), 3, {}); ops::Split split1(s.WithOpName("split1"), axis, x, 2); Output sin_a = ops::Sin(s.WithOpName("sin_a").WithControlDependencies(ctrl1), split1[0]); Output id_a = ops::Identity(s.WithOpName("id_a"), sin_a); Output sin_b = ops::Sin(s.WithOpName("sin_b"), split1[1]); Output exp_b = ops::Exp(s.WithOpName("exp_b"), sin_b); Output id_b = ops::Identity(s.WithOpName("id_b"), exp_b); Output size_splits2 = ops::Const(s.WithOpName("size_splits2"), {20, 12}, {2}); ops::SplitV split2(s.WithOpName("split2"), x, size_splits2, axis, 2); Output exp_a2 = ops::Exp( s.WithOpName("exp_a2").WithControlDependencies(ctrl1), split2[0]); Output exp_b2 = ops::Exp(s.WithOpName("exp_b2"), split2[1]); Output cos_exp_a2 = ops::Cos( s.WithOpName("cos_exp_a2").WithControlDependencies(ctrl2), exp_a2); Output cos_exp_b2 = ops::Cos( s.WithOpName("cos_exp_b2").WithControlDependencies(ctrl3), exp_b2); Output id_a2 = ops::Identity(s.WithOpName("id_a2"), cos_exp_a2); Output id_b2 = ops::Identity(s.WithOpName("id_b2"), cos_exp_b2); GrapplerItem item; item.fetch = {"id_a", "id_b", "id_a2", "id_b2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyHoistCWiseUnaryChains(&optimizer); OptimizeTwiceAndPrune(&optimizer, &item, &output); int found = 0; for (const NodeDef& node : output.node()) { EXPECT_NE(node.name(), "sin_a"); EXPECT_NE(node.name(), "sin_b"); EXPECT_NE(node.name(), "exp_a2"); EXPECT_NE(node.name(), "exp_b2"); EXPECT_NE(node.name(), "cos_exp_a2"); EXPECT_NE(node.name(), "cos_exp_b2"); if (node.name() == "split1") { ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "axis"); EXPECT_EQ(node.input(1), "ArithmeticOptimizer/_sin_a_split1"); found++; } if (node.name() == "ArithmeticOptimizer/_sin_a_split1") { EXPECT_EQ(node.op(), "Sin"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "x"); found++; } if (node.name() == "id_a") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "split1"); found++; } if (node.name() == "exp_b") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "split1:1"); found++; } if (node.name() == "id_b") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "exp_b"); found++; } if (node.name() == "ArithmeticOptimizer/_exp_a2_split2") { EXPECT_EQ(node.op(), "Exp"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "x"); found++; } if (node.name() == "ArithmeticOptimizer/_cos_exp_a2_split2") { EXPECT_EQ(node.op(), "Cos"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "ArithmeticOptimizer/_exp_a2_split2"); found++; } if (node.name() == "split2") { ASSERT_EQ(node.input_size(), 3); EXPECT_EQ(node.input(0), "ArithmeticOptimizer/_cos_exp_a2_split2"); EXPECT_EQ(node.input(1), "size_splits2"); EXPECT_EQ(node.input(2), "axis"); found++; } if (node.name() == "id_a2") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "split2"); found++; } if (node.name() == "id_b2") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "split2:1"); found++; } } EXPECT_EQ(found, 10); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors[i], tensors_expected[i], 1e-6); } } TEST_F(ArithmeticOptimizerTest, RemoveIdempotent) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 3.14f, {32}); Output sn1 = ops::Snapshot(s.WithOpName("sn1"), a); Output sn2 = ops::Snapshot(s.WithOpName("sn2"), sn1); Output out1 = ops::Identity(s.WithOpName("out1"), sn2); Output id1 = ops::Identity(s.WithOpName("id1"), a); Output id2 = ops::Identity(s.WithOpName("id2"), id1); Output out2 = ops::Identity(s.WithOpName("out2"), id2); GrapplerItem item; item.fetch = {"out1", "out2"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveIdempotent(&optimizer); OptimizeTwice(&optimizer, &item, &output); EXPECT_EQ(7, output.node_size()); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "out1") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "sn1"); found++; } else if (node.name() == "out2") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "id1"); found++; } else if (node.name() == "sn1") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "a"); found++; } } EXPECT_EQ(found, 3); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorNear<float>(tensors[i], tensors_expected[i], 1e-6); } } TEST_F(ArithmeticOptimizerTest, RemoveLogicalNot) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 3.14f, {32}); Output b = ops::Const(s.WithOpName("b"), -3.14f, {32}); Output eq = ops::Equal(s.WithOpName("eq"), a, b); Output neq = ops::NotEqual(s.WithOpName("neq"), a, b); Output lt = ops::Less(s.WithOpName("lt"), a, b); Output le = ops::LessEqual(s.WithOpName("le"), a, b); Output gt = ops::Greater(s.WithOpName("gt"), a, b); Output ge = ops::GreaterEqual(s.WithOpName("ge"), a, b); Output not_eq1 = ops::LogicalNot(s.WithOpName("not_eq1"), eq); Output not_neq = ops::LogicalNot(s.WithOpName("not_neq"), neq); Output not_lt = ops::LogicalNot(s.WithOpName("not_lt"), lt); Output not_le = ops::LogicalNot(s.WithOpName("not_le"), le); Output not_gt = ops::LogicalNot(s.WithOpName("not_gt"), gt); Output not_ge = ops::LogicalNot(s.WithOpName("not_ge"), ge); Output id_not_eq = ops::Identity(s.WithOpName("id_not_eq"), not_eq1); Output id_not_neq = ops::Identity(s.WithOpName("id_not_neq"), not_neq); Output id_not_lt = ops::Identity(s.WithOpName("id_not_lt"), not_lt); Output id_not_le = ops::Identity(s.WithOpName("id_not_le"), not_le); Output id_not_gt = ops::Identity(s.WithOpName("id_not_gt"), not_gt); Output id_not_ge = ops::Identity(s.WithOpName("id_not_ge"), not_ge); GrapplerItem item; item.fetch = {"id_not_eq", "id_not_neq", "id_not_lt", "id_not_le", "id_not_gt", "id_not_ge"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveLogicalNot(&optimizer); OptimizeTwice(&optimizer, &item, &output); int found = 0; for (const NodeDef& node : output.node()) { if (node.name() == "id_not_eq") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "eq"); ++found; } if (node.name() == "id_not_neq") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "neq"); ++found; } if (node.name() == "id_not_lt") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "lt"); ++found; } if (node.name() == "id_not_le") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "le"); ++found; } if (node.name() == "id_not_gt") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "gt"); ++found; } if (node.name() == "id_not_ge") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "ge"); ++found; } if (node.name() == "eq") { EXPECT_EQ(node.op(), "NotEqual"); ++found; } if (node.name() == "neq") { EXPECT_EQ(node.op(), "Equal"); ++found; } if (node.name() == "lt") { EXPECT_EQ(node.op(), "GreaterEqual"); ++found; } if (node.name() == "le") { EXPECT_EQ(node.op(), "Greater"); ++found; } if (node.name() == "gt") { EXPECT_EQ(node.op(), "LessEqual"); ++found; } if (node.name() == "ge") { EXPECT_EQ(node.op(), "Less"); ++found; } } EXPECT_EQ(found, 12); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), tensors_expected.size()); EXPECT_EQ(tensors.size(), item.fetch.size()); for (int i = 0; i < item.fetch.size(); ++i) { test::ExpectTensorEqual<bool>(tensors[i], tensors_expected[i]); } } TEST_F(ArithmeticOptimizerTest, OptimizeMaxOrMinOfMonotonicElementWise) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output sqrt = ops::Sqrt(s.WithOpName("sqrt"), x); Output reduce_max = ops::Max(s.WithOpName("reduce_max"), sqrt, {0}); Output final_out = ops::Identity(s.WithOpName("final_out"), reduce_max); GrapplerItem item; item.fetch = {"final_out"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyOptimizeMaxOrMinOfMonotonic(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); EXPECT_EQ(output.node_size(), item.graph.node_size()); int required_node_count = 0; for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "sqrt") { EXPECT_EQ(node.op(), "Sqrt"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "reduce_max"); ++required_node_count; } else if (node.name() == "reduce_max") { EXPECT_EQ(node.op(), "Max"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "x"); ++required_node_count; } } EXPECT_EQ(required_node_count, 2); } TEST_F(ArithmeticOptimizerTest, OptimizeArgMaxOrArgMinOfMonotonicElementWise) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); const auto x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output sqrt = ops::Sqrt(s.WithOpName("sqrt"), x); Output arg_max = ops::ArgMax(s.WithOpName("arg_max"), sqrt, 1); Output final_out = ops::Identity(s.WithOpName("final_out"), arg_max); GrapplerItem item; item.fetch = {"final_out"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); const auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyOptimizeMaxOrMinOfMonotonic(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); const auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<int64_t>(tensors[0], tensors_expected[0]); EXPECT_EQ(output.node_size(), item.graph.node_size() - 1); int required_node_count = 0; for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "final_out") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "arg_max"); ++required_node_count; } else if (node.name() == "arg_max") { EXPECT_EQ(node.op(), "ArgMax"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "x"); ++required_node_count; } } EXPECT_EQ(required_node_count, 2); } TEST_F(ArithmeticOptimizerTest, OptimizeMaxOrMinOfMonotonicElementWiseDoNotChangeFetchNode) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output sqrt = ops::Sqrt(s.WithOpName("sqrt"), x); Output reduce_max = ops::Max(s.WithOpName("reduce_max"), sqrt, {0}); Output final_out = ops::Identity(s.WithOpName("final_out"), reduce_max); GrapplerItem item; item.fetch = {"sqrt", "final_out"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), 2); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyOptimizeMaxOrMinOfMonotonic(&optimizer); OptimizeTwice(&optimizer, &item, &output); VerifyGraphsMatch(item.graph, output, __LINE__); } TEST_F(ArithmeticOptimizerTest, OptimizeMaxOrMinOfMonotonicElementWiseDoNotChangeFetchNodeReduction) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), {2, 3}, {1, 2}); Output reshape = ops::Reshape(s.WithOpName("reshape"), x, {-1}); Output y = ops::Neg(s.WithOpName("y"), reshape); Output z = ops::Max(s.WithOpName("z"), y, {0}); GrapplerItem item; item.fetch = {"z"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyOptimizeMaxOrMinOfMonotonic(&optimizer); OptimizeTwice(&optimizer, &item, &output); VerifyGraphsMatch(item.graph, output, __LINE__); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<int>(tensors[0], tensors_expected[0]); test::ExpectTensorEqual<int>(tensors[0], Tensor(-2)); } TEST_F(ArithmeticOptimizerTest, OptimizeMaxOrMinOfMonotonicElementWiseDoNotChangeSegmentMaxOrMinOps) { constexpr absl::string_view kSegmentMaxOpName = "SegmentMax"; constexpr absl::string_view kUnsortedSegmentMaxOpName = "UnsortedSegmentMax"; constexpr absl::string_view kSegmentMinOpName = "SegmentMin"; constexpr absl::string_view kUnsortedSegmentMinOpName = "UnsortedSegmentMin"; constexpr absl::string_view segment_max_or_min_op_names[] = { kSegmentMaxOpName, kUnsortedSegmentMaxOpName, kSegmentMinOpName, kUnsortedSegmentMinOpName}; for (const absl::string_view segment_op_name : segment_max_or_min_op_names) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Input x = ops::Const(s.WithOpName("x"), {-1.0f, 2.0f, -3.0f, 4.0f}, {2, 2}); Input segment_ids = ops::Const(s.WithOpName("x"), {0, 2}, {2}); Output relu = ops::Relu(s.WithOpName("relu"), x); Output segment_op; if (segment_op_name == kSegmentMaxOpName) { segment_op = ops::SegmentMax(s.WithOpName(segment_op_name), relu, segment_ids); } else if (segment_op_name == kUnsortedSegmentMaxOpName) { segment_op = ops::UnsortedSegmentMax(s.WithOpName(segment_op_name), relu, segment_ids, 3); } else if (segment_op_name == kSegmentMinOpName) { segment_op = ops::SegmentMin(s.WithOpName(segment_op_name), relu, segment_ids); } else { segment_op = ops::UnsortedSegmentMin(s.WithOpName(segment_op_name), relu, segment_ids, 3); } Output final_out = ops::Identity(s.WithOpName("final_out"), segment_op); GrapplerItem item; item.fetch = {"relu", "final_out"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); EXPECT_EQ(tensors_expected.size(), 2); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyOptimizeMaxOrMinOfMonotonic(&optimizer); OptimizeTwice(&optimizer, &item, &output); VerifyGraphsMatch(item.graph, output, __LINE__); } } TEST_F(ArithmeticOptimizerTest, OptimizeMaxOrMinOfMonotonicElementWiseNonIncreasing) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output neg = ops::Neg(s.WithOpName("neg"), x); Output reduce_max = ops::Max(s.WithOpName("reduce_max"), neg, {0}); Output final_out = ops::Identity(s.WithOpName("final_out"), reduce_max); GrapplerItem item; item.fetch = {"final_out"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyOptimizeMaxOrMinOfMonotonic(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); EXPECT_EQ(output.node_size(), item.graph.node_size()); int required_node_count = 0; for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "neg") { EXPECT_EQ(node.op(), "Neg"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "reduce_max"); ++required_node_count; } else if (node.name() == "reduce_max") { EXPECT_EQ(node.op(), "Min"); ASSERT_EQ(node.input_size(), 2); EXPECT_EQ(node.input(0), "x"); ++required_node_count; } } EXPECT_EQ(2, required_node_count); } TEST_F(ArithmeticOptimizerTest, OptimizeMaxOrMinOfMonotonicElementWiseNonIncreasingDoNotChangeMaxPool) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), 1.5f, {3, 3, 3, 1}); Output neg = ops::Neg(s.WithOpName("neg"), x); Output max_pool = ops::MaxPool(s.WithOpName("max_pool"), neg, {1, 2, 2, 1}, {1, 2, 2, 1}, "VALID"); GrapplerItem item; item.fetch = {"max_pool"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyOptimizeMaxOrMinOfMonotonic(&optimizer); OptimizeTwice(&optimizer, &item, &output); VerifyGraphsMatch(item.graph, output, __LINE__); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, OptimizeMaxOrMinOfMonotonicBiasAddReluMaxPool) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output weights = ops::Const(s.WithOpName("weights"), Input::Initializer(1.0f, {5, 5, 3, 4})); Output biases = ops::Const(s.WithOpName("biases"), Input::Initializer(2.0f, {4})); Output input = ops::Const(s.WithOpName("input"), Input::Initializer(1.0f, {1, 28, 28, 3})); Output output = ops::Conv2D(s.WithOpName("conv"), input, weights, {1, 1, 1, 1}, "SAME"); output = ops::BiasAdd(s.WithOpName("biasadd"), output, biases); output = ops::Relu(s.WithOpName("relu"), output); output = ops::MaxPool(s.WithOpName("max_pool"), output, {1, 2, 2, 1}, {1, 2, 2, 1}, "VALID"); output = ops::Identity(s.WithOpName("output"), output); GrapplerItem item; item.fetch = {"output"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef new_graph; ArithmeticOptimizer optimizer; EnableOnlyOptimizeMaxOrMinOfMonotonic(&optimizer); OptimizeTwice(&optimizer, &item, &new_graph); VerifyGraphsMatch(item.graph, new_graph, __LINE__); auto tensors = EvaluateNodes(new_graph, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, OptimizeMaxOrMinOfMonotonicElementWiseMaxPool) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), 1.5f, {3, 3, 3, 1}); Output sqrt = ops::Sqrt(s.WithOpName("sqrt"), x); Output max_pool = ops::MaxPool(s.WithOpName("max_pool"), sqrt, {1, 2, 2, 1}, {1, 2, 2, 1}, "VALID"); Output final_out = ops::Identity(s.WithOpName("final_out"), max_pool); GrapplerItem item; item.fetch = {"final_out"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyOptimizeMaxOrMinOfMonotonic(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); EXPECT_EQ(output.node_size(), item.graph.node_size()); int required_node_count = 0; for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "sqrt") { EXPECT_EQ(node.op(), "Sqrt"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "max_pool"); ++required_node_count; } else if (node.name() == "max_pool") { EXPECT_EQ(node.op(), "MaxPool"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "x"); ++required_node_count; } } EXPECT_EQ(required_node_count, 2); } TEST_F(ArithmeticOptimizerTest, UnaryOpsComposition) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output sqrt = ops::Sqrt(s.WithOpName("sqrt"), x); Output log = ops::Log(s.WithOpName("log"), sqrt); Output relu = ops::Relu(s.WithOpName("relu"), log); Output final_out = ops::Identity(s.WithOpName("final_out"), relu); GrapplerItem item; item.fetch = {"final_out"}; TF_CHECK_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { item.graph.mutable_node(i)->set_device("/device:CPU:0"); } auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyUnaryOpsComposition(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 3); int required_node_count = 0; for (int i = 0; i < output.node_size(); ++i) { const NodeDef& node = output.node(i); if (node.name() == "final_out") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "relu/unary_ops_composition"); ++required_node_count; } else if (node.name() == "relu/unary_ops_composition") { EXPECT_EQ(node.op(), "_UnaryOpsComposition"); ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "x"); auto op_names = node.attr().at("op_names").list().s(); ASSERT_EQ(op_names.size(), 3); EXPECT_EQ(op_names[0], "Sqrt"); EXPECT_EQ(op_names[1], "Log"); EXPECT_EQ(op_names[2], "Relu"); ++required_node_count; } } EXPECT_EQ(required_node_count, 2); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorNear<float>(tensors[0], tensors_expected[0], 1e-6); } TEST_F(ArithmeticOptimizerTest, RemoveStackStridedSliceSameAxis) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a_in = ops::Const(s.WithOpName("a_in"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); auto b_in = ops::Const(s.WithOpName("b_in"), {-1.0f, -2.0f, -3.0f, -4.0f}, {2, 2}); auto c_in = ops::Const(s.WithOpName("c_in"), {5.0f, 6.0f, 7.0f, 8.0f}, {2, 2}); auto a = ops::PlaceholderWithDefault(s.WithOpName("a"), a_in, PartialTensorShape({-1, -1})); auto b = ops::PlaceholderWithDefault(s.WithOpName("b"), b_in, PartialTensorShape({-1, -1})); auto c = ops::PlaceholderWithDefault(s.WithOpName("c"), c_in, PartialTensorShape({-1, -1})); auto stacked = ops::Stack(s.WithOpName("stacked"), {a.output, b.output, c.output}, ops::Stack::Axis(1)); auto expanded_a = ops::ExpandDims(s.WithOpName("expanded_a"), a, {1}); auto expanded_b = ops::ExpandDims(s.WithOpName("expanded_b"), b, {1}); auto expanded_c = ops::ExpandDims(s.WithOpName("expanded_c"), c, {1}); auto begin_a = ops::Const(s.WithOpName("begin_a"), {0, 0, 0}, {3}); auto end_a = ops::Const(s.WithOpName("end_a"), {0, 1, 0}, {3}); auto begin_b = ops::Const(s.WithOpName("begin_b"), {0, 1, 0}, {3}); auto end_b = ops::Const(s.WithOpName("end_b"), {0, 2, 0}, {3}); auto begin_c = ops::Const(s.WithOpName("begin_c"), {0, 2, 0}, {3}); auto end_c = ops::Const(s.WithOpName("end_c"), {0, 3, 0}, {3}); auto end_c_1to = ops::Const(s.WithOpName("begin_c_2to"), {0, 0, 0}, {3}); auto strides = ops::Const(s.WithOpName("strides"), {1, 1, 1}, {3}); using SS = ops::StridedSlice; auto pa_slice = ops::Identity( s.WithOpName("pa_slice_out"), SS(s.WithOpName("pa_slice"), stacked, begin_a, end_a, strides, SS::BeginMask(0b0101) .EllipsisMask(0) .EndMask(0b0101) .NewAxisMask(0) .ShrinkAxisMask(0b0010))); auto pb_slice = ops::Identity( s.WithOpName("pb_slice_out"), SS(s.WithOpName("pb_slice"), stacked, begin_b, end_b, strides, SS::BeginMask(0b0101) .EllipsisMask(0) .EndMask(0b0101) .NewAxisMask(0) .ShrinkAxisMask(0b0010))); auto pc_slice = ops::Identity( s.WithOpName("pc_slice_out"), SS(s.WithOpName("pc_slice"), stacked, begin_c, end_c, strides, SS::BeginMask(0b0101) .EllipsisMask(0) .EndMask(0b0101) .NewAxisMask(0) .ShrinkAxisMask(0b0010))); auto pa_slice_01 = ops::Identity( s.WithOpName("pa_slice_01_out"), SS(s.WithOpName("pa_slice_01"), stacked, begin_a, end_a, strides, SS::BeginMask(0b0101) .EllipsisMask(0) .EndMask(0b0101) .NewAxisMask(0) .ShrinkAxisMask(0))); auto pa_slice_to1 = ops::Identity( s.WithOpName("pa_slice_to1_out"), SS(s.WithOpName("pa_slice_to1"), stacked, begin_a, end_a, strides, SS::BeginMask(0b0111) .EllipsisMask(0) .EndMask(0b0101) .NewAxisMask(0) .ShrinkAxisMask(0))); auto pb_slice_12 = ops::Identity( s.WithOpName("pb_slice_12_out"), SS(s.WithOpName("pb_slice_12"), stacked, begin_b, end_b, strides, SS::BeginMask(0b0101) .EllipsisMask(0) .EndMask(0b0101) .NewAxisMask(0) .ShrinkAxisMask(0))); auto pc_slice_2to = ops::Identity( s.WithOpName("pc_slice_2to_out"), SS(s.WithOpName("pc_slice_2to"), stacked, begin_c, end_c_1to, strides, SS::BeginMask(0b0101) .EllipsisMask(0) .EndMask(0b0111) .NewAxisMask(0) .ShrinkAxisMask(0))); GrapplerItem item; item.fetch = {"a", "b", "c", "pa_slice_out", "pb_slice_out", "pc_slice_out", "expanded_a", "expanded_b", "expanded_c", "pa_slice_01_out", "pa_slice_to1_out", "pb_slice_12_out", "pc_slice_2to_out"}; enum FetchItem { fA, fB, fC, fASliceOut, fBSliceOut, fCSliceOut, fExpandedA, fExpandedB, fExpandedC, fASlice01Out, fASliceTo1Out, fBSlice12Out, fCSlice2ToOut, }; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); test::ExpectTensorEqual<float>(tensors_expected[fASliceOut], tensors_expected[fA]); test::ExpectTensorEqual<float>(tensors_expected[fBSliceOut], tensors_expected[fB]); test::ExpectTensorEqual<float>(tensors_expected[fCSliceOut], tensors_expected[fC]); test::ExpectTensorEqual<float>(tensors_expected[fASlice01Out], tensors_expected[fExpandedA]); test::ExpectTensorEqual<float>(tensors_expected[fASliceTo1Out], tensors_expected[fExpandedA]); test::ExpectTensorEqual<float>(tensors_expected[fBSlice12Out], tensors_expected[fExpandedB]); test::ExpectTensorEqual<float>(tensors_expected[fCSlice2ToOut], tensors_expected[fExpandedC]); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveStackSliceSameAxis(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); for (const auto& node : output.node()) { if (node.name() == "pa_slice_out") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "a"); } else if (node.name() == "pb_slice_out") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "b"); } else if (node.name() == "pc_slice_out") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), "c"); } else if (absl::EndsWith(node.name(), "_out")) { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ( absl::StrCat(node.input(0), "_out"), absl::StrCat("ArithmeticOptimizer/RemoveStackStridedSliceSameAxis_", node.name())); } } auto tensors = EvaluateNodes(output, item.fetch); test::ExpectTensorEqual<float>(tensors[fASliceOut], tensors_expected[fA]); test::ExpectTensorEqual<float>(tensors[fBSliceOut], tensors_expected[fB]); test::ExpectTensorEqual<float>(tensors[fCSliceOut], tensors_expected[fC]); test::ExpectTensorEqual<float>(tensors[fASlice01Out], tensors_expected[fExpandedA]); test::ExpectTensorEqual<float>(tensors[fASliceTo1Out], tensors_expected[fExpandedA]); test::ExpectTensorEqual<float>(tensors[fBSlice12Out], tensors_expected[fExpandedB]); test::ExpectTensorEqual<float>(tensors[fCSlice2ToOut], tensors_expected[fExpandedC]); } TEST_F(ArithmeticOptimizerTest, RemoveStackSimpleSliceSameAxis) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto a_in = ops::Const(s.WithOpName("a_in"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); auto b_in = ops::Const(s.WithOpName("b_in"), {-1.0f, -2.0f, -3.0f, -4.0f}, {2, 2}); auto c_in = ops::Const(s.WithOpName("c_in"), {5.0f, 6.0f, 7.0f, 8.0f}, {2, 2}); auto a = ops::PlaceholderWithDefault(s.WithOpName("a"), a_in, PartialTensorShape({-1, -1})); auto b = ops::PlaceholderWithDefault(s.WithOpName("b"), b_in, PartialTensorShape({-1, -1})); auto c = ops::PlaceholderWithDefault(s.WithOpName("c"), c_in, PartialTensorShape({-1, -1})); auto stacked = ops::Stack(s.WithOpName("stacked"), {a.output, b.output, c.output}, ops::Stack::Axis(1)); auto expanded_a = ops::ExpandDims(s.WithOpName("expanded_a"), a, {1}); auto expanded_b = ops::ExpandDims(s.WithOpName("expanded_b"), b, {1}); auto expanded_c = ops::ExpandDims(s.WithOpName("expanded_c"), c, {1}); auto begin_a = ops::Const(s.WithOpName("begin_a"), {0, 0, 0}, {3}); auto begin_b = ops::Const(s.WithOpName("begin_b"), {0, 1, 0}, {3}); auto begin_c = ops::Const(s.WithOpName("begin_c"), {0, 2, 0}, {3}); auto sizes_to_end = ops::Const(s.WithOpName("size"), {-1, 1, -1}, {3}); auto pa_slice = ops::Identity( s.WithOpName("pa_slice_out"), ops::Slice(s.WithOpName("pa_slice"), stacked, begin_a, sizes_to_end)); auto pb_slice = ops::Identity( s.WithOpName("pb_slice_out"), ops::Slice(s.WithOpName("pb_slice"), stacked, begin_b, sizes_to_end)); auto pc_slice = ops::Identity( s.WithOpName("pc_slice_out"), ops::Slice(s.WithOpName("pc_slice"), stacked, begin_c, sizes_to_end)); GrapplerItem item; item.fetch = {"a", "b", "c", "pa_slice_out", "pb_slice_out", "pc_slice_out", "expanded_a", "expanded_b", "expanded_c"}; enum FetchItem { fA, fB, fC, fASliceOut, fBSliceOut, fCSliceOut, fExpandedA, fExpandedB, fExpandedC, }; TF_CHECK_OK(s.ToGraphDef(&item.graph)); auto tensors_expected = EvaluateNodes(item.graph, item.fetch); test::ExpectTensorEqual<float>(tensors_expected[fASliceOut], tensors_expected[fExpandedA]); test::ExpectTensorEqual<float>(tensors_expected[fBSliceOut], tensors_expected[fExpandedB]); test::ExpectTensorEqual<float>(tensors_expected[fCSliceOut], tensors_expected[fExpandedC]); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveStackSliceSameAxis(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); const string kExpandDimsNamePrefix( "ArithmeticOptimizer/RemoveStackStridedSliceSameAxis_p"); for (const auto& node : output.node()) { if (node.name() == "pa_slice_out") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), absl::StrCat(kExpandDimsNamePrefix, "a_slice")); } else if (node.name() == "pb_slice_out") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), absl::StrCat(kExpandDimsNamePrefix, "b_slice")); } else if (node.name() == "pc_slice_out") { ASSERT_EQ(node.input_size(), 1); EXPECT_EQ(node.input(0), absl::StrCat(kExpandDimsNamePrefix, "c_slice")); } else if (absl::StartsWith(node.name(), kExpandDimsNamePrefix)) { EXPECT_EQ(node.op(), "ExpandDims"); EXPECT_EQ(node.input(0), node.name().substr(kExpandDimsNamePrefix.size(), 1)); } } auto tensors = EvaluateNodes(output, item.fetch); test::ExpectTensorEqual<float>(tensors[fASliceOut], tensors_expected[fExpandedA]); test::ExpectTensorEqual<float>(tensors[fBSliceOut], tensors_expected[fExpandedB]); test::ExpectTensorEqual<float>(tensors[fCSliceOut], tensors_expected[fExpandedC]); } TEST_F(ArithmeticOptimizerTest, SimplifyAggregationBFloat16) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output x = ops::Const(s.WithOpName("x"), {1.0f, 2.0f}, {1, 2}); Output cast = ops::Cast(s.WithOpName("cast"), x, DT_BFLOAT16); Output add = ops::AddN(s.WithOpName("add"), {cast, cast}); Output id = ops::Identity(s.WithOpName("id"), add); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"id"}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlySimplifyAggregation(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); EXPECT_EQ(output.node_size(), 5); auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<bfloat16>(tensors[0], tensors_expected[0]); } TEST_F(ArithmeticOptimizerTest, SimplifyEmbeddingLookup) { for (DataType unique_idx_type : {DT_INT32, DT_INT64}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output embeddings = ops::Const(s.WithOpName("embeddings"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); Output segment_ids = ops::Const(s.WithOpName("segment_ids"), {0, 1, 1, 2, 2, 2, 2}); Output indices = ops::Const(s.WithOpName("indices"), {0, 0, 1, 0, 1, 0, 1}); auto unique = ops::Unique(s.WithOpName("unique"), indices, {unique_idx_type}); Output ids = unique.y; Output idx = unique.idx; Output gathered_rows = ops::Gather(s.WithOpName("gathered_rows"), embeddings, ids); Output result = ops::SparseSegmentSum(s.WithOpName("result"), gathered_rows, idx, segment_ids); Output id = ops::Identity(s.WithOpName("id"), result); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"id"}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlySimplifyEmbeddingLookup(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); for (const auto& node : output.node()) { if (node.name() == "result") { EXPECT_EQ(node.input(0), "embeddings"); EXPECT_EQ(node.input(1), "indices"); } EXPECT_NE(node.op(), "Unique"); EXPECT_NE(node.op(), "Gather"); } auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<float>(tensors[0], tensors_expected[0]); } } TEST_F(ArithmeticOptimizerTest, SimplifyResourceEmbeddingLookup) { for (DataType unique_idx_type : {DT_INT32, DT_INT64}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output embeddings = ops::Const(s.WithOpName("embeddings"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); Output segment_ids = ops::Const(s.WithOpName("segment_ids"), {0, 1, 1, 2, 2, 2, 2}); Output indices = ops::Const(s.WithOpName("indices"), {0, 0, 1, 0, 1, 0, 1}); auto unique = ops::Unique(s.WithOpName("unique"), indices, {unique_idx_type}); Output ids = unique.y; Output idx = unique.idx; auto var = ops::VarHandleOp(s.WithOpName("var"), DT_FLOAT, TensorShape({2, 2})); ops::AssignVariableOp assign_op(s.WithOpName("assign_var_handle"), var, embeddings); Output gathered_rows = ops::ResourceGather( s.WithOpName("gathered_rows") .WithControlDependencies(std::vector<Operation>{assign_op}), var, ids, DT_FLOAT); gathered_rows.node()->AddAttr("_class", {"test_class"}); Output result = ops::SparseSegmentSum(s.WithOpName("result").WithControlDependencies( std::vector<Operation>{assign_op}), gathered_rows, idx, segment_ids); Output id = ops::Identity(s.WithOpName("id"), result); GrapplerItem item; item.init_ops.push_back("assign_var_handle"); TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"id"}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlySimplifyEmbeddingLookup(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); bool read_var_node_found = false; for (const auto& node : output.node()) { if (node.name() == "result") { EXPECT_EQ( node.input(0), "ArithmeticOptimizer/SimplifyEmbeddingLookupStage_ReadVar_result"); EXPECT_EQ(node.input(1), "indices"); } if (node.op() == "ReadVariableOp") { read_var_node_found = true; EXPECT_EQ(node.attr().at("_class").list().s(0), "test_class"); } EXPECT_NE(node.op(), "Unique"); EXPECT_NE(node.op(), "Gather"); } EXPECT_TRUE(read_var_node_found); for (int i = 0; i < output.node_size(); ++i) { if (output.node(i).name() == "ArithmeticOptimizer/SimplifyEmbeddingLookupStage_ReadVar_result") { output.mutable_node(i)->add_input("^assign_var_handle"); } } auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<float>(tensors[0], tensors_expected[0]); } } TEST_F(ArithmeticOptimizerTest, RemoveCastIntoSegmentReduction) { for (DataType indices_type : {DT_INT32, DT_INT64}) { for (DataType segment_ids_type : {DT_INT32, DT_INT64}) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output embeddings = ops::Const(s.WithOpName("embeddings"), {1.0f, 2.0f, 3.0f, 4.0f}, {2, 2}); Output indices = ops::Cast(s.WithOpName("cast_indices"), ops::Const(s.WithOpName("indices"), {0, 0, 1, 0, 1, 0, 1}), indices_type); Output segment_ids = ops::Cast( s.WithOpName("cast_segment_ids"), ops::Const(s.WithOpName("segment_ids"), {0, 1, 1, 2, 2, 2, 2}), segment_ids_type); Output result = ops::SparseSegmentSum(s.WithOpName("result"), embeddings, indices, segment_ids); Output id = ops::Identity(s.WithOpName("id"), result); GrapplerItem item; TF_CHECK_OK(s.ToGraphDef(&item.graph)); item.fetch = {"id"}; auto tensors_expected = EvaluateNodes(item.graph, item.fetch); ASSERT_EQ(tensors_expected.size(), 1); GraphDef output; ArithmeticOptimizer optimizer; EnableOnlyRemoveCastIntoSegmentReduction(&optimizer); OptimizeAndPrune(&optimizer, &item, &output); for (const auto& node : output.node()) { if (node.name() == "result") { EXPECT_EQ(node.input(1), "indices"); EXPECT_EQ(node.input(2), "segment_ids"); } EXPECT_NE(node.op(), "Cast"); } auto tensors = EvaluateNodes(output, item.fetch); ASSERT_EQ(tensors.size(), 1); test::ExpectTensorEqual<float>(tensors[0], tensors_expected[0]); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/arithmetic_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
54e4611a-f874-4b76-b0bf-4a081ea79e25
cpp
tensorflow/tensorflow
auto_parallel
tensorflow/core/grappler/optimizers/auto_parallel.cc
tensorflow/core/grappler/optimizers/auto_parallel_test.cc
#include "tensorflow/core/grappler/optimizers/auto_parallel.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/devices.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/transitive_fanin.h" #include "tensorflow/core/lib/strings/strcat.h" namespace tensorflow { namespace grappler { const char kAutoParallelPrefix[] = "AutoParallel"; NodeDef* AutoParallel::AddNodeDivConst() { NodeDef* node = graph_.add_node(); node->set_name(strings::StrCat(kAutoParallelPrefix, "-Div-Const")); node->set_op("Const"); AttrValue attr_data_type; attr_data_type.set_type(DT_FLOAT); node->mutable_attr()->insert({"dtype", attr_data_type}); AttrValue attr_tensor; auto tensor = attr_tensor.mutable_tensor(); tensor->add_float_val(static_cast<float>(num_replicas_)); tensor->set_dtype(DT_FLOAT); node->mutable_attr()->insert({"value", attr_tensor}); return node; } NodeDef* AutoParallel::AddNodeDiv(const string& name, const string& input_a, const string& input_b) { NodeDef* node = graph_.add_node(); node->set_name(strings::StrCat(kAutoParallelPrefix, "-Div-", name)); node->set_op("RealDiv"); node->add_input(input_a); node->add_input(input_b); AttrValue attr_type; attr_type.set_type(DT_FLOAT); node->mutable_attr()->insert({"T", attr_type}); return node; } NodeDef* AutoParallel::AddNodeControl(const string& name, const std::set<string>& deps, GraphDef* graph) { NodeDef* node = graph->add_node(); node->set_name(name); node->set_op("NoOp"); for (const auto& dep : deps) { node->add_input(strings::StrCat("^", dep)); } return node; } Status AutoParallel::Initialize(const GrapplerItem& item) { num_gpus_ = GetNumAvailableGPUs(); LOG(INFO) << "Number of GPUs: " << num_gpus_; item_ = &item; graph_ = item.graph; LOG(INFO) << "Original graph size: " << graph_.node_size(); if (item.fetch.empty()) { return Status(absl::StatusCode::kInvalidArgument, "No fetch nodes provided."); } if (item.MainVariables().empty()) { return Status(absl::StatusCode::kInvalidArgument, "No variables provided."); } for (const auto& init : item.init_ops) { VLOG(1) << "Init node: " << init; } for (const auto& fetch : item.fetch) { VLOG(1) << "Fetch node: " << fetch; } for (const auto& var : item.MainVariables()) { VLOG(2) << "Variable: " << var->name(); } const std::set<string> apply_gradients_ops = {"ApplyGradientDescent", "ApplyProximalGradientDescent", "ApplyAdadelta", "ApplyAdagrad", "ApplyProximalAdagrad", "ApplyAdagradDA", "ApplyFtrl", "ApplyMomentum", "ApplyAdam", "ApplyRMSProp", "ApplyCenteredRMSProp"}; for (int i = 0; i < graph_.node_size(); i++) { all_nodes_.insert( std::make_pair(graph_.node(i).name(), graph_.mutable_node(i))); if (apply_gradients_ops.find(graph_.node(i).op()) != apply_gradients_ops.end()) { apply_gradients_nodes_.insert(graph_.node(i).name()); VLOG(2) << "Apply gradients node: " << graph_.node(i).name(); } } auto div_const_node = AddNodeDivConst(); all_nodes_.insert(std::make_pair(div_const_node->name(), div_const_node)); std::map<string, int> gradient_pos = {{"ApplyGradientDescent", 2}, {"ApplyProximalGradientDescent", 4}, {"ApplyAdadelta", 6}, {"ApplyAdagrad", 3}, {"ApplyProximalAdagrad", 5}, {"ApplyAdagradDA", 3}, {"ApplyFtrl", 3}, {"ApplyMomentum", 3}, {"ApplyAdam", 9}, {"ApplyRMSProp", 7}, {"ApplyCenteredRMSProp", 8}}; for (const auto& apply_gradient_node_name : apply_gradients_nodes_) { auto apply_gradients_op = all_nodes_[apply_gradient_node_name]->op(); auto apply_gradients_node = all_nodes_[apply_gradient_node_name]; auto div_node = AddNodeDiv( apply_gradient_node_name, apply_gradients_node->input(gradient_pos[apply_gradients_op]), div_const_node->name()); all_nodes_.insert(std::make_pair(div_node->name(), div_node)); *apply_gradients_node->mutable_input(gradient_pos[apply_gradients_op]) = div_node->name(); } LOG(INFO) << "Graph size after adding div nodes: " << all_nodes_.size(); std::vector<const NodeDef*> train_nodes; TF_RETURN_IF_ERROR(ComputeTransitiveFanin(graph_, item.fetch, &train_nodes)); LOG(INFO) << "Number of training nodes: " << train_nodes.size(); const NodeDef* dequeue_node = nullptr; for (const auto& train_node : train_nodes) { if (IsDequeueOp(*train_node)) { dequeue_node = train_node; break; } } std::vector<const NodeDef*> input_nodes; if (dequeue_node) { LOG(INFO) << "Dequeue node: " << dequeue_node->name(); TF_RETURN_IF_ERROR(ComputeTransitiveFanin(graph_, {dequeue_node->name()}, {}, &input_nodes)); } LOG(INFO) << "Number of input nodes: " << input_nodes.size(); std::set<string> dont_replicate_nodes; for (const auto& variable : item.MainVariables()) { dont_replicate_nodes.insert(variable->name()); } for (const auto& init : item.init_ops) { dont_replicate_nodes.insert(NodeName(init)); } for (const auto& input_node : input_nodes) { if (input_node->name() != dequeue_node->name()) { dont_replicate_nodes.insert(input_node->name()); } } for (const auto& node : train_nodes) { if (dont_replicate_nodes.find(node->name()) == dont_replicate_nodes.end()) { replica_nodes_.insert(node->name()); } } LOG(INFO) << "Number of replica nodes: " << replica_nodes_.size(); for (const auto& node : all_nodes_) { if (replica_nodes_.find(node.first) == replica_nodes_.end()) { shared_nodes_.insert(node.first); } } LOG(INFO) << "Number of shared nodes: " << shared_nodes_.size(); return absl::OkStatus(); } bool AutoParallel::NotSharedNode(const string& name) { return shared_nodes_.find(name) == shared_nodes_.end(); } void AutoParallel::AddSharedNodes(GraphDef* graph) { string prefix = strings::StrCat(kAutoParallelPrefix, "-Replica-", 0); for (const auto& node : shared_nodes_) { auto new_node = graph->add_node(); *new_node = *all_nodes_[node]; for (int i = 0; i < new_node->input_size(); i++) { if (NotSharedNode(NodeName(new_node->input(i)))) { string new_name = AddPrefixToNodeName(new_node->input(i), prefix); *new_node->mutable_input(i) = new_name; } } } } void AutoParallel::AddOneReplica(GraphDef* graph, int number) { string prefix = strings::StrCat(kAutoParallelPrefix, "-Replica-", number); for (const auto& node : replica_nodes_) { auto new_node = graph->add_node(); *new_node = *all_nodes_[node]; if (NotSharedNode(new_node->name())) { new_node->set_name(AddPrefixToNodeName(new_node->name(), prefix)); if (num_gpus_ > 0) { new_node->set_device(strings::StrCat("/gpu:", number % num_gpus_)); } for (int i = 0; i < new_node->input_size(); i++) { if (NotSharedNode(NodeName(new_node->input(i)))) { string new_name = AddPrefixToNodeName(new_node->input(i), prefix); *new_node->mutable_input(i) = new_name; } } } } } void AutoParallel::BuildGraph(GraphDef* graph) { AddSharedNodes(graph); for (int i = 0; i < num_replicas_; i++) { AddOneReplica(graph, i); } std::set<string> fetches; for (size_t i = 0; i < item_->fetch.size(); i++) { for (int j = 0; j < num_replicas_; j++) { string prefix = strings::StrCat(kAutoParallelPrefix, "-Replica-", j); string fetch = AddPrefixToNodeName(item_->fetch[i], prefix); fetches.insert(fetch); } } string name_control = strings::StrCat(kAutoParallelPrefix, "-Control-", "Fetch"); auto control = AddNodeControl(name_control, fetches, graph); for (const auto& fetch : item_->fetch) { AddNodeControl(fetch, {control->name()}, graph); } *graph->mutable_library() = item_->graph.library(); *graph->mutable_versions() = item_->graph.versions(); LOG(INFO) << "Parallelized graph size: " << graph->node_size(); } Status AutoParallel::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* output) { TF_RETURN_IF_ERROR(Initialize(item)); BuildGraph(output); return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/optimizers/auto_parallel.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class AutoParallelTest : public ::testing::Test {}; TEST_F(AutoParallelTest, SimpleParallel) { tensorflow::Scope s = tensorflow::Scope::DisabledShapeInferenceScope(); Output constant_a = ops::Const(s.WithOpName("constant_a"), 1.0f, {1}); Output constant_b = ops::Const(s.WithOpName("constant_b"), 1, {1}); Output var = ops::Variable(s.WithOpName("var"), {1}, DT_FLOAT); Output assign = ops::Assign(s.WithOpName("assign"), {var}, {constant_a}); Output identity = ops::Identity(s.WithOpName("identity"), {var}); Output fifo_queue = ops::FIFOQueue(s.WithOpName("fifo_queue"), {DT_FLOAT}); auto dequeue = ops::QueueDequeueMany(s.WithOpName("dequeue"), {fifo_queue}, {constant_b}, {DT_FLOAT}); Output add = ops::AddN(s.WithOpName("add"), {constant_a, dequeue[0]}); Output learning_rate = ops::Const(s.WithOpName("learning_rate"), 0.01f, {1}); Output apply_gradient = ops::ApplyGradientDescent( s.WithOpName("apply_gradient"), {var}, {learning_rate}, {add}); GrapplerItem item; item.init_ops.push_back("assign"); item.fetch.push_back("apply_gradient"); item.init_ops.push_back("assign"); TF_CHECK_OK(s.ToGraphDef(&item.graph)); AutoParallel parallel(2); GraphDef output; Status status = parallel.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); EXPECT_EQ(21, output.node_size()); const NodeDef& node_assign = output.node(0); EXPECT_EQ("assign", node_assign.name()); EXPECT_EQ("AutoParallel-Replica-0/constant_a", node_assign.input(1)); const NodeDef& node_constant_b = output.node(1); EXPECT_EQ("constant_b", node_constant_b.name()); const NodeDef& node_fifo_queue = output.node(2); EXPECT_EQ("fifo_queue", node_fifo_queue.name()); const NodeDef& node_identity = output.node(3); EXPECT_EQ("identity", node_identity.name()); EXPECT_EQ("var", node_identity.input(0)); const NodeDef& node_var = output.node(4); EXPECT_EQ("var", node_var.name()); const NodeDef& node_div_const0 = output.node(5); EXPECT_EQ("AutoParallel-Replica-0/AutoParallel-Div-Const", node_div_const0.name()); const NodeDef& node_div0 = output.node(6); EXPECT_EQ("AutoParallel-Replica-0/AutoParallel-Div-apply_gradient", node_div0.name()); const NodeDef& node_add0 = output.node(7); EXPECT_EQ("AutoParallel-Replica-0/add", node_add0.name()); const NodeDef& node_gradient0 = output.node(8); EXPECT_EQ("AutoParallel-Replica-0/apply_gradient", node_gradient0.name()); const NodeDef& node_constant_a0 = output.node(9); EXPECT_EQ("AutoParallel-Replica-0/constant_a", node_constant_a0.name()); const NodeDef& node_dequeue0 = output.node(10); EXPECT_EQ("AutoParallel-Replica-0/dequeue", node_dequeue0.name()); const NodeDef& node_learning_rate0 = output.node(11); EXPECT_EQ("AutoParallel-Replica-0/learning_rate", node_learning_rate0.name()); const NodeDef& node_div_const1 = output.node(12); EXPECT_EQ("AutoParallel-Replica-1/AutoParallel-Div-Const", node_div_const1.name()); const NodeDef& node_div1 = output.node(13); EXPECT_EQ("AutoParallel-Replica-1/AutoParallel-Div-apply_gradient", node_div1.name()); const NodeDef& node_add1 = output.node(14); EXPECT_EQ("AutoParallel-Replica-1/add", node_add1.name()); const NodeDef& node_gradient1 = output.node(15); EXPECT_EQ("AutoParallel-Replica-1/apply_gradient", node_gradient1.name()); const NodeDef& node_constant_a1 = output.node(16); EXPECT_EQ("AutoParallel-Replica-1/constant_a", node_constant_a1.name()); const NodeDef& node_dequeue1 = output.node(17); EXPECT_EQ("AutoParallel-Replica-1/dequeue", node_dequeue1.name()); const NodeDef& node_learning_rate1 = output.node(18); EXPECT_EQ("AutoParallel-Replica-1/learning_rate", node_learning_rate1.name()); const NodeDef& node_fetch = output.node(19); EXPECT_EQ("AutoParallel-Control-Fetch", node_fetch.name()); EXPECT_EQ("^AutoParallel-Replica-0/apply_gradient", node_fetch.input(0)); EXPECT_EQ("^AutoParallel-Replica-1/apply_gradient", node_fetch.input(1)); const NodeDef& node_gradient = output.node(20); EXPECT_EQ("apply_gradient", node_gradient.name()); EXPECT_EQ("^AutoParallel-Control-Fetch", node_gradient.input(0)); } TEST_F(AutoParallelTest, SimpleParallelNoDequeue) { tensorflow::Scope s = tensorflow::Scope::DisabledShapeInferenceScope(); Output constant_a = ops::Const(s.WithOpName("constant_a"), 1.0f, {1}); Output constant_c = ops::Const(s.WithOpName("constant_c"), 1.0f, {1}); Output constant_b = ops::Const(s.WithOpName("constant_b"), 1, {1}); Output var = ops::Variable(s.WithOpName("var"), {1}, DT_FLOAT); Output assign = ops::Assign(s.WithOpName("assign"), {var}, {constant_a}); Output add = ops::AddN(s.WithOpName("add"), {constant_a, constant_c}); Output learning_rate = ops::Const(s.WithOpName("learning_rate"), 0.01f, {1}); Output apply_gradient = ops::ApplyGradientDescent( s.WithOpName("apply_gradient"), {var}, {learning_rate}, {add}); GrapplerItem item; item.init_ops.push_back("assign"); item.fetch.push_back("apply_gradient"); item.init_ops.push_back("assign"); TF_CHECK_OK(s.ToGraphDef(&item.graph)); AutoParallel parallel(2); GraphDef output; Status status = parallel.Optimize(nullptr, item, &output); TF_EXPECT_OK(status); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/auto_parallel.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/auto_parallel_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d46b1e94-dd76-416b-ac17-f2a57bb63e60
cpp
tensorflow/tensorflow
batch_op_rewriter
tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.cc
tensorflow/core/grappler/optimizers/inference/batch_op_rewriter_test.cc
#include "tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.h" #include <functional> #include <string> #include "google/protobuf/wrappers.pb.h" #include "google/protobuf/map.h" #include "google/protobuf/repeated_field.h" #include "absl/status/status.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace grappler { namespace { constexpr char kBatchFunction[] = "BatchFunction"; constexpr char kBatchOpRewriteConfigParamKey[] = "batch_op_rewrite_config"; constexpr char kNumBatchThreadsAttr[] = "num_batch_threads"; constexpr char kMaxBatchSizeAttr[] = "max_batch_size"; constexpr char kBatchTimeoutMicrosAttr[] = "batch_timeout_micros"; constexpr char kAllowedBatchSizesAttr[] = "allowed_batch_sizes"; constexpr char kMaxEnqueuedBatchesAttr[] = "max_enqueued_batches"; constexpr char kEnableLargeBatchSplitting[] = "enable_large_batch_splitting"; constexpr int64 kBoostMicrosNotSet = -1; using BatchOpRewriteFunction = std::function<void(NodeDef* batch_op)>; } using ::tensorflow::GraphDef; using ::tensorflow::NodeDef; using ::tensorflow::Status; using ::tensorflow::grappler::Cluster; using ::tensorflow::grappler::GrapplerItem; namespace { struct AdaptiveBatchSchedulerParams { int32 initial_inflight_batches; int32 min_inflight_batches; int32 max_inflight_batches; int32 batches_to_average_over; int64_t full_batch_scheduling_boost_micros; }; AdaptiveBatchSchedulerParams GetAdaptiveBatchSchedulerParams( const BatchOpRewriteConfig::AdaptiveBatchSchedulerOption& option) { AdaptiveBatchSchedulerParams params; params.min_inflight_batches = option.has_min_inflight_batches_limit() ? option.min_inflight_batches_limit().value() : kMinInflightBatches; params.initial_inflight_batches = option.has_initial_inflight_batches_limit() ? option.initial_inflight_batches_limit().value() : kInitialInflightBatches; params.max_inflight_batches = option.has_max_inflight_batches_limit() ? option.max_inflight_batches_limit().value() : kMaxInflightBatches; params.batches_to_average_over = option.has_batches_to_average_over() ? option.batches_to_average_over().value() : kBatchesToAverageOver; params.full_batch_scheduling_boost_micros = option.has_full_batch_scheduling_boost_micros() ? option.full_batch_scheduling_boost_micros().value() : kBoostMicrosNotSet; return params; } void SetNodeAttrs(const AdaptiveBatchSchedulerParams& params, NodeDef* node) { ::tensorflow::graph_transforms::SetNodeAttr(kEnableAdaptiveSchedulerAttr, true, node); ::tensorflow::graph_transforms::SetNodeAttr( kMaxInflightBatchesAttr, params.max_inflight_batches, node); ::tensorflow::graph_transforms::SetNodeAttr( kMinInflightBatchesAttr, params.min_inflight_batches, node); ::tensorflow::graph_transforms::SetNodeAttr( kInitialInflightBatchesAttr, params.initial_inflight_batches, node); ::tensorflow::graph_transforms::SetNodeAttr( kBatchesToAverageOverAttr, params.batches_to_average_over, node); if (params.full_batch_scheduling_boost_micros != -1) { ::tensorflow::graph_transforms::SetNodeAttr( kFullBatchSchedulingBoostMicros, params.full_batch_scheduling_boost_micros, node); } } void UpdateBatchOps(GraphDef* graph, BatchOpRewriteFunction rewrite_fn) { for (int i = 0; i < graph->node_size(); ++i) { NodeDef* node = graph->mutable_node(i); if (node->op() == kBatchFunction) { rewrite_fn(node); } } for (int i = 0; i < graph->library().function_size(); i++) { FunctionDef* function_def = graph->mutable_library()->mutable_function(i); for (int j = 0; j < function_def->node_def_size(); j++) { NodeDef* node = function_def->mutable_node_def(j); if (node->op() == kBatchFunction) { rewrite_fn(node); } } } } } Status BatchOpRewriter::Init( const ::tensorflow::RewriterConfig_CustomGraphOptimizer* config) { if (config->parameter_map().find(kBatchOpRewriteConfigParamKey) == config->parameter_map().end()) { return absl::InternalError( "batch_op_rewrite_config param must be set in the rewriter config " "with a serialized/encoded BatchOpRewriteConfig."); } const auto& params = config->parameter_map().at(kBatchOpRewriteConfigParamKey); std::string unencoded; if (params.s().empty()) { VLOG(2) << "Empty batch-op rewrite config"; return absl::OkStatus(); } if (!absl::Base64Unescape(params.s(), &unencoded)) { return absl::InternalError( "Failed to unencode batch_op_rewrite_config from params."); } if (!config_.ParseFromString(unencoded)) { return absl::InternalError( "Failed to parse batch_op_rewrite_config from params."); } VLOG(2) << "BatchOp Rewrite config is " << config_.DebugString(); return absl::OkStatus(); } Status BatchOpRewriter::Optimize(Cluster* cluster, const GrapplerItem& item, GraphDef* optimized_graph) { VLOG(2) << "Running BatchOp Rewriter"; *optimized_graph = item.graph; bool asbs_overridden = false; if (config_proto_.has_experimental() && config_proto_.experimental().has_session_metadata()) { const string model_name = config_proto_.experimental().session_metadata().name(); if (!config_.model_scheduler_options().empty()) { return absl::InvalidArgumentError( "model_scheduler_options is deprecated. Please use the " "adaptive_batch_scheduler_option field in batch_options instead."); } auto model_batch_options = config_.batch_options().find(model_name); if (model_batch_options != config_.batch_options().end()) { auto& batch_options = model_batch_options->second; VLOG(2) << "Rewriting batch_options for " << model_name << " to " << batch_options.DebugString(); if (batch_options.has_adaptive_batch_scheduler_option()) { AdaptiveBatchSchedulerParams params = GetAdaptiveBatchSchedulerParams( batch_options.adaptive_batch_scheduler_option()); if ((params.min_inflight_batches > params.max_inflight_batches) || (params.initial_inflight_batches < params.min_inflight_batches) || (params.initial_inflight_batches > params.max_inflight_batches)) { return absl::InvalidArgumentError(absl::StrCat( "Requires min_inflight_batches <= initial_inflight_batches " "and initial_inflight_batches <= max_inflight_batches; Got " "{min_inflight_batches : ", params.min_inflight_batches, ", initial_inflight_batches : ", params.initial_inflight_batches, ", max_inflight_batches : ", params.max_inflight_batches, "}.")); } asbs_overridden = true; UpdateBatchOps(optimized_graph, [&params](NodeDef* batch_op) { SetNodeAttrs(params, batch_op); }); } if (config_.enable_adaptive_shared_batching_thread_pool() && !asbs_overridden && batch_options.has_num_batch_threads() && batch_options.num_batch_threads() != 0) { return absl::InvalidArgumentError( "Unable to enable adapative shared batching because it requires " "num_batch_threads=0 but the BatchOpRewriteConfig is also trying " "to set num_batch_threads. Set either set " "enable_adaptive_shared_batching_thread_pool or num_batch_threads " "but not both."); } UpdateBatchOps(optimized_graph, [&batch_options](NodeDef* batch_op) { if (batch_options.has_num_batch_threads()) { ::tensorflow::graph_transforms::SetNodeAttr( kNumBatchThreadsAttr, batch_options.num_batch_threads(), batch_op); } if (batch_options.has_max_batch_size()) { ::tensorflow::graph_transforms::SetNodeAttr( kMaxBatchSizeAttr, batch_options.max_batch_size(), batch_op); } if (batch_options.has_batch_timeout_micros()) { ::tensorflow::graph_transforms::SetNodeAttr( kBatchTimeoutMicrosAttr, batch_options.batch_timeout_micros(), batch_op); } if (!batch_options.allowed_batch_sizes().empty()) { ::tensorflow::graph_transforms::SetNodeAttr( kAllowedBatchSizesAttr, batch_options.allowed_batch_sizes(), batch_op); } if (batch_options.has_max_enqueued_batches()) { ::tensorflow::graph_transforms::SetNodeAttr( kMaxEnqueuedBatchesAttr, batch_options.max_enqueued_batches(), batch_op); } if (batch_options.has_disable_large_batch_splitting()) { ::tensorflow::graph_transforms::SetNodeAttr( kEnableLargeBatchSplitting, !batch_options.disable_large_batch_splitting(), batch_op); } }); } } if (asbs_overridden) { return absl::OkStatus(); } if (config_.enable_adaptive_shared_batching_thread_pool()) { UpdateBatchOps(optimized_graph, [](NodeDef* batch_op) { ::tensorflow::graph_transforms::SetNodeAttr(kNumBatchThreadsAttr, 0, batch_op); }); } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(BatchOpRewriter, "batch_op_rewrite"); } }
#include "tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.h" #include <vector> #include "google/protobuf/wrappers.pb.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/escaping.h" #include "absl/strings/substitute.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/graph_optimizer.h" #include "tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace grappler { namespace { using ::tensorflow::GraphDef; using ::tensorflow::NodeDef; using ::tensorflow::RewriterConfig_CustomGraphOptimizer; using ::tensorflow::Status; using ::tensorflow::grappler::GrapplerItem; using ::tensorflow::serving::BatchOpRewriteConfig; void AddBatchOp(GraphDef* graph, int num_batch_threads = 16, const absl::flat_hash_map<string, int>& reserved_int_attrs = {}, int max_batch_size = 16, int batch_timeout_micros = 10000, const std::vector<int32>& allowed_batch_sizes = {8, 16}, int max_enqueued_batches = 1000, bool disable_large_batch_splitting = false) { auto set_batch_node_attribute = [&](const int32_t num_batch_threads, NodeDef* batch_op) { batch_op->set_name("cond/batch/BatchFunction"); batch_op->set_op("BatchFunction"); ::tensorflow::graph_transforms::SetNodeAttr("num_batch_threads", num_batch_threads, batch_op); ::tensorflow::graph_transforms::SetNodeAttr("max_batch_size", max_batch_size, batch_op); ::tensorflow::graph_transforms::SetNodeAttr("batch_timeout_micros", batch_timeout_micros, batch_op); ::tensorflow::graph_transforms::SetNodeAttr("allowed_batch_sizes", allowed_batch_sizes, batch_op); ::tensorflow::graph_transforms::SetNodeAttr("max_enqueued_batches", max_enqueued_batches, batch_op); ::tensorflow::graph_transforms::SetNodeAttr("enable_large_batch_splitting", !disable_large_batch_splitting, batch_op); if (!reserved_int_attrs.empty()) { ::tensorflow::graph_transforms::SetNodeAttr(kEnableAdaptiveSchedulerAttr, true, batch_op); for (const auto& reserved_int_attr : reserved_int_attrs) { ::tensorflow::graph_transforms::SetNodeAttr( reserved_int_attr.first, reserved_int_attr.second, batch_op); } } }; set_batch_node_attribute(num_batch_threads, graph->add_node()); FunctionDefLibrary* function_def_lib = graph->mutable_library(); FunctionDef* function_def = function_def_lib->add_function(); set_batch_node_attribute(num_batch_threads, function_def->add_node_def()); } RewriterConfig_CustomGraphOptimizer MakeConfig( const BatchOpRewriteConfig& config) { RewriterConfig_CustomGraphOptimizer rewriter_config; (*rewriter_config.mutable_parameter_map())["batch_op_rewrite_config"].set_s( absl::Base64Escape(config.SerializeAsString())); return rewriter_config; } class BatchOpRewriterTest : public ::testing::TestWithParam<bool> {}; INSTANTIATE_TEST_SUITE_P(RewriteNumBatchThreads, BatchOpRewriterTest, ::testing::Bool()); TEST_P(BatchOpRewriterTest, Basic) { GrapplerItem item; AddBatchOp(&item.graph, 16); BatchOpRewriteConfig config; config.set_enable_adaptive_shared_batching_thread_pool(GetParam()); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.Init(&rewriter_config)); GraphDef optimized_graph; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected_graph; AddBatchOp(&expected_graph, GetParam() ? 0 : 16); EXPECT_EQ(optimized_graph.DebugString(), expected_graph.DebugString()); } TEST_P(BatchOpRewriterTest, InvalidArgumentForAdaptiveBatchScheduler) { GrapplerItem item; AddBatchOp(&item.graph, 16); BatchOpRewriteConfig config; config.set_enable_adaptive_shared_batching_thread_pool(GetParam()); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_batches_to_average_over() ->set_value(1000); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_initial_inflight_batches_limit() ->set_value(8); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_min_inflight_batches_limit() ->set_value(16); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_max_inflight_batches_limit() ->set_value(32); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.Init(&rewriter_config)); optimizer.config_proto_.mutable_experimental() ->mutable_session_metadata() ->set_version(123); optimizer.config_proto_.mutable_experimental() ->mutable_session_metadata() ->set_name("model_with_override"); GraphDef optimized_graph; Status status = optimizer.Optimize(nullptr, item, &optimized_graph); EXPECT_FALSE(status.ok()); EXPECT_TRUE(errors::IsInvalidArgument(status)); } TEST_P(BatchOpRewriterTest, AdaptiveBatchScheduler) { BatchOpRewriteConfig config; config.set_enable_adaptive_shared_batching_thread_pool(GetParam()); (*config.mutable_batch_options())["model_with_override"] .mutable_adaptive_batch_scheduler_option() ->mutable_batches_to_average_over() ->set_value(1000); (*config.mutable_batch_options())["model_with_override"] .mutable_adaptive_batch_scheduler_option() ->mutable_initial_inflight_batches_limit() ->set_value(16); (*config.mutable_batch_options())["model_with_override"] .mutable_adaptive_batch_scheduler_option() ->mutable_min_inflight_batches_limit() ->set_value(8); (*config.mutable_batch_options())["model_with_override"] .mutable_adaptive_batch_scheduler_option() ->mutable_max_inflight_batches_limit() ->set_value(32); (*config.mutable_batch_options())["model_with_override"] .mutable_adaptive_batch_scheduler_option() ->mutable_full_batch_scheduling_boost_micros() ->set_value(12345); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); ConfigProto config_proto; config_proto.mutable_experimental()->mutable_session_metadata()->set_version( 123); config_proto.mutable_experimental()->mutable_session_metadata()->set_name( "model_with_override"); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.InitWithConfig(config_proto, &rewriter_config)); GraphDef optimized_graph; GrapplerItem item; AddBatchOp(&item.graph, 16); TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected_graph; AddBatchOp(&expected_graph, 16 , {{kBatchesToAverageOverAttr, 1000}, {kInitialInflightBatchesAttr, 16}, {kMinInflightBatchesAttr, 8}, {kMaxInflightBatchesAttr, 32}, {kFullBatchSchedulingBoostMicros, 12345}}); EXPECT_EQ(optimized_graph.DebugString(), expected_graph.DebugString()); } TEST_F(BatchOpRewriterTest, UpdateModelSchedulerOptions) { BatchOpRewriteConfig config; config.set_enable_adaptive_shared_batching_thread_pool(true); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_batches_to_average_over() ->set_value(1000); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_initial_inflight_batches_limit() ->set_value(16); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_min_inflight_batches_limit() ->set_value(8); (*config.mutable_model_scheduler_options())["model_with_override"] .mutable_max_inflight_batches_limit() ->set_value(32); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); ConfigProto config_proto; config_proto.mutable_experimental()->mutable_session_metadata()->set_version( 123); config_proto.mutable_experimental()->mutable_session_metadata()->set_name( "model_with_override"); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.InitWithConfig(config_proto, &rewriter_config)); GraphDef optimized_graph; GrapplerItem item; AddBatchOp(&item.graph, 16); ASSERT_FALSE(optimizer.Optimize(nullptr, item, &optimized_graph).ok()); } TEST_F(BatchOpRewriterTest, UpdateBatchOptions) { BatchOpRewriteConfig config; (*config.mutable_batch_options())["model_with_override"] .set_num_batch_threads(2); (*config.mutable_batch_options())["model_with_override"].set_max_batch_size( 128); (*config.mutable_batch_options())["model_with_override"] .set_batch_timeout_micros(5000); const std::vector<int32> allowed_batch_sizes{4, 32}; (*config.mutable_batch_options())["model_with_override"] .mutable_allowed_batch_sizes() ->Add(allowed_batch_sizes.begin(), allowed_batch_sizes.end()); (*config.mutable_batch_options())["model_with_override"] .set_max_enqueued_batches(500); (*config.mutable_batch_options())["model_with_override"] .set_disable_large_batch_splitting(true); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); ConfigProto config_proto; config_proto.mutable_experimental()->mutable_session_metadata()->set_version( 123); config_proto.mutable_experimental()->mutable_session_metadata()->set_name( "model_with_override"); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.InitWithConfig(config_proto, &rewriter_config)); GraphDef optimized_graph; GrapplerItem item; AddBatchOp(&item.graph); TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &optimized_graph)); GraphDef expected_graph; AddBatchOp(&expected_graph, 2 , {} , 128 , 5000 , allowed_batch_sizes, 500 , true ); EXPECT_EQ(optimized_graph.DebugString(), expected_graph.DebugString()); } TEST_F(BatchOpRewriterTest, UpdateAdaptiveSharedBatchSchedulerAndNumBatchThreads) { GrapplerItem item; AddBatchOp(&item.graph, 16); BatchOpRewriteConfig config; config.set_enable_adaptive_shared_batching_thread_pool(true); (*config.mutable_batch_options())["model_with_override"] .set_num_batch_threads(2); RewriterConfig_CustomGraphOptimizer rewriter_config = MakeConfig(config); ConfigProto config_proto; config_proto.mutable_experimental()->mutable_session_metadata()->set_version( 123); config_proto.mutable_experimental()->mutable_session_metadata()->set_name( "model_with_override"); BatchOpRewriter optimizer; TF_ASSERT_OK(optimizer.InitWithConfig(config_proto, &rewriter_config)); GraphDef optimized_graph; ASSERT_FALSE(optimizer.Optimize(nullptr, item, &optimized_graph).ok()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/inference/batch_op_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/inference/batch_op_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
68fb818f-c069-4546-9b9c-dcb7b2294c41
cpp
tensorflow/tensorflow
seq_interleave_prefetch
tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch.cc
tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch_test.cc
#include "tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch.h" #include <functional> #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace grappler { namespace { constexpr char kInterleaveDatasetOpName[] = "InterleaveDataset"; constexpr char kParallelInterleaveDatasetV2OpName[] = "ParallelInterleaveDatasetV2"; constexpr char kParallelInterleaveDatasetV3OpName[] = "ParallelInterleaveDatasetV3"; constexpr char kParallelInterleaveDatasetV4OpName[] = "ParallelInterleaveDatasetV4"; constexpr char kParallelInterleaveDatasetOpName[] = "ParallelInterleaveDataset"; constexpr char kPrefetchDatasetOpName[] = "PrefetchDataset"; constexpr char kDatasetStr[] = "Dataset"; constexpr char kConstOpName[] = "Const"; constexpr char kOutputShapes[] = "output_shapes"; constexpr char kOutputTypes[] = "output_types"; constexpr char kConstNodeOutputSuffix[] = ":output:0"; constexpr char kDatasetNodeOutputSuffix[] = ":handle:0"; constexpr char kDeterministicAttr[] = "deterministic"; constexpr char kFunctionAttr[] = "f"; constexpr char kDTypeAttr[] = "dtype"; constexpr char kValueAttr[] = "value"; constexpr char kTArgumentsAttr[] = "Targuments"; constexpr char kOutputTypesAttr[] = "output_types"; constexpr char kMetadataAttr[] = "metadata"; constexpr char kOutputShapesAttr[] = "output_shapes"; constexpr char kTOutputTypesAttr[] = "Toutput_types"; constexpr char kSeqInterleavePrefetchRewritePrefix[] = "inject/seq_interleave_prefetch_rewrite_"; bool IsParallelInterleave(const std::string& op) { return data::MatchesAnyVersion(kParallelInterleaveDatasetOpName, op); } int GetNumInputsForParallelInterleaveOp(const std::string& op) { if (op == kParallelInterleaveDatasetV2OpName) { return 4; } else if (op == kParallelInterleaveDatasetV3OpName) { return 4; } else if (op == kParallelInterleaveDatasetV4OpName) { return 6; } return 0; } bool NodeOpHasDatasetSuffix(const NodeDef& node) { return absl::EndsWith(node.op(), kDatasetStr); } bool DatasetOpInFunction(const NodeDef& node, const FunctionDef* fn) { for (const auto& node : fn->node_def()) { if (NodeOpHasDatasetSuffix(node)) { return true; } } return false; } bool RewritePossibleForNode(const NodeDef& node, const FunctionLibraryDefinition& fld) { auto is_deterministic_parallel_interleave_node = [&]() -> bool { if (!IsParallelInterleave(node.op())) return false; auto determinism_value = node.attr().find(kDeterministicAttr); return (determinism_value != node.attr().end()) && (determinism_value->second.s() == "true"); }; if (node.attr().count(kFunctionAttr) == 0) return false; const FunctionDef* fn = fld.Find(node.attr().at(kFunctionAttr).func().name()); if (fn == nullptr) return false; if (fn->signature().output_arg_size() != 1) return false; if (is_deterministic_parallel_interleave_node()) { return DatasetOpInFunction(node, fn); } return false; } NodeDef CreateBufferSizeNode(DataType dtype, const std::function<void(TensorProto*)>& add_value, MutableGraphView* graph, FunctionDef& fdef) { NodeDef node; node.set_op(kConstOpName); function_utils::SetUniqueFunctionNodeName( absl::StrCat(kSeqInterleavePrefetchRewritePrefix, "buffer_size"), &fdef, &node); (*node.mutable_attr())[kDTypeAttr].set_type(dtype); auto tensor = std::make_unique<tensorflow::TensorProto>(); auto tensor_shape = std::make_unique<tensorflow::TensorShapeProto>(); tensor->set_allocated_tensor_shape(tensor_shape.release()); tensor->set_dtype(dtype); add_value(tensor.get()); (*node.mutable_attr())[kValueAttr].set_allocated_tensor(tensor.release()); return node; } Status CreateAndAppendPrefetchNode(MutableGraphView* graph, FunctionDef& fdef) { auto get_last_dataset_op_node = [&]() -> const NodeDef* { const auto& output_arg = fdef.signature().output_arg(0).name(); const auto& ret_val = fdef.ret().at(output_arg); auto input = function_utils::FunctionDefTensorDesc(ret_val); const NodeDef* dataset_op_node = nullptr; while ( function_utils::ContainsFunctionNodeWithName(input.node_name, fdef)) { int idx = function_utils::FindFunctionNodeWithName(input.node_name, fdef); const NodeDef& node = fdef.node_def(idx); if (NodeOpHasDatasetSuffix(node)) { dataset_op_node = &node; break; } input = function_utils::FunctionDefTensorDesc(node.input(0)); } return dataset_op_node; }; const NodeDef* add_after = get_last_dataset_op_node(); if (add_after == nullptr) { return errors::NotFound( "Could not find any dataset node to append `Prefetch` at its output in " "`seq_interleave_prefetch` rewrite"); } NodeDef prefetch_node; prefetch_node.set_op(kPrefetchDatasetOpName); function_utils::SetUniqueFunctionNodeName( absl::StrCat(kSeqInterleavePrefetchRewritePrefix, fdef.signature().name()), &fdef, &prefetch_node); const auto input_dataset = absl::StrCat(add_after->name(), kDatasetNodeOutputSuffix); NodeDef buffer_size_node = CreateBufferSizeNode( DT_INT64, [](TensorProto* proto) { proto->add_int64_val(data::model::kAutotune); }, graph, fdef); prefetch_node.add_input(input_dataset); prefetch_node.add_input( absl::StrCat(buffer_size_node.name(), kConstNodeOutputSuffix)); if (add_after->attr().count(kOutputShapes) > 0) { graph_utils::CopyAttribute(kOutputShapes, *add_after, &prefetch_node); } else { tensorflow::TensorShapeProto* shape = (*(prefetch_node.mutable_attr()))[kOutputShapes] .mutable_list() ->add_shape(); shape->set_unknown_rank(true); } if (add_after->attr().count(kOutputTypes) > 0) { graph_utils::CopyAttribute(kOutputTypes, *add_after, &prefetch_node); } else if (add_after->attr().count(kTOutputTypesAttr) > 0) { (*(prefetch_node.mutable_attr()))[kOutputTypes] = add_after->attr().at(kTOutputTypesAttr); } else { (*(prefetch_node.mutable_attr()))[kOutputTypes].mutable_list()->add_type( tensorflow::DataType::DT_STRING); } std::string old_input = input_dataset; std::string new_input = absl::StrCat(prefetch_node.name(), kDatasetNodeOutputSuffix); function_utils::ReplaceReferences(old_input, new_input, &fdef); *fdef.add_node_def() = std::move(prefetch_node); *fdef.add_node_def() = std::move(buffer_size_node); return absl::OkStatus(); } Status AddInterleaveNode(MutableGraphView* graph, const NodeDef& parallel_interleave_node, const std::string& interleave_map_func_name, absl::flat_hash_set<string>& nodes_to_delete) { NodeDef interleave_node; interleave_node.set_op(kInterleaveDatasetOpName); graph_utils::SetUniqueGraphNodeName( absl::StrCat(kSeqInterleavePrefetchRewritePrefix, parallel_interleave_node.name()), graph->graph(), &interleave_node); int num_other_args = parallel_interleave_node.input_size() - GetNumInputsForParallelInterleaveOp(parallel_interleave_node.op()); int inputs_from_parallel_interleave = 1 + num_other_args + 1 + 1 ; for (int i = 0; i < inputs_from_parallel_interleave; ++i) { interleave_node.add_input(parallel_interleave_node.input(i)); } if (parallel_interleave_node.attr().contains(kTArgumentsAttr)) { graph_utils::CopyAttribute(kTArgumentsAttr, parallel_interleave_node, &interleave_node); } if (parallel_interleave_node.attr().contains(kOutputTypesAttr)) { graph_utils::CopyAttribute(kOutputTypesAttr, parallel_interleave_node, &interleave_node); } if (parallel_interleave_node.attr().contains(kOutputShapesAttr)) { graph_utils::CopyAttribute(kOutputShapesAttr, parallel_interleave_node, &interleave_node); } if (parallel_interleave_node.attr().contains(kMetadataAttr)) { graph_utils::CopyAttribute(kMetadataAttr, parallel_interleave_node, &interleave_node); } const auto& parallel_interleave_fn_attr = parallel_interleave_node.attr().at(kFunctionAttr); (*interleave_node.mutable_attr())[kFunctionAttr] = parallel_interleave_fn_attr; (*interleave_node.mutable_attr())[kFunctionAttr].mutable_func()->set_name( interleave_map_func_name); graph_utils::CopyShapesAndTypesAttrs(parallel_interleave_node, &interleave_node); *interleave_node.mutable_experimental_type() = parallel_interleave_node.experimental_type(); NodeDef* new_node_graph = graph->AddNode(std::move(interleave_node)); TF_RETURN_IF_ERROR(graph->UpdateFanouts(parallel_interleave_node.name(), new_node_graph->name())); nodes_to_delete.insert(parallel_interleave_node.name()); return absl::OkStatus(); } } Status SeqInterleavePrefetch::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition fld(OpRegistry::Global(), item.graph.library()); for (const NodeDef& node : item.graph.node()) { if (!RewritePossibleForNode(node, fld)) continue; const FunctionDef* parallel_interleave_fn = fld.Find(node.attr().at("f").func().name()); FunctionDef interleave_fn(*parallel_interleave_fn); interleave_fn.mutable_signature()->set_name( absl::StrCat(kSeqInterleavePrefetchRewritePrefix, parallel_interleave_fn->signature().name())); TF_RETURN_IF_ERROR(AddInterleaveNode( &graph, node, interleave_fn.signature().name(), nodes_to_delete)); TF_RETURN_IF_ERROR(CreateAndAppendPrefetchNode(&graph, interleave_fn)); TF_RETURN_IF_ERROR(fld.ReplaceFunction( parallel_interleave_fn->signature().name(), interleave_fn)); stats->num_changes++; } *output->mutable_library() = fld.ToProto(); TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(SeqInterleavePrefetch, "seq_interleave_prefetch"); } }
#include "tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch.h" #include <string> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace grappler { namespace { using test::function::GDef; using test::function::NDef; constexpr char kPrefetchDatasetOpName[] = "PrefetchDataset"; constexpr char kInterleaveDatasetOpName[] = "InterleaveDataset"; constexpr char kParallelInterleaveDatasetOpName[] = "ParallelInterleaveDatasetV4"; constexpr char kSeqInterleavePrefetchRewritePrefix[] = "inject/seq_interleave_prefetch_rewrite_"; constexpr char kFdefProtoStr[] = R"pb(signature { name: "parallel_interleave_fdef" input_arg { name: "args_0" type: DT_STRING } output_arg { name: "identity" type: DT_VARIANT } is_stateful: true control_output: "SSTableDataset" } node_def { name: "key_prefix" op: "Const" attr { key: "dtype" value { type: DT_STRING } } attr { key: "value" value { tensor { dtype: DT_STRING tensor_shape {} string_val: "" } } } } node_def { name: "start_key" op: "Const" attr { key: "dtype" value { type: DT_STRING } } attr { key: "value" value { tensor { dtype: DT_STRING tensor_shape {} string_val: "" } } } } node_def { name: "stop_key" op: "Const" attr { key: "dtype" value { type: DT_STRING } } attr { key: "value" value { tensor { dtype: DT_STRING tensor_shape {} string_val: "" } } } } node_def { name: "SSTableDataset" op: "SSTableDataset" input: "args_0" input: "key_prefix:output:0" input: "start_key:output:0" input: "stop_key:output:0" attr { key: "metadata" value { s: "" } } attr { key: "split_size" value { i: 0 } } experimental_type { type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_TENSOR args { type_id: TFT_STRING } } } } } node_def { name: "Identity" op: "Identity" input: "SSTableDataset:handle:0" input: "^NoOp" attr { key: "T" value { type: DT_VARIANT } } } node_def { name: "NoOp" op: "NoOp" input: "^SSTableDataset" } ret { key: "identity" value: "Identity:output:0" } attr { key: "_construction_context" value { s: "kEagerRuntime" } } attr { key: "_tf_data_function" value { b: true } } control_ret { key: "SSTableDataset" value: "SSTableDataset" } arg_attr { key: 0 value { attr { key: "_output_shapes" value { list { shape {} } } } attr { key: "_user_specified_name" value { s: "args_0" } } } })pb"; GraphDef ParallelInterleaveCase(bool deterministic) { FunctionDef fdef; protobuf::TextFormat::ParseFromString(kFdefProtoStr, &fdef); return GDef( {NDef("stop", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"stop"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV4Node( "parallel_interleave", "range", "cycle_length", "block_length", "num_parallel_calls", "parallel_interleave_fdef", deterministic ? "true" : "false")}, { fdef, }); } GraphDef MultipleParallelInterleaveCase(bool deterministic) { FunctionDef fdef_1, fdef_2, fdef_3; protobuf::TextFormat::ParseFromString(kFdefProtoStr, &fdef_1); fdef_1.mutable_signature()->set_name("parallel_interleave_fdef_1"); protobuf::TextFormat::ParseFromString(kFdefProtoStr, &fdef_2); fdef_2.mutable_signature()->set_name("parallel_interleave_fdef_2"); protobuf::TextFormat::ParseFromString(kFdefProtoStr, &fdef_3); fdef_3.mutable_signature()->set_name("parallel_interleave_fdef_3"); auto make_parallel_interleave_node = [&deterministic](const int node_num, const FunctionDef &fdef) { return graph_tests_utils::MakeParallelInterleaveV4Node( absl::StrCat("parallel_interleave_", node_num), "range", "cycle_length", "block_length", "num_parallel_calls", fdef.signature().name(), deterministic ? "true" : "false"); }; return GDef( {NDef("stop", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"stop"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), make_parallel_interleave_node(1, fdef_1), make_parallel_interleave_node(2, fdef_2), make_parallel_interleave_node(3, fdef_3)}, { fdef_1, fdef_2, fdef_3, }); } GraphDef InterleaveCase(bool deterministic) { FunctionDef fdef; protobuf::TextFormat::ParseFromString(kFdefProtoStr, &fdef); return GDef( {NDef("stop", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"stop"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeInterleaveNode( "sequential_interleave", "range", "cycle_length", "block_length", "parallel_interleave_fdef", deterministic ? "true" : "false")}, { fdef, }); } bool PrefetchInFunction(const NodeDef &node, const FunctionLibraryDefinition &flib) { auto f_attr_it = node.attr().find("f"); if (f_attr_it == node.attr().end()) return false; const FunctionDef *func = flib.Find(f_attr_it->second.func().name()); if (func == nullptr) { return false; } for (int i = 0; i < func->node_def_size(); i++) { NodeDef node_in_func = func->node_def(i); if (tensorflow::data::MatchesAnyVersion( kPrefetchDatasetOpName, node_in_func.op())) { return true; } } return false; } bool IsInterleaveNode(const NodeDef &node) { return (node.op() == kInterleaveDatasetOpName); } } Status OptimizeWithInjectInterleavePrefetch(const GrapplerItem &item, GraphDef *output) { SeqInterleavePrefetch optimizer; return optimizer.Optimize(nullptr, item, output); } class SeqInterleavePrefetchParameterizedTest : public ::testing::TestWithParam<bool> {}; TEST_P(SeqInterleavePrefetchParameterizedTest, ParallelInterleaveHasConditionalInjection) { GrapplerItem item; bool deterministic = GetParam(); item.graph = ParallelInterleaveCase(deterministic); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectInterleavePrefetch(item, &output)); FunctionLibraryDefinition lib_def(OpRegistry::Global(), output.library()); const std::string &parallel_interleave_fdef_name = "parallel_interleave_fdef"; const std::string &interleave_fdef_name = absl::StrCat( kSeqInterleavePrefetchRewritePrefix, parallel_interleave_fdef_name); if (deterministic) { EXPECT_TRUE( !graph_utils::ContainsGraphNodeWithName("parallel_interleave", output)); EXPECT_TRUE(!graph_utils::ContainsNodeWithOp( kParallelInterleaveDatasetOpName, output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp(kInterleaveDatasetOpName, output)); for (auto node : output.node()) { if (!IsInterleaveNode(node)) continue; EXPECT_TRUE(PrefetchInFunction(node, lib_def)); } const FunctionDef *parallel_interleave_fdef = lib_def.Find(parallel_interleave_fdef_name); const FunctionDef *interleave_fdef = lib_def.Find(interleave_fdef_name); EXPECT_EQ(parallel_interleave_fdef, nullptr); EXPECT_NE(interleave_fdef, nullptr); EXPECT_EQ(lib_def.ListFunctionNames().at(0), interleave_fdef_name); EXPECT_TRUE(function_utils::FindFunctionNodeWithOp(kPrefetchDatasetOpName, *interleave_fdef)); } else { EXPECT_TRUE(graph_utils::ContainsNodeWithOp( kParallelInterleaveDatasetOpName, output)); EXPECT_TRUE( !graph_utils::ContainsNodeWithOp(kInterleaveDatasetOpName, output)); EXPECT_TRUE( graph_utils::ContainsGraphNodeWithName("parallel_interleave", output)); EXPECT_NE(lib_def.Find(parallel_interleave_fdef_name), nullptr); } EXPECT_EQ(lib_def.num_functions(), 1); } TEST_P(SeqInterleavePrefetchParameterizedTest, MultipleParallelInterleavesHaveConditionalInjection) { GrapplerItem item; bool deterministic = GetParam(); item.graph = MultipleParallelInterleaveCase(deterministic); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectInterleavePrefetch(item, &output)); FunctionLibraryDefinition lib_def(OpRegistry::Global(), output.library()); if (deterministic) { EXPECT_TRUE(!graph_utils::ContainsNodeWithOp( kParallelInterleaveDatasetOpName, output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp(kInterleaveDatasetOpName, output)); for (int i = 1; i <= 3; ++i) { EXPECT_TRUE(!graph_utils::ContainsGraphNodeWithName( absl::StrCat("parallel_interleave_", std::to_string(i)), output)); } for (auto node : output.node()) { if (!IsInterleaveNode(node)) continue; EXPECT_TRUE(PrefetchInFunction(node, lib_def)); } } else { EXPECT_TRUE(graph_utils::ContainsNodeWithOp( kParallelInterleaveDatasetOpName, output)); EXPECT_TRUE( !graph_utils::ContainsNodeWithOp(kInterleaveDatasetOpName, output)); for (int i = 1; i <= 3; ++i) { EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName( absl::StrCat("parallel_interleave_", std::to_string(i)), output)); } } } TEST_P(SeqInterleavePrefetchParameterizedTest, SequentialInterleaveHasNoInjection) { GrapplerItem item; item.graph = InterleaveCase(GetParam()); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectInterleavePrefetch(item, &output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp(kInterleaveDatasetOpName, output)); EXPECT_TRUE( graph_utils::ContainsGraphNodeWithName("sequential_interleave", output)); FunctionLibraryDefinition lib_def(OpRegistry::Global(), output.library()); for (auto node : output.node()) { if (!IsInterleaveNode(node)) continue; EXPECT_FALSE(PrefetchInFunction(node, lib_def)); } } INSTANTIATE_TEST_SUITE_P(Determinism, SeqInterleavePrefetchParameterizedTest, ::testing::Values(false, true)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/seq_interleave_prefetch_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f6be64f7-9c91-427c-bf2e-79578886c590
cpp
tensorflow/tensorflow
remove_compression_map
tensorflow/core/grappler/optimizers/data/remove_compression_map.cc
tensorflow/core/grappler/optimizers/data/remove_compression_map_test.cc
#include "tensorflow/core/grappler/optimizers/data/remove_compression_map.h" #include <string> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace grappler { namespace { absl::StatusOr<std::string> GetCompressionFunctionName(const GraphDef& graph) { for (const auto& function : graph.library().function()) { for (const auto& node : function.node_def()) { if (node.op() == "CompressElement") { return function.signature().name(); } } } return errors::Internal("Compression function not found."); } absl::StatusOr<NodeDef> GetCompressionMapNode(const GraphDef& graph) { TF_ASSIGN_OR_RETURN(std::string compression_function_name, GetCompressionFunctionName(graph)); for (const auto& node : graph.node()) { if (node.op() != "ParallelMapDatasetV2") { continue; } if (auto it = node.attr().find("f"); it != node.attr().end() && it->second.has_func() && it->second.func().name() == compression_function_name) { return node; } } return errors::Internal("Compression map node not found."); } } Status RemoveCompressionMap::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; TF_ASSIGN_OR_RETURN(NodeDef compression_map_node, GetCompressionMapNode(*output)); MutableGraphView graph(output); for (const auto& compression_map_output : graph.GetFanout(graph.GetOutputPort(compression_map_node.name(), 0))) { compression_map_output.node->clear_input(); compression_map_output.node->add_input(compression_map_node.input().Get(0)); ++stats->num_changes; } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(RemoveCompressionMap, "remove_compression_map"); } }
#include "tensorflow/core/grappler/optimizers/data/remove_compression_map.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/platform/status_matchers.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace grappler { namespace { using ::testing::HasSubstr; TEST(RemoveCompressionMap, Success) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("Const/_0", "Const", {}, {{"dtype", DT_INT64}, {"value", 0}}), NDef("Const/_1", "Const", {}, {{"dtype", DT_INT64}, {"value", 10}}), NDef("Const/_2", "Const", {}, {{"dtype", DT_INT64}, {"value", 1}}), NDef("RangeDataset/_3", "RangeDataset", {"Const/_0", "Const/_1", "Const/_2"}, {}), NDef("Const/_4", "Const", {}, {{"dtype", DT_INT64}, {"value", -1}}), graph_tests_utils::MakeParallelMapV2Node( "ParallelMapDatasetV2/_5", "RangeDataset/_3", "Const/_4", "__inference_Dataset_map_lambda_10", "default", false), NDef("dataset", "_Retval", {"ParallelMapDatasetV2/_5"}, {{"T", DT_VARIANT}}), NDef("Sink", "Identity", {"ParallelMapDatasetV2/_5"}, {{"T", DT_VARIANT}})}, {FunctionDefHelper::Create( "__inference_Dataset_map_lambda_10", {"args_0: int64"}, {"identity: variant"}, {}, { {{"CompressElement"}, "CompressElement", {"args_0"}, {{"input_types", DT_INT64}}}, {{"Identity"}, "Identity", {"CompressElement:compressed:0"}, {{"T", DT_VARIANT}}}, }, {})}); RemoveCompressionMap optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int index = graph_utils::FindGraphNodeWithName("dataset", output); EXPECT_EQ(output.node(index).input(0), "RangeDataset/_3"); } TEST(RemoveCompressionMap, FailureNoMap) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef({NDef("Const/_0", "Const", {}, {{"dtype", DT_INT64}, {"value", 0}}), NDef("Const/_1", "Const", {}, {{"dtype", DT_INT64}, {"value", 10}}), NDef("Const/_2", "Const", {}, {{"dtype", DT_INT64}, {"value", 1}}), NDef("RangeDataset/_3", "RangeDataset", {"Const/_0", "Const/_1", "Const/_2"}, {}), NDef("dataset", "_Retval", {"RangeDataset/_3"}, {{"T", DT_VARIANT}}), NDef("Sink", "Identity", {"RangeDataset/_3"}, {{"T", DT_VARIANT}})}); RemoveCompressionMap optimizer; GraphDef output; ASSERT_THAT(optimizer.Optimize(nullptr, item, &output), testing::StatusIs(error::INTERNAL, HasSubstr("Compression function not found."))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/remove_compression_map.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/remove_compression_map_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
007ea024-5d57-428a-86ad-a1f23ced3e5b
cpp
tensorflow/tensorflow
make_deterministic
tensorflow/core/grappler/optimizers/data/make_deterministic.cc
tensorflow/core/grappler/optimizers/data/make_deterministic_test.cc
#include "tensorflow/core/grappler/optimizers/data/make_deterministic.h" #include <algorithm> #include <utility> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/optimizers/data/split_utils.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace { constexpr char kInterleaveOp[] = "InterleaveDataset"; constexpr char kParallelInterleaveOp[] = "ParallelInterleaveDataset"; constexpr char kLegacyParallelInterleaveOp[] = "LegacyParallelInterleaveDatasetV2"; constexpr char kMapOp[] = "MapDataset"; constexpr char kParallelMapOp[] = "ParallelMapDataset"; constexpr char kParallelMapOpV2[] = "ParallelMapDatasetV2"; constexpr char kMapAndBatchOp[] = "MapAndBatchDataset"; constexpr char kBatchOp[] = "BatchDataset"; constexpr char kBatchV2Op[] = "BatchDatasetV2"; constexpr char kParallelBatchOp[] = "ParallelBatchDataset"; constexpr char kPrefetchOp[] = "PrefetchDataset"; constexpr std::array<const char*, 9> kDeterministicStatefulOps = { "TextLineDataset", "FixedLengthRecordDataset", "TFRecordDataset", "TensorSliceDataset", "RangeDataset", "SSTableDataset", "RecordIODataset", "Print", "Assert"}; constexpr std::array<const char*, 13> kDeterministicStatefulOpsWhenAsync = { "RandomUniform", "RandomUniformInt", "RandomStandardNormal", "ParameterizedTruncatedNormal", "TruncatedNormal", "RandomShuffle", "Multinomial", "RandomGamma", "RandomGammaGrad", "RandomPoisson", "RandomCrop", "SampleDistortedBoundingBox", "SampleDistortedBoundingBoxV2"}; bool IsDeterministicWhenRunInParallel(const std::string& stateful_op) { for (auto op_in_array : kDeterministicStatefulOps) { if (data::MatchesAnyVersion(op_in_array, stateful_op)) { return true; } } return false; } bool IsDeterministicWhenRunAsynchronously(const std::string& stateful_op) { for (auto op_in_array : kDeterministicStatefulOps) { if (data::MatchesAnyVersion(op_in_array, stateful_op)) { return true; } } for (auto op_in_array : kDeterministicStatefulOpsWhenAsync) { if (data::MatchesAnyVersion(op_in_array, stateful_op)) { return true; } } return false; } bool IsParallelInterleave(const std::string& op) { return data::MatchesAnyVersion(kParallelInterleaveOp, op) || op == kLegacyParallelInterleaveOp; } bool IsParallelMap(const std::string& op) { return data::MatchesAnyVersion(kParallelMapOp, op); } bool IsParallelBatch(const std::string& op) { return data::MatchesAnyVersion(kParallelBatchOp, op); } bool IsMapAndBatch(const std::string& op) { return data::MatchesAnyVersion(kMapAndBatchOp, op); } bool IsPrefetch(const std::string& op) { return data::MatchesAnyVersion(kPrefetchOp, op); } bool IntroducesFunctionParallelism(const std::string& op) { return IsParallelInterleave(op) || IsParallelMap(op) || IsMapAndBatch(op); } bool IntroducesAsynchrony(const std::string& op) { return IntroducesFunctionParallelism(op) || IsPrefetch(op) || IsParallelBatch(op); } absl::flat_hash_map<absl::string_view, const NodeDef*> NameToNode( const FunctionDef& function) { absl::flat_hash_map<absl::string_view, const NodeDef*> name_to_node; for (const NodeDef& node : function.node_def()) { name_to_node.insert({node.name(), &node}); } return name_to_node; } NodeDef* GetMutableNode(const string& node_name, MutableGraphView* graph) { int index = graph_utils::FindGraphNodeWithName(node_name, *graph->graph()); DCHECK_NE(index, -1) << "Failed to find node " << node_name << " in the optimized graph."; return graph->graph()->mutable_node(index); } Status ConvertMapOrInterleave(const string& node_name, MutableGraphView* graph) { NodeDef* node = GetMutableNode(node_name, graph); auto Targuments = node->attr().find("Targuments"); if (Targuments == node->attr().end()) { return errors::Internal("Failed to find Targuments attribute for node ", node_name); } int num_inputs_after_rewrite; if (IsParallelInterleave(node->op())) { node->set_op(kInterleaveOp); num_inputs_after_rewrite = 3 + Targuments->second.list().type_size(); } else { DCHECK(IsParallelMap(node->op())); node->set_op(kMapOp); num_inputs_after_rewrite = 1 + Targuments->second.list().type_size(); } int inputs_processed = 0; for (int i = 0; i < node->input_size(); i++) { std::string input = node->input(i); if (IsControlInput(input)) { continue; } if (inputs_processed >= num_inputs_after_rewrite) { node->set_input(i, absl::StrCat("^", input)); } inputs_processed++; } if (inputs_processed < num_inputs_after_rewrite) { return errors::Internal("Found only ", inputs_processed, " inputs to node ", node_name, ", but expected to find at least ", num_inputs_after_rewrite); } node->mutable_attr()->erase("deterministic"); node->mutable_attr()->erase("sloppy"); return absl::OkStatus(); } absl::flat_hash_set<absl::string_view> GetAllTransitiveDependencies( const FunctionDef& function_def, const absl::flat_hash_set<absl::string_view>& nodes) { std::vector<absl::string_view> nodes_to_process; std::copy(nodes.begin(), nodes.end(), std::back_inserter(nodes_to_process)); absl::flat_hash_map<absl::string_view, const NodeDef*> name_to_node = NameToNode(function_def); absl::flat_hash_set<absl::string_view> dependencies; while (!nodes_to_process.empty()) { absl::string_view node_name = nodes_to_process.back(); nodes_to_process.pop_back(); if (dependencies.contains(node_name)) { continue; } dependencies.insert(node_name); auto iter = name_to_node.find(node_name); if (iter == name_to_node.end()) { continue; } for (absl::string_view inp : iter->second->input()) { absl::string_view inp_node = inp.substr(0, inp.find(':')); if (inp_node.at(0) == '^') { inp_node = inp_node.substr(1); } if (name_to_node.contains(inp_node)) { nodes_to_process.push_back(inp_node); } } } return dependencies; } Status SplitMap( const FunctionLibraryDefinition& library, const string& map_node_name, MutableGraphView* graph, const absl::flat_hash_set<absl::string_view>& nondeterministic_nodes) { NodeDef* map_node = GetMutableNode(map_node_name, graph); NameAttrList func = map_node->attr().at("f").func(); const FunctionDef* function_def = library.Find(func.name()); if (!function_def) { return errors::Internal("Could not look up function ", func.name(), " in FunctionLibraryDefinition"); } absl::flat_hash_set<absl::string_view> nodes_to_move = GetAllTransitiveDependencies(*function_def, nondeterministic_nodes); VLOG(2) << "Will move nodes to nonparallel function: " << absl::StrJoin(nodes_to_move, ", "); int64_t num_captured_arguments = map_node->attr().find("Targuments")->second.list().type_size(); TF_ASSIGN_OR_RETURN( split_utils::SplitResults split_results, split_utils::SplitFunction(*function_def, nodes_to_move, num_captured_arguments, library)); if (split_results.first_function_output_types.empty()) { return errors::Unimplemented( "The case where the first function has no outputs is unimplemented."); } bool is_map_and_batch = map_node->op() == kMapAndBatchOp; NodeDef* first_map_node_ptr; { NodeDef first_map_node; graph_utils::SetUniqueGraphNodeName( strings::StrCat("make_deterministic_sequential_map/", map_node->name()), graph->graph(), &first_map_node); first_map_node.set_op(kMapOp); int num_control_deps = NumControlInputs(*map_node); int num_extra_inputs = is_map_and_batch ? 3 : 1; int control_deps_index = map_node->input_size() - num_control_deps; int extra_inputs_index = control_deps_index - num_extra_inputs; for (int i = 0; i < extra_inputs_index; i++) { DCHECK(!IsControlInput(map_node->input(i))); first_map_node.add_input(map_node->input(i)); } for (int i = extra_inputs_index; i < control_deps_index; i++) { DCHECK(!IsControlInput(map_node->input(i))); first_map_node.add_input(absl::StrCat("^", map_node->input(i))); } for (int i = control_deps_index; i < map_node->input_size(); i++) { DCHECK(IsControlInput(map_node->input(i))); first_map_node.add_input(map_node->input(i)); } NameAttrList* name_attr_list = (*first_map_node.mutable_attr())["f"].mutable_func(); name_attr_list->set_name(split_results.first_function.signature().name()); graph_utils::CopyAttribute("Targuments", *map_node, &first_map_node); for (auto key : {"use_inter_op_parallelism", "preserve_cardinality"}) { if (gtl::FindOrNull(map_node->attr(), key)) { graph_utils::CopyAttribute(key, *map_node, &first_map_node); } } AddNodeAttr("output_types", split_results.first_function_output_types, &first_map_node); TensorShapeProto unknown_shape; unknown_shape.set_unknown_rank(true); std::vector<TensorShapeProto> output_shapes( split_results.first_function_output_types.size(), unknown_shape); AddNodeAttr("output_shapes", output_shapes, &first_map_node); first_map_node_ptr = graph->AddNode(std::move(first_map_node)); } NodeDef* second_map_node_ptr; { NodeDef second_map_node; string node_name = map_node->op() == kMapAndBatchOp ? "map_and_batch" : "parallel_map"; graph_utils::SetUniqueGraphNodeName( strings::StrCat("make_deterministic_parallel_", node_name, "/", map_node->name()), graph->graph(), &second_map_node); second_map_node.set_op(map_node->op()); second_map_node.add_input(first_map_node_ptr->name()); for (int i = 1; i < map_node->input_size(); i++) { second_map_node.add_input(map_node->input(i)); } NameAttrList* name_attr_list = (*second_map_node.mutable_attr())["f"].mutable_func(); name_attr_list->set_name(split_results.second_function.signature().name()); graph_utils::CopyAttribute("Targuments", *map_node, &second_map_node); graph_utils::CopyAttribute("output_types", *map_node, &second_map_node); graph_utils::CopyAttribute("output_shapes", *map_node, &second_map_node); if (!is_map_and_batch) { AddNodeAttr("deterministic", "true", &second_map_node); } for (auto key : {"use_inter_op_parallelism", "preserve_cardinality"}) { if (gtl::FindOrNull(map_node->attr(), key)) { graph_utils::CopyAttribute(key, *map_node, &second_map_node); } } second_map_node_ptr = graph->AddNode(std::move(second_map_node)); } TF_RETURN_IF_ERROR( graph->UpdateFanouts(map_node->name(), second_map_node_ptr->name())); *graph->graph()->mutable_library()->mutable_function()->Add() = split_results.first_function; *graph->graph()->mutable_library()->mutable_function()->Add() = split_results.second_function; return absl::OkStatus(); } Status ConvertBatch(const string& node_name, MutableGraphView* graph) { NodeDef* node = GetMutableNode(node_name, graph); node->set_op(kBatchV2Op); std::string num_parallel_calls_input = node->input(2); node->set_input(2, node->input(3)); node->set_input(3, absl::StrCat("^", num_parallel_calls_input)); node->mutable_attr()->erase("deterministic"); return absl::OkStatus(); } Status ConvertMapAndBatch(const string& node_name, MutableGraphView* graph) { int index = graph_utils::FindGraphNodeWithName(node_name, *graph->graph()); DCHECK_NE(index, -1) << "Failed to find node " << node_name << " in the optimized graph."; const NodeDef& orig_node = graph->graph()->node(index); auto Targuments = orig_node.attr().find("Targuments"); if (Targuments == orig_node.attr().end()) { return errors::Internal("Failed to find Targuments attribute for node ", node_name); } NodeDef new_map_node; new_map_node.set_op(kMapOp); graph_utils::SetUniqueGraphNodeName(kMapOp, graph->graph(), &new_map_node); int num_map_inputs = 1 + Targuments->second.list().type_size(); for (int i = 0; i < num_map_inputs; i++) { new_map_node.add_input(orig_node.input(i)); } for (int i = num_map_inputs; i < orig_node.input_size(); i++) { if (IsControlInput(orig_node.input(i))) { new_map_node.add_input(orig_node.input(i)); } else { new_map_node.add_input(absl::StrCat("^", orig_node.input(i))); } } for (auto key : {"f", "Targuments", "output_types"}) { graph_utils::CopyAttribute(key, orig_node, &new_map_node); } for (auto key : {"preserve_cardinality"}) { if (gtl::FindOrNull(new_map_node.attr(), key)) { graph_utils::CopyAttribute(key, orig_node, &new_map_node); } } auto orig_output_shapes = orig_node.attr().find("output_shapes"); if (orig_output_shapes == orig_node.attr().end()) { return errors::Internal("Failed to find output_shapes attribute for node ", node_name); } AttrValue& map_output_shapes = (*new_map_node.mutable_attr())["output_shapes"]; for (const TensorShapeProto& orig_shape : orig_output_shapes->second.list().shape()) { TensorShapeProto* new_shape = map_output_shapes.mutable_list()->add_shape(); if (orig_shape.unknown_rank()) { new_shape->set_unknown_rank(true); } else if (orig_shape.dim_size() == 0) { return errors::Internal( "Output shape of MapAndBatch node cannot be scalar"); } else { for (int i = 1; i < orig_shape.dim_size(); i++) { *new_shape->add_dim() = orig_shape.dim(i); } } } NodeDef new_batch_node; new_batch_node.set_op(kBatchV2Op); graph_utils::SetUniqueGraphNodeName(kBatchOp, graph->graph(), &new_batch_node); new_batch_node.add_input(new_map_node.name()); new_batch_node.add_input(orig_node.input(num_map_inputs)); new_batch_node.add_input( orig_node.input(num_map_inputs + 2)); graph_utils::CopyShapesAndTypesAttrs(orig_node, &new_batch_node); graph->AddNode(std::move(new_map_node)); NodeDef* graph_batch_node = graph->AddNode(std::move(new_batch_node)); TF_RETURN_IF_ERROR( graph->UpdateFanouts(orig_node.name(), graph_batch_node->name())); return absl::OkStatus(); } Status ConvertPrefetch(const string& node_name, MutableGraphView* graph) { NodeDef* node = GetMutableNode(node_name, graph); constexpr int buffer_size_index = 1; node->add_input(absl::StrCat("^", node->input(buffer_size_index))); NodeDef* tmp = graph_utils::AddScalarConstNode<int64_t>(0, graph); node->set_input(buffer_size_index, tmp->name()); return absl::OkStatus(); } enum class NondeterminismType { PARALLELISM, ASYNCHRONY }; bool IsDeterministicStatefulOp(NondeterminismType type, const std::string& stateful_op) { return type == NondeterminismType::PARALLELISM ? IsDeterministicWhenRunInParallel(stateful_op) : IsDeterministicWhenRunAsynchronously(stateful_op); } bool FunctionNodeMayIntroduceNondeterminism( const FunctionLibraryDefinition& library, const NodeDef& node_def, NondeterminismType nondeterminism_type, absl::flat_hash_set<std::string>* functions_processed); bool FunctionMayIntroduceNondeterminism( const FunctionLibraryDefinition& library, const std::string& function_name, NondeterminismType nondeterminism_type, absl::flat_hash_set<std::string>* functions_processed, absl::flat_hash_set<absl::string_view>* nondeterministic_nodes) { if (functions_processed->contains(function_name)) { return false; } functions_processed->insert(function_name); const FunctionDef* function_def = library.Find(function_name); if (!function_def) { VLOG(2) << "Could not look up function " << function_name << " in FunctionLibraryDefinition, so rewriting op to be safe"; return true; } bool found = false; for (const NodeDef& node_def : function_def->node_def()) { bool nondeterministic = FunctionNodeMayIntroduceNondeterminism( library, node_def, nondeterminism_type, functions_processed); if (nondeterministic) { if (nondeterministic_nodes) { nondeterministic_nodes->insert(node_def.name()); found = true; } else { return true; } } } return found; } bool FunctionMayIntroduceNondeterminism( const FunctionLibraryDefinition& library, const std::string& function_name, NondeterminismType nondeterminism_type) { absl::flat_hash_set<string> functions_processed; return FunctionMayIntroduceNondeterminism(library, function_name, nondeterminism_type, &functions_processed, nullptr); } bool FunctionNodeMayIntroduceNondeterminism( const FunctionLibraryDefinition& library, const NodeDef& node_def, NondeterminismType nondeterminism_type, absl::flat_hash_set<std::string>* functions_processed) { const OpRegistrationData* op_reg_data = nullptr; Status s = library.LookUp(node_def.op(), &op_reg_data); if (!s.ok()) { VLOG(2) << "Could not look up op " << node_def.op() << " in FunctionLibraryDefinition, so rewriting op to be safe"; return true; } bool is_function_op = op_reg_data->is_function_op; bool is_stateful = false; if (!is_function_op) { const OpDef* op_def; s = OpRegistry::Global()->LookUpOpDef(node_def.op(), &op_def); if (!s.ok()) { VLOG(2) << "Could not look up op " << node_def.op() << " in OpRegistry, so rewriting op to be safe"; return true; } is_stateful = op_def->is_stateful(); } if (is_stateful && !IsStatefulPartitionedCall((node_def)) && !IsIf(node_def) && !IsWhile(node_def) && !IsDeterministicStatefulOp(nondeterminism_type, node_def.op())) { VLOG(2) << "Will rewrite due to op: " << node_def.op(); return true; } std::vector<std::string> attr_func_names; for (const auto& attr : node_def.attr()) { if (attr.second.has_func()) { attr_func_names.push_back(attr.second.func().name()); } for (const auto& name_attr_list : attr.second.list().func()) { attr_func_names.push_back(name_attr_list.name()); } } if (is_function_op) { attr_func_names.push_back(node_def.op()); } for (const std::string& inner_function_name : attr_func_names) { if (FunctionMayIntroduceNondeterminism(library, inner_function_name, nondeterminism_type, functions_processed, nullptr)) { return true; } } return false; } bool NodeMayIntroduceNondeterminismWhenAsync( const FunctionLibraryDefinition& library, const NodeDef& node) { const OpDef* op_def; Status s = OpRegistry::Global()->LookUpOpDef(node.op(), &op_def); if (s.code() == error::NOT_FOUND) { return false; } else if (!s.ok()) { return true; } if (data::DatasetOpKernel::IsDatasetOp(*op_def)) { std::vector<std::string> attr_func_names; for (const auto& attr : node.attr()) { if (attr.second.has_func()) { attr_func_names.push_back(attr.second.func().name()); } for (const auto& name_attr_list : attr.second.list().func()) { attr_func_names.push_back(name_attr_list.name()); } } for (const std::string& inner_function_name : attr_func_names) { if (FunctionMayIntroduceNondeterminism(library, inner_function_name, NondeterminismType::ASYNCHRONY)) { return true; } } } return false; } bool GraphMayHaveAsyncNondeterminism(const FunctionLibraryDefinition& library, const GraphDef& graph) { for (const NodeDef& node : graph.node()) { if (NodeMayIntroduceNondeterminismWhenAsync(library, node)) { return true; } } for (const string& function_name : library.ListFunctionNames()) { const FunctionDef* function_def = library.Find(function_name); CHECK(function_def); for (const NodeDef& node : function_def->node_def()) { if (NodeMayIntroduceNondeterminismWhenAsync(library, node)) { return true; } } } return false; } } Status MakeDeterministic::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); FunctionLibraryDefinition function_library(OpRegistry::Global(), item.graph.library()); absl::flat_hash_set<string> nodes_to_delete; bool remove_async_nodes = GraphMayHaveAsyncNondeterminism(function_library, item.graph); for (const NodeDef& node : item.graph.node()) { if (graph_utils::HasSloppyAttr(node.op())) { NodeDef* mutable_node = GetMutableNode(node.name(), &graph); (*mutable_node->mutable_attr())["sloppy"].set_b(false); stats->num_changes++; } if (graph_utils::HasDeterministicAttr(node.op())) { NodeDef* mutable_node = GetMutableNode(node.name(), &graph); (*mutable_node->mutable_attr())["deterministic"].set_s("true"); stats->num_changes++; } bool rewrite_due_to_async = IntroducesAsynchrony(node.op()) && remove_async_nodes; absl::flat_hash_set<std::string> functions_processed; absl::flat_hash_set<absl::string_view> nondeterministic_nodes; bool rewrite_due_to_parallelism = IntroducesFunctionParallelism(node.op()) && FunctionMayIntroduceNondeterminism( function_library, node.attr().at("f").func().name(), NondeterminismType::PARALLELISM, &functions_processed, &nondeterministic_nodes); if (!rewrite_due_to_async && !rewrite_due_to_parallelism) { continue; } VLOG(1) << "Rewriting node " << node.name() << " (" << node.op() << ") because it introduces nondeterminism through " << (rewrite_due_to_async ? "asynchrony" : "parallelism"); bool maybe_can_split = !rewrite_due_to_async && (node.op() == kParallelMapOpV2 || IsMapAndBatch(node.op())); if (maybe_can_split) { Status s = SplitMap(function_library, node.name(), &graph, nondeterministic_nodes); if (s.ok()) { VLOG(1) << "Split node " << node.name() << " (" << node.op() << ") into two map nodes: a nonparallel version and a " "parallel version."; nodes_to_delete.insert(node.name()); continue; } else if (s.code() == error::UNIMPLEMENTED) { VLOG(1) << "Could not move stateful ops to their own function, so will " "convert node " << node.name() << " to a nonparallel version instead. Reason: " << s; } else { return s; } } if (IsPrefetch(node.op())) { TF_RETURN_IF_ERROR(ConvertPrefetch(node.name(), &graph)); } else if (IsMapAndBatch(node.op())) { TF_RETURN_IF_ERROR(ConvertMapAndBatch(node.name(), &graph)); nodes_to_delete.insert(node.name()); } else if (IsParallelBatch(node.op())) { TF_RETURN_IF_ERROR(ConvertBatch(node.name(), &graph)); } else { DCHECK(IsParallelInterleave(node.op()) || IsParallelMap(node.op())); TF_RETURN_IF_ERROR(ConvertMapOrInterleave(node.name(), &graph)); } stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(MakeDeterministic, "make_deterministic"); } }
#include "tensorflow/core/grappler/optimizers/data/make_deterministic.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { std::vector<string> GetNodeNames(const FunctionDef& func) { std::vector<string> node_names; for (const NodeDef& node : func.node_def()) { node_names.push_back(node.name()); } return node_names; } class SplitMapTest : public ::testing::TestWithParam<std::tuple<bool, bool>> {}; TEST_P(SplitMapTest, SplitMapFunction) { using test::function::NDef; GrapplerItem item; bool deterministic, rewrite_map_and_batch; std::tie(deterministic, rewrite_map_and_batch) = GetParam(); if (deterministic && rewrite_map_and_batch) { LOG(INFO) << "Skipping test because MapAndBatch does not have " "'deterministic' attribute"; return; } FunctionDef orig_func_def = FunctionDefHelper::Create( "MyFunction", {"a1: float", "a2: float", "a3: double"}, {"o1: float", "o2: double"}, {}, { {{"i1"}, "Identity", {"a2"}, {{"T", DT_FLOAT}}}, {{"i2"}, "Identity", {"i1:output"}, {{"T", DT_FLOAT}}}, {{"stateful"}, "SampleDistortedBoundingBox", {"a1", "i2:output"}, {{"T", DT_FLOAT}}}, {{"i3"}, "Identity", {"stateful:bboxes:0"}, {{"T", DT_FLOAT}}}, {{"i4"}, "Identity", {"a3"}, {{"T", DT_DOUBLE}}}, }, {{"o1", "i3:output"}, {"o2", "i4:output"}}); NodeDef orig_map_node_def; if (rewrite_map_and_batch) { orig_map_node_def = graph_tests_utils::MakeMapAndBatchNode( "map", "range", "batch_size", "num_parallel_calls", "drop_remainder", "MyFunction"); } else { orig_map_node_def = graph_tests_utils::MakeParallelMapV2Node( "map", "range", "num_parallel_calls", "MyFunction", deterministic ? "true" : "false", false); } orig_map_node_def.add_input("^start"); AttrValue* attr_val = &(*orig_map_node_def.mutable_attr())["Targuments"]; SetAttrValue(std::vector<DataType>{DT_DOUBLE}, attr_val); (*orig_map_node_def.mutable_attr())["preserve_cardinality"].set_b(true); attr_val = &(*orig_map_node_def.mutable_attr())["output_types"]; SetAttrValue(std::vector<DataType>{DT_FLOAT, DT_DOUBLE}, attr_val); attr_val = &(*orig_map_node_def.mutable_attr())["output_shapes"]; SetAttrValue(std::vector<TensorShape>{{1}, {1}}, attr_val); item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), orig_map_node_def}, {orig_func_def}); MakeDeterministic optimizer; GraphDef output; VLOG(1) << "GraphDef before optimization:\n" << item.graph.DebugString() << "\n\n"; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); VLOG(1) << "GraphDef after optimization:\n" << output.DebugString() << "\n\n"; int index = graph_utils::FindGraphNodeWithOp("MapDataset", output); ASSERT_GE(index, 0); NodeDef first_map_node_def = output.node(index); if (rewrite_map_and_batch) { ASSERT_THAT( first_map_node_def.input(), ::testing::ElementsAre("range", "^batch_size", "^num_parallel_calls", "^drop_remainder", "^start")); } else { ASSERT_THAT( first_map_node_def.input(), ::testing::ElementsAre("range", "^num_parallel_calls", "^start")); } std::vector<DataType> t_arguments; TF_ASSERT_OK(GetNodeAttr(first_map_node_def, "Targuments", &t_arguments)); ASSERT_THAT(t_arguments, ::testing::ElementsAre(DT_DOUBLE)); std::vector<DataType> output_types; TF_ASSERT_OK(GetNodeAttr(first_map_node_def, "output_types", &output_types)); ASSERT_THAT(output_types, ::testing::ElementsAre(DT_FLOAT)); std::vector<TensorShapeProto> output_shapes; TF_ASSERT_OK( GetNodeAttr(first_map_node_def, "output_shapes", &output_shapes)); for (const TensorShapeProto& shape : output_shapes) { ASSERT_TRUE(shape.unknown_rank()); } bool preserve_cardinality; TF_ASSERT_OK(GetNodeAttr(first_map_node_def, "preserve_cardinality", &preserve_cardinality)); ASSERT_TRUE(preserve_cardinality); NameAttrList f; TF_ASSERT_OK(GetNodeAttr(first_map_node_def, "f", &f)); ASSERT_EQ(f.attr_size(), 0); index = graph_utils::FindGraphFunctionWithName(f.name(), output.library()); CHECK_GE(index, 0); FunctionDef first_func = output.library().function(index); ASSERT_TRUE(first_func.signature().is_stateful()); ASSERT_THAT(GetNodeNames(first_func), ::testing::UnorderedElementsAre("i1", "i2", "stateful")); NodeDef second_map_node_def; if (rewrite_map_and_batch) { index = graph_utils::FindGraphNodeWithOp("MapAndBatchDataset", output); CHECK_GE(index, 0); second_map_node_def = output.node(index); ASSERT_THAT(second_map_node_def.input(), ::testing::ElementsAre(first_map_node_def.name(), "batch_size", "num_parallel_calls", "drop_remainder", "^start")); } else { index = graph_utils::FindGraphNodeWithOp("ParallelMapDatasetV2", output); CHECK_GE(index, 0); second_map_node_def = output.node(index); ASSERT_THAT(second_map_node_def.input(), ::testing::ElementsAre(first_map_node_def.name(), "num_parallel_calls", "^start")); ASSERT_EQ(second_map_node_def.attr().at("deterministic").s(), "true"); } t_arguments.clear(); TF_ASSERT_OK(GetNodeAttr(second_map_node_def, "Targuments", &t_arguments)); ASSERT_THAT(t_arguments, ::testing::ElementsAre(DT_DOUBLE)); output_types.clear(); TF_ASSERT_OK(GetNodeAttr(second_map_node_def, "output_types", &output_types)); ASSERT_THAT(output_types, ::testing::ElementsAre(DT_FLOAT, DT_DOUBLE)); output_shapes.clear(); TF_ASSERT_OK( GetNodeAttr(first_map_node_def, "output_shapes", &output_shapes)); for (const TensorShapeProto& shape : output_shapes) { ASSERT_EQ(shape.dim_size(), 0); } TF_ASSERT_OK(GetNodeAttr(first_map_node_def, "preserve_cardinality", &preserve_cardinality)); ASSERT_TRUE(preserve_cardinality); TF_ASSERT_OK(GetNodeAttr(second_map_node_def, "f", &f)); ASSERT_EQ(f.attr_size(), 0); index = graph_utils::FindGraphFunctionWithName(f.name(), output.library()); CHECK_GE(index, 0); FunctionDef second_func = output.library().function(index); ASSERT_THAT(GetNodeNames(second_func), ::testing::UnorderedElementsAre("i3", "i4")); } INSTANTIATE_TEST_SUITE_P(Test, SplitMapTest, ::testing::Combine(::testing::Bool(), ::testing::Bool())); FunctionDef OuterXTimesTwo() { return FunctionDefHelper::Define( "OuterXTimesTwo", {"x: float"}, {"y: float"}, {}, {{{"y"}, "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FunctionDefHelper::FunctionRef("XTimesTwo", {{"T", DT_FLOAT}})}}}}); } FunctionDef OuterRandomUniform() { return FunctionDefHelper::Define( "OuterRandomUniform", {"x: float"}, {"random_uniform: int64"}, {}, {{{"random_uniform"}, "StatefulPartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_INT64}}, {"f", FunctionDefHelper::FunctionRef("RandomUniformFn", {{"T", DT_FLOAT}})}}}}); } FunctionDef OuterReadResourceVariable() { return FunctionDefHelper::Define( "OuterReadResourceVariable", {"x: resource"}, {"y: float"}, {}, {{{"y"}, "StatefulPartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FunctionDefHelper::FunctionRef("ReadResourceVariable", {})}}}}); } class MakeDeterministicTest : public ::testing::TestWithParam<std::tuple<bool, bool>> {}; TEST_P(MakeDeterministicTest, NoRewriteInterleave) { using test::function::NDef; GrapplerItem item; bool nest, deterministic; std::tie(nest, deterministic) = GetParam(); std::string func_name = nest ? "OuterXTimesTwo" : "XTimesTwo"; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV2Node( "interleave", "range", "cycle_length", "block_length", "num_parallel_calls", func_name, !deterministic)}, {test::function::XTimesTwo(), OuterXTimesTwo()}); MakeDeterministic optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int index = graph_utils::FindGraphNodeWithName("interleave", output); ASSERT_GE(index, 0); NodeDef node_def = output.node(index); ASSERT_EQ(node_def.op(), "ParallelInterleaveDatasetV2"); ASSERT_EQ(node_def.attr().at("sloppy").b(), false); } TEST_P(MakeDeterministicTest, NoRewriteMap) { using test::function::NDef; GrapplerItem item; bool nest, deterministic; std::tie(nest, deterministic) = GetParam(); std::string func_name = nest ? "OuterXTimesTwo" : "XTimesTwo"; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapV2Node( "map", "range", "num_parallel_calls", func_name, deterministic ? "true" : "false", false)}, {test::function::XTimesTwo(), OuterXTimesTwo()}); MakeDeterministic optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int index = graph_utils::FindGraphNodeWithName("map", output); ASSERT_GE(index, 0); NodeDef node_def = output.node(index); ASSERT_EQ(node_def.op(), "ParallelMapDatasetV2"); ASSERT_EQ(node_def.attr().at("deterministic").s(), "true"); } TEST_P(MakeDeterministicTest, NoRewriteBatch) { using test::function::NDef; typedef FunctionDefHelper FDH; GrapplerItem item; bool nest, deterministic; std::tie(nest, deterministic) = GetParam(); std::string func_name = nest ? "OuterRandomUniform" : "RandomUniformFn"; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), graph_tests_utils::MakeMapNode("map", "range", func_name), graph_tests_utils::MakeParallelBatchNode( "batch", "map", "batch_size", "num_parallel_calls", "drop_remainder", deterministic ? "true" : "false")}, {test::function::RandomUniform(), OuterRandomUniform()}); MakeDeterministic optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int index = graph_utils::FindGraphNodeWithName("batch", output); ASSERT_GE(index, 0); NodeDef node_def = output.node(index); ASSERT_EQ(node_def.op(), "ParallelBatchDataset"); ASSERT_EQ(node_def.attr().at("deterministic").s(), "true"); } TEST_P(MakeDeterministicTest, NoRewritePrefetch) { using test::function::NDef; typedef FunctionDefHelper FDH; GrapplerItem item; bool nest, deterministic; std::tie(nest, deterministic) = GetParam(); std::string func_name = nest ? "OuterRandomUniform" : "RandomUniformFn"; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("buffer_size", "Const", {}, {{"value", Tensor(int64_t{1})}, {"dtype", DT_INT64}}), graph_tests_utils::MakeParallelMapV2Node( "map", "range", "num_parallel_calls", func_name, deterministic ? "true" : "false", false), graph_tests_utils::MakePrefetchNode("prefetch", "map", "buffer_size")}, {test::function::RandomUniform(), OuterRandomUniform()}); MakeDeterministic optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int index = graph_utils::FindGraphNodeWithName("prefetch", output); ASSERT_GE(index, 0); NodeDef node_def = output.node(index); ASSERT_EQ(node_def.op(), "PrefetchDataset"); ASSERT_EQ(node_def.input_size(), 2); ASSERT_THAT(node_def.input(0), ::testing::EndsWith("map")); ASSERT_EQ(node_def.input(1), "buffer_size"); NodeDef buffer_size = output.node(graph_utils::FindGraphNodeWithName("buffer_size", output)); EXPECT_EQ(buffer_size.attr().at("value").tensor().int64_val(0), 1); } TEST_P(MakeDeterministicTest, RewriteInterleave) { using test::function::NDef; typedef FunctionDefHelper FDH; GrapplerItem item; bool nest, deterministic; std::tie(nest, deterministic) = GetParam(); std::string func_name = nest ? "OuterRandomUniform" : "RandomUniformFn"; NodeDef interleave_node_def = graph_tests_utils::MakeParallelInterleaveV2Node( "interleave", "range", "cycle_length", "block_length", "num_parallel_calls", func_name, !deterministic); interleave_node_def.add_input("^start"); item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), interleave_node_def}, {test::function::RandomUniform(), OuterRandomUniform()}); MakeDeterministic optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int index = graph_utils::FindGraphNodeWithOp("InterleaveDataset", output); ASSERT_GE(index, 0); NodeDef node_def = output.node(index); ASSERT_EQ(node_def.input_size(), 5); ASSERT_EQ(node_def.input(0), "range"); ASSERT_EQ(node_def.input(1), "cycle_length"); ASSERT_EQ(node_def.input(2), "block_length"); ASSERT_EQ(node_def.input(3), "^num_parallel_calls"); ASSERT_EQ(node_def.input(4), "^start"); } enum CannotSplitReason { FUNC_HAS_ATTR, ASYNC_NONDETERMINISM }; class RewriteMapWithoutSplitTest : public ::testing::TestWithParam< std::tuple<bool, bool, CannotSplitReason>> {}; TEST_P(RewriteMapWithoutSplitTest, RewriteMapWithoutSplit) { using test::function::NDef; typedef FunctionDefHelper FDH; GrapplerItem item; bool nest, deterministic; CannotSplitReason reason; std::tie(nest, deterministic, reason) = GetParam(); FunctionDef func; FunctionDef outer_func; if (reason == FUNC_HAS_ATTR) { func = test::function::RandomUniform(); (*func.mutable_attr())["test_attr"].set_s("test_value"); outer_func = OuterRandomUniform(); (*outer_func.mutable_attr())["test_attr"].set_s("test_value"); } else { func = test::function::ReadResourceVariable(); outer_func = OuterReadResourceVariable(); } std::string func_name = nest ? outer_func.signature().name() : func.signature().name(); NodeDef map_node_def = graph_tests_utils::MakeParallelMapV2Node( "map", "range", "num_parallel_calls", func_name, deterministic ? "true" : "false", false); map_node_def.add_input("^start"); item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), map_node_def}, {func, outer_func}); VLOG(1) << "Orig graph: \n" << item.graph.DebugString() << "\n\n"; MakeDeterministic optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int index = graph_utils::FindGraphNodeWithOp("MapDataset", output); ASSERT_GE(index, 0); NodeDef node_def = output.node(index); ASSERT_EQ(node_def.input_size(), 3); ASSERT_EQ(node_def.input(0), "range"); ASSERT_EQ(node_def.input(1), "^num_parallel_calls"); ASSERT_EQ(node_def.input(2), "^start"); NameAttrList f; TF_ASSERT_OK(GetNodeAttr(node_def, "f", &f)); ASSERT_EQ(f.name(), func_name); ASSERT_FALSE(graph_utils::ContainsNodeWithOp("ParallelMapDatasetV2", output)); } TEST_P(MakeDeterministicTest, RewriteBatch) { using test::function::NDef; typedef FunctionDefHelper FDH; GrapplerItem item; bool nest, deterministic; std::tie(nest, deterministic) = GetParam(); std::string func_name = nest ? "OuterReadResourceVariable" : "ReadResourceVariable"; NodeDef batch_node_def = graph_tests_utils::MakeParallelBatchNode( "batch", "map", "batch_size", "num_parallel_calls", "drop_remainder", deterministic ? "true" : "false"); batch_node_def.add_input("^start"); item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), graph_tests_utils::MakeMapNode("map", "range", func_name), batch_node_def}, {test::function::ReadResourceVariable(), OuterReadResourceVariable()}); MakeDeterministic optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int index = graph_utils::FindGraphNodeWithOp("BatchDatasetV2", output); ASSERT_GE(index, 0); NodeDef node_def = output.node(index); ASSERT_EQ(node_def.input_size(), 5); ASSERT_EQ(node_def.input(0), "map"); ASSERT_EQ(node_def.input(1), "batch_size"); ASSERT_EQ(node_def.input(2), "drop_remainder"); ASSERT_EQ(node_def.input(3), "^num_parallel_calls"); ASSERT_EQ(node_def.input(4), "^start"); ASSERT_EQ(node_def.attr().count("deterministic"), 0); } TEST_P(MakeDeterministicTest, RewritePrefetch) { using test::function::NDef; typedef FunctionDefHelper FDH; GrapplerItem item; bool nest, deterministic; std::tie(nest, deterministic) = GetParam(); std::string func_name = nest ? "OuterReadResourceVariable" : "ReadResourceVariable"; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("buffer_size", "Const", {}, {{"value", Tensor(int64_t{1})}, {"dtype", DT_INT64}}), graph_tests_utils::MakeParallelMapV2Node( "map", "range", "num_parallel_calls", func_name, deterministic ? "true" : "false", false), graph_tests_utils::MakePrefetchNode("prefetch", "map", "buffer_size")}, {test::function::ReadResourceVariable(), OuterReadResourceVariable()}); MakeDeterministic optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int index = graph_utils::FindGraphNodeWithName("prefetch", output); ASSERT_GE(index, 0); NodeDef node_def = output.node(index); ASSERT_EQ(node_def.op(), "PrefetchDataset"); ASSERT_EQ(node_def.input_size(), 3); ASSERT_THAT(node_def.input(0), ::testing::EndsWith("map")); ASSERT_EQ(node_def.input(2), "^buffer_size"); NodeDef buffer_size = output.node( graph_utils::FindGraphNodeWithName(node_def.input(1), output)); EXPECT_EQ(buffer_size.attr().at("value").tensor().int64_val(0), 0); } INSTANTIATE_TEST_SUITE_P(Test, MakeDeterministicTest, ::testing::Combine(::testing::Bool(), ::testing::Bool())); INSTANTIATE_TEST_SUITE_P( Test, RewriteMapWithoutSplitTest, ::testing::Combine(::testing::Bool(), ::testing::Bool(), ::testing::Values(FUNC_HAS_ATTR, ASYNC_NONDETERMINISM))); TEST(NoRewriteMapAndBatchTest, NoRewriteMapAndBatch) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT64}}), NDef("num_parallel_calls", "Const", {}, {{"value", 2}, {"dtype", DT_INT64}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), graph_tests_utils::MakeMapAndBatchNode( "map_and_batch", "range", "batch_size", "num_parallel_calls", "drop_remainder", "XTimesTwo")}, {test::function::XTimesTwo()}); MakeDeterministic optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); int index = graph_utils::FindGraphNodeWithName("map_and_batch", output); ASSERT_GE(index, 0); NodeDef node_def = output.node(index); ASSERT_EQ(node_def.input_size(), 4); ASSERT_EQ(node_def.input(0), "range"); ASSERT_EQ(node_def.input(1), "batch_size"); ASSERT_EQ(node_def.input(2), "num_parallel_calls"); ASSERT_EQ(node_def.input(3), "drop_remainder"); } class RewriteMapAndBatchWithoutSplitTest : public ::testing::TestWithParam<std::tuple<bool, CannotSplitReason>> {}; TEST_P(RewriteMapAndBatchWithoutSplitTest, RewriteMapAndBatchWithoutSplit) { using test::function::NDef; GrapplerItem item; bool nest; CannotSplitReason reason; std::tie(nest, reason) = GetParam(); FunctionDef func; if (reason == FUNC_HAS_ATTR) { func = test::function::RandomUniform(); (*func.mutable_attr())["test_attr"].set_s("test_value"); } else { func = test::function::ReadResourceVariable(); } NodeDef map_and_batch_node_def = graph_tests_utils::MakeMapAndBatchNode( "map_and_batch", "range", "batch_size", "num_parallel_calls", "drop_remainder", func.signature().name()); SetAttrValue( absl::Span<const PartialTensorShape>{ {2}, {-1, 3, -1}, PartialTensorShape()}, &(*map_and_batch_node_def.mutable_attr())["output_shapes"]); item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT64}}), NDef("num_parallel_calls", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), map_and_batch_node_def}, {func}); VLOG(1) << "Orig graph: \n" << item.graph.DebugString() << "\n\n"; MakeDeterministic optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); ASSERT_FALSE(graph_utils::ContainsNodeWithOp("MapAndBatchDataset", output)); int index = graph_utils::FindGraphNodeWithOp("MapDataset", output); ASSERT_GE(index, 0); NodeDef map_node_def = output.node(index); ASSERT_EQ(map_node_def.input_size(), 4); ASSERT_EQ(map_node_def.input(0), "range"); ASSERT_EQ(map_node_def.input(1), "^batch_size"); ASSERT_EQ(map_node_def.input(2), "^num_parallel_calls"); ASSERT_EQ(map_node_def.input(3), "^drop_remainder"); ASSERT_TRUE(AreAttrValuesEqual(map_and_batch_node_def.attr().at("f"), map_node_def.attr().at("f"))); ASSERT_TRUE(AreAttrValuesEqual(map_and_batch_node_def.attr().at("Targuments"), map_node_def.attr().at("Targuments"))); ASSERT_TRUE( AreAttrValuesEqual(map_and_batch_node_def.attr().at("output_types"), map_node_def.attr().at("output_types"))); ASSERT_EQ(map_node_def.attr().at("output_shapes").list().shape_size(), 3); ASSERT_TRUE(PartialTensorShape({}).IsIdenticalTo( map_node_def.attr().at("output_shapes").list().shape(0))); ASSERT_TRUE(PartialTensorShape({3, -1}).IsIdenticalTo( map_node_def.attr().at("output_shapes").list().shape(1))); ASSERT_TRUE(PartialTensorShape().IsIdenticalTo( map_node_def.attr().at("output_shapes").list().shape(2))); index = graph_utils::FindGraphNodeWithOp("BatchDatasetV2", output); ASSERT_GE(index, 0); NodeDef batch_node_def = output.node(index); ASSERT_EQ(batch_node_def.input_size(), 3); ASSERT_EQ(batch_node_def.input(0), map_node_def.name()); ASSERT_EQ(batch_node_def.input(1), "batch_size"); ASSERT_EQ(batch_node_def.input(2), "drop_remainder"); ASSERT_TRUE( AreAttrValuesEqual(map_and_batch_node_def.attr().at("output_types"), batch_node_def.attr().at("output_types"))); ASSERT_TRUE( AreAttrValuesEqual(map_and_batch_node_def.attr().at("output_shapes"), batch_node_def.attr().at("output_shapes"))); } INSTANTIATE_TEST_SUITE_P( Test, RewriteMapAndBatchWithoutSplitTest, ::testing::Combine(::testing::Bool(), ::testing::Values(FUNC_HAS_ATTR, ASYNC_NONDETERMINISM))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/make_deterministic.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/make_deterministic_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
477f035e-6214-4586-947e-0ba30d6c6af9
cpp
tensorflow/tensorflow
replicate_on_split
tensorflow/core/grappler/optimizers/data/replicate_on_split.cc
tensorflow/core/grappler/optimizers/data/replicate_on_split_test.cc
#include "tensorflow/core/grappler/optimizers/data/replicate_on_split.h" #include "absl/log/log.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" namespace tensorflow { namespace grappler { Status ReplicateOnSplit::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { VLOG(1) << "Running replicate on split optimization"; *output = item.graph; MutableGraphView graph(output); for (NodeDef& node : *output->mutable_node()) { if (graph_utils::HasReplicateOnSplitAttr(node.op())) { (*node.mutable_attr())["replicate_on_split"].set_b(true); stats->num_changes++; } } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(ReplicateOnSplit, "replicate_on_split"); } }
#include "tensorflow/core/grappler/optimizers/data/replicate_on_split.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace tensorflow { namespace grappler { namespace { TEST(ReplicateOnSplit, TensorSliceDataset) { using test::function::NDef; GrapplerItem item; Tensor tensor = test::AsTensor<int32>({32, 32}); item.graph = test::function::GDef( {NDef("tensor", "Const", {}, {{"value", tensor}, {"dtype", DT_INT32}}), graph_tests_utils::MakeTensorSliceNode("tensor_slice_dataset", "tensor", false)}); ReplicateOnSplit optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE( graph_utils::ContainsGraphNodeWithName("tensor_slice_dataset", output)); int index = graph_utils::FindGraphNodeWithName("tensor_slice_dataset", output); EXPECT_TRUE(output.node(index).attr().at("replicate_on_split").b()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/replicate_on_split.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/replicate_on_split_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
33c87f73-931a-4cca-94c8-eb111cc28f6c
cpp
tensorflow/tensorflow
noop_elimination
tensorflow/core/grappler/optimizers/data/noop_elimination.cc
tensorflow/core/grappler/optimizers/data/noop_elimination_test.cc
#include "tensorflow/core/grappler/optimizers/data/noop_elimination.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kIdentity[] = "Identity"; bool IsTakeAll(const NodeDef& take_node, const MutableGraphView& graph) { if (take_node.op() != "TakeDataset") return false; const auto& count_node = *graph.GetNode(take_node.input(1)); if (count_node.op() != "Const") return false; const auto& tensor = count_node.attr().at("value").tensor(); if (tensor.int64_val_size()) return tensor.int64_val(0) < 0; return false; } bool IsConstNodeWithValue(const NodeDef& node, int value) { if (node.op() != "Const") return false; const auto& tensor = node.attr().at("value").tensor(); if (tensor.int64_val_size()) return tensor.int64_val(0) == value; return value == 0; } bool IsSkipNone(const NodeDef& skip_node, const MutableGraphView& graph) { if (skip_node.op() != "SkipDataset") return false; return IsConstNodeWithValue(*graph.GetNode(skip_node.input(1)), 0); } bool IsRepeatOne(const NodeDef& repeat_node, const MutableGraphView& graph) { if (repeat_node.op() != "RepeatDataset") return false; return IsConstNodeWithValue(*graph.GetNode(repeat_node.input(1)), 1); } bool IsShardOne(const NodeDef& shard_node, const MutableGraphView& graph) { if (shard_node.op() != "ShardDataset") return false; return IsConstNodeWithValue(*graph.GetNode(shard_node.input(1)), 1); } bool IsOutputIdentityOfInput(const FunctionDef& fdef, const string& output_arg, const string& input_arg) { if (!fdef.ret().contains(output_arg)) { LOG(WARNING) << "Malformed FunctionDef: ret dict does not contain output arg key."; return false; } const auto& ret_val = fdef.ret().at(output_arg); auto input = function_utils::FunctionDefTensorDesc(ret_val); while (function_utils::ContainsFunctionNodeWithName(input.node_name, fdef)) { int idx = function_utils::FindFunctionNodeWithName(input.node_name, fdef); const NodeDef& node = fdef.node_def(idx); if (node.op() != kIdentity) { return false; } input = function_utils::FunctionDefTensorDesc(node.input(0)); } return input.node_name == input_arg; } bool IsMapIdentity(const NodeDef& map_node, const MutableGraphView& graph, const FunctionLibraryDefinition& function_library) { if (map_node.op() != "MapDataset" && map_node.op() != "ParallelMapDataset" && map_node.op() != "ParallelMapDatasetV2") { return false; } if (map_node.attr().at("Targuments").list().type_size() != 0) return false; const FunctionDef* fdef = function_library.Find(map_node.attr().at("f").func().name()); if (function_utils::IsFunctionStateful(function_library, *fdef)) { return false; } const auto& sig = fdef->signature(); if (sig.input_arg_size() != sig.output_arg_size()) return false; for (int i = 0; i < sig.input_arg_size(); ++i) { if (!IsOutputIdentityOfInput(*fdef, sig.output_arg(i).name(), sig.input_arg(i).name())) { return false; } } return true; } bool IsNoOp(const NodeDef& node, const MutableGraphView& graph, const FunctionLibraryDefinition& function_library) { return IsTakeAll(node, graph) || IsSkipNone(node, graph) || IsRepeatOne(node, graph) || IsShardOne(node, graph) || IsMapIdentity(node, graph, function_library); } } Status NoOpElimination::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition function_library(OpRegistry::Global(), graph.graph()->library()); for (const NodeDef& node : item.graph.node()) { if (!IsNoOp(node, graph, function_library)) continue; NodeDef* const parent = graph_utils::GetInputNode(node, graph); TF_RETURN_IF_ERROR(graph.UpdateFanouts(node.name(), parent->name())); nodes_to_delete.insert(node.name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(NoOpElimination, "noop_elimination"); } }
#include "tensorflow/core/grappler/optimizers/data/noop_elimination.h" #include <tuple> #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { std::vector<std::pair<string, AttrValue>> GetCommonAttributes() { AttrValue shapes_attr, types_attr; SetAttrValue("output_shapes", &shapes_attr); SetAttrValue("output_types", &types_attr); std::vector<std::pair<string, AttrValue>> commonAttributes = { {"output_shapes", shapes_attr}, {"output_types", types_attr}}; return commonAttributes; } NodeDef *MakeNode(StringPiece node_type, std::vector<int> params, string input_node, MutableGraphView *graph) { std::vector<NodeDef *> node_params; for (int param : params) { node_params.push_back( graph_utils::AddScalarConstNode<int64_t>(param, graph)); } std::vector<string> inputs = {input_node}; for (int i = 0; i < node_params.size(); i++) { inputs.push_back(node_params[i]->name()); } return graph_utils::AddNode("", node_type, inputs, GetCommonAttributes(), graph); } NodeDef *MakeNonConstNode(StringPiece node_type, std::vector<DataType> param_dtypes, string input_node, MutableGraphView *graph) { std::vector<NodeDef *> node_params; for (DataType dtype : param_dtypes) { node_params.push_back(graph_utils::AddScalarPlaceholder(dtype, graph)); } std::vector<string> inputs = {input_node}; for (int i = 0; i < node_params.size(); i++) { inputs.push_back(node_params[i]->name()); } return graph_utils::AddNode("", node_type, inputs, GetCommonAttributes(), graph); } NodeDef *MakeCacheNode(string input_node, MutableGraphView *graph) { NodeDef *node_filename = graph_utils::AddScalarConstNode<StringPiece>("", graph); return graph_utils::AddNode("", "CacheDataset", {std::move(input_node), node_filename->name()}, GetCommonAttributes(), graph); } NodeDef *MakeRangeNode(MutableGraphView *graph) { auto *start_node = graph_utils::AddScalarConstNode<int64_t>(0, graph); auto *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, graph); auto *step_node = graph_utils::AddScalarConstNode<int64_t>(1, graph); std::vector<string> range_inputs = {start_node->name(), stop_node->name(), step_node->name()}; return graph_utils::AddNode("", "RangeDataset", range_inputs, GetCommonAttributes(), graph); } struct NoOpLastEliminationTest : ::testing::TestWithParam<std::tuple<string, std::vector<int>, bool>> {}; TEST_P(NoOpLastEliminationTest, EliminateLastNoOpNode) { GrapplerItem item; MutableGraphView graph(&item.graph); const string &node_type = std::get<0>(GetParam()); const std::vector<int> node_params = std::get<1>(GetParam()); const bool should_keep_node = std::get<2>(GetParam()); NodeDef *range_node = MakeRangeNode(&graph); NodeDef *node = MakeNode(node_type, node_params, range_node->name(), &graph); NoOpElimination optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(graph_utils::ContainsGraphNodeWithName(node->name(), output), should_keep_node); } INSTANTIATE_TEST_CASE_P( BasicRemovalTest, NoOpLastEliminationTest, ::testing::Values( std::make_tuple("TakeDataset", std::vector<int>({-3}), false), std::make_tuple("TakeDataset", std::vector<int>({-1}), false), std::make_tuple("TakeDataset", std::vector<int>({0}), true), std::make_tuple("TakeDataset", std::vector<int>({3}), true), std::make_tuple("SkipDataset", std::vector<int>({-1}), true), std::make_tuple("SkipDataset", std::vector<int>({0}), false), std::make_tuple("SkipDataset", std::vector<int>({3}), true), std::make_tuple("RepeatDataset", std::vector<int>({1}), false), std::make_tuple("RepeatDataset", std::vector<int>({2}), true), std::make_tuple("ShardDataset", std::vector<int>({1, 0}), false), std::make_tuple("ShardDataset", std::vector<int>({2, 0}), true))); struct NoOpMiddleEliminationTest : ::testing::TestWithParam<std::tuple<string, std::vector<int>, bool>> {}; TEST_P(NoOpMiddleEliminationTest, EliminateMiddleNoOpNode) { GrapplerItem item; MutableGraphView graph(&item.graph); const string &node_type = std::get<0>(GetParam()); const std::vector<int> node_params = std::get<1>(GetParam()); const bool should_keep_node = std::get<2>(GetParam()); NodeDef *range_node = MakeRangeNode(&graph); NodeDef *node = MakeNode(node_type, node_params, range_node->name(), &graph); NodeDef *cache_node = MakeCacheNode(node->name(), &graph); NoOpElimination optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(graph_utils::ContainsGraphNodeWithName(node->name(), output), should_keep_node); EXPECT_TRUE( graph_utils::ContainsGraphNodeWithName(cache_node->name(), output)); NodeDef cache_node_out = output.node( graph_utils::FindGraphNodeWithName(cache_node->name(), output)); EXPECT_EQ(cache_node_out.input_size(), 2); auto last_node_input = (should_keep_node ? node : range_node)->name(); EXPECT_EQ(cache_node_out.input(0), last_node_input); } INSTANTIATE_TEST_CASE_P( BasicRemovalTest, NoOpMiddleEliminationTest, ::testing::Values( std::make_tuple("TakeDataset", std::vector<int>({-1}), false), std::make_tuple("TakeDataset", std::vector<int>({-3}), false), std::make_tuple("TakeDataset", std::vector<int>({0}), true), std::make_tuple("TakeDataset", std::vector<int>({3}), true), std::make_tuple("SkipDataset", std::vector<int>({-1}), true), std::make_tuple("SkipDataset", std::vector<int>({0}), false), std::make_tuple("SkipDataset", std::vector<int>({3}), true), std::make_tuple("RepeatDataset", std::vector<int>({1}), false), std::make_tuple("RepeatDataset", std::vector<int>({2}), true), std::make_tuple("ShardDataset", std::vector<int>({1, 0}), false), std::make_tuple("ShardDataset", std::vector<int>({2, 0}), true))); using NodesTypes = std::tuple<std::pair<string, std::vector<int>>, std::pair<string, std::vector<int>>>; struct NoOpMultipleEliminationTest : ::testing::TestWithParam<NodesTypes> {}; TEST_P(NoOpMultipleEliminationTest, EliminateMultipleNoOpNode) { GrapplerItem item; MutableGraphView graph(&item.graph); static_assert(std::tuple_size<NodesTypes>::value == 2, "Make sure to include everything in the test"); const std::vector<std::pair<string, std::vector<int>>> noop_nodes = { std::get<0>(GetParam()), std::get<1>(GetParam())}; NodeDef *range_node = MakeRangeNode(&graph); NodeDef *previous = range_node; std::vector<string> nodes_to_remove; nodes_to_remove.reserve(noop_nodes.size()); for (const auto &noop_node : noop_nodes) { NodeDef *node = MakeNode(noop_node.first, noop_node.second, previous->name(), &graph); nodes_to_remove.push_back(node->name()); previous = node; } NodeDef *cache_node = MakeCacheNode(previous->name(), &graph); NoOpElimination optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); for (const auto &noop_node_name : nodes_to_remove) EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(noop_node_name, output)); EXPECT_TRUE( graph_utils::ContainsGraphNodeWithName(cache_node->name(), output)); NodeDef cache_node_out = output.node( graph_utils::FindGraphNodeWithName(cache_node->name(), output)); EXPECT_EQ(cache_node_out.input_size(), 2); EXPECT_EQ(cache_node_out.input(0), range_node->name()); } const auto *const kTakeNode = new std::pair<string, std::vector<int>>{"TakeDataset", {-1}}; const auto *const kSkipNode = new std::pair<string, std::vector<int>>{"SkipDataset", {0}}; const auto *const kRepeatNode = new std::pair<string, std::vector<int>>{"RepeatDataset", {1}}; const auto *const kShardNode = new std::pair<string, std::vector<int>>{"ShardDataset", {1, 0}}; INSTANTIATE_TEST_CASE_P( BasicRemovalTest, NoOpMultipleEliminationTest, ::testing::Combine( ::testing::Values(*kTakeNode, *kSkipNode, *kRepeatNode, *kShardNode), ::testing::Values(*kTakeNode, *kSkipNode, *kRepeatNode, *kShardNode))); struct NoOpPlaceholdersTest : ::testing::TestWithParam< std::tuple<std::pair<string, std::vector<DataType>>, std::pair<string, std::vector<DataType>>>> {}; TEST_P(NoOpPlaceholdersTest, NonConstNoOpNode) { GrapplerItem item; MutableGraphView graph(&item.graph); static_assert(std::tuple_size<NodesTypes>::value == 2, "Make sure to include everything in the test"); const std::vector<std::pair<string, std::vector<DataType>>> noop_nodes = { std::get<0>(GetParam()), std::get<1>(GetParam())}; NodeDef *range_node = MakeRangeNode(&graph); std::vector<string> nodes_to_keep; nodes_to_keep.reserve(noop_nodes.size()); NodeDef *previous = range_node; for (const auto &noop_node : noop_nodes) { NodeDef *node = MakeNonConstNode(noop_node.first, noop_node.second, previous->name(), &graph); nodes_to_keep.push_back(node->name()); previous = node; } NoOpElimination optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); for (const auto &noop_node_name : nodes_to_keep) EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName(noop_node_name, output)); } const auto *const kNonConstTakeNode = new std::pair<string, std::vector<DataType>>{"TakeDataset", {DT_INT32}}; const auto *const kNonConstSkipNode = new std::pair<string, std::vector<DataType>>{"SkipDataset", {DT_INT32}}; const auto *const kNonConstRepeatNode = new std::pair<string, std::vector<DataType>>{"RepeatDataset", {DT_INT32}}; const auto *const kNonConstShardNode = new std::pair<string, std::vector<DataType>>{"ShardDataset", {DT_INT32, DT_INT32}}; INSTANTIATE_TEST_CASE_P( DoNotRemovePlaceholders, NoOpPlaceholdersTest, ::testing::Combine(::testing::Values(*kNonConstTakeNode, *kNonConstSkipNode, *kNonConstRepeatNode, *kNonConstShardNode), ::testing::Values(*kNonConstTakeNode, *kNonConstSkipNode, *kNonConstRepeatNode, *kNonConstShardNode))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/noop_elimination.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/noop_elimination_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e8b78d62-c279-4dac-875d-cb2ea61040db
cpp
tensorflow/tensorflow
inject_io_prefetch
tensorflow/core/grappler/optimizers/data/inject_io_prefetch.cc
tensorflow/core/grappler/optimizers/data/inject_io_prefetch_test.cc
#include "tensorflow/core/grappler/optimizers/data/inject_io_prefetch.h" #include <array> #include <cstdint> #include <string> #include <utility> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace grappler { namespace { constexpr char kAutotune[] = "autotune"; constexpr char kFunctionAttrKey[] = "f"; constexpr char kParallelInterleave[] = "ParallelInterleaveDataset"; constexpr char kParallelMap[] = "ParallelMapDataset"; constexpr char kPrefetch[] = "PrefetchDataset"; constexpr std::array<const char*, 5> kAsync = { "MapAndBatchDataset", "ParallelBatchDataset", "ParallelInterleaveDataset", "ParallelMapDataset", "PrefetchDataset"}; constexpr std::array<const char*, 6> kIo = { "ArrayRecordDataset", "FixedLengthRecordDataset", "RecordIODataset", "SSTableDataset", "TextLineDataset", "TFRecordDataset"}; bool IsAsync(const NodeDef* node) { if (!node) { return false; } return absl::c_any_of(kAsync, [&](const char* dataset) { return data::MatchesAnyVersion(dataset, node->op()); }); } bool IsIo(const NodeDef* node) { if (!node) { return false; } return absl::c_any_of(kIo, [&](const char* dataset) { return data::MatchesAnyVersion(dataset, node->op()); }); } bool IsIo(const FunctionDef& function) { for (const auto& node : function.node_def()) { if (IsIo(&node)) { return true; } } return false; } bool IsIoFunction(const std::string& function_name, const MutableGraphView& graph) { for (const auto& function : graph.graph()->library().function()) { if (function.signature().name() == function_name) { return IsIo(function); } } return false; } bool HasIoFunction(const NodeDef* node, const MutableGraphView& graph) { if (auto it = node->attr().find(kFunctionAttrKey); it != node->attr().end()) { return IsIoFunction(it->second.func().name(), graph); } return false; } bool IsParallelInterleaveWithIo(const NodeDef* node, const MutableGraphView& graph) { if (!node || !data::MatchesAnyVersion(kParallelInterleave, node->op())) { return false; } return HasIoFunction(node, graph); } bool IsParallelMap(const NodeDef* node) { if (!node) { return false; } return data::MatchesAnyVersion(kParallelMap, node->op()); } bool IsPrefetch(const NodeDef* node) { if (!node) { return false; } return node->op() == kPrefetch; } struct Edge { NodeDef* input; NodeDef* output; template <typename H> friend H AbslHashValue(H h, const Edge& e) { return H::combine(std::move(h), e.input, e.output); } friend bool operator==(const Edge& lhs, const Edge& rhs) { return lhs.input == rhs.input && lhs.output == rhs.output; } }; absl::StatusOr<bool> InjectPrefetch(const Edge& edge, MutableGraphView& graph) { NodeDef prefetch; graph_utils::SetUniqueGraphNodeName( absl::StrCat("inject/io_prefetch", edge.input->name()), graph.graph(), &prefetch); prefetch.set_op(kPrefetch); *prefetch.mutable_input()->Add() = edge.input->name(); NodeDef* autotune_value = graph_utils::AddScalarConstNode(data::model::kAutotune, &graph); *prefetch.mutable_input()->Add() = autotune_value->name(); if (!graph_utils::CopyShapesAndTypesAttrs(*edge.input, &prefetch)) { return false; } TF_RETURN_IF_ERROR(graph_utils::SetMetadataName(prefetch.name(), &prefetch)); NodeDef* added_prefetch = graph.AddNode(std::move(prefetch)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(edge.input->name(), added_prefetch->name())); return true; } void GetPrefetchInjectionEdges( const MutableGraphView& graph, NodeDef* node, NodeDef* output, NodeDef* output_output, NodeDef* last_async, NodeDef* last_async_output, NodeDef* last_last_async, absl::flat_hash_set<Edge>& prefetch_injection_edges) { if (!node) { return; } if (IsAsync(output)) { last_last_async = last_async; last_async_output = output_output; last_async = output; } if (IsIo(node)) { if (IsParallelMap(last_async) && !IsPrefetch(last_last_async)) { prefetch_injection_edges.insert({last_async, last_async_output}); } return; } if (IsParallelInterleaveWithIo(node, graph)) { if (!IsPrefetch(last_async)) { prefetch_injection_edges.insert({node, output}); } return; } for (int64_t i = 0; i < node->input_size(); ++i) { NodeDef* input = graph_utils::GetInputNode(*node, graph, i); GetPrefetchInjectionEdges(graph, input, node, output, last_async, last_async_output, last_last_async, prefetch_injection_edges); } } absl::StatusOr<absl::flat_hash_set<Edge>> GetPrefetchInjectionEdges( const GrapplerItem& item, const MutableGraphView& graph) { if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) { return absl::flat_hash_set<Edge>(); } if (item.fetch.size() != 1) { return absl::InvalidArgumentError( absl::StrCat("Expected only one fetch node but there were ", item.fetch.size(), ": ", absl::StrJoin(item.fetch, ", "))); } NodeDef* sink_node = graph.GetNode(item.fetch.at(0)); NodeDef* last_node = graph_utils::GetInputNode(*sink_node, graph); absl::flat_hash_set<Edge> prefetch_injection_edges; GetPrefetchInjectionEdges( graph, last_node, sink_node, nullptr, nullptr, nullptr, nullptr, prefetch_injection_edges); return prefetch_injection_edges; } } absl::Status InjectIoPrefetchEligible::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { return absl::OkStatus(); } MutableGraphView graph(output); TF_ASSIGN_OR_RETURN(absl::flat_hash_set<Edge> prefetch_injection_edges, GetPrefetchInjectionEdges(item, graph)); stats->num_changes += prefetch_injection_edges.size(); return absl::OkStatus(); } absl::Status InjectIoPrefetch::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { return absl::OkStatus(); } MutableGraphView graph(output); TF_ASSIGN_OR_RETURN(absl::flat_hash_set<Edge> prefetch_injection_edges, GetPrefetchInjectionEdges(item, graph)); for (const auto& edge : prefetch_injection_edges) { TF_ASSIGN_OR_RETURN(bool success, InjectPrefetch(edge, graph)); stats->num_changes += success; } return absl::OkStatus(); } absl::Status InjectIoPrefetch::Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) { if (!config) { return absl::OkStatus(); } const std::string& autotune = config->parameter_map().at(kAutotune).s(); if (autotune == "true") { autotune_ = true; } else if (autotune == "false") { autotune_ = false; } else { return absl::InvalidArgumentError(absl::StrCat( "Received an invalid value for parameter ", kAutotune, ": ", autotune)); } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(InjectIoPrefetch, "inject_io_prefetch"); } }
#include "tensorflow/core/grappler/optimizers/data/inject_io_prefetch.h" #include <string> #include <gtest/gtest.h> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" namespace tensorflow { namespace grappler { namespace { using test::function::GDef; using test::function::NDef; FunctionDef InterleaveIoFunction(const std::string& name) { return FunctionDefHelper::Create( name, {"args_0: int64"}, {"identity: variant"}, {}, { {{"key_prefix"}, "Const", {}, {{"dtype", DT_STRING}}}, {{"start_key"}, "Const", {}, {{"dtype", DT_STRING}}}, {{"stop_key"}, "Const", {}, {{"dtype", DT_STRING}}}, {{"SSTableDataset"}, "SSTableDataset", {"args_0", "key_prefix:output:0", "start_key:output:0", "stop_key:output:0"}, {}}, }, {}); } GraphDef EligibleInterleaveCase() { return GDef( {NDef("files_string_1", "Const", {}, {{"value", "file1file2"}, {"dtype", DT_STRING}}), NDef("files_tensor_1", "TensorSliceDataset", {"files_1_string"}, {{"is_files", true}}), NDef("cycle_length_1", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length_1", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls_1", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV4Node( "interleave_1", "files_tensor_1", "cycle_length_1", "block_length_1", "num_parallel_calls_1", "io_1", "default"), NDef("files_string_2", "Const", {}, {{"value", "file1file2"}, {"dtype", DT_STRING}}), NDef("files_tensor_2", "TensorSliceDataset", {"files_2_string"}, {{"is_files", true}}), NDef("cycle_length_2", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length_2", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls_2", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV4Node( "interleave_2", "files_tensor_2", "cycle_length_2", "block_length_2", "num_parallel_calls_2", "io_2", "default"), NDef("zip", "ZipDataset", {"interleave_1", "interleave_2"}, {}), NDef("Sink", "Identity", {"zip"}, {})}, {InterleaveIoFunction("io_1"), InterleaveIoFunction("io_2")}); } GraphDef EligibleMapCase() { return GDef( {NDef("files_1", "Const", {}, {{"value", "file1file2"}, {"dtype", DT_STRING}}), NDef("key_prefix_1", "Const", {}, {{"value", 1}, {"dtype", DT_STRING}}), NDef("start_key_1", "Const", {}, {{"value", 1}, {"dtype", DT_STRING}}), NDef("stop_key_1", "Const", {}, {{"value", 1}, {"dtype", DT_STRING}}), NDef("io_1", "SSTableDataset", {"files_1", "key_prefix_1", "start_key_1", "stop_key_1"}, {}), NDef("num_parallel_calls_1", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapV2Node( "map_1", "io_1", "num_parallel_calls_1", "noop_1", "default", false), NDef("files_2", "Const", {}, {{"value", "file1file2"}, {"dtype", DT_STRING}}), NDef("key_prefix_2", "Const", {}, {{"value", 1}, {"dtype", DT_STRING}}), NDef("start_key_2", "Const", {}, {{"value", 1}, {"dtype", DT_STRING}}), NDef("stop_key_2", "Const", {}, {{"value", 1}, {"dtype", DT_STRING}}), NDef("io_2", "SSTableDataset", {"files_2", "key_prefix_2", "start_key_2", "stop_key_2"}, {}), NDef("num_parallel_calls_2", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapV2Node( "map_2", "io_2", "num_parallel_calls_2", "noop_2", "default", false), NDef("zip", "ZipDataset", {"map_1", "map_2"}, {}), NDef("Sink", "Identity", {"zip"}, {})}, {}); } TEST(InjectIoPrefetchEligible, EligibleInterleaveCaseHasNoInjection) { GrapplerItem item; item.graph = EligibleInterleaveCase(); item.fetch.push_back("Sink"); InjectIoPrefetchEligible optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); NodeDef zip_node = output.node(graph_utils::FindGraphNodeWithName("zip", output)); for (const auto& input_node_name : zip_node.input()) { NodeDef input_node = output.node( graph_utils::FindGraphNodeWithName(input_node_name, output)); EXPECT_NE(input_node.op(), "PrefetchDataset"); } EXPECT_EQ(item.graph.DebugString(), output.DebugString()); } TEST(InjectIoPrefetchEligible, EligibleMapCaseHasNoInjection) { GrapplerItem item; item.graph = EligibleMapCase(); item.fetch.push_back("Sink"); InjectIoPrefetchEligible optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); NodeDef zip_node = output.node(graph_utils::FindGraphNodeWithName("zip", output)); for (const auto& input_node_name : zip_node.input()) { NodeDef input_node = output.node( graph_utils::FindGraphNodeWithName(input_node_name, output)); EXPECT_NE(input_node.op(), "PrefetchDataset"); } EXPECT_EQ(item.graph.DebugString(), output.DebugString()); } TEST(InjectIoPrefetch, InterleaveCaseHasInjection) { GrapplerItem item; item.graph = EligibleInterleaveCase(); item.fetch.push_back("Sink"); InjectIoPrefetch optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); NodeDef zip_node = output.node(graph_utils::FindGraphNodeWithName("zip", output)); for (const auto& input_node_name : zip_node.input()) { NodeDef input_node = output.node( graph_utils::FindGraphNodeWithName(input_node_name, output)); EXPECT_EQ(input_node.op(), "PrefetchDataset"); } } TEST(InjectIoPrefetch, MapCaseHasInjection) { GrapplerItem item; item.graph = EligibleMapCase(); item.fetch.push_back("Sink"); InjectIoPrefetch optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); NodeDef zip_node = output.node(graph_utils::FindGraphNodeWithName("zip", output)); for (const auto& input_node_name : zip_node.input()) { NodeDef input_node = output.node( graph_utils::FindGraphNodeWithName(input_node_name, output)); EXPECT_EQ(input_node.op(), "PrefetchDataset"); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/inject_io_prefetch.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/inject_io_prefetch_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2b8548cf-f615-4eb1-8311-cc3d750d5b78
cpp
tensorflow/tensorflow
fusion_utils
tensorflow/core/grappler/optimizers/data/fusion_utils.cc
tensorflow/core/grappler/optimizers/data/fusion_utils_test.cc
#include "tensorflow/core/grappler/optimizers/data/fusion_utils.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/strip.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/gtl/flatmap.h" #include "tensorflow/core/lib/gtl/flatset.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace grappler { namespace fusion_utils { namespace { constexpr char kControlInputPrefix[] = "^"; bool IsControlInput(const string& node_input) { return absl::StartsWith(node_input, kControlInputPrefix); } string StripControlInputNotation(const string& node_input) { return string(absl::StripPrefix(node_input, kControlInputPrefix)); } string AddControlInputNotation(const string& node_input) { return absl::StrCat(kControlInputPrefix, node_input); } string ParseNodeConnection(const string& name) { return name.substr(0, name.find(':')); } string ParseOutputNode(const string& name) { if (name.find(':') == string::npos) return {}; return name.substr(name.find(':'), string::npos); } string GetOutputNode(const FunctionDef& function, int output_idx) { const auto& ret_output_name = function.signature().output_arg(output_idx).name(); return function.ret().at(ret_output_name); } string& GetMutableOutputNode(FunctionDef* function, int output_idx) { const auto& ret_output_name = function->signature().output_arg(output_idx).name(); return function->mutable_ret()->at(ret_output_name); } template <typename Iterable> StringCollection GetNames(const Iterable& iterable, int allocate_size) { StringCollection names; names.reserve(allocate_size); for (auto& arg : iterable) names.push_back(arg.name()); return names; } template <typename Iterable> gtl::FlatSet<string> GetNodeNamesSet(const Iterable& nodes) { gtl::FlatSet<string> names; for (const auto& node : nodes) { CHECK(gtl::InsertIfNotPresent(&names, node.name())) << "Functions should have unique node names. Node with name " << node.name() << " already exists"; } return names; } template <typename Iterable> gtl::FlatMap<string, string> GetUniqueNames(const Iterable& first_iterable, const Iterable& second_iterable) { gtl::FlatMap<string, string> changed_node_names; const auto first_names = GetNodeNamesSet(first_iterable); auto second_names = GetNodeNamesSet(first_iterable); int id = second_iterable.size(); for (const auto& node : second_iterable) { string name_before = node.name(); string name = name_before; bool changed_name = false; while (first_names.count(name) || (changed_name && second_names.count(name))) { name = strings::StrCat(name_before, "/_", id); changed_name = true; ++id; } if (changed_name) { changed_node_names[name_before] = name; second_names.insert(std::move(name)); } } return changed_node_names; } void RenameFunctionNodes( const FunctionDef& first_function, protobuf::RepeatedPtrField<NodeDef>* nodes_to_fuse, protobuf::Map<string, string>* rets_to_fuse, protobuf::Map<string, string>* control_rets_to_fuse, protobuf::RepeatedPtrField<string>* control_outputs_to_fuse) { const gtl::FlatMap<string, string> changed_node_names = GetUniqueNames(first_function.node_def(), *nodes_to_fuse); auto updated_name = [&changed_node_names](const string& input) { string input_node = ParseNodeConnection(input); auto iter = changed_node_names.find(input_node); if (iter != changed_node_names.end()) { return iter->second + ParseOutputNode(input); } return input; }; for (NodeDef& function_node : *nodes_to_fuse) { if (const string* new_name = gtl::FindOrNull(changed_node_names, function_node.name())) { function_node.set_name(*new_name); } for (string& input : *function_node.mutable_input()) { input = updated_name(input); } } for (auto& [unused, ret_node] : *rets_to_fuse) { ret_node = updated_name(ret_node); } protobuf::Map<string, string> new_control_rets_to_fuse; protobuf::RepeatedPtrField<string> new_control_outputs_to_fuse; for (const auto& [unused, control_ret_node] : *control_rets_to_fuse) { string updated_control_ret_node = updated_name(control_ret_node); new_control_rets_to_fuse.insert( {updated_control_ret_node, updated_control_ret_node}); *new_control_outputs_to_fuse.Add() = updated_control_ret_node; } *control_rets_to_fuse = new_control_rets_to_fuse; *control_outputs_to_fuse = new_control_outputs_to_fuse; } StringCollection GetFunctionInputs(const FunctionDef& function) { return GetNames(function.signature().input_arg(), function.signature().input_arg_size()); } OpDef GetUniqueSignature(const OpDef& first_signature, const OpDef& second_signature, protobuf::Map<string, string>* rets_to_fuse, protobuf::Map<string, string>* control_rets_to_fuse, protobuf::RepeatedPtrField<NodeDef>* nodes_to_fuse) { const gtl::FlatMap<string, string> changed_input_names = GetUniqueNames(first_signature.input_arg(), second_signature.input_arg()); OpDef signature; signature.set_name(second_signature.name()); for (const auto& input_arg : second_signature.input_arg()) { auto& input = *signature.add_input_arg(); input = input_arg; if (const string* new_name = gtl::FindOrNull(changed_input_names, input.name())) { input.set_name(*new_name); } } const gtl::FlatMap<string, string> changed_output_names = GetUniqueNames( first_signature.output_arg(), second_signature.output_arg()); for (const auto& output_arg : second_signature.output_arg()) { auto& output = *signature.add_output_arg(); output = output_arg; if (const string* new_name = gtl::FindOrNull(changed_output_names, output.name())) { output.set_name(*new_name); } } auto new_rets = [&](const protobuf::Map<string, string>& old_rets) { protobuf::Map<string, string> new_rets; for (const auto& ret : old_rets) { const auto& key = changed_output_names.count(ret.first) ? changed_output_names.at(ret.first) : ret.first; const auto& input = ParseNodeConnection(ret.second); const auto& value = changed_input_names.count(input) ? changed_input_names.at(input) + ParseOutputNode(ret.second) : ret.second; new_rets[key] = value; } return new_rets; }; *rets_to_fuse = new_rets(*rets_to_fuse); *control_rets_to_fuse = new_rets(*control_rets_to_fuse); for (NodeDef& function_node : *nodes_to_fuse) { for (auto& node_input : *function_node.mutable_input()) { bool is_control_input = IsControlInput(node_input); const auto& input = ParseNodeConnection(StripControlInputNotation(node_input)); if (const string* new_name = gtl::FindOrNull(changed_input_names, input)) { node_input = *new_name + ParseOutputNode(node_input); if (is_control_input) { node_input = AddControlInputNotation(node_input); } } } } if (second_signature.is_stateful()) { signature.set_is_stateful(true); } return signature; } void FuseFunctionNodes(const StringCollection& first_inputs, const StringCollection& second_inputs, const StringCollection& first_outputs, const SetInputFn& set_input, protobuf::RepeatedPtrField<NodeDef>* nodes_to_fuse) { for (NodeDef& function_node : *nodes_to_fuse) { for (auto& node_input : *function_node.mutable_input()) { bool is_control_input = IsControlInput(node_input); auto parsed_name = ParseNodeConnection(StripControlInputNotation(node_input)); auto input_it = std::find(second_inputs.begin(), second_inputs.end(), parsed_name); if (input_it == second_inputs.end()) continue; auto arg_num = std::distance(second_inputs.begin(), input_it); node_input = set_input(first_inputs, second_inputs, first_outputs, arg_num); if (is_control_input) { node_input = AddControlInputNotation(node_input); } } } } void FuseReturns(const StringCollection& first_inputs, const StringCollection& second_inputs, const StringCollection& first_outputs, const SetInputFn& set_input, protobuf::Map<string, string>* fused_ret) { for (auto& ret : *fused_ret) { auto return_input = ParseNodeConnection(ret.second); auto input_it = std::find(second_inputs.begin(), second_inputs.end(), return_input); if (input_it == second_inputs.end()) continue; auto input_idx = std::distance(second_inputs.begin(), input_it); ret.second = set_input(first_inputs, second_inputs, first_outputs, input_idx); } } StringCollection GetFunctionOutputs(const FunctionDef& function) { const auto number_of_outputs = function.signature().output_arg_size(); StringCollection outputs; outputs.reserve(number_of_outputs); for (int output_idx = 0; output_idx < number_of_outputs; output_idx++) outputs.push_back(GetOutputNode(function, output_idx)); return outputs; } FunctionDef* CreateFalsePredicate( const protobuf::RepeatedPtrField<OpDef_ArgDef>& fake_args, FunctionDefLibrary* library) { GraphDef graph; MutableGraphView graph_view(&graph); auto* node = graph_utils::AddScalarConstNode(false, &graph_view); auto* false_predicate = library->add_function(); graph_utils::SetUniqueGraphFunctionName("false_predicate", library, false_predicate); int num = 0; for (const auto& fake_arg : fake_args) { auto* arg = false_predicate->mutable_signature()->add_input_arg(); arg->set_type(fake_arg.type()); arg->set_name(strings::StrCat("fake_arg", num)); num++; } auto* output = false_predicate->mutable_signature()->add_output_arg(); output->set_name("false_out"); output->set_type(DT_BOOL); (*false_predicate->mutable_ret())["false_out"] = node->name() + ":output:0"; *false_predicate->mutable_node_def() = std::move(*graph.mutable_node()); return false_predicate; } void CheckIfCanCompose(const OpDef& first_signature, const OpDef& second_signature) { CHECK(CanCompose(first_signature, second_signature)) << "The number of input arguments of function " << second_signature.name() << " should be the same as the number of output arguments of function " << first_signature.name() << "."; } } void MergeNodes(const FunctionDef& first_function, const FunctionDef& second_function, FunctionDef* fused_function, FunctionDefLibrary* library) { fused_function->mutable_node_def()->CopyFrom(first_function.node_def()); fused_function->mutable_node_def()->MergeFrom(second_function.node_def()); } bool CanCompose(const OpDef& first_signature, const OpDef& second_signature) { return first_signature.output_arg_size() == second_signature.input_arg_size(); } string ComposeInput(const StringCollection& first_inputs, const StringCollection& second_inputs, const StringCollection& first_outputs, int arg_num) { return first_outputs.at(arg_num); } void ComposeSignature(const OpDef& first_signature, const OpDef& second_signature, OpDef* fused_signature) { CheckIfCanCompose(first_signature, second_signature); *fused_signature->mutable_input_arg() = first_signature.input_arg(); *fused_signature->mutable_output_arg() = second_signature.output_arg(); if (first_signature.is_stateful() || second_signature.is_stateful()) { if (!(first_signature.is_stateful() && second_signature.is_stateful())) { metrics::RecordTFDataDebug("fused_with_mixed_statefulness"); } fused_signature->set_is_stateful(true); } fused_signature->mutable_control_output()->Add( first_signature.control_output().begin(), first_signature.control_output().end()); fused_signature->mutable_control_output()->Add( second_signature.control_output().begin(), second_signature.control_output().end()); } void ComposeOutput(const protobuf::Map<string, string>& first_ret, const protobuf::Map<string, string>& second_ret, protobuf::Map<string, string>* fused_ret) { *fused_ret = second_ret; } void CombineSignature(const OpDef& first_signature, const OpDef& second_signature, OpDef* fused_signature) { CheckIfCanCompose(first_signature, second_signature); *fused_signature = first_signature; fused_signature->mutable_output_arg()->MergeFrom( second_signature.output_arg()); } void CombineOutput(const protobuf::Map<string, string>& first_ret, const protobuf::Map<string, string>& second_ret, protobuf::Map<string, string>* fused_ret) { *fused_ret = first_ret; fused_ret->insert(second_ret.begin(), second_ret.end()); } string SameInput(const StringCollection& first_inputs, const StringCollection& second_inputs, const StringCollection& first_outputs, int arg_num) { return first_inputs.at(arg_num); } bool HasSameSignature(const OpDef& first_signature, const OpDef& second_signature) { return first_signature.input_arg_size() == second_signature.input_arg_size() && first_signature.output_arg_size() == second_signature.output_arg_size(); } void SameSignature(const OpDef& first_signature, const OpDef& second_signature, OpDef* fused_signature) { CHECK(HasSameSignature(first_signature, second_signature)) << "Functions do not have the same signature"; *fused_signature = first_signature; } void LazyConjunctionNodes(const FunctionDef& first_function, const FunctionDef& second_function, FunctionDef* fused_function, FunctionDefLibrary* library) { fused_function->mutable_node_def()->CopyFrom(first_function.node_def()); NodeDefBuilder if_builder("", "If"); if_builder.Input(GetOutputNode(first_function, 0), 0, DT_BOOL); DataTypeVector in_arg_types; std::vector<NodeDefBuilder::NodeOut> inputs; for (const auto& input_arg : first_function.signature().input_arg()) { inputs.push_back({input_arg.name(), 0, input_arg.type()}); in_arg_types.push_back(input_arg.type()); } if_builder.Attr("Tin", in_arg_types); if_builder.Attr("Tcond", DT_BOOL); if_builder.Attr("Tout", DataTypeVector{DT_BOOL}); if_builder.Attr("_lower_using_switch_merge", true); NameAttrList then_branch; then_branch.set_name(second_function.signature().name()); if_builder.Attr("then_branch", then_branch); auto* false_predicate = CreateFalsePredicate(first_function.signature().input_arg(), library); NameAttrList else_branch; else_branch.set_name(false_predicate->signature().name()); if_builder.Attr("else_branch", else_branch); if_builder.Input(inputs); auto* if_node = fused_function->add_node_def(); TF_CHECK_OK(if_builder.Finalize(if_node)); function_utils::SetUniqueFunctionNodeName("cond", fused_function, if_node); GetMutableOutputNode(fused_function, 0) = if_node->name() + ":output:0"; } void LazyConjunctionOutput(const protobuf::Map<string, string>& first_ret, const protobuf::Map<string, string>& second_ret, protobuf::Map<string, string>* fused_ret) { CHECK_EQ(first_ret.size(), 1); CHECK_EQ(second_ret.size(), 1); *fused_ret = first_ret; } FunctionDef* FuseFunctions( const FunctionDef& first_function, const FunctionDef& second_function, StringPiece fused_name_prefix, const SetFunctionSignatureFn& set_signature, const SetInputFn& set_input, const SetOutputFn& set_output, const SetNodesFn& set_nodes, FunctionDefLibrary* library) { auto has_unknown_attrs = [](const FunctionDef& func) { int known_attribute_size = 0; if (data::IsTFDataFunction(func)) known_attribute_size += 1; if (func.attr().contains("_construction_context")) known_attribute_size += 1; return func.attr_size() > known_attribute_size; }; if (has_unknown_attrs(first_function) || has_unknown_attrs(second_function)) { return nullptr; } FunctionDef setup_function = second_function; *setup_function.mutable_signature() = GetUniqueSignature( first_function.signature(), setup_function.signature(), setup_function.mutable_ret(), setup_function.mutable_control_ret(), setup_function.mutable_node_def()); FunctionDef* fused_function = library->add_function(); RenameFunctionNodes( first_function, setup_function.mutable_node_def(), setup_function.mutable_ret(), setup_function.mutable_control_ret(), setup_function.mutable_signature()->mutable_control_output()); set_output(first_function.ret(), setup_function.ret(), fused_function->mutable_ret()); CombineOutput(first_function.control_ret(), setup_function.control_ret(), fused_function->mutable_control_ret()); set_signature(first_function.signature(), setup_function.signature(), fused_function->mutable_signature()); graph_utils::SetUniqueGraphFunctionName(fused_name_prefix, library, fused_function); CHECK(fused_function->signature().output_arg_size() == fused_function->ret_size()) << "Fused function must have the same number of returns as output " "args. Output size: " << fused_function->signature().output_arg_size() << ", ret size: " << fused_function->ret_size(); const auto first_inputs = GetFunctionInputs(first_function); const auto second_inputs = GetFunctionInputs(setup_function); const auto first_outputs = GetFunctionOutputs(first_function); FuseFunctionNodes(first_inputs, second_inputs, first_outputs, set_input, setup_function.mutable_node_def()); FuseReturns(first_inputs, second_inputs, first_outputs, set_input, fused_function->mutable_ret()); set_nodes(first_function, setup_function, fused_function, library); (*fused_function->mutable_attr())[data::kTFDataFunction].set_b(true); auto get_construction_context = [](const FunctionDef& func) { auto iter = func.attr().find("_construction_context"); if (iter == func.attr().cend()) return std::string(); return iter->second.s(); }; std::string first_construction_context = get_construction_context(first_function); std::string second_construction_context = get_construction_context(second_function); if (first_construction_context != second_construction_context) { LOG(ERROR) << "_construction_context attribute mismatch during fused " "function optimization pass. First function: " << first_construction_context << " Second function: " << first_construction_context; } if (!first_construction_context.empty()) { (*fused_function->mutable_attr())["_construction_context"].set_s( first_construction_context); } return fused_function; } } } }
#include "tensorflow/core/grappler/optimizers/data/fusion_utils.h" #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace grappler { namespace fusion_utils { namespace { string ParseNodeConnection(const string& name) { return name.substr(0, name.find(':')); } void CheckUniqueNames(const FunctionDef& function) { std::unordered_set<string> inputs; for (const auto& input_arg : function.signature().input_arg()) inputs.insert(input_arg.name()); EXPECT_EQ(inputs.size(), function.signature().input_arg_size()); std::unordered_set<string> outputs; for (const auto& output_arg : function.signature().output_arg()) outputs.insert(output_arg.name()); EXPECT_EQ(outputs.size(), function.signature().output_arg_size()); std::unordered_set<string> nodes; for (const auto& node : function.node_def()) nodes.insert(node.name()); EXPECT_EQ(nodes.size(), function.node_def_size()); } TEST(FusionUtilsTest, FuseFunctionsByComposition) { GraphDef graph; auto *parent_function = graph.mutable_library()->add_function(); *parent_function = test::function::XTimesTwo(); auto *function = graph.mutable_library()->add_function(); *function = test::function::XTimesTwo(); auto *fused_function = FuseFunctions( *parent_function, *function, "fused_maps", fusion_utils::ComposeSignature, fusion_utils::ComposeInput, fusion_utils::ComposeOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().name(), "fused_maps"); EXPECT_EQ(fused_function->signature().input_arg_size(), 1); EXPECT_EQ(fused_function->signature().output_arg_size(), 1); EXPECT_EQ(fused_function->ret_size(), 1); std::cerr << fused_function->DebugString(); CheckUniqueNames(*fused_function); const NodeDef *parent_mul = nullptr, *output_mul = nullptr; for (const auto& fused_node : fused_function->node_def()) { if (fused_node.op() == "Mul") { if (fused_node.name() == "y") parent_mul = &fused_node; else output_mul = &fused_node; } } ASSERT_NE(parent_mul, nullptr); ASSERT_NE(output_mul, nullptr); EXPECT_EQ(ParseNodeConnection(output_mul->input(0)), parent_mul->name()); auto output_value = fused_function->ret().at( fused_function->signature().output_arg(0).name()); EXPECT_EQ(ParseNodeConnection(output_value), output_mul->name()); } TEST(FusionUtilsTest, FuseFunctionsWithControlInputs) { GraphDef graph; auto *parent_function = graph.mutable_library()->add_function(); *parent_function = test::function::XTimesTwoWithControlInput(); auto *function = graph.mutable_library()->add_function(); *function = test::function::XTimesTwoWithControlInput(); auto *fused_function = FuseFunctions( *parent_function, *function, "fused_maps", fusion_utils::ComposeSignature, fusion_utils::ComposeInput, fusion_utils::ComposeOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().name(), "fused_maps"); EXPECT_EQ(fused_function->signature().input_arg_size(), 1); EXPECT_EQ(fused_function->signature().output_arg_size(), 1); EXPECT_EQ(fused_function->ret_size(), 1); CheckUniqueNames(*fused_function); const NodeDef *parent_mul = nullptr, *output_mul = nullptr; for (const auto& fused_node : fused_function->node_def()) { if (fused_node.op() == "Mul") { if (fused_node.name() == "y") parent_mul = &fused_node; else output_mul = &fused_node; } } ASSERT_NE(parent_mul, nullptr); ASSERT_NE(output_mul, nullptr); EXPECT_EQ(ParseNodeConnection(output_mul->input(1)), absl::StrCat("^", parent_mul->name())); auto output_value = fused_function->ret().at( fused_function->signature().output_arg(0).name()); EXPECT_EQ(ParseNodeConnection(output_value), output_mul->name()); } TEST(FusionUtilsTest, FuseFunctionWithControlOutputs) { GraphDef graph; auto *f1 = graph.mutable_library()->add_function(); *f1 = test::function::XTimesTwoWithControlOutput(); f1->mutable_signature()->set_name("f1"); auto *f2 = graph.mutable_library()->add_function(); *f2 = test::function::XTimesTwoWithControlOutput(); f2->mutable_signature()->set_name("f2"); auto *fused_function = FuseFunctions(*f1, *f2, "fused_maps", fusion_utils::ComposeSignature, fusion_utils::ComposeInput, fusion_utils::ComposeOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().control_output_size(), 2); string control_output_1 = fused_function->signature().control_output(0); string control_output_2 = fused_function->signature().control_output(1); EXPECT_NE(control_output_1, control_output_2); EXPECT_EQ(fused_function->control_ret_size(), 2); EXPECT_TRUE(fused_function->control_ret().contains(control_output_1)); EXPECT_TRUE(fused_function->control_ret().contains(control_output_2)); EXPECT_EQ(fused_function->control_ret().at(control_output_1), control_output_1); EXPECT_EQ(fused_function->control_ret().at(control_output_2), control_output_2); } struct StatefulnessTestCase { bool is_stateful_a, is_stateful_b; }; using FusionUtilsTest_Statefulness = ::testing::TestWithParam<StatefulnessTestCase>; TEST_P(FusionUtilsTest_Statefulness, FuseFunctionStatefulness) { const StatefulnessTestCase &test_case = GetParam(); GraphDef graph; auto *parent_function = graph.mutable_library()->add_function(); *parent_function = test::function::XTimesTwo(); auto *function = graph.mutable_library()->add_function(); *function = test::function::XTimesTwo(); if (test_case.is_stateful_a) { parent_function->mutable_signature()->set_is_stateful(true); } if (test_case.is_stateful_b) { function->mutable_signature()->set_is_stateful(true); } auto *fused_function = FuseFunctions( *parent_function, *function, "fused_maps", fusion_utils::ComposeSignature, fusion_utils::ComposeInput, fusion_utils::ComposeOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().is_stateful(), test_case.is_stateful_a || test_case.is_stateful_b); } INSTANTIATE_TEST_SUITE_P( StatefulnessTests, FusionUtilsTest_Statefulness, ::testing::ValuesIn<StatefulnessTestCase>( {{false, false}, {false, true}, {true, false}, {true, true}})); TEST(FusionUtilsTest, FuseFunctionWithPredicate) { GraphDef graph; auto *xtimes_two = graph.mutable_library()->add_function(); *xtimes_two = test::function::XTimesTwo(); auto *is_zero = graph.mutable_library()->add_function(); *is_zero = test::function::IsZero(); auto *fused_function = FuseFunctions(*xtimes_two, *is_zero, "fused_map_and_filter_function", fusion_utils::CombineSignature, fusion_utils::ComposeInput, fusion_utils::CombineOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().name(), "fused_map_and_filter_function"); EXPECT_EQ(fused_function->signature().input_arg_size(), 1); EXPECT_EQ(fused_function->signature().output_arg_size(), 2); EXPECT_EQ(fused_function->ret_size(), 2); CheckUniqueNames(*fused_function); ASSERT_TRUE( function_utils::ContainsFunctionNodeWithOp("Equal", *fused_function)); const auto& equal_node = fused_function->node_def( function_utils::FindFunctionNodeWithOp("Equal", *fused_function)); EXPECT_EQ(xtimes_two->signature().output_arg(0).name(), fused_function->signature().output_arg(0).name()); EXPECT_EQ(fused_function->signature().output_arg(1).name(), equal_node.name()); EXPECT_EQ(ParseNodeConnection(equal_node.input(0)), fused_function->signature().output_arg(0).name()); auto output_value = fused_function->ret().at( fused_function->signature().output_arg(1).name()); EXPECT_EQ(ParseNodeConnection(output_value), equal_node.name()); } TEST(FusionUtilsTest, FuseSameFunctionWithExtraOutput) { GraphDef graph; auto *parent_function = graph.mutable_library()->add_function(); *parent_function = test::function::XTimesTwo(); auto *function = graph.mutable_library()->add_function(); *function = test::function::XTimesTwo(); auto *fused_function = FuseFunctions( *parent_function, *function, "fused_maps", fusion_utils::CombineSignature, fusion_utils::ComposeInput, fusion_utils::CombineOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().input_arg_size(), 1); EXPECT_EQ(fused_function->signature().output_arg_size(), 2); EXPECT_EQ(fused_function->ret_size(), 2); CheckUniqueNames(*fused_function); } TEST(FusionUtilsTest, ZipFusion) { GraphDef graph; auto *function = graph.mutable_library()->add_function(); *function = test::function::XTimesTwo(); auto zip_signature = [](const OpDef& parent_function_signature, const OpDef& function_signature, OpDef *fused_function_signature) { *fused_function_signature = parent_function_signature; fused_function_signature->mutable_input_arg()->MergeFrom( function_signature.input_arg()); fused_function_signature->mutable_output_arg()->MergeFrom( function_signature.output_arg()); }; auto zip_input = [](const StringCollection& parent_inputs, const StringCollection& function_inputs, const StringCollection& parent_outputs, int arg_num) { return function_inputs.at(arg_num); }; auto *fused_function = FuseFunctions(*function, *function, "zip_maps", zip_signature, zip_input, fusion_utils::CombineOutput, fusion_utils::MergeNodes, graph.mutable_library()); EXPECT_EQ(fused_function->signature().input_arg_size(), 2); EXPECT_EQ(fused_function->signature().output_arg_size(), 2); EXPECT_EQ(fused_function->ret_size(), 2); CheckUniqueNames(*fused_function); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/fusion_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/fusion_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f5178b33-ed64-441e-8417-32d1894954ac
cpp
tensorflow/tensorflow
slack
tensorflow/core/grappler/optimizers/data/slack.cc
tensorflow/core/grappler/optimizers/data/slack_test.cc
#include "tensorflow/core/grappler/optimizers/data/slack.h" #include "absl/strings/str_join.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kPrefetchDatasetOp[] = "PrefetchDataset"; template <std::size_t SIZE> bool IsDatasetNodeOfType(const NodeDef& node, const std::array<const char*, SIZE>& arr) { for (const auto& dataset_op_name : arr) { if (node.op() == dataset_op_name) return true; } return false; } constexpr std::array<const char*, 2> kMultipleInputsDatasetOps = { "ZipDataset", "ConcatenateDataset"}; constexpr std::array<const char*, 22> kPassThroughOps = { "CacheDataset", "CacheDatasetV2", "ExperimentalMaxIntraOpParallelismDataset", "ExperimentalPrivateThreadPoolDataset", "FilterDataset", "Identity", "MapDataset", "MaxIntraOpParallelismDataset", "ModelDataset", "OptimizeDataset", "ParallelMapDataset", "PrivateThreadPoolDataset", "ReduceDataset", "RepeatDataset", "ShardDataset", "ShuffleAndRepeatDataset", "ShuffleDataset", "ShuffleDatasetV2", "ShuffleDatasetV3", "SkipDataset", "TakeDataset", "WindowDataset", }; } Status Slack::RecursivelyHandleOp(const MutableGraphView& graph, NodeDef* dataset_node) { if (dataset_node->op() == kPrefetchDatasetOp) { if (HasNodeAttr(*dataset_node, "slack_period")) { (*dataset_node->mutable_attr())["slack_period"].set_i(slack_period_); } else { AddNodeAttr("slack_period", slack_period_, dataset_node); } return absl::OkStatus(); } if (IsDatasetNodeOfType(*dataset_node, kPassThroughOps)) { NodeDef* input_node = graph_utils::GetInputNode(*dataset_node, graph, 0); return RecursivelyHandleOp(graph, input_node); } if (IsDatasetNodeOfType(*dataset_node, kMultipleInputsDatasetOps)) { for (int i = 0; i < dataset_node->input_size(); ++i) { NodeDef* input_node = graph_utils::GetInputNode(*dataset_node, graph, i); TF_RETURN_IF_ERROR(RecursivelyHandleOp(graph, input_node)); } return absl::OkStatus(); } LOG(WARNING) << "Could not find a final `prefetch` in the input pipeline to " "which to introduce slack."; return absl::OkStatus(); } Status Slack::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { if (slack_period_ < 1) return errors::InvalidArgument("Invalid `slack_period` parameter: ", slack_period_); *output = item.graph; MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) return absl::OkStatus(); if (item.fetch.size() != 1) { return errors::InvalidArgument( "Expected only one fetch node but there were ", item.fetch.size(), ": ", absl::StrJoin(item.fetch, ", ")); } NodeDef* dataset_node = graph.GetNode(item.fetch.at(0)); return RecursivelyHandleOp(graph, dataset_node); } REGISTER_GRAPH_OPTIMIZER_AS(Slack, "slack"); } }
#include "tensorflow/core/grappler/optimizers/data/slack.h" #include "absl/status/status.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils/functions.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { void SetupGrapplerItem(GrapplerItem *item) { MutableGraphView graph(&item->graph); std::vector<std::pair<string, AttrValue>> common_attrs(2); AttrValue shapes_attr; SetAttrValue(std::vector<TensorShape>({{}}), &shapes_attr); common_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue(std::vector<DataType>({DT_INT64}), &types_attr); common_attrs[1] = std::make_pair("output_types", types_attr); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); NodeDef *range_node = graph_utils::AddNode( "RangeDataset", "RangeDataset", range_inputs, common_attrs, &graph); NodeDef *buffer_size_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); NodeDef *prefetch_node = graph_utils::AddNode( "PrefetchDataset", "PrefetchDataset", {range_node->name(), buffer_size_node->name()}, common_attrs, &graph); item->fetch.push_back(prefetch_node->name()); } struct ParameterizedSlackTest : ::testing::TestWithParam<std::tuple<string, int>> {}; TEST_P(ParameterizedSlackTest, BasicTest) { GrapplerItem item; SetupGrapplerItem(&item); Slack optimizer; tensorflow::RewriterConfig_CustomGraphOptimizer config; (*config.mutable_parameter_map())["slack_period"].set_s( std::get<0>(GetParam())); TF_ASSERT_OK(optimizer.Init(&config)); GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); ASSERT_TRUE(graph_utils::ContainsNodeWithOp("PrefetchDataset", output)); NodeDef optimized_prefetch_node = output.node(graph_utils::FindGraphNodeWithOp("PrefetchDataset", output)); EXPECT_EQ(optimized_prefetch_node.attr().at("slack_period").i(), std::get<1>(GetParam())); } INSTANTIATE_TEST_SUITE_P(DifferentSlackEveryValues, ParameterizedSlackTest, ::testing::Values(std::make_tuple("1", 1), std::make_tuple("8", 8))); TEST(SlackTest, TestFailWithoutInit) { GrapplerItem item; Slack optimizer; GraphDef output; Status result = optimizer.Optimize(nullptr, item, &output); EXPECT_FALSE(result.ok()); EXPECT_TRUE(absl::IsInvalidArgument(result)); } TEST(SlackTest, TestFailWithInvalidSlackEveryParam) { GrapplerItem item; SetupGrapplerItem(&item); Slack optimizer; tensorflow::RewriterConfig_CustomGraphOptimizer config; (*config.mutable_parameter_map())["slack_period"].set_s("0"); TF_ASSERT_OK(optimizer.Init(&config)); GraphDef output; Status result = optimizer.Optimize(nullptr, item, &output); EXPECT_FALSE(result.ok()); EXPECT_TRUE(absl::IsInvalidArgument(result)); } TEST(SlackTest, TestFunctionNotOptimized) { GrapplerFunctionItem item; FunctionDefLibrary lib_def; FunctionDef *fdef = lib_def.add_function(); fdef->mutable_signature()->set_name("nested_function"); auto *input_arg = fdef->mutable_signature()->add_input_arg(); input_arg->set_name("args_0"); input_arg->set_type(DT_INT64); auto *output_arg = fdef->mutable_signature()->add_output_arg(); output_arg->set_name("identity"); output_arg->set_type(DT_VARIANT); fdef->mutable_signature()->set_is_stateful(true); AttrValue shapes_attr; SetAttrValue(std::vector<TensorShape>({{}}), &shapes_attr); AttrValue types_attr; SetAttrValue(std::vector<DataType>({DT_INT64}), &types_attr); NodeDef *tensor_dataset_node = function_utils::AddNode("TensorDataset", "TensorDataset", {"args_0"}, {std::make_pair("output_shapes", shapes_attr), std::make_pair("Toutput_types", types_attr)}, fdef); NodeDef *prefetch_node = function_utils::AddNode( "PrefetchDataset", "PrefetchDataset", {strings::StrCat(tensor_dataset_node->name(), ":handle:0"), "args_0"}, {std::make_pair("output_shapes", shapes_attr), std::make_pair("output_types", types_attr)}, fdef); AttrValue variant_type_attr; SetAttrValue(DT_VARIANT, &variant_type_attr); NodeDef *identity_node = function_utils::AddNode( "Identity", "Identity", {strings::StrCat(prefetch_node->name(), ":handle:0"), strings::StrCat("^", tensor_dataset_node->name())}, {std::make_pair("T", variant_type_attr)}, fdef); (*fdef->mutable_ret())["identity"] = strings::StrCat(identity_node->name(), ":output:0"); (*fdef->mutable_control_ret())[tensor_dataset_node->name()] = tensor_dataset_node->name(); fdef->mutable_signature()->add_control_output(tensor_dataset_node->name()); FunctionLibraryDefinition flib(OpRegistry::Global(), lib_def); TF_ASSERT_OK( MakeGrapplerFunctionItem(*fdef, flib, 27, &item)); GraphDef output; Slack optimizer; tensorflow::RewriterConfig_CustomGraphOptimizer config; (*config.mutable_parameter_map())["slack_period"].set_s("8"); TF_ASSERT_OK(optimizer.Init(&config)); TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); ASSERT_TRUE(graph_utils::ContainsNodeWithOp("PrefetchDataset", output)); NodeDef optimized_prefetch_node = output.node(graph_utils::FindGraphNodeWithOp("PrefetchDataset", output)); EXPECT_EQ(optimized_prefetch_node.attr().at("slack_period").i(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/slack.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/slack_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6432a53e-abeb-4a52-84d7-ca55e4526dee
cpp
tensorflow/tensorflow
batch_parallelization
tensorflow/core/grappler/optimizers/data/batch_parallelization.cc
tensorflow/core/grappler/optimizers/data/batch_parallelization_test.cc
#include "tensorflow/core/grappler/optimizers/data/batch_parallelization.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace { constexpr char kBatchDataset[] = "BatchDatasetV2"; constexpr char kParallelBatchDataset[] = "ParallelBatchDataset"; NodeDef MakeParallelBatch(const string& name, MutableGraphView* graph) { int index = graph_utils::FindGraphNodeWithName(name, *graph->graph()); DCHECK_NE(index, -1) << "Failed to find node " << name << " in the optimized graph."; NodeDef parallel_batch = graph->graph()->node(index); graph_utils::SetUniqueGraphNodeName(kParallelBatchDataset, graph->graph(), &parallel_batch); parallel_batch.set_op(kParallelBatchDataset); auto* num_parallel_calls = graph_utils::AddScalarConstNode(data::model::kAutotune, graph); string drop_remainder_name = parallel_batch.input(2); parallel_batch.set_input(2, num_parallel_calls->name()); parallel_batch.add_input(drop_remainder_name); return parallel_batch; } } Status BatchParallelization::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { VLOG(1) << "The optimization batch_parallelization is not applied if " "autotune is off."; return absl::OkStatus(); } MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) return absl::OkStatus(); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition function_library(OpRegistry::Global(), item.graph.library()); auto get_batch_node = [](const NodeDef& node) -> const NodeDef* { if (node.op() == kBatchDataset) return &node; return nullptr; }; for (const NodeDef& node : item.graph.node()) { const NodeDef* batch_node = get_batch_node(node); if (!batch_node) continue; auto* parallel_batch = graph.AddNode(MakeParallelBatch(batch_node->name(), &graph)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(batch_node->name(), parallel_batch->name())); nodes_to_delete.insert(batch_node->name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(BatchParallelization, "batch_parallelization"); } }
#include "tensorflow/core/grappler/optimizers/data/batch_parallelization.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { Status OptimizeWithBatchParallelization(const GrapplerItem& item, GraphDef* output, bool autotune) { BatchParallelization optimizer; RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } using graph_tests_utils::MakeBatchV2Node; class AutotuneSetting : public ::testing::TestWithParam<bool> {}; TEST_P(AutotuneSetting, BatchParallelizationTest) { const bool autotune = GetParam(); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), MakeBatchV2Node("batch", "range", "batch_size", "drop_remainder", false), NDef("Sink", "Identity", {"batch"}, {})}, {}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithBatchParallelization(item, &output, autotune)); EXPECT_EQ(graph_utils::ContainsNodeWithOp("ParallelBatchDataset", output), autotune); EXPECT_EQ(graph_utils::ContainsGraphNodeWithName("batch", output), !autotune); } INSTANTIATE_TEST_SUITE_P(Test, AutotuneSetting, ::testing::Values(false, true)); class FromFunctionDef : public ::testing::TestWithParam<string> {}; TEST_P(FromFunctionDef, BatchParallelizationTest) { const string op = GetParam(); bool from_function_def = (op == "_Retval"); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), MakeBatchV2Node("batch", "range", "batch_size", "drop_remainder", false), NDef("Sink", op, {"batch"}, {})}, {}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithBatchParallelization(item, &output, true)); EXPECT_EQ(graph_utils::ContainsNodeWithOp("ParallelBatchDataset", output), !from_function_def); EXPECT_EQ(graph_utils::ContainsGraphNodeWithName("batch", output), from_function_def); } INSTANTIATE_TEST_SUITE_P(Test, FromFunctionDef, ::testing::Values("Identity", "_Retval")); class ValueRewrites : public ::testing::TestWithParam<bool> {}; TEST_P(ValueRewrites, BatchParallelizationTest) { const bool parallel_copy = GetParam(); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), MakeBatchV2Node("batch", "range", "batch_size", "drop_remainder", parallel_copy), NDef("Sink", "Identity", {"batch"}, {})}, {}); item.fetch.push_back("Sink"); NodeDef batch = item.graph.node(graph_utils::FindGraphNodeWithName("batch", item.graph)); EXPECT_TRUE(batch.attr().find("parallel_copy") != batch.attr().end()); GraphDef output; TF_ASSERT_OK(OptimizeWithBatchParallelization(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("ParallelBatchDataset", output)); NodeDef parallel_batch = output.node( graph_utils::FindGraphNodeWithOp("ParallelBatchDataset", output)); EXPECT_EQ(parallel_batch.input_size(), 4); EXPECT_EQ(parallel_batch.input(0), "range"); EXPECT_EQ(parallel_batch.input(1), "batch_size"); EXPECT_EQ(parallel_batch.input(3), "drop_remainder"); EXPECT_EQ(parallel_batch.attr().at("parallel_copy").b(), parallel_copy); NodeDef parallelism_val = output.node( graph_utils::FindGraphNodeWithName(parallel_batch.input(2), output)); EXPECT_EQ(parallelism_val.attr().at("value").tensor().int64_val(0), -1); } INSTANTIATE_TEST_SUITE_P(Test, ValueRewrites, ::testing::Values(false, true)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/batch_parallelization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/batch_parallelization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
798ba46e-3eac-4fcd-aa56-8b804c33f805
cpp
tensorflow/tensorflow
parallel_batch
tensorflow/core/grappler/optimizers/data/parallel_batch.cc
tensorflow/core/grappler/optimizers/data/parallel_batch_test.cc
#include "tensorflow/core/grappler/optimizers/data/parallel_batch.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" namespace tensorflow { namespace grappler { Status ParallelBatch::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); for (NodeDef& node : *output->mutable_node()) { if (node.op() == "BatchDatasetV2" || node.op() == "PaddedBatchDatasetV2") { (*node.mutable_attr())["parallel_copy"].set_b(true); stats->num_changes++; } } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(ParallelBatch, "parallel_batch"); } }
#include "tensorflow/core/grappler/optimizers/data/parallel_batch.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { TEST(ParallelBatch, BatchDataset) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 5}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), NDef("batch", "BatchDatasetV2", {"range", "batch_size", "drop_remainder"}, {})}); ParallelBatch optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("batch", output)); int index = graph_utils::FindGraphNodeWithName("batch", output); EXPECT_TRUE(output.node(index).attr().at("parallel_copy").b()); } TEST(ParallelBatch, PaddedBatchDataset) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 5}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), NDef("batch", "PaddedBatchDatasetV2", {"range", "batch_size", "drop_remainder"}, {})}); ParallelBatch optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("batch", output)); int index = graph_utils::FindGraphNodeWithName("batch", output); EXPECT_TRUE(output.node(index).attr().at("parallel_copy").b()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/parallel_batch.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/parallel_batch_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f0a397fc-dd5d-4fcd-9a26-2967c72f8146
cpp
tensorflow/tensorflow
map_and_batch_fusion
tensorflow/core/grappler/optimizers/data/map_and_batch_fusion.cc
tensorflow/core/grappler/optimizers/data/map_and_batch_fusion_test.cc
#include "tensorflow/core/grappler/optimizers/data/map_and_batch_fusion.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kFusedOpName[] = "MapAndBatchDataset"; constexpr char kParallelMap[] = "ParallelMapDataset"; constexpr char kParallelMapV2[] = "ParallelMapDatasetV2"; bool IsParallelMap(const NodeDef& node) { return node.op() == kParallelMap || node.op() == kParallelMapV2; } NodeDef MakeMapAndBatchNode(const NodeDef& map_node, const NodeDef& batch_node, MutableGraphView* graph) { NodeDef new_node; new_node.set_op(kFusedOpName); graph_utils::SetUniqueGraphNodeName(kFusedOpName, graph->graph(), &new_node); new_node.add_input(map_node.input(0)); int num_other_args; if (IsParallelMap(map_node)) { num_other_args = map_node.input_size() - 2; } else { num_other_args = map_node.input_size() - 1; } for (int i = 0; i < num_other_args; i++) { new_node.add_input(map_node.input(i + 1)); } new_node.add_input(batch_node.input(1)); if (map_node.op() == kParallelMap) { NodeDef* v = graph->GetNode(map_node.input(map_node.input_size() - 1)); NodeDef* tmp = graph_utils::AddScalarConstNode<int64_t>( v->attr().at("value").tensor().int_val(0), graph); new_node.add_input(tmp->name()); } else if (map_node.op() == kParallelMapV2) { new_node.add_input(map_node.input(map_node.input_size() - 1)); } else { NodeDef* tmp = graph_utils::AddScalarConstNode<int64_t>(1, graph); new_node.add_input(tmp->name()); } if (batch_node.op() == "BatchDatasetV2") { new_node.add_input(batch_node.input(2)); } else { NodeDef* tmp = graph_utils::AddScalarConstNode<bool>(false, graph); new_node.add_input(tmp->name()); } for (auto key : {"f", "Targuments"}) { graph_utils::CopyAttribute(key, map_node, &new_node); } graph_utils::CopyShapesAndTypesAttrs(batch_node, &new_node); for (auto key : {"preserve_cardinality"}) { if (gtl::FindOrNull(map_node.attr(), key)) { graph_utils::CopyAttribute(key, map_node, &new_node); } } graph_utils::MaybeSetFusedMetadata(map_node, batch_node, &new_node); return new_node; } } Status MapAndBatchFusion::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; for (const NodeDef& node : item.graph.node()) { if (node.op() != "BatchDataset" && node.op() != "BatchDatasetV2") { continue; } const NodeDef& batch_node = node; NodeDef* node2 = graph_utils::GetInputNode(batch_node, graph); if (node2->op() != "MapDataset" && !IsParallelMap(*node2)) { continue; } if (node2->attr().find("use_unbounded_threadpool") != node2->attr().end() && node2->attr().at("use_unbounded_threadpool").b()) { continue; } NodeDef* map_node = node2; auto* new_node = graph.AddNode(MakeMapAndBatchNode(*map_node, batch_node, &graph)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(batch_node.name(), new_node->name())); nodes_to_delete.insert(map_node->name()); nodes_to_delete.insert(batch_node.name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(MapAndBatchFusion, "map_and_batch_fusion"); } }
#include "tensorflow/core/grappler/optimizers/data/map_and_batch_fusion.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { TEST(MapAndBatchFusionTest, FuseMapAndBatchNodesIntoOne) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *captured_input_node = graph_utils::AddScalarConstNode<StringPiece>("hello", &graph); NodeDef *map_node; { std::vector<string> map_inputs(2); map_inputs[0] = range_node->name(); map_inputs[1] = captured_input_node->name(); std::vector<std::pair<string, AttrValue>> map_attrs(2); AttrValue f_attr; SetAttrValue("f", &f_attr); map_attrs[0] = std::make_pair("f", f_attr); AttrValue args_attr; SetAttrValue("Targuments", &args_attr); map_attrs[1] = std::make_pair("Targuments", args_attr); map_node = graph_utils::AddNode("", "MapDataset", map_inputs, map_attrs, &graph); } NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); NodeDef *batch_node; { std::vector<string> batch_inputs(2); batch_inputs[0] = map_node->name(); batch_inputs[1] = batch_size_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); batch_node = graph_utils::AddNode("", "BatchDataset", batch_inputs, batch_attrs, &graph); } MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(map_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(batch_node->name(), output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapAndBatchDataset", output)); NodeDef map_and_batch_node = output.node( graph_utils::FindGraphNodeWithOp("MapAndBatchDataset", output)); EXPECT_EQ(map_and_batch_node.input_size(), 5); EXPECT_EQ(map_and_batch_node.input(0), map_node->input(0)); EXPECT_EQ(map_and_batch_node.input(1), map_node->input(1)); EXPECT_EQ(map_and_batch_node.input(2), batch_node->input(1)); NodeDef num_parallel_calls_node = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(3), output)); EXPECT_EQ(num_parallel_calls_node.attr().at("value").tensor().int64_val(0), 1); NodeDef drop_remainder_node = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(4), output)); EXPECT_EQ(drop_remainder_node.attr().at("value").tensor().bool_val(0), false); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("f"), map_node->attr().at("f"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("Targuments"), map_node->attr().at("Targuments"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_shapes"), batch_node->attr().at("output_shapes"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_types"), batch_node->attr().at("output_types"))); } TEST(MapAndBatchFusionTest, FuseMapAndBatchV2NodesIntoOne) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *captured_input_node = graph_utils::AddScalarConstNode<StringPiece>("hello", &graph); NodeDef *map_node; { std::vector<string> map_inputs(2); map_inputs[0] = range_node->name(); map_inputs[1] = captured_input_node->name(); std::vector<std::pair<string, AttrValue>> map_attrs(2); AttrValue f_attr; SetAttrValue("f", &f_attr); map_attrs[0] = std::make_pair("f", f_attr); AttrValue args_attr; SetAttrValue("Targuments", &args_attr); map_attrs[1] = std::make_pair("Targuments", args_attr); map_node = graph_utils::AddNode("", "MapDataset", map_inputs, map_attrs, &graph); } NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); NodeDef *drop_remainder_node = graph_utils::AddScalarConstNode<bool>(true, &graph); NodeDef *batch_node; { std::vector<string> batch_inputs(3); batch_inputs[0] = map_node->name(); batch_inputs[1] = batch_size_node->name(); batch_inputs[2] = drop_remainder_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); batch_node = graph_utils::AddNode("", "BatchDatasetV2", batch_inputs, batch_attrs, &graph); } MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(map_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(batch_node->name(), output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapAndBatchDataset", output)); NodeDef map_and_batch_node = output.node( graph_utils::FindGraphNodeWithOp("MapAndBatchDataset", output)); EXPECT_EQ(map_and_batch_node.input_size(), 5); EXPECT_EQ(map_and_batch_node.input(0), map_node->input(0)); EXPECT_EQ(map_and_batch_node.input(1), map_node->input(1)); EXPECT_EQ(map_and_batch_node.input(2), batch_node->input(1)); NodeDef num_parallel_calls_node = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(3), output)); EXPECT_EQ(num_parallel_calls_node.attr().at("value").tensor().int64_val(0), 1); EXPECT_EQ(map_and_batch_node.input(4), batch_node->input(2)); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("f"), map_node->attr().at("f"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("Targuments"), map_node->attr().at("Targuments"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_shapes"), batch_node->attr().at("output_shapes"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_types"), batch_node->attr().at("output_types"))); } TEST(MapAndBatchFusionTest, FuseParallelMapAndBatchNodesIntoOne) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *captured_input_node = graph_utils::AddScalarConstNode<StringPiece>("hello", &graph); NodeDef *num_parallel_calls_node = graph_utils::AddScalarConstNode<int>(2, &graph); NodeDef *map_node; { std::vector<string> map_inputs(3); map_inputs[0] = range_node->name(); map_inputs[1] = captured_input_node->name(); map_inputs[2] = num_parallel_calls_node->name(); std::vector<std::pair<string, AttrValue>> map_attrs(2); AttrValue f_attr; SetAttrValue("f", &f_attr); map_attrs[0] = std::make_pair("f", f_attr); AttrValue args_attr; SetAttrValue("Targuments", &args_attr); map_attrs[1] = std::make_pair("Targuments", args_attr); map_node = graph_utils::AddNode("", "ParallelMapDataset", map_inputs, map_attrs, &graph); } NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); NodeDef *batch_node; { std::vector<string> batch_inputs(2); batch_inputs[0] = map_node->name(); batch_inputs[1] = batch_size_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); batch_node = graph_utils::AddNode("", "BatchDataset", batch_inputs, batch_attrs, &graph); } MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(map_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(batch_node->name(), output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapAndBatchDataset", output)); NodeDef map_and_batch_node = output.node( graph_utils::FindGraphNodeWithOp("MapAndBatchDataset", output)); EXPECT_EQ(map_and_batch_node.input_size(), 5); EXPECT_EQ(map_and_batch_node.input(0), map_node->input(0)); EXPECT_EQ(map_and_batch_node.input(1), map_node->input(1)); EXPECT_EQ(map_and_batch_node.input(2), batch_node->input(1)); NodeDef num_parallel_calls_node2 = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(3), output)); EXPECT_EQ(num_parallel_calls_node2.attr().at("value").tensor().int64_val(0), 2); NodeDef drop_remainder_node = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(4), output)); EXPECT_EQ(drop_remainder_node.attr().at("value").tensor().bool_val(0), false); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("f"), map_node->attr().at("f"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("Targuments"), map_node->attr().at("Targuments"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_shapes"), batch_node->attr().at("output_shapes"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_types"), batch_node->attr().at("output_types"))); } TEST(MapAndBatchFusionTest, FuseParallelMapV2AndBatchNodesIntoOne) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *captured_input_node = graph_utils::AddScalarConstNode<StringPiece>("hello", &graph); NodeDef *num_parallel_calls_node = graph_utils::AddScalarConstNode<int64_t>(2, &graph); NodeDef *map_node; { std::vector<string> map_inputs(3); map_inputs[0] = range_node->name(); map_inputs[1] = captured_input_node->name(); map_inputs[2] = num_parallel_calls_node->name(); std::vector<std::pair<string, AttrValue>> map_attrs(2); AttrValue f_attr; SetAttrValue("f", &f_attr); map_attrs[0] = std::make_pair("f", f_attr); AttrValue args_attr; SetAttrValue("Targuments", &args_attr); map_attrs[1] = std::make_pair("Targuments", args_attr); map_node = graph_utils::AddNode("", "ParallelMapDatasetV2", map_inputs, map_attrs, &graph); } NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); NodeDef *batch_node; { std::vector<string> batch_inputs(2); batch_inputs[0] = map_node->name(); batch_inputs[1] = batch_size_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); batch_node = graph_utils::AddNode("", "BatchDataset", batch_inputs, batch_attrs, &graph); } MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(map_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(batch_node->name(), output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapAndBatchDataset", output)); NodeDef map_and_batch_node = output.node( graph_utils::FindGraphNodeWithOp("MapAndBatchDataset", output)); EXPECT_EQ(map_and_batch_node.input_size(), 5); EXPECT_EQ(map_and_batch_node.input(0), map_node->input(0)); EXPECT_EQ(map_and_batch_node.input(1), map_node->input(1)); EXPECT_EQ(map_and_batch_node.input(2), batch_node->input(1)); NodeDef num_parallel_calls_node2 = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(3), output)); EXPECT_EQ(num_parallel_calls_node2.attr().at("value").tensor().int64_val(0), 2); NodeDef drop_remainder_node = output.node( graph_utils::FindGraphNodeWithName(map_and_batch_node.input(4), output)); EXPECT_EQ(drop_remainder_node.attr().at("value").tensor().bool_val(0), false); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("f"), map_node->attr().at("f"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("Targuments"), map_node->attr().at("Targuments"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_shapes"), batch_node->attr().at("output_shapes"))); EXPECT_TRUE(AreAttrValuesEqual(map_and_batch_node.attr().at("output_types"), batch_node->attr().at("output_types"))); } TEST(MapAndBatchFusionTest, NoChange) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); std::vector<string> batch_inputs(2); batch_inputs[0] = range_node->name(); batch_inputs[1] = batch_size_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); graph_utils::AddNode("", "BatchDataset", batch_inputs, batch_attrs, &graph); MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::Compare(*graph.graph(), output)); } TEST(MapAndBatchFusionTest, NoChange_UnboundedThreadpoolParallelMap) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *captured_input_node = graph_utils::AddScalarConstNode<StringPiece>("hello", &graph); NodeDef *num_parallel_calls_node = graph_utils::AddScalarConstNode<int>(2, &graph); NodeDef *map_node; { std::vector<string> map_inputs(3); map_inputs[0] = range_node->name(); map_inputs[1] = captured_input_node->name(); map_inputs[2] = num_parallel_calls_node->name(); std::vector<std::pair<string, AttrValue>> map_attrs(3); AttrValue f_attr; SetAttrValue("f", &f_attr); map_attrs[0] = std::make_pair("f", f_attr); AttrValue args_attr; SetAttrValue("Targuments", &args_attr); map_attrs[1] = std::make_pair("Targuments", args_attr); AttrValue use_unbounded_threadpool_attr; SetAttrValue(true, &use_unbounded_threadpool_attr); map_attrs[2] = std::make_pair("use_unbounded_threadpool", use_unbounded_threadpool_attr); map_node = graph_utils::AddNode("", "ParallelMapDataset", map_inputs, map_attrs, &graph); } NodeDef *batch_size_node = graph_utils::AddScalarConstNode<int64_t>(5, &graph); NodeDef *batch_node; { std::vector<string> batch_inputs(2); batch_inputs[0] = map_node->name(); batch_inputs[1] = batch_size_node->name(); std::vector<std::pair<string, AttrValue>> batch_attrs(2); AttrValue shapes_attr; SetAttrValue("output_shapes", &shapes_attr); batch_attrs[0] = std::make_pair("output_shapes", shapes_attr); AttrValue types_attr; SetAttrValue("output_types", &types_attr); batch_attrs[1] = std::make_pair("output_types", types_attr); batch_node = graph_utils::AddNode("", "BatchDataset", batch_inputs, batch_attrs, &graph); } MapAndBatchFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::Compare(*graph.graph(), output)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/map_and_batch_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/map_and_batch_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d19e6e02-4edc-4ad0-84de-f8a2f4b058e1
cpp
tensorflow/tensorflow
autotune_buffer_sizes
tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes.cc
tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes_test.cc
#include "tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kBufferSizeMin[] = "buffer_size_min"; constexpr char kPrefetchDataset[] = "PrefetchDataset"; constexpr std::array<const char*, 8> kAsyncDatasetOps = { "ExperimentalMapAndBatchDataset", "MapAndBatchDataset", "ParallelBatchDataset", "ParallelInterleaveDatasetV2", "ParallelInterleaveDatasetV3", "ParallelInterleaveDatasetV4", "ParallelMapDataset", "ParallelMapDatasetV2", }; } Status AutotuneBufferSizes::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { VLOG(1) << "The optimization autotune_buffer_sizes is not applied if " "autotune is off."; return absl::OkStatus(); } MutableGraphView graph(output); NodeDef* autotune_value = graph_utils::AddScalarConstNode(data::model::kAutotune, &graph); absl::flat_hash_set<string> already_prefetched; for (NodeDef& node : *output->mutable_node()) { if (node.op() == kPrefetchDataset) { NodeDef* buffer_size_node = graph.GetNode(node.input(1)); if (buffer_size_node->op() == "Const") { int64_t initial_buffer_size = buffer_size_node->attr().at("value").tensor().int64_val(0); if (initial_buffer_size != data::model::kAutotune) { TF_RETURN_IF_ERROR(graph.UpdateFanin(node.name(), {buffer_size_node->name(), 0}, {autotune_value->name(), 0})); node.mutable_attr()->at(kBufferSizeMin).set_i(initial_buffer_size); stats->num_changes++; } } else { return absl::FailedPreconditionError( "The autotune_buffer_sizes rewrite does not currently support " "non-constant buffer_size input."); } NodeDef* prefetched_node = graph_utils::GetInputNode(node, graph); if (prefetched_node) { already_prefetched.insert(prefetched_node->name()); } } } std::vector<const NodeDef*> async_datasets; for (const NodeDef& node : item.graph.node()) { if (already_prefetched.find(node.name()) != already_prefetched.end()) { continue; } for (const auto& async_dataset_op : kAsyncDatasetOps) { if (node.op() == async_dataset_op) { async_datasets.push_back(&node); stats->num_changes++; break; } } } if (async_datasets.empty()) return absl::OkStatus(); for (const NodeDef* async_dataset_node : async_datasets) { NodeDef prefetch_node; graph_utils::SetUniqueGraphNodeName( strings::StrCat("inject/prefetch_", async_dataset_node->name()), graph.graph(), &prefetch_node); prefetch_node.set_op(kPrefetchDataset); *prefetch_node.mutable_input()->Add() = async_dataset_node->name(); *prefetch_node.mutable_input()->Add() = autotune_value->name(); graph_utils::CopyShapesAndTypesAttrs(*async_dataset_node, &prefetch_node); auto* added_node = graph.AddNode(std::move(prefetch_node)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(async_dataset_node->name(), added_node->name())); } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(AutotuneBufferSizes, "autotune_buffer_sizes"); } }
#include "tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { Status OptimizeWithAutotuneBufferSizes(const GrapplerItem &item, GraphDef *output, bool autotune) { AutotuneBufferSizes optimizer; RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } class SimpleInject : public ::testing::TestWithParam<string> {}; TEST_P(SimpleInject, AutotuneBufferSizesTest) { const string async_dataset = GetParam(); using test::function::NDef; GrapplerItem item; if (async_dataset == "map") { item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapNode( "map", "range", "num_parallel_calls", "XTimesTwo", false)}, { test::function::XTimesTwo(), }); } else if (async_dataset == "interleave") { item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV2Node( "interleave", "range", "cycle_length", "block_length", "num_parallel_calls", "XTimesTwo", false)}, { test::function::XTimesTwo(), }); } else if (async_dataset == "map_and_batch") { item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 32}, {"dtype", DT_INT64}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT64}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), graph_tests_utils::MakeMapAndBatchNode( "map_and_batch", "range", "batch_size", "num_parallel_calls", "drop_remainder", "XTimesTwo")}, { test::function::XTimesTwo(), }); } GraphDef output; TF_ASSERT_OK(OptimizeWithAutotuneBufferSizes(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("PrefetchDataset", output)); int index = graph_utils::FindGraphNodeWithOp("PrefetchDataset", output); const NodeDef prefetch_node = output.node(index); EXPECT_TRUE(prefetch_node.attr().find("legacy_autotune") == prefetch_node.attr().end()); EXPECT_EQ(prefetch_node.input_size(), 2); NodeDef async_node = output.node( graph_utils::FindGraphNodeWithName(prefetch_node.input(0), output)); EXPECT_EQ(async_node.name(), async_dataset); NodeDef buffer_size_val = output.node( graph_utils::FindGraphNodeWithName(prefetch_node.input(1), output)); EXPECT_EQ(buffer_size_val.attr().at("value").tensor().int64_val(0), -1); } INSTANTIATE_TEST_SUITE_P(Test, SimpleInject, ::testing::Values("map", "interleave", "map_and_batch")); class AutotuneSetting : public ::testing::TestWithParam<bool> {}; TEST_P(AutotuneSetting, AutotuneBufferSizesTest) { const bool autotune = GetParam(); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapNode("map", "range", "num_parallel_calls", "XTimesTwo", false)}, { test::function::XTimesTwo(), }); GraphDef output; TF_ASSERT_OK(OptimizeWithAutotuneBufferSizes(item, &output, autotune)); EXPECT_EQ(graph_utils::ContainsNodeWithOp("PrefetchDataset", output), autotune); } class MultipleNodes : public ::testing::TestWithParam<std::tuple<bool, int64_t>> {}; TEST_P(MultipleNodes, AutotuneBufferSizesTest) { const bool legacy_autotune = std::get<0>(GetParam()); const int64_t initial_buffer_size = std::get<1>(GetParam()); GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_val = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_val = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_val = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_val->name(); range_inputs[1] = stop_val->name(); range_inputs[2] = step_val->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("range", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *parallelism_val = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> map_inputs1(2); map_inputs1[0] = range_node->name(); map_inputs1[1] = parallelism_val->name(); std::vector<std::pair<string, AttrValue>> map_attrs(4); AttrValue attr_val; SetAttrValue("value", &attr_val); map_attrs[0] = std::make_pair("f", attr_val); map_attrs[1] = std::make_pair("Targuments", attr_val); map_attrs[2] = std::make_pair("output_types", attr_val); map_attrs[3] = std::make_pair("output_shapes", attr_val); NodeDef *map_node1 = graph_utils::AddNode("map1", "ParallelMapDatasetV2", map_inputs1, map_attrs, &graph); NodeDef *buffer_size_val = graph_utils::AddScalarConstNode<int64_t>(initial_buffer_size, &graph); std::vector<string> prefetch_inputs(2); prefetch_inputs[0] = map_node1->name(); prefetch_inputs[1] = buffer_size_val->name(); std::vector<std::pair<string, AttrValue>> prefetch_attrs(4); AttrValue legacy_autotune_attr; SetAttrValue(legacy_autotune, &legacy_autotune_attr); AttrValue buffer_size_min_attr; SetAttrValue(0, &buffer_size_min_attr); prefetch_attrs[0] = std::make_pair("legacy_autotune", legacy_autotune_attr); prefetch_attrs[1] = std::make_pair("buffer_size_min", buffer_size_min_attr); prefetch_attrs[2] = std::make_pair("output_types", attr_val); prefetch_attrs[3] = std::make_pair("output_shapes", attr_val); NodeDef *prefetch_node = graph_utils::AddNode( "prefetch", "PrefetchDataset", prefetch_inputs, prefetch_attrs, &graph); std::vector<string> map_inputs2(2); map_inputs2[0] = prefetch_node->name(); map_inputs2[1] = parallelism_val->name(); NodeDef *map_node2 = graph_utils::AddNode("map2", "ParallelMapDatasetV2", map_inputs2, map_attrs, &graph); std::vector<string> map_inputs3(1); map_inputs3[0] = map_node2->name(); graph_utils::AddNode("map3", "MapDataset", map_inputs3, map_attrs, &graph); GraphDef output; TF_ASSERT_OK(OptimizeWithAutotuneBufferSizes(item, &output, true)); std::vector<int> prefetch_indices = graph_utils::FindAllGraphNodesWithOp("PrefetchDataset", output); EXPECT_EQ(prefetch_indices.size(), 2); NodeDef new_map_node3 = output.node(graph_utils::FindGraphNodeWithName("map3", output)); NodeDef new_prefetch_node2 = output.node( graph_utils::FindGraphNodeWithName(new_map_node3.input(0), output)); EXPECT_EQ(new_prefetch_node2.op(), "PrefetchDataset"); EXPECT_EQ(new_prefetch_node2.input_size(), 2); EXPECT_TRUE(new_prefetch_node2.attr().find("legacy_autotune") == new_prefetch_node2.attr().end()); EXPECT_TRUE(new_prefetch_node2.attr().find("buffer_size_min") == new_prefetch_node2.attr().end()); NodeDef new_buffer_size_val2 = output.node( graph_utils::FindGraphNodeWithName(new_prefetch_node2.input(1), output)); EXPECT_EQ(new_buffer_size_val2.attr().at("value").tensor().int64_val(0), -1); NodeDef new_map_node2 = output.node( graph_utils::FindGraphNodeWithName(new_prefetch_node2.input(0), output)); EXPECT_EQ(new_map_node2.name(), "map2"); NodeDef new_prefetch_node1 = output.node( graph_utils::FindGraphNodeWithName(new_map_node2.input(0), output)); EXPECT_EQ(new_prefetch_node1.op(), "PrefetchDataset"); EXPECT_EQ(new_prefetch_node1.input_size(), 2); EXPECT_EQ(new_prefetch_node1.attr().at("legacy_autotune").b(), legacy_autotune); EXPECT_EQ(new_prefetch_node1.attr().at("buffer_size_min").i(), (initial_buffer_size == -1 ? 0 : initial_buffer_size)); NodeDef new_buffer_size_val1 = output.node( graph_utils::FindGraphNodeWithName(new_prefetch_node1.input(1), output)); EXPECT_EQ(new_buffer_size_val1.attr().at("value").tensor().int64_val(0), -1); NodeDef new_map_node1 = output.node( graph_utils::FindGraphNodeWithName(new_prefetch_node1.input(0), output)); EXPECT_EQ(new_map_node1.name(), "map1"); } INSTANTIATE_TEST_SUITE_P(Test, MultipleNodes, ::testing::Combine(::testing::Values(true, false), ::testing::Values(-1, 3))); INSTANTIATE_TEST_SUITE_P(Test, AutotuneSetting, ::testing::Values(false, true)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/autotune_buffer_sizes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5293b335-1054-4251-bbc9-edecf54c9bf3
cpp
tensorflow/tensorflow
inject_prefetch
tensorflow/core/grappler/optimizers/data/inject_prefetch.cc
tensorflow/core/grappler/optimizers/data/inject_prefetch_test.cc
#include "tensorflow/core/grappler/optimizers/data/inject_prefetch.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kPrefetchDataset[] = "PrefetchDataset"; constexpr std::array<const char*, 5> kAsyncTransforms = { "MapAndBatchDataset", "ParallelBatchDataset", "ParallelInterleaveDataset", "ParallelMapDataset", "PrefetchDataset"}; constexpr std::array<const char*, 8> kDatasetsToSkip = { "AssertNextDataset", "ExperimentalAssertNextDataset", "IgnoreErrorsDataset", "OptionsDataset", "ModelDataset", "OptimizeDataset", "MaxIntraOpParallelismDataset", "PrivateThreadPoolDataset", }; bool ShouldInjectPrefetch(const NodeDef* last_node, const MutableGraphView& graph) { while (last_node != nullptr && absl::c_any_of(kDatasetsToSkip, [last_node](const char* dataset) { return data::MatchesAnyVersion(dataset, last_node->op()); })) { last_node = graph_utils::GetInputNode(*last_node, graph); } if (last_node == nullptr) { VLOG(1) << "The optimization inject_prefetch is not applied because graph " "rewrite failed to find a dataset node."; return false; } if (absl::c_any_of(kAsyncTransforms, [last_node](const char* dataset) { return data::MatchesAnyVersion(dataset, last_node->op()); })) { VLOG(1) << "The optimization inject_prefetch is not applied because the " "last transformation of the input pipeline is an asynchronous " "transformation: " << last_node->op(); return false; } return true; } } Status InjectPrefetch::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { VLOG(1) << "The optimization inject_prefetch is not applied if autotune is " "off."; return absl::OkStatus(); } MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) { return absl::OkStatus(); } if (item.fetch.size() != 1) { return errors::InvalidArgument( "Expected only one fetch node but there were ", item.fetch.size(), ": ", absl::StrJoin(item.fetch, ", ")); } NodeDef* sink_node = graph.GetNode(item.fetch.at(0)); NodeDef* last_node = graph_utils::GetInputNode(*sink_node, graph); if (!ShouldInjectPrefetch(last_node, graph)) { return absl::OkStatus(); } NodeDef prefetch_node; graph_utils::SetUniqueGraphNodeName( strings::StrCat("inject/prefetch_", last_node->name()), graph.graph(), &prefetch_node); prefetch_node.set_op(kPrefetchDataset); *prefetch_node.mutable_input()->Add() = last_node->name(); NodeDef* autotune_value = graph_utils::AddScalarConstNode(data::model::kAutotune, &graph); *prefetch_node.mutable_input()->Add() = autotune_value->name(); if (!graph_utils::CopyShapesAndTypesAttrs(*last_node, &prefetch_node)) return absl::OkStatus(); TF_RETURN_IF_ERROR( graph_utils::SetMetadataName(prefetch_node.name(), &prefetch_node)); auto* added_node = graph.AddNode(std::move(prefetch_node)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(last_node->name(), added_node->name())); stats->num_changes++; return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(InjectPrefetch, "inject_prefetch"); } }
#include "tensorflow/core/grappler/optimizers/data/inject_prefetch.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using test::function::NDef; constexpr char kOptionsDataset[] = "OptionsDataset"; constexpr char kParallelMapDataset[] = "ParallelMapDatasetV2"; constexpr char kPrefetchDataset[] = "PrefetchDataset"; Status Optimize(InjectPrefetch &optimizer, const GrapplerItem &item, GraphDef *output, bool autotune) { RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } Status OptimizeWithInjectPrefetch(const GrapplerItem &item, GraphDef *output, bool autotune) { InjectPrefetch optimizer; return Optimize(optimizer, item, output, autotune); } class InjectPrefetchParameterizedTest : public ::testing::TestWithParam<bool> { }; TEST_P(InjectPrefetchParameterizedTest, TestAutotuneSetting) { const bool autotune = GetParam(); GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", "Identity", {"range"}, {})}); item.fetch.push_back("Sink"); GraphDef inject_prefetch_output; TF_ASSERT_OK( OptimizeWithInjectPrefetch(item, &inject_prefetch_output, autotune)); EXPECT_EQ(autotune, graph_utils::ContainsNodeWithOp(kPrefetchDataset, inject_prefetch_output)); EXPECT_EQ(autotune, graph_utils::ContainsGraphNodeWithName( "inject/prefetch_range", inject_prefetch_output)); } INSTANTIATE_TEST_SUITE_P(AutotuneSetting, InjectPrefetchParameterizedTest, ::testing::Values(false, true)); TEST(InjectPrefetchTest, FromFunctionDef) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", "_Retval", {"range"}, {})}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectPrefetch(item, &output, true)); EXPECT_FALSE(graph_utils::ContainsNodeWithOp(kPrefetchDataset, output)); } TEST(InjectPrefetchTest, AlreadyPrefetched) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("prefetch", kPrefetchDataset, {"range"}, {}), NDef("Sink", "Identity", {"prefetch"}, {})}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectPrefetch(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp(kPrefetchDataset, output)); EXPECT_EQ(6, output.node_size()); } TEST(InjectPrefetchTest, AlreadyParallelMap) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("parallel_map", kParallelMapDataset, {"range"}, {{"f", "__inference_Dataset_map_normalize_8232"}, {"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", "Identity", {"parallel_map"}, {})}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectPrefetch(item, &output, true)); EXPECT_FALSE(graph_utils::ContainsNodeWithOp(kPrefetchDataset, output)); EXPECT_EQ(6, output.node_size()); } TEST(InjectPrefetchTest, OptionsFollowedByPrefetched) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("prefetch", kPrefetchDataset, {"range"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("options", kOptionsDataset, {"prefetch"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", "Identity", {"options"}, {})}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectPrefetch(item, &output, true)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("inject/prefetch_options", output)); EXPECT_EQ(7, output.node_size()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/inject_prefetch.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/inject_prefetch_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0e3d9076-7c79-4ee2-b5df-2a986817bca7
cpp
tensorflow/tensorflow
disable_prefetch_legacy_autotune
tensorflow/core/grappler/optimizers/data/disable_prefetch_legacy_autotune.cc
tensorflow/core/grappler/optimizers/data/disable_prefetch_legacy_autotune_test.cc
#include "tensorflow/core/grappler/optimizers/data/disable_prefetch_legacy_autotune.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kLegacyAutotune[] = "legacy_autotune"; constexpr char kPrefetchDataset[] = "PrefetchDataset"; } Status DisablePrefetchLegacyAutotune::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { VLOG(1) << "The optimization disable_prefetch_legacy_autotune is not " "applied if autotune is off."; return absl::OkStatus(); } MutableGraphView graph(output); for (NodeDef& node : *output->mutable_node()) { if (node.op() == kPrefetchDataset) { if (node.attr().find(kLegacyAutotune) == node.attr().end() || node.attr().at(kLegacyAutotune).b()) { (*node.mutable_attr())[kLegacyAutotune].set_b(false); stats->num_changes++; } } } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(DisablePrefetchLegacyAutotune, "disable_prefetch_legacy_autotune"); } }
#include "tensorflow/core/grappler/optimizers/data/disable_prefetch_legacy_autotune.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using test::function::NDef; Status OptimizeWithDisablePrefetchLegacyAutotune(const GrapplerItem &item, GraphDef *output, bool autotune) { DisablePrefetchLegacyAutotune optimizer; RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } class RewriteTest : public ::testing::TestWithParam<bool> {}; TEST_P(RewriteTest, DisablePrefetchLegacyAutotune) { const bool autotune = GetParam(); GrapplerItem item; item.graph = test::function::GDef({ NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("prefetch1", "PrefetchDataset", {"range"}, {{"legacy_autotune", true}}), NDef("prefetch2", "PrefetchDataset", {"prefetch1"}, {{"legacy_autotune", false}}), NDef("prefetch3", "PrefetchDataset", {"prefetch2"}, {}), }); GraphDef output; TF_ASSERT_OK( OptimizeWithDisablePrefetchLegacyAutotune(item, &output, autotune)); NodeDef prefetch_node1 = output.node(graph_utils::FindGraphNodeWithName("prefetch1", output)); EXPECT_EQ(prefetch_node1.attr().at("legacy_autotune").b(), !autotune); NodeDef prefetch_node2 = output.node(graph_utils::FindGraphNodeWithName("prefetch2", output)); EXPECT_FALSE(prefetch_node2.attr().at("legacy_autotune").b()); NodeDef prefetch_node3 = output.node(graph_utils::FindGraphNodeWithName("prefetch3", output)); if (autotune) { EXPECT_FALSE(prefetch_node3.attr().at("legacy_autotune").b()); } else { EXPECT_TRUE(prefetch_node3.attr().find("legacy_autotune") == prefetch_node3.attr().end()); } } INSTANTIATE_TEST_SUITE_P(Test, RewriteTest, ::testing::Values(false, true)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/disable_prefetch_legacy_autotune.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/disable_prefetch_legacy_autotune_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9e90afce-2432-421a-af39-184f82dff8c1
cpp
tensorflow/tensorflow
disable_intra_op_parallelism
tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism.cc
tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism_test.cc
#include "tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kMaxIntraOpParallelismDataset[] = "MaxIntraOpParallelismDataset"; constexpr char kModelDataset[] = "ModelDataset"; constexpr std::array<const char*, 2> kMaxIntraOpParallelismDatasetOps = { "MaxIntraOpParallelismDataset", "ExperimentalMaxIntraOpParallelismDataset", }; } Status DisableIntraOpParallelism::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) return absl::OkStatus(); if (item.fetch.size() != 1) { return errors::InvalidArgument( "Expected only one fetch node but there were ", item.fetch.size(), ": ", absl::StrJoin(item.fetch, ", ")); } for (const NodeDef& node : item.graph.node()) { for (const auto& target_dataset_op : kMaxIntraOpParallelismDatasetOps) { if (node.op() == target_dataset_op) { return absl::OkStatus(); } } } NodeDef* sink_node = graph.GetNode(item.fetch.at(0)); NodeDef* last_node = graph_utils::GetInputNode(*sink_node, graph); if (last_node->op() == kModelDataset) { last_node = graph_utils::GetInputNode(*last_node, graph); } NodeDef* max_parallelism_value = graph_utils::AddScalarConstNode(int64_t{1}, &graph); NodeDef insert_node; graph_utils::SetUniqueGraphNodeName("intra_op_parallelism", graph.graph(), &insert_node); insert_node.set_op(kMaxIntraOpParallelismDataset); *insert_node.mutable_input()->Add() = last_node->name(); *insert_node.mutable_input()->Add() = max_parallelism_value->name(); if (!graph_utils::CopyShapesAndTypesAttrs(*last_node, &insert_node)) return absl::OkStatus(); auto* added_node = graph.AddNode(std::move(insert_node)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(last_node->name(), added_node->name())); stats->num_changes++; return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(DisableIntraOpParallelism, "disable_intra_op_parallelism"); } }
#include "tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using test::function::NDef; class IntraOpAlreadySetTest : public ::testing::TestWithParam<std::tuple<string, int64_t>> {}; TEST_P(IntraOpAlreadySetTest, IntraOpParallelism) { const string op = std::get<0>(GetParam()); const int64_t value = std::get<1>(GetParam()); GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_val = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_val = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_val = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_val->name(); range_inputs[1] = stop_val->name(); range_inputs[2] = step_val->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("range", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *parallelism_val = graph_utils::AddScalarConstNode<int64_t>(value, &graph); std::vector<string> parallelism_inputs(2); parallelism_inputs[0] = range_node->name(); parallelism_inputs[1] = parallelism_val->name(); std::vector<std::pair<string, AttrValue>> parallelism_attrs; NodeDef *parallelism_node = graph_utils::AddNode( "max_parallelism", op, parallelism_inputs, parallelism_attrs, &graph); std::vector<string> sink_inputs(1); sink_inputs[0] = parallelism_node->name(); std::vector<std::pair<string, AttrValue>> sink_attrs; NodeDef *sink_node = graph_utils::AddNode("Sink", "Identity", sink_inputs, sink_attrs, &graph); item.fetch.push_back(sink_node->name()); EXPECT_TRUE(graph_utils::ContainsNodeWithOp(op, item.graph)); EXPECT_EQ(item.graph.node_size(), 7); EXPECT_EQ(parallelism_val->attr().at("value").tensor().int64_val(0), value); DisableIntraOpParallelism optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(output.node_size(), 7); EXPECT_TRUE(graph_utils::ContainsNodeWithOp(op, output)); NodeDef new_parallelism_node = output.node(graph_utils::FindGraphNodeWithOp(op, output)); NodeDef new_parallelism_val = output.node(graph_utils::FindGraphNodeWithName( new_parallelism_node.input(1), output)); EXPECT_EQ(new_parallelism_val.attr().at("value").tensor().int64_val(0), value); } INSTANTIATE_TEST_SUITE_P( Test, IntraOpAlreadySetTest, ::testing::Combine( ::testing::Values("MaxIntraOpParallelismDataset", "ExperimentalMaxIntraOpParallelismDataset"), ::testing::Values(1, 5))); class IntraOpNotSetTest : public ::testing::TestWithParam<string> {}; TEST_P(IntraOpNotSetTest, IntraOpParallelism) { const string op = GetParam(); GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", op, {"range"}, {})}); EXPECT_FALSE(graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", item.graph)); EXPECT_EQ(item.graph.node_size(), 5); item.fetch.push_back("Sink_fake"); DisableIntraOpParallelism optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", output)); EXPECT_EQ(output.node_size(), 5); item.fetch[0] = "Sink"; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); if (op == "_Retval") { EXPECT_FALSE(graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", output)); EXPECT_EQ(output.node_size(), 5); return; } EXPECT_EQ(output.node_size(), 7); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", output)); NodeDef sink_node = output.node(graph_utils::FindGraphNodeWithName("Sink", output)); EXPECT_EQ(sink_node.input_size(), 1); NodeDef parallelism_node = output.node( graph_utils::FindGraphNodeWithName(sink_node.input(0), output)); EXPECT_EQ(parallelism_node.op(), "MaxIntraOpParallelismDataset"); EXPECT_EQ(parallelism_node.input_size(), 2); NodeDef range_node = output.node( graph_utils::FindGraphNodeWithName(parallelism_node.input(0), output)); EXPECT_EQ(range_node.name(), "range"); NodeDef parallelism_val = output.node( graph_utils::FindGraphNodeWithName(parallelism_node.input(1), output)); EXPECT_EQ(parallelism_val.attr().at("value").tensor().int64_val(0), 1); } INSTANTIATE_TEST_SUITE_P(Test, IntraOpNotSetTest, ::testing::Values("Identity", "_Retval")); TEST(AutotuneWithModelTest, IntraOpParallelism) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("model", "ModelDataset", {"range"}, {}), NDef("Sink", "Identity", {"model"}, {})}); EXPECT_FALSE(graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", item.graph)); EXPECT_EQ(item.graph.node_size(), 6); item.fetch.push_back("Sink"); DisableIntraOpParallelism optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(output.node_size(), 8); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", output)); NodeDef sink_node = output.node(graph_utils::FindGraphNodeWithName("Sink", output)); EXPECT_EQ(sink_node.input_size(), 1); NodeDef model_node = output.node( graph_utils::FindGraphNodeWithName(sink_node.input(0), output)); EXPECT_EQ(model_node.op(), "ModelDataset"); EXPECT_EQ(model_node.input_size(), 1); NodeDef parallelism_node = output.node( graph_utils::FindGraphNodeWithName(model_node.input(0), output)); EXPECT_EQ(parallelism_node.op(), "MaxIntraOpParallelismDataset"); EXPECT_EQ(parallelism_node.input_size(), 2); NodeDef range_node = output.node( graph_utils::FindGraphNodeWithName(parallelism_node.input(0), output)); EXPECT_EQ(range_node.name(), "range"); NodeDef parallelism_val = output.node( graph_utils::FindGraphNodeWithName(parallelism_node.input(1), output)); EXPECT_EQ(parallelism_val.attr().at("value").tensor().int64_val(0), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
47d9aac5-874a-4c9c-ab63-6ce9ce4b9f1b
cpp
tensorflow/tensorflow
make_sloppy
tensorflow/core/grappler/optimizers/data/make_sloppy.cc
tensorflow/core/grappler/optimizers/data/make_sloppy_test.cc
#include "tensorflow/core/grappler/optimizers/data/make_sloppy.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" namespace tensorflow { namespace grappler { Status MakeSloppy::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); for (NodeDef& node : *output->mutable_node()) { if (graph_utils::HasSloppyAttr(node.op())) { (*node.mutable_attr())["sloppy"].set_b(true); stats->num_changes++; } if (graph_utils::HasDeterministicAttr(node.op()) && node.attr().at("deterministic").s() == "default") { (*node.mutable_attr())["deterministic"].set_s("false"); stats->num_changes++; } } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(MakeSloppy, "make_sloppy"); } }
#include "tensorflow/core/grappler/optimizers/data/make_sloppy.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { TEST(MakeSloppy, ParallelInterleave) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV2Node( "interleave", "range", "cycle_length", "block_length", "num_parallel_calls", "XTimesTwo", false)}, { test::function::XTimesTwo(), }); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("interleave", output)); int index = graph_utils::FindGraphNodeWithName("interleave", output); EXPECT_TRUE(output.node(index).attr().at("sloppy").b()); } TEST(MakeSloppy, ParallelMap) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapNode("map", "range", "num_parallel_calls", "XTimesTwo", false)}, { test::function::XTimesTwo(), }); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("map", output)); int index = graph_utils::FindGraphNodeWithName("map", output); EXPECT_TRUE(output.node(index).attr().at("sloppy").b()); } TEST(MakeSloppy, ParseExampleDataset) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParseExampleNode("parse_example", "range", "num_parallel_calls", false)}, {}); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("parse_example", output)); int index = graph_utils::FindGraphNodeWithName("parse_example", output); EXPECT_TRUE(output.node(index).attr().at("sloppy").b()); } TEST(ChangeDefault, ParallelInterleave) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("cycle_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("block_length", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelInterleaveV4Node( "interleave", "range", "cycle_length", "block_length", "num_parallel_calls", "XTimesTwo", "default")}, { test::function::XTimesTwo(), }); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("interleave", output)); int index = graph_utils::FindGraphNodeWithName("interleave", output); EXPECT_EQ(output.node(index).attr().at("deterministic").s(), "false"); } TEST(ChangeDefault, ParallelMap) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), graph_tests_utils::MakeParallelMapV2Node( "map", "range", "num_parallel_calls", "XTimesTwo", "default", false)}, { test::function::XTimesTwo(), }); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("map", output)); int index = graph_utils::FindGraphNodeWithName("map", output); EXPECT_EQ(output.node(index).attr().at("deterministic").s(), "false"); } TEST(ChangeDefault, ParallelBatch) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), graph_tests_utils::MakeParallelBatchNode( "batch", "range", "batch_size", "num_parallel_calls", "drop_remainder", "default")}, {}); MakeSloppy optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("batch", output)); int index = graph_utils::FindGraphNodeWithName("batch", output); EXPECT_EQ(output.node(index).attr().at("deterministic").s(), "false"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/make_sloppy.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/make_sloppy_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
510f194a-8b26-442d-b84f-a1e12abb3685
cpp
tensorflow/tensorflow
map_parallelization
tensorflow/core/grappler/optimizers/data/map_parallelization.cc
tensorflow/core/grappler/optimizers/data/map_parallelization_test.cc
#include "tensorflow/core/grappler/optimizers/data/map_parallelization.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace { constexpr char kMapDataset[] = "MapDataset"; constexpr char kParallelMapDataset[] = "ParallelMapDatasetV2"; NodeDef MakeParallelMap(const string& name, MutableGraphView* graph) { int index = graph_utils::FindGraphNodeWithName(name, *graph->graph()); DCHECK_NE(index, -1) << "Failed to find node " << name << " in the optimized graph."; NodeDef parallel_map = graph->graph()->node(index); graph_utils::SetUniqueGraphNodeName(kParallelMapDataset, graph->graph(), &parallel_map); parallel_map.set_op(kParallelMapDataset); auto* num_parallel_calls = graph_utils::AddScalarConstNode( static_cast<int64_t>(data::model::kAutotune), graph); parallel_map.add_input(num_parallel_calls->name()); parallel_map.mutable_attr()->erase("force_synchronous"); AddNodeAttr("deterministic", "true", &parallel_map); return parallel_map; } } Status MapParallelization::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { VLOG(1) << "The optimization map_parallelization is not applied if " "autotune is off."; return absl::OkStatus(); } MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) return absl::OkStatus(); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition function_library(OpRegistry::Global(), item.graph.library()); auto get_map_node = [](const NodeDef& node) -> const NodeDef* { if (node.op() == kMapDataset) return &node; return nullptr; }; for (const NodeDef& node : item.graph.node()) { const NodeDef* map_node = get_map_node(node); if (!map_node) continue; auto* function = function_library.Find(map_node->attr().at("f").func().name()); if (function_utils::IsFunctionStateful(function_library, *function, true) || (map_node->attr().contains("force_synchronous") && map_node->attr().at("force_synchronous").b())) { continue; } auto* parallel_map = graph.AddNode(MakeParallelMap(map_node->name(), &graph)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(map_node->name(), parallel_map->name())); nodes_to_delete.insert(map_node->name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(MapParallelization, "map_parallelization"); } }
#include "tensorflow/core/grappler/optimizers/data/map_parallelization.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { Status OptimizeWithMapParallelization(const GrapplerItem& item, GraphDef* output, bool autotune) { MapParallelization optimizer; RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } using graph_tests_utils::MakeMapNode; const char stateless_fun_name[] = "XTimesTwo"; const char stateful_fun_name[] = "RandomUniformFn"; class AutotuneSetting : public ::testing::TestWithParam<bool> {}; TEST_P(AutotuneSetting, MapParallelizationTest) { const bool autotune = GetParam(); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeMapNode("map", "range", stateless_fun_name), NDef("Sink", "Identity", {"map"}, {})}, { test::function::XTimesTwo(), }); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithMapParallelization(item, &output, autotune)); EXPECT_EQ(graph_utils::ContainsNodeWithOp("ParallelMapDatasetV2", output), autotune); EXPECT_EQ(graph_utils::ContainsGraphNodeWithName("map", output), !autotune); } INSTANTIATE_TEST_SUITE_P(Test, AutotuneSetting, ::testing::Values(false, true)); class FromFunctionDef : public ::testing::TestWithParam<string> {}; TEST_P(FromFunctionDef, MapParallelizationTest) { const string op = GetParam(); bool from_function_def = (op == "_Retval"); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeMapNode("map", "range", stateless_fun_name), NDef("Sink", op, {"map"}, {})}, { test::function::XTimesTwo(), }); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithMapParallelization(item, &output, true)); EXPECT_EQ(graph_utils::ContainsNodeWithOp("ParallelMapDatasetV2", output), !from_function_def); EXPECT_EQ(graph_utils::ContainsGraphNodeWithName("map", output), from_function_def); } INSTANTIATE_TEST_SUITE_P(Test, FromFunctionDef, ::testing::Values("Identity", "_Retval")); TEST(ParallelizeAssert, MapParallelizationTest) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("filename", "Const", {}, {{"value", ""}, {"dtype", DT_STRING}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeMapNode("map1", "range", stateful_fun_name), MakeMapNode("map2", "map1", stateless_fun_name), NDef("cache", "CacheDataset", {"map2", "filename"}, {}), NDef("Sink", "Identity", {"cache"}, {})}, { test::function::XTimesTwo(), test::function::RandomUniform(), }); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithMapParallelization(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("ParallelMapDatasetV2", output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("map1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map2", output)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/map_parallelization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/map_parallelization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f9a2563e-0ca3-4912-9e82-14717a0a6efa
cpp
tensorflow/tensorflow
graph_utils
tensorflow/core/grappler/optimizers/data/graph_utils.cc
tensorflow/core/grappler/optimizers/data/graph_utils_test.cc
#include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include <cstddef> #include "tensorflow/core/framework/dataset_metadata.pb.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/strcat.h" namespace tensorflow { namespace grappler { namespace graph_utils { namespace { constexpr char kConstOpName[] = "Const"; constexpr char kRetValOp[] = "_Retval"; constexpr char kOutputShapes[] = "output_shapes"; constexpr char kOutputTypes[] = "output_types"; constexpr char kToutputTypes[] = "Toutput_types"; template <typename Predicate, typename Collection> std::vector<int> GetElementIndicesWithPredicate(const Predicate& predicate, const Collection& collection) { std::vector<int> indices = {}; unsigned idx = 0; for (auto&& element : collection) { if (predicate(element)) { indices.push_back(idx); } idx++; } return indices; } std::vector<int> CreateNameIndex(const GraphDef& graph) { std::map<string, int> names; for (int i = 0; i < graph.node_size(); ++i) { names[graph.node(i).name()] = i; } std::vector<int> index(graph.node_size()); int i = 0; for (const auto& pair : names) { index[i++] = pair.second; } return index; } std::vector<int> CreateInputIndex(const NodeDef& node) { std::map<string, int> inputs; for (int i = 0; i < node.input_size(); ++i) { inputs[node.input(i)] = i; } std::vector<int> index(node.input_size()); int i = 0; for (const auto& pair : inputs) { index[i++] = pair.second; } return index; } NodeDef* AddScalarConstNodeHelper( DataType dtype, const std::function<void(TensorProto*)>& add_value, MutableGraphView* graph) { NodeDef node; node.set_op(kConstOpName); SetUniqueGraphNodeName(kConstOpName, graph->graph(), &node); (*node.mutable_attr())["dtype"].set_type(dtype); std::unique_ptr<tensorflow::TensorProto> tensor = std::make_unique<tensorflow::TensorProto>(); std::unique_ptr<tensorflow::TensorShapeProto> tensor_shape = std::make_unique<tensorflow::TensorShapeProto>(); tensor->set_allocated_tensor_shape(tensor_shape.release()); tensor->set_dtype(dtype); add_value(tensor.get()); (*node.mutable_attr())["value"].set_allocated_tensor(tensor.release()); return graph->AddNode(std::move(node)); } } NodeDef* AddScalarPlaceholder(DataType dtype, MutableGraphView* graph) { NodeDef node; node.set_op("Placeholder"); SetUniqueGraphNodeName(node.op(), graph->graph(), &node); (*node.mutable_attr())["dtype"].set_type(dtype); TensorShapeProto* shape = (*node.mutable_attr())["shape"].mutable_shape(); shape->set_unknown_rank(false); return graph->AddNode(std::move(node)); } NodeDef* AddNode(StringPiece name, StringPiece op, const std::vector<string>& inputs, const std::vector<std::pair<string, AttrValue>>& attributes, MutableGraphView* graph) { NodeDef node; if (!name.empty()) { node.set_name(string(name)); } else { SetUniqueGraphNodeName(op, graph->graph(), &node); } node.set_op(string(op)); for (const string& input : inputs) { node.add_input(input); } for (const auto& attr : attributes) { (*node.mutable_attr())[attr.first] = attr.second; } return graph->AddNode(std::move(node)); } template <> NodeDef* AddScalarConstNode(bool v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_BOOL, [v](TensorProto* proto) { proto->add_bool_val(v); }, graph); } template <> NodeDef* AddScalarConstNode(double v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_DOUBLE, [v](TensorProto* proto) { proto->add_double_val(v); }, graph); } template <> NodeDef* AddScalarConstNode(float v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_FLOAT, [v](TensorProto* proto) { proto->add_float_val(v); }, graph); } template <> NodeDef* AddScalarConstNode(int v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_INT32, [v](TensorProto* proto) { proto->add_int_val(v); }, graph); } template <> NodeDef* AddScalarConstNode(int64_t v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_INT64, [v](TensorProto* proto) { proto->add_int64_val(v); }, graph); } template <> NodeDef* AddScalarConstNode(StringPiece v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_STRING, [v](TensorProto* proto) { proto->add_string_val(v.data(), v.size()); }, graph); } Status GetScalarConstNodeValueHelper( const NodeDef& node, DataType dtype, const std::function<void(const Tensor&)>& get_value) { if (node.op() != kConstOpName) return errors::InvalidArgument("Node ", node.name(), " is not a Const node. Op: ", node.op()); Tensor tensor; TF_RETURN_IF_ERROR(GetNodeAttr(node, "value", &tensor)); if (!TensorShapeUtils::IsScalar(tensor.shape())) { return errors::InvalidArgument( "Node ", node.name(), " should be a scalar but has shape: ", tensor.shape()); } if (tensor.dtype() != dtype) { return errors::InvalidArgument( "Node ", node.name(), " should have type ", DataTypeString(dtype), " but has type: ", DataTypeString(tensor.dtype())); } get_value(tensor); return absl::OkStatus(); } template <> Status GetScalarConstNodeValue(const NodeDef& node, int64_t* value) { return GetScalarConstNodeValueHelper( node, DT_INT64, [value](const Tensor& tensor) { *value = tensor.scalar<int64_t>()(); }); } template <> Status GetScalarConstNodeValue(const NodeDef& node, bool* value) { return GetScalarConstNodeValueHelper( node, DT_BOOL, [value](const Tensor& tensor) { *value = tensor.scalar<bool>()(); }); } bool Compare(const GraphDef& g1, const GraphDef& g2) { if (g1.node_size() != g2.node_size()) { return false; } std::vector<int> name_index1 = CreateNameIndex(g1); std::vector<int> name_index2 = CreateNameIndex(g2); for (int i = 0; i < g1.node_size(); ++i) { int idx1 = name_index1[i]; int idx2 = name_index2[i]; if (g1.node(idx1).op() != g2.node(idx2).op()) { return false; } if (g1.node(idx1).name() != g2.node(idx2).name()) { return false; } if (g1.node(idx1).input_size() != g2.node(idx2).input_size()) { return false; } std::vector<int> input_index1 = CreateInputIndex(g1.node(idx1)); std::vector<int> input_index2 = CreateInputIndex(g2.node(idx2)); for (int j = 0; j < g1.node(idx1).input_size(); ++j) { if (!IsSameInput(g1.node(idx1).input(input_index1[j]), g2.node(idx2).input(input_index2[j]))) { return false; } } } return true; } bool ContainsGraphFunctionWithName(StringPiece name, const FunctionDefLibrary& library) { return FindGraphFunctionWithName(name, library) != -1; } bool ContainsGraphNodeWithName(StringPiece name, const GraphDef& graph) { return FindGraphNodeWithName(name, graph) != -1; } bool ContainsNodeWithOp(StringPiece op, const GraphDef& graph) { return FindGraphNodeWithOp(op, graph) != -1; } int FindGraphFunctionWithName(StringPiece name, const FunctionDefLibrary& library) { return GetFirstElementIndexWithPredicate( [&name](const FunctionDef& function) { return function.signature().name() == name; }, library.function()); } int FindGraphNodeWithName(StringPiece name, const GraphDef& graph) { return GetFirstElementIndexWithPredicate( [&name](const NodeDef& node) { return node.name() == name; }, graph.node()); } int FindGraphNodeWithOp(StringPiece op, const GraphDef& graph) { return GetFirstElementIndexWithPredicate( [&op](const NodeDef& node) { return node.op() == op; }, graph.node()); } std::vector<int> FindAllGraphNodesWithOp(const string& op, const GraphDef& graph) { return GetElementIndicesWithPredicate( [&op](const NodeDef& node) { return node.op() == op; }, graph.node()); } NodeDef* GetInputNode(const NodeDef& node, const MutableGraphView& graph) { if (node.input_size() == 0) return nullptr; MutableGraphView::InputPort input_port = graph.GetInputPort(node.name(), 0); return graph.GetRegularFanin(input_port).node; } NodeDef* GetInputNode(const NodeDef& node, const MutableGraphView& graph, int64_t i) { if (node.input_size() <= i) return nullptr; MutableGraphView::InputPort input_port = graph.GetInputPort(node.name(), i); return graph.GetRegularFanin(input_port).node; } Status GetDatasetOutputTypesAttr(const NodeDef& node, DataTypeVector* output_types) { for (const string& attr_name : {"output_types", "Toutput_types"}) { if (node.attr().contains(attr_name)) { return GetNodeAttr(node, attr_name, output_types); } } return errors::InvalidArgument("Could not find output_types attr for node: ", node.name(), " with op: ", node.op()); } void SetUniqueGraphNodeName(StringPiece prefix, GraphDef* graph, NodeDef* node) { string name = string(prefix); int id = graph->node_size(); while (ContainsGraphNodeWithName(name, *graph)) { if (name.rfind("_generated") != string::npos && (name.rfind("_generated") == (name.size() - strlen("_generated")))) { name.insert(name.rfind("_generated"), strings::StrCat("/_", id)); } else { name = strings::StrCat(prefix, "/_", id); } ++id; } node->set_name(std::move(name)); } void SetUniqueGraphFunctionName(StringPiece prefix, const FunctionDefLibrary* library, FunctionDef* function) { string name = string(prefix); int id = library->function_size(); while (ContainsGraphFunctionWithName(name, *library)) { name = strings::StrCat(prefix, "/_", id); ++id; } function->mutable_signature()->set_name(std::move(name)); } void CopyAttribute(const string& attribute_name, const NodeDef& from, NodeDef* to_node) { (*to_node->mutable_attr())[attribute_name] = from.attr().at(attribute_name); } void ConcatAttributeList(const string& attribute_name, const NodeDef& first, const NodeDef& second, NodeDef* to_node) { CopyAttribute(attribute_name, first, to_node); (*to_node->mutable_attr()) .at(attribute_name) .mutable_list() ->MergeFrom(second.attr().at(attribute_name).list()); } Status EnsureNodeNamesUnique(Graph* g) { std::unordered_map<string, int> name_map; for (auto node : g->op_nodes()) { const string& prefix = node->name(); if (auto entry = gtl::FindOrNull(name_map, prefix)) { string unique_name; do { unique_name = strings::StrCat(prefix, "_", ++(*entry)); } while (name_map.find(unique_name) != name_map.end()); name_map.insert({unique_name, 0}); node->set_name(std::move(unique_name)); } else { name_map.insert({node->name(), 0}); } } return absl::OkStatus(); } Status GetFetchNode(const MutableGraphView& graph, const GrapplerItem& item, NodeDef** fetch_node) { if (item.fetch.size() != 1) { return errors::InvalidArgument( "Expected only one fetch node but there were ", item.fetch.size(), ": ", absl::StrJoin(item.fetch, ", ")); } *fetch_node = graph.GetNode(item.fetch.at(0)); return absl::OkStatus(); } bool IsItemDerivedFromFunctionDef(const GrapplerItem& item, const MutableGraphView& graph_view) { for (const auto& fetch_name : item.fetch) { auto fetch = graph_view.GetNode(fetch_name); if (fetch != nullptr && fetch->op() != kRetValOp) { return false; } } return true; } void MaybeSetFusedMetadata(const NodeDef& node1, const NodeDef& node2, NodeDef* fused_node) { data::Metadata metadata1; if (node1.attr().contains("metadata")) { metadata1.ParseFromString(node1.attr().at("metadata").s()); } data::Metadata metadata2; if (node2.attr().contains("metadata")) { metadata2.ParseFromString(node2.attr().at("metadata").s()); } data::Metadata fused_metadata; auto normalize_name = [](const string& name) { return name.empty() ? "?" : name; }; *fused_metadata.mutable_name() = strings::StrCat("fused(", normalize_name(metadata1.name()), ",", normalize_name(metadata2.name()), ")"); fused_metadata.SerializeToString( (*fused_node->mutable_attr())["metadata"].mutable_s()); } bool CopyShapesAndTypesAttrs(const NodeDef& from, NodeDef* to_node) { auto* attr = gtl::FindOrNull(from.attr(), kOutputTypes); attr = (attr == nullptr ? gtl::FindOrNull(from.attr(), kToutputTypes) : attr); if (attr == nullptr) return false; (*to_node->mutable_attr())[kOutputTypes] = *attr; attr = gtl::FindOrNull(from.attr(), kOutputShapes); if (attr == nullptr) return false; (*to_node->mutable_attr())[kOutputShapes] = *attr; return true; } namespace { const auto* kSloppyAttrOps = new absl::flat_hash_set<string>{ "ParallelInterleaveDatasetV2", "ParallelMapDataset", "ParseExampleDataset", }; const auto* kReplicateOnSplitAttrOps = new absl::flat_hash_set<string>{ "TensorSliceDataset", "RangeDataset", }; const auto* kDeterministicAttrOps = new absl::flat_hash_set<string>{ "LegacyParallelInterleaveDatasetV2", "ParallelInterleaveDatasetV3", "ParallelInterleaveDatasetV4", "ParallelMapDatasetV2", "ParallelBatchDataset", }; } bool HasSloppyAttr(const string& op) { return kSloppyAttrOps->contains(op); } bool HasReplicateOnSplitAttr(const string& op) { return kReplicateOnSplitAttrOps->contains(op); } bool HasDeterministicAttr(const string& op) { return kDeterministicAttrOps->contains(op); } Status SetMetadataName(const std::string& name, NodeDef* node) { data::Metadata metadata; if (node->attr().contains("metadata")) { metadata.ParseFromString(node->attr().at("metadata").s()); } if (!metadata.name().empty()) { return errors::InvalidArgument("Node ", node->name(), " already has a metadata name \"", metadata.name(), "\"."); } *metadata.mutable_name() = name; metadata.SerializeToString((*node->mutable_attr())["metadata"].mutable_s()); return absl::OkStatus(); } } } }
#include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/framework/dataset_metadata.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace graph_utils { namespace { using test::function::NDef; constexpr char kOutputShapes[] = "output_shapes"; constexpr char kOutputTypes[] = "output_types"; constexpr char kToutputTypes[] = "Toutput_types"; TEST(GraphUtilsTest, GetFirstElementIndexWithPredicate) { std::vector<int> vec({1, 2, 3, 4, 5, 6}); auto result = GetFirstElementIndexWithPredicate( [](int elem) { return elem % 3 == 0; }, vec); EXPECT_EQ(result, 2); result = GetFirstElementIndexWithPredicate( [](int elem) { return elem % 7 == 0; }, vec); EXPECT_EQ(result, -1); } TEST(GraphUtilsTest, AddScalarConstNodeBool) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* bool_node = AddScalarConstNode<bool>(true, &graph); EXPECT_TRUE(ContainsGraphNodeWithName(bool_node->name(), *graph.graph())); EXPECT_EQ(bool_node->attr().at("value").tensor().bool_val(0), true); } TEST(GraphUtilsTest, AddScalarConstNodeDouble) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* double_node = AddScalarConstNode<double>(3.14, &graph); EXPECT_TRUE(ContainsGraphNodeWithName(double_node->name(), *graph.graph())); EXPECT_FLOAT_EQ(double_node->attr().at("value").tensor().double_val(0), 3.14); } TEST(GraphUtilsTest, AddScalarConstNodeFloat) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* float_node = AddScalarConstNode<float>(3.14, &graph); EXPECT_TRUE(ContainsGraphNodeWithName(float_node->name(), *graph.graph())); EXPECT_FLOAT_EQ(float_node->attr().at("value").tensor().float_val(0), 3.14); } TEST(GraphUtilsTest, AddScalarConstNodeInt) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* int_node = AddScalarConstNode<int>(42, &graph); EXPECT_TRUE(ContainsGraphNodeWithName(int_node->name(), *graph.graph())); EXPECT_EQ(int_node->attr().at("value").tensor().int_val(0), 42); } TEST(GraphUtilsTest, AddScalarConstNodeInt64) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* int64_node = AddScalarConstNode<int64_t>(42, &graph); EXPECT_TRUE(ContainsGraphNodeWithName(int64_node->name(), *graph.graph())); EXPECT_EQ(int64_node->attr().at("value").tensor().int64_val(0), 42); } TEST(GraphUtilsTest, AddScalarConstNodeString) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* string_node = AddScalarConstNode<StringPiece>("hello", &graph); EXPECT_TRUE(ContainsGraphNodeWithName(string_node->name(), *graph.graph())); EXPECT_EQ(string_node->attr().at("value").tensor().string_val(0), "hello"); } TEST(GraphUtilsTest, GetScalarConstNodeInt64) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* int64_node = AddScalarConstNode<int64_t>(128, &graph); int64_t result; EXPECT_TRUE(GetScalarConstNodeValue<int64_t>(*int64_node, &result).ok()); EXPECT_EQ(result, 128); } TEST(GraphUtilsTest, GetScalarConstNodeBool) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* bool_node = AddScalarConstNode<bool>(true, &graph); bool result; EXPECT_TRUE(GetScalarConstNodeValue<bool>(*bool_node, &result).ok()); EXPECT_EQ(result, true); } TEST(GraphUtilsTest, GetScalarConstNodeErrorWithNonConst) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* non_const = AddScalarPlaceholder(DT_INT64, &graph); int64_t result; Status s = GetScalarConstNodeValue<int64_t>(*non_const, &result); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Node Placeholder is not a Const node. Op: Placeholder"); } TEST(GraphUtilsTest, GetScalarConstNodeErrorWithType) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* int64_node = AddScalarConstNode<int64_t>(128, &graph); bool result; Status s = GetScalarConstNodeValue<bool>(*int64_node, &result); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Node Const should have type bool but has type: int64"); } TEST(GraphUtilsTest, GetScalarConstNodeErrorWithVector) { NodeDef node; node.set_name("Const"); node.set_op("Const"); (*node.mutable_attr())["dtype"].set_type(DT_INT64); auto tensor = (*node.mutable_attr())["value"].mutable_tensor(); tensor->set_dtype(DT_INT64); tensor->mutable_tensor_shape()->mutable_dim()->Add()->set_size(1); tensor->add_int64_val(128); int64_t result; Status s = GetScalarConstNodeValue<int64_t>(node, &result); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Node Const should be a scalar but has shape: [1]"); } TEST(GraphUtilsTest, Compare) { GraphDef graph_def_a; MutableGraphView graph_a(&graph_def_a); GraphDef graph_def_b; MutableGraphView graph_b(&graph_def_b); EXPECT_TRUE(Compare(graph_def_a, graph_def_b)); AddNode("A", "OpA", {}, {}, &graph_a); AddNode("B", "OpB", {"A"}, {}, &graph_a); EXPECT_FALSE(Compare(graph_def_a, graph_def_b)); graph_def_b.mutable_node()->CopyFrom(graph_def_a.node()); EXPECT_TRUE(Compare(graph_def_a, graph_def_b)); } TEST(GraphUtilsTest, ContainsGraphNodeWithName) { GraphDef graph_def; MutableGraphView graph(&graph_def); EXPECT_TRUE(!ContainsGraphNodeWithName("A", *graph.graph())); AddNode("A", "OpA", {}, {}, &graph); EXPECT_TRUE(ContainsGraphNodeWithName("A", *graph.graph())); EXPECT_TRUE(graph.DeleteNodes({"A"}).ok()); EXPECT_TRUE(!ContainsGraphNodeWithName("A", *graph.graph())); } TEST(GraphUtilsTest, ContainsGraphFunctionWithName) { FunctionDefLibrary library; EXPECT_FALSE(ContainsGraphFunctionWithName("new_function", library)); FunctionDef* new_function = library.add_function(); SetUniqueGraphFunctionName("new_function", &library, new_function); EXPECT_TRUE( ContainsGraphFunctionWithName(new_function->signature().name(), library)); } TEST(GraphUtilsTest, ContainsNodeWithOp) { GraphDef graph_def; MutableGraphView graph(&graph_def); EXPECT_TRUE(!ContainsNodeWithOp("OpA", *graph.graph())); AddNode("A", "OpA", {}, {}, &graph); EXPECT_TRUE(ContainsNodeWithOp("OpA", *graph.graph())); EXPECT_TRUE(graph.DeleteNodes({"A"}).ok()); EXPECT_TRUE(!ContainsNodeWithOp("OpA", *graph.graph())); } TEST(GraphUtilsTest, FindGraphNodeWithName) { GraphDef graph_def; MutableGraphView graph(&graph_def); EXPECT_EQ(FindGraphNodeWithName("A", *graph.graph()), -1); AddNode("A", "OpA", {}, {}, &graph); EXPECT_NE(FindGraphNodeWithName("A", *graph.graph()), -1); EXPECT_TRUE(graph.DeleteNodes({"A"}).ok()); EXPECT_EQ(FindGraphNodeWithName("A", *graph.graph()), -1); } TEST(GraphUtilsTest, FindGraphFunctionWithName) { FunctionDefLibrary library; EXPECT_EQ(FindGraphFunctionWithName("new_function", library), -1); FunctionDef* new_function = library.add_function(); SetUniqueGraphFunctionName("new_function", &library, new_function); EXPECT_NE( FindGraphFunctionWithName(new_function->signature().name(), library), -1); } TEST(GraphUtilsTest, FindGraphNodeWithOp) { GraphDef graph_def; MutableGraphView graph(&graph_def); EXPECT_EQ(FindGraphNodeWithOp("OpA", *graph.graph()), -1); AddNode("A", "OpA", {}, {}, &graph); AddNode("B", "OpB", {"A"}, {}, &graph); AddNode("A2", "OpA", {"A"}, {}, &graph); EXPECT_EQ(FindGraphNodeWithOp("OpA", *graph.graph()), 0); EXPECT_TRUE(graph.DeleteNodes({"B"}).ok()); EXPECT_EQ(FindGraphNodeWithOp("OpB", *graph.graph()), -1); EXPECT_EQ(FindGraphNodeWithName("A2", *graph.graph()), 1); } TEST(GraphUtilsTest, FindAllGraphNodesWithOp) { GraphDef graph_def; MutableGraphView graph(&graph_def); EXPECT_EQ(FindGraphNodeWithOp("OpA", *graph.graph()), -1); AddNode("A", "OpA", {}, {}, &graph); AddNode("B", "OpB", {"A"}, {}, &graph); AddNode("A2", "OpA", {"B"}, {}, &graph); std::vector<int> result_indices = FindAllGraphNodesWithOp("OpA", *graph.graph()); EXPECT_EQ(result_indices.size(), 2); EXPECT_EQ(result_indices.at(0), 0); EXPECT_EQ(result_indices.at(1), 2); EXPECT_TRUE(graph.DeleteNodes({"A2"}).ok()); std::vector<int> result_indices_new = FindAllGraphNodesWithOp("OpA", *graph.graph()); EXPECT_EQ(result_indices_new.size(), 1); EXPECT_EQ(result_indices_new.at(0), 0); } TEST(GraphUtilsTest, SetUniqueGraphNodeName) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* node1 = AddNode("", "A", {}, {}, &graph); NodeDef* node2 = AddNode("", "A", {}, {}, &graph); EXPECT_NE(node1->name(), node2->name()); EXPECT_TRUE(graph.DeleteNodes({node1->name()}).ok()); NodeDef* node3 = AddNode("", "A", {}, {}, &graph); EXPECT_NE(node2->name(), node3->name()); } TEST(GraphUtilsTest, SetUniqueGraphFunctionName) { FunctionDefLibrary library; FunctionDef* new_function = library.add_function(); SetUniqueGraphFunctionName("new_function", &library, new_function); FunctionDef* other_function = library.add_function(); SetUniqueGraphFunctionName("new_function", &library, other_function); EXPECT_NE(new_function->signature().name(), other_function->signature().name()); } TEST(GraphUtilsTest, GetInputNode) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* node1 = AddNode("", "A", {}, {}, &graph); NodeDef* node2 = AddNode("", "A", {node1->name()}, {}, &graph); EXPECT_EQ(GetInputNode(*node2, graph), node1); EXPECT_EQ(GetInputNode(*node1, graph), nullptr); } TEST(GraphUtilsTest, GetIthInputNode) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* node1 = AddNode("", "A", {}, {}, &graph); NodeDef* node2 = AddNode("", "A", {}, {}, &graph); NodeDef* node3 = AddNode("", "A", {node1->name(), node2->name()}, {}, &graph); EXPECT_EQ(GetInputNode(*node3, graph), node1); EXPECT_EQ(GetInputNode(*node3, graph, 1), node2); EXPECT_EQ(GetInputNode(*node3, graph, 0), node1); EXPECT_EQ(GetInputNode(*node3, graph, 2), nullptr); EXPECT_EQ(GetInputNode(*node1, graph), nullptr); } TEST(GraphUtilsTest, EnsureNodeNamesUnique) { Graph g(OpRegistry::Global()); Node *const_0, *const_1, *const_2; Tensor tensor(DT_INT32, {}); tensor.scalar<int32>()() = 5; for (auto node : {&const_0, &const_1}) { TF_EXPECT_OK(NodeBuilder("Const", "Const") .Attr("value", tensor) .Attr("dtype", DT_INT32) .Finalize(&g, node)); } TF_EXPECT_OK(NodeBuilder("Const_1", "Const") .Attr("value", tensor) .Attr("dtype", DT_INT32) .Finalize(&g, &const_2)); TF_EXPECT_OK(EnsureNodeNamesUnique(&g)); EXPECT_NE(const_0->name(), const_1->name()); EXPECT_NE(const_1->name(), const_2->name()); EXPECT_NE(const_0->name(), const_2->name()); } TEST(GraphUtilsTest, TestGetFetchNode) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef* node1 = AddNode("node1", "Identity", {}, {}, &graph); NodeDef* node2 = AddNode("node2", "Identity", {node1->name()}, {}, &graph); NodeDef* node3 = AddNode("node3", "Identity", {node2->name()}, {}, &graph); item.fetch.push_back(node3->name()); NodeDef* sink_node; TF_EXPECT_OK(GetFetchNode(graph, item, &sink_node)); EXPECT_EQ(sink_node->name(), node3->name()); } TEST(GraphUtilsTest, TestFindSinkNodeMultipleFetches) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef* node1 = AddNode("node1", "Identity", {}, {}, &graph); NodeDef* node2 = AddNode("node2", "Identity", {node1->name()}, {}, &graph); NodeDef* node3 = AddNode("node3", "Identity", {node2->name()}, {}, &graph); item.fetch.push_back(node2->name()); item.fetch.push_back(node3->name()); NodeDef* sink_node; Status s = GetFetchNode(graph, item, &sink_node); EXPECT_FALSE(s.ok()); } TEST(GraphUtilsTest, TestFindSinkNodeNoFetches) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef* node1 = AddNode("node1", "Identity", {}, {}, &graph); NodeDef* node2 = AddNode("node2", "Identity", {node1->name()}, {}, &graph); AddNode("node3", "Identity", {node2->name()}, {}, &graph); NodeDef* sink_node; Status s = GetFetchNode(graph, item, &sink_node); EXPECT_FALSE(s.ok()); } TEST(GraphUtilsTest, TestCopyShapesAndTypesAttrsNoShapes) { NodeDef from = NDef("range", "RangeDataset", {}, {{kOutputTypes, absl::Span<const DataType>{}}}); NodeDef to_node; EXPECT_FALSE(CopyShapesAndTypesAttrs(from, &to_node)); } TEST(GraphUtilsTest, TestCopyShapesAndTypesAttrsNoTypes) { NodeDef from = NDef("range", "RangeDataset", {}, {{kOutputShapes, absl::Span<const TensorShape>{}}}); NodeDef to_node; EXPECT_FALSE(CopyShapesAndTypesAttrs(from, &to_node)); } TEST(GraphUtilsTest, TestCopyShapesAndTypesAttrsOutputTypes) { NodeDef from = NDef("range", "RangeDataset", {}, {{kOutputShapes, 666}, {kOutputTypes, 888}}); NodeDef to_node; EXPECT_TRUE(CopyShapesAndTypesAttrs(from, &to_node)); EXPECT_EQ(to_node.attr().at(kOutputShapes).i(), 666); EXPECT_EQ(to_node.attr().at(kOutputTypes).i(), 888); } TEST(GraphUtilsTest, TestCopyShapesAndTypesAttrsToutputTypes) { NodeDef from = NDef("tensor", "TensorDataset", {}, {{kOutputShapes, 666}, {kToutputTypes, 888}}); NodeDef to_node; EXPECT_TRUE(CopyShapesAndTypesAttrs(from, &to_node)); EXPECT_EQ(to_node.attr().at(kOutputShapes).i(), 666); EXPECT_EQ(to_node.attr().at(kOutputTypes).i(), 888); } TEST(GraphUtilsTest, TestSetMetadataName) { NodeDef node = NDef("range", "RangeDataset", {}, {{kOutputShapes, 666}, {kOutputTypes, 888}}); EXPECT_TRUE(SetMetadataName("metadata_name", &node).ok()); EXPECT_TRUE(node.attr().contains("metadata")); data::Metadata metadata; metadata.ParseFromString(node.attr().at("metadata").s()); EXPECT_EQ("metadata_name", metadata.name()); EXPECT_FALSE(SetMetadataName("new_metadata_name", &node).ok()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/graph_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/graph_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0dda2eaf-2fed-45a0-a247-17e9f1f0761c
cpp
tensorflow/tensorflow
filter_parallelization
tensorflow/core/grappler/optimizers/data/filter_parallelization.cc
tensorflow/core/grappler/optimizers/data/filter_parallelization_test.cc
#include "tensorflow/core/grappler/optimizers/data/filter_parallelization.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace { constexpr char kFilterDataset[] = "FilterDataset"; constexpr char kParallelFilterDataset[] = "ParallelFilterDataset"; NodeDef MakeParallelFilter(const string& name, MutableGraphView* graph) { int index = graph_utils::FindGraphNodeWithName(name, *graph->graph()); DCHECK_NE(index, -1) << "Failed to find node " << name << " in the optimized graph."; NodeDef parallel_filter = graph->graph()->node(index); graph_utils::SetUniqueGraphNodeName(kParallelFilterDataset, graph->graph(), &parallel_filter); parallel_filter.set_op(kParallelFilterDataset); auto* num_parallel_calls = graph_utils::AddScalarConstNode( static_cast<int64_t>(data::model::kAutotune), graph); parallel_filter.add_input(num_parallel_calls->name()); AddNodeAttr("deterministic", "true", &parallel_filter); return parallel_filter; } } Status FilterParallelization::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { VLOG(1) << "The optimization filter_parallelization is not applied if " "autotune is off."; return absl::OkStatus(); } MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) return absl::OkStatus(); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition function_library(OpRegistry::Global(), item.graph.library()); auto get_filter_node = [](const NodeDef& node) -> const NodeDef* { if (node.op() == kFilterDataset) return &node; return nullptr; }; for (const NodeDef& node : item.graph.node()) { const NodeDef* filter_node = get_filter_node(node); if (!filter_node) continue; auto* function = function_library.Find( filter_node->attr().at("predicate").func().name()); if (function_utils::IsFunctionStateful(function_library, *function, true)) { continue; } auto* parallel_filter = graph.AddNode(MakeParallelFilter(filter_node->name(), &graph)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(filter_node->name(), parallel_filter->name())); nodes_to_delete.insert(filter_node->name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(FilterParallelization, "filter_parallelization"); } }
#include "tensorflow/core/grappler/optimizers/data/filter_parallelization.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { Status OptimizeWithFilterParallelization(const GrapplerItem& item, GraphDef* output, bool autotune) { FilterParallelization optimizer; RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } using graph_tests_utils::MakeFilterNode; const char stateless_fun_name[] = "NonZero"; const char stateful_fun_name[] = "RandomUniformLess"; class AutotuneSetting : public ::testing::TestWithParam<bool> {}; TEST_P(AutotuneSetting, FilterParallelizationTest) { const bool autotune = GetParam(); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeFilterNode("filter", "range", stateless_fun_name), NDef("Sink", "Identity", {"filter"}, {})}, { test::function::NonZero(), }); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithFilterParallelization(item, &output, autotune)); EXPECT_EQ(graph_utils::ContainsNodeWithOp("ParallelFilterDataset", output), autotune); EXPECT_EQ(graph_utils::ContainsGraphNodeWithName("filter", output), !autotune); } INSTANTIATE_TEST_SUITE_P(Test, AutotuneSetting, ::testing::Values(false, true)); class FromFunctionDef : public ::testing::TestWithParam<string> {}; TEST_P(FromFunctionDef, FilterParallelizationTest) { const string op = GetParam(); bool from_function_def = (op == "_Retval"); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeFilterNode("filter", "range", stateless_fun_name), NDef("Sink", op, {"filter"}, {})}, { test::function::NonZero(), }); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithFilterParallelization(item, &output, true)); EXPECT_EQ(graph_utils::ContainsNodeWithOp("ParallelFilterDataset", output), !from_function_def); EXPECT_EQ(graph_utils::ContainsGraphNodeWithName("filter", output), from_function_def); } INSTANTIATE_TEST_SUITE_P(Test, FromFunctionDef, ::testing::Values("Identity", "_Retval")); TEST(ParallelizeAssert, FilterParallelizationTest) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("filename", "Const", {}, {{"value", ""}, {"dtype", DT_STRING}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeFilterNode("filter1", "range", stateful_fun_name), MakeFilterNode("filter2", "filter1", stateless_fun_name), NDef("cache", "CacheDataset", {"filter2", "filename"}, {}), NDef("Sink", "Identity", {"cache"}, {})}, { test::function::NonZero(), test::function::RandomUniformLess(), }); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithFilterParallelization(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("ParallelFilterDataset", output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("FilterDataset", output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("filter1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter2", output)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/filter_parallelization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/filter_parallelization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ed7f002c-4012-480a-8b57-224f7c1db26b
cpp
tensorflow/tensorflow
enable_gradient_descent
tensorflow/core/grappler/optimizers/data/enable_gradient_descent.cc
tensorflow/core/grappler/optimizers/data/enable_gradient_descent_test.cc
#include "tensorflow/core/grappler/optimizers/data/enable_gradient_descent.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kAlgorithm[] = "algorithm"; constexpr char kModelDataset[] = "ModelDataset"; constexpr int64_t HILL_CLIMB = 0; constexpr int64_t GRADIENT_DESCENT = 1; } Status EnableGradientDescent::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { VLOG(1) << "The optimization enable_gradient_descent is not applied if " "autotune is off."; return absl::OkStatus(); } MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) return absl::OkStatus(); int index = graph_utils::FindGraphNodeWithOp(kModelDataset, *output); NodeDef& model_node = *(output->mutable_node(index)); if (model_node.attr().at(kAlgorithm).i() == HILL_CLIMB) { (*model_node.mutable_attr())[kAlgorithm].set_i(GRADIENT_DESCENT); stats->num_changes++; } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(EnableGradientDescent, "enable_gradient_descent"); } }
#include "tensorflow/core/grappler/optimizers/data/enable_gradient_descent.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { Status OptimizeWithEnableGradientDescent(const GrapplerItem &item, GraphDef *output, bool autotune) { EnableGradientDescent optimizer; RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } class SimpleRewrite : public ::testing::TestWithParam<std::tuple<bool, int64_t, string>> {}; TEST_P(SimpleRewrite, EnableGradientDescentTest) { const bool autotune = std::get<0>(GetParam()); const int64_t algorithm_index = std::get<1>(GetParam()); const string op = std::get<2>(GetParam()); using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 5}, {"dtype", DT_INT32}}), NDef("batch", "BatchDataset", {"range", "batch_size"}, {}), NDef("model", "ModelDataset", {"batch"}, {{"algorithm", algorithm_index}}), NDef("Sink", op, {"model"}, {})}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithEnableGradientDescent(item, &output, autotune)); EXPECT_EQ(item.graph.node().size(), output.node().size()); NodeDef model_node = output.node(graph_utils::FindGraphNodeWithName("model", output)); EXPECT_EQ(model_node.attr().at("algorithm").i(), (autotune && op != "_Retval") ? 1 : algorithm_index); } INSTANTIATE_TEST_SUITE_P( Test, SimpleRewrite, ::testing::Combine(::testing::Values(false, true), ::testing::Values(0, 1), ::testing::Values("Identity", "_Retval"))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/enable_gradient_descent.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/enable_gradient_descent_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cb54a9bb-bafa-4c6f-b589-e6cee64df33b
cpp
tensorflow/tensorflow
use_private_thread_pool
tensorflow/core/grappler/optimizers/data/use_private_thread_pool.cc
tensorflow/core/grappler/optimizers/data/use_private_thread_pool_test.cc
#include "tensorflow/core/grappler/optimizers/data/use_private_thread_pool.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kPrivateThreadPoolDataset[] = "PrivateThreadPoolDataset"; constexpr char kModelDataset[] = "ModelDataset"; } Status UsePrivateThreadPool::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) return absl::OkStatus(); if (item.fetch.size() != 1) { return errors::InvalidArgument( "Expected only one fetch node but there were ", item.fetch.size(), ": ", absl::StrJoin(item.fetch, ", ")); } for (const NodeDef& node : item.graph.node()) { if (node.op() == kPrivateThreadPoolDataset) { return absl::OkStatus(); } } NodeDef* sink_node = graph.GetNode(item.fetch.at(0)); NodeDef* last_node = graph_utils::GetInputNode(*sink_node, graph); if (last_node->op() == kModelDataset) { last_node = graph_utils::GetInputNode(*last_node, graph); } NodeDef* num_threads_value = graph_utils::AddScalarConstNode(int64_t{0}, &graph); NodeDef insert_node; graph_utils::SetUniqueGraphNodeName("private_thread_pool", graph.graph(), &insert_node); insert_node.set_op(kPrivateThreadPoolDataset); *insert_node.mutable_input()->Add() = last_node->name(); *insert_node.mutable_input()->Add() = num_threads_value->name(); if (!graph_utils::CopyShapesAndTypesAttrs(*last_node, &insert_node)) return absl::OkStatus(); auto* added_node = graph.AddNode(std::move(insert_node)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(last_node->name(), added_node->name())); stats->num_changes++; return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(UsePrivateThreadPool, "use_private_thread_pool"); } }
#include "tensorflow/core/grappler/optimizers/data/use_private_thread_pool.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using test::function::NDef; class ThreadPoolOpAlreadySetTest : public ::testing::TestWithParam<int64_t> {}; TEST_P(ThreadPoolOpAlreadySetTest, PrivateThreadPool) { const int64_t num_of_threads = GetParam(); GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_val = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_val = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_val = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_val->name(); range_inputs[1] = stop_val->name(); range_inputs[2] = step_val->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("range", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *num_of_threads_val = graph_utils::AddScalarConstNode<int64_t>(num_of_threads, &graph); std::vector<string> private_threads_inputs(2); private_threads_inputs[0] = range_node->name(); private_threads_inputs[1] = num_of_threads_val->name(); std::vector<std::pair<string, AttrValue>> private_threads_attrs; NodeDef *private_threads_node = graph_utils::AddNode( "private_thread_pool", "PrivateThreadPoolDataset", private_threads_inputs, private_threads_attrs, &graph); std::vector<string> sink_inputs(1); sink_inputs[0] = private_threads_node->name(); std::vector<std::pair<string, AttrValue>> sink_attrs; NodeDef *sink_node = graph_utils::AddNode("Sink", "Identity", sink_inputs, sink_attrs, &graph); item.fetch.push_back(sink_node->name()); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("PrivateThreadPoolDataset", item.graph)); EXPECT_EQ(item.graph.node_size(), 7); EXPECT_EQ(num_of_threads_val->attr().at("value").tensor().int64_val(0), num_of_threads); UsePrivateThreadPool optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(output.node_size(), 7); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("PrivateThreadPoolDataset", output)); NodeDef new_private_threads_node = output.node( graph_utils::FindGraphNodeWithOp("PrivateThreadPoolDataset", output)); NodeDef new_num_of_threads_val = output.node(graph_utils::FindGraphNodeWithName( new_private_threads_node.input(1), output)); EXPECT_EQ(new_num_of_threads_val.attr().at("value").tensor().int64_val(0), num_of_threads); } INSTANTIATE_TEST_SUITE_P(Test, ThreadPoolOpAlreadySetTest, ::testing::Values(1, 2, 4)); class ThreadPoolOpNotSetTest : public ::testing::TestWithParam<string> {}; TEST_P(ThreadPoolOpNotSetTest, PrivateThreadPool) { const string op = GetParam(); GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", op, {"range"}, {})}); EXPECT_FALSE( graph_utils::ContainsNodeWithOp("PrivateThreadPoolDataset", item.graph)); EXPECT_EQ(item.graph.node_size(), 5); item.fetch.push_back("Sink_fake"); UsePrivateThreadPool optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsNodeWithOp("PrivateThreadPoolDataset", output)); EXPECT_EQ(output.node_size(), 5); item.fetch[0] = "Sink"; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); if (op == "_Retval") { EXPECT_FALSE( graph_utils::ContainsNodeWithOp("PrivateThreadPoolDataset", output)); EXPECT_EQ(output.node_size(), 5); return; } EXPECT_EQ(output.node_size(), 7); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("PrivateThreadPoolDataset", output)); NodeDef sink_node = output.node(graph_utils::FindGraphNodeWithName("Sink", output)); EXPECT_EQ(sink_node.input_size(), 1); NodeDef private_threads_node = output.node( graph_utils::FindGraphNodeWithName(sink_node.input(0), output)); EXPECT_EQ(private_threads_node.op(), "PrivateThreadPoolDataset"); EXPECT_EQ(private_threads_node.input_size(), 2); NodeDef range_node = output.node(graph_utils::FindGraphNodeWithName( private_threads_node.input(0), output)); EXPECT_EQ(range_node.name(), "range"); NodeDef num_of_threads_val = output.node(graph_utils::FindGraphNodeWithName( private_threads_node.input(1), output)); EXPECT_EQ(num_of_threads_val.attr().at("value").tensor().int64_val(0), 0); } INSTANTIATE_TEST_SUITE_P(Test, ThreadPoolOpNotSetTest, ::testing::Values("Identity", "_Retval")); TEST(AutotuneWithModelTest, PrivateThreadPool) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("model", "ModelDataset", {"range"}, {}), NDef("Sink", "Identity", {"model"}, {})}); EXPECT_FALSE( graph_utils::ContainsNodeWithOp("PrivateThreadPoolDataset", item.graph)); EXPECT_EQ(item.graph.node_size(), 6); item.fetch.push_back("Sink"); UsePrivateThreadPool optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(output.node_size(), 8); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("PrivateThreadPoolDataset", output)); NodeDef sink_node = output.node(graph_utils::FindGraphNodeWithName("Sink", output)); EXPECT_EQ(sink_node.input_size(), 1); NodeDef model_node = output.node( graph_utils::FindGraphNodeWithName(sink_node.input(0), output)); EXPECT_EQ(model_node.op(), "ModelDataset"); EXPECT_EQ(model_node.input_size(), 1); NodeDef private_threads_node = output.node( graph_utils::FindGraphNodeWithName(model_node.input(0), output)); EXPECT_EQ(private_threads_node.op(), "PrivateThreadPoolDataset"); EXPECT_EQ(private_threads_node.input_size(), 2); NodeDef range_node = output.node(graph_utils::FindGraphNodeWithName( private_threads_node.input(0), output)); EXPECT_EQ(range_node.name(), "range"); NodeDef num_of_threads_val = output.node(graph_utils::FindGraphNodeWithName( private_threads_node.input(1), output)); EXPECT_EQ(num_of_threads_val.attr().at("value").tensor().int64_val(0), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/use_private_thread_pool.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/use_private_thread_pool_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
120ecc99-78d8-4bb3-b992-5841a2470b9d
cpp
tensorflow/tensorflow
filter_fusion
tensorflow/core/grappler/optimizers/data/filter_fusion.cc
tensorflow/core/grappler/optimizers/data/filter_fusion_test.cc
#include "tensorflow/core/grappler/optimizers/data/filter_fusion.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/fusion_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { NodeDef MakeFusedFilterNode(const NodeDef& first_filter_node, const NodeDef& second_filter_node, const FunctionDef& fused_function, MutableGraphView* graph) { NodeDef fused_node; graph_utils::SetUniqueGraphNodeName("fused_filter", graph->graph(), &fused_node); fused_node.set_op("FilterDataset"); fused_node.add_input(first_filter_node.input(0)); auto attr = first_filter_node.attr().at("predicate"); *attr.mutable_func()->mutable_name() = fused_function.signature().name(); (*fused_node.mutable_attr())["predicate"] = std::move(attr); graph_utils::CopyAttribute("Targuments", first_filter_node, &fused_node); for (auto key : {"output_shapes", "output_types"}) graph_utils::CopyAttribute(key, second_filter_node, &fused_node); graph_utils::MaybeSetFusedMetadata(first_filter_node, second_filter_node, &fused_node); return fused_node; } } Status FilterFusion::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { GraphDef sorted_old_graph = item.graph; TF_RETURN_IF_ERROR(TopologicalSort(&sorted_old_graph)); *output = sorted_old_graph; MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition function_library(OpRegistry::Global(), output->library()); auto get_filter_node = [](const NodeDef& node) -> const NodeDef* { if (node.op() == "FilterDataset" && node.input_size() == 1) return &node; return nullptr; }; auto make_fused_function = [&](const NodeDef* first_filter_node, const NodeDef* second_filter_node) -> FunctionDef* { const auto& parent_fun = first_filter_node->attr().at("predicate"); const FunctionDef* first_func = function_library.Find(parent_fun.func().name()); const auto& fun = second_filter_node->attr().at("predicate"); const FunctionDef* second_func = function_library.Find(fun.func().name()); if (!fusion_utils::HasSameSignature(first_func->signature(), second_func->signature())) { VLOG(1) << "Can't fuse Filters because they have different signature\n"; return nullptr; } return fusion_utils::FuseFunctions( *first_func, *second_func, "fused_predicate", fusion_utils::SameSignature, fusion_utils::SameInput, fusion_utils::LazyConjunctionOutput, fusion_utils::LazyConjunctionNodes, output->mutable_library()); }; for (const NodeDef& node : sorted_old_graph.node()) { const NodeDef* second_filter_node = get_filter_node(node); if (!second_filter_node) continue; const NodeDef* first_filter_node = get_filter_node(*graph_utils::GetInputNode(*second_filter_node, graph)); if (!first_filter_node) continue; const auto* fused_predicate = make_fused_function(first_filter_node, second_filter_node); if (!fused_predicate) continue; const auto* fused_filter_node = graph.AddNode(MakeFusedFilterNode( *first_filter_node, *second_filter_node, *fused_predicate, &graph)); TF_RETURN_IF_ERROR(graph.UpdateFanouts(second_filter_node->name(), fused_filter_node->name())); TF_RETURN_IF_ERROR(function_library.AddFunctionDef(*fused_predicate)); nodes_to_delete.insert(first_filter_node->name()); nodes_to_delete.insert(second_filter_node->name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(FilterFusion, "filter_fusion"); } }
#include "tensorflow/core/grappler/optimizers/data/filter_fusion.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using graph_tests_utils::MakeFilterNode; TEST(FilterFusionTest, FuseTwoFilterIntoOne) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeFilterNode("filter1", "range"), MakeFilterNode("filter2", "filter1")}, { test::function::IsZero(), }); FilterFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("FilterDataset", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter2", output)); } TEST(FilterFusionTest, FuseThreeNodesIntoOne) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("filename", "Const", {}, {{"value", ""}, {"dtype", DT_STRING}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeFilterNode("filter1", "range"), MakeFilterNode("filter2", "filter1"), MakeFilterNode("filter3", "filter2"), NDef("cache", "CacheDataset", {"filter3", "filename"}, {})}, { test::function::IsZero(), }); FilterFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("FilterDataset", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter2", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter3", output)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/filter_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/filter_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
46a3c061-5a2a-484e-80e6-f9a69d4d72b6
cpp
tensorflow/tensorflow
split_utils
tensorflow/core/data/split_utils.cc
tensorflow/core/data/split_utils_test.cc
#include "tensorflow/core/data/split_utils.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/types.h" namespace tensorflow { namespace data { namespace { constexpr char kNumToSkip[] = "num_to_skip"; constexpr char kSplitProvider[] = "split_provider"; constexpr char kSlash[] = "/"; constexpr char kIndex[] = "index"; } IndexSplitProvider::IndexSplitProvider(int64_t n) : i_(0), n_(n) { VLOG(3) << "Created index split provider with " << n << " splits."; } absl::Status IndexSplitProvider::GetNext(Tensor* split, bool* end_of_splits) { tsl::mutex_lock l(mu_); if (i_ >= n_) { *end_of_splits = true; return absl::OkStatus(); } *end_of_splits = false; *split = Tensor(DT_INT64, TensorShape{}); split->scalar<int64_t>()() = i_++; return absl::OkStatus(); } absl::Status IndexSplitProvider::Reset() { tsl::mutex_lock l(mu_); i_ = 0; return absl::OkStatus(); } absl::Status IndexSplitProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) { tsl::mutex_lock l(mu_); return writer->WriteScalar(full_name(kIndex), i_); } absl::Status IndexSplitProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) { tsl::mutex_lock l(mu_); return reader->ReadScalar(full_name(kIndex), &i_); } int64_t IndexSplitProvider::Cardinality() const { if (n_ == tsl::kint64max) { return kInfiniteCardinality; } return n_; } ShardingSplitProvider::ShardingSplitProvider( int64_t num_shards, int64_t shard_index, std::shared_ptr<SplitProvider> split_provider) : num_shards_(num_shards), shard_index_(shard_index), split_provider_(split_provider), num_to_skip_(shard_index_) {} absl::Status ShardingSplitProvider::GetNext(Tensor* split, bool* end_of_splits) { tsl::mutex_lock l(mu_); while (num_to_skip_ > 0) { TF_RETURN_IF_ERROR(split_provider_->GetNext(split, end_of_splits)); if (*end_of_splits) { return absl::OkStatus(); } num_to_skip_--; } num_to_skip_ = num_shards_ - 1; TF_RETURN_IF_ERROR(split_provider_->GetNext(split, end_of_splits)); return absl::OkStatus(); } absl::Status ShardingSplitProvider::Reset() { tsl::mutex_lock l(mu_); TF_RETURN_IF_ERROR(split_provider_->Reset()); num_to_skip_ = shard_index_; return absl::OkStatus(); } absl::Status ShardingSplitProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) { tsl::mutex_lock l(mu_); TF_RETURN_IF_ERROR(split_provider_->Save( [&](const std::string& key) { return full_name(absl::StrCat(kSplitProvider, kSlash, key)); }, writer)); return writer->WriteScalar(full_name(kNumToSkip), num_to_skip_); } absl::Status ShardingSplitProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) { tsl::mutex_lock l(mu_); TF_RETURN_IF_ERROR(split_provider_->Restore( [&](const std::string& key) { return full_name(absl::StrCat(kSplitProvider, kSlash, key)); }, reader)); TF_RETURN_IF_ERROR(reader->ReadScalar(full_name(kNumToSkip), &num_to_skip_)); return absl::OkStatus(); } absl::StatusOr<std::shared_ptr<SplitProvider>> GetSingleSplitProvider( IteratorContext* ctx, const DatasetBase* dataset) { if (ctx->split_providers().size() != 1) { return absl::FailedPreconditionError( absl::StrCat("Failed to get single split provider for dataset ", dataset->DebugString(), ". Found ", ctx->split_providers().size(), " split providers")); } return ctx->split_providers()[0]; } absl::StatusOr<std::vector<std::unique_ptr<SplitProvider>>> GetSplitProviders( const DatasetBase* dataset) { std::vector<std::unique_ptr<SplitProvider>> result; std::vector<const DatasetBase*> inputs; TF_RETURN_IF_ERROR(dataset->InputDatasets(&inputs)); for (const auto& input : inputs) { std::vector<std::unique_ptr<SplitProvider>> providers; TF_RETURN_IF_ERROR(input->MakeSplitProviders(&providers)); for (auto& provider : providers) { result.push_back(std::move(provider)); } } return result; } absl::StatusOr<std::vector<IteratorContext>> CreateInputIteratorContexts( IteratorContext* ctx, const DatasetBase* dataset) { std::vector<const DatasetBase*> inputs; TF_RETURN_IF_ERROR(dataset->InputDatasets(&inputs)); std::vector<IteratorContext> result; if (ctx->split_providers().empty()) { for (int i = 0; i < inputs.size(); ++i) { result.emplace_back(ctx); } return result; } int64_t num_sources = 0; for (size_t i = 0; i < inputs.size(); ++i) { if (inputs[i]->num_sources() < 0) { return absl::FailedPreconditionError(absl::StrCat( "Failed to determine the number of sources for dataset of type ", inputs[i]->type_string())); } num_sources += inputs[i]->num_sources(); } if (num_sources != ctx->split_providers().size()) { return absl::FailedPreconditionError(absl::StrCat( "Attempted to feed ", ctx->split_providers().size(), " split providers into a dataset with ", num_sources, " sources")); } int64_t split_provider_index = 0; for (size_t i = 0; i < inputs.size(); ++i) { IteratorContext::Params params(ctx); params.split_providers.clear(); for (int j = 0; j < inputs[i]->num_sources(); ++j) { params.split_providers.push_back( ctx->split_providers()[split_provider_index + j]); } split_provider_index += inputs[i]->num_sources(); result.emplace_back(std::move(params)); } return result; } } }
#include "tensorflow/core/data/split_utils.h" #include <memory> #include <string> #include <vector> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { std::string full_name(const std::string& name) { return FullName("test", name); } Status SaveAndRestore(SplitProvider* split_provider) { VariantTensorDataWriter writer; TF_RETURN_IF_ERROR(split_provider->Save(full_name, &writer)); std::vector<const VariantTensorData*> variants; writer.GetData(&variants); VariantTensorDataReader reader(variants); TF_RETURN_IF_ERROR(split_provider->Restore(full_name, &reader)); return absl::OkStatus(); } Status CheckOutput(SplitProvider* split_provider, std::vector<Tensor> expected) { int64_t next = 0; bool end_of_splits = false; while (!end_of_splits) { Tensor split; TF_RETURN_IF_ERROR(split_provider->GetNext(&split, &end_of_splits)); if (!end_of_splits) { test::ExpectEqual(split, expected[next++]); } } EXPECT_EQ(next, expected.size()); return absl::OkStatus(); } TEST(IndexSplitProviderTest, Empty) { IndexSplitProvider split_provider(0); TF_EXPECT_OK(CheckOutput(&split_provider, CreateTensors<int64_t>(TensorShape({}), {}))); } TEST(IndexSplitProviderTest, One) { IndexSplitProvider split_provider(1); TF_EXPECT_OK(CheckOutput(&split_provider, CreateTensors<int64_t>(TensorShape({}), {{0}}))); } TEST(IndexSplitProviderTest, Three) { IndexSplitProvider split_provider(3); TF_EXPECT_OK( CheckOutput(&split_provider, CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}}))); } TEST(IndexSplitProviderTest, SaveAndRestore) { IndexSplitProvider split_provider(4); std::vector<Tensor> expected = CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}, {3}}); for (int i = 0; i < expected.size(); ++i) { TF_ASSERT_OK(SaveAndRestore(&split_provider)); Tensor split; bool end_of_splits = true; TF_ASSERT_OK(split_provider.GetNext(&split, &end_of_splits)); EXPECT_FALSE(end_of_splits); test::ExpectEqual(split, expected[i]); } TF_ASSERT_OK(SaveAndRestore(&split_provider)); Tensor split; bool end_of_splits = false; TF_ASSERT_OK(split_provider.GetNext(&split, &end_of_splits)); EXPECT_TRUE(end_of_splits); } TEST(ShardingSplitProviderTest, TwoWayShardZero) { auto base = std::make_shared<IndexSplitProvider>(4); ShardingSplitProvider split_provider(2, 0, base); TF_EXPECT_OK(CheckOutput( &split_provider, CreateTensors<int64_t>(TensorShape({}), {{0}, {2}}))); } TEST(ShardingSplitProviderTest, TwoWayShardOne) { auto base = std::make_shared<IndexSplitProvider>(4); ShardingSplitProvider split_provider(2, 1, base); TF_EXPECT_OK(CheckOutput( &split_provider, CreateTensors<int64_t>(TensorShape({}), {{1}, {3}}))); } TEST(ShardingSplitProviderTest, ThreeWayShardOne) { auto base = std::make_shared<IndexSplitProvider>(6); ShardingSplitProvider split_provider(3, 1, base); TF_EXPECT_OK(CheckOutput( &split_provider, CreateTensors<int64_t>(TensorShape({}), {{1}, {4}}))); } TEST(ShardingSplitProviderTest, Empty) { auto base = std::make_shared<IndexSplitProvider>(1); ShardingSplitProvider split_provider(2, 1, base); TF_EXPECT_OK(CheckOutput(&split_provider, CreateTensors<int64_t>(TensorShape({}), {}))); } TEST(ShardingSplitProviderTest, SaveAndRestore) { auto base = std::make_shared<IndexSplitProvider>(6); std::vector<Tensor> expected = CreateTensors<int64_t>(TensorShape({}), {{1}, {4}}); ShardingSplitProvider split_provider(3, 1, base); for (int i = 0; i < expected.size(); ++i) { TF_ASSERT_OK(SaveAndRestore(&split_provider)); Tensor split; bool end_of_splits = true; TF_ASSERT_OK(split_provider.GetNext(&split, &end_of_splits)); EXPECT_FALSE(end_of_splits); test::ExpectEqual(split, expected[i]); } TF_ASSERT_OK(SaveAndRestore(&split_provider)); Tensor split; bool end_of_splits = false; TF_ASSERT_OK(split_provider.GetNext(&split, &end_of_splits)); EXPECT_TRUE(end_of_splits); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/split_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/split_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9c265655-7741-4db4-8797-aa96e0bba534
cpp
tensorflow/tensorflow
auto_shard
tensorflow/core/grappler/optimizers/data/auto_shard.cc
tensorflow/core/grappler/optimizers/data/auto_shard_test.cc
#include "tensorflow/core/grappler/optimizers/data/auto_shard.h" #include <array> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_join.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils/functions.h" #include "tensorflow/core/kernels/data/shard_dataset_op.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { namespace grappler { namespace { using tensorflow::data::AutoShardPolicy; constexpr char kAssertCardinalityDatasetOpName[] = "AssertCardinalityDataset"; constexpr char kBatchDatasetOpName[] = "BatchDataset"; constexpr char kBatchDatasetV2OpName[] = "BatchDatasetV2"; constexpr char kMapAndBatchDatasetOpName[] = "MapAndBatchDataset"; constexpr char kMapDatasetOpName[] = "MapDataset"; constexpr char kShardDatasetOpName[] = "ShardDataset"; constexpr char kShuffleDatasetOpName[] = "ShuffleDataset"; constexpr char kShuffleDatasetV2OpName[] = "ShuffleDatasetV2"; constexpr char kShuffleDatasetV3OpName[] = "ShuffleDatasetV3"; constexpr char kParallelBatchDatasetOpName[] = "ParallelBatchDataset"; constexpr char kPrefetchDatasetOpName[] = "PrefetchDataset"; constexpr char kFinalizeDatasetOpName[] = "FinalizeDataset"; constexpr char kOptionsDatasetOpName[] = "OptionsDataset"; constexpr char kRebatchDatasetOpName[] = "RebatchDataset"; constexpr char kRebatchDatasetV2OpName[] = "RebatchDatasetV2"; constexpr char kTensorDatasetOpName[] = "TensorDataset"; constexpr char kTensorSliceDatasetOpName[] = "TensorSliceDataset"; constexpr char kPlaceholderOpName[] = "Placeholder"; constexpr char kConstOpName[] = "Const"; constexpr char kNumWorkersAttrName[] = "num_workers"; constexpr char kNumReplicasAttrName[] = "num_replicas"; constexpr char kIndexAttrName[] = "index"; constexpr char kAutoShardPolicyAttrName[] = "auto_shard_policy"; constexpr char kReshuffleEachIteration[] = "reshuffle_each_iteration"; constexpr char kOutputShapes[] = "output_shapes"; constexpr char kOutputTypes[] = "output_types"; constexpr std::array<const char*, 6> kReaderDatasetOps = { "ArrayRecordDataset", "FixedLengthRecordDataset", "RecordIODataset", "SSTableDataset", "TextLineDataset", "TFRecordDataset" }; constexpr std::array<const char*, 2> kMultipleInputsDatasetOps = { "ConcatenateDataset", "ZipDataset" }; constexpr std::array<const char*, 32> kPassThroughOps = { "_Retval", "AssertNextDataset", "BatchDataset", "CacheDataset", "ExperimentalMapAndBatchDataset", "ExperimentalParseExampleDataset", "ExperimentalRebatchDataset", "FilterDataset", "FinalizeDataset", "Identity", "MapAndBatchDataset", "MapDataset", "MaxIntraOpParallelismDataset", "ModelDataset", "OptimizeDataset", "OptionsDataset", "PaddedBatchDataset", "ParallelBatchDataset", "ParallelMapDataset", "ParseExampleDataset", "PrefetchDataset", "PrivateThreadPoolDataset", "ReduceDataset", "RebatchDataset", "RepeatDataset", "ShardDataset", "ShuffleAndRepeatDataset", "ShuffleDataset", "SkipDataset", "TakeDataset", "UnbatchDataset", "WindowDataset", }; constexpr std::array<const char*, 5> kFuncDatasetOps = { "ExperimentalParallelInterleaveDataset", "FlatMapDataset", "InterleaveDataset", "LegacyParallelInterleaveDataset", "ParallelInterleaveDataset", }; constexpr std::array<const char*, 5> kUnshardableSourceDatasetOps = { "GeneratorDataset", "RangeDataset", "SparseTensorsSliceDataset", "TensorDataset", "TensorSliceDataset", }; constexpr std::array<const char*, 20> kBatchSizeOrthogonalDatasetOps = { "AssertCardinalityDataset", "AssertNextDataset", "BytesProducedStatsDataset", "CacheDataset", "FinalizeDataset", "Identity", "LatencyStatsDataset", "MaxIntraOpParallelismDataset", "ModelDataset", "NonSerializableDataset", "OptimizeDataset", "OptionsDataset", "ParseExampleDataset", "PrefetchDataset", "PrivateThreadPoolDataset", "RebatchDataset", "RepeatDataset", "SetStatsAggregatorDataset", "SleepDataset", "ThreadPoolDataset", }; constexpr std::array<const char*, 3> kBatchDatasetOps = { kBatchDatasetOpName, kMapAndBatchDatasetOpName, kParallelBatchDatasetOpName, }; Status OptimizeGraph(const GrapplerItem& item, int64_t num_workers, int64_t index, AutoShardPolicy policy, int64_t num_replicas, GraphDef* output, AutoShardPolicy* policy_applied); template <std::size_t SIZE> bool IsDatasetNodeOfType(const NodeDef& node, const std::array<const char*, SIZE>& arr) { for (const auto& dataset_op_name : arr) { if (tensorflow::data::MatchesAnyVersion(dataset_op_name, node.op())) { return true; } } return false; } Status AddShardNode(MutableGraphView* graph, const NodeDef& add_before, int64_t num_workers, int64_t index) { NodeDef new_node; new_node.set_op(kShardDatasetOpName); graph_utils::SetUniqueGraphNodeName(kShardDatasetOpName, graph->graph(), &new_node); NodeDef* num_shards_node = graph_utils::AddScalarConstNode<int64_t>(num_workers, graph); NodeDef* index_node = graph_utils::AddScalarConstNode<int64_t>(index, graph); new_node.add_input(add_before.input(0)); new_node.add_input(num_shards_node->name()); new_node.add_input(index_node->name()); (*(new_node.mutable_attr()))[data::ShardDatasetOp::kRequireNonEmpty].set_b( true); NodeDef* add_after = graph->GetNode(add_before.input(0)); if (absl::StrContains(add_after->op(), "Dataset")) { if (add_after->attr().count(kOutputShapes) > 0) { graph_utils::CopyAttribute(kOutputShapes, *add_after, &new_node); } else { tensorflow::TensorShapeProto* shape = (*(new_node.mutable_attr()))[kOutputShapes] .mutable_list() ->add_shape(); shape->set_unknown_rank(true); } if (add_after->attr().count(kOutputTypes) > 0) { graph_utils::CopyAttribute(kOutputTypes, *add_after, &new_node); } else if (add_after->attr().count("Toutput_types") > 0) { (*(new_node.mutable_attr()))[kOutputTypes] = add_after->attr().at("Toutput_types"); } else { (*(new_node.mutable_attr()))[kOutputTypes].mutable_list()->add_type( tensorflow::DataType::DT_STRING); } } else { return errors::NotFound( "Unable to shard this input. You may need to wrap the inputs to your " "reader dataset in a TensorSliceDataset. Input node is ", add_after->DebugString()); } NodeDef* new_node_graph = graph->AddNode(std::move(new_node)); TF_RETURN_IF_ERROR( graph->UpdateFanouts(add_after->name(), new_node_graph->name())); return absl::OkStatus(); } Status AddShuffleDataset(MutableGraphView* graph, const NodeDef& add_before, const string& buffer_size_node, const string& seed_node, const string& seed2_node, bool reshuffle_each_iteration) { NodeDef* add_after = graph->GetNode(add_before.input(0)); NodeDef new_node; new_node.set_op(kShuffleDatasetOpName); graph_utils::SetUniqueGraphNodeName(kShuffleDatasetOpName, graph->graph(), &new_node); new_node.add_input(add_before.input(0)); new_node.add_input(buffer_size_node); new_node.add_input(seed_node); new_node.add_input(seed2_node); graph_utils::CopyAttribute(kOutputShapes, *add_after, &new_node); graph_utils::CopyAttribute(kOutputTypes, *add_after, &new_node); AttrValue reshuffle_attr; reshuffle_attr.set_b(reshuffle_each_iteration); (*new_node.mutable_attr())[kReshuffleEachIteration] = reshuffle_attr; NodeDef* new_node_graph = graph->AddNode(std::move(new_node)); TF_RETURN_IF_ERROR( graph->UpdateFanouts(add_after->name(), new_node_graph->name())); return absl::OkStatus(); } Status AddShuffleDatasetV2(MutableGraphView* graph, const NodeDef& add_before, const string& buffer_size_node, const string& seed_generator_node) { NodeDef* add_after = graph->GetNode(add_before.input(0)); NodeDef new_node; new_node.set_op(kShuffleDatasetV2OpName); graph_utils::SetUniqueGraphNodeName(kShuffleDatasetV2OpName, graph->graph(), &new_node); new_node.add_input(add_before.input(0)); new_node.add_input(buffer_size_node); new_node.add_input(seed_generator_node); graph_utils::CopyAttribute(kOutputShapes, *add_after, &new_node); graph_utils::CopyAttribute(kOutputTypes, *add_after, &new_node); NodeDef* new_node_graph = graph->AddNode(std::move(new_node)); TF_RETURN_IF_ERROR( graph->UpdateFanouts(add_after->name(), new_node_graph->name())); return absl::OkStatus(); } Status AddShuffleDatasetV3(MutableGraphView* graph, const NodeDef& add_before, const string& buffer_size_node, const string& seed_node, const string& seed2_node, const string& seed_generator_node, bool reshuffle_each_iteration) { NodeDef* add_after = graph->GetNode(add_before.input(0)); NodeDef new_node; new_node.set_op(kShuffleDatasetV3OpName); graph_utils::SetUniqueGraphNodeName(kShuffleDatasetV3OpName, graph->graph(), &new_node); new_node.add_input(add_before.input(0)); new_node.add_input(buffer_size_node); new_node.add_input(seed_node); new_node.add_input(seed2_node); new_node.add_input(seed_generator_node); graph_utils::CopyAttribute(kOutputShapes, *add_after, &new_node); graph_utils::CopyAttribute(kOutputTypes, *add_after, &new_node); AttrValue reshuffle_attr; reshuffle_attr.set_b(reshuffle_each_iteration); (*new_node.mutable_attr())[kReshuffleEachIteration] = reshuffle_attr; NodeDef* new_node_graph = graph->AddNode(std::move(new_node)); TF_RETURN_IF_ERROR( graph->UpdateFanouts(add_after->name(), new_node_graph->name())); return absl::OkStatus(); } bool ReaderOpInFunction(const NodeDef& node, const FunctionLibraryDefinition& flib) { auto f_attr_it = node.attr().find("f"); if (f_attr_it == node.attr().end()) return false; const FunctionDef* func = flib.Find(f_attr_it->second.func().name()); for (int i = 0; i < func->node_def_size(); i++) { NodeDef node_in_func = func->node_def(i); if (IsDatasetNodeOfType(node_in_func, kReaderDatasetOps) && node_in_func.input_size() > 0) { return true; } if (IsDatasetNodeOfType(func->node_def(i), kFuncDatasetOps) && ReaderOpInFunction(func->node_def(i), flib)) { return true; } } return false; } Status RemoveShuffleDataset(MutableGraphView* graph, const NodeDef& node, absl::flat_hash_set<string>* nodes_to_delete, string* op_name, string* buffer_size_node, string* seed_node, string* seed2_node, bool* reshuffle_each_iteration) { if (node.op() == kShuffleDatasetOpName) { *op_name = node.op(); *buffer_size_node = node.input(1); *seed_node = node.input(2); *seed2_node = node.input(3); *reshuffle_each_iteration = node.attr().at(kReshuffleEachIteration).b(); TF_RETURN_IF_ERROR(graph->UpdateFanouts(node.name(), node.input(0))); nodes_to_delete->insert(node.name()); } for (const auto& fanin : graph->GetFanins(node, true)) { TF_RETURN_IF_ERROR(RemoveShuffleDataset( graph, *fanin.node, nodes_to_delete, op_name, buffer_size_node, seed_node, seed2_node, reshuffle_each_iteration)); } return absl::OkStatus(); } Status RemoveShuffleDatasetV2(MutableGraphView* graph, const NodeDef& node, absl::flat_hash_set<string>* nodes_to_delete, string* op_name, string* buffer_size_node, string* seed_generator_node) { if (node.op() == kShuffleDatasetV2OpName) { *op_name = node.op(); *buffer_size_node = node.input(1); *seed_generator_node = node.input(2); TF_RETURN_IF_ERROR(graph->UpdateFanouts(node.name(), node.input(0))); nodes_to_delete->insert(node.name()); } for (const auto& fanin : graph->GetFanins(node, true)) { TF_RETURN_IF_ERROR( RemoveShuffleDatasetV2(graph, *fanin.node, nodes_to_delete, op_name, buffer_size_node, seed_generator_node)); } return absl::OkStatus(); } Status RemoveShuffleDatasetV3(MutableGraphView* graph, const NodeDef& node, absl::flat_hash_set<string>* nodes_to_delete, string* op_name, string* buffer_size_node, string* seed_node, string* seed2_node, string* seed_generator_node, bool* reshuffle_each_iteration) { if (node.op() == kShuffleDatasetV3OpName) { *op_name = node.op(); *buffer_size_node = node.input(1); *seed_node = node.input(2); *seed2_node = node.input(3); *seed_generator_node = node.input(4); *reshuffle_each_iteration = node.attr().at(kReshuffleEachIteration).b(); TF_RETURN_IF_ERROR(graph->UpdateFanouts(node.name(), node.input(0))); nodes_to_delete->insert(node.name()); } for (const auto& fanin : graph->GetFanins(node, true)) { TF_RETURN_IF_ERROR(RemoveShuffleDatasetV3( graph, *fanin.node, nodes_to_delete, op_name, buffer_size_node, seed_node, seed2_node, seed_generator_node, reshuffle_each_iteration)); } return absl::OkStatus(); } Status ProcessDatasetSourceNode(MutableGraphView* graph, const NodeDef& node, absl::flat_hash_set<string>* nodes_to_delete, int64_t num_workers, int64_t index) { string shuffle_op_name = ""; string buffer_size_node = ""; string seed_node = ""; string seed2_node = ""; string seed_generator_node = ""; bool reshuffle_each_iteration; TF_RETURN_IF_ERROR(AddShardNode(graph, node, num_workers, index)); TF_RETURN_IF_ERROR(RemoveShuffleDataset( graph, node, nodes_to_delete, &shuffle_op_name, &buffer_size_node, &seed_node, &seed2_node, &reshuffle_each_iteration)); if (shuffle_op_name.empty()) { TF_RETURN_IF_ERROR( RemoveShuffleDatasetV2(graph, node, nodes_to_delete, &shuffle_op_name, &buffer_size_node, &seed_generator_node)); } if (shuffle_op_name.empty()) { TF_RETURN_IF_ERROR(RemoveShuffleDatasetV3( graph, node, nodes_to_delete, &shuffle_op_name, &buffer_size_node, &seed_node, &seed2_node, &seed_generator_node, &reshuffle_each_iteration)); } if (shuffle_op_name == kShuffleDatasetOpName) { TF_RETURN_IF_ERROR(AddShuffleDataset(graph, node, buffer_size_node, seed_node, seed2_node, reshuffle_each_iteration)); } else if (shuffle_op_name == kShuffleDatasetV2OpName) { TF_RETURN_IF_ERROR(AddShuffleDatasetV2(graph, node, buffer_size_node, seed_generator_node)); } else if (shuffle_op_name == kShuffleDatasetV3OpName) { TF_RETURN_IF_ERROR(AddShuffleDatasetV3( graph, node, buffer_size_node, seed_node, seed2_node, seed_generator_node, reshuffle_each_iteration)); } return absl::OkStatus(); } const NodeDef* FindFuncAndTensorSliceDataset( const NodeDef* node, int64_t num_workers, int64_t index, FunctionLibraryDefinition* flib, MutableGraphView* graph, absl::flat_hash_set<string>* nodes_to_delete) { if (IsDatasetNodeOfType(*node, kFuncDatasetOps)) { const NodeDef* input_node = graph_utils::GetInputNode(*node, *graph, 0); if (input_node->op() == kTensorSliceDatasetOpName || input_node->op() == kTensorDatasetOpName) { const NodeDef* next_input_node = graph_utils::GetInputNode(*input_node, *graph, 0); if (next_input_node->op() == kPlaceholderOpName) { return node; } } } if (!IsDatasetNodeOfType(*node, kPassThroughOps)) { return nullptr; } const NodeDef* input_node = graph_utils::GetInputNode(*node, *graph, 0); return FindFuncAndTensorSliceDataset(input_node, num_workers, index, flib, graph, nodes_to_delete); } enum class DropRemainderValue { kUnknown, kTrue, kFalse }; DropRemainderValue GetDropRemainder(const MutableGraphView& graph, const NodeDef& batch_node) { const NodeDef* drop_remainder = nullptr; if (batch_node.op() == kBatchDatasetOpName || batch_node.op() == kBatchDatasetV2OpName) { drop_remainder = graph.GetNode(batch_node.input(2)); } else if (batch_node.op() == kParallelBatchDatasetOpName) { drop_remainder = graph.GetNode(batch_node.input(3)); } else if (batch_node.op() == kMapAndBatchDatasetOpName) { int drop_remainder_index = 3 + batch_node.attr().at("Targuments").list().shape_size(); if (drop_remainder_index >= batch_node.input_size()) { LOG(ERROR) << "Fail to find the drop_remainder of op: " << batch_node.DebugString(); return DropRemainderValue::kUnknown; } drop_remainder = graph.GetNode(batch_node.input(drop_remainder_index)); } else { LOG(ERROR) << "Expect a batch node but get " << batch_node.DebugString(); return DropRemainderValue::kUnknown; } if (!IsConstant(*drop_remainder)) { return DropRemainderValue::kUnknown; } bool drop_remainder_value; if (!GetNodeAttr(*drop_remainder, "value", &drop_remainder_value).ok()) { return DropRemainderValue::kUnknown; } return drop_remainder_value ? DropRemainderValue::kTrue : DropRemainderValue::kFalse; } Status RecursivelyHandleOp(const NodeDef& node, int64_t num_workers, int64_t index, FunctionLibraryDefinition* flib, MutableGraphView* graph, absl::flat_hash_set<string>* nodes_to_delete) { if (node.op() == kAssertCardinalityDatasetOpName) { LOG(WARNING) << "The `assert_cardinality` transformation is currently not " "handled by the auto-shard rewrite and will be removed."; nodes_to_delete->insert(node.name()); TF_RETURN_IF_ERROR(graph->UpdateFanouts(node.name(), node.input(0))); const NodeDef* input_node = graph_utils::GetInputNode(node, *graph, 0); return RecursivelyHandleOp(*input_node, num_workers, index, flib, graph, nodes_to_delete); } if (IsDatasetNodeOfType(node, kUnshardableSourceDatasetOps)) { return errors::NotFound("Found an unshardable source dataset: ", node.DebugString()); } if (IsDatasetNodeOfType(node, kMultipleInputsDatasetOps)) { for (int i = 0; i < node.input_size(); ++i) { const NodeDef* input_node = graph_utils::GetInputNode(node, *graph, i); TF_RETURN_IF_ERROR(RecursivelyHandleOp(*input_node, num_workers, index, flib, graph, nodes_to_delete)); } return absl::OkStatus(); } if (IsDatasetNodeOfType(node, kFuncDatasetOps)) { const NodeDef* input_node = graph_utils::GetInputNode(node, *graph, 0); const NodeDef* flat_map_node = FindFuncAndTensorSliceDataset( input_node, num_workers, index, flib, graph, nodes_to_delete); if (flat_map_node != nullptr) { auto fanouts = graph->GetFanouts(*flat_map_node, false); if (fanouts.size() == 1) { return ProcessDatasetSourceNode(graph, *fanouts.begin()->node, nodes_to_delete, num_workers, index); } } } if ((IsDatasetNodeOfType(node, kFuncDatasetOps) || IsDatasetNodeOfType(node, kPassThroughOps)) && ReaderOpInFunction(node, *flib)) { return ProcessDatasetSourceNode(graph, node, nodes_to_delete, num_workers, index); } if (IsDatasetNodeOfType(node, kReaderDatasetOps)) { return ProcessDatasetSourceNode(graph, node, nodes_to_delete, num_workers, index); } if (!IsDatasetNodeOfType(node, kFuncDatasetOps) && !IsDatasetNodeOfType(node, kPassThroughOps)) { return errors::NotFound( "Did not find a shardable source, walked to ", "a node which is not a dataset: ", node.DebugString(), ". Consider either turning off auto-sharding or switching the " "auto_shard_policy to DATA to shard this dataset. You can do this by " "creating a new `tf.data.Options()` object then setting " "`options.experimental_distribute.auto_shard_policy = " "AutoShardPolicy.DATA` before applying the options object to the " "dataset via `dataset.with_options(options)`."); } const NodeDef* input_node = graph_utils::GetInputNode(node, *graph, 0); return RecursivelyHandleOp(*input_node, num_workers, index, flib, graph, nodes_to_delete); } Status ShardByFile(const NodeDef& sink_node, int64_t num_workers, int64_t index, FunctionLibraryDefinition* flib, MutableGraphView* graph) { absl::flat_hash_set<string> nodes_to_delete; TF_RETURN_IF_ERROR(RecursivelyHandleOp(sink_node, num_workers, index, flib, graph, &nodes_to_delete)); return graph->DeleteNodes(nodes_to_delete); } Status RewriteRebatchV2ToV1(const NodeDef& sink_node, int64_t num_replicas, MutableGraphView* graph) { NodeDef* input_node = graph_utils::GetInputNode(sink_node, *graph); if (input_node->op() != kRebatchDatasetV2OpName) { return absl::OkStatus(); } NodeDef* rebatch_node = input_node; rebatch_node->set_op(kRebatchDatasetOpName); rebatch_node->mutable_input()->DeleteSubrange(1, 2); if (num_replicas < 1) { return errors::InvalidArgument( "Cannot rewrite RebatchDatasetV2 to legacy RebatchDataset with invalid " "num_replicas argument. `num_replicas` is ", num_replicas, ", but expected to be >= 1."); } auto num_replicas_node = graph_utils::AddScalarConstNode(num_replicas, graph); rebatch_node->add_input(num_replicas_node->name()); (*rebatch_node->mutable_attr())["use_fallback"].set_b(true); auto* shapes_attr = gtl::FindOrNull(*rebatch_node->mutable_attr(), "output_shapes"); if (shapes_attr == nullptr) { return errors::InvalidArgument( "Cannot rewrite RebatchDatasetV2 with missing `output_shapes` attr."); } for (int i = 0; i < shapes_attr->list().shape_size(); ++i) { auto* shape = shapes_attr->mutable_list()->mutable_shape(i); if (shape->unknown_rank()) continue; shape->mutable_dim(0)->set_size(-1); } return absl::OkStatus(); } Status ShardByData(const NodeDef& sink_node, int64_t num_workers, int64_t index, int64_t num_replicas, MutableGraphView* graph) { const NodeDef* shard_before = &sink_node; NodeDef* input_node = graph_utils::GetInputNode(sink_node, *graph); while (input_node->op() == kPrefetchDatasetOpName || input_node->op() == kOptionsDatasetOpName || input_node->op() == kFinalizeDatasetOpName) { shard_before = input_node; input_node = graph_utils::GetInputNode(*input_node, *graph); } TF_RETURN_IF_ERROR(RewriteRebatchV2ToV1(*shard_before, num_replicas, graph)); return AddShardNode(graph, *shard_before, num_workers, index); } Status ShardByHint(const NodeDef& sink_node, int64_t num_workers, int64_t index, int64_t num_replicas, MutableGraphView* graph) { auto get_shard_node = [graph](const NodeDef& node) -> const NodeDef* { if (node.op() != kShardDatasetOpName) return nullptr; auto num_workers_node = graph->GetNode(node.input(1)); if (num_workers_node->op() != kConstOpName) return nullptr; if (num_workers_node->attr().at("value").tensor().int64_val(0) != tensorflow::data::kShardHint) return nullptr; return &node; }; auto* num_workers_node = graph_utils::AddScalarConstNode(static_cast<int64_t>(num_workers), graph); auto* worker_index_node = graph_utils::AddScalarConstNode(static_cast<int64_t>(index), graph); for (const NodeDef& node : graph->graph()->node()) { const NodeDef* shard_node = get_shard_node(node); if (!shard_node) continue; auto mutable_node = graph->GetNode(shard_node->name()); *mutable_node->mutable_input(1) = num_workers_node->name(); *mutable_node->mutable_input(2) = worker_index_node->name(); (*(mutable_node->mutable_attr()))[data::ShardDatasetOp::kRequireNonEmpty] .set_b(true); } return absl::OkStatus(); } Status ApplyAutoShard(const NodeDef& sink_node, int64_t num_workers, int64_t index, AutoShardPolicy policy, int64_t num_replicas, MutableGraphView* graph, AutoShardPolicy* policy_applied) { *policy_applied = policy; FunctionLibraryDefinition flib(OpRegistry::Global(), graph->graph()->library()); switch (policy) { case AutoShardPolicy::OFF: return absl::OkStatus(); case AutoShardPolicy::FILE: return ShardByFile(sink_node, num_workers, index, &flib, graph); case AutoShardPolicy::DATA: return ShardByData(sink_node, num_workers, index, num_replicas, graph); case AutoShardPolicy::HINT: return ShardByHint(sink_node, num_workers, index, num_replicas, graph); case AutoShardPolicy::AUTO: default: Status s = ShardByFile(sink_node, num_workers, index, &flib, graph); if (absl::IsNotFound(s)) { if (VLOG_IS_ON(2)) { VLOG(2) << "AUTO sharding policy will apply DATA sharding policy " "as it failed to apply FILE sharding policy because of " "the following reason: " << s.message(); } *policy_applied = AutoShardPolicy::DATA; return ShardByData(sink_node, num_workers, index, num_replicas, graph); } *policy_applied = AutoShardPolicy::FILE; return s; } } Status OptimizeGraph(const GrapplerItem& item, int64_t num_workers, int64_t index, AutoShardPolicy policy, int64_t num_replicas, GraphDef* output) { *output = item.graph; MutableGraphView graph(output); NodeDef* sink_node; TF_RETURN_IF_ERROR(graph_utils::GetFetchNode(graph, item, &sink_node)); string id = strings::StrCat(reinterpret_cast<uint64>(output)); if (index == 0) { std::vector<std::string> ineligible_reason; bool is_eligible = internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason); metrics::RecordTFDataAutoShardRewriteBatchSize(is_eligible, ineligible_reason); } AutoShardPolicy policy_applied = policy; if (policy != AutoShardPolicy::OFF && !(policy == AutoShardPolicy::FILE && num_workers == 1 && index == 0)) { TF_RETURN_IF_ERROR(ApplyAutoShard(*sink_node, num_workers, index, policy, num_replicas, &graph, &policy_applied)); } if (index == 0) { metrics::RecordTFDataAutoShard(id, policy_applied, num_workers, num_replicas); } return absl::OkStatus(); } } namespace internal { bool IsEligibleRewriteBatchSize(const NodeDef& sink_node, const MutableGraphView& graph, std::vector<std::string>* ineligible_reason) { ineligible_reason->clear(); NodeDef* input_node = graph_utils::GetInputNode(sink_node, graph); while (input_node != nullptr) { if (input_node->op() == kRebatchDatasetOpName || input_node->op() == kRebatchDatasetV2OpName) { input_node = graph_utils::GetInputNode(*input_node, graph); if (input_node == nullptr || input_node->op() != kMapDatasetOpName) { ineligible_reason->push_back("BUG_NO_MAP_BEFORE_REBATCH"); return false; } input_node = graph_utils::GetInputNode(*input_node, graph); continue; } if (IsDatasetNodeOfType(*input_node, kBatchSizeOrthogonalDatasetOps)) { input_node = graph_utils::GetInputNode(*input_node, graph); continue; } if (IsDatasetNodeOfType(*input_node, kBatchDatasetOps)) { DropRemainderValue drop_remainder = GetDropRemainder(graph, *input_node); int64_t cardinality = data::kUnknownCardinality; bool cardinality_available = true; AttrSlice attrs(*input_node); if (!TryGetNodeAttr(attrs, data::kCardinalityAttrForRewrite, &cardinality)) { cardinality_available = false; } if (drop_remainder == DropRemainderValue::kFalse || (cardinality_available && cardinality == data::kInfiniteCardinality)) { return ineligible_reason->empty(); } else { if (drop_remainder == DropRemainderValue::kUnknown) { ineligible_reason->push_back("BATCH_DROP_REMAINDER_UNKNOWN"); } if (!cardinality_available) { ineligible_reason->push_back("BATCH_CARDINALITY_NOT_AVAILABLE"); } if (drop_remainder == DropRemainderValue::kTrue && cardinality_available && cardinality != data::kInfiniteCardinality) { ineligible_reason->push_back("BATCH_DROP_REMAINDER_NOT_INFINITE"); } return false; } } ineligible_reason->push_back( strings::StrCat("OP_NOT_SUPPORTED_", input_node->op())); input_node = graph_utils::GetInputNode(*input_node, graph); } ineligible_reason->clear(); ineligible_reason->push_back("BATCH_NOT_FOUND"); return false; } } Status AutoShard::Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) { if (!config) return errors::InvalidArgument("RewriterConfig not found."); if ((config->parameter_map().find(kNumWorkersAttrName) == config->parameter_map().end())) { return errors::InvalidArgument(kNumWorkersAttrName, " parameter missing."); } if ((config->parameter_map().find(kIndexAttrName) == config->parameter_map().end())) { return errors::InvalidArgument(kIndexAttrName, " parameter missing."); } num_workers_ = config->parameter_map().at(kNumWorkersAttrName).i(); index_ = config->parameter_map().at(kIndexAttrName).i(); auto_shard_policy_ = AutoShardPolicy(config->parameter_map().at(kAutoShardPolicyAttrName).i()); num_replicas_ = config->parameter_map().at(kNumReplicasAttrName).i(); if (auto_shard_policy_ != AutoShardPolicy::OFF && auto_shard_policy_ != AutoShardPolicy::AUTO && auto_shard_policy_ != AutoShardPolicy::DATA && auto_shard_policy_ != AutoShardPolicy::FILE && auto_shard_policy_ != AutoShardPolicy::HINT) { return errors::InvalidArgument(kAutoShardPolicyAttrName, " is invalid."); } if (num_workers_ < 1) { return errors::InvalidArgument(kNumWorkersAttrName, " should be >= 1, currently ", num_workers_); } if (index_ < 0 || index_ >= num_workers_) { return errors::InvalidArgument(kIndexAttrName, " should be >= 0 and < ", num_workers_, ", currently ", index_); } if (num_replicas_ < 0) { return errors::InvalidArgument(kNumReplicasAttrName, " should be >= 0"); } return absl::OkStatus(); } Status AutoShard::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; TF_RETURN_IF_ERROR(OptimizeGraph(item, num_workers_, index_, auto_shard_policy_, num_replicas_, output)); stats->num_changes++; return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(AutoShard, "tf_auto_shard"); } }
#include "tensorflow/core/grappler/optimizers/data/auto_shard.h" #include <string> #include <vector> #include "absl/strings/str_join.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using ::tensorflow::grappler::graph_tests_utils::MakeBatchV2Node; using ::tensorflow::grappler::graph_tests_utils::MakeMapAndBatchNode; using ::tensorflow::grappler::graph_tests_utils::MakeParallelBatchNode; using ::tensorflow::test::function::GDef; using ::tensorflow::test::function::NDef; using ::testing::UnorderedElementsAre; void FinishItem(GrapplerItem* item, const string& input_node_name) { *item->graph.add_node() = NDef("map_before_rebatch", "MapDataset", {input_node_name}, {{"f", "__inference_Dataset_map_normalize_8232"}, {"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}); *item->graph.add_node() = NDef("num_replicas", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}); *item->graph.add_node() = NDef("rebatch", "RebatchDataset", {"map_before_rebatch", "num_replicas"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}); *item->graph.add_node() = NDef("prefetch_count", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}); *item->graph.add_node() = NDef("prefetch", "PrefetchDataset", {"rebatch", "prefetch_count"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}); *item->graph.add_node() = NDef("Sink", "Identity", {"prefetch"}, {}); item->fetch.push_back("Sink"); } NodeDef AddCardinalityAttr(NodeDef node, int64_t cardinality) { (*node.mutable_attr())[data::kCardinalityAttrForRewrite].set_i(cardinality); return node; } TEST(RewriteBatchTest, InfiniteSource) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), NDef("repeat_count", "Const", {}, {{"value", -1}, {"dtype", DT_INT32}}), NDef("repeat", "RepeatDataset", {"tf_record", "repeat_count"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", true}, {"dtype", DT_BOOL}}), AddCardinalityAttr( MakeBatchV2Node("batch", "repeat", "batch_size", "drop_remainder", false), data::kInfiniteCardinality), }); FinishItem(&item, "batch"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_TRUE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)) << absl::StrJoin(ineligible_reason, ","); } TEST(RewriteBatchTest, InfiniteSourceMapAndBatch) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), NDef("repeat_count", "Const", {}, {{"value", -1}, {"dtype", DT_INT32}}), NDef("repeat", "RepeatDataset", {"tf_record", "repeat_count"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 2}, {"dtype", DT_INT64}}), NDef("drop_remainder", "Const", {}, {{"value", true}, {"dtype", DT_BOOL}}), AddCardinalityAttr( MakeMapAndBatchNode("batch", "repeat", "batch_size", "num_parallel_calls", "drop_remainder"), data::kInfiniteCardinality), }); FinishItem(&item, "batch"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_TRUE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)) << absl::StrJoin(ineligible_reason, ","); } TEST(RewriteBatchTest, InfiniteSourceParallelBatch) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), NDef("repeat_count", "Const", {}, {{"value", -1}, {"dtype", DT_INT32}}), NDef("repeat", "RepeatDataset", {"tf_record", "repeat_count"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("num_parallel_calls", "Const", {}, {{"value", 2}, {"dtype", DT_INT64}}), NDef("drop_remainder", "Const", {}, {{"value", true}, {"dtype", DT_BOOL}}), AddCardinalityAttr( MakeParallelBatchNode("batch", "repeat", "batch_size", "num_parallel_calls", "drop_remainder", "true"), data::kInfiniteCardinality), }); FinishItem(&item, "batch"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_TRUE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)) << absl::StrJoin(ineligible_reason, ","); } TEST(RewriteBatchTest, FiniteSourceNoDropRemainder) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), AddCardinalityAttr( MakeBatchV2Node("batch", "tf_record", "batch_size", "drop_remainder", false), data::kUnknownCardinality), }); FinishItem(&item, "batch"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_TRUE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)) << absl::StrJoin(ineligible_reason, ","); } TEST(RewriteBatchTest, FiniteSourceDropRemainder) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", true}, {"dtype", DT_BOOL}}), AddCardinalityAttr( MakeBatchV2Node("batch", "tf_record", "batch_size", "drop_remainder", false), 1337), }); FinishItem(&item, "batch"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_FALSE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)); EXPECT_THAT(ineligible_reason, UnorderedElementsAre("BATCH_DROP_REMAINDER_NOT_INFINITE")); } TEST(RewriteBatchTest, UnknownCardinalitySourceDropRemainder) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", true}, {"dtype", DT_BOOL}}), AddCardinalityAttr( MakeBatchV2Node("batch", "tf_record", "batch_size", "drop_remainder", false), data::kUnknownCardinality), }); FinishItem(&item, "batch"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_FALSE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)); EXPECT_THAT(ineligible_reason, UnorderedElementsAre("BATCH_DROP_REMAINDER_NOT_INFINITE")); } TEST(RewriteBatchTest, FiniteSourceDropRemainderUnknown) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "RandomBool", {}, {}), AddCardinalityAttr( MakeBatchV2Node("batch", "tf_record", "batch_size", "drop_remainder", false), data::kUnknownCardinality), }); FinishItem(&item, "batch"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_FALSE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)); EXPECT_THAT(ineligible_reason, UnorderedElementsAre("BATCH_DROP_REMAINDER_UNKNOWN")); } TEST(RewriteBatchTest, DropRemainderCardinalityNotAvailable) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", true}}), MakeBatchV2Node("batch", "tf_record", "batch_size", "drop_remainder", false), }); FinishItem(&item, "batch"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_FALSE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)); EXPECT_THAT(ineligible_reason, UnorderedElementsAre("BATCH_CARDINALITY_NOT_AVAILABLE")); } TEST(RewriteBatchTest, OpNotSupported) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", true}, {"dtype", DT_BOOL}}), AddCardinalityAttr( MakeBatchV2Node("batch", "tf_record", "batch_size", "drop_remainder", false), data::kUnknownCardinality), NDef("take_count", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), graph_tests_utils::MakeTakeNode("take", "batch", "take_count"), }); FinishItem(&item, "take"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_FALSE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)); EXPECT_THAT(ineligible_reason, UnorderedElementsAre("OP_NOT_SUPPORTED_TakeDataset", "BATCH_DROP_REMAINDER_NOT_INFINITE")); } TEST(RewriteBatchTest, BatchNotFound) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), graph_tests_utils::MakeTakeNode("take", "tf_record", "take_count"), NDef("take_count", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), }); FinishItem(&item, "take"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_FALSE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)); EXPECT_THAT(ineligible_reason, UnorderedElementsAre("BATCH_NOT_FOUND")); } TEST(RewriteBatchTest, InfiniteSourceNoRebatch) { GrapplerItem item; item.graph = GDef({ NDef("files", "Const", {}, {{"values", std::vector<std::string>{"file1", "file2"}}, {"dtype", DT_STRING}}), NDef("tf_record", "TFRecordDataset", {"file"}, {}), NDef("repeat_count", "Const", {}, {{"value", -1}, {"dtype", DT_INT32}}), NDef("repeat", "RepeatDataset", {"tf_record", "repeat_count"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("batch_size", "Const", {}, {{"value", 2}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", true}, {"dtype", DT_BOOL}}), AddCardinalityAttr( MakeBatchV2Node("batch", "repeat", "batch_size", "drop_remainder", false), data::kInfiniteCardinality), NDef("Sink", "Identity", {"batch"}, {}), }); item.fetch.push_back("Sink"); MutableGraphView graph(&item.graph); NodeDef* sink_node = nullptr; TF_ASSERT_OK(graph_utils::GetFetchNode(graph, item, &sink_node)); std::vector<std::string> ineligible_reason; EXPECT_TRUE(internal::IsEligibleRewriteBatchSize(*sink_node, graph, &ineligible_reason)) << absl::StrJoin(ineligible_reason, ","); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/auto_shard.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/auto_shard_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
befb96a5-113e-49f5-b16e-46e40289e82c
cpp
tensorflow/tensorflow
map_fusion
tensorflow/core/grappler/optimizers/data/map_fusion.cc
tensorflow/core/grappler/optimizers/data/map_fusion_test.cc
#include "tensorflow/core/grappler/optimizers/data/map_fusion.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/fusion_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace grappler { namespace { constexpr char kMapDatasetOp[] = "MapDataset"; constexpr char kParallelMapDatasetOp[] = "ParallelMapDatasetV2"; constexpr char kDeterministicAttr[] = "deterministic"; constexpr char kConstOp[] = "Const"; constexpr char kValueAttr[] = "value"; constexpr int kAutotuneValue = -1; bool IsAutotuneNode(const string& node_name, const MutableGraphView& graph) { const NodeDef* node = graph.GetNode(node_name); if (!node) return false; if (node->op() != kConstOp) return false; const auto* value = gtl::FindOrNull(node->attr(), kValueAttr); if (!value) return false; if (value->has_tensor()) { if (value->tensor().int64_val_size()) { return value->tensor().int64_val(0) == kAutotuneValue; } } return false; } bool SameDeterministicAttr(const NodeDef& parallel_map_node, const NodeDef& parent_parallel_map_node) { const auto* first_deterministic_attr = gtl::FindOrNull(parallel_map_node.attr(), kDeterministicAttr); const auto* second_deterministic_attr = gtl::FindOrNull(parent_parallel_map_node.attr(), kDeterministicAttr); const bool first_deterministic_val = (first_deterministic_attr == nullptr) || (first_deterministic_attr->s() == "true" || first_deterministic_attr->s() == "default"); const bool second_deterministic_val = (second_deterministic_attr == nullptr) || (second_deterministic_attr->s() == "true" || second_deterministic_attr->s() == "default"); return first_deterministic_val == second_deterministic_val; } string GetFusedName(const NodeDef& parent, const NodeDef& child) { return absl::StrCat("map_fusion_nodes/", parent.name(), "/", child.name()); } string GetFusedName(const FunctionDef& parent, const FunctionDef& child) { return absl::StrCat("map_fusion_funcs/", parent.signature().name(), "/", child.signature().name()); } NodeDef MakeFusedNode(const NodeDef& parent_map_node, const NodeDef& map_node, const FunctionDef& fused_function, MutableGraphView* graph) { NodeDef fused_node; graph_utils::SetUniqueGraphNodeName(GetFusedName(parent_map_node, map_node), graph->graph(), &fused_node); if (map_node.op() == kMapDatasetOp) { fused_node.set_op(kMapDatasetOp); fused_node.add_input(parent_map_node.input(0)); } else if (map_node.op() == kParallelMapDatasetOp) { fused_node.set_op(kParallelMapDatasetOp); fused_node.add_input(parent_map_node.input(0)); fused_node.add_input(parent_map_node.input(1)); } auto attr = parent_map_node.attr().at("f"); *attr.mutable_func()->mutable_name() = fused_function.signature().name(); (*fused_node.mutable_attr())["f"] = std::move(attr); graph_utils::CopyAttribute("Targuments", parent_map_node, &fused_node); graph_utils::CopyShapesAndTypesAttrs(map_node, &fused_node); auto value_or_false = [](const AttrValue* attr) { if (!attr) return false; return attr->b(); }; const auto* first_parallelism = gtl::FindOrNull(parent_map_node.attr(), "use_inter_op_parallelism"); const auto* second_parallelism = gtl::FindOrNull(map_node.attr(), "use_inter_op_parallelism"); (*fused_node.mutable_attr())["use_inter_op_parallelism"].set_b( value_or_false(first_parallelism) || value_or_false(second_parallelism)); const auto* first_cardinality = gtl::FindOrNull(parent_map_node.attr(), "preserve_cardinality"); const auto* second_cardinality = gtl::FindOrNull(map_node.attr(), "preserve_cardinality"); (*fused_node.mutable_attr())["preserve_cardinality"].set_b( value_or_false(first_cardinality) && value_or_false(second_cardinality)); graph_utils::MaybeSetFusedMetadata(parent_map_node, map_node, &fused_node); if (map_node.op() == kParallelMapDatasetOp) { graph_utils::CopyAttribute(kDeterministicAttr, map_node, &fused_node); } return fused_node; } } Status MapFusion::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { GraphDef sorted_old_graph = item.graph; TF_RETURN_IF_ERROR(TopologicalSort(&sorted_old_graph)); *output = sorted_old_graph; if (!autotune_) { VLOG(1) << "The optimization map_fusion is not applied if " "autotune is off."; return absl::OkStatus(); } MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition function_library(OpRegistry::Global(), item.graph.library()); auto get_map_node = [&graph](const NodeDef& node) -> const NodeDef* { if (node.op() == kMapDatasetOp && node.input_size() == 1) return &node; if (node.op() == kParallelMapDatasetOp) { if (node.input_size() != 2) return nullptr; if (!IsAutotuneNode(node.input(1), graph)) return nullptr; return &node; } return nullptr; }; auto make_fused_function = [&function_library, &output]( const NodeDef* parent_map_node, const NodeDef* map_node) -> FunctionDef* { const auto& parent_fun = parent_map_node->attr().at("f"); const FunctionDef* parent_func = function_library.Find(parent_fun.func().name()); const auto& fun = map_node->attr().at("f"); const FunctionDef* func = function_library.Find(fun.func().name()); if (!fusion_utils::CanCompose(parent_func->signature(), func->signature())) { VLOG(1) << "Can't fuse two maps because the output signature of the " "first map function does not match the input signature of the " "second function\n"; return nullptr; } return fusion_utils::FuseFunctions( *parent_func, *func, GetFusedName(*parent_func, *func), fusion_utils::ComposeSignature, fusion_utils::ComposeInput, fusion_utils::ComposeOutput, fusion_utils::MergeNodes, output->mutable_library()); }; for (const NodeDef& node : sorted_old_graph.node()) { const NodeDef* map_node = get_map_node(node); if (!map_node) continue; if (map_node->attr().find("use_unbounded_threadpool") != map_node->attr().end() && map_node->attr().at("use_unbounded_threadpool").b()) { continue; } const NodeDef* parent_map_node = get_map_node(*graph_utils::GetInputNode(*map_node, graph)); if (!parent_map_node) continue; if (parent_map_node->attr().find("use_unbounded_threadpool") != parent_map_node->attr().end() && parent_map_node->attr().at("use_unbounded_threadpool").b()) { continue; } if (parent_map_node->op() != map_node->op()) continue; if (map_node->op() == kParallelMapDatasetOp) { if (!SameDeterministicAttr(*parent_map_node, *map_node)) continue; } const auto* fused_function = make_fused_function(parent_map_node, map_node); if (fused_function == nullptr) continue; const auto* fused_maps_node = graph.AddNode( MakeFusedNode(*parent_map_node, *map_node, *fused_function, &graph)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(map_node->name(), fused_maps_node->name())); TF_RETURN_IF_ERROR(function_library.AddFunctionDef(*fused_function)); nodes_to_delete.insert(parent_map_node->name()); nodes_to_delete.insert(map_node->name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(MapFusion, "map_fusion"); } }
#include "tensorflow/core/grappler/optimizers/data/map_fusion.h" #include <functional> #include <memory> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace grappler { namespace { using graph_tests_utils::MakeMapNode; using graph_tests_utils::MakeParallelMapV2Node; constexpr char kConstOpName[] = "Const"; NodeDef CreateScalarConstNodeHelper( const std::string& node_name, DataType dtype, const std::function<void(TensorProto*)>& add_value) { NodeDef node; node.set_op(kConstOpName); node.set_name(node_name); (*node.mutable_attr())["dtype"].set_type(dtype); auto tensor = std::make_unique<tensorflow::TensorProto>(); auto tensor_shape = std::make_unique<tensorflow::TensorShapeProto>(); tensor->set_allocated_tensor_shape(tensor_shape.release()); tensor->set_dtype(dtype); add_value(tensor.get()); (*node.mutable_attr())["value"].set_allocated_tensor(tensor.release()); return node; } Status OptimizeWithMapFusion(const GrapplerItem& item, GraphDef* output, bool autotune) { MapFusion optimizer; RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } class AutotuneSetting : public ::testing::TestWithParam<bool> {}; TEST_P(AutotuneSetting, MapFusionTest) { const bool autotune = GetParam(); using test::function::NDef; GrapplerItem item; NodeDef num_parallel_calls_node = CreateScalarConstNodeHelper( "num_parallel_calls", DT_INT64, [](TensorProto* proto) { proto->add_int64_val(-1); }); item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), num_parallel_calls_node, MakeParallelMapV2Node("map1", "range", num_parallel_calls_node.name(), "XTimesTwo", "default", false), MakeParallelMapV2Node("map2", "map1", num_parallel_calls_node.name(), "XTimesTwo", "default", false)}, { test::function::XTimesTwo(), }); MapFusion optimizer; GraphDef output; TF_ASSERT_OK(OptimizeWithMapFusion(item, &output, autotune)); if (autotune) { EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map2", output)); } else { EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("map1", output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("map2", output)); } } INSTANTIATE_TEST_SUITE_P(Test, AutotuneSetting, ::testing::Values(false, true)); TEST(MapFusionTest, FuseTwoMapNodesIntoOne) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeMapNode("map1", "range"), MakeMapNode("map2", "map1")}, { test::function::XTimesTwo(), }); MapFusion optimizer; GraphDef output; TF_ASSERT_OK(OptimizeWithMapFusion(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapDataset", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map2", output)); } TEST(MapFusionTest, FuseThreeNodesIntoOne) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("filename", "Const", {}, {{"value", ""}, {"dtype", DT_STRING}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeMapNode("map1", "range"), MakeMapNode("map2", "map1"), MakeMapNode("map3", "map2"), NDef("cache", "CacheDataset", {"map3", "filename"}, {})}, { test::function::XTimesTwo(), }); MapFusion optimizer; GraphDef output; TF_ASSERT_OK(OptimizeWithMapFusion(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapDataset", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map2", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map3", output)); } TEST(MapFusionTest, FuseTwoParallelMapNodesIntoOne) { using test::function::NDef; GrapplerItem item; NodeDef num_parallel_calls_node = CreateScalarConstNodeHelper( "num_parallel_calls", DT_INT64, [](TensorProto* proto) { proto->add_int64_val(-1); }); item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), num_parallel_calls_node, MakeParallelMapV2Node("map1", "range", num_parallel_calls_node.name(), "XTimesTwo", "default", false), MakeParallelMapV2Node("map2", "map1", num_parallel_calls_node.name(), "XTimesTwo", "default", false)}, { test::function::XTimesTwo(), }); MapFusion optimizer; GraphDef output; TF_ASSERT_OK(OptimizeWithMapFusion(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("ParallelMapDatasetV2", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map2", output)); } TEST(MapFusionTest, NoChange_UnboundedThreadpoolParallelMap) { using test::function::NDef; GrapplerItem item; NodeDef num_parallel_calls_node = CreateScalarConstNodeHelper( "num_parallel_calls", DT_INT64, [](TensorProto* proto) { proto->add_int64_val(-1); }); item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), num_parallel_calls_node, MakeParallelMapV2Node("map1", "range", num_parallel_calls_node.name(), "XTimesTwo", "default", true), MakeParallelMapV2Node("map2", "map1", num_parallel_calls_node.name(), "XTimesTwo", "default", false)}, { test::function::XTimesTwo(), }); MapFusion optimizer; GraphDef output; TF_ASSERT_OK(OptimizeWithMapFusion(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("map1", output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("map2", output)); } TEST(MapFusionTest, FusedNodesAndFunctionsAreNamedAfterOldNodesAndFunctions) { using test::function::NDef; NodeDef num_parallel_calls_node = CreateScalarConstNodeHelper( "num_parallel_calls", DT_INT64, [](TensorProto* proto) { proto->add_int64_val(-1); }); auto graph = [&num_parallel_calls_node]( const std::string& parent_map_node_name, const std::string& map_node_name, const std::string& parent_function_name, const std::string& function_name) { FunctionDef parent_fn = test::function::XTimesTwo(); FunctionDef fn = test::function::XTimesTwo(); parent_fn.mutable_signature()->set_name(parent_function_name); fn.mutable_signature()->set_name(function_name); return test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), num_parallel_calls_node, MakeParallelMapV2Node(parent_map_node_name, "range", num_parallel_calls_node.name(), parent_function_name, "default", false), MakeParallelMapV2Node(map_node_name, parent_map_node_name, num_parallel_calls_node.name(), function_name, "default", false)}, {parent_fn, fn}); }; GrapplerItem item_1; item_1.graph = graph("map1", "map2", "fnA", "fnB"); GraphDef output_1; TF_ASSERT_OK(OptimizeWithMapFusion(item_1, &output_1, true)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName( "map_fusion_nodes/map1/map2", output_1)); EXPECT_TRUE(graph_utils::ContainsGraphFunctionWithName( "map_fusion_funcs/fnA/fnB", output_1.library())); GrapplerItem item_2; item_2.graph = graph("map3", "map4", "fnC", "fnD"); GraphDef output_2; TF_ASSERT_OK(OptimizeWithMapFusion(item_2, &output_2, true)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName( "map_fusion_nodes/map3/map4", output_2)); EXPECT_TRUE(graph_utils::ContainsGraphFunctionWithName( "map_fusion_funcs/fnC/fnD", output_2.library())); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/map_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/map_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4af027aa-e249-4c4b-8bc5-c238083c09b4
cpp
tensorflow/tensorflow
map_and_filter_fusion
tensorflow/core/grappler/optimizers/data/map_and_filter_fusion.cc
tensorflow/core/grappler/optimizers/data/map_and_filter_fusion_test.cc
#include "tensorflow/core/grappler/optimizers/data/map_and_filter_fusion.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/substitute.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/fusion_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/kernels/function_ops.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { NodeDef MakeFusedNode(const NodeDef& map_node, const NodeDef& filter_node, const FunctionDef& fused_function, MutableGraphView* graph) { NodeDef fused_node; graph_utils::SetUniqueGraphNodeName("fused_map", graph->graph(), &fused_node); fused_node.set_op(map_node.op()); for (int i = 0; i < map_node.input_size(); ++i) { fused_node.add_input(map_node.input(i)); } auto attr = map_node.attr().at("f"); attr.mutable_func()->set_name(fused_function.signature().name()); (*fused_node.mutable_attr())["f"] = std::move(attr); graph_utils::CopyAttribute("Targuments", map_node, &fused_node); graph_utils::CopyShapesAndTypesAttrs(map_node, &fused_node); for (auto key : {"use_inter_op_parallelism", "sloppy", "preserve_cardinality"}) { if (gtl::FindOrNull(map_node.attr(), key)) { graph_utils::CopyAttribute(key, map_node, &fused_node); } } graph_utils::MaybeSetFusedMetadata(map_node, filter_node, &fused_node); (*fused_node.mutable_attr())["output_types"] .mutable_list() ->mutable_type() ->Add(DT_BOOL); (*fused_node.mutable_attr())["output_shapes"] .mutable_list() ->mutable_shape() ->Add(); return fused_node; } NodeDef MakeFilterNode(const NodeDef& fused_map, const FunctionDef& fused_map_func, MutableGraphView* graph, FunctionDefLibrary* library) { NodeDef filter_node; graph_utils::SetUniqueGraphNodeName("FilterByLast", graph->graph(), &filter_node); filter_node.set_op("FilterDataset"); filter_node.add_input(fused_map.name()); graph_utils::CopyShapesAndTypesAttrs(fused_map, &filter_node); AddNodeAttr("Targuments", std::vector<DataType>({}), &filter_node); OpDef fused_sig = fused_map_func.signature(); FunctionDef* func = library->add_function(); OpDef* sig = func->mutable_signature(); sig->set_name("GetLast"); for (const auto& arg : fused_sig.output_arg()) { *(sig->add_input_arg()) = arg; } OpDef::ArgDef* arg = sig->add_output_arg(); arg->set_name("predicate_result"); arg->set_description("predicate result computed in the fused map"); arg->set_type(DT_BOOL); sig->set_description("returns the last argument"); (*func->mutable_ret())["predicate_result"] = strings::StrCat( fused_sig.output_arg(fused_sig.output_arg_size() - 1).name(), ":0"); (*filter_node.mutable_attr())["predicate"] = FunctionDefHelper::FunctionRef(func->signature().name()).proto; return filter_node; } NodeDef MakeMapNode(const NodeDef& updated_filter, const NodeDef& original_map, const FunctionDef& fused_map_func, MutableGraphView* graph, FunctionDefLibrary* library) { NodeDef map_node; graph_utils::SetUniqueGraphNodeName("DropLast", graph->graph(), &map_node); map_node.set_op("MapDataset"); map_node.add_input(updated_filter.name()); graph_utils::CopyShapesAndTypesAttrs(original_map, &map_node); AddNodeAttr("Targuments", std::vector<DataType>({}), &map_node); for (auto key : {"use_inter_op_parallelism", "preserve_cardinality"}) { if (gtl::FindOrNull(original_map.attr(), key)) { graph_utils::CopyAttribute(key, original_map, &map_node); } } OpDef fused_sig = fused_map_func.signature(); FunctionDef* func = library->add_function(); OpDef* sig = func->mutable_signature(); sig->set_name("DropLast"); for (const auto& o : fused_sig.output_arg()) { *(sig->add_input_arg()) = o; } for (int i = 0; i < fused_sig.output_arg_size() - 1; ++i) { auto arg_i = fused_sig.output_arg(i); *(sig->add_output_arg()) = arg_i; (*func->mutable_ret())[arg_i.name()] = strings::StrCat(arg_i.name(), ":0"); } sig->set_description("drops the last argument"); (*map_node.mutable_attr())["f"] = FunctionDefHelper::FunctionRef(func->signature().name()).proto; return map_node; } } Status MapAndFilterFusion::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { GraphDef sorted_old_graph = item.graph; TF_RETURN_IF_ERROR(TopologicalSort(&sorted_old_graph)); *output = sorted_old_graph; MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition function_library(OpRegistry::Global(), item.graph.library()); auto get_map_node = [](const NodeDef& node) -> const NodeDef* { if ((node.op() == "MapDataset" && node.input_size() == 1) || (node.op() == "ParallelMapDataset" && node.input_size() == 2)) { return &node; } return nullptr; }; auto get_filter_node = [](const NodeDef& node) -> const NodeDef* { if (node.op() == "FilterDataset" && node.input_size() == 1) return &node; return nullptr; }; auto make_fused_function = [&function_library, &output]( const NodeDef* map_node, const NodeDef* filter_node) -> FunctionDef* { const auto& parent_fun = map_node->attr().at("f"); const FunctionDef* map_func = function_library.Find(parent_fun.func().name()); const auto& fun = filter_node->attr().at("predicate"); const FunctionDef* filter_func = function_library.Find(fun.func().name()); if (!fusion_utils::CanCompose(map_func->signature(), filter_func->signature())) { VLOG(1) << "Can't fuse map and filter because the output signature of " "the map function does not match the input signature of the " "filter function\n"; return nullptr; } return fusion_utils::FuseFunctions( *map_func, *filter_func, "fused_map_and_filter_function", fusion_utils::CombineSignature, fusion_utils::ComposeInput, fusion_utils::CombineOutput, fusion_utils::MergeNodes, output->mutable_library()); }; for (const NodeDef& node : sorted_old_graph.node()) { const NodeDef* filter_node = get_filter_node(node); if (!filter_node) continue; const NodeDef* map_node = get_map_node(*graph_utils::GetInputNode(*filter_node, graph)); if (!map_node) continue; const auto* fused_function = make_fused_function(map_node, filter_node); if (fused_function == nullptr) continue; const auto* fused_maps = graph.AddNode( MakeFusedNode(*map_node, *filter_node, *fused_function, &graph)); const auto* new_filter_node = graph.AddNode(MakeFilterNode( *fused_maps, *fused_function, &graph, output->mutable_library())); const auto* new_map_node = graph.AddNode(MakeMapNode(*new_filter_node, *map_node, *fused_function, &graph, output->mutable_library())); TF_RETURN_IF_ERROR( graph.UpdateFanouts(filter_node->name(), new_map_node->name())); TF_RETURN_IF_ERROR(function_library.AddFunctionDef(*fused_function)); nodes_to_delete.insert(map_node->name()); nodes_to_delete.insert(filter_node->name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(MapAndFilterFusion, "map_and_filter_fusion"); } }
#include "tensorflow/core/grappler/optimizers/data/map_and_filter_fusion.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using graph_tests_utils::MakeFilterNode; using graph_tests_utils::MakeMapNode; using graph_tests_utils::MakeParallelMapNode; TEST(MapAndFilterFusionTest, FuseMapAndFilter) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeMapNode("map", "range"), MakeFilterNode("filter", "map")}, { test::function::XTimesTwo(), test::function::IsZero(), }); MapAndFilterFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter", output)); EXPECT_EQ(graph_utils::FindAllGraphNodesWithOp("MapDataset", output).size(), 2); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("FilterDataset", output)); } TEST(MapAndFilterFusionTest, FuseParallelMapAndFilter) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 3}, {"dtype", "DT_INT32"}}), MakeParallelMapNode("map", "range", "num_parallel_calls", "XTimesTwo", false), MakeFilterNode("filter", "map")}, { test::function::XTimesTwo(), test::function::IsZero(), }); MapAndFilterFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter", output)); ASSERT_TRUE(graph_utils::ContainsNodeWithOp("ParallelMapDataset", output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("MapDataset", output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("FilterDataset", output)); auto& map_node = output.node( graph_utils::FindGraphNodeWithOp("ParallelMapDataset", output)); EXPECT_FALSE(map_node.attr().at("sloppy").b()) << map_node.DebugString(); EXPECT_EQ(map_node.input_size(), 2); } TEST(MapAndFilterFusionTest, FuseMapAndFilterWithExtraChild) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("filename", "Const", {}, {{"value", ""}, {"dtype", DT_STRING}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeMapNode("map", "range"), MakeFilterNode("filter", "map"), NDef("cache", "CacheDataset", {"filter", "filename"}, {})}, { test::function::XTimesTwo(), test::function::IsZero(), }); MapAndFilterFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter", output)); EXPECT_EQ(graph_utils::FindAllGraphNodesWithOp("MapDataset", output).size(), 2); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("FilterDataset", output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("CacheDataset", output)); } TEST(MapAndFilterFusionTest, FuseParallelMapAndFilterWithExtraChild) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("filename", "Const", {}, {{"value", ""}, {"dtype", DT_STRING}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("num_parallel_calls", "Const", {}, {{"value", 3}, {"dtype", "DT_INT32"}}), MakeParallelMapNode("map", "range", "num_parallel_calls", "XTimesTwo", true), MakeFilterNode("filter", "map"), NDef("cache", "CacheDataset", {"filter", "filename"}, {})}, { test::function::XTimesTwo(), test::function::IsZero(), }); MapAndFilterFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("map", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter", output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("FilterDataset", output)); ASSERT_TRUE(graph_utils::ContainsNodeWithOp("ParallelMapDataset", output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("CacheDataset", output)); auto& map_node = output.node( graph_utils::FindGraphNodeWithOp("ParallelMapDataset", output)); EXPECT_TRUE(map_node.attr().at("sloppy").b()) << map_node.DebugString(); EXPECT_EQ(map_node.input_size(), 2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/map_and_filter_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/map_and_filter_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
09110132-03f3-4e02-8c26-76dc3137b184
cpp
tensorflow/tensorflow
shuffle_and_repeat_fusion
tensorflow/core/grappler/optimizers/data/shuffle_and_repeat_fusion.cc
tensorflow/core/grappler/optimizers/data/shuffle_and_repeat_fusion_test.cc
#include "tensorflow/core/grappler/optimizers/data/shuffle_and_repeat_fusion.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/strcat.h" namespace tensorflow { namespace grappler { namespace { constexpr char kShuffleDataset[] = "ShuffleDataset"; constexpr char kShuffleDatasetV2[] = "ShuffleDatasetV2"; constexpr char kShuffleDatasetV3[] = "ShuffleDatasetV3"; constexpr char kRepeatDataset[] = "RepeatDataset"; constexpr char kShuffleAndRepeatDataset[] = "ShuffleAndRepeatDataset"; constexpr char kShuffleAndRepeatDatasetV2[] = "ShuffleAndRepeatDatasetV2"; constexpr char kReshuffleEachIteration[] = "reshuffle_each_iteration"; Status FuseShuffleV1AndRepeat(const NodeDef& shuffle_node, const NodeDef& repeat_node, MutableGraphView* graph, GraphDef* output, NodeDef* fused_node) { fused_node->set_op(kShuffleAndRepeatDataset); graph_utils::SetUniqueGraphNodeName(kShuffleAndRepeatDataset, output, fused_node); fused_node->add_input(shuffle_node.input(0)); fused_node->add_input(shuffle_node.input(1)); fused_node->add_input(shuffle_node.input(2)); fused_node->add_input(shuffle_node.input(3)); fused_node->add_input(repeat_node.input(1)); graph_utils::CopyShapesAndTypesAttrs(shuffle_node, fused_node); graph_utils::CopyAttribute(kReshuffleEachIteration, shuffle_node, fused_node); graph_utils::MaybeSetFusedMetadata(shuffle_node, repeat_node, fused_node); return absl::OkStatus(); } Status FuseShuffleV2AndRepeat(const NodeDef& shuffle_node, const NodeDef& repeat_node, MutableGraphView* graph, GraphDef* output, NodeDef* fused_node) { fused_node->set_op(kShuffleAndRepeatDatasetV2); graph_utils::SetUniqueGraphNodeName(kShuffleAndRepeatDatasetV2, output, fused_node); NodeDef zero_node = *graph_utils::AddScalarConstNode<int64_t>(0, graph); fused_node->add_input(shuffle_node.input(0)); fused_node->add_input(shuffle_node.input(1)); fused_node->add_input(zero_node.name()); fused_node->add_input(zero_node.name()); fused_node->add_input(repeat_node.input(1)); fused_node->add_input(shuffle_node.input(2)); graph_utils::CopyShapesAndTypesAttrs(shuffle_node, fused_node); (*fused_node->mutable_attr())[kReshuffleEachIteration].set_b(true); graph_utils::MaybeSetFusedMetadata(shuffle_node, repeat_node, fused_node); return absl::OkStatus(); } Status FuseShuffleV3AndRepeat(const NodeDef& shuffle_node, const NodeDef& repeat_node, MutableGraphView* graph, GraphDef* output, NodeDef* fused_node) { fused_node->set_op(kShuffleAndRepeatDatasetV2); graph_utils::SetUniqueGraphNodeName(kShuffleAndRepeatDataset, output, fused_node); fused_node->add_input(shuffle_node.input(0)); fused_node->add_input(shuffle_node.input(1)); fused_node->add_input(shuffle_node.input(2)); fused_node->add_input(shuffle_node.input(3)); fused_node->add_input(repeat_node.input(1)); fused_node->add_input(shuffle_node.input(4)); graph_utils::CopyShapesAndTypesAttrs(shuffle_node, fused_node); graph_utils::CopyAttribute(kReshuffleEachIteration, shuffle_node, fused_node); graph_utils::MaybeSetFusedMetadata(shuffle_node, repeat_node, fused_node); return absl::OkStatus(); } } Status ShuffleAndRepeatFusion::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; for (const NodeDef& repeat_node : item.graph.node()) { if (repeat_node.op() != kRepeatDataset) { continue; } const NodeDef& shuffle_node = *graph_utils::GetInputNode(repeat_node, graph); NodeDef fused_node; if (shuffle_node.op() == kShuffleDataset) { TF_RETURN_IF_ERROR(FuseShuffleV1AndRepeat(shuffle_node, repeat_node, &graph, output, &fused_node)); } else if (shuffle_node.op() == kShuffleDatasetV2) { TF_RETURN_IF_ERROR(FuseShuffleV2AndRepeat(shuffle_node, repeat_node, &graph, output, &fused_node)); } else if (shuffle_node.op() == kShuffleDatasetV3) { TF_RETURN_IF_ERROR(FuseShuffleV3AndRepeat(shuffle_node, repeat_node, &graph, output, &fused_node)); } else { continue; } NodeDef& shuffle_and_repeat_node = *graph.AddNode(std::move(fused_node)); TF_RETURN_IF_ERROR(graph.UpdateFanouts(repeat_node.name(), shuffle_and_repeat_node.name())); TF_RETURN_IF_ERROR(graph.UpdateFanouts(shuffle_node.name(), shuffle_and_repeat_node.name())); const auto nodes_to_preserve = item.NodesToPreserve(); if (nodes_to_preserve.find(shuffle_node.name()) == nodes_to_preserve.end() && nodes_to_preserve.find(repeat_node.name()) == nodes_to_preserve.end()) { nodes_to_delete.insert(shuffle_node.name()); nodes_to_delete.insert(repeat_node.name()); } stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(ShuffleAndRepeatFusion, "shuffle_and_repeat_fusion"); } }
#include "tensorflow/core/grappler/optimizers/data/shuffle_and_repeat_fusion.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { constexpr char kOutputShapes[] = "output_shapes"; constexpr char kOutputTypes[] = "output_types"; constexpr char kReshuffleEachIteration[] = "reshuffle_each_iteration"; TEST(ShuffleAndRepeatFusionTest, FuseShuffleV1AndRepeat) { GrapplerItem item; MutableGraphView graph(&item.graph); std::vector<std::pair<string, AttrValue>> common_attrs(2); AttrValue shapes_attr; SetAttrValue(kOutputShapes, &shapes_attr); common_attrs[0] = std::make_pair(kOutputShapes, shapes_attr); AttrValue types_attr; SetAttrValue(kOutputTypes, &types_attr); common_attrs[1] = std::make_pair(kOutputTypes, types_attr); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, common_attrs, &graph); NodeDef *buffer_size_node = graph_utils::AddScalarConstNode<int64_t>(128, &graph); NodeDef *seed_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); NodeDef *seed2_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); std::vector<string> shuffle_inputs(4); shuffle_inputs[0] = range_node->name(); shuffle_inputs[1] = buffer_size_node->name(); shuffle_inputs[2] = seed_node->name(); shuffle_inputs[3] = seed2_node->name(); NodeDef *shuffle_node = graph_utils::AddNode( "", "ShuffleDataset", shuffle_inputs, common_attrs, &graph); (*shuffle_node->mutable_attr())[kReshuffleEachIteration].set_b(true); NodeDef *count_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); std::vector<string> repeat_inputs(2); repeat_inputs[0] = shuffle_node->name(); repeat_inputs[1] = count_node->name(); NodeDef *repeat_node = graph_utils::AddNode( "", "RepeatDataset", repeat_inputs, common_attrs, &graph); ShuffleAndRepeatFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(shuffle_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(repeat_node->name(), output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("ShuffleAndRepeatDataset", output)); NodeDef shuffle_and_repeat_node = output.node( graph_utils::FindGraphNodeWithOp("ShuffleAndRepeatDataset", output)); EXPECT_EQ(shuffle_and_repeat_node.input_size(), 5); EXPECT_EQ(shuffle_and_repeat_node.input(0), shuffle_node->input(0)); EXPECT_EQ(shuffle_and_repeat_node.input(1), shuffle_node->input(1)); EXPECT_EQ(shuffle_and_repeat_node.input(2), shuffle_node->input(2)); EXPECT_EQ(shuffle_and_repeat_node.input(3), shuffle_node->input(3)); EXPECT_EQ(shuffle_and_repeat_node.input(4), repeat_node->input(1)); for (const auto &attr : {kOutputShapes, kOutputTypes, kReshuffleEachIteration}) { EXPECT_TRUE(AreAttrValuesEqual(shuffle_and_repeat_node.attr().at(attr), shuffle_node->attr().at(attr))); } } TEST(ShuffleAndRepeatFusionTest, FuseShuffleV2AndRepeat) { GrapplerItem item; MutableGraphView graph(&item.graph); std::vector<std::pair<string, AttrValue>> common_attrs(2); AttrValue shapes_attr; SetAttrValue(kOutputShapes, &shapes_attr); common_attrs[0] = std::make_pair(kOutputShapes, shapes_attr); AttrValue types_attr; SetAttrValue(kOutputTypes, &types_attr); common_attrs[1] = std::make_pair(kOutputTypes, types_attr); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, common_attrs, &graph); NodeDef *buffer_size_node = graph_utils::AddScalarConstNode<int64_t>(128, &graph); NodeDef *seed_generator_node = graph_utils::AddScalarConstNode<StringPiece>("dummy_resource", &graph); std::vector<string> shuffle_inputs(3); shuffle_inputs[0] = range_node->name(); shuffle_inputs[1] = buffer_size_node->name(); shuffle_inputs[2] = seed_generator_node->name(); NodeDef *shuffle_node = graph_utils::AddNode( "", "ShuffleDatasetV2", shuffle_inputs, common_attrs, &graph); NodeDef *count_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); std::vector<string> repeat_inputs(2); repeat_inputs[0] = shuffle_node->name(); repeat_inputs[1] = count_node->name(); NodeDef *repeat_node = graph_utils::AddNode( "", "RepeatDataset", repeat_inputs, common_attrs, &graph); ShuffleAndRepeatFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(shuffle_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(repeat_node->name(), output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("ShuffleAndRepeatDatasetV2", output)); NodeDef shuffle_and_repeat_node = output.node( graph_utils::FindGraphNodeWithOp("ShuffleAndRepeatDatasetV2", output)); EXPECT_EQ(shuffle_and_repeat_node.input_size(), 6); EXPECT_EQ(shuffle_and_repeat_node.input(0), shuffle_node->input(0)); EXPECT_EQ(shuffle_and_repeat_node.input(1), shuffle_node->input(1)); EXPECT_EQ(shuffle_and_repeat_node.input(4), repeat_node->input(1)); EXPECT_EQ(shuffle_and_repeat_node.input(5), shuffle_node->input(2)); for (const auto &attr : {kOutputShapes, kOutputTypes}) { EXPECT_TRUE(AreAttrValuesEqual(shuffle_and_repeat_node.attr().at(attr), shuffle_node->attr().at(attr))); } EXPECT_TRUE(shuffle_and_repeat_node.attr().at(kReshuffleEachIteration).b()); } TEST(ShuffleAndRepeatFusionTest, FuseShuffleV3AndRepeat) { GrapplerItem item; MutableGraphView graph(&item.graph); std::vector<std::pair<string, AttrValue>> common_attrs(2); AttrValue shapes_attr; SetAttrValue(kOutputShapes, &shapes_attr); common_attrs[0] = std::make_pair(kOutputShapes, shapes_attr); AttrValue types_attr; SetAttrValue(kOutputTypes, &types_attr); common_attrs[1] = std::make_pair(kOutputTypes, types_attr); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, common_attrs, &graph); NodeDef *buffer_size_node = graph_utils::AddScalarConstNode<int64_t>(128, &graph); NodeDef *seed_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); NodeDef *seed2_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); NodeDef *seed_generator_node = graph_utils::AddScalarConstNode<StringPiece>("dummy_resource", &graph); std::vector<string> shuffle_inputs(5); shuffle_inputs[0] = range_node->name(); shuffle_inputs[1] = buffer_size_node->name(); shuffle_inputs[2] = seed_node->name(); shuffle_inputs[3] = seed2_node->name(); shuffle_inputs[4] = seed_generator_node->name(); NodeDef *shuffle_node = graph_utils::AddNode( "", "ShuffleDatasetV3", shuffle_inputs, common_attrs, &graph); (*shuffle_node->mutable_attr())[kReshuffleEachIteration].set_b(true); NodeDef *count_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); std::vector<string> repeat_inputs(2); repeat_inputs[0] = shuffle_node->name(); repeat_inputs[1] = count_node->name(); NodeDef *repeat_node = graph_utils::AddNode( "", "RepeatDataset", repeat_inputs, common_attrs, &graph); ShuffleAndRepeatFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(shuffle_node->name(), output)); EXPECT_FALSE( graph_utils::ContainsGraphNodeWithName(repeat_node->name(), output)); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("ShuffleAndRepeatDatasetV2", output)); NodeDef shuffle_and_repeat_node = output.node( graph_utils::FindGraphNodeWithOp("ShuffleAndRepeatDatasetV2", output)); EXPECT_EQ(shuffle_and_repeat_node.input_size(), 6); EXPECT_EQ(shuffle_and_repeat_node.input(0), shuffle_node->input(0)); EXPECT_EQ(shuffle_and_repeat_node.input(1), shuffle_node->input(1)); EXPECT_EQ(shuffle_and_repeat_node.input(2), shuffle_node->input(2)); EXPECT_EQ(shuffle_and_repeat_node.input(3), shuffle_node->input(3)); EXPECT_EQ(shuffle_and_repeat_node.input(4), repeat_node->input(1)); EXPECT_EQ(shuffle_and_repeat_node.input(5), shuffle_node->input(4)); for (const auto &attr : {kOutputShapes, kOutputTypes, kReshuffleEachIteration}) { EXPECT_TRUE(AreAttrValuesEqual(shuffle_and_repeat_node.attr().at(attr), shuffle_node->attr().at(attr))); } } TEST(ShuffleAndRepeatFusionTest, NoChange) { GrapplerItem item; MutableGraphView graph(&item.graph); std::vector<std::pair<string, AttrValue>> common_attrs(2); AttrValue shapes_attr; SetAttrValue(kOutputShapes, &shapes_attr); common_attrs[0] = std::make_pair(kOutputShapes, shapes_attr); AttrValue types_attr; SetAttrValue(kOutputTypes, &types_attr); common_attrs[1] = std::make_pair(kOutputTypes, types_attr); NodeDef *start_node = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_node = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_node = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_node->name(); range_inputs[1] = stop_node->name(); range_inputs[2] = step_node->name(); NodeDef *range_node = graph_utils::AddNode("", "RangeDataset", range_inputs, common_attrs, &graph); NodeDef *count_node = graph_utils::AddScalarConstNode<int64_t>(-1, &graph); std::vector<string> repeat_inputs(2); repeat_inputs[0] = range_node->name(); repeat_inputs[1] = count_node->name(); graph_utils::AddNode("", "RepeatDataset", repeat_inputs, common_attrs, &graph); ShuffleAndRepeatFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::Compare(*graph.graph(), output)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/shuffle_and_repeat_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/shuffle_and_repeat_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b67db28c-e40b-4668-92e4-3270dc801d78
cpp
tensorflow/tensorflow
graph_transform_wrapper
tensorflow/core/transforms/graph_transform_wrapper.cc
tensorflow/core/transforms/graph_transform_wrapper_test.cc
#include "tensorflow/core/transforms/graph_transform_wrapper.h" #include <initializer_list> #include "absl/memory/memory.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Pass/PassManager.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/ir/importexport/graphdef_export.h" #include "tensorflow/core/ir/importexport/graphdef_import.h" #include "tensorflow/core/platform/statusor.h" namespace mlir { namespace tfg { tensorflow::Status RunTransformOnGraph( tensorflow::Graph* graph, const std::initializer_list< llvm::function_ref<std::unique_ptr<mlir::Pass>()>>& passes, const tensorflow::GraphDebugInfo& debug_info) { MLIRContext context(MLIRContext::Threading::DISABLED); TF_ASSIGN_OR_RETURN(OwningOpRef<ModuleOp> module, ImportGraphAndFunctionsToMlir(&context, debug_info, *graph, graph->flib_def())); PassManager pm((*module)->getName(), mlir::PassManager::Nesting::Explicit); for (auto& pass : passes) pm.addPass(pass()); mlir::StatusScopedDiagnosticHandler error_handler(&context); if (failed(pm.run(*module))) return error_handler.Combine( tensorflow::errors::InvalidArgument("MLIR Graph Optimizer failed: ")); tensorflow::GraphDef graphdef; TF_RETURN_WITH_CONTEXT_IF_ERROR(ConvertToGraphDef(*module, &graphdef), "when exporting MLIR module to GraphDef"); graph->Clear(); graph->mutable_flib_def()->Clear(); tensorflow::GraphConstructorOptions opts; return ConvertGraphDefToGraph(opts, graphdef, graph); } } }
#include "tensorflow/core/transforms/graph_transform_wrapper.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_def_builder_util.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace { struct TestPass : public PassWrapper<TestPass, OperationPass<ModuleOp>> { MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPass) TestPass() = default; StringRef getArgument() const final { return "test"; } void runOnOperation() override { Operation* del; getOperation()->walk([&](Operation* op) { if (op->getName().getStringRef() != "tfg.TestInput") return; del = *op->getResult(0).getUsers().begin(); }); del->erase(); } }; } } REGISTER_OP("TestInput").Output("a: float").Output("b: float"); REGISTER_OP("TestRelu").Input("i: float").Output("o: float"); REGISTER_OP("NoOp"); TEST(GraphTransformWrapper, ReplacedGraph) { tensorflow::Graph graph(tensorflow::OpRegistry::Global()); { tensorflow::GraphDefBuilder b( tensorflow::GraphDefBuilder::kFailImmediately); tensorflow::Node* input = tensorflow::ops::SourceOp("TestInput", b.opts().WithName("in")); tensorflow::ops::UnaryOp("TestRelu", tensorflow::ops::NodeOut(input, 0), b.opts().WithName("n1")); tensorflow::ops::UnaryOp("TestRelu", tensorflow::ops::NodeOut(input, 1), b.opts().WithName("n2")); TF_EXPECT_OK(tensorflow::GraphDefBuilderToGraph(b, &graph)); } mlir::MLIRContext context; context.getOrLoadDialect<mlir::tfg::TFGraphDialect>(); auto create_pass = [&]() { return std::make_unique<mlir::TestPass>(); }; TF_QCHECK_OK(mlir::tfg::RunTransformOnGraph(&graph, {create_pass})); EXPECT_EQ(4, graph.num_nodes()); EXPECT_TRUE( absl::StrContains(graph.ToGraphDefDebug().ShortDebugString(), "\"n2\"")); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/transforms/graph_transform_wrapper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/transforms/graph_transform_wrapper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
99d6ed46-f40c-442e-b916-0ade406e716d
cpp
tensorflow/tensorflow
eval_utils
tensorflow/core/transforms/utils/eval_utils.cc
tensorflow/core/transforms/utils/eval_utils_test.cc
#define EIGEN_USE_THREADS #include "tensorflow/core/transforms/utils/eval_utils.h" #include <cassert> #include <utility> #include "llvm/ADT/STLExtras.h" #include "mlir/IR/Builders.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/control_flow.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/ir/importexport/convert_tensor.h" #include "tensorflow/core/ir/importexport/graphdef_export.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/threadpool.h" #include "tensorflow/core/public/version.h" namespace mlir { namespace tfg { namespace util { static constexpr int kThreads = 2; SimpleDevice::SimpleDevice() : DeviceBase(tensorflow::Env::Default()) { eigen_worker_ = std::make_unique<tensorflow::thread::ThreadPool>( tensorflow::Env::Default(), "eval_utils", kThreads); eigen_worker_threads_.num_threads = kThreads; eigen_worker_threads_.workers = eigen_worker_.get(); eigen_device_ = std::make_unique<Eigen::ThreadPoolDevice>( eigen_worker_threads_.workers->AsEigenThreadPool(), eigen_worker_threads_.num_threads); set_tensorflow_cpu_worker_threads(&eigen_worker_threads_); set_eigen_cpu_device(eigen_device_.get()); } SimpleDevice::~SimpleDevice() {} tensorflow::Allocator *SimpleDevice::GetAllocator( tensorflow::AllocatorAttributes attr) { return tensorflow::cpu_allocator(); } tensorflow::Status SimpleDevice::MakeTensorFromProto( const tensorflow::TensorProto &tensor_proto, const tensorflow::AllocatorAttributes alloc_attrs, tensorflow::Tensor *tensor) { tensorflow::Tensor parsed(tensor_proto.dtype()); if (!parsed.FromProto(tensorflow::cpu_allocator(), tensor_proto)) { return tensorflow::errors::InvalidArgument( "Cannot parse tensor from tensor_proto."); } *tensor = std::move(parsed); return absl::OkStatus(); } LogicalResult EvaluateOperation(tensorflow::DeviceBase *cpu_device, tensorflow::ResourceMgr *resource_mgr, TFOp op, ArrayRef<ElementsAttr> operands, SmallVectorImpl<TypedAttr> &results) { assert(cpu_device && "cpu device can't be null"); assert(resource_mgr && "ResourceMgr can't be null"); if (llvm::any_of(operands, [](Attribute operand) { return !operand; })) { VLOG(3) << "cannot be evaluated with null operands"; return failure(); } tensorflow::NodeDef node_def; if (!ConvertToNodeDef(&*op, &node_def, op.getDialect(), [&](Value value) { return GetValueName(value, op.getDialect()); }).ok()) { VLOG(3) << "failed to convert operation to NodeDef"; return failure(); } absl::InlinedVector<tensorflow::Tensor, 4> input_tensors(operands.size()); absl::InlinedVector<tensorflow::TensorValue, 4> input_tensor_values( operands.size()); for (auto it : llvm::zip(operands, input_tensors, input_tensor_values)) { auto &[operand, input_tensor, input_tensor_value] = it; if (!ConvertToTensor(operand, &input_tensor).ok()) return failure(); input_tensor_value.tensor = &input_tensor; } tensorflow::Status status; std::unique_ptr<tensorflow::OpKernel> op_kernel = tensorflow::CreateOpKernel( tensorflow::DEVICE_CPU, cpu_device, cpu_device->GetAllocator({}), node_def, TF_GRAPH_DEF_VERSION, &status); if (!status.ok()) { VLOG(3) << status.message(); return failure(); } tensorflow::OpKernelContext::Params params; params.device = cpu_device; params.frame_iter = tensorflow::FrameAndIter(0, 0); params.inputs = input_tensor_values; params.op_kernel = op_kernel.get(); params.resource_manager = resource_mgr; absl::InlinedVector<tensorflow::AllocatorAttributes, 4> output_attrs( op_kernel->num_outputs()); for (auto &attr : output_attrs) attr.set_on_host(true); params.output_attr_array = output_attrs.data(); tensorflow::OpKernelContext op_context(&params); op_kernel->Compute(&op_context); if (!op_context.status().ok()) { VLOG(3) << op_context.status().message(); return failure(); } Builder builder(op->getContext()); for (int i = 0; i < op_kernel->num_outputs(); ++i) { if (op_context.mutable_output(i) == nullptr) { results.push_back(nullptr); continue; } absl::StatusOr<ElementsAttr> attr_or = ConvertTensor(*(op_context.mutable_output(i)), builder); if (!attr_or.status().ok()) { VLOG(3) << attr_or.status().message(); return failure(); } results.push_back(attr_or.value()); } return success(); } } } }
#include "tensorflow/core/transforms/utils/eval_utils.h" #include <memory> #include "llvm/ADT/SmallVector.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Operation.h" #include "mlir/Parser/Parser.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/ir/ops.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace tfg { TEST(EvalUtilsTest, InvalidInputs) { const char *const code = R"mlir( tfg.func @test() -> (tensor<2x2xi32>) { %Const_0, %ctl_0 = Const name("c0") {dtype = i1, value = dense<1> : tensor<i1>} : () -> (tensor<i1>) %Const_1, %ctl_2 = Const name("c1") {dtype = i32, value = dense<2> : tensor<2x2xi32>} : () -> (tensor<2x2xi32>) %Switch:2, %ctl_3 = Switch(%Const_1, %Const_0) name("switch") {T = i1} : (tensor<2x2xi32>, tensor<i1>) -> (tensor<*xi32>, tensor<*xi32>) return (%Const_1) : tensor<2x2xi32> } )mlir"; MLIRContext context; auto tfg_dialect = context.getOrLoadDialect<tfg::TFGraphDialect>(); OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); GraphFuncOp func = module->lookupSymbol<GraphFuncOp>("test"); ASSERT_TRUE(func); auto iter = func.getBody().begin()->begin(); Operation *const_0 = &*iter++; ASSERT_TRUE(tfg_dialect->IsConstant(const_0)); Operation *const_1 = &*iter++; ASSERT_TRUE(tfg_dialect->IsConstant(const_1)); Operation *switch_op = &*iter++; auto cpu_device = std::make_unique<util::SimpleDevice>(); auto resource_mgr = std::make_unique<tensorflow::ResourceMgr>(); llvm::SmallVector<TypedAttr> result; EXPECT_TRUE(failed( util::EvaluateOperation(cpu_device.get(), resource_mgr.get(), switch_op, {const_0->getAttrOfType<ElementsAttr>("value"), const_1->getAttrOfType<ElementsAttr>("value")}, result))); } TEST(EvalUtilsTest, EvaluateOperation) { const char *const code = R"mlir( tfg.func @test() -> (tensor<2x2xi32>) { %Const_0, %ctl_0 = Const name("c0") {dtype = i32, value = dense<1> : tensor<2x2xi32>} : () -> (tensor<2x2xi32>) %Const_1, %ctl_2 = Const name("c1") {dtype = i32, value = dense<2> : tensor<2x2xi32>} : () -> (tensor<2x2xi32>) %Add, %ctl_7 = Add(%Const_0, %Const_1) name("add") {T = i32} : (tensor<2x2xi32>, tensor<2x2xi32>) -> (tensor<2x2xi32>) return (%Const_1) : tensor<2x2xi32> } )mlir"; MLIRContext context; context.getOrLoadDialect<tfg::TFGraphDialect>(); OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); GraphFuncOp func = module->lookupSymbol<GraphFuncOp>("test"); ASSERT_TRUE(func); auto iter = func.getBody().begin()->begin(); Operation *const_0 = &*iter++; Operation *const_1 = &*iter++; Operation *add = &*iter++; auto cpu_device = std::make_unique<util::SimpleDevice>(); auto resource_mgr = std::make_unique<tensorflow::ResourceMgr>(); llvm::SmallVector<TypedAttr> result; ASSERT_TRUE(succeeded(util::EvaluateOperation( cpu_device.get(), resource_mgr.get(), const_0, {const_0->getAttrOfType<ElementsAttr>("value")}, result))); ASSERT_EQ(result.size(), 1); ASSERT_TRUE(mlir::isa<ElementsAttr>(result[0])); EXPECT_EQ(mlir::cast<ElementsAttr>(result[0]).getValues<int>()[0], 1); result.clear(); ASSERT_TRUE(succeeded(util::EvaluateOperation( cpu_device.get(), resource_mgr.get(), const_1, {const_1->getAttrOfType<ElementsAttr>("value")}, result))); ASSERT_EQ(result.size(), 1); ASSERT_TRUE(mlir::isa<ElementsAttr>(result[0])); EXPECT_EQ(mlir::cast<ElementsAttr>(result[0]).getValues<int>()[0], 2); result.clear(); ASSERT_TRUE(succeeded( util::EvaluateOperation(cpu_device.get(), resource_mgr.get(), add, {const_0->getAttrOfType<ElementsAttr>("value"), const_1->getAttrOfType<ElementsAttr>("value")}, result))); ASSERT_EQ(result.size(), 1); ASSERT_TRUE(mlir::isa<ElementsAttr>(result[0])); EXPECT_EQ(mlir::cast<ElementsAttr>(result[0]).getValues<int>()[0], 3); } TEST(EvalUtilsTest, OutputInvalidation) { const char *const code = R"mlir( tfg.func @test() -> (tensor<2x2xi32>) { %Const_0, %ctl_0 = Const name("c0") {dtype = i1, value = dense<1> : tensor<i1>} : () -> (tensor<i1>) %Const_1, %ctl_2 = Const name("c1") {dtype = i32, value = dense<2> : tensor<2x2xi32>} : () -> (tensor<2x2xi32>) %Switch:2, %ctl_3 = Switch(%Const_1, %Const_0) name("switch") {T = i1} : (tensor<2x2xi32>, tensor<i1>) -> (tensor<*xi32>, tensor<*xi32>) %Identity_0, %ctl_4 = Identity(%Switch#0) name("id1") {T = i32} : (tensor<*xi32>) -> (tensor<*xi32>) %Identity_1, %ctl_5 = Identity(%Switch#1) name("id2") {T = i32} : (tensor<*xi32>) -> (tensor<*xi32>) return (%Const_1) : tensor<2x2xi32> } )mlir"; MLIRContext context; auto tfg_dialect = context.getOrLoadDialect<tfg::TFGraphDialect>(); OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); GraphFuncOp func = module->lookupSymbol<GraphFuncOp>("test"); ASSERT_TRUE(func); auto iter = func.getBody().begin()->begin(); Operation *const_0 = &*iter++; ASSERT_TRUE(tfg_dialect->IsConstant(const_0)); Operation *const_1 = &*iter++; ASSERT_TRUE(tfg_dialect->IsConstant(const_1)); Operation *switch_op = &*iter++; auto cpu_device = std::make_unique<util::SimpleDevice>(); auto resource_mgr = std::make_unique<tensorflow::ResourceMgr>(); llvm::SmallVector<TypedAttr> result; ASSERT_TRUE(succeeded( util::EvaluateOperation(cpu_device.get(), resource_mgr.get(), switch_op, {const_1->getAttrOfType<ElementsAttr>("value"), const_0->getAttrOfType<ElementsAttr>("value")}, result))); ASSERT_EQ(result.size(), 2); EXPECT_EQ(result[0], nullptr); EXPECT_EQ(mlir::cast<ElementsAttr>(result[1]).getValues<int>()[0], 2); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/transforms/utils/eval_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/transforms/utils/eval_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d40086fa-d2c1-4a7d-9d48-7b3d7cb0db27
cpp
tensorflow/tensorflow
ordered_code
tensorflow/core/lib/strings/ordered_code.cc
tensorflow/core/lib/strings/ordered_code_test.cc
#include "tensorflow/core/lib/strings/ordered_code.h" #include <assert.h> #include <stddef.h> #include "xla/tsl/lib/core/bits.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/stringpiece.h" namespace tensorflow { namespace strings { static const char kEscape1 = '\000'; static const char kNullCharacter = '\xff'; static const char kSeparator = '\001'; static const char kEscape2 = '\xff'; static const char kFFCharacter = '\000'; static const char kEscape1_Separator[2] = {kEscape1, kSeparator}; inline static void AppendBytes(string* dest, const char* src, size_t len) { dest->append(src, len); } inline bool IsSpecialByte(char c) { return (static_cast<unsigned char>(c + 1)) < 2; } inline const char* SkipToNextSpecialByte(const char* start, const char* limit) { DCHECK_EQ(kEscape1, 0); DCHECK_EQ(kEscape2 & 0xffu, 255u); const char* p = start; while (p < limit && !IsSpecialByte(*p)) { p++; } return p; } const char* OrderedCode::TEST_SkipToNextSpecialByte(const char* start, const char* limit) { return SkipToNextSpecialByte(start, limit); } inline static void EncodeStringFragment(string* dest, StringPiece s) { const char* p = s.data(); const char* limit = p + s.size(); const char* copy_start = p; while (true) { p = SkipToNextSpecialByte(p, limit); if (p >= limit) break; char c = *(p++); DCHECK(IsSpecialByte(c)); if (c == kEscape1) { AppendBytes(dest, copy_start, p - copy_start - 1); dest->push_back(kEscape1); dest->push_back(kNullCharacter); copy_start = p; } else { assert(c == kEscape2); AppendBytes(dest, copy_start, p - copy_start - 1); dest->push_back(kEscape2); dest->push_back(kFFCharacter); copy_start = p; } } if (p > copy_start) { AppendBytes(dest, copy_start, p - copy_start); } } void OrderedCode::WriteString(string* dest, StringPiece s) { EncodeStringFragment(dest, s); AppendBytes(dest, kEscape1_Separator, 2); } void OrderedCode::WriteNumIncreasing(string* dest, uint64 val) { unsigned char buf[9]; int len = 0; while (val > 0) { len++; buf[9 - len] = (val & 0xff); val >>= 8; } buf[9 - len - 1] = len; len++; AppendBytes(dest, reinterpret_cast<const char*>(buf + 9 - len), len); } inline static bool ReadStringInternal(StringPiece* src, string* result) { const char* start = src->data(); const char* string_limit = src->data() + src->size(); const char* limit = string_limit - 1; const char* copy_start = start; while (true) { start = SkipToNextSpecialByte(start, limit); if (start >= limit) break; const char c = *(start++); DCHECK(IsSpecialByte(c)); if (c == kEscape1) { if (result) { AppendBytes(result, copy_start, start - copy_start - 1); } const char next = *(start++); if (next == kSeparator) { src->remove_prefix(start - src->data()); return true; } else if (next == kNullCharacter) { if (result) { *result += '\0'; } } else { return false; } copy_start = start; } else { assert(c == kEscape2); if (result) { AppendBytes(result, copy_start, start - copy_start - 1); } const char next = *(start++); if (next == kFFCharacter) { if (result) { *result += '\xff'; } } else { return false; } copy_start = start; } } return false; } bool OrderedCode::ReadString(StringPiece* src, string* result) { return ReadStringInternal(src, result); } bool OrderedCode::ReadNumIncreasing(StringPiece* src, uint64* result) { if (src->empty()) { return false; } const size_t len = static_cast<unsigned char>((*src)[0]); DCHECK(0 == len || src->size() == 1 || (*src)[1] != '\0') << "invalid encoding"; if (len + 1 > src->size() || len > 8) { return false; } if (result) { uint64 tmp = 0; for (size_t i = 0; i < len; i++) { tmp <<= 8; tmp |= static_cast<unsigned char>((*src)[1 + i]); } *result = tmp; } src->remove_prefix(len + 1); return true; } void OrderedCode::TEST_Corrupt(string* str, int k) { int seen_seps = 0; for (size_t i = 0; i + 1 < str->size(); i++) { if ((*str)[i] == kEscape1 && (*str)[i + 1] == kSeparator) { seen_seps++; if (seen_seps == k) { (*str)[i + 1] = kSeparator + 1; return; } } } } static const int kMaxSigned64Length = 10; static const char kLengthToHeaderBits[1 + kMaxSigned64Length][2] = { {0, 0}, {'\x80', 0}, {'\xc0', 0}, {'\xe0', 0}, {'\xf0', 0}, {'\xf8', 0}, {'\xfc', 0}, {'\xfe', 0}, {'\xff', 0}, {'\xff', '\x80'}, {'\xff', '\xc0'}}; static const uint64 kLengthToMask[1 + kMaxSigned64Length] = { 0ULL, 0x80ULL, 0xc000ULL, 0xe00000ULL, 0xf0000000ULL, 0xf800000000ULL, 0xfc0000000000ULL, 0xfe000000000000ULL, 0xff00000000000000ULL, 0x8000000000000000ULL, 0ULL}; static const int8 kBitsToLength[1 + 63] = { 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10}; static inline int SignedEncodingLength(int64_t n) { return kBitsToLength[tsl::Log2Floor64(n < 0 ? ~n : n) + 1]; } static void StoreBigEndian64(char* dst, uint64 v) { for (int i = 0; i < 8; i++) { dst[i] = (v >> (56 - 8 * i)) & 0xff; } } static uint64 LoadBigEndian64(const char* src) { uint64 result = 0; for (int i = 0; i < 8; i++) { unsigned char c = static_cast<unsigned char>(src[i]); result |= static_cast<uint64>(c) << (56 - 8 * i); } return result; } void OrderedCode::WriteSignedNumIncreasing(string* dest, int64_t val) { const uint64 x = val < 0 ? ~val : val; if (x < 64) { *dest += kLengthToHeaderBits[1][0] ^ val; return; } const char sign_byte = val < 0 ? '\xff' : '\0'; char buf[10] = { sign_byte, sign_byte, }; StoreBigEndian64(buf + 2, val); static_assert(sizeof(buf) == kMaxSigned64Length, "max length size mismatch"); const int len = SignedEncodingLength(x); DCHECK_GE(len, 2); char* const begin = buf + sizeof(buf) - len; begin[0] ^= kLengthToHeaderBits[len][0]; begin[1] ^= kLengthToHeaderBits[len][1]; dest->append(begin, len); } bool OrderedCode::ReadSignedNumIncreasing(StringPiece* src, int64_t* result) { if (src->empty()) return false; const uint64 xor_mask = (!((*src)[0] & 0x80)) ? ~0ULL : 0ULL; const unsigned char first_byte = (*src)[0] ^ (xor_mask & 0xff); int len; uint64 x; if (first_byte != 0xff) { len = 7 - tsl::Log2Floor64(first_byte ^ 0xff); if (src->size() < static_cast<size_t>(len)) return false; x = xor_mask; for (int i = 0; i < len; ++i) x = (x << 8) | static_cast<unsigned char>((*src)[i]); } else { len = 8; if (src->size() < static_cast<size_t>(len)) return false; const unsigned char second_byte = (*src)[1] ^ (xor_mask & 0xff); if (second_byte >= 0x80) { if (second_byte < 0xc0) { len = 9; } else { const unsigned char third_byte = (*src)[2] ^ (xor_mask & 0xff); if (second_byte == 0xc0 && third_byte < 0x80) { len = 10; } else { return false; } } if (src->size() < static_cast<size_t>(len)) return false; } x = LoadBigEndian64(src->data() + len - 8); } x ^= kLengthToMask[len]; DCHECK_EQ(len, SignedEncodingLength(x)) << "invalid encoding"; if (result) *result = x; src->remove_prefix(len); return true; } } }
#include "tensorflow/core/lib/strings/ordered_code.h" #include <float.h> #include <stddef.h> #include <limits> #include <vector> #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace strings { namespace { string RandomString(random::SimplePhilox* rnd, size_t len) { string x; for (size_t i = 0; i < len; i++) { x += rnd->Uniform(256); } return x; } template <typename T> void OCWriteIncreasing(string* dest, const T& val); template <typename T> bool OCReadIncreasing(StringPiece* src, T* result); template <> void OCWriteIncreasing<string>(string* dest, const string& val) { OrderedCode::WriteString(dest, val); } template <> bool OCReadIncreasing<string>(StringPiece* src, string* result) { return OrderedCode::ReadString(src, result); } template <> void OCWriteIncreasing<uint64>(string* dest, const uint64& val) { OrderedCode::WriteNumIncreasing(dest, val); } template <> bool OCReadIncreasing<uint64>(StringPiece* src, uint64* result) { return OrderedCode::ReadNumIncreasing(src, result); } template <> void OCWriteIncreasing<int64_t>(string* dest, const int64_t& val) { OrderedCode::WriteSignedNumIncreasing(dest, val); } template <> bool OCReadIncreasing<int64_t>(StringPiece* src, int64_t* result) { return OrderedCode::ReadSignedNumIncreasing(src, result); } template <typename T> string OCWrite(T val) { string result; OCWriteIncreasing<T>(&result, val); return result; } template <typename T> void OCWriteToString(string* result, T val) { OCWriteIncreasing<T>(result, val); } template <typename T> bool OCRead(StringPiece* s, T* val) { return OCReadIncreasing<T>(s, val); } template <typename T> T TestRead(const string& a) { for (int i = 0; i < a.size() - 1; ++i) { StringPiece s(a.data(), i); CHECK(!OCRead<T>(&s, nullptr)); CHECK_EQ(s, a.substr(0, i)); } StringPiece s(a); T v; CHECK(OCRead<T>(&s, &v)); CHECK(s.empty()); return v; } template <typename T> void TestWriteRead(T expected) { EXPECT_EQ(expected, TestRead<T>(OCWrite<T>(expected))); } template <typename T, typename U> void TestWriteAppends(T first, U second) { string encoded; OCWriteToString<T>(&encoded, first); string encoded_first_only = encoded; OCWriteToString<U>(&encoded, second); EXPECT_NE(encoded, encoded_first_only); EXPECT_TRUE(absl::StartsWith(encoded, encoded_first_only)); } template <typename T> void TestNumbers(T multiplier) { for (T x = std::numeric_limits<T>().max(); x != 0; x /= 2) { TestWriteRead(multiplier * (x - 1)); TestWriteRead(multiplier * x); if (x != std::numeric_limits<T>::max()) { TestWriteRead(multiplier * (x + 1)); } else if (multiplier < 0 && multiplier == -1) { TestWriteRead(-x - 1); } } random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); for (int bits = 1; bits <= std::numeric_limits<T>().digits; ++bits) { const uint64 mask = (~0ULL) >> (64 - bits); for (int i = 0; i < 1000; i++) { T x = rnd.Rand64() & mask; TestWriteRead(multiplier * x); T y = rnd.Rand64() & mask; TestWriteAppends(multiplier * x, multiplier * y); } } } bool CompareStrings(const string& a, const string& b) { return (a < b); } template <typename T> void TestNumberOrdering() { string laststr = OCWrite<T>(std::numeric_limits<T>().min()); for (T num = std::numeric_limits<T>().min() / 2; num != 0; num /= 2) { string strminus1 = OCWrite<T>(num - 1); string str = OCWrite<T>(num); string strplus1 = OCWrite<T>(num + 1); CHECK(CompareStrings(strminus1, str)); CHECK(CompareStrings(str, strplus1)); CHECK(CompareStrings(laststr, str)); laststr = str; } laststr = OCWrite<T>(0); T num = 1; while (num < std::numeric_limits<T>().max() / 2) { num *= 2; string strminus1 = OCWrite<T>(num - 1); string str = OCWrite<T>(num); string strplus1 = OCWrite<T>(num + 1); CHECK(CompareStrings(strminus1, str)); CHECK(CompareStrings(str, strplus1)); CHECK(CompareStrings(laststr, str)); laststr = str; } } size_t FindSpecial(const string& x) { const char* p = x.data(); const char* limit = p + x.size(); const char* result = OrderedCode::TEST_SkipToNextSpecialByte(p, limit); return result - p; } template <size_t N> string ByteSequence(const char (&arr)[N]) { return string(arr, N - 1); } TEST(OrderedCode, SkipToNextSpecialByte) { for (size_t len = 0; len < 256; len++) { random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); string x; while (x.size() < len) { char c = 1 + rnd.Uniform(254); ASSERT_NE(c, 0); ASSERT_NE(c, 255); x += c; } EXPECT_EQ(FindSpecial(x), x.size()); for (size_t special_pos = 0; special_pos < len; special_pos++) { for (size_t special_test = 0; special_test < 2; special_test++) { const char special_byte = (special_test == 0) ? 0 : 255; string y = x; y[special_pos] = special_byte; EXPECT_EQ(FindSpecial(y), special_pos); if (special_pos < 16) { for (size_t rest = special_pos + 1; rest < len; rest++) { if (rnd.OneIn(3)) { y[rest] = rnd.OneIn(2) ? 0 : 255; EXPECT_EQ(FindSpecial(y), special_pos); } } } } } } } TEST(OrderedCode, ExhaustiveFindSpecial) { char buf[16]; char* limit = buf + sizeof(buf); int count = 0; for (int start_offset = 0; start_offset <= 5; start_offset += 5) { for (size_t i = 0; i < sizeof(buf); i++) { buf[i] = 'a'; } for (int b0 = 0; b0 < 256; b0++) { for (int b1 = 0; b1 < 256; b1++) { for (int b2 = 0; b2 < 256; b2++) { buf[start_offset + 0] = b0; buf[start_offset + 1] = b1; buf[start_offset + 2] = b2; char* expected; if (b0 == 0 || b0 == 255) { expected = &buf[start_offset]; } else if (b1 == 0 || b1 == 255) { expected = &buf[start_offset + 1]; } else if (b2 == 0 || b2 == 255) { expected = &buf[start_offset + 2]; } else { expected = limit; } count++; EXPECT_EQ(expected, OrderedCode::TEST_SkipToNextSpecialByte(buf, limit)); } } } } EXPECT_EQ(count, 256 * 256 * 256 * 2); } TEST(Uint64, EncodeDecode) { TestNumbers<uint64>(1); } TEST(Uint64, Ordering) { TestNumberOrdering<uint64>(); } TEST(Int64, EncodeDecode) { TestNumbers<int64_t>(1); TestNumbers<int64_t>(-1); } TEST(Int64, Ordering) { TestNumberOrdering<int64_t>(); } inline string StrNot(const string& s) { string result; for (string::const_iterator it = s.begin(); it != s.end(); ++it) result.push_back(~*it); return result; } template <typename T> void TestInvalidEncoding(const string& s) { StringPiece p(s); EXPECT_FALSE(OCRead<T>(&p, nullptr)); EXPECT_EQ(s, p); } TEST(OrderedCodeInvalidEncodingsTest, Overflow) { const string k2xx64U = "\x09\x01" + string(8, 0); TestInvalidEncoding<uint64>(k2xx64U); const string k2xx63 = "\xff\xc0\x80" + string(7, 0); TestInvalidEncoding<int64_t>(k2xx63); TestInvalidEncoding<int64_t>(StrNot(k2xx63)); } TEST(OrderedCodeInvalidEncodingsDeathTest, NonCanonical) { random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); for (int n = 2; n <= 9; ++n) { string non_minimal = string(1, n - 1) + string(1, 0) + RandomString(&rnd, n - 2); EXPECT_EQ(n, non_minimal.length()); EXPECT_NE(OCWrite<uint64>(0), non_minimal); #ifndef NDEBUG StringPiece s(non_minimal); EXPECT_DEATH(OrderedCode::ReadNumIncreasing(&s, nullptr), "invalid encoding"); #else TestRead<uint64>(non_minimal); #endif } for (int n = 2; n <= 10; ++n) { string header = string(n / 8, 0xff) + string(1, 0xff << (8 - (n % 8))); string non_minimal = header + string(1, rnd.Uniform(256) & ~*header.rbegin()) + RandomString(&rnd, n - header.length() - 1); EXPECT_EQ(n, non_minimal.length()); EXPECT_NE(OCWrite<int64_t>(0), non_minimal); #ifndef NDEBUG StringPiece s(non_minimal); EXPECT_DEATH(OrderedCode::ReadSignedNumIncreasing(&s, nullptr), "invalid encoding") << n; #else TestRead<int64_t>(non_minimal); #endif } } uint64 NextBits(random::SimplePhilox* rnd, int bits) { return (bits != 0) ? (rnd->Rand64() % (1LL << (bits - 1))) + (1LL << (bits - 1)) : 0; } template <typename T> void BM_WriteNum(::testing::benchmark::State& state, T multiplier) { constexpr int kValues = 64; T values[kValues]; random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); for (int i = 0; i < kValues; i++) { values[i] = NextBits(&rnd, state.max_iterations % 64) * multiplier; } string result; int index = 0; for (auto i : state) { result.clear(); OCWriteToString<T>(&result, values[index % kValues]); index++; } } template <typename T> void BM_ReadNum(::testing::benchmark::State& state, T multiplier) { random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); constexpr int kValues = 64; string values[kValues]; for (int i = 0; i < kValues; i++) { T val = NextBits(&rnd, i % 64) * multiplier; values[i] = OCWrite<T>(val); } uint32 index = 0; for (auto i : state) { T val; StringPiece s = values[index++ % kValues]; OCRead<T>(&s, &val); } } #define BENCHMARK_NUM(name, T, multiplier) \ void BM_Write##name(::testing::benchmark::State& state) { \ BM_WriteNum<T>(state, multiplier); \ } \ BENCHMARK(BM_Write##name); \ void BM_Read##name(::testing::benchmark::State& state) { \ BM_ReadNum<T>(state, multiplier); \ } \ BENCHMARK(BM_Read##name) BENCHMARK_NUM(NumIncreasing, uint64, 1); BENCHMARK_NUM(SignedNum, int64_t, 1); BENCHMARK_NUM(SignedNumNegative, int64_t, -1); #undef BENCHMARK_NUM TEST(String, EncodeDecode) { random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); for (int len = 0; len < 256; len++) { const string a = RandomString(&rnd, len); TestWriteRead(a); for (int len2 = 0; len2 < 64; len2++) { const string b = RandomString(&rnd, len2); TestWriteAppends(a, b); string out; OCWriteToString<string>(&out, a); OCWriteToString<string>(&out, b); string a2, b2, dummy; StringPiece s = out; StringPiece s2 = out; CHECK(OCRead<string>(&s, &a2)); CHECK(OCRead<string>(&s2, nullptr)); CHECK_EQ(s, s2); CHECK(OCRead<string>(&s, &b2)); CHECK(OCRead<string>(&s2, nullptr)); CHECK_EQ(s, s2); CHECK(!OCRead<string>(&s, &dummy)); CHECK(!OCRead<string>(&s2, nullptr)); CHECK_EQ(a, a2); CHECK_EQ(b, b2); CHECK(s.empty()); CHECK(s2.empty()); } } } #define STATIC_STR(str) StringPiece((str), sizeof(str) - 1) string EncodeStringIncreasing(StringPiece value) { string encoded; OrderedCode::WriteString(&encoded, value); return encoded; } TEST(String, Increasing) { ASSERT_EQ(EncodeStringIncreasing(STATIC_STR("")), EncodeStringIncreasing(STATIC_STR(""))); ASSERT_LT(EncodeStringIncreasing(STATIC_STR("")), EncodeStringIncreasing(STATIC_STR("\x00"))); ASSERT_EQ(EncodeStringIncreasing(STATIC_STR("\x00")), EncodeStringIncreasing(STATIC_STR("\x00"))); ASSERT_LT(EncodeStringIncreasing(STATIC_STR("\x00")), EncodeStringIncreasing(STATIC_STR("\x01"))); ASSERT_LT(EncodeStringIncreasing(STATIC_STR("\x01")), EncodeStringIncreasing(STATIC_STR("a"))); ASSERT_EQ(EncodeStringIncreasing(STATIC_STR("a")), EncodeStringIncreasing(STATIC_STR("a"))); ASSERT_LT(EncodeStringIncreasing(STATIC_STR("a")), EncodeStringIncreasing(STATIC_STR("aa"))); ASSERT_LT(EncodeStringIncreasing(STATIC_STR("aa")), EncodeStringIncreasing(STATIC_STR("\xff"))); ASSERT_LT(EncodeStringIncreasing(STATIC_STR("\xff")), EncodeStringIncreasing(STATIC_STR("\xff\x00"))); ASSERT_LT(EncodeStringIncreasing(STATIC_STR("\xff\x00")), EncodeStringIncreasing(STATIC_STR("\xff\x01"))); } TEST(EncodingIsExpected, String) { std::vector<std::pair<string, string>> data = { {"", string("\x00\x01", 2)}, {"foo", string("foo\x00\x01", 5)}, {"hello", string("hello\x00\x01", 7)}, {string("\x00\x01\xff", 3), string("\x00\xff\x01\xff\x00\x00\x01", 7)}, }; for (const auto& t : data) { string result; OrderedCode::WriteString(&result, t.first); EXPECT_EQ(t.second, result); StringPiece in = result; string decoded; EXPECT_TRUE(OrderedCode::ReadString(&in, &decoded)); EXPECT_EQ(t.first, decoded); EXPECT_EQ("", in); } } TEST(EncodingIsExpected, Unsigned) { std::vector<std::pair<uint64, string>> data = { {0x0ull, ByteSequence("\000")}, {0x1ull, ByteSequence("\001\001")}, {0x2ull, ByteSequence("\001\002")}, {0x1ull, ByteSequence("\001\001")}, {0x2ull, ByteSequence("\001\002")}, {0x3ull, ByteSequence("\001\003")}, {0x3ull, ByteSequence("\001\003")}, {0x4ull, ByteSequence("\001\004")}, {0x5ull, ByteSequence("\001\005")}, {0x7ull, ByteSequence("\001\007")}, {0x8ull, ByteSequence("\001\010")}, {0x9ull, ByteSequence("\001\t")}, {0xfull, ByteSequence("\001\017")}, {0x10ull, ByteSequence("\001\020")}, {0x11ull, ByteSequence("\001\021")}, {0x1full, ByteSequence("\001\037")}, {0x20ull, ByteSequence("\001 ")}, {0x21ull, ByteSequence("\001!")}, {0x3full, ByteSequence("\001?")}, {0x40ull, ByteSequence("\001@")}, {0x41ull, ByteSequence("\001A")}, {0x7full, ByteSequence("\001\177")}, {0x80ull, ByteSequence("\001\200")}, {0x81ull, ByteSequence("\001\201")}, {0xffull, ByteSequence("\001\377")}, {0x100ull, ByteSequence("\002\001\000")}, {0x101ull, ByteSequence("\002\001\001")}, {0x1ffull, ByteSequence("\002\001\377")}, {0x200ull, ByteSequence("\002\002\000")}, {0x201ull, ByteSequence("\002\002\001")}, {0x3ffull, ByteSequence("\002\003\377")}, {0x400ull, ByteSequence("\002\004\000")}, {0x401ull, ByteSequence("\002\004\001")}, {0x7ffull, ByteSequence("\002\007\377")}, {0x800ull, ByteSequence("\002\010\000")}, {0x801ull, ByteSequence("\002\010\001")}, {0xfffull, ByteSequence("\002\017\377")}, {0x1000ull, ByteSequence("\002\020\000")}, {0x1001ull, ByteSequence("\002\020\001")}, {0x1fffull, ByteSequence("\002\037\377")}, {0x2000ull, ByteSequence("\002 \000")}, {0x2001ull, ByteSequence("\002 \001")}, {0x3fffull, ByteSequence("\002?\377")}, {0x4000ull, ByteSequence("\002@\000")}, {0x4001ull, ByteSequence("\002@\001")}, {0x7fffull, ByteSequence("\002\177\377")}, {0x8000ull, ByteSequence("\002\200\000")}, {0x8001ull, ByteSequence("\002\200\001")}, {0xffffull, ByteSequence("\002\377\377")}, {0x10000ull, ByteSequence("\003\001\000\000")}, {0x10001ull, ByteSequence("\003\001\000\001")}, {0x1ffffull, ByteSequence("\003\001\377\377")}, {0x20000ull, ByteSequence("\003\002\000\000")}, {0x20001ull, ByteSequence("\003\002\000\001")}, {0x3ffffull, ByteSequence("\003\003\377\377")}, {0x40000ull, ByteSequence("\003\004\000\000")}, {0x40001ull, ByteSequence("\003\004\000\001")}, {0x7ffffull, ByteSequence("\003\007\377\377")}, {0x80000ull, ByteSequence("\003\010\000\000")}, {0x80001ull, ByteSequence("\003\010\000\001")}, {0xfffffull, ByteSequence("\003\017\377\377")}, {0x100000ull, ByteSequence("\003\020\000\000")}, {0x100001ull, ByteSequence("\003\020\000\001")}, {0x1fffffull, ByteSequence("\003\037\377\377")}, {0x200000ull, ByteSequence("\003 \000\000")}, {0x200001ull, ByteSequence("\003 \000\001")}, {0x3fffffull, ByteSequence("\003?\377\377")}, {0x400000ull, ByteSequence("\003@\000\000")}, {0x400001ull, ByteSequence("\003@\000\001")}, {0x7fffffull, ByteSequence("\003\177\377\377")}, {0x800000ull, ByteSequence("\003\200\000\000")}, {0x800001ull, ByteSequence("\003\200\000\001")}, {0xffffffull, ByteSequence("\003\377\377\377")}, {0x1000000ull, ByteSequence("\004\001\000\000\000")}, {0x1000001ull, ByteSequence("\004\001\000\000\001")}, {0x1ffffffull, ByteSequence("\004\001\377\377\377")}, {0x2000000ull, ByteSequence("\004\002\000\000\000")}, {0x2000001ull, ByteSequence("\004\002\000\000\001")}, {0x3ffffffull, ByteSequence("\004\003\377\377\377")}, {0x4000000ull, ByteSequence("\004\004\000\000\000")}, {0x4000001ull, ByteSequence("\004\004\000\000\001")}, {0x7ffffffull, ByteSequence("\004\007\377\377\377")}, {0x8000000ull, ByteSequence("\004\010\000\000\000")}, {0x8000001ull, ByteSequence("\004\010\000\000\001")}, {0xfffffffull, ByteSequence("\004\017\377\377\377")}, {0x10000000ull, ByteSequence("\004\020\000\000\000")}, {0x10000001ull, ByteSequence("\004\020\000\000\001")}, {0x1fffffffull, ByteSequence("\004\037\377\377\377")}, {0x20000000ull, ByteSequence("\004 \000\000\000")}, {0x20000001ull, ByteSequence("\004 \000\000\001")}, {0x3fffffffull, ByteSequence("\004?\377\377\377")}, {0x40000000ull, ByteSequence("\004@\000\000\000")}, {0x40000001ull, ByteSequence("\004@\000\000\001")}, {0x7fffffffull, ByteSequence("\004\177\377\377\377")}, {0x80000000ull, ByteSequence("\004\200\000\000\000")}, {0x80000001ull, ByteSequence("\004\200\000\000\001")}, {0xffffffffull, ByteSequence("\004\377\377\377\377")}, {0x100000000ull, ByteSequence("\005\001\000\000\000\000")}, {0x100000001ull, ByteSequence("\005\001\000\000\000\001")}, {0x1ffffffffull, ByteSequence("\005\001\377\377\377\377")}, {0x200000000ull, ByteSequence("\005\002\000\000\000\000")}, {0x200000001ull, ByteSequence("\005\002\000\000\000\001")}, {0x3ffffffffull, ByteSequence("\005\003\377\377\377\377")}, {0x400000000ull, ByteSequence("\005\004\000\000\000\000")}, {0x400000001ull, ByteSequence("\005\004\000\000\000\001")}, {0x7ffffffffull, ByteSequence("\005\007\377\377\377\377")}, {0x800000000ull, ByteSequence("\005\010\000\000\000\000")}, {0x800000001ull, ByteSequence("\005\010\000\000\000\001")}, {0xfffffffffull, ByteSequence("\005\017\377\377\377\377")}, {0x1000000000ull, ByteSequence("\005\020\000\000\000\000")}, {0x1000000001ull, ByteSequence("\005\020\000\000\000\001")}, {0x1fffffffffull, ByteSequence("\005\037\377\377\377\377")}, {0x2000000000ull, ByteSequence("\005 \000\000\000\000")}, {0x2000000001ull, ByteSequence("\005 \000\000\000\001")}, {0x3fffffffffull, ByteSequence("\005?\377\377\377\377")}, {0x4000000000ull, ByteSequence("\005@\000\000\000\000")}, {0x4000000001ull, ByteSequence("\005@\000\000\000\001")}, {0x7fffffffffull, ByteSequence("\005\177\377\377\377\377")}, {0x8000000000ull, ByteSequence("\005\200\000\000\000\000")}, {0x8000000001ull, ByteSequence("\005\200\000\000\000\001")}, {0xffffffffffull, ByteSequence("\005\377\377\377\377\377")}, {0x10000000000ull, ByteSequence("\006\001\000\000\000\000\000")}, {0x10000000001ull, ByteSequence("\006\001\000\000\000\000\001")}, {0x1ffffffffffull, ByteSequence("\006\001\377\377\377\377\377")}, {0x20000000000ull, ByteSequence("\006\002\000\000\000\000\000")}, {0x20000000001ull, ByteSequence("\006\002\000\000\000\000\001")}, {0x3ffffffffffull, ByteSequence("\006\003\377\377\377\377\377")}, {0x40000000000ull, ByteSequence("\006\004\000\000\000\000\000")}, {0x40000000001ull, ByteSequence("\006\004\000\000\000\000\001")}, {0x7ffffffffffull, ByteSequence("\006\007\377\377\377\377\377")}, {0x80000000000ull, ByteSequence("\006\010\000\000\000\000\000")}, {0x80000000001ull, ByteSequence("\006\010\000\000\000\000\001")}, {0xfffffffffffull, ByteSequence("\006\017\377\377\377\377\377")}, {0x100000000000ull, ByteSequence("\006\020\000\000\000\000\000")}, {0x100000000001ull, ByteSequence("\006\020\000\000\000\000\001")}, {0x1fffffffffffull, ByteSequence("\006\037\377\377\377\377\377")}, {0x200000000000ull, ByteSequence("\006 \000\000\000\000\000")}, {0x200000000001ull, ByteSequence("\006 \000\000\000\000\001")}, {0x3fffffffffffull, ByteSequence("\006?\377\377\377\377\377")}, {0x400000000000ull, ByteSequence("\006@\000\000\000\000\000")}, {0x400000000001ull, ByteSequence("\006@\000\000\000\000\001")}, {0x7fffffffffffull, ByteSequence("\006\177\377\377\377\377\377")}, {0x800000000000ull, ByteSequence("\006\200\000\000\000\000\000")}, {0x800000000001ull, ByteSequence("\006\200\000\000\000\000\001")}, {0xffffffffffffull, ByteSequence("\006\377\377\377\377\377\377")}, {0x1000000000000ull, ByteSequence("\007\001\000\000\000\000\000\000")}, {0x1000000000001ull, ByteSequence("\007\001\000\000\000\000\000\001")}, {0x1ffffffffffffull, ByteSequence("\007\001\377\377\377\377\377\377")}, {0x2000000000000ull, ByteSequence("\007\002\000\000\000\000\000\000")}, {0x2000000000001ull, ByteSequence("\007\002\000\000\000\000\000\001")}, {0x3ffffffffffffull, ByteSequence("\007\003\377\377\377\377\377\377")}, {0x4000000000000ull, ByteSequence("\007\004\000\000\000\000\000\000")}, {0x4000000000001ull, ByteSequence("\007\004\000\000\000\000\000\001")}, {0x7ffffffffffffull, ByteSequence("\007\007\377\377\377\377\377\377")}, {0x8000000000000ull, ByteSequence("\007\010\000\000\000\000\000\000")}, {0x8000000000001ull, ByteSequence("\007\010\000\000\000\000\000\001")}, {0xfffffffffffffull, ByteSequence("\007\017\377\377\377\377\377\377")}, {0x10000000000000ull, ByteSequence("\007\020\000\000\000\000\000\000")}, {0x10000000000001ull, ByteSequence("\007\020\000\000\000\000\000\001")}, {0x1fffffffffffffull, ByteSequence("\007\037\377\377\377\377\377\377")}, {0x20000000000000ull, ByteSequence("\007 \000\000\000\000\000\000")}, {0x20000000000001ull, ByteSequence("\007 \000\000\000\000\000\001")}, {0x3fffffffffffffull, ByteSequence("\007?\377\377\377\377\377\377")}, {0x40000000000000ull, ByteSequence("\007@\000\000\000\000\000\000")}, {0x40000000000001ull, ByteSequence("\007@\000\000\000\000\000\001")}, {0x7fffffffffffffull, ByteSequence("\007\177\377\377\377\377\377\377")}, {0x80000000000000ull, ByteSequence("\007\200\000\000\000\000\000\000")}, {0x80000000000001ull, ByteSequence("\007\200\000\000\000\000\000\001")}, {0xffffffffffffffull, ByteSequence("\007\377\377\377\377\377\377\377")}, {0x100000000000000ull, ByteSequence("\010\001\000\000\000\000\000\000\000")}, {0x100000000000001ull, ByteSequence("\010\001\000\000\000\000\000\000\001")}, {0x1ffffffffffffffull, ByteSequence("\010\001\377\377\377\377\377\377\377")}, {0x200000000000000ull, ByteSequence("\010\002\000\000\000\000\000\000\000")}, {0x200000000000001ull, ByteSequence("\010\002\000\000\000\000\000\000\001")}, {0x3ffffffffffffffull, ByteSequence("\010\003\377\377\377\377\377\377\377")}, {0x400000000000000ull, ByteSequence("\010\004\000\000\000\000\000\000\000")}, {0x400000000000001ull, ByteSequence("\010\004\000\000\000\000\000\000\001")}, {0x7ffffffffffffffull, ByteSequence("\010\007\377\377\377\377\377\377\377")}, {0x800000000000000ull, ByteSequence("\010\010\000\000\000\000\000\000\000")}, {0x800000000000001ull, ByteSequence("\010\010\000\000\000\000\000\000\001")}, {0xfffffffffffffffull, ByteSequence("\010\017\377\377\377\377\377\377\377")}, {0x1000000000000000ull, ByteSequence("\010\020\000\000\000\000\000\000\000")}, {0x1000000000000001ull, ByteSequence("\010\020\000\000\000\000\000\000\001")}, {0x1fffffffffffffffull, ByteSequence("\010\037\377\377\377\377\377\377\377")}, {0x2000000000000000ull, ByteSequence("\010 \000\000\000\000\000\000\000")}, {0x2000000000000001ull, ByteSequence("\010 \000\000\000\000\000\000\001")}, {0x3fffffffffffffffull, ByteSequence("\010?\377\377\377\377\377\377\377")}, {0x4000000000000000ull, ByteSequence("\010@\000\000\000\000\000\000\000")}, {0x4000000000000001ull, ByteSequence("\010@\000\000\000\000\000\000\001")}, {0x7fffffffffffffffull, ByteSequence("\010\177\377\377\377\377\377\377\377")}, {0x8000000000000000ull, ByteSequence("\010\200\000\000\000\000\000\000\000")}, {0x8000000000000001ull, ByteSequence("\010\200\000\000\000\000\000\000\001")}, }; for (const auto& t : data) { uint64 num = t.first; string result; OrderedCode::WriteNumIncreasing(&result, num); EXPECT_EQ(t.second, result) << std::hex << num; StringPiece in = result; uint64 decoded; EXPECT_TRUE(OrderedCode::ReadNumIncreasing(&in, &decoded)); EXPECT_EQ(num, decoded); EXPECT_EQ("", in); } } TEST(EncodingIsExpected, Signed) { std::vector<std::pair<int64_t, string>> data = { {0ll, ByteSequence("\200")}, {1ll, ByteSequence("\201")}, {2ll, ByteSequence("\202")}, {1ll, ByteSequence("\201")}, {2ll, ByteSequence("\202")}, {3ll, ByteSequence("\203")}, {3ll, ByteSequence("\203")}, {4ll, ByteSequence("\204")}, {5ll, ByteSequence("\205")}, {7ll, ByteSequence("\207")}, {8ll, ByteSequence("\210")}, {9ll, ByteSequence("\211")}, {15ll, ByteSequence("\217")}, {16ll, ByteSequence("\220")}, {17ll, ByteSequence("\221")}, {31ll, ByteSequence("\237")}, {32ll, ByteSequence("\240")}, {33ll, ByteSequence("\241")}, {63ll, ByteSequence("\277")}, {64ll, ByteSequence("\300@")}, {65ll, ByteSequence("\300A")}, {127ll, ByteSequence("\300\177")}, {128ll, ByteSequence("\300\200")}, {129ll, ByteSequence("\300\201")}, {255ll, ByteSequence("\300\377")}, {256ll, ByteSequence("\301\000")}, {257ll, ByteSequence("\301\001")}, {511ll, ByteSequence("\301\377")}, {512ll, ByteSequence("\302\000")}, {513ll, ByteSequence("\302\001")}, {1023ll, ByteSequence("\303\377")}, {1024ll, ByteSequence("\304\000")}, {1025ll, ByteSequence("\304\001")}, {2047ll, ByteSequence("\307\377")}, {2048ll, ByteSequence("\310\000")}, {2049ll, ByteSequence("\310\001")}, {4095ll, ByteSequence("\317\377")}, {4096ll, ByteSequence("\320\000")}, {4097ll, ByteSequence("\320\001")}, {8191ll, ByteSequence("\337\377")}, {8192ll, ByteSequence("\340 \000")}, {8193ll, ByteSequence("\340 \001")}, {16383ll, ByteSequence("\340?\377")}, {16384ll, ByteSequence("\340@\000")}, {16385ll, ByteSequence("\340@\001")}, {32767ll, ByteSequence("\340\177\377")}, {32768ll, ByteSequence("\340\200\000")}, {32769ll, ByteSequence("\340\200\001")}, {65535ll, ByteSequence("\340\377\377")}, {65536ll, ByteSequence("\341\000\000")}, {65537ll, ByteSequence("\341\000\001")}, {131071ll, ByteSequence("\341\377\377")}, {131072ll, ByteSequence("\342\000\000")}, {131073ll, ByteSequence("\342\000\001")}, {262143ll, ByteSequence("\343\377\377")}, {262144ll, ByteSequence("\344\000\000")}, {262145ll, ByteSequence("\344\000\001")}, {524287ll, ByteSequence("\347\377\377")}, {524288ll, ByteSequence("\350\000\000")}, {524289ll, ByteSequence("\350\000\001")}, {1048575ll, ByteSequence("\357\377\377")}, {1048576ll, ByteSequence("\360\020\000\000")}, {1048577ll, ByteSequence("\360\020\000\001")}, {2097151ll, ByteSequence("\360\037\377\377")}, {2097152ll, ByteSequence("\360 \000\000")}, {2097153ll, ByteSequence("\360 \000\001")}, {4194303ll, ByteSequence("\360?\377\377")}, {4194304ll, ByteSequence("\360@\000\000")}, {4194305ll, ByteSequence("\360@\000\001")}, {8388607ll, ByteSequence("\360\177\377\377")}, {8388608ll, ByteSequence("\360\200\000\000")}, {8388609ll, ByteSequence("\360\200\000\001")}, {16777215ll, ByteSequence("\360\377\377\377")}, {16777216ll, ByteSequence("\361\000\000\000")}, {16777217ll, ByteSequence("\361\000\000\001")}, {33554431ll, ByteSequence("\361\377\377\377")}, {33554432ll, ByteSequence("\362\000\000\000")}, {33554433ll, ByteSequence("\362\000\000\001")}, {67108863ll, ByteSequence("\363\377\377\377")}, {67108864ll, ByteSequence("\364\000\000\000")}, {67108865ll, ByteSequence("\364\000\000\001")}, {134217727ll, ByteSequence("\367\377\377\377")}, {134217728ll, ByteSequence("\370\010\000\000\000")}, {134217729ll, ByteSequence("\370\010\000\000\001")}, {268435455ll, ByteSequence("\370\017\377\377\377")}, {268435456ll, ByteSequence("\370\020\000\000\000")}, {268435457ll, ByteSequence("\370\020\000\000\001")}, {536870911ll, ByteSequence("\370\037\377\377\377")}, {536870912ll, ByteSequence("\370 \000\000\000")}, {536870913ll, ByteSequence("\370 \000\000\001")}, {1073741823ll, ByteSequence("\370?\377\377\377")}, {1073741824ll, ByteSequence("\370@\000\000\000")}, {1073741825ll, ByteSequence("\370@\000\000\001")}, {2147483647ll, ByteSequence("\370\177\377\377\377")}, {2147483648ll, ByteSequence("\370\200\000\000\000")}, {2147483649ll, ByteSequence("\370\200\000\000\001")}, {4294967295ll, ByteSequence("\370\377\377\377\377")}, {4294967296ll, ByteSequence("\371\000\000\000\000")}, {4294967297ll, ByteSequence("\371\000\000\000\001")}, {8589934591ll, ByteSequence("\371\377\377\377\377")}, {8589934592ll, ByteSequence("\372\000\000\000\000")}, {8589934593ll, ByteSequence("\372\000\000\000\001")}, {17179869183ll, ByteSequence("\373\377\377\377\377")}, {17179869184ll, ByteSequence("\374\004\000\000\000\000")}, {17179869185ll, ByteSequence("\374\004\000\000\000\001")}, {34359738367ll, ByteSequence("\374\007\377\377\377\377")}, {34359738368ll, ByteSequence("\374\010\000\000\000\000")}, {34359738369ll, ByteSequence("\374\010\000\000\000\001")}, {68719476735ll, ByteSequence("\374\017\377\377\377\377")}, {68719476736ll, ByteSequence("\374\020\000\000\000\000")}, {68719476737ll, ByteSequence("\374\020\000\000\000\001")}, {137438953471ll, ByteSequence("\374\037\377\377\377\377")}, {137438953472ll, ByteSequence("\374 \000\000\000\000")}, {137438953473ll, ByteSequence("\374 \000\000\000\001")}, {274877906943ll, ByteSequence("\374?\377\377\377\377")}, {274877906944ll, ByteSequence("\374@\000\000\000\000")}, {274877906945ll, ByteSequence("\374@\000\000\000\001")}, {549755813887ll, ByteSequence("\374\177\377\377\377\377")}, {549755813888ll, ByteSequence("\374\200\000\000\000\000")}, {549755813889ll, ByteSequence("\374\200\000\000\000\001")}, {1099511627775ll, ByteSequence("\374\377\377\377\377\377")}, {1099511627776ll, ByteSequence("\375\000\000\000\000\000")}, {1099511627777ll, ByteSequence("\375\000\000\000\000\001")}, {2199023255551ll, ByteSequence("\375\377\377\377\377\377")}, {2199023255552ll, ByteSequence("\376\002\000\000\000\000\000")}, {2199023255553ll, ByteSequence("\376\002\000\000\000\000\001")}, {4398046511103ll, ByteSequence("\376\003\377\377\377\377\377")}, {4398046511104ll, ByteSequence("\376\004\000\000\000\000\000")}, {4398046511105ll, ByteSequence("\376\004\000\000\000\000\001")}, {8796093022207ll, ByteSequence("\376\007\377\377\377\377\377")}, {8796093022208ll, ByteSequence("\376\010\000\000\000\000\000")}, {8796093022209ll, ByteSequence("\376\010\000\000\000\000\001")}, {17592186044415ll, ByteSequence("\376\017\377\377\377\377\377")}, {17592186044416ll, ByteSequence("\376\020\000\000\000\000\000")}, {17592186044417ll, ByteSequence("\376\020\000\000\000\000\001")}, {35184372088831ll, ByteSequence("\376\037\377\377\377\377\377")}, {35184372088832ll, ByteSequence("\376 \000\000\000\000\000")}, {35184372088833ll, ByteSequence("\376 \000\000\000\000\001")}, {70368744177663ll, ByteSequence("\376?\377\377\377\377\377")}, {70368744177664ll, ByteSequence("\376@\000\000\000\000\000")}, {70368744177665ll, ByteSequence("\376@\000\000\000\000\001")}, {140737488355327ll, ByteSequence("\376\177\377\377\377\377\377")}, {140737488355328ll, ByteSequence("\376\200\000\000\000\000\000")}, {140737488355329ll, ByteSequence("\376\200\000\000\000\000\001")}, {281474976710655ll, ByteSequence("\376\377\377\377\377\377\377")}, {281474976710656ll, ByteSequence("\377\001\000\000\000\000\000\000")}, {281474976710657ll, ByteSequence("\377\001\000\000\000\000\000\001")}, {562949953421311ll, ByteSequence("\377\001\377\377\377\377\377\377")}, {562949953421312ll, ByteSequence("\377\002\000\000\000\000\000\000")}, {562949953421313ll, ByteSequence("\377\002\000\000\000\000\000\001")}, {1125899906842623ll, ByteSequence("\377\003\377\377\377\377\377\377")}, {1125899906842624ll, ByteSequence("\377\004\000\000\000\000\000\000")}, {1125899906842625ll, ByteSequence("\377\004\000\000\000\000\000\001")}, {2251799813685247ll, ByteSequence("\377\007\377\377\377\377\377\377")}, {2251799813685248ll, ByteSequence("\377\010\000\000\000\000\000\000")}, {2251799813685249ll, ByteSequence("\377\010\000\000\000\000\000\001")}, {4503599627370495ll, ByteSequence("\377\017\377\377\377\377\377\377")}, {4503599627370496ll, ByteSequence("\377\020\000\000\000\000\000\000")}, {4503599627370497ll, ByteSequence("\377\020\000\000\000\000\000\001")}, {9007199254740991ll, ByteSequence("\377\037\377\377\377\377\377\377")}, {9007199254740992ll, ByteSequence("\377 \000\000\000\000\000\000")}, {9007199254740993ll, ByteSequence("\377 \000\000\000\000\000\001")}, {18014398509481983ll, ByteSequence("\377?\377\377\377\377\377\377")}, {18014398509481984ll, ByteSequence("\377@\000\000\000\000\000\000")}, {18014398509481985ll, ByteSequence("\377@\000\000\000\000\000\001")}, {36028797018963967ll, ByteSequence("\377\177\377\377\377\377\377\377")}, {36028797018963968ll, ByteSequence("\377\200\200\000\000\000\000\000\000")}, {36028797018963969ll, ByteSequence("\377\200\200\000\000\000\000\000\001")}, {72057594037927935ll, ByteSequence("\377\200\377\377\377\377\377\377\377")}, {72057594037927936ll, ByteSequence("\377\201\000\000\000\000\000\000\000")}, {72057594037927937ll, ByteSequence("\377\201\000\000\000\000\000\000\001")}, {144115188075855871ll, ByteSequence("\377\201\377\377\377\377\377\377\377")}, {144115188075855872ll, ByteSequence("\377\202\000\000\000\000\000\000\000")}, {144115188075855873ll, ByteSequence("\377\202\000\000\000\000\000\000\001")}, {288230376151711743ll, ByteSequence("\377\203\377\377\377\377\377\377\377")}, {288230376151711744ll, ByteSequence("\377\204\000\000\000\000\000\000\000")}, {288230376151711745ll, ByteSequence("\377\204\000\000\000\000\000\000\001")}, {576460752303423487ll, ByteSequence("\377\207\377\377\377\377\377\377\377")}, {576460752303423488ll, ByteSequence("\377\210\000\000\000\000\000\000\000")}, {576460752303423489ll, ByteSequence("\377\210\000\000\000\000\000\000\001")}, {1152921504606846975ll, ByteSequence("\377\217\377\377\377\377\377\377\377")}, {1152921504606846976ll, ByteSequence("\377\220\000\000\000\000\000\000\000")}, {1152921504606846977ll, ByteSequence("\377\220\000\000\000\000\000\000\001")}, {2305843009213693951ll, ByteSequence("\377\237\377\377\377\377\377\377\377")}, {2305843009213693952ll, ByteSequence("\377\240\000\000\000\000\000\000\000")}, {2305843009213693953ll, ByteSequence("\377\240\000\000\000\000\000\000\001")}, {4611686018427387903ll, ByteSequence("\377\277\377\377\377\377\377\377\377")}, {4611686018427387904ll, ByteSequence("\377\300@\000\000\000\000\000\000\000")}, {4611686018427387905ll, ByteSequence("\377\300@\000\000\000\000\000\000\001")}, {9223372036854775807ll, ByteSequence("\377\300\177\377\377\377\377\377\377\377")}, {-9223372036854775807ll, ByteSequence("\000?\200\000\000\000\000\000\000\001")}, {0ll, ByteSequence("\200")}, {-1ll, ByteSequence("\177")}, {-2ll, ByteSequence("~")}, {-1ll, ByteSequence("\177")}, {-2ll, ByteSequence("~")}, {-3ll, ByteSequence("}")}, {-3ll, ByteSequence("}")}, {-4ll, ByteSequence("|")}, {-5ll, ByteSequence("{")}, {-7ll, ByteSequence("y")}, {-8ll, ByteSequence("x")}, {-9ll, ByteSequence("w")}, {-15ll, ByteSequence("q")}, {-16ll, ByteSequence("p")}, {-17ll, ByteSequence("o")}, {-31ll, ByteSequence("a")}, {-32ll, ByteSequence("`")}, {-33ll, ByteSequence("_")}, {-63ll, ByteSequence("A")}, {-64ll, ByteSequence("@")}, {-65ll, ByteSequence("?\277")}, {-127ll, ByteSequence("?\201")}, {-128ll, ByteSequence("?\200")}, {-129ll, ByteSequence("?\177")}, {-255ll, ByteSequence("?\001")}, {-256ll, ByteSequence("?\000")}, {-257ll, ByteSequence(">\377")}, {-511ll, ByteSequence(">\001")}, {-512ll, ByteSequence(">\000")}, {-513ll, ByteSequence("=\377")}, {-1023ll, ByteSequence("<\001")}, {-1024ll, ByteSequence("<\000")}, {-1025ll, ByteSequence(";\377")}, {-2047ll, ByteSequence("8\001")}, {-2048ll, ByteSequence("8\000")}, {-2049ll, ByteSequence("7\377")}, {-4095ll, ByteSequence("0\001")}, {-4096ll, ByteSequence("0\000")}, {-4097ll, ByteSequence("/\377")}, {-8191ll, ByteSequence(" \001")}, {-8192ll, ByteSequence(" \000")}, {-8193ll, ByteSequence("\037\337\377")}, {-16383ll, ByteSequence("\037\300\001")}, {-16384ll, ByteSequence("\037\300\000")}, {-16385ll, ByteSequence("\037\277\377")}, {-32767ll, ByteSequence("\037\200\001")}, {-32768ll, ByteSequence("\037\200\000")}, {-32769ll, ByteSequence("\037\177\377")}, {-65535ll, ByteSequence("\037\000\001")}, {-65536ll, ByteSequence("\037\000\000")}, {-65537ll, ByteSequence("\036\377\377")}, {-131071ll, ByteSequence("\036\000\001")}, {-131072ll, ByteSequence("\036\000\000")}, {-131073ll, ByteSequence("\035\377\377")}, {-262143ll, ByteSequence("\034\000\001")}, {-262144ll, ByteSequence("\034\000\000")}, {-262145ll, ByteSequence("\033\377\377")}, {-524287ll, ByteSequence("\030\000\001")}, {-524288ll, ByteSequence("\030\000\000")}, {-524289ll, ByteSequence("\027\377\377")}, {-1048575ll, ByteSequence("\020\000\001")}, {-1048576ll, ByteSequence("\020\000\000")}, {-1048577ll, ByteSequence("\017\357\377\377")}, {-2097151ll, ByteSequence("\017\340\000\001")}, {-2097152ll, ByteSequence("\017\340\000\000")}, {-2097153ll, ByteSequence("\017\337\377\377")}, {-4194303ll, ByteSequence("\017\300\000\001")}, {-4194304ll, ByteSequence("\017\300\000\000")}, {-4194305ll, ByteSequence("\017\277\377\377")}, {-8388607ll, ByteSequence("\017\200\000\001")}, {-8388608ll, ByteSequence("\017\200\000\000")}, {-8388609ll, ByteSequence("\017\177\377\377")}, {-16777215ll, ByteSequence("\017\000\000\001")}, {-16777216ll, ByteSequence("\017\000\000\000")}, {-16777217ll, ByteSequence("\016\377\377\377")}, {-33554431ll, ByteSequence("\016\000\000\001")}, {-33554432ll, ByteSequence("\016\000\000\000")}, {-33554433ll, ByteSequence("\r\377\377\377")}, {-67108863ll, ByteSequence("\014\000\000\001")}, {-67108864ll, ByteSequence("\014\000\000\000")}, {-67108865ll, ByteSequence("\013\377\377\377")}, {-134217727ll, ByteSequence("\010\000\000\001")}, {-134217728ll, ByteSequence("\010\000\000\000")}, {-134217729ll, ByteSequence("\007\367\377\377\377")}, {-268435455ll, ByteSequence("\007\360\000\000\001")}, {-268435456ll, ByteSequence("\007\360\000\000\000")}, {-268435457ll, ByteSequence("\007\357\377\377\377")}, {-536870911ll, ByteSequence("\007\340\000\000\001")}, {-536870912ll, ByteSequence("\007\340\000\000\000")}, {-536870913ll, ByteSequence("\007\337\377\377\377")}, {-1073741823ll, ByteSequence("\007\300\000\000\001")}, {-1073741824ll, ByteSequence("\007\300\000\000\000")}, {-1073741825ll, ByteSequence("\007\277\377\377\377")}, {-2147483647ll, ByteSequence("\007\200\000\000\001")}, {-2147483648ll, ByteSequence("\007\200\000\000\000")}, {-2147483649ll, ByteSequence("\007\177\377\377\377")}, {-4294967295ll, ByteSequence("\007\000\000\000\001")}, {-4294967296ll, ByteSequence("\007\000\000\000\000")}, {-4294967297ll, ByteSequence("\006\377\377\377\377")}, {-8589934591ll, ByteSequence("\006\000\000\000\001")}, {-8589934592ll, ByteSequence("\006\000\000\000\000")}, {-8589934593ll, ByteSequence("\005\377\377\377\377")}, {-17179869183ll, ByteSequence("\004\000\000\000\001")}, {-17179869184ll, ByteSequence("\004\000\000\000\000")}, {-17179869185ll, ByteSequence("\003\373\377\377\377\377")}, {-34359738367ll, ByteSequence("\003\370\000\000\000\001")}, {-34359738368ll, ByteSequence("\003\370\000\000\000\000")}, {-34359738369ll, ByteSequence("\003\367\377\377\377\377")}, {-68719476735ll, ByteSequence("\003\360\000\000\000\001")}, {-68719476736ll, ByteSequence("\003\360\000\000\000\000")}, {-68719476737ll, ByteSequence("\003\357\377\377\377\377")}, {-137438953471ll, ByteSequence("\003\340\000\000\000\001")}, {-137438953472ll, ByteSequence("\003\340\000\000\000\000")}, {-137438953473ll, ByteSequence("\003\337\377\377\377\377")}, {-274877906943ll, ByteSequence("\003\300\000\000\000\001")}, {-274877906944ll, ByteSequence("\003\300\000\000\000\000")}, {-274877906945ll, ByteSequence("\003\277\377\377\377\377")}, {-549755813887ll, ByteSequence("\003\200\000\000\000\001")}, {-549755813888ll, ByteSequence("\003\200\000\000\000\000")}, {-549755813889ll, ByteSequence("\003\177\377\377\377\377")}, {-1099511627775ll, ByteSequence("\003\000\000\000\000\001")}, {-1099511627776ll, ByteSequence("\003\000\000\000\000\000")}, {-1099511627777ll, ByteSequence("\002\377\377\377\377\377")}, {-2199023255551ll, ByteSequence("\002\000\000\000\000\001")}, {-2199023255552ll, ByteSequence("\002\000\000\000\000\000")}, {-2199023255553ll, ByteSequence("\001\375\377\377\377\377\377")}, {-4398046511103ll, ByteSequence("\001\374\000\000\000\000\001")}, {-4398046511104ll, ByteSequence("\001\374\000\000\000\000\000")}, {-4398046511105ll, ByteSequence("\001\373\377\377\377\377\377")}, {-8796093022207ll, ByteSequence("\001\370\000\000\000\000\001")}, {-8796093022208ll, ByteSequence("\001\370\000\000\000\000\000")}, {-8796093022209ll, ByteSequence("\001\367\377\377\377\377\377")}, {-17592186044415ll, ByteSequence("\001\360\000\000\000\000\001")}, {-17592186044416ll, ByteSequence("\001\360\000\000\000\000\000")}, {-17592186044417ll, ByteSequence("\001\357\377\377\377\377\377")}, {-35184372088831ll, ByteSequence("\001\340\000\000\000\000\001")}, {-35184372088832ll, ByteSequence("\001\340\000\000\000\000\000")}, {-35184372088833ll, ByteSequence("\001\337\377\377\377\377\377")}, {-70368744177663ll, ByteSequence("\001\300\000\000\000\000\001")}, {-70368744177664ll, ByteSequence("\001\300\000\000\000\000\000")}, {-70368744177665ll, ByteSequence("\001\277\377\377\377\377\377")}, {-140737488355327ll, ByteSequence("\001\200\000\000\000\000\001")}, {-140737488355328ll, ByteSequence("\001\200\000\000\000\000\000")}, {-140737488355329ll, ByteSequence("\001\177\377\377\377\377\377")}, {-281474976710655ll, ByteSequence("\001\000\000\000\000\000\001")}, {-281474976710656ll, ByteSequence("\001\000\000\000\000\000\000")}, {-281474976710657ll, ByteSequence("\000\376\377\377\377\377\377\377")}, {-562949953421311ll, ByteSequence("\000\376\000\000\000\000\000\001")}, {-562949953421312ll, ByteSequence("\000\376\000\000\000\000\000\000")}, {-562949953421313ll, ByteSequence("\000\375\377\377\377\377\377\377")}, {-1125899906842623ll, ByteSequence("\000\374\000\000\000\000\000\001")}, {-1125899906842624ll, ByteSequence("\000\374\000\000\000\000\000\000")}, {-1125899906842625ll, ByteSequence("\000\373\377\377\377\377\377\377")}, {-2251799813685247ll, ByteSequence("\000\370\000\000\000\000\000\001")}, {-2251799813685248ll, ByteSequence("\000\370\000\000\000\000\000\000")}, {-2251799813685249ll, ByteSequence("\000\367\377\377\377\377\377\377")}, {-4503599627370495ll, ByteSequence("\000\360\000\000\000\000\000\001")}, {-4503599627370496ll, ByteSequence("\000\360\000\000\000\000\000\000")}, {-4503599627370497ll, ByteSequence("\000\357\377\377\377\377\377\377")}, {-9007199254740991ll, ByteSequence("\000\340\000\000\000\000\000\001")}, {-9007199254740992ll, ByteSequence("\000\340\000\000\000\000\000\000")}, {-9007199254740993ll, ByteSequence("\000\337\377\377\377\377\377\377")}, {-18014398509481983ll, ByteSequence("\000\300\000\000\000\000\000\001")}, {-18014398509481984ll, ByteSequence("\000\300\000\000\000\000\000\000")}, {-18014398509481985ll, ByteSequence("\000\277\377\377\377\377\377\377")}, {-36028797018963967ll, ByteSequence("\000\200\000\000\000\000\000\001")}, {-36028797018963968ll, ByteSequence("\000\200\000\000\000\000\000\000")}, {-36028797018963969ll, ByteSequence("\000\177\177\377\377\377\377\377\377")}, {-72057594037927935ll, ByteSequence("\000\177\000\000\000\000\000\000\001")}, {-72057594037927936ll, ByteSequence("\000\177\000\000\000\000\000\000\000")}, {-72057594037927937ll, ByteSequence("\000~\377\377\377\377\377\377\377")}, {-144115188075855871ll, ByteSequence("\000~\000\000\000\000\000\000\001")}, {-144115188075855872ll, ByteSequence("\000~\000\000\000\000\000\000\000")}, {-144115188075855873ll, ByteSequence("\000}\377\377\377\377\377\377\377")}, {-288230376151711743ll, ByteSequence("\000|\000\000\000\000\000\000\001")}, {-288230376151711744ll, ByteSequence("\000|\000\000\000\000\000\000\000")}, {-288230376151711745ll, ByteSequence("\000{\377\377\377\377\377\377\377")}, {-576460752303423487ll, ByteSequence("\000x\000\000\000\000\000\000\001")}, {-576460752303423488ll, ByteSequence("\000x\000\000\000\000\000\000\000")}, {-576460752303423489ll, ByteSequence("\000w\377\377\377\377\377\377\377")}, {-1152921504606846975ll, ByteSequence("\000p\000\000\000\000\000\000\001")}, {-1152921504606846976ll, ByteSequence("\000p\000\000\000\000\000\000\000")}, {-1152921504606846977ll, ByteSequence("\000o\377\377\377\377\377\377\377")}, {-2305843009213693951ll, ByteSequence("\000`\000\000\000\000\000\000\001")}, {-2305843009213693952ll, ByteSequence("\000`\000\000\000\000\000\000\000")}, {-2305843009213693953ll, ByteSequence("\000_\377\377\377\377\377\377\377")}, {-4611686018427387903ll, ByteSequence("\000@\000\000\000\000\000\000\001")}, {-4611686018427387904ll, ByteSequence("\000@\000\000\000\000\000\000\000")}, {-4611686018427387905ll, ByteSequence("\000?\277\377\377\377\377\377\377\377")}, {-9223372036854775807ll, ByteSequence("\000?\200\000\000\000\000\000\000\001")}, {9223372036854775807ll, ByteSequence("\377\300\177\377\377\377\377\377\377\377")}, }; for (const auto& t : data) { int64_t num = t.first; string result; OrderedCode::WriteSignedNumIncreasing(&result, num); EXPECT_EQ(t.second, result) << std::hex << num; StringPiece in = result; int64_t decoded; EXPECT_TRUE(OrderedCode::ReadSignedNumIncreasing(&in, &decoded)); EXPECT_EQ(num, decoded); EXPECT_EQ("", in); } } void BM_WriteString(::testing::benchmark::State& state, int len) { random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); string x; for (int i = 0; i < len; i++) { x += rnd.Uniform(256); } string y; for (auto s : state) { y.clear(); OCWriteToString<string>(&y, x); } state.SetBytesProcessed(state.iterations() * len); } void BM_ReadString(::testing::benchmark::State& state, int len) { random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); string x; for (int i = 0; i < len; i++) { x += rnd.Uniform(256); } string data; OCWriteToString<string>(&data, x); string result; for (auto i : state) { result.clear(); StringPiece s = data; OCRead<string>(&s, &result); } state.SetBytesProcessed(state.iterations() * len); } void BM_WriteStringIncreasing(::testing::benchmark::State& state) { BM_WriteString(state, state.range(0)); } void BM_ReadStringIncreasing(::testing::benchmark::State& state) { BM_ReadString(state, state.range(0)); } BENCHMARK(BM_WriteStringIncreasing)->Range(0, 1024); BENCHMARK(BM_ReadStringIncreasing)->Range(0, 1024); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/strings/ordered_code.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/strings/ordered_code_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
28c148ef-d980-4e5f-b429-0b86449631d6
cpp
tensorflow/tensorflow
wav_io
tensorflow/core/lib/wav/wav_io.cc
tensorflow/core/lib/wav/wav_io_test.cc
#include "tensorflow/core/lib/wav/wav_io.h" #include <math.h> #include <string.h> #include <algorithm> #include "absl/base/casts.h" #include "tensorflow/core/lib/core/coding.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/byte_order.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" namespace tensorflow { namespace wav { namespace { struct TF_PACKED RiffChunk { char chunk_id[4]; char chunk_data_size[4]; char riff_type[4]; }; static_assert(sizeof(RiffChunk) == 12, "TF_PACKED does not work."); struct TF_PACKED FormatChunk { char chunk_id[4]; char chunk_data_size[4]; char compression_code[2]; char channel_numbers[2]; char sample_rate[4]; char bytes_per_second[4]; char bytes_per_frame[2]; char bits_per_sample[2]; }; static_assert(sizeof(FormatChunk) == 24, "TF_PACKED does not work."); struct TF_PACKED DataChunk { char chunk_id[4]; char chunk_data_size[4]; }; static_assert(sizeof(DataChunk) == 8, "TF_PACKED does not work."); struct TF_PACKED WavHeader { RiffChunk riff_chunk; FormatChunk format_chunk; DataChunk data_chunk; }; static_assert(sizeof(WavHeader) == sizeof(RiffChunk) + sizeof(FormatChunk) + sizeof(DataChunk), "TF_PACKED does not work."); constexpr char kRiffChunkId[] = "RIFF"; constexpr char kRiffType[] = "WAVE"; constexpr char kFormatChunkId[] = "fmt "; constexpr char kDataChunkId[] = "data"; inline int16 FloatToInt16Sample(float data) { constexpr float kMultiplier = 1.0f * (1 << 15); return std::min<float>(std::max<float>(roundf(data * kMultiplier), kint16min), kint16max); } inline float Int16SampleToFloat(int16_t data) { constexpr float kMultiplier = 1.0f / (1 << 15); return data * kMultiplier; } } Status IncrementOffset(int old_offset, int64_t increment, size_t max_size, int* new_offset) { if (old_offset < 0) { return errors::InvalidArgument("Negative offsets are not allowed: ", old_offset); } if (increment < 0) { return errors::InvalidArgument("Negative increment is not allowed: ", increment); } if (old_offset > max_size) { return errors::InvalidArgument("Initial offset is outside data range: ", old_offset); } int64_t sum = old_offset + increment; if (sum > max_size) { return errors::InvalidArgument("Data too short when trying to read string"); } if (sum < 0) { return errors::InvalidArgument("Offset too large, overflowed: ", sum); } *new_offset = sum; return absl::OkStatus(); } Status ExpectText(const std::string& data, const std::string& expected_text, int* offset) { int new_offset; TF_RETURN_IF_ERROR( IncrementOffset(*offset, expected_text.size(), data.size(), &new_offset)); const std::string found_text(data.begin() + *offset, data.begin() + new_offset); if (found_text != expected_text) { return errors::InvalidArgument("Header mismatch: Expected ", expected_text, " but found ", found_text); } *offset = new_offset; return absl::OkStatus(); } Status ReadString(const std::string& data, int expected_length, std::string* value, int* offset) { int new_offset; TF_RETURN_IF_ERROR( IncrementOffset(*offset, expected_length, data.size(), &new_offset)); *value = std::string(data.begin() + *offset, data.begin() + new_offset); *offset = new_offset; return absl::OkStatus(); } template <typename T> Status EncodeAudioAsS16LEWav(const float* audio, size_t sample_rate, size_t num_channels, size_t num_frames, T* wav_string) { constexpr size_t kFormatChunkSize = 16; constexpr size_t kCompressionCodePcm = 1; constexpr size_t kBitsPerSample = 16; constexpr size_t kBytesPerSample = kBitsPerSample / 8; constexpr size_t kHeaderSize = sizeof(WavHeader); if (audio == nullptr && num_frames > 0) { return errors::InvalidArgument("audio is null"); } if (wav_string == nullptr) { return errors::InvalidArgument("wav_string is null"); } if (sample_rate == 0 || sample_rate > kuint32max) { return errors::InvalidArgument("sample_rate must be in (0, 2^32), got: ", sample_rate); } if (num_channels == 0 || num_channels > kuint16max) { return errors::InvalidArgument("num_channels must be in (0, 2^16), got: ", num_channels); } const size_t bytes_per_second = sample_rate * kBytesPerSample * num_channels; const size_t num_samples = num_frames * num_channels; const size_t data_size = num_samples * kBytesPerSample; const size_t file_size = kHeaderSize + num_samples * kBytesPerSample; const size_t bytes_per_frame = kBytesPerSample * num_channels; if (file_size > kuint32max) { return errors::InvalidArgument( "Provided channels and frames cannot be encoded as a WAV."); } wav_string->resize(file_size); char* data = &(*wav_string)[0]; WavHeader* header = absl::bit_cast<WavHeader*>(data); auto* riff_chunk = &header->riff_chunk; memcpy(riff_chunk->chunk_id, kRiffChunkId, 4); core::EncodeFixed32(riff_chunk->chunk_data_size, file_size - 8); memcpy(riff_chunk->riff_type, kRiffType, 4); auto* format_chunk = &header->format_chunk; memcpy(format_chunk->chunk_id, kFormatChunkId, 4); core::EncodeFixed32(format_chunk->chunk_data_size, kFormatChunkSize); core::EncodeFixed16(format_chunk->compression_code, kCompressionCodePcm); core::EncodeFixed16(format_chunk->channel_numbers, num_channels); core::EncodeFixed32(format_chunk->sample_rate, sample_rate); core::EncodeFixed32(format_chunk->bytes_per_second, bytes_per_second); core::EncodeFixed16(format_chunk->bytes_per_frame, bytes_per_frame); core::EncodeFixed16(format_chunk->bits_per_sample, kBitsPerSample); auto* data_chunk = &header->data_chunk; memcpy(data_chunk->chunk_id, kDataChunkId, 4); core::EncodeFixed32(data_chunk->chunk_data_size, data_size); data += kHeaderSize; for (size_t i = 0; i < num_samples; ++i) { int16_t sample = FloatToInt16Sample(audio[i]); core::EncodeFixed16(&data[i * kBytesPerSample], static_cast<uint16>(sample)); } return absl::OkStatus(); } template Status EncodeAudioAsS16LEWav<std::string>(const float* audio, size_t sample_rate, size_t num_channels, size_t num_frames, std::string* wav_string); template Status EncodeAudioAsS16LEWav<tstring>(const float* audio, size_t sample_rate, size_t num_channels, size_t num_frames, tstring* wav_string); Status DecodeLin16WaveAsFloatVector(const std::string& wav_string, std::vector<float>* float_values, uint32* sample_count, uint16* channel_count, uint32* sample_rate) { int offset = 0; TF_RETURN_IF_ERROR(ExpectText(wav_string, kRiffChunkId, &offset)); uint32 total_file_size; TF_RETURN_IF_ERROR(ReadValue<uint32>(wav_string, &total_file_size, &offset)); TF_RETURN_IF_ERROR(ExpectText(wav_string, kRiffType, &offset)); std::string found_text; TF_RETURN_IF_ERROR(ReadString(wav_string, 4, &found_text, &offset)); while (found_text != kFormatChunkId) { if (found_text != "JUNK" && found_text != "bext" && found_text != "iXML" && found_text != "qlty" && found_text != "mext" && found_text != "levl" && found_text != "link" && found_text != "axml") { return errors::InvalidArgument("Unexpected field ", found_text); } uint32 size_of_chunk; TF_RETURN_IF_ERROR(ReadValue<uint32>(wav_string, &size_of_chunk, &offset)); TF_RETURN_IF_ERROR( IncrementOffset(offset, size_of_chunk, wav_string.size(), &offset)); TF_RETURN_IF_ERROR(ReadString(wav_string, 4, &found_text, &offset)); } uint32 format_chunk_size; TF_RETURN_IF_ERROR( ReadValue<uint32>(wav_string, &format_chunk_size, &offset)); if ((format_chunk_size != 16) && (format_chunk_size != 18)) { return errors::InvalidArgument( "Bad format chunk size for WAV: Expected 16 or 18, but got", format_chunk_size); } uint16 audio_format; TF_RETURN_IF_ERROR(ReadValue<uint16>(wav_string, &audio_format, &offset)); if (audio_format != 1) { return errors::InvalidArgument( "Bad audio format for WAV: Expected 1 (PCM), but got", audio_format); } TF_RETURN_IF_ERROR(ReadValue<uint16>(wav_string, channel_count, &offset)); if (*channel_count < 1) { return errors::InvalidArgument( "Bad number of channels for WAV: Expected at least 1, but got ", *channel_count); } TF_RETURN_IF_ERROR(ReadValue<uint32>(wav_string, sample_rate, &offset)); uint32 bytes_per_second; TF_RETURN_IF_ERROR(ReadValue<uint32>(wav_string, &bytes_per_second, &offset)); uint16 bytes_per_sample; TF_RETURN_IF_ERROR(ReadValue<uint16>(wav_string, &bytes_per_sample, &offset)); uint16 bits_per_sample; TF_RETURN_IF_ERROR(ReadValue<uint16>(wav_string, &bits_per_sample, &offset)); if (bits_per_sample != 16) { return errors::InvalidArgument( "Can only read 16-bit WAV files, but received ", bits_per_sample); } const uint32 expected_bytes_per_sample = ((bits_per_sample * *channel_count) + 7) / 8; if (bytes_per_sample != expected_bytes_per_sample) { return errors::InvalidArgument( "Bad bytes per sample in WAV header: Expected ", expected_bytes_per_sample, " but got ", bytes_per_sample); } const uint64 expected_bytes_per_second = static_cast<uint64>(bytes_per_sample) * *sample_rate; if (static_cast<uint64>(bytes_per_second) != expected_bytes_per_second) { return errors::InvalidArgument( "Bad bytes per second in WAV header: Expected ", expected_bytes_per_second, " but got ", bytes_per_second, " (sample_rate=", *sample_rate, ", bytes_per_sample=", bytes_per_sample, ")"); } if (format_chunk_size == 18) { offset += 2; } bool was_data_found = false; while (offset < wav_string.size()) { std::string chunk_id; TF_RETURN_IF_ERROR(ReadString(wav_string, 4, &chunk_id, &offset)); uint32 chunk_size; TF_RETURN_IF_ERROR(ReadValue<uint32>(wav_string, &chunk_size, &offset)); if (chunk_size > std::numeric_limits<int32>::max()) { return errors::InvalidArgument( "WAV data chunk '", chunk_id, "' is too large: ", chunk_size, " bytes, but the limit is ", std::numeric_limits<int32>::max()); } if (chunk_id == kDataChunkId) { if (was_data_found) { return errors::InvalidArgument("More than one data chunk found in WAV"); } was_data_found = true; *sample_count = chunk_size / bytes_per_sample; const uint32 data_count = *sample_count * *channel_count; int unused_new_offset = 0; TF_RETURN_IF_ERROR(IncrementOffset(offset, sizeof(int16) * data_count, wav_string.size(), &unused_new_offset)); float_values->resize(data_count); for (int i = 0; i < data_count; ++i) { int16_t single_channel_value = 0; TF_RETURN_IF_ERROR( ReadValue<int16>(wav_string, &single_channel_value, &offset)); (*float_values)[i] = Int16SampleToFloat(single_channel_value); } } else { offset += chunk_size; } } if (!was_data_found) { return errors::InvalidArgument("No data chunk found in WAV"); } return absl::OkStatus(); } } }
#include "tensorflow/core/lib/wav/wav_io.h" #include <string> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace wav { Status ExpectText(const string& data, const string& expected_text, int* offset); Status ReadString(const string& data, int expected_length, string* value, int* offset); TEST(WavIO, BadArguments) { float audio[] = {0.0f, 0.1f, 0.2f, 0.3f, 0.4f, 0.5f}; tstring result; EXPECT_EQ(error::INVALID_ARGUMENT, EncodeAudioAsS16LEWav(nullptr, 44100, 2, 3, &result).code()); TF_EXPECT_OK(EncodeAudioAsS16LEWav(nullptr, 44100, 2, 0, &result)); EXPECT_EQ( error::INVALID_ARGUMENT, EncodeAudioAsS16LEWav(audio, 44100, 2, 3, (tstring*)nullptr).code()); const size_t kuint32max_plus_one = static_cast<size_t>(kuint32max) + 1; const size_t kuint16max_plus_one = static_cast<size_t>(kuint16max) + 1; EXPECT_EQ(error::INVALID_ARGUMENT, EncodeAudioAsS16LEWav(audio, 0, 2, 3, &result).code()); EXPECT_EQ(error::INVALID_ARGUMENT, EncodeAudioAsS16LEWav(audio, 44100, 0, 3, &result).code()); EXPECT_EQ( error::INVALID_ARGUMENT, EncodeAudioAsS16LEWav(audio, kuint32max_plus_one, 2, 3, &result).code()); EXPECT_EQ(error::INVALID_ARGUMENT, EncodeAudioAsS16LEWav(audio, 44100, kuint16max_plus_one, 3, &result) .code()); EXPECT_EQ(error::INVALID_ARGUMENT, EncodeAudioAsS16LEWav(audio, 44100, 2, 1073741813, &result).code()); } TEST(WavIO, BasicEven) { float audio[] = {0.0f, 0.1f, 0.2f, 0.3f, 0.4f, 0.5f}; string result; TF_EXPECT_OK(EncodeAudioAsS16LEWav(audio, 44100, 2, 3, &result)); EXPECT_EQ(56, result.size()); TF_EXPECT_OK(EncodeAudioAsS16LEWav(audio, 22050, 1, 6, &result)); EXPECT_EQ(56, result.size()); TF_EXPECT_OK(EncodeAudioAsS16LEWav(audio, 8000, 1, 6, &result)); EXPECT_EQ(56, result.size()); } TEST(WavIO, BasicOdd) { float audio[] = {0.0f, 0.1f, 0.2f, 0.3f, 0.4f}; string result; TF_EXPECT_OK(EncodeAudioAsS16LEWav(audio, 22050, 1, 5, &result)); EXPECT_EQ(54, result.size()); } TEST(WavIO, EncodeThenDecode) { float audio[] = {0.0f, 0.1f, 0.2f, 0.3f, 0.4f, 0.5f}; string wav_data; TF_ASSERT_OK(EncodeAudioAsS16LEWav(audio, 44100, 2, 3, &wav_data)); std::vector<float> decoded_audio; uint32 decoded_sample_count; uint16 decoded_channel_count; uint32 decoded_sample_rate; TF_ASSERT_OK(DecodeLin16WaveAsFloatVector( wav_data, &decoded_audio, &decoded_sample_count, &decoded_channel_count, &decoded_sample_rate)); EXPECT_EQ(2, decoded_channel_count); EXPECT_EQ(3, decoded_sample_count); EXPECT_EQ(44100, decoded_sample_rate); for (int i = 0; i < 6; ++i) { EXPECT_NEAR(audio[i], decoded_audio[i], 1e-4f) << "i=" << i; } } TEST(WavIO, BasicMono) { std::vector<uint8> wav_data = { 'R', 'I', 'F', 'F', 44, 0, 0, 0, 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 16, 0, 0, 0, 1, 0, 1, 0, 0x44, 0xac, 0, 0, 0x88, 0x58, 0x1, 0, 2, 0, 16, 0, 'd', 'a', 't', 'a', 8, 0, 0, 0, 0, 0, 0xff, 0x7f, 0, 0, 0x00, 0x80, }; string expected(wav_data.begin(), wav_data.end()); float audio[] = {0.0f, 1.0f, 0.0f, -1.0f}; string result; TF_EXPECT_OK(EncodeAudioAsS16LEWav(audio, 44100, 1, 4, &result)); EXPECT_EQ(expected, result); } TEST(WavIO, BasicStereo) { std::vector<uint8> wav_data = { 'R', 'I', 'F', 'F', 44, 0, 0, 0, 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 16, 0, 0, 0, 1, 0, 2, 0, 0x44, 0xac, 0, 0, 0x10, 0xb1, 0x2, 0, 4, 0, 16, 0, 'd', 'a', 't', 'a', 8, 0, 0, 0, 0, 0, 0xff, 0x7f, 0, 0, 0x00, 0x80, }; string expected(wav_data.begin(), wav_data.end()); float audio[] = {0.0f, 1.0f, 0.0f, -1.0f}; string result; TF_EXPECT_OK(EncodeAudioAsS16LEWav(audio, 44100, 2, 2, &result)); EXPECT_EQ(expected, result); } TEST(WavIO, ChunkSizeOverflow) { std::vector<uint8> wav_data = { 'R', 'I', 'F', 'F', 60, 0, 0, 0, 'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', 16, 0, 0, 0, 1, 0, 1, 0, 0x44, 0xac, 0, 0, 0x88, 0x58, 0x1, 0, 2, 0, 16, 0, 'd', 'a', 't', 'a', 8, 0, 0, 0, 0, 0, 0xff, 0x7f, 0, 0, 0x00, 0x80, 'f', 'o', 'o', 'o', 0xff, 0xff, 0xff, 0xf8, 0, 0, 0xff, 0x7f, 0, 0, 0x00, 0x80, }; string wav_data_string(wav_data.begin(), wav_data.end()); std::vector<float> decoded_audio; uint32 decoded_sample_count; uint16 decoded_channel_count; uint32 decoded_sample_rate; Status decode_status = DecodeLin16WaveAsFloatVector( wav_data_string, &decoded_audio, &decoded_sample_count, &decoded_channel_count, &decoded_sample_rate); EXPECT_FALSE(decode_status.ok()); EXPECT_TRUE(absl::StrContains(decode_status.message(), "too large")) << decode_status.message(); } TEST(WavIO, IncrementOffset) { int new_offset = -1; TF_EXPECT_OK(IncrementOffset(0, 10, 20, &new_offset)); EXPECT_EQ(10, new_offset); new_offset = -1; TF_EXPECT_OK(IncrementOffset(10, 4, 20, &new_offset)); EXPECT_EQ(14, new_offset); new_offset = -1; TF_EXPECT_OK(IncrementOffset(99, 1, 100, &new_offset)); EXPECT_EQ(100, new_offset); new_offset = -1; EXPECT_FALSE(IncrementOffset(-1, 1, 100, &new_offset).ok()); new_offset = -1; EXPECT_FALSE(IncrementOffset(0, -1, 100, &new_offset).ok()); new_offset = -1; EXPECT_FALSE(IncrementOffset(std::numeric_limits<int>::max(), 1, std::numeric_limits<int>::max(), &new_offset) .ok()); new_offset = -1; EXPECT_FALSE(IncrementOffset(101, 1, 100, &new_offset).ok()); } TEST(WavIO, ExpectText) { std::vector<uint8> test_data = { 'E', 'x', 'p', 'e', 'c', 't', 'e', 'd', }; string test_string(test_data.begin(), test_data.end()); int offset = 0; TF_EXPECT_OK(ExpectText(test_string, "Expected", &offset)); EXPECT_EQ(8, offset); offset = 0; Status expect_status = ExpectText(test_string, "Unexpected", &offset); EXPECT_FALSE(expect_status.ok()); offset = 0; TF_EXPECT_OK(ExpectText(test_string, "Exp", &offset)); EXPECT_EQ(3, offset); TF_EXPECT_OK(ExpectText(test_string, "ected", &offset)); EXPECT_EQ(8, offset); expect_status = ExpectText(test_string, "foo", &offset); EXPECT_FALSE(expect_status.ok()); } TEST(WavIO, ReadString) { std::vector<uint8> test_data = { 'E', 'x', 'p', 'e', 'c', 't', 'e', 'd', }; string test_string(test_data.begin(), test_data.end()); int offset = 0; string read_value; TF_EXPECT_OK(ReadString(test_string, 2, &read_value, &offset)); EXPECT_EQ("Ex", read_value); EXPECT_EQ(2, offset); TF_EXPECT_OK(ReadString(test_string, 6, &read_value, &offset)); EXPECT_EQ("pected", read_value); EXPECT_EQ(8, offset); Status read_status = ReadString(test_string, 3, &read_value, &offset); EXPECT_FALSE(read_status.ok()); } TEST(WavIO, ReadValueInt8) { std::vector<uint8> test_data = {0x00, 0x05, 0xff, 0x80}; string test_string(test_data.begin(), test_data.end()); int offset = 0; int8_t read_value; TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(0, read_value); EXPECT_EQ(1, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(5, read_value); EXPECT_EQ(2, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(-1, read_value); EXPECT_EQ(3, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(-128, read_value); EXPECT_EQ(4, offset); Status read_status = ReadValue(test_string, &read_value, &offset); EXPECT_FALSE(read_status.ok()); } TEST(WavIO, ReadValueUInt8) { std::vector<uint8> test_data = {0x00, 0x05, 0xff, 0x80}; string test_string(test_data.begin(), test_data.end()); int offset = 0; uint8 read_value; TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(0, read_value); EXPECT_EQ(1, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(5, read_value); EXPECT_EQ(2, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(255, read_value); EXPECT_EQ(3, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(128, read_value); EXPECT_EQ(4, offset); Status read_status = ReadValue(test_string, &read_value, &offset); EXPECT_FALSE(read_status.ok()); } TEST(WavIO, ReadValueInt16) { std::vector<uint8> test_data = { 0x00, 0x00, 0xff, 0x00, 0x00, 0x01, 0xff, 0xff, 0x00, 0x80, }; string test_string(test_data.begin(), test_data.end()); int offset = 0; int16_t read_value; TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(0, read_value); EXPECT_EQ(2, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(255, read_value); EXPECT_EQ(4, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(256, read_value); EXPECT_EQ(6, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(-1, read_value); EXPECT_EQ(8, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(-32768, read_value); EXPECT_EQ(10, offset); Status read_status = ReadValue(test_string, &read_value, &offset); EXPECT_FALSE(read_status.ok()); } TEST(WavIO, ReadValueUInt16) { std::vector<uint8> test_data = { 0x00, 0x00, 0xff, 0x00, 0x00, 0x01, 0xff, 0xff, 0x00, 0x80, }; string test_string(test_data.begin(), test_data.end()); int offset = 0; uint16 read_value; TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(0, read_value); EXPECT_EQ(2, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(255, read_value); EXPECT_EQ(4, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(256, read_value); EXPECT_EQ(6, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(65535, read_value); EXPECT_EQ(8, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(32768, read_value); EXPECT_EQ(10, offset); Status read_status = ReadValue(test_string, &read_value, &offset); EXPECT_FALSE(read_status.ok()); } TEST(WavIO, ReadValueInt32) { std::vector<uint8> test_data = { 0x00, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x00, 0xff, 0xff, 0xff, 0xff, }; string test_string(test_data.begin(), test_data.end()); int offset = 0; int32_t read_value; TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(0, read_value); EXPECT_EQ(4, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(255, read_value); EXPECT_EQ(8, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(65280, read_value); EXPECT_EQ(12, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(16711680, read_value); EXPECT_EQ(16, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(-1, read_value); EXPECT_EQ(20, offset); Status read_status = ReadValue(test_string, &read_value, &offset); EXPECT_FALSE(read_status.ok()); } TEST(WavIO, ReadValueUInt32) { std::vector<uint8> test_data = { 0x00, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0x00, 0xff, 0xff, 0xff, 0xff, }; string test_string(test_data.begin(), test_data.end()); int offset = 0; uint32 read_value; TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(0, read_value); EXPECT_EQ(4, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(255, read_value); EXPECT_EQ(8, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(65280, read_value); EXPECT_EQ(12, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(16711680, read_value); EXPECT_EQ(16, offset); TF_EXPECT_OK(ReadValue(test_string, &read_value, &offset)); EXPECT_EQ(4294967295, read_value); EXPECT_EQ(20, offset); Status read_status = ReadValue(test_string, &read_value, &offset); EXPECT_FALSE(read_status.ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/wav/wav_io.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/wav/wav_io_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
19886cb3-2cfb-4460-800b-3e30336fb6f2
cpp
tensorflow/tensorflow
arena
tensorflow/core/lib/core/arena.cc
tensorflow/core/lib/core/arena_test.cc
#include "tensorflow/core/lib/core/arena.h" #include <assert.h> #include <algorithm> #include <vector> #include "tensorflow/core/lib/math/math_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mem.h" namespace tensorflow { namespace core { Arena::Arena(const size_t block_size) : remaining_(0), block_size_(block_size), freestart_(nullptr), blocks_alloced_(1), overflow_blocks_(nullptr) { assert(block_size > kDefaultAlignment); first_blocks_[0].mem = reinterpret_cast<char*>(port::AlignedMalloc(block_size_, sizeof(void*))); first_blocks_[0].size = block_size_; Reset(); } Arena::~Arena() { FreeBlocks(); assert(overflow_blocks_ == nullptr); for (size_t i = 0; i < blocks_alloced_; ++i) { port::AlignedFree(first_blocks_[i].mem); } } bool Arena::SatisfyAlignment(size_t alignment) { const size_t overage = reinterpret_cast<size_t>(freestart_) & (alignment - 1); if (overage > 0) { const size_t waste = alignment - overage; if (waste >= remaining_) { return false; } freestart_ += waste; remaining_ -= waste; } DCHECK_EQ(size_t{0}, reinterpret_cast<size_t>(freestart_) & (alignment - 1)); return true; } void Arena::Reset() { FreeBlocks(); freestart_ = first_blocks_[0].mem; remaining_ = first_blocks_[0].size; CHECK(SatisfyAlignment(kDefaultAlignment)); freestart_when_empty_ = freestart_; } void Arena::MakeNewBlock(const uint32 alignment) { AllocatedBlock* block = AllocNewBlock(block_size_, alignment); freestart_ = block->mem; remaining_ = block->size; CHECK(SatisfyAlignment(alignment)); } static uint32 LeastCommonMultiple(uint32 a, uint32 b) { if (a > b) { return (a / MathUtil::GCD<uint32>(a, b)) * b; } else if (a < b) { return (b / MathUtil::GCD<uint32>(b, a)) * a; } else { return a; } } Arena::AllocatedBlock* Arena::AllocNewBlock(const size_t block_size, const uint32 alignment) { AllocatedBlock* block; if (blocks_alloced_ < TF_ARRAYSIZE(first_blocks_)) { block = &first_blocks_[blocks_alloced_++]; } else { if (overflow_blocks_ == nullptr) overflow_blocks_ = new std::vector<AllocatedBlock>; overflow_blocks_->resize(overflow_blocks_->size() + 1); block = &overflow_blocks_->back(); } uint32 adjusted_alignment = (alignment > 1 ? LeastCommonMultiple(alignment, kDefaultAlignment) : 1); adjusted_alignment = std::max(adjusted_alignment, static_cast<uint32>(sizeof(void*))); CHECK_LE(adjusted_alignment, static_cast<uint32>(1 << 20)) << "Alignment on boundaries greater than 1MB not supported."; size_t adjusted_block_size = block_size; if (adjusted_block_size > adjusted_alignment) { const uint32 excess = adjusted_block_size % adjusted_alignment; adjusted_block_size += (excess > 0 ? adjusted_alignment - excess : 0); } block->mem = reinterpret_cast<char*>( port::AlignedMalloc(adjusted_block_size, adjusted_alignment)); block->size = adjusted_block_size; CHECK(nullptr != block->mem) << "block_size=" << block_size << " adjusted_block_size=" << adjusted_block_size << " alignment=" << alignment << " adjusted_alignment=" << adjusted_alignment; return block; } void* Arena::GetMemoryFallback(const size_t size, const int alignment) { if (0 == size) { return nullptr; } CHECK(alignment > 0 && 0 == (alignment & (alignment - 1))); if (block_size_ == 0 || size > block_size_ / 4) { return AllocNewBlock(size, alignment)->mem; } if (!SatisfyAlignment(alignment) || size > remaining_) { MakeNewBlock(alignment); } CHECK_LE(size, remaining_); remaining_ -= size; void* result = freestart_; freestart_ += size; return result; } void Arena::FreeBlocks() { for (size_t i = 1; i < blocks_alloced_; ++i) { port::AlignedFree(first_blocks_[i].mem); first_blocks_[i].mem = nullptr; first_blocks_[i].size = 0; } blocks_alloced_ = 1; if (overflow_blocks_ != nullptr) { std::vector<AllocatedBlock>::iterator it; for (it = overflow_blocks_->begin(); it != overflow_blocks_->end(); ++it) { port::AlignedFree(it->mem); } delete overflow_blocks_; overflow_blocks_ = nullptr; } } } }
#include "tensorflow/core/lib/core/arena.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace core { namespace { static void TestMemory(void* mem, int size) { memset(mem, 0xaa, size); char* tmp[100]; for (size_t i = 0; i < TF_ARRAYSIZE(tmp); i++) { tmp[i] = new char[i * i + 1]; } memset(mem, 0xcc, size); for (size_t i = 0; i < TF_ARRAYSIZE(tmp); i++) { delete[] tmp[i]; } memset(mem, 0xee, size); } TEST(ArenaTest, TestBasicArena) { Arena a(1024); char* memory = a.Alloc(100); ASSERT_NE(memory, nullptr); TestMemory(memory, 100); memory = a.Alloc(100); ASSERT_NE(memory, nullptr); TestMemory(memory, 100); } TEST(ArenaTest, TestAlignment) { Arena a(1024); char* byte0 = a.Alloc(1); char* alloc_aligned8 = a.AllocAligned(17, 8); EXPECT_EQ(alloc_aligned8 - byte0, 8); char* alloc_aligned8_b = a.AllocAligned(8, 8); EXPECT_EQ(alloc_aligned8_b - alloc_aligned8, 24); char* alloc_aligned8_c = a.AllocAligned(16, 8); EXPECT_EQ(alloc_aligned8_c - alloc_aligned8_b, 8); char* alloc_aligned8_d = a.AllocAligned(8, 1); EXPECT_EQ(alloc_aligned8_d - alloc_aligned8_c, 16); } TEST(ArenaTest, TestVariousArenaSizes) { { Arena a(1024); char* memory = a.Alloc(1024); ASSERT_NE(memory, nullptr); TestMemory(memory, 1024); char* memory2 = a.Alloc(1024); ASSERT_NE(memory2, nullptr); TestMemory(memory2, 1024); } { Arena a(1024); char* memory = a.Alloc(768); ASSERT_NE(memory, nullptr); TestMemory(memory, 768); char* memory2 = a.Alloc(768); ASSERT_NE(memory2, nullptr); TestMemory(memory2, 768); } { Arena a(1024); char* memory = a.Alloc(10240); ASSERT_NE(memory, nullptr); TestMemory(memory, 10240); char* memory2 = a.Alloc(1234); ASSERT_NE(memory2, nullptr); TestMemory(memory2, 1234); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/arena.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/arena_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1103e21a-acfc-4a48-804b-d5d2def2a88d
cpp
tensorflow/tensorflow
sqlite
tensorflow/core/lib/db/sqlite.cc
tensorflow/core/lib/db/sqlite_test.cc
#include "tensorflow/core/lib/db/sqlite.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/stringprintf.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/errors.h" #include "tsl/platform/macros.h" #include "tsl/platform/status.h" extern "C" int sqlite3_snapfn_init(sqlite3*, const char**, const void*); namespace tensorflow { namespace { absl::StatusCode GetTfErrorCode(int code) { switch (code & 0xff) { case SQLITE_OK: case SQLITE_ROW: case SQLITE_DONE: return absl::StatusCode::kOk; case SQLITE_ABORT: return absl::StatusCode::kAborted; case SQLITE_READONLY: case SQLITE_MISMATCH: return absl::StatusCode::kFailedPrecondition; case SQLITE_MISUSE: case SQLITE_INTERNAL: return absl::StatusCode::kInternal; case SQLITE_RANGE: return absl::StatusCode::kOutOfRange; case SQLITE_CANTOPEN: case SQLITE_CONSTRAINT: case SQLITE_NOTFOUND: case SQLITE_NOTADB: return absl::StatusCode::kInvalidArgument; case SQLITE_CORRUPT: return absl::StatusCode::kDataLoss; case SQLITE_AUTH: case SQLITE_PERM: return absl::StatusCode::kPermissionDenied; case SQLITE_FULL: case SQLITE_TOOBIG: case SQLITE_NOLFS: return absl::StatusCode::kResourceExhausted; case SQLITE_BUSY: case SQLITE_LOCKED: case SQLITE_PROTOCOL: case SQLITE_NOMEM: return absl::StatusCode::kUnavailable; case SQLITE_INTERRUPT: return absl::StatusCode::kCancelled; case SQLITE_ERROR: case SQLITE_IOERR: case SQLITE_SCHEMA: default: return absl::StatusCode::kUnknown; } } template <typename... Args> Status PrintfStatus(int rc, const char* fmt, Args&&... args) { return {GetTfErrorCode(rc), strings::Printf(fmt, std::forward<Args>(args)...)}; } sqlite3_stmt* PrepareRawOrDie(sqlite3* db, const char* sql) { sqlite3_stmt* stmt = nullptr; int rc = sqlite3_prepare_v2(db, sql, -1, &stmt, nullptr); CHECK_EQ(SQLITE_OK, rc) << sql; return stmt; } Status SetPragma(Sqlite* db, const char* pragma, const StringPiece& value) { if (value.empty()) return absl::OkStatus(); for (auto p = value.begin(); p < value.end(); ++p) { if (!(('0' <= *p && *p <= '9') || ('A' <= *p && *p <= 'Z') || ('a' <= *p && *p <= 'z') || *p == '-')) { return errors::InvalidArgument("Illegal pragma character"); } } SqliteStatement stmt; TF_RETURN_IF_ERROR( db->Prepare(strings::StrCat("PRAGMA ", pragma, "=", value), &stmt)); bool unused_done; return stmt.Step(&unused_done); } const StringPiece GetEnv(const char* var) { const char* val = std::getenv(var); return (val == nullptr) ? StringPiece() : StringPiece(val); } Status EnvPragma(Sqlite* db, const char* pragma, const char* var) { TF_RETURN_WITH_CONTEXT_IF_ERROR(SetPragma(db, pragma, GetEnv(var)), "getenv(", var, ")"); return absl::OkStatus(); } } Status Sqlite::Open(const string& path, int flags, Sqlite** db) { flags |= SQLITE_OPEN_PRIVATECACHE; flags |= SQLITE_OPEN_URI; sqlite3* sqlite = nullptr; int rc = sqlite3_open_v2(path.c_str(), &sqlite, flags, nullptr); if (rc != SQLITE_OK) { *db = nullptr; return PrintfStatus(rc, "Sqlite::Open(%s) failed: %s", path.c_str(), sqlite3_errstr(rc)); } CHECK_EQ(SQLITE_OK, sqlite3_extended_result_codes(sqlite, 1)); CHECK_EQ(SQLITE_OK, sqlite3_snapfn_init(sqlite, nullptr, nullptr)); sqlite3_stmt* begin = PrepareRawOrDie(sqlite, "BEGIN"); sqlite3_stmt* commit = PrepareRawOrDie(sqlite, "COMMIT"); sqlite3_stmt* rollback = PrepareRawOrDie(sqlite, "ROLLBACK"); *db = new Sqlite(sqlite, begin, commit, rollback); Status s = absl::OkStatus(); s.Update(SetPragma(*db, "page_size", "4096")); s.Update(EnvPragma(*db, "secure_delete", "TF_SQLITE_SECURE_DELETE")); s.Update(EnvPragma(*db, "page_size", "TF_SQLITE_PAGE_SIZE")); s.Update(EnvPragma(*db, "journal_mode", "TF_SQLITE_JOURNAL_MODE")); s.Update(EnvPragma(*db, "synchronous", "TF_SQLITE_SYNCHRONOUS")); s.Update(EnvPragma(*db, "mmap_size", "TF_SQLITE_MMAP_SIZE")); s.Update(EnvPragma(*db, "locking_mode", "TF_SQLITE_LOCKING_MODE")); s.Update(EnvPragma(*db, "cache_size", "TF_SQLITE_CACHE_SIZE")); s.Update(EnvPragma(*db, "auto_vacuum", "TF_SQLITE_AUTO_VACUUM")); DCHECK((*db)->RefCountIsOne()); if (!s.ok()) { (*db)->Unref(); *db = nullptr; } return s; } Sqlite::~Sqlite() { sqlite3_finalize(rollback_); sqlite3_finalize(commit_); sqlite3_finalize(begin_); CHECK_EQ(SQLITE_OK, sqlite3_close(db_)); } Status Sqlite::Prepare(const StringPiece& sql, SqliteStatement* stmt) { SqliteLock lock(*this); sqlite3_stmt* ps = nullptr; int rc = sqlite3_prepare_v2(db_, sql.data(), static_cast<int>(sql.size()), &ps, nullptr); if (rc != SQLITE_OK) { *stmt = SqliteStatement(); return PrintfStatus(rc, "Prepare() failed: [%d] %s: %.*s", rc, errmsg(), sql.size(), sql.data()); } *stmt = SqliteStatement(this, ps); return absl::OkStatus(); } Status SqliteStatement::Step(bool* is_done) { DCHECK(stmt_ != nullptr); if (TF_PREDICT_FALSE(bind_error_ != SQLITE_OK)) { *is_done = true; return PrintfStatus(bind_error_, "Bind(%d) failed: %s: %s", bind_error_parameter_, sqlite3_errstr(bind_error_), sql()); } SqliteLock lock(*db_); int rc = sqlite3_step(stmt_); switch (rc) { case SQLITE_ROW: *is_done = false; return absl::OkStatus(); case SQLITE_DONE: *is_done = true; return absl::OkStatus(); default: *is_done = true; return PrintfStatus(rc, "Step() failed: [%d] %s: %s", rc, db_->errmsg(), sql()); } } bool SqliteStatement::StepOrDie() { bool is_done; TF_CHECK_OK(Step(&is_done)); return !is_done; } Status SqliteStatement::StepOnce() { bool is_done; TF_RETURN_IF_ERROR(Step(&is_done)); if (TF_PREDICT_FALSE(is_done)) { return errors::Internal("No rows returned: ", sql()); } return absl::OkStatus(); } const SqliteStatement& SqliteStatement::StepOnceOrDie() { TF_CHECK_OK(StepOnce()); return *this; } Status SqliteStatement::StepAndReset() { bool is_done; Status s = Step(&is_done); if (TF_PREDICT_FALSE(s.ok() && !is_done)) { s = errors::Internal("Unexpected row: ", sql()); } Reset(); return s; } void SqliteStatement::StepAndResetOrDie() { TF_CHECK_OK(StepAndReset()); } void SqliteStatement::Reset() { if (TF_PREDICT_TRUE(stmt_ != nullptr)) { sqlite3_reset(stmt_); sqlite3_clear_bindings(stmt_); } bind_error_ = SQLITE_OK; size_ = 0; } SqliteTransaction::SqliteTransaction(Sqlite& db) : db_(&db) { sqlite3_mutex_enter(sqlite3_db_mutex(db_->db_)); CHECK(!db_->is_in_transaction_); db_->is_in_transaction_ = true; Begin(); } SqliteTransaction::~SqliteTransaction() { sqlite3_step(db_->rollback_); sqlite3_reset(db_->rollback_); sqlite3_reset(db_->begin_); db_->is_in_transaction_ = false; sqlite3_mutex_leave(sqlite3_db_mutex(db_->db_)); } void SqliteTransaction::Begin() { if (sqlite3_step(db_->begin_) != SQLITE_DONE) { LOG(FATAL) << "BEGIN failed: " << sqlite3_errmsg(db_->db_); } } Status SqliteTransaction::Commit() { int rc = sqlite3_step(db_->commit_); if (rc != SQLITE_DONE) { return PrintfStatus(rc, "COMMIT failed: [%d] %s", rc, sqlite3_errmsg(db_->db_)); } sqlite3_reset(db_->commit_); sqlite3_reset(db_->begin_); Begin(); return absl::OkStatus(); } }
#include "tensorflow/core/lib/db/sqlite.h" #include <array> #include <climits> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { class SqliteTest : public ::testing::Test { protected: void SetUp() override { TF_ASSERT_OK(Sqlite::Open(":memory:", SQLITE_OPEN_READWRITE, &db_)); db_->PrepareOrDie("CREATE TABLE T (a BLOB, b BLOB)").StepAndResetOrDie(); } void TearDown() override { db_->Unref(); } Sqlite* db_; bool is_done_; }; TEST_F(SqliteTest, InsertAndSelectInt) { auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindInt(1, 3); stmt.BindInt(2, -7); TF_ASSERT_OK(stmt.StepAndReset()); stmt.BindInt(1, 123); stmt.BindInt(2, -123); TF_ASSERT_OK(stmt.StepAndReset()); stmt = db_->PrepareOrDie("SELECT a, b FROM T ORDER BY b"); TF_ASSERT_OK(stmt.Step(&is_done_)); ASSERT_FALSE(is_done_); EXPECT_EQ(123, stmt.ColumnInt(0)); EXPECT_EQ(-123, stmt.ColumnInt(1)); TF_ASSERT_OK(stmt.Step(&is_done_)); ASSERT_FALSE(is_done_); EXPECT_EQ(3, stmt.ColumnInt(0)); EXPECT_EQ(-7, stmt.ColumnInt(1)); TF_ASSERT_OK(stmt.Step(&is_done_)); ASSERT_TRUE(is_done_); } TEST_F(SqliteTest, InsertAndSelectDouble) { auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindDouble(1, 6.28318530); stmt.BindDouble(2, 1.61803399); TF_ASSERT_OK(stmt.StepAndReset()); stmt = db_->PrepareOrDie("SELECT a, b FROM T"); TF_ASSERT_OK(stmt.Step(&is_done_)); EXPECT_EQ(6.28318530, stmt.ColumnDouble(0)); EXPECT_EQ(1.61803399, stmt.ColumnDouble(1)); EXPECT_EQ(6, stmt.ColumnInt(0)); EXPECT_EQ(1, stmt.ColumnInt(1)); } #ifdef DSQLITE_ENABLE_JSON1 TEST_F(SqliteTest, Json1Extension) { string s1 = "{\"key\": 42}"; string s2 = "{\"key\": \"value\"}"; auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindText(1, s1); stmt.BindText(2, s2); TF_ASSERT_OK(stmt.StepAndReset()); stmt = db_->PrepareOrDie("SELECT json_extract(a, '$.key'), json_extract(b, '$.key') FROM T"); TF_ASSERT_OK(stmt.Step(&is_done_)); EXPECT_EQ(42, stmt.ColumnInt(0)); EXPECT_EQ("value", stmt.ColumnString(1)); } #endif TEST_F(SqliteTest, NulCharsInString) { string s; s.append(static_cast<size_t>(2), '\0'); auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindBlob(1, s); stmt.BindText(2, s); TF_ASSERT_OK(stmt.StepAndReset()); stmt = db_->PrepareOrDie("SELECT a, b FROM T"); TF_ASSERT_OK(stmt.Step(&is_done_)); EXPECT_EQ(2, stmt.ColumnSize(0)); EXPECT_EQ(2, stmt.ColumnString(0).size()); EXPECT_EQ('\0', stmt.ColumnString(0).at(0)); EXPECT_EQ('\0', stmt.ColumnString(0).at(1)); EXPECT_EQ(2, stmt.ColumnSize(1)); EXPECT_EQ(2, stmt.ColumnString(1).size()); EXPECT_EQ('\0', stmt.ColumnString(1).at(0)); EXPECT_EQ('\0', stmt.ColumnString(1).at(1)); } TEST_F(SqliteTest, Unicode) { string s = "要依法治国是赞美那些谁是公义的和惩罚恶人。 - 韩非"; auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindBlob(1, s); stmt.BindText(2, s); TF_ASSERT_OK(stmt.StepAndReset()); stmt = db_->PrepareOrDie("SELECT a, b FROM T"); TF_ASSERT_OK(stmt.Step(&is_done_)); EXPECT_EQ(s, stmt.ColumnString(0)); EXPECT_EQ(s, stmt.ColumnString(1)); } TEST_F(SqliteTest, StepAndResetClearsBindings) { auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindInt(1, 1); stmt.BindInt(2, 123); TF_ASSERT_OK(stmt.StepAndReset()); stmt.BindInt(1, 2); TF_ASSERT_OK(stmt.StepAndReset()); stmt = db_->PrepareOrDie("SELECT b FROM T ORDER BY a"); TF_ASSERT_OK(stmt.Step(&is_done_)); EXPECT_EQ(123, stmt.ColumnInt(0)); TF_ASSERT_OK(stmt.Step(&is_done_)); EXPECT_EQ(SQLITE_NULL, stmt.ColumnType(0)); } TEST_F(SqliteTest, SafeBind) { string s = "hello"; auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindBlob(1, s); stmt.BindText(2, s); s.at(0) = 'y'; TF_ASSERT_OK(stmt.StepAndReset()); stmt = db_->PrepareOrDie("SELECT a, b FROM T"); TF_ASSERT_OK(stmt.Step(&is_done_)); EXPECT_EQ("hello", stmt.ColumnString(0)); EXPECT_EQ("hello", stmt.ColumnString(1)); } TEST_F(SqliteTest, UnsafeBind) { string s = "hello"; auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindBlobUnsafe(1, s); stmt.BindTextUnsafe(2, s); s.at(0) = 'y'; TF_ASSERT_OK(stmt.StepAndReset()); stmt = db_->PrepareOrDie("SELECT a, b FROM T"); TF_ASSERT_OK(stmt.Step(&is_done_)); EXPECT_EQ("yello", stmt.ColumnString(0)); EXPECT_EQ("yello", stmt.ColumnString(1)); } TEST_F(SqliteTest, UnsafeColumn) { auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindInt(1, 1); stmt.BindText(2, "hello"); TF_ASSERT_OK(stmt.StepAndReset()); stmt.BindInt(1, 2); stmt.BindText(2, "there"); TF_ASSERT_OK(stmt.StepAndReset()); stmt = db_->PrepareOrDie("SELECT b FROM T ORDER BY a"); TF_ASSERT_OK(stmt.Step(&is_done_)); StringPiece p = stmt.ColumnStringUnsafe(0); EXPECT_EQ('h', *p.data()); TF_ASSERT_OK(stmt.Step(&is_done_)); } TEST_F(SqliteTest, NamedParameterBind) { auto stmt = db_->PrepareOrDie("INSERT INTO T (a) VALUES (:a)"); stmt.BindText(":a", "lol"); TF_ASSERT_OK(stmt.StepAndReset()); stmt = db_->PrepareOrDie("SELECT COUNT(*) FROM T"); TF_ASSERT_OK(stmt.Step(&is_done_)); EXPECT_EQ(1, stmt.ColumnInt(0)); stmt = db_->PrepareOrDie("SELECT a FROM T"); TF_ASSERT_OK(stmt.Step(&is_done_)); EXPECT_FALSE(is_done_); EXPECT_EQ("lol", stmt.ColumnString(0)); } TEST_F(SqliteTest, Statement_DefaultConstructor) { SqliteStatement stmt; EXPECT_FALSE(stmt); stmt = db_->PrepareOrDie("INSERT INTO T (a) VALUES (1)"); EXPECT_TRUE(stmt); EXPECT_TRUE(stmt.StepAndReset().ok()); } TEST_F(SqliteTest, Statement_MoveConstructor) { SqliteStatement stmt{db_->PrepareOrDie("INSERT INTO T (a) VALUES (1)")}; EXPECT_TRUE(stmt.StepAndReset().ok()); } TEST_F(SqliteTest, Statement_MoveAssignment) { SqliteStatement stmt1 = db_->PrepareOrDie("INSERT INTO T (a) VALUES (1)"); SqliteStatement stmt2; EXPECT_TRUE(stmt1.StepAndReset().ok()); EXPECT_FALSE(stmt2); stmt2 = std::move(stmt1); EXPECT_TRUE(stmt2.StepAndReset().ok()); } TEST_F(SqliteTest, PrepareFailed) { SqliteLock lock(*db_); SqliteStatement stmt; Status s = db_->Prepare("SELECT", &stmt); ASSERT_FALSE(s.ok()); EXPECT_NE(string::npos, s.message().find("SELECT")); EXPECT_EQ(SQLITE_ERROR, db_->errcode()); } TEST_F(SqliteTest, BindFailed) { auto stmt = db_->PrepareOrDie("INSERT INTO T (a) VALUES (123)"); stmt.BindInt(1, 123); Status s = stmt.StepOnce(); EXPECT_NE(string::npos, s.message().find("INSERT INTO T (a) VALUES (123)")) << s.message(); } TEST_F(SqliteTest, SnappyExtension) { auto stmt = db_->PrepareOrDie("SELECT UNSNAP(SNAP(?))"); stmt.BindText(1, "hello"); EXPECT_EQ("hello", stmt.StepOnceOrDie().ColumnString(0)); } TEST_F(SqliteTest, SnappyBinaryCompatibility) { EXPECT_EQ( "today is the end of the republic", db_->PrepareOrDie("SELECT UNSNAP(X'03207C746F6461792069732074686520656E64" "206F66207468652072657075626C6963')") .StepOnceOrDie() .ColumnString(0)); } TEST(SqliteOpenTest, CloseConnectionBeforeStatement_KeepsConnectionOpen) { Sqlite* db; TF_ASSERT_OK(Sqlite::Open(":memory:", SQLITE_OPEN_READWRITE, &db)); SqliteStatement stmt = db->PrepareOrDie("SELECT ? + ?"); db->Unref(); stmt.BindInt(1, 7); stmt.BindInt(2, 3); EXPECT_EQ(10, stmt.StepOnceOrDie().ColumnInt(0)); } TEST_F(SqliteTest, TransactionRollback) { { SqliteTransaction txn(*db_); auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindDouble(1, 6.28318530); stmt.BindDouble(2, 1.61803399); TF_ASSERT_OK(stmt.StepAndReset()); } EXPECT_EQ( 0, db_->PrepareOrDie("SELECT COUNT(*) FROM T").StepOnceOrDie().ColumnInt(0)); } TEST_F(SqliteTest, TransactionCommit) { { SqliteTransaction txn(*db_); auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindDouble(1, 6.28318530); stmt.BindDouble(2, 1.61803399); TF_ASSERT_OK(stmt.StepAndReset()); TF_ASSERT_OK(txn.Commit()); } EXPECT_EQ( 1, db_->PrepareOrDie("SELECT COUNT(*) FROM T").StepOnceOrDie().ColumnInt(0)); } TEST_F(SqliteTest, TransactionCommitMultipleTimes) { { SqliteTransaction txn(*db_); auto stmt = db_->PrepareOrDie("INSERT INTO T (a, b) VALUES (?, ?)"); stmt.BindDouble(1, 6.28318530); stmt.BindDouble(2, 1.61803399); TF_ASSERT_OK(stmt.StepAndReset()); TF_ASSERT_OK(txn.Commit()); stmt.BindDouble(1, 6.28318530); stmt.BindDouble(2, 1.61803399); TF_ASSERT_OK(stmt.StepAndReset()); TF_ASSERT_OK(txn.Commit()); } EXPECT_EQ( 2, db_->PrepareOrDie("SELECT COUNT(*) FROM T").StepOnceOrDie().ColumnInt(0)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/db/sqlite.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/db/sqlite_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3d90bf76-93c5-467b-bc99-3fbef055fd1a
cpp
tensorflow/tensorflow
jpeg_mem
tensorflow/core/lib/jpeg/jpeg_mem.cc
tensorflow/core/lib/jpeg/jpeg_mem_unittest.cc
#include "tensorflow/core/lib/jpeg/jpeg_mem.h" #include <setjmp.h> #include <string.h> #include <algorithm> #include <functional> #include <memory> #include <ostream> #include <string> #include <utility> #include "jpeglib.h" #include "tensorflow/core/lib/jpeg/jpeg_handle.h" #include "tensorflow/core/platform/dynamic_annotations.h" #include "tensorflow/core/platform/jpeg.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace jpeg { namespace { enum JPEGErrors { JPEGERRORS_OK, JPEGERRORS_UNEXPECTED_END_OF_DATA, JPEGERRORS_BAD_PARAM }; class FewerArgsForCompiler { public: FewerArgsForCompiler(int datasize, const UncompressFlags& flags, int64_t* nwarn, std::function<uint8*(int, int, int)> allocate_output) : datasize_(datasize), flags_(flags), pnwarn_(nwarn), allocate_output_(std::move(allocate_output)), height_read_(0), height_(0), stride_(0) { if (pnwarn_ != nullptr) *pnwarn_ = 0; } const int datasize_; const UncompressFlags flags_; int64_t* const pnwarn_; std::function<uint8*(int, int, int)> allocate_output_; int height_read_; int height_; int stride_; }; bool IsCropWindowValid(const UncompressFlags& flags, int input_image_width, int input_image_height) { return flags.crop_width > 0 && flags.crop_height > 0 && flags.crop_x >= 0 && flags.crop_y >= 0 && flags.crop_y + flags.crop_height <= input_image_height && flags.crop_x + flags.crop_width <= input_image_width; } #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION void no_print(j_common_ptr cinfo) {} #endif uint8* UncompressLow(const void* srcdata, FewerArgsForCompiler* argball) { const int datasize = argball->datasize_; const auto& flags = argball->flags_; const int ratio = flags.ratio; int components = flags.components; int stride = flags.stride; int64_t* const nwarn = argball->pnwarn_; if ((ratio != 1) && (ratio != 2) && (ratio != 4) && (ratio != 8)) { return nullptr; } if (!(components == 0 || components == 1 || components == 3)) { return nullptr; } if (datasize == 0 || srcdata == nullptr) return nullptr; JSAMPLE* tempdata = nullptr; JPEGErrors error = JPEGERRORS_OK; struct jpeg_decompress_struct cinfo; struct jpeg_error_mgr jerr; cinfo.err = jpeg_std_error(&jerr); jerr.error_exit = CatchError; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION jerr.output_message = no_print; #endif jmp_buf jpeg_jmpbuf; cinfo.client_data = &jpeg_jmpbuf; if (setjmp(jpeg_jmpbuf)) { delete[] tempdata; return nullptr; } jpeg_create_decompress(&cinfo); SetSrc(&cinfo, srcdata, datasize, flags.try_recover_truncated_jpeg); jpeg_read_header(&cinfo, TRUE); if (components == 0) components = std::min(cinfo.num_components, 3); switch (components) { case 1: cinfo.out_color_space = JCS_GRAYSCALE; break; case 3: if (cinfo.jpeg_color_space == JCS_CMYK || cinfo.jpeg_color_space == JCS_YCCK) { cinfo.out_color_space = JCS_CMYK; } else { cinfo.out_color_space = JCS_RGB; } break; default: LOG(ERROR) << " Invalid components value " << components << std::endl; jpeg_destroy_decompress(&cinfo); return nullptr; } cinfo.do_fancy_upsampling = boolean(flags.fancy_upscaling); cinfo.scale_num = 1; cinfo.scale_denom = ratio; cinfo.dct_method = flags.dct_method; jpeg_calc_output_dimensions(&cinfo); int64_t total_size = static_cast<int64_t>(cinfo.output_height) * static_cast<int64_t>(cinfo.output_width) * static_cast<int64_t>(cinfo.num_components); if (cinfo.output_width <= 0 || cinfo.output_height <= 0) { LOG(ERROR) << "Invalid image size: " << cinfo.output_width << " x " << cinfo.output_height; jpeg_destroy_decompress(&cinfo); return nullptr; } if (total_size >= (1LL << 29)) { LOG(ERROR) << "Image too large: " << total_size; jpeg_destroy_decompress(&cinfo); return nullptr; } jpeg_start_decompress(&cinfo); JDIMENSION target_output_width = cinfo.output_width; JDIMENSION target_output_height = cinfo.output_height; JDIMENSION skipped_scanlines = 0; #if defined(LIBJPEG_TURBO_VERSION) if (flags.crop) { target_output_height = flags.crop_height; target_output_width = flags.crop_width; if (!IsCropWindowValid(flags, cinfo.output_width, cinfo.output_height)) { LOG(ERROR) << "Invalid crop window: x=" << flags.crop_x << ", y=" << flags.crop_y << ", w=" << target_output_width << ", h=" << target_output_height << " for image_width: " << cinfo.output_width << " and image_height: " << cinfo.output_height; jpeg_destroy_decompress(&cinfo); return nullptr; } JDIMENSION crop_width = flags.crop_width; JDIMENSION crop_x = flags.crop_x; jpeg_crop_scanline(&cinfo, &crop_x, &crop_width); skipped_scanlines = jpeg_skip_scanlines(&cinfo, flags.crop_y); CHECK_EQ(skipped_scanlines, flags.crop_y); } #endif const int min_stride = target_output_width * components * sizeof(JSAMPLE); if (stride == 0) { stride = min_stride; } else if (stride < min_stride) { LOG(ERROR) << "Incompatible stride: " << stride << " < " << min_stride; jpeg_destroy_decompress(&cinfo); return nullptr; } argball->height_ = target_output_height; argball->stride_ = stride; #if !defined(LIBJPEG_TURBO_VERSION) uint8* dstdata = nullptr; if (flags.crop) { dstdata = new JSAMPLE[stride * target_output_height]; } else { dstdata = argball->allocate_output_(target_output_width, target_output_height, components); } #else uint8* dstdata = argball->allocate_output_(target_output_width, target_output_height, components); #endif if (dstdata == nullptr) { jpeg_destroy_decompress(&cinfo); return nullptr; } JSAMPLE* output_line = static_cast<JSAMPLE*>(dstdata); const bool need_realign_cropped_scanline = (target_output_width != cinfo.output_width); const bool use_cmyk = (cinfo.out_color_space == JCS_CMYK); if (use_cmyk) { tempdata = new JSAMPLE[cinfo.output_width * 4]; } else if (need_realign_cropped_scanline) { tempdata = new JSAMPLE[cinfo.output_width * components]; } argball->height_read_ = target_output_height; const int max_scanlines_to_read = skipped_scanlines + target_output_height; const int mcu_align_offset = (cinfo.output_width - target_output_width) * (use_cmyk ? 4 : components); while (cinfo.output_scanline < max_scanlines_to_read) { int num_lines_read = 0; if (use_cmyk) { num_lines_read = jpeg_read_scanlines(&cinfo, &tempdata, 1); if (num_lines_read > 0) { for (size_t i = 0; i < target_output_width; ++i) { int offset = 4 * i; if (need_realign_cropped_scanline) { offset += mcu_align_offset; } const int c = tempdata[offset + 0]; const int m = tempdata[offset + 1]; const int y = tempdata[offset + 2]; const int k = tempdata[offset + 3]; int r, g, b; if (cinfo.saw_Adobe_marker) { r = (k * c) / 255; g = (k * m) / 255; b = (k * y) / 255; } else { r = (255 - k) * (255 - c) / 255; g = (255 - k) * (255 - m) / 255; b = (255 - k) * (255 - y) / 255; } output_line[3 * i + 0] = r; output_line[3 * i + 1] = g; output_line[3 * i + 2] = b; } } } else if (need_realign_cropped_scanline) { num_lines_read = jpeg_read_scanlines(&cinfo, &tempdata, 1); if (num_lines_read > 0) { memcpy(output_line, tempdata + mcu_align_offset, min_stride); } } else { num_lines_read = jpeg_read_scanlines(&cinfo, &output_line, 1); } if (num_lines_read == 0) { LOG(ERROR) << "Premature end of JPEG data. Stopped at line " << cinfo.output_scanline - skipped_scanlines << "/" << target_output_height; if (!flags.try_recover_truncated_jpeg) { argball->height_read_ = cinfo.output_scanline - skipped_scanlines; error = JPEGERRORS_UNEXPECTED_END_OF_DATA; } else { for (size_t line = cinfo.output_scanline; line < max_scanlines_to_read; ++line) { if (line == 0) { memset(output_line, 0, min_stride); } else { memcpy(output_line, output_line - stride, min_stride); } output_line += stride; } argball->height_read_ = target_output_height; cinfo.output_scanline = max_scanlines_to_read; } break; } DCHECK_EQ(num_lines_read, 1); TF_ANNOTATE_MEMORY_IS_INITIALIZED(output_line, min_stride); output_line += stride; } delete[] tempdata; tempdata = nullptr; #if defined(LIBJPEG_TURBO_VERSION) if (flags.crop && cinfo.output_scanline < cinfo.output_height) { jpeg_skip_scanlines(&cinfo, cinfo.output_height - flags.crop_y - flags.crop_height); } #endif if (components == 4) { JSAMPLE* scanlineptr = static_cast<JSAMPLE*>( dstdata + static_cast<int64_t>(target_output_height - 1) * stride); const JSAMPLE kOpaque = -1; const int right_rgb = (target_output_width - 1) * 3; const int right_rgba = (target_output_width - 1) * 4; for (int y = target_output_height; y-- > 0;) { const JSAMPLE* rgb_pixel = scanlineptr + right_rgb; JSAMPLE* rgba_pixel = scanlineptr + right_rgba; scanlineptr -= stride; for (int x = target_output_width; x-- > 0; rgba_pixel -= 4, rgb_pixel -= 3) { rgba_pixel[3] = kOpaque; rgba_pixel[2] = rgb_pixel[2]; rgba_pixel[1] = rgb_pixel[1]; rgba_pixel[0] = rgb_pixel[0]; } } } switch (components) { case 1: if (cinfo.output_components != 1) { error = JPEGERRORS_BAD_PARAM; } break; case 3: case 4: if (cinfo.out_color_space == JCS_CMYK) { if (cinfo.output_components != 4) { error = JPEGERRORS_BAD_PARAM; } } else { if (cinfo.output_components != 3) { error = JPEGERRORS_BAD_PARAM; } } break; default: LOG(ERROR) << "Invalid components value " << components << std::endl; jpeg_destroy_decompress(&cinfo); return nullptr; } if (nwarn != nullptr) { *nwarn = cinfo.err->num_warnings; } switch (error) { case JPEGERRORS_OK: jpeg_finish_decompress(&cinfo); break; case JPEGERRORS_UNEXPECTED_END_OF_DATA: case JPEGERRORS_BAD_PARAM: jpeg_abort(reinterpret_cast<j_common_ptr>(&cinfo)); break; default: LOG(ERROR) << "Unhandled case " << error; break; } #if !defined(LIBJPEG_TURBO_VERSION) if (flags.crop) { target_output_height = flags.crop_height; target_output_width = flags.crop_width; if (!IsCropWindowValid(flags, cinfo.output_width, cinfo.output_height)) { LOG(ERROR) << "Invalid crop window: x=" << flags.crop_x << ", y=" << flags.crop_y << ", w=" << target_output_width << ", h=" << target_output_height << " for image_width: " << cinfo.output_width << " and image_height: " << cinfo.output_height; delete[] dstdata; jpeg_destroy_decompress(&cinfo); return nullptr; } const uint8* full_image = dstdata; dstdata = argball->allocate_output_(target_output_width, target_output_height, components); if (dstdata == nullptr) { delete[] full_image; jpeg_destroy_decompress(&cinfo); return nullptr; } const int full_image_stride = stride; const int min_stride = target_output_width * components * sizeof(JSAMPLE); if (flags.stride == 0) { stride = min_stride; } argball->height_ = target_output_height; argball->stride_ = stride; if (argball->height_read_ > target_output_height) { argball->height_read_ = target_output_height; } const int crop_offset = flags.crop_x * components * sizeof(JSAMPLE); const uint8* full_image_ptr = full_image + flags.crop_y * full_image_stride; uint8* crop_image_ptr = dstdata; for (int i = 0; i < argball->height_read_; i++) { memcpy(crop_image_ptr, full_image_ptr + crop_offset, min_stride); crop_image_ptr += stride; full_image_ptr += full_image_stride; } delete[] full_image; } #endif jpeg_destroy_decompress(&cinfo); return dstdata; } } uint8* Uncompress(const void* srcdata, int datasize, const UncompressFlags& flags, int64_t* nwarn, std::function<uint8*(int, int, int)> allocate_output) { FewerArgsForCompiler argball(datasize, flags, nwarn, std::move(allocate_output)); uint8* const dstdata = UncompressLow(srcdata, &argball); const float fraction_read = argball.height_ == 0 ? 1.0 : (static_cast<float>(argball.height_read_) / argball.height_); if (dstdata == nullptr || fraction_read < std::min(1.0f, flags.min_acceptable_fraction)) { return nullptr; } if (argball.height_read_ != argball.height_) { const int first_bad_line = argball.height_read_; uint8* start = dstdata + first_bad_line * argball.stride_; const int nbytes = (argball.height_ - first_bad_line) * argball.stride_; memset(static_cast<void*>(start), 0, nbytes); } return dstdata; } uint8* Uncompress(const void* srcdata, int datasize, const UncompressFlags& flags, int* pwidth, int* pheight, int* pcomponents, int64_t* nwarn) { uint8* buffer = nullptr; uint8* result = Uncompress(srcdata, datasize, flags, nwarn, [=, &buffer](int width, int height, int components) { if (pwidth != nullptr) *pwidth = width; if (pheight != nullptr) *pheight = height; if (pcomponents != nullptr) *pcomponents = components; buffer = new uint8[height * width * components]; return buffer; }); if (!result) delete[] buffer; return result; } bool GetImageInfo(const void* srcdata, int datasize, int* width, int* height, int* components) { if (width) *width = 0; if (height) *height = 0; if (components) *components = 0; if (datasize == 0 || srcdata == nullptr) return false; struct jpeg_decompress_struct cinfo; struct jpeg_error_mgr jerr; jmp_buf jpeg_jmpbuf; cinfo.err = jpeg_std_error(&jerr); cinfo.client_data = &jpeg_jmpbuf; jerr.error_exit = CatchError; if (setjmp(jpeg_jmpbuf)) { return false; } jpeg_create_decompress(&cinfo); SetSrc(&cinfo, srcdata, datasize, false); jpeg_read_header(&cinfo, TRUE); jpeg_calc_output_dimensions(&cinfo); if (width) *width = cinfo.output_width; if (height) *height = cinfo.output_height; if (components) *components = cinfo.output_components; jpeg_destroy_decompress(&cinfo); return true; } namespace { bool CompressInternal(const uint8* srcdata, int width, int height, const CompressFlags& flags, tstring* output) { if (output == nullptr) { LOG(ERROR) << "Output buffer is null: "; return false; } output->clear(); const int components = (static_cast<int>(flags.format) & 0xff); int64_t total_size = static_cast<int64_t>(width) * static_cast<int64_t>(height); if (width <= 0 || height <= 0) { LOG(ERROR) << "Invalid image size: " << width << " x " << height; return false; } if (total_size >= (1LL << 29)) { LOG(ERROR) << "Image too large: " << total_size; return false; } int in_stride = flags.stride; if (in_stride == 0) { in_stride = width * (static_cast<int>(flags.format) & 0xff); } else if (in_stride < width * components) { LOG(ERROR) << "Incompatible input stride"; return false; } JOCTET* buffer = nullptr; CHECK(srcdata != nullptr); CHECK(output != nullptr); struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; jmp_buf jpeg_jmpbuf; cinfo.err = jpeg_std_error(&jerr); cinfo.client_data = &jpeg_jmpbuf; jerr.error_exit = CatchError; if (setjmp(jpeg_jmpbuf)) { output->clear(); delete[] buffer; return false; } jpeg_create_compress(&cinfo); int bufsize = std::min(width * height * components, 1 << 20); buffer = new JOCTET[bufsize]; SetDest(&cinfo, buffer, bufsize, output); cinfo.image_width = width; cinfo.image_height = height; switch (components) { case 1: cinfo.input_components = 1; cinfo.in_color_space = JCS_GRAYSCALE; break; case 3: case 4: cinfo.input_components = 3; cinfo.in_color_space = JCS_RGB; break; default: LOG(ERROR) << " Invalid components value " << components << std::endl; output->clear(); delete[] buffer; return false; } jpeg_set_defaults(&cinfo); if (flags.optimize_jpeg_size) cinfo.optimize_coding = TRUE; cinfo.density_unit = flags.density_unit; cinfo.X_density = flags.x_density; cinfo.Y_density = flags.y_density; jpeg_set_quality(&cinfo, flags.quality, TRUE); if (flags.progressive) { jpeg_simple_progression(&cinfo); } if (!flags.chroma_downsampling) { for (int i = 0; i < cinfo.num_components; ++i) { cinfo.comp_info[i].h_samp_factor = 1; cinfo.comp_info[i].v_samp_factor = 1; } } jpeg_start_compress(&cinfo, TRUE); if (!flags.xmp_metadata.empty()) { const string name_space = "http: const int name_space_length = name_space.size(); const int metadata_length = flags.xmp_metadata.size(); const int packet_length = metadata_length + name_space_length + 1; std::unique_ptr<JOCTET[]> joctet_packet(new JOCTET[packet_length]); for (int i = 0; i < name_space_length; i++) { joctet_packet[i] = name_space[i]; } joctet_packet[name_space_length] = 0; for (int i = 0; i < metadata_length; i++) { joctet_packet[i + name_space_length + 1] = flags.xmp_metadata[i]; } jpeg_write_marker(&cinfo, JPEG_APP0 + 1, joctet_packet.get(), packet_length); } std::unique_ptr<JSAMPLE[]> row_temp( new JSAMPLE[width * cinfo.input_components]); while (cinfo.next_scanline < cinfo.image_height) { JSAMPROW row_pointer[1]; const uint8* r = &srcdata[cinfo.next_scanline * in_stride]; uint8* p = static_cast<uint8*>(row_temp.get()); switch (flags.format) { case FORMAT_RGBA: { for (int i = 0; i < width; ++i, p += 3, r += 4) { p[0] = r[0]; p[1] = r[1]; p[2] = r[2]; } row_pointer[0] = row_temp.get(); break; } case FORMAT_ABGR: { for (int i = 0; i < width; ++i, p += 3, r += 4) { p[0] = r[3]; p[1] = r[2]; p[2] = r[1]; } row_pointer[0] = row_temp.get(); break; } default: { row_pointer[0] = reinterpret_cast<JSAMPLE*>(const_cast<JSAMPLE*>(r)); } } CHECK_EQ(jpeg_write_scanlines(&cinfo, row_pointer, 1), 1u); } jpeg_finish_compress(&cinfo); jpeg_destroy_compress(&cinfo); delete[] buffer; return true; } } bool Compress(const void* srcdata, int width, int height, const CompressFlags& flags, tstring* output) { return CompressInternal(static_cast<const uint8*>(srcdata), width, height, flags, output); } tstring Compress(const void* srcdata, int width, int height, const CompressFlags& flags) { tstring temp; CompressInternal(static_cast<const uint8*>(srcdata), width, height, flags, &temp); return temp; } } }
#include "tensorflow/core/lib/jpeg/jpeg_mem.h" #include <setjmp.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <memory> #include "absl/base/casts.h" #include "jpeglib.h" #include "tensorflow/core/lib/jpeg/jpeg_handle.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/jpeg.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/status.h" namespace tensorflow { namespace jpeg { namespace { const char kTestData[] = "tensorflow/core/lib/jpeg/testdata/"; int ComputeSumAbsoluteDifference(const uint8* a, const uint8* b, int width, int height, int a_stride, int b_stride) { int totalerr = 0; for (int i = 0; i < height; i++) { const uint8* const pa = a + i * a_stride; const uint8* const pb = b + i * b_stride; for (int j = 0; j < 3 * width; j++) { totalerr += abs(static_cast<int>(pa[j]) - static_cast<int>(pb[j])); } } return totalerr; } void ReadFileToStringOrDie(Env* env, const string& filename, string* output) { TF_CHECK_OK(ReadFileToString(env, filename, output)); } void TestJPEG(Env* env, const string& jpegfile) { string jpeg; ReadFileToStringOrDie(env, jpegfile, &jpeg); const int fsize = jpeg.size(); const uint8* const temp = absl::bit_cast<const uint8*>(jpeg.data()); int w, h, c; std::unique_ptr<uint8[]> imgdata; UncompressFlags flags; flags.components = 3; flags.min_acceptable_fraction = 0.8; imgdata.reset(Uncompress(temp, fsize / 2, flags, &w, &h, &c, nullptr)); CHECK(imgdata == nullptr); flags.min_acceptable_fraction = 0.01; imgdata.reset(Uncompress(temp, fsize / 2, flags, &w, &h, &c, nullptr)); CHECK(imgdata != nullptr); flags.min_acceptable_fraction = 1.0; imgdata.reset(Uncompress(temp, fsize, flags, &w, &h, &c, nullptr)); CHECK(imgdata != nullptr); } TEST(JpegMemTest, Jpeg) { Env* env = Env::Default(); const string data_path = kTestData; TestJPEG(env, data_path + "jpeg_merge_test1.jpg"); TestJPEG(env, data_path + "jpeg_merge_test1_cmyk.jpg"); } void TestCropAndDecodeJpeg(Env* env, const string& jpegfile, const UncompressFlags& default_flags) { string jpeg; ReadFileToStringOrDie(env, jpegfile, &jpeg); const int fsize = jpeg.size(); const auto* temp = absl::bit_cast<const uint8*>(jpeg.data()); std::unique_ptr<uint8[]> imgdata1; int w1, h1, c1; { UncompressFlags flags = default_flags; if (flags.stride == 0) { imgdata1.reset(Uncompress(temp, fsize, flags, &w1, &h1, &c1, nullptr)); } else { uint8* buffer = nullptr; imgdata1.reset(Uncompress(temp, fsize, flags, nullptr, [&](int width, int height, int components) { w1 = width; h1 = height; c1 = components; buffer = new uint8[flags.stride * height]; return buffer; })); } ASSERT_NE(imgdata1, nullptr); } auto check_crop_and_decode_func = [&](int crop_x, int crop_y, int crop_width, int crop_height) { std::unique_ptr<uint8[]> imgdata2; int w, h, c; UncompressFlags flags = default_flags; flags.crop = true; flags.crop_x = crop_x; flags.crop_y = crop_y; flags.crop_width = crop_width; flags.crop_height = crop_height; if (flags.stride == 0) { imgdata2.reset(Uncompress(temp, fsize, flags, &w, &h, &c, nullptr)); } else { uint8* buffer = nullptr; imgdata2.reset(Uncompress(temp, fsize, flags, nullptr, [&](int width, int height, int components) { w = width; h = height; c = components; buffer = new uint8[flags.stride * height]; return buffer; })); } ASSERT_NE(imgdata2, nullptr); ASSERT_EQ(w, crop_width); ASSERT_EQ(h, crop_height); ASSERT_EQ(c, c1); const int stride1 = (flags.stride != 0) ? flags.stride : w1 * c; const int stride2 = (flags.stride != 0) ? flags.stride : w * c; for (int i = 0; i < crop_height; i++) { const uint8* p1 = &imgdata1[(i + crop_y) * stride1 + crop_x * c]; const uint8* p2 = &imgdata2[i * stride2]; for (int j = 0; j < c * w; j++) { ASSERT_EQ(p1[j], p2[j]) << "p1 != p2 in [" << i << "][" << j / 3 << "][" << j % 3 << "]"; } } }; check_crop_and_decode_func(0, 0, 5, 5); check_crop_and_decode_func(0, 0, w1, 5); check_crop_and_decode_func(0, 0, 5, h1); check_crop_and_decode_func(0, 0, w1, h1); check_crop_and_decode_func(w1 - 5, h1 - 6, 5, 6); check_crop_and_decode_func(5, 6, 10, 15); } TEST(JpegMemTest, CropAndDecodeJpeg) { Env* env = Env::Default(); const string data_path = kTestData; UncompressFlags flags; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1_cmyk.jpg", flags); } TEST(JpegMemTest, CropAndDecodeJpegWithRatio) { Env* env = Env::Default(); const string data_path = kTestData; UncompressFlags flags; for (int ratio : {1, 2, 4, 8}) { flags.ratio = ratio; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); } } TEST(JpegMemTest, CropAndDecodeJpegWithComponents) { Env* env = Env::Default(); const string data_path = kTestData; UncompressFlags flags; for (const int components : {0, 1, 3}) { flags.components = components; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); } } TEST(JpegMemTest, CropAndDecodeJpegWithUpScaling) { Env* env = Env::Default(); const string data_path = kTestData; UncompressFlags flags; flags.fancy_upscaling = true; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); } TEST(JpegMemTest, CropAndDecodeJpegWithStride) { Env* env = Env::Default(); const string data_path = kTestData; string jpeg; ReadFileToStringOrDie(env, data_path + "jpeg_merge_test1.jpg", &jpeg); const int fsize = jpeg.size(); const auto* temp = absl::bit_cast<const uint8*>(jpeg.data()); int w, h, c; ASSERT_TRUE(GetImageInfo(temp, fsize, &w, &h, &c)); UncompressFlags flags; flags.stride = w * c; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); flags.stride = w * c * 3; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); flags.stride = w * c + 100; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); } void CheckInvalidCropWindowFailed(const uint8* const temp, int fsize, int x, int y, int w, int h) { std::unique_ptr<uint8[]> imgdata; int ww, hh, cc; UncompressFlags flags; flags.components = 3; flags.crop = true; flags.crop_x = x; flags.crop_y = y; flags.crop_width = w; flags.crop_height = h; imgdata.reset(Uncompress(temp, fsize, flags, &ww, &hh, &cc, nullptr)); CHECK(imgdata == nullptr); } TEST(JpegMemTest, CropAndDecodeJpegWithInvalidCropWindow) { Env* env = Env::Default(); const string data_path = kTestData; string jpeg; ReadFileToStringOrDie(env, data_path + "jpeg_merge_test1.jpg", &jpeg); const int fsize = jpeg.size(); const auto* temp = absl::bit_cast<const uint8*>(jpeg.data()); int w, h, c; ASSERT_TRUE(GetImageInfo(temp, fsize, &w, &h, &c)); CheckInvalidCropWindowFailed(temp, fsize, 11, 11, 0, 11); CheckInvalidCropWindowFailed(temp, fsize, 11, 11, 11, 0); CheckInvalidCropWindowFailed(temp, fsize, -1, 11, 11, 11); CheckInvalidCropWindowFailed(temp, fsize, 11, -1, 11, 11); CheckInvalidCropWindowFailed(temp, fsize, 11, 11, -1, 11); CheckInvalidCropWindowFailed(temp, fsize, 11, 11, 11, -1); CheckInvalidCropWindowFailed(temp, fsize, w - 10, 11, 11, 11); CheckInvalidCropWindowFailed(temp, fsize, 11, h - 10, 11, 11); } TEST(JpegMemTest, Jpeg2) { const int in_w = 256; const int in_h = 256; const int stride1 = 3 * in_w; const std::unique_ptr<uint8[]> refdata1(new uint8[stride1 * in_h]); for (int i = 0; i < in_h; i++) { for (int j = 0; j < in_w; j++) { const int offset = i * stride1 + 3 * j; refdata1[offset + 0] = i; refdata1[offset + 1] = j; refdata1[offset + 2] = static_cast<uint8>((i + j) >> 1); } } const int stride2 = 3 * 357; const std::unique_ptr<uint8[]> refdata2(new uint8[stride2 * in_h]); for (int i = 0; i < in_h; i++) { memcpy(&refdata2[i * stride2], &refdata1[i * stride1], 3 * in_w); } string cpdata1, cpdata2; { const string kXMP = "XMP_TEST_123"; CompressFlags flags; flags.format = FORMAT_RGB; flags.quality = 97; flags.xmp_metadata = kXMP; cpdata1 = Compress(refdata1.get(), in_w, in_h, flags); flags.stride = stride2; cpdata2 = Compress(refdata2.get(), in_w, in_h, flags); CHECK_EQ(cpdata1, cpdata2); CHECK_NE(string::npos, cpdata1.find(kXMP)); tstring cptest; flags.stride = 0; Compress(refdata1.get(), in_w, in_h, flags, &cptest); CHECK_EQ(cptest, cpdata1); flags.stride = stride2; Compress(refdata2.get(), in_w, in_h, flags, &cptest); CHECK_EQ(cptest, cpdata2); } std::unique_ptr<uint8[]> imgdata1; for (const int components : {0, 3}) { UncompressFlags flags; flags.components = components; int w, h, c; imgdata1.reset(Uncompress(cpdata1.c_str(), cpdata1.length(), flags, &w, &h, &c, nullptr)); CHECK_EQ(w, in_w); CHECK_EQ(h, in_h); CHECK_EQ(c, 3); CHECK(imgdata1.get()); const int totalerr = ComputeSumAbsoluteDifference( imgdata1.get(), refdata1.get(), in_w, in_h, stride1, stride1); CHECK_LE(totalerr, 85000); } { UncompressFlags flags; flags.stride = 3 * 411; const std::unique_ptr<uint8[]> imgdata2(new uint8[flags.stride * in_h]); CHECK(imgdata2.get() == Uncompress(cpdata2.c_str(), cpdata2.length(), flags, nullptr , [=, &imgdata2](int w, int h, int c) { CHECK_EQ(w, in_w); CHECK_EQ(h, in_h); CHECK_EQ(c, 3); return imgdata2.get(); })); const int totalerr = ComputeSumAbsoluteDifference( imgdata1.get(), imgdata2.get(), in_w, in_h, stride1, flags.stride); CHECK_EQ(totalerr, 0); } { UncompressFlags flags; flags.components = 3; flags.dct_method = JDCT_IFAST; int w, h, c; imgdata1.reset(Uncompress(cpdata1.c_str(), cpdata1.length(), flags, &w, &h, &c, nullptr)); CHECK_EQ(w, in_w); CHECK_EQ(h, in_h); CHECK_EQ(c, 3); CHECK(imgdata1.get()); const int totalerr = ComputeSumAbsoluteDifference( imgdata1.get(), refdata1.get(), in_w, in_h, stride1, stride1); ASSERT_LE(totalerr, 200000); } } bool IsChromaDownsampled(const string& jpegdata) { struct jpeg_decompress_struct cinfo; struct jpeg_error_mgr jerr; jmp_buf jpeg_jmpbuf; cinfo.err = jpeg_std_error(&jerr); cinfo.client_data = &jpeg_jmpbuf; jerr.error_exit = CatchError; if (setjmp(jpeg_jmpbuf)) return false; jpeg_create_decompress(&cinfo); SetSrc(&cinfo, jpegdata.c_str(), jpegdata.size(), false); jpeg_read_header(&cinfo, TRUE); jpeg_start_decompress(&cinfo); const int components = cinfo.output_components; if (components == 1) return false; CHECK_EQ(3, components); CHECK_EQ(cinfo.comp_info[1].h_samp_factor, cinfo.comp_info[2].h_samp_factor) << "The h sampling factors should be the same."; CHECK_EQ(cinfo.comp_info[1].v_samp_factor, cinfo.comp_info[2].v_samp_factor) << "The v sampling factors should be the same."; for (int i = 0; i < components; ++i) { CHECK_GT(cinfo.comp_info[i].h_samp_factor, 0) << "Invalid sampling factor."; CHECK_EQ(cinfo.comp_info[i].h_samp_factor, cinfo.comp_info[i].v_samp_factor) << "The sampling factor should be the same in both directions."; } const bool downsampled = cinfo.comp_info[1].h_samp_factor < cinfo.comp_info[0].h_samp_factor; jpeg_destroy_decompress(&cinfo); return downsampled; } TEST(JpegMemTest, ChromaDownsampling) { const string jpegfile = string(kTestData) + "jpeg_merge_test1.jpg"; string jpeg; ReadFileToStringOrDie(Env::Default(), jpegfile, &jpeg); UncompressFlags unflags; unflags.components = 3; int w, h, c; int64_t num_warnings; std::unique_ptr<uint8[]> uncompressed(Uncompress( jpeg.c_str(), jpeg.size(), unflags, &w, &h, &c, &num_warnings)); CHECK(uncompressed != nullptr); CHECK_EQ(num_warnings, 0); for (const bool downsample : {false, true}) { CompressFlags flags; flags.format = FORMAT_RGB; flags.quality = 85; flags.chroma_downsampling = downsample; tstring recompressed; Compress(uncompressed.get(), w, h, flags, &recompressed); CHECK(!recompressed.empty()); CHECK_EQ(IsChromaDownsampled(recompressed), downsample); } } void TestBadJPEG(Env* env, const string& bad_jpeg_file, int expected_width, int expected_height, const string& reference_RGB_file, const bool try_recover_truncated_jpeg) { string jpeg; ReadFileToStringOrDie(env, bad_jpeg_file, &jpeg); UncompressFlags flags; flags.components = 3; flags.try_recover_truncated_jpeg = try_recover_truncated_jpeg; int width, height, components; std::unique_ptr<uint8[]> imgdata; imgdata.reset(Uncompress(jpeg.c_str(), jpeg.size(), flags, &width, &height, &components, nullptr)); if (expected_width > 0) { CHECK_EQ(width, expected_width); CHECK_EQ(height, expected_height); CHECK_EQ(components, 3); CHECK(imgdata.get()); if (!reference_RGB_file.empty()) { string ref; ReadFileToStringOrDie(env, reference_RGB_file, &ref); CHECK(!memcmp(ref.data(), imgdata.get(), ref.size())); } } else { CHECK(!imgdata.get()) << "file:" << bad_jpeg_file; } } TEST(JpegMemTest, BadJpeg) { Env* env = Env::Default(); const string data_path = kTestData; TestBadJPEG(env, data_path + "bad_huffman.jpg", 1024, 768, "", false); TestBadJPEG(env, data_path + "corrupt.jpg", 0 , 90, "", false); TestBadJPEG(env, data_path + "corrupt34_2.jpg", 0, 3300, "", false); TestBadJPEG(env, data_path + "corrupt34_3.jpg", 0, 3300, "", false); TestBadJPEG(env, data_path + "corrupt34_4.jpg", 0, 3300, "", false); TestBadJPEG(env, data_path + "corrupt34_2.jpg", 2544, 3300, "", true); TestBadJPEG(env, data_path + "corrupt34_3.jpg", 2544, 3300, "", true); TestBadJPEG(env, data_path + "corrupt34_4.jpg", 2544, 3300, "", true); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/jpeg/jpeg_mem.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/jpeg/jpeg_mem_unittest.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1d493d61-fa22-4cee-8c9e-7ecf1b5e0542
cpp
tensorflow/tensorflow
gif_io
tensorflow/core/lib/gif/gif_io.cc
tensorflow/core/lib/gif/gif_io_test.cc
#include "tensorflow/core/lib/gif/gif_io.h" #include <algorithm> #include "absl/strings/str_cat.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/gif.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace gif { struct InputBufferInfo { const uint8_t* buf; int bytes_left; }; int input_callback(GifFileType* gif_file, GifByteType* buf, int size) { InputBufferInfo* const info = reinterpret_cast<InputBufferInfo*>(gif_file->UserData); if (info != nullptr) { if (size > info->bytes_left) size = info->bytes_left; memcpy(buf, info->buf, size); info->buf += size; info->bytes_left -= size; return size; } return 0; } static const char* GifErrorStringNonNull(int error_code) { const char* error_string = GifErrorString(error_code); if (error_string == nullptr) { return "Unknown error"; } return error_string; } uint8* Decode(const void* srcdata, int datasize, const std::function<uint8*(int, int, int, int)>& allocate_output, string* error_string, bool expand_animations) { int error_code = D_GIF_SUCCEEDED; InputBufferInfo info = {reinterpret_cast<const uint8*>(srcdata), datasize}; GifFileType* gif_file = DGifOpen(static_cast<void*>(&info), &input_callback, &error_code); const auto cleanup = gtl::MakeCleanup([gif_file]() { int error_code = D_GIF_SUCCEEDED; if (gif_file && DGifCloseFile(gif_file, &error_code) != GIF_OK) { LOG(WARNING) << "Fail to close gif file, reason: " << GifErrorStringNonNull(error_code); } }); if (error_code != D_GIF_SUCCEEDED) { *error_string = absl::StrCat("failed to open gif file: ", GifErrorStringNonNull(error_code)); return nullptr; } if (DGifSlurp(gif_file) != GIF_OK) { *error_string = absl::StrCat("failed to slurp gif file: ", GifErrorStringNonNull(gif_file->Error)); if (gif_file->ImageCount <= 0 || gif_file->SavedImages[gif_file->ImageCount - 1].RasterBits == NULL) { return nullptr; } LOG(ERROR) << *error_string; } if (gif_file->ImageCount <= 0) { *error_string = "gif file does not contain any image"; return nullptr; } int target_num_frames = gif_file->ImageCount; int max_frame_width = 0; int max_frame_height = 0; for (int k = 0; k < target_num_frames; k++) { SavedImage* si = &gif_file->SavedImages[k]; if (max_frame_height < si->ImageDesc.Height) max_frame_height = si->ImageDesc.Height; if (max_frame_width < si->ImageDesc.Width) max_frame_width = si->ImageDesc.Width; } const int width = max_frame_width; const int height = max_frame_height; const int channel = 3; if (!expand_animations) target_num_frames = 1; uint8* const dstdata = allocate_output(target_num_frames, width, height, channel); if (!dstdata) return nullptr; for (int64_t k = 0; k < target_num_frames; k++) { uint8* this_dst = dstdata + k * width * channel * height; SavedImage* this_image = &gif_file->SavedImages[k]; GifImageDesc* img_desc = &this_image->ImageDesc; GraphicsControlBlock gcb; DGifSavedExtensionToGCB(gif_file, k, &gcb); int imgLeft = img_desc->Left; int imgTop = img_desc->Top; int imgRight = img_desc->Left + img_desc->Width; int imgBottom = img_desc->Top + img_desc->Height; if (k > 0) { uint8* last_dst = dstdata + (k - 1) * width * channel * height; for (int64_t i = 0; i < height; ++i) { uint8* p_dst = this_dst + i * width * channel; uint8* l_dst = last_dst + i * width * channel; for (int64_t j = 0; j < width; ++j) { p_dst[j * channel + 0] = l_dst[j * channel + 0]; p_dst[j * channel + 1] = l_dst[j * channel + 1]; p_dst[j * channel + 2] = l_dst[j * channel + 2]; } } } if (img_desc->Left != 0 || img_desc->Top != 0 || img_desc->Width != width || img_desc->Height != height) { if (k == 0) { for (int64_t i = 0; i < height; ++i) { uint8* p_dst = this_dst + i * width * channel; for (int64_t j = 0; j < width; ++j) { p_dst[j * channel + 0] = 0; p_dst[j * channel + 1] = 0; p_dst[j * channel + 2] = 0; } } } imgLeft = std::max(imgLeft, 0); imgTop = std::max(imgTop, 0); imgRight = std::min(imgRight, width); imgBottom = std::min(imgBottom, height); } ColorMapObject* color_map = this_image->ImageDesc.ColorMap ? this_image->ImageDesc.ColorMap : gif_file->SColorMap; if (color_map == nullptr) { *error_string = absl::StrCat("missing color map for frame ", k); return nullptr; } for (int64_t i = imgTop; i < imgBottom; ++i) { uint8* p_dst = this_dst + i * width * channel; for (int64_t j = imgLeft; j < imgRight; ++j) { GifByteType color_index = this_image->RasterBits[(i - img_desc->Top) * (img_desc->Width) + (j - img_desc->Left)]; if (color_index == gcb.TransparentColor) { if (k == 0) { p_dst[j * channel + 0] = 0; p_dst[j * channel + 1] = 0; p_dst[j * channel + 2] = 0; } continue; } if (color_index >= color_map->ColorCount) { *error_string = absl::StrCat("found color index ", color_index, " outside of color map range ", color_map->ColorCount); return nullptr; } const GifColorType& gif_color = color_map->Colors[color_index]; p_dst[j * channel + 0] = gif_color.Red; p_dst[j * channel + 1] = gif_color.Green; p_dst[j * channel + 2] = gif_color.Blue; } } } return dstdata; } } }
#include "tensorflow/core/lib/gif/gif_io.h" #include <memory> #include "tensorflow/core/lib/png/png_io.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace gif { namespace { const char kTestData[] = "tensorflow/core/lib/gif/testdata/"; struct DecodeGifTestCase { const string filepath; const int num_frames; const int width; const int height; const int channels; }; void ReadFileToStringOrDie(Env* env, const string& filename, string* output) { TF_CHECK_OK(ReadFileToString(env, filename, output)); } void TestDecodeGif(Env* env, DecodeGifTestCase testcase) { string gif; ReadFileToStringOrDie(env, testcase.filepath, &gif); std::unique_ptr<uint8[]> imgdata; int nframes, w, h, c; string error_string; imgdata.reset(gif::Decode( gif.data(), gif.size(), [&](int frame_cnt, int width, int height, int channels) -> uint8* { nframes = frame_cnt; w = width; h = height; c = channels; return new uint8[static_cast<int64_t>(frame_cnt) * height * width * channels]; }, &error_string)); ASSERT_NE(imgdata, nullptr); ASSERT_EQ(nframes, testcase.num_frames); ASSERT_EQ(w, testcase.width); ASSERT_EQ(h, testcase.height); ASSERT_EQ(c, testcase.channels); } TEST(GifTest, Gif) { Env* env = Env::Default(); const string testdata_path = kTestData; std::vector<DecodeGifTestCase> testcases( { {testdata_path + "lena.gif", 1, 51, 26, 3}, {testdata_path + "optimized.gif", 12, 20, 40, 3}, {testdata_path + "red_black.gif", 1, 16, 16, 3}, {testdata_path + "scan.gif", 12, 20, 40, 3}, {testdata_path + "squares.gif", 2, 16, 16, 3}, {testdata_path + "3g_multiframe.gif", 519, 1920, 1080, 3}}); for (const auto& tc : testcases) { TestDecodeGif(env, tc); } } void TestDecodeAnimatedGif(Env* env, const uint8* gif_data, const string& png_filepath, int frame_idx) { string png; ReadFileToStringOrDie(env, png_filepath, &png); png::DecodeContext decode; png::CommonInitDecode(png, 3, 8, &decode); const int width = static_cast<int>(decode.width); const int height = static_cast<int>(decode.height); std::unique_ptr<uint8[]> png_imgdata( new uint8[height * width * decode.channels]); png::CommonFinishDecode(reinterpret_cast<png_bytep>(png_imgdata.get()), decode.channels * width * sizeof(uint8), &decode); int frame_len = width * height * decode.channels; int gif_idx = frame_len * frame_idx; for (int i = 0; i < frame_len; i++) { ASSERT_EQ(gif_data[gif_idx + i], png_imgdata[i]); } } TEST(GifTest, AnimatedGif) { Env* env = Env::Default(); const string testdata_path = kTestData; string gif; ReadFileToStringOrDie(env, testdata_path + "pendulum_sm.gif", &gif); std::unique_ptr<uint8[]> gif_imgdata; int nframes, w, h, c; string error_string; gif_imgdata.reset(gif::Decode( gif.data(), gif.size(), [&](int num_frames, int width, int height, int channels) -> uint8* { nframes = num_frames; w = width; h = height; c = channels; return new uint8[num_frames * height * width * channels]; }, &error_string)); TestDecodeAnimatedGif(env, gif_imgdata.get(), testdata_path + "pendulum_sm_frame0.png", 0); TestDecodeAnimatedGif(env, gif_imgdata.get(), testdata_path + "pendulum_sm_frame1.png", 1); TestDecodeAnimatedGif(env, gif_imgdata.get(), testdata_path + "pendulum_sm_frame2.png", 2); } void TestExpandAnimations(Env* env, const string& filepath) { string gif; ReadFileToStringOrDie(env, filepath, &gif); std::unique_ptr<uint8[]> imgdata; string error_string; int nframes; bool expand_animations = false; imgdata.reset(gif::Decode( gif.data(), gif.size(), [&](int frame_cnt, int width, int height, int channels) -> uint8* { nframes = frame_cnt; return new uint8[frame_cnt * height * width * channels]; }, &error_string, expand_animations)); ASSERT_EQ(nframes, 1); } TEST(GifTest, ExpandAnimations) { Env* env = Env::Default(); const string testdata_path = kTestData; TestExpandAnimations(env, testdata_path + "scan.gif"); TestExpandAnimations(env, testdata_path + "pendulum_sm.gif"); TestExpandAnimations(env, testdata_path + "squares.gif"); } void TestInvalidGifFormat(const string& header_bytes) { std::unique_ptr<uint8[]> imgdata; string error_string; int nframes; imgdata.reset(gif::Decode( header_bytes.data(), header_bytes.size(), [&](int frame_cnt, int width, int height, int channels) -> uint8* { nframes = frame_cnt; return new uint8[frame_cnt * height * width * channels]; }, &error_string)); string err_msg = "failed to open gif file"; ASSERT_EQ(error_string.substr(0, 23), err_msg); } TEST(GifTest, BadGif) { TestInvalidGifFormat("\x89\x50\x4E\x47\x0D\x0A\x1A\x0A"); TestInvalidGifFormat("\x42\x4d"); TestInvalidGifFormat("\xff\xd8\xff"); TestInvalidGifFormat("\x49\x49\x2A\x00"); } TEST(GifTest, TransparentIndexOutsideColorTable) { unsigned char encoded[43] = { 'G', 'I', 'F', '8', '9', 'a', 3, 0, 1, 0, 0b1'111'0'000, 0, 0, 0x80, 0x00, 0x00, 0xFF, 0xFF, 0xFF, '!', 0xF9, 0x04, 1, 0, 0, 2, 0, ',', 0, 0, 0, 0, 3, 0, 1, 0, 0, 2, 2, 0b01'000'100, 0b0'101'010'0, 0, ';' }; std::unique_ptr<uint8[]> imgdata; string error_string; int nframes; auto allocate_image_data = [&](int frame_cnt, int width, int height, int channels) -> uint8* { nframes = frame_cnt; imgdata = std::make_unique<uint8[]>(frame_cnt * height * width * channels); return imgdata.get(); }; gif::Decode(encoded, sizeof(encoded), allocate_image_data, &error_string); ASSERT_EQ(nframes, 1); ASSERT_EQ(error_string, ""); uint8 expected[9] = { 0x80, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, }; for (int i = 0; i < 9; i++) { ASSERT_EQ(imgdata[i], expected[i]) << "i=" << i; } encoded[40] = 0b0'101'011'0; error_string.clear(); gif::Decode(encoded, sizeof(encoded), allocate_image_data, &error_string); ASSERT_EQ(error_string, "found color index 3 outside of color map range 2"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gif/gif_io.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gif/gif_io_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8c2ba008-edd9-410e-a26c-ecfbda3b69d9
cpp
tensorflow/tensorflow
attr_util
tensorflow/core/runtime_fallback/kernel/attr_util.cc
tensorflow/core/runtime_fallback/kernel/attr_util_test.cc
#include "tensorflow/core/runtime_fallback/kernel/attr_util.h" #include <assert.h> #include <stdlib.h> #include <string> #include <vector> #include "absl/strings/numbers.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/runtime_fallback/util/attr_util.h" #include "tensorflow/core/util/padding.h" #include "tfrt/core_runtime/op_attr_type.h" #include "tfrt/core_runtime/op_attrs.h" #include "tfrt/host_context/kernel_utils.h" namespace tensorflow { DataType ParseTFDataType(StringPiece dtype) { if (dtype == "DT_INT8") { return DataType::DT_INT8; } else if (dtype == "DT_INT32") { return DataType::DT_INT32; } else if (dtype == "DT_INT64") { return DataType::DT_INT64; } else if (dtype == "DT_FLOAT") { return DataType::DT_FLOAT; } else if (dtype == "DT_DOUBLE") { return DataType::DT_DOUBLE; } else { assert(false && "Unsupported dtype"); abort(); } } bool ParseBoolAttrValue(StringPiece attr_value) { if (attr_value == "false") { return false; } else if (attr_value == "true") { return true; } else { assert(false && "Bool attribute value invalid"); abort(); } } Status ParseValue(StringPiece input, bool* value) { *value = ParseBoolAttrValue(input); return absl::OkStatus(); } Status ParseValue(StringPiece input, int32* value) { bool parse_result = absl::SimpleAtoi(input, value); if (!parse_result) { return errors::InvalidArgument("Could not parse int32 from ", input); } return absl::OkStatus(); } Status ParseValue(StringPiece input, DataType* value) { *value = ParseTFDataType(input); return absl::OkStatus(); } Status ParseValue(StringPiece input, std::string* value) { *value = std::string(input); return absl::OkStatus(); } Status ParseValue(StringPiece input, std::vector<int32>* value) { std::vector<std::string> parts = str_util::Split(input, ","); value->reserve(parts.size()); for (const auto& value_str : parts) { int32_t value_int; bool parse_result = absl::SimpleAtoi(value_str, &value_int); if (!parse_result) { return errors::InvalidArgument("Could not parse list of integers from ", input); } value->push_back(value_int); } return absl::OkStatus(); } Status ParseValue(StringPiece input, Padding* value) { return GetPaddingFromString(input, value); } Status AddOpAttr(const std::string& name, const std::string& attr_value, tfrt::OpAttrs* opattrs) { Status s; std::vector<absl::string_view> value_split = tfd::AttrValueSplit(attr_value); auto& type = value_split[0]; auto& value = value_split[1]; if (type == "bool") { bool val; s = ParseValue(value, &val); opattrs->Set<bool>(name, val); } else if (type == "i32") { int32_t val; s = ParseValue(value, &val); opattrs->Set<int32>(name, val); } else if (type == "string" || type == "padding") { std::string val; s = ParseValue(value, &val); opattrs->SetString(name, val); } else if (type == "tfdtype") { DataType val; s = ParseValue(value, &val); opattrs->Set<tfrt::OpAttrType>(name, tfd::ConvertFromTfDataType(val)); } else if (type == "list(i32)") { std::vector<int32> val; s = ParseValue(value, &val); opattrs->SetArray<int32>(name, val); } return s; } Status FillOpAttrs(tfrt::RemainingAttributes attrs, tfrt::OpAttrs* opattrs) { int num_tf_attrs = attrs.size() / 2; Status status; for (int i = 0; i < num_tf_attrs; ++i) { std::string name = attrs.GetStringAttribute(i * 2).str(); std::string attr_value = attrs.GetStringAttribute(i * 2 + 1).str(); Status s = AddOpAttr(name, attr_value, opattrs); status.Update(s); } return status; } }
#include "tensorflow/core/runtime_fallback/kernel/attr_util.h" #include <vector> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tfrt/core_runtime/op_attr_type.h" #include "tfrt/core_runtime/op_attrs.h" #include "tfrt/support/forward_decls.h" using llvm::ArrayRef; using tfrt::OpAttrs; using tfrt::OpAttrType; namespace tensorflow { namespace { TEST(AttrUtilTest, TestGetBoolAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "bool$true", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "bool$false", &opattrs)); ASSERT_TRUE(opattrs.GetAsserting<bool>("foo")); ASSERT_FALSE(opattrs.GetAsserting<bool>("bar")); } TEST(AttrUtilTest, TestGetIntAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "i32$-2", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "i32$0", &opattrs)); TF_ASSERT_OK(AddOpAttr("baz", "i32$123", &opattrs)); ASSERT_EQ(opattrs.GetAsserting<int32>("foo"), -2); ASSERT_EQ(opattrs.GetAsserting<int32>("bar"), 0); ASSERT_EQ(opattrs.GetAsserting<int32>("baz"), 123); Status s = AddOpAttr("invalid", "i32$4.5", &opattrs); ASSERT_FALSE(s.ok()); } TEST(AttrUtilTest, TestGetDTypeAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "tfdtype$DT_INT32", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "tfdtype$DT_FLOAT", &opattrs)); ASSERT_EQ(opattrs.GetAsserting<OpAttrType>("foo"), OpAttrType::I32); ASSERT_EQ(opattrs.GetAsserting<OpAttrType>("bar"), OpAttrType::F32); } TEST(AttrUtilTest, TestGetIntListAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "list(i32)$", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "list(i32)$1", &opattrs)); TF_ASSERT_OK(AddOpAttr("baz", "list(i32)$1,2,3", &opattrs)); ArrayRef<int32> v1, v2, v3; std::vector<int32> expected_v1; std::vector<int32> expected_v2 = {1}; std::vector<int32> expected_v3 = {1, 2, 3}; ArrayRef<int32> expected_v1_ref(expected_v1); ArrayRef<int32> expected_v2_ref(expected_v2); ArrayRef<int32> expected_v3_ref(expected_v3); ASSERT_TRUE(opattrs.GetArray<int32>("foo", &v1)); ASSERT_TRUE(opattrs.GetArray<int32>("bar", &v2)); ASSERT_TRUE(opattrs.GetArray<int32>("baz", &v3)); ASSERT_EQ(v1, expected_v1_ref); ASSERT_EQ(v2, expected_v2_ref); ASSERT_EQ(v3, expected_v3_ref); } TEST(AttrUtilTest, TestGetStrAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "string$", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "string$test", &opattrs)); ASSERT_EQ(opattrs.GetStringAsserting("foo"), ""); ASSERT_EQ(opattrs.GetStringAsserting("bar"), "test"); } TEST(AttrUtilTest, TestGetPaddingAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "padding$VALID", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "padding$SAME", &opattrs)); ASSERT_EQ(opattrs.GetStringAsserting("foo"), "VALID"); ASSERT_EQ(opattrs.GetStringAsserting("bar"), "SAME"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/kernel/attr_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/kernel/attr_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9a7cbd52-50d8-49c8-b25e-0aefde08b0fb
cpp
tensorflow/tensorflow
runtime_fallback_kernels
tensorflow/core/runtime_fallback/runtime/runtime_fallback_kernels.cc
tensorflow/core/runtime_fallback/test/runtime_fallback_kernels_test.cc
#include "tensorflow/core/runtime_fallback/runtime/runtime_fallback_kernels.h" #include <algorithm> #include <string> #include <utility> #include <vector> #include "absl/strings/str_split.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "tensorflow/c/eager/abstract_operation.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/tf_datatype.h" #include "tensorflow/c/tf_tensor_internal.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_execute_compat.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_tensor.h" #include "tensorflow/core/runtime_fallback/runtime/kernel_utils.h" #include "tensorflow/core/runtime_fallback/runtime/runtime_fallback_op_handler.h" #include "tensorflow/core/runtime_fallback/runtime/runtime_fallback_tensor.h" #include "tensorflow/core/runtime_fallback/util/attr_util.h" #include "tensorflow/core/runtime_fallback/util/tensor_util.h" #include "tensorflow/core/runtime_fallback/util/type_util.h" #include "tensorflow/core/tfrt/utils/error_util.h" #include "tensorflow/core/tfrt/utils/fallback_tensor.h" #include "tensorflow/core/tfrt/utils/tensor_util.h" #include "tfrt/cpu/core_runtime/cpu_op_handler.h" #include "tfrt/core_runtime/core_runtime.h" #include "tfrt/core_runtime/core_runtime_op.h" #include "tfrt/core_runtime/execute_op_impl.h" #include "tfrt/core_runtime/op_attr_type.h" #include "tfrt/core_runtime/tensor_handle.h" #include "tfrt/host_context/async_value.h" #include "tfrt/host_context/async_value_ref.h" #include "tfrt/host_context/attribute_utils.h" #include "tfrt/host_context/device.h" #include "tfrt/host_context/diagnostic.h" #include "tfrt/host_context/execution_context.h" #include "tfrt/host_context/host_buffer.h" #include "tfrt/host_context/host_context.h" #include "tfrt/host_context/kernel_frame.h" #include "tfrt/host_context/kernel_utils.h" #include "tfrt/host_context/resource_context.h" #include "tfrt/host_context/sync_kernel_frame.h" #include "tfrt/support/error_util.h" #include "tfrt/support/forward_decls.h" #include "tfrt/support/ref_count.h" #include "tfrt/tensor/conversion_registry.h" #include "tfrt/tensor/dense_host_tensor.h" #include "tfrt/tensor/scalar_host_tensor.h" #include "tfrt/tensor/string_host_tensor.h" #include "tfrt/tensor/tensor_serialize_utils.h" namespace tensorflow { namespace tfd { namespace { constexpr char kHostContextPtrAttrName[] = "host_ptr"; constexpr char kDefaultCpuDevice[] = "/job:localhost/replica:0/task:0/device:CPU:0"; } using tfrt::AggregateAttr; using tfrt::Argument; using tfrt::AsyncValue; using tfrt::AsyncValueRef; using tfrt::BEFAttributeType; using tfrt::Chain; using tfrt::DenseAttr; using tfrt::DenseHostTensor; using tfrt::ExecutionContext; using tfrt::Expected; using tfrt::FuncAttr; using tfrt::HostBuffer; using tfrt::HostContext; using tfrt::KernelErrorHandler; using tfrt::OpAttrs; using tfrt::OpAttrsRawEntry; using tfrt::OpAttrsRef; using tfrt::OpAttrType; using tfrt::raw_ostream; using tfrt::RCReference; using tfrt::RemainingArguments; using tfrt::RemainingAttributes; using tfrt::RemainingResults; using tfrt::Result; using tfrt::ShapeAttr; using tfrt::string_view; using tfrt::StringAttr; using tfrt::StringAttribute; using tfrt::Tensor; using tfrt::TensorShape; #define TFD_REPORT_AND_RETURN_IF_ERROR(handler, status) \ if (!status.ok()) { \ handler.ReportError(status.message()); \ return; \ } static AsyncValueRef<RuntimeFallbackTensor> CreateRuntimeFallbackTensor( TensorHandle* handle, HostContext* host) { OwnedTensorHandle th(handle); int rank; tensorflow::Status status = th->NumDims(&rank); if (!status.ok()) return tfrt::MakeErrorAsyncValueRef(tfrt::StrCat( "error getting rank from TF tensor handle: ", status.message())); llvm::SmallVector<tfrt::Index, 4> dims; for (auto i = 0; i < rank; ++i) { int64_t dim; status = th->Dim(i, &dim); if (!status.ok()) return tfrt::MakeErrorAsyncValueRef( tfrt::StrCat("error getting dimension from TFE tensor handle: ", status.message())); dims.push_back(dim); } TensorShape shape{dims}; DataType dtype = th->DataType(); return tfrt::MakeAvailableAsyncValueRef<RuntimeFallbackTensor>( shape, GetTfrtDtype(dtype), std::move(th)); } static std::pair<RuntimeFallbackTensor, Chain> TfdMoveDHTToTFT( Argument<DenseHostTensor> dht, Argument<Chain> in_chain, const ExecutionContext& exec_ctx) { return std::make_pair( MoveDHTToRuntimeFallbackTensor(std::move(dht.get()), exec_ctx.host()), in_chain.get()); } static void TfdConvertTFTToDHT(Argument<RuntimeFallbackTensor> tft, Argument<Chain> in_chain, Result<DenseHostTensor> dht, Result<Chain> out_chain, KernelErrorHandler handler, const ExecutionContext& exec_ctx) { dht.Set(tfrt::ConvertTensorOnHost(exec_ctx, tft.get(), DenseHostTensor::kTensorType) .ReleaseRCRef()); out_chain.Set(in_chain); } static void TfdPrintTFT(Argument<RuntimeFallbackTensor> tft, Argument<Chain> in_chain, Result<Chain> out_chain) { llvm::outs() << tft.get() << "\n"; llvm::outs().flush(); out_chain.Set(in_chain); } static void TfdInitEagerContext(Argument<Chain> in_chain, Result<Chain> out_chain, KernelErrorHandler handler, const ExecutionContext& exec_ctx) { tfrt::ResourceContext* resource_context = exec_ctx.resource_context(); tensorflow::tfd::EagerContextResource* eager_context_resource = resource_context ->GetOrCreateResource<tensorflow::tfd::EagerContextResource>( tensorflow::tfd::kEagerContextResourceName); (void)eager_context_resource; out_chain.Set(in_chain); } OwnedTFTensor MoveDHTToTFTensor(DenseHostTensor&& dht, HostContext* host) { llvm::SmallVector<tfrt::Index, 4> dims; dht.shape().GetDimensions(&dims); HostBuffer* host_buffer = dht.ReleaseBuffer().release(); auto deallocator = [](void* data, size_t len, void* arg) { auto* host_buffer = reinterpret_cast<HostBuffer*>(arg); host_buffer->DropRef(); }; CheckBoolCompatibility(); OwnedTFTensor tf_tensor{ TF_NewTensor(static_cast<TF_DataType>(GetTfDataType(dht.dtype())), dims.data(), dims.size(), host_buffer->data(), host_buffer->size(), deallocator, host_buffer)}; return tf_tensor; } static tensorflow::Status DecodeDenseAttrToTensorInterface( const DenseAttr& dense_attr, HostContext* host, tensorflow::TensorInterface* result) { Expected<DenseHostTensor> dht = tfrt::DeserializeDenseHostTensorFromDenseAttr(dense_attr, host); if (!dht) return tensorflow::errors::Internal(tfrt::StrCat( "cannot create DenseHostTensor in DecodeDenseAttrToTensorInterface:", dht.takeError())); OwnedTFTensor tf_tensor = MoveDHTToTFTensor(std::move(*dht), host); tensorflow::Tensor t; TF_RETURN_IF_ERROR(TF_TensorToTensor(tf_tensor.get(), &t)); *result = tensorflow::TensorInterface(std::move(t)); return absl::OkStatus(); } static tensorflow::Status PrepareAttributes(EagerOperation* eager_op, const OpAttrsRef& attrs, HostContext* host, EagerContext* eager_ctx) { tensorflow::Status status; attrs.IterateEntries([eager_op, eager_ctx, status_ptr = &status, host, &attrs](const OpAttrsRawEntry& entry) { assert(strcmp(entry.name, "device") != 0); if (IsUnusedAttribute(entry.name)) { return; } else if (entry.IsArray()) { if (entry.element_count == 0) { if (entry.type == OpAttrType::CHAR) { std::string empty_str; *status_ptr = eager_op->SetAttrString(entry.name, empty_str.data(), empty_str.size()); } else { AttrValue empty_attr_value; eager_op->MutableAttrs()->Set(entry.name, empty_attr_value); } } else if (entry.type == OpAttrType::CHAR) { string_view attr_value = attrs.GetStringAsserting(entry.name); *status_ptr = eager_op->SetAttrString(entry.name, attr_value.data(), attr_value.size()); } else if (entry.type == OpAttrType::FUNC) { string_view attr_value = attrs.GetFuncNameAsserting(entry.name); *status_ptr = eager_op->SetAttrFunctionName( entry.name, attr_value.data(), attr_value.size()); } else if (entry.type == OpAttrType::I64) { llvm::ArrayRef<int64_t> int_array = attrs.GetArrayAsserting<int64_t>(entry.name); *status_ptr = eager_op->SetAttrIntList(entry.name, int_array.data(), int_array.size()); } else if (entry.type == OpAttrType::F32) { llvm::ArrayRef<float> float_array = attrs.GetArrayAsserting<float>(entry.name); *status_ptr = eager_op->SetAttrFloatList(entry.name, float_array.data(), float_array.size()); } else if (entry.type == OpAttrType::BOOL) { llvm::ArrayRef<bool> bool_array = attrs.GetArrayAsserting<bool>(entry.name); std::vector<unsigned char> bool_char_array(bool_array.begin(), bool_array.end()); *status_ptr = eager_op->SetAttrBoolList( entry.name, bool_char_array.data(), bool_char_array.size()); } else if (entry.type == OpAttrType::DTYPE) { const auto& op_attr = attrs.GetRawAsserting(entry.name); assert(op_attr.IsArray()); auto bef_dtypes = llvm::ArrayRef(static_cast<const tfrt::DType*>(op_attr.GetData()), op_attr.element_count); llvm::SmallVector<tensorflow::DataType, 4> tf_dtypes; tf_dtypes.reserve(bef_dtypes.size()); for (auto bef_dtype : bef_dtypes) { tf_dtypes.push_back(ConvertBefAttrTypeToTfDataType(bef_dtype)); } *status_ptr = eager_op->SetAttrTypeList(entry.name, tf_dtypes.data(), tf_dtypes.size()); } else { *status_ptr = tensorflow::errors::Internal("unsupported array attribute type"); } } else { if (entry.type == OpAttrType::I64) { int64_t attr_value = attrs.GetAsserting<int64_t>(entry.name); *status_ptr = eager_op->SetAttrInt(entry.name, attr_value); } else if (entry.type == OpAttrType::F32) { float attr_value = attrs.GetAsserting<float>(entry.name); *status_ptr = eager_op->SetAttrFloat(entry.name, attr_value); } else if (entry.type == OpAttrType::BOOL) { bool attr_value = attrs.GetAsserting<bool>(entry.name); *status_ptr = eager_op->SetAttrBool(entry.name, attr_value); } else if (entry.type == OpAttrType::DTYPE) { OpAttrType op_attr_type = attrs.GetAsserting<OpAttrType>(entry.name); DataType tf_dtype = ConvertToTfDataType(op_attr_type); *status_ptr = eager_op->SetAttrType(entry.name, tf_dtype); } else if (entry.type == OpAttrType::SHAPE) { tfrt::ShapeAttr shape_attr = attrs.GetAsserting<tfrt::ShapeAttr>(entry.name); if (shape_attr.HasRank()) { *status_ptr = eager_op->SetAttrShape( entry.name, shape_attr.GetShape().data(), shape_attr.GetRank()); } else { *status_ptr = eager_op->SetAttrShape(entry.name, nullptr, -1); } } else if (entry.type == OpAttrType::DENSE) { DenseAttr dense_attr = attrs.GetAsserting<DenseAttr>(entry.name); tensorflow::TensorInterface interface; *status_ptr = DecodeDenseAttrToTensorInterface(dense_attr, host, &interface); if (!status_ptr->ok()) return; *status_ptr = eager_op->SetAttrTensor(entry.name, &interface); } else if (entry.type == OpAttrType::AGGREGATE) { AggregateAttr list_attr = attrs.GetAsserting<AggregateAttr>(entry.name); int num_values = list_attr.GetNumElements(); if (num_values == 0) { std::vector<int> dummy_attr; eager_op->MutableAttrs()->Set( entry.name, gtl::ArraySlice<const int>(dummy_attr.data(), 0)); return; } auto attr_base = list_attr.GetAttribute(0); if (IsDataTypeAttribute(attr_base.type()) && GetDataType(attr_base.type()) == tfrt::DType::String) { llvm::SmallVector<const void*, 8> values; llvm::SmallVector<size_t, 8> lengths; values.reserve(num_values); lengths.reserve(num_values); for (int i = 0; i < num_values; ++i) { auto string_attr = list_attr.GetAttributeOfType<StringAttr>(i); values.push_back(string_attr.GetValue().data()); lengths.push_back(string_attr.GetValue().size()); } *status_ptr = eager_op->SetAttrStringList(entry.name, values.data(), lengths.data(), num_values); } else if (IsFuncAttribute(attr_base.type())) { std::vector<const AbstractOperation*> funcs(num_values); for (int i = 0; i < num_values; ++i) { auto func_attr = list_attr.GetAttributeOfType<FuncAttr>(i); ImmediateExecutionOperation* new_op = eager_ctx->CreateOperation(); auto func_name = func_attr.GetFunctionName(); *status_ptr = new_op->Reset(func_name.str().c_str(), nullptr); funcs[i] = new_op; } *status_ptr = eager_op->SetAttrFunctionList(entry.name, absl::MakeSpan(funcs)); } else if (attr_base.type() == BEFAttributeType::kShape) { llvm::SmallVector<int, 8> ranks; llvm::SmallVector<const int64_t*, 8> dims; ranks.reserve(num_values); dims.reserve(num_values); for (int i = 0; i < num_values; ++i) { auto shape_attr = list_attr.GetAttributeOfType<ShapeAttr>(i); if (shape_attr.HasRank()) { ranks.push_back(shape_attr.GetRank()); dims.push_back(shape_attr.GetShape().data()); } else { ranks.push_back(-1); dims.push_back(nullptr); } } *status_ptr = eager_op->SetAttrShapeList(entry.name, dims.data(), ranks.data(), num_values); } else { *status_ptr = tensorflow::errors::Internal("unsupported list attribute type"); } } else { *status_ptr = tensorflow::errors::Internal("unsupported scalar attribute type"); } } }); return status; } Status CallEagerExecute(const tfrt::ExecutionContext& exec_ctx, EagerContext* eager_ctx, const char* op_name, const char* device_name, llvm::ArrayRef<TensorHandle*> input_tensor_handles, const OpAttrsRef& attrs, llvm::MutableArrayRef<tensorflow::AbstractTensorHandle*> result_tensor_handles) { assert(eager_ctx != nullptr && "EagerContext is NULL"); OwnedEagerOperation eager_op{new EagerOperation(eager_ctx)}; TF_RETURN_IF_ERROR(eager_op->Reset(op_name, device_name)); for (TensorHandle* input_tensor : input_tensor_handles) { TF_RETURN_IF_ERROR(eager_op->AddInput(input_tensor)); } auto* host = exec_ctx.host(); TF_RETURN_IF_ERROR(PrepareAttributes(eager_op.get(), attrs, host, eager_ctx)); int num_retvals = result_tensor_handles.size(); TF_RETURN_IF_ERROR(eager_op->Execute( absl::MakeSpan(result_tensor_handles.data(), num_retvals), &num_retvals)); return absl::OkStatus(); } static bool ShouldAddHostContextAttr(const char* op_name) { return strcmp(op_name, "TFRTMakeIterator") == 0; } AsyncValueRef<Chain> RuntimeFallbackExecute( const tfrt::ExecutionContext& exec_ctx, EagerContext* eager_ctx, const char* op_name, const char* device_name, llvm::ArrayRef<Tensor*> arguments, const OpAttrsRef& attrs, llvm::MutableArrayRef<RCReference<AsyncValue>> results) { auto emit_error = [&exec_ctx, results](const tensorflow::Status& status) { auto error = EmitErrorAsync(exec_ctx, status); std::fill(results.begin(), results.end(), error); return error; }; llvm::SmallVector<TensorHandle*, 4> input_tensor_handles; input_tensor_handles.reserve(arguments.size()); for (Tensor* input_tensor : arguments) { input_tensor_handles.push_back( llvm::cast<RuntimeFallbackTensor>(input_tensor)->GetTensorHandle()); } int num_retvals = results.size(); llvm::SmallVector<tensorflow::AbstractTensorHandle*, 4> result_tensor_handles( num_retvals); Status status; if (!ShouldAddHostContextAttr(op_name)) { status = CallEagerExecute(exec_ctx, eager_ctx, op_name, device_name, input_tensor_handles, attrs, result_tensor_handles); } else { assert(attrs.GetNumEntries() == 1); OpAttrs updated; updated.Set(kHostContextPtrAttrName, reinterpret_cast<int64_t>(exec_ctx.host())); status = CallEagerExecute( exec_ctx, eager_ctx, op_name, device_name, input_tensor_handles, OpAttrsRef(std::move(updated)), result_tensor_handles); } if (!status.ok()) return emit_error(status); auto host = exec_ctx.host(); for (int i = 0; i < num_retvals; ++i) { auto expected_fallback_tensor = CreateRuntimeFallbackTensorFromTfTensorHandle( OwnedTensorHandle{ TensorHandleFromInterface(result_tensor_handles[i])}, host); if (!expected_fallback_tensor) results[i] = EmitErrorAsync( exec_ctx, tfrt::StrCat(expected_fallback_tensor.takeError())); else results[i] = tfrt::MakeAvailableAsyncValueRef<RuntimeFallbackTensor>( std::move(*expected_fallback_tensor)); } return tfrt::GetReadyChain(); } AsyncValueRef<Chain> RuntimeFallbackExecute( const tfrt::ExecutionContext& exec_ctx, const char* op_name, const char* device_name, llvm::ArrayRef<Tensor*> arguments, const OpAttrsRef& attrs, llvm::MutableArrayRef<RCReference<AsyncValue>> results) { auto eager_ctx_expected = GetEagerContext(exec_ctx); if (!eager_ctx_expected) { auto error = EmitErrorAsync(exec_ctx, toString(eager_ctx_expected.takeError())); std::fill(results.begin(), results.end(), error); return std::move(error); } EagerContext* eager_ctx = eager_ctx_expected.get(); return RuntimeFallbackExecute(exec_ctx, eager_ctx, op_name, device_name, arguments, attrs, results); } static void RuntimeFallbackKernel( Argument<Chain> in_chain, RemainingArguments input_tensors, Result<Chain> out_chain, RemainingResults output_tensors, StringAttribute op_name, RemainingAttributes remaining_attributes, KernelErrorHandler handler, const ExecutionContext& exec_ctx) { HostContext* host = exec_ctx.host(); tfrt::ResourceContext* resource_context = exec_ctx.resource_context(); EagerContextResource* eager_context_resource = resource_context->GetOrCreateResource<EagerContextResource>( tensorflow::tfd::kEagerContextResourceName); tfrt::Expected<EagerContext*> eager_ctx_expected = eager_context_resource->GetTFEagerContext(); if (!eager_ctx_expected) { handler.ReportError("eager_ctx_expected.takeError()"); return; } EagerContext* eager_ctx = eager_ctx_expected.get(); std::string op_name_str = [&] { auto view = op_name.get(); view.consume_front("tf."); return view.str(); }(); OwnedEagerOperation eager_op{new EagerOperation(eager_ctx)}; TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->Reset(op_name_str.c_str(), nullptr)); for (AsyncValue* input_tensor_av : input_tensors.values()) { auto input_tensor_handle = input_tensor_av->get<RuntimeFallbackTensor>().GetTensorHandle(); TFD_REPORT_AND_RETURN_IF_ERROR(handler, eager_op->AddInput(input_tensor_handle)); } assert(remaining_attributes.size() % 2 == 0); int num_tf_attrs = remaining_attributes.size() / 2; for (int i = 0; i < num_tf_attrs; ++i) { std::string attr_name = remaining_attributes.GetStringAttribute(i * 2).str(); absl::string_view attr_value = ToAbslStringView( remaining_attributes.GetStringAttribute(i * 2 + 1).get()); std::vector<absl::string_view> value_split = tfd::AttrValueSplit(attr_value); if (value_split[0] == "string") { TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrString(attr_name.c_str(), value_split[1].data(), value_split[1].size())); } else if (value_split[0] == "bool") { bool bool_val; TFD_REPORT_AND_RETURN_IF_ERROR( handler, ParseBoolAttrValue(value_split[1], &bool_val)); TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrBool(attr_name.c_str(), bool_val)); } else if (value_split[0] == "int") { int64_t int_val; TFD_REPORT_AND_RETURN_IF_ERROR( handler, ParseIntAttrValue(value_split[1], &int_val)); TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrInt(attr_name.c_str(), int_val)); } else if (value_split[0] == "tftensor") { tensorflow::Tensor t; TFD_REPORT_AND_RETURN_IF_ERROR(handler, ParseTensorAttrValue(value_split[1], &t)); tensorflow::TensorInterface interface(t); TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrTensor(attr_name.c_str(), &interface)); } else if (value_split[0] == "tfdtype") { DataType dtype; TFD_REPORT_AND_RETURN_IF_ERROR(handler, ParseTfDataType(value_split[1], &dtype)); TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrType(attr_name.c_str(), dtype)); } else if (value_split[0] == "tfshape") { std::vector<int64_t> dims; TFD_REPORT_AND_RETURN_IF_ERROR( handler, ParseTensorShapeAttrValue(value_split[1], &dims)); TFD_REPORT_AND_RETURN_IF_ERROR( handler, eager_op->SetAttrShape(attr_name.c_str(), dims.data(), dims.size())); } else { handler.ReportError("attribute type not yet supported"); return; } } int num_retvals = output_tensors.size(); llvm::SmallVector<tensorflow::AbstractTensorHandle*, 4> retvals(num_retvals); tensorflow::Status status = eager_op->Execute( absl::MakeSpan(retvals.data(), num_retvals), &num_retvals); TFD_REPORT_AND_RETURN_IF_ERROR(handler, status); if (num_retvals != output_tensors.size()) { handler.ReportError("Incorrect number of output values"); return; } for (int i = 0; i < num_retvals; ++i) { OwnedTensorHandle owned_th{TensorHandleFromInterface(retvals[i])}; if (!owned_th) handler.ReportError("TensorHandleFromInterface failed"); auto fallback_tensor = CreateRuntimeFallbackTensorFromTfTensorHandle( std::move(owned_th), host); if (!fallback_tensor) { output_tensors[i] = tfrt::MakeErrorAsyncValueRef( tfrt::StrCat(fallback_tensor.takeError())); } else { output_tensors[i] = tfrt::MakeAvailableAsyncValueRef<RuntimeFallbackTensor>( std::move(*fallback_tensor)); } } out_chain.Set(in_chain); } static void EmitErrorAndSetInResults( const tfrt::ExecutionContext& exec_ctx, const tfrt::DecodedDiagnostic& error, llvm::MutableArrayRef<tfrt::RCReference<tfrt::AsyncValue>> results) { auto error_av = tfrt::EmitErrorAsync(exec_ctx, error.status); std::fill(results.begin(), results.end(), error_av); } void CoreRTTensorHandleToFallbackTensorInternal( llvm::ArrayRef<tfrt::AsyncValue*> tensorhandle_args, llvm::MutableArrayRef<tfrt::RCReference<tfrt::AsyncValue>> tf_tensor_results, tfrt::string_view device, const tfrt::ExecutionContext& exec_ctx) { assert(tensorhandle_args.size() == tf_tensor_results.size()); auto set_result = [&](tfrt::RCReference<tfrt::AsyncValue>& result, llvm::Expected<tensorflow::Tensor> tf_tensor) { auto result_ref = tfrt::MakeUnconstructedAsyncValueRef< tensorflow::tfrt_stub::FallbackTensor>(); if (!tf_tensor) { result_ref.SetError(tfrt::StrCat(tf_tensor.takeError())); } else { result_ref.emplace(std::move(tf_tensor.get())); } result = std::move(result_ref); }; auto maybe_convert_runtime_fallback_tensor = [&exec_ctx]( tfrt::AsyncValueRef<Tensor> tensor_avref, const tfrt::Device& src_device, const tfrt::Device& dst_device) -> tfrt::AsyncValueRef<tfrt::Tensor> { assert(tensor_avref.IsAvailable()); assert(!tensor_avref.IsError()); auto& tensor = tensor_avref.get(); if (!tensor.IsTensorType(DenseHostTensor::kTensorType) || !src_device.IsDeviceType(tfrt::CpuDevice::kDeviceType) || !dst_device.IsDeviceType(tfrt::CpuDevice::kDeviceType)) { return tfrt::ConvertTensor(exec_ctx, tensor, src_device, dst_device, KernelFallbackTensor::kTensorType); } return tensor_avref; }; auto dst_device = exec_ctx.host()->GetDeviceRef(device); for (int i = 0; i < tensorhandle_args.size(); ++i) { if (!dst_device) { tf_tensor_results[i] = tfrt::MakeErrorAsyncValueRef( tfrt::StrCat("Failed to find device with name ", device)); continue; } auto& tensor_handle = tensorhandle_args[i]->get<tfrt::TensorHandle>(); assert(tensor_handle.IsDeviceAvailable()); assert(!tensor_handle.IsDeviceError()); auto* tensor_av = tensor_handle.GetAsyncTensor(); auto tensor_avref = tfrt::AsyncValueRef<Tensor>(FormRef(tensor_av)); auto& src_device = *tensor_handle.GetAvailableDevice(); AsyncValueRef<Tensor> knfb_tensor; if (!tensor_av->IsAvailable()) { auto ind_av = tfrt::MakeIndirectAsyncValue(); knfb_tensor = AsyncValueRef<Tensor>(ind_av.CopyRef()); tensor_av->AndThen( [tensor_avref = std::move(tensor_avref), ind_av = std::move(ind_av), &src_device, dst_device = dst_device.CopyRef(), maybe_convert_runtime_fallback_tensor, exec_ctx]() mutable { ind_av->ForwardTo(maybe_convert_runtime_fallback_tensor( std::move(tensor_avref), src_device, *dst_device)); }); } else { knfb_tensor = maybe_convert_runtime_fallback_tensor( std::move(tensor_avref), src_device, *dst_device); } if (!knfb_tensor.IsAvailable()) { auto result_ref = tfrt::MakeIndirectAsyncValue(); tf_tensor_results[i] = result_ref; auto knfb_tensor_av = knfb_tensor.GetAsyncValue(); knfb_tensor_av->AndThen([knfb_tensor = std::move(knfb_tensor), result_ref = std::move(result_ref), dst_device = dst_device.CopyRef(), exec_ctx]() mutable { if (knfb_tensor.IsError()) { result_ref->ForwardTo(std::move(knfb_tensor)); return; } auto expected_tf_tensor = tfrt::TFRTTensorToTFTensor(knfb_tensor.get()); if (!expected_tf_tensor) { auto error = tfrt::EmitErrorAsync( exec_ctx, toString(expected_tf_tensor.takeError())); result_ref->ForwardTo(std::move(error)); } else { auto tf_tensor_ref = tfrt::MakeAvailableAsyncValueRef< tensorflow::tfrt_stub::FallbackTensor>( std::move(expected_tf_tensor.get())); result_ref->ForwardTo(std::move(tf_tensor_ref)); } }); } else { set_result(tf_tensor_results[i], tfrt::TFRTTensorToTFTensor(knfb_tensor.get())); } } } void CoreRTTensorHandleToFallbackTensor( RemainingArguments args, RemainingResults results, StringAttr device, const tfrt::ExecutionContext& exec_ctx) { tsl::profiler::TraceMe trace_me("corert_tensorhandle_to_fallback_tensor"); trace_me.AppendMetadata([request_id = exec_ctx.request_ctx()->id()]() { return tsl::profiler::TraceMeEncode({{"id", request_id}}); }); CoreRTTensorHandleToFallbackTensorInternal(args.values(), results.values(), device.GetValue(), exec_ctx); } static void FallbackTensorToCoreRTTensorHandleInternal( llvm::ArrayRef<tfrt::AsyncValue*> tf_tensor_args, llvm::MutableArrayRef<tfrt::RCReference<tfrt::AsyncValue>> tensorhandle_results, tfrt::string_view device, const tfrt::ExecutionContext& exec_ctx) { auto* host = exec_ctx.host(); assert(tf_tensor_args.size() == tensorhandle_results.size()); for (int i = 0; i < tf_tensor_args.size(); ++i) { auto* av = tf_tensor_args[i]; auto& tf_tensor = av->get<tensorflow::tfrt_stub::FallbackTensor>().tensor(); AsyncValueRef<tfrt::Tensor> kernel_fallback_tensor = tfrt::MakeAvailableAsyncValueRef<KernelFallbackTensor>(tf_tensor); auto metadata = kernel_fallback_tensor.get().metadata(); tensorhandle_results[i] = tfrt::MakeAvailableAsyncValueRef<tfrt::TensorHandle>( host->GetDeviceRef(device), metadata, std::move(kernel_fallback_tensor)); } } void FallbackTensorToCoreRTTensorHandle( RemainingArguments args, RemainingResults results, StringAttr device, const tfrt::ExecutionContext& exec_ctx) { tsl::profiler::TraceMe trace_me("fallback_tensor_to_corert_tensorhandle"); trace_me.AppendMetadata([request_id = exec_ctx.request_ctx()->id()]() { return tsl::profiler::TraceMeEncode({{"id", request_id}}); }); FallbackTensorToCoreRTTensorHandleInternal(args.values(), results.values(), device.GetValue(), exec_ctx); } tfrt::Chain PrintFallbackTensor( const tensorflow::tfrt_stub::FallbackTensor& arg, const tfrt::Chain& ch) { std::string message; llvm::raw_string_ostream(message) << arg.tensor().DebugString() << "\n"; printf("%s", message.c_str()); fflush(stdout); return tfrt::Chain(); } static void RuntimeFallbackExecuteOp( RemainingArguments args, RemainingResults results, StringAttr device_attr, AggregateAttr op_attr_array, AggregateAttr op_func_attr_array, StringAttr op_name_attr, tfrt::AsyncValueRef<tfrt::Chain>* op_chain, const ExecutionContext& exec_ctx) { auto set_error = [&exec_ctx, results](tfrt::string_view msg) { auto error_av = EmitErrorAsync(exec_ctx, absl::InternalError(msg)); for (int i = 0, n = results.size(); i < n; ++i) results[i] = error_av; }; auto op_name = op_name_attr.GetValue(); op_name.consume_front("tf."); std::string device_name = device_attr.GetValue().str(); if (!absl::StartsWith(device_name, "/")) device_name = kDefaultCpuDevice; tfrt::OpAttrs op_attrs; tfrt::SetUpOpAttrs(op_attr_array, &op_attrs); tfrt::SetUpOpFuncAttrs(op_func_attr_array, &op_attrs); auto eager_ctx_expected = GetEagerContext(exec_ctx); if (!eager_ctx_expected) { set_error(tfrt::StrCat(eager_ctx_expected.takeError())); return; } EagerContext* eager_ctx = eager_ctx_expected.get(); Device* device = nullptr; Status s = eager_ctx->local_device_mgr()->LookupDevice(device_name, &device); if (!s.ok()) { VLOG(1) << s.message() << " using default CPU device."; } llvm::SmallVector<RuntimeFallbackTensor, 4> tfrt_tensor_args; tfrt_tensor_args.reserve(args.size()); for (int i = 0; i < args.size(); ++i) { auto* av = args[i]; auto tf_tensor = av->get<tensorflow::Tensor>(); tfrt::TensorMetadata md = tfd::GetTensorMetadata(tf_tensor); OwnedTensorHandle tensor_handle{tensorflow::TensorHandle::CreateLocalHandle( std::move(tf_tensor), device, device, eager_ctx)}; tfrt_tensor_args.push_back( RuntimeFallbackTensor(md.shape, md.dtype, std::move(tensor_handle))); } llvm::SmallVector<tfrt::Tensor*, 4> tfrt_tensor_arg_ptrs; tfrt_tensor_arg_ptrs.reserve(args.size()); for (auto& tensor : tfrt_tensor_args) tfrt_tensor_arg_ptrs.push_back(&tensor); llvm::SmallVector<RCReference<tfrt::AsyncValue>, 4> tfrt_tensor_results; tfrt_tensor_results.resize(results.size()); auto chain = RuntimeFallbackExecute( exec_ctx, op_name.str().c_str(), device_name.c_str(), tfrt_tensor_arg_ptrs, tfrt::OpAttrsRef(op_attrs), tfrt_tensor_results); if (op_chain) *op_chain = chain.CopyRef(); DCHECK(chain.IsAvailable()); if (chain.IsError()) { EmitErrorAndSetInResults( exec_ctx, tfrt::DecodedDiagnostic(chain.GetError()), results.values()); return; } for (int i = 0; i < results.size(); ++i) { auto& runtime_fallback_tensor = tfrt_tensor_results[i]->get<RuntimeFallbackTensor>(); const tensorflow::Tensor* tf_tensor = nullptr; tensorflow::Status s = runtime_fallback_tensor.GetTensorHandle()->Tensor(&tf_tensor); DCHECK(s.ok()) << s; results[i] = tfrt::MakeAvailableAsyncValueRef<tensorflow::Tensor>(*tf_tensor); } } Chain AddRuntimeFallbackImplicitConversionKernel( Argument<tfrt::OpHandler*> op_handler, const ExecutionContext& exec_ctx) { assert(op_handler.get()->GetName() == tfrt::CpuOpHandler::kName); tfrt::CpuOpHandler* cpu_op_handler = reinterpret_cast<tfrt::CpuOpHandler*>(op_handler.get()); cpu_op_handler->AddImplicitConversion(RuntimeFallbackTensor::kTensorType, DenseHostTensor::kTensorType); cpu_op_handler->AddImplicitConversion(RuntimeFallbackTensor::kTensorType, tfrt::AnyScalarHostTensor::kTensorType); cpu_op_handler->AddImplicitConversion(RuntimeFallbackTensor::kTensorType, tfrt::StringHostTensor::kTensorType); return {}; } void CreateRuntimeFallbackOpHandlerKernel(Result<tfrt::OpHandler*> op_handler, StringAttribute tf_device_name, const ExecutionContext& exec_ctx) { auto* runtime = tfrt::CoreRuntime::GetFromHostContext(exec_ctx.host()); assert(runtime); auto op_handler_ptr = CreateRuntimeFallbackOpHandler(runtime, tf_device_name.get()); assert(op_handler_ptr); op_handler.Emplace(op_handler_ptr.get()); } static OwnedTensorHandle ConvertTFRTTensorToTFTensorHandle( tfrt::Tensor* tensor) { if (auto* dht = llvm::dyn_cast<tfrt::DenseHostTensor>(tensor)) { tensorflow::Tensor tensor = MoveHostBufferToTfTensor(dht->buffer(), dht->dtype(), dht->shape()); return OwnedTensorHandle{ tensorflow::TensorHandle::CreateLocalHandle(tensor)}; } if (auto* sht = llvm::dyn_cast<tfrt::StringHostTensor>(tensor)) { tensorflow::Tensor tensor = CopyShtToTfTensor(*sht); return OwnedTensorHandle{ tensorflow::TensorHandle::CreateLocalHandle(tensor)}; } llvm_unreachable("unsupported tensor type"); } static llvm::Expected<tfrt::Value> ConvertTFTensorHandleToTFRTTensor( OwnedTensorHandle tensor_handle, HostContext* host) { tensorflow::Status status; OwnedAbstractTensorInterface tensor_interface{ tensor_handle->Resolve(&status)}; if (!status.ok()) { return tfrt::MakeStringError("error resolving TensorHandle: ", status.message()); } auto tf_dtype = tensor_interface->Type(); if (tf_dtype == DT_STRING) { auto string_host_tensor = CopyTfStringTensorToStringHostTensor(tensor_interface.get(), host); if (!string_host_tensor) return tfrt::MakeStringError( "error converting TF string tensor to tfrt::StringHostTensor: ", string_host_tensor.takeError()); return tfrt::Value(std::move(*string_host_tensor)); } tfrt::TensorMetadata metadata(GetTfrtDtype(tf_dtype), GetShape(tensor_interface.get())); CheckBoolCompatibility(); void* data = tensor_interface->Data(); size_t size = tensor_interface->ByteSize(); auto host_buffer = HostBuffer::CreateFromExternal( data, size, [tensor_interface = std::move(tensor_interface)](void*, size_t) {}); tfrt::Value value; value.emplace<DenseHostTensor>(metadata, std::move(host_buffer)); return std::move(value); } void RegisterTfdDelegateKernels(tfrt::KernelRegistry* registry) { registry->AddKernel("tfd.init_eager_context", TFRT_KERNEL(TfdInitEagerContext)); registry->AddKernel("tfd.delegate_kernel", TFRT_KERNEL(RuntimeFallbackKernel)); registry->AddKernel("tfd.move_dht_to_tft", TFRT_KERNEL(TfdMoveDHTToTFT)); registry->AddKernel("tfd.convert_tft_to_dht", TFRT_KERNEL(TfdConvertTFTToDHT)); registry->AddKernel("tfd.print_tft", TFRT_KERNEL(TfdPrintTFT)); registry->AddKernel( "tfrt_fallback_async.corert_tensorhandle_to_fallback_tensor", TFRT_KERNEL(CoreRTTensorHandleToFallbackTensor)); registry->AddKernel( "tfrt_fallback_async.fallback_tensor_to_corert_tensorhandle", TFRT_KERNEL(FallbackTensorToCoreRTTensorHandle)); registry->AddKernel("tfrt_fallback_async.print_tensor", TFRT_KERNEL(PrintFallbackTensor)); registry->AddKernel("corert.create_runtime_fallback_op_handler", TFRT_KERNEL(CreateRuntimeFallbackOpHandlerKernel)); registry->AddKernel("corert.add_runtime_fallback_implicit_conversions", TFRT_KERNEL(AddRuntimeFallbackImplicitConversionKernel)); } } }
#include "tensorflow/core/runtime_fallback/runtime/runtime_fallback_kernels.h" #include <gtest/gtest.h> #include "llvm/ADT/SmallVector.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/runtime_fallback/test/coreruntime_driver.h" #include "tfrt/core_runtime/op_attrs.h" namespace tfrt { namespace { TEST(RuntimeFallbackKernelsTest, CallEagerExecute) { auto driver = CoreRuntimeDriver(); driver.InitializeCpuRuntimeFallbackOpHandler(); auto exec_ctx = driver.CreateExecutionContext(__FILE__, __LINE__); tensorflow::Tensor input(tensorflow::DT_FLOAT, {2, 2}); tensorflow::test::FillValues<float>(&input, {1, 1, 1, 1}); tensorflow::TensorHandle* input_th = tensorflow::TensorHandle::CreateLocalHandle(input); tfrt::OpAttrs matmul_attrs; matmul_attrs.Set<bool>("transpose_a", false); matmul_attrs.Set<bool>("transpose_b", false); tfrt::OpAttrsRef matmul_attrs_ref = matmul_attrs.freeze(); llvm::SmallVector<tensorflow::AbstractTensorHandle*, 1> results; results.resize(1); auto eager_ctx_expected = tensorflow::tfd::GetEagerContext(exec_ctx); ASSERT_FALSE(!eager_ctx_expected); tensorflow::EagerContext* eager_ctx = eager_ctx_expected.get(); TF_EXPECT_OK(tensorflow::tfd::CallEagerExecute( exec_ctx, eager_ctx, "MatMul", "", {input_th, input_th}, matmul_attrs_ref, results)); ASSERT_EQ(results.size(), 1); tensorflow::TensorHandle* res_th = tensorflow::TensorHandleFromInterface(results[0]); const tensorflow::Tensor* res_tensor; TF_EXPECT_OK(res_th->Tensor(&res_tensor)); EXPECT_EQ(res_th->DataType(), tensorflow::DT_FLOAT); int64_t num_elements; TF_EXPECT_OK(res_th->NumElements(&num_elements)); EXPECT_EQ(num_elements, 4); tensorflow::Tensor expected(tensorflow::DT_FLOAT, {2, 2}); tensorflow::test::FillValues<float>(&expected, {2, 2, 2, 2}); tensorflow::test::ExpectTensorEqual<float>(*res_tensor, expected); input_th->Unref(); res_th->Unref(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/runtime/runtime_fallback_kernels.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/test/runtime_fallback_kernels_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3cff052a-121d-4eb7-af05-2568e0a596f9
cpp
tensorflow/tensorflow
tfrt_op_kernel
tensorflow/core/runtime_fallback/kernel/tfrt_op_kernel.cc
tensorflow/core/runtime_fallback/kernel/tfrt_op_kernel_test.cc
#include "tensorflow/core/runtime_fallback/kernel/tfrt_op_kernel.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/strings/str_split.h" #include "absl/strings/strip.h" #include "llvm/Support/raw_ostream.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/runtime_fallback/kernel/attr_util.h" #include "tensorflow/core/tfrt/utils/error_util.h" #include "tfrt/host_context/async_value.h" #include "tfrt/host_context/kernel_frame.h" namespace tensorflow { TFRTOpKernelConstruction::TFRTOpKernelConstruction( const tfrt::OpAttrsRef& attributes) : attributes_(std::move(attributes)) {} Status MissingAttributeError(StringPiece attr_name) { return errors::InvalidArgument("Missing attribute: ", attr_name); } template <> Status TFRTOpKernelConstruction::GetAttr(StringPiece attr_name, std::string* value) const { tfrt::string_view view; bool success = attributes_.GetString( llvm::StringRef(attr_name.data(), attr_name.size()), &view); if (!success) { return MissingAttributeError(attr_name); } *value = view.str(); return absl::OkStatus(); } template <> Status TFRTOpKernelConstruction::GetAttr(StringPiece attr_name, DataType* value) const { tfrt::OpAttrType attrtype; bool success = attributes_.Get<tfrt::OpAttrType>( llvm::StringRef(attr_name.data(), attr_name.size()), &attrtype); if (!success) { return MissingAttributeError(attr_name); } *value = tfd::ConvertToTfDataType(attrtype); return absl::OkStatus(); } template <> Status TFRTOpKernelConstruction::GetAttr(StringPiece attr_name, Padding* value) const { std::string padding_str; TF_RETURN_IF_ERROR(GetAttr<std::string>(attr_name, &padding_str)); return GetPaddingFromString(padding_str, value); } template <> Status TFRTOpKernelConstruction::GetAttr(StringPiece attr_name, std::vector<int32>* value) const { llvm::ArrayRef<int32> arrayref; bool success = attributes_.GetArray<int32>( llvm::StringRef(attr_name.data(), attr_name.size()), &arrayref); if (!success) { return MissingAttributeError(attr_name); } *value = arrayref; return absl::OkStatus(); } void TFRTOpKernelConstruction::CtxFailure(const Status& s) { error_ = tfrt::MakeStatusString(s); } void TFRTOpKernelConstruction::CtxFailureWithWarning(const Status& s) { CtxFailure(s); } namespace { std::string FillFailureMessage(const char* file, int line, const Status& s) { std::string error; llvm::raw_string_ostream sstr(error); sstr << "OP_REQUIRES failed at " << file << ":" << line << " : " << tfrt::MakeStatusString(s); sstr.str(); return error; } } void TFRTOpKernelConstruction::CtxFailure(const char* file, int line, const Status& s) { error_ = FillFailureMessage(file, line, s); } void TFRTOpKernelConstruction::CtxFailureWithWarning(const char* file, int line, const Status& s) { CtxFailure(file, line, s); } const std::optional<std::string>& TFRTOpKernelConstruction::error() { return error_; } TFRTOpKernelContext::TFRTOpKernelContext( llvm::ArrayRef<tfrt::RCReference<tfrt::AsyncValue>> inputs, int num_outputs, const TFRTOpMeta* op_meta, tfrt::HostContext* host) : inputs_(inputs), op_meta_(op_meta), outputs_(num_outputs), eigen_host_context_(host) {} const Tensor& TFRTOpKernelContext::output(int index) { return outputs_[index]; } const std::optional<std::string>& TFRTOpKernelContext::error() { return error_; } bool TFRTOpKernelContext::ValidateInputsAreSameShape(TFRTOpKernel* op) { return true; } const Tensor& TFRTOpKernelContext::input(int index) { return inputs_[index]->get<Tensor>(); } int TFRTOpKernelContext::num_inputs() const { return inputs_.size(); } int TFRTOpKernelContext::num_outputs() const { return outputs_.size(); } void TFRTOpKernelContext::set_output(int index, const Tensor& tensor) { outputs_[index] = tensor; } Status TFRTOpKernelContext::allocate_temp(DataType type, const TensorShape& shape, Tensor* out_temp) { *out_temp = Tensor(type, shape); return absl::OkStatus(); } Status TFRTOpKernelContext::allocate_output(int index, const TensorShape& shape, Tensor** tensor) { DataType output_type = op_meta_->output_type(index); outputs_[index] = Tensor(output_type, shape); *tensor = &outputs_[index]; return absl::OkStatus(); } DataType TFRTOpKernelContext::expected_output_dtype(int i) const { return op_meta_->output_type(i); } void TFRTOpKernelContext::CtxFailure(const Status& s) { error_ = s.message(); } void TFRTOpKernelContext::CtxFailureWithWarning(const Status& s) { CtxFailure(s); } void TFRTOpKernelContext::CtxFailure(const char* file, int line, const Status& s) { error_ = FillFailureMessage(file, line, s); } void TFRTOpKernelContext::CtxFailureWithWarning(const char* file, int line, const Status& s) { CtxFailure(file, line, s); } template <> const Eigen::ThreadPoolDevice& TFRTOpKernelContext::eigen_device() const { return eigen_host_context_.Device(); } TFRTOpMeta::TFRTOpMeta(std::vector<DataType> output_types) : output_types_(std::move(output_types)) {} DataType TFRTOpMeta::output_type(int index) const { return output_types_[index]; } TFRTOpMetaBuilder::TFRTOpMetaBuilder(StringPiece op_name) : op_name_(op_name) {} namespace { DataType ParseInputOutputSpec(StringPiece spec) { std::vector<absl::string_view> name_type = absl::StrSplit(spec, absl::MaxSplits(':', 2)); DataType data_type; bool success = DataTypeFromString(absl::StripAsciiWhitespace(name_type[1]), &data_type); assert(success && "Failed to parse DataType"); (void)success; return data_type; } } TFRTOpMetaBuilder& TFRTOpMetaBuilder::Output(StringPiece output_spec) { output_types_.push_back(ParseInputOutputSpec(output_spec)); return *this; } TFRTOpMetaBuilder& TFRTOpMetaBuilder::Input(StringPiece input_spec) { return *this; } TFRTOpMetaBuilder& TFRTOpMetaBuilder::Attr(StringPiece attr_spec) { return *this; } const string& TFRTOpMetaBuilder::op_name() const { return op_name_; } TFRTOpMeta TFRTOpMetaBuilder::BuildMeta() const { return TFRTOpMeta(output_types_); } TFRTOpMetaMap::TFRTOpMetaMap() = default; void TFRTOpMetaMap::RegisterOpMeta(const TFRTOpMetaBuilder& op_builder) { auto insert_result = op_metas_.insert( std::make_pair(op_builder.op_name(), op_builder.BuildMeta())); assert(insert_result.second && "Multiple registrations for the same op_name"); (void)insert_result; } const TFRTOpMeta* TFRTOpMetaMap::GetOpMeta(StringPiece op_name) const { auto it = op_metas_.find(llvm::StringRef(op_name.data(), op_name.size())); if (it == op_metas_.end()) return nullptr; return &it->second; } TFRTOpRegisterer::TFRTOpRegisterer(const TFRTOpMetaBuilder& op_builder) { tfrt_forwarding_op_meta_map->RegisterOpMeta(op_builder); } llvm::ManagedStatic<TFRTOpMetaMap> tfrt_forwarding_op_meta_map; llvm::ManagedStatic<TFRTOpKernelFactories> tfrt_forwarding_kernel_factories; TFRTOpKernelFactories::TFRTOpKernelFactories() = default; void TFRTOpKernelFactories::RegisterFactory(StringPiece kernel_class_name, TFRTOpKernelReg kernel_info) { factories_[std::string(kernel_class_name)].push_back(kernel_info); } Status ValidKernelAttr(StringPiece kernel_class_name, TFRTOpKernelConstruction* construction, const llvm::StringMap<DataType>& constraints) { for (const auto& constraint : constraints) { auto attr_name = std::string(constraint.first()); DataType type; Status s = construction->GetAttr(attr_name, &type); if (!s.ok()) { return errors::InvalidArgument( "Kernel ", kernel_class_name, " has constraint for unset tfdtype attribute ", attr_name, "."); } if (type != constraint.second) { return errors::InvalidArgument( "Kernel ", kernel_class_name, " with type constraint ", attr_name, ": ", DataTypeString(constraint.second), " does not match attribute type ", DataTypeString(type), "."); } } return absl::OkStatus(); } std::unique_ptr<TFRTOpKernel> TFRTOpKernelFactories::CreateKernel( StringPiece kernel_class_name, TFRTOpKernelConstruction* op_kernel_construction) const { auto it = factories_.find(std::string(kernel_class_name)); if (it == factories_.end()) { op_kernel_construction->CtxFailure(errors::NotFound( "Could not find kernel ", kernel_class_name, " in the registry.")); return std::unique_ptr<TFRTOpKernel>(nullptr); } Status status; for (const auto& kernel_info : it->second) { Status s = ValidKernelAttr(kernel_class_name, op_kernel_construction, kernel_info.type_constraints); if (s.ok()) { return kernel_info.callback(op_kernel_construction); } status.Update(s); } op_kernel_construction->CtxFailure(status); return std::unique_ptr<TFRTOpKernel>(nullptr); } }
#include "tensorflow/core/runtime_fallback/kernel/tfrt_op_kernel.h" #include <memory> #include <string> #include <vector> #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/error_codes.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/padding.h" #include "tfrt/core_runtime/op_attrs.h" #include "tfrt/host_context/async_value.h" #include "tfrt/host_context/concurrent_work_queue.h" #include "tfrt/host_context/diagnostic.h" #include "tfrt/host_context/host_allocator.h" #include "tfrt/host_context/host_context.h" namespace tensorflow { namespace { std::unique_ptr<tfrt::HostContext> CreateTestHostContext(int num_threads) { return std::make_unique<tfrt::HostContext>( [](const tfrt::DecodedDiagnostic&) {}, tfrt::CreateMallocAllocator(), tfrt::CreateSingleThreadedWorkQueue()); } TEST(TFRTOpKernelTest, TestGetBoolAttr) { tfrt::OpAttrs attrs; attrs.Set<bool>("foo", true); attrs.Set<bool>("bar", false); tfrt::OpAttrsRef attrsref(attrs); TFRTOpKernelConstruction ctx(attrsref); bool value; TF_ASSERT_OK(ctx.GetAttr("foo", &value)); ASSERT_TRUE(value); TF_ASSERT_OK(ctx.GetAttr("bar", &value)); ASSERT_FALSE(value); } TEST(TFRTOpKernelTest, TestGetIntAttr) { tfrt::OpAttrs attrs; attrs.Set<int32>("foo", -2); tfrt::OpAttrsRef attrsref(attrs); TFRTOpKernelConstruction ctx(attrsref); int32_t value; TF_ASSERT_OK(ctx.GetAttr("foo", &value)); ASSERT_EQ(value, -2); } TEST(TFRTOpKernelTest, TestGetIntListAttr) { tfrt::OpAttrs attrs; attrs.SetArray<int32>("foo", {}); attrs.SetArray<int32>("bar", {1}); attrs.SetArray<int32>("baz", {1, 2, 3}); attrs.SetString("bar", "test"); tfrt::OpAttrsRef attrsref(attrs); TFRTOpKernelConstruction ctx(attrsref); std::vector<int32> v1, v2, v3; std::vector<int32> expected_v1; std::vector<int32> expected_v2 = {1}; std::vector<int32> expected_v3 = {1, 2, 3}; TF_ASSERT_OK(ctx.GetAttr("foo", &v1)); ASSERT_EQ(v1, expected_v1); TF_ASSERT_OK(ctx.GetAttr("bar", &v2)); ASSERT_EQ(v2, expected_v2); TF_ASSERT_OK(ctx.GetAttr("baz", &v3)); ASSERT_EQ(v3, expected_v3); } TEST(TFRTOpKernelTest, TestGetStrAttr) { tfrt::OpAttrs attrs; attrs.SetString("foo", ""); attrs.SetString("bar", "test"); tfrt::OpAttrsRef attrsref(attrs); TFRTOpKernelConstruction ctx(attrsref); std::string value; TF_ASSERT_OK(ctx.GetAttr("foo", &value)); ASSERT_EQ(value, ""); TF_ASSERT_OK(ctx.GetAttr("bar", &value)); ASSERT_EQ(value, "test"); } TEST(TFRTOpKernelTest, TestGetPaddingAttr) { tfrt::OpAttrs attrs; attrs.SetString("foo", "VALID"); attrs.SetString("bar", "SAME"); tfrt::OpAttrsRef attrsref(attrs); TFRTOpKernelConstruction ctx(attrsref); Padding value; TF_ASSERT_OK(ctx.GetAttr("foo", &value)); ASSERT_EQ(value, Padding::VALID); TF_ASSERT_OK(ctx.GetAttr("bar", &value)); ASSERT_EQ(value, Padding::SAME); } TEST(TFRTOpKernelTest, TestMissingAttr) { tfrt::OpAttrs attrs; attrs.Set<bool>("foo", true); tfrt::OpAttrsRef attrsref(attrs); TFRTOpKernelConstruction ctx(attrsref); bool value; auto status = ctx.GetAttr("bar", &value); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); } class TestKernel : public TFRTOpKernel { public: explicit TestKernel(TFRTOpKernelConstruction* construction) : TFRTOpKernel(construction) {} void Compute(TFRTOpKernelContext* context) override {} }; TEST(TFRTOpKernelTest, TestKernelMatchesTypeConstraints) { tfrt::OpAttrs attrs; attrs.Set<tfrt::OpAttrType>("foo", tfrt::OpAttrType::F32); attrs.Set<tfrt::OpAttrType>("bar", tfrt::OpAttrType::I32); tfrt::OpAttrsRef attrsref(attrs); TFRTOpKernelConstruction ctx(attrsref); TFRTOpKernelReg reg([](TFRTOpKernelConstruction* construction) -> std::unique_ptr<TFRTOpKernel> { return std::make_unique<TestKernel>(construction); }); reg.type_constraints["foo"] = DT_FLOAT; reg.type_constraints["bar"] = DT_INT32; ::tensorflow::tfrt_forwarding_kernel_factories->RegisterFactory( "TestKernelFloatInt", reg); std::unique_ptr<TFRTOpKernel> op = tfrt_forwarding_kernel_factories->CreateKernel("TestKernelFloatInt", &ctx); ASSERT_NE(op.get(), nullptr); } TEST(TFRTOpKernelTest, TestSecondKernelMatchesTypeConstraints) { tfrt::OpAttrs attrs; attrs.Set<tfrt::OpAttrType>("foo", tfrt::OpAttrType::I32); tfrt::OpAttrsRef attrsref(attrs); TFRTOpKernelConstruction ctx(attrsref); TFRTOpKernelReg reg1([](TFRTOpKernelConstruction* construction) -> std::unique_ptr<TFRTOpKernel> { return std::make_unique<TestKernel>(construction); }); TFRTOpKernelReg reg2([](TFRTOpKernelConstruction* construction) -> std::unique_ptr<TFRTOpKernel> { return std::make_unique<TestKernel>(construction); }); reg1.type_constraints["foo"] = DT_FLOAT; reg2.type_constraints["foo"] = DT_INT32; ::tensorflow::tfrt_forwarding_kernel_factories->RegisterFactory( "TestKernel2ndConstraint", reg1); ::tensorflow::tfrt_forwarding_kernel_factories->RegisterFactory( "TestKernel2ndConstraint", reg2); std::unique_ptr<TFRTOpKernel> op = tfrt_forwarding_kernel_factories->CreateKernel("TestKernel2ndConstraint", &ctx); ASSERT_NE(op.get(), nullptr); } TEST(TFRTOpKernelTest, TestKernelDoesNotMatchTypeConstraints) { tfrt::OpAttrs attrs; attrs.Set<tfrt::OpAttrType>("foo", tfrt::OpAttrType::I32); attrs.Set<tfrt::OpAttrType>("bar", tfrt::OpAttrType::I32); tfrt::OpAttrsRef attrsref(attrs); TFRTOpKernelConstruction ctx(attrsref); TFRTOpKernelReg reg([](TFRTOpKernelConstruction* construction) -> std::unique_ptr<TFRTOpKernel> { return std::make_unique<TestKernel>(construction); }); reg.type_constraints["foo"] = DT_FLOAT; reg.type_constraints["bar"] = DT_INT32; ::tensorflow::tfrt_forwarding_kernel_factories->RegisterFactory( "TestKernelIntInt", reg); std::unique_ptr<TFRTOpKernel> op = tfrt_forwarding_kernel_factories->CreateKernel("TestKernelIntInt", &ctx); ASSERT_EQ(op.get(), nullptr); } TEST(TFRTOpKernelTest, TestAllocateTemp) { auto host_context = CreateTestHostContext(1); int num_outputs = 1; llvm::ArrayRef<tfrt::RCReference<tfrt::AsyncValue>> inputs; TFRTOpMeta op_meta({DT_INT32}); TFRTOpKernelContext ctx(inputs, num_outputs, &op_meta, host_context.get()); Tensor out; ASSERT_EQ(out.AllocatedBytes(), 0); TF_EXPECT_OK(ctx.allocate_temp(DT_INT32, {}, &out)); ASSERT_GT(out.AllocatedBytes(), 0); out.scalar<int32>()() = 123; ASSERT_EQ(out.dtype(), DT_INT32); ASSERT_EQ(out.shape().dims(), 0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/kernel/tfrt_op_kernel.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/kernel/tfrt_op_kernel_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4506e907-c408-4e9e-a9ab-f52b10e03bdf
cpp
tensorflow/tensorflow
kernel_fallback_compat_request_state
tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.cc
tensorflow/core/runtime_fallback/test/kernel_fallback_compat_request_state_test.cc
#include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.h" #include <cstdlib> #include <cstring> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include "tensorflow/core/common_runtime/renamed_device.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/common_runtime/scoped_allocator_mgr.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/platform/threadpool_interface.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/tfrt/graph_executor/config.h" #include "tensorflow/core/tfrt/utils/fallback_tensor.h" #include "tfrt/host_context/resource_context.h" #include "tfrt/support/pointer_util.h" namespace tensorflow { namespace tfd { using ::tensorflow::tfrt_stub::OpKernelRunnerTable; void FallbackResourceArray::SetResource( int index, tensorflow::tfrt_stub::ImmutableTensor tensor) { if (resource_async_values_.size() <= index) { resource_storage_.resize(index + 1); resource_async_values_.resize(index + 1); } DCHECK(resource_storage_[index].get() == nullptr); DCHECK(resource_async_values_[index].AsPtr().value() == nullptr); resources_.push_back(std::make_unique<tensorflow::tfrt_stub::ImmutableTensor>( std::move(tensor))); resource_storage_[index] = std::make_unique< tfrt::internal::AsyncValueStorage<tfrt_stub::FallbackTensor>>(); resource_async_values_[index] = tfrt::MakeAvailableAsyncValueRef<tfrt_stub::FallbackTensor>( *resource_storage_[index], resources_.back().get()); } KernelFallbackCompatRequestState::KernelFallbackCompatRequestState( std::function<void(std::function<void()>)>* runner, const tensorflow::DeviceMgr* device_manager, int64_t step_id, tfrt::OwnedOrUnownedPtr<ScopedStepContainer> step_container, std::unique_ptr<CollectiveExecutor::Handle> collective_executor_handle, core::RefCountPtr<Rendezvous> rendezvous, OpKernelRunnerTable* runner_table, FallbackResourceArray* resource_array, tensorflow::thread::ThreadPoolInterface* user_intra_op_threadpool, const absl::optional<SessionMetadata>& model_metadata, const tensorflow::ProcessFunctionLibraryRuntime* pflr) : step_id_(step_id), runner_(runner), step_container_(std::move(step_container)), collective_executor_handle_(std::move(collective_executor_handle)), collective_executor_(collective_executor_handle_ ? collective_executor_handle_->get() : nullptr), rendezvous_(std::move(rendezvous)), device_manager_(device_manager), runner_table_(runner_table), resource_array_(resource_array), intra_op_threadpool_(user_intra_op_threadpool), pflr_(pflr) { DCHECK(runner_); DCHECK(device_manager_); DCHECK(runner_table_); DCHECK(resource_array_); DCHECK(rendezvous_); DCHECK(pflr_); cpu_device_ = device_manager_->HostCPU(); cpu_function_library_runtime_ = pflr_->GetFLR(cpu_device_->name()); if (user_intra_op_threadpool != nullptr) { custom_cpu_device_ = tensorflow::RenamedDevice::NewRenamedDevice( cpu_device_->name(), cpu_device_, false, false, user_intra_op_threadpool); cpu_device_ = custom_cpu_device_.get(); for (auto* device : device_manager_->ListDevices()) { custom_device_[device] = tensorflow::RenamedDevice::NewRenamedDevice( device->name(), device, false, false, user_intra_op_threadpool); } } if (model_metadata.has_value()) { session_metadata_ = *model_metadata; } } KernelFallbackCompatRequestState::KernelFallbackCompatRequestState( std::function<void(std::function<void()>)>* runner, const tensorflow::DeviceMgr* device_manager, int64_t step_id, OpKernelRunnerTable* runner_table, FallbackResourceArray* resource_array, tensorflow::thread::ThreadPoolInterface* user_intra_op_threadpool, const absl::optional<SessionMetadata>& model_metadata, const tensorflow::ProcessFunctionLibraryRuntime* pflr) : KernelFallbackCompatRequestState( runner, device_manager, step_id, tfrt::OwnedOrUnownedPtr<ScopedStepContainer>{ std::make_unique<ScopedStepContainer>( step_id, [step_id, device_manager](const std::string& name) { for (tensorflow::Device* device : device_manager->ListDevices()) { auto status = device->resource_manager()->Cleanup(name); (void)status; tensorflow::ScopedAllocatorMgr* sam = device->GetScopedAllocatorMgr(); if (sam) sam->Cleanup(step_id); } })}, nullptr, core::RefCountPtr<RefCountedIntraProcessRendezvous>( new RefCountedIntraProcessRendezvous(device_manager)), runner_table, resource_array, user_intra_op_threadpool, model_metadata, pflr) {} static std::function<void(std::function<void()>)>* GetDefaultRunner() { static auto* const default_runner = new std::function<void(std::function<void()>)>( [](const std::function<void()>& f) { f(); }); return default_runner; } Status SetUpKernelFallbackCompatRequestContext( tfrt::RequestContextBuilder* builder, const tensorflow::DeviceMgr* device_manager, const tensorflow::ProcessFunctionLibraryRuntime* pflr, tfrt_stub::OpKernelRunnerTable* runner_table, FallbackResourceArray* resource_array, tensorflow::thread::ThreadPoolInterface* user_intra_op_threadpool, const absl::optional<SessionMetadata>& model_metadata, std::function<void(std::function<void()>)>* runner, tfrt_stub::CostRecorder* cost_recorder, tfrt::ResourceContext* client_graph_resource_context, tensorflow::CancellationManager* cancellation_manager, const tensorflow::tfrt_stub::RuntimeConfig* runtime_config) { DCHECK(builder); DCHECK(device_manager); DCHECK(pflr); DCHECK(runner_table); DCHECK(resource_array); auto& fallback_request_state = builder->context_data().emplace<KernelFallbackCompatRequestState>( runner ? runner : GetDefaultRunner(), device_manager, builder->id(), runner_table, resource_array, user_intra_op_threadpool, model_metadata, pflr); fallback_request_state.set_cost_recorder(cost_recorder); fallback_request_state.set_client_graph_resource_context( client_graph_resource_context); fallback_request_state.set_cancellation_manager(cancellation_manager); fallback_request_state.set_runtime_config(runtime_config); return absl::OkStatus(); } } }
#include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.h" #include <gtest/gtest.h> #include "tensorflow/core/framework/tensor_testutil.h" namespace tensorflow { namespace tfd { namespace { TEST(FallbackResourceArrayTest, SetAndGetResourceOk) { Tensor tensor_1 = test::AsTensor<float>({0.0, 1.0, 2.0, 3.0}, TensorShape({1, 4})); tfrt_stub::ImmutableTensor imm_tensor_1 = tfrt_stub::ImmutableTensor::Create(tensor_1); tensorflow::Tensor tensor_2 = test::AsTensor<float>({5.0, 6.0, 7.0}, tensorflow::TensorShape({1, 3})); tfrt_stub::ImmutableTensor imm_tensor_2 = tfrt_stub::ImmutableTensor::Create(tensor_2); FallbackResourceArray resource_array; resource_array.SetResource(0, imm_tensor_1); resource_array.SetResource(1, imm_tensor_2); test::ExpectTensorEqual<float>(resource_array.GetResource(0)->tensor(), tensor_1); test::ExpectTensorEqual<float>(resource_array.GetResource(1)->tensor(), tensor_2); test::ExpectTensorEqual<float>( resource_array.GetResourceAsFallbackTensor(0).tensor(), tensor_1); test::ExpectTensorEqual<float>( resource_array.GetResourceAsFallbackTensor(1).tensor(), tensor_2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/test/kernel_fallback_compat_request_state_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b607fa56-9dba-4632-8c78-0e876e514ba2
cpp
tensorflow/tensorflow
random_ops
tensorflow/compiler/tf2xla/kernels/random_ops.cc
tensorflow/lite/kernels/random_ops_test.cc
#include <vector> #include "absl/log/log.h" #include "absl/status/statusor.h" #include "tensorflow/compiler/tf2xla/lib/broadcast.h" #include "tensorflow/compiler/tf2xla/lib/random.h" #include "tensorflow/compiler/tf2xla/mlir_xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/dynamic_shaped_ops.h" #include "xla/hlo/builder/value_inference.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { class RandomUniformOp : public XlaOpKernel { public: explicit RandomUniformOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { TensorShape shape; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape( 0, &shape, xla::ValueInferenceMode::kUpperBound)); const DataType dtype = output_type(0); xla::Shape xla_shape; OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape)); xla::XlaBuilder* b = ctx->builder(); LOG_FIRST_N(WARNING, 1) << "Warning: Using tf.random.uniform with XLA compilation will ignore " "seeds; consider using tf.random.stateless_uniform instead if " "reproducible behavior is desired. " << name(); xla::XlaOp result = xla::RngUniform(XlaHelpers::Zero(b, dtype), XlaHelpers::One(b, dtype), xla_shape); auto result_status_or = SetAllDimensionSizes(&ctx->value_inference(), result, ctx->Input(0)); OP_REQUIRES_OK(ctx, result_status_or.status()); result = result_status_or.value(); ctx->SetOutput(0, result); } private: RandomUniformOp(const RandomUniformOp&) = delete; void operator=(const RandomUniformOp&) = delete; }; REGISTER_XLA_OP(Name("RandomUniform").CompileTimeConstantInput("shape"), RandomUniformOp); REGISTER_XLA_OP(Name("RandomShuffle"), MlirXlaOpKernel); class RandomUniformIntOp : public XlaOpKernel { public: explicit RandomUniformIntOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { TensorShape shape; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape)); xla::Shape xla_shape; OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(input_type(1), shape, &xla_shape)); const TensorShape minval_shape = ctx->InputShape(1); const TensorShape maxval_shape = ctx->InputShape(2); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(minval_shape), errors::InvalidArgument("minval must be 0-D, got shape ", minval_shape.DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(maxval_shape), errors::InvalidArgument("maxval must be 0-D, got shape ", maxval_shape.DebugString())); auto minval = ctx->Input(1); auto maxval = ctx->Input(2); LOG_FIRST_N(WARNING, 1) << "Warning: Using tf.random.uniform with XLA compilation will ignore " "seeds; consider using tf.random.stateless_uniform instead if " "reproducible behavior is desired. " << name(); ctx->SetOutput(0, xla::RngUniform(minval, maxval, xla_shape)); } private: RandomUniformIntOp(const RandomUniformIntOp&) = delete; void operator=(const RandomUniformIntOp&) = delete; }; REGISTER_XLA_OP(Name("RandomUniformInt").CompileTimeConstantInput("shape"), RandomUniformIntOp); class RandomStandardNormalOp : public XlaOpKernel { public: explicit RandomStandardNormalOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { const DataType dtype = output_type(0); TensorShape shape; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape( 0, &shape, xla::ValueInferenceMode::kUpperBound)); xla::Shape xla_shape; OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape)); xla::XlaBuilder* b = ctx->builder(); xla::XlaOp result = xla::RngNormal(XlaHelpers::Zero(b, dtype), XlaHelpers::One(b, dtype), xla_shape); auto result_status_or = SetAllDimensionSizes(&ctx->value_inference(), result, ctx->Input(0)); OP_REQUIRES_OK(ctx, result_status_or.status()); result = result_status_or.value(); ctx->SetOutput(0, result); } private: RandomStandardNormalOp(const RandomStandardNormalOp&) = delete; void operator=(const RandomStandardNormalOp&) = delete; }; REGISTER_XLA_OP(Name("RandomStandardNormal").CompileTimeConstantInput("shape"), RandomStandardNormalOp); class TruncatedNormalOp : public XlaOpKernel { public: explicit TruncatedNormalOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { const DataType dtype = output_type(0); TensorShape shape; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape)); xla::Shape xla_shape; OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape)); xla::XlaBuilder* b = ctx->builder(); xla::XlaOp one = xla::One(b, xla_shape.element_type()); xla::XlaOp min_positive = xla::MinPositiveNormalValue(b, xla_shape.element_type()); LOG_FIRST_N(WARNING, 1) << "Warning: Using tf.random.truncated_normal with XLA " "compilation will ignore seeds; consider using " "tf.random.stateless_truncated_normal instead if " "reproducible behavior is desired. " << name(); auto uniform = xla::RngUniform(min_positive, one, xla_shape); ctx->SetOutput(0, TruncatedNormal(uniform)); } }; REGISTER_XLA_OP(Name("TruncatedNormal") .CompileTimeConstantInput("shape") .TypeConstraint("dtype", {DT_FLOAT, DT_DOUBLE}), TruncatedNormalOp); static absl::StatusOr<xla::XlaOp> BroadcastParameters( xla::XlaOp params, TensorShape& output_shape) { int rank = output_shape.dims(); std::vector<int64_t> bcast_shape; for (int i = 1; i < rank; ++i) { bcast_shape.push_back(output_shape.dim_size(i)); } bcast_shape.push_back(output_shape.dim_size(0)); TF_ASSIGN_OR_RETURN(xla::XlaOp bcast_params, BroadcastTo(params, bcast_shape)); std::vector<int64_t> permutation; permutation.push_back(rank - 1); for (int i = 0; i < rank - 1; ++i) { permutation.push_back(i); } return xla::Transpose(bcast_params, permutation); } class ParameterizedTruncatedNormalOp : public XlaOpKernel { public: explicit ParameterizedTruncatedNormalOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { const DataType dtype = output_type(0); TensorShape shape; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape)); xla::Shape xla_shape; OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape)); OP_REQUIRES(ctx, xla_shape.rank() >= 1, errors::InvalidArgument( "shape parameter must have rank >= 1, received (", xla::ShapeUtil::HumanString(xla_shape), ")")); xla::XlaBuilder* b = ctx->builder(); xla::XlaOp one = xla::One(b, xla_shape.element_type()); xla::XlaOp min_positive = xla::MinPositiveNormalValue(b, xla_shape.element_type()); LOG_FIRST_N(WARNING, 1) << "Warning: Using tf.random.truncated_normal with XLA " "compilation will ignore seeds; consider using " "tf.random.stateless_truncated_normal instead if " "reproducible behavior is desired. " << name(); xla::XlaOp uniform = xla::RngUniform(min_positive, one, xla_shape); auto result = b->ReportErrorOrReturn([&]() -> absl::StatusOr<xla::XlaOp> { TF_ASSIGN_OR_RETURN(xla::XlaOp means, BroadcastParameters(ctx->Input(1), shape)); TF_ASSIGN_OR_RETURN(xla::XlaOp stddevs, BroadcastParameters(ctx->Input(2), shape)); TF_ASSIGN_OR_RETURN(xla::XlaOp minvals, BroadcastParameters(ctx->Input(3), shape)); TF_ASSIGN_OR_RETURN(xla::XlaOp maxvals, BroadcastParameters(ctx->Input(4), shape)); return ParameterizedTruncatedNormal(uniform, means, stddevs, minvals, maxvals); }); ctx->SetOutput(0, result); } }; REGISTER_XLA_OP(Name("ParameterizedTruncatedNormal") .CompileTimeConstantInput("shape") .TypeConstraint("dtype", {DT_FLOAT, DT_DOUBLE}), ParameterizedTruncatedNormalOp); } }
#include <algorithm> #include <initializer_list> #include <vector> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { enum class InputType { kConst = 0, kDynamic = 1, }; class RandomOpModel : public SingleOpModel { public: RandomOpModel(BuiltinOperator op_code, InputType input_type, const std::initializer_list<int32_t>& shape, int32_t seed = 0, int32_t seed2 = 0) { bool is_input_const = (input_type == InputType::kConst); if (is_input_const) { input_ = AddConstInput(TensorType_INT32, shape, {static_cast<int32_t>(shape.size())}); } else { input_ = AddInput({TensorType_INT32, {static_cast<int32_t>(shape.size())}}); } output_ = AddOutput({TensorType_FLOAT32, {}}); SetBuiltinOp(op_code, BuiltinOptions_RandomOptions, CreateRandomOptions(builder_, seed, seed2).Union()); BuildInterpreter({GetShape(input_)}); if (!is_input_const) { PopulateTensor<int32_t>(input_, std::vector<int32_t>(shape)); } } int input() { return input_; } int output() { return output_; } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } private: int input_; int output_; }; class MultinomialOpModel : public SingleOpModel { public: MultinomialOpModel(InputType input_type, const std::initializer_list<float>& logits, int num_batches, int num_classes, int num_samples, int32_t seed = 0, int32_t seed2 = 0, tflite::TensorType output_type = TensorType_INT64) { bool is_input_const = (input_type == InputType::kConst); auto logits_shape = {num_batches, num_classes}; if (is_input_const) { logits_ = AddConstInput(TensorType_FLOAT32, logits, logits_shape); } else { logits_ = AddInput({TensorType_FLOAT32, logits_shape}); } num_samples_ = AddConstInput(TensorType_INT32, {num_samples}, {}); output_ = AddOutput({output_type, {}}); SetBuiltinOp(BuiltinOperator_MULTINOMIAL, BuiltinOptions_RandomOptions, CreateRandomOptions(builder_, seed, seed2).Union()); BuildInterpreter({GetShape(logits_), GetShape(num_samples_)}); if (!is_input_const) { PopulateTensor<float>(logits_, std::vector<float>(logits)); } } int logits() { return logits_; } int num_samples() { return num_samples_; } int output() { return output_; } std::vector<int64_t> GetOutput() { return ExtractVector<int64_t>(output_); } std::vector<int32_t> GetInt32Output() { return ExtractVector<int32_t>(output_); } private: int logits_; int num_samples_; int output_; }; class TestSuite : public testing::TestWithParam<std::tuple< BuiltinOperator, InputType>> { }; TEST_P(TestSuite, NonDeterministicOutputWithSeedsEqualToZero) { BuiltinOperator op_code = std::get<0>(GetParam()); InputType input_type = std::get<1>(GetParam()); RandomOpModel m1(op_code, input_type, {100, 50, 5}, 0, 0); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<float> output1a = m1.GetOutput(); EXPECT_EQ(output1a.size(), 100 * 50 * 5); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<float> output1b = m1.GetOutput(); EXPECT_NE(output1a, output1b); RandomOpModel m2(op_code, input_type, {100, 50, 5}, 0, 0); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<float> output2a = m2.GetOutput(); EXPECT_EQ(output2a.size(), 100 * 50 * 5); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<float> output2b = m2.GetOutput(); EXPECT_NE(output2a, output2b); EXPECT_NE(output1a, output2a); EXPECT_NE(output1b, output2b); } TEST_P(TestSuite, DeterministicOutputWithNonZeroSeeds) { BuiltinOperator op_code = std::get<0>(GetParam()); InputType input_type = std::get<1>(GetParam()); RandomOpModel m1(op_code, input_type, {100, 50, 5}, 1234, 5678); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<float> output1a = m1.GetOutput(); EXPECT_EQ(output1a.size(), 100 * 50 * 5); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<float> output1b = m1.GetOutput(); EXPECT_NE(output1a, output1b); RandomOpModel m2(op_code, input_type, {100, 50, 5}, 1234, 5678); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<float> output2a = m2.GetOutput(); EXPECT_EQ(output2a.size(), 100 * 50 * 5); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<float> output2b = m2.GetOutput(); EXPECT_NE(output2a, output2b); EXPECT_EQ(output1a, output2a); EXPECT_EQ(output1b, output2b); } INSTANTIATE_TEST_SUITE_P( RandomOpTest, TestSuite, testing::Combine( testing::Values(BuiltinOperator_RANDOM_UNIFORM, BuiltinOperator_RANDOM_STANDARD_NORMAL), testing::Values(InputType::kConst, InputType::kDynamic)), [](const testing::TestParamInfo<TestSuite::ParamType>& info) { std::string name = absl::StrCat( std::get<0>(info.param) == BuiltinOperator_RANDOM_UNIFORM ? "_RandomUniformOp" : "_RandomStandardNormalOp", std::get<1>(info.param) == InputType::kConst ? "_ConstInput" : "_DynamicInput"); return name; } ); TEST(RandomUniformOpTest, OutputMeanAndVariance) { RandomOpModel m(BuiltinOperator_RANDOM_UNIFORM, InputType::kConst, {100, 50, 5}, 1234, 5678); const std::vector<float> output_data(100 * 50 * 5, std::numeric_limits<float>::infinity()); m.PopulateTensor(m.output(), output_data); ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), 100 * 50 * 5); double sum = 0; for (const auto r : output) { sum += r; } double mean = sum / output.size(); ASSERT_LT(std::abs(mean - 0.5), 0.05); double sum_squared = 0; for (const auto r : output) { sum_squared += std::pow(r - mean, 2); } double var = sum_squared / output.size(); EXPECT_LT(std::abs(1. / 12 - var), 0.05); } TEST(RandomStandardNormalOpTest, OutputMeanAndVariance) { RandomOpModel m(BuiltinOperator_RANDOM_STANDARD_NORMAL, InputType::kConst, {100, 50, 5}, 1234, 5678); const std::vector<float> output_data(100 * 50 * 5, std::numeric_limits<float>::infinity()); m.PopulateTensor(m.output(), output_data); ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), 100 * 50 * 5); double sum = 0; for (const auto r : output) { sum += r; } double mean = sum / output.size(); ASSERT_LT(std::abs(mean), 0.05); double sum_squared = 0; for (const auto r : output) { sum_squared += std::pow(r - mean, 2); } double var = sum_squared / output.size(); EXPECT_LT(std::abs(1.0 - var), 0.05); } class MultinomialOpTestSuite : public testing::TestWithParam<InputType> {}; TEST_P(MultinomialOpTestSuite, NonDeterministicOutputWithSeedsEqualToZero) { const std::initializer_list<float> kLogits = {logf(0.3f), logf(0.7f)}; const int kNumBatches = 1; const int kNumClasses = 2; const int kNumSamples = 30; MultinomialOpModel m1(GetParam(), kLogits, kNumBatches, kNumClasses, kNumSamples, 0, 0); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<int64_t> output1a = m1.GetOutput(); EXPECT_EQ(output1a.size(), kNumSamples); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<int64_t> output1b = m1.GetOutput(); EXPECT_NE(output1a, output1b); MultinomialOpModel m2(GetParam(), kLogits, kNumBatches, kNumClasses, kNumSamples, 0, 0); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<int64_t> output2a = m2.GetOutput(); EXPECT_EQ(output2a.size(), kNumSamples); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<int64_t> output2b = m2.GetOutput(); EXPECT_NE(output2a, output2b); EXPECT_NE(output1a, output2a); EXPECT_NE(output1b, output2b); } TEST_P(MultinomialOpTestSuite, DeterministicOutputWithNonZeroSeeds) { const std::initializer_list<float> kLogits = {logf(0.3f), logf(0.7f)}; const int kNumBatches = 1; const int kNumClasses = 2; const int kNumSamples = 30; MultinomialOpModel m1(GetParam(), kLogits, kNumBatches, kNumClasses, kNumSamples, 123, 456); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<int64_t> output1a = m1.GetOutput(); EXPECT_EQ(output1a.size(), kNumBatches * kNumSamples); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<int64_t> output1b = m1.GetOutput(); EXPECT_EQ(output1b.size(), kNumBatches * kNumSamples); EXPECT_NE(output1a, output1b); MultinomialOpModel m2(GetParam(), kLogits, kNumBatches, kNumClasses, kNumSamples, 123, 456); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<int64_t> output2a = m2.GetOutput(); EXPECT_EQ(output2a.size(), kNumBatches * kNumSamples); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<int64_t> output2b = m2.GetOutput(); EXPECT_EQ(output2b.size(), kNumBatches * kNumSamples); EXPECT_NE(output2a, output2b); EXPECT_EQ(output1a, output2a); EXPECT_EQ(output1b, output2b); } INSTANTIATE_TEST_SUITE_P( RandomOpTest2, MultinomialOpTestSuite, testing::Values(InputType::kConst, InputType::kDynamic), [](const testing::TestParamInfo<MultinomialOpTestSuite::ParamType>& info) { std::string name = absl::StrCat( "_MultinomialOp", info.param == InputType::kConst ? "_ConstInput" : "_DynamicInput"); return name; }); TEST(MultinomialTest, ValidateTFLiteOutputisTheSameAsTFOutput_OutputTypeInt32) { const std::initializer_list<float> kLogits = {-1.2039728, -0.35667497}; const int kNumBatches = 1; const int kNumClasses = 2; const int kNumSamples = 10; MultinomialOpModel m(InputType::kConst, kLogits, kNumBatches, kNumClasses, kNumSamples, 1234, 5678, TensorType_INT32); const std::vector<std::vector<int32_t>> expected_outputs = { {1, 0, 1, 0, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 0, 1, 1, 0, 0, 0, 1}, {0, 1, 1, 0, 1, 1, 1, 1, 0, 1}, {1, 1, 1, 0, 1, 0, 0, 0, 1, 0}}; for (int i = 0; i < expected_outputs.size(); i++) { ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetInt32Output(); EXPECT_EQ(output.size(), kNumBatches * kNumSamples); EXPECT_EQ(expected_outputs[i], output); } } TEST(MultinomialTest, ValidateTFLiteOutputisTheSameAsTFOutput) { const std::initializer_list<float> kLogits = {-1.609438, -1.2039728, -0.6931472}; const int kNumBatches = 1; const int kNumClasses = 3; const int kNumSamples = 15; MultinomialOpModel m(InputType::kConst, kLogits, kNumBatches, kNumClasses, kNumSamples, 5678, 1234); const std::vector<std::vector<int64_t>> expected_outputs = { {1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2}, {1, 2, 0, 0, 2, 1, 2, 0, 1, 0, 2, 2, 0, 2, 2}, {1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 0, 0, 2, 2, 2}, {0, 1, 1, 1, 2, 0, 1, 2, 1, 1, 2, 2, 1, 2, 2}, {0, 2, 2, 0, 2, 0, 2, 0, 1, 1, 2, 2, 0, 0, 1}}; for (int i = 0; i < expected_outputs.size(); i++) { ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), kNumBatches * kNumSamples); EXPECT_EQ(expected_outputs[i], output); } } TEST(MultinomialTest, ValidateTFLiteOutputisTheSameAsTFOutput_MultiBatchMultiInvoke) { const std::vector<float> kProb = {0.1f, 0.2f, 0.7f, 0.2f, 0.3f, 0.5f, 0.1f, 0.1f, 0.8f}; const std::initializer_list<float> kLogits = { logf(0.1f), logf(0.2f), logf(0.7f), logf(0.2f), logf(0.3f), logf(0.5f), logf(0.1f), logf(0.1f), logf(0.8f)}; const int kNumBatches = 3; const int kNumClasses = 3; const int kNumSamples = 10; MultinomialOpModel m(InputType::kConst, kLogits, kNumBatches, kNumClasses, kNumSamples, 1234, 5678); const std::vector<std::vector<int64_t>> expected_output = { {2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2}, {2, 2, 2, 0, 2, 1, 0, 0, 2, 0, 2, 0, 2, 1, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2}, {2, 0, 0, 0, 1, 2, 1, 2, 0, 0, 2, 2, 2, 2, 0, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2}}; for (int i = 0; i < 3; i++) { ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), kNumBatches * kNumSamples); EXPECT_EQ(expected_output[i], output); } } TEST(MultinomialTest, ValidateClassProbabilities) { const std::vector<float> kProb = {0.1f, 0.9f, 0.2f, 0.8f, 0.3f, 0.7f, 0.4f, 0.6f, 0.5f, 0.5f}; const std::initializer_list<float> kLogits = { logf(0.1f), logf(0.9f), logf(0.2f), logf(0.8f), logf(0.3f), logf(0.7f), logf(0.4f), logf(0.6f), logf(0.5f), logf(0.5f)}; const int kNumBatches = 5; const int kNumClasses = 2; const int kNumSamples = 10000; MultinomialOpModel m(InputType::kConst, kLogits, kNumBatches, kNumClasses, kNumSamples, 1234, 5678); ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), kNumBatches * kNumSamples); int total_count = 0; for (int i = 0; i < kNumBatches; i++) { for (int j = 0; j < kNumClasses; j++) { int idx = i * kNumClasses + j; const int expected_count = static_cast<int>(kProb[idx] * kNumSamples); const int allowed_misses = static_cast<int>(expected_count / 20); int actual_count = std::count(output.begin() + i * kNumSamples, output.begin() + (i + 1) * kNumSamples, j); EXPECT_LE(abs(actual_count - expected_count), allowed_misses); total_count += actual_count; } } EXPECT_EQ(total_count, kNumBatches * kNumSamples); } TEST(MultinomialTest, ValidatePreciseOutput) { const std::initializer_list<float> kLogits = {1000.0f, 1001.0f}; const int kNumBatches = 1; const int kNumClasses = 2; const int kNumSamples = 1000; MultinomialOpModel m(InputType::kConst, kLogits, kNumBatches, kNumClasses, kNumSamples, 1234, 5678); ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), kNumBatches * kNumSamples); int c0 = std::count(output.begin(), output.end(), 0); int c1 = std::count(output.begin(), output.end(), 1); double p0 = static_cast<double>(c0) / (c0 + c1); EXPECT_LT(std::abs(p0 - 0.26894142137), 0.01); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/random_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/random_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
678376f5-040b-442d-b9eb-167c86ddc768
cpp
tensorflow/tensorflow
set_ops
tensorflow/core/ops/set_ops.cc
tensorflow/core/ops/set_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; REGISTER_OP("SetSize") .Input("set_indices: int64") .Input("set_values: T") .Input("set_shape: int64") .Attr("validate_indices: bool = true") .Attr("T: {int8, int16, int32, int64, uint8, uint16, string}") .Output("size: int32") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("DenseToDenseSetOperation") .Input("set1: T") .Input("set2: T") .Attr("set_operation: string") .Attr("validate_indices: bool = true") .Attr("T: {int8, int16, int32, int64, uint8, uint16, string}") .Output("result_indices: int64") .Output("result_values: T") .Output("result_shape: int64") .SetShapeFn([](InferenceContext* c) { if (c->num_inputs() != 2) { return errors::InvalidArgument("len(inputs) != 2."); } DimensionHandle output_rank; ShapeHandle input0_shape = c->input(0); TF_RETURN_IF_ERROR(c->WithRankAtLeast(input0_shape, 2, &input0_shape)); if (c->RankKnown(input0_shape)) { const int32_t input0_rank = c->Rank(input0_shape); ShapeHandle input1_shape = c->input(1); TF_RETURN_IF_ERROR( c->WithRank(input1_shape, input0_rank, &input1_shape)); if (c->RankKnown(input1_shape)) { const int32_t rank = c->Rank(input1_shape); ShapeHandle group0_shape; TF_RETURN_IF_ERROR( c->Subshape(input0_shape, 0, rank - 1, &group0_shape)); ShapeHandle group1_shape; TF_RETURN_IF_ERROR( c->Subshape(input1_shape, 0, rank - 1, &group1_shape)); ShapeHandle unused_shape; TF_RETURN_IF_ERROR( c->Merge(group0_shape, group1_shape, &unused_shape)); } output_rank = c->MakeDim(input0_rank); } else { ShapeHandle input1_shape = c->input(1); TF_RETURN_IF_ERROR(c->WithRankAtLeast(input1_shape, 2, &input1_shape)); if (c->RankKnown(input1_shape)) { output_rank = c->MakeDim(c->Rank(input1_shape)); } else { output_rank = c->UnknownDim(); } } c->set_output(0, c->Matrix(c->UnknownDim(), output_rank)); c->set_output(1, c->Vector(c->UnknownDim())); c->set_output(2, c->Vector(output_rank)); return absl::OkStatus(); }); REGISTER_OP("DenseToSparseSetOperation") .Input("set1: T") .Input("set2_indices: int64") .Input("set2_values: T") .Input("set2_shape: int64") .Attr("set_operation: string") .Attr("validate_indices: bool = true") .Attr("T: {int8, int16, int32, int64, uint8, uint16, string}") .Output("result_indices: int64") .Output("result_values: T") .Output("result_shape: int64") .SetShapeFn([](InferenceContext* c) { if (c->num_inputs() != 4) { return errors::InvalidArgument("len(inputs) != 4."); } ShapeHandle input1_shape_shape = c->input(3); TF_RETURN_IF_ERROR(shape_inference::ValidateSparseTensor( c, c->input(1), c->input(2), input1_shape_shape)); DimensionHandle input1_rank_dim = c->Dim(input1_shape_shape, 0); DimensionHandle output_rank_dim; ShapeHandle input0_shape = c->input(0); TF_RETURN_IF_ERROR(c->WithRankAtLeast(input0_shape, 2, &input0_shape)); if (c->RankKnown(input0_shape)) { const int32_t input0_rank = c->Rank(input0_shape); TF_RETURN_IF_ERROR( c->WithValue(input1_rank_dim, input0_rank, &input1_rank_dim)); output_rank_dim = c->MakeDim(input0_rank); } else if (c->ValueKnown(input1_rank_dim)) { output_rank_dim = input1_rank_dim; } else { output_rank_dim = c->UnknownDim(); } c->set_output(0, c->Matrix(c->UnknownDim(), output_rank_dim)); c->set_output(1, c->Vector(c->UnknownDim())); c->set_output(2, c->Vector(output_rank_dim)); return absl::OkStatus(); }); REGISTER_OP("SparseToSparseSetOperation") .Input("set1_indices: int64") .Input("set1_values: T") .Input("set1_shape: int64") .Input("set2_indices: int64") .Input("set2_values: T") .Input("set2_shape: int64") .Attr("set_operation: string") .Attr("validate_indices: bool = true") .Attr("T: {int8, int16, int32, int64, uint8, uint16, string}") .Output("result_indices: int64") .Output("result_values: T") .Output("result_shape: int64") .SetShapeFn([](InferenceContext* c) { if (c->num_inputs() != 6) { return errors::InvalidArgument("len(inputs) != 6."); } ShapeHandle input0_shape_shape = c->input(2); ShapeHandle input1_shape_shape = c->input(5); TF_RETURN_IF_ERROR(shape_inference::ValidateSparseTensor( c, c->input(0), c->input(1), input0_shape_shape)); TF_RETURN_IF_ERROR(shape_inference::ValidateSparseTensor( c, c->input(3), c->input(4), input1_shape_shape)); DimensionHandle input0_rank_dim = c->Dim(input0_shape_shape, 0); DimensionHandle input1_rank_dim = c->Dim(input1_shape_shape, 0); DimensionHandle output_rank_dim; if (c->ValueKnown(input0_rank_dim)) { const int64_t input0_rank = c->Value(input0_rank_dim); if (input0_rank < 2) { return errors::InvalidArgument("Input 0, expected rank >= 2, got ", input0_rank, "."); } TF_RETURN_IF_ERROR( c->WithValue(input1_rank_dim, input0_rank, &input1_rank_dim)); output_rank_dim = input0_rank_dim; } else if (c->ValueKnown(input1_rank_dim)) { const int64_t input1_rank = c->Value(input1_rank_dim); if (input1_rank < 2) { return errors::InvalidArgument("Input 1, expected rank >= 2, got ", input1_rank, "."); } output_rank_dim = input1_rank_dim; } else { output_rank_dim = c->UnknownDim(); } c->set_output(0, c->Matrix(c->UnknownDim(), output_rank_dim)); c->set_output(1, c->Vector(c->UnknownDim())); c->set_output(2, c->Vector(output_rank_dim)); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(SetOpsTest, DenseToDenseShape_InvalidNumberOfInputs) { ShapeInferenceTestOp op("DenseToDenseSetOperation"); op.input_tensors.resize(3); INFER_ERROR("Wrong number of inputs passed", op, "?;?;?"); } TEST(SetOpsTest, DenseToDenseShape) { ShapeInferenceTestOp op("DenseToDenseSetOperation"); INFER_OK(op, "?;?", "[?,?];[?];[?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?];?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "?;[?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[2];?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "?;[2]"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "[?,?];[?,?,?]"); INFER_ERROR("Shape must be rank 3 but is rank 2", op, "[?,?,?];[?,?]"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "[2,1];[2,1,2]"); INFER_ERROR("Shape must be rank 3 but is rank 2", op, "[2,1,2];[2,1]"); INFER_OK(op, "[?,?];?", "[?,2];[?];[2]"); INFER_OK(op, "?;[?,?]", "[?,2];[?];[2]"); INFER_OK(op, "[?,?];[?,?]", "[?,2];[?];[2]"); INFER_OK(op, "[?,?,?,?];?", "[?,4];[?];[4]"); INFER_OK(op, "?;[?,?,?,?]", "[?,4];[?];[4]"); INFER_OK(op, "[?,?,?,?];[?,?,?,?]", "[?,4];[?];[4]"); INFER_OK(op, "[5,3,2,1];?", "[?,4];[?];[4]"); INFER_OK(op, "?;[5,3,2,1]", "[?,4];[?];[4]"); INFER_OK(op, "[5,3,2,1];[?,?,?,?]", "[?,4];[?];[4]"); INFER_OK(op, "[?,?,?,?];[5,3,2,1]", "[?,4];[?];[4]"); INFER_OK(op, "[5,3,2,1];[?,?,?,?]", "[?,4];[?];[4]"); INFER_ERROR("Dimension 0 in both shapes must be equal", op, "[4,?,2,?];[3,1,?,5]"); INFER_ERROR("Dimension 2 in both shapes must be equal", op, "[4,3,2,1];[4,3,3,1]"); INFER_OK(op, "[4,5,6,7];[?,?,?,?]", "[?,4];[?];[4]"); INFER_OK(op, "[4,5,6,7];[?,?,?,4]", "[?,4];[?];[4]"); INFER_OK(op, "[?,?,?,?];[4,5,6,7]", "[?,4];[?];[4]"); INFER_OK(op, "[4,?,2,?];[?,1,?,5]", "[?,4];[?];[4]"); INFER_OK(op, "[4,5,6,7];[4,?,6,?]", "[?,4];[?];[4]"); INFER_OK(op, "[4,5,6,7];[4,5,6,4]", "[?,4];[?];[4]"); } TEST(SetOpsTest, DenseToSparseShape_InvalidNumberOfInputs) { ShapeInferenceTestOp op("DenseToSparseSetOperation"); op.input_tensors.resize(5); INFER_ERROR("Wrong number of inputs passed", op, "?;?;?;?;?"); } TEST(SetOpsTest, DenseToSparseShape) { ShapeInferenceTestOp op("DenseToSparseSetOperation"); INFER_OK(op, "?;?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "?;?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "?;[?,?];[?];[?]", "[?,?];[?];[?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?];?;?;?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?];[?,?];[?];[?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?];[5,3];[5];[3]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[2];?;?;?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[2];[?,?];[?];[?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[2];[5,3];[5];[3]"); INFER_OK(op, "[?,?];?;?;?", "[?,2];[?];[2]"); INFER_OK(op, "[?,?];[?,?];[?];[?]", "[?,2];[?];[2]"); INFER_OK(op, "?;[?,2];[?];[2]", "[?,d3_0];[?];[d3_0]"); INFER_OK(op, "?;[5,2];[5];[2]", "[?,d3_0];[?];[d3_0]"); INFER_OK(op, "[?,?];[5,2];[5];[2]", "[?,2];[?];[2]"); INFER_OK(op, "[4,3];[5,2];[5];[2]", "[?,2];[?];[2]"); INFER_ERROR("elements in index (5) and values (6) do not match", op, "?;[5,3];[6];[3]"); INFER_ERROR("rank (3) and shape rank (4) do not match", op, "?;[5,3];[5];[4]"); } TEST(SetOpsTest, SparseToSparseShape_InvalidNumberOfInputs) { ShapeInferenceTestOp op("SparseToSparseSetOperation"); op.input_tensors.resize(7); INFER_ERROR("Wrong number of inputs passed", op, "?;?;?;?;?;?;?"); } TEST(SetOpsTest, SparseToSparseShape) { ShapeInferenceTestOp op("SparseToSparseSetOperation"); INFER_OK(op, "?;?;?;?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "[?,?];[?];[?];[?,?];[?];[?]", "[?,?];[?];[?]"); INFER_OK(op, "?;?;?;[?,?];[?];[?]", "[?,?];[?];[?]"); INFER_OK(op, "[?,?];[?];[?];?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "[?,2];[?];[2];?;?;?", "[?,d2_0];[?];[d2_0]"); INFER_OK(op, "?;?;?;[?,2];[?];[2]", "[?,d5_0];[?];[d5_0]"); INFER_OK(op, "[?,2];[?];[2];[?,?];[?];[?]", "[?,d2_0];[?];[d2_0]"); INFER_OK(op, "[?,?];[?];[?];[?,2];[?];[2]", "[?,d5_0];[?];[d5_0]"); INFER_OK(op, "[?,2];[?];[2];[?,2];[?];[2]", "[?,d2_0];[?];[d2_0]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/set_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/set_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
df45c772-447a-4b88-b2e8-35a046c634d9
cpp
tensorflow/tensorflow
functional_grad
tensorflow/cc/gradients/functional_grad.cc
tensorflow/cc/gradients/functional_grad_test.cc
#include <iostream> #include <vector> #include "tensorflow/cc/framework/grad_op_registry.h" #include "tensorflow/cc/framework/gradients.h" #include "tensorflow/cc/ops/functional_ops.h" namespace tensorflow { namespace ops { namespace { Status PartitionedCallGrad(const Scope& scope, const Operation& op, const std::vector<Output>& grad_inputs, std::vector<Output>* grad_outputs) { NameAttrList f; TF_RETURN_IF_ERROR(GetNodeAttr(op.node()->attrs(), "f", &f)); for (const auto& attr : op.node()->attrs()) { (*f.mutable_attr())[attr.first] = attr.second; } std::vector<Output> func_inputs; std::vector<DataType> input_dtypes; const int num_inputs = op.num_inputs(); func_inputs.reserve(num_inputs + grad_inputs.size()); input_dtypes.reserve(num_inputs); for (int i = 0; i < num_inputs; i++) { func_inputs.push_back(op.input(i)); input_dtypes.push_back(op.input_type(i)); } func_inputs.insert(std::end(func_inputs), std::begin(grad_inputs), std::end(grad_inputs)); auto grad = SymbolicGradient(scope, func_inputs, input_dtypes, f); for (int i = 0; i < num_inputs; i++) { grad_outputs->push_back(grad[i]); } return scope.status(); } REGISTER_GRADIENT_OP("PartitionedCall", PartitionedCallGrad); REGISTER_GRADIENT_OP("StatefulPartitionedCall", PartitionedCallGrad); } } }
#include "tensorflow/cc/framework/grad_op_registry.h" #include "tensorflow/cc/framework/gradient_checker.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/testutil.h" #include "tensorflow/cc/gradients/grad_testutil.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace tensorflow { namespace ops { namespace { class FunctionGradTest : public ::testing::Test { protected: FunctionGradTest() : scope_(Scope::NewRootScope()) {} void RunTest(const Output& x, const TensorShape& x_shape, const Output& y, const TensorShape& y_shape) { TF_ASSERT_OK(scope_.status()); float max_error; auto result = (ComputeGradientError<float, float, float>( scope_, {x}, {x_shape}, {y}, {y_shape}, &max_error)); TF_CHECK_OK(result); TF_ASSERT_OK(result); EXPECT_LT(max_error, 1e-3); } void RunTest(const OutputList& xs, const std::vector<TensorShape>& x_shapes, const OutputList& ys, const std::vector<TensorShape>& y_shapes) { TF_ASSERT_OK(scope_.status()); float max_error; TF_ASSERT_OK((ComputeGradientError<float, float, float>( scope_, xs, x_shapes, ys, y_shapes, &max_error))); EXPECT_LT(max_error, 1e-3); } Scope scope_; }; TEST_F(FunctionGradTest, PartitionedCallGrad) { FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XTimesTwo(); TF_ASSERT_OK(scope_.graph()->AddFunctionLibrary(f_lib_proto)); Output x = Placeholder(scope_, DT_FLOAT); NameAttrList f; f.set_name("XTimesTwo"); (*f.mutable_attr())["T"].set_type(DT_FLOAT); auto results = PartitionedCall(scope_, std::initializer_list<Input>{x}, {DT_FLOAT}, f); RunTest(x, {}, results[0], {}); auto stateful_results = StatefulPartitionedCall( scope_, std::initializer_list<Input>{x}, {DT_FLOAT}, f); RunTest(x, {}, stateful_results[0], {}); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/gradients/functional_grad.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/gradients/functional_grad_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
543a1e52-6a80-4a21-8635-769d455ec6d8
cpp
tensorflow/tensorflow
tpu_cross_replica_ops
tensorflow/core/ops/tpu_cross_replica_ops.cc
tensorflow/core/ops/tpu_cross_replica_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; REGISTER_OP("AllToAll") .Input("input: T") .Input("group_assignment: int32") .Output("output: T") .Attr("T: {numbertype, bool}") .Attr("concat_dimension: int") .Attr("split_dimension: int") .Attr("split_count: int") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle input = c->input(0); ShapeHandle group_assignment = c->input(1); if (!c->RankKnown(input)) { c->set_output(0, c->UnknownShape()); return absl::OkStatus(); } int64_t rank = c->Rank(input); int concat_dimension; int split_dimension; int split_count; TF_RETURN_IF_ERROR(c->GetAttr("split_count", &split_count)); if (split_count < 1) { return errors::InvalidArgument("split_count ", split_count, " must at least be one."); } if (c->RankKnown(group_assignment) && c->Rank(group_assignment) != 2) { return errors::InvalidArgument("group_assignment must have rank 2."); } DimensionHandle num_replicas_per_group = c->Dim(group_assignment, 1); if (c->ValueKnown(num_replicas_per_group) && (c->Value(num_replicas_per_group) != split_count)) { return errors::InvalidArgument( "split_count ", split_count, " must equal the size of the second dimension of group_assignment ", c->Value(num_replicas_per_group)); } TF_RETURN_IF_ERROR(c->GetAttr("concat_dimension", &concat_dimension)); if (concat_dimension < 0 || concat_dimension >= rank) { return errors::InvalidArgument("concat_dimension ", concat_dimension, " is out of range of input rank ", rank); } TF_RETURN_IF_ERROR(c->GetAttr("split_dimension", &split_dimension)); if (split_dimension < 0 || split_dimension >= rank) { return errors::InvalidArgument("split_dimension ", split_dimension, " is out of range of input rank ", rank); } if (!c->ValueKnown(c->Dim(input, concat_dimension)) || !c->ValueKnown(c->Dim(input, split_dimension))) { c->set_output(0, c->UnknownShape()); return absl::OkStatus(); } std::vector<DimensionHandle> dims; dims.resize(rank); for (int32_t i = 0; i < rank; ++i) { dims[i] = c->Dim(input, i); if (i == concat_dimension) { dims[i] = c->MakeDim(c->Value(dims[i]) * split_count); } if (i == split_dimension) { if (c->ValueKnown(dims[i]) && (c->Value(dims[i]) % split_count != 0)) { return errors::InvalidArgument( "input dimension ", c->Value(dims[i]), " not divisible by split_count ", split_count); } dims[i] = c->MakeDim(c->Value(dims[i]) / split_count); } } c->set_output(0, c->MakeShape(dims)); return absl::OkStatus(); }); REGISTER_OP("CrossReplicaSum") .Input("input: T") .Input("group_assignment: int32") .Output("output: T") .Attr("T: {half, bfloat16, float, float64, int32, uint32}") .SetIsStateful() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("CollectivePermute") .Input("input: T") .Input("source_target_pairs: int32") .Output("output: T") .Attr("T: numbertype") .SetIsStateful() .SetShapeFn(shape_inference::UnchangedShape); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(AllToAll, UnknownRank) { ShapeInferenceTestOp op("AllToAll"); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); } TEST(AllToAll, KnownRankUnknownDims) { ShapeInferenceTestOp op("AllToAll"); op.input_tensors.resize(2); AddNodeAttr("concat_dimension", 0, &op.node_def); AddNodeAttr("split_count", 1, &op.node_def); AddNodeAttr("split_dimension", 1, &op.node_def); INFER_OK(op, "[?,1];[?,?]", "?"); INFER_OK(op, "[1,?];[?,?]", "?"); INFER_OK(op, "[?,?];[?,?]", "?"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/tpu_cross_replica_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/tpu_cross_replica_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d40f4bec-05dc-4d5e-acb1-12eb713ff1ff
cpp
tensorflow/tensorflow
uniform_quant_ops
tensorflow/core/ops/uniform_quant_ops.cc
tensorflow/core/ops/uniform_quant_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/quantization/uniform_quant_ops_params.h" namespace tensorflow { namespace { using shape_inference::DimensionHandle; using shape_inference::ShapeHandle; using tensorflow::errors::InvalidArgument; using tensorflow::errors::Unknown; absl::StatusOr<TensorShape> ToTensorShape(ShapeHandle shape_handle, int64_t rank) { TensorShape shape; for (int i = 0; i < rank; ++i) { int64_t dim_size = shape_inference::InferenceContext::Value( shape_inference::InferenceContext::DimKnownRank(shape_handle, i)); if (dim_size == shape_inference::InferenceContext::kUnknownDim) { return Unknown("Dim size unknown."); } shape.AddDim(dim_size); } return shape; } Status ScalesZeroPointsShapeValid(shape_inference::InferenceContext* context, DimensionHandle match_dimension_handle, ShapeHandle scales, ShapeHandle zero_points) { const int32_t scales_rank = shape_inference::InferenceContext::Rank(scales); const int32_t zero_points_rank = shape_inference::InferenceContext::Rank(zero_points); if (scales_rank == shape_inference::InferenceContext::kUnknownRank || zero_points_rank == shape_inference::InferenceContext::kUnknownRank) { return absl::OkStatus(); } if (scales_rank != zero_points_rank) { return InvalidArgument("scales and zero_points must have same rank."); } if (scales_rank == 0) { return absl::OkStatus(); } DimensionHandle scales_size = context->Dim(scales, 0); DimensionHandle zero_points_size = context->Dim(zero_points, 0); DimensionHandle merged_scales; TF_RETURN_IF_ERROR( context->Merge(scales_size, match_dimension_handle, &merged_scales)); DimensionHandle merged_zero_points; TF_RETURN_IF_ERROR(context->Merge(zero_points_size, match_dimension_handle, &merged_zero_points)); return absl::OkStatus(); } Status DotShape(shape_inference::InferenceContext* context) { ShapeHandle lhs; TF_RETURN_IF_ERROR(context->WithRank(context->input(0), 2, &lhs)); ShapeHandle rhs; TF_RETURN_IF_ERROR(context->WithRank(context->input(1), 2, &rhs)); ShapeHandle lhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(2), 0, &lhs_scales)); ShapeHandle lhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(3), 0, &lhs_zero_points)); ShapeHandle rhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(4), 1, &rhs_scales)); ShapeHandle rhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(5), 1, &rhs_zero_points)); ShapeHandle output_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(6), 1, &output_scales)); ShapeHandle output_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(7), 1, &output_zero_points)); DimensionHandle inner_lhs = context->Dim(lhs, 1); DimensionHandle inner_rhs = context->Dim(rhs, 0); DimensionHandle merged; TF_RETURN_IF_ERROR(context->Merge(inner_lhs, inner_rhs, &merged)); DimensionHandle output_rows = context->Dim(lhs, 0); DimensionHandle output_cols = context->Dim(rhs, 1); TF_RETURN_IF_ERROR(ScalesZeroPointsShapeValid(context, output_cols, rhs_scales, rhs_zero_points)); TF_RETURN_IF_ERROR(ScalesZeroPointsShapeValid( context, output_cols, output_scales, output_zero_points)); context->set_output(0, context->Matrix(output_rows, output_cols)); return absl::OkStatus(); } Status DotHybridShape(shape_inference::InferenceContext* context) { ShapeHandle lhs; TF_RETURN_IF_ERROR(context->WithRank(context->input(0), 2, &lhs)); ShapeHandle rhs; TF_RETURN_IF_ERROR(context->WithRank(context->input(1), 2, &rhs)); ShapeHandle rhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(2), 1, &rhs_scales)); ShapeHandle rhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(3), 1, &rhs_zero_points)); DimensionHandle inner_lhs = context->Dim(lhs, 1); DimensionHandle inner_rhs = context->Dim(rhs, 0); DimensionHandle merged; TF_RETURN_IF_ERROR(context->Merge(inner_lhs, inner_rhs, &merged)); DimensionHandle output_rows = context->Dim(lhs, 0); DimensionHandle output_cols = context->Dim(rhs, 1); TF_RETURN_IF_ERROR(ScalesZeroPointsShapeValid(context, output_cols, rhs_scales, rhs_zero_points)); context->set_output(0, context->Matrix(output_rows, output_cols)); return absl::OkStatus(); } struct ShapeCommonParams { ShapeHandle lhs; ShapeHandle rhs; ShapeHandle lhs_scales; ShapeHandle lhs_zero_points; ShapeHandle rhs_scales; ShapeHandle rhs_zero_points; ShapeHandle output_scales; ShapeHandle output_zero_points; bool is_output_scales_zero_points_set; ShapeCommonParams(ShapeHandle lhs, ShapeHandle rhs, ShapeHandle lhs_scales, ShapeHandle lhs_zero_points, ShapeHandle rhs_scales, ShapeHandle rhs_zero_points, ShapeHandle output_scales, ShapeHandle output_zero_points) : lhs(lhs), rhs(rhs), lhs_scales(lhs_scales), lhs_zero_points(lhs_zero_points), rhs_scales(rhs_scales), rhs_zero_points(rhs_zero_points), output_scales(output_scales), output_zero_points(output_zero_points), is_output_scales_zero_points_set(true) {} ShapeCommonParams(ShapeHandle lhs, ShapeHandle rhs, ShapeHandle rhs_scales, ShapeHandle rhs_zero_points) : lhs(lhs), rhs(rhs), rhs_scales(rhs_scales), rhs_zero_points(rhs_zero_points), is_output_scales_zero_points_set(false) {} }; Status ConvolutionShapeCommon(shape_inference::InferenceContext* context, const ShapeCommonParams& params) { const int32_t lhs_rank = shape_inference::InferenceContext::Rank(params.lhs); const int32_t rhs_rank = shape_inference::InferenceContext::Rank(params.rhs); if (lhs_rank == shape_inference::InferenceContext::kUnknownRank && rhs_rank == shape_inference::InferenceContext::kUnknownRank) { context->set_output(0, context->UnknownShape()); return absl::OkStatus(); } else if (lhs_rank == shape_inference::InferenceContext::kUnknownRank || rhs_rank == shape_inference::InferenceContext::kUnknownRank) { context->set_output( 0, context->UnknownShapeOfRank( lhs_rank == shape_inference::InferenceContext::kUnknownRank ? rhs_rank : lhs_rank)); return absl::OkStatus(); } else if (lhs_rank != rhs_rank) { return InvalidArgument("lhs and rhs must have same rank."); } auto lhs_shape = ToTensorShape(params.lhs, lhs_rank); auto rhs_shape = ToTensorShape(params.rhs, rhs_rank); if (!lhs_shape.ok() || !rhs_shape.ok()) { context->set_output(0, context->UnknownShapeOfRank(lhs_rank)); return absl::OkStatus(); } UniformQuantizedConvolutionParams convolution_params; TF_RETURN_IF_ERROR(convolution_params.LoadFromAttrs(*context)); TF_RETURN_IF_ERROR(convolution_params.ValidateOrFillParamsAndValidateShape( lhs_shape.value(), rhs_shape.value())); DimensionHandle output_feature = context->Dim( params.rhs, convolution_params.dimension_numbers().kernel_output_feature_dimension()); TF_RETURN_IF_ERROR(ScalesZeroPointsShapeValid( context, output_feature, params.rhs_scales, params.rhs_zero_points)); if (params.is_output_scales_zero_points_set) { TF_RETURN_IF_ERROR(ScalesZeroPointsShapeValid(context, output_feature, params.output_scales, params.output_zero_points)); if (shape_inference::InferenceContext::Rank(params.output_scales) > 0) { DimensionHandle scales_merged; TF_RETURN_IF_ERROR(context->Merge(context->Dim(params.rhs_scales, 0), context->Dim(params.output_scales, 0), &scales_merged)); } } TF_ASSIGN_OR_RETURN(const auto& out_shape, convolution_params.CalculateOutputShape( lhs_shape.value(), rhs_shape.value())); ShapeHandle out_shape_handle; TF_RETURN_IF_ERROR( context->MakeShapeFromTensorShape(out_shape, &out_shape_handle)); context->set_output(0, out_shape_handle); return absl::OkStatus(); } Status ConvolutionShape(shape_inference::InferenceContext* context) { ShapeHandle lhs; TF_RETURN_IF_ERROR(context->WithRankAtLeast(context->input(0), 2, &lhs)); ShapeHandle rhs; TF_RETURN_IF_ERROR(context->WithRankAtLeast(context->input(1), 2, &rhs)); ShapeHandle lhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(2), 0, &lhs_scales)); ShapeHandle lhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(3), 0, &lhs_zero_points)); ShapeHandle rhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(4), 1, &rhs_scales)); ShapeHandle rhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(5), 1, &rhs_zero_points)); ShapeHandle output_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(6), 1, &output_scales)); ShapeHandle output_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(7), 1, &output_zero_points)); return ConvolutionShapeCommon( context, ShapeCommonParams(lhs, rhs, lhs_scales, lhs_zero_points, rhs_scales, rhs_zero_points, output_scales, output_zero_points)); } Status ConvolutionHybridShape(shape_inference::InferenceContext* context) { ShapeHandle lhs; TF_RETURN_IF_ERROR(context->WithRankAtLeast(context->input(0), 2, &lhs)); ShapeHandle rhs; TF_RETURN_IF_ERROR(context->WithRankAtLeast(context->input(1), 2, &rhs)); ShapeHandle rhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(2), 1, &rhs_scales)); ShapeHandle rhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(3), 1, &rhs_zero_points)); return ConvolutionShapeCommon( context, ShapeCommonParams(lhs, rhs, rhs_scales, rhs_zero_points)); } } REGISTER_OP("UniformQuantize") .Input("input: Tin") .Input("scales: float") .Input("zero_points: int32") .Output("output: Tout") .Attr("Tin: {float}") .Attr("Tout: {qint8, qint32}") .Attr("quantization_axis: int = -1") .Attr("quantization_min_val: int") .Attr("quantization_max_val: int") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("UniformRequantize") .Input("input: Tin") .Input("input_scales: float") .Input("input_zero_points: int32") .Input("output_scales: float") .Input("output_zero_points: int32") .Output("output: Tout") .Attr("Tin: {qint8, qint32}") .Attr("Tout: {qint8, qint32}") .Attr("input_quantization_axis: int = -1") .Attr("input_quantization_min_val: int") .Attr("input_quantization_max_val: int") .Attr("output_quantization_axis: int = -1") .Attr("output_quantization_min_val: int") .Attr("output_quantization_max_val: int") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("UniformDequantize") .Input("input: Tin") .Input("scales: float") .Input("zero_points: int32") .Output("output: Tout") .Attr("Tin: {qint8, qint32}") .Attr("Tout: {float}") .Attr("quantization_axis: int = -1") .Attr("quantization_min_val: int") .Attr("quantization_max_val: int") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("UniformQuantizedDot") .Input("lhs: Tin") .Input("rhs: Tin") .Input("lhs_scales: float") .Input("lhs_zero_points: int32") .Input("rhs_scales: float") .Input("rhs_zero_points: int32") .Input("output_scales: float") .Input("output_zero_points: int32") .Output("output: Tout") .Attr("Tin: {qint8}") .Attr("Tout: {qint32}") .Attr("lhs_quantization_axis: int = -1") .Attr("lhs_quantization_min_val: int") .Attr("lhs_quantization_max_val: int") .Attr("rhs_quantization_axis: int = -1") .Attr("rhs_quantization_min_val: int") .Attr("rhs_quantization_max_val: int") .Attr("output_quantization_axis: int = -1") .Attr("output_quantization_min_val: int") .Attr("output_quantization_max_val: int") .SetShapeFn(DotShape); REGISTER_OP("UniformQuantizedDotHybrid") .Input("lhs: Tlhs") .Input("rhs: Trhs") .Input("rhs_scales: float") .Input("rhs_zero_points: int32") .Output("output: Tout") .Attr("Tlhs: {float}") .Attr("Trhs: {qint8}") .Attr("Tout: {float}") .Attr("rhs_quantization_axis: int = -1") .Attr("rhs_quantization_min_val: int") .Attr("rhs_quantization_max_val: int") .SetShapeFn(DotHybridShape); REGISTER_OP("UniformQuantizedConvolution") .Input("lhs: Tin") .Input("rhs: Tin") .Input("lhs_scales: float") .Input("lhs_zero_points: int32") .Input("rhs_scales: float") .Input("rhs_zero_points: int32") .Input("output_scales: float") .Input("output_zero_points: int32") .Output("output: Tout") .Attr("Tin: {qint8}") .Attr("Tout: {qint32}") .Attr("window_strides: list(int) = []") .Attr("padding: string") .Attr("explicit_padding: list(int) = []") .Attr("lhs_dilation: list(int) = []") .Attr("rhs_dilation: list(int) = []") .Attr("batch_group_count: int = 1") .Attr("feature_group_count: int = 1") .Attr("dimension_numbers: string = ''") .Attr("lhs_quantization_axis: int = -1") .Attr("lhs_quantization_min_val: int") .Attr("lhs_quantization_max_val: int") .Attr("rhs_quantization_axis: int = -1") .Attr("rhs_quantization_min_val: int") .Attr("rhs_quantization_max_val: int") .Attr("output_quantization_axis: int = -1") .Attr("output_quantization_min_val: int") .Attr("output_quantization_max_val: int") .SetShapeFn(ConvolutionShape); REGISTER_OP("UniformQuantizedConvolutionHybrid") .Input("lhs: Tlhs") .Input("rhs: Trhs") .Input("rhs_scales: float") .Input("rhs_zero_points: int32") .Output("output: Tout") .Attr("Tlhs: {float}") .Attr("Trhs: {qint8}") .Attr("Tout: {float}") .Attr("window_strides: list(int) = []") .Attr("padding: string") .Attr("explicit_padding: list(int) = []") .Attr("lhs_dilation: list(int) = []") .Attr("rhs_dilation: list(int) = []") .Attr("batch_group_count: int = 1") .Attr("feature_group_count: int = 1") .Attr("dimension_numbers: string = ''") .Attr("rhs_quantization_axis: int = -1") .Attr("rhs_quantization_min_val: int") .Attr("rhs_quantization_max_val: int") .SetShapeFn(ConvolutionHybridShape); REGISTER_OP("UniformQuantizedAdd") .Input("lhs: T") .Input("rhs: T") .Input("lhs_scales: float") .Input("lhs_zero_points: int32") .Input("rhs_scales: float") .Input("rhs_zero_points: int32") .Input("output_scales: float") .Input("output_zero_points: int32") .Output("output: T") .Attr("lhs_quantization_axis: int = -1") .Attr("lhs_quantization_min_val: int") .Attr("lhs_quantization_max_val: int") .Attr("rhs_quantization_axis: int = -1") .Attr("rhs_quantization_min_val: int") .Attr("rhs_quantization_max_val: int") .Attr("output_quantization_axis: int = -1") .Attr("output_quantization_min_val: int") .Attr("output_quantization_max_val: int") .Attr("T: {qint32}") .SetShapeFn(shape_inference::BroadcastBinaryOpShapeFn); REGISTER_OP("UniformQuantizedClipByValue") .Input("operand: T") .Input("min: T") .Input("max: T") .Input("scales: float") .Input("zero_points: int32") .Output("output: T") .Attr("T: {qint32}") .Attr("quantization_axis: int = -1") .Attr("quantization_min_val: int") .Attr("quantization_max_val: int") .SetShapeFn(shape_inference::UnchangedShape); }
#include <limits> #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/util/quantization/uniform_quant_ops_attr.pb.h" namespace tensorflow { namespace { constexpr int32_t kInt8Min = std::numeric_limits<int8_t>::min(); constexpr int32_t kInt8Max = std::numeric_limits<int8_t>::max(); constexpr int32_t kInt32Min = std::numeric_limits<int32_t>::min(); constexpr int32_t kInt32Max = std::numeric_limits<int32_t>::max(); } TEST(UniformQuantizedOpsTest, UniformQuantizedDotShapeInference) { ShapeInferenceTestOp op("UniformQuantizedDot"); INFER_OK(op, "[4,2];[2,3];[];[];[];[];[];[]", "[d0_0,d1_1]"); INFER_OK(op, "[4,2];[2,3];[];[];[3];[3];[];[]", "[d0_0,d1_1]"); INFER_OK(op, "[4,2];[2,3];[];[];[3];[3];[3];[3]", "[d0_0,d1_1]"); INFER_ERROR("", op, "[4,2];[6,3];[];[];[];[];[];[]"); INFER_ERROR("", op, "[4,2];[2,3];[4];[4];[];[];[];[]"); INFER_ERROR("scales and zero_points must have same rank.", op, "[4,2];[2,3];[];[];[3];[];[];[]"); INFER_ERROR("", op, "[4,2];[2,3];[];[];[6];[6];[];[]"); INFER_ERROR("", op, "[4,2];[2,3];[];[];[];[];[6];[6]"); } TEST(UniformQuantizedOpsTest, UniformQuantizedDotHybridShapeInference) { ShapeInferenceTestOp op("UniformQuantizedDotHybrid"); INFER_OK(op, "[4,2];[2,3];[];[]", "[d0_0,d1_1]"); INFER_OK(op, "[4,2];[2,3];[3];[3]", "[d0_0,d1_1]"); INFER_ERROR("", op, "[4,2];[6,3];[];[]"); INFER_ERROR("scales and zero_points must have same rank.", op, "[4,2];[2,3];[3];[]"); INFER_ERROR("", op, "[4,2];[2,3];[6];[6]"); } TEST(UniformQuantizedOpsTest, UniformQuantizedConvolutionShapeInferencePerTensor) { ShapeInferenceTestOp op("UniformQuantizedConvolution"); TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedConvolution") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tin", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("lhs_quantization_min_val", kInt8Min) .Attr("lhs_quantization_max_val", kInt8Max) .Attr("rhs_quantization_min_val", kInt8Min) .Attr("rhs_quantization_max_val", kInt8Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Attr("padding", "VALID") .Finalize(&op.node_def)); INFER_OK(op, "[2,3,40,50];[6,3,4,5];[];[];[];[];[];[]", "[2,6,37,46]"); INFER_ERROR("", op, "[2,3,40,50];[6,9,4,5];[];[];[];[];[];[]"); INFER_ERROR("", op, "[2,3,40,50];[6,3,4,5];[2];[2];[];[];[];[]"); INFER_ERROR("scales and zero_points must have same rank.", op, "[2,3,40,50];[6,3,4,5];[];[];[6];[];[];[]"); INFER_ERROR("", op, "[2,3,40,50];[6,3,4,5];[];[];[];[];[12];[12]"); } TEST(UniformQuantizedOpsTest, UniformQuantizedConvolutionShapeInferencePerChannelRhs) { ShapeInferenceTestOp op("UniformQuantizedConvolution"); TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedConvolution") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tin", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("rhs_quantization_axis", 0) .Attr("lhs_quantization_min_val", kInt8Min) .Attr("lhs_quantization_max_val", kInt8Max) .Attr("rhs_quantization_min_val", kInt8Min) .Attr("rhs_quantization_max_val", kInt8Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Attr("padding", "VALID") .Finalize(&op.node_def)); INFER_OK(op, "[2,3,40,50];[6,3,4,5];[];[];[6];[6];[];[]", "[2,6,37,46]"); INFER_ERROR("", op, "[2,3,40,50];[6,3,4,5];[];[];[12];[12];[];[]"); } TEST(UniformQuantizedOpsTest, UniformQuantizedConvolutionShapeInferencePerChannelRhsAndOutput) { ShapeInferenceTestOp op("UniformQuantizedConvolution"); TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedConvolution") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tin", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("rhs_quantization_axis", 0) .Attr("output_quantization_axis", 1) .Attr("lhs_quantization_min_val", kInt8Min) .Attr("lhs_quantization_max_val", kInt8Max) .Attr("rhs_quantization_min_val", kInt8Min) .Attr("rhs_quantization_max_val", kInt8Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Attr("padding", "VALID") .Finalize(&op.node_def)); INFER_OK(op, "[2,3,40,50];[6,3,4,5];[];[];[6];[6];[6];[6]", "[2,6,37,46]"); } TEST(UniformQuantizedOpsTest, UniformQuantizedConvolutionHybridShapeInferencePerChannel) { ShapeInferenceTestOp op("UniformQuantizedConvolutionHybrid"); TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedConvolutionHybrid") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tlhs", DT_QINT8) .Attr("Trhs", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("rhs_quantization_axis", 0) .Attr("rhs_quantization_min_val", kInt8Min) .Attr("rhs_quantization_max_val", kInt8Max) .Attr("padding", "VALID") .Finalize(&op.node_def)); INFER_OK(op, "[2,3,40,50];[6,3,4,5];[6];[6]", "[2,6,37,46]"); INFER_ERROR("", op, "[2,3,40,50];[6,3,4,5];[12];[12]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/uniform_quant_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/uniform_quant_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
afc1e4f6-41e2-420b-8809-b2b778f8d91b
cpp
tensorflow/tensorflow
linalg_ops
tensorflow/core/ops/linalg_ops.cc
tensorflow/core/ops/linalg_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; namespace { Status MakeBatchSquareMatrix(InferenceContext* c, ShapeHandle input, ShapeHandle* out) { ShapeHandle s; TF_RETURN_IF_ERROR(c->WithRankAtLeast(input, 2, &s)); DimensionHandle d; TF_RETURN_IF_ERROR(c->Merge(c->Dim(s, -2), c->Dim(s, -1), &d)); ShapeHandle batch_shape; TF_RETURN_IF_ERROR(c->Subshape(s, 0, -2, &batch_shape)); TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(d, d), out)); return absl::OkStatus(); } Status BatchUnchangedSquareShapeFn(InferenceContext* c) { ShapeHandle out; TF_RETURN_IF_ERROR(MakeBatchSquareMatrix(c, c->input(0), &out)); c->set_output(0, out); return absl::OkStatus(); } Status BandedTriangularSolveShapeFn(InferenceContext* c) { ShapeHandle lhs; ShapeHandle rhs; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &lhs)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &rhs)); DimensionHandle num_bands = c->Dim(lhs, -2); DimensionHandle m = c->Dim(lhs, -1); if (c->ValueKnown(num_bands) && c->Value(num_bands) <= 0) { return errors::InvalidArgument("Number of bands must be positive, but is ", c->Value(num_bands)); } if (c->ValueKnown(num_bands) && c->ValueKnown(m) && c->Value(num_bands) > c->Value(m)) { return errors::InvalidArgument("Number of bands ", c->Value(num_bands), " cannot exceed the size of the matrix ", c->Value(m)); } ShapeHandle lhs_batch_shape; ShapeHandle rhs_batch_shape; ShapeHandle output_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(lhs, 0, -2, &lhs_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(rhs, 0, -2, &rhs_batch_shape)); TF_RETURN_IF_ERROR(BroadcastBinaryOpOutputShapeFnHelper( c, lhs_batch_shape, rhs_batch_shape, true, &output_batch_shape)); TF_RETURN_IF_ERROR(c->Merge(m, c->Dim(rhs, -2), &m)); ShapeHandle out; TF_RETURN_IF_ERROR( c->Concatenate(output_batch_shape, c->Matrix(m, c->Dim(rhs, -1)), &out)); c->set_output(0, out); return absl::OkStatus(); } Status MatrixSolveShapeFn(InferenceContext* c, bool square) { ShapeHandle lhs; ShapeHandle rhs; if (square) { TF_RETURN_IF_ERROR(MakeBatchSquareMatrix(c, c->input(0), &lhs)); } else { TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &lhs)); } TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &rhs)); ShapeHandle lhs_batch_shape; ShapeHandle rhs_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(lhs, 0, -2, &lhs_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(rhs, 0, -2, &rhs_batch_shape)); TF_RETURN_IF_ERROR( c->Merge(lhs_batch_shape, rhs_batch_shape, &lhs_batch_shape)); DimensionHandle m; TF_RETURN_IF_ERROR(c->Merge(c->Dim(lhs, -2), c->Dim(rhs, -2), &m)); DimensionHandle n = c->Dim(lhs, -1); if (square) { TF_RETURN_IF_ERROR(c->Merge(m, n, &n)); } ShapeHandle out; TF_RETURN_IF_ERROR(c->Concatenate(lhs_batch_shape, c->Vector(n), &out)); TF_RETURN_IF_ERROR(c->Concatenate(out, c->Vector(c->Dim(rhs, -1)), &out)); c->set_output(0, out); return absl::OkStatus(); } Status MatrixTriangularSolveShapeFn(InferenceContext* c) { ShapeHandle lhs; ShapeHandle rhs; TF_RETURN_IF_ERROR(MakeBatchSquareMatrix(c, c->input(0), &lhs)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &rhs)); ShapeHandle lhs_batch_shape; ShapeHandle rhs_batch_shape; ShapeHandle output_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(lhs, 0, -2, &lhs_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(rhs, 0, -2, &rhs_batch_shape)); TF_RETURN_IF_ERROR(BroadcastBinaryOpOutputShapeFnHelper( c, lhs_batch_shape, rhs_batch_shape, true, &output_batch_shape)); DimensionHandle m; TF_RETURN_IF_ERROR(c->Merge(c->Dim(lhs, -1), c->Dim(rhs, -2), &m)); ShapeHandle out; TF_RETURN_IF_ERROR( c->Concatenate(output_batch_shape, c->Matrix(m, c->Dim(rhs, -1)), &out)); c->set_output(0, out); return absl::OkStatus(); } Status SelfAdjointEigV2ShapeFn(InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(MakeBatchSquareMatrix(c, c->input(0), &input)); DimensionHandle n; TF_RETURN_IF_ERROR(c->Merge(c->Dim(input, -2), c->Dim(input, -1), &n)); ShapeHandle batch_shape; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &batch_shape)); ShapeHandle e_shape; TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Vector(n), &e_shape)); c->set_output(0, e_shape); bool compute_v; TF_RETURN_IF_ERROR(c->GetAttr("compute_v", &compute_v)); if (compute_v) { ShapeHandle v_shape; TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(n, n), &v_shape)); c->set_output(1, v_shape); } else { c->set_output(1, c->Vector(0ll)); } return absl::OkStatus(); } Status LuShapeFn(InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input)); DimensionHandle n; TF_RETURN_IF_ERROR(c->Merge(c->Dim(input, -2), c->Dim(input, -1), &n)); ShapeHandle batch_shape; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &batch_shape)); ShapeHandle lu_shape; ShapeHandle p_shape; TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(n, n), &lu_shape)); TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Vector(n), &p_shape)); c->set_output(0, lu_shape); c->set_output(1, p_shape); return absl::OkStatus(); } Status QrShapeFn(InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input)); DimensionHandle m = c->Dim(input, -2); DimensionHandle n = c->Dim(input, -1); DimensionHandle p; TF_RETURN_IF_ERROR(c->Min(m, n, &p)); ShapeHandle batch_shape; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &batch_shape)); ShapeHandle q_shape; ShapeHandle r_shape; bool full_matrices; TF_RETURN_IF_ERROR(c->GetAttr("full_matrices", &full_matrices)); if (full_matrices) { TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(m, m), &q_shape)); TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(m, n), &r_shape)); } else { TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(m, p), &q_shape)); TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(p, n), &r_shape)); } c->set_output(0, q_shape); c->set_output(1, r_shape); return absl::OkStatus(); } Status SvdShapeFn(InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input)); DimensionHandle m = c->Dim(input, -2); DimensionHandle n = c->Dim(input, -1); DimensionHandle p; TF_RETURN_IF_ERROR(c->Min(m, n, &p)); ShapeHandle batch_shape; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &batch_shape)); ShapeHandle e_shape; TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Vector(p), &e_shape)); c->set_output(0, e_shape); bool compute_uv; TF_RETURN_IF_ERROR(c->GetAttr("compute_uv", &compute_uv)); if (compute_uv) { ShapeHandle u_shape; ShapeHandle v_shape; bool full_matrices; TF_RETURN_IF_ERROR(c->GetAttr("full_matrices", &full_matrices)); if (full_matrices) { TF_RETURN_IF_ERROR( c->Concatenate(batch_shape, c->Matrix(m, m), &u_shape)); TF_RETURN_IF_ERROR( c->Concatenate(batch_shape, c->Matrix(n, n), &v_shape)); } else { TF_RETURN_IF_ERROR( c->Concatenate(batch_shape, c->Matrix(m, p), &u_shape)); TF_RETURN_IF_ERROR( c->Concatenate(batch_shape, c->Matrix(n, p), &v_shape)); } c->set_output(1, u_shape); c->set_output(2, v_shape); } else { c->set_output(1, c->Vector(0ll)); c->set_output(2, c->Vector(0ll)); } return absl::OkStatus(); } Status TridiagonalMatMulShapeFn(InferenceContext* c) { ShapeHandle superdiag; ShapeHandle maindiag; ShapeHandle subdiag; ShapeHandle rhs; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &superdiag)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &maindiag)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(2), 2, &subdiag)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(3), 2, &rhs)); ShapeHandle superdiag_batch_shape; ShapeHandle maindiag_batch_shape; ShapeHandle subdiag_batch_shape; ShapeHandle rhs_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(superdiag, 0, -2, &superdiag_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(maindiag, 0, -2, &maindiag_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(subdiag, 0, -2, &subdiag_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(rhs, 0, -2, &rhs_batch_shape)); TF_RETURN_IF_ERROR(c->Merge(superdiag, maindiag, &superdiag)); TF_RETURN_IF_ERROR( c->Merge(maindiag_batch_shape, rhs_batch_shape, &rhs_batch_shape)); TF_RETURN_IF_ERROR( c->Merge(subdiag_batch_shape, rhs_batch_shape, &rhs_batch_shape)); TF_RETURN_IF_ERROR(c->Merge(superdiag, maindiag, &maindiag)); TF_RETURN_IF_ERROR(c->Merge(subdiag, maindiag, &maindiag)); DimensionHandle m_lhs = c->Dim(maindiag, -1); DimensionHandle m_rhs = c->Dim(rhs, -2); TF_RETURN_IF_ERROR(c->Merge(m_lhs, m_rhs, &m_lhs)); DimensionHandle unused; TF_RETURN_IF_ERROR(c->WithValue(c->Dim(maindiag, -2), 1, &unused)); c->set_output(0, rhs); return absl::OkStatus(); } Status TridiagonalSolveShapeFn(InferenceContext* c) { ShapeHandle lhs; ShapeHandle rhs; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &lhs)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &rhs)); ShapeHandle lhs_batch_shape; ShapeHandle rhs_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(lhs, 0, -2, &lhs_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(rhs, 0, -2, &rhs_batch_shape)); TF_RETURN_IF_ERROR( c->Merge(lhs_batch_shape, rhs_batch_shape, &lhs_batch_shape)); DimensionHandle m_lhs = c->Dim(lhs, -1); DimensionHandle m_rhs = c->Dim(rhs, -2); TF_RETURN_IF_ERROR(c->Merge(m_lhs, m_rhs, &m_lhs)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(lhs, -2), 3, &m_lhs)); c->set_output(0, rhs); return absl::OkStatus(); } } REGISTER_OP("MatrixDeterminant") .Input("input: T") .Output("output: T") .Attr("T: {half, float, double, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input)); DimensionHandle unused; TF_RETURN_IF_ERROR( c->Merge(c->Dim(input, -1), c->Dim(input, -2), &unused)); ShapeHandle out; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &out)); c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("LogMatrixDeterminant") .Input("input: T") .Output("sign: T") .Output("log_abs_determinant: T") .Attr("T: {half, float, double, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input)); DimensionHandle unused; TF_RETURN_IF_ERROR( c->Merge(c->Dim(input, -1), c->Dim(input, -2), &unused)); ShapeHandle s; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &s)); c->set_output(0, s); ShapeHandle out; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &out)); c->set_output(1, out); return absl::OkStatus(); }); REGISTER_OP("MatrixInverse") .Input("input: T") .Output("output: T") .Attr("adjoint: bool = False") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("MatrixExponential") .Deprecated( 27, "Use Python implementation tf.linalg.matrix_exponential instead.") .Input("input: T") .Output("output: T") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("MatrixLogarithm") .Input("input: T") .Output("output: T") .Attr("T: {complex64, complex128}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("Cholesky") .Input("input: T") .Output("output: T") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("CholeskyGrad") .Input("l: T") .Input("grad: T") .Output("output: T") .Attr("T: {half, float, double}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("SelfAdjointEig") .Input("input: T") .Output("output: T") .Attr("T: {double, float, half}") .Deprecated(11, "Use SelfAdjointEigV2 instead.") .SetShapeFn([](InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(MakeBatchSquareMatrix(c, c->input(0), &input)); DimensionHandle d = c->Dim(input, -1); DimensionHandle d_plus_1; TF_RETURN_IF_ERROR(c->Add(d, 1, &d_plus_1)); ShapeHandle s; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &s)); TF_RETURN_IF_ERROR(c->Concatenate(s, c->Matrix(d_plus_1, d), &s)); c->set_output(0, s); return absl::OkStatus(); }); REGISTER_OP("Eig") .Input("input: T") .Output("e: Tout") .Output("v: Tout") .Attr("compute_v: bool = True") .Attr("T: {float, double, complex64, complex128}") .Attr("Tout: {complex64, complex128}") .SetShapeFn(SelfAdjointEigV2ShapeFn); REGISTER_OP("SelfAdjointEigV2") .Input("input: T") .Output("e: T") .Output("v: T") .Attr("compute_v: bool = True") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(SelfAdjointEigV2ShapeFn); REGISTER_OP("Lu") .Input("input: T") .Output("lu: T") .Output("p: output_idx_type") .Attr("T: {double, float, half, complex64, complex128}") .Attr("output_idx_type: {int32, int64} = DT_INT32") .SetShapeFn(LuShapeFn); REGISTER_OP("MatrixSolve") .Input("matrix: T") .Input("rhs: T") .Output("output: T") .Attr("adjoint: bool = False") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { return MatrixSolveShapeFn(c, true ); }); REGISTER_OP("BandedTriangularSolve") .Input("matrix: T") .Input("rhs: T") .Output("output: T") .Attr("lower: bool = True") .Attr("adjoint: bool = False") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { return BandedTriangularSolveShapeFn(c); }); REGISTER_OP("MatrixTriangularSolve") .Input("matrix: T") .Input("rhs: T") .Output("output: T") .Attr("lower: bool = True") .Attr("adjoint: bool = False") .Attr("T: {bfloat16, double, float, half, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { return MatrixTriangularSolveShapeFn(c); }); REGISTER_OP("MatrixSolveLs") .Input("matrix: T") .Input("rhs: T") .Input("l2_regularizer: double") .Output("output: T") .Attr("T: {double, float, half, complex64, complex128}") .Attr("fast: bool = True") .SetShapeFn([](InferenceContext* c) { ShapeHandle l2_regularizer; TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &l2_regularizer)); return MatrixSolveShapeFn(c, false ); }); REGISTER_OP("MatrixSquareRoot") .Input("input: T") .Output("output: T") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("Qr") .Input("input: T") .Output("q: T") .Output("r: T") .Attr("full_matrices: bool = False") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(QrShapeFn); REGISTER_OP("Svd") .Input("input: T") .Output("s: T") .Output("u: T") .Output("v: T") .Attr("compute_uv: bool = True") .Attr("full_matrices: bool = False") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(SvdShapeFn); REGISTER_OP("TridiagonalMatMul") .Input("superdiag: T") .Input("maindiag: T") .Input("subdiag: T") .Input("rhs: T") .Output("output: T") .Attr("T: {double, float, complex64, complex128}") .SetShapeFn(TridiagonalMatMulShapeFn); REGISTER_OP("TridiagonalSolve") .Input("diagonals: T") .Input("rhs: T") .Output("output: T") .Attr("partial_pivoting: bool = True") .Attr("perturb_singular: bool = False") .Attr("T: {double, float, complex64, complex128}") .SetShapeFn(TridiagonalSolveShapeFn); REGISTER_OP("Einsum") .Input("inputs: N * T") .Output("output: T") .Attr("equation: string") .Attr("N: int >= 1") .Attr("T: type") .SetShapeFn(shape_inference::EinsumShape); REGISTER_OP("BatchSelfAdjointEig") .Input("input: T") .Output("output: T") .Attr("T: {double, float}") .Deprecated(11, "Use SelfAdjointEigV2 instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchMatrixDeterminant") .Input("input: T") .Output("output: T") .Attr("T: {float, double, complex64, complex128}") .Deprecated(13, "Use MatrixDeterminant instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchMatrixInverse") .Input("input: T") .Output("output: T") .Attr("adjoint: bool = False") .Attr("T: {double, float}") .Deprecated(13, "Use MatrixInverse instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchCholesky") .Input("input: T") .Output("output: T") .Attr("T: {double, float}") .Deprecated(13, "Use Cholesky instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchCholeskyGrad") .Input("l: T") .Input("grad: T") .Output("output: T") .Attr("T: {float, double}") .Deprecated(13, "Use CholeskyGrad instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchSelfAdjointEigV2") .Input("input: T") .Output("e: T") .Output("v: T") .Attr("compute_v: bool = True") .Attr("T: {double, float}") .Deprecated(13, "Use SelfAdjointEigV2 instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchMatrixSolve") .Input("matrix: T") .Input("rhs: T") .Output("output: T") .Attr("adjoint: bool = False") .Attr("T: {double, float}") .Deprecated(13, "Use MatrixSolve instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchMatrixTriangularSolve") .Input("matrix: T") .Input("rhs: T") .Output("output: T") .Attr("lower: bool = True") .Attr("adjoint: bool = False") .Attr("T: {double, float}") .Deprecated(13, "Use MatrixTriangularSolve instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchMatrixSolveLs") .Input("matrix: T") .Input("rhs: T") .Input("l2_regularizer: double") .Output("output: T") .Attr("T: {double, float}") .Attr("fast: bool = True") .Deprecated(13, "Use MatrixSolveLs instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchSvd") .Input("input: T") .Output("s: T") .Output("u: T") .Output("v: T") .Attr("compute_uv: bool = True") .Attr("full_matrices: bool = False") .Attr("T: {double, float, complex64, complex128}") .Deprecated(13, "Use Svd instead.") .SetShapeFn(shape_inference::UnknownShape); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(LinalgOpsTest, MatrixDeterminant_ShapeFn) { ShapeInferenceTestOp op("MatrixDeterminant"); INFER_OK(op, "?", "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); INFER_ERROR("Dimensions must be equal, but are 2 and 1", op, "[1,?,3,4,1,2]"); INFER_OK(op, "[?,?]", "[]"); INFER_OK(op, "[1,?]", "[]"); INFER_OK(op, "[?,1]", "[]"); INFER_OK(op, "[1,?,3,4,?,?]", "[d0_0,d0_1,d0_2,d0_3]"); INFER_OK(op, "[1,?,3,4,1,?]", "[d0_0,d0_1,d0_2,d0_3]"); INFER_OK(op, "[1,?,3,4,?,1]", "[d0_0,d0_1,d0_2,d0_3]"); } TEST(LinalgOpsTest, UnchangedSquare_ShapeFn) { for (const char* op_name : {"Cholesky", "CholeskyGrad", "MatrixInverse"}) { ShapeInferenceTestOp op(op_name); const string extra_shape = (op.name == "CholeskyGrad" ? ";?" : ""); INFER_OK(op, "?" + extra_shape, "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]" + extra_shape); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,2]" + extra_shape); INFER_OK(op, "[?,?]" + extra_shape, "[d0_0|d0_1,d0_0|d0_1]"); INFER_OK(op, "[1,?]" + extra_shape, "[d0_0,d0_0]"); INFER_OK(op, "[?,1]" + extra_shape, "[d0_1,d0_1]"); INFER_OK(op, "[5,?,7,?,?]" + extra_shape, "[d0_0,d0_1,d0_2,d0_3|d0_4,d0_3|d0_4]"); INFER_OK(op, "[5,?,7,1,?]" + extra_shape, "[d0_0,d0_1,d0_2,d0_3,d0_3]"); INFER_OK(op, "[5,?,7,?,1]" + extra_shape, "[d0_0,d0_1,d0_2,d0_4,d0_4]"); } } TEST(LinalgOpsTest, SelfAdjointEig_ShapeFn) { ShapeInferenceTestOp op("SelfAdjointEig"); INFER_OK(op, "?", "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,2]"); INFER_OK(op, "[?,?]", "[?,d0_0|d0_1]"); INFER_OK(op, "[1,?]", "[2,d0_0]"); INFER_OK(op, "[?,1]", "[2,d0_1]"); INFER_OK(op, "[5,?,7,?,?]", "[d0_0,d0_1,d0_2,?,d0_3|d0_4]"); INFER_OK(op, "[5,?,7,1,?]", "[d0_0,d0_1,d0_2,2,d0_3]"); INFER_OK(op, "[5,?,7,?,1]", "[d0_0,d0_1,d0_2,2,d0_4]"); } TEST(LinalgOpsTest, SelfAdjointEigV2_ShapeFn) { ShapeInferenceTestOp op("SelfAdjointEigV2"); auto set_compute_v = [&op](bool compute_v) { TF_ASSERT_OK(NodeDefBuilder("test", "Pack") .Input({{"input", 0, DT_FLOAT}}) .Attr("compute_v", compute_v) .Finalize(&op.node_def)); TF_ASSERT_OK(NodeDefBuilder("test", "Pack") .Input({{"input", 0, DT_HALF}}) .Attr("compute_v", compute_v) .Finalize(&op.node_def)); }; set_compute_v(false); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,2]"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[3,1,2]"); INFER_OK(op, "?", "?;[0]"); INFER_OK(op, "[?,?]", "[d0_0|d0_1];[0]"); INFER_OK(op, "[1,?]", "[d0_0|d0_1];[0]"); INFER_OK(op, "[?,1]", "[d0_0|d0_1];[0]"); INFER_OK(op, "[5,?,7,?,?]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[0]"); INFER_OK(op, "[5,?,7,1,?]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[0]"); INFER_OK(op, "[5,?,7,?,1]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[0]"); set_compute_v(true); INFER_OK(op, "?", "?;?"); INFER_OK(op, "[?,?]", "[d0_0|d0_1];[d0_0|d0_1,d0_0|d0_1]"); INFER_OK(op, "[1,?]", "[d0_0|d0_1];[d0_0|d0_1,d0_0|d0_1]"); INFER_OK(op, "[?,1]", "[d0_0|d0_1];[d0_0|d0_1,d0_0|d0_1]"); INFER_OK(op, "[5,?,7,?,?]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[d0_0,d0_1,d0_2,d0_3|d0_4,d0_3|d0_4]"); INFER_OK(op, "[5,?,7,1,?]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[d0_0,d0_1,d0_2,d0_3|d0_4,d0_3|d0_4]"); INFER_OK(op, "[5,?,7,?,1]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[d0_0,d0_1,d0_2,d0_3|d0_4,d0_3|d0_4]"); } TEST(LinalgOpsTest, MatrixSolve_ShapeFn) { ShapeInferenceTestOp op("MatrixSolve"); INFER_OK(op, "?;?", "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1];?"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,2];?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[5,?,?];[6]"); INFER_ERROR("Shapes must be equal rank, but are 0 and 1", op, "[5,?];[6,?,?]"); INFER_OK(op, "[?,?];?", "[d0_0|d0_1,?]"); INFER_OK(op, "[?,?];[?,?]", "[d0_0,d1_1]"); INFER_OK(op, "[?,?];[1,?]", "[d1_0,d1_1]"); INFER_OK(op, "[1,?];[1,?]", "[d0_0|d1_0,d1_1]"); INFER_OK(op, "[?,1];[1,?]", "[d0_1|d1_0,d1_1]"); INFER_OK(op, "[1,1];[?,?]", "[d0_0,d1_1]"); INFER_OK(op, "[1,1];[1,?]", "[d0_0|d0_1|d1_0,d1_1]"); INFER_OK(op, "[10,?,?,?];[?,20,1,?]", "[d0_0,d1_1,d1_2,d1_3]"); INFER_OK(op, "[10,?,1,?];[?,20,1,?]", "[d0_0,d1_1,d0_2|d1_2,d1_3]"); INFER_OK(op, "[10,?,?,1];[?,20,1,?]", "[d0_0,d1_1,d0_3|d1_2,d1_3]"); INFER_OK(op, "[10,?,1,1];[?,20,?,?]", "[d0_0,d1_1,d0_2,d1_3]"); INFER_OK(op, "[10,?,1,1];[?,20,1,?]", "[d0_0,d1_1,d0_2|d0_3|d1_2,d1_3]"); } TEST(LinalgOpsTest, MatrixTriangularSolve_ShapeFn) { ShapeInferenceTestOp op("MatrixTriangularSolve"); INFER_OK(op, "?;?", "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1];?"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,2];?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[5,?,?];[6]"); INFER_OK(op, "[?,?];[?,?]", "[d0_0,d1_1]"); INFER_OK(op, "[?,?];[1,?]", "[d1_0,d1_1]"); INFER_OK(op, "[1,?];[1,?]", "[d0_0|d1_0,d1_1]"); INFER_OK(op, "[?,1];[1,?]", "[d0_1|d1_0,d1_1]"); INFER_OK(op, "[1,1];[?,?]", "[d0_0,d1_1]"); INFER_OK(op, "[1,1];[1,?]", "[d0_0|d0_1|d1_0,d1_1]"); INFER_OK(op, "[10,?,?,?];[?,20,1,?]", "[d0_0,d1_1,d1_2,d1_3]"); INFER_OK(op, "[10,?,1,?];[?,20,1,?]", "[d0_0,d1_1,d0_2|d1_2,d1_3]"); INFER_OK(op, "[10,?,?,1];[?,20,1,?]", "[d0_0,d1_1,d0_3|d1_2,d1_3]"); INFER_OK(op, "[10,?,1,1];[?,20,?,?]", "[d0_0,d1_1,d0_2,d1_3]"); INFER_OK(op, "[10,?,1,1];[?,20,1,?]", "[d0_0,d1_1,d0_2|d0_3|d1_2,d1_3]"); } TEST(LinalgOpsTest, MatrixSolveLs_ShapeFn) { ShapeInferenceTestOp op("MatrixSolveLs"); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "?;?;[]", "?"); INFER_OK(op, "[1,?];[1,?];?", "[d0_1,d1_1]"); INFER_OK(op, "[1,2];[1,3];?", "[d0_1,d1_1]"); INFER_ERROR("Dimensions must be equal, but are 5 and 6", op, "[5,?];[6,?];?"); INFER_OK(op, "[10,?,1,?];[?,20,1,?];?", "[d0_0,d1_1,d0_3,d1_3]"); INFER_OK(op, "[10,20,1,2];[10,20,1,3];?", "[d0_0|d1_0,d0_1|d1_1,d0_3,d1_3]"); INFER_ERROR("Dimensions must be equal, but are 5 and 6", op, "[10,?,5,?];[?,20,6,?];?"); INFER_ERROR("Dimension 0 in both shapes must be equal, but are 10 and 11", op, "[10,?,5,?];[11,?,5,?];?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?];?;?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "?;[?];?"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "?;?;[1]"); } TEST(LinalgOpsTest, Qr_ShapeFn) { ShapeInferenceTestOp op("Qr"); auto set_attrs = [&op](bool full_matrices) { TF_ASSERT_OK(NodeDefBuilder("test", "Qr") .Input({"input", 0, DT_FLOAT}) .Attr("full_matrices", full_matrices) .Finalize(&op.node_def)); TF_ASSERT_OK(NodeDefBuilder("test", "Qr") .Input({"input", 0, DT_HALF}) .Attr("full_matrices", full_matrices) .Finalize(&op.node_def)); }; set_attrs(false); INFER_OK(op, "?", "?;?"); INFER_OK(op, "[?,?,?]", "[d0_0,d0_1,?];[d0_0,?,d0_2]"); INFER_OK(op, "[4,?,?]", "[d0_0,d0_1,?];[d0_0,?,d0_2]"); INFER_OK(op, "[4,2,?]", "[d0_0,d0_1,?];[d0_0,?,d0_2]"); INFER_OK(op, "[4,?,2]", "[d0_0,d0_1,?];[d0_0,?,d0_2]"); INFER_OK(op, "[?,2,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,2,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,3,2]", "[d0_0,d0_1,d0_2];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,3,2]", "[d0_0,d0_1,d0_2];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[?,2,3]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,2,3]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); set_attrs(true); INFER_OK(op, "?", "?;?"); INFER_OK(op, "[?,?,?]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,?,?]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,2,?]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,?,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,2,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,2,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,3,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,3,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,2,3]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,2,3]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); } TEST(LinalgOpsTest, Svd_ShapeFn) { ShapeInferenceTestOp op("Svd"); auto set_attrs = [&op](bool compute_uv, bool full_matrices) { TF_ASSERT_OK(NodeDefBuilder("test", "Svd") .Input({"input", 0, DT_FLOAT}) .Attr("compute_uv", compute_uv) .Attr("full_matrices", full_matrices) .Finalize(&op.node_def)); TF_ASSERT_OK(NodeDefBuilder("test", "Svd") .Input({"input", 0, DT_HALF}) .Attr("compute_uv", compute_uv) .Attr("full_matrices", full_matrices) .Finalize(&op.node_def)); }; set_attrs(false, false); INFER_OK(op, "?", "?;[0];[0]"); INFER_OK(op, "[?,?,?]", "[d0_0,?];[0];[0]"); INFER_OK(op, "[4,?,?]", "[d0_0,?];[0];[0]"); INFER_OK(op, "[4,2,?]", "[d0_0,?];[0];[0]"); INFER_OK(op, "[4,?,2]", "[d0_0,?];[0];[0]"); INFER_OK(op, "[?,2,2]", "[d0_0,d0_1];[0];[0]"); INFER_OK(op, "[4,2,2]", "[d0_0,d0_1];[0];[0]"); INFER_OK(op, "[?,3,2]", "[d0_0,d0_2];[0];[0]"); INFER_OK(op, "[4,3,2]", "[d0_0,d0_2];[0];[0]"); INFER_OK(op, "[?,2,3]", "[d0_0,d0_1];[0];[0]"); INFER_OK(op, "[4,2,3]", "[d0_0,d0_1];[0];[0]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); set_attrs(true, false); INFER_OK(op, "?", "?;?;?"); INFER_OK(op, "[?,?,?]", "[d0_0,?];[d0_0,d0_1,?];[d0_0,d0_2,?]"); INFER_OK(op, "[4,?,?]", "[d0_0,?];[d0_0,d0_1,?];[d0_0,d0_2,?]"); INFER_OK(op, "[4,2,?]", "[d0_0,?];[d0_0,d0_1,?];[d0_0,d0_2,?]"); INFER_OK(op, "[4,?,2]", "[d0_0,?];[d0_0,d0_1,?];[d0_0,d0_2,?]"); INFER_OK(op, "[?,2,2]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_1]"); INFER_OK(op, "[4,2,2]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_1]"); INFER_OK(op, "[?,3,2]", "[d0_0,d0_2];[d0_0,d0_1,d0_2];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,3,2]", "[d0_0,d0_2];[d0_0,d0_1,d0_2];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[?,2,3]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_1]"); INFER_OK(op, "[4,2,3]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_1]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); set_attrs(true, true); INFER_OK(op, "?", "?;?;?"); INFER_OK(op, "[?,?,?]", "[d0_0,?];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,?,?]", "[d0_0,?];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,2,?]", "[d0_0,?];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,?,2]", "[d0_0,?];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[?,2,2]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,2,2]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[?,3,2]", "[d0_0,d0_2];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,3,2]", "[d0_0,d0_2];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[?,2,3]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,2,3]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); } TEST(LinalgOpsTest, Lu_ShapeFn) { ShapeInferenceTestOp op("Lu"); INFER_OK(op, "?", "?;?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,?,3,4,1,2]"); INFER_OK(op, "[?,?]", "[d0_0,d0_0];[d0_0]"); INFER_OK(op, "[1,?]", "[d0_0,d0_0];[d0_0]"); INFER_OK(op, "[?,1]", "[d0_1,d0_1];[d0_1]"); INFER_OK(op, "[1,?,3,4,?,?]", "[d0_0,d0_1,d0_2,d0_3,d0_4,d0_4];[d0_0,d0_1,d0_2,d0_3,d0_4]"); INFER_OK(op, "[1,?,3,4,1,?]", "[d0_0,d0_1,d0_2,d0_3,d0_4,d0_4];[d0_0,d0_1,d0_2,d0_3,d0_4]"); INFER_OK(op, "[1,?,3,4,?,1]", "[d0_0,d0_1,d0_2,d0_3,d0_5,d0_5];[d0_0,d0_1,d0_2,d0_3,d0_5]"); } TEST(LinalgOpsTest, TridiagonalMatMul_ShapeFn) { ShapeInferenceTestOp op("TridiagonalMatMul"); INFER_OK(op, "?;?;?;?", "in3"); INFER_OK(op, "[1,5];[1,5];[1,5];[?,1]", "in3"); INFER_OK(op, "[1,5];[1,5];[1,5];[5,1]", "in3"); INFER_OK(op, "[?,1,?];[?,1,?];[?,1,?];[?,?,?]", "in3"); INFER_OK(op, "[?,1,5];[?,1,5];[?,1,5];[7,5,2]", "in3"); INFER_OK(op, "[7,1,5];[7,1,5];[7,1,5];[?,5,2]", "in3"); INFER_OK(op, "[7,1,5];[7,1,5];[7,1,5];[7,5,2]", "in3"); INFER_OK(op, "[7,?,1,5];[7,?,1,5];[7,?,1,5];[7,8,5,2]", "in3"); INFER_OK(op, "[7,8,1,5];[7,8,1,5];[7,8,1,5];[7,8,5,2]", "in3"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[3];[3];[3];[5,1]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[3,5];[3,5];[3,5];[5]"); INFER_ERROR( "Dimension 1 in both shapes must be equal, but are 4 and 8. " "Shapes are [6,4] and [6,8].", op, "[6,4,3,5];[6,4,3,5];[6,4,3,5];[6,8,5,2]"); INFER_ERROR( "Dimension 1 in both shapes must be equal, but are 4 and 8. " "Shapes are [?,4] and [6,8].", op, "[?,4,3,5];[?,4,3,5];[?,4,3,5];[6,8,5,2]"); INFER_ERROR( "Dimension 1 in both shapes must be equal, but are 5 and 6. " "Shapes are [1,5] and [1,6]", op, "[1,5];[1,6];[1,5];[6,2]"); INFER_ERROR("Dimension must be 1 but is 3", op, "[3,5];[3,5];[3,5];[5,2]"); } TEST(LinalgOpsTest, TridiagonalSolve_ShapeFn) { ShapeInferenceTestOp op("TridiagonalSolve"); INFER_OK(op, "?;?", "in1"); INFER_OK(op, "[3,5];[?,1]", "in1"); INFER_OK(op, "[?,5];[5,1]", "in1"); INFER_OK(op, "[?,5];[?,?]", "in1"); INFER_OK(op, "[?,?];[?,?]", "in1"); INFER_OK(op, "[3,5];[5,1]", "in1"); INFER_OK(op, "[3,5];[5,2]", "in1"); INFER_OK(op, "[?,?,?];[?,?,?]", "in1"); INFER_OK(op, "[?,3,5];[7,5,2]", "in1"); INFER_OK(op, "[7,3,5];[?,5,2]", "in1"); INFER_OK(op, "[7,?,5];[?,5,?]", "in1"); INFER_OK(op, "[7,3,5];[7,5,2]", "in1"); INFER_OK(op, "[7,?,3,5];[7,8,5,2]", "in1"); INFER_OK(op, "[7,8,3,5];[7,8,5,2]", "in1"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[3];[5,1]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[3,5];[5]"); INFER_ERROR( "Dimension 1 in both shapes must be equal, but are 4 and 8. " "Shapes are [6,4] and [6,8].", op, "[6,4,3,5];[6,8,5,2]"); INFER_ERROR( "Dimension 1 in both shapes must be equal, but are 4 and 8. " "Shapes are [?,4] and [6,8].", op, "[?,4,3,5];[6,8,5,2]"); INFER_ERROR("Dimension must be 3 but is 4", op, "[4,5];[5,2]"); INFER_ERROR("Dimension must be 3 but is 4", op, "[6,4,5];[6,5,2]"); INFER_ERROR("Dimensions must be equal, but are 9 and 5", op, "[3,9];[5,2]"); INFER_ERROR("Dimensions must be equal, but are 9 and 5", op, "[6,3,9];[6,5,2]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/linalg_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/linalg_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8cea8c52-41ca-4a4d-ba13-9aee3808da0f
cpp
tensorflow/tensorflow
sparse_csr_matrix_ops
tensorflow/core/ops/sparse_csr_matrix_ops.cc
tensorflow/core/ops/sparse_csr_matrix_ops_test.cc
#include <tuple> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeAndType; using shape_inference::ShapeHandle; Status GetVariantInput(InferenceContext* c, int index, ShapeAndType* shape_and_type) { ShapeHandle variant; TF_RETURN_IF_ERROR(c->WithRank(c->input(index), 0, &variant)); auto* shapes_and_types = c->input_handle_shapes_and_types(index); if (shapes_and_types == nullptr || shapes_and_types->size() != 1) { return absl::InvalidArgumentError(absl::StrCat( "Unable to access shape and type info from variant input ", index)); } *shape_and_type = shapes_and_types->at(0); return absl::OkStatus(); } Status ValidateSquareMatrixShape(InferenceContext* c, const ShapeHandle& matrix_shape, DimensionHandle* matrix_dimension) { ShapeHandle out; TF_RETURN_IF_ERROR(c->WithRankAtLeast(matrix_shape, 2, &out)); TF_RETURN_IF_ERROR(c->WithRankAtMost(matrix_shape, 3, &out)); if (!c->RankKnown(matrix_shape)) { return absl::InvalidArgumentError("Sparse matrix has an unknown rank."); } TF_RETURN_IF_ERROR(c->Merge(c->Dim(matrix_shape, -2), c->Dim(matrix_shape, -1), matrix_dimension)); return absl::OkStatus(); } REGISTER_OP("SparseTensorToCSRSparseMatrix") .Input("indices: int64") .Input("values: T") .Input("dense_shape: int64") .Attr("T: {float, double, complex64, complex128}") .Output("sparse_matrix: variant") .SetShapeFn([](InferenceContext* c) { TF_RETURN_IF_ERROR(shape_inference::ValidateSparseTensor( c, c->input(0), c->input(1), c->input(2))); auto rank = c->Value(c->Dim(c->input(0), 1)); ShapeHandle dense_shape; TF_RETURN_IF_ERROR(c->MakeShapeFromShapeTensor(2, &dense_shape)); TF_RETURN_IF_ERROR(c->WithRank(dense_shape, rank, &dense_shape)); if (!c->RankKnown(dense_shape) || c->Rank(dense_shape) < 2 || c->Rank(dense_shape) > 3) { return absl::InvalidArgumentError( absl::StrCat("Invalid rank: ", c->Rank(dense_shape), ". Expected a known rank of either 2 or 3.")); } DataType dtype; TF_RETURN_IF_ERROR(c->GetAttr("T", &dtype)); c->set_output(0, c->Scalar()); c->set_output_handle_shapes_and_types(0, {ShapeAndType{dense_shape, dtype}}); return absl::OkStatus(); }); REGISTER_OP("CSRSparseMatrixToSparseTensor") .Input("sparse_matrix: variant") .Output("indices: int64") .Output("values: type") .Output("dense_shape: int64") .Attr("type: {float, double, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle sparse_matrix = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtMost(sparse_matrix, 3, &sparse_matrix)); if (!c->RankKnown(sparse_matrix)) { return absl::InvalidArgumentError("sparse_matrix has an unknown rank."); } int rank = c->Rank(sparse_matrix); ShapeHandle indices = c->Matrix(c->UnknownDim(), rank); ShapeHandle values = c->Vector(c->UnknownDim()); ShapeHandle dense_shape = c->Vector(rank); c->set_output(0, indices); c->set_output(1, values); c->set_output(2, dense_shape); return absl::OkStatus(); }); REGISTER_OP("DenseToCSRSparseMatrix") .Input("dense_input: T") .Input("indices: int64") .Attr("T: {float, double, complex64, complex128}") .Output("sparse_output: variant") .SetShapeFn([](InferenceContext* c) { ShapeHandle dense_shape = c->input(0); if (!c->RankKnown(dense_shape) || c->Rank(dense_shape) < 2 || c->Rank(dense_shape) > 3) { return absl::InvalidArgumentError( absl::StrCat("Invalid rank of dense: ", c->Rank(dense_shape), ". Expected a known rank of either 2 or 3.")); } auto rank = c->Rank(dense_shape); ShapeHandle indices = c->input(1); if (!c->RankKnown(indices) || c->Rank(indices) != 2) { return absl::InvalidArgumentError( absl::StrCat("indices must be a matrix; but its rank is not 2: ", c->Rank(indices))); } auto indices_col = c->Dim(indices, 1); if (!c->ValueKnown(indices_col) || c->Value(indices_col) != rank) { return absl::InvalidArgumentError( absl::StrCat("indices.shape[1] must match rank of dense; saw: ", c->Value(indices_col), " vs. ", rank)); } ShapeHandle fake_values_vec = c->Vector(c->Dim(indices, 0)); ShapeHandle fake_shape_shape = c->Vector(rank); TF_RETURN_IF_ERROR(shape_inference::ValidateSparseTensor( c, indices , fake_values_vec , fake_shape_shape )); DataType dtype; TF_RETURN_IF_ERROR(c->GetAttr("T", &dtype)); c->set_output_handle_shapes_and_types(0, {ShapeAndType{dense_shape, dtype}}); c->set_output(0, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("CSRSparseMatrixToDense") .Input("sparse_input: variant") .Output("dense_output: type") .Attr("type: {float, double, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle sparse_matrix = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtMost(sparse_matrix, 3, &sparse_matrix)); if (!c->RankKnown(sparse_matrix)) { return absl::InvalidArgumentError("sparse_matrix has an unknown rank."); } c->set_output(0, sparse_matrix); return absl::OkStatus(); }); REGISTER_OP("CSRSparseMatrixComponents") .Input("csr_sparse_matrix: variant") .Input("index: int32") .Output("row_ptrs: int32") .Output("col_inds: int32") .Output("values: type") .Attr("type: {float, double, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle csr_sparse_matrix = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR( c->WithRankAtLeast(csr_sparse_matrix, 2, &csr_sparse_matrix)); TF_RETURN_IF_ERROR( c->WithRankAtMost(csr_sparse_matrix, 3, &csr_sparse_matrix)); ShapeHandle index; if (c->Rank(c->input(1)) != 0) { return absl::InvalidArgumentError("index must be a scalar."); } if (!c->RankKnown(csr_sparse_matrix)) { return absl::InvalidArgumentError( "csr_sparse_matrix has an unknown rank."); } auto row_ptrs_dh = c->Dim(csr_sparse_matrix, -2); TF_RETURN_IF_ERROR(c->Add(row_ptrs_dh, 1, &row_ptrs_dh)); ShapeHandle row_ptrs = c->Vector(row_ptrs_dh); c->set_output(0, row_ptrs); c->set_output(1, c->Vector(c->UnknownDim())); c->set_output(2, c->Vector(c->UnknownDim())); return absl::OkStatus(); }); REGISTER_OP("SparseMatrixNNZ") .Input("sparse_matrix: variant") .Output("nnz: int32") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle sparse_matrix = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(sparse_matrix, 2, &sparse_matrix)); TF_RETURN_IF_ERROR(c->WithRankAtMost(sparse_matrix, 3, &sparse_matrix)); if (!c->RankKnown(sparse_matrix)) { return absl::InvalidArgumentError("sparse_matrix has an unknown rank."); } ShapeHandle out; if (c->Rank(sparse_matrix) == 3) { out = c->Vector(c->Dim(sparse_matrix, 0)); } else { out = c->Scalar(); } c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("SparseMatrixMatMul") .Input("a: variant") .Input("b: T") .Attr("T: type") .Attr("transpose_a: bool = false") .Attr("transpose_b: bool = false") .Attr("adjoint_a: bool = false") .Attr("adjoint_b: bool = false") .Attr("transpose_output: bool = false") .Attr("conjugate_output: bool = false") .Output("output: T") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle a_shape = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(a_shape, 2, &a_shape)); TF_RETURN_IF_ERROR(c->WithRankAtMost(a_shape, 3, &a_shape)); if (!c->RankKnown(a_shape)) { return absl::InvalidArgumentError("a has an unknown rank."); } ShapeHandle b_shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &b_shape)); TF_RETURN_IF_ERROR(c->WithRankAtMost(b_shape, 3, &b_shape)); bool transpose_a = false; bool transpose_b = false; bool transpose_output = false; TF_RETURN_IF_ERROR(c->GetAttr("transpose_a", &transpose_a)); TF_RETURN_IF_ERROR(c->GetAttr("transpose_b", &transpose_b)); TF_RETURN_IF_ERROR(c->GetAttr("transpose_output", &transpose_output)); bool adjoint_a = false; bool adjoint_b = false; TF_RETURN_IF_ERROR(c->GetAttr("adjoint_a", &adjoint_a)); TF_RETURN_IF_ERROR(c->GetAttr("adjoint_b", &adjoint_b)); if (adjoint_a && transpose_a) { return absl::InvalidArgumentError( "Only one of adjoint_a and transpose_a may be true."); } if (adjoint_b && transpose_b) { return absl::InvalidArgumentError( "Only one of adjoint_b and transpose_b may be true."); } transpose_a = transpose_a || adjoint_a; transpose_b = transpose_b || adjoint_b; auto output_rows = c->Dim(a_shape, transpose_a ? -1 : -2); auto output_cols = c->Dim(b_shape, transpose_b ? -2 : -1); if (transpose_output) { std::tie(output_rows, output_cols) = std::make_tuple(output_cols, output_rows); } ShapeHandle a_batch_dims; ShapeHandle b_batch_dims; ShapeHandle batch_dims; TF_RETURN_IF_ERROR(c->Subshape(a_shape, 0, -2, &a_batch_dims)); TF_RETURN_IF_ERROR(c->Subshape(b_shape, 0, -2, &b_batch_dims)); TF_RETURN_IF_ERROR(c->Merge(a_batch_dims, b_batch_dims, &batch_dims)); shape_inference::DimensionHandle unused; TF_RETURN_IF_ERROR(c->Merge(c->Dim(a_shape, transpose_a ? -2 : -1), c->Dim(b_shape, transpose_b ? -1 : -2), &unused)); ShapeHandle out; TF_RETURN_IF_ERROR(c->Concatenate( batch_dims, c->Matrix(output_rows, output_cols), &out)); c->set_output(0, out); return absl::OkStatus(); }); #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) REGISTER_OP("_MklNativeSparseMatrixMatMul") .Input("a: variant") .Input("b: T") .Attr("T: type") .Attr("transpose_a: bool = false") .Attr("transpose_b: bool = false") .Attr("adjoint_a: bool = false") .Attr("adjoint_b: bool = false") .Attr("transpose_output: bool = false") .Attr("conjugate_output: bool = false") .Output("output: T") .SetShapeFn([](InferenceContext* c) { VLOG(1) << "_MklNativeSparseMatrixMatMul shape function"; ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle a_shape = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRank(a_shape, 2, &a_shape)); if (!c->RankKnown(a_shape)) { return absl::InvalidArgumentError("a has an unknown rank."); } ShapeHandle b_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &b_shape)); VLOG(1) << "_MklNativeSparseMatrixMatMul shape function still"; bool transpose_a = false; bool transpose_b = false; bool transpose_output = false; TF_RETURN_IF_ERROR(c->GetAttr("transpose_a", &transpose_a)); TF_RETURN_IF_ERROR(c->GetAttr("transpose_b", &transpose_b)); TF_RETURN_IF_ERROR(c->GetAttr("transpose_output", &transpose_output)); bool adjoint_a = false; bool adjoint_b = false; TF_RETURN_IF_ERROR(c->GetAttr("adjoint_a", &adjoint_a)); TF_RETURN_IF_ERROR(c->GetAttr("adjoint_b", &adjoint_b)); if (adjoint_a && transpose_a) { return absl::InvalidArgumentError( "Only one of adjoint_a and transpose_a may be true."); } if (adjoint_b && transpose_b) { return absl::InvalidArgumentError( "Only one of adjoint_b and transpose_b may be true."); } transpose_a = transpose_a || adjoint_a; transpose_b = transpose_b || adjoint_b; auto output_rows = c->Dim(a_shape, transpose_a ? -1 : -2); auto output_cols = c->Dim(b_shape, transpose_b ? -2 : -1); if (transpose_output) { std::tie(output_rows, output_cols) = std::make_tuple(output_cols, output_rows); } ShapeHandle a_batch_dims; ShapeHandle b_batch_dims; ShapeHandle batch_dims; TF_RETURN_IF_ERROR(c->Subshape(a_shape, 0, -2, &a_batch_dims)); TF_RETURN_IF_ERROR(c->Subshape(b_shape, 0, -2, &b_batch_dims)); TF_RETURN_IF_ERROR(c->Merge(a_batch_dims, b_batch_dims, &batch_dims)); shape_inference::DimensionHandle unused; TF_RETURN_IF_ERROR(c->Merge(c->Dim(a_shape, transpose_a ? -2 : -1), c->Dim(b_shape, transpose_b ? -1 : -2), &unused)); ShapeHandle out; TF_RETURN_IF_ERROR(c->Concatenate( batch_dims, c->Matrix(output_rows, output_cols), &out)); c->set_output(0, out); return OkStatus(); }); #endif REGISTER_OP("SparseMatrixMul") .Input("a: variant") .Input("b: T") .Attr("T: type") .Output("output: variant") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle a_shape = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtMost(a_shape, 3, &a_shape)); if (!c->RankKnown(a_shape)) { return absl::InvalidArgumentError("a has an unknown rank."); } ShapeHandle b_shape; TF_RETURN_IF_ERROR(c->WithRankAtMost(c->input(1), 3, &b_shape)); if (!c->RankKnown(b_shape)) { return absl::InvalidArgumentError("b has an unknown rank."); } ShapeHandle out; if (c->Rank(b_shape) == 0) { out = a_shape; } else if (c->Rank(b_shape) == 3) { if (c->Rank(a_shape) != 3) { return absl::UnimplementedError( "rank of b is 3 but rank of a is not."); } if (!(c->Value(c->Dim(b_shape, 1)) == 1 && c->Value(c->Dim(b_shape, 2)) == 1)) { return absl::UnimplementedError( "b must be a scalar or shaped [batch_size, 1, 1]"); } DimensionHandle batch_size = c->Dim(a_shape, 0); TF_RETURN_IF_ERROR( c->Merge(batch_size, c->Dim(b_shape, 0), &batch_size)); TF_RETURN_IF_ERROR(c->ReplaceDim(b_shape, 0, batch_size, &b_shape)); TF_RETURN_IF_ERROR(c->ReplaceDim(a_shape, 0, batch_size, &a_shape)); out = a_shape; } else { return absl::UnimplementedError( "b must be a scalar or shaped [batch_size, 1, 1]"); } c->set_output_handle_shapes_and_types( 0, {ShapeAndType{out, sparse_matrix_shape_and_type.dtype}}); c->set_output(0, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("SparseMatrixAdd") .Input("a: variant") .Input("b: variant") .Input("alpha: T") .Input("beta: T") .Attr("T: {float, double, complex64, complex128}") .Output("c: variant") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused_scalar_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused_scalar_shape)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused_scalar_shape)); ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle a_shape = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(a_shape, 2, &a_shape)); TF_RETURN_IF_ERROR(c->WithRankAtMost(a_shape, 3, &a_shape)); if (!c->RankKnown(a_shape)) { return absl::InvalidArgumentError("a has an unknown rank."); } TF_RETURN_IF_ERROR(GetVariantInput(c, 1, &sparse_matrix_shape_and_type)); ShapeHandle b_shape = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(b_shape, 2, &b_shape)); TF_RETURN_IF_ERROR(c->WithRankAtMost(b_shape, 3, &b_shape)); if (!c->RankKnown(b_shape)) { return absl::InvalidArgumentError("b has an unknown rank."); } ShapeHandle out; TF_RETURN_IF_ERROR(c->Merge(a_shape, b_shape, &out)); c->set_output_handle_shapes_and_types( 0, {ShapeAndType{out, sparse_matrix_shape_and_type.dtype}}); c->set_output(0, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("SparseMatrixSparseMatMul") .Input("a: variant") .Input("b: variant") .Attr("type: {float, double, complex64, complex128}") .Attr("transpose_a: bool = false") .Attr("transpose_b: bool = false") .Attr("adjoint_a: bool = false") .Attr("adjoint_b: bool = false") .Output("c: variant") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle a_shape = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(a_shape, 2, &a_shape)); TF_RETURN_IF_ERROR(c->WithRankAtMost(a_shape, 3, &a_shape)); if (!c->RankKnown(a_shape)) { return absl::InvalidArgumentError("a has an unknown rank."); } TF_RETURN_IF_ERROR(GetVariantInput(c, 1, &sparse_matrix_shape_and_type)); ShapeHandle b_shape = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(b_shape, 2, &b_shape)); TF_RETURN_IF_ERROR(c->WithRankAtMost(b_shape, 3, &b_shape)); if (!c->RankKnown(b_shape)) { return absl::InvalidArgumentError("b has an unknown rank."); } bool transpose_a = false; bool transpose_b = false; TF_RETURN_IF_ERROR(c->GetAttr("transpose_a", &transpose_a)); TF_RETURN_IF_ERROR(c->GetAttr("transpose_b", &transpose_b)); bool adjoint_a = false; bool adjoint_b = false; TF_RETURN_IF_ERROR(c->GetAttr("adjoint_a", &adjoint_a)); TF_RETURN_IF_ERROR(c->GetAttr("adjoint_b", &adjoint_b)); if (adjoint_a && transpose_a) { return absl::InvalidArgumentError( "Only one of adjoint_a and transpose_a may be true."); } else if (adjoint_b && transpose_b) { return absl::InvalidArgumentError( "Only one of adjoint_b and transpose_b may be true."); } transpose_a = transpose_a || adjoint_a; transpose_b = transpose_b || adjoint_b; auto output_rows = c->Dim(a_shape, transpose_a ? -1 : -2); auto output_cols = c->Dim(b_shape, transpose_b ? -2 : -1); ShapeHandle a_batch_dims; ShapeHandle b_batch_dims; ShapeHandle batch_dims; TF_RETURN_IF_ERROR(c->Subshape(a_shape, 0, -2, &a_batch_dims)); TF_RETURN_IF_ERROR(c->Subshape(b_shape, 0, -2, &b_batch_dims)); TF_RETURN_IF_ERROR(BroadcastBinaryOpOutputShapeFnHelper( c, a_batch_dims, b_batch_dims, true, &batch_dims)); shape_inference::DimensionHandle unused; TF_RETURN_IF_ERROR(c->Merge(c->Dim(a_shape, transpose_a ? -2 : -1), c->Dim(b_shape, transpose_b ? -1 : -2), &unused)); ShapeHandle out; TF_RETURN_IF_ERROR(c->Concatenate( batch_dims, c->Matrix(output_rows, output_cols), &out)); c->set_output_handle_shapes_and_types( 0, {ShapeAndType{out, sparse_matrix_shape_and_type.dtype}}); c->set_output(0, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("SparseMatrixZeros") .Input("dense_shape: int64") .Attr("type: {float, double, complex64, complex128}") .Output("sparse_matrix: variant") .SetShapeFn([](InferenceContext* c) { auto rank = c->NumElements(c->input(0)); ShapeHandle dense_shape; TF_RETURN_IF_ERROR(c->MakeShapeFromShapeTensor(0, &dense_shape)); TF_RETURN_IF_ERROR( c->WithRank(dense_shape, c->Value(rank), &dense_shape)); if (!c->RankKnown(dense_shape) || c->Rank(dense_shape) < 2 || c->Rank(dense_shape) > 3) { return absl::InvalidArgumentError( absl::StrCat("Invalid rank: ", c->Rank(dense_shape), ". Expected a known rank of either 2 or 3.")); } DataType dtype; TF_RETURN_IF_ERROR(c->GetAttr("type", &dtype)); c->set_output_handle_shapes_and_types(0, {ShapeAndType{dense_shape, dtype}}); c->set_output(0, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("SparseMatrixTranspose") .Input("input: variant") .Attr("conjugate: bool = false") .Attr("type: {float, double, complex64, complex128}") .Output("output: variant") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle input = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(input, 2, &input)); TF_RETURN_IF_ERROR(c->WithRankAtMost(input, 3, &input)); if (!c->RankKnown(input)) { return absl::InvalidArgumentError("input has an unknown rank."); } ShapeHandle output; if (c->Rank(input) == 2) { output = c->Matrix(c->Dim(input, 1), c->Dim(input, 0)); } else { output = c->MakeShape( {c->Dim(input, 0), c->Dim(input, 2), c->Dim(input, 1)}); } c->set_output_handle_shapes_and_types( 0, {ShapeAndType{output, sparse_matrix_shape_and_type.dtype}}); c->set_output(0, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("SparseMatrixSoftmax") .Input("logits: variant") .Attr("type: {float, double}") .Output("softmax: variant") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle logits = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(logits, 2, &logits)); TF_RETURN_IF_ERROR(c->WithRankAtMost(logits, 3, &logits)); if (!c->RankKnown(logits)) { return absl::InvalidArgumentError("logits has an unknown rank."); } c->set_output_handle_shapes_and_types( 0, {ShapeAndType{logits, sparse_matrix_shape_and_type.dtype}}); c->set_output(0, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("SparseMatrixSoftmaxGrad") .Input("softmax: variant") .Input("grad_softmax: variant") .Attr("type: {float, double}") .Output("gradient: variant") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle softmax = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(softmax, 2, &softmax)); TF_RETURN_IF_ERROR(c->WithRankAtMost(softmax, 3, &softmax)); if (!c->RankKnown(softmax)) { return absl::InvalidArgumentError("softmax has an unknown rank."); } TF_RETURN_IF_ERROR(GetVariantInput(c, 1, &sparse_matrix_shape_and_type)); ShapeHandle grad_softmax = sparse_matrix_shape_and_type.shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(grad_softmax, 2, &grad_softmax)); TF_RETURN_IF_ERROR(c->WithRankAtMost(grad_softmax, 3, &grad_softmax)); if (!c->RankKnown(grad_softmax)) { return absl::InvalidArgumentError("grad_softmax has an unknown rank."); } TF_RETURN_IF_ERROR(c->Merge(softmax, grad_softmax, &softmax)); c->set_output_handle_shapes_and_types( 0, {ShapeAndType{softmax, sparse_matrix_shape_and_type.dtype}}); c->set_output(0, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("SparseMatrixOrderingAMD") .Input("input: variant") .Output("output: int32") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle matrix_shape = sparse_matrix_shape_and_type.shape; DimensionHandle n; TF_RETURN_IF_ERROR(ValidateSquareMatrixShape(c, matrix_shape, &n)); ShapeHandle output; if (c->Rank(matrix_shape) == 2) { output = c->Vector(c->Dim(matrix_shape, 0)); } else { output = c->Matrix(c->Dim(matrix_shape, 0), c->Dim(matrix_shape, 1)); } c->set_output(0, output); return absl::OkStatus(); }); REGISTER_OP("SparseMatrixSparseCholesky") .Input("input: variant") .Input("permutation: int32") .Attr("type: {float, double, complex64, complex128}") .Output("output: variant") .SetShapeFn([](InferenceContext* c) { ShapeAndType sparse_matrix_shape_and_type; TF_RETURN_IF_ERROR(GetVariantInput(c, 0, &sparse_matrix_shape_and_type)); ShapeHandle matrix_shape = sparse_matrix_shape_and_type.shape; DimensionHandle n; TF_RETURN_IF_ERROR(ValidateSquareMatrixShape(c, matrix_shape, &n)); ShapeHandle perm_shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 1, &perm_shape)); TF_RETURN_IF_ERROR(c->WithRankAtMost(c->input(1), 2, &perm_shape)); if (!c->RankKnown(perm_shape)) { return absl::InvalidArgumentError("permutation has an unknown rank."); } TF_RETURN_IF_ERROR(c->Merge(n, c->Dim(perm_shape, -1), &n)); ShapeHandle matrix_batch_shape; ShapeHandle perm_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(matrix_shape, 0, -2, &matrix_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(perm_shape, 0, -1, &perm_shape)); TF_RETURN_IF_ERROR( c->Merge(matrix_batch_shape, perm_batch_shape, &matrix_batch_shape)); ShapeHandle out = matrix_shape; c->set_output_handle_shapes_and_types( 0, {ShapeAndType{out, sparse_matrix_shape_and_type.dtype}}); c->set_output(0, c->Scalar()); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" namespace tensorflow { TEST(SparseMatrixOpsTest, SparseTensorToCSRSparseMatrix_ShapeFn) { ShapeInferenceTestOp op("SparseTensorToCSRSparseMatrix"); (*op.node_def.mutable_attr())["T"].set_type(DT_FLOAT); op.input_tensors.resize(3); INFER_ERROR("Expected a known rank", op, "?;?;?"); INFER_ERROR("either 2 or 3", op, "[?,4];?;?"); INFER_OK(op, "[?,2];?;?", "[]"); INFER_OK(op, "[?,3];?;?", "[]"); Tensor dense_shape_t = test::AsTensor<int64_t>({5, 6}); op.input_tensors[2] = &dense_shape_t; INFER_ERROR("Shape must be rank 3 but is rank 2 for", op, "[?,3];?;?"); INFER_OK(op, "[?,2];?;?", "[]"); } TEST(SparseMatrixOpsTest, CSRSparseMatrixToSparseTensor_ShapeFn) { ShapeInferenceTestOp op("CSRSparseMatrixToSparseTensor"); std::vector<ShapeInferenceTestOp::ShapeAndType> shapes_and_types(1); shapes_and_types[0].second = DT_FLOAT; op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); shapes_and_types[0].first = "[4,5]"; INFER_OK(op, "[]", "[?,2];[?];[2]"); shapes_and_types[0].first = "[?,?]"; INFER_OK(op, "[]", "[?,2];[?];[2]"); shapes_and_types[0].first = "[4,5,6]"; INFER_OK(op, "[]", "[?,3];[?];[3]"); shapes_and_types[0].first = "[?,?,?]"; INFER_OK(op, "[]", "[?,3];[?];[3]"); } TEST(SparseMatrixOpsTest, DenseToCSRSparseMatrix_ShapeFn) { ShapeInferenceTestOp op("DenseToCSRSparseMatrix"); (*op.node_def.mutable_attr())["T"].set_type(DT_FLOAT); INFER_ERROR("Expected a known rank", op, "?;?"); INFER_ERROR("either 2 or 3", op, "[?];?"); INFER_OK(op, "[?,?];[?,2]", "[]"); INFER_OK(op, "[?,?,?];[?,3]", "[]"); INFER_ERROR("indices.shape[1] must match rank of dense; saw: 2 vs. 3", op, "[?,?,?];[?,2]"); } TEST(SparseMatrixOpsTest, CSRSparseMatrixToDense_ShapeFn) { ShapeInferenceTestOp op("CSRSparseMatrixToDense"); std::vector<ShapeInferenceTestOp::ShapeAndType> shapes_and_types(1); shapes_and_types[0].second = DT_FLOAT; op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); shapes_and_types[0].first = "[?,?]"; INFER_OK(op, "[]", "[?,?]"); shapes_and_types[0].first = "[?,?,?]"; INFER_OK(op, "[]", "[?,?,?]"); } TEST(SparseMatrixOpsTest, CSRSparseMatrixComponents_ShapeFn) { ShapeInferenceTestOp op("CSRSparseMatrixComponents"); std::vector<ShapeInferenceTestOp::ShapeAndType> shapes_and_types(1); shapes_and_types[0].second = DT_FLOAT; op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(nullptr); shapes_and_types[0].first = "[4,5]"; INFER_OK(op, "[];[]", "[5];[?];[?]"); shapes_and_types[0].first = "[?,?]"; INFER_OK(op, "[];[]", "[?];[?];[?]"); shapes_and_types[0].first = "[19,34,55]"; INFER_OK(op, "[];[]", "[35];[?];[?]"); shapes_and_types[0].first = "[?,?,?]"; INFER_OK(op, "[];[]", "[?];[?];[?]"); shapes_and_types[0].first = "[?,?,?]"; INFER_ERROR("index must be a scalar", op, "[];?"); } TEST(SparseMatrixOpsTest, SparseMatrixMatMul_ShapeFn) { ShapeInferenceTestOp op("SparseMatrixMatMul"); std::vector<ShapeInferenceTestOp::ShapeAndType> a_shapes_and_types(1); a_shapes_and_types[0].second = DT_FLOAT; op.input_resource_handle_shapes_and_types.push_back(&a_shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(nullptr); auto set_options = [&op](bool transpose_a, bool transpose_b, bool adjoint_a, bool adjoint_b, bool transpose_output) { TF_ASSERT_OK(NodeDefBuilder("test", "SparseMatrixMatMul") .Input("a", 0, DT_VARIANT) .Input("b", 1, DT_FLOAT) .Attr("transpose_a", transpose_a) .Attr("transpose_b", transpose_b) .Attr("adjoint_a", adjoint_a) .Attr("adjoint_b", adjoint_b) .Attr("transpose_output", transpose_output) .Finalize(&op.node_def)); }; set_options(false, false, false, false, false ); a_shapes_and_types[0].first = "?"; INFER_ERROR("a has an unknown rank", op, "[];?"); a_shapes_and_types[0].first = "[?]"; INFER_ERROR("must be at least rank 2 but is rank 1", op, "[];?"); a_shapes_and_types[0].first = "[?,?]"; INFER_OK(op, "[];?", "[?,?]"); a_shapes_and_types[0].first = "[?,?,?]"; INFER_OK(op, "[];?", "[?,?,?]"); a_shapes_and_types[0].first = "[?,3,?]"; INFER_OK(op, "[];[?,?,?]", "[?,3,d1_2]"); a_shapes_and_types[0].first = "[?,3,?]"; INFER_OK(op, "[];[?,?,4]", "[?,3,d1_2]"); a_shapes_and_types[0].first = "[?,?,6]"; INFER_OK(op, "[];[?,6,?]", "[?,?,d1_2]"); a_shapes_and_types[0].first = "[?,?,5]"; INFER_ERROR("must be equal, but are 5 and 6 for", op, "[];[?,6,?]"); set_options(false, false, false, false, true ); a_shapes_and_types[0].first = "[?,3,?]"; INFER_OK(op, "[];[?,?,4]", "[?,d1_2,3]"); a_shapes_and_types[0].first = "[3,?]"; INFER_OK(op, "[];[?,4]", "[d1_1,3]"); set_options(true, true, false, false, false ); a_shapes_and_types[0].first = "[?,?,?]"; INFER_OK(op, "[];[?,?,?]", "[?,?,d1_1]"); set_options(false, false, true, true, false ); a_shapes_and_types[0].first = "[?,?,?]"; INFER_OK(op, "[];[?,?,?]", "[?,?,d1_1]"); set_options(true , true , false, false, true ); a_shapes_and_types[0].first = "[?,?,?]"; INFER_OK(op, "[];[?,?,?]", "[?,d1_1,?]"); set_options(true, false, true, true, false ); a_shapes_and_types[0].first = "[?,?,?]"; INFER_ERROR("Only one of adjoint_a and transpose_a", op, "[];[?,?,?]"); set_options(false, true, true, true, false ); a_shapes_and_types[0].first = "[?,?,?]"; INFER_ERROR("Only one of adjoint_b and transpose_b", op, "[];[?,?,?]"); } TEST(SparseMatrixOpsTest, SparseMatrixAdd_ShapeFn) { ShapeInferenceTestOp op("SparseMatrixAdd"); std::vector<ShapeInferenceTestOp::ShapeAndType> a_shapes_and_types(1); std::vector<ShapeInferenceTestOp::ShapeAndType> b_shapes_and_types(1); a_shapes_and_types[0].second = DT_FLOAT; b_shapes_and_types[0].second = DT_FLOAT; op.input_resource_handle_shapes_and_types.push_back(&a_shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(&b_shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(nullptr); op.input_resource_handle_shapes_and_types.push_back(nullptr); auto set_shapes = [&a_shapes_and_types, &b_shapes_and_types]( const string& a_shape, const string& b_shape) { a_shapes_and_types[0].first = a_shape; b_shapes_and_types[0].first = b_shape; }; set_shapes("[?,?]", "[?,?]"); INFER_OK(op, "[];[];?;?", "[]"); set_shapes("[?,?,?]", "[?,?,?]"); INFER_OK(op, "[];[];?;?", "[]"); set_shapes("[3,4]", "[3,4]"); INFER_OK(op, "[];[];?;?", "[]"); set_shapes("[3,4,5]", "[3,4,5]"); INFER_OK(op, "[];[];?;?", "[]"); set_shapes("[?,?,?]", "[?,?,?]"); INFER_OK(op, "[];[];[];[]", "[]"); set_shapes("[?,?]", "[?,?]"); INFER_ERROR("must be rank 0 but is rank 1", op, "[];[];?;[?]"); set_shapes("[?,?,?]", "?"); INFER_ERROR("b has an unknown rank", op, "[];[];?;?"); set_shapes("[?,?,?]", "[?,?]"); INFER_ERROR("must be equal", op, "[];[];?;?"); } TEST(SparseMatrixOpsTest, SparseMatrixSparseMatMul_ShapeFn) { ShapeInferenceTestOp op("SparseMatrixSparseMatMul"); std::vector<ShapeInferenceTestOp::ShapeAndType> a_shapes_and_types(1); std::vector<ShapeInferenceTestOp::ShapeAndType> b_shapes_and_types(1); a_shapes_and_types[0].second = DT_FLOAT; b_shapes_and_types[0].second = DT_FLOAT; op.input_resource_handle_shapes_and_types.push_back(&a_shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(&b_shapes_and_types); auto set_shapes = [&a_shapes_and_types, &b_shapes_and_types]( const string& a_shape, const string& b_shape) { a_shapes_and_types[0].first = a_shape; b_shapes_and_types[0].first = b_shape; }; auto set_options = [&op](bool transpose_a, bool transpose_b, bool adjoint_a, bool adjoint_b) { TF_ASSERT_OK(NodeDefBuilder("test", "SparseMatrixMatMul") .Input("a", 0, DT_VARIANT) .Input("b", 1, DT_FLOAT) .Attr("transpose_a", transpose_a) .Attr("transpose_b", transpose_b) .Attr("adjoint_a", adjoint_a) .Attr("adjoint_b", adjoint_b) .Finalize(&op.node_def)); }; set_options(false, false, false, false); set_shapes("?", "?"); INFER_ERROR("has an unknown rank", op, "[];[]"); set_shapes("[?]", "[?,?]"); INFER_ERROR("must be at least rank 2 but is rank 1", op, "[];[]"); set_shapes("[?,?]", "[?,?]"); INFER_OK(op, "[];[]", "[]"); set_shapes("[?,?,?]", "[?,?,?]"); INFER_OK(op, "[];[]", "[]"); set_shapes("[?,3,?]", "[?,?,?]"); INFER_OK(op, "[];[]", "[]"); set_shapes("[?,3,?]", "[?,?,4]"); INFER_OK(op, "[];[]", "[]"); set_shapes("[?,?,6]", "[?,6,?]"); INFER_OK(op, "[];[]", "[]"); set_shapes("[?,?,5]", "[?,6,?]"); INFER_ERROR("must be equal, but are 5 and 6 for", op, "[];[]"); set_options(true, true, false, false); set_shapes("[?,?,?]", "[?,?,?]"); INFER_OK(op, "[];[]", "[]"); set_options(false, false, true, true); set_shapes("[?,?,?]", "[?,?,?]"); INFER_OK(op, "[];[]", "[]"); set_options(true, false, true, true); set_shapes("[?,?,?]", "[?,?,?]"); INFER_ERROR("Only one of adjoint_a and transpose_a", op, "[];[]"); set_options(false, true, true, true); set_shapes("[?,?,?]", "[?,?,?]"); INFER_ERROR("Only one of adjoint_b and transpose_b", op, "[];[]"); } TEST(SparseMatrixOpsTest, SparseMatrixTranspose_ShapeFn) { ShapeInferenceTestOp op("SparseMatrixTranspose"); std::vector<ShapeInferenceTestOp::ShapeAndType> shapes_and_types(1); shapes_and_types[0].second = DT_FLOAT; op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); shapes_and_types[0].first = "[3,4,5]"; INFER_OK(op, "[]", "[]"); shapes_and_types[0].first = "[3,4]"; INFER_OK(op, "[]", "[]"); shapes_and_types[0].first = "?"; INFER_ERROR("input has an unknown rank", op, "[]"); } TEST(SparseMatrixOpsTest, SparseMatrixSoftmax_ShapeFn) { ShapeInferenceTestOp op("SparseMatrixSoftmax"); std::vector<ShapeInferenceTestOp::ShapeAndType> shapes_and_types(1); shapes_and_types[0].second = DT_FLOAT; op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); shapes_and_types[0].first = "[?,?,?]"; INFER_OK(op, "[]", "[]"); shapes_and_types[0].first = "[?,?]"; INFER_OK(op, "[]", "[]"); shapes_and_types[0].first = "?"; INFER_ERROR("logits has an unknown rank", op, "[]"); } TEST(SparseMatrixOpsTest, SparseMatrixSoftmaxGrad_ShapeFn) { ShapeInferenceTestOp op("SparseMatrixSoftmaxGrad"); std::vector<ShapeInferenceTestOp::ShapeAndType> a_shapes_and_types(1); std::vector<ShapeInferenceTestOp::ShapeAndType> b_shapes_and_types(1); a_shapes_and_types[0].second = DT_FLOAT; b_shapes_and_types[0].second = DT_FLOAT; op.input_resource_handle_shapes_and_types.push_back(&a_shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(&b_shapes_and_types); auto set_shapes = [&a_shapes_and_types, &b_shapes_and_types]( const string& a_shape, const string& b_shape) { a_shapes_and_types[0].first = a_shape; b_shapes_and_types[0].first = b_shape; }; set_shapes("[?,?,?]", "[?,?,?]"); INFER_OK(op, "[];[]", "[]"); set_shapes("[?,?]", "[?,?]"); INFER_OK(op, "[];[]", "[]"); set_shapes("[3,4]", "[5,6]"); INFER_ERROR("Dimension 0 in both shapes must be equal, but are 3 and 5", op, "[];[]"); set_shapes("?", "[?,?]"); INFER_ERROR("softmax has an unknown rank", op, "[];[]"); set_shapes("[?,?,?]", "?"); INFER_ERROR("grad_softmax has an unknown rank", op, "[];[]"); } TEST(SparseMatrixOpsTest, SparseMatrixMul_ShapeFn) { ShapeInferenceTestOp op("SparseMatrixMul"); std::vector<ShapeInferenceTestOp::ShapeAndType> shapes_and_types(1); shapes_and_types[0].second = DT_FLOAT; op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(nullptr); shapes_and_types[0].first = "[3,4]"; INFER_OK(op, "[];[]", "[]"); shapes_and_types[0].first = "[5,3,4]"; INFER_OK(op, "[];[?,1,1]", "[]"); shapes_and_types[0].first = "[?,?,?]"; INFER_ERROR("b must be a scalar or shaped [batch_size, 1, 1]", op, "[];[3,4]"); shapes_and_types[0].first = "[3,4]"; INFER_ERROR("b must be a scalar or shaped", op, "[];[3,4]"); shapes_and_types[0].first = "[3,4,5]"; INFER_ERROR("b must be a scalar or shaped", op, "[];[3,4,5]"); shapes_and_types[0].first = "[3,4,5]"; INFER_ERROR("must be equal, but are 3 and 4", op, "[];[4,1,1]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/sparse_csr_matrix_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/sparse_csr_matrix_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5de08bc7-3a08-43ab-ba5d-304198e5e664
cpp
tensorflow/tensorflow
rnn_ops
tensorflow/core/ops/rnn_ops.cc
tensorflow/core/ops/rnn_ops_test.cc
#include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; REGISTER_OP("GRUBlockCell") .Attr("T: {float}") .Input("x: T") .Input("h_prev: T") .Input("w_ru: T") .Input("w_c: T") .Input("b_ru: T") .Input("b_c: T") .Output("r: T") .Output("u: T") .Output("c: T") .Output("h: T") .SetShapeFn([](InferenceContext* c) { ShapeHandle x, h_prev; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &x)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &h_prev)); DimensionHandle batch_size = c->Dim(x, 0); DimensionHandle cell_size = c->Dim(h_prev, 1); ShapeHandle output = c->Matrix(batch_size, cell_size); for (int i = 0; i < 4; ++i) { c->set_output(i, output); } return absl::OkStatus(); }); REGISTER_OP("GRUBlockCellGrad") .Attr("T: {float}") .Input("x: T") .Input("h_prev: T") .Input("w_ru: T") .Input("w_c: T") .Input("b_ru: T") .Input("b_c: T") .Input("r: T") .Input("u: T") .Input("c: T") .Input("d_h: T") .Output("d_x: T") .Output("d_h_prev: T") .Output("d_c_bar: T") .Output("d_r_bar_u_bar: T") .SetShapeFn([](InferenceContext* c) { ShapeHandle x, h_prev, w_ru; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &x)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &h_prev)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 2, &w_ru)); DimensionHandle batch_size = c->Dim(x, 0); DimensionHandle cell_size = c->Dim(h_prev, 1); DimensionHandle twice_cell_size = c->Dim(w_ru, 1); ShapeHandle batch_cell_shape = c->Matrix(batch_size, cell_size); c->set_output(0, x); c->set_output(1, batch_cell_shape); c->set_output(2, batch_cell_shape); c->set_output(3, c->Matrix(batch_size, twice_cell_size)); return absl::OkStatus(); }); REGISTER_OP("LSTMBlockCell") .Input("x: T") .Input("cs_prev: T") .Input("h_prev: T") .Input("w: T") .Input("wci: T") .Input("wcf: T") .Input("wco: T") .Input("b: T") .Output("i: T") .Output("cs: T") .Output("f: T") .Output("o: T") .Output("ci: T") .Output("co: T") .Output("h: T") .Attr("forget_bias: float = 1.0") .Attr("cell_clip: float = 3.0") .Attr("use_peephole: bool = false") .Attr("T: {half, float}") .SetShapeFn([](InferenceContext* c) { ShapeHandle x, cs_prev; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &x)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &cs_prev)); DimensionHandle batch_size = c->Dim(x, 0); DimensionHandle cell_size = c->Dim(cs_prev, 1); ShapeHandle output = c->Matrix(batch_size, cell_size); for (int i = 0; i < 7; ++i) { c->set_output(i, output); } return absl::OkStatus(); }); REGISTER_OP("LSTMBlockCellGrad") .Input("x: T") .Input("cs_prev: T") .Input("h_prev: T") .Input("w: T") .Input("wci: T") .Input("wcf: T") .Input("wco: T") .Input("b: T") .Input("i: T") .Input("cs: T") .Input("f: T") .Input("o: T") .Input("ci: T") .Input("co: T") .Input("cs_grad: T") .Input("h_grad: T") .Output("cs_prev_grad: T") .Output("dicfo: T") .Output("wci_grad: T") .Output("wcf_grad: T") .Output("wco_grad: T") .Attr("use_peephole: bool") .Attr("T: {half, float}") .SetShapeFn([](InferenceContext* c) { ShapeHandle x, cs_prev; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &x)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &cs_prev)); DimensionHandle batch_size = c->Dim(x, 0); DimensionHandle cell_size = c->Dim(cs_prev, 1); DimensionHandle cell_size_times_4; TF_RETURN_IF_ERROR(c->Multiply(cell_size, 4, &cell_size_times_4)); ShapeHandle cell_size_vec = c->Vector(cell_size); c->set_output(0, c->Matrix(batch_size, cell_size)); c->set_output(1, c->Matrix(batch_size, cell_size_times_4)); c->set_output(2, cell_size_vec); c->set_output(3, cell_size_vec); c->set_output(4, cell_size_vec); return absl::OkStatus(); }); REGISTER_OP("BlockLSTM") .Input("seq_len_max: int64") .Input("x: T") .Input("cs_prev: T") .Input("h_prev: T") .Input("w: T") .Input("wci: T") .Input("wcf: T") .Input("wco: T") .Input("b: T") .Output("i: T") .Output("cs: T") .Output("f: T") .Output("o: T") .Output("ci: T") .Output("co: T") .Output("h: T") .Attr("forget_bias: float = 1.0") .Attr("cell_clip: float = 3.0") .Attr("use_peephole: bool = false") .Attr("T: {half, float}") .SetShapeFn([](InferenceContext* c) { ShapeHandle x, b; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 3, &x)); TF_RETURN_IF_ERROR(c->WithRank(c->input(c->num_inputs() - 1), 1, &b)); DimensionHandle timelen = c->Dim(x, 0); DimensionHandle batch_size = c->Dim(x, 1); DimensionHandle cell_size; TF_RETURN_IF_ERROR( c->Divide(c->Dim(b, 0), 4, true , &cell_size)); DCHECK_EQ(7, c->num_outputs()); ShapeHandle output = c->MakeShape({timelen, batch_size, cell_size}); for (int i = 0; i < 7; ++i) { c->set_output(i, output); } return absl::OkStatus(); }); REGISTER_OP("BlockLSTMV2") .Input("seq_len_max: int64") .Input("x: T") .Input("cs_prev: T") .Input("h_prev: T") .Input("w: T") .Input("wci: T") .Input("wcf: T") .Input("wco: T") .Input("b: T") .Output("i: T") .Output("cs: T") .Output("f: T") .Output("o: T") .Output("ci: T") .Output("co: T") .Output("h: T") .Attr("cell_clip: float = 0.0") .Attr("use_peephole: bool = false") .Attr("T: {half, float}") .SetShapeFn([](InferenceContext* c) { ShapeHandle x, b; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 3, &x)); TF_RETURN_IF_ERROR(c->WithRank(c->input(c->num_inputs() - 1), 1, &b)); DimensionHandle timelen = c->Dim(x, 0); DimensionHandle batch_size = c->Dim(x, 1); DimensionHandle cell_size; TF_RETURN_IF_ERROR( c->Divide(c->Dim(b, 0), 4, true , &cell_size)); DCHECK_EQ(7, c->num_outputs()); ShapeHandle output = c->MakeShape({timelen, batch_size, cell_size}); for (int i = 0; i < 7; ++i) { c->set_output(i, output); } return absl::OkStatus(); }); REGISTER_OP("BlockLSTMGrad") .Input("seq_len_max: int64") .Input("x: T") .Input("cs_prev: T") .Input("h_prev: T") .Input("w: T") .Input("wci: T") .Input("wcf: T") .Input("wco: T") .Input("b: T") .Input("i: T") .Input("cs: T") .Input("f: T") .Input("o: T") .Input("ci: T") .Input("co: T") .Input("h: T") .Input("cs_grad: T") .Input("h_grad: T") .Output("x_grad: T") .Output("cs_prev_grad: T") .Output("h_prev_grad: T") .Output("w_grad: T") .Output("wci_grad: T") .Output("wcf_grad: T") .Output("wco_grad: T") .Output("b_grad: T") .Attr("use_peephole: bool") .Attr("T: {half, float}") .SetShapeFn([](InferenceContext* c) { ShapeHandle x, cs_prev, h_prev, w, wci, wco, wcf, b; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 3, &x)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 2, &cs_prev)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 2, &h_prev)); TF_RETURN_IF_ERROR(c->WithRank(c->input(4), 2, &w)); TF_RETURN_IF_ERROR(c->WithRank(c->input(5), 1, &wci)); TF_RETURN_IF_ERROR(c->WithRank(c->input(6), 1, &wco)); TF_RETURN_IF_ERROR(c->WithRank(c->input(7), 1, &wcf)); TF_RETURN_IF_ERROR(c->WithRank(c->input(8), 1, &b)); c->set_output(0, x); c->set_output(1, cs_prev); c->set_output(2, h_prev); c->set_output(3, w); c->set_output(4, wci); c->set_output(5, wco); c->set_output(6, wcf); c->set_output(7, b); return absl::OkStatus(); }); REGISTER_OP("BlockLSTMGradV2") .Input("seq_len_max: int64") .Input("x: T") .Input("cs_prev: T") .Input("h_prev: T") .Input("w: T") .Input("wci: T") .Input("wcf: T") .Input("wco: T") .Input("b: T") .Input("i: T") .Input("cs: T") .Input("f: T") .Input("o: T") .Input("ci: T") .Input("co: T") .Input("h: T") .Input("cs_grad: T") .Input("h_grad: T") .Output("x_grad: T") .Output("cs_prev_grad: T") .Output("h_prev_grad: T") .Output("w_grad: T") .Output("wci_grad: T") .Output("wcf_grad: T") .Output("wco_grad: T") .Output("b_grad: T") .Attr("use_peephole: bool") .Attr("T: {half, float}") .SetShapeFn([](InferenceContext* c) { ShapeHandle x, cs_prev, h_prev, w, wci, wco, wcf, b; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 3, &x)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 2, &cs_prev)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 2, &h_prev)); TF_RETURN_IF_ERROR(c->WithRank(c->input(4), 2, &w)); TF_RETURN_IF_ERROR(c->WithRank(c->input(5), 1, &wci)); TF_RETURN_IF_ERROR(c->WithRank(c->input(6), 1, &wco)); TF_RETURN_IF_ERROR(c->WithRank(c->input(7), 1, &wcf)); TF_RETURN_IF_ERROR(c->WithRank(c->input(8), 1, &b)); c->set_output(0, x); c->set_output(1, cs_prev); c->set_output(2, h_prev); c->set_output(3, w); c->set_output(4, wci); c->set_output(5, wco); c->set_output(6, wcf); c->set_output(7, b); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { static string JoinedCopies(const string& s, int copies) { string res; for (int i = 0; i < copies; ++i) { strings::StrAppend(&res, i > 0 ? ";" : "", s); } return res; } TEST(RnnOpsTest, GRUBlockCell_ShapeFn) { ShapeInferenceTestOp op("GRUBlockCell"); INFER_ERROR("must be rank 2", op, "[?];?;?;?;?;?"); INFER_ERROR("must be rank 2", op, "?;[?];?;?;?;?"); INFER_OK(op, "?;?;?;?;?;?", "[?,?];[?,?];[?,?];[?,?]"); INFER_OK(op, "[?,?];[?,?];?;?;?;?", "[d0_0,d1_1];[d0_0,d1_1];[d0_0,d1_1];[d0_0,d1_1]"); } TEST(RnnOpsTest, GRUBlockCellGrad_ShapeFn) { ShapeInferenceTestOp op("GRUBlockCellGrad"); INFER_ERROR("must be rank 2", op, "[?];?;?;?;?;?;?;?;?;?"); INFER_ERROR("must be rank 2", op, "?;[?];?;?;?;?;?;?;?;?"); INFER_ERROR("must be rank 2", op, "?;?;[?];?;?;?;?;?;?;?"); INFER_OK(op, "?;?;?;?;?;?;?;?;?;?", "[?,?];[?,?];[?,?];[?,?]"); INFER_OK(op, "[?,?];[?,?];[?,?];?;?;?;?;?;?;?", "in0;[d0_0,d1_1];[d0_0,d1_1];[d0_0,d2_1]"); } TEST(RnnOpsTest, LSTMBlockCell_ShapeFn) { ShapeInferenceTestOp op("LSTMBlockCell"); string input_suffix = strings::StrCat(";", JoinedCopies("?", 6)); INFER_ERROR("must be rank 2", op, "[?];?" + input_suffix); INFER_ERROR("must be rank 2", op, "?;[?]" + input_suffix); INFER_OK(op, "?;?" + input_suffix, JoinedCopies("[?,?]", 7)); INFER_OK(op, "[?,?];[?,?]" + input_suffix, JoinedCopies("[d0_0,d1_1]", 7)); } TEST(RnnOpsTest, LSTMBlockCellGrad_ShapeFn) { ShapeInferenceTestOp op("LSTMBlockCellGrad"); string input_suffix = strings::StrCat(";", JoinedCopies("?", 14)); INFER_ERROR("must be rank 2", op, "[?];?" + input_suffix); INFER_ERROR("must be rank 2", op, "?;[?]" + input_suffix); INFER_OK(op, "?;?" + input_suffix, "[?,?];[?,?];[?];[?];[?]"); INFER_OK(op, "[?,?];[?,?]" + input_suffix, "[d0_0,d1_1];[d0_0,?];[d1_1];[d1_1];[d1_1]"); INFER_OK(op, "[1,2];[3,4]" + input_suffix, "[d0_0,d1_1];[d0_0,16];[d1_1];[d1_1];[d1_1]"); } TEST(RnnOpsTest, BlockLSTM_ShapeFn) { ShapeInferenceTestOp op("BlockLSTM"); TF_ASSERT_OK(NodeDefBuilder("test", "BlockLSTM") .Input({"seq_len_max", 0, DT_INT64}) .Input({"x", 0, DT_FLOAT}) .Input({"cs_prev", 0, DT_FLOAT}) .Input({"h_prev", 0, DT_FLOAT}) .Input({"w", 0, DT_FLOAT}) .Input({"wci", 0, DT_FLOAT}) .Input({"wcf", 0, DT_FLOAT}) .Input({"wco", 0, DT_FLOAT}) .Input({"b", 0, DT_FLOAT}) .Finalize(&op.node_def)); string infix = ";" + JoinedCopies("?", 6) + ";"; INFER_ERROR("must be rank 3", op, "?;[?]" + infix + "?"); INFER_ERROR("must be rank 1", op, "?;?" + infix + "[?,?]"); INFER_OK(op, "?;?" + infix + "?", JoinedCopies("[?,?,?]", 7)); INFER_OK(op, "?;[?,?,?]" + infix + "?", JoinedCopies("[d1_0,d1_1,?]", 7)); INFER_OK(op, "?;[?,?,?]" + infix + "[?]", JoinedCopies("[d1_0,d1_1,?]", 7)); INFER_OK(op, "?;[?,?,?]" + infix + "[20]", JoinedCopies("[d1_0,d1_1,5]", 7)); INFER_ERROR("must be evenly divisible", op, "?;?" + infix + "[11]"); } TEST(RnnOpsTest, BlockLSTMGrad_ShapeFn) { ShapeInferenceTestOp op("BlockLSTMGrad"); TF_ASSERT_OK(NodeDefBuilder("test", "BlockLSTMGrad") .Input({"seq_len_max", 0, DT_INT64}) .Input({"x", 0, DT_FLOAT}) .Input({"cs_prev", 0, DT_FLOAT}) .Input({"h_prev", 0, DT_FLOAT}) .Input({"w", 0, DT_FLOAT}) .Input({"wci", 0, DT_FLOAT}) .Input({"wcf", 0, DT_FLOAT}) .Input({"wco", 0, DT_FLOAT}) .Input({"b", 0, DT_FLOAT}) .Input({"i", 0, DT_FLOAT}) .Input({"cs", 0, DT_FLOAT}) .Input({"f", 0, DT_FLOAT}) .Input({"o", 0, DT_FLOAT}) .Input({"ci", 0, DT_FLOAT}) .Input({"co", 0, DT_FLOAT}) .Input({"h", 0, DT_FLOAT}) .Input({"cs_grad", 0, DT_FLOAT}) .Input({"h_grad", 0, DT_FLOAT}) .Finalize(&op.node_def)); string suffix = ";" + JoinedCopies("?", 9); INFER_ERROR("must be rank 3", op, "?;[?];?;?;?;?;?;?;?" + suffix); INFER_ERROR("must be rank 2", op, "?;?;[1];?;?;?;?;?;?" + suffix); INFER_ERROR("must be rank 2", op, "?;?;?;[1];?;?;?;?;?" + suffix); INFER_ERROR("must be rank 2", op, "?;?;?;?;[1];?;?;?;?" + suffix); INFER_ERROR("must be rank 1", op, "?;?;?;?;?;[1,?];?;?;?" + suffix); INFER_ERROR("must be rank 1", op, "?;?;?;?;?;?;[1,?];?;?" + suffix); INFER_ERROR("must be rank 1", op, "?;?;?;?;?;?;?;[1,?];?" + suffix); INFER_ERROR("must be rank 1", op, "?;?;?;?;?;?;?;?;[1,?]" + suffix); INFER_OK( op, JoinedCopies("?", 18), "[?,?,?];" + JoinedCopies("[?,?]", 3) + ";" + JoinedCopies("[?]", 4)); string input = strings::StrCat("?;[?,?,?];", JoinedCopies("[?,?]", 3), ";", JoinedCopies("[?]", 4), suffix); string expected = "in1"; for (int i = 1; i < 8; ++i) { strings::StrAppend(&expected, ";in", (i + 1)); } INFER_OK(op, input, expected); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/rnn_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/rnn_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
669e6ad1-db68-4efd-9487-266bfd0a1db6
cpp
tensorflow/tensorflow
state_ops
tensorflow/core/ops/state_ops.cc
tensorflow/core/ops/state_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" namespace tensorflow { using shape_inference::InferenceContext; using shape_inference::ShapeHandle; REGISTER_OP("VariableV2") .Output("ref: Ref(dtype)") .Attr("shape: shape") .Attr("dtype: type") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn(shape_inference::ExplicitShape); REGISTER_OP("Variable") .Output("ref: Ref(dtype)") .Attr("shape: shape") .Attr("dtype: type") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { PartialTensorShape shape; TF_RETURN_IF_ERROR(c->GetAttr("shape", &shape)); if (shape.dims() <= 0) { return shape_inference::UnknownShape(c); } ShapeHandle out; TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(shape, &out)); c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("IsVariableInitialized") .Input("ref: Ref(dtype)") .Output("is_initialized: bool") .Attr("dtype: type") .SetAllowsUninitializedInput() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("TemporaryVariable") .Output("ref: Ref(dtype)") .Attr("shape: shape") .Attr("dtype: type") .Attr("var_name: string = ''") .SetIsStateful() .SetShapeFn(shape_inference::ExplicitShape); REGISTER_OP("DestroyTemporaryVariable") .Input("ref: Ref(T)") .Output("value: T") .Attr("T: type") .Attr("var_name: string") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Assign") .Input("ref: Ref(T)") .Input("value: T") .Output("output_ref: Ref(T)") .Attr("T: type") .Attr("validate_shape: bool = true") .Attr("use_locking: bool = true") .SetAllowsUninitializedInput() .SetShapeFn([](InferenceContext* c) { bool validate_shape; TF_RETURN_IF_ERROR(c->GetAttr("validate_shape", &validate_shape)); if (validate_shape) { return shape_inference::MergeBothInputsShapeFn(c); } c->set_output(0, c->input(1)); return absl::OkStatus(); }); REGISTER_OP("AssignAdd") .Input("ref: Ref(T)") .Input("value: T") .Output("output_ref: Ref(T)") .Attr("T: numbertype") .Attr("use_locking: bool = false") .SetShapeFn(shape_inference::MergeBothInputsShapeFn); REGISTER_OP("AssignSub") .Input("ref: Ref(T)") .Input("value: T") .Output("output_ref: Ref(T)") .Attr("T: numbertype") .Attr("use_locking: bool = false") .SetShapeFn(shape_inference::MergeBothInputsShapeFn); namespace { Status ScatterUpdateShape(InferenceContext* c) { ShapeHandle var_shape = c->input(0); ShapeHandle indices_shape = c->input(1); ShapeHandle unused_updates_shape; ShapeHandle concat; ShapeHandle var_subshape; TF_RETURN_IF_ERROR(c->Subshape(var_shape, 1, &var_subshape)); TF_RETURN_IF_ERROR(c->Concatenate(indices_shape, var_subshape, &concat)); TF_RETURN_IF_ERROR( InferenceContext::Rank(c->input(2)) == 0 ? absl::OkStatus() : c->Merge(c->input(2), concat, &unused_updates_shape)); c->set_output(0, var_shape); return absl::OkStatus(); } Status ScatterNdUpdateShape(InferenceContext* c) { ShapeHandle input_shape = c->input(0); if (c->input_handle_shapes_and_types(0) != nullptr) { const auto& shape_and_type = *(c->input_handle_shapes_and_types(0)); if (!shape_and_type.empty()) { input_shape = shape_and_type[0].shape; } } ShapeHandle indices_shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 1, &indices_shape)); ShapeHandle updates_shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(2), 1, &updates_shape)); return shape_inference::ScatterNdShapeHelper(c, indices_shape, updates_shape, input_shape); } } REGISTER_OP("ScatterUpdate") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: type") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = true") .SetShapeFn(ScatterUpdateShape); REGISTER_OP("ScatterAdd") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: numbertype") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = false") .SetShapeFn(ScatterUpdateShape); REGISTER_OP("ScatterSub") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: numbertype") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = false") .SetShapeFn(ScatterUpdateShape); REGISTER_OP("ScatterMul") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: numbertype") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = false") .SetShapeFn(ScatterUpdateShape); REGISTER_OP("ScatterDiv") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: numbertype") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = false") .SetShapeFn(ScatterUpdateShape); REGISTER_OP("ScatterMin") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: {half, bfloat16, float, double, int32, int64}") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = false") .SetShapeFn(ScatterUpdateShape); REGISTER_OP("ScatterMax") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: {half, bfloat16, float, double, int32, int64}") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = false") .SetShapeFn(ScatterUpdateShape); REGISTER_OP("ScatterNdUpdate") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: type") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = true") .Attr("bad_indices_policy: string = ''") .SetShapeFn(ScatterNdUpdateShape); REGISTER_OP("ResourceScatterNdUpdate") .Input("ref: resource") .Input("indices: Tindices") .Input("updates: T") .Attr("T: type") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = true") .Attr("bad_indices_policy: string = ''") .SetShapeFn(ScatterNdUpdateShape); REGISTER_OP("ResourceScatterNdAdd") .Input("ref: resource") .Input("indices: Tindices") .Input("updates: T") .Attr("T: type") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = true") .Attr("bad_indices_policy: string = ''") .SetShapeFn(ScatterNdUpdateShape); REGISTER_OP("ResourceScatterNdSub") .Input("ref: resource") .Input("indices: Tindices") .Input("updates: T") .Attr("T: type") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = true") .Attr("bad_indices_policy: string = ''") .SetShapeFn(ScatterNdUpdateShape); REGISTER_OP("ResourceScatterNdMin") .Input("ref: resource") .Input("indices: Tindices") .Input("updates: T") .Attr("T: type") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = true") .Attr("bad_indices_policy: string = ''") .SetShapeFn(ScatterNdUpdateShape); REGISTER_OP("ResourceScatterNdMax") .Input("ref: resource") .Input("indices: Tindices") .Input("updates: T") .Attr("T: type") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = true") .Attr("bad_indices_policy: string = ''") .SetShapeFn(ScatterNdUpdateShape); REGISTER_OP("ScatterNdAdd") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: numbertype") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = false") .Attr("bad_indices_policy: string = ''") .SetShapeFn(ScatterNdUpdateShape); REGISTER_OP("ScatterNdSub") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: numbertype") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = false") .Attr("bad_indices_policy: string = ''") .SetShapeFn(ScatterNdUpdateShape); REGISTER_OP("ScatterNdMax") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: numbertype") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = false") .Attr("bad_indices_policy: string = ''") .SetShapeFn(ScatterNdUpdateShape); REGISTER_OP("ScatterNdMin") .Input("ref: Ref(T)") .Input("indices: Tindices") .Input("updates: T") .Output("output_ref: Ref(T)") .Attr("T: numbertype") .Attr("Tindices: {int32, int64}") .Attr("use_locking: bool = false") .Attr("bad_indices_policy: string = ''") .SetShapeFn(ScatterNdUpdateShape); REGISTER_OP("CountUpTo") .Input("ref: Ref(T)") .Output("output: T") .Attr("limit: int") .Attr("T: {int32, int64}") .SetShapeFn([](InferenceContext* c) { ShapeHandle output; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &output)); c->set_output(0, output); return absl::OkStatus(); }); REGISTER_OP("ResourceCountUpTo") .Input("resource: resource") .Output("output: T") .Attr("limit: int") .Attr("T: {int32, int64}") .SetShapeFn([](InferenceContext* c) { auto* handle_data = c->input_handle_shapes_and_types(0); if (handle_data == nullptr || handle_data->empty()) { return errors::InvalidArgument("Handle has no shape/type information."); } shape_inference::ShapeAndType shape_and_type = (*handle_data)[0]; DataType value_dtype; TF_RETURN_IF_ERROR(c->GetAttr("T", &value_dtype)); if (value_dtype != shape_and_type.dtype) { return errors::InvalidArgument( "Data types do not match: ", DataTypeString(value_dtype), " and ", DataTypeString(shape_and_type.dtype)); } ShapeHandle output; TF_RETURN_IF_ERROR(c->WithRank(shape_and_type.shape, 0, &output)); c->set_output(0, output); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(StateOpsTest, Assign_ShapeFn) { ShapeInferenceTestOp op("Assign"); TF_ASSERT_OK(NodeDefBuilder("test", "Assign") .Input("ref", 0, DT_FLOAT_REF) .Input("value", 1, DT_FLOAT) .Attr("validate_shape", true) .Finalize(&op.node_def)); INFER_OK(op, "[1,2];[1,2]", "in0"); INFER_OK(op, "[1,?];[?,2]", "[d0_0,d1_1]"); INFER_ERROR("Dimension 0 in both shapes must be equal, but are 1 and 3", op, "[1,?];[3,2]"); TF_ASSERT_OK(NodeDefBuilder("test", "Assign") .Input("ref", 0, DT_FLOAT_REF) .Input("value", 1, DT_FLOAT) .Attr("validate_shape", false) .Finalize(&op.node_def)); INFER_OK(op, "[1,2];[1,2,3,4]", "in1"); } TEST(StateOpsTest, ScatterUpdate_ShapeFn) { ShapeInferenceTestOp op("ScatterUpdate"); TF_ASSERT_OK(NodeDefBuilder("test", "ScatterUpdate") .Input("ref", 0, DT_FLOAT_REF) .Input("indices", 0, DT_INT32) .Input("updates", 1, DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "[1,2];[3];[3,2]", "in0"); INFER_OK(op, "[1,2];[3];[?,2]", "in0"); INFER_OK(op, "[1,2];[3];?", "in0"); INFER_OK(op, "[1,2];[];[2]", "in0"); INFER_ERROR("Shapes must be equal rank, but are 1 and 0", op, "[2];[];[2]"); } TEST(StateOpsTest, ResourceScatterNdUpdate_ShapeFn) { ShapeInferenceTestOp op("ResourceScatterNdUpdate"); TF_ASSERT_OK(NodeDefBuilder("test", "ResourceScatterNdUpdate") .Input("ref", 0, DT_RESOURCE) .Input("indices", 0, DT_INT32) .Input("updates", 1, DT_FLOAT) .Finalize(&op.node_def)); std::vector<ShapeInferenceTestOp::ShapeAndType> shapes_and_types; op.input_resource_handle_shapes_and_types.push_back(&shapes_and_types); op.input_resource_handle_shapes_and_types.push_back(nullptr); op.input_resource_handle_shapes_and_types.push_back(nullptr); shapes_and_types.emplace_back("[?,?]", DT_FLOAT); INFER_OK(op, "[?];[?,2];[?]", ""); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[?];[?,2];[]"); INFER_ERROR( "Dimensions [0,1) of indices[shape=[8,2]] = [8] must match " "dimensions [0,1) of updates[shape=[9]] = [9]", op, "[?];[8,2];[9]"); } TEST(StateOpsTest, TemporaryVariable_ShapeFn) { ShapeInferenceTestOp op("TemporaryVariable"); TensorShape shape({1, 2, 3}); TF_ASSERT_OK(NodeDefBuilder("test", "TemporaryVariable") .Attr("shape", shape) .Finalize(&op.node_def)); INFER_OK(op, "", "[1,2,3]"); } TEST(StateOpsTest, Variable_ShapeFn) { ShapeInferenceTestOp op("Variable"); TF_ASSERT_OK(NodeDefBuilder("test", "Variable") .Attr("shape", PartialTensorShape()) .Finalize(&op.node_def)); INFER_OK(op, "", "?"); TF_ASSERT_OK(NodeDefBuilder("test", "Variable") .Attr("shape", TensorShape({})) .Finalize(&op.node_def)); INFER_OK(op, "", "?"); TF_ASSERT_OK(NodeDefBuilder("test", "Variable") .Attr("shape", TensorShape({1, 2, 3})) .Finalize(&op.node_def)); INFER_OK(op, "", "[1,2,3]"); } TEST(StateOpsTest, VariableV2_ShapeFn) { ShapeInferenceTestOp op("VariableV2"); TF_ASSERT_OK(NodeDefBuilder("test", "VariableV2") .Attr("shape", PartialTensorShape()) .Finalize(&op.node_def)); INFER_OK(op, "", "?"); TF_ASSERT_OK(NodeDefBuilder("test", "VariableV2") .Attr("shape", TensorShape({})) .Finalize(&op.node_def)); INFER_OK(op, "", "[]"); TF_ASSERT_OK(NodeDefBuilder("test", "VariableV2") .Attr("shape", TensorShape({1, 2, 3})) .Finalize(&op.node_def)); INFER_OK(op, "", "[1,2,3]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/state_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/state_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c181e2d3-689a-486d-aee3-8f9ceee8eb9e
cpp
tensorflow/tensorflow
parsing_ops
tensorflow/core/ops/parsing_ops.cc
tensorflow/core/ops/parsing_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/util/example_proto_helper.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; namespace { template <typename TensorShapeType> Status AddDenseOutputShapes(const std::vector<TensorShapeType>& dense_shapes, const ShapeHandle& prefix, InferenceContext* c, int* output_idx) { for (const auto& dense_shape : dense_shapes) { ShapeHandle s; TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(dense_shape, &s)); TF_RETURN_IF_ERROR(c->Concatenate(prefix, s, &s)); c->set_output((*output_idx)++, s); } return absl::OkStatus(); } void AddSparseOutputShapes(int num_sparse, const ShapeHandle input_shape, int64_t rank_delta, InferenceContext* c, int* output_idx) { shape_inference::DimensionOrConstant rank(c->UnknownDim()); if (c->RankKnown(input_shape)) { rank = c->Rank(input_shape) + rank_delta; } for (int i = 0; i < num_sparse; ++i) { c->set_output((*output_idx)++, c->Matrix(c->UnknownDim(), rank)); } for (int i = 0; i < num_sparse; ++i) { c->set_output((*output_idx)++, c->Vector(c->UnknownDim())); } for (int i = 0; i < num_sparse; ++i) { c->set_output((*output_idx)++, c->Vector(rank)); } } Status AddRaggedOutputShapes(int num_ragged, bool ragged_rank_2, const DimensionHandle& num_examples, InferenceContext* c, int* output_idx) { DimensionHandle num_splits; TF_RETURN_IF_ERROR(c->Add(num_examples, 1, &num_splits)); for (int i = 0; i < num_ragged; ++i) { c->set_output((*output_idx)++, c->Vector(c->UnknownDim())); } for (int i = 0; i < num_ragged; ++i) { c->set_output((*output_idx)++, c->Vector(num_splits)); } if (ragged_rank_2) { for (int i = 0; i < num_ragged; ++i) { c->set_output((*output_idx)++, c->Vector(c->UnknownDim())); } } return absl::OkStatus(); } void AddDenseLengthsShapes(int num_dense, const ShapeHandle& shape, InferenceContext* c, int* output_idx) { for (int i = 0; i < num_dense; ++i) { c->set_output((*output_idx)++, shape); } } } REGISTER_OP("DecodeRaw") .Input("bytes: string") .Output("output: out_type") .Attr( "out_type: " "{half,float,double,int32,uint16,uint8,int16,int8,int64,complex64," "complex128,bool,bfloat16}") .Attr("little_endian: bool = true") .SetShapeFn([](InferenceContext* c) { ShapeHandle out; TF_RETURN_IF_ERROR(c->Concatenate( c->input(0), c->Vector(InferenceContext::kUnknownDim), &out)); c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("DecodePaddedRaw") .Input("input_bytes: string") .Input("fixed_length: int32") .Output("output: out_type") .Attr( "out_type: {half,float,double,int32,uint16,uint8,int16,int8,int64," "bfloat16}") .Attr("little_endian: bool = true") .SetShapeFn([](InferenceContext* c) { DimensionHandle fixed_length; TF_RETURN_IF_ERROR(c->MakeDimForScalarInput(1, &fixed_length)); DataType out_type; TF_RETURN_IF_ERROR(c->GetAttr("out_type", &out_type)); int32_t data_type_size = DataTypeSize(out_type); DimensionHandle width; TF_RETURN_IF_ERROR(c->Divide(fixed_length, data_type_size, true, &width)); ShapeHandle out; TF_RETURN_IF_ERROR(c->Concatenate(c->input(0), c->Vector(width), &out)); c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("DecodeCompressed") .Input("bytes: string") .Output("output: string") .Attr("compression_type: string = ''") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("ParseExample") .Input("serialized: string") .Input("names: string") .Input("sparse_keys: Nsparse * string") .Input("dense_keys: Ndense * string") .Input("dense_defaults: Tdense") .Output("sparse_indices: Nsparse * int64") .Output("sparse_values: sparse_types") .Output("sparse_shapes: Nsparse * int64") .Output("dense_values: Tdense") .Attr("Nsparse: int >= 0") .Attr("Ndense: int >= 0") .Attr("sparse_types: list({float,int64,string}) >= 0") .Attr("Tdense: list({float,int64,string}) >= 0") .Attr("dense_shapes: list(shape) >= 0") .SetShapeFn([](InferenceContext* c) { ParseExampleAttrs attrs; TF_RETURN_IF_ERROR(attrs.Init(c, 1)); ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &input)); ShapeHandle names; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &names)); int output_idx = 0; AddSparseOutputShapes(attrs.num_sparse, input, 1, c, &output_idx); TF_RETURN_IF_ERROR( AddDenseOutputShapes(attrs.dense_shapes, input, c, &output_idx)); return absl::OkStatus(); }); REGISTER_OP("ParseExampleV2") .Input("serialized: string") .Input("names: string") .Input("sparse_keys: string") .Input("dense_keys: string") .Input("ragged_keys: string") .Input("dense_defaults: Tdense") .Output("sparse_indices: num_sparse * int64") .Output("sparse_values: sparse_types") .Output("sparse_shapes: num_sparse * int64") .Output("dense_values: Tdense") .Output("ragged_values: ragged_value_types") .Output("ragged_row_splits: ragged_split_types") .Attr("Tdense: list({float,int64,string}) >= 0") .Attr("num_sparse: int >= 0") .Attr("sparse_types: list({float,int64,string}) >= 0") .Attr("ragged_value_types: list({float,int64,string}) >= 0") .Attr("ragged_split_types: list({int32,int64}) >= 0") .Attr("dense_shapes: list(shape) >= 0") .SetShapeFn([](InferenceContext* c) { ParseExampleAttrs attrs; TF_RETURN_IF_ERROR(attrs.Init(c, 2)); ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtMost(c->input(0), 1, &input)); ShapeHandle names; TF_RETURN_IF_ERROR(c->WithRankAtMost(c->input(1), 1, &names)); DimensionHandle num_examples = c->UnknownDim(); if (c->RankKnown(input) && c->Rank(input) == 1) { num_examples = c->Dim(input, 0); } int output_idx = 0; AddSparseOutputShapes(attrs.num_sparse, input, 1, c, &output_idx); TF_RETURN_IF_ERROR( AddDenseOutputShapes(attrs.dense_shapes, input, c, &output_idx)); TF_RETURN_IF_ERROR(AddRaggedOutputShapes(attrs.num_ragged, false, num_examples, c, &output_idx)); return absl::OkStatus(); }); REGISTER_OP("ParseSingleExample") .Input("serialized: string") .Input("dense_defaults: Tdense") .Output("sparse_indices: num_sparse * int64") .Output("sparse_values: sparse_types") .Output("sparse_shapes: num_sparse * int64") .Output("dense_values: Tdense") .Attr("num_sparse: int >= 0") .Attr("sparse_keys: list(string) >= 0") .Attr("dense_keys: list(string) >= 0") .Attr("sparse_types: list({float,int64,string}) >= 0") .Attr("Tdense: list({float,int64,string}) >= 0") .Attr("dense_shapes: list(shape) >= 0") .SetShapeFn([](InferenceContext* c) { ParseSingleExampleAttrs attrs; TF_RETURN_IF_ERROR(attrs.Init(c)); ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &input)); int output_idx = 0; AddSparseOutputShapes(attrs.sparse_keys.size(), input, 1, c, &output_idx); TF_RETURN_IF_ERROR( AddDenseOutputShapes(attrs.dense_shapes, input, c, &output_idx)); return absl::OkStatus(); }); REGISTER_OP("ParseSequenceExample") .Input("serialized: string") .Input("debug_name: string") .Input("context_dense_defaults: Tcontext_dense") .Output("context_sparse_indices: Ncontext_sparse * int64") .Output("context_sparse_values: context_sparse_types") .Output("context_sparse_shapes: Ncontext_sparse * int64") .Output("context_dense_values: Tcontext_dense") .Output("feature_list_sparse_indices: Nfeature_list_sparse * int64") .Output("feature_list_sparse_values: feature_list_sparse_types") .Output("feature_list_sparse_shapes: Nfeature_list_sparse * int64") .Output("feature_list_dense_values: feature_list_dense_types") .Output("feature_list_dense_lengths: Nfeature_list_dense * int64") .Attr("feature_list_dense_missing_assumed_empty: list(string) >= 0") .Attr("context_sparse_keys: list(string) >= 0") .Attr("context_dense_keys: list(string) >= 0") .Attr("feature_list_sparse_keys: list(string) >= 0") .Attr("feature_list_dense_keys: list(string) >= 0") .Attr("Ncontext_sparse: int >= 0 = 0") .Attr("Ncontext_dense: int >= 0 = 0") .Attr("Nfeature_list_sparse: int >= 0 = 0") .Attr("Nfeature_list_dense: int >= 0 = 0") .Attr("context_sparse_types: list({float,int64,string}) >= 0 = []") .Attr("Tcontext_dense: list({float,int64,string}) >= 0 = []") .Attr("feature_list_dense_types: list({float,int64,string}) >= 0 = []") .Attr("context_dense_shapes: list(shape) >= 0 = []") .Attr("feature_list_sparse_types: list({float,int64,string}) >= 0 = []") .Attr("feature_list_dense_shapes: list(shape) >= 0 = []") .SetShapeFn([](InferenceContext* c) { ParseSequenceExampleAttrs attrs; TF_RETURN_IF_ERROR(attrs.Init(c)); ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &input)); ShapeHandle names; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &names)); DimensionHandle num_examples = c->Dim(input, 0); ShapeHandle feature_list_dense_prefix = c->Matrix(num_examples, c->UnknownDim()); int output_idx = 0; AddSparseOutputShapes(attrs.num_context_sparse, input, 1, c, &output_idx); TF_RETURN_IF_ERROR(AddDenseOutputShapes(attrs.context_dense_shapes, input, c, &output_idx)); AddSparseOutputShapes(attrs.num_feature_list_sparse, input, 2, c, &output_idx); TF_RETURN_IF_ERROR(AddDenseOutputShapes(attrs.feature_list_dense_shapes, feature_list_dense_prefix, c, &output_idx)); AddDenseLengthsShapes(attrs.num_feature_list_dense, input, c, &output_idx); return absl::OkStatus(); }); REGISTER_OP("ParseSequenceExampleV2") .Input("serialized: string") .Input("debug_name: string") .Input("context_sparse_keys: string") .Input("context_dense_keys: string") .Input("context_ragged_keys: string") .Input("feature_list_sparse_keys: string") .Input("feature_list_dense_keys: string") .Input("feature_list_ragged_keys: string") .Input("feature_list_dense_missing_assumed_empty: bool") .Input("context_dense_defaults: Tcontext_dense") .Output("context_sparse_indices: Ncontext_sparse * int64") .Output("context_sparse_values: context_sparse_types") .Output("context_sparse_shapes: Ncontext_sparse * int64") .Output("context_dense_values: Tcontext_dense") .Output("context_ragged_values: context_ragged_value_types") .Output("context_ragged_row_splits: context_ragged_split_types") .Output("feature_list_sparse_indices: Nfeature_list_sparse * int64") .Output("feature_list_sparse_values: feature_list_sparse_types") .Output("feature_list_sparse_shapes: Nfeature_list_sparse * int64") .Output("feature_list_dense_values: feature_list_dense_types") .Output("feature_list_dense_lengths: Nfeature_list_dense * int64") .Output("feature_list_ragged_values: feature_list_ragged_value_types") .Output("feature_list_ragged_outer_splits: feature_list_ragged_split_types") .Output("feature_list_ragged_inner_splits: feature_list_ragged_split_types") .Attr("Ncontext_sparse: int >= 0 = 0") .Attr("Tcontext_dense: list({float,int64,string}) >= 0 = []") .Attr("context_sparse_types: list({float,int64,string}) >= 0 = []") .Attr("context_ragged_value_types: list({float,int64,string}) >= 0 = []") .Attr("context_ragged_split_types: list({int32,int64}) >= 0 = []") .Attr("context_dense_shapes: list(shape) >= 0 = []") .Attr("Nfeature_list_sparse: int >= 0 = 0") .Attr("Nfeature_list_dense: int >= 0 = 0") .Attr("feature_list_dense_types: list({float,int64,string}) >= 0 = []") .Attr("feature_list_sparse_types: list({float,int64,string}) >= 0 = []") .Attr( "feature_list_ragged_value_types: list({float,int64,string}) >= 0 = []") .Attr("feature_list_ragged_split_types: list({int32,int64}) >= 0 = []") .Attr("feature_list_dense_shapes: list(shape) >= 0 = []") .SetShapeFn([](InferenceContext* c) { ParseSequenceExampleAttrs attrs; TF_RETURN_IF_ERROR(attrs.Init(c, 2)); ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtMost(c->input(0), 1, &input)); ShapeHandle names; TF_RETURN_IF_ERROR(c->WithRankAtMost(c->input(1), 1, &names)); ShapeHandle feature_list_dense_prefix; TF_RETURN_IF_ERROR(c->Concatenate(input, c->UnknownShapeOfRank(1), &feature_list_dense_prefix)); DimensionHandle num_examples = c->UnknownDim(); if (c->RankKnown(input) && c->Rank(input) == 1) { num_examples = c->Dim(input, 0); } int output_idx = 0; AddSparseOutputShapes(attrs.num_context_sparse, input, 1, c, &output_idx); TF_RETURN_IF_ERROR(AddDenseOutputShapes(attrs.context_dense_shapes, input, c, &output_idx)); TF_RETURN_IF_ERROR(AddRaggedOutputShapes(attrs.num_context_ragged, false, num_examples, c, &output_idx)); AddSparseOutputShapes(attrs.num_feature_list_sparse, input, 2, c, &output_idx); TF_RETURN_IF_ERROR(AddDenseOutputShapes(attrs.feature_list_dense_shapes, feature_list_dense_prefix, c, &output_idx)); AddDenseLengthsShapes(attrs.num_feature_list_dense, input, c, &output_idx); TF_RETURN_IF_ERROR(AddRaggedOutputShapes( attrs.num_feature_list_ragged, true, num_examples, c, &output_idx)); return absl::OkStatus(); }); REGISTER_OP("ParseSingleSequenceExample") .Input("serialized: string") .Input("feature_list_dense_missing_assumed_empty: string") .Input("context_sparse_keys: Ncontext_sparse * string") .Input("context_dense_keys: Ncontext_dense * string") .Input("feature_list_sparse_keys: Nfeature_list_sparse * string") .Input("feature_list_dense_keys: Nfeature_list_dense * string") .Input("context_dense_defaults: Tcontext_dense") .Input("debug_name: string") .Output("context_sparse_indices: Ncontext_sparse * int64") .Output("context_sparse_values: context_sparse_types") .Output("context_sparse_shapes: Ncontext_sparse * int64") .Output("context_dense_values: Tcontext_dense") .Output("feature_list_sparse_indices: Nfeature_list_sparse * int64") .Output("feature_list_sparse_values: feature_list_sparse_types") .Output("feature_list_sparse_shapes: Nfeature_list_sparse * int64") .Output("feature_list_dense_values: feature_list_dense_types") .Attr("Ncontext_sparse: int >= 0 = 0") .Attr("Ncontext_dense: int >= 0 = 0") .Attr("Nfeature_list_sparse: int >= 0 = 0") .Attr("Nfeature_list_dense: int >= 0 = 0") .Attr("context_sparse_types: list({float,int64,string}) >= 0 = []") .Attr("Tcontext_dense: list({float,int64,string}) >= 0 = []") .Attr("feature_list_dense_types: list({float,int64,string}) >= 0 = []") .Attr("context_dense_shapes: list(shape) >= 0 = []") .Attr("feature_list_sparse_types: list({float,int64,string}) >= 0 = []") .Attr("feature_list_dense_shapes: list(shape) >= 0 = []") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; ParseSingleSequenceExampleAttrs attrs; TF_RETURN_IF_ERROR(attrs.Init(c)); ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &input)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused)); int output_idx = 0; AddSparseOutputShapes(attrs.num_context_sparse, input, 1, c, &output_idx); TF_RETURN_IF_ERROR(AddDenseOutputShapes(attrs.context_dense_shapes, input, c, &output_idx)); AddSparseOutputShapes(attrs.num_feature_list_sparse, input, 2, c, &output_idx); TF_RETURN_IF_ERROR(AddDenseOutputShapes(attrs.feature_list_dense_shapes, c->UnknownShapeOfRank(1), c, &output_idx)); return absl::OkStatus(); }); REGISTER_OP("ParseTensor") .Input("serialized: string") .Output("output: out_type") .Attr("out_type: type") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("SerializeTensor") .Input("tensor: T") .Output("serialized: string") .Attr("T: type") .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("DecodeJSONExample") .Input("json_examples: string") .Output("binary_examples: string") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("DecodeCSV") .Input("records: string") .Input("record_defaults: OUT_TYPE") .Output("output: OUT_TYPE") .Attr("OUT_TYPE: list({float,double,int32,int64,string})") .Attr("field_delim: string = ','") .Attr("use_quote_delim: bool = true") .Attr("na_value: string = ''") .Attr("select_cols: list(int) = []") .SetShapeFn([](InferenceContext* c) { for (int i = 1; i < c->num_inputs(); ++i) { ShapeHandle v; TF_RETURN_IF_ERROR(c->WithRankAtMost(c->input(i), 1, &v)); if (c->Rank(c->input(i)) == 1 && c->Value(c->Dim(v, 0)) > 1) { return errors::InvalidArgument( "Shape of a default must be a length-0 or length-1 vector, or a " "scalar."); } } for (int i = 0; i < c->num_outputs(); ++i) c->set_output(i, c->input(0)); return absl::OkStatus(); }); REGISTER_OP("StringToNumber") .Input("string_tensor: string") .Output("output: out_type") .Attr("out_type: {float, double, int32, int64, uint32, uint64} = DT_FLOAT") .SetShapeFn(shape_inference::UnchangedShape); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(ParsingOpsTest, DecodeRaw_ShapeFn) { ShapeInferenceTestOp op("DecodeRaw"); INFER_OK(op, "?", "?"); INFER_OK(op, "[?,?,?]", "[d0_0,d0_1,d0_2,?]"); } TEST(ParsingOpsTest, DecodeCSV_ShapeFn) { ShapeInferenceTestOp op("DecodeCSV"); auto set_n_outputs = [&op](int n) { std::vector<NodeDefBuilder::NodeOut> src_list; std::vector<DataType> out_types; for (int i = 0; i < n; ++i) { src_list.emplace_back("b", 0, DT_FLOAT); out_types.push_back(DT_FLOAT); } TF_ASSERT_OK(NodeDefBuilder("test", "DecodeCSV") .Input("a", 0, DT_STRING) .Input(src_list) .Attr("OUT_TYPE", out_types) .Finalize(&op.node_def)); }; set_n_outputs(2); INFER_OK(op, "?;?;?", "in0;in0"); INFER_OK(op, "[1,2,?,4];?;?", "in0;in0"); INFER_OK(op, "[1,2,?,4];[?];[?]", "in0;in0"); INFER_OK(op, "?;?;[]", "in0;in0"); INFER_ERROR("must be at most rank 1 but is rank 2", op, "?;?;[1,2]"); INFER_ERROR("must be at most rank 1 but is rank 2", op, "?;[3,4];?"); INFER_ERROR("Shape of a default must be", op, "?;?;[2]"); INFER_ERROR("Shape of a default must be", op, "?;[2];?"); } static std::vector<PartialTensorShape> MakeDenseShapes(int size, bool add_extra_shape, int unknown_outer_dims) { std::vector<PartialTensorShape> shapes(size); for (int i = 0; i < size; ++i) { if (i == 0) { shapes[i].Clear(); for (int d = 0; d < unknown_outer_dims; ++d) { shapes[i].AddDim(-1); } } else { shapes[i] = shapes[i - 1]; } shapes[i].AddDim(i + 1); } if (add_extra_shape) shapes.push_back(PartialTensorShape({})); return shapes; } TEST(ParsingOpsTest, ParseExample_ShapeFn) { ShapeInferenceTestOp op("ParseExample"); auto set_outputs = [&op](int num_sparse, int num_dense, bool add_extra_shape = false, int unknown_outer_dims = 0) { using NodeOutList = std::vector<NodeDefBuilder::NodeOut>; using DataTypeList = std::vector<DataType>; NodeDefBuilder::NodeOut string_in{"a", 0, DT_STRING}; TF_ASSERT_OK( NodeDefBuilder("test", "ParseExample") .Input("serialized", 0, DT_STRING) .Input("names", 0, DT_STRING) .Input(NodeOutList(num_sparse, string_in)) .Input(NodeOutList(num_dense, string_in)) .Input(NodeOutList(num_dense, string_in)) .Attr("sparse_types", DataTypeList(num_sparse, DT_FLOAT)) .Attr("dense_shapes", MakeDenseShapes(num_dense, add_extra_shape, unknown_outer_dims)) .Finalize(&op.node_def)); }; set_outputs(0 , 0 ); INFER_OK(op, "?;?", ""); INFER_OK(op, "[10];[20]", ""); INFER_ERROR("must be rank 1", op, "[1,2];?"); INFER_ERROR("must be rank 1", op, "?;[2,3]"); set_outputs(2 , 3 ); INFER_OK(op, "?;?;?;?;?;?;?;?;?;?", ("[?,2];[?,2];[?];[?];[2];[2];" "[?,1];[?,1,2];[?,1,2,3]")); INFER_OK(op, "[10];?;?;?;?;?;?;?;?;?", ("[?,2];[?,2];[?];[?];[2];[2];" "[d0_0,1];[d0_0,1,2];[d0_0,1,2,3]")); set_outputs(2, 3, true ); INFER_ERROR("len(dense_keys) != len(dense_shapes)", op, "?;?;?;?;?;?;?;?;?;?"); set_outputs(2, 3, false , 1 ); INFER_OK(op, "?;?;?;?;?;?;?;?;?;?", ("[?,2];[?,2];[?];[?];[2];[2];" "[?,?,1];[?,?,1,2];[?,?,1,2,3]")); INFER_OK(op, "[?];?;?;?;?;?;?;?;?;?", ("[?,2];[?,2];[?];[?];[2];[2];" "[d0_0,?,1];[d0_0,?,1,2];[d0_0,?,1,2,3]")); INFER_OK(op, "[10];?;?;?;?;?;?;?;?;?", ("[?,2];[?,2];[?];[?];[2];[2];" "[d0_0,?,1];[d0_0,?,1,2];[d0_0,?,1,2,3]")); set_outputs(2, 3, true , 1 ); INFER_ERROR("len(dense_keys) != len(dense_shapes)", op, "?;?;?;?;?;?;?;?;?;?"); set_outputs(2, 3, false , 2 ); INFER_ERROR("shapes[0] has unknown rank or unknown inner dimensions", op, "?;?;?;?;?;?;?;?;?;?"); } TEST(ParsingOpsTest, ParseSequenceExample_ShapeFn) { ShapeInferenceTestOp op("ParseSequenceExample"); auto set_outputs = [&op](int num_context_sparse, int num_context_dense, int num_feature_list_sparse, int num_feature_list_dense, bool add_extra_shape = false) { using NodeOutList = std::vector<NodeDefBuilder::NodeOut>; using DataTypeList = std::vector<DataType>; string string_in("test"); NodeDefBuilder::NodeOut node_in{"a", 0, DT_STRING}; TF_ASSERT_OK( NodeDefBuilder("test", "ParseSequenceExample") .Input("serialized", 0, DT_STRING) .Input("debug_name", 0, DT_STRING) .Input(NodeOutList(num_context_dense, node_in)) .Attr("Ncontext_sparse", num_context_sparse) .Attr("Ncontext_dense", num_context_dense) .Attr("Nfeature_list_sparse", num_feature_list_sparse) .Attr("Nfeature_list_dense", num_feature_list_dense) .Attr("feature_list_dense_missing_assumed_empty", std::vector<string>(num_feature_list_dense, string_in)) .Attr("context_sparse_keys", std::vector<string>(num_context_sparse, string_in)) .Attr("context_dense_keys", std::vector<string>(num_context_dense, string_in)) .Attr("feature_list_sparse_keys", std::vector<string>(num_feature_list_sparse, string_in)) .Attr("feature_list_dense_keys", std::vector<string>(num_feature_list_dense, string_in)) .Attr("context_sparse_types", DataTypeList(num_context_sparse, DT_FLOAT)) .Attr("context_dense_types", DataTypeList(num_context_dense, DT_FLOAT)) .Attr("context_dense_shapes", MakeDenseShapes(num_context_dense, add_extra_shape, 0)) .Attr("feature_list_sparse_types", DataTypeList(num_feature_list_sparse, DT_FLOAT)) .Attr("feature_list_dense_types", DataTypeList(num_feature_list_dense, DT_FLOAT)) .Attr("feature_list_dense_shapes", MakeDenseShapes(num_feature_list_dense, add_extra_shape, 0)) .Finalize(&op.node_def)); }; set_outputs(0, 0, 0, 0); INFER_OK(op, "[?];[?]", ""); INFER_OK(op, "[8];[8]", ""); INFER_ERROR("must be rank 1", op, "[];[?]"); INFER_ERROR("must be rank 1", op, "[?];[]"); set_outputs(2 , 3 , 0, 0); INFER_OK(op, "[?];[?];?;?;?", ("[?,2];[?,2];[?];[?];[2];[2];" "[d0_0,1];[d0_0,1,2];[d0_0,1,2,3]")); set_outputs(0, 0, 2 , 3 ); INFER_OK(op, "[?];[?]", ("[?,3];[?,3];[?];[?];[3];[3];" "[d0_0,?,1];[d0_0,?,1,2];[d0_0,?,1,2,3];" "in0;in0;in0")); set_outputs(2, 3, 2, 3); INFER_OK(op, "[7];[7];?;?;?", ("[?,2];[?,2];[?];[?];[2];[2];" "[d0_0,1];[d0_0,1,2];[d0_0,1,2,3];" "[?,3];[?,3];[?];[?];[3];[3];" "[d0_0,?,1];[d0_0,?,1,2];[d0_0,?,1,2,3];" "in0;in0;in0")); set_outputs(1, 1, 1, 1, true ); INFER_ERROR( "num_context_dense (1) must match the size of " "context_dense_types (1) and context_dense_shapes (2)", op, "[?];[?];?"); } TEST(ParsingOpsTest, ParseSingleSequenceExample_ShapeFn) { ShapeInferenceTestOp op("ParseSingleSequenceExample"); auto set_outputs = [&op](int num_context_sparse, int num_context_dense, int num_feature_list_sparse, int num_feature_list_dense, bool add_extra_shape = false) { using NodeOutList = std::vector<NodeDefBuilder::NodeOut>; using DataTypeList = std::vector<DataType>; NodeDefBuilder::NodeOut string_in{"a", 0, DT_STRING}; TF_ASSERT_OK( NodeDefBuilder("test", "ParseSingleSequenceExample") .Input("serialized", 0, DT_STRING) .Input("feature_list_dense_missing_assumed_empty", 0, DT_STRING) .Input(NodeOutList(num_context_sparse, string_in)) .Input(NodeOutList(num_context_dense, string_in)) .Input(NodeOutList(num_feature_list_sparse, string_in)) .Input(NodeOutList(num_feature_list_dense, string_in)) .Input(NodeOutList(num_context_dense, string_in)) .Input("debug_name", 0, DT_STRING) .Attr("context_sparse_types", DataTypeList(num_context_sparse, DT_FLOAT)) .Attr("context_dense_types", DataTypeList(num_context_dense, DT_FLOAT)) .Attr("context_dense_shapes", MakeDenseShapes(num_context_dense, add_extra_shape, 0)) .Attr("feature_list_sparse_types", DataTypeList(num_feature_list_sparse, DT_FLOAT)) .Attr("feature_list_dense_types", DataTypeList(num_feature_list_dense, DT_FLOAT)) .Attr("feature_list_dense_shapes", MakeDenseShapes(num_feature_list_dense, add_extra_shape, 0)) .Finalize(&op.node_def)); }; set_outputs(0, 0, 0, 0); INFER_OK(op, "?;?;?", ""); INFER_OK(op, "[];[20];?", ""); INFER_ERROR("must be rank 0", op, "[1];?;?"); INFER_ERROR("must be rank 1", op, "?;[2,3];?"); set_outputs(2 , 3 , 0, 0); INFER_OK(op, "?;?;?;?;?;?;?;?;?;?;?", ("[?,1];[?,1];[?];[?];[1];[1];" "[1];[1,2];[1,2,3]")); set_outputs(0, 0, 2 , 3 ); INFER_OK(op, "?;?;?;?;?;?;?;?", ("[?,2];[?,2];[?];[?];[2];[2];" "[?,1];[?,1,2];[?,1,2,3]")); set_outputs(2, 3, 2, 3); INFER_OK(op, "?;?;?;?;?;?;?;?;?;?;?;?;?;?;?;?", ("[?,1];[?,1];[?];[?];[1];[1];" "[1];[1,2];[1,2,3];" "[?,2];[?,2];[?];[?];[2];[2];" "[?,1];[?,1,2];[?,1,2,3]")); set_outputs(1, 1, 1, 1, true ); INFER_ERROR("len(context_dense_keys) != len(context_dense_shapes)", op, "?;?;?;?;?;?;?;?"); } TEST(ParsingOpsTest, ParseExampleV2_ShapeFn) { ShapeInferenceTestOp op("ParseExampleV2"); auto set_outputs = [&op](int num_sparse, int num_dense, int num_ragged, bool add_extra_shape = false, int unknown_outer_dims = 0) { using NodeOutList = std::vector<NodeDefBuilder::NodeOut>; using DataTypeList = std::vector<DataType>; NodeDefBuilder::NodeOut string_in{"a", 0, DT_STRING}; TF_ASSERT_OK( NodeDefBuilder("test", "ParseExampleV2") .Input("serialized", 0, DT_STRING) .Input("names", 0, DT_STRING) .Input("sparse_keys", 0, DT_STRING) .Input("dense_keys", 0, DT_STRING) .Input("ragged_keys", 0, DT_STRING) .Input(NodeOutList(num_dense, string_in)) .Attr("num_sparse", num_sparse) .Attr("sparse_types", DataTypeList(num_sparse, DT_FLOAT)) .Attr("ragged_value_types", DataTypeList(num_ragged, DT_FLOAT)) .Attr("ragged_split_types", DataTypeList(num_ragged, DT_INT32)) .Attr("dense_shapes", MakeDenseShapes(num_dense, add_extra_shape, unknown_outer_dims)) .Finalize(&op.node_def)); }; set_outputs(0 , 0 , 0 ); INFER_OK(op, "?;?;[0];[0];[0]", ""); INFER_OK(op, "[10];[10];[0];[0];[0]", ""); INFER_OK(op, "[];[];[0];[0];[0]", ""); INFER_ERROR("must be at most rank 1", op, "[1,2];?;?;?;?"); INFER_ERROR("must be at most rank 1", op, "?;[2,3];?;?;?"); set_outputs(2 , 3 , 4 ); INFER_OK(op, "[?];?;?;?;?;?;?;?", ("[?,2];[?,2];" "[?];[?];" "[2];[2];" "[d0_0,1];[d0_0,1,2];[d0_0,1,2,3];" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); INFER_OK(op, "[10];?;?;?;?;?;?;?", ("[?,2];[?,2];" "[?];[?];" "[2];[2];" "[d0_0,1];[d0_0,1,2];[d0_0,1,2,3];" "[?];[?];[?];[?];" "[11];[11];[11];[11]")); INFER_OK(op, "[];?;?;?;?;?;?;?", ("[?,1];[?,1];" "[?];[?];" "[1];[1];" "[1];[1,2];[1,2,3];" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); INFER_OK(op, "?;?;?;?;?;?;?;?", ("[?,?];[?,?];" "[?];[?];" "[?];[?];" "?;?;?;" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); set_outputs(2, 3, 0, true ); INFER_ERROR("len(dense_keys) != len(dense_shapes)", op, "?;?;?;?;?;?;?;?"); set_outputs(2, 3, 0, true , 1 ); INFER_ERROR("len(dense_keys) != len(dense_shapes)", op, "?;?;?;?;?;?;?;?"); set_outputs(2, 3, 0, false , 1 ); INFER_OK(op, "[?];?;?;?;?;?;?;?", ("[?,2];[?,2];[?];[?];[2];[2];" "[d0_0,?,1];[d0_0,?,1,2];[d0_0,?,1,2,3]")); INFER_OK(op, "[10];?;?;?;?;?;?;?", ("[?,2];[?,2];[?];[?];[2];[2];" "[d0_0,?,1];[d0_0,?,1,2];[d0_0,?,1,2,3]")); set_outputs(2, 3, 0, false , 2 ); INFER_ERROR("shapes[0] has unknown rank or unknown inner dimensions", op, "?;?;?;?;?;?;?;?"); } TEST(ParsingOpsTest, ParseSequenceExampleV2_ShapeFn) { ShapeInferenceTestOp op("ParseSequenceExampleV2"); auto set_outputs = [&op](int num_context_sparse, int num_context_dense, int num_context_ragged, int num_feature_list_sparse, int num_feature_list_dense, int num_feature_list_ragged, bool add_extra_shape = false) { using NodeOutList = std::vector<NodeDefBuilder::NodeOut>; using DataTypeList = std::vector<DataType>; string string_in("test"); NodeDefBuilder::NodeOut node_in{"a", 0, DT_STRING}; TF_ASSERT_OK( NodeDefBuilder("test", "ParseSequenceExampleV2") .Input("serialized", 0, DT_STRING) .Input("debug_name", 0, DT_STRING) .Input("context_sparse_keys", 0, DT_STRING) .Input("context_dense_keys", 0, DT_STRING) .Input("context_ragged_keys", 0, DT_STRING) .Input("feature_list_sparse_keys", 0, DT_STRING) .Input("feature_list_dense_keys", 0, DT_STRING) .Input("feature_list_ragged_keys", 0, DT_STRING) .Input("feature_list_dense_missing_assumed_empty", 0, DT_BOOL) .Input(NodeOutList(num_context_dense, node_in)) .Attr("Ncontext_sparse", num_context_sparse) .Attr("Nfeature_list_sparse", num_feature_list_sparse) .Attr("Nfeature_list_dense", num_feature_list_dense) .Attr("context_sparse_types", DataTypeList(num_context_sparse, DT_FLOAT)) .Attr("context_dense_types", DataTypeList(num_context_dense, DT_FLOAT)) .Attr("context_dense_shapes", MakeDenseShapes(num_context_dense, add_extra_shape, 0)) .Attr("feature_list_sparse_types", DataTypeList(num_feature_list_sparse, DT_FLOAT)) .Attr("feature_list_dense_types", DataTypeList(num_feature_list_dense, DT_FLOAT)) .Attr("feature_list_dense_shapes", MakeDenseShapes(num_feature_list_dense, add_extra_shape, 0)) .Attr("context_ragged_value_types", DataTypeList(num_context_ragged, DT_FLOAT)) .Attr("context_ragged_split_types", DataTypeList(num_context_ragged, DT_INT32)) .Attr("feature_list_ragged_value_types", DataTypeList(num_feature_list_ragged, DT_FLOAT)) .Attr("feature_list_ragged_split_types", DataTypeList(num_feature_list_ragged, DT_INT32)) .Finalize(&op.node_def)); }; set_outputs(0, 0, 0, 0, 0, 0); INFER_OK(op, "?;[?];?;?;?;?;?;?;?", ""); INFER_OK(op, "[?];[?];?;?;?;?;?;?;?", ""); INFER_OK(op, "[8];[8];?;?;?;?;?;?;?", ""); INFER_OK(op, "[];[];?;?;?;?;?;?;?", ""); INFER_ERROR("must be at most rank 1", op, "[1,2];?;?;?;?;?;?;?;?"); INFER_ERROR("must be at most rank 1", op, "?;[2,3];?;?;?;?;?;?;?"); set_outputs(2 , 3 , 4 , 0, 0, 0); INFER_OK(op, "[?];[?];?;?;?;?;?;?;?;?;?;?", ("[?,2];[?,2];" "[?];[?];" "[2];[2];" "[d0_0,1];[d0_0,1,2];[d0_0,1,2,3];" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); INFER_OK(op, "[5];[?];?;?;?;?;?;?;?;?;?;?", ("[?,2];[?,2];" "[?];[?];" "[2];[2];" "[d0_0,1];[d0_0,1,2];[d0_0,1,2,3];" "[?];[?];[?];[?];" "[6];[6];[6];[6]")); INFER_OK(op, "[];[?];?;?;?;?;?;?;?;?;?;?", ("[?,1];[?,1];" "[?];[?];" "[1];[1];" "[1];[1,2];[1,2,3];" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); INFER_OK(op, "?;[?];?;?;?;?;?;?;?;?;?;?", ("[?,?];[?,?];" "[?];[?];" "[?];[?];" "?;?;?;" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); set_outputs(0, 0, 0, 2 , 3 , 4 ); INFER_OK(op, "[?];[?];?;?;?;?;?;?;?", ("[?,3];[?,3];" "[?];[?];" "[3];[3];" "[d0_0,?,1];[d0_0,?,1,2];" "[d0_0,?,1,2,3];" "in0;in0;in0;" "[?];[?];[?];[?];" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); INFER_OK(op, "[5];[?];?;?;?;?;?;?;?", ("[?,3];[?,3];" "[?];[?];" "[3];[3];" "[d0_0,?,1];[d0_0,?,1,2];" "[d0_0,?,1,2,3];" "in0;in0;in0;" "[?];[?];[?];[?];" "[6];[6];[6];[6];" "[?];[?];[?];[?]")); INFER_OK(op, "[];[?];?;?;?;?;?;?;?", ("[?,2];[?,2];" "[?];[?];" "[2];[2];" "[?,1];[?,1,2];[?,1,2,3];" "in0;in0;in0;" "[?];[?];[?];[?];" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); INFER_OK(op, "?;[?];?;?;?;?;?;?;?", ("[?,?];[?,?];" "[?];[?];" "[?];[?];" "?;?;?;" "in0;in0;in0;" "[?];[?];[?];[?];" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); set_outputs(2 , 3 , 4 , 2 , 3 , 4 ); INFER_OK(op, "[?];[?];?;?;?;?;?;?;?;?;?;?", ("[?,2];[?,2];" "[?];[?];" "[2];[2];" "[d0_0,1];[d0_0,1,2];[d0_0,1,2,3];" "[?];[?];[?];[?];" "[?];[?];[?];[?];" "[?,3];[?,3];" "[?];[?];" "[3];[3];" "[d0_0,?,1];[d0_0,?,1,2];" "[d0_0,?,1,2,3];" "in0;in0;in0;" "[?];[?];[?];[?];" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); INFER_OK(op, "[5];[?];?;?;?;?;?;?;?;?;?;?", ("[?,2];[?,2];" "[?];[?];" "[2];[2];" "[d0_0,1];[d0_0,1,2];[d0_0,1,2,3];" "[?];[?];[?];[?];" "[6];[6];[6];[6];" "[?,3];[?,3];" "[?];[?];" "[3];[3];" "[d0_0,?,1];[d0_0,?,1,2];" "[d0_0,?,1,2,3];" "in0;in0;in0;" "[?];[?];[?];[?];" "[6];[6];[6];[6];" "[?];[?];[?];[?]")); INFER_OK(op, "[];[?];?;?;?;?;?;?;?;?;?;?", ("[?,1];[?,1];" "[?];[?];" "[1];[1];" "[1];[1,2];[1,2,3];" "[?];[?];[?];[?];" "[?];[?];[?];[?];" "[?,2];[?,2];" "[?];[?];" "[2];[2];" "[?,1];[?,1,2];[?,1,2,3];" "in0;in0;in0;" "[?];[?];[?];[?];" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); INFER_OK(op, "?;[?];?;?;?;?;?;?;?;?;?;?", ("[?,?];[?,?];" "[?];[?];" "[?];[?];" "?;?;?;" "[?];[?];[?];[?];" "[?];[?];[?];[?];" "[?,?];[?,?];" "[?];[?];" "[?];[?];" "?;?;?;" "in0;in0;in0;" "[?];[?];[?];[?];" "[?];[?];[?];[?];" "[?];[?];[?];[?]")); set_outputs(1, 1, 1, 1, 1, 1, true ); INFER_ERROR( "num_context_dense (1) must match the size of " "context_dense_types (1) and context_dense_shapes (2)", op, "[?];[?];?;?;?;?;?;?;?;?"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/parsing_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/parsing_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
34bddcca-fda3-446f-8e5e-0bd32648a7c4
cpp
tensorflow/tensorflow
math_grad
tensorflow/c/experimental/gradients/math_grad.cc
tensorflow/c/experimental/gradients/math_grad_test.cc
#include "tensorflow/c/experimental/gradients/math_grad.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/gradients.h" #include "tensorflow/c/experimental/ops/array_ops.h" #include "tensorflow/c/experimental/ops/math_ops.h" #include "tensorflow/c/experimental/ops/nn_ops.h" using std::vector; using tensorflow::ops::AddV2; using tensorflow::ops::Div; using tensorflow::ops::DivNoNan; using tensorflow::ops::MatMul; using tensorflow::ops::Mul; using tensorflow::ops::Neg; using tensorflow::ops::OnesLike; using tensorflow::ops::SqrtGrad; namespace tensorflow { namespace gradients { namespace { static Status SafeConj(AbstractContext* ctx, AbstractTensorHandle* const input, AbstractTensorHandle** output, const char* name) { auto dtype = input->DataType(); if (DataTypeIsFloating(BaseType(dtype)) || DataTypeIsInteger(BaseType(dtype))) { return tensorflow::ops::Identity(ctx, input, output, name); } else if (!DataTypeIsComplex(BaseType(dtype)) && BaseType(dtype) != DT_VARIANT) { return errors::InvalidArgument( "Expected numeric or variant tensor, got dtype ", dtype); } return tensorflow::ops::Conj(ctx, input, output, name); } class AddGradientFunction : public GradientFunction { public: Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { DCHECK(grad_outputs[0]); grad_inputs[0] = grad_outputs[0]; grad_inputs[1] = grad_outputs[0]; grad_inputs[0]->Ref(); grad_inputs[1]->Ref(); return absl::OkStatus(); } ~AddGradientFunction() override {} }; class ExpGradientFunction : public GradientFunction { public: explicit ExpGradientFunction(AbstractTensorHandle* exp) : exp_(exp) { exp->Ref(); } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* conj_output; std::string name = "Conj_Exp_Grad"; TF_RETURN_IF_ERROR(SafeConj(ctx, exp_.get(), &conj_output, name.c_str())); AbstractTensorHandlePtr conj_output_releaser(conj_output); name = "Mul_Exp_Grad"; TF_RETURN_IF_ERROR( Mul(ctx, conj_output, grad_outputs[0], &grad_inputs[0], name.c_str())); return absl::OkStatus(); } ~ExpGradientFunction() override {} private: AbstractTensorHandlePtr exp_; }; class SqrtGradientFunction : public GradientFunction { public: explicit SqrtGradientFunction(AbstractTensorHandle* sqrt) : sqrt_(sqrt) { sqrt->Ref(); } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { std::string name = "Sqrt_Grad"; TF_RETURN_IF_ERROR(SqrtGrad(ctx, sqrt_.get(), grad_outputs[0], &grad_inputs[0], name.c_str())); return absl::OkStatus(); } ~SqrtGradientFunction() override {} private: AbstractTensorHandlePtr sqrt_; }; class MatMulGradientFunction : public GradientFunction { public: explicit MatMulGradientFunction(vector<AbstractTensorHandle*> f_inputs, AttrBuilder f_attrs) : forward_inputs_(f_inputs), forward_attrs_(f_attrs) { for (auto input : forward_inputs_) { if (input) { input->Ref(); } } } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* upstream_grad = grad_outputs[0]; bool t_a; TF_RETURN_IF_ERROR(forward_attrs_.Get("transpose_a", &t_a)); bool t_b; TF_RETURN_IF_ERROR(forward_attrs_.Get("transpose_b", &t_b)); AbstractTensorHandle* conj_output; std::string name = "Conj_A_MatMul_Grad"; TF_RETURN_IF_ERROR( SafeConj(ctx, forward_inputs_[0], &conj_output, name.c_str())); AbstractTensorHandlePtr A(conj_output); name = "Conj_B_MatMul_Grad"; TF_RETURN_IF_ERROR( SafeConj(ctx, forward_inputs_[1], &conj_output, name.c_str())); AbstractTensorHandlePtr B(conj_output); AbstractTensorHandle* matmul_A_output; AbstractTensorHandle* matmul_B_output; std::string name_grad_A = "MatMul_Grad_A"; std::string name_grad_B = "MatMul_Grad_B"; if (!t_a && !t_b) { TF_RETURN_IF_ERROR(MatMul(ctx, upstream_grad, B.get(), &matmul_A_output, false, true, name_grad_A.c_str())); TF_RETURN_IF_ERROR(MatMul(ctx, A.get(), upstream_grad, &matmul_B_output, true, false, name_grad_B.c_str())); } else if (!t_a && t_b) { TF_RETURN_IF_ERROR(MatMul(ctx, upstream_grad, B.get(), &matmul_A_output, false, false, name_grad_A.c_str())); TF_RETURN_IF_ERROR(MatMul(ctx, upstream_grad, A.get(), &matmul_B_output, true, false, name_grad_B.c_str())); } else if (t_a && !t_b) { TF_RETURN_IF_ERROR(MatMul(ctx, B.get(), upstream_grad, &matmul_A_output, false, true, name_grad_A.c_str())); TF_RETURN_IF_ERROR(MatMul(ctx, A.get(), upstream_grad, &matmul_B_output, false, false, name_grad_B.c_str())); } else { TF_RETURN_IF_ERROR(MatMul(ctx, B.get(), upstream_grad, &matmul_A_output, true, true, name_grad_A.c_str())); TF_RETURN_IF_ERROR(MatMul(ctx, upstream_grad, A.get(), &matmul_B_output, true, true, name_grad_B.c_str())); } grad_inputs[0] = matmul_A_output; grad_inputs[1] = matmul_B_output; return absl::OkStatus(); } ~MatMulGradientFunction() override { for (auto input : forward_inputs_) { if (input) { input->Unref(); } } } private: vector<AbstractTensorHandle*> forward_inputs_; AttrBuilder forward_attrs_; }; class NegGradientFunction : public GradientFunction { public: Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { std::string name = "Neg_Grad"; TF_RETURN_IF_ERROR( ops::Neg(ctx, grad_outputs[0], &grad_inputs[0], name.c_str())); return absl::OkStatus(); } ~NegGradientFunction() override {} }; class SubGradientFunction : public GradientFunction { public: Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { DCHECK(grad_outputs[0]); grad_inputs[0] = grad_outputs[0]; grad_inputs[0]->Ref(); std::string name = "Neg_Sub_Grad_B"; TF_RETURN_IF_ERROR( ops::Neg(ctx, grad_outputs[0], &grad_inputs[1], name.c_str())); return absl::OkStatus(); } ~SubGradientFunction() override {} }; class MulGradientFunction : public GradientFunction { public: explicit MulGradientFunction(vector<AbstractTensorHandle*> f_inputs) : forward_inputs_(f_inputs) { for (auto input : forward_inputs_) { if (input) { input->Ref(); } } } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* upstream_grad = grad_outputs[0]; std::string name = "Mul_Grad_A"; TF_RETURN_IF_ERROR(Mul(ctx, upstream_grad, forward_inputs_[1], &grad_inputs[0], name.c_str())); name = "Mul_Grad_B"; TF_RETURN_IF_ERROR(Mul(ctx, forward_inputs_[0], upstream_grad, &grad_inputs[1], name.c_str())); return absl::OkStatus(); } ~MulGradientFunction() override { for (auto input : forward_inputs_) { if (input) { input->Unref(); } } } private: vector<AbstractTensorHandle*> forward_inputs_; }; class Log1pGradientFunction : public GradientFunction { public: explicit Log1pGradientFunction(vector<AbstractTensorHandle*> f_inputs) : forward_inputs_(f_inputs) { for (auto input : forward_inputs_) { if (input) { input->Ref(); } } } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* upstream_grad = grad_outputs[0]; AbstractTensorHandle* X = forward_inputs_[0]; AbstractTensorHandle* temp_output; std::string name = "Conj_Log1p_Grad_X"; TF_RETURN_IF_ERROR(SafeConj(ctx, X, &temp_output, name.c_str())); AbstractTensorHandlePtr Conj_X(temp_output); name = "OnesLike_Log1p_Grad_X"; TF_RETURN_IF_ERROR(OnesLike(ctx, Conj_X.get(), &temp_output, name.c_str())); AbstractTensorHandlePtr Ones_X(temp_output); name = "Add_Log1p_Grad_X"; TF_RETURN_IF_ERROR( AddV2(ctx, Ones_X.get(), Conj_X.get(), &temp_output, name.c_str())); AbstractTensorHandlePtr Conj_XP1(temp_output); name = "Div_Log1p_Grad_X"; TF_RETURN_IF_ERROR( Div(ctx, upstream_grad, Conj_XP1.get(), &grad_inputs[0], name.c_str())); return absl::OkStatus(); } ~Log1pGradientFunction() override { for (auto input : forward_inputs_) { if (input) { input->Unref(); } } } private: vector<AbstractTensorHandle*> forward_inputs_; }; class DivNoNanGradientFunction : public GradientFunction { public: explicit DivNoNanGradientFunction(vector<AbstractTensorHandle*> f_inputs, vector<AbstractTensorHandle*> f_outputs) : forward_inputs_(f_inputs), forward_outputs_(f_outputs) { for (auto input : forward_inputs_) { if (input) { input->Ref(); } } for (auto output : forward_outputs_) { if (output) { output->Ref(); } } } Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { AbstractTensorHandle* upstream_grad = grad_outputs[0]; AbstractTensorHandle* Y = forward_inputs_[1]; AbstractTensorHandle* Z = forward_outputs_[0]; std::string name = "Div_Grad_X"; TF_RETURN_IF_ERROR( DivNoNan(ctx, upstream_grad, Y, &grad_inputs[0], name.c_str())); AbstractTensorHandle* temp_output; name = "Neg_Div_Grad_Y"; TF_RETURN_IF_ERROR(Neg(ctx, upstream_grad, &temp_output, name.c_str())); AbstractTensorHandlePtr MinusU(temp_output); name = "Mul_Div_Grad_Y"; TF_RETURN_IF_ERROR(Mul(ctx, MinusU.get(), Z, &temp_output, name.c_str())); AbstractTensorHandlePtr UZ(temp_output); name = "Div_Grad_Y"; TF_RETURN_IF_ERROR(DivNoNan(ctx, UZ.get(), Y, &grad_inputs[1], name.c_str())); return absl::OkStatus(); } ~DivNoNanGradientFunction() override { for (auto input : forward_inputs_) { if (input) { input->Unref(); } } for (auto output : forward_outputs_) { if (output) { output->Unref(); } } } private: vector<AbstractTensorHandle*> forward_inputs_; vector<AbstractTensorHandle*> forward_outputs_; }; } GradientFunction* AddRegisterer(const ForwardOperation& op) { return new AddGradientFunction; } GradientFunction* ExpRegisterer(const ForwardOperation& op) { return new ExpGradientFunction(op.outputs[0]); } GradientFunction* MatMulRegisterer(const ForwardOperation& op) { return new MatMulGradientFunction(op.inputs, op.attrs); } GradientFunction* SqrtRegisterer(const ForwardOperation& op) { return new SqrtGradientFunction(op.outputs[0]); } GradientFunction* NegRegisterer(const ForwardOperation& op) { return new NegGradientFunction; } GradientFunction* SubRegisterer(const ForwardOperation& op) { return new SubGradientFunction; } GradientFunction* MulRegisterer(const ForwardOperation& op) { return new MulGradientFunction(op.inputs); } GradientFunction* Log1pRegisterer(const ForwardOperation& op) { return new Log1pGradientFunction(op.inputs); } GradientFunction* DivNoNanRegisterer(const ForwardOperation& op) { return new DivNoNanGradientFunction(op.inputs, op.outputs); } } }
#include "tensorflow/c/experimental/gradients/math_grad.h" #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/c/eager/c_api_unified_experimental_internal.h" #include "tensorflow/c/eager/unified_api_testutil.h" #include "tensorflow/c/experimental/gradients/grad_test_helper.h" #include "tensorflow/c/experimental/gradients/tape/tape_context.h" #include "tensorflow/c/experimental/ops/math_ops.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/platform/tensor_float_32_utils.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace gradients { namespace internal { namespace { using tensorflow::TF_StatusPtr; Status AddModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::AddV2(ctx, inputs[0], inputs[1], &outputs[0], "Add"); } Status ExpModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Exp(ctx, inputs[0], &outputs[0], "Exp"); } Status SqrtModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Sqrt(ctx, inputs[0], &outputs[0], "Sqrt"); } Status NegModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Neg(ctx, inputs[0], &outputs[0], "Neg"); } Status SubModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Sub(ctx, inputs[0], inputs[1], &outputs[0], "Sub"); } Status MulModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Mul(ctx, inputs[0], inputs[1], &outputs[0], "Mul"); } Status Log1pModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::Log1p(ctx, inputs[0], &outputs[0], "Log1p"); } Status DivNoNanModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { return ops::DivNoNan(ctx, inputs[0], inputs[1], &outputs[0], "DivNoNan"); } class CppGradients : public ::testing::TestWithParam<std::tuple<const char*, bool, bool>> { protected: void SetUp() override { TF_StatusPtr status(TF_NewStatus()); TF_SetTracingImplementation(std::get<0>(GetParam()), status.get()); status_ = StatusFromTF_Status(status.get()); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); { AbstractContext* ctx_raw = nullptr; status_ = BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); immediate_execution_ctx_.reset(ctx_raw); } enable_tensor_float_32_execution(false); } AbstractContextPtr immediate_execution_ctx_; GradientRegistry registry_; Status status_; public: bool UseMlir() const { return strcmp(std::get<0>(GetParam()), "mlir") == 0; } bool UseFunction() const { return std::get<2>(GetParam()); } }; TEST_P(CppGradients, TestAddGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } AbstractTensorHandlePtr y; { AbstractTensorHandle* y_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &y_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); y.reset(y_raw); } status_ = registry_.Register("AddV2", AddRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( AddModel, BuildGradModel(AddModel, registry_), immediate_execution_ctx_.get(), {x.get(), y.get()}, UseFunction())); } TEST_P(CppGradients, TestExpGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } status_ = registry_.Register("Exp", ExpRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( ExpModel, BuildGradModel(ExpModel, registry_), immediate_execution_ctx_.get(), {x.get()}, UseFunction())); } TEST_P(CppGradients, TestMatMulGrad) { GTEST_SKIP(); float A_vals[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; int64_t A_dims[] = {3, 3}; AbstractTensorHandlePtr A; { AbstractTensorHandle* A_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), A_vals, A_dims, 2, &A_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); A.reset(A_raw); } float B_vals[] = {9.0f, 8.0f, 7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f}; int64_t B_dims[] = {3, 3}; AbstractTensorHandlePtr B; { AbstractTensorHandle* B_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), B_vals, B_dims, 2, &B_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); B.reset(B_raw); } status_ = registry_.Register("MatMul", MatMulRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); for (bool transpose_a : {false, true}) { for (bool transpose_b : {false, true}) { Model MatMulModel = [transpose_a, transpose_b]( AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) -> Status { return ops::MatMul(ctx, inputs[0], inputs[1], &outputs[0], transpose_a, transpose_b, "MatMul"); }; ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( MatMulModel, BuildGradModel(MatMulModel, registry_), immediate_execution_ctx_.get(), {A.get(), B.get()}, UseFunction())); } } } TEST_P(CppGradients, TestMatMulGradManual) { float A_vals[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; int64_t A_dims[] = {3, 3}; AbstractTensorHandlePtr A; { AbstractTensorHandle* A_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), A_vals, A_dims, 2, &A_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); A.reset(A_raw); } float B_vals[] = {9.0f, 8.0f, 7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f}; int64_t B_dims[] = {3, 3}; AbstractTensorHandlePtr B; { AbstractTensorHandle* B_raw; status_ = TestTensorHandleWithDims<float, TF_FLOAT>( immediate_execution_ctx_.get(), B_vals, B_dims, 2, &B_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); B.reset(B_raw); } status_ = registry_.Register("MatMul", MatMulRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); bool transpose_a_vals[] = {false, false, true, true}; bool transpose_b_vals[] = {false, true, false, true}; float dA_vals[4][9] = {{24, 15, 6, 24, 15, 6, 24, 15, 6}, {18, 15, 12, 18, 15, 12, 18, 15, 12}, {24, 24, 24, 15, 15, 15, 6, 6, 6}, {18, 18, 18, 15, 15, 15, 12, 12, 12}}; float dB_vals[4][9] = {{12, 12, 12, 15, 15, 15, 18, 18, 18}, {12, 15, 18, 12, 15, 18, 12, 15, 18}, {6, 6, 6, 15, 15, 15, 24, 24, 24}, {6, 15, 24, 6, 15, 24, 6, 15, 24}}; for (int i{}; i < 4; ++i) { bool transpose_a = transpose_a_vals[i]; bool transpose_b = transpose_b_vals[i]; Model MatMulModel = [transpose_a, transpose_b]( AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) -> Status { return ops::MatMul(ctx, inputs[0], inputs[1], &outputs[0], transpose_a, transpose_b, "MatMul"); }; Model MatMulGradModel = BuildGradModel(MatMulModel, registry_); std::vector<AbstractTensorHandle*> outputs(2); status_ = RunModel(MatMulGradModel, immediate_execution_ctx_.get(), {A.get(), B.get()}, absl::MakeSpan(outputs), UseFunction()); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[0], dA_vals[i], {3, 3}, 0)); ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[1], dB_vals[i], {3, 3}, 0)); outputs[0]->Unref(); outputs[1]->Unref(); } } TEST_P(CppGradients, TestSqrtGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } status_ = registry_.Register("Sqrt", SqrtRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( SqrtModel, BuildGradModel(SqrtModel, registry_), immediate_execution_ctx_.get(), {x.get()}, UseFunction())); } TEST_P(CppGradients, TestNegGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } status_ = registry_.Register("Neg", NegRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( NegModel, BuildGradModel(NegModel, registry_), immediate_execution_ctx_.get(), {x.get()}, UseFunction())); } TEST_P(CppGradients, TestSubGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } AbstractTensorHandlePtr y; { AbstractTensorHandle* y_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &y_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); y.reset(y_raw); } status_ = registry_.Register("Sub", SubRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( SubModel, BuildGradModel(SubModel, registry_), immediate_execution_ctx_.get(), {x.get(), y.get()}, UseFunction())); } TEST_P(CppGradients, TestMulGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } AbstractTensorHandlePtr y; { AbstractTensorHandle* y_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &y_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); y.reset(y_raw); } status_ = registry_.Register("Mul", MulRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( MulModel, BuildGradModel(MulModel, registry_), immediate_execution_ctx_.get(), {x.get(), y.get()}, UseFunction())); } TEST_P(CppGradients, TestLog1pGrad) { AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } status_ = registry_.Register("Log1p", Log1pRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( Log1pModel, BuildGradModel(Log1pModel, registry_), immediate_execution_ctx_.get(), {x.get()}, UseFunction())); } TEST_P(CppGradients, TestDivNoNanGrad) { status_ = registry_.Register("DivNoNan", DivNoNanRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); auto DivNoNanGradModel = BuildGradModel(DivNoNanModel, registry_); AbstractTensorHandlePtr x; { AbstractTensorHandle* x_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &x_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x.reset(x_raw); } AbstractTensorHandlePtr y; { AbstractTensorHandle* y_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 2.0f, &y_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); y.reset(y_raw); } ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients( DivNoNanModel, DivNoNanGradModel, immediate_execution_ctx_.get(), {x.get(), y.get()}, UseFunction())); AbstractTensorHandlePtr z; { AbstractTensorHandle* z_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 0.0f, &z_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); z.reset(z_raw); } std::vector<AbstractTensorHandle*> outputs(2); status_ = RunModel(DivNoNanGradModel, immediate_execution_ctx_.get(), {x.get(), z.get()}, absl::MakeSpan(outputs), UseFunction()); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[0], {0.0f}, {}, 0)); ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[1], {0.0f}, {}, 0)); outputs[0]->Unref(); outputs[1]->Unref(); } #ifdef PLATFORM_GOOGLE INSTANTIATE_TEST_SUITE_P( UnifiedCAPI, CppGradients, ::testing::Combine(::testing::Values("graphdef", "mlir"), ::testing::Values(false), ::testing::Values(true, false))); #else INSTANTIATE_TEST_SUITE_P( UnifiedCAPI, CppGradients, ::testing::Combine(::testing::Values("graphdef", "mlir"), ::testing::Values(false), ::testing::Values(true, false))); #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/gradients/math_grad.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/gradients/math_grad_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9f4ce7de-febe-4637-8295-d004dcf2b9b9
cpp
tensorflow/tensorflow
sparse_ops
tensorflow/core/ops/sparse_ops.cc
tensorflow/core/ops/sparse_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; namespace { Status SparseSparseMinOrMaxShapeFn(InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 2, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(4), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(5), 1, &unused)); c->set_output(0, c->Matrix(InferenceContext::kUnknownDim, InferenceContext::kUnknownDim)); c->set_output(1, c->Vector(InferenceContext::kUnknownDim)); return absl::OkStatus(); } } REGISTER_OP("SparseAddGrad") .Input("backprop_val_grad: T") .Input("a_indices: int64") .Input("b_indices: int64") .Input("sum_indices: int64") .Output("a_val_grad: T") .Output("b_val_grad: T") .Attr("T: numbertype") .SetShapeFn([](InferenceContext* c) { ShapeHandle a_indices; ShapeHandle b_indices; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &a_indices)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 2, &b_indices)); c->set_output(0, c->Vector(c->Dim(a_indices, 0))); c->set_output(1, c->Vector(c->Dim(b_indices, 0))); return absl::OkStatus(); }); REGISTER_OP("SparseAdd") .Input("a_indices: int64") .Input("a_values: T") .Input("a_shape: int64") .Input("b_indices: int64") .Input("b_values: T") .Input("b_shape: int64") .Input("thresh: Treal") .Output("sum_indices: int64") .Output("sum_values: T") .Output("sum_shape: int64") .Attr("T: numbertype") .Attr("Treal: realnumbertype") .SetShapeFn([](InferenceContext* c) { ShapeHandle a_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &a_shape)); c->set_output( 0, c->Matrix(InferenceContext::kUnknownDim, c->Dim(a_shape, 0))); c->set_output(1, c->Vector(InferenceContext::kUnknownDim)); c->set_output(2, a_shape); return absl::OkStatus(); }); REGISTER_OP("SparseTensorDenseMatMul") .Input("a_indices: Tindices") .Input("a_values: T") .Input("a_shape: int64") .Input("b: T") .Output("product: T") .Attr("T: type") .Attr("Tindices: {int32,int64} = DT_INT64") .Attr("adjoint_a: bool = false") .Attr("adjoint_b: bool = false") .SetShapeFn([](InferenceContext* c) { DimensionHandle unused_dim; ShapeHandle unused; ShapeHandle b; ShapeHandle a_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused)); TF_RETURN_IF_ERROR(c->MakeShapeFromShapeTensor(2, &a_shape)); TF_RETURN_IF_ERROR(c->WithRank(a_shape, 2, &a_shape)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 2, &b)); bool adjoint_a; bool adjoint_b; TF_RETURN_IF_ERROR(c->GetAttr("adjoint_a", &adjoint_a)); TF_RETURN_IF_ERROR(c->GetAttr("adjoint_b", &adjoint_b)); DimensionHandle output_right = c->Dim(b, adjoint_b ? 0 : 1); DimensionHandle output_left = c->Dim(a_shape, adjoint_a ? 1 : 0); DimensionHandle inner_left = c->Dim(a_shape, adjoint_a ? 0 : 1); DimensionHandle inner_right = c->Dim(b, adjoint_b ? 1 : 0); TF_RETURN_IF_ERROR(c->Merge(inner_left, inner_right, &unused_dim)); c->set_output(0, c->Matrix(output_left, output_right)); return absl::OkStatus(); }); REGISTER_OP("SerializeSparse") .Input("sparse_indices: int64") .Input("sparse_values: T") .Input("sparse_shape: int64") .Attr("T: type") .Output("serialized_sparse: out_type") .Attr("out_type: {string, variant} = DT_STRING") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused)); c->set_output(0, c->Vector(3)); return absl::OkStatus(); }); REGISTER_OP("SerializeManySparse") .Input("sparse_indices: int64") .Input("sparse_values: T") .Input("sparse_shape: int64") .Attr("T: type") .Output("serialized_sparse: out_type") .Attr("out_type: {string, variant} = DT_STRING") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused)); c->set_output(0, c->Matrix(InferenceContext::kUnknownDim, 3)); return absl::OkStatus(); }); REGISTER_OP("DeserializeSparse") .Input("serialized_sparse: Tserialized") .Output("sparse_indices: int64") .Output("sparse_values: dtype") .Output("sparse_shape: int64") .Attr("dtype: type") .Attr("Tserialized: {string, variant} = DT_STRING") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused_shape; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 1, &unused_shape)); DimensionHandle unused; TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(0), -1), 3, &unused)); c->set_output(0, c->Matrix(InferenceContext::kUnknownDim, InferenceContext::kUnknownDim)); c->set_output(1, c->Vector(InferenceContext::kUnknownDim)); c->set_output(2, c->Vector(InferenceContext::kUnknownDim)); return absl::OkStatus(); }); REGISTER_OP("DeserializeManySparse") .Input("serialized_sparse: string") .Output("sparse_indices: int64") .Output("sparse_values: dtype") .Output("sparse_shape: int64") .Attr("dtype: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle serialized_sparse; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &serialized_sparse)); DimensionHandle unused; TF_RETURN_IF_ERROR( c->WithValue(c->Dim(serialized_sparse, 1), 3, &unused)); c->set_output(0, c->Matrix(InferenceContext::kUnknownDim, InferenceContext::kUnknownDim)); c->set_output(1, c->Vector(InferenceContext::kUnknownDim)); c->set_output(2, c->Vector(InferenceContext::kUnknownDim)); return absl::OkStatus(); }); REGISTER_OP("SparseToDense") .Input("sparse_indices: Tindices") .Input("output_shape: Tindices") .Input("sparse_values: T") .Input("default_value: T") .Attr("validate_indices: bool = true") .Attr("T: type") .Output("dense: T") .Attr("Tindices: {int32, int64}") .SetShapeFn([](InferenceContext* c) { ShapeHandle out; TF_RETURN_IF_ERROR(c->MakeShapeFromShapeTensor(1, &out)); c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("SparseConcat") .Input("indices: N * int64") .Input("values: N * T") .Input("shapes: N * int64") .Output("output_indices: int64") .Output("output_values: T") .Output("output_shape: int64") .Attr("concat_dim: int") .Attr("N: int >= 2") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { DimensionHandle output_row_count = c->MakeDim(0ll); DimensionHandle output_ind_cols = c->UnknownDim(); ShapeHandle output_shape = c->UnknownShape(); const int n = c->num_inputs() / 3; for (int i = 0; i < n; i++) { ShapeHandle ind; TF_RETURN_IF_ERROR(c->WithRank(c->input(i), 2, &ind)); ShapeHandle val; TF_RETURN_IF_ERROR(c->WithRank(c->input(i + n), 1, &val)); ShapeHandle shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(i + 2 * n), 1, &shape)); DimensionHandle num_dim; TF_RETURN_IF_ERROR(c->Merge(c->Dim(ind, 0), c->Dim(val, 0), &num_dim)); TF_RETURN_IF_ERROR( c->Add(output_row_count, num_dim, &output_row_count)); TF_RETURN_IF_ERROR( c->Merge(output_ind_cols, c->Dim(ind, 1), &output_ind_cols)); TF_RETURN_IF_ERROR(c->Merge(output_shape, shape, &output_shape)); } c->set_output(0, c->Matrix(output_row_count, output_ind_cols)); c->set_output(1, c->Vector(output_row_count)); c->set_output(2, output_shape); return absl::OkStatus(); }); REGISTER_OP("SparseCross") .Input("indices: N * int64") .Input("values: sparse_types") .Input("shapes: N * int64") .Input("dense_inputs: dense_types") .Output("output_indices: int64") .Output("output_values: out_type") .Output("output_shape: int64") .Attr("N: int >= 0") .Attr("hashed_output: bool") .Attr("num_buckets: int >= 0") .Attr("hash_key: int") .Attr("sparse_types: list({int64, string}) >= 0") .Attr("dense_types: list({int64, string}) >= 0") .Attr("out_type: {int64, string}") .Attr("internal_type: {int64, string}") .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->Matrix(c->UnknownDim(), 2)); c->set_output(1, c->Vector(c->UnknownDim())); c->set_output(2, c->Vector(2)); return absl::OkStatus(); }); REGISTER_OP("SparseCrossV2") .Input("indices: N * int64") .Input("values: sparse_types") .Input("shapes: N * int64") .Input("dense_inputs: dense_types") .Input("sep: string") .Output("output_indices: int64") .Output("output_values: string") .Output("output_shape: int64") .Attr("N: int >= 0") .Attr("sparse_types: list({int64, string}) >= 0") .Attr("dense_types: list({int64, string}) >= 0") .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->Matrix(c->UnknownDim(), 2)); c->set_output(1, c->Vector(c->UnknownDim())); c->set_output(2, c->Vector(2)); return absl::OkStatus(); }); REGISTER_OP("SparseCrossHashed") .Input("indices: N * int64") .Input("values: sparse_types") .Input("shapes: N * int64") .Input("dense_inputs: dense_types") .Input("num_buckets: int64") .Input("strong_hash: bool") .Input("salt: int64") .Output("output_indices: int64") .Output("output_values: int64") .Output("output_shape: int64") .Attr("N: int >= 0") .Attr("sparse_types: list({int64, string}) >= 0") .Attr("dense_types: list({int64, string}) >= 0") .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->Matrix(c->UnknownDim(), 2)); c->set_output(1, c->Vector(c->UnknownDim())); c->set_output(2, c->Vector(2)); return absl::OkStatus(); }); REGISTER_OP("SparseSplit") .Input("split_dim: int64") .Input("indices: int64") .Input("values: T") .Input("shape: int64") .Output("output_indices: num_split * int64") .Output("output_values: num_split * T") .Output("output_shape: num_split * int64") .Attr("num_split: int >= 1") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle input_shape = c->input(3); ShapeHandle output_indices = c->Matrix(InferenceContext::kUnknownDim, c->NumElements(input_shape)); ShapeHandle output_values = c->Vector(InferenceContext::kUnknownDim); ShapeHandle output_shape = input_shape; int num_splits = c->num_outputs() / 3; int out_idx = 0; for (int i = 0; i < num_splits; ++i) c->set_output(out_idx++, output_indices); for (int i = 0; i < num_splits; ++i) c->set_output(out_idx++, output_values); for (int i = 0; i < num_splits; ++i) c->set_output(out_idx++, output_shape); return absl::OkStatus(); }); REGISTER_OP("SparseSliceGrad") .Input("backprop_val_grad: T") .Input("input_indices: int64") .Input("input_start: int64") .Input("output_indices: int64") .Output("val_grad: T") .Attr("T: numbertype") .SetShapeFn([](InferenceContext* c) { ShapeHandle indices; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &indices)); c->set_output(0, c->Vector(c->Dim(indices, 0))); return absl::OkStatus(); }); REGISTER_OP("SparseSlice") .Input("indices: int64") .Input("values: T") .Input("shape: int64") .Input("start: int64") .Input("size: int64") .Output("output_indices: int64") .Output("output_values: T") .Output("output_shape: int64") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle input_shape = c->input(2); ShapeHandle output_indices = c->Matrix(InferenceContext::kUnknownDim, c->NumElements(input_shape)); ShapeHandle output_values = c->Vector(InferenceContext::kUnknownDim); ShapeHandle output_shape = input_shape; c->set_output(0, output_indices); c->set_output(1, output_values); c->set_output(2, output_shape); return absl::OkStatus(); }); REGISTER_OP("SparseReorder") .Input("input_indices: int64") .Input("input_values: T") .Input("input_shape: int64") .Output("output_indices: int64") .Output("output_values: T") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle indices; ShapeHandle values; ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &indices)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &values)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused)); c->set_output(0, indices); c->set_output(1, values); return absl::OkStatus(); }); REGISTER_OP("SparseReshape") .Input("input_indices: int64") .Input("input_shape: int64") .Input("new_shape: int64") .Output("output_indices: int64") .Output("output_shape: int64") .SetShapeFn([](InferenceContext* c) { ShapeHandle indices; ShapeHandle unused; ShapeHandle new_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &indices)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &new_shape)); c->set_output(0, c->Matrix(c->Dim(indices, 0), c->Dim(new_shape, 0))); c->set_output(1, new_shape); return absl::OkStatus(); }); REGISTER_OP("SparseTensorDenseAdd") .Input("a_indices: Tindices") .Input("a_values: T") .Input("a_shape: Tindices") .Input("b: T") .Output("output: T") .Attr("T: numbertype") .Attr("Tindices: {int32, int64}") .SetShapeFn([](InferenceContext* c) { c->set_output(0, c->input(3)); return absl::OkStatus(); }); REGISTER_OP("SparseReduceMax") .Input("input_indices: int64") .Input("input_values: T") .Input("input_shape: int64") .Input("reduction_axes: int32") .Attr("keep_dims: bool = False") .Output("output: T") .Attr("T: realnumbertype") .SetShapeFn(shape_inference::SparseReduceShapeFn); REGISTER_OP("SparseReduceMaxSparse") .Input("input_indices: int64") .Input("input_values: T") .Input("input_shape: int64") .Input("reduction_axes: int32") .Attr("keep_dims: bool = False") .Output("output_indices: int64") .Output("output_values: T") .Output("output_shape: int64") .Attr("T: realnumbertype") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("SparseReduceSum") .Input("input_indices: int64") .Input("input_values: T") .Input("input_shape: int64") .Input("reduction_axes: int32") .Attr("keep_dims: bool = False") .Output("output: T") .Attr("T: numbertype") .SetShapeFn(shape_inference::SparseReduceShapeFn); REGISTER_OP("SparseReduceSumSparse") .Input("input_indices: int64") .Input("input_values: T") .Input("input_shape: int64") .Input("reduction_axes: int32") .Attr("keep_dims: bool = False") .Output("output_indices: int64") .Output("output_values: T") .Output("output_shape: int64") .Attr("T: numbertype") .SetShapeFn(shape_inference::UnknownShape); #define SPARSE_DENSE_CWISE_SIGNATURE() \ Input("sp_indices: int64") \ .Input("sp_values: T") \ .Input("sp_shape: int64") \ .Input("dense: T") \ .Output("output: T") \ .Attr("T: numbertype") \ .SetShapeFn([](InferenceContext* c) { \ ShapeHandle input; \ TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &input)); \ c->set_output(0, c->Vector(c->Dim(input, 0))); \ return OkStatus(); \ }) REGISTER_OP("SparseDenseCwiseMul").SPARSE_DENSE_CWISE_SIGNATURE(); REGISTER_OP("SparseDenseCwiseDiv").SPARSE_DENSE_CWISE_SIGNATURE(); REGISTER_OP("SparseDenseCwiseAdd").SPARSE_DENSE_CWISE_SIGNATURE(); #undef SPARSE_DENSE_CWISE_SIGNATURE REGISTER_OP("SparseSoftmax") .Input("sp_indices: int64") .Input("sp_values: T") .Input("sp_shape: int64") .Output("output: T") .Attr("T: {half, float, double}") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; ShapeHandle values; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &values)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused)); c->set_output(0, values); return absl::OkStatus(); }); REGISTER_OP("SparseSparseMaximum") .Input("a_indices: int64") .Input("a_values: T") .Input("a_shape: int64") .Input("b_indices: int64") .Input("b_values: T") .Input("b_shape: int64") .Output("output_indices: int64") .Output("output_values: T") .Attr("T: realnumbertype") .SetShapeFn(SparseSparseMinOrMaxShapeFn); REGISTER_OP("SparseSparseMinimum") .Input("a_indices: int64") .Input("a_values: T") .Input("a_shape: int64") .Input("b_indices: int64") .Input("b_values: T") .Input("b_shape: int64") .Output("output_indices: int64") .Output("output_values: T") .Attr("T: numbertype") .SetShapeFn(SparseSparseMinOrMaxShapeFn); REGISTER_OP("AddSparseToTensorsMap") .Input("sparse_indices: int64") .Input("sparse_values: T") .Input("sparse_shape: int64") .Output("sparse_handle: int64") .Attr("T: type") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused)); c->set_output(0, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("AddManySparseToTensorsMap") .Input("sparse_indices: int64") .Input("sparse_values: T") .Input("sparse_shape: int64") .Output("sparse_handles: int64") .Attr("T: type") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused)); c->set_output(0, c->Vector(InferenceContext::kUnknownDim)); return absl::OkStatus(); }); REGISTER_OP("TakeManySparseFromTensorsMap") .Input("sparse_handles: int64") .Output("sparse_indices: int64") .Output("sparse_values: dtype") .Output("sparse_shape: int64") .Attr("dtype: type") .Attr("container: string = ''") .Attr("shared_name: string = ''") .SetIsStateful() .SetShapeFn([](InferenceContext* c) { ShapeHandle sparse_handles; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &sparse_handles)); c->set_output(0, c->Matrix(InferenceContext::kUnknownDim, InferenceContext::kUnknownDim)); c->set_output(1, c->Vector(InferenceContext::kUnknownDim)); c->set_output(2, c->Vector(InferenceContext::kUnknownDim)); return absl::OkStatus(); }); REGISTER_OP("SparseFillEmptyRows") .Input("indices: int64") .Input("values: T") .Input("dense_shape: int64") .Input("default_value: T") .Output("output_indices: int64") .Output("output_values: T") .Output("empty_row_indicator: bool") .Output("reverse_index_map: int64") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle input_indices = c->input(0); TF_RETURN_IF_ERROR(c->WithRank(input_indices, 2, &input_indices)); ShapeHandle input_values = c->input(1); TF_RETURN_IF_ERROR(c->WithRank(input_values, 1, &input_values)); ShapeHandle input_shape = c->input(2); TF_RETURN_IF_ERROR(c->WithRank(input_shape, 1, &input_shape)); ShapeHandle default_value = c->input(3); TF_RETURN_IF_ERROR(c->WithRank(default_value, 0, &default_value)); DimensionHandle N = c->Dim(input_indices, 0); TF_RETURN_IF_ERROR(c->Merge(N, c->Dim(input_values, 0), &N)); DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->Merge(c->Dim(input_indices, 1), c->Dim(input_shape, 0), &unused_dim)); if (c->Value(c->NumElements(input_shape)) == 0) return errors::InvalidArgument("dense_shape must not be empty"); ShapeHandle output_indices = c->Matrix(InferenceContext::kUnknownDim, c->NumElements(input_shape)); ShapeHandle output_values = c->Vector(InferenceContext::kUnknownDim); ShapeHandle constant_input_shape; TF_RETURN_IF_ERROR(c->MakeShapeFromShapeTensor(2, &constant_input_shape)); ShapeHandle empty_row_indicator = c->Vector(c->Dim(constant_input_shape, 0)); ShapeHandle reverse_index_map = c->Vector(N); c->set_output(0, output_indices); c->set_output(1, output_values); c->set_output(2, empty_row_indicator); c->set_output(3, reverse_index_map); return absl::OkStatus(); }); REGISTER_OP("SparseFillEmptyRowsGrad") .Input("reverse_index_map: int64") .Input("grad_values: T") .Output("d_values: T") .Output("d_default_value: T") .Attr("T: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle reverse_index_map = c->input(0); TF_RETURN_IF_ERROR(c->WithRank(reverse_index_map, 1, &reverse_index_map)); ShapeHandle grad_values = c->input(1); TF_RETURN_IF_ERROR(c->WithRank(grad_values, 1, &grad_values)); c->set_output(0, reverse_index_map); c->set_output(1, c->Scalar()); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(SparseOpsTest, SparseTensorDenseAdd_ShapeFn) { ShapeInferenceTestOp op("SparseTensorDenseAdd"); INFER_OK(op, "?;?;?;?", "in3"); } TEST(SparseOpsTest, SparseAdd_ShapeFn) { ShapeInferenceTestOp op("SparseAdd"); INFER_OK(op, "?;?;?;?;?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "?;?;[?];?;?;?;?", "[?,d2_0];[?];in2"); INFER_OK(op, "?;?;[1];?;?;?;?", "[?,d2_0];[?];in2"); } TEST(SparseOpsTest, SparseAddGrad_ShapeFn) { ShapeInferenceTestOp op("SparseAddGrad"); INFER_ERROR("must be rank 2", op, "?;?;[1];?"); INFER_ERROR("must be rank 2", op, "?;[1];?;?"); INFER_OK(op, "?;?;?;?", "[?];[?]"); INFER_OK(op, "?;[?,?];[?,?];?", "[d1_0];[d2_0]"); } TEST(SparseOpsTest, SparseSliceGrad_ShapeFn) { ShapeInferenceTestOp op("SparseSliceGrad"); INFER_ERROR("must be rank 2", op, "?;[1];?;?"); INFER_OK(op, "?;?;?;?", "[?]"); INFER_OK(op, "?;[?,?];?;?", "[d1_0]"); } TEST(SparseOpsTest, SparseReorder_ShapeFn) { ShapeInferenceTestOp op("SparseReorder"); INFER_ERROR("must be rank 2", op, "[1];?;?"); INFER_ERROR("must be rank 1", op, "?;[];?"); INFER_ERROR("must be rank 1", op, "?;?;[]"); INFER_OK(op, "?;?;?", "[?,?];[?]"); INFER_OK(op, "[?,?];[?];?", "in0;in1"); } TEST(SparseOpsTest, SparseReshape_ShapeFn) { ShapeInferenceTestOp op("SparseReshape"); INFER_ERROR("must be rank 2", op, "[1];?;?"); INFER_ERROR("must be rank 1", op, "?;[];?"); INFER_ERROR("must be rank 1", op, "?;?;[]"); INFER_OK(op, "?;?;?", "[?,?];[?]"); INFER_OK(op, "[?,?];?;[?]", "[d0_0,d2_0];in2"); } TEST(SparseOpsTest, SparseSplit_ShapeFn) { ShapeInferenceTestOp op("SparseSplit"); TF_ASSERT_OK(NodeDefBuilder("test", "SparseSplit") .Input({"split_dim", 0, DT_INT64}) .Input({"indices", 1, DT_INT64}) .Input({"values", 2, DT_INT64}) .Input({"shape", 3, DT_INT64}) .Attr("num_split", 2) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?;?", "[?,?];[?,?];[?];[?];in3;in3"); INFER_OK(op, "?;?;?;[5,4,3,2,1]", "[?,120];[?,120];[?];[?];in3;in3"); } TEST(SparseOpsTest, SparseToDense_ShapeFn) { ShapeInferenceTestOp op("SparseToDense"); op.input_tensors.resize(4); INFER_OK(op, "?;?;?;?", "?"); INFER_OK(op, "?;[?];?;?", "?"); INFER_OK(op, "?;[4];?;?", "[?,?,?,?]"); Tensor in_t = test::AsTensor<int32>({1, 2, 3, 4}); op.input_tensors[1] = &in_t; INFER_OK(op, "?;[4];?;?", "[1,2,3,4]"); } TEST(SparseOpsTest, SparseReduceSum_ShapeFn) { ShapeInferenceTestOp op("SparseReduceSum"); TF_ASSERT_OK(NodeDefBuilder("test", "SparseReduceSum") .Input({"input_indices", 0, DT_INT64}) .Input({"input_values", 1, DT_INT64}) .Input({"input_shape", 2, DT_INT64}) .Input({"reduction_axes", 3, DT_INT32}) .Attr("keep_dims", false) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?;?", "?"); } TEST(SparseOpsTest, SerializeSparse_ShapeFn) { ShapeInferenceTestOp op("SerializeSparse"); INFER_ERROR("must be rank 2", op, "[1];?;?"); INFER_ERROR("must be rank 1", op, "?;[];?"); INFER_ERROR("must be rank 1", op, "?;?;[]"); INFER_OK(op, "?;?;?", "[3]"); } TEST(SparseOpsTest, SerializeManySparse_ShapeFn) { ShapeInferenceTestOp op("SerializeManySparse"); INFER_ERROR("must be rank 2", op, "[1];?;?"); INFER_ERROR("must be rank 1", op, "?;[];?"); INFER_ERROR("must be rank 1", op, "?;?;[]"); INFER_OK(op, "?;?;?", "[?,3]"); } TEST(SparseOpsTest, DeserializeManySparse_ShapeFn) { ShapeInferenceTestOp op("DeserializeManySparse"); INFER_ERROR("must be rank 2", op, "[1]"); INFER_ERROR("must be 3", op, "[?,4]"); INFER_OK(op, "?", "[?,?];[?];[?]"); INFER_OK(op, "[?,3]", "[?,?];[?];[?]"); } TEST(SparseOpsTest, SparseTensorDenseMatMul_ShapeFn) { ShapeInferenceTestOp op("SparseTensorDenseMatMul"); auto set_adjoints = [&op](bool adjoint_a, bool adjoint_b) { TF_ASSERT_OK(NodeDefBuilder("test", "SparseTensorDenseMatMul") .Input({"a_indices", 1, DT_INT64}) .Input({"a_values", 2, DT_INT64}) .Input({"a_shape", 3, DT_INT64}) .Input({"b", 3, DT_INT64}) .Attr("adjoint_a", adjoint_a) .Attr("adjoint_b", adjoint_b) .Finalize(&op.node_def)); }; set_adjoints(false, false); INFER_ERROR("must be rank 2", op, "[1];?;?;?"); INFER_ERROR("must be rank 1", op, "?;[];?;?"); INFER_ERROR("must be rank 1", op, "?;?;[];?"); INFER_ERROR("must be rank 2", op, "?;?;[3];?"); INFER_ERROR("must be rank 2", op, "?;?;?;[]"); INFER_OK(op, "?;?;?;?", "[?,?]"); INFER_OK(op, "?;?;?;[?,?]", "[?,d3_1]"); INFER_OK(op, "?;?;?;[1,2]", "[?,d3_1]"); INFER_OK(op, "?;?;[2];[1,2]", "[?,d3_1]"); set_adjoints(false, true); INFER_OK(op, "?;?;?;[?,?]", "[?,d3_0]"); INFER_OK(op, "?;?;?;[1,2]", "[?,d3_0]"); Tensor a_shape_t = test::AsTensor<int64_t>(std::vector<int64_t>{3, 1}); op.input_tensors.resize(4); op.input_tensors[2] = &a_shape_t; set_adjoints(false, false); INFER_OK(op, "?;?;[2];[1,2]", "[3,d3_1]"); INFER_OK(op, "?;?;?;[1,2]", "[3,d3_1]"); set_adjoints(true, false); INFER_ERROR("must be equal", op, "?;?;[2];[1,2]"); a_shape_t = test::AsTensor<int64_t>(std::vector<int64_t>{3, 1, 2}); INFER_ERROR("must be rank 2 but is rank 3", op, "?;?;[3];[1,2]"); } TEST(SparseOpsTest, SparseSoftmax_ShapeFn) { ShapeInferenceTestOp op("SparseSoftmax"); INFER_ERROR("must be rank 2", op, "[1];?;?"); INFER_ERROR("must be rank 1", op, "?;[];?"); INFER_ERROR("must be rank 1", op, "?;?;[]"); INFER_OK(op, "?;?;?", "[?]"); INFER_OK(op, "?;[?];?", "in1"); INFER_OK(op, "?;[5];?", "in1"); } TEST(SparseOpsTest, SparseSparseMinAndMin_ShapeFn) { for (const char* op_name : {"SparseSparseMaximum", "SparseSparseMinimum"}) { ShapeInferenceTestOp op(op_name); INFER_ERROR("must be rank 2", op, "[1];?;?;?;?;?"); INFER_ERROR("must be rank 1", op, "?;[];?;?;?;?"); INFER_ERROR("must be rank 1", op, "?;?;[];?;?;?"); INFER_ERROR("must be rank 2", op, "?;?;?;[];?;?"); INFER_ERROR("must be rank 1", op, "?;?;?;?;[];?"); INFER_ERROR("must be rank 1", op, "?;?;?;?;?;[]"); INFER_OK(op, "?;?;?;?;?;?", "[?,?];[?]"); INFER_OK(op, "?;[?];?;?;?;?", "[?,?];[?]"); INFER_OK(op, "?;[5];?;?;?;?", "[?,?];[?]"); } } TEST(SparseOpsTest, SparseConcat_ShapeFn) { ShapeInferenceTestOp op("SparseConcat"); std::vector<NodeDefBuilder::NodeOut> src_list; int n = 2; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_INT64); TF_ASSERT_OK(NodeDefBuilder("test", "SparseConcat") .Input(src_list) .Input(src_list) .Input(src_list) .Attr("N", n) .Finalize(&op.node_def)); INFER_ERROR("must be rank 2", op, "[1];?;?;?;?;?"); INFER_ERROR("must be rank 2", op, "?;[1];?;?;?;?"); INFER_ERROR("must be rank 1", op, "?;?;[];?;?;?"); INFER_ERROR("must be rank 1", op, "?;?;?;[];?;?"); INFER_ERROR("must be rank 1", op, "?;?;?;?;[];?"); INFER_ERROR("must be rank 1", op, "?;?;?;?;?;[]"); INFER_OK(op, "?;?;?;?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "?;?;?;?;[?];[?]", "[?,?];[?];in4|in5"); INFER_OK(op, "?;?;?;?;[?];[5]", "[?,?];[?];in5"); INFER_OK(op, "[4,5];[3,?];?;?;?;?", "[7,d0_1];[7];[?]"); INFER_OK(op, "?;?;[4];[3];?;?", "[7,?];[7];[?]"); INFER_OK(op, "[?,2];[3,?];[4];[?];?;?", "[7,d0_1];[7];[?]"); INFER_ERROR("but are 100 and 200", op, "[100,?];[?,?];[200];[?];?;?"); INFER_ERROR("but are 2 and 3", op, "[?,2];[?,3];[?];[?];?;?"); INFER_ERROR("but are 4 and 5", op, "?;?;?;?;[4];[5]"); } TEST(SparseOpsTest, SparseDenseCwise_ShapeFn) { for (const char* op_name : {"SparseDenseCwiseMul", "SparseDenseCwiseDiv", "SparseDenseCwiseAdd"}) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?;?;?;?", "[?]"); INFER_OK(op, "[?,?];?;?;?", "[d0_0]"); INFER_ERROR("must be rank 2", op, "[1];?;?;?"); } } TEST(SparseOpsTest, AddSparseToTensorsMap_ShapeFn) { ShapeInferenceTestOp op("AddSparseToTensorsMap"); INFER_ERROR("must be rank 2", op, "[1];?;?"); INFER_ERROR("must be rank 1", op, "?;[];?"); INFER_ERROR("must be rank 1", op, "?;?;[]"); INFER_OK(op, "?;?;?", "[]"); } TEST(SparseOpsTest, AddManySparseToTensorsMap_ShapeFn) { ShapeInferenceTestOp op("AddManySparseToTensorsMap"); INFER_ERROR("must be rank 2", op, "[1];?;?"); INFER_ERROR("must be rank 1", op, "?;[];?"); INFER_ERROR("must be rank 1", op, "?;?;[]"); INFER_OK(op, "?;?;?", "[?]"); } TEST(SparseOpsTest, TakeManySparseFromTensorsMap_ShapeFn) { ShapeInferenceTestOp op("TakeManySparseFromTensorsMap"); INFER_ERROR("must be rank 1", op, "[?,1]"); INFER_OK(op, "?", "[?,?];[?];[?]"); INFER_OK(op, "[?]", "[?,?];[?];[?]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/sparse_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/sparse_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
54cdfcaf-1fbf-4422-882b-6441c5eea09a
cpp
tensorflow/tensorflow
candidate_sampling_ops
tensorflow/core/ops/candidate_sampling_ops.cc
tensorflow/core/ops/candidate_sampling_ops_test.cc
#include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; namespace { Status CandidateSamplerShapeFn(InferenceContext* c) { int64_t num_sampled; TF_RETURN_IF_ERROR(c->GetAttr("num_sampled", &num_sampled)); int64_t num_true; TF_RETURN_IF_ERROR(c->GetAttr("num_true", &num_true)); ShapeHandle true_classes_shape; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &true_classes_shape)); DimensionHandle batch_size = c->Dim(true_classes_shape, 0); ShapeHandle num_sampled_v = c->Vector(num_sampled); c->set_output(0, num_sampled_v); c->set_output(1, c->Matrix(batch_size, num_true)); c->set_output(2, num_sampled_v); return absl::OkStatus(); } } REGISTER_OP("UniformCandidateSampler") .Input("true_classes: int64") .Output("sampled_candidates: int64") .Output("true_expected_count: float") .Output("sampled_expected_count: float") .Attr("num_true: int >= 1") .Attr("num_sampled: int >= 1") .Attr("unique: bool") .Attr("range_max: int >= 1") .Attr("seed: int = 0") .Attr("seed2: int = 0") .SetShapeFn(CandidateSamplerShapeFn) .SetIsStateful(); REGISTER_OP("LogUniformCandidateSampler") .Input("true_classes: int64") .Output("sampled_candidates: int64") .Output("true_expected_count: float") .Output("sampled_expected_count: float") .Attr("num_true: int >= 1") .Attr("num_sampled: int >= 1") .Attr("unique: bool") .Attr("range_max: int >= 1") .Attr("seed: int = 0") .Attr("seed2: int = 0") .SetShapeFn(CandidateSamplerShapeFn) .SetIsStateful(); REGISTER_OP("LearnedUnigramCandidateSampler") .Input("true_classes: int64") .Output("sampled_candidates: int64") .Output("true_expected_count: float") .Output("sampled_expected_count: float") .Attr("num_true: int >= 1") .Attr("num_sampled: int >= 1") .Attr("unique: bool") .Attr("range_max: int >= 1") .Attr("seed: int = 0") .Attr("seed2: int = 0") .SetShapeFn(CandidateSamplerShapeFn) .SetIsStateful(); REGISTER_OP("ThreadUnsafeUnigramCandidateSampler") .Input("true_classes: int64") .Output("sampled_candidates: int64") .Output("true_expected_count: float") .Output("sampled_expected_count: float") .Attr("num_true: int >= 1") .Attr("num_sampled: int >= 1") .Attr("unique: bool") .Attr("range_max: int >= 1") .Attr("seed: int = 0") .Attr("seed2: int = 0") .SetShapeFn(CandidateSamplerShapeFn) .SetIsStateful(); REGISTER_OP("FixedUnigramCandidateSampler") .Input("true_classes: int64") .Output("sampled_candidates: int64") .Output("true_expected_count: float") .Output("sampled_expected_count: float") .Attr("num_true: int >= 1") .Attr("num_sampled: int >= 1") .Attr("unique: bool") .Attr("range_max: int >= 1") .Attr("vocab_file: string = ''") .Attr("distortion: float = 1.0") .Attr("num_reserved_ids: int = 0") .Attr("num_shards: int >= 1 = 1") .Attr("shard: int >= 0 = 0") .Attr("unigrams: list(float) = []") .Attr("seed: int = 0") .Attr("seed2: int = 0") .SetShapeFn(CandidateSamplerShapeFn) .SetIsStateful(); REGISTER_OP("AllCandidateSampler") .Input("true_classes: int64") .Output("sampled_candidates: int64") .Output("true_expected_count: float") .Output("sampled_expected_count: float") .Attr("num_true: int >= 1") .Attr("num_sampled: int >= 1") .Attr("unique: bool") .Attr("seed: int = 0") .Attr("seed2: int = 0") .SetShapeFn(CandidateSamplerShapeFn) .SetIsStateful(); REGISTER_OP("ComputeAccidentalHits") .Input("true_classes: int64") .Input("sampled_candidates: int64") .Output("indices: int32") .Output("ids: int64") .Output("weights: float") .Attr("num_true: int") .Attr("seed: int = 0") .Attr("seed2: int = 0") .SetShapeFn([](InferenceContext* c) { int64_t num_true; TF_RETURN_IF_ERROR(c->GetAttr("num_true", &num_true)); ShapeHandle true_classes; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &true_classes)); DimensionHandle unused; TF_RETURN_IF_ERROR( c->WithValue(c->Dim(true_classes, 1), num_true, &unused)); ShapeHandle sampled_candidates; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &sampled_candidates)); ShapeHandle v = c->Vector(InferenceContext::kUnknownDim); c->set_output(0, v); c->set_output(1, v); c->set_output(2, v); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(CandidateSamplerOpsTest, CandidateSampler_ShapeFn) { for (const char* op_name : { "AllCandidateSampler", "FixedUnigramCandidateSampler", "LearnedUnigramCandidateSampler", "LogUniformCandidateSampler", "ThreadUnsafeUnigramCandidateSampler", "UniformCandidateSampler", }) { ShapeInferenceTestOp op(op_name); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input({"a", 0, DT_INT64}) .Attr("num_sampled", 5) .Attr("num_true", 10) .Finalize(&op.node_def)); INFER_OK(op, "?", "[5];[?,10];[5]"); INFER_OK(op, "[?,?]", "[5];[d0_0,10];[5]"); INFER_OK(op, "[8,9]", "[5];[d0_0,10];[5]"); INFER_ERROR("must be rank 2", op, "[1]"); } } TEST(CandidateSamplerOpsTest, ComputeAccidentalHits_ShapeFn) { ShapeInferenceTestOp op("ComputeAccidentalHits"); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input({"a", 0, DT_INT64}) .Input({"b", 0, DT_INT64}) .Attr("num_true", 10) .Finalize(&op.node_def)); INFER_OK(op, "?;?", "[?];[?];[?]"); INFER_OK(op, "[?,?];?", "[?];[?];[?]"); INFER_OK(op, "[?,10];?", "[?];[?];[?]"); INFER_OK(op, "[5,?];?", "[?];[?];[?]"); INFER_ERROR("must be rank 2", op, "[1];?"); INFER_ERROR("must be 10", op, "[?,11];?"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/candidate_sampling_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/candidate_sampling_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
41389981-1007-4f8c-826c-97fd840bdf44
cpp
tensorflow/tensorflow
nn_ops
tensorflow/c/experimental/ops/nn_ops.cc
tensorflow/core/ops/nn_ops_test.cc
#include "tensorflow/c/experimental/ops/nn_ops.h" #include "absl/types/span.h" #include "tensorflow/c/eager/abstract_context.h" #include "tensorflow/c/eager/abstract_operation.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/tracing_utils.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" using tensorflow::tracing::MaybeSetOpName; namespace tensorflow { namespace ops { Status SparseSoftmaxCrossEntropyWithLogits(AbstractContext* ctx, AbstractTensorHandle* const features, AbstractTensorHandle* const labels, AbstractTensorHandle** loss, AbstractTensorHandle** backprop, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR( op_ptr->Reset("SparseSoftmaxCrossEntropyWithLogits", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(features)); TF_RETURN_IF_ERROR(op_ptr->AddInput(labels)); int num_retvals = 2; AbstractTensorHandle* temp_outputs[2]; Status status = op_ptr->Execute(temp_outputs, &num_retvals); *loss = temp_outputs[0]; *backprop = temp_outputs[1]; return status; } Status ReluGrad(AbstractContext* ctx, AbstractTensorHandle* const gradients, AbstractTensorHandle* const features, AbstractTensorHandle** backprops, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("ReluGrad", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(gradients)); TF_RETURN_IF_ERROR(op_ptr->AddInput(features)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(backprops, 1), &num_retvals); } Status Relu(AbstractContext* ctx, AbstractTensorHandle* const features, AbstractTensorHandle** activations, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Relu", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(features)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(activations, 1), &num_retvals); } Status BiasAdd(AbstractContext* ctx, AbstractTensorHandle* const value, AbstractTensorHandle* const bias, AbstractTensorHandle** output, const char* data_format, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("BiasAdd", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(value)); TF_RETURN_IF_ERROR(op_ptr->AddInput(bias)); TF_RETURN_IF_ERROR( op_ptr->SetAttrString("data_format", data_format, strlen(data_format))); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(output, 1), &num_retvals); } Status BiasAddGrad(AbstractContext* ctx, AbstractTensorHandle* const out_backprop, AbstractTensorHandle** output, const char* data_format, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("BiasAddGrad", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(out_backprop)); TF_RETURN_IF_ERROR( op_ptr->SetAttrString("data_format", data_format, strlen(data_format))); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(output, 1), &num_retvals); } } }
#include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(NNOpsTest, TopK_ShapeFn) { ShapeInferenceTestOp op("TopK"); auto set_k = [&op](int k) { TF_ASSERT_OK(NodeDefBuilder("test", "Pack") .Input({{"a", 0, DT_FLOAT}}) .Attr("k", k) .Finalize(&op.node_def)); }; set_k(20); INFER_OK(op, "?", "?;?"); INFER_OK(op, "[20]", "[20];[20]"); INFER_OK(op, "[21]", "[20];[20]"); INFER_OK(op, "[1,?,21]", "[d0_0,d0_1,20];[d0_0,d0_1,20]"); INFER_OK(op, "[1,?,21,?]", "[d0_0,d0_1,d0_2,20];[d0_0,d0_1,d0_2,20]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[]"); INFER_ERROR("input must have last dimension >= k = 20 but is 1", op, "[1]"); INFER_ERROR("input must have last dimension >= k = 20 but is 4", op, "[1,2,3,4]"); set_k(-1); INFER_ERROR("Need k >= 0, got -1", op, "[1,2,3,4]"); } TEST(NNOpsTest, TopKV2_ShapeFn) { ShapeInferenceTestOp op("TopKV2"); op.input_tensors.resize(2); Tensor k_t; op.input_tensors[1] = &k_t; k_t = test::AsScalar<int32>(20); INFER_OK(op, "?;[]", "?;?"); INFER_OK(op, "[20];[]", "[20];[20]"); INFER_OK(op, "[1,?,21];[]", "[d0_0,d0_1,20];[d0_0,d0_1,20]"); INFER_OK(op, "[1,?,21,?];[]", "[d0_0,d0_1,d0_2,20];[d0_0,d0_1,d0_2,20]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];[]"); INFER_ERROR("input must have last dimension >= k = 20 but is 1", op, "[1];[]"); INFER_ERROR("input must have last dimension >= k = 20 but is 4", op, "[1,2,3,4];[]"); k_t = test::AsScalar<int32>(-1); INFER_ERROR( "Dimension size, given by scalar input 1, must be non-negative but is -1", op, "[1,2,3,4];[]"); } TEST(NNOpsTest, NthElement_ShapeFn) { ShapeInferenceTestOp op("NthElement"); op.input_tensors.resize(2); Tensor n_t; op.input_tensors[1] = &n_t; n_t = test::AsScalar<int32>(20); INFER_OK(op, "?;[]", "?"); INFER_OK(op, "[21];[]", "[]"); INFER_OK(op, "[2,?,?];[]", "[d0_0,d0_1]"); INFER_OK(op, "[?,3,?,21];[]", "[d0_0,d0_1,d0_2]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];[]"); INFER_ERROR("Input must have last dimension > n = 20 but is 1", op, "[1];[]"); INFER_ERROR("Input must have last dimension > n = 20 but is 20", op, "[1,2,3,20];[]"); n_t = test::AsScalar<int32>(-1); INFER_ERROR( "Dimension size, given by scalar input 1, must be non-negative but is -1", op, "[1,2,3,4];[]"); } TEST(NNOpsTest, BatchNormWithGlobalNormalization_ShapeFn) { ShapeInferenceTestOp op("BatchNormWithGlobalNormalization"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;[1,2,3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;[1,2,3];?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;[1,2,3];?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;?;[1,2,3]"); INFER_OK(op, "?;?;?;?;?", "[?,?,?,?]"); INFER_OK(op, "?;[1];?;?;?", "[?,?,?,d1_0]"); INFER_OK(op, "?;?;[1];?;?", "[?,?,?,d2_0]"); INFER_OK(op, "?;?;?;[1];?", "[?,?,?,d3_0]"); INFER_OK(op, "?;?;?;?;[1]", "[?,?,?,d4_0]"); INFER_OK(op, "[1,2,3,4];[4];[4];[4];[4]", "[d0_0,d0_1,d0_2,d0_3|d1_0|d2_0|d3_0|d4_0]"); } TEST(NNOpsTest, QuantizedBatchNormWithGlobalNormalization_ShapeFn) { ShapeInferenceTestOp op("QuantizedBatchNormWithGlobalNormalization"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?;?;?;?;?;?;?;?;?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;[1,2,3];?;?;?;?;?;?;?;?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;?;?;?;[1,2,3];?;?;?;?;?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;?;?;?;?;?;?;[1,2,3];?;?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;?;?;?;?;?;?;?;?;?;[1,2,3];?;?"); INFER_OK(op, "?;[];[];?;[];[];?;[];[];?;[];[];?;[];[]", "[?,?,?,?];[];[]"); INFER_OK(op, "?;[];[];[1];[];[];?;[];[];?;[];[];?;[];[]", "[?,?,?,d3_0];[];[]"); INFER_OK(op, "?;[];[];?;[];[];[1];[];[];?;[];[];?;[];[]", "[?,?,?,d6_0];[];[]"); INFER_OK(op, "?;[];[];?;[];[];?;[];[];[1];[];[];?;[];[]", "[?,?,?,d9_0];[];[]"); INFER_OK(op, "?;[];[];?;[];[];?;[];[];?;[];[];[1];[];[]", "[?,?,?,d12_0];[];[]"); INFER_OK(op, "[1,2,3,4];[];[];[4];[];[];[4];[];[];[4];[];[];[4];[];[]", "[d0_0,d0_1,d0_2,d0_3|d3_0|d6_0|d9_0|d12_0];[];[]"); } TEST(NNOpsTest, BatchNormWithGlobalNormalizationGrad_ShapeFn) { ShapeInferenceTestOp op("BatchNormWithGlobalNormalizationGrad"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;[1,2,3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;[1,2,3];?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;[1,2,3];?"); INFER_ERROR("Shapes must be equal rank, but are 4 and 3", op, "?;?;?;?;[1,2,3]"); INFER_OK(op, "?;?;?;?;?", "[?,?,?,?];[?];[?];[?];[?]"); INFER_OK(op, "?;[1];?;?;?", "[?,?,?,d1_0];[d1_0];[d1_0];[d1_0];[d1_0]"); INFER_OK(op, "?;?;[1];?;?", "[?,?,?,d2_0];[d2_0];[d2_0];[d2_0];[d2_0]"); INFER_OK(op, "?;?;?;[1];?", "[?,?,?,d3_0];[d3_0];[d3_0];[d3_0];[d3_0]"); INFER_OK(op, "[1,?,3,?];[?];[?];[?];[?,2,?,4]", "[d0_0,d4_1,d0_2,d4_3];[d4_3];[d4_3];[d4_3];[d4_3]"); } TEST(NNOpsTest, FusedBatchNorm_ShapeFn) { ShapeInferenceTestOp op("FusedBatchNorm"); auto set_op = [&op](bool is_training, float exponential_avg_factor, string data_format) { TF_ASSERT_OK(NodeDefBuilder("test", "FusedBatchNorm") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("data_format", data_format) .Attr("is_training", is_training) .Attr("exponential_avg_factor", exponential_avg_factor) .Finalize(&op.node_def)); }; set_op(true, 1.0, "NHWC"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;[1,2,3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;[1,2,3];?;?"); INFER_OK(op, "?;?;?;?;?", "[?,?,?,?];[?];[?];[?];[?]"); INFER_OK(op, "?;[1];?;?;?", "[?,?,?,d1_0];[d1_0];[d1_0];[d1_0];[d1_0]"); INFER_OK(op, "?;?;[1];?;?", "[?,?,?,d2_0];[d2_0];[d2_0];[d2_0];[d2_0]"); INFER_OK(op, "[1,2,3,4];[4];[4];?;?", "[d0_0,d0_1,d0_2,d0_3|d1_0|d2_0];" "[d0_3|d1_0|d2_0];[d0_3|d1_0|d2_0];" "[d0_3|d1_0|d2_0];[d0_3|d1_0|d2_0]"); set_op(true, 0.5, "NHWC"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;[1,2,3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;[1,2,3];?;?"); INFER_OK(op, "?;?;?;?;?", "[?,?,?,?];[?];[?];[?];[?]"); INFER_OK(op, "?;[1];?;?;?", "[?,?,?,d1_0];[d1_0];[d1_0];[d1_0];[d1_0]"); INFER_OK(op, "?;?;[1];?;?", "[?,?,?,d2_0];[d2_0];[d2_0];[d2_0];[d2_0]"); INFER_OK(op, "[1,2,3,4];[4];[4];?;?", "[d0_0,d0_1,d0_2,d0_3|d1_0|d2_0];" "[d0_3|d1_0|d2_0];[d0_3|d1_0|d2_0];" "[d0_3|d1_0|d2_0];[d0_3|d1_0|d2_0]"); set_op(true, 1.0, "NCHW"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;[1,2,3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;[1,2,3];?;?"); INFER_OK(op, "?;?;?;?;?", "[?,?,?,?];[?];[?];[?];[?]"); INFER_OK(op, "?;[1];?;?;?", "[?,d1_0,?,?];[d1_0];[d1_0];[d1_0];[d1_0]"); INFER_OK(op, "?;?;[1];?;?", "[?,d2_0,?,?];[d2_0];[d2_0];[d2_0];[d2_0]"); INFER_OK(op, "[1,4,2,3];[4];[4];?;?", "[d0_0,d0_1|d1_0|d2_0,d0_2,d0_3];" "[d0_1|d1_0|d2_0];[d0_1|d1_0|d2_0];" "[d0_1|d1_0|d2_0];[d0_1|d1_0|d2_0]"); set_op(false, 1.0, "NHWC"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;[1,2,3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;[1,2,3];?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;[1,2,3];?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;?;[1,2,3]"); INFER_OK(op, "?;?;?;?;?", "[?,?,?,?];[?];[?];[?];[?]"); INFER_OK(op, "?;[1];?;?;?", "[?,?,?,d1_0];[d1_0];[d1_0];[d1_0];[d1_0]"); INFER_OK(op, "?;?;[1];?;?", "[?,?,?,d2_0];[d2_0];[d2_0];[d2_0];[d2_0]"); INFER_OK(op, "?;?;?;[1];?", "[?,?,?,d3_0];[d3_0];[d3_0];[d3_0];[d3_0]"); INFER_OK(op, "?;?;?;?;[1]", "[?,?,?,d4_0];[d4_0];[d4_0];[d4_0];[d4_0]"); INFER_OK(op, "[1,2,3,4];[4];[4];[4];[4]", "[d0_0,d0_1,d0_2,d0_3|d1_0|d2_0|d3_0|d4_0];" "[d0_3|d1_0|d2_0|d3_0|d4_0];[d0_3|d1_0|d2_0|d3_0|d4_0];" "[d0_3|d1_0|d2_0|d3_0|d4_0];[d0_3|d1_0|d2_0|d3_0|d4_0]"); set_op(false, 1.0, "NCHW"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;[1,2,3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;[1,2,3];?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;[1,2,3];?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;?;[1,2,3]"); INFER_OK(op, "?;?;?;?;?", "[?,?,?,?];[?];[?];[?];[?]"); INFER_OK(op, "?;[1];?;?;?", "[?,d1_0,?,?];[d1_0];[d1_0];[d1_0];[d1_0]"); INFER_OK(op, "?;?;[1];?;?", "[?,d2_0,?,?];[d2_0];[d2_0];[d2_0];[d2_0]"); INFER_OK(op, "?;?;?;[1];?", "[?,d3_0,?,?];[d3_0];[d3_0];[d3_0];[d3_0]"); INFER_OK(op, "?;?;?;?;[1]", "[?,d4_0,?,?];[d4_0];[d4_0];[d4_0];[d4_0]"); INFER_OK(op, "[1,4,2,3];[4];[4];[4];[4]", "[d0_0,d0_1|d1_0|d2_0|d3_0|d4_0,d0_2,d0_3];" "[d0_1|d1_0|d2_0|d3_0|d4_0];[d0_1|d1_0|d2_0|d3_0|d4_0];" "[d0_1|d1_0|d2_0|d3_0|d4_0];[d0_1|d1_0|d2_0|d3_0|d4_0]"); } TEST(NNOpsTest, FusedBatchNormGrad_ShapeFn) { ShapeInferenceTestOp op("FusedBatchNormGrad"); auto set_op = [&op](string data_format) { TF_ASSERT_OK(NodeDefBuilder("test", "FusedBatchNormGrad") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("data_format", data_format) .Finalize(&op.node_def)); }; set_op("NCHW"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?;?"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "?;[1,2,3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;[1,2,3];?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;[1,2,3];?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;?;[1,2,3]"); INFER_OK(op, "?;?;?;?;?", "[?,?,?,?];[?];[?];[0];[0]"); INFER_OK(op, "?;?;[1];?;?", "[?,d2_0,?,?];[d2_0];[d2_0];[0];[0]"); INFER_OK(op, "?;?;?;[1];?", "[?,d3_0,?,?];[d3_0];[d3_0];[0];[0]"); INFER_OK(op, "?;?;?;?;[1]", "[?,d4_0,?,?];[d4_0];[d4_0];[0];[0]"); INFER_OK(op, "[1,4,2,3];[1,4,2,3];[4];[4];[4]", "[d0_0,d0_1|d2_0|d3_0|d4_0,d0_2,d0_3];" "[d0_1|d2_0|d3_0|d4_0];[d0_1|d2_0|d3_0|d4_0];[0];[0]"); set_op("NHWC"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?;?;?"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "?;[1,2,3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;[1,2,3];?;?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;[1,2,3];?"); INFER_ERROR("Shape must be rank 1 but is rank 3", op, "?;?;?;?;[1,2,3]"); INFER_OK(op, "?;?;?;?;?", "[?,?,?,?];[?];[?];[0];[0]"); INFER_OK(op, "?;?;[1];?;?", "[?,?,?,d2_0];[d2_0];[d2_0];[0];[0]"); INFER_OK(op, "?;?;?;[1];?", "[?,?,?,d3_0];[d3_0];[d3_0];[0];[0]"); INFER_OK(op, "?;?;?;?;[1]", "[?,?,?,d4_0];[d4_0];[d4_0];[0];[0]"); INFER_OK(op, "[1,2,3,4];[1,2,3,4];[4];[4];[4]", "[d0_0,d0_1,d0_2,d0_3|d2_0|d3_0|d4_0];" "[d0_3|d2_0|d3_0|d4_0];[d0_3|d2_0|d3_0|d4_0];[0];[0]"); } TEST(NNOpsTest, Conv2DBackpropInput_ShapeFn) { ShapeInferenceTestOp op("Conv2DBackpropInput"); INFER_ERROR("input_sizes to contain 4 values or 2 values", op, "[3];[?,?,?,?];[?,?,?,?]"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[4];[?,?,?,?];[?,?,?]"); INFER_OK(op, "[4];[?,?,2,?];[1,?,?,?]", "[d2_0,?,?,?]"); INFER_OK(op, "[2];[?,?,2,?];[1,?,?,?]", "[d2_0,?,?,d1_2]"); } TEST(NNOpsTest, Conv3DBackpropInput_ShapeFn) { ShapeInferenceTestOp op("Conv3DBackpropInput"); INFER_ERROR("Shape must be rank 5 but is rank 3", op, "[1,2,3];?;?"); INFER_OK(op, "?;?;?", "[?,?,?,?,?]"); INFER_OK(op, "[?,?,?,?,?];?;?", "in0"); INFER_OK(op, "[?,2,?,4,?];?;?", "in0"); } TEST(NNOpsTest, Conv3DBackpropFilter_ShapeFn) { ShapeInferenceTestOp op("Conv3DBackpropFilter"); INFER_ERROR("Shape must be rank 5 but is rank 3", op, "?;[1,2,3];?"); INFER_OK(op, "?;?;?", "[?,?,?,?,?]"); INFER_OK(op, "?;[?,?,?,?,?];?", "in1"); INFER_OK(op, "?;[?,2,?,4,?];?", "in1"); } TEST(NNOpsTest, MaxPool3DGrad_ShapeFn) { ShapeInferenceTestOp op("MaxPool3DGrad"); INFER_ERROR("Shape must be rank 5 but is rank 3", op, "[1,2,3];?;?"); INFER_OK(op, "?;?;?", "[?,?,?,?,?]"); INFER_OK(op, "[?,?,?,?,?];?;?", "in0"); INFER_OK(op, "[?,2,?,4,?];?;?", "in0"); } TEST(NNOpsTest, LRNGrad_ShapeFn) { ShapeInferenceTestOp op("LRNGrad"); INFER_OK(op, "[1,?,?,4];[?,2,?,?];[?,?,3,?]", "[d0_0,d1_1,d2_2,d0_3]"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?"); INFER_ERROR("Shapes must be equal rank, but are 4 and 3", op, "?;[1,2,3];?"); INFER_ERROR("Shapes must be equal rank, but are 4 and 3", op, "?;?;[1,2,3]"); } TEST(NNOpsTest, MaxPoolGrad_ShapeFn) { for (const char* op_name : {"MaxPoolGrad", "MaxPoolGradWithArgmax"}) { ShapeInferenceTestOp op(op_name); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];?;?"); INFER_OK(op, "?;?;?", "[?,?,?,?]"); INFER_OK(op, "[?,?,?,?];?;?", "in0"); INFER_OK(op, "[?,2,?,4];?;?", "in0"); } } TEST(NNOpsTest, Dilation2DBackpropInput_ShapeFn) { ShapeInferenceTestOp op("Dilation2DBackpropInput"); INFER_OK(op, "?;?;?", "in0"); INFER_OK(op, "?;[?,?,?,?,?];?", "in0"); INFER_OK(op, "?;[?,2,?,4,?];?", "in0"); } TEST(NNOpsTest, Dilation2DBackpropFilter_ShapeFn) { ShapeInferenceTestOp op("Dilation2DBackpropFilter"); INFER_OK(op, "?;?;?", "in1"); INFER_OK(op, "?;[?,?,?,?,?];?", "in1"); INFER_OK(op, "?;[?,2,?,4,?];?", "in1"); } TEST(NNOpsTest, MergeBothInputs_ShapeFn) { for (const char* op_name : {"ReluGrad", "Relu6Grad", "EluGrad", "SeluGrad", "SoftplusGrad", "SoftsignGrad"}) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?;?", "in0|in1"); INFER_OK(op, "?;[1,?,3]", "in1"); INFER_OK(op, "[1,?,3];?", "in0"); INFER_OK(op, "[1,?];[?,2]", "[d0_0,d1_1]"); INFER_ERROR("Dimension 1 in both shapes must be equal, but are 3 and 2", op, "[1,3];[?,2]"); } } TEST(NNOpsTest, SoftmaxCrossEntropyWithLogits_ShapeFn) { ShapeInferenceTestOp op("SoftmaxCrossEntropyWithLogits"); INFER_OK(op, "?;?", "[?];[?,?]"); INFER_OK(op, "[?,?];[?,?]", "[d0_0|d1_0];in0|in1"); INFER_OK(op, "[1,2];[?,2]", "[d0_0];in0"); INFER_OK(op, "[1,?];[?,2]", "[d0_0];[d0_0,d0_1|d1_1]"); INFER_OK(op, "[?,2];[1,2]", "[d1_0];in1"); INFER_ERROR("Shape must be broadcasted with rank 2", op, "[1,2,3];?"); INFER_ERROR("Shape must be broadcasted with rank 2", op, "?;[1,2,3]"); INFER_OK(op, "[1,4];[2,4]", "[d1_0];[d1_0,d0_1|d1_1]"); INFER_OK(op, "[2,4];[2,1]", "[d0_0];[d0_0|d1_0,d0_1]"); INFER_OK(op, "[1,?];[2,4]", "[d1_0];[d1_0,d0_1|d1_1]"); INFER_OK(op, "[2,4];[?,1]", "[d0_0];[d0_0|d1_0,d0_1]"); } TEST(NNOpsTest, SparseSoftmaxCrossEntropyWithLogits_ShapeFn) { ShapeInferenceTestOp op("SparseSoftmaxCrossEntropyWithLogits"); INFER_OK(op, "?;?", "[?];[?,?]"); INFER_OK(op, "[?,?];[?]", "[d0_0|d1_0];[d0_0|d1_0,d0_1]"); INFER_OK(op, "[1,2];[1]", "[d0_0|d1_0];[d0_0|d1_0,d0_1]"); INFER_OK(op, "[?,2];[1]", "[d1_0];[d1_0,d0_1]"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,?];[2]"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "[1,2,3];?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[1,2]"); } TEST(NNOpsTest, InTopK_ShapeFn) { ShapeInferenceTestOp op("InTopK"); INFER_OK(op, "?;?", "[?]"); INFER_OK(op, "[?,?];[?]", "[d0_0|d1_0]"); INFER_OK(op, "[1,2];[1]", "[d0_0|d1_0]"); INFER_OK(op, "[?,2];[1]", "[d1_0]"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,?];[2]"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "[1,2,3];?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[1,2]"); } TEST(NNOpsTest, Dilation2DShapeTest) { ShapeInferenceTestOp op("Dilation2D"); auto set_op = [&op](const std::vector<int32>& strides, const std::vector<int32>& rates, const string& padding) { TF_ASSERT_OK(NodeDefBuilder("test", "Dilation2D") .Input("input", 0, DT_FLOAT) .Input("filter", 0, DT_FLOAT) .Attr("strides", strides) .Attr("rates", rates) .Attr("padding", padding) .Finalize(&op.node_def)); }; set_op({1, 1, 1, 1}, {1, 1, 1, 1}, "VALID"); INFER_OK(op, "[1,2,2,2];[1,1,2]", "[d0_0,2,2,d1_2]"); set_op({1, 1, 1, 1}, {1, 2, 2, 1}, "VALID"); INFER_OK(op, "[1,7,7,2];[2,2,2]", "[d0_0,5,5,d1_2]"); } TEST(NNOpsTest, FractionalPool_ShapeFn) { for (const char* op_name : {"FractionalAvgPool", "FractionalMaxPool"}) { ShapeInferenceTestOp op(op_name); auto set_op = [&op, op_name](const std::vector<float>& pooling_ratio) { TF_ASSERT_OK(NodeDefBuilder("test", op_name) .Input("input", 0, DT_FLOAT) .Attr("pooling_ratio", pooling_ratio) .Finalize(&op.node_def)); }; set_op(std::vector<float>{2.0f, 1, 1.5f, 4.0f}); INFER_ERROR("must be rank 4", op, "[?,?,?]"); INFER_OK(op, "?", "[?,?,?,?];[?];[?]"); INFER_OK(op, "[?,?,?,?]", "[?,?,?,?];[?];[?]"); INFER_OK(op, "[10,20,30,40]", "[5,20,20,10];[20];[20]"); INFER_OK(op, "[?,20,30,40]", "[?,20,20,10];[20];[20]"); INFER_OK(op, "[10,?,30,40]", "[5,?,20,10];[?];[20]"); INFER_OK(op, "[10,20,?,40]", "[5,20,?,10];[20];[?]"); INFER_OK(op, "[10,20,30,?]", "[5,20,20,?];[20];[20]"); set_op(std::vector<float>{.5, 1.0, 1.5}); INFER_ERROR("pooling_ratio field", op, "?"); set_op(std::vector<float>{1, 2, 3, 4, 5}); INFER_ERROR("pooling_ratio field", op, "?"); set_op(std::vector<float>{-1, 2, 3, 4}); INFER_ERROR("is negative", op, "[1,2,3,4]"); } } TEST(NNOpsTest, FractionalMaxPoolGrad) { ShapeInferenceTestOp op("FractionalMaxPoolGrad"); INFER_ERROR("must be rank 4", op, "[?,?,?];?;?;?;?"); INFER_OK(op, "?;?;?;?;?", "[?,?,?,?]"); INFER_OK(op, "[?,?,3,4];?;?;?;?", "in0"); } TEST(NNOpsTest, FractionalAvgPoolGrad) { ShapeInferenceTestOp op("FractionalAvgPoolGrad"); op.input_tensors.resize(1); INFER_OK(op, "?;?;?;?", "[?,?,?,?]"); std::vector<int32> shape{1, 2, 3, 4}; Tensor shape_t = test::AsTensor<int32>(shape); op.input_tensors[0] = &shape_t; INFER_OK(op, "[5];?;?;?", "[1,2,3,4]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/nn_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/nn_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e5e2b254-879d-48d9-939b-833510f208ac
cpp
tensorflow/tensorflow
io_ops
tensorflow/c/experimental/ops/io_ops.cc
tensorflow/core/ops/io_ops_test.cc
#include "tensorflow/c/experimental/ops/io_ops.h" #include "absl/types/span.h" #include "tensorflow/c/eager/abstract_context.h" #include "tensorflow/c/eager/abstract_operation.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/tracing_utils.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" using tensorflow::tracing::MaybeSetOpName; namespace tensorflow { namespace ops { Status RestoreV2(AbstractContext* ctx, AbstractTensorHandle* const prefix, AbstractTensorHandle* const tensor_names, AbstractTensorHandle* const shape_and_slices, absl::Span<AbstractTensorHandle*> tensors, absl::Span<DataType> dtypes, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("RestoreV2", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(prefix)); TF_RETURN_IF_ERROR(op_ptr->AddInput(tensor_names)); TF_RETURN_IF_ERROR(op_ptr->AddInput(shape_and_slices)); TF_RETURN_IF_ERROR( op_ptr->SetAttrTypeList("dtypes", dtypes.data(), dtypes.length())); int num_retvals = tensors.size(); return op_ptr->Execute(tensors, &num_retvals); } Status SaveV2(AbstractContext* ctx, AbstractTensorHandle* const prefix, AbstractTensorHandle* const tensor_names, AbstractTensorHandle* const shape_and_slices, absl::Span<AbstractTensorHandle* const> tensors, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("SaveV2", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(prefix)); TF_RETURN_IF_ERROR(op_ptr->AddInput(tensor_names)); TF_RETURN_IF_ERROR(op_ptr->AddInput(shape_and_slices)); TF_RETURN_IF_ERROR(op_ptr->AddInputList(tensors)); int num_retvals = 0; std::vector<AbstractTensorHandle*> dummy_outputs; return op_ptr->Execute(absl::MakeSpan(dummy_outputs), &num_retvals); } } }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(IoOpsTest, Save_ShapeFn) { ShapeInferenceTestOp op("Save"); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input({"a", 0, DT_STRING}) .Input({"b", 0, DT_STRING}) .Input({{"c", 0, DT_FLOAT}, {"d", 0, DT_INT64}}) .Attr("T", {DT_FLOAT, DT_INT64}) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?;?", ""); INFER_OK(op, "[];[2];?;?", ""); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[];[2,3];?;?"); INFER_ERROR("Dimension must be 2 but is 3", op, "[];[3];?;?"); } TEST(IoOpsTest, SaveSlices_ShapeFn) { ShapeInferenceTestOp op("SaveSlices"); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input({"a", 0, DT_STRING}) .Input({"b", 0, DT_STRING}) .Input({"c", 0, DT_STRING}) .Input({{"d", 0, DT_FLOAT}, {"e", 0, DT_INT64}}) .Attr("T", {DT_FLOAT, DT_INT64}) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?;?;?", ""); INFER_OK(op, "[];[2];[2];?;?", ""); INFER_OK(op, "[];[2];[2];[100,200,300];[4,5]", ""); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[];[2,3];?;?;?"); INFER_ERROR("Dimension must be 2 but is 3", op, "[];[3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[];[2];[2,3];?;?"); INFER_ERROR("Dimension must be 2 but is 3", op, "[];[2];[3];?;?"); } TEST(IoOpsTest, Restore_ShapeFn) { ShapeInferenceTestOp op("Restore"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[];[]", "?"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[?]"); } TEST(IoOpsTest, RestoreV2_ShapeFn) { ShapeInferenceTestOp op("RestoreV2"); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input({"prefix", 0, DT_STRING}) .Input({"tensor_names", 0, DT_STRING}) .Input({"shapes_and_slices", 0, DT_STRING}) .Attr("dtypes", {DT_FLOAT, DT_INT64}) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?", "?;?"); INFER_OK(op, "[];[10];[10]", "?;?"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[?];[?]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[];[?,?];[?]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[];[?];[?,?]"); INFER_ERROR("in both shapes must be equal", op, "[];[10];[20]"); } TEST(IoOpsTest, RestoreSlice_ShapeFn) { ShapeInferenceTestOp op("RestoreSlice"); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[];[];[]", "?"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[?];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[];[?]"); } TEST(IoOpsTest, ShardedFilename_ShapeFn) { ShapeInferenceTestOp op("ShardedFilename"); INFER_OK(op, "?;?;?", "[]"); INFER_OK(op, "[];[];[]", "[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[?];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[];[?]"); } TEST(IoOpsTest, ShardedFilespec_ShapeFn) { ShapeInferenceTestOp op("ShardedFilespec"); INFER_OK(op, "?;?", "[]"); INFER_OK(op, "[];[]", "[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[?]"); } TEST(IoOpsTest, SingleScalarInputAndOutput_ShapeFns) { for (const char* op_name : {"ReadFile"}) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?", "[]"); INFER_OK(op, "[]", "[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?]"); } } TEST(IoOpsTest, TwoElementVectorInputsAndScalarOutput_ShapeFns) { for (const char* op_name : {"ReaderNumRecordsProduced", "ReaderNumWorkUnitsCompleted", "ReaderSerializeState"}) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?", "[]"); INFER_OK(op, "[2]", "[]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[]"); INFER_ERROR("Dimension must be 2 but is 3", op, "[3]"); } } TEST(IoOpsTest, ReaderRead_ShapeFn) { ShapeInferenceTestOp op("ReaderRead"); INFER_OK(op, "?;?", "[];[]"); INFER_OK(op, "[2];[?]", "[];[]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[?,?];[2]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[2];[]"); } TEST(IoOpsTest, ReaderReadUpTo_ShapeFn) { ShapeInferenceTestOp op("ReaderReadUpTo"); INFER_OK(op, "[2];[2];[]", "[?];[?]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];[2];[]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[2];[];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[2];[2];[?]"); } TEST(IoOpsTest, ReaderReset_ShapeFn) { ShapeInferenceTestOp op("ReaderReset"); INFER_OK(op, "[2]", ""); INFER_OK(op, "[?]", ""); INFER_OK(op, "?", ""); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[]"); } TEST(IoOpsTest, ReaderRestoreState_ShapeFn) { ShapeInferenceTestOp op("ReaderRestoreState"); INFER_OK(op, "?;?", ""); INFER_OK(op, "[2];[]", ""); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[?]"); } TEST(IoOpsTest, MatchingFiles_ShapeFn) { ShapeInferenceTestOp op("MatchingFiles"); INFER_OK(op, "?", "[?]"); INFER_OK(op, "[]", "[?]"); INFER_OK(op, "[42]", "[?]"); INFER_ERROR("Shape must be at most rank 1 but is rank 2", op, "[?,?]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/io_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/io_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
de005b97-03d9-41d3-b166-71fb677e9413
cpp
tensorflow/tensorflow
ctc_ops
tensorflow/core/ops/ctc_ops.cc
tensorflow/core/ops/ctc_ops_test.cc
#include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; REGISTER_OP("CTCLoss") .Input("inputs: T") .Input("labels_indices: int64") .Input("labels_values: int32") .Input("sequence_length: int32") .Attr("preprocess_collapse_repeated: bool = false") .Attr("ctc_merge_repeated: bool = true") .Attr("ignore_longer_outputs_than_inputs: bool = false") .Output("loss: T") .Output("gradient: T") .Attr("T: {float, double} = DT_FLOAT") .SetShapeFn([](InferenceContext* c) { ShapeHandle inputs; ShapeHandle labels_indices; ShapeHandle labels_values; ShapeHandle sequence_length; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 3, &inputs)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &labels_indices)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &labels_values)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 1, &sequence_length)); DimensionHandle unused; TF_RETURN_IF_ERROR(c->Merge(c->Dim(labels_indices, 0), c->Dim(labels_values, 0), &unused)); DimensionHandle batch_size; TF_RETURN_IF_ERROR( c->Merge(c->Dim(inputs, 1), c->Dim(sequence_length, 0), &batch_size)); TF_RETURN_IF_ERROR(c->ReplaceDim(inputs, 1, batch_size, &inputs)); c->set_output(0, c->Vector(batch_size)); c->set_output(1, inputs); return absl::OkStatus(); }); REGISTER_OP("CTCLossV2") .Input("inputs: float") .Input("labels_indices: int64") .Input("labels_values: int32") .Input("sequence_length: int32") .Attr("preprocess_collapse_repeated: bool = false") .Attr("ctc_merge_repeated: bool = true") .Attr("ignore_longer_outputs_than_inputs: bool = false") .Output("loss: float") .Output("gradient: float") .SetShapeFn([](InferenceContext* c) { ShapeHandle inputs; ShapeHandle labels_indices; ShapeHandle labels_values; ShapeHandle sequence_length; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 3, &inputs)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &labels_indices)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &labels_values)); TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 1, &sequence_length)); DimensionHandle unused; TF_RETURN_IF_ERROR(c->Merge(c->Dim(labels_indices, 0), c->Dim(labels_values, 0), &unused)); DimensionHandle batch_size; TF_RETURN_IF_ERROR( c->Merge(c->Dim(inputs, 1), c->Dim(sequence_length, 0), &batch_size)); TF_RETURN_IF_ERROR(c->ReplaceDim(inputs, 1, batch_size, &inputs)); c->set_output(0, c->Vector(batch_size)); c->set_output(1, inputs); return absl::OkStatus(); }); REGISTER_OP("CTCGreedyDecoder") .Input("inputs: T") .Input("sequence_length: int32") .Attr("merge_repeated: bool = false") .Attr("blank_index: int = -1") .Output("decoded_indices: int64") .Output("decoded_values: int64") .Output("decoded_shape: int64") .Output("log_probability: T") .Attr("T: {float, double} = DT_FLOAT") .SetShapeFn([](InferenceContext* c) { ShapeHandle inputs; ShapeHandle sequence_length; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 3, &inputs)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &sequence_length)); DimensionHandle batch_size; TF_RETURN_IF_ERROR( c->Merge(c->Dim(inputs, 1), c->Dim(sequence_length, 0), &batch_size)); DimensionHandle total_decoded_outputs = c->UnknownDim(); c->set_output(0, c->Matrix(total_decoded_outputs, 2)); c->set_output(1, c->Vector(total_decoded_outputs)); c->set_output(2, c->Vector(2)); c->set_output(3, c->Matrix(batch_size, 1)); return absl::OkStatus(); }); REGISTER_OP("CTCBeamSearchDecoder") .Input("inputs: T") .Input("sequence_length: int32") .Attr("beam_width: int >= 1") .Attr("top_paths: int >= 1") .Attr("merge_repeated: bool = true") .Output("decoded_indices: top_paths * int64") .Output("decoded_values: top_paths * int64") .Output("decoded_shape: top_paths * int64") .Output("log_probability: T") .Attr("T: {float, double} = DT_FLOAT") .SetShapeFn([](InferenceContext* c) { ShapeHandle inputs; ShapeHandle sequence_length; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 3, &inputs)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &sequence_length)); DimensionHandle batch_size; TF_RETURN_IF_ERROR( c->Merge(c->Dim(inputs, 1), c->Dim(sequence_length, 0), &batch_size)); int32_t top_paths; TF_RETURN_IF_ERROR(c->GetAttr("top_paths", &top_paths)); int out_idx = 0; for (int i = 0; i < top_paths; ++i) { c->set_output(out_idx++, c->Matrix(InferenceContext::kUnknownDim, 2)); } for (int i = 0; i < top_paths; ++i) { c->set_output(out_idx++, c->Vector(InferenceContext::kUnknownDim)); } ShapeHandle shape_v = c->Vector(2); for (int i = 0; i < top_paths; ++i) { c->set_output(out_idx++, shape_v); } c->set_output(out_idx++, c->Matrix(batch_size, top_paths)); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(CtcOpsTest, CTCLoss_ShapeFn) { ShapeInferenceTestOp op("CTCLoss"); INFER_ERROR("must be rank 3", op, "[];?;?;?"); INFER_ERROR("must be rank 2", op, "?;[];?;?"); INFER_ERROR("must be rank 1", op, "?;?;[];?"); INFER_ERROR("must be rank 1", op, "?;?;?;[]"); INFER_ERROR("must be equal", op, "?;[1,?];[2];?"); INFER_OK(op, "[?,?,?];?;?;[?]", "[d0_1|d3_0];[d0_0,d0_1|d3_0,d0_2]"); INFER_OK(op, "[?,1,?];?;?;[1]", "[d0_1|d3_0];[d0_0,d0_1|d3_0,d0_2]"); INFER_OK(op, "[?,?,?];?;?;[1]", "[d3_0];[d0_0,d3_0,d0_2]"); INFER_OK(op, "[?,1,?];?;?;[?]", "[d0_1];[d0_0,d0_1,d0_2]"); INFER_ERROR("must be equal", op, "[?,1,?];?;?;[2]"); } TEST(CtcOpsTest, CTCGreedyDecoder_ShapeFn) { ShapeInferenceTestOp op("CTCGreedyDecoder"); INFER_ERROR("must be rank 3", op, "[];?"); INFER_ERROR("must be rank 1", op, "?;[]"); INFER_OK(op, "[?,?,?];[?]", "[?,2];[?];[2];[d0_1|d1_0,1]"); INFER_OK(op, "[?,1,?];[1]", "[?,2];[?];[2];[d0_1|d1_0,1]"); INFER_OK(op, "[?,?,?];[1]", "[?,2];[?];[2];[d1_0,1]"); INFER_OK(op, "[?,1,?];[?]", "[?,2];[?];[2];[d0_1,1]"); INFER_ERROR("must be equal", op, "[?,1,?];[2]"); } TEST(CtcOpsTest, CTCBeamSearchDecoder_ShapeFn) { ShapeInferenceTestOp op("CTCBeamSearchDecoder"); auto set_top_paths = [&op](int top_paths) { TF_ASSERT_OK(NodeDefBuilder("test", "CTCBeamSearchDecoder") .Input({"a", 0, DT_FLOAT}) .Input({"b", 0, DT_INT32}) .Attr("top_paths", top_paths) .Finalize(&op.node_def)); }; set_top_paths(1); INFER_ERROR("must be rank 3", op, "[];?"); INFER_ERROR("must be rank 1", op, "?;[]"); INFER_OK(op, "[?,?,?];[?]", "[?,2];[?];[2];[d0_1|d1_0,1]"); INFER_OK(op, "[?,1,?];[1]", "[?,2];[?];[2];[d0_1|d1_0,1]"); INFER_OK(op, "[?,?,?];[1]", "[?,2];[?];[2];[d1_0,1]"); INFER_OK(op, "[?,1,?];[?]", "[?,2];[?];[2];[d0_1,1]"); INFER_ERROR("must be equal", op, "[?,1,?];[2]"); set_top_paths(2); INFER_OK(op, "?;?", "[?,2];[?,2];[?];[?];[2];[2];[?,2]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/ctc_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/ctc_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f229d361-0fa4-493a-b68e-5e828b20bda1
cpp
tensorflow/tensorflow
array_grad
tensorflow/c/experimental/gradients/array_grad.cc
tensorflow/c/experimental/gradients/array_grad_test.cc
#include "tensorflow/c/experimental/gradients/array_grad.h" #include "tensorflow/c/eager/abstract_context.h" namespace tensorflow { namespace gradients { namespace { class IdentityNGradientFunction : public GradientFunction { public: Status Compute(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> grad_outputs, absl::Span<AbstractTensorHandle*> grad_inputs) override { for (int i = 0; i < grad_outputs.size(); i++) { auto grad_input = grad_outputs[i]; if (grad_input) { grad_input->Ref(); } grad_inputs[i] = grad_input; } return absl::OkStatus(); } ~IdentityNGradientFunction() override {} }; } GradientFunction* IdentityNRegisterer(const ForwardOperation& op) { return new IdentityNGradientFunction; } } }
#include "tensorflow/c/experimental/gradients/array_grad.h" #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/c/eager/c_api_unified_experimental_internal.h" #include "tensorflow/c/eager/unified_api_testutil.h" #include "tensorflow/c/experimental/gradients/grad_test_helper.h" #include "tensorflow/c/experimental/gradients/tape/tape_context.h" #include "tensorflow/c/experimental/ops/array_ops.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/platform/tensor_float_32_utils.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace gradients { namespace internal { namespace { using tensorflow::TF_StatusPtr; Status IdentityNModel(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> inputs, absl::Span<AbstractTensorHandle*> outputs) { std::vector<AbstractTensorHandle*> temp_outputs(2); TF_RETURN_IF_ERROR( ops::IdentityN(ctx, inputs, absl::MakeSpan(temp_outputs), "IdentityN")); outputs[0] = temp_outputs[1]; temp_outputs[0]->Unref(); return absl::OkStatus(); } class CppGradients : public ::testing::TestWithParam<std::tuple<const char*, bool, bool>> { protected: void SetUp() override { TF_StatusPtr status(TF_NewStatus()); TF_SetTracingImplementation(std::get<0>(GetParam()), status.get()); status_ = StatusFromTF_Status(status.get()); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); { AbstractContext* ctx_raw = nullptr; status_ = BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); immediate_execution_ctx_.reset(ctx_raw); } enable_tensor_float_32_execution(false); } AbstractContextPtr immediate_execution_ctx_; GradientRegistry registry_; Status status_; public: bool UseMlir() const { return strcmp(std::get<0>(GetParam()), "mlir") == 0; } bool UseFunction() const { return std::get<2>(GetParam()); } }; TEST_P(CppGradients, TestIdentityNGrad) { AbstractTensorHandlePtr x1; { AbstractTensorHandle* x1_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 1.0f, &x1_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x1.reset(x1_raw); } AbstractTensorHandlePtr x2; { AbstractTensorHandle* x2_raw = nullptr; status_ = TestScalarTensorHandle<float, TF_FLOAT>( immediate_execution_ctx_.get(), 1.0f, &x2_raw); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); x2.reset(x2_raw); } status_ = registry_.Register("IdentityN", IdentityNRegisterer); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); auto IdentityNGradModel = BuildGradModel(IdentityNModel, registry_); std::vector<AbstractTensorHandle*> outputs(2); status_ = RunModel(IdentityNGradModel, immediate_execution_ctx_.get(), {x1.get(), x2.get()}, absl::MakeSpan(outputs), UseFunction()); ASSERT_EQ(errors::OK, status_.code()) << status_.message(); EXPECT_EQ(outputs[0], nullptr); ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[1], {1.0f}, {}, 0)); outputs[1]->Unref(); } #ifdef PLATFORM_GOOGLE INSTANTIATE_TEST_SUITE_P( UnifiedCAPI, CppGradients, ::testing::Combine(::testing::Values("graphdef", "mlir"), ::testing::Values(false), ::testing::Values(true, false))); #else INSTANTIATE_TEST_SUITE_P( UnifiedCAPI, CppGradients, ::testing::Combine(::testing::Values("graphdef", "mlir"), ::testing::Values(false), ::testing::Values(true, false))); #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/gradients/array_grad.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/gradients/array_grad_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
65156ca6-0b0f-4ed2-aba1-0ec9220c7da4
cpp
tensorflow/tensorflow
array_ops
tensorflow/c/experimental/ops/array_ops.cc
tensorflow/core/ops/array_ops_test.cc
#include "tensorflow/c/experimental/ops/array_ops.h" #include "absl/types/span.h" #include "tensorflow/c/eager/abstract_context.h" #include "tensorflow/c/eager/abstract_operation.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/tracing_utils.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" using tensorflow::tracing::MaybeSetOpName; namespace tensorflow { namespace ops { Status Identity(AbstractContext* ctx, AbstractTensorHandle* const input, AbstractTensorHandle** output, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Identity", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(input)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(output, 1), &num_retvals); } Status IdentityN(AbstractContext* ctx, absl::Span<AbstractTensorHandle* const> input, absl::Span<AbstractTensorHandle*> output, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("IdentityN", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInputList(input)); int num_retvals = output.size(); return op_ptr->Execute(output, &num_retvals); } Status ZerosLike(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle** y, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("ZerosLike", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(y, 1), &num_retvals); } Status Shape(AbstractContext* ctx, AbstractTensorHandle* const input, AbstractTensorHandle** output, DataType out_type, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Shape", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(input)); TF_RETURN_IF_ERROR(op_ptr->SetAttrType("out_type", out_type)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(output, 1), &num_retvals); } Status ExpandDims(AbstractContext* ctx, AbstractTensorHandle* const input, AbstractTensorHandle* const dim, AbstractTensorHandle** output, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("ExpandDims", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(input)); TF_RETURN_IF_ERROR(op_ptr->AddInput(dim)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(output, 1), &num_retvals); } Status OnesLike(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle** y, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("OnesLike", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(y, 1), &num_retvals); } } }
#include "tensorflow/core/common_runtime/type_inference.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" namespace tensorflow { TEST(ArrayOpsTest, TensorScatterUpdate_ShapeFn) { ShapeInferenceTestOp op("TensorScatterUpdate"); INFER_OK(op, "[4,3];[8,2];[8]", "in0"); INFER_OK(op, "[?,?];[?,2];[?]", "in0"); INFER_OK(op, "[?];[?];[?]", "in0"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];[?,2];[?]"); INFER_ERROR("Indices and updates specified for empty input", op, "[0,2,2];[8,2];[8]"); INFER_ERROR( "Dimensions [0,1) of indices[shape=[8,2]] = [8] must match " "dimensions [0,1) of updates[shape=[9]] = [9]", op, "[?,?];[8,2];[9]"); INFER_ERROR( "Dimensions [2,2) of input[shape=[?,?]] = [] must match " "dimensions [1,2) of updates[shape=[?,1]] = [1]", op, "[?,?];[?,2];[?,1]"); } TEST(ArrayOpsTest, ScatterNd_ShapeFn) { ShapeInferenceTestOp op("ScatterNd"); INFER_OK(op, "[8,2];[8];[2]", "[?,?]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[?,2];[?];[]"); INFER_ERROR( "Dimensions [0,1) of indices[shape=[8,2]] = [8] must match " "dimensions [0,1) of updates[shape=[9]] = [9]", op, "[8,2];[9];[?]"); } TEST(ArrayOpsTest, UnravelIndex_ShapeFn) { ShapeInferenceTestOp op("UnravelIndex"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[];[?]", "[d1_0]"); INFER_OK(op, "[4,5];[?]", "[d1_0,20]"); INFER_OK(op, "[2,3,4];[?]", "[d1_0,24]"); INFER_OK(op, "?;[?]", "?"); INFER_OK(op, "[?];[?]", "[d1_0,?]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[1,1]"); } TEST(ArrayOpsTest, Pack_ShapeFn) { ShapeInferenceTestOp op("Pack"); auto set_axis = [&op](int axis) { int n = 3; std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_FLOAT); TF_ASSERT_OK(NodeDefBuilder("test", "Pack") .Input(src_list) .Attr("N", n) .Attr("axis", axis) .Finalize(&op.node_def)); }; set_axis(0); INFER_OK(op, "?;?;?", "?"); for (int axis : {0, -3}) { set_axis(axis); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[1,3];[1,3];?", "[3,d0_0|d1_0,d0_1|d1_1]"); INFER_OK(op, "[?,3];[1,3];?", "[3,d1_0,d0_1|d1_1]"); INFER_OK(op, "[?,?];[1,3];?", "[3,d1_0,d1_1]"); } for (int axis : {1, -2}) { set_axis(axis); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[1,3];[1,3];?", "[d0_0|d1_0,3,d0_1|d1_1]"); INFER_OK(op, "[?,3];[1,3];?", "[d1_0,3,d0_1|d1_1]"); INFER_OK(op, "[?,?];[1,3];?", "[d1_0,3,d1_1]"); } for (int axis : {2, -1}) { set_axis(axis); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[1,3];[1,3];?", "[d0_0|d1_0,d0_1|d1_1,3]"); INFER_OK(op, "[?,3];[1,3];?", "[d1_0,d0_1|d1_1,3]"); INFER_OK(op, "[?,?];[1,3];?", "[d1_0,d1_1,3]"); } set_axis(-4); INFER_ERROR("Invalid axis: -4; must be in [-3,3)", op, "[1,3];[1,3];?"); set_axis(3); INFER_ERROR("Invalid axis: 3; must be in [-3,3)", op, "[1,3];[1,3];?"); set_axis(0); INFER_ERROR("Shapes must be equal rank, but are 3 and 2", op, "[1,2,3];?;[1,4]"); INFER_ERROR("From merging shape 0 with other shapes.", op, "[1,2,3];?;[1,4]"); } TEST(ArrayOpsTest, UnPack_ShapeFn) { ShapeInferenceTestOp op("Unpack"); auto set_axis_and_num = [&op](int axis, int num) { TF_ASSERT_OK(NodeDefBuilder("test", "Unpack") .Input("a", 0, DT_FLOAT) .Attr("axis", axis) .Attr("num", num) .Finalize(&op.node_def)); }; set_axis_and_num(0, 1); INFER_OK(op, "?", "?"); for (int axis : {0, -3}) { set_axis_and_num(axis, 1); INFER_OK(op, "?", "?"); INFER_OK(op, "[1,2,3]", "[d0_1,d0_2]"); INFER_OK(op, "[?,?,?]", "[d0_1,d0_2]"); } for (int axis : {1, -2}) { set_axis_and_num(axis, 2); INFER_OK(op, "[1,2,3]", "[d0_0,d0_2];[d0_0,d0_2]"); INFER_OK(op, "[?,?,?]", "[d0_0,d0_2];[d0_0,d0_2]"); } for (int axis : {2, -1}) { set_axis_and_num(axis, 3); INFER_OK(op, "[1,2,3]", "[d0_0,d0_1];[d0_0,d0_1];[d0_0,d0_1]"); INFER_OK(op, "[?,?,?]", "[d0_0,d0_1];[d0_0,d0_1];[d0_0,d0_1]"); } set_axis_and_num(2, 2); INFER_ERROR("Dimension must be 2 but is 3", op, "[1,2,3]"); set_axis_and_num(-4, 3); INFER_ERROR("Invalid axis: -4; must be in [-3,3)", op, "[1,2,3]"); set_axis_and_num(3, 3); INFER_ERROR("Invalid axis: 3; must be in [-3,3)", op, "[1,2,3]"); } TEST(ArrayOpsTest, Const_ShapeFn) { ShapeInferenceTestOp op("Const"); TensorProto tensor_proto; auto* shape_proto = tensor_proto.mutable_tensor_shape(); auto rebuild_node_def = [&op, &tensor_proto]() { TF_ASSERT_OK(NodeDefBuilder("test", "Const") .Attr("value", tensor_proto) .Finalize(&op.node_def)); }; TensorShape{}.AsProto(shape_proto); rebuild_node_def(); INFER_OK(op, "", "[]"); TensorShape{1, 2, 3, 4}.AsProto(shape_proto); rebuild_node_def(); INFER_OK(op, "", "[1,2,3,4]"); shape_proto->add_dim()->set_size(-1); rebuild_node_def(); INFER_ERROR("Shape [1,2,3,4,?] is not fully defined", op, ""); } TEST(ArrayOpsTest, UnchangedShapes_ShapeFn) { for (const char* op_name : { "CheckNumerics", "Identity", "RefIdentity", "QuantizeAndDequantize", "StopGradient", "ZerosLike", "OnesLike", }) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?", "in0"); INFER_OK(op, "[]", "in0"); INFER_OK(op, "[1,2,?,4,5]", "in0"); } ShapeInferenceTestOp op("MatrixBandPart"); INFER_OK(op, "?;?;?", "in0"); INFER_OK(op, "[];?;?", "in0"); INFER_OK(op, "[1,2,?,4,5];?;?", "in0"); } TEST(ArrayOpsTest, GuaranteeConst_ShapeFn) { ShapeInferenceTestOp op("GuaranteeConst"); INFER_OK(op, "?", "in0"); INFER_OK(op, "[]", "in0"); INFER_OK(op, "[1,2,?,4,5]", "in0"); } TEST(ArrayOpsTest, Identity_ShapeFnHandles) { const char* op_name = "Identity"; ShapeInferenceTestOp op(op_name); const OpRegistrationData* op_reg_data; TF_ASSERT_OK(OpRegistry::Global()->LookUp(op.name, &op_reg_data)); std::vector< std::unique_ptr<std::vector<std::pair<PartialTensorShape, DataType>>>> handle_data; handle_data.emplace_back( new std::vector<std::pair<PartialTensorShape, DataType>>( {{PartialTensorShape(), DT_BOOL}})); shape_inference::InferenceContext c( TF_GRAPH_DEF_VERSION, op.node_def, op_reg_data->op_def, {PartialTensorShape()}, {}, {}, handle_data); TF_ASSERT_OK(c.construction_status()); ASSERT_TRUE(op_reg_data->shape_inference_fn != nullptr); TF_ASSERT_OK(c.Run(op_reg_data->shape_inference_fn)); const auto* shapes_and_types = c.output_handle_shapes_and_types(0); ASSERT_TRUE(shapes_and_types != nullptr); ASSERT_EQ(1, shapes_and_types->size()); EXPECT_EQ((*shapes_and_types)[0].dtype, DT_BOOL); } TEST(ArrayOpsTest, Diag_ShapeFn) { ShapeInferenceTestOp op("Diag"); INFER_OK(op, "?", "?"); INFER_OK(op, "[1,?,3]", "[d0_0,d0_1,d0_2,d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,1,2,3]", "[d0_0,d0_1,d0_2,d0_3,d0_0,d0_1,d0_2,d0_3]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[]"); } TEST(ArrayOpsTest, DiagPart_ShapeFn) { ShapeInferenceTestOp op("DiagPart"); INFER_OK(op, "?", "?"); INFER_OK(op, "[1,?,?,4]", "[d0_0,d0_3]"); INFER_OK(op, "[1,?,3,?,4,3]", "[d0_0,d0_4,d0_2|d0_5]"); INFER_OK(op, "[1,2,3,?,?,?,?,4]", "[d0_0,d0_1,d0_2,d0_7]"); INFER_ERROR("Input must have even and non-zero rank", op, "[]"); INFER_ERROR("Input must have even and non-zero rank", op, "[?]"); INFER_ERROR("Input must have even and non-zero rank", op, "[1,2,3]"); INFER_ERROR("Dimensions must be equal, but are 2 and 10", op, "[1,2,?,10]"); } TEST(ArrayOpsTest, MatrixDiag_ShapeFn) { ShapeInferenceTestOp op("MatrixDiag"); INFER_OK(op, "?", "?"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[]"); INFER_OK(op, "[?]", "[d0_0,d0_0]"); INFER_OK(op, "[1,?,?,4]", "[d0_0,d0_1,d0_2,d0_3,d0_3]"); } TEST(ArrayOpsTest, MatrixDiagPart_ShapeFn) { ShapeInferenceTestOp op("MatrixDiagPart"); INFER_OK(op, "?", "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?]"); INFER_OK(op, "[?,1,2,2]", "[d0_0,d0_1,d0_2|d0_3]"); INFER_OK(op, "[?,1,2,3]", "[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,1,3,2]", "[d0_0,d0_1,d0_3]"); } TEST(ArrayOpsTest, Reverse_ShapeFn) { ShapeInferenceTestOp op("Reverse"); INFER_OK(op, "?;?", "in0"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[?,2]"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];[4]"); INFER_ERROR("reverse does not work on tensors with more than 8 dimensions", op, "[1,2,3,4,5,6,7,8,9];[9]"); INFER_OK(op, "[1,2,3,?];[4]", "in0"); INFER_OK(op, "[1,2,3,?,5,6,7,8];[8]", "in0"); } TEST(ArrayOpsTest, ReverseV2_ShapeFn) { ShapeInferenceTestOp op("ReverseV2"); INFER_OK(op, "?;?", "in0"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[?,2]"); INFER_OK(op, "[1,2,3];[2]", "in0"); INFER_ERROR("reverse does not work on tensors with more than 8 dimensions", op, "[1,2,3,4,5,6,7,8,9];[9]"); INFER_OK(op, "[1,2,3,?];[4]", "in0"); INFER_OK(op, "[1,2,3,?,5,6,7,8];[8]", "in0"); } TEST(ArrayOpsTest, Fill_ShapeFn) { ShapeInferenceTestOp op("Fill"); AddNodeAttr("index_type", DT_INT32, &op.node_def); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[?];?", "?"); INFER_OK(op, "[4];?", "[?,?,?,?]"); Tensor in_t = test::AsTensor<int32>({1, 2, 3, 4}); op.input_tensors[0] = &in_t; INFER_OK(op, "[4];?", "[1,2,3,4]"); } TEST(ArrayOpsTest, Gather_ShapeFn) { ShapeInferenceTestOp op("Gather"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[1,?,2];[3]", "[d1_0,d0_1,d0_2]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];[1,2,3]"); } TEST(ArrayOpsTest, GatherV2_ShapeFn) { ShapeInferenceTestOp op("GatherV2"); AddNodeAttr("batch_dims", 0, &op.node_def); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[1,2,3];[3];[]", "[?,?,?]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];[1,2,3];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1];[1,2,3];[1]"); Tensor axis_dim_t; op.input_tensors.resize(3); op.input_tensors[2] = &axis_dim_t; axis_dim_t = test::AsScalar(1); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1];[1,2];[]"); axis_dim_t = test::AsScalar(0); INFER_OK(op, "[1,2,3];[];[]", "[d0_1,d0_2]"); axis_dim_t = test::AsScalar(1); INFER_OK(op, "[1,2,3];[];[]", "[d0_0,d0_2]"); axis_dim_t = test::AsScalar(2); INFER_OK(op, "[1,2,3];[];[]", "[d0_0,d0_1]"); axis_dim_t = test::AsScalar(0); INFER_OK(op, "[1,2,3];[5];[]", "[d1_0,d0_1,d0_2]"); axis_dim_t = test::AsScalar(1); INFER_OK(op, "[1,2,3];[5];[]", "[d0_0,d1_0,d0_2]"); axis_dim_t = test::AsScalar(2); INFER_OK(op, "[1,2,3];[5];[]", "[d0_0,d0_1,d1_0]"); axis_dim_t = test::AsScalar(0); INFER_OK(op, "[1,2,3];[5,6];[]", "[d1_0,d1_1,d0_1,d0_2]"); axis_dim_t = test::AsScalar(1); INFER_OK(op, "[1,2,3];[5,6];[]", "[d0_0,d1_0,d1_1,d0_2]"); axis_dim_t = test::AsScalar(2); INFER_OK(op, "[1,2,3];[5,6];[]", "[d0_0,d0_1,d1_0,d1_1]"); axis_dim_t = test::AsScalar(-3); INFER_OK(op, "[1,2,3];[5,6];[]", "[d1_0,d1_1,d0_1,d0_2]"); axis_dim_t = test::AsScalar(-2); INFER_OK(op, "[1,2,3];[5,6];[]", "[d0_0,d1_0,d1_1,d0_2]"); axis_dim_t = test::AsScalar(-1); INFER_OK(op, "[1,2,3];[5,6];[]", "[d0_0,d0_1,d1_0,d1_1]"); ShapeInferenceTestOp batch_op("GatherV2"); AddNodeAttr("batch_dims", 1, &batch_op.node_def); INFER_OK(batch_op, "[1,4800,8];[1,28400];[]", "[?,?,?]"); ShapeInferenceTestOp batch_op_2("GatherV2"); AddNodeAttr("batch_dims", 2, &batch_op_2.node_def); INFER_OK(batch_op_2, "[1,2,3,4,5];[1,2,3];[]", "[?,?,?,?,?]"); } TEST(ArrayOpsTest, GatherNd_ShapeFn) { ShapeInferenceTestOp op("GatherNd"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[1,?,3,?];[?,0]", "[d1_0,d0_0,d0_1,d0_2,d0_3]"); INFER_OK(op, "[1,?,3,?];[?,4]", "[d1_0]"); INFER_ERROR("indices.shape[-1] must be <= params.rank", op, "[1,2,3];[4]"); } TEST(ArrayOpsTest, Shape_ShapeFn) { ShapeInferenceTestOp op("Shape"); AddNodeAttr("out_type", DT_INT32, &op.node_def); INFER_OK(op, "?", "[?]"); INFER_OK(op, "[?]", "[1]"); INFER_OK(op, "[?,2,3,4,5]", "[5]"); } static Status type_inference(Graph& graph) { GraphOptimizationPassOptions opt_options; std::unique_ptr<Graph> graph_ptr(new Graph(OpRegistry::Global())); graph_ptr->Copy(graph); opt_options.graph = &graph_ptr; opt_options.flib_def = graph.mutable_flib_def(); TypeInferencePass pass; return pass.Run(opt_options); } REGISTER_OP("ArrayOpsTest>ConstTypeCtor") .Output("output: dtype") .Attr("value: tensor") .Attr("dtype: type") .SetTypeConstructor(full_type::Unary(TFT_TENSOR, "dtype")) .SetShapeFn(shape_inference::UnknownShape); TEST(ArrayOpsTest, Shape_TypeCtor) { Graph graph(OpRegistry::Global()); Node* input_tensor_op; TensorProto tensor_proto; TF_EXPECT_OK(NodeBuilder("input_tensor_op", "ArrayOpsTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_FLOAT) .Finalize(&graph, &input_tensor_op)); Node* shape_op; TF_EXPECT_OK(NodeBuilder("shape_op", "Shape") .Input(input_tensor_op) .Attr("T", DT_FLOAT) .Attr("out_type", DT_INT32) .Finalize(&graph, &shape_op)); TF_EXPECT_OK(type_inference(graph)); FullTypeDef expected_shape_op_t; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(type_id: TFT_PRODUCT args { type_id: TFT_SHAPE_TENSOR args { type_id: TFT_INT32 } })pb", &expected_shape_op_t)); EXPECT_TRUE(full_type::IsEqual(shape_op->def().experimental_type(), expected_shape_op_t)) << "fulltype is\n" << shape_op->def().experimental_type().DebugString() << "\nexpected\n" << expected_shape_op_t.DebugString(); } TEST(ArrayOpsTest, ShapeN_ShapeFn) { ShapeInferenceTestOp op("ShapeN"); int n = 3; std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_FLOAT); TF_ASSERT_OK(NodeDefBuilder("test", "ShapeN") .Input(src_list) .Attr("N", n) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?", "[?];[?];[?]"); INFER_OK(op, "[?];[?];[?]", "[1];[1];[1]"); INFER_OK(op, "[?,2,3,4,5];?;[1,?,3]", "[5];[?];[3]"); } TEST(ArrayOpsTest, Unique_ShapeFn) { ShapeInferenceTestOp op("Unique"); INFER_OK(op, "?", "[?];in0"); INFER_OK(op, "[5]", "[?];in0"); INFER_ERROR("Shape must be rank 1 but is rank 5", op, "[1,2,3,?,5]"); } TEST(ArrayOpsTest, UniqueWithCounts_ShapeFn) { ShapeInferenceTestOp op("UniqueWithCounts"); INFER_OK(op, "?", "[?];in0;[?]"); INFER_OK(op, "[1,2,3,?,5]", "[?];in0;[?]"); } TEST(ArrayOpsTest, InvertPermutation_ShapeFn) { ShapeInferenceTestOp op("InvertPermutation"); INFER_OK(op, "?", "[?]"); INFER_OK(op, "[1]", "in0"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[]"); } TEST(ArrayOpsTest, PadD_ShapeFn) { for (const char* op_name : {"Pad", "MirrorPad"}) { ShapeInferenceTestOp op(op_name); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "?;[1,2,3]"); INFER_ERROR("Dimension must be 2 but is 4", op, "?;[1,4]"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];[4,2]"); INFER_OK(op, "[1,2,3];?", "[?,?,?]"); INFER_OK(op, "?;[3,2]", "[?,?,?]"); Tensor paddings_t(DT_INT64, TensorShape{3, 2}); test::FillValues<int64_t>(&paddings_t, {1, 10, 2, 20, 3, 30}); op.input_tensors[1] = &paddings_t; INFER_OK(op, "[100,200,300];[3,2]", "[111,222,333]"); INFER_OK(op, "[100,?,300];[3,2]", "[111,?,333]"); INFER_OK(op, "?;[3,2]", "[?,?,?]"); INFER_OK(op, "?;?", "[?,?,?]"); } } TEST(ArrayOpsTest, PadV2_ShapeFn) { ShapeInferenceTestOp op("PadV2"); op.input_tensors.resize(3); INFER_OK(op, "?;?;?", "?"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "?;[1,2,3];?"); INFER_ERROR("Dimension must be 2 but is 4", op, "?;[1,4];?"); INFER_ERROR("Shape must be rank 4 but is rank 3", op, "[1,2,3];[4,2];[]"); INFER_OK(op, "[1,2,3];?;[]", "[?,?,?]"); INFER_OK(op, "?;[3,2];[]", "[?,?,?]"); Tensor paddings_t(DT_INT64, TensorShape{3, 2}); test::FillValues<int64_t>(&paddings_t, {1, 10, 2, 20, 3, 30}); op.input_tensors[1] = &paddings_t; INFER_OK(op, "[100,200,300];[3,2];[]", "[111,222,333]"); INFER_OK(op, "[100,?,300];[3,2];[]", "[111,?,333]"); INFER_OK(op, "?;[3,2];[]", "[?,?,?]"); INFER_OK(op, "?;?;[]", "[?,?,?]"); } TEST(ArrayOpsTest, MirrorPadGrad_ShapeFn) { ShapeInferenceTestOp op("MirrorPadGrad"); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_OK(op, "?;[?,4]", "?"); INFER_ERROR("must be rank 3 but is rank 2", op, "[?,?];[3,2]"); INFER_ERROR("Dimension 1 in both shapes must be equal, but are 3 and 2", op, "[?,?,?];[3,3]"); INFER_OK(op, "[?,?,?];[3,2]", "[?,?,?]"); Tensor paddings_t(DT_INT64, TensorShape{3, 2}); test::FillValues<int64_t>(&paddings_t, {1, 10, 2, 20, 3, 30}); op.input_tensors[1] = &paddings_t; INFER_OK(op, "[111,222,333];[3,2]", "[100,200,300]"); INFER_OK(op, "[111,?,333];[3,2]", "[100,?,300]"); } TEST(ArrayOpsTest, BroadcastArgs_ShapeFn) { ShapeInferenceTestOp op("BroadcastArgs"); INFER_OK(op, "?;?", "[?]"); INFER_OK(op, "[123];[1]", "[123]"); INFER_OK(op, "[1];[123]", "[123]"); INFER_OK(op, "[123];[121]", "[123]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); } TEST(ArrayOpsTest, BroadcastTo_ShapeFn) { ShapeInferenceTestOp op("BroadcastTo"); op.input_tensors.resize(2); INFER_OK(op, "?;[?]", "?"); INFER_OK(op, "[];[1]", "[?]"); INFER_OK(op, "[1];[1]", "[?]"); INFER_OK(op, "[1];[2]", "[?,?]"); INFER_OK(op, "[2,2];[3]", "[?,d0_0,d0_1]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[?,?]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[2];[]"); INFER_ERROR("Shape must be at most rank 1 but is rank 2", op, "[2,2];[1]"); Tensor shape_t(DT_INT64, TensorShape{3}); test::FillValues<int64_t>(&shape_t, {2, 10, 3}); op.input_tensors[1] = &shape_t; INFER_OK(op, "[1,?,1];[3]", "[2,10,3]"); INFER_OK(op, "[1,1,1];[3]", "[2,10,3]"); INFER_OK(op, "[10,1];[3]", "[2,d0_0,3]"); INFER_ERROR("Dimensions must be equal, but are 3 and 2 for", op, "[3,1,1];[3]"); INFER_ERROR("Dimensions must be equal, but are 2 and 10 for", op, "[2,2,1];[3]"); } TEST(ArrayOpsTest, BroadcastGradientArgs_ShapeFn) { ShapeInferenceTestOp op("BroadcastGradientArgs"); INFER_OK(op, "?;?", "[?];[?]"); INFER_OK(op, "[123];[456]", "[?];[?]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); } TEST(ArrayOpsTest, ListDiff_ShapeFn) { ShapeInferenceTestOp op("BroadcastGradientArgs"); INFER_OK(op, "?;?", "[?];[?]"); INFER_OK(op, "[123];[456]", "[?];[?]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "?;[]"); } TEST(ArrayOpsTest, MatrixSetDiag_ShapeFn) { ShapeInferenceTestOp op("MatrixSetDiag"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1];?"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "?;[]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[2,2];[]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[2,2];[2,2]"); INFER_ERROR("Dimensions must be equal, but are 2 and 3", op, "[2,3];[3]"); INFER_OK(op, "?;?", "in0"); INFER_OK(op, "[1,2,2];[1,2]", "in0"); INFER_OK(op, "[1,2,3];?", "in0"); INFER_OK(op, "[1,3,2];?", "in0"); INFER_OK(op, "[1,?,2];[?,?]", "in0"); INFER_OK(op, "[1,?,?];[?,2]", "in0"); INFER_OK(op, "?;[1,2]", "[d1_0,?,?]"); INFER_OK(op, "[?,?,3];[1,2]", "[d1_0,d0_1,d0_2]"); INFER_OK(op, "[?,3,?];[1,2]", "[d1_0,d0_1,d0_2]"); INFER_OK(op, "[?,3,2];[1,2]", "[d1_0,d0_1,d0_2]"); } TEST(ArrayOpsTest, ExpandDims_ShapeFn) { ShapeInferenceTestOp op("ExpandDims"); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); Tensor dim_t; op.input_tensors[1] = &dim_t; for (int32_t idx : {0, -4}) { dim_t = test::AsScalar<int32>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[1,d0_0,d0_1,d0_2]"); } for (int32_t idx : {1, -3}) { dim_t = test::AsScalar<int32>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,1,d0_1,d0_2]"); dim_t = test::AsScalar<int64_t>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,1,d0_1,d0_2]"); } for (int32_t idx : {2, -2}) { dim_t = test::AsScalar<int32>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,d0_1,1,d0_2]"); dim_t = test::AsScalar<int64_t>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,d0_1,1,d0_2]"); } for (int32_t idx : {3, -1}) { dim_t = test::AsScalar<int32>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,d0_1,d0_2,1]"); dim_t = test::AsScalar<int64_t>(idx); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[d0_0,d0_1,d0_2,1]"); } for (int32_t idx : {4, -5}) { dim_t = test::AsScalar<int32>(idx); INFER_ERROR("not in the interval [-4, 3]", op, "[5,?,7];?"); dim_t = test::AsScalar<int64_t>(idx); INFER_ERROR("not in the interval [-4, 3]", op, "[5,?,7];?"); } std::vector<int32> dims; dims.push_back(0); dim_t = test::AsTensor<int32>(dims); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[5,?,7];?", "[1,d0_0,d0_1,d0_2]"); dims.push_back(1); dim_t = test::AsTensor<int32>(dims); INFER_ERROR("'dim' input must be a tensor with a single", op, "?;?"); INFER_ERROR("'dim' input must be a tensor with a single", op, "[5,6,7];?"); dim_t = test::AsScalar<int32>(0); INFER_OK(op, "[2];[]", "[1,d0_0]"); dim_t = test::AsScalar<int32>(1); INFER_OK(op, "[2];[]", "[d0_0,1]"); dim_t = test::AsScalar<int32>(-1); INFER_OK(op, "[2];[]", "[d0_0,1]"); } TEST(ArrayOpsTest, ImmutableConst_ShapeFn) { ShapeInferenceTestOp op("ImmutableConst"); TF_ASSERT_OK(NodeDefBuilder("test", "ImmutableConst") .Attr("dtype", DT_FLOAT) .Attr("shape", TensorShape({1, 2, 3})) .Attr("memory_region_name", "test_region") .Finalize(&op.node_def)); INFER_OK(op, "", "[1,2,3]"); TF_ASSERT_OK(NodeDefBuilder("test", "ImmutableConst") .Attr("dtype", DT_FLOAT) .Attr("shape", TensorShape({})) .Attr("memory_region_name", "test_region") .Finalize(&op.node_def)); INFER_OK(op, "", "[]"); TF_ASSERT_OK(NodeDefBuilder("test", "ImmutableConst") .Attr("dtype", DT_FLOAT) .Attr("shape", "invalid") .Attr("memory_region_name", "test_region") .Finalize(&op.node_def)); INFER_ERROR("AttrValue had value with type 'string' when 'shape' expected", op, ""); } TEST(ArrayOpsTest, Concat_ShapeFn) { ShapeInferenceTestOp op("Concat"); auto set_n = [&op](int n) { std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_FLOAT); TF_ASSERT_OK(NodeDefBuilder("test", "Concat") .Input({"concat_dim", 0, DT_INT32}) .Input(src_list) .Attr("n", n) .Finalize(&op.node_def)); }; set_n(2); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1];?;?"); set_n(7); INFER_OK(op, "?;?;?;?;[1,2,3];?;[3,2,1];?", "[?,?,?]"); set_n(4); INFER_OK(op, "?;?;?;[1,2,3,4];[4,3,2,1]", "[?,?,?,?]"); INFER_OK(op, "?;?;?;?;?", "?"); INFER_ERROR("Can't concatenate scalars (use tf.stack instead)", op, "?;?;?;[];[]"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "?;?;?;[1,2];[1,2,3]"); Tensor concat_dim_t; op.input_tensors.push_back(&concat_dim_t); set_n(2); for (int concat_dim : {0, -3}) { concat_dim_t = test::AsScalar(concat_dim); INFER_OK(op, "[];[100,2,?];[10,?,3]", "[110,d1_1,d2_2]"); INFER_ERROR("Dimension 1 in both shapes must be equal, but are 5 and 3", op, "[];[100,2,5];[10,?,3]"); INFER_OK(op, "[];[100,2,?];[?,?,3]", "[?,d1_1,d2_2]"); INFER_OK(op, "[];[?,2,?];[10,?,3]", "[?,d1_1,d2_2]"); } for (bool use_negative : {false, true}) { concat_dim_t = test::AsScalar(use_negative ? -2 : 1); INFER_OK(op, "[];[1,100,?];[?,10,3]", "[d1_0,110,d2_2]"); concat_dim_t = test::AsScalar(use_negative ? -1 : 1); INFER_OK(op, "[];[1,100];[?,10]", "[d1_0,110]"); INFER_OK(op, "[];[?,100];[1,10]", "[d2_0,110]"); concat_dim_t = test::AsScalar(use_negative ? -2 : 1); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[];[100];[10,?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[];[100,5];[10]"); } concat_dim_t = test::AsScalar(-2); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[];[100];[10,?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[];[100,5];[10]"); set_n(5); concat_dim_t = test::AsScalar(1); INFER_OK(op, "[];?;[1,100,?];[?,?,?];[?,10,3];?", "[d2_0,?,d4_2]"); } TEST(ArrayOpsTest, ConcatV2_ShapeFn) { ShapeInferenceTestOp op("ConcatV2"); auto set_n = [&op](int n) { std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_FLOAT); TF_ASSERT_OK(NodeDefBuilder("test", "ConcatV2") .Input(src_list) .Input({"axis", 0, DT_INT32}) .Attr("n", n) .Finalize(&op.node_def)); }; set_n(2); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "?;?;[1]"); set_n(7); INFER_OK(op, "?;?;?;?;[1,2,3];?;[3,2,1];?", "[?,?,?]"); set_n(4); INFER_OK(op, "?;?;[1,2,3,4];[4,3,2,1];?", "[?,?,?,?]"); INFER_OK(op, "?;?;?;?;?", "?"); INFER_ERROR("Can't concatenate scalars (use tf.stack instead)", op, "?;?;[];[];?"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "?;?;[1,2];[1,2,3];?"); Tensor concat_dim_t; op.input_tensors.resize(3); op.input_tensors[2] = &concat_dim_t; set_n(2); concat_dim_t = test::AsScalar(0); INFER_OK(op, "[100,2,?];[10,?,3];[]", "[110,d0_1,d1_2]"); INFER_ERROR("Dimension 1 in both shapes must be equal, but are 5 and 3", op, "[100,2,5];[10,?,3];[]"); INFER_OK(op, "[100,2,?];[?,?,3];[]", "[?,d0_1,d1_2]"); INFER_OK(op, "[?,2,?];[10,?,3];[]", "[?,d0_1,d1_2]"); concat_dim_t = test::AsScalar(1); INFER_OK(op, "[1,100,?];[?,10,3];[]", "[d0_0,110,d1_2]"); INFER_OK(op, "[1,100];[?,10];[]", "[d0_0,110]"); INFER_OK(op, "[?,100];[1,10];[]", "[d1_0,110]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[100];[10,?];[]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[100,5];[10];[]"); concat_dim_t = test::AsScalar(-2); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[100];[10,?];[]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[100,5];[10];[]"); op.input_tensors.resize(6); op.input_tensors[3] = nullptr; op.input_tensors[5] = &concat_dim_t; concat_dim_t = test::AsScalar(1); set_n(5); INFER_OK(op, "?;[1,100,?];[?,?,?];[?,10,3];?;[]", "[d1_0,?,d3_2]"); } TEST(ArrayOpsTest, ConcatOffset_ShapeFn) { ShapeInferenceTestOp op("ConcatOffset"); const int n = 4; std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_INT32); TF_ASSERT_OK(NodeDefBuilder("test", "ConcatOffset") .Input({"concat_dim", 0, DT_INT32}) .Input(src_list) .Attr("n", n) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?;?;?", "in1;in2;in3;in4"); } TEST(ArrayOpsTest, Reshape_ShapeFn) { ShapeInferenceTestOp op("Reshape"); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[?];?", "?"); INFER_OK(op, "?;[?]", "?"); INFER_OK(op, "[?];[?]", "?"); INFER_OK(op, "[4];[?]", "?"); Tensor new_shape = test::AsTensor<int32>({1, 2, 3}); op.input_tensors[1] = &new_shape; INFER_OK(op, "?;[3]", "[1,2,3]"); INFER_OK(op, "[?];[3]", "[1,2,3]"); INFER_OK(op, "[6];[3]", "[1,2,3]"); INFER_ERROR( "Cannot reshape a tensor with 12 elements to shape [1,2,3] (6 elements)", op, "[3,4];[3]"); new_shape = test::AsTensor<int32>({-1}); INFER_OK(op, "?;[1]", "[?]"); INFER_OK(op, "[?];[1]", "[d0_0]"); INFER_OK(op, "[2,2];[1]", "[4]"); new_shape = test::AsTensor<int32>({2, -1}); INFER_OK(op, "[3,4];[2]", "[2,6]"); INFER_ERROR("Dimension size must be evenly divisible by 2 but is 7", op, "[7];[2]"); new_shape = test::AsTensor<int32>({-1, -1, 2}); INFER_OK(op, "[8];[3]", "[?,?,2]"); INFER_OK(op, "?;[3]", "[?,?,2]"); new_shape = test::AsTensor<int32>({-1, 2, 3}); INFER_OK(op, "[?,2,3];[3]", "[d0_0,2,3]"); new_shape = test::AsTensor<int32>({}); INFER_OK(op, "[1];[0]", "[]"); INFER_ERROR( "Cannot reshape a tensor with 2 elements to shape [] (1 elements)", op, "[1,2];[0]"); new_shape = test::AsTensor<int32>({-1}); INFER_OK(op, "[0];[1]", "[0]"); new_shape = test::AsTensor<int32>({-1, 6}); INFER_OK(op, "[0,2];[1]", "[0,6]"); new_shape = test::AsTensor<int32>({0, -1}); INFER_OK(op, "[0,2];[1]", "[0,?]"); } TEST(ArrayOpsTest, QuantizedReshape_ShapeFn) { ShapeInferenceTestOp op("QuantizedReshape"); op.input_tensors.resize(2); INFER_OK(op, "?;?;?;?", "?;[];[]"); INFER_OK(op, "[?];?;?;?", "?;[];[]"); INFER_OK(op, "[?];[?];?;?", "?;[];[]"); INFER_OK(op, "[4];[?];?;?", "?;[];[]"); Tensor new_shape = test::AsTensor<int32>({1, 2, 3}); op.input_tensors[1] = &new_shape; INFER_OK(op, "[?];[3];?;?", "[1,2,3];[];[]"); INFER_OK(op, "[6];[3];?;?", "[1,2,3];[];[]"); INFER_ERROR( "Cannot reshape a tensor with 12 elements to shape [1,2,3] (6 elements)", op, "[3,4];[3];?;?"); INFER_ERROR("must be rank 0", op, "?;?;[1];?"); INFER_ERROR("must be rank 0", op, "?;?;?;[1]"); } TEST(ArrayOpsTest, Placeholder_ShapeFn) { { ShapeInferenceTestOp op("Placeholder"); TensorShape shape({1, 2}); TF_ASSERT_OK(NodeDefBuilder("test", "Placeholder") .Attr("shape", shape) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "", "[1,2]"); } { ShapeInferenceTestOp op("Placeholder"); TensorShape shape({}); TF_ASSERT_OK(NodeDefBuilder("test", "Placeholder") .Attr("shape", shape) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "", "[]"); } { ShapeInferenceTestOp op("Placeholder"); const int64_t dims[2] = {1, -1}; PartialTensorShape shape; TF_ASSERT_OK(PartialTensorShape::MakePartialShape(dims, 2, &shape)); TF_ASSERT_OK(NodeDefBuilder("test", "Placeholder") .Attr("shape", shape) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "", "[1,?]"); } { ShapeInferenceTestOp op("Placeholder"); PartialTensorShape shape; TF_ASSERT_OK(NodeDefBuilder("test", "Placeholder") .Attr("shape", shape) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "", "?"); } } TEST(ArrayOpsTest, Transpose_ShapeFn) { ShapeInferenceTestOp op("Transpose"); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_OK(op, "?;[?]", "?"); INFER_OK(op, "?;[2]", "[?,?]"); INFER_OK(op, "[?];?", "[?]"); INFER_OK(op, "[?,?];[2]", "[?,?]"); INFER_ERROR("Dimension must be 3 but is 2", op, "[1,2,3];[2]"); Tensor perm = test::AsTensor<int32>({0}); op.input_tensors[1] = &perm; INFER_OK(op, "[?];[?]", "[d0_0]"); perm = test::AsTensor<int32>({1, 0}); INFER_OK(op, "?;[2]", "[?,?]"); INFER_OK(op, "[?,?];[2]", "[d0_1,d0_0]"); INFER_OK(op, "[1,?];[2]", "[d0_1,d0_0]"); INFER_OK(op, "?;[0]", "in0"); perm = test::AsTensor<int32>({1, 2}); INFER_ERROR("perm dim 2 is out of range of input rank 2", op, "[1,2];[2]"); perm = test::AsTensor<int32>({0}); INFER_ERROR("Dimension must be 2 but is 1", op, "[1,2];[1]"); perm = test::AsTensor<int32>({1, 0, 3, 4, 2}); INFER_OK(op, "[0,1,2,3,4];[5]", "[d0_1,d0_0,d0_3,d0_4,d0_2]"); INFER_OK(op, "[0,?,2,3,4];[5]", "[d0_1,d0_0,d0_3,d0_4,d0_2]"); } TEST(ArrayOpsTest, Bitcast_ShapeFn) { ShapeInferenceTestOp op("Bitcast"); auto rebuild_node_def = [&op](DataType input_type, DataType output_type) { TF_ASSERT_OK(NodeDefBuilder("test", "Bitcast") .Input("input", 0, input_type) .Attr("type", output_type) .Finalize(&op.node_def)); }; rebuild_node_def(DT_FLOAT, DT_INT32); INFER_OK(op, "?", "?"); INFER_OK(op, "[1,2]", "in0"); rebuild_node_def(DT_INT32, DT_INT64); INFER_OK(op, "[1,2]", "[d0_0]"); INFER_OK(op, "[1,?]", "[d0_0]"); INFER_ERROR("does not match", op, "[1,4]"); INFER_ERROR("does not match", op, "[1,3]"); rebuild_node_def(DT_INT64, DT_INT32); INFER_OK(op, "[4,5]", "[d0_0,d0_1,2]"); rebuild_node_def(DT_COMPLEX128, DT_INT32); INFER_OK(op, "[4,5]", "[d0_0,d0_1,4]"); rebuild_node_def(DT_COMPLEX128, DT_HALF); INFER_OK(op, "[4,5]", "[d0_0,d0_1,8]"); rebuild_node_def(DT_COMPLEX128, DT_INT8); INFER_OK(op, "[4,5]", "[d0_0,d0_1,16]"); rebuild_node_def(DT_STRING, DT_INT32); INFER_ERROR("one of the type sizes is zero", op, "[1,2,3]"); rebuild_node_def(DT_INT32, DT_STRING); INFER_ERROR("one of the type sizes is zero", op, "[1,2,3]"); } TEST(ArrayOpsTest, Squeeze_ShapeFn) { ShapeInferenceTestOp op("Squeeze"); auto rebuild_node_def = [&op](const std::vector<int32>& squeeze_dims) { TF_ASSERT_OK(NodeDefBuilder("test", "Squeeze") .Input("input", 0, DT_FLOAT) .Attr("squeeze_dims", squeeze_dims) .Finalize(&op.node_def)); }; rebuild_node_def({}); INFER_OK(op, "?", "?"); INFER_OK(op, "[1,4,1,5,1]", "[d0_1,d0_3]"); INFER_OK(op, "[1,?,1,?,1]", "?"); rebuild_node_def({1}); INFER_OK(op, "[4,1,5]", "[d0_0,d0_2]"); INFER_OK(op, "[4,?,5]", "[d0_0,d0_2]"); INFER_ERROR("Can not squeeze dim[1]", op, "[4,6,5]"); rebuild_node_def({1, 2}); INFER_OK(op, "[4,1,1,5]", "[d0_0,d0_3]"); rebuild_node_def({1, -2}); INFER_OK(op, "[4,1,1,5]", "[d0_0,d0_3]"); rebuild_node_def({-2}); INFER_OK(op, "[4,1,5]", "[d0_0,d0_2]"); rebuild_node_def({-4}); INFER_ERROR("not in [-3,3)", op, "[1,2,3]"); rebuild_node_def({3}); INFER_ERROR("not in [-3,3)", op, "[1,2,3]"); } TEST(ArrayOpsTest, ReverseSequence_ShapeFn) { ShapeInferenceTestOp op("ReverseSequence"); auto rebuild_node_def = [&op](const int32_t seq_dim, const int32_t batch_dim) { TF_ASSERT_OK(NodeDefBuilder("test", "ReverseSequence") .Input("input", 0, DT_FLOAT) .Input("seq_lengths", 1, DT_INT64) .Attr("seq_dim", seq_dim) .Attr("batch_dim", batch_dim) .Finalize(&op.node_def)); }; rebuild_node_def(1, 2); INFER_OK(op, "?;[10]", "?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[10,10]"); rebuild_node_def(1, 4); INFER_ERROR("batch_dim must be < input rank", op, "[1,2,3];[3]"); rebuild_node_def(4, 1); INFER_ERROR("seq_dim must be < input rank", op, "[1,2,3];[3]"); rebuild_node_def(1, 2); INFER_OK(op, "[1,2,3];[3]", "[d0_0,d0_1,d0_2]"); INFER_OK(op, "[1,2,?];[3]", "[d0_0,d0_1,d1_0]"); INFER_OK(op, "[1,2,3];[?]", "[d0_0,d0_1,d0_2]"); } TEST(ArrayOpsTest, Split_ShapeFn) { ShapeInferenceTestOp op("Split"); op.input_tensors.resize(2); TF_ASSERT_OK(NodeDefBuilder("test", "Split") .Input("split_dim", 0, DT_INT32) .Input("value", 1, DT_FLOAT) .Attr("num_split", 2) .Finalize(&op.node_def)); INFER_OK(op, "?;?", "?;?"); INFER_OK(op, "?;[?,?]", "[?,?];[?,?]"); INFER_OK(op, "?;[1,4]", "[?,?];[?,?]"); Tensor split_dim = test::AsTensor<int32>({1, 2}); op.input_tensors[0] = &split_dim; INFER_ERROR("Input must be scalar but has rank 1", op, "[?];[?,?]"); split_dim = test::AsScalar<int32>(1); INFER_OK(op, "?;?", "?;?"); INFER_OK(op, "?;[?,?]", "[d1_0,?];[d1_0,?]"); INFER_OK(op, "?;[1,4]", "[d1_0,2];[d1_0,2]"); INFER_OK(op, "?;[1,?]", "[d1_0,?];[d1_0,?]"); INFER_ERROR("Dimension size must be evenly divisible by 2 but is 5", op, "?;[1,5]"); split_dim = test::AsScalar<int32>(3); INFER_ERROR( "Dimension size, given by scalar input 3 must be in range [-3, 3)", op, "?;[1,4,8]"); split_dim = test::AsScalar<int32>(-1); INFER_OK(op, "?;?", "?;?"); INFER_OK(op, "?;[?,?]", "[d1_0,?];[d1_0,?]"); INFER_OK(op, "?;[1,?]", "[d1_0,?];[d1_0,?]"); INFER_OK(op, "?;[1,4]", "[d1_0,2];[d1_0,2]"); INFER_OK(op, "?;[1,4,8]", "[d1_0,d1_1,4];[d1_0,d1_1,4]"); split_dim = test::AsScalar<int32>(-2); INFER_OK(op, "?;[1,4,8]", "[d1_0,2,d1_2];[d1_0,2,d1_2]"); split_dim = test::AsScalar<int32>(-4); INFER_ERROR( "Dimension size, given by scalar input -4 must be in range [-3, 3)", op, "?;[1,4,8]"); } TEST(ArrayOpsTest, Tile_ShapeFn) { ShapeInferenceTestOp op("Tile"); op.input_tensors.resize(2); TF_ASSERT_OK(NodeDefBuilder("test", "Tile") .Input("input", 0, DT_FLOAT) .Input("multiples", 1, DT_INT32) .Finalize(&op.node_def)); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[2,3,1,4];?", "[?,?,?,?]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[2,3,1,4];[4,1]"); INFER_OK(op, "?;[4]", "[?,?,?,?]"); Tensor multiples = test::AsTensor<int32>({2, 3, 4, 5}); op.input_tensors[1] = &multiples; INFER_OK(op, "[2,3,1,4];[4]", "[4,9,4,20]"); multiples = test::AsTensor<int64_t>({2, 3, 4, 5}); INFER_OK(op, "[2,3,1,4];[4]", "[4,9,4,20]"); } TEST(ArrayOpsTest, EditDistance_ShapeFn) { ShapeInferenceTestOp op("EditDistance"); op.input_tensors.resize(6); INFER_OK(op, "[?,?];[?];[4];[?,?];[?];[4]", "?"); Tensor hypothesis_shape = test::AsTensor<int64_t>({2, 30, 4, 50}); op.input_tensors[2] = &hypothesis_shape; Tensor truth_shape = test::AsTensor<int64_t>({20, 3, 40, 5}); op.input_tensors[5] = &truth_shape; INFER_OK(op, "[?,?];[?];[4];[?,?];[?];[4]", "[20,30,40]"); hypothesis_shape = test::AsTensor<int64_t>({2}); op.input_tensors[2] = &hypothesis_shape; INFER_ERROR("Num elements of hypothesis_shape does not match truth_shape", op, "[?,?];[?];[1];[?,?];[?];[4]"); } TEST(ArrayOpsTest, OneHot_ShapeFn) { ShapeInferenceTestOp op("OneHot"); op.input_tensors.resize(4); auto set_axis = [&op](int axis) { TF_ASSERT_OK(NodeDefBuilder("test", "OneHot") .Input("indices", 0, DT_FLOAT) .Input("depth", 1, DT_INT32) .Input("on_value", 2, DT_FLOAT) .Input("off_value", 3, DT_FLOAT) .Attr("axis", axis) .Finalize(&op.node_def)); }; set_axis(-2); INFER_ERROR("axis must be >= -1", op, "?;?;?;?"); set_axis(1); INFER_OK(op, "?;[];?;?", "?"); Tensor depth = test::AsTensor<int32>({1, 2}); op.input_tensors[1] = &depth; INFER_ERROR("Input must be scalar but has rank 1", op, "?;[2];?;?"); depth = test::AsScalar<int32>(2); INFER_OK(op, "[1,3,4];[];?;?", "[d0_0,2,d0_1,d0_2]"); set_axis(-1); INFER_OK(op, "[1,3,4];[];?;?", "[d0_0,d0_1,d0_2,2]"); } TEST(ArrayOpsTest, ExtractImagePatchesShapeTest) { ShapeInferenceTestOp op("ExtractImagePatches"); auto set_op = [&op](const std::vector<int32>& ksizes, const std::vector<int32>& strides, const std::vector<int32>& rates, const string& padding) { TF_ASSERT_OK(NodeDefBuilder("test", "ExtractImagePatches") .Input("input", 0, DT_FLOAT) .Attr("ksizes", ksizes) .Attr("strides", strides) .Attr("rates", rates) .Attr("padding", padding) .Finalize(&op.node_def)); }; set_op({1, 2, 2, 1}, {1, 1, 1, 1}, {1, 2, 2, 1}, "VALID"); INFER_OK(op, "[1,7,7,2]", "[d0_0,5,5,8]"); set_op({1, 1, 1, 1}, {1, 1, 1, 1}, {1, 2, 2, 1}, "VALID"); INFER_OK(op, "[1,7,7,2]", "[d0_0,7,7,d0_3]"); set_op({1, 2, 2, 1, 1}, {1, 1, 1, 1}, {1, 2, 2, 1}, "VALID"); INFER_ERROR( "ExtractImagePatches requires the ksizes attribute to contain 4 values, " "but got: 5", op, "[1,7,7,2]"); } TEST(ArrayOpsTest, QuantizeAndDequantizeV2_ShapeFn) { ShapeInferenceTestOp op("QuantizeAndDequantizeV2"); op.input_tensors.resize(3); TF_ASSERT_OK(NodeDefBuilder("test", "QuantizeAndDequantizeV2") .Input("input", 0, DT_FLOAT) .Input("input_min", 1, DT_FLOAT) .Input("input_max", 2, DT_FLOAT) .Attr("signed_input", true) .Attr("num_bits", 8) .Attr("range_given", false) .Attr("narrow_range", false) .Attr("axis", -1) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?", "in0"); INFER_OK(op, "[];?;?", "in0"); INFER_OK(op, "[1,2,?,4,5];?;?", "in0"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1,2,?,4,5];[1];[]"); INFER_ERROR("Shapes must be equal rank, but are 1 and 0", op, "[1,2,?,4,5];[];[1]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1,2,?,4,5];[1];[1]"); (*op.node_def.mutable_attr())["axis"].set_i(-2); INFER_ERROR("axis should be at least -1, got -2", op, "?;?;?"); } TEST(ArrayOpsTest, SpaceToBatch_ShapeFn) { ShapeInferenceTestOp op("SpaceToBatch"); op.input_tensors.resize(2); TF_ASSERT_OK(NodeDefBuilder("test", "SpaceToBatch") .Input("input", 0, DT_FLOAT) .Input("paddings", 1, DT_INT32) .Attr("block_size", 2) .Finalize(&op.node_def)); INFER_OK(op, "[1,10,10,3];[2,2]", "[4,?,?,d0_3]"); INFER_OK(op, "[1,10,10,3];?", "[4,?,?,d0_3]"); INFER_ERROR("rank", op, "[1,10,10,3];[4]"); INFER_ERROR("3 and 2", op, "[1,10,10,3];[2,3]"); Tensor paddings = test::AsTensor<int32>({4, 2, 2, 4}, {{2, 2}}); op.input_tensors[1] = &paddings; INFER_OK(op, "[1,10,10,3];[2,2]", "[4,8,8,d0_3]"); paddings = test::AsTensor<int64_t>({4, 2, 2, 4}, {{2, 2}}); INFER_OK(op, "[1,10,10,3];[2,2]", "[4,8,8,d0_3]"); paddings = test::AsTensor<int32>({1, 2, 3, 4}, {{2, 2}}); op.input_tensors[1] = &paddings; INFER_ERROR("Dimension size must be evenly divisible by 2 but is 13", op, "[1,10,10,3];[2,2]"); paddings = test::AsTensor<int32>({1, -2, 3, 4}, {{2, 2}}); op.input_tensors[1] = &paddings; INFER_ERROR("cannot be negative", op, "[1,10,10,3];[2,2]"); } TEST(ArrayOpsTest, SpaceToBatchND_ShapeFn) { ShapeInferenceTestOp op("SpaceToBatchND"); op.input_tensors.resize(3); TF_ASSERT_OK(NodeDefBuilder("test", "SpaceToBatchND") .Input("input", 0, DT_FLOAT) .Input("block_shape", 1, DT_INT32) .Input("paddings", 2, DT_INT32) .Finalize(&op.node_def)); INFER_OK(op, "?;[2];?", "?"); INFER_OK(op, "[?,?,?,?];[2];?", "[?,?,?,d0_3]"); INFER_OK(op, "[?,?,?,2];[2];?", "[?,?,?,d0_3]"); { Tensor block_shape = test::AsTensor<int32>({2, 3}); op.input_tensors[1] = &block_shape; INFER_OK(op, "[3,?,?,2];[2];?", "[18,?,?,d0_3]"); { Tensor paddings = test::AsTensor<int32>({1, 1, 0, 1}, {{2, 2}}); op.input_tensors[2] = &paddings; INFER_OK(op, "[3,?,2,2];[2];[2,2]", "[18,?,1,d0_3]"); op.input_tensors[2] = nullptr; } { Tensor paddings = test::AsTensor<int32>({1, 1, 0, 0}, {{2, 2}}); op.input_tensors[2] = &paddings; INFER_OK(op, "[3,2,3,2];[2];[2,2]", "[18,2,1,d0_3]"); op.input_tensors[2] = nullptr; } op.input_tensors[1] = nullptr; } INFER_ERROR("block_shape must have rank 1", op, "?;[1,1];?"); INFER_ERROR("block_shape must have known size", op, "?;[?];?"); { Tensor block_shape = test::AsTensor<int32>({0, 2}); op.input_tensors[1] = &block_shape; INFER_ERROR("block_shape must be positive", op, "[1,2,2];[2];[2,2]"); op.input_tensors[1] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({1, 1}); op.input_tensors[1] = &block_shape; Tensor paddings = test::AsTensor<int32>({0, -1, 0, 0}, {{2, 2}}); op.input_tensors[2] = &paddings; INFER_ERROR("paddings cannot be negative", op, "[1,2,2];[2];[2,2]"); op.input_tensors[1] = nullptr; op.input_tensors[2] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({3, 3}); op.input_tensors[1] = &block_shape; Tensor paddings = test::AsTensor<int32>({0, 0, 0, 0}, {{2, 2}}); op.input_tensors[2] = &paddings; INFER_ERROR("divisible", op, "[1,2,3,1];[2];[2,2]"); op.input_tensors[1] = nullptr; op.input_tensors[2] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({}); op.input_tensors[1] = &block_shape; Tensor paddings = test::AsTensor<int32>({}); op.input_tensors[2] = &paddings; INFER_OK(op, "?;[0];[0,2]", "?"); op.input_tensors[1] = nullptr; op.input_tensors[2] = nullptr; } INFER_ERROR("rank", op, "[1,3,3,1];[2];[1]"); INFER_ERROR("shape", op, "[1,3,3,1];[2];[1,2]"); } TEST(ArrayOpsTest, BatchToSpace_ShapeFn) { ShapeInferenceTestOp op("BatchToSpace"); op.input_tensors.resize(2); TF_ASSERT_OK(NodeDefBuilder("test", "BatchToSpace") .Input("input", 0, DT_FLOAT) .Input("crops", 1, DT_INT32) .Attr("block_size", 2) .Finalize(&op.node_def)); INFER_OK(op, "[4,8,8,3];[2,2]", "[1,?,?,d0_3]"); INFER_ERROR("Dimension size must be evenly divisible by", op, "[5,8,8,3];[2,2]"); INFER_OK(op, "[4,8,8,3];?", "[1,?,?,d0_3]"); INFER_ERROR("rank", op, "[4,8,8,3];[4]"); INFER_ERROR("3 and 2", op, "[4,8,8,3];[2,3]"); Tensor croppings = test::AsTensor<int64_t>({4, 2, 2, 4}, {{2, 2}}); op.input_tensors[1] = &croppings; INFER_OK(op, "[4,8,8,3];[2,2]", "[1,10,10,d0_3]"); croppings = test::AsTensor<int32>({100, 2, 3, 4}, {{2, 2}}); op.input_tensors[1] = &croppings; INFER_ERROR("Negative dimension size caused by subtracting", op, "[4,8,8,3];[2,2]"); croppings = test::AsTensor<int32>({1, 2, 3, 400}, {{2, 2}}); op.input_tensors[1] = &croppings; INFER_ERROR("Negative dimension size caused by subtracting", op, "[4,8,8,3];[2,2]"); croppings = test::AsTensor<int32>({1, -2, 3, 4}, {{2, 2}}); op.input_tensors[1] = &croppings; INFER_ERROR("cannot be negative", op, "[4,8,8,3];[2,2]"); } TEST(ArrayOpsTest, BatchToSpaceND_ShapeFn) { ShapeInferenceTestOp op("BatchToSpaceND"); op.input_tensors.resize(3); TF_ASSERT_OK(NodeDefBuilder("test", "BatchToSpaceND") .Input("input", 0, DT_FLOAT) .Input("block_shape", 1, DT_INT32) .Input("crops", 2, DT_INT32) .Finalize(&op.node_def)); INFER_OK(op, "?;[2];?", "?"); INFER_OK(op, "[?,?,?,?];[2];?", "[?,?,?,d0_3]"); { Tensor block_shape = test::AsTensor<int32>({2, 3}); op.input_tensors[1] = &block_shape; INFER_OK(op, "[?,?,?,2];[2];?", "[?,?,?,d0_3]"); INFER_OK(op, "[18,?,?,2];[2];?", "[3,?,?,d0_3]"); { Tensor crops = test::AsTensor<int32>({1, 1, 0, 1}, {{2, 2}}); op.input_tensors[2] = &crops; INFER_OK(op, "[18,?,2,2];[2];[2,2]", "[3,?,5,d0_3]"); op.input_tensors[2] = nullptr; } { Tensor crops = test::AsTensor<int32>({1, 1, 0, 0}, {{2, 2}}); op.input_tensors[2] = &crops; INFER_OK(op, "[18,2,1,2];[2];[2,2]", "[3,2,3,d0_3]"); op.input_tensors[2] = nullptr; } op.input_tensors[1] = nullptr; } INFER_ERROR("block_shape must have rank 1", op, "?;[1,1];?"); INFER_ERROR("block_shape must have known size", op, "?;[?];?"); INFER_ERROR("rank", op, "[2,2];[2];[2,2]"); INFER_ERROR("rank", op, "[2,2,3];[3];[3,2]"); { Tensor block_shape = test::AsTensor<int32>({0, 2}); op.input_tensors[1] = &block_shape; INFER_ERROR("block_shape must be positive", op, "[1,2,2];[2];[2,2]"); op.input_tensors[1] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({1, 1}); op.input_tensors[1] = &block_shape; Tensor paddings = test::AsTensor<int32>({0, -1, 0, 0}, {{2, 2}}); op.input_tensors[2] = &paddings; INFER_ERROR("crops cannot be negative", op, "[1,2,2];[2];[2,2]"); op.input_tensors[1] = nullptr; op.input_tensors[2] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({2, 2}); op.input_tensors[1] = &block_shape; Tensor crops = test::AsTensor<int32>({3, 2, 0, 0}, {{2, 2}}); op.input_tensors[2] = &crops; INFER_ERROR("Negative", op, "[4,2,3,1];[2];[2,2]"); op.input_tensors[1] = nullptr; op.input_tensors[2] = nullptr; } { Tensor block_shape = test::AsTensor<int32>({2, 3}); op.input_tensors[1] = &block_shape; INFER_ERROR("divisible", op, "[3,1,1,1];[2];[2,2]"); op.input_tensors[1] = nullptr; } } TEST(ArrayOpsTest, SpaceToDepth_ShapeFn) { ShapeInferenceTestOp op("SpaceToDepth"); TF_ASSERT_OK(NodeDefBuilder("test", "SpaceToDepth") .Input("input", 0, DT_FLOAT) .Attr("block_size", 2) .Finalize(&op.node_def)); INFER_OK(op, "[1,2,4,4]", "[d0_0,1,2,16]"); INFER_ERROR("Dimension size must be evenly divisible by 2 but is 3", op, "[1,3,8,4]"); INFER_ERROR("Dimension size must be evenly divisible by 2 but is 5", op, "[1,2,5,4]"); INFER_OK(op, "[1,2,4,?]", "[d0_0,1,2,?]"); } TEST(ArrayOpsTest, DepthToSpace_ShapeFn) { ShapeInferenceTestOp op("DepthToSpace"); TF_ASSERT_OK(NodeDefBuilder("test", "DepthToSpace") .Input("input", 0, DT_FLOAT) .Attr("block_size", 2) .Finalize(&op.node_def)); INFER_OK(op, "[1,1,2,16]", "[d0_0,2,4,4]"); INFER_ERROR("Dimension size must be evenly divisible by 4 but is 15", op, "[1,1,2,15]"); INFER_OK(op, "[1,2,4,?]", "[d0_0,4,8,?]"); TF_ASSERT_OK(NodeDefBuilder("test", "DepthToSpace") .Input("input", 0, DT_FLOAT) .Attr("block_size", 10) .Finalize(&op.node_def)); INFER_OK(op, "[1,1,2,200]", "[d0_0,10,20,2]"); } TEST(ArrayOpsTest, Slice_ShapeFn) { ShapeInferenceTestOp op("Slice"); TF_ASSERT_OK(NodeDefBuilder("test", "Slice") .Input("input", 0, DT_FLOAT) .Input("begin", 1, DT_INT64) .Input("sizes", 2, DT_INT64) .Finalize(&op.node_def)); INFER_OK(op, "[2,3,4,5];[4];[4]", "[?,?,?,?]"); INFER_OK(op, "[2,3,4,5];[?];[?]", "[?,?,?,?]"); INFER_OK(op, "?;[?];[?]", "?"); INFER_OK(op, "?;[4];[?]", "[?,?,?,?]"); INFER_ERROR("must be rank 1", op, "[2,3,4,5];[2,3];[3]"); INFER_ERROR("must be rank 1", op, "[2,3,4,5];[2];[3,4]"); INFER_ERROR("must be rank 2", op, "[2,3,4,5];[2];[2]"); op.input_tensors.resize(3); Tensor begin = test::AsTensor<int32>({0, 1, 2, 1}); Tensor sizes = test::AsTensor<int32>({1, 2, 1, 3}); op.input_tensors[1] = &begin; op.input_tensors[2] = &sizes; INFER_OK(op, "[2,3,4,5];[4];[4]", "[1,2,1,3]"); sizes = test::AsTensor<int32>({-1, -1, 1, -1}); INFER_OK(op, "[2,3,4,5];[4];[4]", "[d0_0,2,1,4]"); begin = test::AsTensor<int32>({0, 1, 2, 6}); sizes = test::AsTensor<int32>({-1, -1, -1, -1}); INFER_ERROR("Negative dimension size", op, "[2,3,4,5];[4];[4]"); begin = test::AsTensor<int32>({0, 1, 2, 5}); sizes = test::AsTensor<int32>({-1, -1, -1, -2}); INFER_ERROR("cannot be < -1", op, "[2,3,4,5];[4];[4]"); } TEST(ArrayOpsTest, StridedSlice_ShapeFn) { ShapeInferenceTestOp op("StridedSlice"); TF_ASSERT_OK(NodeDefBuilder("test", "StridedSlice") .Input("input", 0, DT_FLOAT) .Input("begin", 1, DT_INT32) .Input("end", 2, DT_INT32) .Input("strides", 3, DT_INT32) .Attr("shrink_axis_mask", 1) .Finalize(&op.node_def)); op.input_tensors.resize(4); Tensor strides = test::AsTensor<int32>({1}); op.input_tensors[3] = &strides; INFER_OK(op, "[2,3,4,5];[1];[1];[1]", "[3,4,5]"); INFER_OK(op, "[2,0,3,4];[1];[1];[1]", "[0,3,4]"); } TEST(ArrayOpsTest, StridedSliceGrad_ShapeFn) { ShapeInferenceTestOp op("StridedSliceGrad"); op.input_tensors.resize(5); INFER_OK(op, "?;?;?;?;?", "?"); INFER_OK(op, "[?];?;?;?;?", "?"); INFER_OK(op, "[4];?;?;?;?", "[?,?,?,?]"); Tensor in_t = test::AsTensor<int32>({1, 2, 3, 4}); op.input_tensors[0] = &in_t; INFER_OK(op, "[4];?;?;?;?", "[1,2,3,4]"); } TEST(ArrayOpsTest, UnchangedWithQuantizationScalars_ShapeFn) { for (const char* op_name : {"Dequantize", "FakeQuantWithMinMaxVars"}) { ShapeInferenceTestOp op(op_name); if (op_name[0] == 'D') { TF_ASSERT_OK(NodeDefBuilder("test", "Dequantize") .Input("input", 0, DT_QINT8) .Input("input_min", 1, DT_FLOAT) .Input("input_max", 2, DT_FLOAT) .Attr("T", DataTypeToEnum<qint8>::v()) .Attr("mode", "SCALED") .Attr("axis", -1) .Finalize(&op.node_def)); } INFER_OK(op, "?;?;?", "in0"); INFER_OK(op, "[1,?,3];[];[]", "in0"); INFER_ERROR("be rank 0", op, "[1,?,3];[1];[]"); INFER_ERROR("be rank 0", op, "[1,?,3];[];[1]"); } } TEST(ArrayOpsTest, FakeQuantWithMinMaxVarsPerChannel) { ShapeInferenceTestOp op("FakeQuantWithMinMaxVarsPerChannel"); INFER_OK(op, "?;?;?", "in0"); INFER_OK(op, "[?];?;?", "in0"); INFER_OK(op, "[1,?,3];[3];[3]", "in0"); INFER_OK(op, "[3];[3];[3]", "in0"); INFER_ERROR("be rank 1", op, "[1,?,3];[1];[]"); INFER_ERROR("be rank 1", op, "[1,?,3];[];[1]"); INFER_ERROR("must be equal", op, "[1,?,3];[2];[?]"); INFER_ERROR("must be equal", op, "[1,?,3];[?];[2]"); INFER_ERROR("must be equal", op, "[1,?,?];[1];[2]"); INFER_ERROR("must be equal", op, "[5];[4];[?]"); } TEST(ArrayOpsTest, FakeQuantWithMinMaxVarsPerChannelGradient) { ShapeInferenceTestOp op("FakeQuantWithMinMaxVarsPerChannelGradient"); INFER_OK(op, "?;?;?;?", "in0;[?];[?]"); INFER_OK(op, "[3];[3];[3];[3]", "in0;in3;in3"); INFER_OK(op, "[1,3];[1,3];[3];[3]", "in0;in3;in3"); INFER_OK(op, "[1,2,3,4];[1,2,3,4];[4];[4]", "in0;in3;in3"); INFER_ERROR("be equal rank", op, "[1,?,3];[1,?,3];[3];[]"); INFER_ERROR("be rank 1", op, "[1,?,3];[1,?,3];[];[3]"); INFER_ERROR("be at least rank 1", op, "[];[];[1];[1]"); INFER_ERROR("be at most rank 4", op, "[1,2,3,4,5];[1,2,3,4,5];[1];[1]"); INFER_ERROR("must be equal", op, "[1,3];[1,3];[2];[3]"); INFER_ERROR("must be equal", op, "[1,3];[1,3];[3];[2]"); } TEST(ArrayOpsTest, QuantizedConcat_ShapeFn) { ShapeInferenceTestOp op("QuantizedConcat"); auto set_n = [&op](int n) { std::vector<NodeDefBuilder::NodeOut> src_list; std::vector<NodeDefBuilder::NodeOut> limit_list; for (int i = 0; i < n; ++i) { src_list.emplace_back("a", 0, DT_QUINT8); limit_list.emplace_back("b", 0, DT_FLOAT); } TF_ASSERT_OK(NodeDefBuilder("test", "QuantizedConcat") .Input({"concat_dim", 0, DT_INT32}) .Input(src_list) .Input(limit_list) .Input(limit_list) .Attr("N", n) .Finalize(&op.node_def)); }; set_n(1); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1];?;?;?"); set_n(2); INFER_ERROR("must be rank 0", op, "[];?;?;?;?;?;[1]"); INFER_ERROR("must be rank 0", op, "[];?;?;?;?;[1];?"); INFER_ERROR("must be rank 0", op, "[];?;?;?;[1];?;?"); INFER_ERROR("must be rank 0", op, "[];?;?;[1];?;?;?"); set_n(2); INFER_ERROR("must be rank 2", op, "[];[1,2];[1,2,3];?;?;?;?"); INFER_OK(op, "[];[1,2];[1,3];?;?;?;?", "[?,?];[];[]"); Tensor concat_dim_t; op.input_tensors.push_back(&concat_dim_t); set_n(2); concat_dim_t = test::AsScalar(0); INFER_OK(op, "[];[100,2,?];[10,?,3];?;?;?;?", "[110,d1_1,d2_2];[];[]"); INFER_ERROR("Dimension 1 in both shapes must be equal, but are 5 and 3", op, "[];[100,2,5];[10,?,3];?;?;?;?"); } TEST(StateOpsTest, _ParallelConcatStart_ShapeFn) { ShapeInferenceTestOp op("_ParallelConcatStart"); TensorShape shape({1, 2, 3}); TensorShapeProto shape_proto; shape.AsProto(&shape_proto); TF_ASSERT_OK(NodeDefBuilder("test", "_ParallelConcatStart") .Attr("shape", shape_proto) .Attr("dtype", DT_FLOAT) .Finalize(&op.node_def)); INFER_OK(op, "", "[1,2,3]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/array_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/array_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8f50e333-75f7-40b8-94b5-107747cf6b16
cpp
tensorflow/tensorflow
string_ops
tensorflow/core/ops/string_ops.cc
tensorflow/core/ops/string_ops_test.cc
#include <string> #include <vector> #include "absl/strings/str_split.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace shape_inference { class InferenceContext; } using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; REGISTER_OP("RegexReplace") .Input("input: string") .Input("pattern: string") .Input("rewrite: string") .Output("output: string") .Attr("replace_global: bool = true") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused)); c->set_output(0, c->input(0)); return absl::OkStatus(); }); REGISTER_OP("StaticRegexReplace") .Input("input: string") .Attr("pattern: string") .Attr("rewrite: string") .Output("output: string") .Attr("replace_global: bool = true") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("RegexFullMatch") .Input("input: string") .Input("pattern: string") .Output("output: bool") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); c->set_output(0, c->input(0)); return absl::OkStatus(); }); REGISTER_OP("StaticRegexFullMatch") .Input("input: string") .Attr("pattern: string") .Output("output: bool") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("StringToHashBucketFast") .Input("input: string") .Output("output: int64") .Attr("num_buckets: int >= 1") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("_TensorToHashBucketFast") .Input("input: T") .Output("output: int64") .Attr("T: {int8, uint8, int16, uint16, int32, uint32, int64, uint64}") .Attr("num_buckets: int >= 1") .SetShapeFn(shape_inference::UnchangedShape) .Doc(R"doc( Internal operation which is a composition of converting the tensor to a string tensor (AsString) and then calling hash functions (StringToHashBucketFast): reserved for internal use. Do not invoke this operator directly in Python. A fusion optimization is expected to create these operators. )doc"); REGISTER_OP("StringToHashBucketStrong") .Input("input: string") .Output("output: int64") .Attr("num_buckets: int >= 1") .Attr("key: list(int)") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("StringToHashBucket") .Input("string_tensor: string") .Output("output: int64") .Attr("num_buckets: int >= 1") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("ReduceJoin") .Input("inputs: string") .Input("reduction_indices: int32") .Attr("keep_dims: bool = false") .Attr("separator: string = ''") .Output("output: string") .SetShapeFn(shape_inference::ReductionShape); REGISTER_OP("UnsortedSegmentJoin") .Input("inputs: string") .Input("segment_ids: Tindices") .Input("num_segments: Tnumsegments") .Attr("separator: string = ''") .Attr("Tindices: {int32,int64}") .Attr("Tnumsegments: {int32,int64} = DT_INT32") .Output("output: string") .SetShapeFn(shape_inference::SegmentReductionWithNumSegmentsShapeFn); REGISTER_OP("AsString") .Input("input: T") .Output("output: string") .Attr("T: {realnumbertype, complex64, complex128, bool, variant, string}") .Attr("precision: int = -1") .Attr("scientific: bool = false") .Attr("shortest: bool = false") .Attr("width: int = -1") .Attr("fill: string = ''") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("StringFormat") .Input("inputs: T") .Output("output: string") .Attr("T: list(type) >= 0") .Attr("template: string = '%s'") .Attr("placeholder: string = '%s'") .Attr("summarize: int = 3") .SetShapeFn([](InferenceContext* c) { string template_; string placeholder; TF_RETURN_IF_ERROR(c->GetAttr("template", &template_)); TF_RETURN_IF_ERROR(c->GetAttr("placeholder", &placeholder)); std::vector<std::string> split_template; split_template = absl::StrSplit(template_, placeholder); int64_t num_placeholders = split_template.size() - 1; if (c->num_inputs() != num_placeholders) { return errors::InvalidArgument(strings::StrCat( "num placeholders in template and num inputs must match: ", num_placeholders, " vs. ", c->num_inputs())); } c->set_output(0, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("StringJoin") .Input("inputs: N * string") .Attr("N: int>=0") .Attr("separator: string = ''") .Output("output: string") .SetShapeFn([](InferenceContext* c) { bool all_scalar = true; for (int i = 0; i < c->num_inputs(); ++i) { if (c->Rank(c->input(i)) != 0) all_scalar = false; } if (all_scalar) { c->set_output(0, c->Scalar()); return absl::OkStatus(); } ShapeHandle out = c->UnknownShape(); for (int i = 0; i < c->num_inputs(); ++i) { if (c->RankKnown(c->input(i)) && c->Rank(c->input(i)) != 0) { TF_RETURN_IF_ERROR(c->Merge(out, c->input(i), &out)); } } c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("StringSplit") .Input("input: string") .Input("delimiter: string") .Output("indices: int64") .Output("values: string") .Output("shape: int64") .Attr("skip_empty: bool = true") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); c->set_output(0, c->Matrix(InferenceContext::kUnknownDim, 2)); c->set_output(1, c->Vector(InferenceContext::kUnknownDim)); c->set_output(2, c->Vector(2)); return absl::OkStatus(); }); REGISTER_OP("StringSplitV2") .Input("input: string") .Input("sep: string") .Output("indices: int64") .Output("values: string") .Output("shape: int64") .Attr("maxsplit: int = -1") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &unused)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); c->set_output(0, c->Matrix(InferenceContext::kUnknownDim, 2)); c->set_output(1, c->Vector(InferenceContext::kUnknownDim)); c->set_output(2, c->Vector(2)); return absl::OkStatus(); }); REGISTER_OP("StringLower") .Input("input: string") .Output("output: string") .Attr("encoding: string =''") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("StringUpper") .Input("input: string") .Output("output: string") .Attr("encoding: string =''") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("StringStrip") .Input("input: string") .Output("output: string") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("StringLength") .Input("input: string") .Output("output: int32") .Attr("unit: {'BYTE', 'UTF8_CHAR'} = 'BYTE'") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("EncodeBase64") .Input("input: string") .Output("output: string") .Attr("pad: bool = false") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("DecodeBase64") .Input("input: string") .Output("output: string") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Substr") .Input("input: string") .Input("pos: T") .Input("len: T") .Output("output: string") .Attr("T: {int32, int64}") .Attr("unit: {'BYTE', 'UTF8_CHAR'} = 'BYTE'") .SetShapeFn([](InferenceContext* c) { ShapeHandle pos_shape = c->input(1); ShapeHandle len_shape = c->input(2); ShapeHandle unused; if (c->RankKnown(len_shape)) { TF_RETURN_IF_ERROR(c->WithRank(pos_shape, c->Rank(len_shape), &unused)); } for (int32_t i = 0; i < c->Rank(pos_shape); ++i) { DimensionHandle pos_dim = c->Dim(pos_shape, i); DimensionHandle len_dim = c->Dim(len_shape, i); if (c->Value(pos_dim) != c->Value(len_dim)) { return errors::InvalidArgument( "pos and len shapes must match: ", c->DebugString(pos_shape), " vs. ", c->DebugString(len_shape)); } } return shape_inference::BroadcastBinaryOpShapeFn(c); }); REGISTER_OP("UnicodeScript") .Input("input: int32") .Output("output: int32") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("UnicodeEncode") .Input("input_values: int32") .Input("input_splits: Tsplits") .Attr("errors: {'ignore', 'replace', 'strict'} = 'replace'") .Attr("output_encoding: {'UTF-8', 'UTF-16-BE', 'UTF-32-BE'}") .Attr("replacement_char: int = 65533") .Attr("Tsplits: {int32, int64} = DT_INT64") .Output("output: string") .SetShapeFn([](InferenceContext* c) { ShapeHandle input_inner_values_shape = c->input(0); ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(input_inner_values_shape, 1, &unused)); ShapeHandle splits_shape = c->input(1); TF_RETURN_IF_ERROR(c->WithRank(splits_shape, 1, &unused)); std::vector<DimensionHandle> dims(1); TF_RETURN_IF_ERROR(c->Subtract(c->Dim(splits_shape, 0), 1, &dims[0])); c->set_output(0, c->MakeShape(dims)); return absl::OkStatus(); }); REGISTER_OP("UnicodeTranscode") .Input("input: string") .Output("output: string") .Attr("input_encoding: string") .Attr("output_encoding: {'UTF-8', 'UTF-16-BE', 'UTF-32-BE'}") .Attr("errors: {'strict', 'replace', 'ignore'} = 'replace'") .Attr("replacement_char: int = 65533") .Attr("replace_control_characters: bool = false") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("UnicodeDecode") .Input("input: string") .Output("row_splits: Tsplits") .Output("char_values: int32") .Attr("input_encoding: string") .Attr("errors: {'strict', 'replace', 'ignore'} = 'replace'") .Attr("replacement_char: int = 65533") .Attr("replace_control_characters: bool = false") .Attr("Tsplits: {int32, int64} = DT_INT64") .SetShapeFn([](InferenceContext* c) { DimensionHandle num_row_splits; DimensionHandle input_size = c->NumElements(c->input(0)); TF_RETURN_IF_ERROR(c->Add(input_size, 1, &num_row_splits)); c->set_output(0, c->Vector(num_row_splits)); DimensionHandle num_chars = c->UnknownDim(); c->set_output(1, c->Vector(num_chars)); return absl::OkStatus(); }); REGISTER_OP("UnicodeDecodeWithOffsets") .Input("input: string") .Output("row_splits: Tsplits") .Output("char_values: int32") .Output("char_to_byte_starts: int64") .Attr("input_encoding: string") .Attr("errors: {'strict', 'replace', 'ignore'} = 'replace'") .Attr("replacement_char: int = 65533") .Attr("replace_control_characters: bool = false") .Attr("Tsplits: {int32, int64} = DT_INT64") .SetShapeFn([](InferenceContext* c) { DimensionHandle num_row_splits; DimensionHandle input_size = c->NumElements(c->input(0)); TF_RETURN_IF_ERROR(c->Add(input_size, 1, &num_row_splits)); c->set_output(0, c->Vector(num_row_splits)); DimensionHandle num_chars = c->UnknownDim(); c->set_output(1, c->Vector(num_chars)); c->set_output(2, c->Vector(num_chars)); return absl::OkStatus(); }); REGISTER_OP("StringNGrams") .Attr("separator: string") .Attr("ngram_widths: list(int) >= 0") .Attr("left_pad: string") .Attr("right_pad: string") .Attr("pad_width: int") .Attr("preserve_short_sequences: bool") .Attr("Tsplits: {int32, int64} = DT_INT64") .Input("data: string") .Input("data_splits: Tsplits") .Output("ngrams: string") .Output("ngrams_splits: Tsplits") .SetShapeFn([](InferenceContext* c) { c->set_output(0, c->UnknownShapeOfRank(1)); ShapeHandle data = c->input(0); TF_RETURN_IF_ERROR(c->WithRank(data, 1, &data)); ShapeHandle data_splits = c->input(1); TF_RETURN_IF_ERROR(c->WithRank(data_splits, 1, &data_splits)); c->set_output(1, data_splits); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(StringOpsTest, StringJoin_ShapeFn) { ShapeInferenceTestOp op("StringJoin"); int n = 3; std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_STRING); TF_ASSERT_OK(NodeDefBuilder("test", "StringJoin") .Input(src_list) .Attr("n", n) .Finalize(&op.node_def)); INFER_OK(op, "[];[];[]", "[]"); INFER_OK(op, "[];?;[]", "?"); INFER_OK(op, "[1,?];[];[?,2]", "[d0_0,d2_1]"); INFER_OK(op, "[1,?];?;[?,2]", "[d0_0,d2_1]"); INFER_ERROR("must be equal", op, "[1,2];[];[?,3]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/string_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/string_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea