ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
13
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
78
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
93
203
Commit Hash
stringclasses
13 values
b0117d33-c5af-4127-8481-159be8a2c317
cpp
tensorflow/tensorflow
device_mgr
tensorflow/core/common_runtime/device_mgr.cc
tensorflow/core/common_runtime/device_mgr_test.cc
#include "tensorflow/core/common_runtime/device_mgr.h" #include <memory> #include <vector> #include "tensorflow/core/common_runtime/local_device.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { DeviceMgr::~DeviceMgr() {} }
#include "tensorflow/core/common_runtime/device_mgr.h" #include <memory> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { static Device* CreateDevice(const char* type, const char* name) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr) : Device(nullptr, attr) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } }; DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); return new FakeDevice(attr); } TEST(StaticDeviceMgr, NoCPUDevice) { std::unique_ptr<Device> d0(CreateDevice("GPU", "/device:GPU:0")); std::unique_ptr<Device> d1(CreateDevice("GPU", "/device:GPU:1")); std::vector<std::unique_ptr<Device>> devices; devices.emplace_back(std::move(d0)); devices.emplace_back(std::move(d1)); StaticDeviceMgr lm(std::move(devices)); EXPECT_EQ(lm.HostCPU(), nullptr); } TEST(StaticDeviceMgr, SomeCPUDevice) { std::unique_ptr<Device> d0(CreateDevice("GPU", "/device:GPU:0")); std::unique_ptr<Device> d1(CreateDevice("GPU", "/device:GPU:1")); std::unique_ptr<Device> d2(CreateDevice("CPU", "/device:CPU:0")); Device* d2_ptr = d2.get(); std::vector<std::unique_ptr<Device>> devices; devices.emplace_back(std::move(d0)); devices.emplace_back(std::move(d1)); devices.emplace_back(std::move(d2)); StaticDeviceMgr lm(std::move(devices)); EXPECT_EQ(lm.HostCPU(), d2_ptr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/device_mgr.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/device_mgr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cb4af92b-029e-4f0c-9777-99652edb4d8c
cpp
tensorflow/tensorflow
collective_rma_local
tensorflow/core/common_runtime/collective_rma_local.cc
tensorflow/core/common_runtime/collective_rma_local_test.cc
#include "tensorflow/core/common_runtime/collective_rma_local.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/dma_helper.h" namespace tensorflow { void CollectiveRemoteAccessLocal::StartAbort(const Status& s) { buf_rendezvous_.StartAbort(s); } void CollectiveRemoteAccessLocal::RecvFromPeer( const string& peer_device, const string& peer_task, bool peer_is_local, const string& key, Device* to_device, DeviceContext* to_device_ctx, const AllocatorAttributes& to_alloc_attr, Tensor* to_tensor, const DeviceLocality& client_locality, int dev_to_dev_stream_index, CancellationManager* cancellation_manager, const StatusCallback& done) { VLOG(1) << "RecvFromPeer " << this << " from " << peer_device << " key " << key; if (!peer_is_local) { done( errors::Internal("CollectiveRemoteAccessLocal::RecvFromPeer " "called with peer_is_local=false")); return; } Device* from_device; Status status = dev_mgr_->LookupDevice(peer_device, &from_device); if (!status.ok()) { done(status); return; } auto consumer_callback = [to_tensor, to_device_ctx, to_device, to_alloc_attr, dev_to_dev_stream_index, done](const Status& status, BufRendezvous::Hook* hook) { Status s = status; if (s.ok()) { if (hook == nullptr) { s = errors::Internal("Invalid null hook in ConsumeBuf callback"); } } else { if (hook != nullptr) { LOG(ERROR) << "Got hook " << hook << " with status " << s << " from ConsumeBuf"; } } if (s.ok()) { int64_t recv_bytes = to_tensor->TotalBytes(); CHECK_EQ(recv_bytes, hook->prod_value->TotalBytes()); MemCpyAsync(hook->prod_ctx, to_device_ctx, hook->prod_dev, to_device, hook->prod_attr, to_alloc_attr, hook->prod_value, to_tensor, dev_to_dev_stream_index, [hook, done](const Status& memcpy_status) { done(memcpy_status); BufRendezvous::DoneWithHook(hook); }); } else { done(s); if (hook != nullptr) { BufRendezvous::DoneWithHook(hook); } } }; buf_rendezvous_.ConsumeBuf(key, from_device->name(), from_device->attributes().incarnation(), consumer_callback, cancellation_manager); } void CollectiveRemoteAccessLocal::PostToPeer( const string& peer_device, const string& peer_task, const string& key, Device* from_device, DeviceContext* from_device_ctx, const AllocatorAttributes& from_alloc_attr, const Tensor* from_tensor, const DeviceLocality& client_locality, CancellationManager* cancellation_manager, const StatusCallback& done) { VLOG(1) << "PostToPeer " << this << " key " << key << " step_id_=" << step_id_; buf_rendezvous_.ProvideBuf(key, from_device, from_device_ctx, from_tensor, from_alloc_attr, done, cancellation_manager); } void CollectiveRemoteAccessLocal::CheckPeerHealth(const string& peer_task, int64_t timeout_in_ms, const StatusCallback& done) { done(errors::Internal( "CheckPeerHealth is not supposed to be called for local collectives")); } void CollectiveRemoteAccessLocal::MemCpyAsync( DeviceContext* src_dev_ctx, DeviceContext* dst_dev_ctx, Device* src_dev, Device* dst_dev, const AllocatorAttributes& src_attr, const AllocatorAttributes& dst_attr, const Tensor* src, Tensor* dst, int dev_to_dev_stream_index, const StatusCallback& done) { const DeviceType src_device_type( src_attr.on_host() ? DEVICE_CPU : src_dev->attributes().device_type()); const DeviceType dst_device_type( dst_attr.on_host() ? DEVICE_CPU : dst_dev->attributes().device_type()); const bool non_cpu_src = src_device_type != DeviceType(DEVICE_CPU); const bool non_cpu_dst = dst_device_type != DeviceType(DEVICE_CPU); if (src_dev_ctx == nullptr && src_device_type == DEVICE_GPU) { const DeviceBase::AcceleratorDeviceInfo* dev_info = src_dev->tensorflow_accelerator_device_info(); CHECK(dev_info); src_dev_ctx = dev_info->default_context; } if (dst_dev_ctx == nullptr && dst_device_type == DEVICE_GPU) { const DeviceBase::AcceleratorDeviceInfo* dev_info = src_dev->tensorflow_accelerator_device_info(); CHECK(dev_info); dst_dev_ctx = dev_info->default_context; } if (non_cpu_src) CHECK(src_dev_ctx); if (non_cpu_dst) CHECK(dst_dev_ctx); if (non_cpu_src || non_cpu_dst) { CopyTensor::ViaDMA("", src_dev_ctx, dst_dev_ctx, src_dev, dst_dev, src_attr, dst_attr, src, dst, dev_to_dev_stream_index, done); } else { int64_t bytes = src->TotalBytes(); DCHECK_EQ(dst->TotalBytes(), bytes); memcpy(DMAHelper::base(dst), DMAHelper::base(src), bytes); done(absl::OkStatus()); } } }
#include "tensorflow/core/common_runtime/collective_rma_local.h" #include "tensorflow/core/common_runtime/buf_rendezvous.h" #include "tensorflow/core/common_runtime/collective_param_resolver_local.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/device_resolver_local.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/unbounded_work_queue.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { #define NUM_DEVS 3 static const int kStepId = 123; class CollectiveRemoteAccessLocalTest : public ::testing::Test { protected: const string kTaskName = "/job:localhost/replica:0/task:0"; CollectiveRemoteAccessLocalTest() { work_queue_ = std::make_shared<UnboundedWorkQueue>(Env::Default(), "test"); ConfigProto cp; SessionOptions options; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", NUM_DEVS}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::AddDevices(options, kTaskName, &devices)); device_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); drl_ = std::make_unique<DeviceResolverLocal>(device_mgr_.get()); prl_ = std::make_unique<CollectiveParamResolverLocal>( cp, device_mgr_.get(), drl_.get(), nullptr, kTaskName); rma_ = std::make_unique<CollectiveRemoteAccessLocal>(device_mgr_.get(), drl_.get(), kStepId); cm_ = std::make_unique<CancellationManager>(); } ~CollectiveRemoteAccessLocalTest() override = default; std::shared_ptr<UnboundedWorkQueue> work_queue_; std::unique_ptr<DeviceMgr> device_mgr_; std::unique_ptr<DeviceResolverLocal> drl_; std::unique_ptr<CollectiveParamResolverLocal> prl_; std::unique_ptr<CollectiveRemoteAccessLocal> rma_; std::unique_ptr<CancellationManager> cm_; }; TEST_F(CollectiveRemoteAccessLocalTest, PostRecvCPU0) { Device* cpu0 = nullptr; AllocatorAttributes attr; DeviceLocality dev_locality; TF_ASSERT_OK(device_mgr_->LookupDevice(kTaskName + "/device:CPU:0", &cpu0)); Tensor sink_tensor(DT_FLOAT, TensorShape({8})); Notification recv_note; Status recv_status; rma_->RecvFromPeer(kTaskName + "/device:CPU:0", kTaskName, true , "key_0", cpu0 , nullptr , attr , &sink_tensor, dev_locality, 0 , cm_.get(), [&recv_note, &recv_status](const Status& s) { recv_status = s; recv_note.Notify(); }); Tensor source_tensor(DT_FLOAT, TensorShape({8})); for (int i = 0; i < 8; ++i) { source_tensor.flat<float>()(i) = i / 2; } EXPECT_NE(DMAHelper::base(&source_tensor), DMAHelper::base(&sink_tensor)); Notification send_note; Status send_status; rma_->PostToPeer(kTaskName + "/device:CPU:0", kTaskName, "key_0", cpu0 , nullptr , attr , &source_tensor, dev_locality, cm_.get(), [&send_note, &send_status](const Status& s) { send_status = s; send_note.Notify(); }); recv_note.WaitForNotification(); send_note.WaitForNotification(); TF_EXPECT_OK(recv_status); TF_EXPECT_OK(send_status); for (int i = 0; i < 8; ++i) { EXPECT_EQ(sink_tensor.flat<float>()(i), i / 2); } EXPECT_NE(DMAHelper::base(&source_tensor), DMAHelper::base(&sink_tensor)); } TEST_F(CollectiveRemoteAccessLocalTest, PostRecvCPU1_2) { Device* cpu2 = nullptr; AllocatorAttributes attr; DeviceLocality dev_locality; TF_ASSERT_OK(device_mgr_->LookupDevice(kTaskName + "/device:CPU:2", &cpu2)); Tensor sink_tensor(DT_FLOAT, TensorShape({8})); Notification recv_note; Status recv_status; rma_->RecvFromPeer(kTaskName + "/device:CPU:1", kTaskName, true , "key_0", cpu2 , nullptr , attr , &sink_tensor, dev_locality, 0 , cm_.get(), [&recv_note, &recv_status](const Status& s) { recv_status = s; recv_note.Notify(); }); Tensor source_tensor(DT_FLOAT, TensorShape({8})); for (int i = 0; i < 8; ++i) { source_tensor.flat<float>()(i) = i / 2; } EXPECT_NE(DMAHelper::base(&source_tensor), DMAHelper::base(&sink_tensor)); Device* cpu1 = nullptr; TF_ASSERT_OK(device_mgr_->LookupDevice(kTaskName + "/device:CPU:1", &cpu1)); Notification send_note; Status send_status; rma_->PostToPeer(kTaskName + "/device:CPU:2", kTaskName, "key_0", cpu1 , nullptr , attr , &source_tensor, dev_locality, cm_.get(), [&send_note, &send_status](const Status& s) { send_status = s; send_note.Notify(); }); recv_note.WaitForNotification(); send_note.WaitForNotification(); TF_EXPECT_OK(recv_status); TF_EXPECT_OK(send_status); for (int i = 0; i < 8; ++i) { EXPECT_EQ(sink_tensor.flat<float>()(i), i / 2); } EXPECT_NE(DMAHelper::base(&source_tensor), DMAHelper::base(&sink_tensor)); } TEST_F(CollectiveRemoteAccessLocalTest, CheckHealth) { Status status; Notification done; rma_->CheckPeerHealth(kTaskName, 0, [&status, &done](const Status& s) { status = s; done.Notify(); }); done.WaitForNotification(); EXPECT_TRUE(errors::IsInternal(status)); } TEST_F(CollectiveRemoteAccessLocalTest, RecvThenCancel) { Device* cpu0 = nullptr; AllocatorAttributes attr; DeviceLocality dev_locality; TF_ASSERT_OK(device_mgr_->LookupDevice(kTaskName + "/device:CPU:0", &cpu0)); Tensor sink_tensor(DT_FLOAT, TensorShape({8})); Notification recv_note; Status recv_status; rma_->RecvFromPeer(kTaskName + "/device:CPU:0", kTaskName, true , "key_0", cpu0 , nullptr , attr , &sink_tensor, dev_locality, 0 , cm_.get(), [&recv_note, &recv_status](const Status& s) { recv_status = s; recv_note.Notify(); }); cm_->StartCancel(); recv_note.WaitForNotification(); EXPECT_TRUE(cm_->IsCancelled()); EXPECT_TRUE(errors::IsCancelled(recv_status)); } TEST_F(CollectiveRemoteAccessLocalTest, CancelThenRecv) { Device* cpu0 = nullptr; AllocatorAttributes attr; DeviceLocality dev_locality; TF_ASSERT_OK(device_mgr_->LookupDevice(kTaskName + "/device:CPU:0", &cpu0)); Tensor sink_tensor(DT_FLOAT, TensorShape({8})); Notification recv_note; Status recv_status; cm_->StartCancel(); rma_->RecvFromPeer(kTaskName + "/device:CPU:0", kTaskName, true , "key_0", cpu0 , nullptr , attr , &sink_tensor, dev_locality, 0 , cm_.get(), [&recv_note, &recv_status](const Status& s) { recv_status = s; recv_note.Notify(); }); recv_note.WaitForNotification(); EXPECT_TRUE(cm_->IsCancelled()); EXPECT_TRUE(errors::IsCancelled(recv_status)); } TEST_F(CollectiveRemoteAccessLocalTest, PostThenCancel) { Device* cpu0 = nullptr; AllocatorAttributes attr; DeviceLocality dev_locality; TF_ASSERT_OK(device_mgr_->LookupDevice(kTaskName + "/device:CPU:0", &cpu0)); Tensor source_tensor(DT_FLOAT, TensorShape({8})); Notification send_note; Status send_status; rma_->PostToPeer(kTaskName + "/device:CPU:0", kTaskName, "key_0", cpu0 , nullptr , attr , &source_tensor, dev_locality, cm_.get(), [&send_note, &send_status](const Status& s) { send_status = s; send_note.Notify(); }); cm_->StartCancel(); send_note.WaitForNotification(); EXPECT_TRUE(cm_->IsCancelled()); EXPECT_TRUE(errors::IsCancelled(send_status)); } TEST_F(CollectiveRemoteAccessLocalTest, CancelThenPost) { Device* cpu0 = nullptr; AllocatorAttributes attr; DeviceLocality dev_locality; TF_ASSERT_OK(device_mgr_->LookupDevice(kTaskName + "/device:CPU:0", &cpu0)); Tensor source_tensor(DT_FLOAT, TensorShape({8})); Notification send_note; Status send_status; cm_->StartCancel(); rma_->PostToPeer(kTaskName + "/device:CPU:0", kTaskName, "key_0", cpu0 , nullptr , attr , &source_tensor, dev_locality, cm_.get(), [&send_note, &send_status](const Status& s) { send_status = s; send_note.Notify(); }); send_note.WaitForNotification(); EXPECT_TRUE(cm_->IsCancelled()); EXPECT_TRUE(errors::IsCancelled(send_status)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/collective_rma_local.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/collective_rma_local_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
34e66ece-9ff8-4b9c-9545-dcb0094f4b53
cpp
tensorflow/tensorflow
partitioning_utils
tensorflow/core/common_runtime/partitioning_utils.cc
tensorflow/core/common_runtime/partitioning_utils_test.cc
#include "tensorflow/core/common_runtime/partitioning_utils.h" #include <algorithm> #include <functional> #include <memory> #include <optional> #include <string> #include <unordered_map> #include <utility> #include "tensorflow/core/common_runtime/arg_ret_placement.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_partition.h" namespace tensorflow { namespace { Status PartitionFunctionGraph( const DeviceSet& device_set, Graph* graph, std::unordered_map<string, GraphDef>* partitions, std::function<string(const Node*)> node_to_loc, std::function<string(const Edge*)> get_tensor_name_attr) { PartitionOptions partition_options; if (node_to_loc != nullptr) { partition_options.node_to_loc = node_to_loc; } else { partition_options.node_to_loc = [](const Node* node) { return node->assigned_device_name(); }; } int64_t edge_name_counter = 0; partition_options.new_name = [&edge_name_counter](const string& prefix) { return strings::StrCat(prefix, "/_", ++edge_name_counter); }; partition_options.get_incarnation = [&device_set](const string& name) -> int64 { const Device* d = device_set.FindDeviceByName(name); if (d == nullptr) { return PartitionOptions::kIllegalIncarnation; } else { return d->attributes().incarnation(); } }; partition_options.control_flow_added = false; partition_options.get_tensor_name_attr = get_tensor_name_attr; partition_options.can_make_destructive_changes = true; return Partition(partition_options, graph, partitions); } struct SendRecvPair { Node* send_node = nullptr; Node* recv_node = nullptr; }; constexpr char kTensorNameAttr[] = "tensor_name"; Status MakeSendRecvDependencyExplicit(Graph* graph) { absl::flat_hash_map<std::string, SendRecvPair> send_recv_pairs; for (Node* node : graph->op_nodes()) { if (node->IsSend() || node->IsRecv()) { auto tensor_name_it = node->def().attr().find(kTensorNameAttr); if (tensor_name_it == node->def().attr().end()) { return errors::Internal( "'", kTensorNameAttr, "' attribute is not found from node: ", node->DebugString()); } if (node->IsSend()) { send_recv_pairs[tensor_name_it->second.s()].send_node = node; } else { send_recv_pairs[tensor_name_it->second.s()].recv_node = node; } } } for (const auto& [tensor_name, send_recv_pair] : send_recv_pairs) { if (send_recv_pair.send_node == nullptr || send_recv_pair.recv_node == nullptr) { return errors::Internal( "No matching Send/Recv nodes found for tensor_name = ", tensor_name); } graph->AddControlEdge(send_recv_pair.send_node, send_recv_pair.recv_node); } return absl::OkStatus(); } } Status PartitionFunctionGraph( const DeviceSet& device_set, std::unique_ptr<Graph> graph, std::unordered_map<string, std::unique_ptr<Graph>>* subgraphs, std::function<string(const Edge*)> get_tensor_name_attr) { std::unordered_map<string, GraphDef> partitions; TF_RETURN_IF_ERROR( PartitionFunctionGraph(device_set, graph.get(), &partitions, nullptr, get_tensor_name_attr)); const OpRegistryInterface* default_registry = graph->flib_def().default_registry(); graph.reset(); for (auto& partition : partitions) { const string& device = partition.first; GraphDef& graph_def = partition.second; auto subgraph = std::make_unique<Graph>(default_registry); GraphConstructorOptions opts; opts.allow_internal_ops = true; opts.expect_device_spec = true; TF_RETURN_IF_ERROR( ConvertGraphDefToGraph(opts, std::move(graph_def), subgraph.get())); subgraphs->emplace(device, std::move(subgraph)); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<Graph>> InsertTransferOps( const DeviceSet& device_set, std::unique_ptr<Graph> graph) { auto node_to_loc = [](const Node* node) { return node->assigned_device_name(); }; bool has_multiple_devices = false; absl::optional<std::string> location; for (const Node* node : graph->op_nodes()) { if (location) { if (*location != node_to_loc(node)) { has_multiple_devices = true; break; } } else { location = node_to_loc(node); } } if (!has_multiple_devices) { return graph; } auto new_graph = std::make_unique<Graph>(graph->flib_def()); std::unordered_map<string, GraphDef> partitions; TF_RETURN_IF_ERROR(PartitionFunctionGraph(device_set, graph.get(), &partitions, node_to_loc, nullptr)); GraphDef merged_graph_def; if (!partitions.empty()) { auto iter = partitions.begin(); merged_graph_def = std::move(iter->second); while (++iter != partitions.end()) { merged_graph_def.MergeFrom(iter->second); } } GraphConstructorOptions opts; opts.allow_internal_ops = true; opts.expect_device_spec = true; TF_RETURN_IF_ERROR(ConvertGraphDefToGraph(opts, std::move(merged_graph_def), new_graph.get())); TF_RETURN_IF_ERROR(MakeSendRecvDependencyExplicit(new_graph.get())); return std::move(new_graph); } Status UpdateArgAndRetvalMetadata( Graph* graph, std::vector<FunctionArgIndex>* arg_indices, std::vector<int>* ret_indices, std::vector<AllocatorAttributes>* arg_alloc_attrs, std::vector<AllocatorAttributes>* ret_alloc_attrs, bool ints_on_device) { std::vector<std::pair<Node*, FunctionArgIndex>> arg_nodes; std::vector<std::pair<Node*, int>> ret_nodes; const AttrValue* attr_value; for (Node* node : graph->op_nodes()) { if (node->IsArg()) { TF_RETURN_IF_ERROR(node->attrs().Find("index", &attr_value)); int index = static_cast<int>(attr_value->i()); int sub_index = -1; if (node->attrs().Find("sub_index", &attr_value).ok()) { sub_index = static_cast<int>(attr_value->i()); } arg_nodes.emplace_back(node, FunctionArgIndex(index, sub_index)); } else if (node->IsRetval()) { TF_RETURN_IF_ERROR(node->attrs().Find("index", &attr_value)); int index = static_cast<int>(attr_value->i()); ret_nodes.emplace_back(node, index); } } auto arg_comparator = [](std::pair<Node*, FunctionArgIndex> a, std::pair<Node*, FunctionArgIndex> b) { return std::tie(a.second.index, a.second.sub_index) < std::tie(b.second.index, b.second.sub_index); }; std::sort(arg_nodes.begin(), arg_nodes.end(), arg_comparator); auto ret_comparator = [](std::pair<Node*, int> a, std::pair<Node*, int> b) { return a.second < b.second; }; std::sort(ret_nodes.begin(), ret_nodes.end(), ret_comparator); arg_indices->reserve(arg_nodes.size()); for (const auto& pair : arg_nodes) arg_indices->push_back(pair.second); ret_indices->reserve(ret_nodes.size()); for (const auto& pair : ret_nodes) ret_indices->push_back(pair.second); for (int i = 0; i < arg_nodes.size(); ++i) { Node* arg = arg_nodes[i].first; arg->AddAttr("index", i); } if (arg_alloc_attrs != nullptr) { TF_RETURN_IF_ERROR(full_type::SingleDeviceSetAllocAttrsForArgs( arg_nodes, ints_on_device, *arg_alloc_attrs)); } for (int i = 0; i < ret_nodes.size(); ++i) { Node* ret = ret_nodes[i].first; ret->AddAttr("index", i); } if (ret_alloc_attrs) { TF_RETURN_IF_ERROR(full_type::SingleDeviceSetAllocAttrsForRets( ret_nodes, ints_on_device, *ret_alloc_attrs)); } return absl::OkStatus(); } string FunctionNameGenerator::GetName() { while (true) { const string candidate = strings::StrCat(name_, "_", counter_++); if (flib_def_->Find(candidate) == nullptr) { return candidate; } } } }
#include "tensorflow/core/common_runtime/partitioning_utils.h" #include <map> #include <memory> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/function_testlib.h" #include "tensorflow/core/common_runtime/int32_fulltype.h" #include "tensorflow/core/common_runtime/placer.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { using ::testing::SizeIs; class PartitioningUtilsTest : public ::testing::Test { public: void SetUp() override { SessionOptions options; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", 2}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::AddDevices(options, "/job:a/replica:0/task:0", &devices)); device0_ = devices[0].get(); device1_ = devices[1].get(); device_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); for (auto d : device_mgr_->ListDevices()) { device_set_.AddDevice(d); } } void SwapGraph(Graph* graph, bool assign_device = false) { Scope s = Scope::NewRootScope(); if (assign_device) { s = s.WithDevice(device0_->name()); } auto x = ops::_Arg(s.WithOpName("x"), DT_FLOAT, 0); auto y = ops::_Arg(s.WithOpName("y"), DT_FLOAT, 1); auto id_x = ops::Identity(s.WithOpName("id_x"), x); auto id_y = ops::Identity(s.WithOpName("id_y"), y); auto dx_retval = ops::_Retval(s.WithOpName("retval1"), id_y, 0); auto dy_retval = ops::_Retval(s.WithOpName("retval2"), id_x, 1); TF_ASSERT_OK(s.ToGraph(graph)); if (assign_device) { FunctionLibraryDefinition flib_def(OpRegistry::Global()); Placer placer(graph, "", &flib_def, &device_set_, device0_); TF_ASSERT_OK(placer.Run()); } } void TwoDeviceSwapGraph(Graph* graph) { Scope s = Scope::NewRootScope(); Scope s1 = s.WithDevice("/job:a/replica:0/task:0/device:CPU:0"); Scope s2 = s.WithDevice("/job:a/replica:0/task:0/device:CPU:1"); auto x = ops::_Arg(s1.WithOpName("x"), DT_FLOAT, 0); auto y = ops::_Arg(s2.WithOpName("y"), DT_FLOAT, 1); auto id_x = ops::Identity(s1.WithOpName("id_x"), x); auto id_y = ops::Identity(s2.WithOpName("id_y"), y); auto dx_retval = ops::_Retval(s2.WithOpName("retval1"), id_y, 0); auto dy_retval = ops::_Retval(s1.WithOpName("retval2"), id_x, 1); TF_ASSERT_OK(s.ToGraph(graph)); FunctionLibraryDefinition flib_def(OpRegistry::Global()); Placer placer(graph, "", &flib_def, &device_set_, device0_); TF_ASSERT_OK(placer.Run()); } void SubGraph(Graph* subgraph, DataType dtype, absl::Span<const int> arg_indices, absl::Span<const int> ret_indices) { Scope s = Scope::NewRootScope(); Scope s1 = s.WithDevice("/job:a/replica:0/task:0/device:CPU:0"); CHECK_EQ(arg_indices.size(), ret_indices.size()); for (size_t i = 0; i < arg_indices.size(); ++i) { auto x = ops::_Arg(s1.WithOpName("x"), dtype, arg_indices[i]); auto id_x = ops::Identity(s1.WithOpName("id_x"), x); auto dx_retval = ops::_Retval(s1.WithOpName("retval1"), id_x, ret_indices[i]); } TF_ASSERT_OK(s.ToGraph(subgraph)); FunctionLibraryDefinition flib_def(OpRegistry::Global()); Placer placer(subgraph, "", &flib_def, &device_set_, device0_); TF_ASSERT_OK(placer.Run()); } std::unique_ptr<DeviceMgr> device_mgr_; Device* device0_ = nullptr; Device* device1_ = nullptr; DeviceSet device_set_; }; TEST_F(PartitioningUtilsTest, GraphWithoutAssignedDevicesFails) { std::unique_ptr<Graph> graph = std::make_unique<Graph>(OpRegistry::Global()); SwapGraph(graph.get()); std::unordered_map<string, std::unique_ptr<Graph>> subgraphs; Status status = PartitionFunctionGraph(device_set_, std::move(graph), &subgraphs); ASSERT_TRUE(errors::IsInvalidArgument(status)) << status.ToString(); } TEST_F(PartitioningUtilsTest, OneDevice) { std::unique_ptr<Graph> graph = std::make_unique<Graph>(OpRegistry::Global()); SwapGraph(graph.get(), true); int num_nodes = graph->num_op_nodes(); std::unordered_map<string, std::unique_ptr<Graph>> subgraphs; Status status = PartitionFunctionGraph(device_set_, std::move(graph), &subgraphs); ASSERT_TRUE(status.ok()) << status.ToString(); ASSERT_EQ(1, subgraphs.size()); const auto& pair = *subgraphs.begin(); ASSERT_EQ("/job:a/replica:0/task:0/device:CPU:0", pair.first); ASSERT_EQ(num_nodes, pair.second->num_op_nodes()); } TEST_F(PartitioningUtilsTest, TwoDevices) { std::unique_ptr<Graph> graph = std::make_unique<Graph>(OpRegistry::Global()); TwoDeviceSwapGraph(graph.get()); std::unordered_map<string, std::unique_ptr<Graph>> subgraphs; Status status = PartitionFunctionGraph(device_set_, std::move(graph), &subgraphs); ASSERT_TRUE(status.ok()) << status.ToString(); ASSERT_EQ(2, subgraphs.size()); const auto& part1 = subgraphs["/job:a/replica:0/task:0/device:CPU:0"]; ASSERT_EQ(3, part1->num_op_nodes()); const auto& part2 = subgraphs["/job:a/replica:0/task:0/device:CPU:1"]; ASSERT_EQ(3, part2->num_op_nodes()); } TEST_F(PartitioningUtilsTest, InsertTransferOpsWithOneDevice) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); Scope scope = Scope::NewRootScope().WithDevice(device0_->name()); auto x = ops::_Arg(scope.WithOpName("x"), DT_FLOAT, 0); auto id_x = ops::Identity(scope.WithOpName("id_x"), x); auto ret_x = ops::_Retval(scope.WithOpName("ret_x"), id_x, 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionLibraryDefinition flib_def(OpRegistry::Global()); Placer placer(graph.get(), "", &flib_def, &device_set_, device0_); TF_ASSERT_OK(placer.Run()); EXPECT_EQ(graph->num_op_nodes(), 3); int send_count = 0, recv_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsSend()) ++send_count; else if (op->IsRecv()) ++recv_count; } ASSERT_EQ(send_count, 0); ASSERT_EQ(recv_count, 0); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<Graph> new_graph, InsertTransferOps(device_set_, std::move(graph))); EXPECT_EQ(new_graph->num_op_nodes(), 3); send_count = recv_count = 0; for (const auto* op : new_graph->op_nodes()) { if (op->IsSend()) ++send_count; else if (op->IsRecv()) ++recv_count; } EXPECT_EQ(send_count, 0); EXPECT_EQ(recv_count, 0); } TEST_F(PartitioningUtilsTest, InsertTransferOpsWithTwoDevices) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); Scope scope = Scope::NewRootScope(); Scope scope1 = scope.WithDevice(device0_->name()); Scope scope2 = scope.WithDevice(device1_->name()); auto x = ops::_Arg(scope1.WithOpName("x"), DT_FLOAT, 0); auto id_x = ops::Identity(scope2.WithOpName("id_x"), x); auto ret_x = ops::_Retval(scope1.WithOpName("ret_x"), id_x, 0); TF_ASSERT_OK(scope.ToGraph(graph.get())); FunctionLibraryDefinition flib_def(OpRegistry::Global()); Placer placer(graph.get(), "", &flib_def, &device_set_, device0_); TF_ASSERT_OK(placer.Run()); EXPECT_EQ(graph->num_op_nodes(), 3); int send_count = 0, recv_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsSend()) ++send_count; else if (op->IsRecv()) ++recv_count; } ASSERT_EQ(send_count, 0); ASSERT_EQ(recv_count, 0); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<Graph> new_graph, InsertTransferOps(device_set_, std::move(graph))); EXPECT_EQ(new_graph->num_op_nodes(), 7); send_count = recv_count = 0; auto get_tensor_name_attr = [](const Node* node) -> std::string { auto tensor_name_it = node->def().attr().find("tensor_name"); return tensor_name_it->second.s(); }; absl::flat_hash_map<std::string, std::pair<Node*, Node*>> send_recv_pairs; for (auto* op : new_graph->op_nodes()) { if (op->IsSend()) { ++send_count; send_recv_pairs[get_tensor_name_attr(op)].first = op; } else if (op->IsRecv()) { ++recv_count; send_recv_pairs[get_tensor_name_attr(op)].second = op; } } EXPECT_EQ(send_count, 2); EXPECT_EQ(recv_count, 2); for (const auto& [tensor_name, send_recv_pair] : send_recv_pairs) { ASSERT_TRUE(send_recv_pair.first != nullptr && send_recv_pair.second != nullptr); std::vector<const Edge*> out_edges( send_recv_pair.first->out_edges().begin(), send_recv_pair.first->out_edges().end()); ASSERT_THAT(out_edges, SizeIs(2)); for (const Edge* out_edge : out_edges) { if (out_edge->dst() != new_graph->sink_node()) { EXPECT_TRUE(out_edge->IsControlEdge()); EXPECT_EQ(out_edge->dst(), send_recv_pair.second); } } } } void CheckRetIndices(const std::vector<int>& expected, const std::vector<int>& actual) { ASSERT_EQ(expected.size(), actual.size()); for (int i = 0; i < expected.size(); ++i) { ASSERT_EQ(expected[i], actual[i]) << " at index " << i; } } void CheckArgIndices(const std::vector<FunctionArgIndex>& expected, const std::vector<FunctionArgIndex>& actual) { ASSERT_EQ(expected.size(), actual.size()); for (int i = 0; i < expected.size(); ++i) { ASSERT_EQ(expected[i].index, actual[i].index) << " at index " << i; ASSERT_EQ(expected[i].sub_index, actual[i].sub_index) << " at index " << i; } } void CheckAlloc(const std::vector<bool>& expected, const std::vector<AllocatorAttributes>& actual) { ASSERT_EQ(expected.size(), actual.size()); for (int i = 0; i < expected.size(); ++i) { ASSERT_EQ(expected[i], actual[i].on_host()) << " at index " << i; } } void CheckIndex(const Node& node, int expected_index) { const AttrValue* attr_value; TF_ASSERT_OK(node.attrs().Find("index", &attr_value)); int index = static_cast<int>(attr_value->i()); ASSERT_EQ(expected_index, index); } TEST_F(PartitioningUtilsTest, UpdateArgsAndRets) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); SubGraph(graph.get(), DT_FLOAT, {3}, {5}); std::vector<FunctionArgIndex> arg_indices; std::vector<int> ret_indices; std::vector<AllocatorAttributes> arg_alloc_attrs; std::vector<AllocatorAttributes> ret_alloc_attrs; Status status = UpdateArgAndRetvalMetadata( graph.get(), &arg_indices, &ret_indices, &arg_alloc_attrs, &ret_alloc_attrs, false); ASSERT_TRUE(status.ok()) << status.ToString(); CheckArgIndices({{3, -1}}, arg_indices); CheckRetIndices({5}, ret_indices); CheckAlloc({false}, arg_alloc_attrs); CheckAlloc({false}, ret_alloc_attrs); std::unordered_map<string, Node*> nodes = graph->BuildNodeNameIndex(); ASSERT_EQ(1, nodes.count("x")); CheckIndex(*nodes["x"], 0); ASSERT_EQ(1, nodes.count("retval1")); CheckIndex(*nodes["retval1"], 0); } TEST_F(PartitioningUtilsTest, UpdateArgsAndRetsIntsNotOnDevice) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); SubGraph(graph.get(), DT_INT32, {3}, {5}); std::vector<FunctionArgIndex> arg_indices; std::vector<int> ret_indices; std::vector<AllocatorAttributes> arg_alloc_attrs; std::vector<AllocatorAttributes> ret_alloc_attrs; Int32FulltypePass int32_fulltype; TF_ASSERT_OK( int32_fulltype.ProcessGraph(graph.get(), false)); Status status = UpdateArgAndRetvalMetadata( graph.get(), &arg_indices, &ret_indices, &arg_alloc_attrs, &ret_alloc_attrs, false); ASSERT_TRUE(status.ok()) << status.ToString(); CheckAlloc({true}, arg_alloc_attrs); CheckAlloc({true}, ret_alloc_attrs); } TEST_F(PartitioningUtilsTest, UpdateArgsAndRetsIntsOnDevice) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); SubGraph(graph.get(), DT_INT32, {3}, {5}); std::vector<FunctionArgIndex> arg_indices; std::vector<int> ret_indices; std::vector<AllocatorAttributes> arg_alloc_attrs; std::vector<AllocatorAttributes> ret_alloc_attrs; Status status = UpdateArgAndRetvalMetadata( graph.get(), &arg_indices, &ret_indices, &arg_alloc_attrs, &ret_alloc_attrs, true); ASSERT_TRUE(status.ok()) << status.ToString(); CheckAlloc({false}, arg_alloc_attrs); CheckAlloc({false}, ret_alloc_attrs); } TEST_F(PartitioningUtilsTest, UpdateArgsAndRets_Order) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); SubGraph(graph.get(), DT_FLOAT, {9, 7, 5, 3, 1}, {2, 4, 6, 8, 10}); const std::map<int, int> sub_indices = { {7, 2}, {3, 1}, {1, 0}, {5, 2}, {9, 0}}; const AttrValue* attr_value; for (Node* n : graph->op_nodes()) { if (n->IsArg()) { TF_ASSERT_OK(n->attrs().Find("index", &attr_value)); n->AddAttr("sub_index", sub_indices.at(static_cast<int>(attr_value->i()))); } } std::vector<FunctionArgIndex> arg_indices; std::vector<int> ret_indices; std::vector<AllocatorAttributes> arg_alloc_attrs; std::vector<AllocatorAttributes> ret_alloc_attrs; Status status = UpdateArgAndRetvalMetadata( graph.get(), &arg_indices, &ret_indices, &arg_alloc_attrs, &ret_alloc_attrs, false); ASSERT_TRUE(status.ok()) << status.ToString(); CheckArgIndices({{1, 0}, {3, 1}, {5, 2}, {7, 2}, {9, 0}}, arg_indices); CheckRetIndices({2, 4, 6, 8, 10}, ret_indices); CheckAlloc({false, false, false, false, false}, arg_alloc_attrs); CheckAlloc({false, false, false, false, false}, ret_alloc_attrs); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/partitioning_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/partitioning_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fa658703-36ea-4391-9a72-299b017e9eb8
cpp
tensorflow/tensorflow
placer
tensorflow/core/common_runtime/placer.cc
tensorflow/core/common_runtime/placer_test.cc
#include "tensorflow/core/common_runtime/placer.h" #include <string> #include <unordered_map> #include <vector> #include "tensorflow/core/common_runtime/colocation_graph.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/util/dump_graph.h" #include "tensorflow/core/util/port.h" namespace tensorflow { namespace { struct NameCounts { mutex counts_mutex; std::unordered_map<string, int> counts; }; string MakeUniqueFilename(string name) { static NameCounts& instance = *new NameCounts; for (int i = 0; i < name.size(); ++i) { char ch = name[i]; if (ch == '/' || ch == '[' || ch == ']' || ch == '*' || ch == '?') { name[i] = '_'; } } int count; { mutex_lock lock(instance.counts_mutex); count = instance.counts[name]++; } string filename = name; if (count > 0) { absl::StrAppend(&filename, "_", count); } absl::StrAppend(&filename, ".txt"); return filename; } Status GetFileName(string base_name, string* fname) { const char* dir = nullptr; dir = getenv("TF_DUMP_GRAPH_PREFIX"); if (!dir) { return absl::InternalError( absl::StrCat("Failed to get the directory for ", base_name, " because dump location is not specified through " "TF_DUMP_GRAPH_PREFIX environment variable")); } std::string result = dir; if (absl::EqualsIgnoreCase(result, "sponge") && !io::GetTestUndeclaredOutputsDir(&result)) { return absl::InternalError( "TF_DUMP_GRAPH_PREFIX=sponge but " "TEST_UNDECLARED_OUTPUT_DIRS is not set"); } base_name = MakeUniqueFilename(base_name); *fname = absl::StrCat(result, "/", base_name); return absl::OkStatus(); } void DumpColocationGraph(const string& base_name, const ColocationGraph& colocation_graph) { string fname; Status status = GetFileName(base_name, &fname); if (status.ok()) { status = WriteStringToFile(Env::Default(), fname, colocation_graph.DebugString()); if (status.ok()) { LOG(INFO) << "Wrote ColocationGraph to " << fname; } } if (!status.ok()) { LOG(ERROR) << "Failed to write final colocation graph to file " << fname << " with " << status.ToString(); } } bool IsGeneratorNode(const Node* node) { return node->num_inputs() == 0 && node->num_outputs() == 1 && !IsRefType(node->output_type(0)); } bool MatchIdentityOperation(const Node* node) { if (!node) { return false; } if (!node->IsIdentity()) { return false; } if (node->has_assigned_device_name()) { return false; } if (!node->requested_device().empty()) { return false; } if (node->in_edges().size() != 1) { return false; } if (node->out_edges().size() != 1) { return false; } const Node* input = *node->in_nodes().begin(); const Node* output = *node->out_nodes().begin(); return input->requested_device() == output->requested_device(); } void LogDeviceAssignment(const Node* node, bool log_device_placement) { if (log_device_placement) { printf("%s: (%s): %s\n", node->name().c_str(), node->type_string().c_str(), node->assigned_device_name().c_str()); LOG(INFO) << node->name() << ": " << "(" << node->type_string() << "): " << node->assigned_device_name(); } if (VLOG_IS_ON(1)) { if (VLOG_IS_ON(4)) { VLOG(4) << "\nNode:\n" << node->def().DebugString() << "placed on: " << node->assigned_device_name(); } else { VLOG(1) << node->name() << "(" << node->type_string() << ") placed on: " << node->assigned_device_name(); } } } Status AssignAndLog(int assigned_device, Node* node, ColocationGraph* colocation_graph, bool log_device_placement) { node->set_assigned_device_name_index(assigned_device); TF_RETURN_IF_ERROR(colocation_graph->LimitToAssignedDevice(*node)); LogDeviceAssignment(node, log_device_placement); return absl::OkStatus(); } } Placer::Placer(Graph* graph, const string& function_name, const FunctionLibraryDefinition* flib_def, const DeviceSet* devices, const Device* default_local_device, bool allow_soft_placement, bool log_device_placement) : graph_(graph), function_name_(function_name), flib_def_(flib_def), devices_(devices), default_local_device_(default_local_device), allow_soft_placement_(allow_soft_placement), log_device_placement_(log_device_placement) {} Placer::Placer(Graph* graph, const string& function_name, const FunctionLibraryDefinition* flib_def, const DeviceSet* devices, const Device* default_local_device) : Placer(graph, function_name, flib_def, devices, default_local_device, true, false) {} Placer::Placer(Graph* graph, const string& function_name, const FunctionLibraryDefinition* flib_def, const DeviceSet* devices) : Placer(graph, function_name, flib_def, devices, nullptr, true, false) {} Placer::~Placer() {} Status Placer::Run() { GraphOptimizationPassOptions options; return Run(options); } Status Placer::Run(const GraphOptimizationPassOptions& options) { if (devices_->devices().empty()) { return errors::FailedPrecondition("No devices are registered"); } if (VLOG_IS_ON(3)) { DumpGraphToFile( strings::StrCat(options.debug_filename_prefix, "placer_input"), *graph_, nullptr); } if (VLOG_IS_ON(5)) { for (const Node* node : graph_->op_nodes()) { VLOG(5) << " " << node->name() << ": requested: '" << node->requested_device() << "' assigned: '" << node->assigned_device_name() << "'"; } } FunctionStack stack(function_name_); ColocationGraph colocation_graph(graph_, stack, flib_def_, devices_, default_local_device_, allow_soft_placement_, log_device_placement_); TF_RETURN_IF_ERROR(colocation_graph.Initialize()); std::vector<Node*> second_pass; for (Node* node : graph_->op_nodes()) { if (node->has_assigned_device_name()) { TF_RETURN_IF_ERROR(colocation_graph.LimitToAssignedDevice(*node)); LogDeviceAssignment(node, log_device_placement_); continue; } if (IsGeneratorNode(node)) { second_pass.push_back(node); continue; } const std::vector<Device*>* devices; Status status = colocation_graph.GetDevicesForNode(node, &devices); if (!status.ok()) { return AttachDef( errors::InvalidArgument("Cannot assign a device for operation ", node->name(), ": ", status.message()), *node); } int assigned_device = -1; if (IsMetadata(node) || MatchIdentityOperation(node)) { const Node* input = (*node->in_edges().begin())->src(); if (CanAssignToDevice(input->assigned_device_name(), *devices)) { assigned_device = input->assigned_device_name_index(); } } if (assigned_device == -1) { assigned_device = graph_->InternDeviceName((*devices)[0]->name()); } TF_RETURN_IF_ERROR(AssignAndLog(assigned_device, node, &colocation_graph, log_device_placement_)); } for (Node* node : second_pass) { const std::vector<Device*>* devices; Status status = colocation_graph.GetDevicesForNode(node, &devices); if (!status.ok()) { return AttachDef( errors::InvalidArgument("Cannot assign a device for operation ", node->name(), ": ", status.message()), *node); } int assigned_device = -1; if (IsGeneratorNode(node) && !node->out_edges().empty()) { const Node* output = (*node->out_edges().begin())->dst(); int output_device_name = output->assigned_device_name_index(); const bool consumers_on_same_device = std::all_of( node->out_edges().begin(), node->out_edges().end(), [output_device_name](const Edge* e) { return e->dst()->assigned_device_name_index() == output_device_name; }); if (consumers_on_same_device && CanAssignToDevice(output->assigned_device_name(), *devices)) { assigned_device = output_device_name; } } if (assigned_device == -1) { assigned_device = graph_->InternDeviceName((*devices)[0]->name()); } TF_RETURN_IF_ERROR(AssignAndLog(assigned_device, node, &colocation_graph, log_device_placement_)); } if (VLOG_IS_ON(3)) { DumpGraphToFile( strings::StrCat(options.debug_filename_prefix, "placer_output"), *graph_, nullptr); DumpColocationGraph( strings::StrCat(options.debug_filename_prefix, "colocation_graph"), colocation_graph); } return absl::OkStatus(); } bool Placer::CanAssignToDevice(const string& candidate_device_name, const std::vector<Device*>& devices) const { if (!candidate_device_name.empty()) { const Device* other_device = devices_->FindDeviceByName(candidate_device_name); if (std::find(devices.begin(), devices.end(), other_device) != devices.end()) { return true; } } return false; } }
#include "tensorflow/core/common_runtime/placer.h" #include <memory> #include <string> #include <unordered_set> #include <utility> #include <vector> #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_def_builder_util.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/kernel_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { using ::tensorflow::test::function::GDef; using ::tensorflow::test::function::NDef; using FDH = ::tensorflow::FunctionDefHelper; constexpr char kCPU[] = "/device:FakeCPU:0"; constexpr char kGPU[] = "/device:FakeGPU:0"; constexpr char kFullCPU[] = "/job:a/replica:0/task:0/device:FakeCPU:0"; constexpr char kFullGPU[] = "/job:a/replica:0/task:0/device:FakeGPU:0"; namespace { class DummyOp : public OpKernel { public: explicit DummyOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override {} }; class FakeDevice : public Device { private: explicit FakeDevice(const DeviceAttributes& device_attributes) : Device(nullptr, device_attributes) {} public: Status Sync() override { return errors::Unimplemented("FakeDevice::Sync()"); } Allocator* GetAllocator(AllocatorAttributes attr) override { return nullptr; } static std::unique_ptr<Device> MakeDevice(const string& name, const string& device_type) { DeviceAttributes device_attributes; device_attributes.set_name(name); device_attributes.set_device_type(device_type); return std::unique_ptr<Device>(new FakeDevice(device_attributes)); } static std::unique_ptr<Device> MakeCPU(const string& name) { return MakeDevice(name, "FakeCPU"); } static std::unique_ptr<Device> MakeGPU(const string& name) { return MakeDevice(name, "FakeGPU"); } }; class DummyFactory : public DeviceFactory { public: Status ListPhysicalDevices(std::vector<string>* devices) override { return absl::OkStatus(); } Status CreateDevices(const SessionOptions& options, const string& name_prefix, std::vector<std::unique_ptr<Device>>* devices) override { return absl::OkStatus(); } }; REGISTER_LOCAL_DEVICE_FACTORY("FakeCPU", DummyFactory); REGISTER_LOCAL_DEVICE_FACTORY("FakeGPU", DummyFactory, 51); REGISTER_OP("TestVariable").Output("o: Ref(float)"); REGISTER_KERNEL_BUILDER(Name("TestVariable").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestVariable").Device("FakeGPU"), DummyOp); REGISTER_OP("VariableCPU").Output("o: Ref(float)"); REGISTER_KERNEL_BUILDER(Name("VariableCPU").Device("FakeCPU"), DummyOp); REGISTER_OP("VariableGPU").Output("o: Ref(float)"); REGISTER_KERNEL_BUILDER(Name("VariableGPU").Device("FakeGPU"), DummyOp); REGISTER_OP("VariableNoKernels").Output("o: Ref(float)"); REGISTER_OP("TestAdd").Input("a: float").Input("b: float").Output("o: float"); REGISTER_KERNEL_BUILDER(Name("TestAdd").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestAdd").Device("FakeGPU"), DummyOp); REGISTER_OP("TestRelu").Input("i: float").Output("o: float"); REGISTER_KERNEL_BUILDER(Name("TestRelu").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestRelu").Device("FakeGPU"), DummyOp); REGISTER_OP("ReluCPU").Input("i: float").Output("o: float"); REGISTER_KERNEL_BUILDER(Name("ReluCPU").Device("FakeCPU"), DummyOp); REGISTER_OP("ReluGPU").Input("i: float").Output("o: float"); REGISTER_KERNEL_BUILDER(Name("ReluGPU").Device("FakeGPU"), DummyOp); REGISTER_OP("TestAssign").Input("i: Ref(float)").Input("v: float"); REGISTER_KERNEL_BUILDER(Name("TestAssign").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestAssign").Device("FakeGPU"), DummyOp); REGISTER_OP("AssignCPU").Input("i: Ref(float)").Input("v: float"); REGISTER_KERNEL_BUILDER(Name("AssignCPU").Device("FakeCPU"), DummyOp); REGISTER_OP("AssignGPU").Input("i: Ref(float)").Input("v: float"); REGISTER_KERNEL_BUILDER(Name("AssignGPU").Device("FakeGPU"), DummyOp); REGISTER_OP("TestInput").Output("a: float").Output("b: float"); REGISTER_KERNEL_BUILDER(Name("TestInput").Device("FakeCPU"), DummyOp); REGISTER_OP("TestCPUGPUOutput").Output("a: float"); REGISTER_KERNEL_BUILDER(Name("TestCPUGPUOutput").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestCPUGPUOutput").Device("FakeGPU"), DummyOp); REGISTER_OP("TestGPUOutput").Output("a: float"); REGISTER_KERNEL_BUILDER(Name("TestGPUOutput").Device("FakeGPU"), DummyOp); REGISTER_OP("TestDevice").Output("a: float").Output("b: float"); REGISTER_KERNEL_BUILDER(Name("TestDevice").Device("FakeGPU"), DummyOp); REGISTER_OP("TestDeviceEnforce").Input("a: Ref(float)").Output("b: float"); REGISTER_KERNEL_BUILDER(Name("TestDeviceEnforce").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestDeviceEnforce").Device("FakeGPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Shape").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Shape").Device("FakeGPU"), DummyOp); REGISTER_OP("TestDatasetOp").Input("a: float").Output("b: float"); REGISTER_KERNEL_BUILDER(Name("TestDatasetOp").Device("FakeCPU").Priority(2), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestDatasetOp").Device("FakeGPU").Priority(1), DummyOp); REGISTER_OP("TestXlaOp").Input("a: float").Output("b: float"); REGISTER_KERNEL_BUILDER(Name("TestXlaOp").Device("XLA_CPU").Priority(2), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestXlaOp").Device("FakeCPU").Priority(1), DummyOp); REGISTER_OP("TestUncopiableTypeGeneratorCPU") .Output("d: variant") .SetTypeConstructor(full_type::UnaryGeneric(TFT_DATASET)); REGISTER_KERNEL_BUILDER( Name("TestUncopiableTypeGeneratorCPU").Device("FakeCPU"), DummyOp); REGISTER_OP("TestTypedConsumer").Input("i: variant"); REGISTER_KERNEL_BUILDER(Name("TestTypedConsumer").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestTypedConsumer").Device("FakeGPU"), DummyOp); REGISTER_OP("ConvertToListOfCooTensorsV2").Input("i: int32"); class PlacerTest : public ::testing::Test { protected: PlacerTest() : PlacerTest(10) {} explicit PlacerTest(int num_devices) { for (int i = 0; i < num_devices; ++i) { local_devices_.emplace_back(FakeDevice::MakeCPU( strings::StrCat("/job:a/replica:0/task:0/device:FakeCPU:", i))); devices_.AddDevice(local_devices_.back().get()); local_devices_.emplace_back(FakeDevice::MakeGPU(strings::StrCat( "/job:a/replica:0/task:0/device:FakeGPU:", num_devices - 1 - i))); devices_.AddDevice(local_devices_.back().get()); } local_devices_.emplace_back(FakeDevice::MakeDevice( "/job:a/replica:0/task:0/device:XLA_CPU:0", "XLA_CPU")); devices_.AddDevice(local_devices_.back().get()); local_devices_.emplace_back(FakeDevice::MakeDevice( "/job:a/replica:0/task:0/device:COMPOSITE:0", "COMPOSITE")); devices_.AddDevice(local_devices_.back().get()); } Status BuildGraph(const GraphDefBuilder& builder, Graph* out_graph) { TF_RETURN_IF_ERROR(GraphDefBuilderToGraph(builder, out_graph)); RebuildNodeNameMap(*out_graph); return absl::OkStatus(); } Status BuildGraph(const GraphDef& graph_def, Graph* out_graph) { GraphConstructorOptions opts; TF_RETURN_IF_ERROR(ConvertGraphDefToGraph(opts, graph_def, out_graph)); RebuildNodeNameMap(*out_graph); return absl::OkStatus(); } Status Place(Graph* graph, DeviceSet* devices, Device* default_local_device, bool allow_soft_placement, bool log_device_placement) { Placer placer(graph, "", &graph->flib_def(), devices, default_local_device, allow_soft_placement, log_device_placement); return placer.Run(); } Status CallOptPassesAndPlace(Graph* graph, DeviceSet* devices, bool allow_soft_placement, bool log_device_placement) { SessionOptions session_options; GraphOptions* graph_opts = session_options.config.mutable_graph_options(); OptimizerOptions* optimizer_opts = graph_opts->mutable_optimizer_options(); optimizer_opts->set_opt_level(OptimizerOptions::L0); optimizer_opts->set_global_jit_level(OptimizerOptions::OFF); RewriterConfig* rewriter_config = graph_opts->mutable_rewrite_options(); rewriter_config->set_disable_meta_optimizer(true); GraphOptimizationPassOptions optimization_options; std::unique_ptr<Graph> graph_ptr(graph); optimization_options.graph = &graph_ptr; FunctionLibraryDefinition flib_def(graph->flib_def()); optimization_options.flib_def = &flib_def; optimization_options.device_set = &devices_; optimization_options.session_options = &session_options; optimization_options.debug_filename_prefix = "placer_test_"; Status s = OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::PRE_PLACEMENT, optimization_options); if (!s.ok()) { graph_ptr.release(); return s; } graph = graph_ptr.release(); RebuildNodeNameMap(*graph); Placer placer(graph, "", &graph->flib_def(), devices, nullptr, allow_soft_placement, log_device_placement); return placer.Run(optimization_options); } Status Place(Graph* graph, DeviceSet* devices) { return Place(graph, devices, nullptr, true, false); } Status Place(Graph* graph, bool allow_soft_placement, bool log_device_placement) { return Place(graph, &devices_, nullptr, allow_soft_placement, log_device_placement); } Status Place(Graph* graph) { return Place(graph, &devices_, nullptr, true, false); } Status CallOptPassesAndPlace(Graph* graph, bool allow_soft_placement, bool log_device_placement) { return CallOptPassesAndPlace(graph, &devices_, allow_soft_placement, log_device_placement); } Status CallOptPassesAndPlace(Graph* graph) { return CallOptPassesAndPlace(graph, &devices_, true, false); } Node* GetNodeByName(const Graph& graph, const string& name) { const auto search = nodes_by_name_.find(name); CHECK(search != nodes_by_name_.end()) << "Unknown node name: " << name; return graph.FindNodeId(search->second); } protected: std::vector<std::unique_ptr<Device>> local_devices_; DeviceSet devices_; std::unordered_map<string, int> nodes_by_name_; Status ReferenceTestHelper(const string& variable_op_type, const string& assign_op_type, const DeviceType& expected_device_type); private: void RebuildNodeNameMap(const Graph& graph) { nodes_by_name_.clear(); for (Node* node : graph.nodes()) { nodes_by_name_[node->name()] = node->id(); } } }; class SoftPlacementPlacerTest : public PlacerTest, public ::testing::WithParamInterface<bool> {}; INSTANTIATE_TEST_SUITE_P(All, SoftPlacementPlacerTest, ::testing::Values(false, true), ::testing::PrintToStringParamName()); #define EXPECT_COLOCATED(g, name_a, name_b) \ do { \ Graph& g_ = (g); \ EXPECT_EQ(GetNodeByName(g_, (name_a))->assigned_device_name(), \ GetNodeByName(g_, (name_b))->assigned_device_name()); \ } while (0) #define EXPECT_NOT_COLOCATED(g, name_a, name_b) \ do { \ Graph& g_ = (g); \ EXPECT_NE(GetNodeByName(g_, (name_a))->assigned_device_name(), \ GetNodeByName(g_, (name_b))->assigned_device_name()); \ } while (0) #define EXPECT_DEVICE_TYPE(g, name, expected_device_type) \ EXPECT_EQ(DeviceType(expected_device_type).type(), \ devices_ \ .FindDeviceByName( \ GetNodeByName((g), (name))->assigned_device_name()) \ ->attributes() \ .device_type()) #define EXPECT_SAME_TYPE(g, node1, node2) \ EXPECT_EQ(devices_ \ .FindDeviceByName( \ GetNodeByName((g), (node1))->assigned_device_name()) \ ->attributes() \ .device_type(), \ devices_ \ .FindDeviceByName( \ GetNodeByName((g), (node2))->assigned_device_name()) \ ->attributes() \ .device_type()) #define EXPECT_DEVICE_CONTAINS(g, name, device_substr) \ EXPECT_TRUE(absl::StrContains( \ GetNodeByName((g), (name))->assigned_device_name(), device_substr)) TEST_F(PlacerTest, TestNoConstraints) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); ops::UnaryOp("TestRelu", ops::NodeOut(input, 0), b.opts().WithName("n1")); ops::UnaryOp("TestRelu", ops::NodeOut(input, 1), b.opts().WithName("n2")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "in", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "n1", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "n2", "FakeGPU"); } TEST_F(PlacerTest, TestNoConstraintsWithPrioritizedKernels) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); ops::UnaryOp("TestDatasetOp", ops::NodeOut(input, 0), b.opts().WithName("n1")); ops::UnaryOp("TestDatasetOp", ops::NodeOut(input, 1), b.opts().WithName("n2")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "in", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "n1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "n2", "FakeCPU"); } TEST_F(PlacerTest, TestXlaOpPlacement) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); ops::UnaryOp("TestXlaOp", ops::NodeOut(input, 0), b.opts().WithName("n1")); ops::UnaryOp("TestXlaOp", ops::NodeOut(input, 1), b.opts().WithName("n2")); TF_EXPECT_OK(BuildGraph(b, &g)); } GetNodeByName(g, "n2")->set_assigned_device_name( "/job:a/replica:0/task:0/device:XLA_CPU:0"); TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "in", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "n1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "n2", "XLA_CPU"); } TEST_F(PlacerTest, TestGPUInputIntoPrioritizedKernel) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestGPUOutput", b.opts().WithName("in")); ops::UnaryOp("TestDatasetOp", ops::NodeOut(input, 0), b.opts().WithName("n1")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "in", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "n1", "FakeCPU"); } TEST_F(PlacerTest, TestGPUInputColocatedWithPrioritizedKernel) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestGPUOutput", b.opts().WithName("in")); ops::UnaryOp("TestDatasetOp", ops::NodeOut(input, 0), b.opts().WithName("n1").WithAttr("_class", {"loc:@in"})); ops::UnaryOp("TestDatasetOp", ops::NodeOut(input, 0), b.opts().WithName("n2")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "in", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "n1", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "n2", "FakeCPU"); } REGISTER_OP("CreateDatasetCPU").Output("o: resource"); REGISTER_KERNEL_BUILDER(Name("CreateDatasetCPU").Device("FakeCPU"), DummyOp); REGISTER_OP("CreateDatasetGPU").Output("o: resource"); REGISTER_KERNEL_BUILDER(Name("CreateDatasetGPU").Device("FakeGPU"), DummyOp); REGISTER_OP("CreateDatasetSP").Output("o: resource"); REGISTER_KERNEL_BUILDER(Name("CreateDatasetSP").Device("FakeCPU").Priority(2), DummyOp); REGISTER_KERNEL_BUILDER(Name("CreateDatasetSP").Device("FakeGPU").Priority(1), DummyOp); REGISTER_OP("CreateDatasetRP").Output("o: resource"); REGISTER_KERNEL_BUILDER(Name("CreateDatasetRP").Device("FakeCPU").Priority(1), DummyOp); REGISTER_KERNEL_BUILDER(Name("CreateDatasetRP").Device("FakeGPU").Priority(2), DummyOp); REGISTER_OP("CreateDatasetNP").Output("o: resource"); REGISTER_KERNEL_BUILDER(Name("CreateDatasetNP").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("CreateDatasetNP").Device("FakeGPU"), DummyOp); REGISTER_OP("IteratorNP").Input("i: resource").Output("o: float"); REGISTER_KERNEL_BUILDER(Name("IteratorNP").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("IteratorNP").Device("FakeGPU"), DummyOp); REGISTER_OP("IteratorSP").Input("i: resource").Output("o: float"); REGISTER_KERNEL_BUILDER(Name("IteratorSP").Device("FakeCPU").Priority(2), DummyOp); REGISTER_KERNEL_BUILDER(Name("IteratorSP").Device("FakeGPU").Priority(1), DummyOp); REGISTER_OP("IteratorRP").Input("i: resource").Output("o: float"); REGISTER_KERNEL_BUILDER(Name("IteratorRP").Device("FakeCPU").Priority(1), DummyOp); REGISTER_KERNEL_BUILDER(Name("IteratorRP").Device("FakeGPU").Priority(2), DummyOp); REGISTER_OP("IteratorGPU").Input("i: resource").Output("o: float"); REGISTER_KERNEL_BUILDER(Name("IteratorGPU").Device("FakeGPU"), DummyOp); TEST_F(PlacerTest, TestDSWithPriority) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetSP", b.opts().WithName("ds")); ops::UnaryOp("IteratorNP", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeCPU"); } TEST_F(PlacerTest, TestDSWithGPUPriority) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetRP", b.opts().WithName("ds")); ops::UnaryOp("IteratorNP", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeGPU"); } TEST_F(PlacerTest, TestITWithPriority) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetNP", b.opts().WithName("ds")); ops::UnaryOp("IteratorSP", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeCPU"); } TEST_F(PlacerTest, TestITWithGPUPriority) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetNP", b.opts().WithName("ds")); ops::UnaryOp("IteratorRP", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeGPU"); } TEST_F(PlacerTest, TestITGPU) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetSP", b.opts().WithName("ds")); ops::UnaryOp("IteratorGPU", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeGPU"); } TEST_F(PlacerTest, TestSimpleIteratorOnlyGPU) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetCPU", b.opts().WithName("ds")); ops::UnaryOp("IteratorRP", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeCPU"); } TEST_F(PlacerTest, TestAgreeingPriorities) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetSP", b.opts().WithName("ds")); ops::UnaryOp("IteratorSP", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeCPU"); } TEST_F(PlacerTest, TestAgreeingRegularPriorities) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetRP", b.opts().WithName("ds")); ops::UnaryOp("IteratorRP", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeGPU"); } TEST_F(PlacerTest, TestConflictingPriorities) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetSP", b.opts().WithName("ds")); ops::UnaryOp("IteratorRP", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeGPU"); } TEST_F(PlacerTest, TestConflictingPrioritiesReversed) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetRP", b.opts().WithName("ds")); ops::UnaryOp("IteratorSP", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeGPU"); } TEST_F(PlacerTest, TestDeviceTypeConstraints) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); Node* var_cpu = ops::SourceOp("VariableCPU", b.opts().WithName("var_cpu")); ops::BinaryOp("AssignCPU", var_cpu, input, b.opts().WithName("assign_cpu")); Node* var_gpu = ops::SourceOp("VariableGPU", b.opts().WithName("var_gpu")); ops::BinaryOp("AssignGPU", var_gpu, input, b.opts().WithName("assign_gpu")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "in", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "var_cpu", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "assign_cpu", "FakeCPU"); EXPECT_COLOCATED(g, "var_cpu", "assign_cpu"); EXPECT_DEVICE_TYPE(g, "var_gpu", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "assign_gpu", "FakeGPU"); EXPECT_COLOCATED(g, "var_gpu", "assign_gpu"); } TEST_F(PlacerTest, TestMetadataColocatedWithInput) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* var_cpu = ops::SourceOp("VariableCPU", b.opts().WithName("var_cpu")); ops::UnaryOp("Shape", var_cpu, b.opts().WithName("shape_op")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "var_cpu", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "shape_op", "FakeCPU"); EXPECT_COLOCATED(g, "var_cpu", "shape_op"); } TEST_F(PlacerTest, TestHeuristicGeneratorFollowsSingleConsumer) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* var_cpu = ops::SourceOp("VariableCPU", b.opts().WithName("var_cpu")); Node* input = ops::SourceOp("TestCPUGPUOutput", b.opts().WithName("in")); ops::BinaryOp("TestAssign", var_cpu, input, b.opts().WithName("assign")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_COLOCATED(g, "var_cpu", "in"); EXPECT_COLOCATED(g, "assign", "in"); } TEST_F(PlacerTest, TestIgnoreGeneratorHeuristicIfWrongDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* var_cpu = ops::SourceOp("VariableCPU", b.opts().WithName("var_cpu")); Node* input = ops::SourceOp("TestGPUOutput", b.opts().WithName("in")); ops::BinaryOp("TestAssign", var_cpu, input, b.opts().WithName("assign")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "in", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "var_cpu", "FakeCPU"); EXPECT_COLOCATED(g, "var_cpu", "assign"); } TEST_F(PlacerTest, TestIgnoreGeneratorHeuristicIfWrongPartialDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* var_cpu = ops::SourceOp("VariableCPU", b.opts().WithName("var_cpu")); Node* input = ops::SourceOp("TestCPUGPUOutput", b.opts().WithName("in").WithDevice("/device:FakeCPU:1")); ops::BinaryOp("TestAssign", var_cpu, input, b.opts().WithName("assign")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "in", "FakeCPU"); EXPECT_DEVICE_CONTAINS(g, "in", "/device:FakeCPU:1"); EXPECT_DEVICE_TYPE(g, "var_cpu", "FakeCPU"); EXPECT_COLOCATED(g, "var_cpu", "assign"); EXPECT_DEVICE_CONTAINS(g, "var_cpu", "/device:FakeCPU:0"); } TEST_F(PlacerTest, TestPartialSpec) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in").WithDevice("/job:a")); ops::SourceOp("TestVariable", b.opts().WithName("var").WithDevice("/job:a")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "in", "FakeCPU"); EXPECT_DEVICE_CONTAINS(g, "in", "/job:a"); EXPECT_DEVICE_TYPE(g, "var", "FakeGPU"); EXPECT_DEVICE_CONTAINS(g, "var", "/job:a"); } TEST_F(PlacerTest, TestAssignedDevicePreserved) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in")); TF_EXPECT_OK(BuildGraph(b, &g)); } GetNodeByName(g, "in")->set_assigned_device_name( "/job:a/replica:0/task:0/device:FakeCPU:7"); TF_EXPECT_OK(Place(&g)); EXPECT_EQ("/job:a/replica:0/task:0/device:FakeCPU:7", GetNodeByName(g, "in")->assigned_device_name()); } TEST_F(PlacerTest, TestPartialSpecGpuToCpu) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in").WithDevice("/device:FakeGPU:0")); ops::SourceOp("TestVariable", b.opts().WithName("var").WithDevice("/device:FakeGPU:0")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g, true, false)); EXPECT_DEVICE_TYPE(g, "in", "FakeCPU"); EXPECT_DEVICE_CONTAINS(g, "in", "/device:FakeCPU"); EXPECT_DEVICE_TYPE(g, "var", "FakeGPU"); EXPECT_DEVICE_CONTAINS(g, "var", "/device:FakeGPU:0"); } TEST_F(PlacerTest, TestResourceMove) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* ds = ops::SourceOp("CreateDatasetSP", b.opts().WithName("ds").WithDevice("/device:FakeCPU:0")); ops::UnaryOp("IteratorGPU", ops::NodeOut(ds, 0), b.opts().WithName("it")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "ds", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "it", "FakeGPU"); } TEST_F(PlacerTest, TestAssignedGpuDeviceToCpuDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in")); TF_EXPECT_OK(BuildGraph(b, &g)); } GetNodeByName(g, "in")->set_assigned_device_name( "/job:a/replica:0/task:0/device:FakeGPU:0"); Status s = Place(&g); EXPECT_EQ(error::INTERNAL, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "Assigned device '/job:a/replica:0/task:0/device:FakeGPU:0' " "does not have registered OpKernel support for TestInput")) << s.ToString(); } Status PlacerTest::ReferenceTestHelper(const string& variable_op_type, const string& assign_op_type, const DeviceType& expected_device_type) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); for (int i = 0; i < 10; ++i) { Node* var = ops::SourceOp(variable_op_type, b.opts().WithName(strings::StrCat("var_", i))); ops::BinaryOp(assign_op_type, var, input, b.opts().WithName(strings::StrCat("assign_", i))); } TF_EXPECT_OK(BuildGraph(b, &g)); } TF_RETURN_IF_ERROR(Place(&g)); for (int i = 0; i < 10; ++i) { EXPECT_COLOCATED(g, strings::StrCat("var_", i), strings::StrCat("assign_", i)); EXPECT_DEVICE_TYPE(g, strings::StrCat("var_", i), expected_device_type); EXPECT_DEVICE_TYPE(g, strings::StrCat("assign_", i), expected_device_type); } return absl::OkStatus(); } TEST_F(PlacerTest, TestReferenceConnection) { Status s; TF_EXPECT_OK(ReferenceTestHelper("TestVariable", "TestAssign", "FakeGPU")); TF_EXPECT_OK(ReferenceTestHelper("TestVariable", "AssignCPU", "FakeCPU")); TF_EXPECT_OK(ReferenceTestHelper("TestVariable", "AssignGPU", "FakeGPU")); TF_EXPECT_OK(ReferenceTestHelper("VariableCPU", "TestAssign", "FakeCPU")); TF_EXPECT_OK(ReferenceTestHelper("VariableCPU", "AssignCPU", "FakeCPU")); { Status s = ReferenceTestHelper("VariableCPU", "AssignGPU", "FakeCPU"); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains( s.message(), "no device type supports both of those nodes")); } TF_EXPECT_OK(ReferenceTestHelper("VariableGPU", "TestAssign", "FakeGPU")); { Status s = ReferenceTestHelper("VariableGPU", "AssignCPU", "FakeCPU"); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains( s.message(), "no device type supports both of those nodes")); } TF_EXPECT_OK(ReferenceTestHelper("VariableGPU", "AssignGPU", "FakeGPU")); } REGISTER_OP("TestHandleVariable").Output("o: resource"); REGISTER_KERNEL_BUILDER(Name("TestHandleVariable").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestHandleVariable").Device("FakeGPU"), DummyOp); REGISTER_OP("HandleVariableCPU").Output("o: resource"); REGISTER_KERNEL_BUILDER(Name("HandleVariableCPU").Device("FakeCPU"), DummyOp); REGISTER_OP("HandleVariableGPU").Output("o: resource"); REGISTER_KERNEL_BUILDER(Name("HandleVariableGPU").Device("FakeGPU"), DummyOp); REGISTER_OP("TestHandleAssign").Input("i: resource").Input("v: float"); REGISTER_KERNEL_BUILDER(Name("TestHandleAssign").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestHandleAssign").Device("FakeGPU"), DummyOp); REGISTER_OP("HandleAssignCPU").Input("i: resource").Input("v: float"); REGISTER_KERNEL_BUILDER(Name("HandleAssignCPU").Device("FakeCPU"), DummyOp); REGISTER_OP("HandleAssignGPU").Input("i: resource").Input("v: float"); REGISTER_KERNEL_BUILDER(Name("HandleAssignGPU").Device("FakeGPU"), DummyOp); REGISTER_OP("TestTwoHandlesIn").Input("i: resource").Input("j: resource"); REGISTER_KERNEL_BUILDER(Name("TestTwoHandlesIn").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("TestTwoHandlesIn").Device("FakeGPU"), DummyOp); TEST_F(PlacerTest, TestResourceHandle) { auto handle_test = [this](const string& var_op_name, const string& use_op_name, DeviceType device) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); Node* var = ops::SourceOp(var_op_name, b.opts().WithName("var")); ops::BinaryOp(use_op_name, var, input, b.opts().WithName("assign")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_RETURN_IF_ERROR(Place(&g)); EXPECT_COLOCATED(g, "var", "assign"); EXPECT_DEVICE_TYPE(g, "var", device); EXPECT_DEVICE_TYPE(g, "assign", device); return absl::OkStatus(); }; TF_EXPECT_OK( handle_test("TestHandleVariable", "TestHandleAssign", "FakeGPU")); TF_EXPECT_OK(handle_test("TestHandleVariable", "HandleAssignCPU", "FakeCPU")); TF_EXPECT_OK(handle_test("TestHandleVariable", "HandleAssignGPU", "FakeGPU")); TF_EXPECT_OK(handle_test("HandleVariableCPU", "TestHandleAssign", "FakeCPU")); TF_EXPECT_OK(handle_test("HandleVariableCPU", "HandleAssignCPU", "FakeCPU")); TF_EXPECT_OK(handle_test("HandleVariableGPU", "HandleAssignGPU", "FakeGPU")); TF_EXPECT_OK(handle_test("HandleVariableGPU", "TestHandleAssign", "FakeGPU")); EXPECT_FALSE( handle_test("HandleVariableGPU", "HandleAssignCPU", "FakeCPU").ok()); EXPECT_FALSE( handle_test("HandleVariableCPU", "HandleAssignGPU", "FakeCPU").ok()); } TEST_F(PlacerTest, TestResourceHandlesOnDifferentDevicesFails) { auto handle_test = [this](bool allow_soft_placement, bool set_assigned) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* var_cpu = ops::SourceOp("TestHandleVariable", b.opts().WithName("var_cpu")); Node* var_gpu = ops::SourceOp("TestHandleVariable", b.opts().WithName("var_gpu")); ops::BinaryOp("TestTwoHandlesIn", var_cpu, var_gpu, b.opts().WithName("two_handles_in")); TF_EXPECT_OK(BuildGraph(b, &g)); if (set_assigned) { GetNodeByName(g, "var_cpu") ->set_assigned_device_name( "/job:a/replica:0/task:0/device:FakeCPU:0"); GetNodeByName(g, "var_gpu") ->set_assigned_device_name( "/job:a/replica:0/task:0/device:FakeGPU:0"); } else { GetNodeByName(g, "var_cpu") ->set_requested_device("/job:a/replica:0/task:0/device:FakeCPU:0"); GetNodeByName(g, "var_gpu") ->set_requested_device("/job:a/replica:0/task:0/device:FakeGPU:0"); } } Status s = Place(&g, allow_soft_placement, true); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()) << s.ToString(); if (set_assigned) { EXPECT_TRUE(absl::StrContains( s.message(), "Cannot place the graph because a reference or resource edge " "connects " "colocation groups with incompatible assigned devices: " "/job:a/replica:0/task:0/device:FakeGPU:0 vs " "/job:a/replica:0/task:0/device:FakeCPU:0")) << s.ToString(); } else { EXPECT_TRUE(absl::StrContains( s.message(), "Cannot place the graph because a reference or resource edge " "connects " "colocation groups with incompatible resource devices: " "/job:a/replica:0/task:0/device:FakeGPU:0 vs " "/job:a/replica:0/task:0/device:FakeCPU:0")) << s.ToString(); } return absl::OkStatus(); }; TF_EXPECT_OK(handle_test(false, false)); TF_EXPECT_OK(handle_test(false, true)); TF_EXPECT_OK(handle_test(true, false)); TF_EXPECT_OK(handle_test(true, true)); } TEST_F(PlacerTest, TestReferenceConnectionIgnoreInfeasible) { Status s; Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp( "TestDevice", b.opts().WithName("in").WithDevice("/job:a/task:0/device:FakeGPU:0")); Node* var = ops::SourceOp("TestVariable", b.opts().WithName("var_0").WithDevice( "/job:a/task:0/device:FakeGPU:0")); ops::BinaryOp("TestAssign", var, input, b.opts().WithName("assign").WithDevice( "/job:a/task:0/device:FakeCPU:0")); TF_EXPECT_OK(BuildGraph(b, &g)); } s = Place(&g, false, false); TF_EXPECT_OK(s); EXPECT_DEVICE_TYPE(g, "var_0", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "assign", "FakeGPU"); } TEST_F(PlacerTest, TestReferenceConnectionMoreSpecificDestinationSourceWins) { Status s; Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestCPUGPUOutput", b.opts().WithName("in").WithDevice("/job:a/task:0")); Node* var = ops::SourceOp( "TestVariable", b.opts().WithName("var_0").WithDevice("/job:a/task:0")); ops::BinaryOp("TestAssign", var, input, b.opts().WithName("assign").WithDevice( "/job:a/task:0/device:FakeCPU:0")); TF_EXPECT_OK(BuildGraph(b, &g)); } s = Place(&g, false, false); TF_EXPECT_OK(s); EXPECT_DEVICE_TYPE(g, "var_0", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "assign", "FakeCPU"); } TEST_F(PlacerTest, TestReferenceConnectionNoSourceDevice) { Status s; Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp( "TestDevice", b.opts().WithName("in").WithDevice("/job:a/task:0/device:FakeGPU:0")); Node* var = ops::SourceOp("TestVariable", b.opts().WithName("var_0")); ops::BinaryOp("TestAssign", var, input, b.opts().WithName("assign").WithDevice( "/job:a/task:0/device:FakeCPU:0")); TF_EXPECT_OK(BuildGraph(b, &g)); } s = Place(&g, false, false); TF_EXPECT_OK(s); EXPECT_DEVICE_TYPE(g, "var_0", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "assign", "FakeCPU"); } TEST_F(PlacerTest, TestResourceHandleOnCompositeDevice) { auto build_graph = [this](Graph* g) -> Status { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); Node* var = ops::SourceOp("HandleVariableCPU", b.opts().WithName("var")); ops::BinaryOp("TestHandleAssign", var, input, b.opts().WithName("assign")); TF_RETURN_IF_ERROR(BuildGraph(b, g)); GetNodeByName(*g, "var")->set_assigned_device_name( "/job:a/replica:0/task:0/device:COMPOSITE:0"); return absl::OkStatus(); }; { Graph g(OpRegistry::Global()); TF_ASSERT_OK(build_graph(&g)); TF_ASSERT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "var", "COMPOSITE"); EXPECT_DEVICE_TYPE(g, "assign", "COMPOSITE"); } { Graph g(OpRegistry::Global()); TF_ASSERT_OK(build_graph(&g)); GetNodeByName(g, "assign") ->set_assigned_device_name("/job:a/replica:0/task:0/device:FakeCPU:0"); TF_ASSERT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "var", "COMPOSITE"); EXPECT_DEVICE_TYPE(g, "assign", "FakeCPU"); } } TEST_F(PlacerTest, TestColocationGroup) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); Node* colocated_with_input = ops::UnaryOp( "TestRelu", input, b.opts().WithName("colocated_1").WithAttr("_class", {"loc:@in"})); Node* not_colocated_with_input = ops::UnaryOp("TestRelu", input, b.opts().WithName("foo")); CHECK(colocated_with_input); CHECK(not_colocated_with_input); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_COLOCATED(g, "in", "colocated_1"); EXPECT_NOT_COLOCATED(g, "in", "foo"); } TEST_F(PlacerTest, TestMultipleColocationGroups) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); Node* colocated_with_input = ops::UnaryOp( "TestRelu", input, b.opts().WithName("colocated_1").WithAttr("_class", {"loc:@in"})); Node* colocated_with_input_and_other = ops::UnaryOp("TestRelu", input, b.opts().WithName("foo").WithAttr( "_class", {"loc:@in", "loc:@colocated_1"})); CHECK(colocated_with_input); CHECK(colocated_with_input_and_other); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_COLOCATED(g, "in", "colocated_1"); EXPECT_COLOCATED(g, "in", "foo"); } TEST_F(PlacerTest, TestChainColocation) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); Node* colocated_with_input = ops::UnaryOp( "TestRelu", input, b.opts().WithName("colocated_1").WithAttr("_class", {"loc:@in"})); Node* colocated_with_input_and_other = ops::UnaryOp( "TestRelu", input, b.opts().WithName("foo").WithAttr("_class", {"loc:@colocated_1"})); CHECK(colocated_with_input); CHECK(colocated_with_input_and_other); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_COLOCATED(g, "in", "colocated_1"); EXPECT_COLOCATED(g, "in", "foo"); } TEST_P(SoftPlacementPlacerTest, TestInvalidMultipleColocationGroups) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); Node* colocated_with_input = ops::UnaryOp( "ReluCPU", input, b.opts().WithName("colocated_1").WithAttr("_class", {"loc:@in"})); Node* colocated_with_input_and_other = ops::UnaryOp("ReluGPU", input, b.opts().WithName("foo").WithAttr( "_class", {"loc:@in", "loc:@colocated_1"})); CHECK(colocated_with_input); CHECK(colocated_with_input_and_other); TF_EXPECT_OK(BuildGraph(b, &g)); } bool allow_soft_placement = GetParam(); Status s = Place(&g, allow_soft_placement, true); if (allow_soft_placement) { EXPECT_EQ(error::OK, s.code()) << s.ToString(); EXPECT_DEVICE_TYPE(g, "in", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "colocated_1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "foo", "FakeGPU"); } else { EXPECT_TRUE(absl::StrContains( s.message(), "Cannot colocate nodes {{colocation_node foo}} and " "{{colocation_node in}} because no device type supports both of those " "nodes and the other nodes colocated with them")) << s.ToString(); } } TEST_F(PlacerTest, TestColocationGroupWithReferenceConnections) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); Node* var1 = ops::SourceOp("VariableCPU", b.opts().WithName("var1")); Node* var2 = ops::SourceOp("VariableCPU", b.opts().WithName("var2")); Node* var3 = ops::SourceOp( "VariableCPU", b.opts().WithName("var3").WithDevice("/device:COMPOSITE:0")); ops::BinaryOp( "TestAssign", var1, input, b.opts().WithName("assign1").WithAttr("_class", {"loc:@var1"})); ops::BinaryOp( "TestAssign", var2, input, b.opts().WithName("assign2").WithAttr("_class", {"loc:@var2"})); ops::BinaryOp( "TestAssign", var3, input, b.opts().WithName("assign3").WithAttr("_class", {"loc:@var3"})); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_DEVICE_TYPE(g, "in", "FakeCPU"); EXPECT_COLOCATED(g, "in", "var1"); EXPECT_COLOCATED(g, "in", "var2"); EXPECT_COLOCATED(g, "var1", "assign2"); EXPECT_COLOCATED(g, "var2", "assign1"); EXPECT_DEVICE_TYPE(g, "var3", "COMPOSITE"); EXPECT_COLOCATED(g, "var3", "assign3"); } TEST_P(SoftPlacementPlacerTest, TestColocationGroupWithUnsatisfiableReferenceConnections) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); Node* var1 = ops::SourceOp("VariableCPU", b.opts().WithName("var1")); Node* var2 = ops::SourceOp("VariableCPU", b.opts().WithName("var2")); Node* var3 = ops::SourceOp("VariableGPU", b.opts().WithName("var3")); ops::BinaryOp( "TestAssign", var1, input, b.opts().WithName("assign1").WithAttr("_class", {"loc:@var1"})); ops::BinaryOp( "TestAssign", var2, input, b.opts().WithName("assign2").WithAttr("_class", {"loc:@var2"})); ops::BinaryOp( "TestAssign", var3, input, b.opts().WithName("assign3").WithAttr("_class", {"loc:@var2"})); TF_EXPECT_OK(BuildGraph(b, &g)); } bool allow_soft_placement = GetParam(); Status s = Place(&g, allow_soft_placement, true); if (allow_soft_placement) { EXPECT_EQ(error::OK, s.code()) << s.ToString(); } else { EXPECT_EQ(error::INVALID_ARGUMENT, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "Cannot colocate nodes {{colocation_node assign3}} and " "{{colocation_node var2}} because no device type supports both of " "those nodes and the other nodes colocated with them.")) << s.ToString(); } } TEST_F(PlacerTest, TestColocationAndReferenceConnections) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); for (int i = 0; i < 10; ++i) { Node* var = ops::SourceOp("TestVariable", b.opts().WithName(strings::StrCat("var_", i))); ops::BinaryOp("TestAssign", var, input, b.opts().WithName(strings::StrCat("assign_", i))); } for (int i = 10; i < 100; ++i) { Node* var = ops::SourceOp( "TestVariable", b.opts() .WithName(strings::StrCat("var_", i)) .WithAttr("_class", {strings::StrCat("loc:@var_", i % 6)})); ops::BinaryOp( "TestAssign", var, input, b.opts() .WithName(strings::StrCat("assign_", i)) .WithAttr("_class", {strings::StrCat("loc:@assign_", i % 3)})); } TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); for (int i = 0; i < 10; ++i) { EXPECT_COLOCATED(g, strings::StrCat("var_", i), strings::StrCat("assign_", i)); } for (int i = 10; i < 100; ++i) { EXPECT_COLOCATED(g, strings::StrCat("var_", i), strings::StrCat("assign_", i)); EXPECT_COLOCATED(g, strings::StrCat("var_", i), strings::StrCat("var_", i % 6)); EXPECT_COLOCATED(g, strings::StrCat("assign_", i), strings::StrCat("assign_", i % 3)); } } TEST_F(PlacerTest, TestEmptyDeviceSet) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in")); TF_EXPECT_OK(BuildGraph(b, &g)); } DeviceSet empty; Status s = Place(&g, &empty); EXPECT_TRUE(absl::StrContains(s.message(), "No devices are registered")); } TEST_F(PlacerTest, TestHeterogeneousDeviceSetFailure) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* in = ops::SourceOp("TestInput", b.opts().WithName("in")); Node* var = ops::SourceOp("VariableGPU", b.opts().WithName("var")); ops::BinaryOp("TestAssign", var, in, b.opts().WithName("assign").WithDevice("/job:b/task:1")); TF_EXPECT_OK(BuildGraph(b, &g)); } DeviceSet heterogeneous; std::unique_ptr<Device> gpu( FakeDevice::MakeGPU("/job:b/replica:0/task:0/device:FakeGPU:0")); heterogeneous.AddDevice(gpu.get()); std::unique_ptr<Device> cpu( FakeDevice::MakeCPU("/job:b/replica:0/task:1/device:FakeCPU:0")); heterogeneous.AddDevice(cpu.get()); Status s = Place(&g, &heterogeneous); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains(s.message(), "colocated with a group of nodes that required " "incompatible device")); EXPECT_TRUE(absl::StrContains(s.message(), "VariableGPU: FakeGPU")) << s; EXPECT_TRUE(absl::StrContains(s.message(), "TestAssign: FakeGPU FakeCPU")) << s; } TEST_F(PlacerTest, TestUnknownDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in").WithDevice("/job:foo")); TF_EXPECT_OK(BuildGraph(b, &g)); } Status s = Place(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains(s.message(), "/job:foo")); } TEST_F(PlacerTest, TestUnknownMergedDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in").WithDevice("/job:foo")); TF_EXPECT_OK(BuildGraph(b, &g)); } Status s = Place(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains(s.message(), "/job:foo")); } TEST_F(PlacerTest, TestUnknownAssignedDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in")); TF_EXPECT_OK(BuildGraph(b, &g)); } GetNodeByName(g, "in")->set_assigned_device_name("/job:foo"); Status s = Place(&g); EXPECT_EQ(error::INTERNAL, s.code()); EXPECT_TRUE(absl::StrContains( s.message(), "Assigned device '/job:foo' does not match any device")); } TEST_F(PlacerTest, TestNoKernelsRegisteredWithNoRequestedDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("VariableNoKernels", b.opts().WithName("var")); TF_EXPECT_OK(BuildGraph(b, &g)); } Status s = Place(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains(s.message(), "No OpKernel was registered to support Op " "'VariableNoKernels' used by {{node var}}")); EXPECT_TRUE(absl::StrContains(s.message(), "<no registered kernels>")); } TEST_F(PlacerTest, TestNoKernelsRegisteredWithRequestedDeviceLocal) { const string cpu_device = "/job:b/replica:0/task:0/device:FakeCPU:0"; const string gpu_device = "/job:b/replica:0/task:0/device:FakeGPU:0"; Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("VariableNoKernels", b.opts().WithName("var")); TF_EXPECT_OK(BuildGraph(b, &g)); } GetNodeByName(g, "var")->set_requested_device(gpu_device); DeviceSet devices; std::unique_ptr<Device> gpu(FakeDevice::MakeGPU(gpu_device)); devices.AddDevice(gpu.get()); std::unique_ptr<Device> cpu(FakeDevice::MakeCPU(cpu_device)); devices.AddDevice(cpu.get()); Status s = Place(&g, &devices, cpu.get(), false, false); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains(s.message(), "No OpKernel was registered to support Op " "'VariableNoKernels' used by {{node var}}")); EXPECT_TRUE(absl::StrContains(s.message(), "<no registered kernels>")); } TEST_F(PlacerTest, TestNoKernelsRegisteredWithRequestedDeviceRemote) { const string local_device = "/job:b/replica:0/task:0/device:FakeCPU:0"; const string remote_device = "/job:b/replica:0/task:1/device:FakeGPU:0"; Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("VariableNoKernels", b.opts().WithName("var")); TF_EXPECT_OK(BuildGraph(b, &g)); } GetNodeByName(g, "var")->set_requested_device(remote_device); DeviceSet heterogeneous; std::unique_ptr<Device> gpu(FakeDevice::MakeGPU(remote_device)); heterogeneous.AddDevice(gpu.get()); std::unique_ptr<Device> cpu(FakeDevice::MakeCPU(local_device)); heterogeneous.AddDevice(cpu.get()); TF_EXPECT_OK(Place(&g, &heterogeneous, cpu.get(), false, false)); EXPECT_DEVICE_CONTAINS(g, "var", remote_device); } TEST_F(PlacerTest, TestNoDevicesRegistered) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("VariableGPU", b.opts().WithName("var")); TF_EXPECT_OK(BuildGraph(b, &g)); } DeviceSet cpu_only; std::unique_ptr<Device> cpu( FakeDevice::MakeCPU("/job:a/replica:0/task:0/device:FakeCPU:0")); cpu_only.AddDevice(cpu.get()); Status s = Place(&g, &cpu_only); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains(s.message(), "No OpKernel was registered to support Op " "'VariableGPU' used by {{node var}}")); EXPECT_TRUE(absl::StrContains(s.message(), "device='FakeGPU'")); } TEST_F(PlacerTest, TestMalformedDeviceSpecification) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in").WithDevice("/foo:bar")); TF_EXPECT_OK(BuildGraph(b, &g)); } Status s = Place(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains(s.message(), "Malformed device specification '/foo:bar'")); } TEST_F(PlacerTest, TestMalformedAssignedDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in")); TF_EXPECT_OK(BuildGraph(b, &g)); } GetNodeByName(g, "in")->set_assigned_device_name("/foo:bar"); Status s = Place(&g); EXPECT_EQ(error::INTERNAL, s.code()); EXPECT_TRUE( absl::StrContains(s.message(), "Malformed assigned device '/foo:bar'")); } TEST_F(PlacerTest, TestNonUniqueAssignedDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("in")); TF_EXPECT_OK(BuildGraph(b, &g)); } GetNodeByName(g, "in")->set_assigned_device_name("/job:a"); Status s = Place(&g); EXPECT_EQ(error::INTERNAL, s.code()); EXPECT_TRUE(absl::StrContains( s.message(), "Assigned device '/job:a' does not match any device")); } TEST_F(PlacerTest, TestNonexistentGpuAllowSoftPlacement) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestDevice", b.opts().WithName("in").WithDevice("/device:FakeGPU:11")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g, true, false)); EXPECT_DEVICE_CONTAINS(g, "in", "/device:FakeGPU:0"); } TEST_F(PlacerTest, TestNonexistentGpuNoAllowSoftPlacement) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestDevice", b.opts().WithName("in").WithDevice("/device:FakeGPU:11")); TF_EXPECT_OK(BuildGraph(b, &g)); } Status s = Place(&g, false, false); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains(s.message(), "/device:FakeGPU:11")); } TEST_F(PlacerTest, TestNonexistentGpuNoAllowSoftPlacementFormatTag) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestDevice", b.opts().WithName("in").WithDevice("/device:FakeGPU:11")); TF_EXPECT_OK(BuildGraph(b, &g)); } Status s = Place(&g, false, false); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); LOG(WARNING) << s.message(); EXPECT_TRUE(absl::StrContains(s.message(), "Cannot assign a device for operation in")); EXPECT_TRUE(absl::StrContains(s.message(), "{{node in}}")); } TEST_F(PlacerTest, TestUnsupportedDeviceNoAllowSoftPlacement) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("VariableGPU", b.opts().WithName("var").WithDevice("/device:FakeCPU:0")); TF_EXPECT_OK(BuildGraph(b, &g)); } Status s = Place(&g, false, false); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains(s.message(), "/device:FakeCPU:0")) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "no supported kernel for FakeCPU devices is available")) << s.ToString(); } TEST_F(PlacerTest, TestNonExistentDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("VariableGPU", b.opts().WithName("var").WithDevice("/job:foo/replica:17")); TF_EXPECT_OK(BuildGraph(b, &g)); } Status s = Place(&g, false, false); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); LOG(WARNING) << s.message(); EXPECT_TRUE(absl::StrContains( s.message(), "was explicitly assigned to /job:foo/replica:17")); EXPECT_TRUE(absl::StrContains(s.message(), "but available devices")); } #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) TEST_F(PlacerTest, TestUseGpuWithNoCuda) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("VariableGPU", b.opts().WithName("var").WithDevice("/device:gpu:0")); TF_EXPECT_OK(BuildGraph(b, &g)); } Status s = Place(&g, false, false); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); LOG(WARNING) << s.message(); EXPECT_TRUE(absl::StrContains( s.message(), "The requested device appears to be a GPU, but CUDA is not enabled.")); } #endif TEST_F(PlacerTest, TestUnsupportedDeviceAllowSoftPlacement) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("TestInput", b.opts().WithName("a").WithDevice("/device:FakeGPU:0")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g, true, false)); } TEST_F(PlacerTest, TestDeviceTypeConstraintsAllowSoftPlacement) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* var_gpu = ops::SourceOp("VariableGPU", b.opts().WithName("var_gpu")); ops::UnaryOp( "TestDeviceEnforce", var_gpu, b.opts().WithName("force_gpu").WithDevice("/device:FakeCPU:0")); Node* var_cpu = ops::SourceOp("VariableCPU", b.opts().WithName("var_cpu")); ops::UnaryOp( "TestDeviceEnforce", var_cpu, b.opts().WithName("force_cpu").WithDevice("/device:FakeGPU:0")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g, true, false)); EXPECT_DEVICE_TYPE(g, "var_gpu", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "force_gpu", "FakeGPU"); EXPECT_COLOCATED(g, "var_gpu", "force_gpu"); EXPECT_DEVICE_TYPE(g, "var_cpu", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "force_cpu", "FakeCPU"); EXPECT_COLOCATED(g, "var_cpu", "force_cpu"); } TEST_F(PlacerTest, TestUnsatisfiableConstraintWithReferenceConnections) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* var = ops::SourceOp("VariableGPU", b.opts().WithName("var")); Node* input = ops::SourceOp("TestInput", b.opts().WithName("in")); ops::BinaryOp("AssignCPU", var, input, b.opts().WithName("assign")); TF_EXPECT_OK(BuildGraph(b, &g)); } Status s = Place(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains(s.message(), "Cannot colocate nodes {{colocation_node " "var}} and {{colocation_node assign}}")); } TEST_F(PlacerTest, TestGeneratorNodeFollowsConsumerNode) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* var1_cpu = ops::SourceOp("VariableCPU", b.opts().WithName("var1_cpu")); Node* var2_cpu = ops::SourceOp("VariableCPU", b.opts().WithName("var2_cpu")); Node* input = ops::SourceOp("TestCPUGPUOutput", b.opts().WithName("in")); ops::BinaryOp("TestAssign", var1_cpu, input, b.opts().WithName("assign1")); ops::BinaryOp("TestAssign", var2_cpu, input, b.opts().WithName("assign2")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Place(&g)); EXPECT_COLOCATED(g, "var1_cpu", "in"); EXPECT_COLOCATED(g, "assign1", "in"); EXPECT_COLOCATED(g, "var2_cpu", "in"); EXPECT_COLOCATED(g, "assign2", "in"); } TEST_F(PlacerTest, TestGeneratorNodeDoesntFollowNonColocatedConsumers) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* var1_cpu = ops::SourceOp("VariableCPU", b.opts().WithName("var1_cpu")); Node* var2_cpu = ops::SourceOp("VariableCPU", b.opts().WithName("var2_cpu")); Node* input = ops::SourceOp("TestCPUGPUOutput", b.opts().WithName("in")); ops::BinaryOp("TestAssign", var1_cpu, input, b.opts().WithName("assign1")); ops::BinaryOp("TestAssign", var2_cpu, input, b.opts().WithName("assign2")); TF_EXPECT_OK(BuildGraph(b, &g)); GetNodeByName(g, "var1_cpu") ->set_assigned_device_name("/job:a/replica:0/task:0/device:FakeCPU:1"); GetNodeByName(g, "var2_cpu") ->set_assigned_device_name("/job:a/replica:0/task:0/device:FakeCPU:2"); } TF_EXPECT_OK(Place(&g)); EXPECT_COLOCATED(g, "assign1", "var1_cpu"); EXPECT_COLOCATED(g, "assign2", "var2_cpu"); EXPECT_DEVICE_TYPE(g, "in", "FakeGPU"); } REGISTER_KERNEL_BUILDER(Name("_Arg").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("_Arg").Device("FakeGPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("_Retval").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("_Retval").Device("FakeGPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Identity").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Identity").Device("FakeGPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Const").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Const").Device("FakeGPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Mul").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Mul").Device("FakeGPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Add").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Add").Device("FakeGPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("PartitionedCall").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("PartitionedCall").Device("FakeGPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("ConvertToListOfCooTensorsV2").Device("FakeCPU"), DummyOp); REGISTER_KERNEL_BUILDER(Name("Cast").Device("FakeCPU"), DummyOp); TEST_P(SoftPlacementPlacerTest, RequestedDeviceOnResourceGeneratorIsTreatedAsAssigned) { FunctionDef func = test::function::ResourceOutput(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}, kGPU), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("id1", "Identity", {"a"}, {{"T", DT_RESOURCE}, {"_class", absl::Span<const string>({"loc:@id2"})}}), NDef("id2", "Identity", {"b"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_ASSERT_OK(BuildGraph(graph, &g)); bool allow_soft_placement = GetParam(); Status s = Place(&g, allow_soft_placement, true); if (allow_soft_placement) { EXPECT_EQ(error::OK, s.code()) << s.ToString(); EXPECT_DEVICE_TYPE(g, "a", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "id1", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "b", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "id2", "FakeCPU"); } else { EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains( s.message(), "Cannot colocate nodes {{colocation_node id2}} and {{colocation_node " "id1}}: Cannot merge devices with incompatible types: " "'/device:FakeCPU:0' and '/device:FakeGPU:0'")) << s.ToString(); } } TEST_F(PlacerTest, RequestedDeviceCanBeOverridden) { FunctionDef func = test::function::ResourceOutput(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("id_a", "Identity", {"a"}, {{"T", DT_RESOURCE}}, kGPU), NDef("id_b", "Identity", {"b"}, {{"T", DT_RESOURCE}}, kCPU), NDef("id1", "Identity", {"id_a"}, {{"T", DT_RESOURCE}, {"_class", absl::Span<const string>({"loc:@id2"})}}), NDef("id2", "Identity", {"id_b"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_ASSERT_OK(BuildGraph(graph, &g)); TF_ASSERT_OK(Place(&g)); EXPECT_COLOCATED(g, "a", "b"); EXPECT_COLOCATED(g, "id_a", "id_b"); EXPECT_COLOCATED(g, "id1", "id2"); EXPECT_COLOCATED(g, "a", "id_a"); EXPECT_COLOCATED(g, "a", "id1"); } TEST_F(PlacerTest, AssignedDeviceOfColocatedNodeIsRespected) { GraphDef graph = GDef({ NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("iter", "IteratorGPU", {"a"}), }); Graph g(OpRegistry::Global()); TF_ASSERT_OK(BuildGraph(graph, &g)); GetNodeByName(g, "a")->set_assigned_device_name(kFullCPU); Status s = Place(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()) << s.ToString(); EXPECT_TRUE( absl::StrContains(s.message(), "{{colocation_node iter}} was colocated with a " "group of nodes that required incompatible device " "'/job:a/replica:0/task:0/device:FakeCPU:0'")) << s.ToString(); } TEST_P(SoftPlacementPlacerTest, AssignedDevicesAreNotOverriddenDueToResourcesAndColocation) { FunctionDef func = test::function::ResourceOutput(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("id_a", "Identity", {"a"}, {{"T", DT_RESOURCE}}), NDef("id_b", "Identity", {"b"}, {{"T", DT_RESOURCE}}), NDef("id1", "Identity", {"id_a"}, {{"T", DT_RESOURCE}, {"_class", absl::Span<const string>({"loc:@id2"})}}), NDef("id2", "Identity", {"id_b"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_ASSERT_OK(BuildGraph(graph, &g)); GetNodeByName(g, "id_a")->set_assigned_device_name(kFullGPU); GetNodeByName(g, "id_b")->set_assigned_device_name(kFullCPU); bool allow_soft_placement = GetParam(); Status s = Place(&g, allow_soft_placement, false); if (allow_soft_placement) { EXPECT_EQ(error::OK, s.code()) << s.ToString(); EXPECT_DEVICE_TYPE(g, "a", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "id_a", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "id1", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "b", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "id_b", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "id2", "FakeCPU"); } else { EXPECT_EQ(error::INVALID_ARGUMENT, s.code()); EXPECT_TRUE(absl::StrContains( s.message(), "Cannot colocate nodes {{colocation_node id2}} and {{colocation_node " "id1}}: Cannot merge devices with incompatible types: " "'/job:a/replica:0/task:0/device:FakeCPU:0' and " "'/job:a/replica:0/task:0/device:FakeGPU:0'")) << s.ToString(); } } class NestedPlacerTest : public PlacerTest { public: NestedPlacerTest() : PlacerTest(1) {} }; TEST_F(NestedPlacerTest, OutputOneResource) { FunctionDef func = test::function::ResourceOutput(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_FLOAT}}, kGPU), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("y", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_FLOAT}}, {"f", FDH::FunctionRef("ResourceOutput", {})}}), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "Identity", {"y:1"}, {{"T", DT_FLOAT}}), }, {func}); Graph g(OpRegistry::Global()); TF_ASSERT_OK(BuildGraph(graph, &g)); TF_ASSERT_OK(CallOptPassesAndPlace(&g)); EXPECT_DEVICE_TYPE(g, "y", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r2", "FakeGPU"); } TEST_F(NestedPlacerTest, OutputOneResource_ExtraIdentities) { FunctionDef func = test::function::ResourceOutput(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_FLOAT}}, kGPU), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("ai", "Identity", {"a"}, {{"T", DT_FLOAT}}), NDef("bi", "Identity", {"b"}, {{"T", DT_RESOURCE}}), NDef("y", "PartitionedCall", {"ai", "bi"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_FLOAT}}, {"f", FDH::FunctionRef("ResourceOutput", {})}}), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "Identity", {"y:1"}, {{"T", DT_FLOAT}}), }, {func}); Graph g(OpRegistry::Global()); TF_ASSERT_OK(BuildGraph(graph, &g)); TF_ASSERT_OK(CallOptPassesAndPlace(&g)); EXPECT_DEVICE_TYPE(g, "a", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "b", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "ai", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "bi", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "y", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r2", "FakeGPU"); } TEST_F(NestedPlacerTest, OutputOneResource_OverrideOutputResourceDevice) { FunctionDef func = test::function::ResourceOutput(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_FLOAT}}, kGPU), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("y", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_FLOAT, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_FLOAT}}, {"f", FDH::FunctionRef("ResourceOutput", {})}}), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}, kGPU), NDef("r2", "Identity", {"y:1"}, {{"T", DT_FLOAT}}), }, {func}); Graph g(OpRegistry::Global()); TF_ASSERT_OK(BuildGraph(graph, &g)); TF_ASSERT_OK(CallOptPassesAndPlace(&g, false, true)); EXPECT_DEVICE_TYPE(g, "y", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r2", "FakeGPU"); } TEST_F(NestedPlacerTest, OutputTwoResources) { FunctionDef func = test::function::Swap(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kGPU), NDef("y", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "Identity", {"y:1"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); TF_EXPECT_OK(CallOptPassesAndPlace(&g)); EXPECT_DEVICE_TYPE(g, "y", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "r2", "FakeCPU"); } TEST_F(NestedPlacerTest, OutputTwoResources_PCOOnCPU) { FunctionDef func = test::function::Swap(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kGPU), NDef("y", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}, kCPU), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "Identity", {"y:1"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); TF_EXPECT_OK(CallOptPassesAndPlace(&g)); EXPECT_DEVICE_TYPE(g, "y", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "r2", "FakeCPU"); } TEST_F(NestedPlacerTest, OutputTwoResources_UnassignedResource) { FunctionDef func = test::function::Swap(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kGPU), NDef("y", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}, kCPU), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "Identity", {"y:1"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); TF_ASSERT_OK(CallOptPassesAndPlace(&g, false, true)); EXPECT_DEVICE_TYPE(g, "a", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "b", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "y", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "r2", "FakeGPU"); } TEST_F(NestedPlacerTest, OutputTwoResources_UnassignedResource_CPU) { FunctionDef func = test::function::Swap(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("y", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}, kCPU), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "Identity", {"y:1"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); TF_ASSERT_OK(CallOptPassesAndPlace(&g, false, true)); EXPECT_DEVICE_TYPE(g, "a", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "b", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "y", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r2", "FakeGPU"); } TEST_F(NestedPlacerTest, OutputResourceConsumedByMultipleOps) { FunctionDef func = test::function::Swap(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("y", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), NDef("r3", "Identity", {"y:1"}, {{"T", DT_RESOURCE}}, kGPU), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); TF_ASSERT_OK(CallOptPassesAndPlace(&g, false, true)); EXPECT_DEVICE_TYPE(g, "a", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "b", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r2", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r3", "FakeGPU"); } TEST_F(NestedPlacerTest, DuplicateInputResource) { FunctionDef func = test::function::Swap(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("y", "PartitionedCall", {"a", "a"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}, kGPU), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "Identity", {"y:1"}, {{"T", DT_RESOURCE}}, kCPU), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); TF_ASSERT_OK(CallOptPassesAndPlace(&g, false, true)); EXPECT_DEVICE_TYPE(g, "a", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "y", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r2", "FakeCPU"); } TEST_F(NestedPlacerTest, DuplicateInputs_OutputResourceConsumedByMultipleOps) { FunctionDef func = test::function::Swap(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("y", "PartitionedCall", {"a", "a"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}, kGPU), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}, kCPU), NDef("r3", "Identity", {"y:1"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); TF_ASSERT_OK(CallOptPassesAndPlace(&g, false, true)); EXPECT_DEVICE_TYPE(g, "a", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "y", "FakeGPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r2", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r3", "FakeCPU"); } TEST_F(NestedPlacerTest, DuplicateInputResource_Conflict) { FunctionDef func = test::function::Swap(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("y", "PartitionedCall", {"a", "a"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}, kGPU), NDef("r1", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}, kGPU), NDef("r2", "Identity", {"y:1"}, {{"T", DT_RESOURCE}}, kCPU), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); TF_ASSERT_OK(CallOptPassesAndPlace(&g, false, true)); EXPECT_SAME_TYPE(g, "a", "r1"); EXPECT_SAME_TYPE(g, "a", "r2"); } TEST_F(NestedPlacerTest, TestDstDeviceIsIgnoredWhenConstrainedByResourceEdge) { FunctionDef func = test::function::ResourceIdentity(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("y", "PartitionedCall", {"a"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("r1", "_Retval", {"y:0"}, {{"T", DT_RESOURCE}}, kGPU ), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); TF_EXPECT_OK(CallOptPassesAndPlace(&g)); EXPECT_DEVICE_TYPE(g, "a", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "r1", "FakeCPU"); } TEST_F( NestedPlacerTest, TestDstDeviceIsIgnoredWhenConstrainedByResourceEdge_EvenWhenPCOIsPlaced) { FunctionDef func = test::function::ResourceIdentity(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("y", "PartitionedCall", {"a"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}, kGPU), NDef("r1", "_Retval", {"y:0"}, {{"T", DT_RESOURCE}}, kGPU ), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); TF_EXPECT_OK(CallOptPassesAndPlace(&g)); EXPECT_DEVICE_TYPE(g, "r1", "FakeCPU"); EXPECT_DEVICE_TYPE(g, "y", "FakeGPU"); } TEST_F(NestedPlacerTest, ResourceConflictInvolvingPCO) { FunctionDef func = test::function::ResourceIdentity(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kGPU), NDef("y", "PartitionedCall", {"a"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("add", "Add", {"y:0", "b"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); Status s = CallOptPassesAndPlace(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "Cannot place the graph because a reference or resource edge connects " "colocation groups with incompatible resource devices: /device:FakeCPU:0 " "vs /device:FakeGPU:0")) << s.ToString(); } TEST_F(NestedPlacerTest, ResourceConflictInvolvingTwoPCOs) { FunctionDef func = test::function::ResourceIdentity(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kGPU), NDef("y", "PartitionedCall", {"a"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("z", "PartitionedCall", {"b"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("add", "Add", {"y:0", "z:0"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); Status s = CallOptPassesAndPlace(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "Cannot place the graph because a reference or resource edge connects " "colocation groups with incompatible resource devices: /device:FakeCPU:0 " "vs /device:FakeGPU:0")) << s.ToString(); } FunctionDef CPUResourceOutput() { return FDH::Create( "CPUResourceOutput", {"x: float"}, {"ds: resource", "x_out: float"}, {}, { {{"make_ds"}, "CreateDatasetCPU", {}}, }, {{"ds", "make_ds:o:0"}, {"x_out", "x"}}); } TEST_F(NestedPlacerTest, DeepDeviceConstraintsPropagated) { FunctionDef func = CPUResourceOutput(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_FLOAT}}), NDef("y", "PartitionedCall", {"a"}, {{"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_FLOAT}}, {"f", FDH::FunctionRef("CPUResourceOutput", {})}}), NDef("id", "Identity", {"y:0"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); GetNodeByName(g, "id")->set_assigned_device_name(kFullGPU); Status s = CallOptPassesAndPlace(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "Could not satisfy explicit device specification")) << s.ToString(); } FunctionDef NestedCPUResourceOutput() { return FDH::Create( "NestedCPUResourceOutput", {"x: float"}, {"ds: resource", "x_out: float"}, {}, { {{"y"}, "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_FLOAT}}, {"f", FDH::FunctionRef("CPUResourceOutput", {})}}}, }, {{"ds", "y:output:0"}, {"x_out", "y:output:1"}}); } TEST_F(NestedPlacerTest, NestedDeepDeviceConstraintsPropagated) { GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_FLOAT}}), NDef("y", "PartitionedCall", {"a"}, {{"Tin", DataTypeSlice{DT_FLOAT}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_FLOAT}}, {"f", FDH::FunctionRef("NestedCPUResourceOutput", {})}}), NDef("id", "_Retval", {"y:0"}, {{"T", DT_RESOURCE}}), }, {CPUResourceOutput(), NestedCPUResourceOutput()}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); GetNodeByName(g, "id")->set_assigned_device_name(kFullGPU); Status s = CallOptPassesAndPlace(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "Could not satisfy explicit device specification")) << s.ToString(); } TEST_F(NestedPlacerTest, TwoFunctionsBackToBack) { FunctionDef func = test::function::ResourceIdentity(); GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}, kCPU), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}, kGPU), NDef("y", "PartitionedCall", {"a"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("w", "PartitionedCall", {"y:0"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("z", "PartitionedCall", {"b"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("add", "Add", {"w:0", "z:0"}, {{"T", DT_RESOURCE}}), }, {func}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); Status s = CallOptPassesAndPlace(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "Cannot place the graph because a reference or resource edge connects " "colocation groups with incompatible resource devices: /device:FakeCPU:0 " "vs /device:FakeGPU:0")) << s.ToString(); } FunctionDef NestedCallFunctionsBackToBack() { return FDH::Create( "NestedCallFunctionsBackToBack", {}, {"output: resource"}, {}, { {{"cpu_ds"}, "CreateDatasetCPU", {}}, {{"y"}, "PartitionedCall", {"cpu_ds:o:0"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}}, {{"w"}, "PartitionedCall", {"y:output:0"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}}, {{"gpu_ds"}, "CreateDatasetGPU", {}}, {{"z"}, "PartitionedCall", {"gpu_ds:o:0"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}}, {{"add"}, "Add", {"w:output:0", "z:output:0"}, {{"T", DT_RESOURCE}}}, }, {{"output", "add:z:0"}}); } TEST_F(NestedPlacerTest, NestedTwoFunctionsBackToBack) { FunctionDef func = NestedCallFunctionsBackToBack(); GraphDef graph = GDef( { NDef("y", "PartitionedCall", {}, {{"Tin", {}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("NestedCallFunctionsBackToBack", {})}}), }, {NestedCallFunctionsBackToBack(), test::function::ResourceIdentity()}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); Status s = CallOptPassesAndPlace(&g); EXPECT_EQ(error::INVALID_ARGUMENT, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "Nodes were connected by a reference or resource connection (requiring " "them to be on the same device), but the two nodes were assigned two " "different devices")) << s.ToString(); } FunctionDef RecursiveResourceIdentity() { return FDH::Create( "RecursiveResourceIdentity", {"x: resource"}, {"y: resource"}, {}, { {{"out"}, "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("RecursiveResourceIdentity", {})}}}, }, {{"y", "out:output:0"}}); } TEST_F(NestedPlacerTest, DirectRecursion) { GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("y", "PartitionedCall", {"a"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("RecursiveResourceIdentity", {})}}), NDef("r1", "_Retval", {"y:0"}, {{"T", DT_RESOURCE}}), }, {RecursiveResourceIdentity()}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); Status s = CallOptPassesAndPlace(&g); EXPECT_EQ(error::UNIMPLEMENTED, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "Recursive function calls are not supported. Node {{node out}} inside " "the body of {{function_node RecursiveResourceIdentity}} calls function " "{{function_node RecursiveResourceIdentity}}")) << s.ToString(); } FunctionDef RecursiveF1() { return FDH::Create( "RecursiveF1", {"x: resource"}, {"y: resource"}, {}, { {{"out"}, "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("RecursiveF2", {})}}}, }, {{"y", "out:output:0"}}); } FunctionDef RecursiveF2() { return FDH::Create( "RecursiveF2", {"x: resource"}, {"y: resource"}, {}, { {{"out"}, "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("RecursiveF1", {})}}}, }, {{"y", "out:output:0"}}); } TEST_F(NestedPlacerTest, IndirectRecursion) { GraphDef graph = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("y", "PartitionedCall", {"a"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("RecursiveF1", {})}}), NDef("r1", "_Retval", {"y:0"}, {{"T", DT_RESOURCE}}), }, {RecursiveF1(), RecursiveF2()}); Graph g(OpRegistry::Global()); TF_EXPECT_OK(BuildGraph(graph, &g)); Status s = CallOptPassesAndPlace(&g); EXPECT_EQ(error::UNIMPLEMENTED, s.code()) << s.ToString(); EXPECT_TRUE(absl::StrContains( s.message(), "Recursive function calls are not supported. Node {{node out}} inside " "the body of {{function_node RecursiveF2}} calls function " "{{function_node RecursiveF1}} which is already present in the call " "stack")) << s.ToString(); } TEST_F(PlacerTest, IdentityMatchesInputAndOutputPlacement) { const std::string task0_device = "/job:b/replica:0/task:0/device:FakeCPU:0"; const std::string task1_device = "/job:b/replica:0/task:1/device:FakeCPU:0"; GraphDef graph = GDef({ NDef("a", "_Arg", {}, {{"T", DT_FLOAT}}, task1_device), NDef("identity1", "Identity", {"a"}, {{"T", DT_FLOAT}}, task1_device), NDef("identity2", "Identity", {"identity1:0"}, {{"T", DT_FLOAT}}), NDef("cast", "Cast", {"identity2:0"}, {{"SrcT", DT_FLOAT}, {"DstT", DT_INT32}}, task1_device), NDef("COO", "ConvertToListOfCooTensorsV2", {"cast:0"}, {{"T", DT_INT32}}, task1_device), }); Graph g(OpRegistry::Global()); DeviceSet multiple_tasks; std::unique_ptr<Device> task0_cpu(FakeDevice::MakeCPU(task0_device)); multiple_tasks.AddDevice(task0_cpu.get()); std::unique_ptr<Device> task1_cpu(FakeDevice::MakeCPU(task1_device)); multiple_tasks.AddDevice(task1_cpu.get()); TF_ASSERT_OK(BuildGraph(graph, &g)); absl::Status s = Place(&g, &multiple_tasks); TF_ASSERT_OK(s); Node* identity2 = GetNodeByName(g, "identity2"); EXPECT_EQ(identity2->assigned_device_name().c_str(), task1_device); } TEST_F(PlacerTest, IdentityWithoutOutputDoesntCrash) { const std::string task0_device = "/job:b/replica:0/task:0/device:FakeCPU:0"; const std::string task1_device = "/job:b/replica:0/task:1/device:FakeCPU:0"; GraphDef graph = GDef({ NDef("a", "_Arg", {}, {{"T", DT_FLOAT}}, task1_device), NDef("identity1", "Identity", {"a"}, {{"T", DT_FLOAT}}, task1_device), NDef("identity2", "Identity", {"identity1:0"}, {{"T", DT_FLOAT}}), }); Graph g(OpRegistry::Global()); DeviceSet multiple_tasks; std::unique_ptr<Device> task0_cpu(FakeDevice::MakeCPU(task0_device)); multiple_tasks.AddDevice(task0_cpu.get()); std::unique_ptr<Device> task1_cpu(FakeDevice::MakeCPU(task1_device)); multiple_tasks.AddDevice(task1_cpu.get()); TF_ASSERT_OK(BuildGraph(graph, &g)); Node* identity2 = GetNodeByName(g, "identity2"); const Edge* out_edge = *identity2->out_edges().begin(); g.RemoveEdge(out_edge); absl::Status s = Place(&g, &multiple_tasks); TF_ASSERT_OK(s); } TEST_F(PlacerTest, IdentityDoesntMatchWithMultipleOutput) { const std::string task0_device = "/job:b/replica:0/task:0/device:FakeCPU:0"; const std::string task1_device = "/job:b/replica:0/task:1/device:FakeCPU:0"; GraphDef graph = GDef({ NDef("a", "_Arg", {}, {{"T", DT_FLOAT}}, task1_device), NDef("identity1", "Identity", {"a"}, {{"T", DT_FLOAT}}, task1_device), NDef("identity2", "Identity", {"identity1:0"}, {{"T", DT_FLOAT}}), NDef("cast", "Cast", {"identity2:0"}, {{"SrcT", DT_FLOAT}, {"DstT", DT_INT32}}, task1_device), NDef("COO", "ConvertToListOfCooTensorsV2", {"cast:0"}, {{"T", DT_INT32}}, task1_device), NDef("identity3", "Identity", {"identity2:0"}, {{"T", DT_FLOAT}}), }); Graph g(OpRegistry::Global()); DeviceSet multiple_tasks; std::unique_ptr<Device> task0_cpu(FakeDevice::MakeCPU(task0_device)); multiple_tasks.AddDevice(task0_cpu.get()); std::unique_ptr<Device> task1_cpu(FakeDevice::MakeCPU(task1_device)); multiple_tasks.AddDevice(task1_cpu.get()); TF_ASSERT_OK(BuildGraph(graph, &g)); absl::Status s = Place(&g, &multiple_tasks); TF_ASSERT_OK(s); Node* identity2 = GetNodeByName(g, "identity2"); EXPECT_EQ(identity2->assigned_device_name().c_str(), task0_device); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/placer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/placer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6c1c0925-8ddf-4895-8858-8f20be4ec17b
cpp
tensorflow/tensorflow
graph_view
tensorflow/core/grappler/utils/graph_view.cc
tensorflow/core/grappler/utils/graph_view_test.cc
#include "tensorflow/core/grappler/utils/graph_view.h" #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/graph_view_internal.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace grappler { namespace utils { FaninView::FaninView(NodeView* node_view, int index) : NodeIndexAndPortIndex(node_view->graph_view_, node_view->node_index_, index) {} FanoutView::FanoutView(NodeView* node_view, int index) : NodeIndexAndPortIndex(node_view->graph_view_, node_view->node_index_, index) {} const NodeDef* NodeView::node() const { return &graph_view_->graph()->node(node_index_); } bool NodeView::HasFanin(const FanoutView& fanin) const { if (fanin.index() < Graph::kControlSlot || graph_view_ != fanin.graph_view_) { return false; } return fanins_set_.contains( {&graph_view_->graph_->node(fanin.node_index_), fanin.index()}); } bool NodeView::HasFanout(const FaninView& fanout) const { if (fanout.index() < Graph::kControlSlot || graph_view_ != fanout.graph_view_) { return false; } NodeView* view = fanout.node_view(); if (view == nullptr) { return false; } else if (fanout.index() == Graph::kControlSlot) { return view->fanins_set_.contains({this->node(), Graph::kControlSlot}); } else if (fanout.index() >= static_cast<int>(view->regular_fanins_.size())) { return false; } return view->regular_fanins_[fanout.index()].node_index_ == node_index_; } inline const FanoutView& NodeView::GetMissingFanin() const { return graph_view_->missing_fanin_; } inline const std::vector<FaninView>& NodeView::GetMissingFanout() const { return graph_view_->missing_fanout_; } namespace { const char kGraphViewError[] = "GraphView::GraphView error: "; } GraphView::GraphView(const GraphDef* graph, Status* status) : GraphViewInternal(graph) { const int num_nodes = graph->node_size(); node_index_by_name_.reserve(num_nodes); nodes_.reserve(num_nodes); for (const NodeDef& node : graph->node()) { if (!AddUniqueNodeInternal(&node)) { *status = errors::InvalidArgument( kGraphViewError, "graph has multiple nodes with the name '", node.name(), "'."); Reset(); return; } } Status s; for (NodeView& node_view : nodes_) { s = CheckAndAddFaninsInternal(&node_view); if (!s.ok()) { *status = s; Reset(); return; } } *status = absl::OkStatus(); } bool GraphView::AddUniqueNodeInternal(const NodeDef* node) { const int node_index = node_index_by_name_.size(); auto it = node_index_by_name_.emplace(node->name(), node_index); if (it.second) { nodes_.emplace_back(this, node_index); return true; } return false; } Status GraphView::CheckAndAddFaninsInternal(NodeView* node_view) { bool has_observed_control = false; const NodeDef* node = node_view->node(); const string& node_name = node->name(); const int node_index = node_view->node_index_; node_view->fanins_set_.reserve(node->input_size()); for (const string& input : node->input()) { TensorId fanin_id = ParseTensorName(input); if (fanin_id.node() == node_name) { return errors::InvalidArgument(kGraphViewError, "node '", node_name, "' has self cycle fanin '", input, "'."); } bool is_control = IsTensorIdControl(fanin_id); if (!is_control && has_observed_control) { return errors::InvalidArgument(kGraphViewError, "node '", node_name, "' has regular fanin '", input, "' after controlling fanins."); } auto it = node_index_by_name_.find(fanin_id.node()); if (it == node_index_by_name_.end()) { return errors::InvalidArgument(kGraphViewError, "node '", node_name, "' has missing fanin '", input, "'."); } const int fanin_node_index = it->second; NodeView& fanin_node_view = nodes_[fanin_node_index]; if (is_control) { fanin_node_view.controlled_fanouts_.emplace_back(this, node_index, Graph::kControlSlot); node_view->controlling_fanins_.emplace_back(this, fanin_node_index, Graph::kControlSlot); node_view->fanins_set_.emplace(fanin_node_view.node(), Graph::kControlSlot); has_observed_control = true; } else { int fanin_node_view_regular_fanouts_by_port_size = fanin_node_view.regular_fanouts_by_port_.size(); if (fanin_node_view_regular_fanouts_by_port_size < fanin_id.index() + 1) { fanin_node_view.regular_fanouts_by_port_.resize(fanin_id.index() + 1); } fanin_node_view.regular_fanouts_by_port_[fanin_id.index()].emplace_back( this, node_index, node_view->regular_fanins_.size()); ++fanin_node_view.num_regular_fanouts_; node_view->regular_fanins_.emplace_back(this, fanin_node_index, fanin_id.index()); node_view->fanins_set_.emplace(fanin_node_view.node(), fanin_id.index()); } } return absl::OkStatus(); } MutableFaninView::MutableFaninView(MutableNodeView* node_view, int index) : NodeIndexAndPortIndex(node_view->graph_view_, node_view->node_index_, index) {} MutableFanoutView::MutableFanoutView(MutableNodeView* node_view, int index) : NodeIndexAndPortIndex(node_view->graph_view_, node_view->node_index_, index) {} NodeDef* MutableNodeView::node() const { return graph_view_->graph()->mutable_node(node_index_); } bool MutableNodeView::HasFanin(const MutableFanoutView& fanin) const { if (fanin.index() < Graph::kControlSlot || graph_view_ != fanin.graph_view_) { return false; } return fanins_count_.contains( {&graph_view_->graph_->node(fanin.node_index_), fanin.index()}); } bool MutableNodeView::HasFanout(const MutableFaninView& fanout) const { if (fanout.index() < Graph::kControlSlot || graph_view_ != fanout.graph_view_) { return false; } MutableNodeView* view = fanout.node_view(); if (view == nullptr) { return false; } else if (fanout.index() == Graph::kControlSlot) { return view->fanins_count_.contains({this->node(), Graph::kControlSlot}); } else if (fanout.index() >= static_cast<int>(view->regular_fanins_.size())) { return false; } return view->regular_fanins_[fanout.index()].node_index_ == node_index_; } const MutableFanoutView& MutableNodeView::GetMissingFanin() const { return graph_view_->missing_fanin_; } const std::vector<MutableFaninView>& MutableNodeView::GetMissingFanout() const { return graph_view_->missing_fanout_; } namespace { const char kMutationAddNodeError[] = "Mutation::AddNode error: "; bool IsTensorIdRegular(const TensorId& tensor_id) { return tensor_id.index() >= 0; } } Mutation::Mutation(MutableGraphView* graph_view) : graph_view_(graph_view) {} MutationNewNode Mutation::AddNode(NodeDef&& node, Status* status) { bool has_observed_control = false; const string& node_name = node.name(); std::vector<SafeTensorId> regular_fanins; absl::flat_hash_set<string> controlling_fanins; const int num_fanins = node.input_size(); for (int i = 0; i < num_fanins; ++i) { const string& input = node.input(i); TensorId fanin_id = ParseTensorName(input); if (fanin_id.node() == node_name) { *status = errors::InvalidArgument(kMutationAddNodeError, "node '", node_name, "' has self cycle fanin '", input, "'."); return MutationNewNode(this, mutation_counter_, internal::kMissingIndex); } bool is_control = IsTensorIdControl(fanin_id); if (is_control) { has_observed_control = true; controlling_fanins.emplace(fanin_id.node()); } else if (has_observed_control) { *status = errors::InvalidArgument(kMutationAddNodeError, "node '", node_name, "' has regular fanin '", input, "' after controlling fanins."); return MutationNewNode(this, mutation_counter_, internal::kMissingIndex); } else { regular_fanins.emplace_back(fanin_id); } } node.mutable_input()->Clear(); new_nodes_.emplace_back(graph_view_, std::move(node)); MutationNewNodeHolder& mutation_node = new_nodes_.back(); mutation_node.regular_fanins = std::move(regular_fanins); mutation_node.num_regular_fanins = mutation_node.regular_fanins.size(); mutation_node.controlling_fanins = std::move(controlling_fanins); *status = absl::OkStatus(); return MutationNewNode(this, mutation_counter_, new_nodes_.size() - 1); } void Mutation::AddMutation( MutableNodeView* node, std::function<bool(MutableNodeViewDiff*)> mutate_fn) { DCHECK(node->graph_view_ == graph_view_); if (node->update_index_ == internal::kMissingIndex) { MutableNodeViewDiff diff(graph_view_, node->node_index_); if (!mutate_fn(&diff)) return; node->update_index_ = updated_nodes_.size(); updated_nodes_.push_back(std::move(diff)); } else if (!removed_nodes_.contains(node->node_index_)) { MutableNodeViewDiff& diff = updated_nodes_[node->update_index_]; mutate_fn(&diff); } } void Mutation::RemoveNode(MutableNodeView* node) { auto& update_index = node->update_index_; if (update_index != internal::kMissingIndex) { int updated_nodes_size = updated_nodes_.size(); if (update_index < updated_nodes_size - 1) { graph_view_->nodes_[updated_nodes_.back().node_index].update_index_ = update_index; std::swap(updated_nodes_[update_index], updated_nodes_.back()); } updated_nodes_.pop_back(); update_index = internal::kMissingIndex; } removed_nodes_.insert(node->node_index_); } void Mutation::UpdateNodeName(MutableNodeView* node, absl::string_view name) { AddMutation(node, [name](MutableNodeViewDiff* diff) { return internal::UpdateName(diff, name); }); } void Mutation::UpdateNodeName(const MutationNewNode& node, absl::string_view name) { DCHECK(node.mutation_ == this && node.mutation_counter_ == mutation_counter_); internal::UpdateName(&new_nodes_[node.index_], name); } void Mutation::UpdateNodeOp(MutableNodeView* node, absl::string_view op) { AddMutation(node, [op](MutableNodeViewDiff* diff) { return internal::UpdateOp(diff, op); }); } void Mutation::UpdateNodeOp(const MutationNewNode& node, absl::string_view op) { DCHECK(node.mutation_ == this && node.mutation_counter_ == mutation_counter_); internal::UpdateOp(&new_nodes_[node.index_], op); } void Mutation::UpdateNodeDevice(MutableNodeView* node, absl::string_view device) { AddMutation(node, [device](MutableNodeViewDiff* diff) { return internal::UpdateDevice(diff, device); }); } void Mutation::UpdateNodeDevice(const MutationNewNode& node, absl::string_view device) { DCHECK(node.mutation_ == this && node.mutation_counter_ == mutation_counter_); internal::UpdateDevice(&new_nodes_[node.index_], device); } void Mutation::AddOrUpdateRegularFanin(MutableNodeView* node, int index, const TensorId& fanin) { AddMutation(node, [index, fanin](MutableNodeViewDiff* diff) { return internal::AddOrUpdateRegularFanin(diff, index, fanin); }); } void Mutation::AddOrUpdateRegularFanin(const MutationNewNode& node, int index, const TensorId& fanin) { DCHECK(node.mutation_ == this && node.mutation_counter_ == mutation_counter_ && index >= 0 && IsTensorIdRegular(fanin)); internal::AddOrUpdateRegularFanin(&new_nodes_[node.index_], index, fanin); } void Mutation::RemoveRegularFanin(MutableNodeView* node, int index) { AddMutation(node, [index](MutableNodeViewDiff* diff) { return internal::RemoveRegularFanin(diff, index); }); } void Mutation::RemoveRegularFanin(const MutationNewNode& node, int index) { DCHECK(node.mutation_ == this && node.mutation_counter_ == mutation_counter_ && index >= 0); internal::RemoveRegularFanin(&new_nodes_[node.index_], index); } void Mutation::AddControllingFanin(MutableNodeView* node, absl::string_view fanin_node_name) { AddMutation(node, [node, fanin_node_name](MutableNodeViewDiff* diff) { auto it = node->controlling_fanins_index_.find(fanin_node_name); const int control_index = it != node->controlling_fanins_index_.end() ? it->second : internal::kMissingIndex; return internal::AddControllingFanin(diff, control_index, fanin_node_name); }); } void Mutation::AddControllingFanin(const MutationNewNode& node, absl::string_view fanin_node_name) { DCHECK(node.mutation_ == this && node.mutation_counter_ == mutation_counter_); internal::AddControllingFanin(&new_nodes_[node.index_], fanin_node_name); } void Mutation::RemoveControllingFanin(MutableNodeView* node, absl::string_view fanin_node_name) { AddMutation(node, [node, fanin_node_name](MutableNodeViewDiff* diff) { auto it = node->controlling_fanins_index_.find(fanin_node_name); const int control_index = it != node->controlling_fanins_index_.end() ? it->second : internal::kMissingIndex; return internal::RemoveControllingFanin(diff, control_index, fanin_node_name); }); } void Mutation::RemoveControllingFanin(const MutationNewNode& node, absl::string_view fanin_node_name) { DCHECK(node.mutation_ == this && node.mutation_counter_ == mutation_counter_); internal::RemoveControllingFanin(&new_nodes_[node.index_], fanin_node_name); } void Mutation::AddOrUpdateNodeAttr(MutableNodeView* node, absl::string_view attr_name, const AttrValue& attr_value) { AddMutation(node, [attr_name, attr_value](MutableNodeViewDiff* diff) { return internal::AddOrUpdateAttribute(diff, attr_name, attr_value); }); } void Mutation::AddOrUpdateNodeAttr(const MutationNewNode& node, absl::string_view attr_name, const AttrValue& attr_value) { DCHECK(node.mutation_ == this && node.mutation_counter_ == mutation_counter_); internal::AddOrUpdateAttribute(&new_nodes_[node.index_], attr_name, attr_value); } void Mutation::RemoveNodeAttr(MutableNodeView* node, absl::string_view attr_name) { AddMutation(node, [attr_name](MutableNodeViewDiff* diff) { return internal::RemoveAttribute(diff, attr_name); }); } void Mutation::RemoveNodeAttr(const MutationNewNode& node, absl::string_view attr_name) { DCHECK(node.mutation_ == this && node.mutation_counter_ == mutation_counter_); internal::RemoveAttribute(&new_nodes_[node.index_], attr_name); } void Mutation::ResetInternal() { updated_nodes_.clear(); removed_nodes_.clear(); new_nodes_.clear(); } void Mutation::Reset() { for (const auto& update : updated_nodes_) { graph_view_->nodes_[update.node_index].update_index_ = internal::kMissingIndex; } ResetInternal(); } Status Mutation::Apply() { return graph_view_->ApplyMutationInternal(); } namespace { const char kMutableGraphViewError[] = "MutableGraphView::MutableGraphView error: "; const char kMutableGraphViewApplyError[] = "Mutation::Apply error: "; inline void IncrementFaninCount( absl::flat_hash_map<internal::NodeDefAndPortIndex, int>* fanins_count, const internal::NodeDefAndPortIndex& fanin) { ++(*fanins_count)[fanin]; } inline void DecrementFaninCount( absl::flat_hash_map<internal::NodeDefAndPortIndex, int>* fanins_count, const internal::NodeDefAndPortIndex& fanin) { auto it = fanins_count->find(fanin); if (it != fanins_count->end()) { if (it->second <= 1) { fanins_count->erase(it); } else { --it->second; } } } } MutableGraphView::MutableGraphView(GraphDef* graph, Status* status) : GraphViewInternal(graph), mutation_(Mutation(this)) { const int num_nodes = graph->node_size(); node_index_by_name_.reserve(num_nodes); nodes_.reserve(num_nodes); for (NodeDef& node : *graph->mutable_node()) { if (!AddUniqueNodeInternal(&node)) { *status = errors::InvalidArgument( kMutableGraphViewError, "graph has multiple nodes with the name '", node.name(), "'."); Reset(); return; } } std::vector<std::vector<TensorId>> fanins; Status s = CheckFaninsInternal(&fanins); if (!s.ok()) { *status = s; Reset(); return; } AddFaninsInternal(&fanins); mutation_.ResetInternal(); *status = absl::OkStatus(); } Mutation* MutableGraphView::GetMutationBuilder() { return &mutation_; } bool MutableGraphView::AddUniqueNodeInternal(NodeDef* node) { const int node_index = node_index_by_name_.size(); auto it = node_index_by_name_.emplace(node->name(), node_index); if (it.second) { nodes_.emplace_back(this, node_index); return true; } return false; } Status MutableGraphView::CheckFaninsInternal( std::vector<std::vector<TensorId>>* fanins) { const int num_nodes = nodes_.size(); fanins->reserve(num_nodes); for (int i = 0; i < num_nodes; ++i) { bool has_observed_control = false; const NodeDef* node = nodes_[i].node(); const string& node_name = node->name(); std::vector<TensorId> node_fanins; node_fanins.reserve(node->input_size()); for (const string& input : node->input()) { TensorId fanin_id = ParseTensorName(input); if (fanin_id.node() == node_name) { return errors::InvalidArgument(kMutableGraphViewError, "node '", node_name, "' has self cycle fanin '", input, "'."); } bool is_control = IsTensorIdControl(fanin_id); if (!is_control && has_observed_control) { return errors::InvalidArgument(kMutableGraphViewError, "node '", node_name, "' has regular fanin '", input, "' after controlling fanins."); } if (!node_index_by_name_.contains(fanin_id.node())) { return errors::InvalidArgument(kMutableGraphViewError, "node '", node_name, "' has missing fanin '", input, "'."); } if (is_control) { has_observed_control = true; } node_fanins.push_back(std::move(fanin_id)); } fanins->push_back(std::move(node_fanins)); } return absl::OkStatus(); } void MutableGraphView::AddFaninsInternal( std::vector<std::vector<TensorId>>* fanins) { const int num_nodes = nodes_.size(); for (int i = 0; i < num_nodes; ++i) { MutableNodeView& node_view = nodes_[i]; NodeDef* node = node_view.node(); std::vector<TensorId>& node_fanins = fanins->at(i); absl::flat_hash_set<absl::string_view> observed_controls; int pos = 0; const int last_idx = node_fanins.size() - 1; int last_pos = last_idx; node_view.fanins_count_.reserve(node->input_size()); node_view.controlling_fanins_index_.reserve(node->input_size()); while (pos <= last_pos) { const TensorId& fanin_id = node_fanins[pos]; bool is_control = IsTensorIdControl(fanin_id); const int fanin_node_index = node_index_by_name_[fanin_id.node()]; MutableNodeView& fanin_node_view = nodes_[fanin_node_index]; if (is_control) { if (gtl::InsertIfNotPresent(&observed_controls, fanin_id.node())) { fanin_node_view.controlled_fanouts_.emplace_back( this, i, Graph::kControlSlot, node_view.controlling_fanins_.size()); node_view.controlling_fanins_.emplace_back( this, fanin_node_index, Graph::kControlSlot, fanin_node_view.controlled_fanouts_.size() - 1); IncrementFaninCount( &node_view.fanins_count_, {&graph_->node(fanin_node_index), Graph::kControlSlot}); node_view.controlling_fanins_index_.emplace( fanin_id.node(), pos - node_view.NumRegularFanins()); ++pos; } else { node->mutable_input()->SwapElements(pos, last_pos); std::swap(node_fanins[pos], node_fanins[last_pos]); --last_pos; } } else { int fanin_node_view_regular_fanouts_by_port_size = fanin_node_view.regular_fanouts_by_port_.size(); if (fanin_node_view_regular_fanouts_by_port_size < fanin_id.index() + 1) { fanin_node_view.regular_fanouts_by_port_.resize(fanin_id.index() + 1); } auto& fanin_regular_fanouts = fanin_node_view.regular_fanouts_by_port_[fanin_id.index()]; fanin_regular_fanouts.emplace_back(this, i, node_view.regular_fanins_.size(), node_view.regular_fanins_.size()); ++fanin_node_view.num_regular_fanouts_; node_view.regular_fanins_.emplace_back( this, fanin_node_index, fanin_id.index(), fanin_regular_fanouts.size() - 1); IncrementFaninCount( &node_view.fanins_count_, {&graph_->node(fanin_node_index), fanin_id.index()}); ++pos; } } if (last_pos < last_idx) { node->mutable_input()->DeleteSubrange(last_pos + 1, last_idx - last_pos); } } } Status MutableGraphView::GetNodeNamesAndPartitionUpdatedNodes( absl::flat_hash_map<absl::string_view, int>* node_names, std::vector<RenamedOrOverwrittenNode>* renamed_nodes, std::vector<int>* inplace_nodes, std::vector<int>* empty_diff_node_indices) { for (const auto& diff : mutation_.updated_nodes_) { if (diff.update_name) { const int index = diff.node_index; const string& node_name = nodes_[index].GetName(); node_names->emplace(node_name, index); } } for (int node_index : mutation_.removed_nodes_) { const string& node_name = nodes_[node_index].GetName(); node_names->emplace(node_name, node_index); } auto name_conflict = [](const absl::string_view node_name) { return errors::InvalidArgument(kMutableGraphViewApplyError, "multiple nodes with the name: '", node_name, "' exists in Mutation."); }; const int num_updated_nodes = mutation_.updated_nodes_.size(); renamed_nodes->reserve(num_updated_nodes); inplace_nodes->reserve(num_updated_nodes); empty_diff_node_indices->reserve(num_updated_nodes); for (int i = 0; i < num_updated_nodes; ++i) { auto& diff = mutation_.updated_nodes_[i]; if (internal::IsEmpty(&diff)) { empty_diff_node_indices->emplace_back(diff.node_index); continue; } const string& node_name = diff.update_name ? diff.name : nodes_[diff.node_index].GetName(); auto it = node_names->insert({node_name, internal::kNodeNamePresent}); if (!it.second) { if (it.first->second == internal::kNodeNamePresent) { return name_conflict(node_name); } else { it.first->second = internal::kNodeNamePresent; } } if (diff.update_name) { auto node_name_it = node_index_by_name_.find(node_name); const int overwritten_node_index = node_name_it != node_index_by_name_.end() ? node_name_it->second : internal::kMissingIndex; renamed_nodes->emplace_back(i, overwritten_node_index); } else { inplace_nodes->push_back(i); } } for (const auto& new_node : mutation_.new_nodes_) { const string& node_name = new_node.node.name(); auto it = node_names->insert({node_name, internal::kNodeNamePresent}); if (it.second) { continue; } if (it.first->second == internal::kNodeNamePresent) { return name_conflict(node_name); } else { it.first->second = internal::kNodeNamePresent; } } return absl::OkStatus(); } Status MutableGraphView::RemovedOrMissingNodeFanoutsWellFormed( const absl::flat_hash_map<absl::string_view, int>& node_names, const std::vector<RenamedOrOverwrittenNode>& renamed_nodes) { auto bad_fanout = [](absl::string_view fanout_node_name, absl::string_view node_name) { return errors::InvalidArgument( kMutableGraphViewApplyError, "fanout '", fanout_node_name, "' exist for missing node '", node_name, "'."); }; std::vector<bool> overwritten_nodes(NumNodes()); for (auto& renamed_node : renamed_nodes) { if (renamed_node.overwritten_node_index_ == internal::kMissingIndex) { continue; } overwritten_nodes[renamed_node.overwritten_node_index_] = true; } for (const auto& node_name_state : node_names) { if (node_name_state.second == internal::kNodeNamePresent) { continue; } const MutableNodeView& node_view = nodes_[node_name_state.second]; for (const auto& regular_fanouts : node_view.GetRegularFanouts()) { for (const auto& regular_fanout : regular_fanouts) { MutableNodeView* fanout_view = regular_fanout.node_view(); if (fanout_view->update_index_ == internal::kMissingIndex) { if (mutation_.removed_nodes_.contains(fanout_view->node_index_)) { continue; } else if (!overwritten_nodes[fanout_view->node_index_]) { return bad_fanout(fanout_view->GetName(), node_name_state.first); } } else { auto& diff = mutation_.updated_nodes_[fanout_view->update_index_]; const int last_index = fanout_view->NumRegularFanins() - diff.num_regular_inputs_to_remove - 1; if (regular_fanout.index() > last_index) { continue; } if (diff.regular_inputs_to_update.find(regular_fanout.index()) == diff.regular_inputs_to_update.end()) { return bad_fanout(fanout_view->GetName(), node_name_state.first); } } } } for (const auto& controlled_fanout : node_view.GetControlledFanouts()) { MutableNodeView* fanout_view = controlled_fanout.node_view(); if (fanout_view->update_index_ == internal::kMissingIndex) { if (mutation_.removed_nodes_.contains(fanout_view->node_index_)) { continue; } else if (!overwritten_nodes[fanout_view->node_index_]) { return bad_fanout(fanout_view->GetName(), node_name_state.first); } } else { auto& diff = mutation_.updated_nodes_[fanout_view->update_index_]; if (diff.controlling_inputs_to_remove.find( controlled_fanout.fanin_index_) == diff.controlling_inputs_to_remove.end()) { return bad_fanout(fanout_view->GetName(), node_name_state.first); } } } } return absl::OkStatus(); } Status MutableGraphView::CheckNodeNamesAndFanins( const absl::flat_hash_map<absl::string_view, int>& node_names, const std::vector<RenamedOrOverwrittenNode>& renamed_nodes, const std::vector<int>& inplace_nodes) { TF_RETURN_IF_ERROR( RemovedOrMissingNodeFanoutsWellFormed(node_names, renamed_nodes)); for (auto& inplace_node : inplace_nodes) { auto& diff = mutation_.updated_nodes_[inplace_node]; if (!internal::IsWellFormed(&diff, node_names)) { return errors::InvalidArgument( kMutableGraphViewApplyError, "inplace updated node '", nodes_[diff.node_index].GetName(), "' is ill-formed."); } } for (auto& renamed_node : renamed_nodes) { auto& diff = mutation_.updated_nodes_[renamed_node.renamed_update_index_]; if (!internal::IsWellFormed(&diff, node_names)) { return errors::InvalidArgument( kMutableGraphViewApplyError, "renamed updated node '", diff.name, "' ('", nodes_[diff.node_index].GetName(), "') is ill-formed."); } } for (auto& new_node : mutation_.new_nodes_) { if (!internal::IsWellFormed(&new_node, node_names)) { return errors::InvalidArgument(kMutableGraphViewApplyError, "new node '", new_node.node.name(), "' is ill-formed."); } } return absl::OkStatus(); } Status MutableGraphView::CheckKernelRegisteredForNodes() { Status s; for (auto& diff : mutation_.updated_nodes_) { if (internal::IsEmpty(&diff)) { continue; } NodeDef* node = nodes_[diff.node_index].node(); diff.processed_attrs = AttrValueMap(node->attr().begin(), node->attr().end()); for (const auto& attr_to_remove : diff.attrs_to_remove) { (*diff.processed_attrs).erase(attr_to_remove); } for (const auto& attr_to_add : diff.attrs_to_add) { gtl::InsertOrUpdate(&(*diff.processed_attrs), attr_to_add.first, attr_to_add.second); } const string& device = diff.update_device ? diff.device : node->device(); DeviceNameUtils::ParsedName name; if (device.empty() || !DeviceNameUtils::ParseFullName(device, &name) || !name.has_type) { continue; } s = IsKernelRegisteredForNode(diff.update_name ? diff.name : node->name(), node->has_experimental_debug_info(), node->experimental_debug_info(), diff.update_op ? diff.op : node->op(), device, AttrSlice(&(*diff.processed_attrs))); if (!s.ok()) { LOG(WARNING) << s.message(); } } for (const auto& new_node_holder : mutation_.new_nodes_) { const auto& new_node_def = new_node_holder.node; DeviceNameUtils::ParsedName name; if (new_node_def.device().empty() || !DeviceNameUtils::ParseFullName(new_node_def.device(), &name) || !name.has_type) { continue; } s = IsKernelRegisteredForNode(new_node_def); if (!s.ok()) { LOG(WARNING) << s.message(); } } return absl::OkStatus(); } template <typename T> void MutableGraphView::ReplaceNodeFanouts(MutableNodeView* node, T* fanouts) { node->num_regular_fanouts_ = fanouts->num_regular_fanouts_; node->regular_fanouts_by_port_ = std::move(fanouts->regular_fanouts_by_port_); for (int i = 0, i_max = node->regular_fanouts_by_port_.size(); i < i_max; ++i) { for (int j = 0, j_max = node->regular_fanouts_by_port_[i].size(); j < j_max; ++j) { auto& fanout = node->regular_fanouts_by_port_[i][j]; auto* fanout_node_view = fanout.node_view(); auto& fanout_fanin = fanout_node_view->regular_fanins_[fanout.index()]; auto* fanout_fanins_count = &fanout_node_view->fanins_count_; DecrementFaninCount( fanout_fanins_count, {&graph_->node(fanout_fanin.node_index_), fanout_fanin.index()}); fanout_fanin.node_index_ = node->node_index_; IncrementFaninCount( fanout_fanins_count, {&graph_->node(node->node_index_), fanout_fanin.index()}); } } node->controlled_fanouts_ = std::move(fanouts->controlled_fanouts_); for (int i = 0, i_max = node->controlled_fanouts_.size(); i < i_max; ++i) { auto& fanout = node->controlled_fanouts_[i]; auto* fanout_node_view = fanout.node_view(); auto& fanout_fanin = fanout_node_view->controlling_fanins_[fanout.fanin_index_]; auto* fanout_fanins_count = &fanout_node_view->fanins_count_; DecrementFaninCount( fanout_fanins_count, {&graph_->node(fanout_fanin.node_index_), Graph::kControlSlot}); fanout_fanin.node_index_ = node->node_index_; fanout_fanin.fanout_index_ = i; IncrementFaninCount(fanout_fanins_count, {&graph_->node(node->node_index_), Graph::kControlSlot}); } } void MutableGraphView::FixRenamedNodes( std::vector<RenamedOrOverwrittenNode>* renamed_nodes, absl::flat_hash_map<string, NodeViewFanouts>* renamed_fanouts, std::vector<bool>* overwritten_name_removed_nodes) { renamed_fanouts->reserve(renamed_nodes->size()); for (auto& renamed : *renamed_nodes) { auto& diff = mutation_.updated_nodes_[renamed.renamed_update_index_]; node_index_by_name_.erase(nodes_[diff.node_index].GetName()); MutableNodeView& renamed_node = nodes_[diff.node_index]; renamed_fanouts->try_emplace( renamed_node.GetName(), std::move(renamed_node.regular_fanouts_by_port_), renamed_node.num_regular_fanouts_, std::move(renamed_node.controlled_fanouts_)); } for (auto& renamed : *renamed_nodes) { auto& diff = mutation_.updated_nodes_[renamed.renamed_update_index_]; MutableNodeView& renamed_node = nodes_[diff.node_index]; auto fanouts_it = renamed_fanouts->find(diff.name); if (fanouts_it != renamed_fanouts->end()) { auto& fanouts = fanouts_it->second; ReplaceNodeFanouts(&renamed_node, &fanouts); renamed_fanouts->erase(fanouts_it); renamed.overwritten_node_index_ = internal::kMissingIndex; } else if (renamed.overwritten_node_index_ != internal::kMissingIndex) { MutableNodeView& node_to_overwrite = nodes_[renamed.overwritten_node_index_]; ReplaceNodeFanouts(&renamed_node, &node_to_overwrite); node_index_by_name_.erase(node_to_overwrite.GetName()); if (mutation_.removed_nodes_.contains(node_to_overwrite.node_index_)) { (*overwritten_name_removed_nodes)[node_to_overwrite.node_index_] = true; } } else { renamed_node.num_regular_fanouts_ = 0; } renamed_node.node()->set_name(diff.name); diff.update_name = false; diff.name.clear(); node_index_by_name_.emplace(renamed_node.GetName(), diff.node_index); } } void MutableGraphView::AddNewNodes( absl::flat_hash_map<string, NodeViewFanouts>* renamed_fanouts, std::vector<int>* new_node_indices) { new_node_indices->reserve(mutation_.new_nodes_.size()); for (auto& new_node : mutation_.new_nodes_) { int node_index; auto graph_it = node_index_by_name_.find(new_node.node.name()); if (graph_it != node_index_by_name_.end()) { node_index = graph_it->second; MutableNodeView& node_view = nodes_[node_index]; RemoveAllFaninFanoutInternal(&node_view); auto* node_def = graph_->mutable_node(node_index); node_def->mutable_op()->swap(*new_node.node.mutable_op()); node_def->mutable_device()->swap(*new_node.node.mutable_device()); node_def->mutable_input()->Clear(); node_def->mutable_attr()->swap(*new_node.node.mutable_attr()); mutation_.removed_nodes_.erase(node_index); } else { auto* new_node_def = graph_->add_node(); *new_node_def = std::move(new_node.node); node_index = nodes_.size(); nodes_.emplace_back(this, node_index); MutableNodeView& new_node_view = nodes_.back(); auto it = renamed_fanouts->find(new_node_view.GetName()); if (it != renamed_fanouts->end()) { NodeViewFanouts& fanouts = it->second; ReplaceNodeFanouts(&new_node_view, &fanouts); renamed_fanouts->erase(it); } node_index_by_name_.emplace(new_node_view.GetName(), node_index); } new_node_indices->emplace_back(node_index); } } void MutableGraphView::FixRenamedFanouts( const absl::flat_hash_map<string, NodeViewFanouts>& renamed_fanouts) { for (auto& renamed_fanout : renamed_fanouts) { for (auto& regular_fanouts : renamed_fanout.second.regular_fanouts_by_port_) { for (auto& fanout : regular_fanouts) { auto* fanout_node_view = fanout.node_view(); auto& fanin = fanout_node_view->regular_fanins_[fanout.index()]; fanout_node_view->fanins_count_.erase( {fanin.node_view()->node(), fanin.index()}); fanin.fanout_index_ = internal::kMissingIndex; } } for (auto& fanout : renamed_fanout.second.controlled_fanouts_) { auto* fanout_node_view = fanout.node_view(); auto& fanin = fanout_node_view->controlling_fanins_[fanout.fanin_index_]; fanout_node_view->fanins_count_.erase( {fanin.node_view()->node(), Graph::kControlSlot}); fanout_node_view->controlling_fanins_index_.erase(renamed_fanout.first); fanin.fanout_index_ = internal::kMissingIndex; } } } inline void MutableGraphView::RemoveRegularFaninFanoutInternal( MutableNodeView* node_view, int i) { MutableFanoutView& fanin = node_view->regular_fanins_[i]; if (fanin.fanout_index_ == internal::kMissingIndex) { return; } DecrementFaninCount(&node_view->fanins_count_, {&graph_->node(fanin.node_index_), fanin.index()}); auto* fanin_node_view = fanin.node_view(); auto& fanouts = fanin_node_view->regular_fanouts_by_port_[fanin.index()]; int fanouts_size = fanouts.size(); if (fanin.fanout_index_ < fanouts_size - 1) { MutableFaninView& last_fanout = fanouts.back(); last_fanout.node_view() ->regular_fanins_[last_fanout.index()] .fanout_index_ = fanin.fanout_index_; std::swap(last_fanout, fanouts[fanin.fanout_index_]); } fanouts.pop_back(); --fanin.node_view()->num_regular_fanouts_; int last_fanout_index = fanin_node_view->regular_fanouts_by_port_.size(); for (int i = fanin_node_view->regular_fanouts_by_port_.size() - 1; i >= 0; --i) { if (fanin_node_view->regular_fanouts_by_port_[i].empty()) { last_fanout_index = i; } else { break; } } int fanin_node_view_regular_fanouts_by_port_size = fanin_node_view->regular_fanouts_by_port_.size(); if (last_fanout_index < fanin_node_view_regular_fanouts_by_port_size) { fanin_node_view->regular_fanouts_by_port_.resize(last_fanout_index); } } inline void MutableGraphView::AddRegularFaninInternal( MutableNodeView* node_view, const SafeTensorId& fanin_id) { MutableNodeView* fanin_node_view = GetNode(fanin_id.node()); int fanin_node_view_regular_fanouts_by_port_size = fanin_node_view->regular_fanouts_by_port_.size(); if (fanin_node_view_regular_fanouts_by_port_size < fanin_id.index() + 1) { fanin_node_view->regular_fanouts_by_port_.resize(fanin_id.index() + 1); } auto& fanouts = fanin_node_view->regular_fanouts_by_port_[fanin_id.index()]; fanouts.emplace_back(this, node_view->node_index(), node_view->regular_fanins_.size(), node_view->regular_fanins_.size()); ++fanin_node_view->num_regular_fanouts_; node_view->regular_fanins_.emplace_back(this, fanin_node_view->node_index(), fanin_id.index(), fanouts.size() - 1); IncrementFaninCount( &node_view->fanins_count_, {&graph_->node(fanin_node_view->node_index()), fanin_id.index()}); } inline void MutableGraphView::UpdateRegularFaninInternal( MutableNodeView* node_view, const int i, const SafeTensorId& fanin_id) { RemoveRegularFaninFanoutInternal(node_view, i); MutableNodeView* fanin_node_view = GetNode(fanin_id.node()); int fanin_node_view_regular_fanouts_by_port_size = fanin_node_view->regular_fanouts_by_port_.size(); if (fanin_node_view_regular_fanouts_by_port_size < fanin_id.index() + 1) { fanin_node_view->regular_fanouts_by_port_.resize(fanin_id.index() + 1); } auto& fanouts = fanin_node_view->regular_fanouts_by_port_[fanin_id.index()]; fanouts.emplace_back(this, node_view->node_index(), i, i); ++fanin_node_view->num_regular_fanouts_; node_view->regular_fanins_[i] = MutableFanoutView(this, fanin_node_view->node_index(), fanin_id.index(), fanouts.size() - 1); IncrementFaninCount( &node_view->fanins_count_, {&graph_->node(fanin_node_view->node_index()), fanin_id.index()}); } inline void MutableGraphView::RemoveControllingFaninFanoutInternal( MutableNodeView* node_view, int i) { auto& control_to_remove = node_view->controlling_fanins_[i]; if (control_to_remove.fanout_index_ != internal::kMissingIndex) { node_view->fanins_count_.erase( {control_to_remove.node_view()->node(), Graph::kControlSlot}); node_view->controlling_fanins_index_.erase( control_to_remove.node_view()->GetName()); auto* control_to_remove_view = control_to_remove.node_view(); int control_to_remove_view_controlled_fanouts_size = control_to_remove_view->controlled_fanouts_.size(); if (control_to_remove.fanout_index_ < control_to_remove_view_controlled_fanouts_size - 1) { auto& control_to_remove_view_last_control = control_to_remove_view->controlled_fanouts_.back(); control_to_remove_view_last_control.node_view() ->controlling_fanins_[control_to_remove_view_last_control .fanin_index_] .fanout_index_ = control_to_remove.fanout_index_; std::swap(control_to_remove_view_last_control, control_to_remove_view ->controlled_fanouts_[control_to_remove.fanout_index_]); } control_to_remove_view->controlled_fanouts_.pop_back(); } } inline void MutableGraphView::RemoveControllingFaninInternal( MutableNodeView* node_view, const std::set<int>& indices_to_remove) { const int num_regular_fanins = node_view->NumRegularFanins(); auto* mutable_input = node_view->node()->mutable_input(); for (auto rit = indices_to_remove.rbegin(); rit != indices_to_remove.rend(); ++rit) { const int control_index = *rit; RemoveControllingFaninFanoutInternal(node_view, control_index); int node_view_controlling_fanins_size = node_view->controlling_fanins_.size(); if (control_index < node_view_controlling_fanins_size - 1) { auto& last_control = node_view->controlling_fanins_.back(); auto* last_control_view = last_control.node_view(); last_control_view->controlled_fanouts_[last_control.fanout_index_] .fanin_index_ = control_index; node_view->controlling_fanins_index_.find(last_control_view->GetName()) ->second = control_index; mutable_input->SwapElements( num_regular_fanins + control_index, num_regular_fanins + node_view->NumControllingFanins() - 1); std::swap(last_control, node_view->controlling_fanins_[control_index]); } mutable_input->RemoveLast(); node_view->controlling_fanins_.pop_back(); } } inline void MutableGraphView::AddControllingFaninInternal( MutableNodeView* node_view, absl::string_view fanin_node_name) { NodeDef* node = node_view->node(); node->add_input(AsControlDependency(string(fanin_node_name))); MutableNodeView* fanin_node_view = GetNode(fanin_node_name); const int index = node_view->controlling_fanins_.size(); fanin_node_view->controlled_fanouts_.emplace_back( this, node_view->node_index(), Graph::kControlSlot, index); node_view->controlling_fanins_.emplace_back( this, fanin_node_view->node_index(), Graph::kControlSlot, fanin_node_view->controlled_fanouts_.size() - 1); IncrementFaninCount( &node_view->fanins_count_, {&graph_->node(fanin_node_view->node_index()), Graph::kControlSlot}); TensorId tensor_id = ParseTensorName(node->input(node->input_size() - 1)); node_view->controlling_fanins_index_.emplace(tensor_id.node(), index); } void MutableGraphView::ApplyNodeUpdates() { for (auto& diff : mutation_.updated_nodes_) { if (internal::IsEmpty(&diff)) { continue; } MutableNodeView& node_view = nodes_[diff.node_index]; diff.node_index = internal::kMissingIndex; node_view.update_index_ = internal::kMissingIndex; NodeDef* node_def = node_view.node(); if (diff.update_op) { node_def->set_op(diff.op); } if (diff.update_device) { node_def->set_device(diff.device); } node_def->mutable_attr()->swap((*diff.processed_attrs)); if (diff.num_regular_inputs_to_remove > 0) { const int first_index = node_view.NumRegularFanins() - diff.num_regular_inputs_to_remove; for (int i = first_index; i < node_view.NumRegularFanins(); ++i) { RemoveRegularFaninFanoutInternal(&node_view, i); } node_view.regular_fanins_.resize(first_index); node_def->mutable_input()->DeleteSubrange( node_view.NumRegularFanins(), diff.num_regular_inputs_to_remove); } else if (diff.num_regular_inputs_to_add > 0) { node_def->mutable_input()->Reserve(node_def->mutable_input()->size() + diff.num_regular_inputs_to_add); int curr_index = node_view.NumRegularFanins(); int curr_control_start = curr_index; for (const SafeTensorId& fanin : diff.regular_inputs_to_add) { AddRegularFaninInternal(&node_view, fanin); node_def->add_input(SafeTensorIdToString(fanin)); node_def->mutable_input()->SwapElements(curr_index, node_def->input_size() - 1); if (curr_control_start == curr_index) { curr_control_start = node_def->input_size() - 1; } ++curr_index; } if (node_view.NumControllingFanins() > 1 && curr_control_start != node_view.NumRegularFanins()) { std::rotate( node_def->mutable_input()->begin() + node_view.NumRegularFanins(), node_def->mutable_input()->begin() + curr_control_start, node_def->mutable_input()->end()); } } for (const auto& update_fanin : diff.regular_inputs_to_update) { UpdateRegularFaninInternal(&node_view, update_fanin.first, update_fanin.second); node_def->set_input(update_fanin.first, SafeTensorIdToString(update_fanin.second)); } RemoveControllingFaninInternal(&node_view, diff.controlling_inputs_to_remove); node_def->mutable_input()->Reserve(node_def->mutable_input()->size() + diff.controlling_inputs_to_add.size()); for (const auto& control_to_add : diff.controlling_inputs_to_add) { AddControllingFaninInternal(&node_view, control_to_add); } } } void MutableGraphView::SetNewNodesFanins( const std::vector<int>& new_node_indices) { auto new_node = mutation_.new_nodes_.begin(); for (const int new_node_index : new_node_indices) { MutableNodeView& new_node_view = nodes_[new_node_index]; NodeDef* new_node_def = new_node_view.node(); new_node_def->mutable_input()->Reserve(new_node->num_regular_fanins + new_node->controlling_fanins.size()); for (const SafeTensorId& fanin : new_node->regular_fanins) { AddRegularFaninInternal(&new_node_view, fanin); new_node_def->add_input(SafeTensorIdToString(fanin)); } for (const string& control_to_add : new_node->controlling_fanins) { AddControllingFaninInternal(&new_node_view, control_to_add); } ++new_node; } } inline void MutableGraphView::RemoveAllFaninFanoutInternal( MutableNodeView* node_view) { const int num_regular_fanins = node_view->NumRegularFanins(); for (int i = 0; i < num_regular_fanins; ++i) { RemoveRegularFaninFanoutInternal(node_view, i); } std::vector<MutableFanoutView>().swap(node_view->regular_fanins_); const int num_controlling_fanins = node_view->NumControllingFanins(); for (int i = 0; i < num_controlling_fanins; ++i) { RemoveControllingFaninFanoutInternal(node_view, i); } std::vector<MutableFanoutView>().swap(node_view->controlling_fanins_); } void MutableGraphView::RemoveNodesInternal( const std::vector<RenamedOrOverwrittenNode>& renamed_nodes, const std::vector<bool>& overwritten_name_removed_nodes) { std::vector<int> overwritten_nodes; overwritten_nodes.reserve(renamed_nodes.size()); for (const auto& renamed : renamed_nodes) { if (renamed.overwritten_node_index_ != internal::kMissingIndex) { auto& node = nodes_[renamed.overwritten_node_index_]; RemoveAllFaninFanoutInternal(&node); overwritten_nodes.emplace_back(renamed.overwritten_node_index_); } } std::vector<int> node_indices_to_remove; node_indices_to_remove.reserve(mutation_.updated_nodes_.size() + overwritten_nodes.size()); for (int node_index : mutation_.removed_nodes_) { auto& node = nodes_[node_index]; RemoveAllFaninFanoutInternal(&node); node_indices_to_remove.push_back(node_index); if (!overwritten_name_removed_nodes[node_index]) { node_index_by_name_.erase(node.GetName()); } } node_indices_to_remove.insert(node_indices_to_remove.end(), overwritten_nodes.begin(), overwritten_nodes.end()); std::set<int> sorted_node_indices_to_remove(node_indices_to_remove.begin(), node_indices_to_remove.end()); for (auto rit = sorted_node_indices_to_remove.rbegin(); rit != sorted_node_indices_to_remove.rend(); ++rit) { const int removed_node_index = *rit; MutableNodeView& last_node = nodes_.back(); if (last_node.node_index_ > removed_node_index) { last_node.node_index_ = removed_node_index; for (auto& regular_fanin : last_node.regular_fanins_) { regular_fanin.node_view() ->regular_fanouts_by_port_[regular_fanin.index()] [regular_fanin.fanout_index_] .node_index_ = removed_node_index; } for (auto& controlling_fanin : last_node.controlling_fanins_) { controlling_fanin.node_view() ->controlled_fanouts_[controlling_fanin.fanout_index_] .node_index_ = removed_node_index; } for (auto& regular_fanouts : last_node.regular_fanouts_by_port_) { for (auto& regular_fanout : regular_fanouts) { MutableNodeView* fanout_node_view = regular_fanout.node_view(); fanout_node_view->regular_fanins_[regular_fanout.fanin_index_] .node_index_ = removed_node_index; } } for (auto& controlled_fanout : last_node.controlled_fanouts_) { MutableNodeView* fanout_node_view = controlled_fanout.node_view(); fanout_node_view->controlling_fanins_[controlled_fanout.fanin_index_] .node_index_ = removed_node_index; } const int last_node_index = nodes_.size() - 1; std::swap(nodes_[last_node_index], nodes_[removed_node_index]); graph()->mutable_node()->SwapElements(last_node_index, removed_node_index); node_index_by_name_.find(nodes_[removed_node_index].GetName())->second = removed_node_index; } nodes_.pop_back(); } if (!sorted_node_indices_to_remove.empty()) { const int current_size = graph()->node_size(); const int num_to_remove = sorted_node_indices_to_remove.size(); graph()->mutable_node()->DeleteSubrange(current_size - num_to_remove, num_to_remove); } } namespace { constexpr int kTopologicalSortDone = -1; const char kMutableGraphViewSortTopologicallyError[] = "MutableGraphView::SortTopologically error: "; enum TraversalState : uint8_t { PENDING, PROCESSING, PROCESSED }; enum RecursionStackState : bool { ENTER, EXIT }; struct RecursionStackEntry { RecursionStackEntry(int node_index, RecursionStackState recursion_state) : node_index(node_index), recursion_state(recursion_state) {} const int node_index; const RecursionStackState recursion_state; }; struct Edge { Edge(int from, int to) : from(from), to(to) {} const int from; const int to; }; } Status MutableGraphView::SortTopologically( bool ignore_cycles, absl::Span<const TopologicalDependency> extra_dependencies) { if (!mutation_.updated_nodes_.empty() || !mutation_.new_nodes_.empty()) { return errors::InvalidArgument(kMutableGraphViewSortTopologicallyError, "active mutation exists."); } const int num_nodes = nodes_.size(); absl::flat_hash_map<int, std::vector<int>> extra_dependencies_by_parent; for (const auto& extra_dependency : extra_dependencies) { if (extra_dependency.graph_view_ != this || extra_dependency.from_ == extra_dependency.to_ || extra_dependency.from_ < 0 || extra_dependency.from_ >= num_nodes || extra_dependency.to_ < 0 || extra_dependency.to_ >= num_nodes) { return errors::InvalidArgument(kMutableGraphViewSortTopologicallyError, "invalid extra dependencies."); } extra_dependencies_by_parent[extra_dependency.from_].push_back( extra_dependency.to_); } std::vector<TraversalState> traversal_state(num_nodes, PENDING); int curr_pos = num_nodes - 1; std::vector<int> order(num_nodes); std::vector<Edge> edges_in_cycle; auto push_onto_stack = [this]( const int curr_index, const int fanout_index, std::vector<RecursionStackEntry>* recursion_stack, std::vector<TraversalState>* traversal_state, std::vector<Edge>* edges_in_cycle) { if (IsNextIteration(graph_->node(curr_index)) && IsMerge(graph_->node(fanout_index))) { return; } auto& fanout_traversal_state = (*traversal_state)[fanout_index]; if (fanout_traversal_state == PROCESSING) { edges_in_cycle->push_back({curr_index, fanout_index}); } else if (fanout_traversal_state == PENDING) { recursion_stack->push_back({fanout_index, ENTER}); } }; auto process_fanouts = [this, &extra_dependencies_by_parent, &push_onto_stack]( const int curr_index, std::vector<RecursionStackEntry>* recursion_stack, std::vector<TraversalState>* traversal_state, std::vector<Edge>* edges_in_cycle) { const auto& node_view = nodes_[curr_index]; for (const auto& regular_fanouts_port_i : node_view.GetRegularFanouts()) { for (const auto& regular_fanout : regular_fanouts_port_i) { push_onto_stack(curr_index, regular_fanout.node_index_, recursion_stack, traversal_state, edges_in_cycle); } } for (const auto& controlled_fanout : node_view.GetControlledFanouts()) { push_onto_stack(curr_index, controlled_fanout.node_index_, recursion_stack, traversal_state, edges_in_cycle); } auto it = extra_dependencies_by_parent.find(curr_index); if (it != extra_dependencies_by_parent.end()) { for (const auto& extra_fanout : it->second) { push_onto_stack(curr_index, extra_fanout, recursion_stack, traversal_state, edges_in_cycle); } } }; auto reversed_postorder_dfs = [&process_fanouts](const MutableNodeView& root_node_view, std::vector<int>* order, std::vector<TraversalState>* traversal_state, int* curr_pos, std::vector<Edge>* edges_in_cycle) { std::vector<RecursionStackEntry> recursion_stack; const int root_index = root_node_view.node_index_; auto& root_traversal_state = (*traversal_state)[root_index]; if (root_traversal_state == PENDING) { recursion_stack.push_back({root_index, ENTER}); } while (!recursion_stack.empty()) { auto curr_entry = recursion_stack.back(); recursion_stack.pop_back(); const int curr_index = curr_entry.node_index; auto& curr_traversal_state = (*traversal_state)[curr_index]; if (curr_traversal_state == PROCESSED) { continue; } else if (curr_entry.recursion_state == EXIT) { (*order)[curr_index] = *curr_pos; curr_traversal_state = PROCESSED; --(*curr_pos); } else { curr_traversal_state = PROCESSING; recursion_stack.push_back({curr_index, EXIT}); process_fanouts(curr_index, &recursion_stack, traversal_state, edges_in_cycle); } } }; for (int i = num_nodes - 1; i >= 0; --i) { auto& node = nodes_[i]; if (node.NumRegularFanins() + node.NumControllingFanins() == 0) { reversed_postorder_dfs(node, &order, &traversal_state, &curr_pos, &edges_in_cycle); } } if (!ignore_cycles && !edges_in_cycle.empty()) { std::vector<string> edges_formatted; edges_formatted.reserve(edges_in_cycle.size()); for (const auto& edge : edges_in_cycle) { edges_formatted.push_back( absl::StrCat("'", graph_->node(edge.from).name(), "' -> '", graph_->node(edge.to).name(), "'")); } const string edges_str = absl::StrCat("{", absl::StrJoin(edges_formatted, ", "), "}"); return errors::InvalidArgument(kMutableGraphViewSortTopologicallyError, "detected edge(s) creating cycle(s) ", edges_str, "."); } if (curr_pos != kTopologicalSortDone) { if (!ignore_cycles) { return errors::InvalidArgument( kMutableGraphViewSortTopologicallyError, "was not able to sort all nodes topologically."); } for (const auto& node : nodes_) { reversed_postorder_dfs(node, &order, &traversal_state, &curr_pos, &edges_in_cycle); } } std::vector<MutableNodeView> permuted_nodes(num_nodes); for (int i = 0; i < num_nodes; ++i) { permuted_nodes[order[i]] = std::move(nodes_[i]); } nodes_.swap(permuted_nodes); for (MutableNodeView& node_view : nodes_) { const int prev_node_index = node_view.node_index_; if (prev_node_index != order[prev_node_index]) { const string& node_name = graph_->node(prev_node_index).name(); node_view.node_index_ = order[prev_node_index]; node_index_by_name_.find(node_name)->second = node_view.node_index_; } for (MutableFanoutView& regular_fanin : node_view.regular_fanins_) { regular_fanin.node_index_ = order[regular_fanin.node_index_]; } for (MutableFanoutView& controlling_fanin : node_view.controlling_fanins_) { controlling_fanin.node_index_ = order[controlling_fanin.node_index_]; } for (std::vector<MutableFaninView>& regular_fanouts_port_i : node_view.regular_fanouts_by_port_) { for (MutableFaninView& regular_fanout : regular_fanouts_port_i) { regular_fanout.node_index_ = order[regular_fanout.node_index_]; } } for (MutableFaninView& controlled_fanout : node_view.controlled_fanouts_) { controlled_fanout.node_index_ = order[controlled_fanout.node_index_]; } } PermuteNodesInPlace(graph_, &order, false); return absl::OkStatus(); } inline Status MutableGraphView::ValidateInternal( absl::flat_hash_map<absl::string_view, int>* node_names, std::vector<RenamedOrOverwrittenNode>* renamed_nodes, std::vector<int>* inplace_nodes, std::vector<int>* empty_diff_node_indices) { TF_RETURN_IF_ERROR(GetNodeNamesAndPartitionUpdatedNodes( node_names, renamed_nodes, inplace_nodes, empty_diff_node_indices)); TF_RETURN_IF_ERROR( CheckNodeNamesAndFanins(*node_names, *renamed_nodes, *inplace_nodes)); TF_RETURN_IF_ERROR(CheckKernelRegisteredForNodes()); return absl::OkStatus(); } Status MutableGraphView::ApplyMutationInternal() { absl::flat_hash_map<absl::string_view, int> node_names; std::vector<RenamedOrOverwrittenNode> renamed_nodes; std::vector<int> inplace_nodes; std::vector<int> empty_diff_node_indices; TF_RETURN_IF_ERROR(ValidateInternal( &node_names, &renamed_nodes, &inplace_nodes, &empty_diff_node_indices)); for (const int empty_diff_node_index : empty_diff_node_indices) { nodes_[empty_diff_node_index].update_index_ = internal::kMissingIndex; } absl::flat_hash_map<string, NodeViewFanouts> renamed_fanouts; std::vector<bool> overwritten_name_removed_nodes(nodes_.size()); FixRenamedNodes(&renamed_nodes, &renamed_fanouts, &overwritten_name_removed_nodes); std::vector<int> new_node_indices; AddNewNodes(&renamed_fanouts, &new_node_indices); FixRenamedFanouts(renamed_fanouts); ApplyNodeUpdates(); SetNewNodesFanins(new_node_indices); RemoveNodesInternal(renamed_nodes, overwritten_name_removed_nodes); mutation_.ResetInternal(); mutation_.mutation_counter_++; return absl::OkStatus(); } } } }
#include "tensorflow/core/grappler/utils/graph_view.h" #include <type_traits> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/benchmark_testlib.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace grappler { namespace utils { namespace { using ::tensorflow::test::function::GDef; using ::tensorflow::test::function::NDef; constexpr char kNoOp[] = "NoOp"; GraphDef SimpleTestGraph() { return GDef({NDef("a", kNoOp, {"b:2", "d:3", "b:2", "d:3", "^c"}), NDef("b", kNoOp, {"d:2", "c:5", "^c"}), NDef("c", kNoOp, {"^d", "^d"}), NDef("d", kNoOp, {})}, {}); } template <typename T> const string GetGraphViewTypeAsString() { return std::is_same<T, class GraphView>::value ? "GraphView" : "MutableGraphView"; } using GraphViewTypes = ::testing::Types<GraphView, MutableGraphView>; template <typename T> class TypedGraphViewTest : public ::testing::Test {}; TYPED_TEST_SUITE(TypedGraphViewTest, GraphViewTypes); TYPED_TEST(TypedGraphViewTest, GraphWithDuplicateNodeNames) { GraphDef graph = GDef({NDef("a", kNoOp, {}), NDef("a", kNoOp, {})}, {}); Status s; TypeParam graph_view(&graph, &s); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), absl::Substitute( "$0::$0 error: graph has multiple nodes with the name 'a'.", GetGraphViewTypeAsString<TypeParam>())); } TYPED_TEST(TypedGraphViewTest, GraphWithMissingFanins) { GraphDef graph = GDef({NDef("a", kNoOp, {"b:3"})}, {}); Status s; TypeParam graph_view(&graph, &s); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), absl::Substitute("$0::$0 error: node 'a' has missing fanin 'b:3'.", GetGraphViewTypeAsString<TypeParam>())); } TYPED_TEST(TypedGraphViewTest, GraphWithSelfCycles) { GraphDef graph = GDef({NDef("a", kNoOp, {"a:4"})}, {}); Status s; TypeParam graph_view(&graph, &s); EXPECT_FALSE(s.ok()); EXPECT_EQ( s.message(), absl::Substitute("$0::$0 error: node 'a' has self cycle fanin 'a:4'.", GetGraphViewTypeAsString<TypeParam>())); } TYPED_TEST(TypedGraphViewTest, GraphWithMisorderedFanins) { GraphDef graph = GDef({NDef("a", kNoOp, {"^b", "b:4"}), NDef("b", kNoOp, {})}, {}); Status s; TypeParam graph_view(&graph, &s); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), absl::Substitute("$0::$0 error: node 'a' has regular fanin 'b:4' " "after controlling fanins.", GetGraphViewTypeAsString<TypeParam>())); } TYPED_TEST(TypedGraphViewTest, GetNodeWithIndex) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); const int num_nodes = graph_view.NumNodes(); ASSERT_EQ(graph_view.NumNodes(), graph.node_size()); for (int i = 0; i < num_nodes; ++i) { const auto* node = graph_view.GetNode(i); ASSERT_NE(node, nullptr); EXPECT_EQ(node->node(), graph.mutable_node(i)); } const auto* bad_node = graph_view.GetNode(-1); ASSERT_EQ(bad_node, nullptr); bad_node = graph_view.GetNode(num_nodes); ASSERT_EQ(bad_node, nullptr); } TYPED_TEST(TypedGraphViewTest, GetNodeWithName) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); std::vector<string> node_names = {"a", "b", "c", "d"}; for (int i = 0; i < node_names.size(); ++i) { const string& node_name = node_names[i]; const auto* node = graph_view.GetNode(node_name); ASSERT_NE(node, nullptr); EXPECT_EQ(node->node(), graph.mutable_node(i)); } const auto* bad_node = graph_view.GetNode("e"); ASSERT_EQ(bad_node, nullptr); } TYPED_TEST(TypedGraphViewTest, GetNodes) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); const auto& nodes = graph_view.GetNodes(); const int num_nodes = nodes.size(); EXPECT_EQ(num_nodes, 4); ASSERT_EQ(num_nodes, graph.node_size()); for (int i = 0; i < num_nodes; ++i) { EXPECT_EQ(nodes[i].node(), graph.mutable_node(i)); } } TYPED_TEST(TypedGraphViewTest, HasNode) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); for (const string& node_name : {"a", "b", "c", "d"}) { EXPECT_TRUE(graph_view.HasNode(node_name)); } EXPECT_FALSE(graph_view.HasNode("e")); } TYPED_TEST(TypedGraphViewTest, NumNodes) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); EXPECT_EQ(graph_view.NumNodes(), 4); } TYPED_TEST(TypedGraphViewTest, NumNodesEmptyGraph) { GraphDef graph; Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); EXPECT_EQ(graph_view.NumNodes(), 0); } TEST(MutableGraphViewTest, DedupControlDependencies) { GraphDef graph = GDef( {NDef("a", kNoOp, {}), NDef("b", kNoOp, {}), NDef("c", kNoOp, {}), NDef("d", kNoOp, {"a:2", "b:1", "^c", "^c", "^a", "^a", "^b", "^c"})}, {}); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); EXPECT_EQ(graph_view.NumNodes(), 4); const auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); const auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); const auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); const auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); EXPECT_EQ(d_node->NumRegularFanins(), 2); ASSERT_NE(d_node->node(), nullptr); ASSERT_EQ(d_node->node()->input_size(), 5); EXPECT_EQ(d_node->node()->input(0), "a:2"); EXPECT_EQ(d_node->node()->input(1), "b:1"); EXPECT_EQ(d_node->node()->input(2), "^c"); EXPECT_EQ(d_node->node()->input(3), "^b"); EXPECT_EQ(d_node->node()->input(4), "^a"); ASSERT_EQ(d_node->NumControllingFanins(), 3); const auto& d_control_fanins = d_node->GetControllingFanins(); ASSERT_EQ(d_control_fanins.size(), 3); ASSERT_NE(d_control_fanins[0].node_view(), nullptr); EXPECT_EQ(d_control_fanins[0].node_view()->GetName(), "c"); ASSERT_NE(d_control_fanins[1].node_view(), nullptr); EXPECT_EQ(d_control_fanins[1].node_view()->GetName(), "b"); ASSERT_NE(d_control_fanins[2].node_view(), nullptr); EXPECT_EQ(d_control_fanins[2].node_view()->GetName(), "a"); } template <typename T> class TypedNodeViewTest : public ::testing::Test {}; TYPED_TEST_SUITE(TypedNodeViewTest, GraphViewTypes); TYPED_TEST(TypedNodeViewTest, GetName) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); for (const NodeDef& node : graph.node()) { const auto* node_view = graph_view.GetNode(node.name()); ASSERT_NE(node_view, nullptr); EXPECT_EQ(node_view->GetName(), node.name()); EXPECT_EQ(node_view->GetName(), node_view->node()->name()); } } TYPED_TEST(TypedNodeViewTest, GetOp) { GraphDef graph = GDef({NDef("a", "op_a", {}), NDef("b", "op_b", {}), NDef("c", "op_c", {}), NDef("d", "op_d", {})}, {}); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); const auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); EXPECT_EQ(a_node->GetOp(), "op_a"); EXPECT_EQ(a_node->node()->op(), "op_a"); const auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); EXPECT_EQ(b_node->GetOp(), "op_b"); EXPECT_EQ(b_node->node()->op(), "op_b"); const auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); EXPECT_EQ(c_node->GetOp(), "op_c"); EXPECT_EQ(c_node->node()->op(), "op_c"); const auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); EXPECT_EQ(d_node->GetOp(), "op_d"); EXPECT_EQ(d_node->node()->op(), "op_d"); } TYPED_TEST(TypedNodeViewTest, GetDevice) { GraphDef graph = GDef( {NDef("a", "", {}, {}, "device_a"), NDef("b", "", {}, {}, "device_b"), NDef("c", "", {}, {}, "device_c"), NDef("d", "", {}, {})}, {}); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); const auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); EXPECT_EQ(a_node->GetDevice(), "device_a"); EXPECT_EQ(a_node->node()->device(), "device_a"); const auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); EXPECT_EQ(b_node->GetDevice(), "device_b"); EXPECT_EQ(b_node->node()->device(), "device_b"); const auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); EXPECT_EQ(c_node->GetDevice(), "device_c"); EXPECT_EQ(c_node->node()->device(), "device_c"); const auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); EXPECT_EQ(d_node->GetDevice(), ""); EXPECT_EQ(d_node->node()->device(), ""); } template <typename T> class TypedFaninTest : public ::testing::Test {}; using FaninTypes = ::testing::Types<std::pair<FanoutView, GraphView>, std::pair<MutableFanoutView, MutableGraphView>>; TYPED_TEST_SUITE(TypedFaninTest, FaninTypes); TYPED_TEST(TypedFaninTest, GetRegularFanins) { using FanoutViewType = typename TypeParam::first_type; using GraphViewType = typename TypeParam::second_type; GraphDef graph = SimpleTestGraph(); Status s; GraphViewType graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); const auto& a_fanins = a_node->GetRegularFanins(); ASSERT_EQ(a_fanins.size(), 4); EXPECT_EQ(a_fanins[0], FanoutViewType(&graph_view, b_node->node_index(), 2)); EXPECT_EQ(a_fanins[1], FanoutViewType(&graph_view, d_node->node_index(), 3)); EXPECT_EQ(a_fanins[2], FanoutViewType(&graph_view, b_node->node_index(), 2)); EXPECT_EQ(a_fanins[3], FanoutViewType(&graph_view, d_node->node_index(), 3)); const auto& d_fanins = d_node->GetRegularFanins(); EXPECT_EQ(d_fanins.size(), 0); } TYPED_TEST(TypedFaninTest, GetRegularFanin) { using FanoutViewType = typename TypeParam::first_type; using GraphViewType = typename TypeParam::second_type; GraphDef graph = SimpleTestGraph(); Status s; GraphViewType graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); const auto& a_fanin_0 = a_node->GetRegularFanin(0); EXPECT_EQ(a_fanin_0, FanoutViewType(&graph_view, b_node->node_index(), 2)); const auto& a_fanin_1 = a_node->GetRegularFanin(1); EXPECT_EQ(a_fanin_1, FanoutViewType(&graph_view, d_node->node_index(), 3)); const auto& a_fanin_2 = a_node->GetRegularFanin(2); EXPECT_EQ(a_fanin_2, FanoutViewType(&graph_view, b_node->node_index(), 2)); const auto& a_fanin_3 = a_node->GetRegularFanin(3); EXPECT_EQ(a_fanin_3, FanoutViewType(&graph_view, d_node->node_index(), 3)); const FanoutViewType missing_fanin; EXPECT_EQ(missing_fanin, FanoutViewType(nullptr, -1, -2)); EXPECT_EQ(missing_fanin.node_view(), nullptr); const auto& a_fanin_4 = a_node->GetRegularFanin(4); EXPECT_EQ(a_fanin_4, missing_fanin); const auto& a_fanin_5 = a_node->GetRegularFanin(5); EXPECT_EQ(a_fanin_5, missing_fanin); const auto& a_fanin_control = a_node->GetRegularFanin(Graph::kControlSlot); EXPECT_EQ(a_fanin_control, missing_fanin); const auto& a_fanin_bad = a_node->GetRegularFanin(-2); EXPECT_EQ(a_fanin_bad, missing_fanin); } TYPED_TEST(TypedFaninTest, GetControllingFanins) { using FanoutViewType = typename TypeParam::first_type; using GraphViewType = typename TypeParam::second_type; GraphDef graph = SimpleTestGraph(); Status s; GraphViewType graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); const auto& a_fanins = a_node->GetControllingFanins(); ASSERT_EQ(a_fanins.size(), 1); EXPECT_EQ(a_fanins[0], FanoutViewType(&graph_view, c_node->node_index(), Graph::kControlSlot)); const auto& c_fanins = c_node->GetControllingFanins(); FanoutViewType d_control_fanin(&graph_view, d_node->node_index(), Graph::kControlSlot); if (std::is_same<GraphViewType, GraphView>::value) { ASSERT_EQ(c_fanins.size(), 2); EXPECT_EQ(c_fanins[0], d_control_fanin); EXPECT_EQ(c_fanins[1], d_control_fanin); } else { ASSERT_EQ(c_fanins.size(), 1); EXPECT_EQ(c_fanins[0], d_control_fanin); } const auto& d_fanins = d_node->GetControllingFanins(); EXPECT_EQ(d_fanins.size(), 0); } template <typename T> class TypedFanoutTest : public ::testing::Test {}; using FanoutTypes = ::testing::Types<std::pair<FaninView, GraphView>, std::pair<MutableFaninView, MutableGraphView>>; TYPED_TEST_SUITE(TypedFanoutTest, FanoutTypes); TYPED_TEST(TypedFanoutTest, GetRegularFanouts) { using FaninViewType = typename TypeParam::first_type; using GraphViewType = typename TypeParam::second_type; GraphDef graph = SimpleTestGraph(); Status s; GraphViewType graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); const auto& d_fanouts = d_node->GetRegularFanouts(); ASSERT_EQ(d_fanouts.size(), 4); for (int i = 0; i < d_fanouts.size(); ++i) { if (i == 2) { ASSERT_EQ(d_fanouts[i].size(), 1); EXPECT_EQ(d_fanouts[i][0], FaninViewType(&graph_view, b_node->node_index(), 0)); } else if (i == 3) { ASSERT_EQ(d_fanouts[i].size(), 2); absl::flat_hash_set<FaninViewType> fanouts(d_fanouts[i].begin(), d_fanouts[i].end()); EXPECT_TRUE(fanouts.contains( FaninViewType(&graph_view, a_node->node_index(), 1))); EXPECT_TRUE(fanouts.contains( FaninViewType(&graph_view, a_node->node_index(), 3))); } else { EXPECT_EQ(d_fanouts[i].size(), 0); } } const auto& a_fanouts = a_node->GetRegularFanouts(); EXPECT_EQ(a_fanouts.size(), 0); } TYPED_TEST(TypedFanoutTest, GetRegularFanout) { using FaninViewType = typename TypeParam::first_type; using GraphViewType = typename TypeParam::second_type; GraphDef graph = SimpleTestGraph(); Status s; GraphViewType graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); const auto& d_fanouts_2 = d_node->GetRegularFanout(2); ASSERT_EQ(d_fanouts_2.size(), 1); EXPECT_EQ(d_fanouts_2.at(0), FaninViewType(&graph_view, b_node->node_index(), 0)); const auto& d_fanouts_3 = d_node->GetRegularFanout(3); EXPECT_EQ(d_fanouts_3.size(), 2); absl::flat_hash_set<FaninViewType> d_fanouts_3_set(d_fanouts_3.begin(), d_fanouts_3.end()); EXPECT_TRUE(d_fanouts_3_set.contains( FaninViewType(&graph_view, a_node->node_index(), 1))); EXPECT_TRUE(d_fanouts_3_set.contains( FaninViewType(&graph_view, a_node->node_index(), 3))); const std::vector<FaninViewType> no_fanouts; EXPECT_EQ(d_node->GetRegularFanout(-2), no_fanouts); EXPECT_EQ(d_node->GetRegularFanout(Graph::kControlSlot), no_fanouts); EXPECT_EQ(d_node->GetRegularFanout(0), no_fanouts); EXPECT_EQ(d_node->GetRegularFanout(1), no_fanouts); EXPECT_EQ(d_node->GetRegularFanout(4), no_fanouts); EXPECT_EQ(d_node->GetRegularFanout(5), no_fanouts); } TYPED_TEST(TypedFanoutTest, GetControlledFanouts) { using FaninViewType = typename TypeParam::first_type; using GraphViewType = typename TypeParam::second_type; GraphDef graph = SimpleTestGraph(); Status s; GraphViewType graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); const auto& c_fanouts = c_node->GetControlledFanouts(); EXPECT_EQ(c_fanouts.size(), 2); absl::flat_hash_set<FaninViewType> c_fanouts_set(c_fanouts.begin(), c_fanouts.end()); EXPECT_TRUE(c_fanouts_set.contains( FaninViewType(&graph_view, b_node->node_index(), Graph::kControlSlot))); EXPECT_TRUE(c_fanouts_set.contains( FaninViewType(&graph_view, a_node->node_index(), Graph::kControlSlot))); const auto& d_fanouts = d_node->GetControlledFanouts(); FaninViewType c_control_fanout(&graph_view, c_node->node_index(), Graph::kControlSlot); if (std::is_same<GraphViewType, GraphView>::value) { ASSERT_EQ(d_fanouts.size(), 2); EXPECT_EQ(d_fanouts[0], c_control_fanout); EXPECT_EQ(d_fanouts[1], c_control_fanout); } else { ASSERT_EQ(d_fanouts.size(), 1); EXPECT_EQ(d_fanouts[0], c_control_fanout); } const auto& a_fanouts = a_node->GetControlledFanouts(); EXPECT_EQ(a_fanouts.size(), 0); } TYPED_TEST(TypedNodeViewTest, NumRegularFanins) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); EXPECT_EQ(a_node->NumRegularFanins(), 4); EXPECT_EQ(b_node->NumRegularFanins(), 2); EXPECT_EQ(c_node->NumRegularFanins(), 0); EXPECT_EQ(d_node->NumRegularFanins(), 0); } TYPED_TEST(TypedNodeViewTest, NumControllingFanins) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); EXPECT_EQ(a_node->NumControllingFanins(), 1); EXPECT_EQ(b_node->NumControllingFanins(), 1); if (std::is_same<TypeParam, GraphView>::value) { EXPECT_EQ(c_node->NumControllingFanins(), 2); } else { EXPECT_EQ(c_node->NumControllingFanins(), 1); } EXPECT_EQ(d_node->NumControllingFanins(), 0); } TYPED_TEST(TypedNodeViewTest, NumRegularFanouts) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); EXPECT_EQ(a_node->NumRegularFanouts(), 0); EXPECT_EQ(b_node->NumRegularFanouts(), 2); EXPECT_EQ(c_node->NumRegularFanouts(), 1); EXPECT_EQ(d_node->NumRegularFanouts(), 3); } TYPED_TEST(TypedNodeViewTest, NumControlledFanouts) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); EXPECT_EQ(a_node->NumControlledFanouts(), 0); EXPECT_EQ(b_node->NumControlledFanouts(), 0); EXPECT_EQ(c_node->NumControlledFanouts(), 2); if (std::is_same<TypeParam, GraphView>::value) { EXPECT_EQ(d_node->NumControlledFanouts(), 2); } else { EXPECT_EQ(d_node->NumControlledFanouts(), 1); } } TYPED_TEST(TypedNodeViewTest, HasFanin) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); EXPECT_TRUE(a_node->HasFanin({&graph_view, b_node->node_index(), 2})); EXPECT_FALSE(a_node->HasFanin({&graph_view, c_node->node_index(), 4})); EXPECT_TRUE(a_node->HasFanin( {&graph_view, c_node->node_index(), Graph::kControlSlot})); EXPECT_FALSE(a_node->HasFanin( {&graph_view, b_node->node_index(), Graph::kControlSlot})); EXPECT_FALSE(a_node->HasFanin({&graph_view, a_node->node_index(), 0})); EXPECT_FALSE(a_node->HasFanin( {&graph_view, b_node->node_index(), internal::kMissingSlot})); } TYPED_TEST(TypedNodeViewTest, HasFanout) { GraphDef graph = SimpleTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); auto* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); EXPECT_TRUE(b_node->HasFanout({&graph_view, a_node->node_index(), 2})); EXPECT_FALSE(b_node->HasFanout({&graph_view, a_node->node_index(), 1})); EXPECT_TRUE(d_node->HasFanout( {&graph_view, c_node->node_index(), Graph::kControlSlot})); EXPECT_FALSE(d_node->HasFanout( {&graph_view, a_node->node_index(), Graph::kControlSlot})); EXPECT_FALSE(d_node->HasFanout({&graph_view, d_node->node_index(), 0})); EXPECT_FALSE(a_node->HasFanout({&graph_view, b_node->node_index(), 0})); EXPECT_FALSE(a_node->HasFanout({&graph_view, 4, 0})); EXPECT_FALSE(d_node->HasFanout( {&graph_view, b_node->node_index(), internal::kMissingSlot})); } GraphDef SimpleAttrTestGraph() { return GDef({NDef("a", kNoOp, {}), NDef("b", kNoOp, {}, {{"attr", 1}}), NDef("c", kNoOp, {}, {{"attr_1", "a"}, {"attr_2", 2.0f}})}, {}); } TYPED_TEST(TypedNodeViewTest, GetAttr) { GraphDef graph = SimpleAttrTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); EXPECT_EQ(c_node->GetAttr("attr_1")->s(), "a"); } TYPED_TEST(TypedNodeViewTest, GetAttrs) { GraphDef graph = SimpleAttrTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); const auto& actual_attrs = c_node->GetAttrs(); EXPECT_EQ(actual_attrs.size(), 2); const auto* attr_1 = actual_attrs.Find("attr_1"); EXPECT_NE(attr_1, nullptr); EXPECT_EQ(attr_1->s(), "a"); const auto* attr_2 = actual_attrs.Find("attr_2"); EXPECT_NE(attr_2, nullptr); EXPECT_EQ(attr_2->f(), 2.0f); } TYPED_TEST(TypedNodeViewTest, NumAttrs) { GraphDef graph = SimpleAttrTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); auto* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); auto* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); EXPECT_EQ(a_node->NumAttrs(), 0); EXPECT_EQ(b_node->NumAttrs(), 1); EXPECT_EQ(c_node->NumAttrs(), 2); } TYPED_TEST(TypedNodeViewTest, HasAttr) { GraphDef graph = SimpleAttrTestGraph(); Status s; TypeParam graph_view(&graph, &s); TF_ASSERT_OK(s); auto* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); EXPECT_TRUE(c_node->HasAttr("attr_1")); EXPECT_FALSE(c_node->HasAttr("attr")); } class CompareGraphTest : public GrapplerTest { public: void CompareGraphViewWithGraph(MutableGraphView* graph_view, const GraphDef& expected_graph) { Status s; GraphView expected_graph_view(&expected_graph, &s); TF_ASSERT_OK(s); EXPECT_EQ(graph_view->NumNodes(), expected_graph_view.NumNodes()); for (const NodeView& expected_node_view : expected_graph_view.GetNodes()) { const string& node_name = expected_node_view.GetName(); MutableNodeView* node_view = graph_view->GetNode(node_name); ASSERT_NE(node_view, nullptr); EXPECT_EQ(node_view->GetName(), expected_node_view.GetName()); EXPECT_EQ(node_view->GetOp(), expected_node_view.GetOp()); EXPECT_EQ(node_view->GetDevice(), expected_node_view.GetDevice()); const int actual_num_fanins = node_view->node()->input_size(); EXPECT_EQ(actual_num_fanins, expected_node_view.node()->input_size()); const int expected_num_regular_fanins = expected_node_view.NumRegularFanins(); bool same_num_regular_fanins = node_view->NumRegularFanins() == expected_num_regular_fanins; EXPECT_TRUE(same_num_regular_fanins); for (int i = 0; i < expected_num_regular_fanins; ++i) { const auto& expected_fanin = expected_node_view.GetRegularFanin(i); auto* actual_fanin_node = graph_view->GetNode(expected_fanin.node_view()->GetName()); ASSERT_NE(actual_fanin_node, nullptr); EXPECT_TRUE( node_view->HasFanin({actual_fanin_node, expected_fanin.index()})); if (i < node_view->NumRegularFanins()) { auto& actual_fanin = node_view->GetRegularFanin(i); EXPECT_EQ(actual_fanin, MutableFanoutView(actual_fanin_node, expected_fanin.index())); EXPECT_EQ(actual_fanin.node_index(), actual_fanin.node_view()->node_index()); } } if (same_num_regular_fanins) { for (int i = 0; i < expected_num_regular_fanins; ++i) { const auto& fanin = node_view->GetRegularFanin(i); EXPECT_EQ(ParseTensorName(node_view->node()->input(i)), TensorId(fanin.node_view()->GetName(), fanin.index())); } } const int expected_num_controlling_fanins = expected_node_view.NumControllingFanins(); bool same_num_controlling_fanins = node_view->NumControllingFanins() == expected_num_controlling_fanins; EXPECT_TRUE(same_num_controlling_fanins); for (int i = 0; i < expected_num_controlling_fanins; ++i) { auto& expected_fanin = expected_node_view.GetControllingFanins()[i]; auto* actual_fanin_node = graph_view->GetNode(expected_fanin.node_view()->GetName()); ASSERT_NE(actual_fanin_node, nullptr); MutableFanoutView actual_fanin(actual_fanin_node, expected_fanin.index()); EXPECT_TRUE(node_view->HasFanin(actual_fanin)); int found = 0; for (const auto& actual_fanin : node_view->GetControllingFanins()) { if (actual_fanin.index() == expected_fanin.index() && actual_fanin.node_view()->GetName() == expected_fanin.node_view()->GetName()) { EXPECT_EQ(actual_fanin.node_index(), actual_fanin.node_view()->node_index()); ++found; } } EXPECT_EQ(found, 1); } if (same_num_controlling_fanins && same_num_regular_fanins) { for (int i = 0; i < expected_num_controlling_fanins; ++i) { const auto& fanin = node_view->GetControllingFanins()[i]; EXPECT_EQ(ParseTensorName(node_view->node()->input( i + expected_num_regular_fanins)), TensorId(fanin.node_view()->GetName(), fanin.index())); } } EXPECT_EQ(node_view->NumRegularFanouts(), expected_node_view.NumRegularFanouts()); const int num_output_ports = expected_node_view.GetRegularFanouts().size(); ASSERT_EQ(node_view->GetRegularFanouts().size(), num_output_ports); for (int i = 0; i < num_output_ports; ++i) { auto& expected_fanouts_at_port_i = node_view->GetRegularFanouts()[i]; const int num_fanouts_at_port = expected_fanouts_at_port_i.size(); auto& actual_fanouts_at_port_i = node_view->GetRegularFanouts()[i]; EXPECT_EQ(actual_fanouts_at_port_i.size(), num_fanouts_at_port); for (int j = 0; j < num_fanouts_at_port; ++j) { auto& expected_fanout = expected_fanouts_at_port_i[j]; auto* actual_fanout_node = graph_view->GetNode(expected_fanout.node_view()->GetName()); ASSERT_NE(actual_fanout_node, nullptr); MutableFaninView actual_fanout(actual_fanout_node, expected_fanout.index()); EXPECT_TRUE(node_view->HasFanout(actual_fanout)); int found = 0; for (const auto& fanout : actual_fanouts_at_port_i) { if (fanout.index() == expected_fanout.index() && fanout.node_view()->GetName() == expected_fanout.node_view()->GetName()) { EXPECT_EQ(fanout.node_index(), fanout.node_view()->node_index()); ++found; } } EXPECT_EQ(found, 1); } } const int num_controlled_fanouts = expected_node_view.NumControlledFanouts(); EXPECT_EQ(node_view->NumControlledFanouts(), num_controlled_fanouts); for (int i = 0; i < num_controlled_fanouts; ++i) { const auto& expected_fanout = expected_node_view.GetControlledFanouts()[i]; auto* actual_fanout_node = graph_view->GetNode(expected_fanout.node_view()->GetName()); ASSERT_NE(actual_fanout_node, nullptr); MutableFaninView actual_fanout(actual_fanout_node, expected_fanout.index()); EXPECT_TRUE(node_view->HasFanout(actual_fanout)); int found = 0; for (const auto& fanout : node_view->GetControlledFanouts()) { if (fanout.index() == expected_fanout.index() && fanout.node_view()->GetName() == expected_fanout.node_view()->GetName()) { EXPECT_EQ(fanout.node_index(), fanout.node_view()->node_index()); ++found; } } EXPECT_EQ(found, 1); } EXPECT_EQ(node_view->NumAttrs(), expected_node_view.NumAttrs()); for (const auto& expected_attr : expected_node_view.GetAttrs()) { auto* attr = node_view->GetAttr(expected_attr.first); EXPECT_TRUE(AreAttrValuesEqual(*attr, expected_attr.second)); } } CompareGraphs(*graph_view->graph(), expected_graph); } }; class MutationTest : public CompareGraphTest {}; constexpr char kDeviceCPU0[] = "/device:CPU:0"; constexpr char kDeviceGPU0[] = "/device:GPU:0"; GraphDef SimpleTestGraphForMutation() { return GDef({NDef("a", kNoOp, {}, {}, kDeviceCPU0), NDef("b", kNoOp, {}, {}, kDeviceCPU0), NDef("c", kNoOp, {}, {}, kDeviceCPU0), NDef("d", kNoOp, {"a:2", "b:3", "a:4", "^c", "^b"}, {{"attr_1", "a"}, {"attr_2", 2.0f}}, kDeviceCPU0)}, {}); } TEST_F(MutationTest, AddNewNode) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); NodeDef empty_node; mutation->AddNode(std::move(empty_node), &s); TF_EXPECT_OK(s); s = errors::Internal("error"); NodeDef valid_node = NDef("valid", "IdentityN", {"a:1", "^b"}, {{"N", 1}}, "foo"); mutation->AddNode(std::move(valid_node), &s); TF_EXPECT_OK(s); NodeDef bad_node_1 = NDef("bad", "IdentityN", {"^b", "a:1"}, {{"N", 1}}, "foo"); mutation->AddNode(std::move(bad_node_1), &s); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Mutation::AddNode error: node 'bad' has regular fanin 'a:1' after " "controlling fanins."); NodeDef bad_node_2 = NDef("bad", "IdentityN", {"bad:1"}, {}, "foo"); mutation->AddNode(std::move(bad_node_2), &s); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Mutation::AddNode error: node 'bad' has self cycle fanin " "'bad:1'."); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); } TEST_F(MutationTest, NewNodeBadFaninsAfterAdd) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); NodeDef valid_node = NDef("valid", "IdentityN", {"a:1", "^b"}, {{"N", 1}}, "foo"); MutationNewNode new_node = mutation->AddNode(std::move(valid_node), &s); mutation->AddOrUpdateRegularFanin(new_node, 1, {"valid", 2}); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: new node 'valid' is ill-formed."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); } TEST_F(MutationTest, NewNodesConflictingNames) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); NodeDef new_node_1 = NDef("a", "", {}); mutation->AddNode(std::move(new_node_1), &s); TF_EXPECT_OK(s); NodeDef new_node_2 = NDef("a", "", {}); mutation->AddNode(std::move(new_node_2), &s); TF_EXPECT_OK(s); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: multiple nodes with the name: 'a' exists in " "Mutation."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); } TEST_F(MutationTest, UpdateNodeAndAddSelfLoop) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->AddControllingFanin(d_node, "d"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: inplace updated node 'd' is ill-formed."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); } TEST_F(MutationTest, RenameNodeAndAddSelfLoop) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->UpdateNodeName(d_node, "e"); mutation->AddControllingFanin(d_node, "e"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: renamed updated node 'e' ('d') is ill-formed."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); } TEST_F(MutationTest, ExistingNodesConflictingNames) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); mutation->UpdateNodeName(a_node, "b"); MutableNodeView* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); mutation->UpdateNodeOp(b_node, "Identity"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: multiple nodes with the name: 'b' exists in " "Mutation."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); } TEST_F(MutationTest, NewAndExistingNodesConflictingNames) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); NodeDef new_node = NDef("a", "", {}); mutation->AddNode(std::move(new_node), &s); TF_EXPECT_OK(s); MutableNodeView* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); mutation->UpdateNodeDevice(a_node, "foo"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: multiple nodes with the name: 'a' exists in " "Mutation."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); } TEST_F(MutationTest, NewAndExistingRenamedNodesConflictingNames) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); NodeDef new_node = NDef("e", "", {}); mutation->AddNode(std::move(new_node), &s); TF_EXPECT_OK(s); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->UpdateNodeName(d_node, "e"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: multiple nodes with the name: 'e' exists in " "Mutation."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); } TEST_F(MutationTest, RemoveNodesWithFanouts) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); mutation->RemoveNode(b_node); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: fanout 'd' exist for missing node 'b'."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->RemoveNode(d_node); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef({NDef("a", kNoOp, {}, {}, kDeviceCPU0), NDef("c", kNoOp, {}, {}, kDeviceCPU0)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, SwapNodeNamesWithCycle) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->UpdateNodeName(d_node, "b"); MutableNodeView* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); mutation->UpdateNodeName(b_node, "d"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: renamed updated node 'b' ('d') is ill-formed."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); mutation->AddOrUpdateRegularFanin(d_node, 1, {"d", 3}); mutation->RemoveControllingFanin(d_node, "b"); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef({NDef("a", kNoOp, {}, {}, kDeviceCPU0), NDef("d", kNoOp, {}, {}, kDeviceCPU0), NDef("c", kNoOp, {}, {}, kDeviceCPU0), NDef("b", kNoOp, {"a:2", "d:3", "a:4", "^c"}, {{"attr_1", "a"}, {"attr_2", 2.0f}}, kDeviceCPU0)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, RenamedNodeWithFanouts) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); mutation->UpdateNodeName(a_node, "b"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: fanout 'd' exist for missing node 'a'."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); mutation->UpdateNodeName(a_node, "a"); MutableNodeView* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); mutation->UpdateNodeName(b_node, "e"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); expected_error_msg = "Mutation::Apply error: fanout 'd' exist for missing " "node 'b'."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); } TEST_F(MutationTest, RemoveExistingNodeAndReplaceWithNewNode) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->RemoveNode(d_node); NodeDef new_node = NDef("d", kNoOp, {"c:8", "^a"}, {}, kDeviceCPU0); mutation->AddNode(std::move(new_node), &s); TF_EXPECT_OK(s); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef({NDef("a", kNoOp, {}, {}, kDeviceCPU0), NDef("b", kNoOp, {}, {}, kDeviceCPU0), NDef("c", kNoOp, {}, {}, kDeviceCPU0), NDef("d", kNoOp, {"c:8", "^a"}, {}, kDeviceCPU0)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, UpdateNodeNameAndRemoveFanins) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->UpdateNodeName(d_node, "e"); mutation->RemoveRegularFanin(d_node, 1); mutation->RemoveRegularFanin(d_node, 2); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef({NDef("a", kNoOp, {}, {}, kDeviceCPU0), NDef("b", kNoOp, {}, {}, kDeviceCPU0), NDef("c", kNoOp, {}, {}, kDeviceCPU0), NDef("e", kNoOp, {"a:2", "^c", "^b"}, {{"attr_1", "a"}, {"attr_2", 2.0f}}, kDeviceCPU0)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, UpdateNodeNameAndRemoveRegularFanout) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); mutation->UpdateNodeName(a_node, "e"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: fanout 'd' exist for missing node 'a'."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->RemoveRegularFanin(d_node, 2); s = mutation->Apply(); EXPECT_FALSE(s.ok()); expected_error_msg = "Mutation::Apply error: fanout 'd' exist for missing node 'a'."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); mutation->AddOrUpdateRegularFanin(d_node, 0, {"b", 1}); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef({NDef("e", kNoOp, {}, {}, kDeviceCPU0), NDef("b", kNoOp, {}, {}, kDeviceCPU0), NDef("c", kNoOp, {}, {}, kDeviceCPU0), NDef("d", kNoOp, {"b:1", "b:3", "^c", "^b"}, {{"attr_1", "a"}, {"attr_2", 2.0f}}, kDeviceCPU0)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, UpdateNodeNameAndRemoveControlledFanout) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); mutation->UpdateNodeName(c_node, "e"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: fanout 'd' exist for missing node 'c'."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->UpdateNodeDevice(d_node, kDeviceGPU0); s = mutation->Apply(); EXPECT_FALSE(s.ok()); expected_error_msg = "Mutation::Apply error: fanout 'd' exist for missing node 'c'."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); mutation->RemoveControllingFanin(d_node, "c"); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef({NDef("a", kNoOp, {}, {}, kDeviceCPU0), NDef("b", kNoOp, {}, {}, kDeviceCPU0), NDef("e", kNoOp, {}, {}, kDeviceCPU0), NDef("d", kNoOp, {"a:2", "b:3", "a:4", "^b"}, {{"attr_1", "a"}, {"attr_2", 2.0f}}, kDeviceGPU0)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, EmptyMutation) { GraphDef graph = SimpleTestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); TF_EXPECT_OK(mutation->Apply()); CompareGraphViewWithGraph(&graph_view, SimpleTestGraphForMutation()); } constexpr char kIdentity[] = "Identity"; constexpr char kDeviceCPU1[] = "/device:CPU:1"; constexpr char kDeviceGPU1[] = "/device:GPU:1"; GraphDef TestGraphForMutation() { return GDef( {NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU0), NDef("c", kNoOp, {"^a"}, {{"attr_c", "test"}}, kDeviceCPU1), NDef("d", kNoOp, {"a:2", "b:3", "a:4", "^c", "^b"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU1)}, {}); } TEST_F(MutationTest, SwapNodeNamesWithNoCycle) { GraphDef graph = TestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); MutableNodeView* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); mutation->UpdateNodeName(b_node, "c"); mutation->UpdateNodeName(c_node, "b"); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef( {NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0), NDef("c", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU0), NDef("b", kNoOp, {"^a"}, {{"attr_c", "test"}}, kDeviceCPU1), NDef("d", kNoOp, {"a:2", "b:3", "a:4", "^c", "^b"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU1)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, RemoveMultipleDependentNodes) { GraphDef graph = TestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->RemoveNode(c_node); mutation->RemoveNode(d_node); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef( {NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU0)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } constexpr char kDeviceGPU2[] = "/device:GPU:2"; TEST_F(MutationTest, AddSimpleNewNode) { GraphDef graph = TestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); NodeDef new_node = NDef("new_node", kIdentity, {}, {{"T", DT_INT64}}, kDeviceGPU2); mutation->AddNode(std::move(new_node), &s); TF_EXPECT_OK(s); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef( {NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU0), NDef("c", kNoOp, {"^a"}, {{"attr_c", "test"}}, kDeviceCPU1), NDef("d", kNoOp, {"a:2", "b:3", "a:4", "^c", "^b"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU1), NDef("new_node", kIdentity, {}, {{"T", DT_INT64}}, kDeviceGPU2)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } constexpr char kDeviceGPU3[] = "/device:GPU:3"; TEST_F(MutationTest, AddAndUpdateNodesWithFanins) { GraphDef graph = TestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); NodeDef new_node_1 = NDef("new_node_1", kNoOp, {"a:2", "d:5", "^b", "^c"}, {{"new_node_1_attr_1", 5.0f}}, kDeviceGPU2); mutation->AddNode(std::move(new_node_1), &s); TF_EXPECT_OK(s); NodeDef new_node_2 = NDef("new_node_2", kNoOp, {"a:3", "new_node_1:5", "^d", "^new_node_1"}, {{"new_node_2_attr_1", 9}}, kDeviceGPU3); mutation->AddNode(std::move(new_node_2), &s); TF_EXPECT_OK(s); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->AddOrUpdateRegularFanin(d_node, 3, {"c", 6}); mutation->AddOrUpdateRegularFanin(d_node, 1, {"new_node_1", 5}); mutation->AddControllingFanin(d_node, "new_node_2"); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef( {NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU0), NDef("c", kNoOp, {"^a"}, {{"attr_c", "test"}}, kDeviceCPU1), NDef("d", kNoOp, {"a:2", "new_node_1:5", "a:4", "c:6", "^c", "^b", "^new_node_2"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU1), NDef("new_node_1", kNoOp, {"a:2", "d:5", "^b", "^c"}, {{"new_node_1_attr_1", 5.0f}}, kDeviceGPU2), NDef("new_node_2", kNoOp, {"a:3", "new_node_1:5", "^d", "^new_node_1"}, {{"new_node_2_attr_1", 9}}, kDeviceGPU3)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, UpdateNodeNameToReplaceExistingNode) { auto test_graph = []() { return GDef( {NDef("a", kNoOp, {}, {{"attr_a", 8}}, kDeviceCPU0), NDef("b", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU1), NDef("c", kNoOp, {"b:4", "^a"}, {{"attr_c", "test"}}, kDeviceGPU2), NDef("d", kNoOp, {"a:2", "c:5", "a:4", "^a", "^c"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU3)}, {}); }; GraphDef graph = test_graph(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); MutableNodeView* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); mutation->UpdateNodeName(b_node, "c"); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef({NDef("a", kNoOp, {}, {{"attr_a", 8}}, kDeviceCPU0), NDef("c", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU1), NDef("d", kNoOp, {"a:2", "c:5", "a:4", "^a", "^c"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU3)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, NewNodeWithMutations) { GraphDef graph = TestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); Mutation* mutation = graph_view.GetMutationBuilder(); NodeDef new_node_def = NDef("node", kNoOp, {"a:2", "b:3", "^c"}, {{"attr_1", 1}, {"attr_2", 2.0f}}, kDeviceGPU3); MutationNewNode new_node = mutation->AddNode(std::move(new_node_def), &s); TF_EXPECT_OK(s); mutation->AddControllingFanin(new_node, "a"); mutation->RemoveControllingFanin(new_node, "c"); mutation->AddOrUpdateRegularFanin(new_node, 0, {"b", 6}); mutation->RemoveRegularFanin(new_node, 1); mutation->UpdateNodeName(new_node, "new_node"); mutation->UpdateNodeOp(new_node, kIdentity); mutation->UpdateNodeDevice(new_node, kDeviceGPU2); AttrValue attr_3; attr_3.set_s("new_node_attr"); mutation->AddOrUpdateNodeAttr(new_node, "attr_3", attr_3); AttrValue attr_1; attr_1.set_b(true); mutation->AddOrUpdateNodeAttr(new_node, "attr_1", attr_1); mutation->RemoveNodeAttr(new_node, "attr_2"); AttrValue attr_4; attr_4.set_type(DT_FLOAT); mutation->AddOrUpdateNodeAttr(new_node, "T", attr_4); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef( {NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU0), NDef("c", kNoOp, {"^a"}, {{"attr_c", "test"}}, kDeviceCPU1), NDef("d", kNoOp, {"a:2", "b:3", "a:4", "^c", "^b"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU1), NDef("new_node", kIdentity, {"b:6", "^a"}, {{"attr_1", true}, {"attr_3", "new_node_attr"}, {"T", DT_FLOAT}}, kDeviceGPU2)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, UpdatedNodeWithNonFaninMutations) { GraphDef graph = TestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); Mutation* mutation = graph_view.GetMutationBuilder(); mutation->UpdateNodeName(d_node, "e"); mutation->UpdateNodeOp(d_node, kIdentity); mutation->UpdateNodeDevice(d_node, kDeviceGPU2); AttrValue attr_d_1; attr_d_1.set_b(false); mutation->AddOrUpdateNodeAttr(d_node, "attr_d_1", attr_d_1); AttrValue attr_e_3; attr_e_3.set_s("test_string"); mutation->AddOrUpdateNodeAttr(d_node, "attr_e_3", attr_e_3); mutation->RemoveNodeAttr(d_node, "attr_d_2"); AttrValue attr_e_4; attr_e_4.set_type(DT_INT64); mutation->AddOrUpdateNodeAttr(d_node, "T", attr_e_4); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef( {NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU0), NDef("c", kNoOp, {"^a"}, {{"attr_c", "test"}}, kDeviceCPU1), NDef("e", kIdentity, {"a:2", "b:3", "a:4", "^c", "^b"}, {{"attr_d_1", false}, {"attr_e_3", "test_string"}, {"T", DT_INT64}}, kDeviceGPU2)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, Reset) { GraphDef graph = TestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); MutableNodeView* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); Mutation* mutation = graph_view.GetMutationBuilder(); mutation->UpdateNodeName(a_node, "e"); mutation->AddNode({}, &s); TF_EXPECT_OK(s); s = mutation->Apply(); EXPECT_FALSE(s.ok()); string expected_error_msg = "Mutation::Apply error: fanout 'b' exist for missing node 'a'."; EXPECT_EQ(s.message(), expected_error_msg); CompareGraphViewWithGraph(&graph_view, TestGraphForMutation()); mutation->Reset(); TF_EXPECT_OK(mutation->Apply()); CompareGraphViewWithGraph(&graph_view, TestGraphForMutation()); } TEST_F(MutationTest, RenameNodeAndAddNewNodeWithRenamedNodeOldName) { GraphDef graph = TestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); MutableNodeView* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); Mutation* mutation = graph_view.GetMutationBuilder(); mutation->UpdateNodeName(b_node, "e"); NodeDef new_node = NDef("b", kIdentity, {"c:2"}, {{"T", DT_INT64}}, kDeviceGPU3); mutation->AddNode(std::move(new_node), &s); TF_EXPECT_OK(s); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef( {NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0), NDef("e", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU0), NDef("c", kNoOp, {"^a"}, {{"attr_c", "test"}}, kDeviceCPU1), NDef("d", kNoOp, {"a:2", "b:3", "a:4", "^c", "^b"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU1), NDef("b", kIdentity, {"c:2"}, {{"T", DT_INT64}}, kDeviceGPU3)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, ShiftNodesWithFanouts) { auto test_graph = []() { return GDef({NDef("d", kNoOp, {"a:2", "b:3", "a:4", "^a", "^c", "^b"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU1), NDef("c", kNoOp, {"^a"}, {{"attr_c", "test"}}, kDeviceCPU1), NDef("b", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU0), NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0)}, {}); }; GraphDef graph = test_graph(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); MutableNodeView* c_node = graph_view.GetNode("c"); ASSERT_NE(c_node, nullptr); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); Mutation* mutation = graph_view.GetMutationBuilder(); mutation->RemoveControllingFanin(d_node, "c"); mutation->RemoveNode(c_node); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef( {NDef("d", kNoOp, {"a:2", "b:3", "a:4", "^a", "^b"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU1), NDef("b", kNoOp, {"a:2"}, {{"attr_b", 3.0f}}, kDeviceCPU0), NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, RemoveFaninFanoutAndShiftFanout) { auto test_graph = []() { return GDef({NDef("a", kNoOp, {}, {}, kDeviceGPU0), NDef("b", kNoOp, {"a:2", "a:1"}, {}, kDeviceGPU1), NDef("c", kNoOp, {"a:1", "a:2"}, {}, kDeviceGPU2)}, {}); }; GraphDef graph = test_graph(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); MutableNodeView* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); Mutation* mutation = graph_view.GetMutationBuilder(); mutation->RemoveRegularFanin(b_node, 1); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef({NDef("a", kNoOp, {}, {}, kDeviceGPU0), NDef("b", kNoOp, {"a:2"}, {}, kDeviceGPU1), NDef("c", kNoOp, {"a:1", "a:2"}, {}, kDeviceGPU2)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } TEST_F(MutationTest, ConsecutiveMutations) { GraphDef graph = TestGraphForMutation(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); MutableNodeView* b_node = graph_view.GetNode("b"); ASSERT_NE(b_node, nullptr); MutableNodeView* d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); Mutation* mutation = graph_view.GetMutationBuilder(); mutation->RemoveNode(b_node); mutation->AddOrUpdateRegularFanin(d_node, 1, {"c", 5}); mutation->RemoveControllingFanin(d_node, "b"); NodeDef new_node_1 = NDef("new_node_1", kIdentity, {"a:3", "d:5", "^d"}, {{"T", DT_FLOAT}}, kDeviceGPU2); MutationNewNode new_node_1_node = mutation->AddNode(std::move(new_node_1), &s); TF_EXPECT_OK(s); mutation->AddOrUpdateRegularFanin(new_node_1_node, 0, {"c", 5}); mutation->RemoveRegularFanin(new_node_1_node, 1); mutation->AddOrUpdateRegularFanin(new_node_1_node, 1, {"a", 6}); mutation->AddControllingFanin(new_node_1_node, "a"); mutation->RemoveControllingFanin(new_node_1_node, "d"); TF_EXPECT_OK(mutation->Apply()); GraphDef expected_graph = GDef( {NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0), NDef("c", kNoOp, {"^a"}, {{"attr_c", "test"}}, kDeviceCPU1), NDef("d", kNoOp, {"a:2", "c:5", "a:4", "^c"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU1), NDef("new_node_1", kIdentity, {"c:5", "a:6", "^a"}, {{"T", DT_FLOAT}}, kDeviceGPU2)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); d_node = graph_view.GetNode("d"); ASSERT_NE(d_node, nullptr); mutation->AddOrUpdateRegularFanin(d_node, 3, {"new_node_2", 6}); mutation->AddOrUpdateRegularFanin(d_node, 1, {"new_node_1", 8}); mutation->AddControllingFanin(d_node, "new_node_2"); mutation->AddControllingFanin(d_node, "a"); mutation->RemoveControllingFanin(d_node, "c"); NodeDef new_node_2 = NDef("new_node_2", kNoOp, {"c:4", "new_node_1:5", "^d", "^c"}); MutationNewNode new_node_2_node = mutation->AddNode(std::move(new_node_2), &s); TF_EXPECT_OK(s); mutation->UpdateNodeDevice(new_node_2_node, kDeviceGPU3); mutation->AddOrUpdateRegularFanin(new_node_2_node, 0, {"new_node_1", 4}); mutation->RemoveRegularFanin(new_node_2_node, 1); mutation->RemoveControllingFanin(new_node_2_node, "c"); mutation->AddControllingFanin(new_node_2_node, "a"); mutation->AddControllingFanin(new_node_2_node, "new_node_1"); TF_EXPECT_OK(mutation->Apply()); expected_graph = GDef( {NDef("a", kIdentity, {}, {{"attr_a", 8}, {"T", DT_FLOAT}}, kDeviceGPU0), NDef("c", kNoOp, {"^a"}, {{"attr_c", "test"}}, kDeviceCPU1), NDef("d", kNoOp, {"a:2", "new_node_1:8", "a:4", "new_node_2:6", "^new_node_2", "^a"}, {{"attr_d_1", "a"}, {"attr_d_2", 2.0f}}, kDeviceGPU1), NDef("new_node_1", kIdentity, {"c:5", "a:6", "^a"}, {{"T", DT_FLOAT}}, kDeviceGPU2), NDef("new_node_2", kNoOp, {"new_node_1:4", "^d", "^a", "^new_node_1"}, {}, kDeviceGPU3)}, {}); CompareGraphViewWithGraph(&graph_view, expected_graph); } constexpr char kMatchingFiles[] = "MatchingFiles"; TEST_F(MutationTest, OpWithUnsupportedDevice) { GTEST_SKIP() << "Reenable once offline optimization tests enable CUDA."; auto test_graph = []() { return GDef({NDef("a", kMatchingFiles, {}, {}, kDeviceCPU0)}, {}); }; GraphDef graph = test_graph(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); MutableNodeView* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); Mutation* mutation = graph_view.GetMutationBuilder(); mutation->UpdateNodeDevice(a_node, kDeviceGPU1); s = mutation->Apply(); EXPECT_FALSE(s.ok()); CompareGraphViewWithGraph(&graph_view, test_graph()); mutation->Reset(); NodeDef new_node = NDef("new_node", kMatchingFiles, {}, {}, kDeviceGPU2); mutation->AddNode(std::move(new_node), &s); TF_EXPECT_OK(s); s = mutation->Apply(); EXPECT_FALSE(s.ok()); CompareGraphViewWithGraph(&graph_view, test_graph()); } TEST_F(MutationTest, OpMissingAttribute) { GTEST_SKIP() << "Reenable once offline optimization tests enable CUDA."; auto test_graph = []() { return GDef({NDef("a", kIdentity, {}, {{"T", DT_FLOAT}}, kDeviceGPU0)}, {}); }; GraphDef graph = test_graph(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); MutableNodeView* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); Mutation* mutation = graph_view.GetMutationBuilder(); mutation->RemoveNodeAttr(a_node, "T"); s = mutation->Apply(); EXPECT_FALSE(s.ok()); CompareGraphViewWithGraph(&graph_view, test_graph()); mutation->Reset(); NodeDef new_node = NDef("new_node", kIdentity, {}, {}, kDeviceGPU2); mutation->AddNode(std::move(new_node), &s); TF_EXPECT_OK(s); s = mutation->Apply(); EXPECT_FALSE(s.ok()); CompareGraphViewWithGraph(&graph_view, test_graph()); } TEST_F(MutationTest, EmptyMutationUpdateIndexPersisting) { auto test_graph = []() { return GDef({NDef("a", kIdentity, {}, {{"T", DT_FLOAT}}, kDeviceGPU0)}, {}); }; GraphDef graph = test_graph(); Status s; MutableGraphView graph_view(&graph, &s); TF_ASSERT_OK(s); MutableNodeView* a_node = graph_view.GetNode("a"); ASSERT_NE(a_node, nullptr); Mutation* mutation = graph_view.GetMutationBuilder(); mutation->UpdateNodeName(a_node, "a"); TF_EXPECT_OK(mutation->Apply()); CompareGraphViewWithGraph(&graph_view, test_graph()); mutation->Reset(); mutation->UpdateNodeName(a_node, "a"); TF_EXPECT_OK(mutation->Apply()); CompareGraphViewWithGraph(&graph_view, test_graph()); } class TopologicalSortTest : public CompareGraphTest { protected: void CompareGraphOrder(const MutableGraphView& graph_view, absl::Span<const string> node_names) { const int num_nodes = graph_view.NumNodes(); ASSERT_EQ(num_nodes, node_names.size()); for (int i = 0; i < num_nodes; ++i) { EXPECT_EQ(graph_view.GetNode(i)->GetName(), node_names[i]); } } void CompareGraphNodePrecedences( const MutableGraphView& graph_view, absl::Span<const std::pair<string, string>> node_precedences) { for (const auto& node_precedence : node_precedences) { auto* parent_node = graph_view.GetNode(node_precedence.first); ASSERT_NE(parent_node, nullptr); auto* child_node = graph_view.GetNode(node_precedence.second); ASSERT_NE(child_node, nullptr); EXPECT_TRUE(parent_node->node_index() < child_node->node_index()); } } }; TEST_F(TopologicalSortTest, ActiveMutationSort) { auto test_graph = []() { return GDef({NDef("a", kIdentity, {}, {{"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kIdentity, {"a"}, {{"T", DT_FLOAT}}, kDeviceGPU1)}, {}); }; GraphDef graph = test_graph(); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); Mutation* mutation = graph_view.GetMutationBuilder(); mutation->AddNode({}, &status); TF_ASSERT_OK(status); for (bool ignore_cycles : {false, true}) { status = graph_view.SortTopologically(ignore_cycles, {}); EXPECT_FALSE(status.ok()); EXPECT_EQ( status.message(), "MutableGraphView::SortTopologically error: active mutation exists."); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphOrder(graph_view, {"a", "b"}); } } TEST_F(TopologicalSortTest, BadExtraDependenciesSort) { auto test_graph = []() { return GDef({NDef("a", kIdentity, {}, {{"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kIdentity, {}, {{"T", DT_FLOAT}}, kDeviceGPU1)}, {}); }; GraphDef graph_1 = test_graph(); Status status; MutableGraphView graph_view_1(&graph_1, &status); TF_ASSERT_OK(status); MutableNodeView* a_node_1 = graph_view_1.GetNode("a"); GraphDef graph_2 = test_graph(); MutableGraphView graph_view_2(&graph_2, &status); TF_ASSERT_OK(status); MutableNodeView* b_node_2 = graph_view_2.GetNode("b"); for (bool ignore_cycles : {false, true}) { status = graph_view_2.SortTopologically(ignore_cycles, {{a_node_1, b_node_2}}); EXPECT_FALSE(status.ok()); EXPECT_EQ(status.message(), "MutableGraphView::SortTopologically error: invalid extra " "dependencies."); CompareGraphViewWithGraph(&graph_view_2, test_graph()); CompareGraphOrder(graph_view_2, {"a", "b"}); } } TEST_F(TopologicalSortTest, NoCyclesAllowed) { auto test_graph = []() { return GDef( {NDef("a", kIdentity, {}, {{"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kIdentity, {"a", "c"}, {{"T", DT_FLOAT}}, kDeviceGPU1), NDef("c", kIdentity, {"b"}, {{"T", DT_FLOAT}}, kDeviceGPU1)}, {}); }; GraphDef graph = test_graph(); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); status = graph_view.SortTopologically(false, {}); EXPECT_FALSE(status.ok()); EXPECT_EQ(status.message(), "MutableGraphView::SortTopologically error: detected edge(s) " "creating cycle(s) {'c' -> 'b'}."); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphOrder(graph_view, {"a", "b", "c"}); TF_EXPECT_OK(graph_view.SortTopologically(true, {})); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphNodePrecedences(graph_view, {{"a", "b"}, {"a", "c"}}); } TEST_F(TopologicalSortTest, NoNodesWithZeroFanins) { auto test_graph = []() { return GDef({NDef("a", kIdentity, {"b"}, {{"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kIdentity, {"a"}, {{"T", DT_FLOAT}}, kDeviceGPU1)}, {}); }; GraphDef graph = test_graph(); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); status = graph_view.SortTopologically(false, {}); EXPECT_FALSE(status.ok()); EXPECT_EQ(status.message(), "MutableGraphView::SortTopologically error: was not able to sort " "all nodes topologically."); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphOrder(graph_view, {"a", "b"}); TF_EXPECT_OK(graph_view.SortTopologically(true, {})); CompareGraphViewWithGraph(&graph_view, test_graph()); } TEST_F(TopologicalSortTest, DidNotReachAllNodes) { auto test_graph = []() { return GDef({NDef("c", kIdentity, {}, {{"T", DT_FLOAT}}, kDeviceGPU2), NDef("a", kIdentity, {"b"}, {{"T", DT_FLOAT}}, kDeviceGPU0), NDef("b", kIdentity, {"a"}, {{"T", DT_FLOAT}}, kDeviceGPU1)}, {}); }; GraphDef graph = test_graph(); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); status = graph_view.SortTopologically(false, {}); EXPECT_FALSE(status.ok()); EXPECT_EQ(status.message(), "MutableGraphView::SortTopologically error: was not able to sort " "all nodes topologically."); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphOrder(graph_view, {"c", "a", "b"}); TF_EXPECT_OK(graph_view.SortTopologically(true, {})); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphOrder(graph_view, {"a", "b", "c"}); } TEST_F(TopologicalSortTest, NoLoopGraph) { auto test_graph = []() { return GDef({NDef("c", kIdentity, {"f"}), NDef("a", kIdentity, {"f", "e"}), NDef("b", kIdentity, {"e", "d"}), NDef("d", kIdentity, {"c"}), NDef("f", kIdentity, {}), NDef("e", kIdentity, {})}, {}); }; GraphDef graph = test_graph(); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphNodePrecedences( graph_view, {{"f", "a"}, {"f", "c"}, {"e", "a"}, {"e", "b"}, {"c", "d"}, {"d", "b"}}); } TEST_F(TopologicalSortTest, ValidLoopGraph) { auto test_graph = []() { return GDef( {NDef("while/Const_1", "Const", {}), NDef("while/Enter_2", "Enter", {"while/Const_1"}, {{"frame_name", "while/while_context"}}), NDef("while/Const", "Const", {}), NDef("while/Enter_1", "Enter", {"while/Const"}, {{"frame_name", "while/while_context"}}), NDef("while/iteration_counter", "Const", {}), NDef("while/Enter", "Enter", {"while/iteration_counter"}, {{"frame_name", "while/while_context"}}), NDef("while/maximum_iterations", "Const", {}), NDef("while/Less/Enter", "Enter", {"while/maximum_iterations"}, {{"frame_name", "while/while_context"}}), NDef("while/Less", "Less", {"while/Merge", "while/Less/Enter"}), NDef("while/LogicalAnd", "LogicalAnd", {"while/Less", "while/cond/Merge"}), NDef("while/LoopCond", "LoopCond", {"while/LogicalAnd"}), NDef("while/Switch", "Switch", {"while/Merge", "while/LoopCond"}, {{"_class", "loc:@while/Merge"}}), NDef("while/Identity", "Identity", {"while/Switch:1"}), NDef("while/add", "Add", {"while/Identity", "while/add/y"}), NDef("while/NextIteration", "NextIteration", {"while/add"}), NDef("while/Merge", "Merge", {"while/Enter", "while/NextIteration"}), NDef("while/Less_1/y", "Const", {"^while/Merge"}), NDef("while/add/y", "Const", {"^while/Identity"}), NDef("while/mul/y", "Const", {"^while/Identity"}), NDef("while/add_2/y", "Const", {"^while/Identity"}), NDef("while/Switch_1", "Switch", {"while/Merge_1", "while/LoopCond"}, {{"_class", "loc:@while/Merge_1"}}), NDef("while/Identity_1", "Identity", {"while/Switch_1:1"}), NDef("while/add_2", "Add", {"while/Identity_1", "while/add_2/y"}), NDef("while/NextIteration_1", "NextIteration", {"while/add_2"}), NDef("while/Merge_1", "Merge", {"while/Enter_1", "while/NextIteration_1"}), NDef("while/Less_1", "Less", {"while/Merge_1", "while/Less_1/y"}), NDef("while/cond/Switch", "Switch", {"while/Less_1", "while/Less_1"}), NDef("while/cond/switch_f", "Identity", {"while/cond/Switch"}), NDef("while/cond/Const_1", "Const", {"^while/cond/switch_f"}), NDef("while/cond/switch_t", "Identity", {"while/cond/Switch:1"}), NDef("while/cond/Const", "Const", {"^while/cond/switch_t"}), NDef("while/cond/Merge", "Merge", {"while/cond/Const_1", "while/cond/Const"}), NDef("TensorArrayUnstack/range/delta", "Const", {}), NDef("TensorArrayUnstack/range/start", "Const", {}), NDef("TensorArrayUnstack/strided_slice/stack_2", "Const", {}), NDef("TensorArrayUnstack/strided_slice/stack_1", "Const", {}), NDef("TensorArrayUnstack/strided_slice/stack", "Const", {}), NDef("TensorArrayUnstack/Shape", "Const", {}), NDef("TensorArrayUnstack/strided_slice", "StridedSlice", {"TensorArrayUnstack/Shape", "TensorArrayUnstack/strided_slice/stack", "TensorArrayUnstack/strided_slice/stack_1", "TensorArrayUnstack/strided_slice/stack_2"}), NDef("TensorArrayUnstack/range", "Range", {"TensorArrayUnstack/range/start", "TensorArrayUnstack/strided_slice", "TensorArrayUnstack/range/delta"}), NDef("TensorArray/size", "Const", {}), NDef("TensorArray", "TensorArrayV3", {"TensorArray/size"}), NDef("while/TensorArrayReadV3/Enter", "Enter", {"TensorArray"}, {{"frame_name", "while/while_context"}}), NDef("Const", "Const", {}), NDef("TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3", "TensorArrayScatterV3", {"TensorArray", "TensorArrayUnstack/range", "Const", "TensorArray:1"}, {{"_class", "loc@Const"}}), NDef("while/TensorArrayReadV3/Enter_1", "Enter", {"TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3"}, {{"frame_name", "while/while_context"}}), NDef("while/TensorArrayReadV3", "TensorArrayReadV3", {"while/TensorArrayReadV3/Enter", "while/Identity_1", "while/TensorArrayReadV3/Enter_1"}), NDef("while/add_1", "Add", {"while/mul", "while/TensorArrayReadV3"}), NDef("while/NextIteration_2", "NextIteration", {"while/add_1"}), NDef("while/Merge_2", "Merge", {"while/Enter_2", "while/NextIteration_2"}), NDef("while/Switch_2", "Switch", {"while/Merge_2", "while/LoopCond"}, {{"_class", "loc@while/Merge_2"}}), NDef("while/Exit_2", "Exit", {"while/Switch_2"}), NDef("while/Identity_2", "Identity", {"while/Switch_2:1"}), NDef("while/mul", "Mul", {"while/Identity_2", "while/mul/y"})}, {}); }; GraphDef graph = test_graph(); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); CompareGraphViewWithGraph(&graph_view, test_graph()); } TEST_F(TopologicalSortTest, DuplicateFanins) { auto test_graph = []() { return GDef( {NDef("b", kIdentity, {"a", "a", "^a"}), NDef("a", "Const", {})}, {}); }; GraphDef graph = test_graph(); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphOrder(graph_view, {"a", "b"}); } TEST_F(TopologicalSortTest, DiamondDependencyNotACycle) { auto test_graph = []() { return GDef({NDef("e", kIdentity, {"b", "c", "d"}), NDef("b", kIdentity, {"a"}), NDef("a", "Const", {}), NDef("d", kIdentity, {"a"}), NDef("c", kIdentity, {"a"})}, {}); }; GraphDef graph = test_graph(); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphNodePrecedences( graph_view, {{"a", "b"}, {"a", "c"}, {"a", "d"}, {"b", "e"}, {"c", "e"}, {"d", "e"}}); } TEST_F(TopologicalSortTest, ExtraDependencies) { auto test_graph = []() { return GDef({NDef("c", kIdentity, {"f"}), NDef("a", kIdentity, {"f", "e"}), NDef("b", kIdentity, {"e", "d"}), NDef("d", kIdentity, {"c"}), NDef("f", kIdentity, {}), NDef("e", kIdentity, {})}, {}); }; GraphDef graph = test_graph(); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); auto* e_node = graph_view.GetNode("e"); ASSERT_NE(e_node, nullptr); auto* f_node = graph_view.GetNode("f"); ASSERT_NE(f_node, nullptr); TF_EXPECT_OK(graph_view.SortTopologically(false, {{e_node, f_node}})); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphNodePrecedences(graph_view, {{"f", "a"}, {"f", "c"}, {"e", "a"}, {"e", "b"}, {"c", "d"}, {"d", "b"}, {"e", "f"}}); } TEST_F(TopologicalSortTest, PushVisitedNodes) { auto test_graph = []() { return GDef({NDef("d", kIdentity, {"c"}), NDef("c", kIdentity, {"b", "a"}), NDef("b", kIdentity, {"a"}), NDef("a", kIdentity, {})}, {}); }; GraphDef graph = test_graph(); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); TF_EXPECT_OK(graph_view.SortTopologically(false, {})); CompareGraphViewWithGraph(&graph_view, test_graph()); CompareGraphNodePrecedences(graph_view, {{"a", "b"}, {"a", "c"}, {"b", "c"}, {"c", "d"}}); } #define RUN_NUM_NODE_NUM_EDGE_BENCHMARK(name) \ BENCHMARK(name) \ ->ArgPair(10, 2) \ ->ArgPair(100, 2) \ ->ArgPair(1000, 2) \ ->ArgPair(10000, 2) \ ->ArgPair(25000, 2) \ ->ArgPair(50000, 2) \ ->ArgPair(100000, 2) \ ->ArgPair(10, 4) \ ->ArgPair(100, 4) \ ->ArgPair(1000, 4) \ ->ArgPair(10000, 4) \ ->ArgPair(25000, 4) \ ->ArgPair(50000, 4) \ ->ArgPair(100000, 4) \ ->ArgPair(10, 8) \ ->ArgPair(100, 8) \ ->ArgPair(1000, 8) \ ->ArgPair(10000, 8) \ ->ArgPair(25000, 8) \ ->ArgPair(50000, 8) \ ->ArgPair(100000, 8) \ ->ArgPair(10, 16) \ ->ArgPair(100, 16) \ ->ArgPair(1000, 16) \ ->ArgPair(10000, 16) \ ->ArgPair(25000, 16) \ ->ArgPair(50000, 16) \ ->ArgPair(100000, 16); template <typename GraphViewT> void BM_GraphViewTConstruction(::testing::benchmark::State& state) { const int num_nodes = state.range(0); const int num_edges_per_node = state.range(1); GraphDef graph_def = test::CreateGraphDef(num_nodes, num_edges_per_node); for (auto i : state) { Status s; GraphViewT graph_view(&graph_def, &s); } } void BM_GraphViewConstruction(::testing::benchmark::State& state) { BM_GraphViewTConstruction<GraphView>(state); } void BM_MutableGraphViewConstruction(::testing::benchmark::State& state) { BM_GraphViewTConstruction<MutableGraphView>(state); } void BM_MutableGraphViewClearAttrs(::testing::benchmark::State& state) { const int num_nodes = state.range(0); const int num_edges_per_node = state.range(1); GraphDef graph_def = test::CreateGraphDef(num_nodes, num_edges_per_node); Status s; MutableGraphView graph_view(&graph_def, &s); for (auto i : state) { utils::Mutation* mutation = graph_view.GetMutationBuilder(); for (int j = 0; j < num_nodes; ++j) { mutation->RemoveNodeAttr(graph_view.GetNode(j), "_some_random_attr"); } s = mutation->Apply(); } } RUN_NUM_NODE_NUM_EDGE_BENCHMARK(BM_GraphViewConstruction); RUN_NUM_NODE_NUM_EDGE_BENCHMARK(BM_MutableGraphViewConstruction); RUN_NUM_NODE_NUM_EDGE_BENCHMARK(BM_MutableGraphViewClearAttrs); #define RUN_NUM_NODE_BENCHMARK(name) \ BENCHMARK(name) \ ->Arg(10) \ ->Arg(100) \ ->Arg(1000) \ ->Arg(10000) \ ->Arg(25000) \ ->Arg(50000) \ ->Arg(100000); template <typename GraphViewT> void BM_GraphViewTConstructionWithControlDependencies( ::testing::benchmark::State& state) { const int num_fanins_fanouts = state.range(0); GraphDef graph_def = test::CreateFaninFanoutNodeGraph(num_fanins_fanouts, num_fanins_fanouts, num_fanins_fanouts, num_fanins_fanouts, true); for (auto i : state) { Status s; GraphViewT graph_view(&graph_def, &s); } } void BM_GraphViewConstructionWithControlDependencies( ::testing::benchmark::State& state) { BM_GraphViewTConstructionWithControlDependencies<GraphView>(state); } void BM_MutableGraphViewConstructionWithControlDependencies( ::testing::benchmark::State& state) { BM_GraphViewTConstructionWithControlDependencies<MutableGraphView>(state); } RUN_NUM_NODE_BENCHMARK(BM_GraphViewConstructionWithControlDependencies); RUN_NUM_NODE_BENCHMARK(BM_MutableGraphViewConstructionWithControlDependencies); template <typename GraphViewT> void BM_GraphViewTGetNode(::testing::benchmark::State& state) { const int num_nodes = state.range(0); GraphDef graph_def = test::CreateGraphDef(num_nodes, 16); Status s; GraphViewT graph_view(&graph_def, &s); for (auto i : state) { graph_view.GetNode("out"); } } void BM_GraphViewGetNode(::testing::benchmark::State& state) { BM_GraphViewTGetNode<GraphView>(state); } void BM_MutableGraphViewGetNode(::testing::benchmark::State& state) { BM_GraphViewTGetNode<MutableGraphView>(state); } RUN_NUM_NODE_BENCHMARK(BM_GraphViewGetNode); RUN_NUM_NODE_BENCHMARK(BM_MutableGraphViewGetNode); #define RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(name) \ BENCHMARK(name) \ ->ArgPair(10, 10) \ ->ArgPair(10, 100) \ ->ArgPair(10, 1000) \ ->ArgPair(10, 10000) \ ->ArgPair(10, 100000) \ ->ArgPair(100, 10) \ ->ArgPair(100, 100) \ ->ArgPair(100, 1000) \ ->ArgPair(100, 10000) \ ->ArgPair(100, 100000) \ ->ArgPair(1000, 10) \ ->ArgPair(1000, 100) \ ->ArgPair(1000, 1000) \ ->ArgPair(1000, 10000) \ ->ArgPair(1000, 100000) \ ->ArgPair(10000, 10) \ ->ArgPair(10000, 100) \ ->ArgPair(10000, 1000) \ ->ArgPair(10000, 10000) \ ->ArgPair(10000, 100000) \ ->ArgPair(100000, 10) \ ->ArgPair(100000, 100) \ ->ArgPair(100000, 1000) \ ->ArgPair(100000, 10000) \ ->ArgPair(100000, 100000); template <typename GraphViewT> void BM_GraphViewTGetRegularFanin(::testing::benchmark::State& state) { const int num_fanins = state.range(0); const int num_fanouts = state.range(1); GraphDef graph_def = test::CreateFaninFanoutNodeGraph( num_fanins, num_fanouts, num_fanins, num_fanouts, true); Status s; GraphViewT graph_view(&graph_def, &s); for (auto i : state) { auto* node = graph_view.GetNode("node"); node->GetRegularFanin(0); } } void BM_GraphViewGetRegularFanin(::testing::benchmark::State& state) { BM_GraphViewTGetRegularFanin<GraphView>(state); } void BM_MutableGraphViewGetRegularFanin(::testing::benchmark::State& state) { BM_GraphViewTGetRegularFanin<MutableGraphView>(state); } RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewGetRegularFanin); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewGetRegularFanin); template <typename GraphViewT> void BM_GraphViewTGetRegularFanout(::testing::benchmark::State& state) { const int num_fanins = state.range(0); const int num_fanouts = state.range(1); GraphDef graph_def = test::CreateFaninFanoutNodeGraph( num_fanins, num_fanouts, num_fanins, num_fanouts, true); Status s; GraphViewT graph_view(&graph_def, &s); for (auto i : state) { auto* node = graph_view.GetNode("node"); node->GetRegularFanout(0); } } void BM_GraphViewGetRegularFanout(::testing::benchmark::State& state) { BM_GraphViewTGetRegularFanout<GraphView>(state); } void BM_MutableGraphViewGetRegularFanout(::testing::benchmark::State& state) { BM_GraphViewTGetRegularFanout<MutableGraphView>(state); } RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewGetRegularFanout); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewGetRegularFanout); template <typename GraphViewT> void BM_GraphViewTGetRegularFanins(::testing::benchmark::State& state) { const int num_fanins = state.range(0); const int num_fanouts = state.range(1); GraphDef graph_def = test::CreateFaninFanoutNodeGraph( num_fanins, num_fanouts, num_fanins, num_fanouts, true); Status s; GraphViewT graph_view(&graph_def, &s); for (auto i : state) { auto* node = graph_view.GetNode("node"); node->GetRegularFanins(); } } void BM_GraphViewGetRegularFanins(::testing::benchmark::State& state) { BM_GraphViewTGetRegularFanins<GraphView>(state); } void BM_MutableGraphViewGetRegularFanins(::testing::benchmark::State& state) { BM_GraphViewTGetRegularFanins<MutableGraphView>(state); } RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewGetRegularFanins); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewGetRegularFanins); template <typename GraphViewT> void BM_GraphViewTGetRegularFanouts(::testing::benchmark::State& state) { const int num_fanins = state.range(0); const int num_fanouts = state.range(1); GraphDef graph_def = test::CreateFaninFanoutNodeGraph( num_fanins, num_fanouts, num_fanins, num_fanouts, true); Status s; GraphViewT graph_view(&graph_def, &s); for (auto i : state) { auto* node = graph_view.GetNode("node"); node->GetRegularFanouts(); } } void BM_GraphViewGetRegularFanouts(::testing::benchmark::State& state) { BM_GraphViewTGetRegularFanouts<GraphView>(state); } void BM_MutableGraphViewGetRegularFanouts(::testing::benchmark::State& state) { BM_GraphViewTGetRegularFanouts<MutableGraphView>(state); } RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewGetRegularFanouts); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewGetRegularFanouts); template <typename GraphViewT> void BM_GraphViewTGetControllingFanins(::testing::benchmark::State& state) { const int num_fanins = state.range(0); const int num_fanouts = state.range(1); GraphDef graph_def = test::CreateFaninFanoutNodeGraph( num_fanins, num_fanouts, num_fanins, num_fanouts, true); Status s; GraphViewT graph_view(&graph_def, &s); for (auto i : state) { auto* node = graph_view.GetNode("node"); node->GetControllingFanins(); } } void BM_GraphViewGetControllingFanins(::testing::benchmark::State& state) { BM_GraphViewTGetControllingFanins<GraphView>(state); } void BM_MutableGraphViewGetControllingFanins( ::testing::benchmark::State& state) { BM_GraphViewTGetControllingFanins<MutableGraphView>(state); } RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewGetControllingFanins); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewGetControllingFanins); template <typename GraphViewT> void BM_GraphViewTGetControlledFanouts(::testing::benchmark::State& state) { const int num_fanins = state.range(0); const int num_fanouts = state.range(1); GraphDef graph_def = test::CreateFaninFanoutNodeGraph( num_fanins, num_fanouts, num_fanins, num_fanouts, true); Status s; GraphViewT graph_view(&graph_def, &s); for (auto i : state) { auto* node = graph_view.GetNode("node"); node->GetControlledFanouts(); } } void BM_GraphViewGetControlledFanouts(::testing::benchmark::State& state) { BM_GraphViewTGetControlledFanouts<GraphView>(state); } void BM_MutableGraphViewGetControlledFanouts( ::testing::benchmark::State& state) { BM_GraphViewTGetControlledFanouts<MutableGraphView>(state); } RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewGetControlledFanouts); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewGetControlledFanouts); template <typename GraphViewT, bool IsLast> inline void BM_GraphViewTHasRegularFanin(::testing::benchmark::State& state) { const int num_fanins = state.range(0); const int num_fanouts = state.range(1); GraphDef graph_def = test::CreateFaninFanoutNodeGraph( num_fanins, num_fanouts, 0, 0, false); Status s; GraphViewT graph_view(&graph_def, &s); const int index = IsLast ? num_fanouts - 1 : 0; auto* node = graph_view.GetNode(absl::StrFormat("out%05d", index)); auto* fanin = graph_view.GetNode("node"); for (auto i : state) { node->HasFanin({&graph_view, fanin->node_index(), 0}); } } void BM_GraphViewHasRegularFaninFirst(::testing::benchmark::State& state) { BM_GraphViewTHasRegularFanin<GraphView, false>(state); } void BM_GraphViewHasRegularFaninLast(::testing::benchmark::State& state) { BM_GraphViewTHasRegularFanin<GraphView, true>(state); } void BM_MutableGraphViewHasRegularFaninFirst( ::testing::benchmark::State& state) { BM_GraphViewTHasRegularFanin<MutableGraphView, false>(state); } void BM_MutableGraphViewHasRegularFaninLast( ::testing::benchmark::State& state) { BM_GraphViewTHasRegularFanin<MutableGraphView, true>(state); } RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewHasRegularFaninFirst); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewHasRegularFaninLast); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewHasRegularFaninFirst); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewHasRegularFaninLast); template <typename GraphViewT, bool IsLast> inline void BM_GraphViewTHasControllingFanin( ::testing::benchmark::State& state) { const int num_fanins = state.range(0); const int num_fanouts = state.range(1); GraphDef graph_def = test::CreateFaninFanoutNodeGraph( num_fanins, num_fanouts, num_fanins, num_fanouts, true); Status s; GraphViewT graph_view(&graph_def, &s); const int index = IsLast ? num_fanouts - 1 : 0; auto* node = graph_view.GetNode(absl::StrFormat("control_out%05d", index)); auto* fanin = graph_view.GetNode("node"); for (auto i : state) { node->HasFanin({&graph_view, fanin->node_index(), Graph::kControlSlot}); } } void BM_GraphViewHasControllingFaninFirst(::testing::benchmark::State& state) { BM_GraphViewTHasControllingFanin<GraphView, false>(state); } void BM_GraphViewHasControllingFaninLast(::testing::benchmark::State& state) { BM_GraphViewTHasControllingFanin<GraphView, true>(state); } void BM_MutableGraphViewHasControllingFaninFirst( ::testing::benchmark::State& state) { BM_GraphViewTHasControllingFanin<MutableGraphView, false>(state); } void BM_MutableGraphViewHasControllingFaninLast( ::testing::benchmark::State& state) { BM_GraphViewTHasControllingFanin<MutableGraphView, true>(state); } RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewHasControllingFaninFirst); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewHasControllingFaninLast); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewHasControllingFaninFirst); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewHasControllingFaninLast); template <typename GraphViewT, bool IsLast> inline void BM_GraphViewTHasRegularFanout(::testing::benchmark::State& state) { const int num_fanins = state.range(0); const int num_fanouts = state.range(1); GraphDef graph_def = test::CreateFaninFanoutNodeGraph( num_fanins, num_fanouts, 0, 0, false); Status s; GraphViewT graph_view(&graph_def, &s); const int index = IsLast ? num_fanins - 1 : 0; auto* node = graph_view.GetNode(absl::StrFormat("in%05d", index)); auto* fanout = graph_view.GetNode("node"); for (auto i : state) { node->HasFanout({&graph_view, fanout->node_index(), index}); } } void BM_GraphViewHasRegularFanoutFirst(::testing::benchmark::State& state) { BM_GraphViewTHasRegularFanout<GraphView, false>(state); } void BM_GraphViewHasRegularFanoutLast(::testing::benchmark::State& state) { BM_GraphViewTHasRegularFanout<GraphView, true>(state); } void BM_MutableGraphViewHasRegularFanoutFirst( ::testing::benchmark::State& state) { BM_GraphViewTHasRegularFanout<MutableGraphView, false>(state); } void BM_MutableGraphViewHasRegularFanoutLast( ::testing::benchmark::State& state) { BM_GraphViewTHasRegularFanout<MutableGraphView, true>(state); } RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewHasRegularFanoutFirst); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewHasRegularFanoutLast); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewHasRegularFanoutFirst); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewHasRegularFanoutLast); template <typename GraphViewT, bool IsLast> inline void BM_GraphViewTHasControlledFanout( ::testing::benchmark::State& state) { const int num_fanins = state.range(0); const int num_fanouts = state.range(1); GraphDef graph_def = test::CreateFaninFanoutNodeGraph( num_fanins, num_fanouts, num_fanins, num_fanouts, false); Status s; GraphViewT graph_view(&graph_def, &s); const int index = IsLast ? num_fanins - 1 : 0; auto* node = graph_view.GetNode(absl::StrFormat("control_in%05d", index)); auto* fanout = graph_view.GetNode("node"); for (auto i : state) { node->HasFanout({&graph_view, fanout->node_index(), Graph::kControlSlot}); } } void BM_GraphViewHasControlledFanoutFirst(::testing::benchmark::State& state) { BM_GraphViewTHasControlledFanout<GraphView, false>(state); } void BM_GraphViewHasControlledFanoutLast(::testing::benchmark::State& state) { BM_GraphViewTHasControlledFanout<GraphView, true>(state); } void BM_MutableGraphViewHasControlledFanoutFirst( ::testing::benchmark::State& state) { BM_GraphViewTHasControlledFanout<MutableGraphView, false>(state); } void BM_MutableGraphViewHasControlledFanoutLast( ::testing::benchmark::State& state) { BM_GraphViewTHasControlledFanout<MutableGraphView, true>(state); } RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewHasControlledFanoutFirst); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_GraphViewHasControlledFanoutLast); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewHasControlledFanoutFirst); RUN_NUM_FANIN_NUM_FANOUT_BENCHMARK(BM_MutableGraphViewHasControlledFanoutLast); void BM_SortTopologically(::testing::benchmark::State& state) { const int size = state.range(0); GraphDef graph = test::CreateRandomGraph(size); Status status; MutableGraphView graph_view(&graph, &status); TF_ASSERT_OK(status); for (auto i : state) { TF_EXPECT_OK(graph_view.SortTopologically(false, {})); } } RUN_NUM_NODE_BENCHMARK(BM_SortTopologically); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/graph_view.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/graph_view_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f4bef952-252d-42c3-bf1d-7f04f232b2ad
cpp
tensorflow/tensorflow
lower_function_call_op
tensorflow/core/common_runtime/lower_function_call_op.cc
tensorflow/core/common_runtime/lower_function_call_op_test.cc
#include "tensorflow/core/common_runtime/lower_function_call_op.h" #include <utility> #include "absl/algorithm/container.h" #include "absl/types/span.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/common_runtime/inline_function_utils.h" #include "tensorflow/core/common_runtime/lower_function_call_inline_policy.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/refcount.h" namespace tensorflow { using KeepCallerNode = InlineFunctionBodyOptions::KeepCallerNode; using OutputControlSrc = InlineFunctionBodyOptions::OutputControlSource; Status RewriteFunctionCallNode(Node* n, Graph* g, const FunctionLibraryDefinition& flib_def, bool keep_caller_fetchable) { VLOG(2) << "Lower function call node: " << SummarizeNode(*n); InlineFunctionBodyOptions inline_options; inline_options.keep_caller_node = keep_caller_fetchable ? KeepCallerNode::kFetchable : KeepCallerNode::kTargetable; FunctionCallInlinePolicy policy = GetFunctionCallInlinePolicy(n); if (policy == FunctionCallInlinePolicy::kMultiDevicePlacer) { inline_options.output_control_src = OutputControlSrc::kControlOutputs; inline_options.inlined_function_body_placer = InlinedFunctionBodyPlacer::MultiDevice(); } else if (policy == FunctionCallInlinePolicy::kSingleDevicePlacer) { inline_options.output_control_src = OutputControlSrc::kDataOutputs; inline_options.inlined_function_body_placer = InlinedFunctionBodyPlacer::SingleDevice(); } else { return errors::InvalidArgument("Unsupported function inlining policy"); } core::RefCountPtr<FunctionRecord> fdef; if (n->IsPartitionedCall()) { NameAttrList func; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "f", &func)); fdef = flib_def.FindRecord(func.name()); } else if (n->type_string() == FunctionLibraryDefinition::kGradientOp) { VLOG(2) << "Skip SymbolicGradient lowering"; return absl::OkStatus(); } else { fdef = flib_def.FindRecord(n->type_string()); } if (fdef == nullptr) { return errors::Internal("Can't find a function: node=", SummarizeNode(*n)); } std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(std::move(fdef), n->attrs(), &flib_def, &fbody)); if (flags::Global().enable_function_pruning_before_inlining.value()) { VLOG(2) << "Pruning enabled before inlining"; PruneFunctionBody( fbody->record->fdef(), fbody->graph, absl::Span<Node*>(fbody->arg_nodes.data(), fbody->arg_nodes.size())); } else { VLOG(2) << "Pruning disabled before inlining"; } Status can_inline_function_call = ValidateInlining(n, fbody.get(), inline_options); if (can_inline_function_call.ok()) { TF_RETURN_IF_ERROR( InlineFunctionBody(flib_def, g, n, fbody.get(), inline_options)); } else { VLOG(2) << "Failed to inline function call node: " << can_inline_function_call.message(); } return absl::OkStatus(); } }
#include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/lower_functional_ops.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { AttrValue FuncAttr(const string& name) { AttrValue attr; attr.mutable_func()->set_name(name); return attr; } AttrValue FuncAttr(const string& name, const DataType type) { AttrValue attr; attr.mutable_func()->set_name(name); (*attr.mutable_func()->mutable_attr())["T"].set_type(type); return attr; } SessionOptions SessionOptionsWithInlining() { SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_do_function_inlining(true); return session_options; } Status Rewrite(std::unique_ptr<Graph>* graph) { FunctionLibraryDefinition flib_def((*graph)->flib_def()); GraphOptimizationPassOptions opt_options; SessionOptions session_options = SessionOptionsWithInlining(); opt_options.session_options = &session_options; opt_options.graph = graph; opt_options.flib_def = &flib_def; LowerFunctionalOpsPass pass; return pass.Run(opt_options); } TEST(LowerFunctionCallTest, InlineFunctionCall) { using FDH = FunctionDefHelper; std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = FDH::Create("AddAndMul", {"i: int32"}, {"o: int32"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_INT32}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_INT32}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); Node* function_call; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); TF_ASSERT_OK(NodeBuilder("F", "PartitionedCall", &root.graph()->flib_def()) .Input(inputs) .Attr("Tin", {DT_INT32}) .Attr("Tout", {DT_INT32}) .Attr("f", FuncAttr("AddAndMul")) .Finalize(root.graph(), &function_call)); TF_ASSERT_OK(root.DoShapeInference(function_call)); auto b = ops::Identity(root.WithOpName("B"), Output(function_call, 0)); root.graph()->AddControlEdge(function_call, b.node()); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); int partitioned_call_count = 0; int add_count = 0; int mul_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsPartitionedCall()) partitioned_call_count++; if (op->type_string() == "Add") add_count++; if (op->type_string() == "Mul") mul_count++; } ASSERT_EQ(partitioned_call_count, 0); ASSERT_EQ(add_count, 1); ASSERT_EQ(mul_count, 1); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(a.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(b)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 100); } } TEST(LowerFunctionCallTest, InlineFunctionCallAfterPruning) { flags::Global().enable_function_pruning_before_inlining.reset(true); using FDH = FunctionDefHelper; std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = FDH::Create( "AddAndMul", {"i: int32", "j: int32", "k: int32", "r: resource"}, {"o: int32"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_INT32}}}, {{"div"}, "FloorDiv", {"i", "i"}, {{"T", DT_INT32}}}, {{"gather"}, "ResourceGather", {"r", "i"}, {{"Tindices", DT_INT32}, {"dtype", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_INT32}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto x = ops::Placeholder(root.WithOpName("X"), DT_INT32); auto y = ops::Placeholder(root.WithOpName("Y"), DT_INT32); auto z = ops::Placeholder(root.WithOpName("Z"), DT_INT32); auto r = ops::Placeholder(root.WithOpName("R"), DT_RESOURCE); Node* function_call; std::vector<NodeBuilder::NodeOut> inputs( {NodeBuilder::NodeOut(x.node()), NodeBuilder::NodeOut(y.node()), NodeBuilder::NodeOut(z.node()), NodeBuilder::NodeOut(r.node())}); TF_ASSERT_OK(NodeBuilder("F", "PartitionedCall", &root.graph()->flib_def()) .Input(inputs) .Attr("Tin", {DT_INT32, DT_INT32, DT_INT32, DT_RESOURCE}) .Attr("Tout", {DT_INT32}) .Attr("f", FuncAttr("AddAndMul")) .Finalize(root.graph(), &function_call)); TF_ASSERT_OK(root.DoShapeInference(function_call)); auto b = ops::Identity(root.WithOpName("B"), Output(function_call, 0)); root.graph()->AddControlEdge(function_call, b.node()); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); int partitioned_call_count = 0; int add_count = 0; int mul_count = 0; int floor_div_count = 0; int resource_gather_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsPartitionedCall()) partitioned_call_count++; if (op->type_string() == "Add") add_count++; if (op->type_string() == "Mul") mul_count++; if (op->type_string() == "FloorDiv") floor_div_count++; if (op->type_string() == "ResourceGather") resource_gather_count++; } ASSERT_EQ(partitioned_call_count, 0); ASSERT_EQ(add_count, 1); ASSERT_EQ(mul_count, 1); ASSERT_EQ(floor_div_count, 0); ASSERT_EQ(resource_gather_count, 0); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(x.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(b)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 100); } flags::Global().enable_function_pruning_before_inlining.reset(false); } TEST(LowerFunctionCallTest, DoNotInlineTpuOrXlaFunctions) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDef tpu_func = test::function::XTimesTwo(); tpu_func.mutable_signature()->set_name("TpuXTimesTwo"); (*tpu_func.mutable_attr())["_tpu_replicate"].set_b(true); FunctionDef xla_func = test::function::XTimesTwo(); xla_func.mutable_signature()->set_name("XlaXTimesTwo"); (*xla_func.mutable_attr())["_xla_compile_id"].set_s("cluster_0"); FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XTimesTwo(); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); Node* tpu_call; TF_ASSERT_OK(NodeBuilder("B", "PartitionedCall", &root.graph()->flib_def()) .Input(inputs) .Attr("Tin", {DT_INT32}) .Attr("Tout", {DT_INT32}) .Attr("f", FuncAttr("XTimesTwo", DT_INT32)) .Attr("_tpu_replicate", "cluster") .Finalize(root.graph(), &tpu_call)); Node* xla_call; TF_ASSERT_OK(NodeBuilder("C", "PartitionedCall", &root.graph()->flib_def()) .Input(inputs) .Attr("Tin", {DT_INT32}) .Attr("Tout", {DT_INT32}) .Attr("f", FuncAttr("XTimesTwo", DT_INT32)) .Attr("_xla_compile_id", "cluster") .Finalize(root.graph(), &xla_call)); TF_ASSERT_OK(root.DoShapeInference(tpu_call)); TF_ASSERT_OK(root.DoShapeInference(xla_call)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); int partitioned_call_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsPartitionedCall()) partitioned_call_count++; } ASSERT_EQ(partitioned_call_count, 2); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(a.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK( session.Run(feeds, {Output(tpu_call), Output(xla_call)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 2); EXPECT_EQ(out_tensors[0].scalar<int>()(), 20); EXPECT_EQ(out_tensors[1].scalar<int>()(), 20); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/lower_function_call_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/lower_function_call_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bff43165-4287-4ce8-91f3-effe03e6f7a8
cpp
tensorflow/tensorflow
graph_constructor
tensorflow/core/common_runtime/graph_constructor.cc
tensorflow/core/common_runtime/graph_constructor_test.cc
#include "tensorflow/core/common_runtime/graph_constructor.h" #include <algorithm> #include <memory> #include <optional> #include <set> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/shape_refiner.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/versions.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_debug_info_builder.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/flatmap.h" #include "tensorflow/core/lib/gtl/flatset.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/strings/scanner.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { static constexpr const bool kDoNotCheckDuplicates = true; inline bool IsMerge(const NodeDef& node_def) { return node_def.op() == "Merge" || node_def.op() == "RefMerge" || node_def.op() == "_XlaMerge"; } inline bool IsNextIteration(const NodeDef& node_def) { return node_def.op() == "NextIteration" || node_def.op() == "RefNextIteration"; } bool IsValidNodeName(StringPiece s, bool allow_internal_ops) { using ::tensorflow::strings::Scanner; Scanner scanner(s); scanner .One(allow_internal_ops ? Scanner::LETTER_DIGIT_DOT_UNDERSCORE : Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE); while (true) { if (!scanner.GetResult()) return false; if (scanner.empty()) return true; scanner.One(Scanner::RANGLE) .One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE); } } class GraphConstructor { public: struct Options { Options(const GraphConstructorOptions& in) : allow_internal_ops(in.allow_internal_ops), expect_device_spec(in.expect_device_spec), propagate_device_spec(false), uniquify_names(false), uniquify_prefix(false), skip_mapped_nodes(false), importing(false), validate_nodes(in.validate_nodes), validate_colocation_constraints(false), add_default_attributes(in.add_default_attributes) {} Options(const ImportGraphDefOptions& in) : allow_internal_ops(false), expect_device_spec(false), propagate_device_spec(in.propagate_device_spec), prefix(in.prefix.empty() || absl::EndsWith(in.prefix, "/") ? in.prefix : in.prefix + "/"), uniquify_names(in.uniquify_names), uniquify_prefix(in.uniquify_prefix), input_map(in.input_map.begin(), in.input_map.end()), skip_mapped_nodes(in.skip_mapped_nodes), control_dependencies(in.control_dependencies), return_tensors(in.return_tensors.begin(), in.return_tensors.end()), return_nodes(in.return_nodes), importing(true), validate_nodes(true), validate_colocation_constraints(in.validate_colocation_constraints), validate_shape(in.validate_shape), default_device(in.default_device) {} bool allow_internal_ops; bool expect_device_spec; bool propagate_device_spec; string prefix; bool uniquify_names; bool uniquify_prefix; std::map<TensorId, TensorId> input_map; bool skip_mapped_nodes; std::vector<string> control_dependencies; std::vector<TensorId> return_tensors; std::vector<string> return_nodes; bool importing; bool validate_nodes; bool validate_colocation_constraints; bool validate_shape = true; bool add_default_attributes = true; string default_device; }; typedef absl::Span<const NodeDef* const> NodeDefSlice; static Status Construct( const Options& opts, NodeDefSlice node_defs, const VersionDef* versions, const FunctionDefLibrary* library, const GraphDebugInfo* debug_info, Graph* g, ShapeRefiner* refiner, std::vector<std::pair<Node*, int>>* return_tensors, std::vector<Node*>* return_nodes, std::vector<SafeTensorId>* missing_unused_input_map_keys); static Status Construct( const Options& opts, GraphDef&& graph_def, Graph* g, ShapeRefiner* refiner, std::vector<std::pair<Node*, int>>* return_tensors, std::vector<Node*>* return_nodes, std::vector<SafeTensorId>* missing_unused_input_map_keys); protected: GraphConstructor(const Options& opts, Graph* g, ShapeRefiner* refiner, std::vector<std::pair<Node*, int>>* return_tensors, std::vector<Node*>* return_nodes, std::vector<SafeTensorId>* missing_unused_input_map_keys) : opts_(opts), g_(g), original_versions_(g->versions()), prefix_(opts.prefix), refiner_(refiner), return_tensors_(return_tensors), return_nodes_(return_nodes), missing_unused_input_map_keys_(missing_unused_input_map_keys) {} virtual ~GraphConstructor() {} Status TryImport() { TF_RETURN_IF_ERROR(EnsureNoNameCollisions()); TF_RETURN_IF_ERROR(ValidateInputMapAndControlDependencies()); TF_RETURN_IF_ERROR(BuildNodeIndex()); TF_RETURN_IF_ERROR(InitFromEdges()); TF_RETURN_IF_ERROR(Convert()); TF_RETURN_IF_ERROR(AddBackEdges()); TF_RETURN_IF_ERROR(UpdateVersionDef()); TF_RETURN_IF_ERROR(PopulateReturnTensors()); TF_RETURN_IF_ERROR(PopulateReturnNodes()); TF_RETURN_IF_ERROR(PopulateMissingUnusedInputMapKeys()); UpdateUniquifiedColocationNames(); FixupSourceAndSinkEdges(g_); return absl::OkStatus(); } private: Status EnsureNoNameCollisions(); Status ValidateInputMapAndControlDependencies(); Status BuildNodeIndex(); Status InitFromEdges(); Status Convert(); Status AddBackEdges(); Status UpdateVersionDef(); Status PopulateReturnTensors(); Status PopulateReturnNodes(); Status PopulateMissingUnusedInputMapKeys(); FunctionDefLibraryStackTraces CreateStackTracesForFunctionDefLibrary( const FunctionDefLibrary& library) const; void Undo(); void PrintCycles(); void DFS(int cur_node, std::vector<int>* cur_branch, std::vector<bool>* is_on_cur_branch, absl::flat_hash_set<int>* unvisited, const std::vector<absl::string_view>& node_names); Status IsNodeFullyMapped(const NodeDef& node_def, bool* is_node_mapped); Status ValidateColocationConstraints(const NodeDef& node_def); Status MakeNode(NodeDef&& node_def, Node** node); Status MakeEdge(Node* src, int output_index, Node* dst, int input_index); Status ValidateShape(Node* node); Status ModifyNodeDefForImport(NodeDef* node_def); void RemapNodeDefInputs(NodeDef* node_def, std::vector<bool>* input_already_exists); void AddControlDependencies(NodeDef* node_def, std::vector<bool>* input_already_exists); void AddPrefixToNodeDef(const std::vector<bool>& input_already_exists, NodeDef* node_def); void UniquifyNames(const std::vector<bool>& input_already_exists, NodeDef* node_def); void UpdateUniquifiedColocationNames(); bool NameExistsInGraph(StringPiece name); bool NameExistsInGraphDef(StringPiece name); string FindUniqueName(StringPiece original_name); void UpdatePendingCountAndReady(int processed, bool is_next_iteration); virtual size_t node_def_count() const = 0; virtual const NodeDef& get_node_def(int i) const = 0; virtual NodeDef consume_node_def(int i) = 0; virtual const VersionDef* versions() const = 0; virtual std::optional<FunctionDefLibrary> consume_library() = 0; virtual const GraphDebugInfo* debug_info() const = 0; const Options opts_; Graph* g_; const VersionDef original_versions_; string prefix_; StackTracesMap traces_; ShapeRefiner* refiner_; std::vector<std::pair<Node*, int>>* return_tensors_; std::vector<Node*>* return_nodes_; std::vector<SafeTensorId>* missing_unused_input_map_keys_; std::set<TensorId> used_input_map_keys_; absl::flat_hash_set<int> merge_node_indices_; struct NodeInfo { explicit NodeInfo(int i) : gdef_index(i), node(nullptr) {} NodeInfo() : NodeInfo(-1) {} int gdef_index; Node* node; }; absl::flat_hash_map<std::string, NodeInfo> gdef_nodes_; absl::flat_hash_set<StringPiece> gdef_prefixes_; absl::flat_hash_map<StringPiece, Node*> existing_nodes_; absl::flat_hash_set<StringPiece> existing_prefixes_; gtl::FlatMap<string, string> uniquified_names_; std::set<int> ready_; std::vector<int> pending_count_; std::vector<absl::InlinedVector<int, 4UL>> outputs_; struct InputInfo { explicit InputInfo(const string& node_name, Node* n, int i) : name(node_name), node(n), index(i) {} string name; Node* node; int index; static bool IsControlInput(const InputInfo& input) { return input.index == Graph::kControlSlot; } static int CompareName(const InputInfo& lhs, const InputInfo& rhs) { return lhs.name < rhs.name; } static bool IsSameName(const InputInfo& lhs, const InputInfo& rhs) { return lhs.name == rhs.name; } }; struct EdgeInfo { explicit EdgeInfo(const string& name, int i1, Node* n, int i2) : src_name(name), src_index(i1), dst_node(n), dst_index(i2) {} string src_name; int src_index; Node* dst_node; int dst_index; }; std::vector<EdgeInfo> back_edges_; GraphConstructor(const GraphConstructor&) = delete; void operator=(const GraphConstructor&) = delete; }; class NodeDefCopyingGraphConstructor : public GraphConstructor { public: NodeDefCopyingGraphConstructor( const Options& opts, NodeDefSlice node_defs, const VersionDef* versions, const FunctionDefLibrary* library, const GraphDebugInfo* debug_info, Graph* g, ShapeRefiner* refiner, std::vector<std::pair<Node*, int>>* return_tensors, std::vector<Node*>* return_nodes, std::vector<SafeTensorId>* missing_unused_input_map_keys) : GraphConstructor(opts, g, refiner, return_tensors, return_nodes, missing_unused_input_map_keys), node_defs_(node_defs), versions_(versions), library_(library), debug_info_(debug_info) {} private: size_t node_def_count() const override { return node_defs_.size(); } const NodeDef& get_node_def(int i) const override { return *node_defs_[i]; } NodeDef consume_node_def(int i) override { return *node_defs_[i]; } const VersionDef* versions() const override { return versions_; } std::optional<FunctionDefLibrary> consume_library() override { if (library_ == nullptr) { return std::nullopt; } else { return *library_; } } const GraphDebugInfo* debug_info() const override { return debug_info_; } const NodeDefSlice node_defs_; const VersionDef* const versions_; const FunctionDefLibrary* const library_; const GraphDebugInfo* const debug_info_; }; class NodeDefMovingGraphConstructor : public GraphConstructor { public: NodeDefMovingGraphConstructor( const Options& opts, GraphDef&& graph_def, Graph* g, ShapeRefiner* refiner, std::vector<std::pair<Node*, int>>* return_tensors, std::vector<Node*>* return_nodes, std::vector<SafeTensorId>* missing_unused_input_map_keys) : GraphConstructor(opts, g, refiner, return_tensors, return_nodes, missing_unused_input_map_keys), graph_def_(std::move(graph_def)), is_consumed_(graph_def_.node_size(), false) {} private: size_t node_def_count() const override { return graph_def_.node().size(); } const NodeDef& get_node_def(int i) const override { CHECK(!is_consumed_[i]) << "NodeDef " << i << " accessed after it was consumed."; return graph_def_.node(i); } NodeDef consume_node_def(int i) override { CHECK(!is_consumed_[i]) << "NodeDef " << i << " consumed twice."; is_consumed_[i] = true; return std::move(*graph_def_.mutable_node(i)); } const VersionDef* versions() const override { return &graph_def_.versions(); } std::optional<FunctionDefLibrary> consume_library() override { return std::move(*graph_def_.mutable_library()); } const GraphDebugInfo* debug_info() const override { return &graph_def_.debug_info(); } GraphDef graph_def_; std::vector<bool> is_consumed_; }; bool ForwardCompatibilityWindowPassed(const VersionDef& versions) { return (versions.producer() - TF_GRAPH_DEF_VERSION) > 21; } Status MaybeAppendVersionWarning(const VersionDef* versions, const Status& import_status) { if (versions && ForwardCompatibilityWindowPassed(*versions)) { return Status( import_status.code(), absl::StrCat( "Converting GraphDef to Graph has failed with an error: '", import_status.message(), "' The binary trying to import the GraphDef was built when " "GraphDef version was ", TF_GRAPH_DEF_VERSION, ". The GraphDef was produced by a binary built when GraphDef " "version was ", versions->producer(), ". The difference between these versions is larger than " "TensorFlow's forward compatibility guarantee, and might be the " "root cause for failing to import the GraphDef.")); } return import_status; } Status GraphConstructor::Construct( const Options& opts, NodeDefSlice node_defs, const VersionDef* versions, const FunctionDefLibrary* library, const GraphDebugInfo* debug_info, Graph* g, ShapeRefiner* refiner, std::vector<std::pair<Node*, int>>* return_tensors, std::vector<Node*>* return_nodes, std::vector<SafeTensorId>* missing_unused_input_map_keys) { if (versions) { TF_RETURN_IF_ERROR(CheckVersions(*versions, TF_GRAPH_DEF_VERSION, TF_GRAPH_DEF_VERSION_MIN_PRODUCER, "GraphDef", "graph")); } NodeDefCopyingGraphConstructor c(opts, node_defs, versions, library, debug_info, g, refiner, return_tensors, return_nodes, missing_unused_input_map_keys); Status s = c.TryImport(); if (!s.ok()) { c.Undo(); s = MaybeAppendVersionWarning(versions, s); } return s; } Status GraphConstructor::Construct( const Options& opts, GraphDef&& graph_def, Graph* g, ShapeRefiner* refiner, std::vector<std::pair<Node*, int>>* return_tensors, std::vector<Node*>* return_nodes, std::vector<SafeTensorId>* missing_unused_input_map_keys) { TF_RETURN_IF_ERROR(CheckVersions(graph_def.versions(), TF_GRAPH_DEF_VERSION, TF_GRAPH_DEF_VERSION_MIN_PRODUCER, "GraphDef", "graph")); VersionDef version_def = graph_def.versions(); NodeDefMovingGraphConstructor c(opts, std::move(graph_def), g, refiner, return_tensors, return_nodes, missing_unused_input_map_keys); Status s = c.TryImport(); if (!s.ok()) { c.Undo(); s = MaybeAppendVersionWarning(&version_def, s); } return s; } void GraphConstructor::UpdatePendingCountAndReady(int processed, bool is_next_iteration) { for (size_t i = 0; i < outputs_[processed].size(); ++i) { const int output = outputs_[processed][i]; bool is_next_iteration_to_merge_edge = is_next_iteration && merge_node_indices_.count(output) == 1; if (!is_next_iteration_to_merge_edge) { int* current_pending_count = &pending_count_[output]; CHECK_GT(*current_pending_count, 0); (*current_pending_count)--; if (*current_pending_count == 0) { ready_.insert(output); } } } } bool NodeNameInValues(const std::map<TensorId, TensorId>& input_map, const StringPiece& node_name) { for (auto iter = input_map.begin(); iter != input_map.end(); ++iter) { if (iter->second.first == node_name) return true; } return false; } bool NodeNameInValues(const std::vector<string>& control_dependencies, const StringPiece& node_name) { return std::find(control_dependencies.begin(), control_dependencies.end(), node_name) != control_dependencies.end(); } void AddPrefixes(StringPiece node_name, absl::flat_hash_set<StringPiece>* prefixes) { size_t idx = -1; while ((idx = node_name.find('/', idx + 1)) != StringPiece::npos) { prefixes->insert(node_name.substr(0, idx)); } } Status GraphConstructor::EnsureNoNameCollisions() { existing_nodes_.reserve(g_->num_nodes()); for (Node* n : g_->nodes()) { bool already_exists = !existing_nodes_.insert({n->name(), n}).second; if (already_exists) { if (NodeNameInValues(opts_.input_map, n->name())) { return errors::InvalidArgument( "cannot resolve input_map because multiple nodes exist with name '", n->name(), "'"); } if (NodeNameInValues(opts_.control_dependencies, n->name())) { return errors::InvalidArgument( "cannot resolve control_dependencies because multiple nodes exist " "with name '", n->name(), "'"); } } AddPrefixes(n->name(), &existing_prefixes_); } if (prefix_.empty() && opts_.importing && !opts_.uniquify_names) { for (size_t i = 0; i < node_def_count(); ++i) { const string& name = get_node_def(i).name(); if (NameExistsInGraph(name)) { return errors::InvalidArgument("Node name '", name, "' already exists in the Graph"); } } } else if (!prefix_.empty()) { StringPiece prefix_no_slash(prefix_); prefix_no_slash.remove_suffix(1); if (!IsValidNodeName(prefix_no_slash, false)) { return errors::InvalidArgument("Imported node name prefix '", prefix_, "' would lead to invalid node names"); } if (NameExistsInGraph(prefix_no_slash) && opts_.uniquify_prefix) { prefix_ = strings::StrCat(FindUniqueName(prefix_no_slash), "/"); } } return absl::OkStatus(); } Status GraphConstructor::ValidateInputMapAndControlDependencies() { for (const auto& mapping : opts_.input_map) { TensorId src = mapping.first; TensorId dst = mapping.second; if (existing_nodes_.count(dst.first) == 0) { return errors::InvalidArgument( "node '", dst.first, "' in input_map does not exist in graph ", "(input_map entry: ", src.ToString(), "->", dst.ToString(), ")"); } if ((src.second == Graph::kControlSlot) != (dst.second == Graph::kControlSlot)) { return errors::InvalidArgument("input_map entry ", src.ToString(), "->", dst.ToString(), " between ", "control edge and non-control edge"); } } for (const string& node : opts_.control_dependencies) { if (existing_nodes_.count(node) == 0) { return errors::InvalidArgument( "node '", node, "' in control_dependencies does not exist in " "graph"); } } return absl::OkStatus(); } Status GraphConstructor::BuildNodeIndex() { for (int n = 0; n < node_def_count(); ++n) { const NodeDef& node_def = get_node_def(n); if (!IsValidNodeName(node_def.name(), opts_.allow_internal_ops)) { return errors::InvalidArgument( "Node '", node_def.name(), "': Node name contains invalid characters"); } if (!gdef_nodes_.insert(std::make_pair(node_def.name(), NodeInfo(n))) .second) { return errors::InvalidArgument("Node '", node_def.name(), "' is not unique"); } if (node_def.op().empty()) { return errors::InvalidArgument("Node '", node_def.name(), "' does not specify an operation"); } if (opts_.expect_device_spec && node_def.device().empty()) { return errors::InvalidArgument("Node '", node_def.name(), "' is missing a device specification"); } if (IsMerge(node_def)) { merge_node_indices_.insert(n); } bool in_control_dependence = false; for (int i = 0; i < node_def.input_size(); ++i) { StringPiece input_name = node_def.input(i); if (!input_name.empty() && absl::StartsWith(input_name, "^")) { in_control_dependence = true; } else if (in_control_dependence) { return errors::InvalidArgument( "Node '", node_def.name(), "': Control dependencies must come after regular dependencies"); } } AddPrefixes(node_def.name(), &gdef_prefixes_); } return absl::OkStatus(); } Status GraphConstructor::InitFromEdges() { const int num_nodes = node_def_count(); pending_count_.reserve(num_nodes); outputs_.resize(num_nodes); gtl::FlatSet<string> next_iteration_nodes; for (int n = 0; n < node_def_count(); ++n) { const NodeDef& node_def = get_node_def(n); if (IsNextIteration(node_def)) { next_iteration_nodes.insert(node_def.name()); } } for (int n = 0; n < num_nodes; ++n) { const NodeDef& node_def = get_node_def(n); int pending_count = node_def.input_size(); if (IsMerge(node_def)) { int32_t num_control_edges = 0; bool has_loop_back_edge = false; for (int i = 0; i < node_def.input_size(); ++i) { StringPiece input_name(node_def.input(i)); if (absl::StartsWith(input_name, "^")) { num_control_edges++; } else { TensorId id(ParseTensorName(input_name)); if (next_iteration_nodes.find(string(id.first)) != next_iteration_nodes.end()) { has_loop_back_edge = true; } } } if (has_loop_back_edge) { pending_count = num_control_edges + 1; } } for (int i = 0; i < node_def.input_size(); ++i) { StringPiece input_name = node_def.input(i); TensorId id(ParseTensorName(input_name)); if (opts_.input_map.count(id) == 0) { auto iter = gdef_nodes_.find(id.first); if (iter == gdef_nodes_.end()) { return errors::InvalidArgument("Node '", node_def.name(), "': Unknown input node '", node_def.input(i), "'"); } outputs_[iter->second.gdef_index].push_back(n); } else { --pending_count; DCHECK_GE(pending_count, 0); } } if (pending_count == 0) { ready_.insert(n); } pending_count_.push_back(pending_count); } return absl::OkStatus(); } Status GraphConstructor::ValidateColocationConstraints( const NodeDef& node_def) { if (!opts_.validate_colocation_constraints || !opts_.importing) return absl::OkStatus(); const auto iter = node_def.attr().find(kColocationAttrName); if (iter == node_def.attr().end()) return absl::OkStatus(); for (const string& c : iter->second.list().s()) { StringPiece s(c); if (absl::ConsumePrefix(&s, kColocationGroupPrefix) && gdef_nodes_.find(s) == gdef_nodes_.end()) { return errors::InvalidArgument( "Node '", node_def.name(), "' expects to be colocated with unknown node '", s, "'"); } } return absl::OkStatus(); } Status GraphConstructor::MakeNode(NodeDef&& node_def, Node** node) { Status status; *node = g_->AddNode(std::move(node_def), &status); if (!status.ok()) return status; if (opts_.expect_device_spec || (opts_.propagate_device_spec && !(*node)->def().device().empty())) { (*node)->set_assigned_device_name((*node)->def().device()); } return absl::OkStatus(); } Status GraphConstructor::ValidateShape(Node* node) { if (!opts_.importing || !opts_.validate_shape) return absl::OkStatus(); TF_RETURN_IF_ERROR(refiner_->AddNode(node)); std::vector<const TensorShapeProto*> shape_attrs; const char* kAttrName = "_output_shapes"; if (!TryGetNodeAttr(node->attrs(), kAttrName, &shape_attrs)) { return absl::OkStatus(); } auto* ic = refiner_->GetContext(node); DCHECK(ic != nullptr) << "ShapeRefiner::AddNode() should have created the InferenceContext"; if (shape_attrs.size() < node->num_outputs()) { return errors::InvalidArgument( "Node '", node->name(), "' has ", node->num_outputs(), " outputs but the ", kAttrName, " attribute specifies shapes for ", shape_attrs.size(), " outputs"); } if (shape_attrs.size() > node->num_outputs()) { LOG(WARNING) << "Node '" << node->name() << "' has " << node->num_outputs() << " outputs but the " << kAttrName << " attribute specifies shapes for " << shape_attrs.size() << " outputs. Output shapes may be inaccurate."; } for (int i = 0; i < node->num_outputs(); ++i) { const TensorShapeProto& p = *shape_attrs[i]; shape_inference::ShapeHandle h; Status s = ic->MakeShapeFromShapeProto(p, &h); if (!s.ok()) { return errors::InvalidArgument("Node '", node->name(), " has an invalid ", kAttrName, " attribute (shape #", i, " error:'", s.message(), "'"); } s = refiner_->SetShape(node, i, h); if (!s.ok()) { return errors::InvalidArgument( "Node '", node->name(), "' has an ", kAttrName, " attribute inconsistent with the GraphDef for output #", i, ": ", s.message()); } } node->ClearAttr(kAttrName); return absl::OkStatus(); } Status GraphConstructor::ModifyNodeDefForImport(NodeDef* node_def) { const OpDef* op_def; TF_RETURN_IF_ERROR(g_->op_registry()->LookUpOpDef(node_def->op(), &op_def)); AddDefaultsToNodeDef(*op_def, node_def); TF_RETURN_IF_ERROR(ValidateNodeDef(*node_def, *op_def)); if (versions()) { TF_RETURN_IF_ERROR(CheckOpDeprecation(*op_def, versions()->producer())); } return absl::OkStatus(); } void RemoveInputs(const std::vector<int>& inputs_to_remove, NodeDef* node_def, std::vector<bool>* input_already_exists) { NodeDef copy; copy.mutable_input()->Reserve(node_def->input_size() - inputs_to_remove.size()); for (int i = 0, j = 0; i < node_def->input_size(); ++i) { if (j < inputs_to_remove.size() && i == inputs_to_remove[j]) { ++j; } else { copy.add_input()->swap(*node_def->mutable_input(i)); } } node_def->mutable_input()->Swap(copy.mutable_input()); for (int idx : inputs_to_remove) { input_already_exists->erase(input_already_exists->begin() + idx); } DCHECK_EQ(input_already_exists->size(), node_def->input_size()); } void GraphConstructor::RemapNodeDefInputs( NodeDef* node_def, std::vector<bool>* input_already_exists) { DCHECK_EQ(input_already_exists->size(), node_def->input_size()); std::set<TensorId> control_inputs; std::vector<int> inputs_to_remove; for (int i = 0; i < node_def->input_size(); ++i) { auto iter = opts_.input_map.find(ParseTensorName(node_def->input(i))); if (iter == opts_.input_map.end()) continue; used_input_map_keys_.insert(iter->first); TensorId new_input = iter->second; if (new_input.second == Graph::kControlSlot) { if (control_inputs.count(new_input) > 0) { inputs_to_remove.push_back(i); continue; } control_inputs.insert(new_input); } node_def->set_input(i, new_input.ToString()); (*input_already_exists)[i] = true; } if (!inputs_to_remove.empty()) { RemoveInputs(inputs_to_remove, node_def, input_already_exists); } } void GraphConstructor::AddControlDependencies( NodeDef* node_def, std::vector<bool>* input_already_exists) { bool inherits_deps = false; for (int i = 0; i < node_def->input_size(); ++i) { if ((*input_already_exists)[i]) continue; TensorId id(ParseTensorName(node_def->input(i))); auto iter = gdef_nodes_.find(id.first); DCHECK(iter != gdef_nodes_.end()) << id.first; if (iter->second.node == nullptr) { continue; } inherits_deps = true; } if (inherits_deps) return; for (const string& control_dep : opts_.control_dependencies) { string input = TensorId(control_dep, Graph::kControlSlot).ToString(); bool found = false; for (int i = node_def->input_size() - 1; i >= 0; --i) { const string& node_input = node_def->input(i); if (node_input[0] != '^') { break; } if (node_input == input) { found = true; break; } } if (found) { continue; } node_def->add_input(input); input_already_exists->push_back(true); } } void GraphConstructor::AddPrefixToNodeDef( const std::vector<bool>& input_already_exists, NodeDef* node_def) { if (prefix_.empty()) return; node_def->set_name(strings::StrCat(prefix_, node_def->name())); for (int i = 0; i < node_def->input_size(); ++i) { if (input_already_exists[i]) continue; StringPiece input(node_def->input(i)); if (absl::ConsumePrefix(&input, "^")) { node_def->set_input(i, strings::StrCat("^", prefix_, input)); } else { node_def->set_input(i, strings::StrCat(prefix_, input)); } } if (node_def->attr().find(kColocationAttrName) != node_def->attr().end()) { auto* list = node_def->mutable_attr()->at(kColocationAttrName).mutable_list(); for (int i = 0; i < list->s_size(); ++i) { StringPiece v(list->s(i)); if (absl::ConsumePrefix(&v, kColocationGroupPrefix)) { list->set_s(i, strings::StrCat(kColocationGroupPrefix, prefix_, v)); } } } } void GraphConstructor::UniquifyNames( const std::vector<bool>& input_already_exists, NodeDef* node_def) { if (NameExistsInGraph(node_def->name())) { string old_name = node_def->name(); node_def->set_name(FindUniqueName(node_def->name())); uniquified_names_[old_name] = node_def->name(); } for (int i = 0; i < node_def->input_size(); ++i) { if (input_already_exists[i]) continue; TensorId id = ParseTensorName(node_def->input(i)); auto iter = uniquified_names_.find(string(id.first)); if (iter == uniquified_names_.end()) continue; id.first = iter->second; node_def->set_input(i, id.ToString()); } } void GraphConstructor::UpdateUniquifiedColocationNames() { for (const auto& pair : gdef_nodes_) { Node* node = pair.second.node; if (node == nullptr) continue; std::vector<string> coloc_values; if (!TryGetNodeAttr(node->attrs(), kColocationAttrName, &coloc_values)) continue; bool updated = false; for (size_t i = 0; i < coloc_values.size(); ++i) { StringPiece val(coloc_values[i]); if (absl::ConsumePrefix(&val, kColocationGroupPrefix)) { auto name_pair = uniquified_names_.find(string(val)); if (name_pair == uniquified_names_.end()) continue; updated = true; coloc_values[i] = strings::StrCat(kColocationGroupPrefix, name_pair->second); } } if (updated) { node->AddAttr(kColocationAttrName, std::move(coloc_values)); } } } bool GraphConstructor::NameExistsInGraph(StringPiece name) { if (existing_nodes_.find(name) != existing_nodes_.end()) return true; if (existing_prefixes_.find(name) != existing_prefixes_.end()) return true; return false; } bool GraphConstructor::NameExistsInGraphDef(StringPiece name) { if (gdef_nodes_.find(name) != gdef_nodes_.end()) return true; if (gdef_prefixes_.find(name) != gdef_prefixes_.end()) return true; return false; } string GraphConstructor::FindUniqueName(StringPiece original_name) { string name(original_name); int count = 0; while (NameExistsInGraph(name) || (count > 0 && NameExistsInGraphDef(name))) { name = strings::StrCat(original_name, "_", ++count); } return name; } Status GraphConstructor::IsNodeFullyMapped(const NodeDef& node_def, bool* is_node_mapped) { const OpDef* op_def; TF_RETURN_IF_ERROR(g_->op_registry()->LookUpOpDef(node_def.op(), &op_def)); for (int i = 0; i < op_def->output_arg_size(); ++i) { if (opts_.input_map.find({node_def.name(), i}) == opts_.input_map.end()) { *is_node_mapped = false; return absl::OkStatus(); } } *is_node_mapped = true; return absl::OkStatus(); } void GraphConstructor::DFS(int cur_node, std::vector<int>* cur_branch, std::vector<bool>* is_on_cur_branch, absl::flat_hash_set<int>* unvisited, const std::vector<absl::string_view>& node_names) { cur_branch->push_back(cur_node); is_on_cur_branch->at(cur_node) = true; for (auto next_node : outputs_[cur_node]) { if (unvisited->find(next_node) != unvisited->end()) { if (is_on_cur_branch->at(next_node)) { auto iter = std::find(cur_branch->begin(), cur_branch->end(), next_node); LOG(WARNING) << "Cycle detected:"; while (iter != cur_branch->end()) { const absl::string_view name = node_names[*iter]; DCHECK(!name.empty()); LOG(WARNING) << "node id=" << *iter << ", name=" << name; ++iter; } LOG(WARNING) << "End of cycle"; } else { DFS(next_node, cur_branch, is_on_cur_branch, unvisited, node_names); } } } cur_branch->pop_back(); is_on_cur_branch->at(cur_node) = false; unvisited->erase(cur_node); } void GraphConstructor::PrintCycles() { int num_nodes = outputs_.size(); std::vector<absl::string_view> node_names; node_names.resize(num_nodes); for (const auto& named_node : gdef_nodes_) { DCHECK_GE(named_node.second.gdef_index, 0); DCHECK_LT(named_node.second.gdef_index, num_nodes); node_names[named_node.second.gdef_index] = named_node.first; } absl::flat_hash_set<int> unvisited; for (int i = 0; i < num_nodes; i++) { unvisited.insert(i); } while (!unvisited.empty()) { int cur_node = *unvisited.begin(); std::vector<int> cur_branch; std::vector<bool> is_on_cur_branch(num_nodes, false); DFS(cur_node, &cur_branch, &is_on_cur_branch, &unvisited, node_names); } } FunctionDefLibraryStackTraces GraphConstructor::CreateStackTracesForFunctionDefLibrary( const FunctionDefLibrary& library) const { if (debug_info() == nullptr) { FunctionDefLibraryStackTraces library_traces; return library_traces; } else { return FunctionLibraryDefinition::CreateStackTracesForFunctionDefLibrary( library, *debug_info()); } } Status GraphConstructor::Convert() { if (debug_info() != nullptr) { traces_ = LoadTracesFromDebugInfo(*debug_info()); } if (auto library = consume_library(); library.has_value()) { FunctionDefLibraryStackTraces library_traces; for (const FunctionDef& fdef : library->function()) { const std::string& function_name = fdef.signature().name(); StackTracesMap& function_traces = library_traces[function_name]; std::string key_suffix = absl::StrCat("@", function_name); for (const auto& [traces_key, stack_trace] : traces_) { if (!absl::EndsWith(traces_key, key_suffix)) continue; std::string node_key = std::string(absl::StripSuffix(traces_key, key_suffix)); function_traces[node_key] = stack_trace; } } TF_RETURN_IF_ERROR( g_->AddFunctionLibrary(*std::move(library), library_traces)); } std::vector<InputInfo> inputs; int processed = 0; std::vector<bool> input_already_exists; while (!ready_.empty()) { int o = *ready_.begin(); ready_.erase(ready_.begin()); ++processed; inputs.clear(); bool has_data_back_edge = false; NodeDef node_def = consume_node_def(o); input_already_exists.clear(); input_already_exists.resize(node_def.input_size(), false); std::string node_name = node_def.name(); if (opts_.importing) { if (opts_.skip_mapped_nodes) { bool is_node_mapped = false; TF_RETURN_IF_ERROR(IsNodeFullyMapped(node_def, &is_node_mapped)); if (is_node_mapped) { UpdatePendingCountAndReady(o, IsNextIteration(node_def)); continue; } } if (!opts_.input_map.empty()) { RemapNodeDefInputs(&node_def, &input_already_exists); } if (!opts_.control_dependencies.empty()) { AddControlDependencies(&node_def, &input_already_exists); } if (!opts_.default_device.empty() && node_def.device().empty()) { node_def.set_device(opts_.default_device); } } DCHECK_EQ(node_def.input_size(), input_already_exists.size()); TF_RETURN_IF_ERROR(ValidateColocationConstraints(node_def)); for (int i = 0; i < node_def.input_size(); ++i) { TensorId tensor_id = ParseTensorName(node_def.input(i)); Node* src_node; int src_index; if (!input_already_exists[i]) { auto iter = gdef_nodes_.find(tensor_id.node()); DCHECK(iter != gdef_nodes_.end()) << tensor_id.node(); src_node = iter->second.node; src_index = tensor_id.index(); if (src_node == nullptr) has_data_back_edge = true; } else { auto iter = existing_nodes_.find(tensor_id.node()); DCHECK(iter != existing_nodes_.end()) << tensor_id.node(); src_node = iter->second; src_index = tensor_id.index(); } if (src_node != nullptr && src_index >= src_node->num_outputs()) { std::ostringstream out; out << "Node '" << node_def.name() << "': Connecting to invalid output " << tensor_id.index() << " of source node " << tensor_id.node() << " which has " << src_node->num_outputs() << " outputs."; if (src_node->type_string() == "If" || src_node->type_string() == "StatelessIf" || src_node->type_string() == "While" || src_node->type_string() == "StatelessWhile") { out << " Try using " << "tf.compat.v1.experimental.output_all_intermediates(True)."; } return errors::InvalidArgument(out.str()); } inputs.emplace_back(string(tensor_id.node()), src_node, src_index); } if (has_data_back_edge && !IsMerge(node_def)) { return errors::InvalidArgument( "Node '", node_def.name(), "' had a back edge, but only Merge nodes can have back edges."); } Node* node; if (opts_.importing) { if (!prefix_.empty()) { AddPrefixToNodeDef(input_already_exists, &node_def); } if (opts_.uniquify_names && (prefix_.empty() || !opts_.uniquify_prefix)) { UniquifyNames(input_already_exists, &node_def); } } if (opts_.importing) { TF_RETURN_IF_ERROR(ModifyNodeDefForImport(&node_def)); } else { const OpDef* op_def; TF_RETURN_IF_ERROR( g_->op_registry()->LookUpOpDef(node_def.op(), &op_def)); if (opts_.add_default_attributes) { AddDefaultsToNodeDef(*op_def, &node_def); } if (opts_.validate_nodes) { TF_RETURN_IF_ERROR(ValidateNodeDef(node_def, *op_def)); } } TF_RETURN_IF_ERROR(MakeNode(std::move(node_def), &node)); if (node != nullptr) { if (traces_.contains(node_name)) { node->SetStackTrace(traces_[node_name]); } } gdef_nodes_[node_name].node = node; auto first_control = absl::c_find_if(inputs, &InputInfo::IsControlInput); auto first_control_copy = first_control; std::sort(first_control, inputs.end(), &InputInfo::CompareName); inputs.erase( std::unique(first_control_copy, inputs.end(), &InputInfo::IsSameName), inputs.end()); for (size_t i = 0; i < inputs.size(); ++i) { if (inputs[i].node == nullptr) { back_edges_.emplace_back(inputs[i].name, inputs[i].index, node, i); } else if (inputs[i].index == Graph::kControlSlot) { g_->AddControlEdge(inputs[i].node, node, kDoNotCheckDuplicates); } else { TF_RETURN_IF_ERROR(MakeEdge(inputs[i].node, inputs[i].index, node, i)); } } TF_RETURN_IF_ERROR(ValidateShape(node)); UpdatePendingCountAndReady(o, node->IsNextIteration()); } if (processed < node_def_count()) { LOG(WARNING) << "IN " << __func__ << " " << (node_def_count() - processed) << " NODES IN A CYCLE"; for (int64_t i = 0; i < node_def_count(); i++) { if (pending_count_[i] != 0) { LOG(WARNING) << "PENDING: " << SummarizeNodeDef(get_node_def(i)) << " WITH PENDING COUNT = " << pending_count_[i]; } } PrintCycles(); return errors::InvalidArgument(node_def_count() - processed, " nodes in a cycle"); } return absl::OkStatus(); } Status GraphConstructor::AddBackEdges() { for (const auto& e : back_edges_) { Node* src_node = gdef_nodes_[e.src_name].node; if (e.src_index == Graph::kControlSlot) { g_->AddControlEdge(src_node, e.dst_node, kDoNotCheckDuplicates); } else { TF_RETURN_IF_ERROR( MakeEdge(src_node, e.src_index, e.dst_node, e.dst_index)); } VLOG(2) << "Add back edge: " << src_node->name() << " -> " << e.dst_node->name(); } return absl::OkStatus(); } Status GraphConstructor::UpdateVersionDef() { if (versions() == nullptr) return absl::OkStatus(); if (!opts_.importing) { g_->set_versions(*versions()); return absl::OkStatus(); } VersionDef g_versions = g_->versions(); g_versions.set_producer( std::min(g_versions.producer(), versions()->producer())); g_versions.set_min_consumer( std::max(g_versions.min_consumer(), versions()->min_consumer())); if (versions()->bad_consumers_size() > 0) { std::set<int> bad(g_versions.bad_consumers().begin(), g_versions.bad_consumers().end()); bad.insert(versions()->bad_consumers().begin(), versions()->bad_consumers().end()); g_versions.clear_bad_consumers(); for (int v : bad) { g_versions.add_bad_consumers(v); } } g_->set_versions(g_versions); return absl::OkStatus(); } Status GraphConstructor::PopulateReturnTensors() { if (opts_.return_tensors.empty()) return absl::OkStatus(); for (const TensorId& id : opts_.return_tensors) { auto iter = opts_.input_map.find(id); if (iter == opts_.input_map.end()) { auto iter = gdef_nodes_.find(id.first); if (iter == gdef_nodes_.end()) { return errors::InvalidArgument("Requested return tensor '", id.ToString(), "' not found in graph def"); } int num_outputs = iter->second.node->num_outputs(); if ((id.second < 0 || id.second >= num_outputs) && id.second != Graph::kControlSlot) { return errors::InvalidArgument("Invalid return output ", id.second, " of node '", id.first, "', which has ", num_outputs, " output(s)"); } return_tensors_->push_back({iter->second.node, id.second}); } else { TensorId remapped_id = iter->second; DCHECK_GT(existing_nodes_.count(remapped_id.first), 0); Node* node = existing_nodes_[remapped_id.first]; return_tensors_->push_back({node, remapped_id.second}); } } return absl::OkStatus(); } Status GraphConstructor::PopulateReturnNodes() { if (opts_.return_nodes.empty()) return absl::OkStatus(); for (StringPiece name : opts_.return_nodes) { auto iter = gdef_nodes_.find(name); if (iter == gdef_nodes_.end()) { return errors::InvalidArgument("Requested return node '", name, "' not found in graph def"); } return_nodes_->push_back(iter->second.node); } return absl::OkStatus(); } Status GraphConstructor::PopulateMissingUnusedInputMapKeys() { if (missing_unused_input_map_keys_ == nullptr) return absl::OkStatus(); for (const auto& input_map_pair : opts_.input_map) { TensorId key = input_map_pair.first; if (used_input_map_keys_.count(key) > 0) continue; auto pair = gdef_nodes_.find(key.first); if (pair == gdef_nodes_.end()) { missing_unused_input_map_keys_->push_back(key); continue; } const NodeDef& node_def = get_node_def(pair->second.gdef_index); const OpDef* op_def; TF_RETURN_IF_ERROR(g_->op_registry()->LookUpOpDef(node_def.op(), &op_def)); int num_outputs; TF_RETURN_IF_ERROR(NumOutputsForNode(node_def, *op_def, &num_outputs)); if (key.second >= num_outputs) { missing_unused_input_map_keys_->push_back(key); } } return absl::OkStatus(); } void GraphConstructor::Undo() { for (const auto& iter : gdef_nodes_) { if (iter.second.node != nullptr) { g_->RemoveNode(iter.second.node); } } g_->set_versions(original_versions_); } Status GraphConstructor::MakeEdge(Node* src, int output_index, Node* dst, int input_index) { if (output_index >= src->num_outputs()) { return errors::InvalidArgument( "Output ", output_index, " of node ", src->name(), " does not exist. Node only has ", src->num_outputs(), " outputs."); } if (input_index >= dst->num_inputs()) { return errors::InvalidArgument( "Input ", input_index, " of node ", dst->name(), " does not exist. Node only has ", dst->num_inputs(), " inputs."); } DataType src_out = src->output_type(output_index); DataType dst_in = dst->input_type(input_index); if (!TypesCompatible(dst_in, src_out)) { return errors::InvalidArgument( "Input ", input_index, " of node ", dst->name(), " was passed ", DataTypeString(src_out), " from ", src->name(), ":", output_index, " incompatible with expected ", DataTypeString(dst_in), "."); } g_->AddEdge(src, output_index, dst, input_index); return absl::OkStatus(); } } Status ConvertGraphDefToGraph(const GraphConstructorOptions& opts, const GraphDef& gdef, Graph* g) { ShapeRefiner refiner(gdef.versions().producer(), g->op_registry()); return GraphConstructor::Construct( opts, gdef.node(), &gdef.versions(), &gdef.library(), &gdef.debug_info(), g, &refiner, nullptr, nullptr, nullptr); } Status ConvertGraphDefToGraph(const GraphConstructorOptions& opts, GraphDef&& gdef, Graph* g) { ShapeRefiner refiner(gdef.versions().producer(), g->op_registry()); return GraphConstructor::Construct(opts, std::move(gdef), g, &refiner, nullptr, nullptr, nullptr); } Status ConvertNodeDefsToGraph(const GraphConstructorOptions& opts, absl::Span<const NodeDef> nodes, Graph* g, const GraphDebugInfo* debug_info) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, g->op_registry()); std::vector<const NodeDef*> node_defs; node_defs.reserve(nodes.size()); for (const auto& n : nodes) { node_defs.push_back(&n); } return GraphConstructor::Construct(opts, node_defs, nullptr, nullptr, debug_info, g, &refiner, nullptr, nullptr, nullptr); } Status ImportGraphDef(const ImportGraphDefOptions& opts, const GraphDef& gdef, Graph* g, ShapeRefiner* refiner, ImportGraphDefResults* results) { if (!opts.return_tensors.empty()) { if (results == nullptr) { return errors::InvalidArgument( "results argument to ImportGraphDef() must be non-null if " "opts.return_tensors is non-empty"); } } if (!opts.return_nodes.empty()) { if (opts.skip_mapped_nodes) { return errors::InvalidArgument( "Requesting return_nodes with skip_mapped_nodes set is not currently " "supported"); } if (results == nullptr) { return errors::InvalidArgument( "results argument to ImportGraphDef() must be non-null if " "opts.return_nodes is non-empty"); } } if (results != nullptr) { if (!results->return_tensors.empty() || !results->return_nodes.empty() || !results->missing_unused_input_map_keys.empty()) { return errors::InvalidArgument( "All fields in results argument to ImportGraphDef() must be empty."); } } ShapeRefiner default_refiner(gdef.versions().producer(), g->op_registry()); if (refiner == nullptr) { refiner = &default_refiner; } else { if (gdef.versions().producer() > 0 && gdef.versions().producer() < refiner->graph_def_version() && g->num_nodes() > 2) { LOG(WARNING) << "Importing a graph with a lower producer version " << gdef.versions().producer() << " into an existing graph with producer version " << refiner->graph_def_version() << ". Shape inference will " << "have run different parts of the graph with different " << "producer versions."; } } refiner->set_graph_def_version( std::min(refiner->graph_def_version(), gdef.versions().producer())); if (results == nullptr) { return GraphConstructor::Construct(opts, gdef.node(), &gdef.versions(), &gdef.library(), &gdef.debug_info(), g, refiner, nullptr, nullptr, nullptr); } else { return GraphConstructor::Construct( opts, gdef.node(), &gdef.versions(), &gdef.library(), &gdef.debug_info(), g, refiner, &results->return_tensors, &results->return_nodes, &results->missing_unused_input_map_keys); } } void CopyGraph(const Graph& src, Graph* dest) { dest->Copy(src); } }
#include "tensorflow/core/common_runtime/graph_constructor.h" #include <utility> #include <vector> #include <gtest/gtest.h> #include "tensorflow/core/common_runtime/shape_refiner.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { class GraphConstructorTest : public ::testing::Test { protected: GraphConstructorTest() : graph_(OpRegistry::Global()) {} void Convert(const string& gdef_ascii) { CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &gdef_)); } void ExpectError(const string& gdef_ascii, const std::vector<string>& expected_error_strs, string not_expected_error_str = "") { const string original_graph_description = GraphDebugString(); Convert(gdef_ascii); GraphConstructorOptions opts; Status status = ConvertGraphDefToGraph(opts, gdef_, &graph_); EXPECT_FALSE(status.ok()); for (const string& error : expected_error_strs) { EXPECT_TRUE(absl::StrContains(status.message(), error)) << "Expected to find '" << error << "' in " << status; } if (!not_expected_error_str.empty()) { EXPECT_TRUE(!absl::StrContains(status.message(), not_expected_error_str)) << "Expected not to find '" << not_expected_error_str << "' in " << status; } EXPECT_EQ(original_graph_description, GraphDebugString()); } void ExpectError(const string& gdef_ascii, const ImportGraphDefOptions& opts, const std::vector<string>& expected_error_strs, ShapeRefiner* refiner = nullptr, ImportGraphDefResults* results = nullptr) { const string original_graph_description = GraphDebugString(); Convert(gdef_ascii); Status status = ImportGraphDef(opts, gdef_, &graph_, refiner, results); EXPECT_FALSE(status.ok()); for (const string& error : expected_error_strs) { EXPECT_TRUE(absl::StrContains(status.message(), error)) << "Expected to find '" << error << "' in " << status; } EXPECT_EQ(original_graph_description, GraphDebugString()); } void ExpectOK(const string& gdef_ascii) { Convert(gdef_ascii); GraphConstructorOptions opts; TF_CHECK_OK(ConvertGraphDefToGraph(opts, gdef_, &graph_)); } void ExpectOK(const string& gdef_ascii, const ImportGraphDefOptions& opts, ShapeRefiner* refiner = nullptr, ImportGraphDefResults* results = nullptr) { Convert(gdef_ascii); Status s = ImportGraphDef(opts, gdef_, &graph_, refiner, results); EXPECT_EQ(absl::OkStatus(), s) << s; } void ExpectVersions(int min_consumer, int producer) { EXPECT_EQ(min_consumer, graph_.versions().min_consumer()) << "Expected min consumer " << min_consumer << ", got " << graph_.versions().min_consumer(); EXPECT_EQ(producer, graph_.versions().producer()) << "Expected producer " << producer << ", got " << graph_.versions().producer(); } Node* FindNode(const string& name) { for (Node* n : graph_.nodes()) { if (n->name() == name) return n; } return nullptr; } bool HasNode(const string& name) { return FindNode(name) != nullptr; } bool HasEdge(const string& src, int src_out, const string& dst, int dst_in) { for (const Edge* e : graph_.edges()) { if (e->src()->name() == src && e->src_output() == src_out && e->dst()->name() == dst && e->dst_input() == dst_in) { return true; } } return false; } bool HasControlEdge(const string& src, const string& dst) { return HasEdge(src, Graph::kControlSlot, dst, Graph::kControlSlot); } string ColocationGroup(const string& node) { Node* n = nullptr; for (Node* ni : graph_.nodes()) { if (ni->name() == node) { n = ni; break; } } if (n == nullptr) { return ""; } std::vector<string> value; Status s = GetNodeAttr(n->attrs(), kColocationAttrName, &value); if (!s.ok()) { return ""; } if (value.size() != 1) { ADD_FAILURE() << "ColocationGroup was written with the assumption of at most 1 " "value for the _class attribute. Update it and its callers"; return ""; } StringPiece loc(value[0]); return absl::ConsumePrefix(&loc, kColocationGroupPrefix) ? string(loc) : ""; } string GraphDebugString() const { return graph_.ToGraphDefDebug().DebugString(); } Graph graph_; private: GraphDef gdef_; }; Status Scalars(shape_inference::InferenceContext* c) { for (int i = 0; i < c->num_outputs(); ++i) { c->set_output(i, c->Scalar()); } return absl::OkStatus(); } REGISTER_OP("ABC"); REGISTER_OP("TestParams").Output("o: float").SetShapeFn(Scalars); REGISTER_OP("TestInput") .Output("a: float") .Output("b: float") .SetShapeFn(Scalars); REGISTER_OP("TestMul") .Input("a: float") .Input("b: float") .Output("o: float") .SetShapeFn(Scalars); REGISTER_OP("TestInt").Input("a: int32"); REGISTER_OP("TestOneInputTwoOutputs") .Input("x: float") .Output("y: float") .Output("z: float") .SetShapeFn(Scalars); REGISTER_OP("TestOneInputOneOutput") .Input("x: T") .Output("y: T") .Attr("T: {float, int64}") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("TestVariadicOutput") .Output("outputs: N * int32") .Attr("N: int >= 0") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("TestDefaultAttr") .Attr("default_int: int=31415") .SetShapeFn(shape_inference::NoOutputs); REGISTER_OP("RequiresCurrentGraphVersion") .Output("version: int32") .SetIsStateful() .SetShapeFn([](shape_inference::InferenceContext* c) { if (c->graph_def_version() != TF_GRAPH_DEF_VERSION) { return errors::InvalidArgument("Wrong graph version for shape"); } return shape_inference::ScalarShape(c); }); TEST_F(GraphConstructorTest, InvalidNodeName) { auto expect_invalid_name = [this](const char* name) { ExpectError(strings::StrCat("node { name: '", name, "' op: 'ABC' }"), {"Node name contains invalid characters"}); }; expect_invalid_name("a:b"); expect_invalid_name("_abc"); expect_invalid_name(R"(a\\b)"); expect_invalid_name("/a"); expect_invalid_name("-a"); ExpectOK("node { name: 'a-bc_' op: 'ABC' }"); ExpectOK("node { name: 'a-B.0/.c_' op: 'ABC' }"); ExpectOK("node { name: '0123' op: 'ABC' }"); ExpectOK("node { name: '.0123' op: 'ABC' }"); } TEST_F(GraphConstructorTest, InvalidSourceNodeName) { ExpectError( "node { name: 'W1' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: 'W999' input: 'input' }", {"Unknown input node", "W999"}); } TEST_F(GraphConstructorTest, InvalidSourceNodeIndex) { ExpectError( "node { name: 'W1' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1:1', 'input:1' ] }", {"Connecting to invalid output 1 of source node W1"}); } TEST_F(GraphConstructorTest, GraphWithCycle) { ExpectError( "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'input:0', 't2' ] }" "node { name: 't2' op: 'TestMul' input: [ 'input:1', 't1' ] }", {"cycle"}); } TEST_F(GraphConstructorTest, GraphWithOKCycle) { ExpectOK(R"EOF( node { name: "Const" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 0 } } } } node { name: "while/Enter" op: "Enter" input: "Const" attr { key: "T" value { type: DT_INT32 } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 10 } } } node { name: "while/Merge" op: "Merge" input: "while/Enter" input: "while/NextIteration" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Less/y" op: "Const" input: "^while/Merge" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 10 } } } } node { name: "while/Less" op: "Less" input: "while/Merge" input: "while/Less/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/LoopCond" op: "LoopCond" input: "while/Less" } node { name: "while/Switch" op: "Switch" input: "while/Merge" input: "while/LoopCond" attr { key: "T" value { type: DT_INT32 } } attr { key: "_class" value { list { s: "loc:@while/Merge" } } } } node { name: "while/Identity" op: "Identity" input: "while/Switch:1" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Add/y" op: "Const" input: "^while/Identity" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 1 } } } } node { name: "while/Add" op: "Add" input: "while/Identity" input: "while/Add/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/NextIteration" op: "NextIteration" input: "while/Add" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Exit" op: "Exit" input: "while/Switch" attr { key: "T" value { type: DT_INT32 } } } versions { producer: 11 } )EOF"); } TEST_F(GraphConstructorTest, ImportGraphThatUsesConstantValueFromInsideLoop) { const string pb_ascii = R"EOF( node { name: "Const" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 0 } } } } node { name: "Const_1" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { dim { size: 1 } } int_val: 0 } } } } node { name: "while/Enter" op: "Enter" input: "Const" attr { key: "T" value { type: DT_INT32 } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 10 } } } node { name: "while/Enter_1" op: "Enter" input: "Const_1" attr { key: "T" value { type: DT_INT32 } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 10 } } } node { name: "while/Merge" op: "Merge" input: "while/Enter" input: "while/NextIteration" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Merge_1" op: "Merge" input: "while/Enter_1" input: "while/NextIteration_1" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Less/y" op: "Const" input: "^while/Merge" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 10 } } } } node { name: "while/Less" op: "Less" input: "while/Merge" input: "while/Less/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/LoopCond" op: "LoopCond" input: "while/Less" } node { name: "while/Switch" op: "Switch" input: "while/Merge" input: "while/LoopCond" attr { key: "T" value { type: DT_INT32 } } attr { key: "_class" value { list { s: "loc:@while/Merge" } } } } node { name: "while/Switch_1" op: "Switch" input: "while/Merge_1" input: "while/LoopCond" attr { key: "T" value { type: DT_INT32 } } attr { key: "_class" value { list { s: "loc:@while/Merge_1" } } } } node { name: "while/Identity" op: "Identity" input: "while/Switch:1" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Identity_1" op: "Identity" input: "while/Switch_1:1" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/transpose" op: "Transpose" input: "while/Identity_1" input: "while/Identity_1" attr { key: "T" value { type: DT_INT32 } } attr { key: "Tperm" value { type: DT_INT32 } } } node { name: "while/NextIteration" op: "NextIteration" input: "while/Identity" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/NextIteration_1" op: "NextIteration" input: "while/transpose" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Exit" op: "Exit" input: "while/Switch" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Exit_1" op: "Exit" input: "while/Switch_1" attr { key: "T" value { type: DT_INT32 } } } versions { producer: 21 } )EOF"; GraphDef def; ASSERT_TRUE(protobuf::TextFormat::ParseFromString(pb_ascii, &def)); ImportGraphDefOptions opts; auto s = ImportGraphDef(opts, def, &graph_, nullptr); ASSERT_EQ(absl::OkStatus(), s) << s; } TEST_F(GraphConstructorTest, TypeMismatch) { ExpectError( "node { name: 'input' op: 'TestInput' }" "node { name: 'int' op: 'TestInt' input: [ 'input' ] }", {"Input 0 of node int was passed float from input:0 incompatible with " "expected int32."}); } TEST_F(GraphConstructorTest, EmptyGraph) { ExpectOK(""); ExpectVersions(0, 0); } TEST_F(GraphConstructorTest, VersionGraph) { ExpectOK(strings::StrCat("versions { producer: ", TF_GRAPH_DEF_VERSION, " min_consumer: ", TF_GRAPH_DEF_VERSION_MIN_CONSUMER, "}")); ExpectVersions(TF_GRAPH_DEF_VERSION_MIN_CONSUMER, TF_GRAPH_DEF_VERSION); } TEST_F(GraphConstructorTest, ForwardCompatError) { ExpectError( strings::StrCat( "node { name: 'a:b' op: 'ABC' }\n" "versions { producer: ", TF_GRAPH_DEF_VERSION + 22, " min_consumer: ", TF_GRAPH_DEF_VERSION_MIN_CONSUMER, "}"), {"forward compatibility guarantee"}); } TEST_F(GraphConstructorTest, NoForwardCompatError) { ExpectError( strings::StrCat( "node { name: 'a:b' op: 'ABC' }\n" "versions { producer: ", TF_GRAPH_DEF_VERSION + 21, " min_consumer: ", TF_GRAPH_DEF_VERSION_MIN_CONSUMER, "}"), {"Node name contains invalid characters"}, "forward compatibility guarantee"); } TEST_F(GraphConstructorTest, LowVersion) { ExpectError(strings::StrCat("versions { producer: ", -1, " }"), {strings::StrCat("GraphDef producer version -1 below min " "producer ", TF_GRAPH_DEF_VERSION_MIN_PRODUCER, " supported by TensorFlow ", TF_VERSION_STRING, ". Please regenerate your graph.")}); } TEST_F(GraphConstructorTest, HighVersion) { const int version = TF_GRAPH_DEF_VERSION + 1; ExpectError(strings::StrCat("versions { min_consumer: ", version, " }"), {strings::StrCat("GraphDef min consumer version ", version, " above current version ", TF_GRAPH_DEF_VERSION, " for TensorFlow ", TF_VERSION_STRING, ". Please upgrade TensorFlow.")}); } TEST_F(GraphConstructorTest, BadVersion) { const int version = TF_GRAPH_DEF_VERSION + 1; const int bad = TF_GRAPH_DEF_VERSION; ExpectError( strings::StrCat("versions { producer: ", version, " bad_consumers: ", bad, " }"), {strings::StrCat( "GraphDef disallows consumer version ", bad, ". Please upgrade TensorFlow: this version is likely buggy.")}); } TEST_F(GraphConstructorTest, SimpleModel) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }"); EXPECT_TRUE(HasNode("W1")); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasEdge("W1", 0, "t1", 0)); EXPECT_TRUE(HasEdge("input", 1, "t1", 1)); } TEST_F(GraphConstructorTest, SimpleModelWithControlEdges) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' input: [ '^W1' ] }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }" "node { name: 't2' op: 'TestMul' input: [ 'W1', 'input:1', '^t1' ] }"); EXPECT_TRUE(HasNode("W1")); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasNode("t2")); EXPECT_TRUE(HasEdge("W1", 0, "t1", 0)); EXPECT_TRUE(HasEdge("input", 1, "t1", 1)); EXPECT_TRUE(HasEdge("W1", 0, "t2", 0)); EXPECT_TRUE(HasEdge("input", 1, "t2", 1)); EXPECT_TRUE(HasControlEdge("W1", "input")); EXPECT_TRUE(HasControlEdge("t1", "t2")); } TEST_F(GraphConstructorTest, Error_ControlEdgeBeforeRealInput) { ExpectError( "node { name: 'W1' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' input: [ '^W1' ] }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }" "node { name: 't2' op: 'TestMul' input: [ 'W1', '^t1', 'input:1' ] }", {"Node 't2': Control dependencies must come after regular dependencies"}); } TEST_F(GraphConstructorTest, ImportGraphDef) { GraphDef def; ImportGraphDefOptions opts; const string& source = graph_.FindNodeId(Graph::kSourceId)->name(); const string& sink = graph_.FindNodeId(Graph::kSinkId)->name(); Status s = ImportGraphDef(opts, def, &graph_, nullptr); ASSERT_EQ(absl::OkStatus(), s) << s; EXPECT_EQ(2, graph_.num_nodes()); EXPECT_TRUE(HasControlEdge(source, sink)); EXPECT_EQ(1, graph_.num_edges()); bool parsed = protobuf::TextFormat::ParseFromString( R"EOF( node { name: "A" op: "TestParams" } node { name: "X" op: "TestParams" } node { name: "B" op: "TestOneInputTwoOutputs" input: "A" attr { key: "_class" value { list { s: "loc:@A" } } } } node { name: "C" op: "TestOneInputTwoOutputs" input: "B:1" input: "^X" } node { name: "D" op: "TestMul" input: "B:0" input: "C:0" })EOF", &def); ASSERT_TRUE(parsed); s = ImportGraphDef(opts, def, &graph_, nullptr); ASSERT_EQ(absl::OkStatus(), s) << s; EXPECT_EQ(5 + 2, graph_.num_nodes()); EXPECT_EQ("A", ColocationGroup("B")); EXPECT_TRUE(HasEdge("A", 0, "B", 0)); EXPECT_TRUE(HasEdge("B", 1, "C", 0)); EXPECT_TRUE(HasEdge("B", 0, "D", 0)); EXPECT_TRUE(HasEdge("C", 0, "D", 1)); EXPECT_TRUE(HasControlEdge("X", "C")); EXPECT_TRUE(HasControlEdge(source, sink)); EXPECT_TRUE(HasControlEdge(source, "A")); EXPECT_TRUE(HasControlEdge(source, "X")); EXPECT_TRUE(HasControlEdge("D", sink)); EXPECT_EQ(9, graph_.num_edges()); s = ImportGraphDef(opts, def, &graph_, nullptr); EXPECT_TRUE(errors::IsInvalidArgument(s)) << s; opts.prefix = "import"; s = ImportGraphDef(opts, def, &graph_, nullptr); ASSERT_EQ(absl::OkStatus(), s) << s; EXPECT_EQ( 10 + 2, graph_.num_nodes()); EXPECT_EQ("A", ColocationGroup("B")); EXPECT_EQ("import/A", ColocationGroup("import/B")); EXPECT_TRUE(HasEdge("A", 0, "B", 0)); EXPECT_TRUE(HasEdge("B", 1, "C", 0)); EXPECT_TRUE(HasEdge("B", 0, "D", 0)); EXPECT_TRUE(HasEdge("C", 0, "D", 1)); EXPECT_TRUE(HasControlEdge("X", "C")); EXPECT_TRUE(HasEdge("import/A", 0, "import/B", 0)); EXPECT_TRUE(HasEdge("import/B", 1, "import/C", 0)); EXPECT_TRUE(HasEdge("import/B", 0, "import/D", 0)); EXPECT_TRUE(HasEdge("import/C", 0, "import/D", 1)); EXPECT_TRUE(HasControlEdge("import/X", "import/C")); EXPECT_TRUE(HasControlEdge(source, sink)); EXPECT_TRUE(HasControlEdge(source, "A")); EXPECT_TRUE(HasControlEdge(source, "X")); EXPECT_TRUE(HasControlEdge("D", sink)); EXPECT_TRUE(HasControlEdge(source, "import/A")); EXPECT_TRUE(HasControlEdge(source, "import/X")); EXPECT_TRUE(HasControlEdge("import/D", sink)); EXPECT_EQ(17, graph_.num_edges()); } TEST_F(GraphConstructorTest, ImportGraphDef_DefaultAttrs) { GraphDef def; ASSERT_TRUE(protobuf::TextFormat::ParseFromString( "node{ name:'A' op:'TestDefaultAttr'}", &def)); Status s = ImportGraphDef(ImportGraphDefOptions(), def, &graph_, nullptr); ASSERT_EQ(absl::OkStatus(), s) << s; Node* a = nullptr; for (Node* n : graph_.nodes()) { if (n->name() == "A") { a = n; break; } } ASSERT_TRUE(a != nullptr); int value = 0; s = GetNodeAttr(a->attrs(), "default_int", &value); ASSERT_EQ(absl::OkStatus(), s) << s << " -- " << a->def().DebugString(); EXPECT_EQ(31415, value); } TEST_F(GraphConstructorTest, ImportGraphDef_Versioning) { GraphDef def; const ImportGraphDefOptions opts; def.mutable_versions()->set_producer(TF_GRAPH_DEF_VERSION_MIN_PRODUCER - 1); Status s = ImportGraphDef(opts, def, &graph_, nullptr); EXPECT_TRUE(errors::IsInvalidArgument(s)) << s; def.mutable_versions()->Clear(); def.mutable_versions()->set_min_consumer(TF_GRAPH_DEF_VERSION + 1); s = ImportGraphDef(opts, def, &graph_, nullptr); EXPECT_TRUE(errors::IsInvalidArgument(s)) << s; def.mutable_versions()->Clear(); def.mutable_versions()->add_bad_consumers(TF_GRAPH_DEF_VERSION); s = ImportGraphDef(opts, def, &graph_, nullptr); EXPECT_TRUE(errors::IsInvalidArgument(s)) << s; def.mutable_versions()->Clear(); graph_.ToGraphDef(&def); s = ImportGraphDef(opts, def, &graph_, nullptr); EXPECT_EQ(absl::OkStatus(), s) << s; def.Clear(); const int original_min_consumer = graph_.versions().min_consumer(); def.mutable_versions()->set_min_consumer(original_min_consumer + 2); def.mutable_versions()->add_bad_consumers(TF_GRAPH_DEF_VERSION - 1); s = ImportGraphDef(opts, def, &graph_, nullptr); EXPECT_EQ(absl::OkStatus(), s) << s; EXPECT_EQ(original_min_consumer + 2, graph_.versions().min_consumer()); ASSERT_EQ(1, graph_.versions().bad_consumers_size()); EXPECT_EQ(TF_GRAPH_DEF_VERSION - 1, graph_.versions().bad_consumers(0)); } TEST_F(GraphConstructorTest, ImportGraphDef_DeprecatedOps) { GraphDef def; bool parsed = protobuf::TextFormat::ParseFromString( R"EOF( node { name: "zeros" op: "Const" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "value" value { tensor { dtype: DT_FLOAT tensor_shape { dim { size: 1 } dim { size: 149 } dim { size: 149 } dim { size: 32 } } float_val: 0.0 } } } } node { name: "m_v_beta_gamma" op: "Const" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "value" value { tensor { dtype: DT_FLOAT tensor_shape { dim { size: 32 } } tensor_content: "\265\374\010=S\250\t\276\206\371>;Z\306y>\217]@\276\347\206\202\275\3747\241\275+1\227=J1\352\275\353?H;`\253\000>\023Y\014\276\341\310L;\301\030\314;\032Kw\275\273fQ;\036\252\200=\257o/\273\377\241\247\275\307,\332\274L\255\247\274\023\331R=r\271\225<\016/\204<\364\340\375\272t\030J=\220\306}\276\276x\003\275\231\013}\276\212\034\224\276\257\020\216>A\223\217\276" } } } } node { name: "batchnorm" op: "BatchNormWithGlobalNormalization" input: "zeros" input: "m_v_beta_gamma" input: "m_v_beta_gamma" input: "m_v_beta_gamma" input: "m_v_beta_gamma" attr { key: "T" value { type: DT_FLOAT } } attr { key: "scale_after_normalization" value { b: false } } attr { key: "variance_epsilon" value { f: 0.0010000000475 } } } )EOF", &def); ASSERT_TRUE(parsed); Status s = ImportGraphDef(ImportGraphDefOptions(), def, &graph_, nullptr); EXPECT_EQ(absl::OkStatus(), s) << s; Graph g2(OpRegistry::Global()); def.mutable_versions()->set_producer(10); s = ImportGraphDef(ImportGraphDefOptions(), def, &g2, nullptr); EXPECT_EQ(error::UNIMPLEMENTED, s.code()); EXPECT_TRUE(absl::StrContains(s.message(), "BatchNormWithGlobalNormalization is not " "available in GraphDef version 10")) << s; } TEST_F(GraphConstructorTest, ImportGraphDef_InputMap) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK("node { name: 'input' op: 'TestInput' }", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; opts.input_map[TensorId("new_input", 0)] = TensorId("input", 1); opts.input_map[TensorId("new_input", 1)] = TensorId("input", 0); ExpectOK( R"EOF( node { name: 'new_input' op: 'TestInput' } node { name: 't1' op: 'TestMul' input: [ 'new_input:0', 'new_input:1' ] } node { name: 't2' op: 'TestMul' input: [ 't1:0', 't1:0' ] } )EOF", opts, &refiner); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasNode("t2")); EXPECT_TRUE(HasNode("new_input")); EXPECT_TRUE(HasEdge("input", 1, "t1", 0)); EXPECT_TRUE(HasEdge("input", 0, "t1", 1)); EXPECT_FALSE(HasEdge("new_input", 0, "t1", 0)); EXPECT_FALSE(HasEdge("new_input", 0, "t1", 1)); EXPECT_TRUE(HasEdge("t1", 0, "t2", 0)); Node* t1 = FindNode("t1"); ASSERT_EQ(t1->requested_inputs().size(), 2); ASSERT_EQ(t1->requested_inputs()[0], "input:1"); ASSERT_EQ(t1->requested_inputs()[1], "input:0"); } TEST_F(GraphConstructorTest, ImportGraphDef_InputMapWithPrefix) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK( "node { name: 'input' op: 'TestInput' } " "node { name: 'unmapped_input' op: 'TestInput'}", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; opts.input_map[TensorId("input", 0)] = TensorId("input", 0); opts.input_map[TensorId("input", 1)] = TensorId("input", 0); opts.prefix = "import"; ExpectOK( R"EOF( node { name: 'input' op: 'TestInput' } node { name: 'unmapped_input' op: 'TestInput' } node { name: 't1' op: 'TestMul' input: [ 'input:0', 'input:1' ] } node { name: 't2' op: 'TestMul' input: [ 't1:0', 't1:0' ] } node { name: 't3' op: 'TestMul' input: [ 'unmapped_input:0', 'unmapped_input:1' ] } )EOF", opts, &refiner); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("unmapped_input")); EXPECT_TRUE(HasNode("import/unmapped_input")); EXPECT_TRUE(HasNode("import/t1")); EXPECT_TRUE(HasNode("import/t2")); EXPECT_TRUE(HasNode("import/input")); EXPECT_TRUE(HasEdge("input", 0, "import/t1", 0)); EXPECT_TRUE(HasEdge("input", 0, "import/t1", 1)); EXPECT_FALSE(HasEdge("import/input", 0, "import/t1", 0)); EXPECT_FALSE(HasEdge("import/input", 0, "import/t1", 1)); EXPECT_TRUE(HasEdge("import/t1", 0, "import/t2", 0)); EXPECT_TRUE(HasEdge("import/unmapped_input", 0, "import/t3", 0)); EXPECT_TRUE(HasEdge("import/unmapped_input", 1, "import/t3", 1)); Node* t1 = FindNode("import/t1"); ASSERT_EQ(t1->requested_inputs().size(), 2); EXPECT_EQ(t1->requested_inputs()[0], "input:0"); EXPECT_EQ(t1->requested_inputs()[1], "input:0"); Node* t2 = FindNode("import/t2"); ASSERT_EQ(t2->requested_inputs().size(), 2); EXPECT_EQ(t2->requested_inputs()[0], "import/t1:0"); EXPECT_EQ(t2->requested_inputs()[1], "import/t1:0"); Node* t3 = FindNode("import/t3"); ASSERT_EQ(t3->requested_inputs().size(), 2); EXPECT_EQ(t3->requested_inputs()[0], "import/unmapped_input:0"); EXPECT_EQ(t3->requested_inputs()[1], "import/unmapped_input:1"); } TEST_F(GraphConstructorTest, ImportGraphDef_InputMapWithControlEdges) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK("node { name: 'W1' op: 'TestParams' }", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; const int kControlSlot = Graph::kControlSlot; opts.input_map[TensorId("W2", kControlSlot)] = TensorId("W1", kControlSlot); opts.input_map[TensorId("W3", kControlSlot)] = TensorId("W1", kControlSlot); ExpectOK( R"EOF( node { name: 'W2' op: 'TestParams' } node { name: 'W3' op: 'TestParams' } node { name: 'input' op: 'TestInput' input: [ '^W2' ] } node { name: 't1' op: 'TestOneInputTwoOutputs' input: [ 'W2' ] } node { name: 't2' op: 'TestOneInputTwoOutputs' input: [ 'input', '^W2', '^W3' ] } )EOF", opts, &refiner); EXPECT_TRUE(HasNode("W1")); EXPECT_TRUE(HasNode("W2")); EXPECT_TRUE(HasNode("W3")); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasNode("t2")); EXPECT_TRUE(HasControlEdge("W1", "input")); EXPECT_FALSE(HasControlEdge("W2", "input")); EXPECT_TRUE(HasEdge("W2", 0, "t1", 0)); EXPECT_TRUE(HasControlEdge("W1", "t2")); EXPECT_FALSE(HasControlEdge("W2", "t2")); EXPECT_TRUE(HasEdge("input", 0, "t2", 0)); Node* t2 = FindNode("t2"); EXPECT_EQ(t2->in_edges().size(), 2); opts.prefix = "import"; opts.input_map.clear(); opts.input_map[TensorId("W1", kControlSlot)] = TensorId("W1", kControlSlot); ExpectOK( R"EOF( node { name: 'W1' op: 'TestParams' } node { name: 'input' op: 'TestInput' input: [ '^W1' ] } node { name: 't1' op: 'TestOneInputTwoOutputs' input: [ 'W1' ] } )EOF", opts, &refiner); EXPECT_TRUE(HasNode("import/W1")); EXPECT_TRUE(HasNode("import/input")); EXPECT_TRUE(HasNode("import/t1")); EXPECT_TRUE(HasControlEdge("W1", "import/input")); EXPECT_FALSE(HasControlEdge("import/W1", "import/input")); EXPECT_TRUE(HasEdge("import/W1", 0, "import/t1", 0)); } TEST_F(GraphConstructorTest, ImportGraphDef_InputMapWithBadControlEdge) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK("node { name: 'W1' op: 'TestParams' }", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; opts.input_map[TensorId("W2", Graph::kControlSlot)] = TensorId("W1", 0); ExpectError( R"EOF( node { name: 'W2' op: 'TestParams' } node { name: 'input' op: 'TestInput' input: [ '^W2' ] } )EOF", opts, {"input_map entry ^W2->W1:0 between control edge and non-control edge"}, &refiner); opts.input_map.clear(); opts.input_map[TensorId("W2", 0)] = TensorId("W1", Graph::kControlSlot); ExpectError( R"EOF( node { name: 'W2' op: 'TestParams' } node { name: 'input' op: 'TestInput' input: [ '^W2' ] } )EOF", opts, {"input_map entry W2:0->^W1 between control edge and non-control edge"}, &refiner); } TEST_F(GraphConstructorTest, ImportGraphDef_InputMapWithInvalidNodeIndex) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK("node { name: 'input1' op: 'TestInput' }", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; opts.input_map[TensorId("input2", 0)] = TensorId("input1", 3); ExpectError( R"EOF( node { name: 'input2' op: 'TestInput' } node { name: 't1' op: 'TestMul' input: [ 'input2:0', 'input2:1' ] } )EOF", opts, {"Node 't1': Connecting to invalid output 3 of source node input1 which " "has 2 outputs"}, &refiner); } TEST_F(GraphConstructorTest, ImportGraphDef_InputMapWithMissingEntries) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK("node { name: 'W1' op: 'TestParams' }", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; const int kControlSlot = Graph::kControlSlot; opts.input_map[TensorId("W2", kControlSlot)] = TensorId("DNE", kControlSlot); ExpectError( R"EOF( node { name: 'W2' op: 'TestParams' } node { name: 'input' op: 'TestInput' input: [ '^W2' ] } )EOF", opts, {"node 'DNE' in input_map does not exist in graph (input_map entry: " "^W2->^DNE)"}, &refiner); } TEST_F(GraphConstructorTest, ImportGraphDef_InputMapDuplicateNodeNames) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); Node* node; TF_CHECK_OK(NodeBuilder("dup", "Placeholder") .Attr("dtype", DT_FLOAT) .Finalize(&graph_, &node)); TF_CHECK_OK(NodeBuilder("dup", "Placeholder") .Attr("dtype", DT_FLOAT) .Finalize(&graph_, &node)); ImportGraphDefOptions opts; opts.input_map[TensorId("new_input", 0)] = TensorId("dup", 0); ExpectError( R"EOF( node { name: 'new_input' op: 'TestInput' } node { name: 't1' op: 'TestMul' input: [ 'new_input:0', 'new_input:1' ] } )EOF", opts, {"cannot resolve input_map because multiple nodes exist with name 'dup'"}, &refiner); } TEST_F(GraphConstructorTest, ImportGraphDef_InputMapMissingUnusedKeys) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ImportGraphDefOptions opts; ImportGraphDefResults results; ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }", opts, &refiner, &results); EXPECT_TRUE(results.missing_unused_input_map_keys.empty()); results.missing_unused_input_map_keys.push_back(TensorId()); ExpectError( "node { name: 'W2' op: 'TestParams' }", opts, {"All fields in results argument to ImportGraphDef() must be empty."}, &refiner, &results); const int kControlSlot = Graph::kControlSlot; results.missing_unused_input_map_keys.clear(); opts.input_map[TensorId("W2", kControlSlot)] = TensorId("W1", kControlSlot); opts.input_map[TensorId("new_input", 0)] = TensorId("input", 0); opts.input_map[TensorId("new_input", 1)] = TensorId("input", 0); opts.input_map[TensorId("new_input", 3)] = TensorId("input", 0); opts.input_map[TensorId("DNE", 0)] = TensorId("input", 0); opts.input_map[TensorId("t1", 0)] = TensorId("W1", 0); opts.input_map[TensorId("variadic", 4)] = TensorId("input", 0); ExpectOK( R"EOF( node { name: 'W2' op: 'TestParams' } node { name: 'new_input' op: 'TestInput' input: [ '^W2' ] } node { name: 't1' op: 'TestMul' input: [ 'new_input:0', 'new_input:1' ] } node { name: 'variadic' op: 'TestVariadicOutput' attr { key: "N" value { i: 5 } } } )EOF", opts, &refiner, &results); std::set<TensorId> expected_unused_keys = {TensorId("new_input", 3), TensorId("DNE", 0)}; ASSERT_EQ(results.missing_unused_input_map_keys.size(), expected_unused_keys.size()); std::set<TensorId> actual_unused_keys( results.missing_unused_input_map_keys.begin(), results.missing_unused_input_map_keys.end()); EXPECT_EQ(actual_unused_keys, expected_unused_keys); opts = ImportGraphDefOptions(); opts.input_map[TensorId("new_input", 0)] = TensorId("input", 0); opts.input_map[TensorId("new_input", 1)] = TensorId("input", 1); opts.input_map[TensorId("new_input", 2)] = TensorId("input", 1); opts.skip_mapped_nodes = true; opts.prefix = "import"; results = ImportGraphDefResults(); ExpectOK( R"EOF( node { name: 'W2' op: 'TestParams' } node { name: 'new_input' op: 'TestInput' input: [ '^W2' ] } node { name: 't1' op: 'TestMul' input: [ 'new_input:0', 'new_input:1' ] } )EOF", opts, &refiner, &results); ASSERT_EQ(results.missing_unused_input_map_keys.size(), 1); EXPECT_EQ(results.missing_unused_input_map_keys[0], SafeTensorId("new_input", 2)); } TEST_F(GraphConstructorTest, ImportGraphDef_InputMapWithUnboundInput) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK("node { name: 'input' op: 'TestInput' }", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; opts.input_map[TensorId("new_input", 0)] = TensorId("input", 1); opts.input_map[TensorId("new_input", 1)] = TensorId("input", 0); ExpectOK( R"EOF( node { name: 't1' op: 'TestMul' input: [ 'new_input:0', 'new_input:1' ] } node { name: 't2' op: 'TestMul' input: [ 't1:0', 't1:0' ] } )EOF", opts, &refiner); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasNode("t2")); EXPECT_FALSE(HasNode("new_input")); EXPECT_TRUE(HasEdge("input", 1, "t1", 0)); EXPECT_TRUE(HasEdge("input", 0, "t1", 1)); EXPECT_TRUE(HasEdge("t1", 0, "t2", 0)); Node* t1 = FindNode("t1"); ASSERT_EQ(t1->requested_inputs().size(), 2); ASSERT_EQ(t1->requested_inputs()[0], "input:1"); ASSERT_EQ(t1->requested_inputs()[1], "input:0"); } TEST_F(GraphConstructorTest, ImportGraphDef_SkipMappedNodes_FullyMapped) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK("node { name: 'input' op: 'TestInput' }", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; opts.skip_mapped_nodes = true; opts.input_map[TensorId("new_input", 0)] = TensorId("input", 1); opts.input_map[TensorId("new_input", 1)] = TensorId("input", 0); ExpectOK( R"EOF( node { name: 'new_input' op: 'TestInput' } node { name: 't1' op: 'TestMul' input: [ 'new_input:0', 'new_input:1' ] } node { name: 't2' op: 'TestMul' input: [ 't1:0', 't1:0' ] } )EOF", opts, &refiner); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasNode("t2")); EXPECT_FALSE(HasNode("new_input")); EXPECT_TRUE(HasEdge("input", 1, "t1", 0)); EXPECT_TRUE(HasEdge("input", 0, "t1", 1)); EXPECT_TRUE(HasEdge("t1", 0, "t2", 0)); Node* t1 = FindNode("t1"); ASSERT_EQ(t1->requested_inputs().size(), 2); ASSERT_EQ(t1->requested_inputs()[0], "input:1"); ASSERT_EQ(t1->requested_inputs()[1], "input:0"); } TEST_F(GraphConstructorTest, ImportGraphDef_SkipMappedNodes_NotFullyMapped) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK("node { name: 'input' op: 'TestInput' }", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; opts.skip_mapped_nodes = true; opts.input_map[TensorId("new_input", 1)] = TensorId("input", 0); ExpectOK( R"EOF( node { name: 'new_input' op: 'TestInput' } node { name: 't1' op: 'TestMul' input: [ 'new_input:0', 'new_input:1' ] } node { name: 't2' op: 'TestMul' input: [ 't1:0', 't1:0' ] } )EOF", opts, &refiner); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasNode("t2")); EXPECT_TRUE(HasNode("new_input")); EXPECT_FALSE(HasEdge("input", 1, "t1", 0)); EXPECT_TRUE(HasEdge("input", 0, "t1", 1)); EXPECT_TRUE(HasEdge("new_input", 0, "t1", 0)); EXPECT_FALSE(HasEdge("new_input", 1, "t1", 1)); EXPECT_TRUE(HasEdge("t1", 0, "t2", 0)); Node* t1 = FindNode("t1"); ASSERT_EQ(t1->requested_inputs().size(), 2); ASSERT_EQ(t1->requested_inputs()[0], "new_input:0"); ASSERT_EQ(t1->requested_inputs()[1], "input:0"); } TEST_F(GraphConstructorTest, ImportGraphDef_ReturnTensors) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ImportGraphDefOptions opts; opts.return_tensors.push_back({"input", 1}); opts.return_tensors.push_back({"t1", 0}); opts.return_tensors.push_back({"input", 0}); ImportGraphDefResults results; ExpectOK( "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: ['input:0', 'input:1'] }", opts, &refiner, &results); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasEdge("input", 0, "t1", 0)); EXPECT_TRUE(HasEdge("input", 1, "t1", 1)); ASSERT_EQ(results.return_tensors.size(), 3); EXPECT_EQ(results.return_tensors[0].first->name(), "input"); EXPECT_EQ(results.return_tensors[0].second, 1); EXPECT_EQ(results.return_tensors[1].first->name(), "t1"); EXPECT_EQ(results.return_tensors[1].second, 0); EXPECT_EQ(results.return_tensors[2].first->name(), "input"); EXPECT_EQ(results.return_tensors[2].second, 0); opts.return_tensors.clear(); results = ImportGraphDefResults(); opts.prefix = "import"; opts.input_map[{"new_input", 1}] = {"input", 0}; opts.return_tensors.push_back({"new_input", 0}); opts.return_tensors.push_back({"new_input", 1}); ExpectOK("node { name: 'new_input' op: 'TestInput' }", opts, &refiner, &results); EXPECT_TRUE(HasNode("import/new_input")); ASSERT_EQ(results.return_tensors.size(), 2); EXPECT_EQ(results.return_tensors[0].first->name(), "import/new_input"); EXPECT_EQ(results.return_tensors[0].second, 0); EXPECT_EQ(results.return_tensors[1].first->name(), "input"); EXPECT_EQ(results.return_tensors[1].second, 0); opts.prefix.clear(); opts.input_map.clear(); opts.return_tensors.clear(); results = ImportGraphDefResults(); opts.input_map[{"new_input", 0}] = {"_SOURCE", 0}; opts.return_tensors.push_back({"new_input", 0}); ExpectOK("node { name: 'new_input' op: 'TestInput' }", opts, &refiner, &results); EXPECT_TRUE(HasNode("new_input")); ASSERT_EQ(results.return_tensors.size(), 1); EXPECT_EQ(results.return_tensors[0].first->name(), "_SOURCE"); EXPECT_EQ(results.return_tensors[0].second, 0); } TEST_F(GraphConstructorTest, ImportGraphDef_ReturnTensorsErrors) { ImportGraphDefOptions opts; opts.return_tensors.push_back({"new_input", 0}); ExpectError("node { name: 'new_input' op: 'TestInput' }", opts, {"results argument to ImportGraphDef() must be non-null if " "opts.return_tensors is non-empty"}); ImportGraphDefResults results; results.return_tensors.push_back({nullptr, 0}); ExpectError( "node { name: 'new_input' op: 'TestInput' }", opts, {"All fields in results argument to ImportGraphDef() must be empty."}, nullptr, &results); results.return_tensors.clear(); ExpectError("node { name: 'W1' op: 'TestParams' }", opts, {"Requested return tensor 'new_input:0' not found in graph def"}, nullptr, &results); opts.return_tensors.clear(); opts.return_tensors.push_back({"new_input", 2}); ExpectError("node { name: 'new_input' op: 'TestInput' }", opts, {"Invalid return output 2 of node 'new_input', which has 2 " "output(s)"}, nullptr, &results); } TEST_F(GraphConstructorTest, ImportGraphDef_ReturnNodes) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ImportGraphDefOptions opts; opts.return_nodes.push_back("input"); opts.return_nodes.push_back("t1"); ImportGraphDefResults results; ExpectOK( "node { name: 'input' op: 'TestInput' }" "node { name: 'input2' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: ['input:0', 'input2:1'] }", opts, &refiner, &results); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("input2")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasEdge("input", 0, "t1", 0)); EXPECT_TRUE(HasEdge("input2", 1, "t1", 1)); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_tensors.size(), 0); EXPECT_EQ(results.missing_unused_input_map_keys.size(), 0); EXPECT_EQ(results.return_nodes[0]->name(), "input"); EXPECT_EQ(results.return_nodes[1]->name(), "t1"); opts = ImportGraphDefOptions(); results = ImportGraphDefResults(); opts.prefix = "import"; opts.return_nodes.push_back("input"); ExpectOK("node { name: 'input' op: 'TestInput' }", opts, &refiner, &results); EXPECT_TRUE(HasNode("import/input")); ASSERT_EQ(results.return_nodes.size(), 1); EXPECT_EQ(results.return_nodes[0]->name(), "import/input"); opts = ImportGraphDefOptions(); results = ImportGraphDefResults(); opts.input_map[{"new_input", 0}] = {"input", 0}; opts.return_nodes.push_back("new_input"); ExpectOK("node { name: 'new_input' op: 'TestInput' }", opts, &refiner, &results); EXPECT_TRUE(HasNode("new_input")); ASSERT_EQ(results.return_nodes.size(), 1); EXPECT_EQ(results.return_nodes[0]->name(), "new_input"); } TEST_F(GraphConstructorTest, ImportGraphDef_ReturnNodesErrors) { ImportGraphDefOptions opts; opts.return_nodes.push_back("new_input"); ExpectError("node { name: 'new_input' op: 'TestInput' }", opts, {"results argument to ImportGraphDef() must be non-null if " "opts.return_nodes is non-empty"}); ImportGraphDefResults results; results.return_nodes.push_back(nullptr); ExpectError( "node { name: 'new_input' op: 'TestInput' }", opts, {"All fields in results argument to ImportGraphDef() must be empty."}, nullptr, &results); results.return_nodes.clear(); ExpectError("node { name: 'W1' op: 'TestParams' }", opts, {"Requested return node 'new_input' not found in graph def"}, nullptr, &results); opts.skip_mapped_nodes = true; ExpectError("node { name: 'new_input' op: 'TestInput' }", opts, {"Requesting return_nodes with skip_mapped_nodes set is not " "currently supported"}); } TEST_F(GraphConstructorTest, ImportGraphDef_UniquifyNames) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); const char* graph_def_str = "node { name: 'A' op: 'TestInput' }" "node { name: 'B' op: 'TestOneInputTwoOutputs' input: ['A'] }"; ImportGraphDefOptions opts; opts.uniquify_names = true; opts.return_nodes.push_back("A"); opts.return_nodes.push_back("B"); ImportGraphDefResults results; ExpectOK(graph_def_str, opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A"); EXPECT_EQ(results.return_nodes[1]->name(), "B"); EXPECT_EQ(results.return_nodes[1]->def().input(0), "A"); results = ImportGraphDefResults(); ExpectOK(graph_def_str, opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A_1"); EXPECT_EQ(results.return_nodes[1]->name(), "B_1"); EXPECT_EQ(results.return_nodes[1]->def().input(0), "A_1:0"); results = ImportGraphDefResults(); ExpectOK(graph_def_str, opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A_2"); EXPECT_EQ(results.return_nodes[1]->name(), "B_2"); EXPECT_EQ(results.return_nodes[1]->def().input(0), "A_2:0"); opts.prefix = "A"; opts.uniquify_prefix = true; results = ImportGraphDefResults(); ExpectOK(graph_def_str, opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A_3/A"); EXPECT_EQ(results.return_nodes[1]->name(), "A_3/B"); EXPECT_EQ(results.return_nodes[1]->def().input(0), "A_3/A"); ExpectOK("node { name: 'B_3' op: 'TestInput' }"); opts.uniquify_prefix = false; results = ImportGraphDefResults(); ExpectOK(graph_def_str, opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A/A"); EXPECT_EQ(results.return_nodes[1]->name(), "A/B"); EXPECT_EQ(results.return_nodes[1]->def().input(0), "A/A"); results = ImportGraphDefResults(); ExpectOK(graph_def_str, opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A/A_1"); EXPECT_EQ(results.return_nodes[1]->name(), "A/B_1"); EXPECT_EQ(results.return_nodes[1]->def().input(0), "A/A_1:0"); opts = ImportGraphDefOptions(); opts.uniquify_names = true; opts.return_nodes.push_back("A_1"); opts.return_nodes.push_back("B_1"); results = ImportGraphDefResults(); ExpectOK( "node { name: 'A_1' op: 'TestInput' }" "node { name: 'B_1' op: 'TestOneInputTwoOutputs' input: ['A_1:0'] }", opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A_1_1"); EXPECT_EQ(results.return_nodes[1]->name(), "B_1_1"); EXPECT_EQ(results.return_nodes[1]->def().input(0), "A_1_1:0"); opts = ImportGraphDefOptions(); opts.uniquify_names = true; opts.return_nodes.push_back("A"); opts.return_nodes.push_back("A_4"); opts.return_nodes.push_back("B"); opts.return_nodes.push_back("B_4/B"); results = ImportGraphDefResults(); ExpectOK( "node { name: 'A' op: 'TestInput' }" "node { name: 'A_4' op: 'TestInput' }" "node { name: 'B' op: 'TestOneInputTwoOutputs' input: ['A'] }" "node { name: 'B_4/B' op: 'TestOneInputTwoOutputs' input: ['A_4'] }", opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 4); EXPECT_EQ(results.return_nodes[0]->name(), "A_5"); EXPECT_EQ(results.return_nodes[1]->name(), "A_4"); EXPECT_EQ(results.return_nodes[2]->name(), "B_5"); EXPECT_EQ(results.return_nodes[2]->def().input(0), "A_5:0"); EXPECT_EQ(results.return_nodes[3]->name(), "B_4/B"); EXPECT_EQ(results.return_nodes[3]->def().input(0), "A_4"); ExpectOK("node { name: 'foo/abc' op: 'ABC' }"); opts = ImportGraphDefOptions(); opts.uniquify_names = true; opts.return_nodes.push_back("foo"); results = ImportGraphDefResults(); ExpectOK("node { name: 'foo' op: 'TestInput' }", opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 1); EXPECT_EQ(results.return_nodes[0]->name(), "foo_1"); ExpectOK("node { name: 'outer/inner/abc' op: 'ABC' }"); opts = ImportGraphDefOptions(); opts.uniquify_names = true; opts.return_nodes.push_back("outer"); opts.return_nodes.push_back("inner"); opts.return_nodes.push_back("abc"); opts.return_nodes.push_back("outer/inner"); opts.return_nodes.push_back("outer/inner/abc"); results = ImportGraphDefResults(); ExpectOK( "node { name: 'outer' op: 'TestInput' }" "node { name: 'inner' op: 'TestInput' }" "node { name: 'abc' op: 'TestInput' }" "node { name: 'outer/inner' op: 'TestInput' }" "node { name: 'outer/inner/abc' op: 'TestInput' }", opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 5); EXPECT_EQ(results.return_nodes[0]->name(), "outer_1"); EXPECT_EQ(results.return_nodes[1]->name(), "inner"); EXPECT_EQ(results.return_nodes[2]->name(), "abc"); EXPECT_EQ(results.return_nodes[3]->name(), "outer/inner_1"); EXPECT_EQ(results.return_nodes[4]->name(), "outer/inner/abc_1"); opts = ImportGraphDefOptions(); opts.uniquify_names = true; opts.input_map[TensorId("A", 0)] = TensorId("A", 0); opts.input_map[TensorId("B", 0)] = TensorId("B", 0); opts.return_nodes.push_back("A"); opts.return_nodes.push_back("B"); results = ImportGraphDefResults(); ExpectOK(graph_def_str, opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A_6"); EXPECT_EQ(results.return_nodes[1]->name(), "B_6"); EXPECT_EQ(results.return_nodes[1]->def().input(0), "A:0"); } TEST_F(GraphConstructorTest, ImportGraphDef_UniquifyNames_ColocationGroups) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK( "node { name: 'A' op: 'TestInput' }" "node { name: 'B' op: 'TestOneInputTwoOutputs' input: ['A'] }"); ImportGraphDefOptions opts; opts.uniquify_names = true; opts.return_nodes.push_back("A"); opts.return_nodes.push_back("B"); ImportGraphDefResults results; ExpectOK( "node { name: 'A' op: 'TestInput' }" "node { name: 'B' op: 'TestOneInputTwoOutputs' input: ['A:0'] " " attr { key: '_class' value { list { s:'loc:@A' } } } }", opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A_1"); EXPECT_EQ(results.return_nodes[1]->name(), "B_1"); const AttrValue* class_attr = results.return_nodes[1]->attrs().Find(kColocationAttrName); ASSERT_TRUE(class_attr != nullptr); ASSERT_EQ(class_attr->list().s_size(), 1); EXPECT_EQ(class_attr->list().s(0), "loc:@A_1"); results = ImportGraphDefResults(); ExpectOK( "node { name: 'A' op: 'TestInput' " " attr { key: '_class' value { list { s:'loc:@B' } } } }" "node { name: 'B' op: 'TestOneInputTwoOutputs' input: ['A:0'] }", opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A_2"); EXPECT_EQ(results.return_nodes[1]->name(), "B_2"); class_attr = results.return_nodes[0]->attrs().Find(kColocationAttrName); ASSERT_TRUE(class_attr != nullptr); ASSERT_EQ(class_attr->list().s_size(), 1); EXPECT_EQ(class_attr->list().s(0), "loc:@B_2"); results = ImportGraphDefResults(); ExpectOK( "node { name: 'A' op: 'TestInput' " " attr { key: '_class' value { list { s:'loc:@B' } } } }" "node { name: 'B' op: 'TestOneInputTwoOutputs' input: ['A:0'] " " attr { key: '_class' value { list { s:'loc:@B' } } } }", opts, &refiner, &results); ASSERT_EQ(results.return_nodes.size(), 2); EXPECT_EQ(results.return_nodes[0]->name(), "A_3"); EXPECT_EQ(results.return_nodes[1]->name(), "B_3"); class_attr = results.return_nodes[0]->attrs().Find(kColocationAttrName); ASSERT_TRUE(class_attr != nullptr); ASSERT_EQ(class_attr->list().s_size(), 1); EXPECT_EQ(class_attr->list().s(0), "loc:@B_3"); class_attr = results.return_nodes[1]->attrs().Find(kColocationAttrName); ASSERT_TRUE(class_attr != nullptr); ASSERT_EQ(class_attr->list().s_size(), 1); EXPECT_EQ(class_attr->list().s(0), "loc:@B_3"); } TEST_F(GraphConstructorTest, ImportGraphDef_WithCycle) { GraphDef def; bool parsed = protobuf::TextFormat::ParseFromString( R"EOF( node { name: "Const" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 0 } } } } node { name: "while/Enter" op: "Enter" input: "Const" attr { key: "T" value { type: DT_INT32 } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 10 } } } node { name: "while/Merge" op: "Merge" input: "while/Enter" input: "while/NextIteration" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Less/y" op: "Const" input: "^while/Merge" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 10 } } } } node { name: "while/Less" op: "Less" input: "while/Merge" input: "while/Less/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/LoopCond" op: "LoopCond" input: "while/Less" } node { name: "while/Switch" op: "Switch" input: "while/Merge" input: "while/LoopCond" attr { key: "T" value { type: DT_INT32 } } attr { key: "_class" value { list { s: "loc:@while/Merge" } } } } node { name: "while/Identity" op: "Identity" input: "while/Switch:1" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Add/y" op: "Const" input: "^while/Identity" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 1 } } } } node { name: "while/Add" op: "Add" input: "while/Identity" input: "while/Add/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/NextIteration" op: "NextIteration" input: "while/Add" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Exit" op: "Exit" input: "while/Switch" attr { key: "T" value { type: DT_INT32 } } } versions { producer: 11 } )EOF", &def); ASSERT_TRUE(parsed); Status s = ImportGraphDef(ImportGraphDefOptions(), def, &graph_, nullptr); EXPECT_EQ(absl::OkStatus(), s) << s; } TEST_F(GraphConstructorTest, ImportGraphDef_ControlDeps) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; opts.control_dependencies = {"W1", "W2"}; opts.prefix = "import"; opts.input_map[TensorId("W2", -1)] = TensorId("W2", -1); opts.input_map[TensorId("W3", -1)] = TensorId("W2", -1); ExpectOK( R"EOF( node { name: 'W2' op: 'TestParams' } node { name: 'W3' op: 'TestParams' } node { name: 'input' op: 'TestInput' } node { name: 'input2' op: 'TestInput' input: [ '^W2' ] } node { name: 'input3' op: 'TestInput' input: [ '^W2', '^W3' ] } node { name: 't1' op: 'TestMul' input: [ 'input:0', 'input:1' ] } node { name: 't2' op: 'TestMul' input: [ 'input:0', 'input:1', '^W2', '^W3' ] } )EOF", opts, &refiner); EXPECT_TRUE(HasNode("import/W2")); EXPECT_TRUE(HasNode("import/W3")); EXPECT_TRUE(HasNode("import/input")); EXPECT_TRUE(HasNode("import/input2")); EXPECT_TRUE(HasNode("import/input3")); EXPECT_TRUE(HasNode("import/t1")); EXPECT_TRUE(HasNode("import/t2")); EXPECT_TRUE(HasControlEdge("W1", "import/W2")); EXPECT_TRUE(HasControlEdge("W2", "import/W2")); EXPECT_TRUE(HasControlEdge("W1", "import/W3")); EXPECT_TRUE(HasControlEdge("W2", "import/W3")); EXPECT_TRUE(HasControlEdge("W1", "import/input")); EXPECT_TRUE(HasControlEdge("W2", "import/input")); EXPECT_FALSE(HasControlEdge("W1", "import/t1")); EXPECT_FALSE(HasControlEdge("W2", "import/t1")); EXPECT_TRUE(HasEdge("import/input", 0, "import/t1", 0)); EXPECT_TRUE(HasEdge("import/input", 1, "import/t1", 1)); EXPECT_TRUE(HasControlEdge("W2", "import/t2")); EXPECT_FALSE(HasControlEdge("W1", "import/t2")); EXPECT_TRUE(HasEdge("import/input", 0, "import/t1", 0)); EXPECT_TRUE(HasEdge("import/input", 1, "import/t1", 1)); EXPECT_TRUE(HasControlEdge("W1", "import/input2")); EXPECT_TRUE(HasControlEdge("W2", "import/input2")); EXPECT_FALSE(HasControlEdge("import/W2", "import/input2")); EXPECT_TRUE(HasControlEdge("W1", "import/input3")); EXPECT_TRUE(HasControlEdge("W2", "import/input3")); Node* w2 = FindNode("import/W2"); ASSERT_EQ(w2->requested_inputs().size(), 2); EXPECT_EQ(w2->requested_inputs()[0], "^W1"); EXPECT_EQ(w2->requested_inputs()[1], "^W2"); Node* w3 = FindNode("import/W3"); ASSERT_EQ(w3->requested_inputs().size(), 2); EXPECT_EQ(w3->requested_inputs()[0], "^W1"); EXPECT_EQ(w3->requested_inputs()[1], "^W2"); Node* input = FindNode("import/input"); ASSERT_EQ(input->requested_inputs().size(), 2); EXPECT_EQ(input->requested_inputs()[0], "^W1"); EXPECT_EQ(input->requested_inputs()[1], "^W2"); Node* input2 = FindNode("import/input2"); ASSERT_EQ(input2->requested_inputs().size(), 2); EXPECT_EQ(input2->requested_inputs()[0], "^W2"); EXPECT_EQ(input2->requested_inputs()[1], "^W1"); Node* input3 = FindNode("import/input3"); ASSERT_EQ(input3->requested_inputs().size(), 2); EXPECT_EQ(input3->requested_inputs()[0], "^W2"); EXPECT_EQ(input3->requested_inputs()[1], "^W1"); Node* t1 = FindNode("import/t1"); ASSERT_EQ(t1->requested_inputs().size(), 2); EXPECT_EQ(t1->requested_inputs()[0], "import/input:0"); EXPECT_EQ(t1->requested_inputs()[1], "import/input:1"); Node* t2 = FindNode("import/t2"); ASSERT_EQ(t2->requested_inputs().size(), 3); EXPECT_EQ(t2->requested_inputs()[0], "import/input:0"); EXPECT_EQ(t2->requested_inputs()[1], "import/input:1"); EXPECT_EQ(t2->requested_inputs()[2], "^W2"); } TEST_F(GraphConstructorTest, ImportGraphDef_ControlDepsWithCycle) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }", ImportGraphDefOptions(), &refiner); ImportGraphDefOptions opts; opts.control_dependencies.push_back("W1"); opts.input_map[TensorId("new_input", 0)] = TensorId("input", 0); ExpectOK( R"EOF( node { name: 'new_input' op: 'TestInput' } node { name: 'merge' op: 'Merge' input: [ 'new_input:0', 'next:0' ] attr { key: "N" value: { i: 2 } } attr { key: "T" value: { type: DT_FLOAT } } } node { name: 't1' op: 'TestMul' input: [ 'merge:0', 'merge:0' ] } node { name: 'next' op: 'NextIteration' input: ['t1:0'] attr { key: "T" value: { type: DT_FLOAT } } } )EOF", opts, &refiner); EXPECT_TRUE(HasNode("new_input")); EXPECT_TRUE(HasNode("merge")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasNode("next")); EXPECT_TRUE(HasEdge("merge", 0, "t1", 0)); EXPECT_TRUE(HasEdge("t1", 0, "next", 0)); EXPECT_TRUE(HasEdge("next", 0, "merge", 1)); EXPECT_TRUE(HasControlEdge("W1", "merge")); EXPECT_FALSE(HasControlEdge("W1", "t1")); Node* merge = FindNode("merge"); ASSERT_EQ(merge->requested_inputs().size(), 3); EXPECT_EQ(merge->requested_inputs()[0], "input:0"); EXPECT_EQ(merge->requested_inputs()[1], "next:0"); EXPECT_EQ(merge->requested_inputs()[2], "^W1"); Node* t1 = FindNode("t1"); ASSERT_EQ(t1->requested_inputs().size(), 2); EXPECT_EQ(t1->requested_inputs()[0], "merge:0"); EXPECT_EQ(t1->requested_inputs()[1], "merge:0"); Node* next = FindNode("next"); ASSERT_EQ(next->requested_inputs().size(), 1); EXPECT_EQ(next->requested_inputs()[0], "t1:0"); } TEST_F(GraphConstructorTest, ImportGraphDef_ControlDepsErrors) { ImportGraphDefOptions opts; opts.control_dependencies.push_back("W1"); ExpectError("node { name: 'W1' op: 'TestParams' }", opts, {"node 'W1' in control_dependencies does not exist in graph"}); } TEST_F(GraphConstructorTest, ImportGraphDef_ErrorsDoNoChangeTheGraph) { GraphDef def; TF_EXPECT_OK( NodeDefBuilder("scope/A", "TestParams").Finalize(def.add_node())); ImportGraphDefOptions opts; const string& source = graph_.FindNodeId(Graph::kSourceId)->name(); const string& sink = graph_.FindNodeId(Graph::kSinkId)->name(); Status s = ImportGraphDef(opts, def, &graph_, nullptr); ASSERT_EQ(absl::OkStatus(), s) << s; EXPECT_EQ(3, graph_.num_nodes()); EXPECT_TRUE(HasControlEdge(source, sink)); EXPECT_TRUE(HasControlEdge(source, "scope/A")); EXPECT_TRUE(HasControlEdge("scope/A", sink)); EXPECT_EQ(3, graph_.num_edges()); const string original_graph_description = GraphDebugString(); #define EXPECT_IMPORT_FAILURE(graph_def, options, expected_err) \ do { \ Status s = ImportGraphDef(options, graph_def, &graph_, nullptr); \ EXPECT_NE(OkStatus(), s) << s; \ EXPECT_TRUE(s.message().find(expected_err) != string::npos) << s; \ const string graph_description = GraphDebugString(); \ EXPECT_EQ(original_graph_description, graph_description); \ EXPECT_EQ(3, graph_.num_nodes()); \ EXPECT_TRUE(HasControlEdge(source, sink)); \ EXPECT_TRUE(HasControlEdge(source, "scope/A")); \ EXPECT_TRUE(HasControlEdge("scope/A", sink)); \ EXPECT_EQ(3, graph_.num_edges()); \ } while (0) EXPECT_IMPORT_FAILURE(def, opts, "Node name 'scope/A' already exists in the Graph"); GraphDef bad_def; ASSERT_TRUE(protobuf::TextFormat::ParseFromString( "node{name:'!B' op:'TestParams'}", &bad_def)); EXPECT_IMPORT_FAILURE(bad_def, opts, "Node '!B': Node name contains invalid characters"); opts.prefix = "!bad_prefix"; EXPECT_IMPORT_FAILURE(def, opts, "Imported node name prefix '!bad_prefix/' would lead " "to invalid node names"); opts.prefix = "import"; ASSERT_TRUE(protobuf::TextFormat::ParseFromString( "node{name:'B' op:'SomeUnknownOp'}", &bad_def)); EXPECT_IMPORT_FAILURE(bad_def, opts, "Op type not registered 'SomeUnknownOp'"); ASSERT_TRUE(protobuf::TextFormat::ParseFromString( "node{name:'B' op:'TestOneInputTwoOutputs' input:'C'}", &bad_def)); EXPECT_IMPORT_FAILURE(bad_def, opts, "Node 'B': Unknown input node 'C'"); bool parsed = protobuf::TextFormat::ParseFromString( R"EOF( node{ name:"Root" op:"TestParams" } # TestParams produces a float node{ name:"Integer" op:"TestOneInputOneOutput" attr{ key:"T" value{ type:DT_INT64 } } input: "Root" } )EOF", &bad_def); ASSERT_TRUE(parsed); EXPECT_IMPORT_FAILURE(bad_def, opts, "Input 0 of node import/Integer was passed float from " "import/Root:0 incompatible with expected int64"); parsed = protobuf::TextFormat::ParseFromString( R"EOF( node{ name:"A" op:"TestParams" } node{ name:"B" op:"TestOneInputTwoOutputs" input:"A:1" } )EOF", &bad_def); ASSERT_TRUE(parsed); EXPECT_IMPORT_FAILURE(bad_def, opts, "Node 'B': Connecting to invalid output 1 of source " "node A which has 1 outputs"); parsed = protobuf::TextFormat::ParseFromString( R"EOF( node{ name:"A" op:"TestParams" } node{ name:"B" op:"TestParams" } node{ name:"C" op:"TestOneInputTwoOutputs" input:"A" input:"B" } )EOF", &bad_def); ASSERT_TRUE(parsed); EXPECT_IMPORT_FAILURE(bad_def, opts, "do not match 2 inputs specified"); ASSERT_TRUE(protobuf::TextFormat::ParseFromString( "node{ name:'A' op:'TestOneInputTwoOutputs' }", &bad_def)); EXPECT_IMPORT_FAILURE(bad_def, opts, "do not match 0 inputs specified"); parsed = protobuf::TextFormat::ParseFromString( R"EOF( node{ name:"A" op:"TestParams" attr{ key:"_class" value{ list{ s:"loc:@B" } } } })EOF", &bad_def); ASSERT_TRUE(parsed); EXPECT_IMPORT_FAILURE( bad_def, opts, "Node 'A' expects to be colocated with unknown node 'B'"); opts.prefix = ""; ASSERT_TRUE(protobuf::TextFormat::ParseFromString( "node{name:'scope/A' op:'TestParams'}", &bad_def)); EXPECT_IMPORT_FAILURE(bad_def, opts, "Node name 'scope/A' already exists in the Graph"); parsed = protobuf::TextFormat::ParseFromString( R"EOF( node { name: "A" op: "TestParams" } node { name: "B" op: "L2Loss" input: "A:0" attr { key: "T" value { type: DT_FLOAT } } attr { key: "_output_shapes" value { list { shape { dim { size: 43 } } } } } } )EOF", &bad_def); ASSERT_TRUE(parsed); EXPECT_IMPORT_FAILURE(bad_def, opts, "Node 'B' has an _output_shapes attribute inconsistent " "with the GraphDef for output #0"); #undef EXPECT_IMPORT_FAILURE } TEST_F(GraphConstructorTest, ImportGraphDef_FunctionDefs) { ImportGraphDefOptions opts; ExpectOK( R"EOF( node { name: "Placeholder" op: "Placeholder" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { } } } } node { name: "Placeholder_1" op: "Placeholder" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { } } } } node { name: "Foo_d03c39a3" op: "Foo_d03c39a3" input: "Placeholder" input: "Placeholder_1" } library { function { signature { name: "Foo_d03c39a3" input_arg { name: "x" type: DT_FLOAT } input_arg { name: "y" type: DT_FLOAT } output_arg { name: "add" type: DT_FLOAT } } node_def { name: "add" op: "Add" input: "x" input: "y" attr { key: "T" value { type: DT_FLOAT } } } ret { key: "add" value: "add:z:0" } } function { signature { name: "FooGrad_dc60abc8" input_arg { name: "x" type: DT_FLOAT } input_arg { name: "y" type: DT_FLOAT } input_arg { name: "dz" type: DT_FLOAT } output_arg { name: "dz" type: DT_FLOAT } output_arg { name: "dz_U0" type: DT_FLOAT } } ret { key: "dz" value: "dz:0" } ret { key: "dz_U0" value: "dz:0" } } gradient { function_name: "Foo_d03c39a3" gradient_func: "FooGrad_dc60abc8" } } versions { producer: 21 min_consumer: 12 } )EOF", opts); EXPECT_TRUE(HasNode("Placeholder")); EXPECT_TRUE(HasNode("Placeholder_1")); EXPECT_TRUE(HasNode("Foo_d03c39a3")); const OpDef* op_def; TF_ASSERT_OK(graph_.op_registry()->LookUpOpDef("Foo_d03c39a3", &op_def)); TF_ASSERT_OK(graph_.op_registry()->LookUpOpDef("FooGrad_dc60abc8", &op_def)); GraphDef gdef; graph_.ToGraphDef(&gdef); EXPECT_EQ(gdef.library().function_size(), 2); EXPECT_EQ(gdef.library().gradient_size(), 1); EXPECT_EQ(gdef.library().gradient()[0].function_name(), "Foo_d03c39a3"); EXPECT_EQ(gdef.library().gradient()[0].gradient_func(), "FooGrad_dc60abc8"); std::unique_ptr<Session> sess(NewSession(SessionOptions())); TF_ASSERT_OK(sess->Create(gdef)); Tensor p1(DT_FLOAT, TensorShape({1})); p1.scalar<float>()() = 1.0; Tensor p2(DT_FLOAT, TensorShape({1})); p2.scalar<float>()() = 2.0; std::vector<std::pair<string, Tensor>> inputs = {{"Placeholder", p1}, {"Placeholder_1", p2}}; std::vector<string> output_names = {"Foo_d03c39a3"}; std::vector<string> target_names; std::vector<Tensor> outputs; TF_ASSERT_OK(sess->Run(inputs, output_names, target_names, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_EQ(outputs[0].scalar<float>()(), 3.0); } TEST_F(GraphConstructorTest, ImportGraphDef_NestedFunctionDefs) { ImportGraphDefOptions opts; ExpectOK( R"EOF( node { name: "Placeholder" op: "Placeholder" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { } } } } node { name: "Placeholder_1" op: "Placeholder" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { } } } } node { name: "Outer_966fa13d" op: "Outer_966fa13d" input: "Placeholder" input: "Placeholder_1" } library { function { signature { name: "Outer_966fa13d" input_arg { name: "x" type: DT_FLOAT } input_arg { name: "y" type: DT_FLOAT } output_arg { name: "Inner_d03c39a3" type: DT_FLOAT } } node_def { name: "Inner_d03c39a3" op: "Inner_d03c39a3" input: "x" input: "y" } ret { key: "Inner_d03c39a3" value: "Inner_d03c39a3:add:0" } } function { signature { name: "Inner_d03c39a3" input_arg { name: "x" type: DT_FLOAT } input_arg { name: "y" type: DT_FLOAT } output_arg { name: "add" type: DT_FLOAT } } node_def { name: "add" op: "Add" input: "x" input: "y" attr { key: "T" value { type: DT_FLOAT } } } ret { key: "add" value: "add:z:0" } } } versions { producer: 21 min_consumer: 12 } )EOF", opts); EXPECT_TRUE(HasNode("Placeholder")); EXPECT_TRUE(HasNode("Placeholder_1")); EXPECT_TRUE(HasNode("Outer_966fa13d")); const OpDef* op_def; Status s = graph_.op_registry()->LookUpOpDef("Inner_d03c39a3", &op_def); ASSERT_TRUE(s.ok()) << s.message(); s = graph_.op_registry()->LookUpOpDef("Outer_966fa13d", &op_def); ASSERT_TRUE(s.ok()) << s.message(); GraphDef gdef; graph_.ToGraphDef(&gdef); std::unique_ptr<Session> sess(NewSession(SessionOptions())); s = sess->Create(gdef); ASSERT_TRUE(s.ok()) << s.message(); Tensor p1(DT_FLOAT, TensorShape({1})); p1.scalar<float>()() = 1.0; Tensor p2(DT_FLOAT, TensorShape({1})); p2.scalar<float>()() = 2.0; std::vector<std::pair<string, Tensor>> inputs = {{"Placeholder", p1}, {"Placeholder_1", p2}}; std::vector<string> output_names = {"Outer_966fa13d"}; std::vector<string> target_names; std::vector<Tensor> outputs; s = sess->Run(inputs, output_names, target_names, &outputs); ASSERT_TRUE(s.ok()) << s.message(); ASSERT_EQ(outputs.size(), 1); EXPECT_EQ(outputs[0].scalar<float>()(), 3.0); } TEST_F(GraphConstructorTest, ImportGraphDef_OptionsMemMgmt) { ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK("node { name: 'input' op: 'TestInput' }", ImportGraphDefOptions(), &refiner); char buf1[100]; char buf2[100]; char buf3[100]; snprintf(buf1, sizeof(buf1), "input"); snprintf(buf2, sizeof(buf2), "new_input"); snprintf(buf3, sizeof(buf3), "t1"); ImportGraphDefOptions opts; opts.input_map[TensorId(buf2, 0)] = TensorId(buf1, 0); opts.return_tensors.push_back(TensorId(buf3, 0)); snprintf(buf1, sizeof(buf1), "xxxxxxxxxxxxxxxxxxxx"); snprintf(buf2, sizeof(buf2), "xxxxxxxxxxxxxxxxxxxx"); snprintf(buf3, sizeof(buf3), "xxxxxxxxxxxxxxxxxxxx"); ImportGraphDefResults results; ExpectOK( R"EOF( node { name: 'new_input' op: 'TestInput' } node { name: 't1' op: 'TestMul' input: [ 'new_input:0', 'new_input:1' ] } )EOF", opts, &refiner, &results); EXPECT_TRUE(HasNode("input")); EXPECT_TRUE(HasNode("new_input")); EXPECT_TRUE(HasNode("t1")); EXPECT_TRUE(HasEdge("input", 0, "t1", 0)); EXPECT_TRUE(HasEdge("new_input", 1, "t1", 1)); ASSERT_EQ(results.return_tensors.size(), 1); EXPECT_EQ(results.return_tensors[0].first->name(), "t1"); } TEST_F(GraphConstructorTest, CopyGraph) { const int v = TF_GRAPH_DEF_VERSION; const int bad = v + 17; VersionDef versions; versions.set_producer(v - 1); versions.set_min_consumer(v - 2); versions.add_bad_consumers(bad); Graph src(OpRegistry::Global()); src.set_versions(versions); Graph dst(OpRegistry::Global()); CopyGraph(src, &dst); EXPECT_EQ(dst.versions().producer(), versions.producer()); EXPECT_EQ(dst.versions().min_consumer(), versions.min_consumer()); EXPECT_EQ(dst.versions().bad_consumers_size(), 1); EXPECT_EQ(dst.versions().bad_consumers(0), bad); } TEST_F(GraphConstructorTest, GraphDefVersionUsedForShapeInference) { string gdef_ascii = strings::StrCat(R"EOF( node{ name:"A" op:"RequiresCurrentGraphVersion" } versions { producer: )EOF", TF_GRAPH_DEF_VERSION - 1, "}"); ImportGraphDefOptions opts; ExpectError(gdef_ascii, opts, {"Wrong graph version for shape"}); gdef_ascii = strings::StrCat(R"EOF( node{ name:"A" op:"RequiresCurrentGraphVersion" } versions { producer: )EOF", TF_GRAPH_DEF_VERSION, "}"); ExpectOK(gdef_ascii, opts); } TEST_F(GraphConstructorTest, GraphDefVersionMergingDuringImport) { ImportGraphDefOptions opts; ExpectOK( "versions { producer: 15 min_consumer: 5 bad_consumers: 2 bad_consumers: " "3 " "}", opts); EXPECT_EQ(15, graph_.versions().producer()); EXPECT_EQ(5, graph_.versions().min_consumer()); ASSERT_EQ(2, graph_.versions().bad_consumers_size()); EXPECT_EQ(2, graph_.versions().bad_consumers(0)); EXPECT_EQ(3, graph_.versions().bad_consumers(1)); ExpectOK( "versions { producer: 10 min_consumer: 8 bad_consumers: 1 bad_consumers: " "3 " "}", opts); EXPECT_EQ(10, graph_.versions().producer()); EXPECT_EQ(8, graph_.versions().min_consumer()); ASSERT_EQ(3, graph_.versions().bad_consumers_size()); EXPECT_EQ(1, graph_.versions().bad_consumers(0)); EXPECT_EQ(2, graph_.versions().bad_consumers(1)); EXPECT_EQ(3, graph_.versions().bad_consumers(2)); ExpectOK("versions { producer: 20 min_consumer: 7 }", opts); EXPECT_EQ(10, graph_.versions().producer()); EXPECT_EQ(8, graph_.versions().min_consumer()); ASSERT_EQ(3, graph_.versions().bad_consumers_size()); EXPECT_EQ(1, graph_.versions().bad_consumers(0)); EXPECT_EQ(2, graph_.versions().bad_consumers(1)); EXPECT_EQ(3, graph_.versions().bad_consumers(2)); } TEST_F(GraphConstructorTest, ImportGraphDefProvidedShapeRefinerVersions) { ImportGraphDefOptions opts; string gdef_ascii; #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ gdef_ascii = strings::StrCat(R"EOF( node { name: "Sum/input" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { dim { size: 2 } dim { size: 1 } } tensor_content: "\000\000\000\001\000\000\000\002" } } } } node { name: "Sum/reduction_indices" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { dim { size: 2 } dim { size: 1 } } tensor_content: "\000\000\000\000\000\000\000\001" } } } } node { name: "Sum" op: "Sum" input: "Sum/input" input: "Sum/reduction_indices" attr { key: "T" value { type: DT_INT32 } } attr { key: "Tidx" value { type: DT_INT32 } } attr { key: "keep_dims" value { b: false } } } versions { producer: 20 })EOF"); #else gdef_ascii = strings::StrCat(R"EOF( node { name: "Sum/input" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { dim { size: 2 } dim { size: 1 } } tensor_content: "\001\000\000\000\002\000\000\000" } } } } node { name: "Sum/reduction_indices" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { dim { size: 2 } dim { size: 1 } } tensor_content: "\000\000\000\000\001\000\000\000" } } } } node { name: "Sum" op: "Sum" input: "Sum/input" input: "Sum/reduction_indices" attr { key: "T" value { type: DT_INT32 } } attr { key: "Tidx" value { type: DT_INT32 } } attr { key: "keep_dims" value { b: false } } } versions { producer: 20 })EOF"); #endif ShapeRefiner refiner(TF_GRAPH_DEF_VERSION, graph_.op_registry()); ExpectOK(gdef_ascii, opts, &refiner); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ gdef_ascii = strings::StrCat(R"EOF( node { name: "RandomConst" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { dim { size: 2 } dim { size: 1 } } tensor_content: "\000\000\000\001\000\000\000\002" } } } } versions { producer: 21 })EOF"); #else gdef_ascii = strings::StrCat(R"EOF( node { name: "RandomConst" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { dim { size: 2 } dim { size: 1 } } tensor_content: "\001\000\000\000\002\000\000\000" } } } } versions { producer: 21 })EOF"); #endif ExpectOK(gdef_ascii, opts, &refiner); EXPECT_EQ(20, refiner.graph_def_version()); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ gdef_ascii = strings::StrCat(R"EOF( node { name: "RandomConst2" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { dim { size: 2 } dim { size: 1 } } tensor_content: "\000\000\000\001\000\000\000\002" } } } } versions { producer: 17 })EOF"); #else gdef_ascii = strings::StrCat(R"EOF( node { name: "RandomConst2" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { dim { size: 2 } dim { size: 1 } } tensor_content: "\001\000\000\000\002\000\000\000" } } } } versions { producer: 17 })EOF"); #endif ExpectOK(gdef_ascii, opts, &refiner); EXPECT_EQ(17, refiner.graph_def_version()); } TEST_F(GraphConstructorTest, ImportGraphDef_ValidateColocationConstraints) { GraphDef def; ASSERT_TRUE(protobuf::TextFormat::ParseFromString( "node { name: 'A' op: 'TestInput' attr { key: '_class' value { list { " "s:'loc:@missing' } } } }", &def)); ImportGraphDefOptions options; Status s = ImportGraphDef(options, def, &graph_, nullptr); EXPECT_TRUE(errors::IsInvalidArgument(s)) << s; options.validate_colocation_constraints = false; TF_EXPECT_OK(ImportGraphDef(options, def, &graph_, nullptr)); } TEST_F(GraphConstructorTest, ImportGraphDef_ValidateDefaultDevice) { std::string gdef_ascii( R"EOF( node { name: 'test_input' op: 'TestInput' } node { name: 'test_input_with_dev' op: 'TestInput' device: 'some dev'} node { name: 'test_op' op: 'TestMul' input: [ 'test_input:0', 'test_input:1' ] } node { name: 'test_op_with_dev' op: 'TestMul' input: [ 'test_input:0', 'test_input:1' ] device: 'some dev'} )EOF"); GraphDef gdef; ASSERT_TRUE(protobuf::TextFormat::ParseFromString(gdef_ascii, &gdef)); ImportGraphDefOptions options; options.default_device = "/gpu:13"; ImportGraphDefResults res; TF_ASSERT_OK(ImportGraphDef(options, gdef, &graph_, nullptr, &res)); std::map<string, string> node2dev; for (Node* n : graph_.nodes()) { node2dev[n->name()] = n->requested_device(); } EXPECT_EQ(node2dev["test_input"], "/gpu:13"); EXPECT_EQ(node2dev["test_op"], "/gpu:13"); EXPECT_EQ(node2dev["test_input_with_dev"], "some dev"); EXPECT_EQ(node2dev["test_op_with_dev"], "some dev"); } TEST_F(GraphConstructorTest, ImportGraphDef_UnknownOps) { const string pb_ascii = "node { name: 'op_from_contrib' op: 'OpFromContrib'}"; ExpectError(pb_ascii, {"Op type not registered 'OpFromContrib'"}); ExpectError( pb_ascii, {"Make sure the Op and Kernel are registered in the " "binary running in this process. Note that if you " "are loading a saved graph which used ops from " "tf.contrib (e.g. `tf.contrib.resampler`), accessing should be done " "before importing the graph, as contrib ops are lazily registered " "when the module is first accessed."}); } TEST_F(GraphConstructorTest, GraphDebugInfo_Node_StackTrace_Deserialize) { ExpectOK(R"( node { name: "w1" op: "TestParams" } node { name: "input" op: "TestInput" } node { name: "t1" op: "TestMul" input: "w1" input: "input:1" } debug_info { files: "alpha.cc" files: "beta.cc" files: "gamma.cc" traces { key: "w1" value { file_line_cols { file_index: 0 line: 20 func: "foo" } file_line_cols { file_index: 1 line: 30 func: "bar" } } } traces { key: "input" value { file_line_cols { file_index: 0 line: 20 func: "foo" } file_line_cols { file_index: 2 line: 35 func: "tree" } } } traces { key: "a1@foo" value { file_line_cols { file_index: 0 line: 20 func: "foo" } file_line_cols { file_index: 1 line: 30 func: "bar" } } } })"); Node* w1 = FindNode("w1"); EXPECT_NE(w1, nullptr); const std::shared_ptr<AbstractStackTrace>& w1_stack = w1->GetStackTrace(); EXPECT_NE(w1_stack, nullptr); EXPECT_EQ(w1_stack->ToString({}), "File \"alpha.cc\", line 20, in foo\n" "File \"beta.cc\", line 30, in bar"); Node* input = FindNode("input"); EXPECT_NE(input, nullptr); const std::shared_ptr<AbstractStackTrace>& input_stack = input->GetStackTrace(); EXPECT_NE(input_stack, nullptr); EXPECT_EQ(input_stack->ToString({}), "File \"alpha.cc\", line 20, in foo\n" "File \"gamma.cc\", line 35, in tree"); } TEST_F(GraphConstructorTest, GraphDebugInfo_Node_StackTrace_Deserialize_InvalidFileIndex) { ExpectOK(R"( node { name: "w1" op: "TestParams" } node { name: "input" op: "TestInput" } node { name: "t1" op: "TestMul" input: "w1" input: "input:1" } debug_info { files: "alpha.cc" files: "beta.cc" files: "gamma.cc" traces { key: "w1" value { file_line_cols { file_index: 2 line: 20 func: "foo" } file_line_cols { file_index: -1 line: 30 func: "negative_index" } file_line_cols { file_index: 3 line: 40 func: "index_ge_length" } } } })"); Node* w1 = FindNode("w1"); EXPECT_NE(w1, nullptr); const std::shared_ptr<AbstractStackTrace>& w1_stack = w1->GetStackTrace(); EXPECT_NE(w1_stack, nullptr); EXPECT_EQ(w1_stack->ToString({}), "File \"gamma.cc\", line 20, in foo\n" "File \"<UNKNOWN_FILE_NAME>\", line 30, in negative_index\n" "File \"<UNKNOWN_FILE_NAME>\", line 40, in index_ge_length"); } TEST_F(GraphConstructorTest, GraphDebugInfo_FunctionLibrary_StackTrace_Deserialize) { ExpectOK(R"( node { name: "a" op: "TestParams" } node { name: "b" op: "TestInput" } node { name: "t1" op: "TestMul" input: "a" input: "b:1" } library { function { signature { name: "foo" } node_def { name: "a1" } node_def { name: "a2" } } function { signature { name: "bar" } node_def { name: "b1" } node_def { name: "b2" } } } debug_info { files: "alpha.cc" files: "beta.cc" files: "gamma.cc" files: "delta.cc" traces { key: "input" value { file_line_cols { file_index: 0 line: 20 func: "foo" } file_line_cols { file_index: 2 line: 35 func: "tree" } } } traces { key: "a1@foo" value { file_line_cols { file_index: 0 line: 20 func: "jazz" } file_line_cols { file_index: 1 line: 30 func: "buzz" } } } traces { key: "a2@foo" value { file_line_cols { file_index: 1 line: 25 func: "fuzz" } file_line_cols { file_index: 2 line: 35 func: "fizz" } } } traces { key: "b1@bar" value { file_line_cols { file_index: 0 line: 23 func: "chez" } file_line_cols { file_index: 3 line: 33 func: "whiz" } } } traces { key: "b2@bar" value { file_line_cols { file_index: 1 line: 24 func: "quip" } file_line_cols { file_index: 3 line: 34 func: "jape" } } } })"); const FunctionLibraryDefinition& flib_def = graph_.flib_def(); core::RefCountPtr<FunctionRecord> foo_function_record = flib_def.FindRecord("foo"); EXPECT_NE(foo_function_record.get(), nullptr); const StackTracesMap& foo_stack_traces = foo_function_record->stack_traces(); auto a1_iter = foo_stack_traces.find("a1"); EXPECT_NE(a1_iter, foo_stack_traces.end()); std::shared_ptr<AbstractStackTrace> a1_stack_trace = a1_iter->second; EXPECT_NE(a1_stack_trace.get(), nullptr); EXPECT_EQ(a1_stack_trace->ToString({}), "File \"alpha.cc\", line 20, in jazz\n" "File \"beta.cc\", line 30, in buzz"); auto a2_iter = foo_stack_traces.find("a2"); EXPECT_NE(a2_iter, foo_stack_traces.end()); std::shared_ptr<AbstractStackTrace> a2_stack_trace = a2_iter->second; EXPECT_NE(a2_stack_trace.get(), nullptr); EXPECT_EQ(a2_stack_trace->ToString({}), "File \"beta.cc\", line 25, in fuzz\n" "File \"gamma.cc\", line 35, in fizz"); core::RefCountPtr<FunctionRecord> bar_function_record = flib_def.FindRecord("bar"); EXPECT_NE(bar_function_record.get(), nullptr); const StackTracesMap& bar_stack_traces = bar_function_record->stack_traces(); auto b1_iter = bar_stack_traces.find("b1"); EXPECT_NE(b1_iter, bar_stack_traces.end()); std::shared_ptr<AbstractStackTrace> b1_stack_trace = b1_iter->second; EXPECT_NE(b1_stack_trace.get(), nullptr); EXPECT_EQ(b1_stack_trace->ToString({}), "File \"alpha.cc\", line 23, in chez\n" "File \"delta.cc\", line 33, in whiz"); auto b2_iter = bar_stack_traces.find("b2"); EXPECT_NE(b2_iter, bar_stack_traces.end()); std::shared_ptr<AbstractStackTrace> b2_stack_trace = b2_iter->second; EXPECT_NE(b2_stack_trace.get(), nullptr); EXPECT_EQ(b2_stack_trace->ToString({}), "File \"beta.cc\", line 24, in quip\n" "File \"delta.cc\", line 34, in jape"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/graph_constructor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/graph_constructor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0198949a-e919-4cf3-b597-d178b5b5c6e9
cpp
tensorflow/tensorflow
session
tensorflow/core/common_runtime/session.cc
tensorflow/core/common_runtime/session_test.cc
#include "tensorflow/core/public/session.h" #include <string> #include "tensorflow/core/common_runtime/session_factory.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/monitoring/gauge.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace { auto* session_created = monitoring::Gauge<bool, 0>::New( "/tensorflow/core/session_created", "True if a session was created."); } void SetSessionCreatedMetric() { session_created->GetCell()->Set(true); } Session::Session() {} Session::~Session() {} Status Session::Run(const RunOptions& run_options, const std::vector<std::pair<string, Tensor> >& inputs, const std::vector<string>& output_tensor_names, const std::vector<string>& target_tensor_names, std::vector<Tensor>* outputs, RunMetadata* run_metadata) { return errors::Unimplemented( "Run with options is not supported for this session."); } Status Session::PRunSetup(const std::vector<string>& input_names, const std::vector<string>& output_names, const std::vector<string>& target_nodes, string* handle) { return errors::Unimplemented( "Partial run is not supported for this session."); } Status Session::PRun(const string& handle, const std::vector<std::pair<string, Tensor> >& inputs, const std::vector<string>& output_names, std::vector<Tensor>* outputs) { return errors::Unimplemented( "Partial run is not supported for this session."); } Session* NewSession(const SessionOptions& options) { SetSessionCreatedMetric(); Session* out_session; Status s = NewSession(options, &out_session); if (!s.ok()) { LOG(ERROR) << "Failed to create session: " << s; return nullptr; } return out_session; } Status NewSession(const SessionOptions& options, Session** out_session) { SessionFactory* factory; Status s = SessionFactory::GetFactory(options, &factory); if (!s.ok()) { *out_session = nullptr; LOG(ERROR) << "Failed to get session factory: " << s; return s; } SetSessionCreatedMetric(); s = factory->NewSession(options, out_session); if (!s.ok()) { *out_session = nullptr; LOG(ERROR) << "Failed to create session: " << s; } return s; } Status Reset(const SessionOptions& options, const std::vector<string>& containers) { SessionFactory* factory; TF_RETURN_IF_ERROR(SessionFactory::GetFactory(options, &factory)); return factory->Reset(options, containers); } }
#include "tensorflow/core/public/session.h" #include "tensorflow/core/common_runtime/session_factory.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { TEST(SessionTest, InvalidTargetReturnsNull) { SessionOptions options; options.target = "invalid target"; EXPECT_EQ(nullptr, tensorflow::NewSession(options)); Session* session; Status s = tensorflow::NewSession(options, &session); EXPECT_EQ(s.code(), error::NOT_FOUND); EXPECT_TRUE(absl::StrContains( s.message(), "No session factory registered for the given session options")); } class FakeSessionFactory : public SessionFactory { public: FakeSessionFactory() {} bool AcceptsOptions(const SessionOptions& options) override { return absl::StartsWith(options.target, "fake"); } Status NewSession(const SessionOptions& options, Session** out_session) override { *out_session = nullptr; return absl::OkStatus(); } }; class FakeSessionRegistrar { public: FakeSessionRegistrar() { SessionFactory::Register("FAKE_SESSION_1", new FakeSessionFactory()); SessionFactory::Register("FAKE_SESSION_2", new FakeSessionFactory()); } }; static FakeSessionRegistrar registrar; TEST(SessionTest, MultipleFactoriesForTarget) { SessionOptions options; options.target = "fakesession"; Session* session; Status s = tensorflow::NewSession(options, &session); EXPECT_EQ(s.code(), error::INTERNAL); EXPECT_TRUE(absl::StrContains(s.message(), "Multiple session factories")); EXPECT_TRUE(absl::StrContains(s.message(), "FAKE_SESSION_1")); EXPECT_TRUE(absl::StrContains(s.message(), "FAKE_SESSION_2")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/session.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/session_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4247af5c-3ab6-4144-ac73-c851293eeb69
cpp
tensorflow/tensorflow
arg_ret_placement
tensorflow/core/common_runtime/arg_ret_placement.cc
tensorflow/core/common_runtime/arg_ret_placement_test.cc
#include "tensorflow/core/common_runtime/arg_ret_placement.h" #include <algorithm> #include <cstddef> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/full_type_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow::full_type { MemoryType MemoryTypeFromFullTypeId(FullTypeId id) { if (id == TFT_SHAPE_TENSOR) { return HOST_MEMORY; } return DEVICE_MEMORY; } bool LogMemoryTypeMismatch(bool use_host_memory, const FullTypeDef& ft) { FullTypeId id = ft.type_id(); if (id == TFT_PRODUCT) { LOG(ERROR) << "Unexpected full type information for tensor, which should " "not start with TFT_PRODUCT\n" << ft.DebugString(); return false; } MemoryType mt_from_ft = MemoryTypeFromFullTypeId(id); if (use_host_memory != (mt_from_ft == HOST_MEMORY)) { VLOG(1) << "use_host_memory=" << use_host_memory << "but full type information is\n" << ft.DebugString(); return false; } return true; } Status CheckMemoryType(bool use_host_memory, const FullTypeDef& ft) { FullTypeId id = ft.type_id(); MemoryType mt_from_ft = MemoryTypeFromFullTypeId(id); if (id == TFT_PRODUCT) { return errors::Internal( "Unexpected full type information for tensor, which should not start " "with TFT_PRODUCT\n", ft.DebugString()); } if (use_host_memory != (mt_from_ft == HOST_MEMORY)) { return errors::Internal("use_host_memory=", use_host_memory, " but full type information is\n", ft.DebugString()); } return absl::OkStatus(); } static Status SetMemoryTypeForNode( const Node* node, const DataType dtype, bool is_arg, bool weak_flag, bool ints_on_device, MemoryTypeVector* memory_types, std::vector<AllocatorAttributes>* alloc_attrs) { const Node* n; int output_idx; if (is_arg) { DCHECK(node->op_def().name() == "_Arg" || node->op_def().name() == "_DeviceArg"); output_idx = 0; n = node; } else { DCHECK(node->op_def().name() == "_Retval" || node->op_def().name() == "_DeviceRetval"); const Edge* edge; TF_RETURN_IF_ERROR(node->input_edge(0, &edge)); n = edge->src(); output_idx = edge->src_output(); } MemoryType mt_from_dtype = ints_on_device ? MTypeFromDTypeIntsOnDevice(dtype) : MTypeFromDType(dtype); if (dtype == DT_INT32) { if (n->def().has_experimental_type()) { bool valid_full_type_information = false; auto ft = n->def().experimental_type(); if (ft.type_id() == TFT_PRODUCT) { FullTypeId id = GetArgDefaultUnset(ft, output_idx).type_id(); MemoryType mt_from_ft = MemoryTypeFromFullTypeId(id); if ((id == TFT_TENSOR) || (id == TFT_SHAPE_TENSOR)) { valid_full_type_information = mt_from_dtype == mt_from_ft; } else if (id == TFT_UNSET) { valid_full_type_information = mt_from_dtype != HOST_MEMORY; } } if (!valid_full_type_information) { if (weak_flag) { VLOG(1) << "node=" << n->name() << " (op=" << n->def().op() << ") has an int32 output with unexpected full type " << "information with ints_on_device=" << ints_on_device << "\n" << n->def().DebugString(); } else { return errors::Internal( "node=", n->name(), " (op=", n->def().op(), ") has an int32 output with unexpected full type information ", "with ints_on_device=", ints_on_device, "\n", n->def().DebugString()); } } } else if (mt_from_dtype == HOST_MEMORY) { if (weak_flag) { VLOG(1) << "node=" << n->name() << " (op=" << n->def().op() << ") has a HOST_MEMORY int32 output but does not have " << "(TFT_SHAPE_TENSOR) full type information."; } else { return errors::Internal( "node=", n->name(), " (op=", n->def().op(), ") has a HOST_MEMORY int32 output but does not have " "(TFT_SHAPE_TENSOR) full type information."); } } } if (memory_types != nullptr) { memory_types->push_back(mt_from_dtype); } if (alloc_attrs != nullptr) { AllocatorAttributes aa; aa.set_on_host(mt_from_dtype == HOST_MEMORY); alloc_attrs->push_back(aa); } return absl::OkStatus(); } static Status SetMemoryTypeHelper( const absl::InlinedVector<Node*, 4UL>& nodes, const DataTypeVector& dtypes, bool is_arg, bool weak_flag, MemoryTypeVector* memory_types, std::vector<AllocatorAttributes>* alloc_attrs) { DCHECK_EQ(nodes.size(), dtypes.size()); if (alloc_attrs != nullptr) { alloc_attrs->reserve(nodes.size()); } for (int i = 0; i < nodes.size(); ++i) { TF_RETURN_IF_ERROR(SetMemoryTypeForNode(nodes[i], dtypes[i], is_arg, weak_flag, false, memory_types, alloc_attrs)); } return absl::OkStatus(); } static Status SetMemoryTypeHelper( const std::vector<std::pair<Node*, FunctionArgIndex>> arg_nodes, bool weak_flag, bool ints_on_device, std::vector<AllocatorAttributes>* alloc_attrs) { DCHECK(alloc_attrs != nullptr); alloc_attrs->reserve(arg_nodes.size()); for (const auto& arg : arg_nodes) { const AttrValue* attr_value = arg.first->attrs().Find("T"); if (attr_value == nullptr) { return errors::Internal("Arg node missing T attribute"); } DataType dtype = attr_value->type(); TF_RETURN_IF_ERROR(SetMemoryTypeForNode( arg.first, dtype, true, weak_flag, ints_on_device, nullptr, alloc_attrs)); } return absl::OkStatus(); } static Status SetMemoryTypeHelper( const std::vector<std::pair<Node*, int>> ret_nodes, bool weak_flag, bool ints_on_device, std::vector<AllocatorAttributes>* alloc_attrs) { DCHECK(alloc_attrs != nullptr); alloc_attrs->reserve(ret_nodes.size()); for (const auto& ret : ret_nodes) { const AttrValue* attr_value = ret.first->attrs().Find("T"); if (attr_value == nullptr) { return errors::Internal("Ret node missing T attribute"); } DataType dtype = attr_value->type(); TF_RETURN_IF_ERROR(SetMemoryTypeForNode( ret.first, dtype, false, weak_flag, ints_on_device, nullptr, alloc_attrs)); } return absl::OkStatus(); } Status SetMemoryTypeForArgs(const absl::InlinedVector<Node*, 4UL>& nodes, const DataTypeVector& dtypes, MemoryTypeVector& memory_types) { return SetMemoryTypeHelper(nodes, dtypes, true, false, &memory_types, nullptr); } Status WeakSetMemoryTypeForArgs(const absl::InlinedVector<Node*, 4UL>& nodes, const DataTypeVector& dtypes, MemoryTypeVector& memory_types) { return SetMemoryTypeHelper(nodes, dtypes, true, true, &memory_types, nullptr); } Status SetMemoryTypeForRets(const absl::InlinedVector<Node*, 4UL>& nodes, const DataTypeVector& dtypes, MemoryTypeVector& memory_types) { return SetMemoryTypeHelper(nodes, dtypes, false, false, &memory_types, nullptr); } Status WeakSetMemoryTypeForRets(const absl::InlinedVector<Node*, 4UL>& nodes, const DataTypeVector& dtypes, MemoryTypeVector& memory_types) { return SetMemoryTypeHelper(nodes, dtypes, false, true, &memory_types, nullptr); } Status SetAllocAttrsForArgs(const absl::InlinedVector<Node*, 4UL>& nodes, const DataTypeVector& dtypes, std::vector<AllocatorAttributes>& alloc_attrs) { return SetMemoryTypeHelper(nodes, dtypes, true, false, nullptr, &alloc_attrs); } Status WeakSetAllocAttrsForArgs(const absl::InlinedVector<Node*, 4UL>& nodes, const DataTypeVector& dtypes, std::vector<AllocatorAttributes>& alloc_attrs) { return SetMemoryTypeHelper(nodes, dtypes, true, true, nullptr, &alloc_attrs); } Status SetAllocAttrsForRets(const absl::InlinedVector<Node*, 4UL>& nodes, const DataTypeVector& dtypes, std::vector<AllocatorAttributes>& alloc_attrs) { return SetMemoryTypeHelper(nodes, dtypes, false, false, nullptr, &alloc_attrs); } Status WeakSetAllocAttrsForRets(const absl::InlinedVector<Node*, 4UL>& nodes, const DataTypeVector& dtypes, std::vector<AllocatorAttributes>& alloc_attrs) { return SetMemoryTypeHelper(nodes, dtypes, false, true, nullptr, &alloc_attrs); } Status SingleDeviceSetAllocAttrsForArgs( std::vector<std::pair<Node*, FunctionArgIndex>> arg_nodes, bool ints_on_device, std::vector<AllocatorAttributes>& alloc_attrs) { return SetMemoryTypeHelper(arg_nodes, false, ints_on_device, &alloc_attrs); } Status WeakSingleDeviceSetAllocAttrsForArgs( std::vector<std::pair<Node*, FunctionArgIndex>> arg_nodes, bool ints_on_device, std::vector<AllocatorAttributes>& alloc_attrs) { return SetMemoryTypeHelper(arg_nodes, true, ints_on_device, &alloc_attrs); } Status SingleDeviceSetAllocAttrsForRets( const std::vector<std::pair<Node*, int>> ret_nodes, bool ints_on_device, std::vector<AllocatorAttributes>& alloc_attrs) { return SetMemoryTypeHelper(ret_nodes, false, ints_on_device, &alloc_attrs); } Status WeakSingleDeviceSetAllocAttrsForRets( const std::vector<std::pair<Node*, int>> ret_nodes, bool ints_on_device, std::vector<AllocatorAttributes>& alloc_attrs) { return SetMemoryTypeHelper(ret_nodes, true, ints_on_device, &alloc_attrs); } }
#include "tensorflow/core/common_runtime/arg_ret_placement.h" #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "tensorflow/cc/framework/scope.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" namespace tensorflow { class FullTypeGraphUtilsTest : public ::testing::Test { protected: FullTypeGraphUtilsTest() : graph_(OpRegistry::Global()), root_(Scope::NewRootScope().ExitOnError()) {} Status MakeArg(Node **arg, DataType dtype) { return NodeBuilder("arg", "_Arg", &root_.graph()->flib_def()) .Attr("T", dtype) .Attr("index", 0) .Finalize(root_.graph(), arg); } Status MakeRet(Node *src, Node **ret, DataType dtype) { return NodeBuilder("ret", "_Retval", &root_.graph()->flib_def()) .Input(src, 0) .Attr("T", dtype) .Attr("index", 0) .Finalize(root_.graph(), ret); } public: Status MakeArgRet(Node **arg, Node **ret, DataType dtype) { TF_RETURN_IF_ERROR(MakeArg(arg, dtype)); return MakeRet(*arg, ret, dtype); } void AddArgFullType(Node *arg, FullTypeId out_id, FullTypeId data_id) { FullTypeDef *t = arg->mutable_def()->mutable_experimental_type(); t->set_type_id(TFT_PRODUCT); FullTypeDef out_t; out_t.set_type_id(out_id); if (data_id != TFT_UNSET) { FullTypeDef data_t; data_t.set_type_id(data_id); (*out_t.add_args()) = data_t; } (*t->add_args()) = out_t; } private: Graph graph_; Scope root_; }; TEST_F(FullTypeGraphUtilsTest, MemoryTypesArgNoFT) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; MemoryTypeVector memory_types; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT64)); nodes.push_back(arg); dtypes.push_back(DT_INT64); TF_ASSERT_OK( full_type::WeakSetMemoryTypeForArgs(nodes, dtypes, memory_types)); ASSERT_EQ(memory_types.size(), 1); ASSERT_EQ(memory_types[0], MemoryType::DEVICE_MEMORY); } TEST_F(FullTypeGraphUtilsTest, AllocatorAttrsArgNoFT) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT64)); nodes.push_back(arg); dtypes.push_back(DT_INT64); TF_ASSERT_OK(full_type::WeakSetAllocAttrsForArgs(nodes, dtypes, alloc_attrs)); ASSERT_EQ(alloc_attrs.size(), 1); ASSERT_FALSE(alloc_attrs[0].on_host()); } TEST_F(FullTypeGraphUtilsTest, MemoryTypesArgWithFT) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; MemoryTypeVector memory_types; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); AddArgFullType(arg, TFT_SHAPE_TENSOR, TFT_INT32); nodes.push_back(arg); dtypes.push_back(DT_INT32); TF_ASSERT_OK(full_type::SetMemoryTypeForArgs(nodes, dtypes, memory_types)); ASSERT_EQ(memory_types.size(), 1); ASSERT_EQ(memory_types[0], MemoryType::HOST_MEMORY); } TEST_F(FullTypeGraphUtilsTest, AllocatorAttrsArgWithFT) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); AddArgFullType(arg, TFT_SHAPE_TENSOR, TFT_INT32); nodes.push_back(arg); dtypes.push_back(DT_INT32); TF_ASSERT_OK(full_type::SetAllocAttrsForArgs(nodes, dtypes, alloc_attrs)); ASSERT_EQ(alloc_attrs.size(), 1); ASSERT_TRUE(alloc_attrs[0].on_host()); } TEST_F(FullTypeGraphUtilsTest, ArgError) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; MemoryTypeVector memory_types; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); AddArgFullType(arg, TFT_TENSOR, TFT_INT32); nodes.push_back(arg); dtypes.push_back(DT_INT32); Status status = full_type::SetMemoryTypeForArgs(nodes, dtypes, memory_types); EXPECT_FALSE(status.ok()); } TEST_F(FullTypeGraphUtilsTest, WeakAllocAttrsArgIgnore) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); AddArgFullType(arg, TFT_TENSOR, TFT_INT32); nodes.push_back(arg); dtypes.push_back(DT_INT32); TF_ASSERT_OK(full_type::WeakSetAllocAttrsForArgs(nodes, dtypes, alloc_attrs)); ASSERT_EQ(alloc_attrs.size(), 1); ASSERT_TRUE(alloc_attrs[0].on_host()); } TEST_F(FullTypeGraphUtilsTest, RetNoFT) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; MemoryTypeVector memory_types; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT64)); nodes.push_back(ret); dtypes.push_back(DT_INT64); TF_ASSERT_OK( full_type::WeakSetMemoryTypeForRets(nodes, dtypes, memory_types)); ASSERT_EQ(memory_types.size(), 1); ASSERT_EQ(memory_types[0], MemoryType::DEVICE_MEMORY); } TEST_F(FullTypeGraphUtilsTest, MemoryTypeRetWithFT) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; MemoryTypeVector memory_types; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); AddArgFullType(arg, TFT_SHAPE_TENSOR, TFT_INT32); nodes.push_back(ret); dtypes.push_back(DT_INT32); TF_ASSERT_OK(full_type::SetMemoryTypeForRets(nodes, dtypes, memory_types)); ASSERT_EQ(memory_types.size(), 1); ASSERT_EQ(memory_types[0], MemoryType::HOST_MEMORY); } TEST_F(FullTypeGraphUtilsTest, AllowAttrRetWithFT) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); AddArgFullType(arg, TFT_SHAPE_TENSOR, TFT_INT32); nodes.push_back(ret); dtypes.push_back(DT_INT32); TF_ASSERT_OK(full_type::SetAllocAttrsForRets(nodes, dtypes, alloc_attrs)); ASSERT_EQ(alloc_attrs.size(), 1); ASSERT_TRUE(alloc_attrs[0].on_host()); } TEST_F(FullTypeGraphUtilsTest, RetError) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; MemoryTypeVector memory_types; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); nodes.push_back(ret); dtypes.push_back(DT_INT32); Status status = full_type::SetMemoryTypeForRets(nodes, dtypes, memory_types); EXPECT_FALSE(status.ok()); } TEST_F(FullTypeGraphUtilsTest, WeakAllocAttrsRetIgnore) { absl::InlinedVector<Node *, 4UL> nodes; DataTypeVector dtypes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); nodes.push_back(ret); dtypes.push_back(DT_INT32); TF_ASSERT_OK(full_type::WeakSetAllocAttrsForRets(nodes, dtypes, alloc_attrs)); ASSERT_EQ(alloc_attrs.size(), 1); ASSERT_TRUE(alloc_attrs[0].on_host()); } TEST_F(FullTypeGraphUtilsTest, AllocatorAttrsArgWithFTSingleDevice) { std::vector<std::pair<Node *, FunctionArgIndex>> arg_nodes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); AddArgFullType(arg, TFT_TENSOR, TFT_INT32); arg_nodes.push_back(std::make_pair(arg, FunctionArgIndex(0, 0))); TF_ASSERT_OK(full_type::SingleDeviceSetAllocAttrsForArgs( arg_nodes, true, alloc_attrs)); ASSERT_EQ(alloc_attrs.size(), 1); ASSERT_FALSE(alloc_attrs[0].on_host()); } TEST_F(FullTypeGraphUtilsTest, AllocatorAttrsArgWithUnsetFTSingleDevice) { std::vector<std::pair<Node *, FunctionArgIndex>> arg_nodes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); AddArgFullType(arg, TFT_UNSET, TFT_UNSET); arg_nodes.push_back(std::make_pair(arg, FunctionArgIndex(0, 0))); TF_ASSERT_OK(full_type::SingleDeviceSetAllocAttrsForArgs( arg_nodes, true, alloc_attrs)); ASSERT_EQ(alloc_attrs.size(), 1); ASSERT_FALSE(alloc_attrs[0].on_host()); } TEST_F(FullTypeGraphUtilsTest, WeakAllocatorAttrsArgWithFTSingleDevice) { std::vector<std::pair<Node *, FunctionArgIndex>> arg_nodes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); AddArgFullType(arg, TFT_SHAPE_TENSOR, TFT_INT32); arg_nodes.push_back(std::make_pair(arg, FunctionArgIndex(0, 0))); TF_ASSERT_OK(full_type::WeakSingleDeviceSetAllocAttrsForArgs( arg_nodes, false, alloc_attrs)); ASSERT_EQ(alloc_attrs.size(), 1); ASSERT_TRUE(alloc_attrs[0].on_host()); } TEST_F(FullTypeGraphUtilsTest, SingleDeviceAllocAttrsRetError) { std::vector<std::pair<Node *, int>> ret_nodes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); AddArgFullType(arg, TFT_SHAPE_TENSOR, TFT_INT32); ret_nodes.push_back(std::make_pair(ret, 0)); Status status = full_type::SingleDeviceSetAllocAttrsForRets( ret_nodes, true, alloc_attrs); EXPECT_FALSE(status.ok()); } TEST_F(FullTypeGraphUtilsTest, SingleDeviceAllocAttrsNotInt32) { std::vector<std::pair<Node *, int>> ret_nodes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_STRING)); ret_nodes.push_back(std::make_pair(ret, 0)); TF_ASSERT_OK(full_type::SingleDeviceSetAllocAttrsForRets( ret_nodes, false, alloc_attrs)); ASSERT_EQ(alloc_attrs.size(), 1); ASSERT_TRUE(alloc_attrs[0].on_host()); } TEST_F(FullTypeGraphUtilsTest, SingleDeviceWeakAllocAttrsRetIgnore) { std::vector<std::pair<Node *, int>> ret_nodes; std::vector<AllocatorAttributes> alloc_attrs; Node *arg, *ret; TF_ASSERT_OK(MakeArgRet(&arg, &ret, DT_INT32)); ret_nodes.push_back(std::make_pair(ret, 0)); TF_ASSERT_OK(full_type::WeakSingleDeviceSetAllocAttrsForRets( ret_nodes, true, alloc_attrs)); ASSERT_EQ(alloc_attrs.size(), 1); ASSERT_FALSE(alloc_attrs[0].on_host()); } TEST_F(FullTypeGraphUtilsTest, CheckMemoryTypeOK) { Node *node; TF_ASSERT_OK(MakeArg(&node, DT_INT32)); AddArgFullType(node, TFT_SHAPE_TENSOR, TFT_INT32); const FullTypeDef &ft = node->def().experimental_type().args()[0]; TF_ASSERT_OK(full_type::CheckMemoryType(true, ft)); } TEST_F(FullTypeGraphUtilsTest, CheckMemoryTypeBadFT) { Node *node; TF_ASSERT_OK(MakeArg(&node, DT_INT32)); AddArgFullType(node, TFT_SHAPE_TENSOR, TFT_INT32); const FullTypeDef &ft = node->def().experimental_type(); Status status = full_type::CheckMemoryType(true, ft); EXPECT_FALSE(status.ok()); } TEST_F(FullTypeGraphUtilsTest, CheckMemoryTypeWrongFT) { Node *node; TF_ASSERT_OK(MakeArg(&node, DT_INT32)); AddArgFullType(node, TFT_SHAPE_TENSOR, TFT_INT32); const FullTypeDef &ft = node->def().experimental_type().args()[0]; Status status = full_type::CheckMemoryType(false, ft); EXPECT_FALSE(status.ok()); } TEST_F(FullTypeGraphUtilsTest, LogMemoryTypeMismatchOK) { Node *node; TF_ASSERT_OK(MakeArg(&node, DT_INT32)); AddArgFullType(node, TFT_SHAPE_TENSOR, TFT_INT32); const FullTypeDef &ft = node->def().experimental_type().args()[0]; EXPECT_TRUE(full_type::LogMemoryTypeMismatch(true, ft)); } TEST_F(FullTypeGraphUtilsTest, LogMemoryTypeMismatchBadFT) { Node *node; TF_ASSERT_OK(MakeArg(&node, DT_INT32)); AddArgFullType(node, TFT_SHAPE_TENSOR, TFT_INT32); const FullTypeDef &ft = node->def().experimental_type(); EXPECT_FALSE(full_type::LogMemoryTypeMismatch(true, ft)); } TEST_F(FullTypeGraphUtilsTest, LogMemoryTypeMismatchWrongFT) { Node *node; TF_ASSERT_OK(MakeArg(&node, DT_INT32)); AddArgFullType(node, TFT_SHAPE_TENSOR, TFT_INT32); const FullTypeDef &ft = node->def().experimental_type().args()[0]; EXPECT_FALSE(full_type::LogMemoryTypeMismatch(false, ft)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/arg_ret_placement.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/arg_ret_placement_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
78c82e59-e383-40f5-be5e-ae074095bd05
cpp
tensorflow/tensorflow
type_inference
tensorflow/core/common_runtime/type_inference.cc
tensorflow/core/common_runtime/type_inference_test.cc
#include "tensorflow/core/common_runtime/type_inference.h" #include <functional> #include <list> #include <queue> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/full_type_util.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { namespace { int MAX_VISITS_PER_NODE = 3; typedef absl::flat_hash_map<int, std::reference_wrapper<TypeInferenceFn const>> ForwardInferMap; typedef absl::flat_hash_map< int, std::pair<int, std::reference_wrapper<TypeInferenceFn const>>> ReverseInferMap; bool all_sources_closed(const Node& n, const absl::flat_hash_set<int>& closed, const ForwardInferMap& forward, const ReverseInferMap& reverse) { for (const auto& e : n.out_edges()) { if (e->IsControlEdge()) { continue; } int dst_id = e->dst()->id(); if (reverse.contains(dst_id) && !closed.contains(dst_id)) { return false; } } if (forward.contains(n.id())) { for (const auto& e : n.in_edges()) { if (e->IsControlEdge()) { continue; } if (!closed.contains(e->src()->id())) { return false; } } } return true; } std::vector<std::reference_wrapper<const FullTypeDef>> input_types( const Node& n) { static FullTypeDef* no_type = new FullTypeDef(); std::vector<std::reference_wrapper<const FullTypeDef>> input_types; for (const auto& in_edge : n.in_edges()) { if (in_edge->IsControlEdge()) { continue; } input_types.push_back(*no_type); } for (const auto& in_edge : n.in_edges()) { if (in_edge->IsControlEdge()) { continue; } VLOG(5) << " in edge: " << in_edge->DebugString(); NodeDef* ndef = in_edge->src()->mutable_def(); if (ndef->has_experimental_type()) { const auto& t = ndef->experimental_type(); if (t.type_id() != TFT_UNSET) { DCHECK(t.type_id() == TFT_PRODUCT) << ndef->DebugString(); DCHECK(t.args_size() > in_edge->src_output()) << ndef->DebugString(); input_types.at(in_edge->dst_input()) = t.args(in_edge->src_output()); } } } return input_types; } Status update_inferred_type(Node* target, const FullTypeDef& t, bool& updated) { if (t.type_id() == TFT_UNSET) { VLOG(3) << " " << target->name() << " no inferred type"; return absl::OkStatus(); } if (target->def().has_experimental_type()) { const auto existing = target->def().experimental_type(); if (full_type::IsSubtype(existing, t)) { VLOG(3) << " " << target->name() << " no new type info"; return absl::OkStatus(); } else if (!full_type::IsSubtype(t, existing)) { return Status( absl::StatusCode::kInvalidArgument, absl::StrCat("type mismatch for node '", target->name(), "': expected a subtype of:\n", existing.DebugString(), "\n got:\n", t.DebugString(), "\n ")); } } *(target->mutable_def()->mutable_experimental_type()) = t; updated = true; VLOG(3) << " " << target->name() << " updated"; return absl::OkStatus(); } absl::StatusOr<FullTypeDef> run_inference(const string& fn_name, const TypeRefVector& in_types) { return absl::OkStatus(); } } Status TypeInferencePass::Run( const GraphOptimizationPassOptions& options) { VLOG(1) << "TypeInferencePass::Run"; DCHECK(options.graph != nullptr); Graph* g = options.graph->get(); DCHECK(g != nullptr); FunctionLibraryDefinition* flib_def = options.flib_def; DCHECK(flib_def != nullptr); if (VLOG_IS_ON(1)) { DumpGraphToFile("forward_type_inference_before", *g, flib_def); } for (Node* n : g->nodes()) { n->UpdateProperties(); } ForwardInferMap forward; ReverseInferMap reverse; for (Node* n : g->nodes()) { VLOG(4) << "\n node: " << n->def().DebugString() << "\n op def: " << n->op_def().DebugString(); const OpRegistrationData* reg; TF_RETURN_IF_ERROR(flib_def->LookUp(n->op_def().name(), &reg)); if (reg->fwd_type_fn != nullptr) { forward.emplace(n->id(), reg->fwd_type_fn); } if (reg->rev_type_fn != nullptr) { reverse.emplace(n->id(), std::make_pair(reg->rev_type_input, std::cref(reg->rev_type_fn))); } } auto infer_forward = [&forward](Node* n, bool& updated) { if (!forward.contains(n->id())) { return absl::OkStatus(); } VLOG(4) << " " << n->name() << " has forward function"; auto in_types = input_types(*n); const auto& infer_ret = forward.at(n->id())(in_types, run_inference); TF_RETURN_WITH_CONTEXT_IF_ERROR( infer_ret.status(), absl::StrCat("while inferring type of node '", n->name(), "'")); TF_RETURN_WITH_CONTEXT_IF_ERROR( update_inferred_type(n, *infer_ret, updated), "while updating its output type."); return absl::OkStatus(); }; auto infer_reverse = [&reverse](Node* n, bool& updated) { if (!reverse.contains(n->id())) { return absl::OkStatus(); } VLOG(4) << " " << n->name() << " has reverse function"; auto in_types = input_types(*n); auto rev_idx_and_fn = reverse.at(n->id()); const auto& infer_ret = rev_idx_and_fn.second(in_types, run_inference); const Edge* e; TF_RETURN_WITH_CONTEXT_IF_ERROR( n->input_edge(rev_idx_and_fn.first, &e), absl::StrCat("while querying input ", rev_idx_and_fn.first, " of '", n->name(), "'")); TF_RETURN_WITH_CONTEXT_IF_ERROR( infer_ret.status(), absl::StrCat("while inferring type of node '", e->src()->name(), "' via '", n->name(), "'")); TF_RETURN_WITH_CONTEXT_IF_ERROR( update_inferred_type(e->src(), *infer_ret, updated), absl::StrCat("while updating its output type inferred from '", n->name(), ",")); return absl::OkStatus(); }; std::list<int> queue; absl::flat_hash_set<int> in_queue; absl::flat_hash_map<int, int> visit_count; absl::flat_hash_set<int> open; absl::flat_hash_set<int> closed; int max_passes = g->num_nodes(); int visits = 0; for (Node* n : g->nodes()) { const int nid = n->id(); bool niladic = true; for (const auto& e : n->in_edges()) { if (!e->IsControlEdge()) { niladic = false; break; } } if (niladic) { queue.emplace_back(nid); in_queue.emplace(nid); } open.emplace(nid); visit_count.emplace(nid, 0); } for (int i = 0; i < max_passes; i++) { VLOG(2) << "Iteration " << i << ", " << queue.size() << " nodes in queue"; while (!queue.empty()) { int nid = queue.front(); Node* n = g->FindNodeId(nid); VLOG(3) << " visiting " << n->name(); visits++; visit_count[nid]++; DCHECK(!closed.contains(nid)); bool updated = false; TF_RETURN_IF_ERROR(infer_forward(n, updated)); TF_RETURN_IF_ERROR(infer_reverse(n, updated)); VLOG(4) << " done " << n->def().DebugString(); queue.pop_front(); in_queue.erase(nid); open.erase(nid); if (visit_count.at(nid) >= MAX_VISITS_PER_NODE) { VLOG(3) << " closing " << n->name() << " - visit limit reached"; closed.emplace(nid); } else if (all_sources_closed(*n, closed, forward, reverse)) { VLOG(3) << " closing " << n->name() << " - all sources closed"; closed.emplace(nid); } for (const auto& out_edge : n->out_edges()) { if (out_edge->IsControlEdge()) { continue; } Node* c = out_edge->dst(); int cid = c->id(); if (closed.contains(cid) || in_queue.contains(cid)) { continue; } if (updated || all_sources_closed(*c, closed, forward, reverse)) { queue.emplace_back(cid); in_queue.emplace(cid); } } if (updated && reverse.contains(nid)) { const Edge* e; TF_RETURN_IF_ERROR(n->input_edge(reverse.at(nid).first, &e)); Node* c = e->src(); int cid = c->id(); if (!closed.contains(cid) && !in_queue.contains(cid)) { queue.emplace_back(cid); in_queue.emplace(cid); } } } VLOG(2) << "Done iteration " << i << ", " << closed.size() << " nodes closed"; if (open.empty()) { VLOG(1) << "Finished after " << i + 1 << " iterations; done " << closed.size() << " of " << g->num_nodes() << " nodes in " << visits << " visits"; break; } else { queue.emplace_back(*(open.begin())); } } if (VLOG_IS_ON(1)) { DumpGraphToFile("forward_type_inference_after", *g, flib_def); } return absl::OkStatus(); } Status WeakTypeInferencePass::Run( const GraphOptimizationPassOptions& options) { TypeInferencePass pass; const auto& pass_status = pass.Run(options); if (!pass_status.ok()) { LOG_FIRST_N(WARNING, 1) << "Type inference failed. This indicates an " "invalid graph that escaped type checking. Error message: " << pass_status.ToString(); } return absl::OkStatus(); } REGISTER_OPTIMIZATION(OptimizationPassRegistry::PRE_PLACEMENT, 99999, WeakTypeInferencePass); }
#include "tensorflow/core/common_runtime/type_inference.h" #include <functional> #include <string> #include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { Status Rewrite(std::unique_ptr<Graph>* graph) { FunctionLibraryDefinition flib_def((*graph)->flib_def()); GraphOptimizationPassOptions opt_options; SessionOptions session_options; opt_options.session_options = &session_options; opt_options.graph = graph; opt_options.flib_def = &flib_def; TypeInferencePass pass; return pass.Run(opt_options); } TEST(TypeInferenceTest, BasicStraightline) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope root = Scope::NewRootScope().ExitOnError(); auto start = ops::Placeholder(root.WithOpName("start"), DT_INT64); auto stop = ops::Placeholder(root.WithOpName("stop"), DT_INT64); auto step = ops::Placeholder(root.WithOpName("step"), DT_INT64); Node* ds; TensorShapeProto shape; shape.mutable_dim(); shape.set_unknown_rank(false); TF_ASSERT_OK(NodeBuilder("ds", "RangeDataset", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(start.node())}) .Input({NodeBuilder::NodeOut(stop.node())}) .Input({NodeBuilder::NodeOut(step.node())}) .Attr("output_types", {DT_INT32}) .Attr("output_shapes", {shape}) .Finalize(root.graph(), &ds)); Node* id; TF_ASSERT_OK(NodeBuilder("id", "Identity", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(ds)}) .Attr("T", DT_VARIANT) .Finalize(root.graph(), &id)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); for (const auto& node : graph->nodes()) { if ((node->name() == "ds") || ((node->name() == "id"))) { const auto& t = node->def().experimental_type(); ASSERT_EQ(t.type_id(), TFT_PRODUCT) << node->def().DebugString(); EXPECT_EQ(t.args(0).type_id(), TFT_DATASET) << node->def().DebugString(); } } } TEST(TypeInferenceTest, CyclicGraphWithV1ControlFlow) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope root = Scope::NewRootScope().ExitOnError(); auto start = ops::Placeholder(root.WithOpName("start"), DT_INT64); auto stop = ops::Placeholder(root.WithOpName("stop"), DT_INT64); auto step = ops::Placeholder(root.WithOpName("step"), DT_INT64); auto cond = ops::Placeholder(root.WithOpName("cond"), DT_BOOL); Node* ds; TensorShapeProto shape; shape.mutable_dim(); shape.set_unknown_rank(false); TF_ASSERT_OK(NodeBuilder("ds", "RangeDataset", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(start.node())}) .Input({NodeBuilder::NodeOut(stop.node())}) .Input({NodeBuilder::NodeOut(step.node())}) .Attr("output_types", {DT_INT32}) .Attr("output_shapes", {shape}) .Finalize(root.graph(), &ds)); Node* enter; TF_ASSERT_OK(NodeBuilder("enter", "Enter", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(ds)}) .Attr("frame_name", "loop") .Finalize(root.graph(), &enter)); Node* loop_cond; TF_ASSERT_OK(NodeBuilder("loop_cond", "Enter", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(cond.node())}) .Attr("frame_name", "loop") .Finalize(root.graph(), &loop_cond)); Node* merge; TF_ASSERT_OK( NodeBuilder("merge", "Merge", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(enter), NodeBuilder::NodeOut(enter)}) .Finalize(root.graph(), &merge)); Node* sw; TF_ASSERT_OK(NodeBuilder("sw", "Switch", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(merge)}) .Input({NodeBuilder::NodeOut(loop_cond)}) .Finalize(root.graph(), &sw)); Node* id; TF_ASSERT_OK(NodeBuilder("id", "Identity", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(sw)}) .Finalize(root.graph(), &id)); Node* next; TF_ASSERT_OK(NodeBuilder("next", "NextIteration", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(id)}) .Finalize(root.graph(), &next)); TF_ASSERT_OK(root.graph()->UpdateEdge(next, 0, merge, 1)); Node* exit; TF_ASSERT_OK(NodeBuilder("exit", "Exit", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(sw)}) .Finalize(root.graph(), &exit)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); for (const auto& node : graph->nodes()) { if ((node->name() == "ds") || (node->name() == "id") || (node->name() == "enter") || (node->name() == "exit") || (node->name() == "sw") || (node->name() == "merge") || (node->name() == "next")) { const auto& t = node->def().experimental_type(); ASSERT_EQ(t.type_id(), TFT_PRODUCT) << node->def().DebugString(); EXPECT_EQ(t.args(0).type_id(), TFT_DATASET) << node->def().DebugString(); } } } REGISTER_OP("TestSourceOp").Output("o: variant"); REGISTER_OP("TestTensorUnaryOp") .Input("i: variant") .Output("o: variant") .SetForwardTypeFn([](const TypeRefVector& input_types, const FunctionTypeInferrer& call_infer) { FullTypeDef t; t.set_type_id(TFT_PRODUCT); t.add_args()->set_type_id(TFT_TENSOR); return t; }); REGISTER_OP("TestArrayUnaryOp") .Input("i: variant") .Output("o: variant") .SetForwardTypeFn([](const TypeRefVector& input_types, const FunctionTypeInferrer& call_infer) { FullTypeDef t; t.set_type_id(TFT_PRODUCT); t.add_args()->set_type_id(TFT_ARRAY); return t; }); REGISTER_OP("TestMergeOp") .Input("i1: variant") .Input("i2: variant") .Output("o: variant") .SetForwardTypeFn([](const TypeRefVector& input_types, const FunctionTypeInferrer& call_infer) { EXPECT_EQ(input_types.size(), 2); FullTypeDef t; t.set_type_id(TFT_PRODUCT); if ((input_types[0].get().type_id() == TFT_TENSOR) && (input_types[1].get().type_id() == TFT_ARRAY)) { t.add_args()->set_type_id(TFT_ARRAY); } else { t.add_args()->set_type_id(TFT_ANY); } return t; }); TEST(TypeInferenceTest, TernaryNodeWithIgnoredInputs) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope root = Scope::NewRootScope().ExitOnError(); Node* s; TF_ASSERT_OK(NodeBuilder("s", "TestSourceOp", &root.graph()->flib_def()) .Finalize(root.graph(), &s)); Node* tn; TF_ASSERT_OK(NodeBuilder("tn", "TestTensorUnaryOp", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(s)}) .Finalize(root.graph(), &tn)); Node* id; TF_ASSERT_OK(NodeBuilder("id", "Identity", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(s)}) .Finalize(root.graph(), &id)); Node* an; TF_ASSERT_OK(NodeBuilder("an", "TestArrayUnaryOp", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(id)}) .Finalize(root.graph(), &an)); Node* m; TF_ASSERT_OK(NodeBuilder("m", "TestMergeOp", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(tn)}) .Input({NodeBuilder::NodeOut(an)}) .Finalize(root.graph(), &m)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); for (const auto& node : graph->nodes()) { if (node->name() == "m") { const auto& t = node->def().experimental_type(); ASSERT_EQ(t.type_id(), TFT_PRODUCT) << node->def().DebugString(); EXPECT_EQ(t.args(0).type_id(), TFT_ARRAY) << node->def().DebugString(); } } } TEST(TypeInferenceTest, BinaryNodeWithUnorderedInputs) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope root = Scope::NewRootScope().ExitOnError(); Node* s; TF_ASSERT_OK(NodeBuilder("s", "TestSourceOp", &root.graph()->flib_def()) .Finalize(root.graph(), &s)); Node* tn; TF_ASSERT_OK(NodeBuilder("tn", "TestTensorUnaryOp", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(s)}) .Finalize(root.graph(), &tn)); Node* an; TF_ASSERT_OK(NodeBuilder("an", "TestArrayUnaryOp", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(s)}) .Finalize(root.graph(), &an)); Node* m; TF_ASSERT_OK(NodeBuilder("m", "TestMergeOp", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(s)}) .Input({NodeBuilder::NodeOut(s)}) .Finalize(root.graph(), &m)); TF_ASSERT_OK(root.ToGraph(graph.get())); Node* m_copy = nullptr; Node* tn_copy = nullptr; Node* an_copy = nullptr; for (const auto& node : graph->nodes()) { if (node->name() == "m") { m_copy = node; } else if (node->name() == "tn") { tn_copy = node; } else if (node->name() == "an") { an_copy = node; } } TF_ASSERT_OK(graph->UpdateEdge(an_copy, 0, m_copy, 1)); TF_ASSERT_OK(graph->UpdateEdge(tn_copy, 0, m_copy, 0)); TF_ASSERT_OK(Rewrite(&graph)); for (const auto& node : graph->nodes()) { if (node->name() == "m") { const auto& t = node->def().experimental_type(); ASSERT_EQ(t.type_id(), TFT_PRODUCT) << node->def().DebugString(); EXPECT_EQ(t.args(0).type_id(), TFT_ARRAY) << node->def().DebugString(); } } } TEST(TypeInferenceTest, BinaryNodeWithCycleInput) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope root = Scope::NewRootScope().ExitOnError(); auto cond = ops::Placeholder(root.WithOpName("cond"), DT_BOOL); Node* s; TF_ASSERT_OK(NodeBuilder("s", "TestSourceOp", &root.graph()->flib_def()) .Finalize(root.graph(), &s)); Node* an; TF_ASSERT_OK(NodeBuilder("an", "TestArrayUnaryOp", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(s)}) .Finalize(root.graph(), &an)); Node* enter; TF_ASSERT_OK(NodeBuilder("enter", "Enter", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(an)}) .Attr("frame_name", "loop") .Finalize(root.graph(), &enter)); Node* loop_cond; TF_ASSERT_OK(NodeBuilder("loop_cond", "Enter", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(cond.node())}) .Attr("frame_name", "loop") .Finalize(root.graph(), &loop_cond)); Node* merge; TF_ASSERT_OK( NodeBuilder("merge", "Merge", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(enter), NodeBuilder::NodeOut(enter)}) .Finalize(root.graph(), &merge)); Node* sw; TF_ASSERT_OK(NodeBuilder("sw", "Switch", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(merge)}) .Input({NodeBuilder::NodeOut(loop_cond)}) .Finalize(root.graph(), &sw)); Node* tn; TF_ASSERT_OK(NodeBuilder("tn", "TestTensorUnaryOp", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(sw)}) .Finalize(root.graph(), &tn)); Node* next; TF_ASSERT_OK(NodeBuilder("next", "NextIteration", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(tn)}) .Finalize(root.graph(), &next)); TF_ASSERT_OK(root.graph()->UpdateEdge(next, 0, merge, 1)); Node* exit; TF_ASSERT_OK(NodeBuilder("exit", "Exit", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(sw)}) .Finalize(root.graph(), &exit)); TF_ASSERT_OK(root.ToGraph(graph.get())); const auto& status = Rewrite(&graph); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("expected compatible input types")); } TEST(WeakTypeInferenceTest, AlwaysSucceeds) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope root = Scope::NewRootScope().ExitOnError(); auto cond = ops::Placeholder(root.WithOpName("cond"), DT_BOOL); Node* s; TF_ASSERT_OK(NodeBuilder("s", "TestSourceOp", &root.graph()->flib_def()) .Finalize(root.graph(), &s)); Node* an; TF_ASSERT_OK(NodeBuilder("an", "TestArrayUnaryOp", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(s)}) .Finalize(root.graph(), &an)); Node* tn; TF_ASSERT_OK(NodeBuilder("tn", "TestTensorUnaryOp", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(s)}) .Finalize(root.graph(), &tn)); Node* merge; TF_ASSERT_OK(NodeBuilder("merge", "Merge", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(an), NodeBuilder::NodeOut(tn)}) .Finalize(root.graph(), &merge)); TF_ASSERT_OK(root.ToGraph(graph.get())); FunctionLibraryDefinition flib_def(graph->flib_def()); GraphOptimizationPassOptions opt_options; SessionOptions session_options; opt_options.session_options = &session_options; opt_options.graph = &graph; opt_options.flib_def = &flib_def; WeakTypeInferencePass pass; TF_ASSERT_OK(pass.Run(opt_options)); } TEST(ReverseTypeInferenceTest, BasicVDependency) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope root = Scope::NewRootScope().ExitOnError(); auto start = ops::Placeholder(root.WithOpName("start"), DT_INT64); auto stop = ops::Placeholder(root.WithOpName("stop"), DT_INT64); auto step = ops::Placeholder(root.WithOpName("step"), DT_INT64); Node* ds; TensorShapeProto shape; shape.mutable_dim(); shape.set_unknown_rank(false); TF_ASSERT_OK(NodeBuilder("ds", "RangeDataset", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(start.node())}) .Input({NodeBuilder::NodeOut(stop.node())}) .Input({NodeBuilder::NodeOut(step.node())}) .Attr("output_types", {DT_INT32}) .Attr("output_shapes", {shape}) .Finalize(root.graph(), &ds)); Node* it; TF_ASSERT_OK( NodeBuilder("it", "AnonymousIteratorV2", &root.graph()->flib_def()) .Attr("output_types", {DT_INT32}) .Attr("output_shapes", {shape}) .Finalize(root.graph(), &it)); Node* it_ctor; TF_ASSERT_OK(NodeBuilder("it_ctor", "MakeIterator", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(ds)}) .Input({NodeBuilder::NodeOut(it)}) .Finalize(root.graph(), &it_ctor)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); for (const auto& node : graph->nodes()) { if (node->name() == "it") { const auto& t = node->def().experimental_type(); ASSERT_EQ(t.type_id(), TFT_PRODUCT) << node->def().DebugString(); EXPECT_EQ(t.args(0).type_id(), TFT_ITERATOR) << node->def().DebugString(); } } } TEST(ReverseTypeInferenceTest, FromUnsetType) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope root = Scope::NewRootScope().ExitOnError(); Node* s; TF_ASSERT_OK(NodeBuilder("s", "TestSourceOp", &root.graph()->flib_def()) .Finalize(root.graph(), &s)); Node* it; TensorShapeProto shape; shape.mutable_dim(); shape.set_unknown_rank(false); TF_ASSERT_OK( NodeBuilder("it", "AnonymousIteratorV2", &root.graph()->flib_def()) .Attr("output_types", {DT_INT32}) .Attr("output_shapes", {shape}) .Finalize(root.graph(), &it)); Node* it_ctor; TF_ASSERT_OK(NodeBuilder("it_ctor", "MakeIterator", &root.graph()->flib_def()) .Input({NodeBuilder::NodeOut(s)}) .Input({NodeBuilder::NodeOut(it)}) .Finalize(root.graph(), &it_ctor)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); for (const auto& node : graph->nodes()) { if (node->name() == "it") { ASSERT_FALSE(node->def().has_experimental_type()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/type_inference.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/type_inference_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3c8d261a-8b13-453f-97e9-ad253db6ca01
cpp
tensorflow/tensorflow
process_function_library_runtime
tensorflow/core/common_runtime/process_function_library_runtime.cc
tensorflow/core/common_runtime/process_function_library_runtime_test.cc
#include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include <algorithm> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <optional> #include <string> #include <unordered_map> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #include "xla/tsl/util/env_var.h" #include "tensorflow/core/common_runtime/build_graph_options.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/function_optimization_registry.h" #include "tensorflow/core/common_runtime/int32_fulltype.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/common_runtime/optimize_function_graph_utils.h" #include "tensorflow/core/common_runtime/partitioning_utils.h" #include "tensorflow/core/common_runtime/placer.h" #include "tensorflow/core/common_runtime/rendezvous_util.h" #include "tensorflow/core/common_runtime/replicate_per_replica_nodes.h" #include "tensorflow/core/common_runtime/single_threaded_executor.h" #include "tensorflow/core/common_runtime/stats_publisher_interface.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/notification.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/dump_graph.h" #include "tensorflow/core/util/reffed_status_callback.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #if !defined(IS_MOBILE_PLATFORM) #include "tensorflow/core/protobuf/remote_tensor_handle.pb.h" #endif namespace tensorflow { namespace { int64_t GetParallelSubgraphThreshold() { static int64_t parallel_subgraph_threshold = []() { int64_t result; TF_CHECK_OK(tsl::ReadInt64FromEnvVar( "TF_PFLR_PARALLEL_INSTANTIATE_THRESHOLD", 8, &result)); return result; }(); return parallel_subgraph_threshold; } } const char ProcessFunctionLibraryRuntime::kDefaultFLRDevice[] = "null"; void ProcessFunctionLibraryRuntime::FunctionData::DistributedInit( DistributedFunctionLibraryRuntime* parent, const string& function_name, const FunctionLibraryDefinition& lib_def, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::DoneCallback done) { { mutex_lock l(mu_); is_cross_process_ = true; if (init_started_) { init_done_.WaitForNotification(); done(init_result_); return; } init_started_ = true; } parent->Instantiate(function_name, lib_def, attrs, options, &local_handle_, [this, done](const Status& s) { init_done_.Notify(); done(s); }); } ProcessFunctionLibraryRuntime::ProcessFunctionLibraryRuntime( const DeviceMgr* device_mgr, Env* env, const ConfigProto* config, int graph_def_version, const FunctionLibraryDefinition* lib_def, const OptimizerOptions& optimizer_options, thread::ThreadPool* default_thread_pool, DistributedFunctionLibraryRuntime* parent, const SessionMetadata* session_metadata, Rendezvous::Factory rendezvous_factory, StatsPublisherFactory stats_publisher_factory) : parent_(parent), env_(env), config_(config ? std::make_optional(*config) : std::nullopt), device_mgr_(device_mgr), lib_def_(lib_def), default_thread_pool_(default_thread_pool), flr_map_( new std::unordered_map<Device*, core::RefCountPtr<FunctionLibraryRuntime>>), next_handle_(0), session_metadata_(session_metadata), rendezvous_factory_(std::move(rendezvous_factory)), optimizer_options_(optimizer_options), graph_def_version_(graph_def_version), stats_publisher_factory_(std::move(stats_publisher_factory)) { if (device_mgr == nullptr) { (*flr_map_)[nullptr] = NewFunctionLibraryRuntime( nullptr, env, config_ ? &(*config_) : nullptr, nullptr, graph_def_version, lib_def_, default_thread_pool, optimizer_options, session_metadata_, this); return; } InitializeDeviceAndFlr(); } Status ProcessFunctionLibraryRuntime::SendTensors( const string& source_device, const string& target_device, const string& key_prefix, int64_t src_incarnation, absl::Span<const Tensor> tensors_to_send, DeviceContext* device_context, const std::vector<AllocatorAttributes>& alloc_attrs, RendezvousInterface* rendezvous) { std::vector<string> keys; for (int i = 0; i < tensors_to_send.size(); ++i) { string name = strings::StrCat(key_prefix, i); string key = Rendezvous::CreateKey(source_device, src_incarnation, target_device, name, FrameAndIter(0, 0)); keys.push_back(key); } TF_RETURN_IF_ERROR(SendTensorsToRendezvous( rendezvous, device_context, alloc_attrs, keys, tensors_to_send)); return absl::OkStatus(); } void ProcessFunctionLibraryRuntime::ReceiveTensorsAsync( const string& source_device, const string& target_device, const string& key_prefix, int64_t src_incarnation, int64_t num_tensors, DeviceContext* device_context, const std::vector<AllocatorAttributes>& alloc_attrs, RendezvousInterface* rendezvous, std::vector<Tensor>* received_tensors, StatusCallback done) { std::vector<string> keys; for (int64_t i = 0; i < num_tensors; ++i) { string name = strings::StrCat(key_prefix, i); string key = Rendezvous::CreateKey(source_device, src_incarnation, target_device, name, FrameAndIter(0, 0)); keys.push_back(key); } RecvOutputsFromRendezvousAsync(rendezvous, device_context, alloc_attrs, keys, received_tensors, std::move(done)); } Status ProcessFunctionLibraryRuntime::GetRetTypes( FunctionLibraryRuntime::Handle h, DataTypeVector* ret_types) { FunctionLibraryRuntime* flr = nullptr; { tf_shared_lock l(mu_); auto miter = mdevice_data_.find(h); if (miter != mdevice_data_.end()) { *ret_types = miter->second->ret_types_; return absl::OkStatus(); } auto fiter = function_data_.find(h); if (fiter != function_data_.end()) { flr = GetFLR(fiter->second->target_device()); } } if (flr != nullptr) { return flr->GetRetTypes(h, ret_types); } return errors::InvalidArgument("Handle ", h, " not found."); } Status ProcessFunctionLibraryRuntime::GetDeviceIncarnation( const string& device_name, int64_t* incarnation) const { FunctionLibraryRuntime* flr = GetFLR(device_name); if (flr == nullptr) { return errors::InvalidArgument("Device name: ", device_name, " not found."); } *incarnation = flr->device()->attributes().incarnation(); return absl::OkStatus(); } Status ProcessFunctionLibraryRuntime::GetDeviceContext( const string& device_name, DeviceContext** device_context) const { *device_context = nullptr; FunctionLibraryRuntime* flr = GetFLR(device_name); if (flr == nullptr) { return errors::InvalidArgument("Device name: ", device_name, " not found."); } Device* device = flr->device(); string device_type = device->parsed_name().type; if (device_type == "CPU" || device_type == "TPU_SYSTEM") { return absl::OkStatus(); } if (device->IsRemoteCallAllowed()) { auto* dev_info = flr->device()->tensorflow_accelerator_device_info(); if (dev_info) { *device_context = dev_info->default_context; return absl::OkStatus(); } } return errors::Internal("Device type: ", device_type, " is currently unsupported for remote ", "function executions"); } void ProcessFunctionLibraryRuntime::InitializeDeviceAndFlr() { mutex_lock l(mu_); device_set_ = std::make_shared<DeviceSet>(); if (parent_ != nullptr && parent_->remote_device_mgr() != nullptr) { for (auto d : parent_->remote_device_mgr()->ListDevices()) { Device* device = nullptr; if (device_mgr_->LookupDevice(d->name(), &device) == absl::OkStatus()) { device_set_->AddDevice(device); } else { device_set_->AddDevice(d); } } } else { for (auto d : device_mgr_->ListDevices()) { device_set_->AddDevice(d); } } for (Device* d : device_mgr_->ListDevices()) { if ((*flr_map_)[d] == nullptr) { (*flr_map_)[d] = NewFunctionLibraryRuntime( device_mgr_, env_, config_ ? &(*config_) : nullptr, d, graph_def_version_, lib_def_, default_thread_pool_, optimizer_options_, session_metadata_, this); } } } FunctionLibraryRuntime* ProcessFunctionLibraryRuntime::GetFLR( const string& device_name) const { Device* device = nullptr; if (device_name != kDefaultFLRDevice) { if (!device_mgr_->LookupDevice(device_name, &device).ok()) { VLOG(4) << "Could not find device: " << device_name; return nullptr; } } const auto& iter = flr_map_->find(device); if (iter == flr_map_->end()) { VLOG(1) << "Could not find device: " << device_name << "in the local process."; return nullptr; } return iter->second.get(); } FunctionLibraryRuntime::Handle ProcessFunctionLibraryRuntime::AddHandle( const string& function_key, const string& device_name, FunctionLibraryRuntime::LocalHandle local_handle) { mutex_lock l(mu_); return AddHandleLocked(function_key, device_name, local_handle); } FunctionLibraryRuntime::Handle ProcessFunctionLibraryRuntime::AddHandleLocked( const string& function_key, const string& device_name, FunctionLibraryRuntime::LocalHandle local_handle) { auto h = next_handle_; function_data_[h] = std::make_unique<FunctionData>(device_name, local_handle, function_key); table_[function_key] = h; next_handle_++; return h; } FunctionLibraryRuntime::Handle ProcessFunctionLibraryRuntime::AddMultiDeviceHandle( std::unique_ptr<MultiDeviceFunctionData> data, const string& function_key) { mutex_lock l(mu_); auto h = next_handle_; mdevice_data_[h] = std::move(data); table_[function_key] = h; next_handle_++; return h; } bool ProcessFunctionLibraryRuntime::HasMultiDeviceHandle( FunctionLibraryRuntime::Handle handle) const { bool multi_device; { tf_shared_lock l(mu_); multi_device = mdevice_data_.find(handle) != mdevice_data_.end(); } return multi_device; } FunctionLibraryRuntime::Handle ProcessFunctionLibraryRuntime::GetHandle( const string& function_key) const { tf_shared_lock l(mu_); return gtl::FindWithDefault(table_, function_key, kInvalidHandle); } FunctionLibraryRuntime::LocalHandle ProcessFunctionLibraryRuntime::GetHandleOnDevice( const string& device_name, FunctionLibraryRuntime::Handle handle, bool include_multi_device) const { tf_shared_lock l(mu_); auto miter = mdevice_data_.find(handle); if (miter != mdevice_data_.end()) { if (!include_multi_device) return kInvalidLocalHandle; const MultiDeviceFunctionData& data = *miter->second; if (data.glue_.size() != 1) return kInvalidLocalHandle; const auto& pair = *data.glue_.begin(); const string& func_device_name = pair.first; const ComponentFunctionData& component_data = pair.second; if (func_device_name != device_name) return kInvalidLocalHandle; handle = component_data.handle; } auto iter = function_data_.find(handle); if (iter == function_data_.end()) { return kInvalidLocalHandle; } FunctionData* function_data = iter->second.get(); if (function_data->target_device() != device_name) { return kInvalidLocalHandle; } return function_data->local_handle(); } string ProcessFunctionLibraryRuntime::GetDeviceName( FunctionLibraryRuntime::Handle handle) const { tf_shared_lock l(mu_); auto iter = function_data_.find(handle); CHECK(iter != function_data_.end()); FunctionData* function_data = iter->second.get(); return function_data->target_device(); } ProcessFunctionLibraryRuntime::MultiDeviceFunctionData* ProcessFunctionLibraryRuntime::IsMultiDevice( FunctionLibraryRuntime::Handle handle) const { tf_shared_lock l(mu_); const auto& it = mdevice_data_.find(handle); if (it != mdevice_data_.end()) { return it->second.get(); } return nullptr; } namespace { std::vector<Tensor> GetLocalArgs(absl::Span<const FunctionArg> args) { std::vector<Tensor> tensors; for (const auto& arg : args) { if (arg.index() == 0) { tensors.push_back(absl::get<Tensor>(arg)); } } return tensors; } FunctionLibraryRuntime::DoneCallback TensorsToFunctionRetsDoneCallback( std::vector<FunctionRet>* rets, std::vector<Tensor>* tensors, FunctionLibraryRuntime::DoneCallback done) { return [rets, tensors, done = std::move(done)](const Status& s) { if (s.ok()) { for (const auto& t : *tensors) { rets->push_back(t); } } delete tensors; done(s); }; } Status FunctionRetsToTensors(const std::vector<FunctionRet>* function_rets, std::vector<Tensor>* tensors) { for (const auto& ret : *function_rets) { if (ret.index() != 0) { return errors::Internal( "Expect a Tensor as a function output but got a TensorShape."); } tensors->push_back(absl::get<Tensor>(ret)); } return absl::OkStatus(); } } ProcessFunctionLibraryRuntime::AsyncAttributes::Summary ProcessFunctionLibraryRuntime::AsyncAttributes::Summarize(const Graph* graph) { bool has_send_op = false; bool has_recv_op = false; bool has_unsafe_op = false; for (const Node* node : graph->nodes()) { if (node->IsSend() || node->IsHostSend()) { has_send_op = true; } if (node->IsRecv() || node->IsHostRecv()) { has_recv_op = true; } if (!ValidateOpIsSafeForSyncExecution(*node, allow_control_flow_sync_execution()) .ok()) { has_unsafe_op = true; } } if (has_unsafe_op) { metrics::IncrementTestCounter("subgraph_async_summary", "unsafe_op"); return AsyncAttributes::kAsyncRequired; } if (!has_send_op && !has_recv_op) { metrics::IncrementTestCounter("subgraph_async_summary", "safe_for_sync"); return AsyncAttributes::kSafeForSync; } if (has_send_op && !has_recv_op) { metrics::IncrementTestCounter("subgraph_async_summary", "send_only"); return AsyncAttributes::kSendOnly; } if (has_recv_op && !has_send_op) { metrics::IncrementTestCounter("subgraph_async_summary", "recv_only"); return AsyncAttributes::kRecvOnly; } metrics::IncrementTestCounter("subgraph_async_summary", "other"); return AsyncAttributes::kAsyncRequired; } void ProcessFunctionLibraryRuntime::PublishSubgraphs( const std::string& function_name, std::vector<core::RefCountPtr<FunctionRecord>>&& function_records) { std::unique_ptr<StatsPublisherInterface> stats_publisher = stats_publisher_factory_(function_name, BuildGraphOptions(), SessionOptions()); stats_publisher->PublishGraphProto(std::move(function_records)); mutex_lock l(mu_); stats_publishers_.push_back(std::move(stats_publisher)); } Status ProcessFunctionLibraryRuntime::InstantiateMultiDevice( const string& function_name, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::Handle* handle) { const string& function_key = Canonicalize(function_name, attrs, options); { mutex_lock l(mu_); const auto& it = table_.find(function_key); if (it != table_.end()) { *handle = it->second; ++mdevice_data_[*handle]->instantiation_counter_; return absl::OkStatus(); } } VLOG(1) << "Instantiating MultiDevice function \"" << function_name << "\" on default device \"" << options.target << "\""; if (VLOG_IS_ON(3)) { int index = 0; VLOG(3) << "Requested input devices:"; for (const string& device : options.input_devices) { VLOG(3) << " [input " << index++ << "] " << device; } index = 0; VLOG(3) << "Requested output devices:"; for (const string& device : options.output_devices) { VLOG(3) << " [output " << index++ << "] " << device; } } const std::shared_ptr<DeviceSet> dev_set = device_set(); Device* default_device = nullptr; if (options.default_device_to_target && !options.target.empty()) { FunctionLibraryRuntime* flr = GetFLR(options.target); if (flr == nullptr) { return errors::InvalidArgument( "Cannot instantiate multi-device function with target device ", options.target); } default_device = flr->device(); } std::vector<CompositeDevice*> composite_devices; { tf_shared_lock l(mu_); for (auto* d : composite_devices_) composite_devices.push_back(d); } Device* cpu_device; TF_RETURN_IF_ERROR(device_mgr_->LookupDevice("CPU:0", &cpu_device)); const uint64 optimization_start_time_usecs = Env::Default()->NowMicros(); std::optional<absl::StatusOr<OptimizedFunctionGraph>> optimized_graph_proto = options.lib_def != nullptr ? options.lib_def->FindOptimizedFunctionGraph(function_name) : lib_def_->FindOptimizedFunctionGraph(function_name); if (optimized_graph_proto.has_value()) { if (optimized_graph_proto->ok()) { LOG(INFO) << "Found AOT'd graph for function: " << function_name; metrics::UpdateFunctionGraphOptimizationSavingTime( optimized_graph_proto->value().optimization_time_usecs(), metrics::GraphOptimizationSource::kAot); metrics::IncrementFunctionGraphOptimizationCacheHitCount( 1, metrics::GraphOptimizationSource::kAot); } else { LOG(WARNING) << "Failed to create AOT'd graph for function: " << function_name << " with status: " << optimized_graph_proto->status(); } } absl::StatusOr<OptimizedFunctionGraphInfo> optimized_graph_info = (!optimized_graph_proto.has_value() || !optimized_graph_proto.value().ok()) ? OptimizeFunctionGraphOrReadFromFileCache( function_name, attrs, options, *dev_set, lib_def_, composite_devices, cpu_device, default_device, env_) : OptimizedFunctionGraphInfo::FromProto( std::move(optimized_graph_proto.value().value())); if (!optimized_graph_info.ok()) return optimized_graph_info.status(); optimized_graph_info->function_graph->mutable_flib_def() ->set_default_registry(&(optimized_graph_info->lib_def)); TF_ASSIGN_OR_RETURN(auto subgraphs, PreprocessAndPartitionGraph( function_name, *optimized_graph_info, options, *dev_set, lib_def_, composite_devices, cpu_device, env_)); const uint64 optimization_end_time_usecs = Env::Default()->NowMicros(); const uint64 graph_optimization_duration = optimization_end_time_usecs - optimization_start_time_usecs; metrics::UpdateFunctionGraphOptimizationTime(graph_optimization_duration); VLOG(1) << "Finished graph optimizations for MultiDevice function \"" << function_name << "\" with target device \"" << options.target << "\". Took " << graph_optimization_duration / 1000000 << " secs."; const FunctionLibraryDefinition* lib_def = options.lib_def == nullptr ? lib_def_ : options.lib_def; if (options.graph_collector != nullptr) { for (const auto& pair : *subgraphs) { GraphDef def; pair.second->ToGraphDef(&def); *def.mutable_library() = lib_def->ReachableDefinitions(def).ToProto(); options.graph_collector->CollectPartitionedGraph(def); } } const auto& node_name_to_control_ret = optimized_graph_info->node_name_to_control_ret; const auto control_ret = [&node_name_to_control_ret](const Node* n) -> std::optional<string> { const auto it = node_name_to_control_ret.find(n->name()); return it != node_name_to_control_ret.end() ? absl::make_optional<string>(it->second) : absl::nullopt; }; auto data = std::make_unique<MultiDeviceFunctionData>( function_name, function_key, optimized_graph_info->num_return_nodes, std::move(optimized_graph_info->ret_types)); int i = 0; FunctionLibraryDefinition data_lib_def = std::move(optimized_graph_info->lib_def); FunctionNameGenerator name_generator( &data_lib_def, absl::StrCat(function_name, "_partitioned_", random::New64())); const int num_subgraphs = subgraphs->size(); absl::InlinedVector<Status, 4UL> instantiate_status(num_subgraphs); data->enable_sync_execution = false; if (options.allow_small_function_optimizations) { data->enable_sync_execution = true; for (const auto& pair : *subgraphs) { ComponentFunctionData* comp_data = &data->glue_[pair.first]; const Graph* subgraph = pair.second.get(); comp_data->async_attributes = AsyncAttributes(subgraph, options.allow_control_flow_sync_execution); if (comp_data->async_attributes.summary() == AsyncAttributes::kAsyncRequired) { data->enable_sync_execution = false; } } } auto instantiate_component = [this, dev_set, &data_lib_def, &control_ret, &options, &data](const string& target, std::unique_ptr<Graph> subgraph, ComponentFunctionData* comp_data, std::function<void(Status)> done) { const string& device_type = dev_set->FindDeviceByName(target)->device_type(); bool ints_on_device = (device_type == "TPU" || device_type == "XLA_CPU" || device_type == "XLA_GPU" || options.int_args_and_retvals_on_device); Int32FulltypePass int32_fulltype( "ProcessFunctionLibraryRuntime::InstantiateMultiDevice"); Status s = int32_fulltype.ProcessGraph(subgraph.get(), ints_on_device); if (!s.ok()) { done(s); return; } s = UpdateArgAndRetvalMetadata(subgraph.get(), &comp_data->arg_indices, &comp_data->ret_indices, &comp_data->arg_alloc_attrs, &comp_data->ret_alloc_attrs, ints_on_device); if (!s.ok()) { done(s); return; } FunctionDef shard; s = GraphToFunctionDef(std::move(subgraph), comp_data->name, control_ret, &shard); if (!s.ok()) { done(s); return; } subgraph.reset(); AttrValueMap attrs(shard.attr()); s = data_lib_def.AddFunctionDef(std::move(shard)); if (!s.ok()) { done(s); return; } FunctionLibraryRuntime::InstantiateOptions opts; opts.executor_type = options.executor_type; opts.target = target; opts.lib_def = &data_lib_def; opts.create_kernels_eagerly = options.create_kernels_eagerly; opts.state_handle = options.state_handle; opts.allow_small_function_optimizations = data->enable_sync_execution; opts.allow_control_flow_sync_execution = options.allow_control_flow_sync_execution; AttrValue ints_on_device_attr; ints_on_device_attr.set_b(options.int_args_and_retvals_on_device); attrs.insert( {FunctionLibraryDefinition::kIntsOnDeviceAttr, ints_on_device_attr}); VLOG(1) << "Start instantiating component function " << comp_data->name << " on device " << target; auto* component_handle = new FunctionLibraryRuntime::Handle; auto wrapped_done = [this, comp_data, component_handle, &data, done = std::move(done)](const Status& s) { VLOG(1) << "Finished instantiating component function " << comp_data->name << " with handle " << *component_handle << " status: " << s; if (s.ok()) { { mutex_lock l(mu_); if (function_data_[*component_handle]->is_cross_process()) { data->is_cross_process_ = true; } } comp_data->handle = *component_handle; } delete component_handle; done(s); }; FunctionLibraryRuntime* flr = GetFLR(opts.target); if (flr != nullptr) { Status s = flr->Instantiate(comp_data->name, AttrSlice(&attrs), opts, component_handle); wrapped_done(s); } else { opts.ret_indices = comp_data->ret_indices; InstantiateRemote(comp_data->name, AttrSlice(&attrs), opts, component_handle, std::move(wrapped_done)); } }; if (default_thread_pool_ != nullptr && num_subgraphs > GetParallelSubgraphThreshold()) { BlockingCounter counter(static_cast<int>(num_subgraphs)); for (auto& pair : *subgraphs) { Status* status = &instantiate_status[i]; ComponentFunctionData* comp_data = &data->glue_[pair.first]; comp_data->name = name_generator.GetName(); default_thread_pool_->Schedule( [&instantiate_component, &pair, comp_data, &counter, status]() { instantiate_component(pair.first, std::move(pair.second), comp_data, [&counter, status](Status s) { status->Update(s); counter.DecrementCount(); }); }); i += 1; } counter.Wait(); } else { for (auto& pair : *subgraphs) { Notification n; Status* status = &instantiate_status[i]; ComponentFunctionData* comp_data = &data->glue_[pair.first]; comp_data->name = name_generator.GetName(); instantiate_component(pair.first, std::move(pair.second), comp_data, [&n, status](Status s) { status->Update(s); n.Notify(); }); n.WaitForNotification(); i += 1; } } StatusGroup group; for (auto& status : instantiate_status) { group.Update(status); } TF_RETURN_IF_ERROR(group.as_summary_status()); std::vector<core::RefCountPtr<FunctionRecord>> function_records; const bool should_publish_function_graphs = flags::Global().publish_function_graphs.value(); if (should_publish_function_graphs) { for (const auto& pair : *subgraphs) { ComponentFunctionData* comp_data = &data->glue_[pair.first]; function_records.push_back(data_lib_def.FindRecord(comp_data->name)); } } *handle = AddMultiDeviceHandle(std::move(data), function_key); VLOG(1) << "Instantiated MultiDevice function \"" << function_name << "\" with handle " << *handle; if (should_publish_function_graphs) { PublishSubgraphs(function_name, std::move(function_records)); } return absl::OkStatus(); } Status ProcessFunctionLibraryRuntime::GetOutputDevices( FunctionLibraryRuntime::Handle handle, std::vector<Device*>* output_devices) const { MultiDeviceFunctionData* data = IsMultiDevice(handle); if (data == nullptr) { return errors::InvalidArgument( "Failed for find multi-device function handle ", handle); } for (const auto& pair : data->glue_) { const ComponentFunctionData& comp_data = pair.second; DCHECK(comp_data.ret_alloc_attrs.size() == comp_data.ret_indices.size()); if (comp_data.ret_indices.empty()) { continue; } const string& target = pair.first; FunctionLibraryRuntime* target_flr = GetFLR(target); Device* target_device = nullptr; Device* host = nullptr; if (target_flr == nullptr) { if (!data->has_remote_outputs) { data->has_remote_outputs = true; } target_device = device_set()->FindDeviceByName(target); string remote_host; TF_RETURN_IF_ERROR( DeviceNameUtils::DeviceNameToCpuDeviceName(target, &remote_host)); host = device_set()->FindDeviceByName(remote_host); } else { target_device = target_flr->device(); } output_devices->resize(data->num_outputs_); for (int j = 0; j < comp_data.ret_indices.size(); ++j) { int ret_index = comp_data.ret_indices[j]; if (data->ret_types_[ret_index] == DT_RESOURCE) { (*output_devices)[ret_index] = target_device; } else { (*output_devices)[ret_index] = comp_data.ret_alloc_attrs[j].on_host() ? host : target_device; } } } return absl::OkStatus(); } Status ProcessFunctionLibraryRuntime::PrepareRunMultiDevice( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, const MultiDeviceFunctionData** data) const { if (opts.create_rendezvous) { return errors::Internal( "Cannot call ProcessFunctionLibraryRuntime::Run with " "create_rendezvous=true. Please run the function " "using FunctionLibraryRuntime::Run"); } *data = IsMultiDevice(handle); if (*data == nullptr) { return errors::NotFound("Multi-device function handle ", handle, "not found. Was the function instantiated?"); } if (opts.rendezvous && (*data)->is_cross_process_ && !opts.rendezvous->is_cross_process()) { return errors::InvalidArgument( "Running a cross process function ", (*data)->function_name_, " without an appropriate cross process Rendezvous."); } return absl::OkStatus(); } std::vector<string> ProcessFunctionLibraryRuntime::GetOrderedSubgraphs( const MultiDeviceFunctionData* data) const { std::vector<string> subgraph_keys; subgraph_keys.reserve(data->glue_.size()); for (const auto& pair : data->glue_) { subgraph_keys.push_back(pair.first); } auto send_first_ordering = [&](const string& a, const string& b) { auto a_summary = data->glue_.at(a).async_attributes.summary(); auto b_summary = data->glue_.at(b).async_attributes.summary(); if (a_summary == b_summary) { return false; } if (a_summary == AsyncAttributes::kSendOnly) { return true; } return false; }; std::sort(subgraph_keys.begin(), subgraph_keys.end(), send_first_ordering); return subgraph_keys; } Status ProcessFunctionLibraryRuntime::RunMultiDeviceSync( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle outer_handle, std::vector<FunctionRet>* rets, std::function<Status(const ComponentFunctionData& comp_data, InternalArgs* args)> get_component_args) const { const MultiDeviceFunctionData* data; Status prepare_status = PrepareRunMultiDevice(opts, outer_handle, &data); if (!prepare_status.ok()) { return prepare_status; } FunctionLibraryRuntime::Options opts_copy = opts; std::vector<string> subgraph_keys = GetOrderedSubgraphs(data); for (const string& target : subgraph_keys) { const ComponentFunctionData& comp_data = data->glue_.at(target); FunctionLibraryRuntime::Handle comp_handle = comp_data.handle; opts_copy.args_alloc_attrs = comp_data.arg_alloc_attrs; opts_copy.rets_alloc_attrs = comp_data.ret_alloc_attrs; InternalArgs comp_args; Status args_status = get_component_args(comp_data, &comp_args); if (!args_status.ok()) { VLOG(2) << "Failed to get component function arguments: " << args_status; return args_status; } rets->resize(data->num_outputs_); VLOG(1) << "Running component function on device " << target << " from " << data->function_name_ << " with handle " << comp_handle; FunctionLibraryRuntime* flr = GetFLR(target); if (flr != nullptr) { opts_copy.remote_execution = false; thread::ThreadPool* pool = flr->device()->tensorflow_device_thread_pool(); opts_copy.runner = (pool == nullptr) ? opts.runner : flr->runner(); VLOG(4) << " with " << opts_copy.DebugString(); std::vector<Tensor> comp_tensor_rets; Status run_status = flr->RunSync(opts_copy, comp_handle, GetLocalArgs(comp_args.args), &comp_tensor_rets); if (!run_status.ok()) { VLOG(2) << "Component function execution failed: " << run_status; const string function_and_msg = strings::StrCat( errors::FormatFunctionForError(data->function_name_), " ", run_status.message()); if (opts.rendezvous != nullptr) opts.rendezvous->StartAbort(run_status); return errors::CreateWithUpdatedMessage(run_status, function_and_msg); } else { VLOG(2) << "Component function execution succeeded."; for (int i = 0; i < comp_tensor_rets.size(); ++i) { (*rets)[comp_data.ret_indices[i]] = comp_tensor_rets[i]; } } } else { opts_copy.remote_execution = true; VLOG(4) << " with " << opts_copy.DebugString(); std::vector<std::unique_ptr<CleanUpItem>> cleanup_items; Notification n; Status s; std::vector<FunctionRet> comp_rets; RunInternal(opts_copy, comp_handle, comp_args.args, &comp_rets, &cleanup_items, [&n, &s](const Status& status) { s.Update(status); n.Notify(); }); n.WaitForNotification(); return s; } } return absl::OkStatus(); } void ProcessFunctionLibraryRuntime::RunMultiDeviceAsync( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle outer_handle, std::vector<FunctionRet>* rets, std::vector<std::unique_ptr<CleanUpItem>>* cleanup_items, FunctionLibraryRuntime::DoneCallback done, std::function<Status(const ComponentFunctionData& comp_data, InternalArgs* args)> get_component_args) const { const MultiDeviceFunctionData* data; Status prepare_status = PrepareRunMultiDevice(opts, outer_handle, &data); if (!prepare_status.ok()) { done(prepare_status); return; } std::shared_ptr<CancellationManager> local_cm; CancellationManager* cm = opts.cancellation_manager; if (cm == nullptr) { local_cm = std::make_shared<CancellationManager>(); cm = local_cm.get(); } auto* refcounted_done = new ReffedStatusCallback(std::move(done)); for (int i = 0; i < data->glue_.size(); ++i) { refcounted_done->Ref(); } FunctionLibraryRuntime::Options opts_copy = opts; for (const auto& pair : data->glue_) { const string& target = pair.first; const ComponentFunctionData& comp_data = pair.second; FunctionLibraryRuntime::Handle comp_handle = pair.second.handle; opts_copy.args_alloc_attrs = comp_data.arg_alloc_attrs; opts_copy.rets_alloc_attrs = comp_data.ret_alloc_attrs; opts_copy.cancellation_manager = cm; InternalArgs comp_args; Status s = get_component_args(comp_data, &comp_args); if (!s.ok()) { VLOG(2) << "Failed to get component function arguments: " << s; refcounted_done->UpdateStatus(s); refcounted_done->Unref(); cm->StartCancel(); continue; } std::vector<FunctionRet>* comp_rets = new std::vector<FunctionRet>; rets->resize(data->num_outputs_); auto component_fn_callback = [comp_rets, rets, comp_data, refcounted_done, cm, local_cm, data, comp_handle, target](const Status& status) { if (!status.ok()) { VLOG(2) << "Component function execution on target " << target << " from " << data->function_name_ << " with handle " << comp_handle << " failed: " << status; const string function_and_msg = strings::StrCat( errors::FormatFunctionForError(data->function_name_), " ", status.message()); refcounted_done->UpdateStatus( errors::CreateWithUpdatedMessage(status, function_and_msg)); cm->StartCancel(); } else { VLOG(2) << "Component function execution on target " << target << " from " << data->function_name_ << " with handle " << comp_handle << " succeeded."; for (int i = 0; i < comp_rets->size(); ++i) { (*rets)[comp_data.ret_indices[i]] = (*comp_rets)[i]; } } delete comp_rets; refcounted_done->Unref(); }; FunctionLibraryRuntime* flr = GetFLR(target); if (flr != nullptr) { opts_copy.remote_execution = false; thread::ThreadPool* pool = flr->device()->tensorflow_device_thread_pool(); opts_copy.runner = (pool == nullptr) ? opts.runner : flr->runner(); VLOG(1) << "Running component function on device " << target << " from " << data->function_name_ << " with handle " << comp_handle; VLOG(4) << " with " << opts_copy.DebugString(); std::vector<Tensor>* comp_tensor_rets = new std::vector<Tensor>; flr->Run( opts_copy, comp_handle, GetLocalArgs(comp_args.args), comp_tensor_rets, TensorsToFunctionRetsDoneCallback(comp_rets, comp_tensor_rets, std::move(component_fn_callback))); } else { opts_copy.remote_execution = true; VLOG(1) << "Running component function on device " << target << " from " << data->function_name_ << " with handle " << comp_handle; VLOG(4) << " with " << opts_copy.DebugString(); RunInternal(opts_copy, comp_handle, comp_args.args, comp_rets, cleanup_items, std::move(component_fn_callback)); } } refcounted_done->Unref(); } Status ProcessFunctionLibraryRuntime::Instantiate( const string& function_name, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::Handle* handle) { if (options.is_multi_device_function) { return InstantiateMultiDevice(function_name, attrs, options, handle); } *handle = kInvalidHandle; FunctionLibraryRuntime* flr = GetFLR(options.target); if (flr != nullptr) { return flr->Instantiate(function_name, attrs, options, handle); } Status status; Notification notification; InstantiateRemote(function_name, attrs, options, handle, [&status, &notification](const Status& s) { status = s; notification.Notify(); }); notification.WaitForNotification(); return status; } Status ProcessFunctionLibraryRuntime::IsCrossProcess( FunctionLibraryRuntime::Handle handle, bool* is_cross_process) const { tf_shared_lock l(mu_); const auto& mdevice_it = mdevice_data_.find(handle); if (mdevice_it != mdevice_data_.end()) { *is_cross_process = mdevice_it->second->is_cross_process_; return absl::OkStatus(); } const auto& it = function_data_.find(handle); if (it != function_data_.end()) { *is_cross_process = it->second->is_cross_process(); return absl::OkStatus(); } return errors::InvalidArgument("Handle ", handle, " not found."); } void ProcessFunctionLibraryRuntime::InstantiateRemote( const string& function_name, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::Handle* handle, FunctionLibraryRuntime::DoneCallback done) { if (parent_ == nullptr) { done(errors::Internal( "Currently don't support instantiating functions on device: ", options.target)); return; } auto target = options.target; VLOG(1) << "ProcessFLR Instantiate: " << function_name << " on: " << target; string function_key = Canonicalize(function_name, attrs, options); FunctionData* f; { mutex_lock l(mu_); FunctionLibraryRuntime::Handle h = gtl::FindWithDefault(table_, function_key, kInvalidHandle); if (h == kInvalidHandle || function_data_.count(h) == 0) { h = AddHandleLocked(function_key, target, kInvalidHandle); } f = function_data_[h].get(); *handle = h; } f->DistributedInit( parent_, function_name, options.lib_def == nullptr ? *lib_def_ : *options.lib_def, attrs, options, [this, function_name, target, handle, done](const Status& s) { VLOG(1) << "ProcessFLR Instantiate [success]: " << function_name << " on: " << target << " with handle: " << *handle << " (this: " << this << ")"; done(s); }); } Status ProcessFunctionLibraryRuntime::RemoveHandle( FunctionLibraryRuntime::Handle handle) { mutex_lock l(mu_); table_.erase(function_data_[handle]->function_key()); function_data_.erase(handle); return absl::OkStatus(); } Status ProcessFunctionLibraryRuntime::ReleaseMultiDeviceHandle( FunctionLibraryRuntime::Handle handle) { std::unique_ptr<MultiDeviceFunctionData> mdata; { mutex_lock l(mu_); auto it = mdevice_data_.find(handle); --it->second->instantiation_counter_; if (it->second->instantiation_counter_ != 0) { return absl::OkStatus(); } mdata = std::move(it->second); table_.erase(mdata->function_key_); mdevice_data_.erase(it); } Status overall_status; for (const auto& it : mdata->glue_) { const string& device = it.first; FunctionLibraryRuntime::Handle flr_handle = it.second.handle; FunctionLibraryRuntime* flr = GetFLR(device); if (flr == nullptr) { if (parent_ != nullptr) { return errors::Unimplemented( "Releasing a multi-device component handle on a remote device is " "not yet implemented."); } return errors::InvalidArgument( "Failed to find FunctionLibraryRuntime for device ", device, " when releasing multi-device function handle ", handle); } Status status = flr->ReleaseHandle(flr_handle); if (!status.ok()) { overall_status = status; } } return overall_status; } Status ProcessFunctionLibraryRuntime::ReleaseHandle( FunctionLibraryRuntime::Handle handle) { if (flr_map_ == nullptr) return absl::OkStatus(); if (IsMultiDevice(handle)) { return ReleaseMultiDeviceHandle(handle); } FunctionLibraryRuntime* flr = nullptr; string target_device; { mutex_lock l(mu_); CHECK_EQ(1, function_data_.count(handle)) << " handle: " << handle; target_device = function_data_[handle]->target_device(); } flr = GetFLR(target_device); if (flr != nullptr) { return flr->ReleaseHandle(handle); } return errors::InvalidArgument("Handle not found: ", handle); } FunctionLibraryRuntime::DoneCallback ProcessFunctionLibraryRuntime::ApplyCleanUpToDoneCallback( std::vector<std::unique_ptr<CleanUpItem>>* items, FunctionLibraryRuntime::DoneCallback done, const FunctionLibraryRuntime::Options& opts, tsl::core::RefCountPtr<Rendezvous> created_rendezvous) const { return [this, items, done = std::move(done), step_id = opts.step_id, created_rendezvous = created_rendezvous.release()](const Status& status) { if (created_rendezvous != nullptr) { created_rendezvous->Unref(); } auto* local_status = new Status(status); CleanUp(items, [local_status, done](const Status& cleanup_status) { local_status->Update(cleanup_status); done(*local_status); delete local_status; }); delete items; }; } Status ProcessFunctionLibraryRuntime::CreateRendezvous( FunctionLibraryRuntime::Options& opts, tsl::core::RefCountPtr<Rendezvous>* created_rendezvous) const { DCHECK(opts.rendezvous == nullptr); if (!rendezvous_factory_) { return errors::FailedPrecondition( "The caller does not provide a rendezvous and " "ProcessFunctionLibraryRuntime was created without a rendezvous " "factory."); } Status s = rendezvous_factory_(opts.step_id, device_mgr_, created_rendezvous); if (s.ok()) { opts.rendezvous = created_rendezvous->get(); opts.create_rendezvous = false; } return s; } Status ProcessFunctionLibraryRuntime::GetComponentArgs( const absl::Span<const Tensor> args, const ProcessFunctionLibraryRuntime::ComponentFunctionData& comp_data, ProcessFunctionLibraryRuntime::InternalArgs* comp_args) { for (const auto& it : comp_data.arg_indices) { if (it.index >= args.size()) { return errors::InvalidArgument("index ", it.index, " is out of range [0, ", args.size(), ")"); } if (it.sub_index >= 0) { const Tensor& t = args[it.index]; if (t.dtype() != DT_RESOURCE) { return errors::InvalidArgument("Got unexpected sub_index ", it.sub_index, " for argument ", it.index); } const auto& handles = t.flat<ResourceHandle>(); if (it.sub_index >= handles.size()) { return errors::InvalidArgument("Sub_index ", it.sub_index, "is out of range [0,", handles.size(), ") for argument ", it.index); } comp_args->args.push_back(Tensor(handles(it.sub_index))); } else { comp_args->args.push_back(args[it.index]); } } return absl::OkStatus(); } #if !defined(IS_MOBILE_PLATFORM) Status ProcessFunctionLibraryRuntime::GetComponentArgs( const FunctionArgsInterface& args, const ProcessFunctionLibraryRuntime::ComponentFunctionData& comp_data, ProcessFunctionLibraryRuntime::InternalArgs* comp_args) { for (int i = 0; i < comp_data.arg_indices.size(); ++i) { const FunctionArgIndex index = comp_data.arg_indices.at(i); Tensor tensor; if (args.GetLocalArg(index, &tensor).ok()) { comp_args->args.push_back(std::move(tensor)); } else { eager::RemoteTensorHandle remote_handle; TF_RETURN_IF_ERROR(args.GetRemoteArg(index, &remote_handle)); comp_args->remote_args.emplace_back( std::make_unique<eager::RemoteTensorHandle>( std::move(remote_handle))); comp_args->args.push_back(comp_args->remote_args.back().get()); } } return absl::OkStatus(); } #endif void ProcessFunctionLibraryRuntime::Run( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, absl::Span<const Tensor> args, std::vector<Tensor>* rets, FunctionLibraryRuntime::DoneCallback done) const { FunctionLibraryRuntime::Options new_opts = opts; tsl::core::RefCountPtr<Rendezvous> created_rendezvous = nullptr; if (!opts.rendezvous) { Status s = CreateRendezvous(new_opts, &created_rendezvous); if (!s.ok()) { done(s); return; } } auto* cleanup_items = new std::vector<std::unique_ptr<CleanUpItem>>; done = ApplyCleanUpToDoneCallback(cleanup_items, std::move(done), new_opts, std::move(created_rendezvous)); std::vector<FunctionRet>* function_rets = new std::vector<FunctionRet>; done = [rets, function_rets, done = std::move(done)](const Status& s) { Status status = s; if (status.ok()) { status.Update(FunctionRetsToTensors(function_rets, rets)); } delete function_rets; done(status); }; bool multi_device = HasMultiDeviceHandle(handle); if (multi_device) { auto get_component_args = [&args](const ComponentFunctionData& comp_data, InternalArgs* comp_args) -> Status { return GetComponentArgs(args, comp_data, comp_args); }; return RunMultiDeviceAsync(new_opts, handle, function_rets, cleanup_items, std::move(done), std::move(get_component_args)); } std::vector<FunctionArg> local_args; for (const auto& tensor : args) { local_args.push_back(tensor); } RunInternal(new_opts, handle, local_args, function_rets, cleanup_items, std::move(done)); } void ProcessFunctionLibraryRuntime::RunInternal( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, absl::Span<const FunctionArg> args, std::vector<FunctionRet>* rets, std::vector<std::unique_ptr<CleanUpItem>>* cleanup_items, FunctionLibraryRuntime::DoneCallback done) const { FunctionLibraryRuntime* flr = nullptr; string target_device; FunctionLibraryRuntime::LocalHandle local_handle; { tf_shared_lock l(mu_); auto iter = function_data_.find(handle); if (iter == function_data_.end()) { done(errors::NotFound("Handle: ", handle, " not found.")); return; } FunctionData* function_data = iter->second.get(); target_device = function_data->target_device(); local_handle = function_data->local_handle(); } if (!opts.remote_execution) { done( errors::InvalidArgument("ProcessFunctionLibraryRuntime::Run should " "only be called for multi-device functions or " "for remote execution.")); return; } flr = GetFLR(target_device); if (flr != nullptr) { auto rendezvous = opts.rendezvous; string source_device = opts.source_device; DeviceContext* device_context; Status s = GetDeviceContext(source_device, &device_context); if (!s.ok()) { done(s); return; } int64_t src_incarnation, target_incarnation; s = GetDeviceIncarnation(source_device, &src_incarnation); s.Update(GetDeviceIncarnation(target_device, &target_incarnation)); if (!s.ok()) { done(s); return; } std::vector<Tensor> local_args = GetLocalArgs(args); s = SendTensors(source_device, target_device, "arg_", src_incarnation, local_args, device_context, opts.args_alloc_attrs, rendezvous); if (!s.ok()) { done(s); return; } const std::vector<AllocatorAttributes>& rets_alloc_attrs = opts.rets_alloc_attrs; std::vector<Tensor>* remote_rets = new std::vector<Tensor>; flr->Run(opts, handle, local_args, remote_rets, [source_device, target_device, target_incarnation, rendezvous, device_context, rets_alloc_attrs, remote_rets, rets, done = std::move(done)](const Status& status) mutable { if (!status.ok()) { delete remote_rets; done(status); return; } int64_t num_returns = remote_rets->size(); delete remote_rets; std::vector<Tensor>* recv_tensors = new std::vector<Tensor>; ReceiveTensorsAsync(target_device, source_device, "ret_", target_incarnation, num_returns, device_context, rets_alloc_attrs, rendezvous, recv_tensors, TensorsToFunctionRetsDoneCallback( rets, recv_tensors, std::move(done))); }); return; } if (parent_ != nullptr) { auto cleanup_item = std::make_unique<CleanUpItem>(); cleanup_item->device = target_device; cleanup_item->step_id = opts.step_id; cleanup_item->local_handle = local_handle; cleanup_items->emplace_back(std::move(cleanup_item)); parent_->Run(opts, local_handle, args, rets, std::move(done)); return; } done(errors::Internal("Could not find device")); } void ProcessFunctionLibraryRuntime::Run( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, CallFrameInterface* frame, FunctionLibraryRuntime::DoneCallback done) const { std::vector<Tensor> args; args.reserve(frame->num_args()); for (size_t i = 0; i < frame->num_args(); ++i) { const Tensor* arg; Status s = frame->GetArg(i, &arg); args.emplace_back(*arg); if (!s.ok()) { done(s); } } std::vector<Tensor>* rets = new std::vector<Tensor>; rets->reserve(frame->num_retvals()); Run(opts, handle, args, rets, [frame, rets, done = std::move(done)](const Status& status) { std::unique_ptr<std::vector<Tensor>> rets_releaser(rets); if (!status.ok()) { done(status); return; } if (rets->size() != frame->num_retvals()) { done(errors::Internal( "Number of return values from function (", rets->size(), ") did not match expected number of return values (", frame->num_retvals(), ").")); return; } for (size_t i = 0; i < frame->num_retvals(); ++i) { Status s = frame->SetRetval(i, (*rets)[i]); if (!s.ok()) { done(s); return; } } done(absl::OkStatus()); }); } Status ProcessFunctionLibraryRuntime::RunSync( const FunctionLibraryRuntime::Options& orig_opts, FunctionLibraryRuntime::Handle handle, absl::Span<const Tensor> args, std::vector<Tensor>* rets) const { MultiDeviceFunctionData* multi_device_data = IsMultiDevice(handle); if (multi_device_data && multi_device_data->enable_sync_execution) { metrics::IncrementTestCounter("pflr_runsync", "sync"); FunctionLibraryRuntime::Options new_opts = orig_opts; tsl::core::RefCountPtr<Rendezvous> created_rendezvous = nullptr; if (!new_opts.rendezvous) { TF_RETURN_IF_ERROR(CreateRendezvous(new_opts, &created_rendezvous)); } std::vector<FunctionRet> function_rets; auto get_component_args = [&args](const ComponentFunctionData& comp_data, InternalArgs* comp_args) { return GetComponentArgs(args, comp_data, comp_args); }; Status status = RunMultiDeviceSync(new_opts, handle, &function_rets, std::move(get_component_args)); status.Update(FunctionRetsToTensors(&function_rets, rets)); return status; } else { metrics::IncrementTestCounter("pflr_runsync", "async"); Notification n; Status s; Run(orig_opts, handle, args, rets, [&n, &s](const Status& status) { s.Update(status); n.Notify(); }); n.WaitForNotification(); return s; } } Status ProcessFunctionLibraryRuntime::RunSync( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, CallFrameInterface* frame) const { Notification n; Status s; Run(opts, handle, frame, [&n, &s](const Status& status) { s.Update(status); n.Notify(); }); n.WaitForNotification(); return s; } void ProcessFunctionLibraryRuntime::Run( const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::Handle handle, const FunctionArgsInterface& args, std::vector<FunctionRet>* rets, FunctionLibraryRuntime::DoneCallback done) const { bool has_remote_outputs = false; const MultiDeviceFunctionData* data = IsMultiDevice(handle); if (data != nullptr) { has_remote_outputs = data->has_remote_outputs; } if (!args.HasRemoteOrPackedInputs() && !has_remote_outputs) { const std::vector<Tensor> local_inputs = args.GetLocalTensors(); std::vector<Tensor>* tensor_rets = new std::vector<Tensor>; return Run( opts, handle, local_inputs, tensor_rets, TensorsToFunctionRetsDoneCallback(rets, tensor_rets, std::move(done))); } FunctionLibraryRuntime::Options new_opts = opts; tsl::core::RefCountPtr<Rendezvous> created_rendezvous = nullptr; if (!opts.rendezvous) { Status s = CreateRendezvous(new_opts, &created_rendezvous); if (!s.ok()) { done(s); return; } } #if defined(IS_MOBILE_PLATFORM) done(errors::Unimplemented( "Remote inputs are not available on mobile devices.")); return; #else auto* cleanup_items = new std::vector<std::unique_ptr<CleanUpItem>>; done = ApplyCleanUpToDoneCallback(cleanup_items, done, opts, std::move(created_rendezvous)); auto get_component_args = [&args](const ComponentFunctionData& comp_data, InternalArgs* comp_args) -> Status { return GetComponentArgs(args, comp_data, comp_args); }; return RunMultiDeviceAsync(new_opts, handle, rets, cleanup_items, std::move(done), std::move(get_component_args)); #endif } void ProcessFunctionLibraryRuntime::CleanUp( std::vector<std::unique_ptr<CleanUpItem>>* items, FunctionLibraryRuntime::DoneCallback done) const { auto* refcounted_done = new ReffedStatusCallback(std::move(done)); for (auto& item : *items) { refcounted_done->Ref(); auto* flr = GetFLR(item->device); if (flr != nullptr) { refcounted_done->UpdateStatus( errors::Internal("Cleanup items shouldn't contain local item.")); refcounted_done->Unref(); } else if (parent_ != nullptr) { parent_->CleanUp(item->step_id, item->local_handle, [refcounted_done](const Status& status) { if (!status.ok()) { refcounted_done->UpdateStatus(status); } refcounted_done->Unref(); }); } else { refcounted_done->UpdateStatus( errors::Internal("Could not find device in cleanup.")); refcounted_done->Unref(); } } refcounted_done->Unref(); } Status ProcessFunctionLibraryRuntime::Clone( Env* env, int graph_def_version, const OptimizerOptions& optimizer_options, std::unique_ptr<FunctionLibraryDefinition>* out_lib_def, std::unique_ptr<ProcessFunctionLibraryRuntime>* out_pflr, bool skip_flib_def) const { if (skip_flib_def) { *out_lib_def = std::make_unique<FunctionLibraryDefinition>( lib_def_->default_registry(), FunctionDefLibrary()); } else { *out_lib_def = std::make_unique<FunctionLibraryDefinition>(*lib_def_); } *out_pflr = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr_, env, config_ ? &(*config_) : nullptr, graph_def_version, out_lib_def->get(), optimizer_options, default_thread_pool_, parent_, session_metadata_, rendezvous_factory_); { tf_shared_lock l(mu_); for (auto* d : composite_devices_) (*out_pflr)->AddCompositeDevice(d); } return absl::OkStatus(); } }
#include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include <memory> #include <unordered_map> #include <vector> #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/rendezvous_cache.h" #include "tensorflow/core/common_runtime/function_testlib.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/optimized_function_graph.pb.h" #include "tensorflow/core/framework/resource_var.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/type_index.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tsl/platform/protobuf.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #include "third_party/gpus/cuda/include/cuda_runtime_api.h" #elif TENSORFLOW_USE_ROCM #include "rocm/include/hip/hip_runtime.h" #endif namespace tensorflow { namespace { class TestClusterFLR : public DistributedFunctionLibraryRuntime { public: explicit TestClusterFLR(DeviceMgr* device_mgr) : device_mgr_(device_mgr) {} void Instantiate(const string& function_name, const FunctionLibraryDefinition& lib_def, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, FunctionLibraryRuntime::LocalHandle* handle, FunctionLibraryRuntime::DoneCallback done) override { { mutex_lock l(mu_); *handle = next_handle_; next_handle_++; } done(absl::OkStatus()); } void Run(const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::LocalHandle handle, absl::Span<const Tensor> args, std::vector<Tensor>* rets, FunctionLibraryRuntime::DoneCallback done) override {} void Run(const FunctionLibraryRuntime::Options& opts, FunctionLibraryRuntime::LocalHandle handle, absl::Span<const FunctionArg> args, std::vector<FunctionRet>* rets, FunctionLibraryRuntime::DoneCallback done) override {} void CleanUp(uint64 step_id, FunctionLibraryRuntime::LocalHandle handle, FunctionLibraryRuntime::DoneCallback done) override {} DeviceMgr* remote_device_mgr() const override { return device_mgr_; } private: mutex mu_; int next_handle_ TF_GUARDED_BY(mu_) = 0; DeviceMgr* device_mgr_; }; SessionMetadata GenerateSessionMetadata() { SessionMetadata session_metadata; session_metadata.set_name("name"); session_metadata.set_version(42); return session_metadata; } class ProcessFunctionLibraryRuntimeTest : public ::testing::Test { public: ProcessFunctionLibraryRuntimeTest() : rendezvous_cache_(new RendezvousCache<IntraProcessRendezvous>()) { SessionOptions options; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", 3}); std::vector<std::unique_ptr<Device>> created_devices; TF_CHECK_OK(DeviceFactory::AddDevices(options, "/job:a/replica:0/task:0", &created_devices)); device2_ = std::move(created_devices[2]); created_devices.erase(created_devices.begin() + 2); device_mgr_ = std::make_unique<DynamicDeviceMgr>(); TF_CHECK_OK(device_mgr_->AddDevices(std::move(created_devices))); TF_CHECK_OK(device_mgr_->LookupDevice( "/job:a/replica:0/task:0/device:CPU:0", &device0_)); TF_CHECK_OK(device_mgr_->LookupDevice( "/job:a/replica:0/task:0/device:CPU:1", &device1_)); Device* device2_ptr = nullptr; EXPECT_NE( error::OK, device_mgr_ ->LookupDevice("/job:a/replica:0/task:0/device:CPU:2", &device2_ptr) .code()); Status status = device_mgr_->LookupDevice( "/job:a/replica:0/task:0/device:GPU:0", &gpu_device_); if (!status.ok()) { CHECK_EQ(nullptr, gpu_device_); } } void Init(const std::vector<FunctionDef>& flib, const SessionMetadata* session_metadata = nullptr, const std::vector<OptimizedFunctionGraph>& optimized_function_graphs = {}) { FunctionDefLibrary proto; for (const auto& fdef : flib) *(proto.add_function()) = fdef; lib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(), proto)); for (const auto& fg : optimized_function_graphs) { lib_def_->AddOptimizedFunctionGraph(fg.name(), fg); } OptimizerOptions opts; cluster_flr_.reset(new TestClusterFLR(device_mgr_.get())); proc_flr_.reset(new ProcessFunctionLibraryRuntime( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def_.get(), opts, nullptr, cluster_flr_.get(), session_metadata, Rendezvous::Factory{[this](const int64_t step_id, const DeviceMgr* device_mgr, tsl::core::RefCountPtr<Rendezvous>* r) { *r = this->rendezvous_cache_->FindOrCreate(step_id, [device_mgr]() { return tsl::core::RefCountPtr<IntraProcessRendezvous>( new IntraProcessRendezvous(device_mgr)); }); return absl::OkStatus(); }})); } void AddCompositeDevice(CompositeDevice* d) { proc_flr_->AddCompositeDevice(d); } Status Instantiate( const string& name, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& instantiate_opts, FunctionLibraryRuntime::Handle* handle) { return proc_flr_->Instantiate(name, attrs, instantiate_opts, handle); } Tensor GPUToCPU(const Tensor& device_tensor) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM CHECK(gpu_device_); CHECK(gpu_device_->tensorflow_accelerator_device_info() != nullptr); DeviceContext* device_context = gpu_device_->tensorflow_accelerator_device_info()->default_context; Tensor cpu_tensor(device_tensor.dtype(), device_tensor.shape()); CHECK(device_context ->CopyDeviceTensorToCPUSync(&device_tensor, "", gpu_device_, &cpu_tensor) .ok()); return cpu_tensor; #else CHECK(false); #endif } Tensor CPUToGPU(const Tensor& cpu_tensor) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM CHECK(gpu_device_); CHECK(gpu_device_->tensorflow_accelerator_device_info() != nullptr); DeviceContext* device_context = gpu_device_->tensorflow_accelerator_device_info()->default_context; Tensor device_tensor(gpu_device_->GetAllocator({}), cpu_tensor.dtype(), cpu_tensor.shape(), {}); CHECK(device_context ->CopyCPUTensorToDeviceSync(&cpu_tensor, gpu_device_, &device_tensor) .ok()); return device_tensor; #else CHECK(false); #endif } template <typename T, typename K> Status RunWithRuntime( const string& name, FunctionLibraryRuntime::Options opts, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& instantiate_opts, const T& args, std::vector<K*> rets, ProcessFunctionLibraryRuntime* pflr) { FunctionLibraryRuntime::Handle handle; Status status = pflr->Instantiate(name, attrs, instantiate_opts, &handle); if (!status.ok()) { return status; } bool is_cross_process = false; TF_CHECK_OK(pflr->IsCrossProcess(handle, &is_cross_process)); EXPECT_FALSE(is_cross_process); std::function<void(std::function<void()>)> runner = [](std::function<void()> fn) { test::function::FunctionTestSchedClosure(fn); }; Notification done; opts.runner = &runner; std::vector<K> out; pflr->Run(opts, handle, args, &out, [&status, &done](const Status& s) { status = s; done.Notify(); }); done.WaitForNotification(); if (!status.ok()) { return status; } CHECK_EQ(rets.size(), out.size()); for (size_t i = 0; i < rets.size(); ++i) { *rets[i] = out[i]; } status = pflr->ReleaseHandle(handle); if (!status.ok()) { return status; } Notification done2; pflr->Run(opts, handle, args, &out, [&status, &done2](const Status& s) { status = s; done2.Notify(); }); done2.WaitForNotification(); EXPECT_TRUE(errors::IsNotFound(status)) << "Actual status: " << status; EXPECT_TRUE(absl::StrContains(status.message(), "not found.")); return absl::OkStatus(); } Status Run(const string& name, FunctionLibraryRuntime::Options opts, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& instantiate_opts, const std::vector<Tensor>& args, std::vector<Tensor*> rets, ProcessFunctionLibraryRuntime* pflr = nullptr) { return RunWithRuntime<std::vector<Tensor>, Tensor>( name, opts, attrs, instantiate_opts, args, rets, proc_flr_.get()); } Status RunWithPackedArgs( const string& name, FunctionLibraryRuntime::Options opts, test::function::Attrs attrs, const FunctionLibraryRuntime::InstantiateOptions& instantiate_opts, const FunctionArgsInterface& args, std::vector<FunctionRet*> rets, ProcessFunctionLibraryRuntime* pflr = nullptr) { return RunWithRuntime<FunctionArgsInterface, FunctionRet>( name, opts, attrs, instantiate_opts, args, rets, proc_flr_.get()); } Status RunInstantiated(FunctionLibraryRuntime::Handle handle, FunctionLibraryRuntime::Options opts, const std::vector<Tensor>& args, std::vector<Tensor*> rets) { std::function<void(std::function<void()>)> runner = [](std::function<void()> fn) { test::function::FunctionTestSchedClosure(fn); }; opts.runner = &runner; Status status; Notification done; std::vector<Tensor> out; proc_flr_->Run(opts, handle, args, &out, [&status, &done](const Status& s) { status = s; done.Notify(); }); done.WaitForNotification(); if (!status.ok()) { return status; } CHECK_EQ(rets.size(), out.size()); for (size_t i = 0; i < rets.size(); ++i) { *rets[i] = out[i]; } return absl::OkStatus(); } std::unique_ptr<DynamicDeviceMgr> device_mgr_; Device* device0_ = nullptr; Device* device1_ = nullptr; std::unique_ptr<Device> device2_; Device* gpu_device_ = nullptr; std::unique_ptr<FunctionLibraryDefinition> lib_def_; std::unique_ptr<TestClusterFLR> cluster_flr_; std::unique_ptr<ProcessFunctionLibraryRuntime> proc_flr_; tsl::core::RefCountPtr<RendezvousCache<IntraProcessRendezvous>> rendezvous_cache_; }; TEST_F(ProcessFunctionLibraryRuntimeTest, GetFLRNull) { FunctionDefLibrary proto; std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), proto)); OptimizerOptions opts; std::unique_ptr<ProcessFunctionLibraryRuntime> proc_flr( new ProcessFunctionLibraryRuntime( nullptr , Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def.get(), opts)); FunctionLibraryRuntime* flr = proc_flr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); EXPECT_NE(flr, nullptr); } TEST_F(ProcessFunctionLibraryRuntimeTest, DeviceSet) { FunctionDefLibrary proto; std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), proto)); OptimizerOptions opts; std::vector<std::unique_ptr<Device>> devices; devices.emplace_back(std::move(device2_)); auto mgr = std::make_unique<DynamicDeviceMgr>(); TF_CHECK_OK(mgr.get()->AddDevices(std::move(devices))); std::unique_ptr<ProcessFunctionLibraryRuntime> proc_flr( new ProcessFunctionLibraryRuntime( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def.get(), opts, nullptr)); EXPECT_NE(nullptr, proc_flr->device_set()->FindDeviceByName( "/job:a/replica:0/task:0/device:CPU:0")); EXPECT_NE(nullptr, proc_flr->device_set()->FindDeviceByName( "/job:a/replica:0/task:0/device:CPU:1")); cluster_flr_.reset(new TestClusterFLR(mgr.get())); proc_flr.reset(new ProcessFunctionLibraryRuntime( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def.get(), opts, nullptr, cluster_flr_.get())); EXPECT_NE(nullptr, proc_flr->device_set()->FindDeviceByName( "/job:a/replica:0/task:0/device:CPU:2")); } TEST_F(ProcessFunctionLibraryRuntimeTest, Basic) { Init({}); FunctionLibraryRuntime* flr = proc_flr_->GetFLR("/job:a/replica:0/task:0/cpu:0"); EXPECT_NE(flr, nullptr); EXPECT_EQ(flr->device(), device0_); flr = proc_flr_->GetFLR("/job:a/replica:0/task:0/device:CPU:0"); EXPECT_NE(flr, nullptr); EXPECT_EQ(flr->device(), device0_); flr = proc_flr_->GetFLR("/device:CPU:0"); EXPECT_NE(flr, nullptr); EXPECT_EQ(flr->device(), device0_); flr = proc_flr_->GetFLR("/job:a/replica:0/task:0/cpu:1"); EXPECT_NE(flr, nullptr); EXPECT_EQ(flr->device(), device1_); flr = proc_flr_->GetFLR("abc"); EXPECT_EQ(flr, nullptr); } TEST_F(ProcessFunctionLibraryRuntimeTest, GetDeviceIncarnation) { Init({}); int64_t incarnation; TF_EXPECT_OK(proc_flr_->GetDeviceIncarnation("/job:a/replica:0/task:0/cpu:1", &incarnation)); EXPECT_NE(incarnation, 0); Status s = proc_flr_->GetDeviceIncarnation("/job:a/replica:0/task:0/cpu:2", &incarnation); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); } TEST_F(ProcessFunctionLibraryRuntimeTest, SingleCall) { Init({test::function::XTimesTwo()}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; auto x = test::AsTensor<float>({1, 2, 3, 4}); Tensor y; TF_CHECK_OK( Run("XTimesTwo", opts, {{"T", DT_FLOAT}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<float>(y, test::AsTensor<float>({2, 4, 6, 8})); } TEST_F(ProcessFunctionLibraryRuntimeTest, SingleCallFindDevice) { Init({test::function::FindDevice()}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; Tensor y; TF_CHECK_OK(Run("FindDevice", opts, {}, instantiate_opts, {}, {&y})); test::ExpectTensorEqual<tstring>( y, test::AsTensor<tstring>({"/job:a/replica:0/task:0/device:CPU:0"}, TensorShape({}))); EXPECT_EQ(0, rendezvous_cache_->Size()); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultipleCallsSameDeviceXTimes) { Init({test::function::XTimesTwo(), test::function::XTimesFour()}); auto x = test::AsTensor<float>({1, 2, 3, 4}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; Tensor y; TF_CHECK_OK( Run("XTimesTwo", opts, {{"T", DT_FLOAT}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<float>(y, test::AsTensor<float>({2, 4, 6, 8})); TF_CHECK_OK( Run("XTimesFour", opts, {{"T", DT_FLOAT}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<float>(y, test::AsTensor<float>({4, 8, 12, 16})); } TEST_F(ProcessFunctionLibraryRuntimeTest, SameDeviceXTimesFourInt32MultiDevice) { Init({test::function::XTimesTwoInt32(), test::function::XTimesFourInt32()}); auto x = test::AsTensor<int32>({1, 2, 3, 4}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; instantiate_opts.input_devices = {"/job:a/replica:0/task:0/cpu:0"}; instantiate_opts.output_devices = {"/job:a/replica:0/task:0/cpu:0"}; instantiate_opts.is_multi_device_function = true; Tensor y; TF_CHECK_OK(Run("XTimesFourInt32", opts, {{"T", DT_INT32}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<int32>(y, test::AsTensor<int32>({4, 8, 12, 16})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultipleCallsSameDeviceXTimesMultiDevice) { Init({test::function::XTimesTwoInt32(), test::function::XTimesFourInt32()}); auto x = test::AsTensor<int32>({1, 2, 3, 4}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; instantiate_opts.input_devices = {"/job:a/replica:0/task:0/cpu:0"}; instantiate_opts.output_devices = {"/job:a/replica:0/task:0/cpu:0"}; instantiate_opts.is_multi_device_function = true; Tensor y; TF_CHECK_OK(Run("XTimesTwoInt32", opts, {{"T", DT_INT32}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<int32>(y, test::AsTensor<int32>({2, 4, 6, 8})); TF_CHECK_OK(Run("XTimesFourInt32", opts, {{"T", DT_INT32}}, instantiate_opts, {x}, {&y})); test::ExpectTensorEqual<int32>(y, test::AsTensor<int32>({4, 8, 12, 16})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultipleCallsSameDeviceFindDevice) { Init({test::function::FindDevice()}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:1"; Tensor y; TF_CHECK_OK(Run("FindDevice", opts, {}, instantiate_opts, {}, {&y})); test::ExpectTensorEqual<tstring>( y, test::AsTensor<tstring>({"/job:a/replica:0/task:0/device:CPU:1"}, TensorShape({}))); TF_CHECK_OK(Run("FindDevice", opts, {}, instantiate_opts, {}, {&y})); test::ExpectTensorEqual<tstring>( y, test::AsTensor<tstring>({"/job:a/replica:0/task:0/device:CPU:1"}, TensorShape({}))); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultipleCallsDiffDeviceFindDevice) { Init({test::function::FindDevice()}); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; Tensor y; FunctionLibraryRuntime::InstantiateOptions instantiate_opts_0; instantiate_opts_0.target = "/job:a/replica:0/task:0/device:CPU:0"; TF_CHECK_OK(Run("FindDevice", opts, {}, instantiate_opts_0, {}, {&y})); test::ExpectTensorEqual<tstring>( y, test::AsTensor<tstring>({"/job:a/replica:0/task:0/device:CPU:0"}, TensorShape({}))); FunctionLibraryRuntime::InstantiateOptions instantiate_opts_1; instantiate_opts_1.target = "/job:a/replica:0/task:0/device:CPU:1"; TF_CHECK_OK(Run("FindDevice", opts, {}, instantiate_opts_1, {}, {&y})); test::ExpectTensorEqual<tstring>( y, test::AsTensor<tstring>({"/job:a/replica:0/task:0/device:CPU:1"}, TensorShape({}))); } TEST_F(ProcessFunctionLibraryRuntimeTest, InstantiateFunctionOnRemovedDevice) { std::vector<std::unique_ptr<Device>> devices; Device* device2_ptr = device2_.get(); devices.emplace_back(std::move(device2_)); TF_CHECK_OK(device_mgr_->AddDevices(std::move(devices))); Init({test::function::FindDevice()}); std::vector<Device*> remove_devices{device2_ptr}; TF_CHECK_OK(device_mgr_->RemoveDevices(std::move(remove_devices))); FunctionLibraryRuntime::InstantiateOptions instantiate_opts; FunctionLibraryRuntime::Handle h; instantiate_opts.target = "/job:a/replica:0/task:0/device:CPU:1"; instantiate_opts.is_multi_device_function = true; TF_CHECK_OK(Instantiate("FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:2"}}, instantiate_opts, &h)); } TEST_F(ProcessFunctionLibraryRuntimeTest, ClusterFLRSerialTest) { Init({test::function::FindDevice()}); FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:b/replica:0/task:0/device:CPU:0"; FunctionLibraryRuntime::Handle h; TF_CHECK_OK(Instantiate("FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:0"}}, instantiate_opts, &h)); bool is_cross_process = false; TF_CHECK_OK(proc_flr_->IsCrossProcess(h, &is_cross_process)); EXPECT_TRUE(is_cross_process); EXPECT_EQ(0, proc_flr_->GetHandleOnDevice( "/job:b/replica:0/task:0/device:CPU:0", h)); TF_CHECK_OK(Instantiate("FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:0"}}, instantiate_opts, &h)); EXPECT_EQ(0, proc_flr_->GetHandleOnDevice( "/job:b/replica:0/task:0/device:CPU:0", h)); instantiate_opts.target = "/job:c/replica:0/task:0/device:CPU:0"; TF_CHECK_OK(Instantiate("FindDevice", {{"_target", "/job:c/replica:0/task:0/device:CPU:0"}}, instantiate_opts, &h)); EXPECT_EQ(1, proc_flr_->GetHandleOnDevice( "/job:c/replica:0/task:0/device:CPU:0", h)); } TEST_F(ProcessFunctionLibraryRuntimeTest, ClusterFLRParallelTest) { Init({test::function::FindDevice()}); FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:b/replica:0/task:0/device:CPU:0"; thread::ThreadPool* tp = new thread::ThreadPool(Env::Default(), "test", 4); auto fn = [this, &instantiate_opts]() { FunctionLibraryRuntime::Handle h; TF_CHECK_OK(Instantiate( "FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:0"}}, instantiate_opts, &h)); EXPECT_EQ(0, proc_flr_->GetHandleOnDevice( "/job:b/replica:0/task:0/device:CPU:0", h)); }; for (int i = 0; i < 100; ++i) { tp->Schedule(fn); } delete tp; } bool IsCUDATensor(const Tensor& t) { #if GOOGLE_CUDA cudaPointerAttributes attributes; cudaError_t err = cudaPointerGetAttributes(&attributes, t.tensor_data().data()); if (err == cudaErrorInvalidValue) return false; CHECK_EQ(cudaSuccess, err) << cudaGetErrorString(err); return (attributes.type == cudaMemoryTypeDevice); #elif TENSORFLOW_USE_ROCM hipPointerAttribute_t attributes; hipError_t err = hipPointerGetAttributes(&attributes, t.tensor_data().data()); if (err == hipErrorInvalidValue) return false; CHECK_EQ(hipSuccess, err) << hipGetErrorString(err); return (attributes.memoryType == hipMemoryTypeDevice); #else CHECK(false) << "IsCUDATensor should not be called when CUDA is not available"; #endif } void TestTwoDeviceMult( ProcessFunctionLibraryRuntimeTest* fixture, const FunctionLibraryRuntime::InstantiateOptions& inst_opts, const string& error = "") { fixture->Init({test::function::TwoDeviceMult()}); FunctionLibraryRuntime::Options opts; auto x = test::AsTensor<float>({1, 2, 3}); Tensor y_cpu; Tensor y_gpu; Status status = fixture->Run("TwoDeviceMult", opts, {{"T", DT_FLOAT}}, inst_opts, {x}, {&y_cpu, &y_gpu}); if (!error.empty()) { EXPECT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; EXPECT_TRUE(absl::StrContains(status.message(), error)) << "Actual error message: " << status.message(); return; } EXPECT_TRUE(status.ok()) << "Actual status: " << status; EXPECT_FALSE(IsCUDATensor(y_cpu)); test::ExpectTensorEqual<float>(y_cpu, test::AsTensor<float>({2, 4, 6})); EXPECT_TRUE(IsCUDATensor(y_gpu)); Tensor y_gpu_on_cpu = fixture->GPUToCPU(y_gpu); test::ExpectTensorEqual<float>(y_gpu_on_cpu, test::AsTensor<float>({3, 6, 9})); } void TestInstantiateSimpleFunction( ProcessFunctionLibraryRuntimeTest* fixture, const FunctionLibraryRuntime::InstantiateOptions& orig_opts) { fixture->Init({test::function::FindDevice()}); FunctionLibraryRuntime::InstantiateOptions opts_copy = orig_opts; opts_copy.input_devices.clear(); FunctionLibraryRuntime::Handle h; TF_CHECK_OK(fixture->Instantiate( "FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:0"}}, opts_copy, &h)); } void TestControlFlow( ProcessFunctionLibraryRuntimeTest* fixture, const FunctionLibraryRuntime::InstantiateOptions& inst_opts) { fixture->Init({test::function::ControlFlow()}); FunctionLibraryRuntime::Options opts; Tensor x1 = test::AsTensor<float>({3, 5, 17, 257}); if (absl::StrContains(inst_opts.input_devices[0], "GPU")) { x1 = fixture->CPUToGPU(x1); } Tensor y1; TF_CHECK_OK(fixture->Run("ControlFlow", opts, {}, inst_opts, {x1}, {&y1})); if (absl::StrContains(inst_opts.output_devices[0], "GPU")) { EXPECT_TRUE(IsCUDATensor(y1)); y1 = fixture->GPUToCPU(y1); } test::ExpectTensorEqual<float>(y1, test::AsTensor<float>({3, 5, 17, 257})); } void TestTwoDeviceInputOutput( ProcessFunctionLibraryRuntimeTest* fixture, const FunctionLibraryRuntime::InstantiateOptions& inst_opts) { if (fixture->gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } fixture->Init({test::function::TwoDeviceInputOutput()}); FunctionLibraryRuntime::Options opts; Tensor x1 = test::AsTensor<float>({1, 2}); if (absl::StrContains(inst_opts.input_devices[0], "GPU")) { x1 = fixture->CPUToGPU(x1); } Tensor x2 = test::AsTensor<float>({10, 20}); if (absl::StrContains(inst_opts.input_devices[1], "GPU")) { x2 = fixture->CPUToGPU(x2); } Tensor y1; Tensor y2; TF_CHECK_OK(fixture->Run("TwoDeviceInputOutput", opts, {{"T", DT_FLOAT}}, inst_opts, {x1, x2}, {&y1, &y2})); if (absl::StrContains(inst_opts.output_devices[0], "GPU")) { EXPECT_TRUE(IsCUDATensor(y1)); y1 = fixture->GPUToCPU(y1); } else { EXPECT_FALSE(IsCUDATensor(y1)); } test::ExpectTensorEqual<float>(y1, test::AsTensor<float>({2, 4})); if (absl::StrContains(inst_opts.output_devices[1], "GPU")) { EXPECT_TRUE(IsCUDATensor(y2)); y2 = fixture->GPUToCPU(y2); } else { EXPECT_FALSE(IsCUDATensor(y2)); } test::ExpectTensorEqual<float>(y2, test::AsTensor<float>({30, 60})); } std::vector<string> CompleteDevices(const std::vector<string>& v) { std::vector<string> result; result.reserve(v.size()); for (const string& s : v) { result.push_back(strings::StrCat("/job:a/replica:0/task:0/device:", s)); } return result; } FunctionLibraryRuntime::InstantiateOptions MakeOptions( const string& target, const std::vector<string>& input_devices, const std::vector<string>& output_devices) { FunctionLibraryRuntime::InstantiateOptions inst_opts; inst_opts.target = target; inst_opts.input_devices = CompleteDevices(input_devices); inst_opts.output_devices = CompleteDevices(output_devices); inst_opts.is_multi_device_function = true; return inst_opts; } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ExplicitOutputDevice) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } TestTwoDeviceMult(this, MakeOptions("CPU:0", {"CPU:0"}, {"CPU:0", "GPU:0"})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_InferredOutputDevice) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } TestTwoDeviceMult(this, MakeOptions("CPU:0", {"CPU:0"}, {})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenNoInputDevices) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } TestTwoDeviceMult(this, MakeOptions("CPU:0", {}, {}), "input_devices must have the same length"); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenTooManyInputDevices) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } TestTwoDeviceMult(this, MakeOptions("CPU:0", {"CPU:0", "CPU:1"}, {}), "input_devices must have the same length"); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenTooManyOutputDevices) { TestTwoDeviceMult( this, MakeOptions("CPU:0", {"CPU:0"}, {"CPU:0", "GPU:0", "CPU:1"}), "output_devices must either be empty or have the same length"); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenBadTargetDevice) { TestTwoDeviceMult( this, MakeOptions("GPU:11", {"CPU:0"}, {"CPU:0", "GPU:0"}), "Cannot instantiate multi-device function with target device GPU:11"); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenListInput) { const FunctionDef& def = test::function::FuncWithListInput(); Init({def}); FunctionLibraryRuntime::Handle handle; Status status = proc_flr_->Instantiate( "FuncWithListInput", test::function::Attrs({{"T", DT_FLOAT}, {"N", 1}}), MakeOptions("CPU:0", {"CPU:0"}, {}), &handle); ASSERT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; ASSERT_TRUE(absl::StrContains( status.message(), "FuncWithListInput has an input named \"x1\" that is a list of tensors")) << "Actual error message: " << status.message(); } TEST_F(ProcessFunctionLibraryRuntimeTest, FullTypeForInt32) { FunctionDef def = test::function::XTimesTwoInt32(); def.mutable_node_def(2)->mutable_experimental_type()->set_type_id( TFT_PRODUCT); def.mutable_node_def(2)->mutable_experimental_type()->add_args()->set_type_id( TFT_TENSOR); Init({def}); FunctionLibraryRuntime::Handle handle; Status status = proc_flr_->Instantiate("XTimesTwoInt32", test::function::Attrs({}), MakeOptions("CPU:0", {"CPU:0"}, {}), &handle); ASSERT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; EXPECT_TRUE(absl::StrContains( status.message(), "in 'ProcessFunctionLibraryRuntime::InstantiateMultiDevice' has " "TFT_TENSOR output 0 which has 0 args instead of 1")); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ErrorWhenListOutput) { const FunctionDef& def = test::function::FuncWithListOutput(); Init({def}); FunctionLibraryRuntime::Handle handle; Status status = proc_flr_->Instantiate( "FuncWithListOutput", test::function::Attrs({{"T", DT_FLOAT}, {"N", 1}}), MakeOptions("CPU:0", {}, {"CPU:0"}), &handle); ASSERT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; ASSERT_TRUE(absl::StrContains( status.message(), "FuncWithListOutput has an output named \"y\" that is a list of tensors")) << "Actual error message: " << status.message(); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ExplicitMultiInputOutput) { TestTwoDeviceInputOutput( this, MakeOptions("CPU:0", {"CPU:0", "GPU:0"}, {"CPU:0", "GPU:0"})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_FlipInputs) { TestTwoDeviceInputOutput( this, MakeOptions("CPU:0", {"GPU:0", "CPU:0"}, {"CPU:0", "GPU:0"})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_FlipOutputs) { TestTwoDeviceInputOutput( this, MakeOptions("CPU:0", {"CPU:0", "GPU:0"}, {"GPU:0", "CPU:0"})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_FlipBoth) { TestTwoDeviceInputOutput( this, MakeOptions("CPU:0", {"GPU:0", "CPU:0"}, {"GPU:0", "CPU:0"})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_EmptyBodySwap) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"GPU:0", "CPU:0"}, {"CPU:0", "GPU:0"}); Init({test::function::EmptyBodySwap()}); Tensor x1 = CPUToGPU(test::AsTensor<float>({1, 2})); Tensor x2 = test::AsTensor<float>({10, 20}); Tensor y1; Tensor y2; TF_CHECK_OK(Run("EmptyBodySwap", {}, {{"T", DT_FLOAT}}, inst_opts, {x1, x2}, {&y1, &y2})); EXPECT_FALSE(IsCUDATensor(y1)); test::ExpectTensorEqual<float>(y1, test::AsTensor<float>({10, 20})); EXPECT_TRUE(IsCUDATensor(y2)); y2 = GPUToCPU(y2); test::ExpectTensorEqual<float>(y2, test::AsTensor<float>({1, 2})); } Tensor GetResourceHandle(const string& var_name, const string& container, const string& device_name) { ResourceHandle handle; handle.set_device(device_name); handle.set_container(container); handle.set_name(var_name); handle.set_hash_code(TypeIndex::Make<Var>().hash_code()); handle.set_maybe_type_name(TypeIndex::Make<Var>().name()); Tensor tensor(DT_RESOURCE, TensorShape({})); tensor.scalar<ResourceHandle>()() = handle; return tensor; } FunctionDef AddVarAcrossDevices() { return FunctionDefHelper::Create( "AddVarAcrossDevices", {"x: resource"}, {"y: float"}, {}, { {{"read0"}, "ReadVariableOp", {"x"}, {{"dtype", DT_FLOAT}}, {}, "/device:CPU:0"}, {{"read1"}, "ReadVariableOp", {"x"}, {{"dtype", DT_FLOAT}}, {}, "/device:CPU:1"}, {{"add"}, "Add", {"read0:value:0", "read1:value:0"}, {{"T", DT_FLOAT}}, {}, "/device:CPU:0"}, }, {{"y", "add:z:0"}}); } class TestFunctionPackedArgs : public FunctionArgsInterface { public: TestFunctionPackedArgs(const int index, absl::InlinedVector<TensorValue, 4UL>&& tensor_args) { packed_args_.emplace(index, std::move(tensor_args)); } ~TestFunctionPackedArgs() override{}; bool HasRemoteOrPackedInputs() const override { return true; }; Status GetLocalArg(const FunctionArgIndex& index, Tensor* val) const override { *val = *packed_args_.at(index.index).at(index.sub_index).tensor; return absl::OkStatus(); }; std::vector<Tensor> GetLocalTensors() const override { return {}; } private: absl::flat_hash_map<int, absl::InlinedVector<TensorValue, 4UL>> packed_args_; }; TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_CompositeDevice) { Init({AddVarAcrossDevices()}); const Tensor initial_resource_value0 = test::AsTensor<float>({10, 20}); Var* resource0 = new Var(DT_FLOAT); *resource0->tensor() = initial_resource_value0; resource0->is_initialized = true; const Tensor initial_resource_value1 = test::AsTensor<float>({30, 40}); Var* resource1 = new Var(DT_FLOAT); *resource1->tensor() = initial_resource_value1; resource1->is_initialized = true; ResourceMgr* mgr0 = device0_->resource_manager(); ResourceMgr* mgr1 = device1_->resource_manager(); TF_ASSERT_OK(mgr0->Create(mgr0->default_container(), "var", resource0)); TF_ASSERT_OK(mgr1->Create(mgr1->default_container(), "var", resource1)); Tensor resource_handle0 = GetResourceHandle("var", mgr0->default_container(), device0_->name()); Tensor resource_handle1 = GetResourceHandle("var", mgr1->default_container(), device1_->name()); Status s; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice({device0_->name(), device1_->name()}, 0, device_mgr_->HostCPU()->parsed_name(), &s); TF_ASSERT_OK(s); AddCompositeDevice(composite_device.get()); FunctionLibraryRuntime::Options opts; FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"COMPOSITE:0"}, {"CPU:0"}); inst_opts.composite_devices[composite_device->name()] = composite_device->underlying_devices(); inst_opts.input_resource_dtypes_and_shapes[0] = { initial_resource_value0.dtype(), initial_resource_value0.shape()}; { absl::InlinedVector<TensorValue, 4UL> handles; handles.push_back(TensorValue(&resource_handle0)); handles.push_back(TensorValue(&resource_handle1)); TestFunctionPackedArgs args(0, std::move(handles)); FunctionRet ret; TF_CHECK_OK(RunWithPackedArgs("AddVarAcrossDevices", opts, {{"T", DT_FLOAT}}, inst_opts, args, {&ret})); EXPECT_EQ(ret.index(), 0); test::ExpectTensorEqual<float>(absl::get<Tensor>(ret), test::AsTensor<float>({40, 60})); } { Tensor arg(DT_RESOURCE, TensorShape({2})); arg.flat<ResourceHandle>()(0) = resource_handle0.scalar<ResourceHandle>()(); arg.flat<ResourceHandle>()(1) = resource_handle1.scalar<ResourceHandle>()(); Tensor ret; TF_CHECK_OK(Run("AddVarAcrossDevices", opts, {{"T", DT_FLOAT}}, inst_opts, {arg}, {&ret})); test::ExpectTensorEqual<float>(ret, test::AsTensor<float>({40, 60})); } } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_ResourceOutput_GPU) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"GPU:0", "GPU:0"}, {"GPU:0", "GPU:0"}); Init({test::function::ResourceOutput(), test::function::ReadResourceVariable()}); Tensor resource_value = CPUToGPU(test::AsTensor<float>({10, 20})); Var* resource = new Var(DT_FLOAT); *resource->tensor() = resource_value; resource->is_initialized = true; ResourceMgr* mgr = gpu_device_->resource_manager(); Status status = mgr->Create(mgr->default_container(), "my_gpu_var", resource); ASSERT_TRUE(status.ok()) << status.message(); FunctionLibraryRuntime::Options opts; Tensor x1 = CPUToGPU(test::AsTensor<float>({1, 2})); Tensor x2 = GetResourceHandle("my_gpu_var", mgr->default_container(), "/job:a/replica:0/task:0/device:GPU:0"); Tensor returned_handle; Tensor y2; TF_CHECK_OK(Run("ResourceOutput", opts, {{"T", DT_FLOAT}}, inst_opts, {x1, x2}, {&returned_handle, &y2})); EXPECT_FALSE(IsCUDATensor(returned_handle)); EXPECT_TRUE(IsCUDATensor(y2)); y2 = GPUToCPU(y2); test::ExpectTensorEqual<float>(y2, test::AsTensor<float>({2, 4})); inst_opts = MakeOptions("GPU:0", {"GPU:0"}, {"GPU:0"}); Tensor read_resource; TF_CHECK_OK(Run("ReadResourceVariable", opts, {{"T", DT_FLOAT}}, inst_opts, {returned_handle}, {&read_resource})); EXPECT_TRUE(IsCUDATensor(read_resource)); read_resource = GPUToCPU(read_resource); test::ExpectTensorEqual<float>(read_resource, test::AsTensor<float>({10, 20})); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_PlacerError) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"GPU:0", "GPU:0"}, {"CPU:0", "GPU:0"}); Init({test::function::ResourceOutput(), test::function::ReadResourceVariable()}); FunctionLibraryRuntime::Handle handle; Status status = proc_flr_->Instantiate( "ResourceOutput", test::function::Attrs({{"T", DT_FLOAT}}), inst_opts, &handle); ASSERT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; ASSERT_TRUE(absl::StrContains(status.message(), "Cannot place")); } REGISTER_OP("BrokenOp") .Input("in: T") .Output("out: T") .Attr("T: type") .SetShapeFn(shape_inference::UnknownShape); class BrokenOp : public OpKernel { public: explicit BrokenOp(OpKernelConstruction* ctx) : OpKernel(ctx) { ctx->SetStatus(errors::Internal("I am broken")); } void Compute(OpKernelContext* ctx) override { ctx->SetStatus(errors::Internal("I am broken")); } }; REGISTER_KERNEL_BUILDER(Name("BrokenOp").Device(DEVICE_CPU), BrokenOp); TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_CreateKernelsEagerly) { auto T = DT_INT32; FunctionDef broken_func = FunctionDefHelper::Define( "Broken", {"x: int32"}, {"y: int32"}, {}, {{{"y"}, "BrokenOp", {"x"}, {{"T", T}}}}); Init({broken_func}); FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"CPU:0"}, {"CPU:0"}); FunctionLibraryRuntime::Handle handle; TF_CHECK_OK(Instantiate("Broken", {{"T", DT_INT32}}, inst_opts, &handle)); TF_CHECK_OK(proc_flr_->ReleaseHandle(handle)); inst_opts.create_kernels_eagerly = true; Status status = Instantiate("Broken", {{"T", DT_INT32}}, inst_opts, &handle); EXPECT_TRUE(errors::IsInternal(status)); } TEST_F(ProcessFunctionLibraryRuntimeTest, MultiDevice_StateHandle) { auto T = DT_INT32; FunctionDef stateful_func = FunctionDefHelper::Define( "RandomUniformWrapper", {"x: resource"}, {"y: int32"}, {}, {FunctionDefHelper::Const<int32>("shape", absl::Span<const int32>({1})), FunctionDefHelper::Const<int32>("minval", 0), {{"maxval"}, "ReadVariableOp", {"x"}, {{"dtype", T}}, {}}, {{"y"}, "RandomUniformInt", {"shape", "minval", "maxval"}, {{"seed", 37}, {"seed2", 48}, {"Tout", T}, {"T", T}}}}); Init({stateful_func}); if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } ResourceMgr* mgr = gpu_device_->resource_manager(); Tensor resource_value = CPUToGPU(test::AsScalar<int>(10)); Var* resource = new Var(T); *resource->tensor() = resource_value; resource->is_initialized = true; Status status = mgr->Create(mgr->default_container(), "my_gpu_var", resource); ASSERT_TRUE(status.ok()) << status.message(); Tensor x = GetResourceHandle("my_gpu_var", mgr->default_container(), "/job:a/replica:0/task:0/device:GPU:0"); Tensor y; FunctionLibraryRuntime::InstantiateOptions inst_opts = MakeOptions("CPU:0", {"GPU:0"}, {"CPU:0"}); FunctionLibraryRuntime::Handle handle; TF_CHECK_OK(Instantiate("RandomUniformWrapper", {{"T", DT_INT32}}, inst_opts, &handle)); for (auto expected : {6, 4}) { TF_CHECK_OK(RunInstantiated(handle, {}, {x}, {&y})); test::ExpectTensorEqual<int>(y, test::AsTensor<int>({expected})); } FunctionLibraryRuntime::Handle other_handle; TF_CHECK_OK(Instantiate("RandomUniformWrapper", {{"T", DT_INT32}}, inst_opts, &other_handle)); EXPECT_EQ(handle, other_handle); for (auto expected : {0, 1}) { TF_CHECK_OK(RunInstantiated(other_handle, {}, {x}, {&y})); test::ExpectTensorEqual<int>(y, test::AsTensor<int>({expected})); } inst_opts.state_handle = "handle_1"; TF_CHECK_OK(Instantiate("RandomUniformWrapper", {{"T", DT_INT32}}, inst_opts, &other_handle)); EXPECT_NE(handle, other_handle); for (auto expected : {6, 4, 0, 1}) { TF_CHECK_OK(RunInstantiated(other_handle, {}, {x}, {&y})); test::ExpectTensorEqual<int>(y, test::AsTensor<int>({expected})); } inst_opts.state_handle = "handle_2"; TF_CHECK_OK(Instantiate("RandomUniformWrapper", {{"T", DT_INT32}}, inst_opts, &other_handle)); EXPECT_NE(handle, other_handle); for (auto expected : {6, 4, 0, 1}) { TF_CHECK_OK(RunInstantiated(other_handle, {}, {x}, {&y})); test::ExpectTensorEqual<int>(y, test::AsTensor<int>({expected})); } inst_opts.state_handle = "handle_3"; for (int i = 0; i < 2; ++i) { TF_CHECK_OK(Instantiate("RandomUniformWrapper", {{"T", DT_INT32}}, inst_opts, &other_handle)); EXPECT_NE(handle, other_handle); for (auto expected : {6, 4, 0, 1}) { TF_CHECK_OK(RunInstantiated(other_handle, {}, {x}, {&y})); test::ExpectTensorEqual<int>(y, test::AsTensor<int>({expected})); } TF_CHECK_OK(proc_flr_->ReleaseHandle(other_handle)); } } REGISTER_OP("SessionMetadataReader") .Input("x: int64") .Output("y: string") .SetIsStateful() .Doc(R"doc(SessionMetadataReader returns the session metadata. x: int64 y: string )doc"); class SessionMetadataReaderOp : public OpKernel { public: explicit SessionMetadataReaderOp(OpKernelConstruction* ctx) : OpKernel(ctx) {} void Compute(OpKernelContext* ctx) override { Tensor* out_tensor = nullptr; OP_REQUIRES_OK(ctx, ctx->allocate_output("y", TensorShape({}), &out_tensor)); if (ctx->session_metadata() != nullptr) { out_tensor->scalar<tstring>()() = tsl::LegacyUnredactedDebugString(*ctx->session_metadata()); } else { out_tensor->scalar<tstring>()() = ""; } } }; REGISTER_KERNEL_BUILDER(Name("SessionMetadataReader").Device(DEVICE_CPU), SessionMetadataReaderOp); FunctionDef SessionMetadataReaderOpFn() { return FunctionDefHelper::Define( "SessionMetadataReaderFn", {"x: int64"}, {"y: string"}, {}, {{{"y"}, "SessionMetadataReader", {"x"}, {}}}); } TEST_F(ProcessFunctionLibraryRuntimeTest, SessionMetadataAbsent) { Init({SessionMetadataReaderOpFn()}, nullptr); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; const auto x = test::AsTensor<int64_t>({17}); Tensor y; TF_CHECK_OK( Run("SessionMetadataReaderFn", opts, {}, instantiate_opts, {x}, {&y})); EXPECT_EQ("", y.scalar<tstring>()()); } TEST_F(ProcessFunctionLibraryRuntimeTest, SessionMetadataPresent) { const SessionMetadata session_metadata = GenerateSessionMetadata(); Init({SessionMetadataReaderOpFn()}, &session_metadata); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; const auto x = test::AsTensor<int64_t>({17}); Tensor y; TF_CHECK_OK( Run("SessionMetadataReaderFn", opts, {}, instantiate_opts, {x}, {&y})); SessionMetadata read_metadata; ASSERT_TRUE(protobuf::TextFormat::ParseFromString(y.scalar<tstring>()(), &read_metadata)); EXPECT_EQ(session_metadata.name(), read_metadata.name()); EXPECT_EQ(session_metadata.version(), read_metadata.version()); } TEST_F(ProcessFunctionLibraryRuntimeTest, CompositeDevicesAfterCloning) { Init({AddVarAcrossDevices()}); Status s; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice({device0_->name(), device1_->name()}, 0, device_mgr_->HostCPU()->parsed_name(), &s); TF_ASSERT_OK(s); AddCompositeDevice(composite_device.get()); auto* flr = proc_flr_->GetFLR("/job:a/replica:0/task:0/cpu:0"); ASSERT_NE(nullptr, flr); std::unique_ptr<FunctionLibraryDefinition> cloned_lib_def; std::unique_ptr<ProcessFunctionLibraryRuntime> cloned_proc_flr; FunctionLibraryRuntime* cloned_flr; TF_ASSERT_OK(flr->Clone(&cloned_lib_def, &cloned_proc_flr, &cloned_flr)); EXPECT_EQ( cloned_proc_flr->device_set()->FindDeviceByName(composite_device->name()), composite_device.get()); } TEST_F(ProcessFunctionLibraryRuntimeTest, SessionMetadataPresentAfterCloning) { const SessionMetadata session_metadata = GenerateSessionMetadata(); Init({SessionMetadataReaderOpFn()}, &session_metadata); auto* flr = proc_flr_->GetFLR("/job:a/replica:0/task:0/cpu:0"); ASSERT_NE(nullptr, flr); std::unique_ptr<FunctionLibraryDefinition> cloned_lib_def; std::unique_ptr<ProcessFunctionLibraryRuntime> cloned_proc_flr; FunctionLibraryRuntime* cloned_flr; TF_ASSERT_OK(flr->Clone(&cloned_lib_def, &cloned_proc_flr, &cloned_flr)); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:a/replica:0/task:0/cpu:0"; opts.remote_execution = true; FunctionLibraryRuntime::InstantiateOptions instantiate_opts; instantiate_opts.target = "/job:a/replica:0/task:0/cpu:0"; const auto x = test::AsTensor<int64_t>({17}); Tensor y; Status s = RunWithRuntime<std::vector<Tensor>, Tensor>( "SessionMetadataReaderFn", opts, {}, instantiate_opts, {x}, {&y}, cloned_proc_flr.get()); TF_CHECK_OK(s); SessionMetadata read_metadata; ASSERT_TRUE(protobuf::TextFormat::ParseFromString(y.scalar<tstring>()(), &read_metadata)); EXPECT_EQ(session_metadata.name(), read_metadata.name()); EXPECT_EQ(session_metadata.version(), read_metadata.version()); } TEST_F(ProcessFunctionLibraryRuntimeTest, SimpleGraphAllowsSync) { auto async_safe = metrics::TestDelta("subgraph_async_summary", "safe_for_sync"); FunctionLibraryRuntime::InstantiateOptions opts = MakeOptions("CPU:0", {}, {}); opts.allow_small_function_optimizations = true; TestInstantiateSimpleFunction(this, opts); EXPECT_GT(async_safe.Get(), 0); } TEST_F(ProcessFunctionLibraryRuntimeTest, UnsafeOpRequiresAsync) { auto async_safe = metrics::TestDelta("subgraph_async_summary", "safe_for_sync"); auto async_unsafe_op = metrics::TestDelta("subgraph_async_summary", "unsafe_op"); FunctionLibraryRuntime::InstantiateOptions opts = MakeOptions("CPU:0", {"CPU:0"}, {"CPU:0"}); opts.allow_small_function_optimizations = true; TestControlFlow(this, opts); EXPECT_EQ(async_safe.Get(), 0); EXPECT_GT(async_unsafe_op.Get(), 0); } TEST_F(ProcessFunctionLibraryRuntimeTest, PartitionedGraphRequiresAsync) { if (gpu_device_ == nullptr) { GTEST_SKIP() << "No GPUs available"; } auto async_send_only = metrics::TestDelta("subgraph_async_summary", "send_only"); auto async_recv_only = metrics::TestDelta("subgraph_async_summary", "recv_only"); FunctionLibraryRuntime::InstantiateOptions opts = MakeOptions("CPU:0", {"CPU:0"}, {"CPU:0", "GPU:0"}); opts.allow_small_function_optimizations = true; TestTwoDeviceMult(this, opts); EXPECT_GT(async_send_only.Get(), 0); EXPECT_GT(async_recv_only.Get(), 0); } TEST_F(ProcessFunctionLibraryRuntimeTest, RecordAotSavingTimeAndHitCount) { FunctionLibraryRuntime::InstantiateOptions opts = MakeOptions("CPU:0", {}, {}); opts.allow_small_function_optimizations = true; FunctionLibraryRuntime::Handle h; OptimizedFunctionGraph optimized_graph_proto; optimized_graph_proto.set_name("FindDevice"); optimized_graph_proto.set_optimization_time_usecs(10); Init({test::function::FindDevice()}, nullptr, {optimized_graph_proto}); Instantiate("FindDevice", {{"_target", "/job:b/replica:0/task:0/device:CPU:0"}}, opts, &h) .IgnoreError(); EXPECT_EQ(metrics::GetFunctionGraphOptimizationSavingTimeUsecs( metrics::GraphOptimizationSource::kAot), 10); EXPECT_EQ(metrics::GetFunctionGraphOptimizationCacheHitCount( metrics::GraphOptimizationSource::kAot), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/process_function_library_runtime.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/process_function_library_runtime_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ff9480bd-20ca-4f9a-97b5-2962374a7103
cpp
tensorflow/tensorflow
rendezvous_util
tensorflow/core/common_runtime/rendezvous_util.cc
tensorflow/core/common_runtime/rendezvous_util_test.cc
#include "tensorflow/core/common_runtime/rendezvous_util.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/util/reffed_status_callback.h" namespace tensorflow { Status SendTensorsToRendezvous( RendezvousInterface* rendezvous, DeviceContext* device_context, const std::vector<AllocatorAttributes>& alloc_attrs, const std::vector<string>& keys, absl::Span<const Tensor> tensors_to_send) { if (keys.size() != tensors_to_send.size()) { return errors::InvalidArgument( "keys and tensors_to_send are not the same size. keys.size() = ", keys.size(), "; tensors_to_send.size() = ", tensors_to_send.size()); } if (!alloc_attrs.empty() && (keys.size() != alloc_attrs.size())) { return errors::InvalidArgument( "keys and alloc_attrs are not the same size. ", "keys.size() = ", keys.size(), "; alloc_attrs.size() = ", alloc_attrs.size()); } if (!rendezvous) { return errors::InvalidArgument("Rendezvous is null."); } Rendezvous::ParsedKey parsed; for (int i = 0; i < keys.size(); ++i) { Rendezvous::Args rendez_args; rendez_args.device_context = device_context; if (!alloc_attrs.empty()) { rendez_args.alloc_attrs = alloc_attrs[i]; } TF_RETURN_IF_ERROR(Rendezvous::ParseKey(keys[i], &parsed)); TF_RETURN_IF_ERROR( rendezvous->Send(parsed, rendez_args, tensors_to_send[i], false)); } return absl::OkStatus(); } void RecvOutputsFromRendezvousAsync( RendezvousInterface* rendezvous, DeviceContext* device_context, const std::vector<AllocatorAttributes>& alloc_attrs, const std::vector<string>& keys, std::vector<Tensor>* received_tensors, StatusCallback done) { if (keys.empty()) { done(absl::OkStatus()); return; } if (!alloc_attrs.empty() && (keys.size() != alloc_attrs.size())) { done(errors::InvalidArgument( "keys and alloc_attrs are not the same size. ", "keys.size() = ", keys.size(), "; alloc_attrs.size() = ", alloc_attrs.size())); } received_tensors->reserve(keys.size()); std::vector< std::tuple<string, Tensor*, Rendezvous::ParsedKey, AllocatorAttributes>> arguments; for (int i = 0; i < keys.size(); ++i) { Rendezvous::ParsedKey parsed; Status s = Rendezvous::ParseKey(keys[i], &parsed); received_tensors->push_back(Tensor()); if (!s.ok()) { done(s); return; } AllocatorAttributes alloc_attr; if (!alloc_attrs.empty()) { alloc_attr = alloc_attrs[i]; } arguments.emplace_back(keys[i], &((*received_tensors)[i]), parsed, alloc_attr); } auto status_cb = new ReffedStatusCallback(std::move(done)); for (auto& p : arguments) { const string& key = std::get<0>(p); Tensor* val = std::get<1>(p); Rendezvous::ParsedKey parsed = std::get<2>(p); Rendezvous::Args rendez_args; rendez_args.device_context = device_context; rendez_args.alloc_attrs = std::get<3>(p); status_cb->Ref(); rendezvous->RecvAsync( parsed, rendez_args, [val, key, status_cb](const Status& s, const Rendezvous::Args& send_args, const Rendezvous::Args& recv_args, const Tensor& v, const bool is_dead) { Status status = s; if (status.ok()) { *val = v; if (is_dead) { status = errors::InvalidArgument("The tensor returned for ", key, " was not valid."); } } status_cb->UpdateStatus(status); status_cb->Unref(); }); } status_cb->Unref(); } Status RecvOutputsFromRendezvous(RendezvousInterface* rendezvous, NamedTensors* out, const Rendezvous::Args& args) { Rendezvous::ParsedKey parsed; for (auto& p : *out) { const string& key = p.first; Tensor* val = &p.second; bool is_dead = false; TF_RETURN_IF_ERROR(Rendezvous::ParseKey(key, &parsed)); TF_RETURN_IF_ERROR(rendezvous->Recv(parsed, args, val, &is_dead)); if (is_dead) { return errors::InvalidArgument("The tensor returned for ", key, " was not valid."); } } return absl::OkStatus(); } }
#include "tensorflow/core/common_runtime/rendezvous_util.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class RendezvousUtilTest : public ::testing::Test { public: RendezvousUtilTest() { rendez_ = NewLocalRendezvous(); } ~RendezvousUtilTest() override { rendez_->Unref(); } Rendezvous* rendez_; }; Tensor V(const string& content) { Tensor tensor(DT_STRING, TensorShape({})); tensor.scalar<tstring>()() = content; return tensor; } string V(const Tensor& tensor) { CHECK_EQ(tensor.dtype(), DT_STRING); CHECK(TensorShapeUtils::IsScalar(tensor.shape())); return tensor.scalar<tstring>()(); } string MakeStringKey(const string& name) { return Rendezvous::CreateKey( "/job:localhost/replica:0/task:0/device:CPU:0", 0, "/job:localhost/replica:0/task:0/device:GPU:0", name, FrameAndIter(0, 0)); } TEST_F(RendezvousUtilTest, SendBeforeRecv) { TF_ASSERT_OK(SendTensorsToRendezvous( rendez_, nullptr, {}, {MakeStringKey("hello1"), MakeStringKey("hello2")}, {V("hello1"), V("hello2")})); Notification n; std::vector<Tensor> received_keys; RecvOutputsFromRendezvousAsync( rendez_, nullptr, {}, {MakeStringKey("hello1"), MakeStringKey("hello2")}, &received_keys, [&n](const Status& status) { n.Notify(); }); n.WaitForNotification(); EXPECT_EQ(2, received_keys.size()); EXPECT_EQ("hello1", V(received_keys[0])); EXPECT_EQ("hello2", V(received_keys[1])); } TEST_F(RendezvousUtilTest, RecvBeforeSend) { Notification n; std::vector<Tensor> received_keys; RecvOutputsFromRendezvousAsync( rendez_, nullptr, {}, {MakeStringKey("hello1"), MakeStringKey("hello2")}, &received_keys, [&n](const Status& status) { n.Notify(); }); TF_ASSERT_OK(SendTensorsToRendezvous( rendez_, nullptr, {}, {MakeStringKey("hello1"), MakeStringKey("hello2")}, {V("hello1"), V("hello2")})); n.WaitForNotification(); EXPECT_EQ(2, received_keys.size()); EXPECT_EQ("hello1", V(received_keys[0])); EXPECT_EQ("hello2", V(received_keys[1])); } TEST(RendezvousUtilCallerThreadTest, RecvBeforeSend) { Rendezvous* rendez_ = NewLocalRendezvous(); Notification n; std::vector<Tensor> received_keys; RecvOutputsFromRendezvousAsync( rendez_, nullptr, {}, {MakeStringKey("hello1"), MakeStringKey("hello2")}, &received_keys, [&n, rendez_](const Status& status) { rendez_->Unref(); n.Notify(); }); TF_ASSERT_OK(SendTensorsToRendezvous( rendez_, nullptr, {}, {MakeStringKey("hello1"), MakeStringKey("hello2")}, {V("hello1"), V("hello2")})); n.WaitForNotification(); ASSERT_EQ(2, received_keys.size()); EXPECT_EQ("hello1", V(received_keys[0])); EXPECT_EQ("hello2", V(received_keys[1])); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/rendezvous_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/rendezvous_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3e216e1c-4bba-4884-a26e-b3fea70d8fbb
cpp
tensorflow/tensorflow
quantize_training
tensorflow/core/common_runtime/quantize_training.cc
tensorflow/core/common_runtime/quantize_training_test.cc
#include "tensorflow/core/common_runtime/quantize_training.h" #include <algorithm> #include <atomic> #include <set> #include <unordered_map> #include <vector> #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/memory_types.h" #include "tensorflow/core/framework/log_memory.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { const uint32 kAllowedInputs = 2; const float kEMADecay = 0.999; const auto* nodes_to_rewrite = new std::unordered_set<string, StringPieceHasher>{"MatMul", "Conv2D"}; struct EdgeToConvert { const Edge* edge; int32 num_bits; bool signed_input; bool range_given; float input_min; float input_max; EdgeToConvert(const Edge* e, int32_t bits, bool sign, bool range, float min, float max) : edge(e), num_bits(bits), signed_input(sign), range_given(range), input_min(min), input_max(max) {} }; inline bool IsGradientNode(const Graph* graph, const Node* node) { static const string tag = "gradients"; return (node->name().compare(0, tag.size(), tag) == 0); } bool FindType(const Graph* graph, const Node* node, bool* signed_input, bool* range_given, float* input_min, float* input_max) { const string& src_op = node->type_string(); if (src_op == "Const" || src_op == "Variable" || src_op == "VariableV2") { *signed_input = true; *range_given = false; } else if (src_op == "Relu") { *signed_input = false; *range_given = false; } else if (src_op == "Relu6") { *signed_input = false; *range_given = true; *input_min = 0; *input_max = 6; } else if (src_op == "Sigmoid") { *signed_input = false; *range_given = true; *input_min = 0; *input_max = 1; } else if (src_op == "Tanh") { *signed_input = true; *range_given = true; *input_min = -1; *input_max = 1; } else if (src_op == "Reshape" || src_op == "ConcatV2") { for (const Edge* edge : node->in_edges()) { if (edge->src_output() != Graph::kControlSlot && edge->dst_input() == 0) { FindType(graph, edge->src(), signed_input, range_given, input_min, input_max); } } } else if (src_op == "Identity" || src_op == "MaxPool" || src_op == "AvgPool" || src_op == "MaxPool3D" || src_op == "AvgPool3D") { for (const Edge* edge : node->in_edges()) { if (edge->src_output() != Graph::kControlSlot) { FindType(graph, edge->src(), signed_input, range_given, input_min, input_max); } } } else { *signed_input = true; *range_given = false; return false; } return true; } Status FindSaveOp(const Graph* graph, Node** save_op, std::vector<const Edge*>* in_edges, bool* found) { *found = false; for (Node* node : graph->op_nodes()) { if (node->type_string() == "SaveV2") { if (*found) { return errors::InvalidArgument("Input graph has multiple SaveV2 ops."); } *save_op = node; *found = true; TF_RETURN_IF_ERROR(node->input_edges(in_edges)); } } return absl::OkStatus(); } Node* FindRestoreAllOp(const Graph* graph, StringPiece save_prefix) { for (Node* node : graph->op_nodes()) { if (node->name() == strings::StrCat(save_prefix, "/restore_all")) { return node; } } return nullptr; } StringPiece GetNodeNamePrefix(const Node* node) { StringPiece name = node->name(); return name.substr(0, name.rfind('/')); } void FillStringTensor(Tensor* dst, const Tensor& src) { auto dst_flat = dst->flat<tstring>(); auto src_flat = src.flat<tstring>(); for (int i = 0; i < src.NumElements(); i++) { dst_flat(i) = src_flat(i); } } Status ConnectVariablesToSaveOp(Graph* graph, Node* save_op, const std::vector<const Edge*>& in_edges, const std::vector<Node*>& added_variables) { Node* tensor_names_op = in_edges[1]->src(); Node* shape_and_slices_op = in_edges[2]->src(); Tensor tensor_names; Tensor shape_and_slices; TF_RETURN_IF_ERROR( GetNodeAttr(tensor_names_op->attrs(), "value", &tensor_names)); TF_RETURN_IF_ERROR( GetNodeAttr(shape_and_slices_op->attrs(), "value", &shape_and_slices)); int tn_size = tensor_names.NumElements(); int var_size = added_variables.size(); NodeBuilder save_op_builder = NodeBuilder(save_op->name(), save_op->type_string()); for (int i = 0; i < 3; i++) { save_op_builder = save_op_builder.Input(in_edges[i]->src()); } std::vector<NodeBuilder::NodeOut> var_nodeouts; var_nodeouts.reserve(tn_size + var_size); for (int i = 3; i < in_edges.size(); i++) { var_nodeouts.emplace_back(in_edges[i]->src()); } Tensor new_tensor_names(DT_STRING, TensorShape({tn_size + var_size})); Tensor new_shape_and_slices(DT_STRING, TensorShape({tn_size + var_size})); FillStringTensor(&new_tensor_names, tensor_names); FillStringTensor(&new_shape_and_slices, shape_and_slices); for (int i = 0; i < var_size; i++) { Node* var = added_variables[i]; new_tensor_names.flat<tstring>()(tn_size + i) = var->name(); new_shape_and_slices.flat<tstring>()(tn_size + i) = ""; var_nodeouts.emplace_back(var); } save_op_builder = save_op_builder.Input(var_nodeouts); tensor_names_op->AddAttr("value", new_tensor_names); shape_and_slices_op->AddAttr("value", new_shape_and_slices); Node* new_save_op; TF_RETURN_IF_ERROR(save_op_builder.Finalize(graph, &new_save_op)); for (const Edge* edge : save_op->out_edges()) { graph->AddControlEdge(new_save_op, edge->dst()); } graph->RemoveNode(save_op); return absl::OkStatus(); } Status AddRestoreVariableSubgraphs(Graph* graph, Node* save_op, const std::vector<const Edge*>& in_edges, const std::vector<Node*>& variables) { Node* prefix_op = in_edges[0]->src(); StringPiece name_prefix = GetNodeNamePrefix(save_op); Node* restore_all = FindRestoreAllOp(graph, name_prefix); if (restore_all == nullptr) { return errors::InvalidArgument("graph has SaveOp, but no restore_all NoOp"); } const string restore_op_name = strings::StrCat(name_prefix, "/RestoreV2"); const string assign_op_name = strings::StrCat(name_prefix, "/Assign"); for (Node* var : variables) { string new_restore_op_name = strings::StrCat(graph->NewName(restore_op_name), "_qt"); string new_assign_op_name = strings::StrCat(graph->NewName(assign_op_name), "_qt"); string tensor_names_op_name = strings::StrCat(new_restore_op_name, "/tensor_names"); string shape_and_slices_op_name = strings::StrCat(new_restore_op_name, "/shape_and_slices"); Node* tensor_names; Tensor tensor_names_val(DT_STRING, TensorShape({1})); tensor_names_val.flat<tstring>()(0) = var->name(); TF_RETURN_IF_ERROR(NodeBuilder(tensor_names_op_name, "Const") .Attr("dtype", DT_STRING) .Attr("value", tensor_names_val) .Finalize(graph, &tensor_names)); Node* shape_and_slices; Tensor shape_and_slices_val(DT_STRING, TensorShape({1})); shape_and_slices_val.flat<tstring>()(0) = ""; TF_RETURN_IF_ERROR(NodeBuilder(shape_and_slices_op_name, "Const") .Attr("dtype", DT_STRING) .Attr("value", shape_and_slices_val) .Finalize(graph, &shape_and_slices)); Node* restore_op; TF_RETURN_IF_ERROR(NodeBuilder(new_restore_op_name, "RestoreV2") .Input(prefix_op) .Input(tensor_names) .Input(shape_and_slices) .Attr("dtypes", {DT_FLOAT}) .Finalize(graph, &restore_op)); Node* assign_op; TF_RETURN_IF_ERROR(NodeBuilder(new_assign_op_name, "Assign") .Input(var) .Input(restore_op) .Finalize(graph, &assign_op)); graph->AddControlEdge(assign_op, restore_all); } return absl::OkStatus(); } Status AddSaveAndRestore(Graph* graph, const std::vector<Node*>& variables) { Node* save_op = nullptr; std::vector<const Edge*> in_edges; bool found = false; TF_RETURN_IF_ERROR(FindSaveOp(graph, &save_op, &in_edges, &found)); if (found) { TF_RETURN_IF_ERROR( AddRestoreVariableSubgraphs(graph, save_op, in_edges, variables)); TF_RETURN_IF_ERROR( ConnectVariablesToSaveOp(graph, save_op, in_edges, variables)); } return absl::OkStatus(); } Status MakeReductionAxes(Graph* graph, string name_prefix, Node* input, Node** output) { name_prefix = strings::StrCat(name_prefix, "/ReductionAxes"); Node* start; Tensor zero_tensor(DT_INT32, TensorShape()); zero_tensor.flat<int32>()(0) = 0; TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/RangeStart"), "Const") .Attr("dtype", DT_INT32) .Attr("value", zero_tensor) .Finalize(graph, &start)); Node* delta; Tensor one_tensor(DT_INT32, TensorShape()); one_tensor.flat<int32>()(0) = 1; TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/RangeDelta"), "Const") .Attr("dtype", DT_INT32) .Attr("value", one_tensor) .Finalize(graph, &delta)); Node* rank; TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/InputRank"), "Rank") .Input(input) .Finalize(graph, &rank)); TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/ReductionAxes"), "Range") .Input(start) .Input(rank) .Input(delta) .Finalize(graph, output)); return absl::OkStatus(); } Status MakeExponentialMovingAverage(Graph* graph, string name_prefix, const NodeBuilder::NodeOut& input, Node* decay, Node* update_variable, Node** assign_value) { name_prefix = strings::StrCat(name_prefix, "/EMA"); Node* one; Tensor one_tensor(DT_FLOAT, TensorShape()); one_tensor.flat<float>()(0) = 1.0; TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/OneConst"), "Const") .Attr("dtype", DT_FLOAT) .Attr("value", one_tensor) .Finalize(graph, &one)); Node* decay_complement; TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/DecayComplement"), "Sub") .Input(one) .Input(decay) .Finalize(graph, &decay_complement)); Node* value_diff; TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/ValueDiff"), "Sub") .Input(update_variable) .Input(input) .Finalize(graph, &value_diff)); Node* update_value; TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/UpdateValue"), "Mul") .Input(value_diff) .Input(decay_complement) .Finalize(graph, &update_value)); TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/EMAValue"), "Sub") .Input(update_variable) .Input(update_value) .Finalize(graph, assign_value)); return absl::OkStatus(); } Status MakeInitializedEMAVariable(Graph* graph, const string& name, Node* decay, Node* init_val, std::vector<Node*>* added_variables, Node** var) { TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name, "/Variable"), "VariableV2") .Attr("shape", TensorShape()) .Attr("dtype", DT_FLOAT) .Finalize(graph, var)); added_variables->push_back(*var); Node* is_initialized; TF_RETURN_IF_ERROR(NodeBuilder(strings::StrCat(name, "/IsInitialized"), "IsVariableInitialized") .Input(*var) .Finalize(graph, &is_initialized)); Node* switch_node; TF_RETURN_IF_ERROR(NodeBuilder(strings::StrCat(name, "/Switch"), "Switch") .Input(init_val) .Input(is_initialized) .Finalize(graph, &switch_node)); NodeBuilder::NodeOut output_false = NodeBuilder::NodeOut(switch_node, 0); NodeBuilder::NodeOut output_true = NodeBuilder::NodeOut(switch_node, 1); Node* ema_value; TF_RETURN_IF_ERROR(MakeExponentialMovingAverage(graph, name, output_true, decay, *var, &ema_value)); Node* assign_value; TF_RETURN_IF_ERROR(NodeBuilder(strings::StrCat(name, "/Merge"), "Merge") .Input({output_false, ema_value}) .Finalize(graph, &assign_value)); TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name, "/AssignValue"), "Assign") .Input(*var) .Input(assign_value) .Finalize(graph, var)); return absl::OkStatus(); } Status MakeEMAMinMaxVars(Graph* graph, const string& name_prefix, Node* input, std::vector<Node*>* added_variables, Node** min_var, Node** max_var) { Tensor decay_tensor(DT_FLOAT, TensorShape()); decay_tensor.flat<float>()(0) = kEMADecay; Node* decay; TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/Decay"), "Const") .Attr("dtype", DT_FLOAT) .Attr("value", decay_tensor) .Finalize(graph, &decay)); Node* reduction_axes; TF_RETURN_IF_ERROR( MakeReductionAxes(graph, name_prefix, input, &reduction_axes)); Node* min; string min_name = strings::StrCat(name_prefix, "/Min"); TF_RETURN_IF_ERROR(NodeBuilder(min_name, "Min") .Input(input) .Input(reduction_axes) .Finalize(graph, &min)); Node* max; string max_name = strings::StrCat(name_prefix, "/Max"); TF_RETURN_IF_ERROR(NodeBuilder(max_name, "Max") .Input(input) .Input(reduction_axes) .Finalize(graph, &max)); TF_RETURN_IF_ERROR(MakeInitializedEMAVariable(graph, min_name, decay, min, added_variables, min_var)); TF_RETURN_IF_ERROR(MakeInitializedEMAVariable(graph, max_name, decay, max, added_variables, max_var)); return absl::OkStatus(); } Status MakeInputMinMax(Graph* graph, const string& name_prefix, const EdgeToConvert& edge, std::vector<Node*>* added_variables, Node** input_min, Node** input_max) { if (edge.range_given) { Tensor input_min_tensor(DT_FLOAT, TensorShape()); input_min_tensor.flat<float>()(0) = edge.input_min; TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/InputMin"), "Const") .Attr("dtype", DT_FLOAT) .Attr("value", input_min_tensor) .Finalize(graph, input_min)); Tensor input_max_tensor(DT_FLOAT, TensorShape()); input_max_tensor.flat<float>()(0) = edge.input_max; TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat(name_prefix, "/InputMax"), "Const") .Attr("dtype", DT_FLOAT) .Attr("value", input_max_tensor) .Finalize(graph, input_max)); } else { TF_RETURN_IF_ERROR(MakeEMAMinMaxVars(graph, name_prefix, edge.edge->src(), added_variables, input_min, input_max)); } return absl::OkStatus(); } Status MakeQuantizeOp(Graph* graph, const string& name_prefix, const string& quant_op_type, const EdgeToConvert& edge, std::vector<Node*>* added_variables, Node** convert_node) { Node* input_min; Node* input_max; TF_RETURN_IF_ERROR(MakeInputMinMax(graph, name_prefix, edge, added_variables, &input_min, &input_max)); string quant_name = strings::StrCat(name_prefix, "/", quant_op_type); if (quant_op_type == "QuantizeAndDequantizeV2") { TF_RETURN_IF_ERROR(NodeBuilder(quant_name, quant_op_type) .Input(edge.edge->src()) .Input(input_min) .Input(input_max) .Attr("signed_input", edge.signed_input) .Attr("num_bits", edge.num_bits) .Attr("range_given", true) .Finalize(graph, convert_node)); } else if (quant_op_type == "FakeQuantWithMinMaxVars") { TF_RETURN_IF_ERROR(NodeBuilder(quant_name, quant_op_type) .Input(edge.edge->src()) .Input(input_min) .Input(input_max) .Attr("num_bits", edge.num_bits) .Finalize(graph, convert_node)); } else { return errors::InvalidArgument("Unknown quant op type: ", quant_op_type); } return absl::OkStatus(); } Status ProcessTargetEdges(Graph* graph, const string& quant_op_type, const std::vector<EdgeToConvert>& target_edges) { std::unordered_map<string, Node*, StringPieceHasher> name_index; std::vector<Node*> added_variables; for (const EdgeToConvert edge : target_edges) { Node* convert_node; string name_prefix = edge.edge->src()->name(); auto iter = name_index.find(name_prefix); if (iter == name_index.end()) { TF_RETURN_IF_ERROR(MakeQuantizeOp(graph, name_prefix, quant_op_type, edge, &added_variables, &convert_node)); name_index[name_prefix] = convert_node; } else { convert_node = iter->second; } graph->AddEdge(convert_node, 0, edge.edge->dst(), edge.edge->dst_input()); graph->RemoveEdge(edge.edge); } TF_RETURN_IF_ERROR(AddSaveAndRestore(graph, added_variables)); return absl::OkStatus(); } } Status DoQuantizeTraining(int32_t num_bits, const string& quant_op_type, Graph* graph) { if (graph == nullptr) { return errors::InvalidArgument("Cannot accept empty graph pointer."); } if (num_bits < 1 || num_bits > 63) { return errors::OutOfRange("num_bits should be in range [1, 63] but is: ", num_bits); } int potential_input = 0; std::vector<EdgeToConvert> target_edges; for (Node* node : graph->nodes()) { if (nodes_to_rewrite->find(node->type_string()) != nodes_to_rewrite->end() && !IsGradientNode(graph, node)) { for (const Edge* edge : node->in_edges()) { if (edge->src_output() == Graph::kControlSlot) { continue; } else { bool signed_input = false; bool range_given = false; float input_min = 0; float input_max = 0; bool known_op = FindType(graph, edge->src(), &signed_input, &range_given, &input_min, &input_max); if (!known_op) { potential_input++; if (potential_input > kAllowedInputs) { return errors::Unimplemented( "Found an unknown op: ", edge->src()->name(), " with type: ", edge->src()->type_string(), "; Unknown ops are considered as model input for now and " "only ", kAllowedInputs, " inputs are supported currently."); } } target_edges.emplace_back(EdgeToConvert( edge, num_bits, signed_input, range_given, input_min, input_max)); } } } } TF_RETURN_IF_ERROR(ProcessTargetEdges(graph, quant_op_type, target_edges)); return absl::OkStatus(); } Status DoQuantizeTrainingOnGraphDef(const GraphDef& input_graphdef, int32_t num_bits, const string& quant_op_type, GraphDef* result_graphdef) { Graph graph(OpRegistry::Global()); GraphConstructorOptions opts; TF_RETURN_IF_ERROR(ConvertGraphDefToGraph(opts, input_graphdef, &graph)); TF_RETURN_IF_ERROR(DoQuantizeTraining(num_bits, quant_op_type, &graph)); graph.ToGraphDef(result_graphdef); return absl::OkStatus(); } Status DoQuantizeTrainingOnSerializedGraphDef(const string& input_graph_string, int32_t num_bits, const string& quant_op_type, string* result_graph_string) { GraphDef input_graphdef; if (!ParseProtoUnlimited(&input_graphdef, input_graph_string)) { return errors::InvalidArgument( "input_graph_string is not a serialized GraphDef protocol buffer"); } GraphDef output_graphdef; TF_RETURN_IF_ERROR(DoQuantizeTrainingOnGraphDef( input_graphdef, num_bits, quant_op_type, &output_graphdef)); if (!output_graphdef.SerializeToString(result_graph_string)) { return errors::Internal( "quantize training transformation resulted in invalid GraphDef"); } return absl::OkStatus(); } }
#include "tensorflow/core/common_runtime/quantize_training.h" #include <map> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { class QuantizeTrainingTest : public ::testing::Test { protected: QuantizeTrainingTest() { Reset(); } void Reset() { g_.reset(new Graph(OpRegistry::Global())); } template <typename T> Node* Constant(gtl::ArraySlice<T> values, TensorShape shape) { return test::graph::Constant(g_.get(), test::AsTensor(values, shape)); } Status Placeholder(Graph* g, const string& name, TensorShape shape, Node** out) { TF_RETURN_IF_ERROR(NodeBuilder(name, "Placeholder") .Attr("dtype", DT_FLOAT) .Attr("shape", shape) .Finalize(g, out)); return absl::OkStatus(); } Status FindNode(Graph* g, const string& name, Node** out) { for (Node* node : g->nodes()) { if (node->name() == name) { *out = node; return absl::OkStatus(); } } return errors::Unimplemented("Node ", name, " not found."); } std::unique_ptr<Graph> g_; }; TEST_F(QuantizeTrainingTest, SignedInput) { Reset(); Graph* g = g_.get(); Node* a = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); Node* b = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); g->AddControlEdge(g->source_node(), a); g->AddControlEdge(g->source_node(), b); Node* relu = test::graph::Relu(g, a); Node* identity = test::graph::Identity(g, b); Node* m1 = test::graph::Matmul(g, relu, identity, false, false); g->AddControlEdge(m1, g->sink_node()); const int num_bits = 8; TF_ASSERT_OK(DoQuantizeTraining(num_bits, "QuantizeAndDequantizeV2", g)); EXPECT_EQ(63, g->num_nodes()); Node* identity_q_node; TF_ASSERT_OK( FindNode(g, strings::StrCat(identity->name(), "/QuantizeAndDequantizeV2"), &identity_q_node)); ASSERT_EQ("true", SummarizeAttrValue(*identity_q_node->attrs().Find("signed_input"))); Node* relu_q_node; TF_ASSERT_OK( FindNode(g, strings::StrCat(relu->name(), "/QuantizeAndDequantizeV2"), &relu_q_node)); ASSERT_EQ("false", SummarizeAttrValue(*relu_q_node->attrs().Find("signed_input"))); } TEST_F(QuantizeTrainingTest, RangeGivenTrue) { Reset(); Graph* g = g_.get(); Node* a = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); Node* b = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); g->AddControlEdge(g->source_node(), a); g->AddControlEdge(g->source_node(), b); Node* relu = test::graph::Relu(g, a); Node* relu6 = test::graph::Relu6(g, b); Node* m1 = test::graph::Matmul(g, relu, relu6, false, false); g->AddControlEdge(m1, g->sink_node()); const int num_bits = 8; TF_ASSERT_OK(DoQuantizeTraining(num_bits, "QuantizeAndDequantizeV2", g)); EXPECT_EQ(38, g->num_nodes()); Node* relu6_q_node; TF_ASSERT_OK( FindNode(g, strings::StrCat(relu6->name(), "/QuantizeAndDequantizeV2"), &relu6_q_node)); ASSERT_EQ("true", SummarizeAttrValue(*relu6_q_node->attrs().Find("range_given"))); Node* relu_q_node; TF_ASSERT_OK( FindNode(g, strings::StrCat(relu->name(), "/QuantizeAndDequantizeV2"), &relu_q_node)); ASSERT_EQ("true", SummarizeAttrValue(*relu_q_node->attrs().Find("range_given"))); } TEST_F(QuantizeTrainingTest, WithBackwardNodes_QuantizeAndDequantize) { Reset(); Graph* g = g_.get(); Node* a = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); Node* b = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); Node* c = Constant<float>({0.0, 1.0, 1.0, 0.0}, {2, 2}); Node* d = Constant<float>({0.0, 1.0, 1.0, 0.0}, {2, 2}); g->AddControlEdge(g->source_node(), a); g->AddControlEdge(g->source_node(), b); g->AddControlEdge(g->source_node(), c); g->AddControlEdge(g->source_node(), d); Node* relu = test::graph::Relu(g, a); Node* identity = test::graph::Identity(g, b); Node* m1 = test::graph::Matmul(g, relu, identity, false, false); Node* m2 = test::graph::Matmul(g, identity, c, false, false); g->AddControlEdge(m1, g->sink_node()); g->AddControlEdge(m2, g->sink_node()); Node* backward_m; TF_ASSERT_OK(NodeBuilder(g->NewName("gradients/n"), "MatMul") .Input(d) .Input(m2) .Attr("transpose_a", true) .Attr("transpose_b", false) .Finalize(g, &backward_m)); g->AddControlEdge(backward_m, g->sink_node()); int num_bits = 8; TF_ASSERT_OK(DoQuantizeTraining(num_bits, "QuantizeAndDequantizeV2", g)); EXPECT_EQ(95, g->num_nodes()); Node* found_node; Status s = FindNode(g, strings::StrCat(d->name(), "/QuantizeAndDequantizeV2"), &found_node); EXPECT_TRUE(absl::StrContains(s.ToString(), "not found")) << s; TF_ASSERT_OK( FindNode(g, strings::StrCat(relu->name(), "/QuantizeAndDequantizeV2"), &found_node)); TF_ASSERT_OK( FindNode(g, strings::StrCat(identity->name(), "/QuantizeAndDequantizeV2"), &found_node)); TF_ASSERT_OK(FindNode( g, strings::StrCat(c->name(), "/QuantizeAndDequantizeV2"), &found_node)); } TEST_F(QuantizeTrainingTest, WithBackwardNodes_FakeQuant) { Reset(); Graph* g = g_.get(); Node* a = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); Node* b = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); Node* c = Constant<float>({0.0, 1.0, 1.0, 0.0}, {2, 2}); Node* d = Constant<float>({0.0, 1.0, 1.0, 0.0}, {2, 2}); g->AddControlEdge(g->source_node(), a); g->AddControlEdge(g->source_node(), b); g->AddControlEdge(g->source_node(), c); g->AddControlEdge(g->source_node(), d); Node* relu = test::graph::Relu(g, a); Node* identity = test::graph::Identity(g, b); Node* m1 = test::graph::Matmul(g, relu, identity, false, false); Node* m2 = test::graph::Matmul(g, identity, c, false, false); g->AddControlEdge(m1, g->sink_node()); g->AddControlEdge(m2, g->sink_node()); Node* backward_m; TF_ASSERT_OK(NodeBuilder(g->NewName("gradients/n"), "MatMul") .Input(d) .Input(m2) .Attr("transpose_a", true) .Attr("transpose_b", false) .Finalize(g, &backward_m)); g->AddControlEdge(backward_m, g->sink_node()); int num_bits = 8; TF_ASSERT_OK(DoQuantizeTraining(num_bits, "FakeQuantWithMinMaxVars", g)); EXPECT_EQ(95, g->num_nodes()); Node* found_node; Status s = FindNode(g, strings::StrCat(d->name(), "/FakeQuantWithMinMaxVars"), &found_node); EXPECT_TRUE(absl::StrContains(s.ToString(), "not found")) << s; TF_ASSERT_OK( FindNode(g, strings::StrCat(relu->name(), "/FakeQuantWithMinMaxVars"), &found_node)); TF_ASSERT_OK( FindNode(g, strings::StrCat(identity->name(), "/FakeQuantWithMinMaxVars"), &found_node)); TF_ASSERT_OK(FindNode( g, strings::StrCat(c->name(), "/FakeQuantWithMinMaxVars"), &found_node)); } TEST_F(QuantizeTrainingTest, QuantizeSerializedGraphDef) { Reset(); Graph* graph = g_.get(); Node* const_a = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); Node* const_b = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); graph->AddControlEdge(graph->source_node(), const_a); graph->AddControlEdge(graph->source_node(), const_b); Node* relu = test::graph::Relu(graph, const_a); Node* identity = test::graph::Identity(graph, const_b); Node* matmul = test::graph::Matmul(graph, relu, identity, false, false); graph->AddControlEdge(matmul, graph->sink_node()); int num_bits = 8; GraphDef input_graph; graph->ToGraphDef(&input_graph); string input_string; input_graph.SerializeToString(&input_string); string result_string; TF_ASSERT_OK(DoQuantizeTrainingOnSerializedGraphDef( input_string, num_bits, "QuantizeAndDequantizeV2", &result_string)); GraphDef result_graphdef; EXPECT_TRUE(ParseProtoUnlimited(&result_graphdef, result_string)); GraphConstructorOptions opts; Graph result_graph(OpRegistry::Global()); TF_ASSERT_OK(ConvertGraphDefToGraph(opts, result_graphdef, &result_graph)); TF_ASSERT_OK(DoQuantizeTraining(num_bits, "QuantizeAndDequantizeV2", graph)); EXPECT_EQ(graph->num_nodes(), result_graph.num_nodes()); } TEST_F(QuantizeTrainingTest, QuantizeGraphDef) { Reset(); Graph* graph = g_.get(); Node* const_a = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); Node* const_b = Constant<float>({1.0, 2.0, 3.0, 4.0}, {2, 2}); graph->AddControlEdge(graph->source_node(), const_a); graph->AddControlEdge(graph->source_node(), const_b); Node* relu = test::graph::Relu(graph, const_a); Node* identity = test::graph::Identity(graph, const_b); Node* matmul = test::graph::Matmul(graph, relu, identity, false, false); graph->AddControlEdge(matmul, graph->sink_node()); int num_bits = 8; GraphDef input_graphdef; graph->ToGraphDef(&input_graphdef); GraphDef result_graphdef; TF_ASSERT_OK(DoQuantizeTrainingOnGraphDef( input_graphdef, num_bits, "QuantizeAndDequantizeV2", &result_graphdef)); GraphConstructorOptions opts; Graph result_graph(OpRegistry::Global()); TF_ASSERT_OK(ConvertGraphDefToGraph(opts, result_graphdef, &result_graph)); TF_ASSERT_OK(DoQuantizeTraining(num_bits, "QuantizeAndDequantizeV2", graph)); EXPECT_EQ(graph->num_nodes(), result_graph.num_nodes()); } TEST_F(QuantizeTrainingTest, FixedRangeAndEMARange_QuantizeAndDequantize) { Reset(); Graph* g = g_.get(); Node* a; TF_ASSERT_OK(Placeholder(g, "a", {2, 2}, &a)); Node* c = Constant<float>({2.0, 3.0, 4.0, 5.0}, {2, 2}); g->AddControlEdge(g->source_node(), a); g->AddControlEdge(g->source_node(), c); Node* relu = test::graph::Relu(g, a); Node* relu6 = test::graph::Relu6(g, c); Node* m1 = test::graph::Matmul(g, relu, relu6, false, false); g->AddControlEdge(m1, g->sink_node()); const int num_bits = 8; TF_ASSERT_OK(DoQuantizeTraining(num_bits, "QuantizeAndDequantizeV2", g)); SessionOptions options; Session* sess; TF_ASSERT_OK(NewSession(options, &sess)); GraphDef gdef; g->ToGraphDef(&gdef); TF_ASSERT_OK(sess->Create(gdef)); string min_const_name = strings::StrCat(relu6->name(), "/InputMin"); string max_const_name = strings::StrCat(relu6->name(), "/InputMax"); std::vector<Tensor> outputs; TF_ASSERT_OK(sess->Run({}, {min_const_name, max_const_name}, {}, &outputs)); EXPECT_EQ(outputs[0].flat<float>()(0), 0.0); EXPECT_EQ(outputs[1].flat<float>()(0), 6.0); Tensor a1(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&a1, {0.0, 1.0, 2.0, 3.0}); Tensor a2(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&a2, {1.0, 2.0, 3.0, 4.0}); TF_ASSERT_OK(sess->Run({{"a", a1}}, {m1->name()}, {}, &outputs)); string min_var_name = strings::StrCat(relu->name(), "/Min/Variable"); string max_var_name = strings::StrCat(relu->name(), "/Max/Variable"); TF_ASSERT_OK(sess->Run({}, {min_var_name, max_var_name}, {}, &outputs)); EXPECT_EQ(outputs[0].flat<float>()(0), 0.0); EXPECT_EQ(outputs[1].flat<float>()(0), 3.0); TF_ASSERT_OK(sess->Run({}, {min_const_name, max_const_name}, {}, &outputs)); EXPECT_EQ(outputs[0].flat<float>()(0), 0.0); EXPECT_EQ(outputs[1].flat<float>()(0), 6.0); TF_ASSERT_OK(sess->Run({{"a", a2}}, {m1->name()}, {}, &outputs)); TF_ASSERT_OK(sess->Run({}, {min_var_name, max_var_name}, {}, &outputs)); const float decay = 0.999; const float expected_min = 0.0 * decay + 1.0 * (1.0 - decay); const float expected_max = 3.0 * decay + 4.0 * (1.0 - decay); EXPECT_NEAR(outputs[0].flat<float>()(0), expected_min, 1e-4); EXPECT_NEAR(outputs[1].flat<float>()(0), expected_max, 1e-4); TF_ASSERT_OK(sess->Run({}, {min_const_name, max_const_name}, {}, &outputs)); EXPECT_EQ(outputs[0].flat<float>()(0), 0.0); EXPECT_EQ(outputs[1].flat<float>()(0), 6.0); } TEST_F(QuantizeTrainingTest, FixedRangeAndEMARange_FakeQuant) { Reset(); Graph* g = g_.get(); Node* a; TF_ASSERT_OK(Placeholder(g, "a", {2, 2}, &a)); Node* c = Constant<float>({2.0, 3.0, 4.0, 5.0}, {2, 2}); g->AddControlEdge(g->source_node(), a); g->AddControlEdge(g->source_node(), c); Node* relu = test::graph::Relu(g, a); Node* relu6 = test::graph::Relu6(g, c); Node* m1 = test::graph::Matmul(g, relu, relu6, false, false); g->AddControlEdge(m1, g->sink_node()); const int num_bits = 8; TF_ASSERT_OK(DoQuantizeTraining(num_bits, "FakeQuantWithMinMaxVars", g)); SessionOptions options; Session* sess; TF_ASSERT_OK(NewSession(options, &sess)); GraphDef gdef; g->ToGraphDef(&gdef); TF_ASSERT_OK(sess->Create(gdef)); string min_const_name = strings::StrCat(relu6->name(), "/InputMin"); string max_const_name = strings::StrCat(relu6->name(), "/InputMax"); std::vector<Tensor> outputs; TF_ASSERT_OK(sess->Run({}, {min_const_name, max_const_name}, {}, &outputs)); EXPECT_EQ(outputs[0].flat<float>()(0), 0.0); EXPECT_EQ(outputs[1].flat<float>()(0), 6.0); Tensor a1(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&a1, {0.0, 1.0, 2.0, 3.0}); Tensor a2(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&a2, {1.0, 2.0, 3.0, 4.0}); TF_ASSERT_OK(sess->Run({{"a", a1}}, {m1->name()}, {}, &outputs)); string min_var_name = strings::StrCat(relu->name(), "/Min/Variable"); string max_var_name = strings::StrCat(relu->name(), "/Max/Variable"); TF_ASSERT_OK(sess->Run({}, {min_var_name, max_var_name}, {}, &outputs)); EXPECT_EQ(outputs[0].flat<float>()(0), 0.0); EXPECT_EQ(outputs[1].flat<float>()(0), 3.0); TF_ASSERT_OK(sess->Run({}, {min_const_name, max_const_name}, {}, &outputs)); EXPECT_EQ(outputs[0].flat<float>()(0), 0.0); EXPECT_EQ(outputs[1].flat<float>()(0), 6.0); TF_ASSERT_OK(sess->Run({{"a", a2}}, {m1->name()}, {}, &outputs)); TF_ASSERT_OK(sess->Run({}, {min_var_name, max_var_name}, {}, &outputs)); const float decay = 0.999; const float expected_min = 0.0 * decay + 1.0 * (1.0 - decay); const float expected_max = 3.0 * decay + 4.0 * (1.0 - decay); EXPECT_NEAR(outputs[0].flat<float>()(0), expected_min, 1e-4); EXPECT_NEAR(outputs[1].flat<float>()(0), expected_max, 1e-4); TF_ASSERT_OK(sess->Run({}, {min_const_name, max_const_name}, {}, &outputs)); EXPECT_EQ(outputs[0].flat<float>()(0), 0.0); EXPECT_EQ(outputs[1].flat<float>()(0), 6.0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/quantize_training.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/quantize_training_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a7f46326-cc72-4b4e-b225-22247bd2f23a
cpp
tensorflow/tensorflow
placer_inspection_required_ops_utils
tensorflow/core/common_runtime/placer_inspection_required_ops_utils.cc
tensorflow/core/common_runtime/placer_inspection_required_ops_utils_test.cc
#include "tensorflow/core/common_runtime/placer_inspection_required_ops_utils.h" #include <unordered_map> #include <unordered_set> #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/refcount.h" namespace tensorflow { namespace { bool IsFunctionCall(const Node& node) { const string& op_type = node.op_def().name(); return op_type == "PartitionedCall" || op_type == "StatefulPartitionedCall"; } Status Set(const Node& node, bool value, bool* is_deep, std::vector<absl::optional<bool>>* cache) { *is_deep = value; (*cache)[node.id()] = value; return absl::OkStatus(); } } PlacerInspectionRequiredOpChecker::PlacerInspectionRequiredOpChecker( const Graph* graph, const FunctionLibraryDefinition* flib_def) : graph_(*graph), flib_def_(*flib_def) { cache_.resize(graph_.num_node_ids()); } Status PlacerInspectionRequiredOpChecker::IsPlacerInspectionRequired( const Node& node, bool* is_deep) { if (cache_[node.id()].has_value()) { *is_deep = cache_[node.id()].value(); return absl::OkStatus(); } if (!IsFunctionCall(node)) { return Set(node, false, is_deep, &cache_); } core::RefCountPtr<FunctionRecord> fdef; NameAttrList func; TF_RETURN_IF_ERROR(GetFunctionDefAndAttrs(flib_def_, node, &fdef, &func)); DataTypeVector types; TF_RETURN_IF_ERROR(OutputTypesForNode(AttrSlice(&func.attr()), fdef->fdef().signature(), &types)); for (DataType type : types) { if (type == DT_RESOURCE) { return Set(node, true, is_deep, &cache_); } } return Set(node, false, is_deep, &cache_); } Status GetFunctionDefAndAttrs(const FunctionLibraryDefinition& flib_def, const Node& node, core::RefCountPtr<FunctionRecord>* fdef, NameAttrList* func) { TF_RETURN_IF_ERROR(GetNodeAttr(node.def(), "f", func)); const string& function_name = func->name(); *fdef = flib_def.FindRecord(function_name); if (*fdef == nullptr) { return errors::InvalidArgument( "Failed to find function \"", function_name, "\" in function library: ", flib_def.ToProto().DebugString()); } return absl::OkStatus(); } FunctionStack::FunctionStack(const string& function_name) : current_function_name_(function_name) {} FunctionStack FunctionStack::Push(const Node* node_in_current_function, const string& new_current_function) const { FunctionStack new_stack(new_current_function); new_stack.frames_ = frames_; new_stack.frames_.emplace_back(current_function_name_, node_in_current_function); return new_stack; } bool FunctionStack::HasFunction(const string& function_name) const { if (current_function_name_ == function_name) { return true; } for (const Frame& frame : frames_) { if (frame.function_name == function_name) { return true; } } return false; } string FunctionStack::FormatForError() const { std::vector<string> msgs; for (int i = 0; i < frames_.size(); ++i) { if (frames_[i].function_name.empty()) { msgs.push_back(absl::StrCat("Graph contains node ", FormatNodeForError(*frames_[i].node))); } else { msgs.push_back(absl::StrCat( "Function ", errors::FormatFunctionForError(frames_[i].function_name), " contains node ", FormatNodeForError(*frames_[i].node))); } const string& fname = (i + 1 < frames_.size()) ? frames_[i + 1].function_name : current_function_name_; msgs.push_back(absl::StrCat("Node ", FormatNodeForError(*frames_[i].node), " calls function ", errors::FormatFunctionForError(fname))); } return absl::StrJoin(msgs, "\n "); } namespace { using OutputEdgeMap = std::vector<std::vector<const Edge*>>; constexpr char kIdentityOp[] = "Identity"; string Uniquify(const string& candidate_name, std::unordered_set<string>* node_names) { if (node_names->find(candidate_name) == node_names->end()) { node_names->insert(candidate_name); return candidate_name; } for (int counter = 0;; ++counter) { string candidate = absl::StrCat(candidate_name, "_", counter); if (node_names->find(candidate) == node_names->end()) { node_names->insert(candidate); return candidate; } } } Status AddInputIdentity(Node* node, int input_idx, Graph* graph, std::unordered_set<string>* node_names) { const Edge* edge; TF_RETURN_IF_ERROR(node->input_edge(input_idx, &edge)); string identity_name = Uniquify( absl::StrCat(edge->src()->name(), "_", node->name()), node_names); NodeDefBuilder builder(identity_name, kIdentityOp); builder.Attr("T", node->input_type(input_idx)); NodeDefBuilder::NodeOut input(edge->src()->name(), edge->src_output(), node->input_type(input_idx)); builder.Input(input); NodeDef identity_def; TF_RETURN_IF_ERROR(builder.Finalize(&identity_def)); MergeDebugInfo(NodeDebugInfo(*node), &identity_def); VLOG(6) << "Adding identity into " << edge->src()->name() << ":" << edge->src_output() << " -> " << edge->dst()->name() << ":" << input_idx << " \n" << identity_def.DebugString(); TF_ASSIGN_OR_RETURN(Node * identity_node, graph->AddNode(identity_def)); graph->AddEdge(edge->src(), edge->src_output(), identity_node, 0); TF_RETURN_IF_ERROR(graph->UpdateEdge(identity_node, 0, node, input_idx)); VLOG(6) << "Successfully inserted identity. Modified node: \n" << node->DebugString(); return absl::OkStatus(); } struct EdgePtrCompare { bool operator()(const Edge* lhs, const Edge* rhs) const { return lhs->id() < rhs->id(); } }; Status AddOutputIdentities(Node* node, Graph* graph, std::unordered_set<string>* node_names) { auto add_identity = [&](int src_output, const string& identity_name, Node** identity_node) { NodeDefBuilder builder(identity_name, kIdentityOp); builder.Attr("T", node->output_type(src_output)); NodeDefBuilder::NodeOut input(node->name(), src_output, node->output_type(src_output)); builder.Input(input); NodeDef identity_def; TF_RETURN_IF_ERROR(builder.Finalize(&identity_def)); MergeDebugInfo(NodeDebugInfo(*node), &identity_def); TF_ASSIGN_OR_RETURN(*identity_node, graph->AddNode(identity_def)); graph->AddEdge(node, src_output, *identity_node, 0); return absl::OkStatus(); }; std::vector<bool> output_used(node->num_outputs(), false); const EdgeSet& out_edges = node->out_edges(); std::vector<const Edge*> edge_vector(out_edges.begin(), out_edges.end()); std::sort(edge_vector.begin(), edge_vector.end(), EdgePtrCompare()); for (const Edge* edge : edge_vector) { if (edge->IsControlEdge()) { continue; } output_used[edge->src_output()] = true; Node* dst = edge->dst(); int dst_input = edge->dst_input(); int src_output = edge->src_output(); string identity_name = Uniquify(absl::StrCat(node->name(), "_", dst->name()), node_names); Node* identity_node; TF_RETURN_IF_ERROR(add_identity(src_output, identity_name, &identity_node)); VLOG(6) << "Adding identity into " << node->name() << ":" << src_output << " -> " << dst->name() << ":" << dst_input << " \n" << identity_node->DebugString(); TF_RETURN_IF_ERROR(graph->UpdateEdge(identity_node, 0, dst, dst_input)); } for (int output_idx = 0; output_idx < node->num_outputs(); ++output_idx) { if (output_used[output_idx]) { continue; } string identity_name = Uniquify(node->name(), node_names); Node* identity_node; TF_RETURN_IF_ERROR(add_identity(output_idx, identity_name, &identity_node)); VLOG(6) << "Added identity into " << node->name() << ":" << output_idx << " -> <no consumer>: \n" << identity_node->DebugString(); } return absl::OkStatus(); } Status IsolateNode(Node* node, Graph* graph) { std::unordered_set<string> node_names(graph->num_nodes()); for (Node* n : graph->nodes()) { node_names.insert(n->name()); } for (int i = 0; i < node->num_inputs(); ++i) { TF_RETURN_IF_ERROR(AddInputIdentity(node, i, graph, &node_names)); } TF_RETURN_IF_ERROR(AddOutputIdentities(node, graph, &node_names)); return absl::OkStatus(); } } Status IsolatePlacerInspectionRequiredOps( const FunctionLibraryDefinition& flib_def, Graph* graph) { PlacerInspectionRequiredOpChecker checker(graph, &flib_def); for (Node* node : graph->op_nodes()) { bool should_be_isolated = false; TF_RETURN_IF_ERROR( checker.IsPlacerInspectionRequired(*node, &should_be_isolated)); if (!should_be_isolated) { continue; } TF_RETURN_IF_ERROR(IsolateNode(node, graph)); } return absl::OkStatus(); } }
#include "tensorflow/core/common_runtime/placer_inspection_required_ops_utils.h" #include <map> #include "absl/memory/memory.h" #include "absl/strings/str_join.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { using ::tensorflow::test::function::GDef; using ::tensorflow::test::function::NDef; using FDH = ::tensorflow::FunctionDefHelper; void VerifyPlacerInspectionRequiredOps(const GraphDef& graph_def, std::map<string, bool> deep_nodes) { Graph graph(OpRegistry::Global()); GraphConstructorOptions opts; FunctionLibraryDefinition flib_def(OpRegistry::Global(), graph_def.library()); TF_ASSERT_OK(ConvertGraphDefToGraph(opts, graph_def, &graph)); PlacerInspectionRequiredOpChecker checker(&graph, &flib_def); std::unordered_map<string, Node*> node_map = graph.BuildNodeNameIndex(); for (const auto& entry : deep_nodes) { const Node* node = node_map[entry.first]; ASSERT_NE(node, nullptr) << "Failed to find node " << entry.first << " in the graph " << graph_def.DebugString(); const bool expected_is_deep = entry.second; bool actual_is_deep; TF_EXPECT_OK(checker.IsPlacerInspectionRequired(*node, &actual_is_deep)); EXPECT_EQ(expected_is_deep, actual_is_deep) << " Expected is_deep to be " << expected_is_deep << " for node " << entry.first; } } TEST(PlacerInspectionRequiredOpCheckerTest, Basic) { FunctionDef func = test::function::ResourceIdentity(); GraphDef graph_def = GDef( { NDef("x", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("y", "_Retval", {"f:0"}, {{"T", DT_RESOURCE}}), }, {func}); VerifyPlacerInspectionRequiredOps(graph_def, {{"x", false}, {"f", true}, {"y", false}}); } TEST(PlacerInspectionRequiredOpCheckerTest, DirectCallsAreNotDeep) { FunctionDef func = test::function::ResourceIdentity(); GraphDef graph_def = GDef( { NDef("x", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "ResourceIdentity", {"x"}), NDef("y", "_Retval", {"f:0"}, {{"T", DT_RESOURCE}}), }, {func}); VerifyPlacerInspectionRequiredOps(graph_def, {{"x", false}, {"f", false}, {"y", false}}); } TEST(PlacerInspectionRequiredOpCheckerTest, FunctionsNotReturningResourcesAreNotDeep) { FunctionDef func = test::function::ReadResourceVariable(); GraphDef graph_def = GDef( { NDef("x", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("ReadResourceVariable", {})}}), NDef("y", "_Retval", {"f:0"}, {{"T", DT_FLOAT}}), }, {func}); VerifyPlacerInspectionRequiredOps(graph_def, {{"x", false}, {"f", false}, {"y", false}}); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/placer_inspection_required_ops_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/placer_inspection_required_ops_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8eb513de-403b-4f62-8099-cef65c43e9f9
cpp
tensorflow/tensorflow
scoped_allocator_mgr
tensorflow/core/common_runtime/scoped_allocator_mgr.cc
tensorflow/core/common_runtime/scoped_allocator_mgr_test.cc
#include "tensorflow/core/common_runtime/scoped_allocator_mgr.h" #include "tensorflow/core/common_runtime/scoped_allocator.h" #include "tensorflow/core/framework/allocator.h" namespace tensorflow { Status ScopedAllocatorContainer::AddScopedAllocator( const Tensor& backing_tensor, int32_t scope_id, const string& scope_name, const absl::Span<const ScopedAllocator::Field>& fields, int32_t expected_call_count) { VLOG(1) << "AddScopedAllocator " << mgr_->device_name() << " step_id_=" << step_id_ << " scope_id=" << scope_id; mutex_lock l(mu_); auto it = allocators_.find(scope_id); if (it != allocators_.end()) { return errors::Internal("Cannot create ScopedAllocator because scope_id ", scope_id, " for name ", scope_name, " already exists"); } for (auto& f : fields) { if (allocators_.find(f.scope_id) != allocators_.end()) { return errors::Internal( "Cannot create ScopedAllocator because field scope_id ", f.scope_id, " for name ", scope_name, " already exists"); } } VLOG(2) << " container " << this << " step_id " << step_id_; ScopedAllocator* sa = new ScopedAllocator( backing_tensor, scope_id, scope_name, fields, expected_call_count, this); allocators_[scope_id] = ScopedAllocatorContainer::SAField(ScopedAllocator::kBackingIndex, sa); VLOG(2) << "#fields " << fields.size(); for (int i = 0; i < fields.size(); ++i) { const ScopedAllocator::Field& f = fields[i]; VLOG(2) << "Adding instance with for " << mgr_->device_name() << " scope_id=" << f.scope_id; allocators_[f.scope_id] = ScopedAllocatorContainer::SAField( i, new ScopedAllocatorInstance(sa, i)); } return absl::OkStatus(); } ScopedAllocator* ScopedAllocatorContainer::GetAllocator(int32_t scope_id) { mutex_lock l(mu_); auto it = allocators_.find(scope_id); if (it != allocators_.end()) { CHECK_EQ(ScopedAllocator::kBackingIndex, it->second.field_index); return it->second.scoped_allocator; } else { LOG(ERROR) << "Failed to find ScopedAllocator for " << scope_id << " in container for step " << step_id_ << " on " << mgr_->device_name(); return nullptr; } } ScopedAllocatorInstance* ScopedAllocatorContainer::GetInstance( int32_t scope_id) { VLOG(2) << "GetInstance " << scope_id << " step " << step_id_ << " on " << mgr_->device_name(); mutex_lock l(mu_); auto it = allocators_.find(scope_id); if (it != allocators_.end()) { return it->second.instance; } LOG(FATAL) << "Failed to find instance " << scope_id << " in container " << step_id_ << " on " << mgr_->device_name(); return nullptr; } void ScopedAllocatorContainer::Drop(int32_t scope_id, ScopedAllocator* sa) { VLOG(2) << "Drop " << scope_id << " from container " << this << " step " << step_id_ << " on " << mgr_->device_name(); mutex_lock l(mu_); auto it = allocators_.find(scope_id); if (it != allocators_.end()) { if (it->second.field_index != ScopedAllocator::kBackingIndex) { it->second.instance->DropFromTable(); } allocators_.erase(it); } } ScopedAllocatorContainer::~ScopedAllocatorContainer() { VLOG(2) << "~ScopedAllocatorContainer " << this << " step " << step_id_ << " on " << mgr_->device_name(); mutex_lock l(mu_); for (auto& it : allocators_) { if (it.second.field_index == ScopedAllocator::kBackingIndex) { delete it.second.scoped_allocator; } else { it.second.instance->DropFromTable(); } } } ScopedAllocatorMgr::~ScopedAllocatorMgr() { mutex_lock l(mu_); for (auto it : per_step_map_) { while (!it.second->Unref()) { } } } void ScopedAllocatorMgr::Cleanup(int64_t step_id) { mutex_lock l(mu_); auto it = per_step_map_.find(step_id); if (it != per_step_map_.end()) { it->second->Unref(); per_step_map_.erase(it); } } ScopedAllocatorContainer* ScopedAllocatorMgr::GetContainer(int64_t step_id) { VLOG(2) << "GetContainer " << step_id << " on " << device_name(); ScopedAllocatorContainer* sac = nullptr; mutex_lock l(mu_); auto it = per_step_map_.find(step_id); if (it == per_step_map_.end()) { sac = new ScopedAllocatorContainer(this, step_id); per_step_map_[step_id] = sac; } else { sac = it->second; } return sac; } Status ScopedAllocatorMgr::AddScopedAllocator( const Tensor& backing_tensor, int64_t step_id, int32_t scope_id, const string& scope_name, const absl::Span<const ScopedAllocator::Field>& fields, int32_t expected_call_count) { ScopedAllocatorContainer* sac = GetContainer(step_id); return sac->AddScopedAllocator(backing_tensor, scope_id, scope_name, fields, expected_call_count); } size_t ScopedAllocatorMgr::PopulateFields( int32_t scope_id, const absl::Span<const TensorShape>& shapes, const DataType dtype, std::vector<ScopedAllocator::Field>* fields) { const int32_t num_fields = static_cast<int32>(shapes.size()); fields->resize(num_fields); size_t offset = 0; for (int32_t i = 0; i < num_fields; ++i) { size_t bytes_requested = shapes[i].num_elements() * DataTypeSize(dtype); auto* field = &((*fields)[i]); field->scope_id = scope_id + 1 + i; field->bytes_requested = bytes_requested; field->offset = offset; offset += bytes_requested; size_t bytes_allocated = bytes_requested; size_t overshoot = offset % Allocator::kAllocatorAlignment; if (overshoot > 0) { size_t alignment_bytes = Allocator::kAllocatorAlignment - overshoot; bytes_allocated += alignment_bytes; offset += alignment_bytes; } field->bytes_allocated = bytes_allocated; VLOG(1) << "field=" << i << " scope_id=" << field->scope_id << " bytes_requested=" << field->bytes_requested << " offset=" << field->offset << " bytes_allocated=" << field->bytes_allocated; } return offset; } }
#include "tensorflow/core/common_runtime/scoped_allocator_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/scoped_allocator.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class ScopedAllocatorMgrTest : public ::testing::Test { public: ScopedAllocatorMgrTest() : sam_("CPU0") {} void InitTensor() { backing_tensor_ = Tensor(cpu_allocator(), DT_FLOAT, backing_tensor_shape_); } void PopulateFields() { ScopedAllocatorMgr::PopulateFields(scope_id_, fields_shapes_, DT_FLOAT, &fields_); } Status AddScopedAllocator(int expected_use_count, int scope_id) { VLOG(2) << "Adding ScopedAllocator step_id " << step_id_ << " scope_id " << scope_id_ << " #fields " << fields_.size() << " expected_use_count " << expected_use_count; return sam_.AddScopedAllocator(backing_tensor_, step_id_, scope_id, "tensor_shape_599", fields_, expected_use_count); } Status PrepScopedAllocatorMgr(int expected_use_count) { InitTensor(); PopulateFields(); return AddScopedAllocator(expected_use_count, scope_id_); } void SaveInstances(int num_instances) { sa_instances_.clear(); sa_instances_.resize(num_instances); ScopedAllocatorContainer* sac = sam_.GetContainer(step_id_); for (int i = 0; i < num_instances; i++) { sa_instances_[i] = sac->GetInstance(scope_id_ + 1 + i); } } int AlignmentPadding() { int alignment_padding = (Allocator::kAllocatorAlignment - (521 * sizeof(float)) % Allocator::kAllocatorAlignment) % Allocator::kAllocatorAlignment; return alignment_padding; } void PrintShapes() { VLOG(2) << "tensor_shape=" << backing_tensor_shape_.DebugString(); for (int i = 0; i < fields_shapes_.size(); i++) { VLOG(2) << "fields_shapes[" << i << "]=" << fields_shapes_[i].DebugString(); } } protected: TensorShape backing_tensor_shape_; Tensor backing_tensor_; std::vector<TensorShape> fields_shapes_; std::vector<ScopedAllocator::Field> fields_; ScopedAllocatorMgr sam_; const int step_id_ = 101; const int scope_id_ = 599; std::vector<ScopedAllocatorInstance*> sa_instances_; }; TEST_F(ScopedAllocatorMgrTest, ContainerAllocation) { ScopedAllocatorContainer* sac_101 = sam_.GetContainer(101); EXPECT_TRUE(sac_101 != nullptr); ScopedAllocatorContainer* sac_201 = sam_.GetContainer(201); EXPECT_TRUE(sac_201 != nullptr); EXPECT_NE(sac_101, sac_201); ScopedAllocatorContainer* also_sac_101 = sam_.GetContainer(101); EXPECT_EQ(sac_101, also_sac_101); sam_.Cleanup(101); } TEST_F(ScopedAllocatorMgrTest, PopulateFields) { backing_tensor_shape_ = TensorShape({512 + 9 + 512 + 16}); fields_shapes_ = std::vector<TensorShape>({{512}, {3, 3}, {2, 256}}); InitTensor(); PopulateFields(); EXPECT_EQ(0, fields_[0].offset); EXPECT_EQ(512 * sizeof(float), fields_[0].bytes_requested); EXPECT_EQ(scope_id_ + 1, fields_[0].scope_id); EXPECT_EQ(512 * sizeof(float), fields_[1].offset); EXPECT_EQ(9 * sizeof(float), fields_[1].bytes_requested); EXPECT_EQ(scope_id_ + 2, fields_[1].scope_id); EXPECT_EQ(521 * sizeof(float) + AlignmentPadding(), fields_[2].offset); EXPECT_EQ(512 * sizeof(float), fields_[2].bytes_requested); EXPECT_EQ(scope_id_ + 3, fields_[2].scope_id); } TEST_F(ScopedAllocatorMgrTest, ContainerAddAllocator) { backing_tensor_shape_ = TensorShape({1024}); fields_shapes_ = std::vector<TensorShape>({{512}, {512}}); Status s = PrepScopedAllocatorMgr(2); EXPECT_TRUE(s.ok()); SaveInstances(fields_shapes_.size()); s = AddScopedAllocator(2, scope_id_); EXPECT_FALSE(s.ok()); fields_[0].scope_id = scope_id_ + 1; s = AddScopedAllocator(2, scope_id_ + 3); EXPECT_FALSE(s.ok()); void* ptr0 = sa_instances_[0]->AllocateRaw(0 , 512 * sizeof(float)); void* ptr1 = sa_instances_[1]->AllocateRaw(0 , 512 * sizeof(float)); sa_instances_[0]->DeallocateRaw(ptr0); sa_instances_[1]->DeallocateRaw(ptr1); } TEST_F(ScopedAllocatorMgrTest, AllocatorSuccess) { ScopedAllocatorContainer* sac = sam_.GetContainer(step_id_); ScopedAllocator* other = sac->GetAllocator(scope_id_); EXPECT_EQ(other, nullptr); backing_tensor_shape_ = TensorShape({512 + 9 + 512 + 16}); fields_shapes_ = std::vector<TensorShape>({{512}, {3, 3}, {2, 256}}); Status s = PrepScopedAllocatorMgr(3); other = sac->GetAllocator(scope_id_); ScopedAllocatorInstance* inst0 = sac->GetInstance(scope_id_ + 1); char* ptr0 = static_cast<char*>(inst0->AllocateRaw(0, 512 * sizeof(float))); const char* base = static_cast<const char*>(DMAHelper::base(&backing_tensor_)); EXPECT_EQ(ptr0, base); ScopedAllocatorInstance* inst1 = sac->GetInstance(scope_id_ + 2); char* ptr1 = static_cast<char*>(inst1->AllocateRaw(0, 9 * sizeof(float))); EXPECT_EQ(ptr1, ptr0 + (512 * sizeof(float))); ScopedAllocatorInstance* inst2 = sac->GetInstance(scope_id_ + 3); char* ptr2 = static_cast<char*>(inst2->AllocateRaw(0, 512 * sizeof(float))); EXPECT_EQ(ptr2, ptr1 + AlignmentPadding() + (9 * sizeof(float))); EXPECT_EQ(nullptr, sac->GetAllocator(scope_id_)); inst0->DeallocateRaw(ptr0); inst1->DeallocateRaw(ptr1); inst2->DeallocateRaw(ptr2); } TEST_F(ScopedAllocatorMgrTest, AllocatorInitFail) { backing_tensor_shape_ = TensorShape({8}); InitTensor(); fields_.resize(1); fields_[0].scope_id = scope_id_ + 1; fields_[0].offset = 0; fields_[0].bytes_requested = backing_tensor_shape_.num_elements() * 2 * sizeof(float); EXPECT_DEATH(Status s = AddScopedAllocator(1, scope_id_), ""); } TEST_F(ScopedAllocatorMgrTest, AllocatorFail) { backing_tensor_shape_ = TensorShape({1024}); fields_shapes_ = std::vector<TensorShape>({{512}, {512}}); Status s = PrepScopedAllocatorMgr(2); EXPECT_TRUE(s.ok()); SaveInstances(fields_shapes_.size()); char* ptr0 = static_cast<char*>(sa_instances_[0]->AllocateRaw(0, 512 * sizeof(float))); VLOG(2) << "Should fail because we deallocate ptr=" << static_cast<void*>(ptr0 + 8) << " which we never allocated."; EXPECT_DEATH(sa_instances_[0]->DeallocateRaw(ptr0 + 8), ""); VLOG(2) << "Should fail because we allocate smaller than the size of the " << "field."; EXPECT_EQ(nullptr, sa_instances_[1]->AllocateRaw(0, 256 * sizeof(float))); VLOG(2) << "Should fail because we allocate larger than the size of the " << "field."; EXPECT_EQ(nullptr, sa_instances_[1]->AllocateRaw(0, 1024 * sizeof(float))); void* ptr1 = sa_instances_[1]->AllocateRaw(0, 512 * sizeof(float)); VLOG(2) << "Should fail because we exceed expected_use_count."; EXPECT_EQ(nullptr, sa_instances_[0]->AllocateRaw(0, 512 * sizeof(float))); sa_instances_[0]->DeallocateRaw(ptr0); sa_instances_[1]->DeallocateRaw(ptr1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/scoped_allocator_mgr.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/scoped_allocator_mgr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c3e707eb-aa99-42f0-8beb-c5644b98862f
cpp
tensorflow/tensorflow
device_propagation
tensorflow/core/common_runtime/device_propagation.cc
tensorflow/core/common_runtime/device_propagation_test.cc
#include "tensorflow/core/common_runtime/device_propagation.h" #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" namespace tensorflow { namespace { const std::string& AssignedOrRequestedDevice(const Node& node) { if (!node.assigned_device_name().empty()) { return node.assigned_device_name(); } return node.requested_device(); } bool UpdateDeviceFromInputs( const device_propagation::NodeFilter& node_filter, const device_propagation::DeviceFilter& device_filter, Node* node) { if (!AssignedOrRequestedDevice(*node).empty() || !node_filter(*node)) { return false; } string proposed_device = ""; Node* proposed_src = nullptr; for (const Edge* e : node->in_edges()) { if (e->IsControlEdge()) { continue; } Node* src = e->src(); const string& src_device = AssignedOrRequestedDevice(*src); if ((node->IsSwitch() && src->IsLoopCond()) || (node->IsMerge() && src->IsEnter())) { continue; } if (!device_filter(src_device)) return false; if (proposed_src == nullptr) { proposed_device = src_device; proposed_src = src; } else if (proposed_device != src_device) { return false; } } if (proposed_src) { node->set_assigned_device_name(proposed_src->assigned_device_name()); node->set_requested_device(proposed_src->requested_device()); return true; } else { return false; } } } void PropagateDevices(const device_propagation::NodeFilter& node_filter, const device_propagation::DeviceFilter& device_filter, Graph* graph) { bool nodes_changed = true; while (nodes_changed) { nodes_changed = false; BreadthFirstTraversal( *graph, {}, [&nodes_changed, &node_filter, &device_filter](Node* node) { nodes_changed |= UpdateDeviceFromInputs(node_filter, device_filter, node); }); } } }
#include "tensorflow/core/common_runtime/device_propagation.h" #include <string> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/match.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/control_flow_ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/status_test_util.h" using ::testing::UnorderedElementsAreArray; namespace tensorflow { namespace { const char kTpu0[] = "/job:localhost/replica:0/task:0/device:TPU:0"; const char kTpu1[] = "/job:localhost/replica:0/task:0/device:TPU:1"; const char kTpu2[] = "/job:localhost/replica:0/task:0/device:TPU:2"; const char kGpu0[] = "/job:localhost/replica:0/task:0/device:GPU:0"; bool IsTPUDevice(StringPiece device_name) { return absl::StrContains(device_name, "device:TPU:"); } device_propagation::NodeFilter TargetOps( const absl::flat_hash_set<std::string>& ops) { return [&ops](const Node& n) { return ops.contains(n.type_string()); }; } absl::flat_hash_map<std::string, std::string> GetNodeNameDevices( const Graph& graph) { absl::flat_hash_map<std::string, std::string> node_name_devices; for (const Node* node : graph.nodes()) { if (node->IsSource() || node->IsSink()) { continue; } const string& device = node->assigned_device_name().empty() ? node->requested_device() : node->assigned_device_name(); node_name_devices[node->name()] = device; } return node_name_devices; } TEST(DevicePropagationTest, PropagateTPUDevices) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(scope.WithOpName("A"), DT_FLOAT); a.node()->set_assigned_device_name(kTpu0); auto b = ops::Placeholder(scope.WithOpName("B"), DT_FLOAT); b.node()->set_assigned_device_name(kTpu1); auto c = ops::Identity(scope.WithOpName("C"), a); auto d = ops::Merge(scope.WithOpName("D"), std::initializer_list<Input>{a, c}); auto e = ops::Merge(scope.WithOpName("E"), std::initializer_list<Input>{b, c}); auto f = ops::Identity(scope.WithOpName("F"), a); f.node()->set_assigned_device_name(kTpu2); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); PropagateDevices(TargetOps({"Identity", "Merge"}), IsTPUDevice, &graph); EXPECT_THAT( GetNodeNameDevices(graph), UnorderedElementsAreArray( std::vector<std::pair<std::string, std::string>>{ {"A", kTpu0}, {"B", kTpu1}, {"C", kTpu0}, {"D", kTpu0}, {"E", ""}, {"F", kTpu2}, })); } TEST(DevicePropagationTest, DoNotPropagateToUnsupportedOps) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(scope.WithOpName("A"), DT_FLOAT); a.node()->set_assigned_device_name(kTpu0); auto b = ops::Identity(scope.WithOpName("B"), a); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); PropagateDevices(TargetOps({"Merge"}), IsTPUDevice, &graph); EXPECT_THAT(GetNodeNameDevices(graph), UnorderedElementsAreArray( std::vector<std::pair<std::string, std::string>>{ {"A", kTpu0}, {"B", ""}, })); } TEST(DevicePropagationTest, DoNotPropagateUnmatchedDevices) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(scope.WithOpName("A"), DT_FLOAT); a.node()->set_assigned_device_name(kGpu0); auto b = ops::Identity(scope.WithOpName("B"), a); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); PropagateDevices(TargetOps({"Identity"}), IsTPUDevice, &graph); EXPECT_THAT(GetNodeNameDevices(graph), UnorderedElementsAreArray( std::vector<std::pair<std::string, std::string>>{ {"A", kGpu0}, {"B", ""}, })); } TEST(DevicePropagationTest, SwitchOpShouldIgnoreLoopCondOp) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(scope.WithOpName("A"), DT_BOOL); auto b = ops::LoopCond(scope.WithOpName("B"), a); auto c = ops::Placeholder(scope.WithOpName("C"), DT_FLOAT); c.node()->set_assigned_device_name(kTpu2); auto d = ops::Switch(scope.WithOpName("D"), c, b); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); PropagateDevices(TargetOps({"Switch", "LoopCond"}), IsTPUDevice, &graph); EXPECT_THAT( GetNodeNameDevices(graph), UnorderedElementsAreArray(std::vector< std::pair<std::string, std::string>>{ {"A", ""}, {"B", ""}, {"C", kTpu2}, {"D", kTpu2}, })); } TEST(DevicePropagationTest, MergeOpShouldIgnoreEnterOp) { Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(scope.WithOpName("A"), DT_FLOAT); auto b = ops::Placeholder(scope.WithOpName("B"), DT_FLOAT); b.node()->set_assigned_device_name(kTpu2); auto c = ops::internal::Enter(scope.WithOpName("C"), a, "Enter"); auto d = ops::NextIteration(scope.WithOpName("D"), b); auto e = ops::Merge(scope.WithOpName("E"), std::initializer_list<Input>{c, d}); Graph graph(OpRegistry::Global()); TF_ASSERT_OK(scope.ToGraph(&graph)); PropagateDevices(TargetOps({"Enter", "Merge", "NextIteration"}), IsTPUDevice, &graph); EXPECT_THAT( GetNodeNameDevices(graph), UnorderedElementsAreArray(std::vector< std::pair<std::string, std::string>>{ {"A", ""}, {"B", kTpu2}, {"C", ""}, {"D", kTpu2}, {"E", kTpu2}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/device_propagation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/device_propagation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8f4efb58-88af-470d-a5f6-790410917c2f
cpp
tensorflow/tensorflow
buf_rendezvous
tensorflow/core/common_runtime/buf_rendezvous.cc
tensorflow/core/common_runtime/buf_rendezvous_test.cc
#include "tensorflow/core/common_runtime/buf_rendezvous.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" namespace tensorflow { namespace { void DeregisterCancellation(BufRendezvous::Hook* h) { if (h->cancellation_manager != nullptr) { h->cancellation_manager->DeregisterCallback(h->cancellation_token); h->cancellation_manager = nullptr; h->cancellation_token = CancellationManager::kInvalidToken; } } } BufRendezvous::~BufRendezvous() { mutex_lock l(mu_); if (!hook_table_.empty()) { PurgeTable(errors::Internal("Delete called on non-empty BufRendezvous"), &hook_table_); } } void BufRendezvous::StartAbort(const Status& s) { CHECK(!s.ok()); HookTable dummy_table; { mutex_lock l(mu_); status_.Update(StatusGroup::MakeDerived(s)); hook_table_.swap(dummy_table); } PurgeTable(s, &dummy_table); } void BufRendezvous::PurgeTable(const Status& s, HookTable* table) { for (auto& it : *table) { Hook* h = it.second; if (h->cancellation_manager != nullptr) { h->cancellation_manager->TryDeregisterCallback(h->cancellation_token); } if (h->cons_cb != nullptr) { h->cons_cb(s, nullptr); } if (h->prod_cb != nullptr) { h->prod_cb(s); } delete h; } table->clear(); } string BufRendezvous::Hook::DebugString() const { return absl::StrCat( "[dev:", (prod_dev ? prod_dev->name() : "none"), ", ctx:", reinterpret_cast<uint64>(prod_ctx), ", val:", reinterpret_cast<uint64>(prod_value), ", pcb:", prod_cb ? reinterpret_cast<uint64>(&prod_cb) : 0, ", ccb:", cons_cb ? reinterpret_cast<uint64>(&cons_cb) : 0, "]"); } void BufRendezvous::ProvideBuf(const string& key, Device* dev, DeviceContext* dev_ctx, const Tensor* v, const AllocatorAttributes& attr, const ProducerCallback& done, CancellationManager* cancellation_manager) { DVLOG(4) << "ProvideBuf: key = " << key; #ifndef NDEBUG if (VLOG_IS_ON(4)) { LogContents(); } #endif Hook* h = nullptr; Status providebuf_status; do { mutex_lock l(mu_); if (!status_.ok()) { providebuf_status = status_; break; } else { CancellationToken cancellation_token = CancellationManager::kInvalidToken; auto it = hook_table_.find(key); if (it == hook_table_.end()) { if (cancellation_manager != nullptr) { cancellation_token = cancellation_manager->get_cancellation_token(); } h = new Hook(cancellation_manager, cancellation_token); it = hook_table_.insert(std::make_pair(key, h)).first; } else { if (it->second->prod_cb != nullptr) { providebuf_status = errors::Internal( "BufRendezvous::ProvideBuf already called for key ", key); break; } h = it->second; } h->prod_dev = dev; h->prod_ctx = dev_ctx; h->prod_value = v; h->prod_attr = attr; h->prod_cb = done; if (h->cons_cb != nullptr) { hook_table_.erase(it); } else { if (cancellation_manager != nullptr && !cancellation_manager->RegisterCallback( cancellation_token, [this, key]() { CancelHook(key); })) { providebuf_status = errors::Cancelled( "Operation was cancelled for BufRendezvous key ", key); hook_table_.erase(it); delete h; } h = nullptr; } } } while (false); if (h) { DVLOG(4) << "ProvideBuf: key = " << key << ": calling cons_cb" << h->DebugString(); DeregisterCancellation(h); h->cons_cb(absl::OkStatus(), h); } if (!providebuf_status.ok()) { done(providebuf_status); } } void BufRendezvous::ConsumeBuf(const string& key, const string& device_name, const uint64 device_incarnation, const ConsumerCallback& done, CancellationManager* cancellation_manager) { DVLOG(4) << "ConsumeBuf: key = " << key << " device_name = " << device_name; #ifndef NDEBUG if (VLOG_IS_ON(4)) { LogContents(); } #endif Device* device; Status consumebuf_status = dev_mgr_->LookupDevice(device_name, &device); if (consumebuf_status.ok() && device->attributes().incarnation() != device_incarnation) { consumebuf_status = errors::FailedPrecondition( "RecvBuf expects a different device incarnation: ", device_incarnation, " vs. ", device->attributes().incarnation(), ". Your worker job that contains the device (\"", device_name, "\") was probably restarted. Check your " "worker job for the reason why it was restarted."); } if (!consumebuf_status.ok()) { done(consumebuf_status, nullptr); return; } Hook* existing_hook = nullptr; do { mutex_lock l(mu_); if (!status_.ok()) { consumebuf_status = status_; break; } auto it = hook_table_.find(key); if (it != hook_table_.end()) { if (it->second->cons_cb) { consumebuf_status = errors::Internal("Second consumer arrived for key ", key); break; } existing_hook = it->second; hook_table_.erase(it); existing_hook->cons_cb = done; } else { CancellationToken cancellation_token = CancellationManager::kInvalidToken; bool already_cancelled = false; if (cancellation_manager != nullptr) { cancellation_token = cancellation_manager->get_cancellation_token(); already_cancelled = !cancellation_manager->RegisterCallback( cancellation_token, [this, key]() { CancelHook(key); }); } if (already_cancelled) { consumebuf_status = errors::Cancelled( "Operation was cancelled for BufRendezvous key ", key); } else { Hook* h = new Hook(cancellation_manager, cancellation_token); h->cons_cb = done; it = hook_table_.insert(std::make_pair(key, h)).first; return; } } } while (false); if (existing_hook) { DVLOG(4) << "ConsumeBuf: key = " << key << ": calling cons_cb" << existing_hook->DebugString(); DeregisterCancellation(existing_hook); existing_hook->cons_cb(absl::OkStatus(), existing_hook); return; } if (!consumebuf_status.ok()) { done(consumebuf_status, nullptr); return; } } void BufRendezvous::CancelHook(const string& key) { Hook* h = nullptr; { mutex_lock l(mu_); auto it = hook_table_.find(key); if (it == hook_table_.end()) return; h = it->second; hook_table_.erase(it); } if (h != nullptr) { auto s = errors::Cancelled("Operation was cancelled for BufRendezvous key ", key); if (h->prod_cb != nullptr) { h->prod_cb(s); } if (h->cons_cb != nullptr) { h->cons_cb(s, nullptr); } delete h; } } void BufRendezvous::DoneWithHook(Hook* h) { h->prod_cb(absl::OkStatus()); delete h; } void BufRendezvous::LogContents() { mutex_lock l(mu_); LOG(INFO) << strings::StrCat("BufRendezvous ", strings::Hex(reinterpret_cast<uint64>(this)), " step_id=", step_id_, " current contents:"); for (const auto& it : hook_table_) { LOG(INFO) << it.first << ":" << it.second->DebugString(); } } }
#include "tensorflow/core/common_runtime/buf_rendezvous.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class BufRendezvousTest : public ::testing::Test { protected: static std::unique_ptr<Device> NewDevice(const string& name, const string& type, const uint64 incarnation) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attrs) : Device(nullptr, attrs) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } }; DeviceAttributes attrs; attrs.set_name(name); attrs.set_device_type(type); attrs.set_incarnation(incarnation); return std::make_unique<FakeDevice>(attrs); } void InitializeDevice(const string& device, const string& type, const uint64 incarnation) { std::vector<std::unique_ptr<Device>> devices; devices.push_back(NewDevice(device, type, incarnation)); dev_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); br_ = std::make_unique<BufRendezvous>(123, dev_mgr_.get()); } BufRendezvousTest() : a_(Tensor(DT_FLOAT, TensorShape({24}))), b_(Tensor(DT_FLOAT, TensorShape({24}))), fake_device_context_(reinterpret_cast<DeviceContext*>(1024LLU)) { InitializeDevice(*kDefaultDeviceName, "CPU", kDefaultIncarnation); TF_CHECK_OK(dev_mgr_->LookupDevice(*kDefaultDeviceName, &default_device_)); } Tensor a_; Tensor b_; AllocatorAttributes aa_; Device* default_device_; DeviceContext* fake_device_context_; std::unique_ptr<DeviceMgr> dev_mgr_; std::unique_ptr<BufRendezvous> br_; CancellationManager cm_; static const string* const kDefaultKey; static const string* const kDefaultDeviceName; static const uint64 kDefaultIncarnation; }; const string* const BufRendezvousTest::kDefaultKey = new string("key0"); const string* const BufRendezvousTest::kDefaultDeviceName = new string("/device:CPU:0"); const uint64 BufRendezvousTest::kDefaultIncarnation = 12345; TEST_F(BufRendezvousTest, CorrectUseProducerFirst) { Status prod_status; Status cons_status; bool prod_callback_called = false; bool cons_callback_called = false; Notification note; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&note, &prod_status, &prod_callback_called](const Status& s) { prod_status = s; prod_callback_called = true; note.Notify(); }, &cm_); EXPECT_FALSE(prod_callback_called); br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [this, &cons_status, &cons_callback_called](const Status& s, BufRendezvous::Hook* h) { cons_status = s; cons_callback_called = true; ASSERT_TRUE(h != nullptr); EXPECT_EQ(h->prod_dev, default_device_); EXPECT_EQ(h->prod_ctx, fake_device_context_); EXPECT_EQ(h->prod_value, &a_); br_->DoneWithHook(h); }, &cm_); EXPECT_TRUE(cons_callback_called); note.WaitForNotification(); EXPECT_TRUE(prod_callback_called); TF_EXPECT_OK(cons_status); TF_EXPECT_OK(prod_status); } TEST_F(BufRendezvousTest, CorrectUseConsumerFirst) { Status prod_status; Status cons_status; bool prod_callback_called = false; bool cons_callback_called = false; Notification note; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [this, &cons_status, &cons_callback_called](const Status& s, BufRendezvous::Hook* h) { cons_status = s; cons_callback_called = true; ASSERT_TRUE(h != nullptr); EXPECT_EQ(h->prod_dev, default_device_); EXPECT_EQ(h->prod_ctx, fake_device_context_); EXPECT_EQ(h->prod_value, &a_); br_->DoneWithHook(h); }, &cm_); EXPECT_FALSE(cons_callback_called); br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&note, &prod_status, &prod_callback_called](const Status& s) { prod_status = s; prod_callback_called = true; note.Notify(); }, &cm_); EXPECT_TRUE(cons_callback_called); note.WaitForNotification(); EXPECT_TRUE(prod_callback_called); TF_EXPECT_OK(cons_status); TF_EXPECT_OK(prod_status); } TEST_F(BufRendezvousTest, ErrorDuplicatePut) { bool prod_callback_called = false; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&prod_callback_called](const Status& s) { prod_callback_called = true; }, &cm_); Status bad_status; Notification note; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&bad_status, &note](const Status& s) { bad_status = s; note.Notify(); }, &cm_); note.WaitForNotification(); EXPECT_FALSE(bad_status.ok()); EXPECT_EQ(absl::StrCat("BufRendezvous::ProvideBuf already called for key ", *kDefaultKey), bad_status.message()); EXPECT_FALSE(prod_callback_called); br_.reset(); } TEST_F(BufRendezvousTest, ErrorDeleteNonEmpty) { Status cons_status; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&cons_status](const Status& s, BufRendezvous::Hook* h) { cons_status = s; EXPECT_EQ(h, nullptr); }, &cm_); EXPECT_TRUE(cons_status.ok()); br_.reset(); EXPECT_FALSE(cons_status.ok()); EXPECT_EQ("Delete called on non-empty BufRendezvous", cons_status.message()); } TEST_F(BufRendezvousTest, AbortNonEmpty) { Status cons_status; Status prod_status; Notification prod_note; Notification cons_note; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&cons_note, &cons_status](const Status& s, BufRendezvous::Hook* h) { cons_status = s; cons_note.Notify(); }, &cm_); br_->ProvideBuf( "key1", default_device_, fake_device_context_, &a_, aa_, [&prod_note, &prod_status](const Status& s) { prod_status = s; prod_note.Notify(); }, &cm_); br_->StartAbort(errors::Internal("Falling sky detected")); prod_note.WaitForNotification(); cons_note.WaitForNotification(); EXPECT_FALSE(prod_status.ok()); EXPECT_EQ(prod_status.message(), "Falling sky detected"); EXPECT_FALSE(cons_status.ok()); EXPECT_EQ(cons_status.message(), "Falling sky detected"); } TEST_F(BufRendezvousTest, AbortEmpty) { br_->StartAbort(errors::Internal("Falling sky detected")); } TEST_F(BufRendezvousTest, UseAfterAbort) { br_->StartAbort(errors::Internal("Falling sky detected")); Status cons_status; Status prod_status; Notification prod_note; Notification cons_note; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&cons_note, &cons_status](const Status& s, BufRendezvous::Hook* h) { cons_status = s; cons_note.Notify(); }, &cm_); br_->ProvideBuf( "key1", default_device_, fake_device_context_, &a_, aa_, [&prod_note, &prod_status](const Status& s) { prod_status = s; prod_note.Notify(); }, &cm_); prod_note.WaitForNotification(); cons_note.WaitForNotification(); EXPECT_FALSE(prod_status.ok()); EXPECT_NE(prod_status.message().find("Falling sky detected"), string::npos); EXPECT_FALSE(cons_status.ok()); EXPECT_NE(cons_status.message().find("Falling sky detected"), string::npos); } TEST_F(BufRendezvousTest, DeviceIncarnationMismatch) { Status cons_status; Notification note; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [](const Status&) {}, nullptr); const uint64 incorrect_incarnation = 23456; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, incorrect_incarnation, [&note, &cons_status](const Status& s, BufRendezvous::Hook* h) { cons_status = s; note.Notify(); }, nullptr); note.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(cons_status)); } TEST_F(BufRendezvousTest, ProvideThenCancel) { Status status; Notification note; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&status, &note](const Status& s) { status = s; note.Notify(); }, &cm_); cm_.StartCancel(); note.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(status)); EXPECT_NE( status.message().find(absl::StrCat( "Operation was cancelled for BufRendezvous key ", *kDefaultKey)), string::npos); } TEST_F(BufRendezvousTest, CancelThenProvide) { Status status; Notification note; cm_.StartCancel(); br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&status, &note](const Status& s) { status = s; note.Notify(); }, &cm_); note.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(status)); EXPECT_NE( status.message().find(absl::StrCat( "Operation was cancelled for BufRendezvous key ", *kDefaultKey)), string::npos); } TEST_F(BufRendezvousTest, ConsumeThenCancel) { Status status; Notification note; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&status, &note](const Status& s, BufRendezvous::Hook* h) { status = s; note.Notify(); }, &cm_); cm_.StartCancel(); note.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(status)); EXPECT_NE( status.message().find(absl::StrCat( "Operation was cancelled for BufRendezvous key ", *kDefaultKey)), string::npos); } TEST_F(BufRendezvousTest, CancelThenConsume) { Status status; Notification note; cm_.StartCancel(); br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&status, &note](const Status& s, BufRendezvous::Hook* h) { status = s; note.Notify(); }, &cm_); note.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(status)); EXPECT_NE( status.message().find(absl::StrCat( "Operation was cancelled for BufRendezvous key ", *kDefaultKey)), string::npos); } TEST_F(BufRendezvousTest, ProvideConsumeThenCancel) { Status prod_status; Status cons_status; bool prod_callback_called = false; bool cons_callback_called = false; Notification note; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&note, &prod_status, &prod_callback_called](const Status& s) { prod_status = s; prod_callback_called = true; note.Notify(); }, &cm_); EXPECT_FALSE(prod_callback_called); br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [this, &cons_status, &cons_callback_called](const Status& s, BufRendezvous::Hook* h) { cons_status = s; cons_callback_called = true; ASSERT_TRUE(h != nullptr); EXPECT_EQ(h->prod_dev, default_device_); EXPECT_EQ(h->prod_ctx, fake_device_context_); EXPECT_EQ(h->prod_value, &a_); br_->DoneWithHook(h); }, &cm_); note.WaitForNotification(); cm_.StartCancel(); EXPECT_TRUE(cons_callback_called); EXPECT_TRUE(prod_callback_called); TF_EXPECT_OK(cons_status); TF_EXPECT_OK(prod_status); } TEST_F(BufRendezvousTest, CancelThenProvideConsume) { Status prod_status; Status cons_status; bool prod_callback_called = false; bool cons_callback_called = false; cm_.StartCancel(); br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&prod_status, &prod_callback_called](const Status& s) { prod_status = s; EXPECT_TRUE(errors::IsCancelled(prod_status)); prod_callback_called = true; }, &cm_); EXPECT_TRUE(prod_callback_called); EXPECT_TRUE(errors::IsCancelled(prod_status)); br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&cons_status, &cons_callback_called](const Status& s, BufRendezvous::Hook* h) { cons_status = s; EXPECT_TRUE(errors::IsCancelled(cons_status)); cons_callback_called = true; }, &cm_); EXPECT_TRUE(cons_callback_called); EXPECT_TRUE(errors::IsCancelled(cons_status)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/buf_rendezvous.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/buf_rendezvous_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2d7045fb-b6b0-4986-a243-6e549d212000
cpp
tensorflow/tensorflow
lower_if_op
tensorflow/core/common_runtime/lower_if_op.cc
tensorflow/core/common_runtime/lower_if_op_test.cc
#include "tensorflow/core/common_runtime/lower_if_op.h" #include "tensorflow/core/common_runtime/inline_function_utils.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" namespace tensorflow { namespace { using NodeOut = NodeBuilder::NodeOut; constexpr const char* const kLowerAsMultiDeviceFunctionAttr = LowerFunctionalOpsConstants::kLowerAsMultiDeviceFunctionAttr; class CondBuilder { public: enum Branch { kElseBranch = 0, kThenBranch = 1 }; CondBuilder(Node* if_op, const NameAttrList& then_fn, const NameAttrList& else_fn, bool keep_node_fetchable, Graph* graph); Status CreatePivotNodes(); Status AddInputs(); Status AddOutputs(); Status BuildLoweredIfOutput(); private: string NewName(const string& infix); Status AddInput(Node* src, int src_output); Status SetColocationAndFinalize(NodeBuilder node_builder, Graph* graph, Node** created_node); std::vector<NodeOut> outputs_; Node* control_predecessor_; Node* if_op_; const AttrValue* coloc_attr_; Node* lowered_if_output_; OutputTensor pred_; Node* pivot_f_; Node* pivot_t_; Node* then_call_node_; Node* else_call_node_; Node* branch_executed_node_; Graph* graph_; string name_; bool keep_node_fetchable_; NodeDebugInfo debug_info_; NodeBuilder then_call_builder_; NodeBuilder else_call_builder_; }; CondBuilder::CondBuilder(Node* if_op, const NameAttrList& then_fn, const NameAttrList& else_fn, bool keep_node_fetchable, Graph* graph) : if_op_(if_op), coloc_attr_(if_op_->attrs().Find(kColocationAttrName)), graph_(graph), name_(if_op->name()), keep_node_fetchable_(keep_node_fetchable), debug_info_(*if_op_), then_call_builder_(NewName("then"), then_fn.name(), graph->op_registry(), &debug_info_), else_call_builder_(NewName("else"), else_fn.name(), graph->op_registry(), &debug_info_) { TF_CHECK_OK(if_op_->input_tensor(0, &pred_)); then_call_builder_.Device(if_op_->requested_device()); then_call_builder_.Attr(kLowerAsMultiDeviceFunctionAttr, true); for (const auto& i : then_fn.attr()) { then_call_builder_.Attr(i.first, i.second); } else_call_builder_.Device(if_op_->requested_device()); else_call_builder_.Attr(kLowerAsMultiDeviceFunctionAttr, true); for (const auto& i : else_fn.attr()) { else_call_builder_.Attr(i.first, i.second); } } Status CondBuilder::SetColocationAndFinalize(NodeBuilder node_builder, Graph* graph, Node** created_node) { if (coloc_attr_ != nullptr) { node_builder = node_builder.Attr(kColocationAttrName, *coloc_attr_); } return node_builder.Finalize(graph, created_node); } Status CondBuilder::CreatePivotNodes() { Node* switch_pred; TF_RETURN_IF_ERROR( SetColocationAndFinalize(NodeBuilder(NewName("switch_pred"), "Switch", graph_->op_registry(), &debug_info_) .Input(NodeOut(pred_)) .Input(NodeOut(pred_)) .Device(if_op_->requested_device()), graph_, &switch_pred)); control_predecessor_ = switch_pred; TF_RETURN_IF_ERROR( SetColocationAndFinalize(NodeBuilder(NewName("pivot_f"), "Identity", graph_->op_registry(), &debug_info_) .Input(switch_pred, kElseBranch) .Device(if_op_->requested_device()), graph_, &pivot_f_)); TF_RETURN_IF_ERROR( SetColocationAndFinalize(NodeBuilder(NewName("pivot_t"), "Identity", graph_->op_registry(), &debug_info_) .Input(switch_pred, kThenBranch) .Device(if_op_->requested_device()), graph_, &pivot_t_)); return absl::OkStatus(); } string CondBuilder::NewName(const string& infix) { return graph_->NewName(strings::StrCat(name_, "/", infix)); } Status CondBuilder::AddInput(Node* src, int src_output) { Node* input; NodeDebugInfo debug_info(*src); TF_RETURN_IF_ERROR( NodeBuilder(NewName(src->name()), "Switch", graph_->op_registry(), &debug_info) .Input(src, src_output) .Input(pred_) .Device(src->requested_device()) .Attr(kColocationAttrName, {absl::StrCat(kColocationGroupPrefix, src->name())}) .Finalize(graph_, &input)); then_call_builder_.Input(input, kThenBranch); else_call_builder_.Input(input, kElseBranch); return absl::OkStatus(); } Status CondBuilder::AddInputs() { std::vector<const Edge*> edges; TF_RETURN_IF_ERROR(if_op_->input_edges(&edges)); for (int i = 1; i < edges.size(); ++i) { const Edge* e = edges[i]; TF_RETURN_IF_ERROR(AddInput(e->src(), e->src_output())); } for (const Edge* e : if_op_->in_edges()) { if (e->IsControlEdge()) { graph_->AddControlEdge(e->src(), control_predecessor_); } } return absl::OkStatus(); } Status CondBuilder::AddOutputs() { TF_RETURN_IF_ERROR(then_call_builder_.Finalize(graph_, &then_call_node_)); graph_->AddControlEdge(pivot_t_, then_call_node_); TF_RETURN_IF_ERROR(else_call_builder_.Finalize(graph_, &else_call_node_)); graph_->AddControlEdge(pivot_f_, else_call_node_); std::vector<Node*> merges(then_call_node_->num_outputs()); outputs_.resize(merges.size()); for (int i = 0; i < then_call_node_->num_outputs(); ++i) { TF_RETURN_IF_ERROR(SetColocationAndFinalize( NodeBuilder(NewName("output"), "Merge", graph_->op_registry(), &debug_info_) .Input({NodeOut(then_call_node_, i), NodeOut(else_call_node_, i)}) .Device(if_op_->requested_device()), graph_, &merges[i])); outputs_[i] = NodeOut(merges[i], 0); } TF_RETURN_IF_ERROR(SetColocationAndFinalize( NodeBuilder(NewName("branch_executed"), "Merge", graph_->op_registry(), &debug_info_) .Input({pivot_t_, pivot_f_}) .ControlInputs({then_call_node_, else_call_node_}) .Device(if_op_->requested_device()), graph_, &branch_executed_node_)); TF_RETURN_IF_ERROR(BuildLoweredIfOutput()); for (const Edge* e : if_op_->out_edges()) { if (e->IsControlEdge()) { graph_->AddControlEdge(branch_executed_node_, e->dst()); } else { graph_->AddEdge(merges[e->src_output()], 0, e->dst(), e->dst_input()); } } return absl::OkStatus(); } Status CondBuilder::BuildLoweredIfOutput() { NodeBuilder builder = keep_node_fetchable_ && !outputs_.empty() ? NodeBuilder(name_, "IdentityN").Input(outputs_) : NodeBuilder(name_, "NoOp"); return builder.Device(if_op_->requested_device()) .ControlInput(branch_executed_node_) .Finalize(graph_, &lowered_if_output_); } } Status RewriteIfNode(Node* n, Graph* g, bool keep_node_fetchable) { VLOG(2) << "Lower If node (keep_node_fetchable=" << keep_node_fetchable << "): " << SummarizeNode(*n); const AttrValue* then_attr = n->attrs().Find("then_branch"); if (then_attr == nullptr) { return errors::InvalidArgument("Then branch function missing"); } const AttrValue* else_attr = n->attrs().Find("else_branch"); if (else_attr == nullptr) { return errors::InvalidArgument("Else branch function missing"); } CondBuilder cb(n, then_attr->func(), else_attr->func(), keep_node_fetchable, g); TF_RETURN_IF_ERROR(cb.CreatePivotNodes()); TF_RETURN_IF_ERROR(cb.AddInputs()); TF_RETURN_IF_ERROR(cb.AddOutputs()); g->RemoveNode(n); return absl::OkStatus(); } }
#include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/lower_functional_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { AttrValue FuncAttr(const string& name) { AttrValue attr; attr.mutable_func()->set_name(name); return attr; } SessionOptions SessionOptionsWithInlining() { SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_do_function_inlining(true); return session_options; } Status Rewrite(std::unique_ptr<Graph>* graph) { FunctionLibraryDefinition flib_def((*graph)->flib_def()); GraphOptimizationPassOptions opt_options; SessionOptions session_options = SessionOptionsWithInlining(); opt_options.session_options = &session_options; opt_options.graph = graph; opt_options.flib_def = &flib_def; LowerFunctionalOpsPass pass; return pass.Run(opt_options); } TEST(LowerIfOpTest, Simple) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XTimesTwo(); *(f_lib_proto.add_function()) = test::function::XTimesFour(); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); auto pred = ops::Placeholder(root.WithOpName("pred"), DT_BOOL); Node* written_if; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); TF_ASSERT_OK( NodeBuilder("if", "If", &root.graph()->flib_def()) .Input(pred.node()) .Input(inputs) .Attr("then_branch", FuncAttr("XTimesTwo")) .Attr("else_branch", FuncAttr("XTimesFour")) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Attr("Tout", {DT_INT32}) .Finalize(root.graph(), &written_if)); TF_ASSERT_OK(root.DoShapeInference(written_if)); TF_ASSERT_OK(root.ToGraph(graph.get())); int node_called_if_count = 0; for (const auto* op : graph->op_nodes()) { ASSERT_FALSE(op->IsSwitch()); ASSERT_FALSE(op->IsMerge()); if (op->name() == "if") { ++node_called_if_count; } } ASSERT_EQ(node_called_if_count, 1); TF_ASSERT_OK(Rewrite(&graph)); int switch_count = 0; int merge_count = 0; node_called_if_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsSwitch()) { ++switch_count; } if (op->IsMerge()) { ++merge_count; } ASSERT_NE(op->type_string(), "If"); if (op->name() == "if") { ++node_called_if_count; } } ASSERT_EQ(switch_count, 2); ASSERT_EQ(merge_count, 2); ASSERT_EQ(node_called_if_count, 1); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(pred.node()), Input::Initializer(false)); feeds.emplace(Output(a.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(written_if)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 40); } { ClientSession::FeedType feeds; feeds.emplace(Output(pred.node()), Input::Initializer(true)); feeds.emplace(Output(a.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(written_if)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 20); } } TEST(LowerIfOpTest, BranchFunctionsWithoutOutputs) { using ::tensorflow::test::function::GDef; using ::tensorflow::test::function::NDef; using FDH = ::tensorflow::FunctionDefHelper; const auto assign_add = [](const string& fn_name, int v) { const Tensor tensor = test::AsScalar<int32>(v); return FDH::Create( fn_name, {"v: resource"}, {}, {}, { {{"c"}, "Const", {}, {{"value", tensor}, {"dtype", DT_INT32}}}, {{"upd"}, "AssignAddVariableOp", {"v", "c:output"}, {{"dtype", DT_INT32}}}, }, {}, {{"side_effects", "upd"}}); }; std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = assign_add("AddOne", 1); *(f_lib_proto.add_function()) = assign_add("AddTwo", 2); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto pred = ops::Placeholder(root.WithOpName("pred"), DT_BOOL); auto initial_val = ops::Placeholder(root.WithOpName("initial_val"), DT_INT32); auto var = ops::VarHandleOp(root.WithOpName("var"), DT_INT32, {}); auto init = ops::AssignVariableOp(root.WithOpName("init"), var, initial_val); Node* if_node; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(var.node())}); TF_ASSERT_OK( NodeBuilder("if", "If", &root.graph()->flib_def()) .Input(pred.node()) .Input(inputs) .ControlInput(init.operation.node()) .Attr("then_branch", FuncAttr("AddOne")) .Attr("else_branch", FuncAttr("AddTwo")) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Attr("Tout", DataTypeSlice{}) .Finalize(root.graph(), &if_node)); auto read = ops::ReadVariableOp( root.WithOpName("read").WithControlDependencies(Output(if_node)), var, DT_INT32); TF_ASSERT_OK(root.DoShapeInference(if_node)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); int switch_count = 0; int merge_count = 0; int node_called_if_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsSwitch()) ++switch_count; if (op->IsMerge()) ++merge_count; if (op->name() == "if") ++node_called_if_count; ASSERT_NE(op->type_string(), "If"); } ASSERT_EQ(switch_count, 2); ASSERT_EQ(merge_count, 1); ASSERT_EQ(node_called_if_count, 1); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(pred.node()), Input::Initializer(true)); feeds.emplace(Output(initial_val.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(read)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 11); } { ClientSession::FeedType feeds; feeds.emplace(Output(pred.node()), Input::Initializer(false)); feeds.emplace(Output(initial_val.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(read)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 12); } } TEST(LowerIfOpTest, DoNotInlineLoweredFunction) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDef x_times_two = test::function::XTimesTwo(); FunctionDef x_times_four = test::function::XTimesFour(); (*x_times_two.mutable_attr())["_noinline"].set_b(true); (*x_times_four.mutable_attr())["_noinline"].set_b(true); FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = x_times_two; *(f_lib_proto.add_function()) = x_times_four; Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); auto pred = ops::Placeholder(root.WithOpName("pred"), DT_BOOL); Node* written_if; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); AttrValue tb; tb.mutable_func()->set_name("XTimesTwo"); AttrValue eb; eb.mutable_func()->set_name("XTimesFour"); TF_ASSERT_OK( NodeBuilder("if", "If", &root.graph()->flib_def()) .Input(pred.node()) .Input(inputs) .Attr("then_branch", tb) .Attr("else_branch", eb) .Attr(LowerFunctionalOpsPass::kLowerUsingSwitchMergeAttr, true) .Attr("Tout", {DT_INT32}) .Finalize(root.graph(), &written_if)); TF_ASSERT_OK(root.DoShapeInference(written_if)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); int x_times_two_count = 0; int x_times_four_count = 0; for (const auto* op : graph->op_nodes()) { if (op->type_string() == x_times_two.signature().name()) { x_times_two_count++; } if (op->type_string() == x_times_four.signature().name()) { x_times_four_count++; } ASSERT_NE(op->type_string(), "If"); } ASSERT_EQ(x_times_two_count, 1); ASSERT_EQ(x_times_four_count, 1); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(pred.node()), Input::Initializer(false)); feeds.emplace(Output(a.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(written_if)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 40); } { ClientSession::FeedType feeds; feeds.emplace(Output(pred.node()), Input::Initializer(true)); feeds.emplace(Output(a.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(written_if)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 20); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/lower_if_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/lower_if_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fc2c582a-cd25-44b2-88af-7fa487bdb013
cpp
tensorflow/tensorflow
ring_reducer
tensorflow/core/common_runtime/ring_reducer.cc
tensorflow/core/common_runtime/ring_reducer_test.cc
#include "tensorflow/core/common_runtime/ring_reducer.h" #include <stdlib.h> #include <atomic> #include <functional> #include <utility> #include "tensorflow/core/common_runtime/collective_rma_local.h" #include "tensorflow/core/common_runtime/collective_util.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/lib/traceme.h" namespace tensorflow { RingReducer::~RingReducer() { group_size_tensor_ready_.WaitForNotification(); } Status RingReducer::InitializeCollectiveParams(CollectiveParams* col_params) { CHECK_EQ(col_params->instance.type, REDUCTION_COLLECTIVE); CHECK_EQ(col_params->instance.impl_details.collective_name, "RingReduce"); return RingAlg::InitializeCollectiveParams(col_params); } void RingReducer::Run(StatusCallback done) { CHECK(col_ctx_); CHECK(col_params_); col_ctx_->col_exec->UnblockDependencies(*col_params_); done_ = std::move(done); group_size_ = col_params_->group.group_size; num_subdivs_ = static_cast<int>( col_params_->instance.impl_details.subdiv_permutations.size()); CHECK_GT(num_subdivs_, 0); if (VLOG_IS_ON(1)) { string buf; for (int r = 0; r < col_params_->group.members.size(); ++r) { strings::StrAppend(&buf, "dev ", r, " : ", col_params_->group.members[r].device.name(), "\n"); } for (int sd = 0; sd < col_params_->instance.impl_details.subdiv_permutations.size(); ++sd) { strings::StrAppend(&buf, "\nsubdiv ", sd, " perm: "); for (auto x : col_params_->instance.impl_details.subdiv_permutations[sd]) { strings::StrAppend(&buf, x, ", "); } } VLOG(1) << "RingReducer::Run for device " << col_ctx_->device_name << " default_rank " << col_params_->default_rank << "\n" << buf; } if ((col_ctx_->input != col_ctx_->output) && (DMAHelper::base(col_ctx_->input) != DMAHelper::base(col_ctx_->output))) { Notification note; Status status; tsl::profiler::TraceMe activity("MemCpyAsync", tsl::profiler::TraceMeLevel::kInfo); CollectiveRemoteAccessLocal::MemCpyAsync( col_ctx_->op_ctx->op_device_context(), col_ctx_->op_ctx->op_device_context(), col_ctx_->device, col_ctx_->device, col_ctx_->op_ctx->input_alloc_attr(0), col_ctx_->op_ctx->output_alloc_attr(0), col_ctx_->input, col_ctx_->output, 0 , [&note, &status](const Status& s) { status.Update(s); note.Notify(); }); note.WaitForNotification(); if (!status.ok()) { done_(status); return; } } ContinueAfterInputCopy(); } void RingReducer::ContinueAfterInputCopy() { AllocatorAttributes attr = col_ctx_->op_ctx->output_alloc_attr(0); ca_.reset(MakeCollectiveAdapter(col_ctx_->output, group_size_ * num_subdivs_, col_ctx_->device->GetAllocator(attr))); if (col_params_->final_op) { Tensor group_size_val = ca_->Scalar(group_size_); if (col_params_->group.device_type != "CPU") { uint64 safe_alloc_frontier = col_ctx_->device->SafeAllocFrontier(0); AllocationAttributes aa; std::function<uint64()> freed_by_func = [this, &safe_alloc_frontier]() { safe_alloc_frontier = col_ctx_->device->SafeAllocFrontier(safe_alloc_frontier); return safe_alloc_frontier; }; if (safe_alloc_frontier > 0) { aa.freed_by_func = &freed_by_func; } group_size_tensor_ = ca_->Scalar( col_ctx_->device->GetAllocator(col_ctx_->op_ctx->input_alloc_attr(0)), aa); DeviceContext* op_dev_ctx = col_ctx_->op_ctx->op_device_context(); op_dev_ctx->CopyCPUTensorToDevice( &group_size_val, col_ctx_->device, &group_size_tensor_, [this](const Status& s) { if (!s.ok()) { StartAbort(s); } group_size_tensor_ready_.Notify(); }, (safe_alloc_frontier == 0)); } else { group_size_tensor_ = group_size_val; group_size_tensor_ready_.Notify(); } } else { group_size_tensor_ready_.Notify(); } Finish(RunAsyncParts()); } void RingReducer::InitRingField(RingField* rf, int chunk_idx, int subdiv_idx, int field_idx) { RingAlg::InitRingField(rf, chunk_idx, subdiv_idx, field_idx); if (rf->do_recv) { rf->tmp_chunk = ca_->TempChunk(rf->sc_idx); } } bool RingReducer::RunAsyncParts() { rfv_.clear(); rfv_.resize(group_size_ * num_subdivs_); PCQueue ready_queue; for (int chunk_idx = 0; chunk_idx < group_size_; ++chunk_idx) { for (int subdiv_idx = 0; subdiv_idx < num_subdivs_; ++subdiv_idx) { int rf_index = (chunk_idx * num_subdivs_) + subdiv_idx; InitRingField(&rfv_[rf_index], chunk_idx, subdiv_idx, rf_index); ready_queue.Enqueue(&rfv_[rf_index]); } } const DeviceBase::AcceleratorDeviceInfo* gpu_info = col_ctx_->device->tensorflow_accelerator_device_info(); if (gpu_info) { tsl::profiler::TraceMe activity("WaitForQueuedEvents", tsl::profiler::TraceMeLevel::kInfo); Notification note; Status s = gpu_info->default_context->ThenExecute( col_ctx_->device, gpu_info->stream, [&note]() { note.Notify(); }); if (s.ok()) { note.WaitForNotification(); } else { mutex_lock l(status_mu_); status_ = errors::Internal("Failed to dispatch ThenExecute in RingReducer"); return false; } } int field_done_count = 0; int send_pending_count = 0; int recv_pending_count = 0; std::atomic<bool> aborted(false); { tsl::profiler::TraceMe activity("Loop", tsl::profiler::TraceMeLevel::kInfo); while (field_done_count < rfv_.size()) { VLOG(4) << FieldState(); RingField* rf = ready_queue.Dequeue(); bool dispatched = false; do { if (aborted) { ready_queue.Enqueue(rf); break; } switch (rf->action) { case RF_INIT: if (rf->do_recv) { rf->action = RF_RECV; auto requeue = [this, rf, &ready_queue, &aborted](Status s) { if (!s.ok()) { aborted = true; StartAbort(s); } ready_queue.Enqueue(rf); }; DispatchRecv(rf, requeue); dispatched = true; ++recv_pending_count; } else { rf->action = RF_SEND_READY; } break; case RF_RECV: CHECK_GT(recv_pending_count, 0); --recv_pending_count; if (!rf->second_pass) { rf->action = RF_REDUCE; Status s = collective_util::ComputeBinOp( col_ctx_->op_ctx, col_ctx_->op_params, col_ctx_->device, col_params_->merge_op, &rf->chunk, &rf->tmp_chunk); if (!s.ok()) { aborted = true; StartAbort(s); } } else { rf->action = RF_SEND_READY; } break; case RF_REDUCE: if (!rf->second_pass && col_params_->final_op && rf->is_final) { rf->action = RF_FINALIZE; group_size_tensor_ready_.WaitForNotification(); Status s = collective_util::ComputeBinOp( col_ctx_->op_ctx, col_ctx_->op_params, col_ctx_->device, col_params_->final_op, &rf->chunk, &group_size_tensor_); if (!s.ok()) { aborted = true; StartAbort(s); } } else { rf->action = RF_SEND_READY; } break; case RF_FINALIZE: rf->action = RF_DONE; break; case RF_SEND_READY: if (rf->do_send) { rf->action = RF_SEND; auto send_complete = [this, rf, &ready_queue, &aborted](Status s) { if (!s.ok()) { aborted = true; StartAbort(s); } ready_queue.Enqueue(rf); }; DispatchSend(rf, send_complete); dispatched = true; ++send_pending_count; } else { rf->action = RF_DONE; } break; case RF_SEND: CHECK_GT(send_pending_count, 0); --send_pending_count; rf->action = RF_DONE; break; case RF_DONE: break; } if (rf->action == RF_DONE) { if (rf->second_pass) { ++field_done_count; break; } else { AdvanceToSecondPass(rf); } } } while (!dispatched); if (aborted) break; } if (aborted) { while ((send_pending_count > 0) || (recv_pending_count > 0)) { RingField* rf = ready_queue.Dequeue(); switch (rf->action) { case RF_RECV: --recv_pending_count; break; case RF_SEND: --send_pending_count; break; default: { } } } } } CHECK_EQ(send_pending_count, 0); CHECK_EQ(recv_pending_count, 0); VLOG(2) << this << " device=" << col_ctx_->device_name << " finish;" << " final value " << TensorDebugString(ca_->Value()); return !aborted; } namespace { REGISTER_COLLECTIVE(RingReduce, RingReducer); } }
#include "tensorflow/core/common_runtime/ring_reducer.h" #include <algorithm> #include "absl/memory/memory.h" #include "tensorflow/core/common_runtime/base_collective_executor.h" #include "tensorflow/core/common_runtime/collective_rma_local.h" #include "tensorflow/core/common_runtime/collective_test_util.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/device_resolver_local.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/test_collective_executor_mgr.h" #include "tensorflow/core/common_runtime/threadpool_device.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/collective.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/unbounded_work_queue.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" namespace tensorflow { std::unique_ptr<OpKernel> GetKernel(const NodeDef& node, const DeviceType& device_type, DeviceBase* device) { Status status; std::unique_ptr<OpKernel> k = CreateOpKernel( device_type, device, device->GetAllocator(AllocatorAttributes()), node, TF_GRAPH_DEF_VERSION, &status); if (!status.ok()) { LOG(FATAL) << status; } return k; } std::unique_ptr<OpKernel> GetAdd(DataType dtype, const DeviceType& device_type, DeviceBase* device) { NodeDef node_def; NodeDefBuilder builder("add_node", "Add"); TF_CHECK_OK(builder.Attr("T", dtype) .Input(FakeInput(dtype)) .Input(FakeInput(dtype)) .Finalize(&node_def)); return GetKernel(node_def, device_type, device); } std::unique_ptr<OpKernel> GetDiv(DataType dtype, const DeviceType& device_type, DeviceBase* device) { NodeDef node_def; NodeDefBuilder builder("add_node", "Div"); TF_CHECK_OK(builder.Attr("T", dtype) .Input(FakeInput(dtype)) .Input(FakeInput(dtype)) .Finalize(&node_def)); return GetKernel(node_def, device_type, device); } class RingReducerTest : public ::testing::Test { protected: void Init(int num_workers, int num_devices, DataType dtype, const TensorShape& shape, const DeviceType& device_type, int num_subdivs, int fail_after) { test_env_ = CreateCollectiveTestEnv(num_workers, num_devices, device_type); test_env_->remote_access->set_fail_after(fail_after); for (int wi = 0; wi < num_workers; ++wi) { for (int di = 0; di < num_devices; ++di) { int rank = wi * num_devices + di; instances_.push_back(std::make_unique<DeviceInstance>( rank, num_subdivs, dtype, shape, test_env_.get())); } } } void Reduce(int fail_after) { std::atomic<int> done(0); for (auto& di : instances_) { SchedClosure([&di, &done] { di->DoReduce(); ++done; }); if (fail_after > 0) { Env::Default()->SleepForMicroseconds(100); } } while (done < static_cast<int>(instances_.size())) { Env::Default()->SleepForMicroseconds(1000); } } template <typename T> void RunTest(DataType dtype, const DeviceType& device_type, int num_workers, int num_devices, int num_subdivs, int tensor_len, int fail_after) { Init(num_workers, num_devices, dtype, TensorShape({tensor_len}), device_type, num_subdivs, fail_after); std::vector<T> expected(tensor_len); for (int di = 0; di < static_cast<int>(instances_.size()); ++di) { instances_[di]->InitTensor([&expected, dtype, di](Tensor* t) { for (size_t i = 0; i < t->NumElements(); ++i) { float value = pow(10, static_cast<double>(di)) * i; if (dtype == DT_INT32 || dtype == DT_INT64) { value = di * 10 + i; } t->flat<T>()(i) = static_cast<T>(value); expected[i] += static_cast<T>(value); } }); } Reduce(fail_after); if (fail_after > 0) { for (int di = 0; di < static_cast<int>(instances_.size()); ++di) { EXPECT_NE(instances_[di]->status_.message().find("Deliberate failure"), string::npos); } } else { for (int i = 0; i < tensor_len; ++i) { expected[i] /= static_cast<T>(num_workers * num_devices); } for (int di = 0; di < static_cast<int>(instances_.size()); ++di) { TF_EXPECT_OK(instances_[di]->status_); test::ExpectTensorEqual<T>(test::AsTensor<T>(expected), instances_[di]->tensor()); } } } class DeviceInstance { public: DeviceInstance(int rank, int num_subdivs, DataType dtype, const TensorShape& shape, CollectiveTestEnv* test_env) : test_env_(test_env), tensor_(dtype, shape) { col_params_ = CreateCollectiveParams(*test_env_, rank, "RingReduce", REDUCTION_COLLECTIVE, dtype, shape); if (num_subdivs > 0) { col_params_->instance.impl_details.subdiv_offsets = GenerateEvenSubdivOffsets(test_env->num_devices_per_worker, num_subdivs); } string dev_name = col_params_->group.members[rank].device.name(); TF_CHECK_OK(test_env_->device_mgr->LookupDevice(dev_name, &device_)) << "Couldn't find device " << dev_name << " existing devices: " << test_env_->device_mgr->DebugString(); merge_op_ = GetAdd(col_params_->instance.data_type, test_env_->device_type, device_); final_op_ = GetDiv(col_params_->instance.data_type, test_env_->device_type, device_); col_params_->merge_op = merge_op_.get(); col_params_->final_op = final_op_.get(); } void InitTensor(const std::function<void(Tensor*)>& init_f) { init_f(&tensor_); } void DoReduce() { status_ = RunCollective(test_env_, col_params_.get(), device_, &tensor_, &tensor_); } const Tensor& tensor() { return tensor_; } CollectiveTestEnv* test_env_; Tensor tensor_; Device* device_; core::RefCountPtr<CollectiveParams> col_params_; std::unique_ptr<OpKernel> merge_op_; std::unique_ptr<OpKernel> final_op_; Status status_; }; std::unique_ptr<CollectiveTestEnv> test_env_; std::vector<std::unique_ptr<DeviceInstance>> instances_; mutex mu_; int32 reduce_counter_ TF_GUARDED_BY(mu_) = 0; }; class RingReducerInitParamsTest : public ::testing::Test { protected: void RunSubdivPermsTest( CollectiveParams* cp, const std::vector<std::vector<int>>& expected_subdiv_perms, const std::vector<int>& expected_subdiv_rank) { cp->instance.impl_details.subdiv_permutations.clear(); cp->subdiv_rank.clear(); core::RefCountPtr<RingReducer> reducer(new RingReducer()); TF_CHECK_OK(reducer->InitializeCollectiveParams(cp)); EXPECT_EQ(expected_subdiv_perms, cp->instance.impl_details.subdiv_permutations); EXPECT_EQ(expected_subdiv_rank, cp->subdiv_rank); reducer->group_size_tensor_ready_.Notify(); } }; TEST_F(RingReducerInitParamsTest, SpecifiedSubdivs) { const int kNumDevsPerWorker = 8; const int kNumWorkers = 3; auto test_env = CreateCollectiveTestEnv(kNumWorkers, kNumDevsPerWorker, DEVICE_CPU); auto cp = CreateCollectiveParams(*test_env, 0, "RingReduce", REDUCTION_COLLECTIVE, DT_FLOAT, TensorShape({1})); cp->default_rank = 0; cp->instance.impl_details.subdiv_offsets = {0, 4}; RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}, {4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11, 20, 21, 22, 23, 16, 17, 18, 19}}, {0, 4}); cp->instance.impl_details.subdiv_offsets = {0, -4}; RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}, {3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12, 19, 18, 17, 16, 23, 22, 21, 20}}, {0, 3}); cp->default_rank = 3; cp->instance.impl_details.subdiv_offsets = {3, -3}; RunSubdivPermsTest(cp.get(), {{3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10, 19, 20, 21, 22, 23, 16, 17, 18}, {4, 3, 2, 1, 0, 7, 6, 5, 12, 11, 10, 9, 8, 15, 14, 13, 20, 19, 18, 17, 16, 23, 22, 21}}, {0, 1}); } TEST_F(RingReducerInitParamsTest, AutomaticSubdivs) { const int kNumDevsPerWorker = 8; const int kNumWorkers = 3; const int kNumDevs = kNumDevsPerWorker * kNumWorkers; auto test_env = CreateCollectiveTestEnv(kNumWorkers, kNumDevsPerWorker, DEVICE_CPU); auto cp = CreateCollectiveParams(*test_env, 0, "RingReduce", REDUCTION_COLLECTIVE, DT_FLOAT, TensorShape({1})); cp->default_rank = 0; cp->instance.impl_details.subdiv_offsets.clear(); cp->instance.impl_details.max_subdivs_per_device = 0; RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}}, {0}); { int num_subdivs = 2; int num_chunks = kNumDevs * num_subdivs; size_t chunk_size = 3 * 1048576; size_t tensor_size = chunk_size * num_chunks; cp->instance.shape = TensorShape( {static_cast<int64_t>(tensor_size / DataTypeSize(DT_FLOAT))}); } cp->instance.impl_details.subdiv_offsets.clear(); RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}, {3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12, 19, 18, 17, 16, 23, 22, 21, 20}}, {0, 3}); } TEST_F(RingReducerInitParamsTest, AutomaticSubdivUpperBound) { const int kNumDevsPerWorker = 1; const int kNumWorkers = 4; auto test_env = CreateCollectiveTestEnv(kNumWorkers, kNumDevsPerWorker, DEVICE_CPU); auto cp = CreateCollectiveParams(*test_env, 0, "RingReduce", REDUCTION_COLLECTIVE, DT_FLOAT, TensorShape({1})); cp->default_rank = 0; cp->instance.impl_details.subdiv_offsets.clear(); cp->instance.impl_details.max_subdivs_per_device = 0; cp->instance.shape = TensorShape({104857600 / DataTypeSize(DT_FLOAT)}); RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3}, {0, 1, 2, 3}}, {0, 0}); } TEST_F(RingReducerInitParamsTest, AutomaticSubdivIgnoresMaxNumSubdivs) { const int kNumDevsPerWorker = 1; const int kNumWorkers = 4; auto test_env = CreateCollectiveTestEnv(kNumWorkers, kNumDevsPerWorker, DEVICE_CPU); auto cp = CreateCollectiveParams(*test_env, 0, "RingReduce", REDUCTION_COLLECTIVE, DT_FLOAT, TensorShape({1})); cp->default_rank = 0; cp->instance.impl_details.max_subdivs_per_device = 4; cp->instance.shape = TensorShape({104857600 / DataTypeSize(DT_FLOAT)}); RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3}}, {0}); cp->default_rank = 0; cp->instance.impl_details.subdiv_offsets.clear(); cp->instance.impl_details.max_subdivs_per_device = 4; cp->instance.shape = TensorShape({104857600 / DataTypeSize(DT_FLOAT)}); RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}}, {0, 0, 0, 0}); } TEST_F(RingReducerInitParamsTest, AutomaticSubdivUsesDefault) { const int kNumDevsPerWorker = 1; const int kNumWorkers = 4; auto test_env = CreateCollectiveTestEnv(kNumWorkers, kNumDevsPerWorker, DEVICE_CPU); auto cp = CreateCollectiveParams(*test_env, 0, "RingReduce", REDUCTION_COLLECTIVE, DT_FLOAT, TensorShape({1})); cp->default_rank = 0; cp->instance.impl_details.subdiv_offsets.clear(); cp->instance.impl_details.max_subdivs_per_device = 0; cp->instance.shape = TensorShape({104857600 / DataTypeSize(DT_FLOAT)}); RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3}, {0, 1, 2, 3}}, {0, 0}); } TEST_F(RingReducerInitParamsTest, AutomaticSubdivDisabled) { const int kNumDevsPerWorker = 1; const int kNumWorkers = 4; auto test_env = CreateCollectiveTestEnv(kNumWorkers, kNumDevsPerWorker, DEVICE_CPU); auto cp = CreateCollectiveParams(*test_env, 0, "RingReduce", REDUCTION_COLLECTIVE, DT_FLOAT, TensorShape({1})); cp->default_rank = 0; cp->instance.impl_details.subdiv_offsets.clear(); cp->instance.impl_details.max_subdivs_per_device = -1; cp->instance.shape = TensorShape({104857600 / DataTypeSize(DT_FLOAT)}); RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3}}, {0}); } #define DEF_TEST(B, T, W, D, S, L, A) \ TEST_F(RingReducerTest, \ DaTy##B##_DevTy##T##_Wkr##W##_Dev##D##_Sdiv##S##_Len##L##_Abrt##A) { \ DataType dtype = DT_##B; \ switch (dtype) { \ case DT_FLOAT: { \ RunTest<float>(dtype, DEVICE_##T, W, D, S, L, A); \ } break; \ case DT_DOUBLE: { \ RunTest<double>(dtype, DEVICE_##T, W, D, S, L, A); \ } break; \ case DT_BFLOAT16: { \ RunTest<tensorflow::bfloat16>(dtype, DEVICE_##T, W, D, S, L, A); \ } break; \ case DT_INT32: { \ RunTest<int32>(dtype, DEVICE_##T, W, D, S, L, A); \ } break; \ case DT_INT64: { \ RunTest<int64_t>(dtype, DEVICE_##T, W, D, S, L, A); \ } break; \ default: \ LOG(FATAL) << "Unimplemented"; \ } \ } #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) DEF_TEST(FLOAT, CPU, 1, 2, 1, 1, 0) DEF_TEST(FLOAT, CPU, 1, 2, 1, 2, 0) DEF_TEST(FLOAT, CPU, 1, 2, 1, 8, 0) DEF_TEST(FLOAT, CPU, 1, 2, 1, 16, 0) DEF_TEST(FLOAT, CPU, 1, 2, 1, 1001, 0) DEF_TEST(FLOAT, CPU, 2, 4, 1, 128, 0) DEF_TEST(FLOAT, CPU, 2, 8, 1, 1001, 0) DEF_TEST(FLOAT, CPU, 2, 8, 1, 4096, 0) DEF_TEST(FLOAT, CPU, 2, 8, 1, 9408, 0) DEF_TEST(FLOAT, CPU, 2, 8, 3, 4095, 0) DEF_TEST(FLOAT, CPU, 2, 8, 3, 1045991, 0) DEF_TEST(FLOAT, CPU, 4, 4, 4, 1045991, 0) DEF_TEST(DOUBLE, CPU, 1, 2, 1, 1001, 0) DEF_TEST(DOUBLE, CPU, 2, 8, 3, 4095, 0) DEF_TEST(BFLOAT16, CPU, 1, 2, 1, 8, 0) DEF_TEST(BFLOAT16, CPU, 2, 8, 3, 16, 0) DEF_TEST(INT32, CPU, 1, 2, 1, 1001, 0) DEF_TEST(INT32, CPU, 2, 8, 3, 4095, 0) DEF_TEST(INT64, CPU, 1, 2, 1, 1001, 0) DEF_TEST(INT64, CPU, 2, 8, 3, 4095, 0) DEF_TEST(FLOAT, CPU, 2, 8, 1, 9408, 1) DEF_TEST(FLOAT, CPU, 2, 8, 1, 9408, 7) DEF_TEST(FLOAT, CPU, 2, 8, 2, 9408, 11) #endif #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM DEF_TEST(FLOAT, GPU, 1, 2, 1, 1, 0) DEF_TEST(FLOAT, GPU, 1, 2, 1, 2, 0) DEF_TEST(FLOAT, GPU, 1, 2, 1, 8, 0) DEF_TEST(FLOAT, GPU, 1, 2, 1, 16, 0) DEF_TEST(FLOAT, GPU, 1, 2, 1, 1001, 0) DEF_TEST(FLOAT, GPU, 1, 8, 1, 1001, 0) DEF_TEST(FLOAT, GPU, 1, 8, 1, 4096, 0) DEF_TEST(FLOAT, GPU, 1, 8, 3, 4095, 0) DEF_TEST(FLOAT, GPU, 1, 8, 3, 1045991, 0) DEF_TEST(FLOAT, GPU, 1, 4, 4, 1045991, 0) DEF_TEST(DOUBLE, GPU, 1, 2, 1, 1001, 0) DEF_TEST(INT64, GPU, 1, 2, 1, 1001, 0) DEF_TEST(FLOAT, GPU, 1, 8, 1, 9408, 2) DEF_TEST(FLOAT, GPU, 1, 8, 2, 9408, 5) #endif }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/ring_reducer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/ring_reducer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
13ecf62c-b147-4735-9f37-cf4474c6761c
cpp
tensorflow/tensorflow
isolate_placer_inspection_required_ops_pass
tensorflow/core/common_runtime/isolate_placer_inspection_required_ops_pass.cc
tensorflow/core/common_runtime/isolate_placer_inspection_required_ops_pass_test.cc
#include "tensorflow/core/common_runtime/isolate_placer_inspection_required_ops_pass.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/common_runtime/placer_inspection_required_ops_utils.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { Status IsolatePlacerInspectionRequiredOpsPass::Run( const GraphOptimizationPassOptions& options) { if (options.graph == nullptr) { VLOG(1) << "Not running IsolatePlacerInspectionRequiredOpsPass because no " "graph is provided"; return absl::OkStatus(); } VLOG(1) << "IsolatePlacerInspectionRequiredOpsPass::Run"; Graph* graph = options.graph->get(); if (VLOG_IS_ON(3)) { DumpGraphToFile("isolate_deep_ops_before", *graph, nullptr, "/tmp"); } Status status = IsolatePlacerInspectionRequiredOps(*options.flib_def, graph); if (VLOG_IS_ON(3) && status.ok()) { DumpGraphToFile("isolate_deep_ops_after", *graph, nullptr, "/tmp"); } return status; } REGISTER_OPTIMIZATION(OptimizationPassRegistry::PRE_PLACEMENT, 35, IsolatePlacerInspectionRequiredOpsPass); }
#include "tensorflow/core/common_runtime/isolate_placer_inspection_required_ops_pass.h" #include <map> #include <unordered_map> #include "absl/memory/memory.h" #include "absl/strings/str_join.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/equal_graph_def.h" namespace tensorflow { using ::tensorflow::test::function::GDef; using ::tensorflow::test::function::NDef; using FDH = ::tensorflow::FunctionDefHelper; static void RunPass(const GraphDef& original, GraphDef* rewritten, FunctionLibraryDefinition* flib_def) { std::unique_ptr<Graph> graph = std::make_unique<Graph>(OpRegistry::Global()); GraphConstructorOptions opts; opts.add_default_attributes = false; TF_ASSERT_OK(ConvertGraphDefToGraph(opts, original, graph.get())); GraphOptimizationPassOptions options; options.graph = &graph; options.flib_def = flib_def; IsolatePlacerInspectionRequiredOpsPass pass; TF_ASSERT_OK(pass.Run(options)); graph->ToGraphDef(rewritten); } static void RunPass(const GraphDef& original, GraphDef* rewritten) { FunctionLibraryDefinition flib_def(OpRegistry::Global(), original.library()); RunPass(original, rewritten, &flib_def); } void RunPassAndCompare(const GraphDef& original, const GraphDef& expected) { GraphDef rewritten; RunPass(original, &rewritten); TF_EXPECT_GRAPH_EQ(expected, rewritten); } void RunPassAndCompare(const GraphDef& original, const std::vector<GraphDef>& expected_alternatives) { GraphDef rewritten; RunPass(original, &rewritten); std::vector<string> errors; errors.push_back(absl::StrCat("Graphs did not match.\n Rewritten graph:\n", SummarizeGraphDef(rewritten))); for (const GraphDef& alternative : expected_alternatives) { string diff; bool graphs_equal = EqualGraphDef(rewritten, alternative, &diff); if (graphs_equal) { return; } errors.push_back(absl::StrCat(" Expected alternative:\n", SummarizeGraphDef(alternative))); } EXPECT_TRUE(false) << absl::StrJoin(errors, "\n"); } TEST(IsolatePlacerInspectionRequiredOpsPassTest, Basic) { FunctionDef func = test::function::ResourceIdentity(); GraphDef original = GDef( { NDef("x", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("y", "_Retval", {"f:0"}, {{"T", DT_RESOURCE}}), }, {func}); GraphDef expected = GDef( { NDef("x", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("x_f", "Identity", {"x"}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"x_f"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("f_y", "Identity", {"f:0"}, {{"T", DT_RESOURCE}}), NDef("y", "_Retval", {"f_y:0"}, {{"T", DT_RESOURCE}}), }, {func}); RunPassAndCompare(original, expected); } TEST(IsolatePlacerInspectionRequiredOpsPassTest, FunctionDefinitionNotInGraph) { FunctionDef func = test::function::ResourceIdentity(); GraphDef original = GDef({ NDef("x", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("y", "_Retval", {"f:0"}, {{"T", DT_RESOURCE}}), }); GraphDef expected = GDef({ NDef("x", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("x_f", "Identity", {"x"}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"x_f"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE}}, {"f", FDH::FunctionRef("ResourceIdentity", {})}}), NDef("f_y", "Identity", {"f:0"}, {{"T", DT_RESOURCE}}), NDef("y", "_Retval", {"f_y:0"}, {{"T", DT_RESOURCE}}), }); FunctionLibraryDefinition flib_def(OpRegistry::Global(), FunctionDefLibrary()); TF_ASSERT_OK(flib_def.AddFunctionDef(func)); GraphDef rewritten; RunPass(original, &rewritten, &flib_def); TF_EXPECT_GRAPH_EQ(expected, rewritten); } TEST(IsolatePlacerInspectionRequiredOpsPassTest, MultipleInputsAndOutputs) { FunctionDef func = test::function::Swap(); GraphDef original = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("r1", "_Retval", {"f:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "_Retval", {"f:1"}, {{"T", DT_RESOURCE}}), }, {func}); GraphDef expected = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("a_f", "Identity", {"a"}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b_f", "Identity", {"b"}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"a_f", "b_f"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("f_r1", "Identity", {"f:0"}, {{"T", DT_RESOURCE}}), NDef("r1", "_Retval", {"f_r1"}, {{"T", DT_RESOURCE}}), NDef("f_r2", "Identity", {"f:1"}, {{"T", DT_RESOURCE}}), NDef("r2", "_Retval", {"f_r2"}, {{"T", DT_RESOURCE}}), }, {func}); RunPassAndCompare(original, expected); } TEST(IsolatePlacerInspectionRequiredOpsPassTest, UnusedOutput) { FunctionDef func = test::function::Swap(); GraphDef original = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("r1", "_Retval", {"f:0"}, {{"T", DT_RESOURCE}}), }, {func}); GraphDef expected = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("a_f", "Identity", {"a"}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b_f", "Identity", {"b"}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"a_f", "b_f"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("f_r1", "Identity", {"f:0"}, {{"T", DT_RESOURCE}}), NDef("r1", "_Retval", {"f_r1"}, {{"T", DT_RESOURCE}}), NDef("f_0", "Identity", {"f:1"}, {{"T", DT_RESOURCE}}), }, {func}); RunPassAndCompare(original, expected); } TEST(IsolatePlacerInspectionRequiredOpsPassTest, OutputsConsumedBySameOp) { FunctionDef func = test::function::Swap(); GraphDef original = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"a", "b"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("add", "Add", {"f:0", "f:1"}, {{"T", DT_RESOURCE}}), }, {func}); GraphDef expected1 = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("a_f", "Identity", {"a"}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b_f", "Identity", {"b"}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"a_f", "b_f"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("f_add", "Identity", {"f:0"}, {{"T", DT_RESOURCE}}), NDef("f_add_0", "Identity", {"f:1"}, {{"T", DT_RESOURCE}}), NDef("add", "Add", {"f_add", "f_add_0"}, {{"T", DT_RESOURCE}}), }, {func}); GraphDef expected2 = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("a_f", "Identity", {"a"}, {{"T", DT_RESOURCE}}), NDef("b", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("b_f", "Identity", {"b"}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"a_f", "b_f"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("f_add", "Identity", {"f:1"}, {{"T", DT_RESOURCE}}), NDef("f_add_0", "Identity", {"f:0"}, {{"T", DT_RESOURCE}}), NDef("add", "Add", {"f_add_0", "f_add"}, {{"T", DT_RESOURCE}}), }, {func}); RunPassAndCompare(original, {expected1, expected2}); } TEST(IsolatePlacerInspectionRequiredOpsPassTest, IdenticalInputs) { FunctionDef func = test::function::Swap(); GraphDef original = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"a", "a"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("r1", "_Retval", {"f:0"}, {{"T", DT_RESOURCE}}), NDef("r2", "_Retval", {"f:1"}, {{"T", DT_RESOURCE}}), }, {func}); GraphDef expected1 = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("a_f", "Identity", {"a"}, {{"T", DT_RESOURCE}}), NDef("a_f_0", "Identity", {"a"}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"a_f", "a_f_0"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("f_r1", "Identity", {"f:0"}, {{"T", DT_RESOURCE}}), NDef("r1", "_Retval", {"f_r1"}, {{"T", DT_RESOURCE}}), NDef("f_r2", "Identity", {"f:1"}, {{"T", DT_RESOURCE}}), NDef("r2", "_Retval", {"f_r2"}, {{"T", DT_RESOURCE}}), }, {func}); GraphDef expected2 = GDef( { NDef("a", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("a_f", "Identity", {"a"}, {{"T", DT_RESOURCE}}), NDef("a_f_0", "Identity", {"a"}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"a_f_0", "a_f"}, {{"Tin", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_RESOURCE, DT_RESOURCE}}, {"f", FDH::FunctionRef("Swap", {{"T", DT_RESOURCE}})}}), NDef("f_r1", "Identity", {"f:0"}, {{"T", DT_RESOURCE}}), NDef("r1", "_Retval", {"f_r1"}, {{"T", DT_RESOURCE}}), NDef("f_r2", "Identity", {"f:1"}, {{"T", DT_RESOURCE}}), NDef("r2", "_Retval", {"f_r2"}, {{"T", DT_RESOURCE}}), }, {func}); RunPassAndCompare(original, {expected1, expected2}); } TEST(IsolatePlacerInspectionRequiredOpsPassTest, DirectCallsAreNotIsolated) { FunctionDef func = test::function::ResourceIdentity(); GraphDef original = GDef( { NDef("x", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "ResourceIdentity", {"x"}), NDef("y", "_Retval", {"f:0"}, {{"T", DT_RESOURCE}}), }, {func}); RunPassAndCompare(original, original); } TEST(IsolatePlacerInspectionRequiredOpsPassTest, FunctionsNotReturningResourcesAreNotIsolated) { FunctionDef func = test::function::ReadResourceVariable(); GraphDef original = GDef( { NDef("x", "_Arg", {}, {{"T", DT_RESOURCE}}), NDef("f", "PartitionedCall", {"x"}, {{"Tin", DataTypeSlice{DT_RESOURCE}}, {"Tout", DataTypeSlice{DT_FLOAT}}, {"f", FDH::FunctionRef("ReadResourceVariable", {})}}), NDef("y", "_Retval", {"f:0"}, {{"T", DT_FLOAT}}), }, {func}); RunPassAndCompare(original, original); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/isolate_placer_inspection_required_ops_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/isolate_placer_inspection_required_ops_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce6ef79f-c050-4a7f-b50f-126d68923ea5
cpp
tensorflow/tensorflow
process_util
tensorflow/core/common_runtime/process_util.cc
tensorflow/core/common_runtime/process_util_test.cc
#include "tensorflow/core/common_runtime/process_util.h" #if defined(ENABLE_MKL) && defined(ENABLE_ONEDNN_OPENMP) #ifdef _OPENMP #include <omp.h> #endif #endif #include <string.h> #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/byte_order.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/util.h" #include "tsl/platform/tracing.h" namespace tensorflow { namespace { int32 GetEnvNumInterOpThreads() { static int32_t env_num_threads = NumInterOpThreadsFromEnvironment(); return env_num_threads; } int32 DefaultNumInterOpThreads() { #ifndef __ANDROID__ int32_t env_num_threads = GetEnvNumInterOpThreads(); if (env_num_threads > 0) { return env_num_threads; } return port::MaxParallelism(); #else return 1; #endif } static thread::ThreadPool* InitComputePool(const SessionOptions& options) { int32_t inter_op_parallelism_threads = options.config.inter_op_parallelism_threads(); if (inter_op_parallelism_threads == 0) { inter_op_parallelism_threads = DefaultNumInterOpThreads(); } return new thread::ThreadPool( Env::Default(), ThreadOptions(), "Compute", inter_op_parallelism_threads, !options.config.experimental().disable_thread_spinning(), nullptr); } } thread::ThreadPool* ComputePool(const SessionOptions& options) { static thread::ThreadPool* compute_pool = InitComputePool(options); return compute_pool; } int32 NumInterOpThreadsFromEnvironment() { int32_t num; const char* val = std::getenv("TF_NUM_INTEROP_THREADS"); return (val && strings::safe_strto32(val, &num)) ? num : 0; } int32 NumIntraOpThreadsFromEnvironment() { int32_t num; const char* val = std::getenv("TF_NUM_INTRAOP_THREADS"); return (val && strings::safe_strto32(val, &num)) ? num : 0; } #if defined(ENABLE_ONEDNN_OPENMP) && defined(ENABLE_MKL) int32 OMPThreadsFromEnvironment() { int32 num; const char* val = std::getenv("OMP_NUM_THREADS"); return (val && strings::safe_strto32(val, &num)) ? num : 0; } int32 DefaultNumIntraOpThreads() { static int env_num_threads = NumIntraOpThreadsFromEnvironment(); if (env_num_threads > 0) { return env_num_threads; } return port::MaxParallelism(); } #endif int32 NumInterOpThreadsFromSessionOptions(const SessionOptions& options) { const int32_t inter_op = options.config.inter_op_parallelism_threads(); if (inter_op > 0) return inter_op; const int32_t env_inter_op = GetEnvNumInterOpThreads(); if (env_inter_op > 0) return env_inter_op; #if defined(ENABLE_ONEDNN_OPENMP) && defined(ENABLE_MKL) if (IsMKLEnabled()) { const int32 intra_op = options.config.intra_op_parallelism_threads(); const int32 omp_max_threads = OMPThreadsFromEnvironment(); const int32 mkl_intra_op = (omp_max_threads > 0) ? omp_max_threads : (intra_op > 0) ? intra_op : DefaultNumIntraOpThreads(); DCHECK_GE(mkl_intra_op, 1); const int32 mkl_inter_op = std::max( (DefaultNumInterOpThreads() + mkl_intra_op - 1) / mkl_intra_op, 2); VLOG(0) << "Creating new thread pool with default inter op setting: " << mkl_inter_op << ". Tune using inter_op_parallelism_threads for best performance."; return mkl_inter_op; } #endif return DefaultNumInterOpThreads(); } thread::ThreadPool* NewThreadPoolFromSessionOptions( const SessionOptions& options, int32_t num_threads) { const int32_t num_threads_real = num_threads > 0 ? num_threads : NumInterOpThreadsFromSessionOptions(options); VLOG(1) << "Session inter op parallelism threads: " << num_threads_real; return new thread::ThreadPool( options.env, ThreadOptions(), "Compute", num_threads_real, !options.config.experimental().disable_thread_spinning(), nullptr); } void SchedClosure(absl::AnyInvocable<void()> closure) { if (!tsl::tracing::EventCollector::IsEnabled()) { return Env::Default()->SchedClosure(std::move(closure)); } uint64 id = tsl::tracing::GetUniqueArg(); tsl::tracing::RecordEvent(tsl::tracing::EventCategory::kScheduleClosure, id); Env::Default()->SchedClosure([id, closure = std::move(closure)]() mutable { tsl::tracing::ScopedRegion region(tsl::tracing::EventCategory::kRunClosure, id); closure(); }); } void SchedNonBlockingClosureAfter(int64_t micros, absl::AnyInvocable<void()> closure) { Env::Default()->SchedClosureAfter(micros, std::move(closure)); } }
#include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(ProcessUtilTest, NumThreads) { SessionOptions opts; opts.config.set_inter_op_parallelism_threads(10); EXPECT_EQ(10, NumInterOpThreadsFromSessionOptions(opts)); } TEST(ProcessUtilTest, ThreadPool) { SessionOptions opts; opts.config.set_inter_op_parallelism_threads(10); thread::ThreadPool* pool = NewThreadPoolFromSessionOptions(opts); EXPECT_EQ(10, pool->NumThreads()); delete pool; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/process_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/process_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f3ed1296-aa66-4676-b427-1b02afef8845
cpp
tensorflow/tensorflow
replicate_constants_pass
tensorflow/core/common_runtime/replicate_constants_pass.cc
tensorflow/core/common_runtime/replicate_constants_pass_test.cc
#include "tensorflow/core/common_runtime/replicate_constants_pass.h" #include <algorithm> #include <cstdint> #include <limits> #include <string> #include <vector> #include "absl/container/btree_map.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/config/flags.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { constexpr int64_t kMaxSize = 16; void SetUniqueName(Graph* graph, Node* node) { node->set_name(graph->NewName(absl::StrCat(node->name(), "/replicate"))); } bool HasControlOut(Node* node) { auto control_out_it = std::find_if(node->out_edges().begin(), node->out_edges().end(), [](const auto& e) { return e->IsControlEdge(); }); return control_out_it != node->out_edges().end(); } bool HasCpuDevice(const Node* node) { DeviceNameUtils::ParsedName device; if (!DeviceNameUtils::ParseFullName(node->assigned_device_name(), &device)) return false; return device.type == "CPU"; } Status DeviceNameToCpuDeviceNameWithDeviceId(const string& device_name, string* host_device_name) { DeviceNameUtils::ParsedName device; if (!DeviceNameUtils::ParseFullName(device_name, &device)) { return absl::InternalError( absl::StrCat("Could not parse device name ", device_name)); } if (flags::Global().enable_aggressive_constant_replication.value() && device.type == "CPU") { *host_device_name = device_name; } else { device.type = "CPU"; device.has_type = true; device.id = 0; device.has_id = true; *host_device_name = DeviceNameUtils::ParsedNameToString(device); } return absl::OkStatus(); } Status GetDestinationCpuDevice(const Node* dst, std::string* device) { if (!dst->has_assigned_device_name()) return absl::AbortedError( absl::StrCat("Node name: ", dst->name(), " has no assigned device.")); return DeviceNameToCpuDeviceNameWithDeviceId(dst->assigned_device_name(), device); } Status GetSuccessorEdges( Node* node, absl::btree_map<std::string, std::vector<const Edge*>>& device_to_edges) { for (const auto& edge : node->out_edges()) { const Node* dst = edge->dst(); std::string device; TF_RETURN_IF_ERROR(GetDestinationCpuDevice(dst, &device)); if (!device_to_edges.count(device)) device_to_edges.insert({device, {}}); device_to_edges[device].push_back(edge); } return absl::OkStatus(); } void ReplicateToEachDevice( Graph* graph, Node* node, absl::btree_map<std::string, std::vector<const Edge*>>& device_to_edges) { for (const auto& pair : device_to_edges) { Node* copy = graph->CopyNode(node); SetUniqueName(graph, copy); const std::string device = pair.first; copy->set_assigned_device_name(device); for (const Edge* edge : pair.second) { graph->AddEdge(copy, edge->src_output(), edge->dst(), edge->dst_input()); } for (Node* src : node->in_nodes()) { graph->AddControlEdge(src, copy, true); } } graph->RemoveNode(node); } } Status ReplicateConstantsPass::Run( const GraphOptimizationPassOptions& options) { VLOG(1) << "replicate_constants_pass will replicate constants with " "number-of-elements <= " << kMaxSize; if (options.graph == nullptr) { VLOG(1) << "No graph in replicate_constants_pass."; return absl::OkStatus(); } Graph* graph = options.graph->get(); if (VLOG_IS_ON(1)) { VLOG(1) << DumpGraphToFile("before_replicate_constants_pass", *graph, options.flib_def); } int64_t min_skipped = std::numeric_limits<int64_t>::max(); int64_t max_skipped = std::numeric_limits<int64_t>::min(); for (Node* node : graph->nodes()) { if (!node->IsConstant()) continue; if (node->out_edges().size() <= 1) continue; if (HasControlOut(node)) continue; const TensorProto* value = nullptr; TF_RETURN_IF_ERROR(GetNodeAttr(node->attrs(), "value", &value)); TF_ASSIGN_OR_RETURN(TensorShape shape, TensorShape::BuildTensorShape(value->tensor_shape())); if (shape.num_elements() > kMaxSize) { min_skipped = std::min(min_skipped, shape.num_elements()); max_skipped = std::max(max_skipped, shape.num_elements()); continue; } if (!node->has_assigned_device_name()) continue; if (!HasCpuDevice(node)) continue; absl::btree_map<std::string, std::vector<const Edge*>> device_to_edges; TF_RETURN_IF_ERROR(GetSuccessorEdges(node, device_to_edges)); if (device_to_edges.size() <= 1) continue; ReplicateToEachDevice(graph, node, device_to_edges); } if (min_skipped != std::numeric_limits<int64_t>::max()) { VLOG(1) << "replicate_constants_pass skipped replicating constants with " "number of elements in the range " << min_skipped << " to " << max_skipped << "."; } if (VLOG_IS_ON(1)) { VLOG(1) << DumpGraphToFile("after_replicate_constants_pass", *graph, options.flib_def); } return absl::OkStatus(); } REGISTER_OPTIMIZATION(OptimizationPassRegistry::POST_REWRITE_FOR_EXEC, 3, ReplicateConstantsPass); }
#include "tensorflow/core/common_runtime/replicate_constants_pass.h" #include <memory> #include <string> #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/math_ops.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/config/flags.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" namespace tensorflow { const char kCpu0[] = "/job:tpu_host_worker/replica:0/task:0/device:CPU:0"; const char kCpu1[] = "/job:tpu_host_worker/replica:0/task:1/device:CPU:0"; const char kTpu00[] = "/job:tpu_host_worker/replica:0/task:0/device:TPU:0"; const char kTpu01[] = "/job:tpu_host_worker/replica:0/task:0/device:TPU:1"; const char kTpu10[] = "/job:tpu_host_worker/replica:0/task:1/device:TPU:0"; const char kTpu11[] = "/job:tpu_host_worker/replica:0/task:1/device:TPU:1"; Node* GetNode(const Graph& graph, const std::string& name) { for (Node* node : graph.nodes()) { if (node->name() == name) return node; } CHECK(false) << "Unknown node name: " << name; return nullptr; } Node* GetPredecessor(Node* node) { auto it = node->in_nodes().begin(); CHECK(it != node->in_nodes().end()) << "No predecessor for " << node->name() << "\n"; return *it; } bool IsEdge(Node* src, Node* dst) { for (Node* node : src->out_nodes()) { if (node == dst) return true; } return false; } TEST(ReplicateConstantsPassTest, TestSmallConstant) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output const0 = ops::Const(scope.WithOpName("const"), 1.0f, TensorShape({})); ops::Negate dst0(scope.WithOpName("dst0"), const0); ops::Negate dst1(scope.WithOpName("dst1"), const0); ops::Negate dst2(scope.WithOpName("dst2"), const0); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "const")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst0")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst1")->set_assigned_device_name(kCpu1); GetNode(*graph, "dst2")->set_assigned_device_name(kCpu1); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* dst0 = GetNode(*graph, "dst0"); Node* dst1 = GetNode(*graph, "dst1"); Node* dst2 = GetNode(*graph, "dst2"); EXPECT_EQ(dst0->assigned_device_name(), GetPredecessor(dst0)->assigned_device_name()); EXPECT_EQ(dst1->assigned_device_name(), GetPredecessor(dst1)->assigned_device_name()); EXPECT_EQ(dst2->assigned_device_name(), GetPredecessor(dst2)->assigned_device_name()); } TEST(ReplicateConstantsPassTest, TestLargeConstant) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output const0 = ops::Const(scope.WithOpName("const"), {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); ops::Negate dst0(scope.WithOpName("dst0"), const0); ops::Negate dst1(scope.WithOpName("dst1"), const0); ops::Negate dst2(scope.WithOpName("dst2"), const0); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "const")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst0")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst1")->set_assigned_device_name(kCpu1); GetNode(*graph, "dst2")->set_assigned_device_name(kCpu1); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* dst0 = GetNode(*graph, "dst0"); Node* dst1 = GetNode(*graph, "dst1"); Node* dst2 = GetNode(*graph, "dst2"); EXPECT_EQ(dst0->assigned_device_name(), GetPredecessor(dst0)->assigned_device_name()); EXPECT_NE(dst1->assigned_device_name(), GetPredecessor(dst1)->assigned_device_name()); EXPECT_NE(dst2->assigned_device_name(), GetPredecessor(dst2)->assigned_device_name()); } TEST(ReplicateConstantsPassTest, TestControlOut) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output const0 = ops::Const(scope.WithOpName("const0"), 1.0f, TensorShape({})); Output ctrl_succ = ops::Const(scope.WithOpName("ctrl_succ"), 1.0f, TensorShape({})); ops::Negate dst0(scope.WithOpName("dst0"), const0); ops::Negate dst1(scope.WithOpName("dst1"), const0); ops::Negate dst2(scope.WithOpName("dst2"), const0); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "const0")->set_assigned_device_name(kCpu0); GetNode(*graph, "ctrl_succ")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst0")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst1")->set_assigned_device_name(kCpu1); GetNode(*graph, "dst2")->set_assigned_device_name(kCpu1); graph->AddControlEdge(GetNode(*graph, "const0"), GetNode(*graph, "ctrl_succ")); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* dst0 = GetNode(*graph, "dst0"); Node* dst1 = GetNode(*graph, "dst1"); Node* dst2 = GetNode(*graph, "dst2"); EXPECT_EQ(dst0->assigned_device_name(), GetPredecessor(dst0)->assigned_device_name()); EXPECT_NE(dst1->assigned_device_name(), GetPredecessor(dst1)->assigned_device_name()); EXPECT_NE(dst2->assigned_device_name(), GetPredecessor(dst2)->assigned_device_name()); } TEST(ReplicateConstantsPassTest, TestTpuConst) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output const0 = ops::Const(scope.WithOpName("const0"), 1.0f, TensorShape({})); ops::Negate dst0(scope.WithOpName("dst0"), const0); ops::Negate dst1(scope.WithOpName("dst1"), const0); ops::Negate dst2(scope.WithOpName("dst2"), const0); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "const0")->set_assigned_device_name(kTpu00); GetNode(*graph, "dst0")->set_assigned_device_name(kTpu00); GetNode(*graph, "dst1")->set_assigned_device_name(kTpu10); GetNode(*graph, "dst2")->set_assigned_device_name(kTpu10); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* dst0 = GetNode(*graph, "dst0"); Node* dst1 = GetNode(*graph, "dst1"); Node* dst2 = GetNode(*graph, "dst2"); EXPECT_EQ(dst0->assigned_device_name(), GetPredecessor(dst0)->assigned_device_name()); EXPECT_NE(dst1->assigned_device_name(), GetPredecessor(dst1)->assigned_device_name()); EXPECT_NE(dst2->assigned_device_name(), GetPredecessor(dst2)->assigned_device_name()); } TEST(ReplicateConstantsPassTest, TestSmallAndLargeConstants) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output small = ops::Const(scope.WithOpName("small"), 1.0f, TensorShape({})); Output large = ops::Const(scope.WithOpName("large"), {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f}); ops::Add dst0(scope.WithOpName("dst0"), small, large); ops::Add dst1(scope.WithOpName("dst1"), small, large); ops::Add dst2(scope.WithOpName("dst2"), small, large); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "small")->set_assigned_device_name(kCpu0); GetNode(*graph, "large")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst0")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst1")->set_assigned_device_name(kCpu1); GetNode(*graph, "dst2")->set_assigned_device_name(kCpu1); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* small0 = GetNode(*graph, "small/replicate/_0"); Node* small1 = GetNode(*graph, "small/replicate/_1"); Node* large = GetNode(*graph, "large"); Node* dst0 = GetNode(*graph, "dst0"); Node* dst1 = GetNode(*graph, "dst1"); Node* dst2 = GetNode(*graph, "dst2"); EXPECT_EQ(small0->assigned_device_name(), kCpu0); EXPECT_EQ(small1->assigned_device_name(), kCpu1); EXPECT_EQ(large->assigned_device_name(), kCpu0); EXPECT_EQ(dst0->assigned_device_name(), kCpu0); EXPECT_EQ(dst1->assigned_device_name(), kCpu1); EXPECT_EQ(dst1->assigned_device_name(), kCpu1); EXPECT_TRUE(IsEdge(small0, dst0)); EXPECT_TRUE(IsEdge(large, dst0)); EXPECT_TRUE(IsEdge(small1, dst1)); EXPECT_TRUE(IsEdge(large, dst1)); EXPECT_TRUE(IsEdge(small1, dst2)); EXPECT_TRUE(IsEdge(large, dst2)); } TEST(ReplicateConstantsPassTest, TestTpuDestinations) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); { Scope scope = Scope::NewRootScope().ExitOnError(); Output const0 = ops::Const(scope.WithOpName("const"), 1.0f, TensorShape({})); ops::Negate dst00(scope.WithOpName("dst00"), const0); ops::Negate dst01(scope.WithOpName("dst01"), const0); ops::Negate dst10(scope.WithOpName("dst10"), const0); ops::Negate dst11(scope.WithOpName("dst11"), const0); TF_CHECK_OK(scope.ToGraph(graph.get())); } GetNode(*graph, "const")->set_assigned_device_name(kCpu0); GetNode(*graph, "dst00")->set_assigned_device_name(kTpu00); GetNode(*graph, "dst01")->set_assigned_device_name(kTpu01); GetNode(*graph, "dst10")->set_assigned_device_name(kTpu10); GetNode(*graph, "dst11")->set_assigned_device_name(kTpu11); GraphDef before; graph->ToGraphDef(&before); GraphOptimizationPassOptions options; options.graph = &graph; ReplicateConstantsPass pass; TF_ASSERT_OK(pass.Run(options)); GraphDef actual; graph->ToGraphDef(&actual); Node* const0 = GetNode(*graph, "const/replicate/_0"); Node* const1 = GetNode(*graph, "const/replicate/_1"); Node* dst00 = GetNode(*graph, "dst00"); Node* dst01 = GetNode(*graph, "dst01"); Node* dst10 = GetNode(*graph, "dst10"); Node* dst11 = GetNode(*graph, "dst11"); EXPECT_EQ(const0->assigned_device_name(), kCpu0); EXPECT_EQ(const1->assigned_device_name(), kCpu1); EXPECT_TRUE(IsEdge(const0, dst00)); EXPECT_TRUE(IsEdge(const0, dst01)); EXPECT_TRUE(IsEdge(const1, dst10)); EXPECT_TRUE(IsEdge(const1, dst11)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/replicate_constants_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/replicate_constants_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5e23e48e-e613-4ffe-b6df-e833fb616742
cpp
tensorflow/tensorflow
simplify_ici_dummy_variables_pass
tensorflow/core/common_runtime/simplify_ici_dummy_variables_pass.cc
tensorflow/core/common_runtime/simplify_ici_dummy_variables_pass_test.cc
#include "tensorflow/core/common_runtime/simplify_ici_dummy_variables_pass.h" #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "xla/tsl/util/device_name_utils.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/config/flags.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/platform/bfloat16.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace { constexpr absl::string_view kTpuExecute = "TPUExecute"; constexpr absl::string_view kParallelExecuteIds = "_parallel_execution_ids"; const char kICIWeightDistributionMlirBridgeMarker[] = "ici_weight_distribution_mlir_bridge_marker"; std::string GetNewOpName(std::string op_name, int index, int task_id) { return absl::StrCat(op_name, "_ici_specific_index_", std::to_string(index), "_task_id_", std::to_string(task_id)); } std::vector<Node*> GetNonMainReplicaIciTPUExecuteNodes(Graph* graph, bool& is_spmd) { std::vector<Node*> tpu_nodes; for (Node* node : graph->nodes()) { if (node->type_string() == kTpuExecute && HasNodeAttr(node->def(), kParallelExecuteIds)) { auto parallel_exec_ids = node->attrs().Find(kParallelExecuteIds)->s(); std::vector<std::string> group_vec = absl::StrSplit(parallel_exec_ids, ','); if (group_vec.empty()) return tpu_nodes; std::vector<std::string> replica_vec = absl::StrSplit(group_vec[0], ':'); int replica_id = std::stoi(replica_vec[1]); if (replica_id != 0) tpu_nodes.push_back(node); if (group_vec.size() > 1) { std::vector<std::string> parallel_vec = absl::StrSplit(group_vec[1], ':'); int parallel_id = std::stoi(parallel_vec[1]); if (parallel_id != 0) is_spmd = true; } } } return tpu_nodes; } void RedirectEdge(Graph* graph, Node* old_src_node, Node* dst_node, Node* new_src_node, int input_index) { const Edge* delete_edge; for (auto edge : dst_node->in_edges()) { if (edge->src() == old_src_node) { delete_edge = edge; break; } } if (delete_edge == nullptr) return; graph->RemoveEdge(delete_edge); graph->AddEdge(new_src_node, 0, dst_node, input_index); } string GetHostDeviceName(Node* tpu_node) { auto device_name = tpu_node->requested_device(); if (device_name.empty()) device_name = tpu_node->assigned_device_name(); DeviceNameUtils::ParsedName parsed_device_name; DeviceNameUtils::ParseFullName(device_name, &parsed_device_name); string host_device_name = DeviceNameUtils::FullName( parsed_device_name.job, parsed_device_name.replica, parsed_device_name.task, "CPU", 0); return host_device_name; } std::optional<std::vector<int>> GetOutputShapeVec(Node* node) { auto output_shapes = node->attrs().Find("_output_shapes"); if (output_shapes == nullptr) return std::nullopt; auto output_shape = output_shapes->list().shape()[0]; std::vector<int> output_shape_vec; output_shape_vec.reserve(output_shape.dim_size()); for (auto i = 0; i < output_shape.dim_size(); i++) { output_shape_vec.push_back(output_shape.dim()[i].size()); } return output_shape_vec; } int GetTPUTaskId(Node* tpu_node) { auto device_name = tpu_node->requested_device(); if (device_name.empty()) device_name = tpu_node->assigned_device_name(); DeviceNameUtils::ParsedName parsed_device_name; DeviceNameUtils::ParseFullName(device_name, &parsed_device_name); return parsed_device_name.task; } Node* BuildFillOp(GraphDefBuilder::Options& bopts, Node* tpu_node, Node* in_node, int input_index, string host_device_name) { auto output_shape_vec = GetOutputShapeVec(in_node); if (!output_shape_vec.has_value()) return nullptr; auto dtype = in_node->attrs().Find("T")->type(); int tpu_task_id = GetTPUTaskId(tpu_node); TensorShape tensor_shape; tensor_shape.AddDim(output_shape_vec.value().size()); Tensor const_op_shape_tensor(DT_INT32, tensor_shape); for (int i = 0; i < output_shape_vec.value().size(); i++) { const_op_shape_tensor.flat<int>()(i) = output_shape_vec.value()[i]; } std::string const_1_name = GetNewOpName("const_1", input_index, tpu_task_id); Node* fill_dim_input = ops::SourceOp("Const", bopts.WithName(const_1_name) .WithAttr("dtype", DT_INT32) .WithAttr("value", const_op_shape_tensor)); TensorShape fill_dim_output_shape; fill_dim_output_shape.AddDim(output_shape_vec.value().size()); fill_dim_input->AddAttr("_output_shapes", std::vector<TensorShape>{fill_dim_output_shape}); std::string const_2_name = GetNewOpName("const_2", input_index, tpu_task_id); auto scalar_tensor = Tensor(dtype, {}); if (dtype == DT_FLOAT) { scalar_tensor.scalar<float>()() = 0; } else if (dtype == DT_BFLOAT16) { scalar_tensor.scalar<bfloat16>()() = bfloat16(0); } else { LOG(ERROR) << "Unsupported data type: ", DataTypeString(dtype); return nullptr; } Node* fill_value_input = ops::SourceOp("Const", bopts.WithName(const_2_name) .WithAttr("dtype", dtype) .WithAttr("value", scalar_tensor)); TensorShape fill_value_output_shape; fill_value_input->AddAttr("_output_shapes", std::vector<TensorShape>{fill_value_output_shape}); std::string fill_name = GetNewOpName("fill", input_index, tpu_task_id); Node* new_fill = ops::BinaryOp("Fill", fill_dim_input, fill_value_input, bopts.WithName(fill_name).WithAttr("T", dtype)); TensorShape new_output_shape; for (auto output_shape : output_shape_vec.value()) { new_output_shape.AddDim(output_shape); } new_fill->AddAttr("_output_shapes", std::vector<TensorShape>{new_output_shape}); new_fill->AddAttr("_xla_inferred_shapes", std::vector<TensorShape>{new_output_shape}); fill_dim_input->set_requested_device(host_device_name); fill_value_input->set_requested_device(host_device_name); new_fill->set_requested_device(host_device_name); return new_fill; } absl::Status ReplaceIciDummyVariables(Graph* graph, int input_index, std::vector<Node*> tpu_nodes, GraphDefBuilder::Options& bopts) { absl::flat_hash_map<std::string, Node*> device_to_node_map; for (Node* tpu_node : tpu_nodes) { Node* in_node; TF_RETURN_IF_ERROR(tpu_node->input_node(input_index, &in_node)); if (!in_node->attrs().Find(kICIWeightDistributionMlirBridgeMarker)) { continue; } string host_device_name = GetHostDeviceName(tpu_node); if (device_to_node_map.contains(host_device_name)) { RedirectEdge(graph, in_node, tpu_node, device_to_node_map[host_device_name], input_index); continue; } Node* new_fill = BuildFillOp(bopts, tpu_node, in_node, input_index, host_device_name); if (new_fill == nullptr) continue; device_to_node_map[host_device_name] = new_fill; RedirectEdge(graph, in_node, tpu_node, device_to_node_map[host_device_name], input_index); } return absl::OkStatus(); } } bool ShouldRunPass(const GraphOptimizationPassOptions& options) { if (!flags::Global().enable_tf2min_ici_weight.value()) { VLOG(1) << "SimplifyIciDummyVariablesPass is disabled."; return false; } VLOG(1) << "SimplifyIciDummyVariablesPass is enabled."; if (options.graph == nullptr) { LOG(INFO) << "No graph in simplify_ici_dummy_variables_pass."; return false; } return true; } Status SimplifyIciDummyVariablesPass::Run( const GraphOptimizationPassOptions& options) { if (!ShouldRunPass(options)) { return absl::OkStatus(); } Graph* graph = options.graph->get(); VLOG(1) << DumpGraphToFile("before_simplify_ici_dummy_variables_pass", *graph, options.flib_def); absl::Status status; GraphDefBuilder::Options bopts(graph, &status); if (!status.ok()) { LOG(ERROR) << "GraphDefBuilder::Option failed to initialize."; return status; } bool is_spmd = false; std::vector<Node*> tpu_nodes = GetNonMainReplicaIciTPUExecuteNodes(graph, is_spmd); if (!is_spmd) { VLOG(1) << "Not SPMD case, skip SimplifyIciDummyVariablesPass."; return absl::OkStatus(); } if (tpu_nodes.empty()) { VLOG(1) << "tpu_nodes is empty, skip SimplifyIciDummyVariablesPass."; return absl::OkStatus(); } for (int i = 0; i < tpu_nodes[0]->num_inputs(); ++i) { auto replace_status = ReplaceIciDummyVariables(graph, i, tpu_nodes, bopts); if (!replace_status.ok()) { LOG(ERROR) << "Replace ici dummy variables failed."; return replace_status; } } RemoveDeadNodes(graph); VLOG(1) << DumpGraphToFile("after_simplify_ici_dummy_variables_pass", *graph, options.flib_def); return absl::OkStatus(); } REGISTER_OPTIMIZATION(OptimizationPassRegistry::PRE_PLACEMENT, 49, SimplifyIciDummyVariablesPass); }
#include "tensorflow/core/common_runtime/simplify_ici_dummy_variables_pass.h" #include <memory> #include <string> #include "absl/status/status.h" #include "tensorflow/cc/framework/scope.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_def_builder_util.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/config/flags.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/test.h" namespace tensorflow { Node* GetNode(const Graph& graph, const std::string& name) { for (Node* node : graph.nodes()) { if (node->name() == name) return node; } return nullptr; } std::string TestDataPath() { return tensorflow::GetDataDependencyFilepath( "tensorflow/core/common_runtime/testdata/"); } TEST(SimplifyIciDummyVariablesPassTest, flag_is_false) { flags::Global().enable_tf2min_ici_weight.reset(false); auto graph = std::make_unique<Graph>(OpRegistry::Global()); std::string graph_path = TestDataPath() + "simplify_ici_dummy_variables_pass_before.pbtxt"; tensorflow::GraphDef graph_def; absl::Status load_graph_status = ReadTextProto(tensorflow::Env::Default(), graph_path, &graph_def); EXPECT_EQ(load_graph_status.ok(), true); TF_EXPECT_OK(ConvertGraphDefToGraph(GraphConstructorOptions(), graph_def, graph.get())); GraphOptimizationPassOptions options; options.graph = &graph; SimplifyIciDummyVariablesPass pass; TF_ASSERT_OK(pass.Run(options)); Node* fill_1_dim = GetNode(*graph, "const_1_ici_specific_index_0_task_id_2"); Node* fill_1_value = GetNode(*graph, "const_2_ici_specific_index_0_task_id_2"); Node* fill_1 = GetNode(*graph, "fill_ici_specific_index_0_task_id_2"); EXPECT_EQ(fill_1_dim, nullptr); EXPECT_EQ(fill_1_value, nullptr); EXPECT_EQ(fill_1, nullptr); Node* fill_2_dim = GetNode(*graph, "const_1_ici_specific_index_1_task_id_2"); Node* fill_2_value = GetNode(*graph, "const_2_ici_specific_index_1_task_id_2"); Node* fill_2 = GetNode(*graph, "fill_ici_specific_index_1_task_id_2"); EXPECT_EQ(fill_2_dim, nullptr); EXPECT_EQ(fill_2_value, nullptr); EXPECT_EQ(fill_2, nullptr); } TEST(SimplifyIciDummyVariablesPassTest, replace_dummy_variable) { flags::Global().enable_tf2min_ici_weight.reset(true); auto graph = std::make_unique<Graph>(OpRegistry::Global()); std::string graph_path = TestDataPath() + "simplify_ici_dummy_variables_pass_before.pbtxt"; tensorflow::GraphDef graph_def; tensorflow::Status load_graph_status = ReadTextProto(tensorflow::Env::Default(), graph_path, &graph_def); EXPECT_EQ(load_graph_status.ok(), true); TF_EXPECT_OK(ConvertGraphDefToGraph(GraphConstructorOptions(), graph_def, graph.get())); GraphOptimizationPassOptions options; options.graph = &graph; SimplifyIciDummyVariablesPass pass; TF_ASSERT_OK(pass.Run(options)); Node* fill_1_dim = GetNode(*graph, "const_1_ici_specific_index_0_task_id_2"); Node* fill_1_value = GetNode(*graph, "const_2_ici_specific_index_0_task_id_2"); Node* fill_1 = GetNode(*graph, "fill_ici_specific_index_0_task_id_2"); EXPECT_NE(fill_1_dim, nullptr); EXPECT_NE(fill_1_value, nullptr); EXPECT_NE(fill_1, nullptr); EXPECT_EQ(fill_1_dim->requested_device(), "/job:tpu_host_worker/replica:0/task:2/device:CPU:0"); EXPECT_EQ(fill_1_value->requested_device(), "/job:tpu_host_worker/replica:0/task:2/device:CPU:0"); EXPECT_EQ(fill_1->requested_device(), "/job:tpu_host_worker/replica:0/task:2/device:CPU:0"); Node* fill_2_dim = GetNode(*graph, "const_1_ici_specific_index_1_task_id_2"); Node* fill_2_value = GetNode(*graph, "const_2_ici_specific_index_1_task_id_2"); Node* fill_2 = GetNode(*graph, "fill_ici_specific_index_1_task_id_2"); EXPECT_NE(fill_2_dim, nullptr); EXPECT_NE(fill_2_value, nullptr); EXPECT_NE(fill_2, nullptr); EXPECT_EQ(fill_2_dim->requested_device(), "/job:tpu_host_worker/replica:0/task:2/device:CPU:0"); EXPECT_EQ(fill_2_value->requested_device(), "/job:tpu_host_worker/replica:0/task:2/device:CPU:0"); EXPECT_EQ(fill_2->requested_device(), "/job:tpu_host_worker/replica:0/task:2/device:CPU:0"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/simplify_ici_dummy_variables_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/simplify_ici_dummy_variables_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c396709c-ef47-4f4e-8cf4-224ba0257c00
cpp
tensorflow/tensorflow
composite_device
tensorflow/core/common_runtime/composite_device.cc
tensorflow/core/common_runtime/composite_device_test.cc
#include "tensorflow/core/common_runtime/composite_device.h" #include "absl/strings/str_join.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { const char* const kCompositeDeviceType = "COMPOSITE"; std::unique_ptr<CompositeDevice> CompositeDevice::MakeDevice( const std::vector<string>& underlying_devices, const int unique_device_id, const DeviceNameUtils::ParsedName& host_name, Status* status) { DeviceNameUtils::ParsedName parsed_name = host_name; parsed_name.type = kCompositeDeviceType; parsed_name.id = unique_device_id; const string device_name = DeviceNameUtils::ParsedNameToString(parsed_name); return CompositeDevice::MakeDevice(underlying_devices, device_name, status); } std::unique_ptr<CompositeDevice> CompositeDevice::MakeDevice( const std::vector<string>& underlying_devices, const string& device_name, Status* status) { if (underlying_devices.empty()) { status->Update( errors::InvalidArgument("underlying_devices should not be empty.")); return nullptr; } DeviceNameUtils::ParsedName parsed_name; if (!DeviceNameUtils::ParseFullName(underlying_devices.at(0), &parsed_name)) { status->Update(tensorflow::errors::InvalidArgument( "Cannot parse device name ", underlying_devices.at(0), " when creating CompositeDevice.")); return nullptr; } const string& underlying_type = parsed_name.type; for (int i = 1; i < underlying_devices.size(); ++i) { DeviceNameUtils::ParsedName name; if (!DeviceNameUtils::ParseFullName(underlying_devices.at(i), &name)) { status->Update(tensorflow::errors::InvalidArgument( "Cannot parse device name ", underlying_devices.at(i), " when creating CompositeDevice.")); return nullptr; } if (name.type != underlying_type) { status->Update(tensorflow::errors::InvalidArgument( "Expect device type ", parsed_name.type, "; but got type ", name.type, " from device: ", underlying_devices.at(i), " when creating CompositeDevice.")); return nullptr; } } DeviceAttributes device_attributes; device_attributes.set_name(device_name); device_attributes.set_device_type(kCompositeDeviceType); return absl::WrapUnique( new CompositeDevice(device_attributes, underlying_devices)); } }
#include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace tensorflow { TEST(CompositeDeviceTest, Basic) { const string host_name = "/job:localhost/replica:0/task:0/device:CPU:0"; DeviceNameUtils::ParsedName parsed_host_name; EXPECT_TRUE(DeviceNameUtils::ParseFullName(host_name, &parsed_host_name)); std::vector<string> underlying_devices; { Status status; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice(underlying_devices, 0, parsed_host_name, &status); EXPECT_EQ(composite_device, nullptr); EXPECT_EQ(error::INVALID_ARGUMENT, status.code()); EXPECT_TRUE(absl::StrContains(status.message(), "underlying_devices should not be empty")) << status.ToString(); } { Status status; underlying_devices.push_back( "/job:localhost/replica:0/task:0/device:CPU:0"); underlying_devices.push_back( "/job:localhost/replica:0/task:0/device:CPU:1"); std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice(underlying_devices, 0, parsed_host_name, &status); TF_ASSERT_OK(status); EXPECT_EQ(composite_device->device_type(), kCompositeDeviceType); EXPECT_EQ(underlying_devices, *composite_device->underlying_devices()); } { Status status; underlying_devices.push_back( "/job:localhost/replica:0/task:0/device:GPU:0"); std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice(underlying_devices, 1, parsed_host_name, &status); EXPECT_EQ(composite_device, nullptr); EXPECT_EQ(error::INVALID_ARGUMENT, status.code()); EXPECT_TRUE(absl::StrContains(status.message(), "Expect device type CPU; but got type GPU")) << status.ToString(); } } TEST(CompositeDeviceTest, DeviceName) { const string composite_device_name = "/job:localhost/replica:0/task:0/device:CPU:10"; std::vector<string> underlying_devices; underlying_devices.push_back("/job:worker/replica:0/task:0/device:CPU:0"); underlying_devices.push_back("/job:worker/replica:0/task:0/device:CPU:1"); Status status; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice(underlying_devices, composite_device_name, &status); TF_ASSERT_OK(status); EXPECT_EQ(composite_device->name(), composite_device_name); EXPECT_EQ(composite_device->device_type(), kCompositeDeviceType); EXPECT_EQ(underlying_devices, *composite_device->underlying_devices()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/composite_device.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/composite_device_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
458adafa-04cc-4dde-85aa-2a8742b9d8ab
cpp
tensorflow/tensorflow
cost_measurement_registry
tensorflow/core/common_runtime/cost_measurement_registry.cc
tensorflow/core/common_runtime/cost_measurement_registry_test.cc
#include "tensorflow/core/common_runtime/cost_measurement_registry.h" #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/cost_measurement.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace { using RegistrationMap = absl::flat_hash_map<std::string, CostMeasurementRegistry::Creator>; RegistrationMap* GetRegistrationMap() { static RegistrationMap* registered_cost_measurements = new RegistrationMap; return registered_cost_measurements; } } std::unique_ptr<CostMeasurement> CostMeasurementRegistry::CreateByNameOrNull( const std::string& name, const CostMeasurement::Context& context) { const auto it = GetRegistrationMap()->find(name); if (it == GetRegistrationMap()->end()) { LOG_FIRST_N(ERROR, 1) << "Cost type " << name << " is unregistered."; return nullptr; } return it->second(context); } void CostMeasurementRegistry::RegisterCostMeasurement(absl::string_view name, Creator creator) { const auto it = GetRegistrationMap()->find(name); CHECK(it == GetRegistrationMap()->end()) << "CostMeasurement " << name << " is registered twice."; GetRegistrationMap()->emplace(name, std::move(creator)); } }
#include "tensorflow/core/common_runtime/cost_measurement_registry.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "tensorflow/core/common_runtime/cost_measurement.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { constexpr char kTestCostName[] = "test"; class TestCostMeasurement : public CostMeasurement { public: using CostMeasurement::CostMeasurement; absl::Duration GetTotalCost() override { return absl::ZeroDuration(); } absl::string_view GetCostType() const override { return kTestCostName; } }; REGISTER_COST_MEASUREMENT(kTestCostName, TestCostMeasurement); TEST(CostMeasurementRegistryTest, Basic) { const CostMeasurement::Context context; std::unique_ptr<const CostMeasurement> test_cost_measurement = CostMeasurementRegistry::CreateByNameOrNull("unregistered", context); EXPECT_EQ(test_cost_measurement, nullptr); test_cost_measurement = CostMeasurementRegistry::CreateByNameOrNull(kTestCostName, context); EXPECT_NE(test_cost_measurement, nullptr); } TEST(CostMeasurementRegistryDeathTest, CrashWhenRegisterTwice) { const auto creator = [](const CostMeasurement::Context& context) { return std::make_unique<TestCostMeasurement>(context); }; EXPECT_DEATH( CostMeasurementRegistry::RegisterCostMeasurement(kTestCostName, creator), absl::StrCat("CostMeasurement ", kTestCostName, " is registered twice.")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/cost_measurement_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/cost_measurement_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3de0f6a1-48f4-438a-b8a4-3ea5085c9e4a
cpp
tensorflow/tensorflow
ring_gatherer
tensorflow/core/common_runtime/ring_gatherer.cc
tensorflow/core/common_runtime/ring_gatherer_test.cc
#include "tensorflow/core/common_runtime/ring_gatherer.h" #include <stdlib.h> #include <atomic> #include <functional> #include <utility> #include "tensorflow/core/common_runtime/collective_rma_local.h" #include "tensorflow/core/common_runtime/collective_util.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/lib/traceme.h" namespace tensorflow { Status RingGatherer::InitializeCollectiveParams(CollectiveParams* col_params) { DCHECK_EQ(col_params->instance.type, GATHER_COLLECTIVE); DCHECK_EQ(col_params->instance.impl_details.collective_name, "RingGather"); if (!col_params->instance.impl_details.subdiv_offsets.empty() && (col_params->instance.impl_details.subdiv_offsets.size() > 1 || col_params->instance.impl_details.subdiv_offsets[0] != 0)) { return errors::InvalidArgument( "RingGather cannot take any subdiv offset other than 0."); } if (col_params->instance.impl_details.subdiv_offsets.empty()) { col_params->instance.impl_details.subdiv_offsets.push_back(0); } return RingAlg::InitializeCollectiveParams(col_params); } void RingGatherer::Run(StatusCallback done) { DCHECK(col_ctx_); DCHECK(col_params_); done_ = std::move(done); group_size_ = col_params_->group.group_size; num_subdivs_ = static_cast<int>( col_params_->instance.impl_details.subdiv_permutations.size()); DCHECK_GT(num_subdivs_, 0); if (VLOG_IS_ON(1)) { string buf; for (int r = 0; r < col_params_->group.members.size(); ++r) { strings::StrAppend(&buf, "dev ", r, " : ", col_params_->group.members[r].device.name(), "\n"); } for (int sd = 0; sd < col_params_->instance.impl_details.subdiv_permutations.size(); ++sd) { strings::StrAppend(&buf, "\nsubdiv ", sd, " perm: "); for (auto x : col_params_->instance.impl_details.subdiv_permutations[sd]) { strings::StrAppend(&buf, x, ", "); } } VLOG(1) << "RingGatherer::Run for device " << col_ctx_->device_name << " default_rank " << col_params_->default_rank << "\n" << buf; } AllocatorAttributes attr = col_ctx_->op_ctx->output_alloc_attr(0); ca_.reset(MakeCollectiveAdapter(col_ctx_->output, group_size_ * num_subdivs_, col_ctx_->device->GetAllocator(attr), false )); { tsl::profiler::TraceMe activity("MemCpyAsync", tsl::profiler::TraceMeLevel::kInfo); Notification note; Status status; Tensor alias_chunk(ca_->ChunkAlias(col_params_->subdiv_rank[0])); CollectiveRemoteAccessLocal::MemCpyAsync( col_ctx_->op_ctx->op_device_context(), col_ctx_->op_ctx->op_device_context(), col_ctx_->device, col_ctx_->device, col_ctx_->op_ctx->input_alloc_attr(0), col_ctx_->op_ctx->output_alloc_attr(0), col_ctx_->input, &alias_chunk, 0 , [&note, &status](const Status& s) { status.Update(s); note.Notify(); }); note.WaitForNotification(); if (!status.ok()) { done_(status); return; } } Finish(RunAsyncParts()); } bool RingGatherer::RunAsyncParts() { rfv_.clear(); rfv_.resize(group_size_ * num_subdivs_); PCQueue ready_queue; for (int chunk_idx = 0; chunk_idx < group_size_; ++chunk_idx) { for (int subdiv_idx = 0; subdiv_idx < num_subdivs_; ++subdiv_idx) { int rf_index = (chunk_idx * num_subdivs_) + subdiv_idx; InitRingField(&rfv_[rf_index], chunk_idx, subdiv_idx, rf_index); ready_queue.Enqueue(&rfv_[rf_index]); } } const DeviceBase::AcceleratorDeviceInfo* gpu_info = col_ctx_->device->tensorflow_accelerator_device_info(); if (gpu_info) { tsl::profiler::TraceMe activity("WaitForQueuedEvents", tsl::profiler::TraceMeLevel::kInfo); Notification note; Status s = gpu_info->default_context->ThenExecute( col_ctx_->device, gpu_info->stream, [&note]() { note.Notify(); }); if (s.ok()) { note.WaitForNotification(); } else { mutex_lock l(status_mu_); status_ = errors::Internal("Failed to dispatch ThenExecute in RingGatherer"); return false; } } int field_done_count = 0; int send_pending_count = 0; int recv_pending_count = 0; std::atomic<bool> aborted(false); { tsl::profiler::TraceMe activity("Loop", tsl::profiler::TraceMeLevel::kInfo); while (field_done_count < rfv_.size()) { VLOG(4) << FieldState(); RingField* rf = ready_queue.Dequeue(); bool dispatched = false; do { if (aborted) { ready_queue.Enqueue(rf); break; } switch (rf->action) { case RF_INIT: if (rf->do_recv) { rf->action = RF_RECV; auto requeue = [this, rf, &ready_queue, &aborted](Status s) { if (!s.ok()) { aborted = true; StartAbort(s); } ready_queue.Enqueue(rf); }; DispatchRecv(rf, requeue); dispatched = true; ++recv_pending_count; } else { rf->action = RF_SEND_READY; } break; case RF_RECV: DCHECK_GT(recv_pending_count, 0); --recv_pending_count; rf->action = RF_SEND_READY; break; case RF_REDUCE: TF_FALLTHROUGH_INTENDED; case RF_FINALIZE: TF_FALLTHROUGH_INTENDED; case RF_SEND_READY: if (rf->do_send) { rf->action = RF_SEND; auto send_complete = [this, rf, &ready_queue, &aborted](Status s) { if (!s.ok()) { aborted = true; StartAbort(s); } ready_queue.Enqueue(rf); }; DispatchSend(rf, send_complete); dispatched = true; ++send_pending_count; } else { rf->action = RF_DONE; } break; case RF_SEND: DCHECK_GT(send_pending_count, 0); --send_pending_count; rf->action = RF_DONE; break; case RF_DONE: break; } if (rf->action == RF_DONE) { ++field_done_count; break; } } while (!dispatched); if (aborted) break; } if (aborted) { while ((send_pending_count > 0) || (recv_pending_count > 0)) { RingField* rf = ready_queue.Dequeue(); switch (rf->action) { case RF_RECV: --recv_pending_count; break; case RF_SEND: --send_pending_count; break; default: { } } } } } DCHECK_EQ(send_pending_count, 0); DCHECK_EQ(recv_pending_count, 0); VLOG(2) << this << " device=" << col_ctx_->device_name << " finish;" << " final value " << TensorDebugString(ca_->Value()); return !aborted; } namespace { REGISTER_COLLECTIVE(RingGather, RingGatherer); } }
#include "tensorflow/core/common_runtime/ring_gatherer.h" #include <algorithm> #include "absl/memory/memory.h" #include "tensorflow/core/common_runtime/base_collective_executor.h" #include "tensorflow/core/common_runtime/collective_rma_local.h" #include "tensorflow/core/common_runtime/collective_test_util.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/device_resolver_local.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/test_collective_executor_mgr.h" #include "tensorflow/core/common_runtime/threadpool_device.h" #include "tensorflow/core/framework/collective.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/unbounded_work_queue.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" namespace tensorflow { class RingGathererTest : public ::testing::Test { protected: void Init(int num_workers, int num_devices, DataType dtype, const TensorShape& shape, const DeviceType& device_type, int num_subdivs, int fail_after) { test_env_ = CreateCollectiveTestEnv(num_workers, num_devices, device_type); test_env_->remote_access->set_fail_after(fail_after); for (int wi = 0; wi < num_workers; ++wi) { for (int di = 0; di < num_devices; ++di) { int rank = wi * num_devices + di; instances_.push_back(std::make_unique<DeviceInstance>( rank, num_subdivs, dtype, shape, test_env_.get())); } } } void Gather(int fail_after) { std::atomic<int> done(0); for (auto& di : instances_) { SchedClosure([&di, &done] { di->DoGather(); ++done; }); if (fail_after > 0) { Env::Default()->SleepForMicroseconds(100); } } while (done < static_cast<int>(instances_.size())) { Env::Default()->SleepForMicroseconds(1000); } } template <typename T> void RunTest(DataType dtype, const DeviceType& device_type, int num_workers, int num_devices, int num_subdivs, int tensor_len, int fail_after) { Init(num_workers, num_devices, dtype, TensorShape({tensor_len}), device_type, num_subdivs, fail_after); int32_t output_len = tensor_len * num_workers * num_devices; std::vector<T> expected(output_len, 0.0); for (int di = 0; di < static_cast<int>(instances_.size()); ++di) { int32_t instance_offset = di * tensor_len; instances_[di]->InitTensor( [instance_offset, &expected, dtype, di](Tensor* t) { for (size_t i = 0; i < t->NumElements(); ++i) { float value = pow(10, static_cast<double>(di)) * i; if (dtype == DT_INT32 || dtype == DT_INT64) { value = di * 10 + i; } t->flat<T>()(i) = static_cast<T>(value); expected[instance_offset + i] = value; } }); } Gather(fail_after); if (fail_after > 0) { for (int di = 0; di < static_cast<int>(instances_.size()); ++di) { EXPECT_NE(instances_[di]->status_.message().find("Deliberate failure"), string::npos); } } else { for (int di = 0; di < static_cast<int>(instances_.size()); ++di) { TF_EXPECT_OK(instances_[di]->status_); test::ExpectTensorEqual<T>(test::AsTensor<T>(expected), instances_[di]->output_tensor()); } } } class DeviceInstance { public: DeviceInstance(int rank, int num_subdivs, DataType dtype, const TensorShape& shape, CollectiveTestEnv* test_env) : test_env_(test_env), input_tensor_(dtype, shape) { col_params_ = CreateCollectiveParams(*test_env_, rank, "RingGather", GATHER_COLLECTIVE, dtype, shape); if (num_subdivs > 0) { col_params_->instance.impl_details.subdiv_offsets = GenerateEvenSubdivOffsets(test_env->num_devices_per_worker, num_subdivs); } string dev_name = col_params_->group.members[rank].device.name(); TF_CHECK_OK(test_env_->device_mgr->LookupDevice(dev_name, &device_)) << "Couldn't find device " << dev_name << " existing devices: " << test_env_->device_mgr->DebugString(); TensorShape output_shape = shape; output_shape.set_dim( 0, output_shape.dim_size(0) * col_params_->group.group_size); output_tensor_ = Tensor(dtype, output_shape); } void InitTensor(const std::function<void(Tensor*)>& init_f) { init_f(&input_tensor_); } void DoGather() { status_ = RunCollective(test_env_, col_params_.get(), device_, &input_tensor_, &output_tensor_); } const Tensor& input_tensor() { return input_tensor_; } const Tensor& output_tensor() { return output_tensor_; } CollectiveTestEnv* test_env_; Tensor input_tensor_; Tensor output_tensor_; Device* device_; core::RefCountPtr<CollectiveParams> col_params_; Status status_; }; std::unique_ptr<CollectiveTestEnv> test_env_; std::vector<std::unique_ptr<DeviceInstance>> instances_; }; class RingGathererInitParamsTest : public ::testing::Test { protected: void RunSubdivPermsTest( CollectiveParams* cp, const std::vector<std::vector<int>>& expected_subdiv_perms, const std::vector<int>& expected_subdiv_rank) { cp->instance.impl_details.subdiv_permutations.clear(); cp->subdiv_rank.clear(); core::RefCountPtr<RingGatherer> gatherer(new RingGatherer()); TF_CHECK_OK(gatherer->InitializeCollectiveParams(cp)); EXPECT_EQ(expected_subdiv_perms, cp->instance.impl_details.subdiv_permutations); EXPECT_EQ(expected_subdiv_rank, cp->subdiv_rank); } }; TEST_F(RingGathererInitParamsTest, SpecifiedSubdivs) { const int kNumDevsPerWorker = 8; const int kNumWorkers = 3; auto test_env = CreateCollectiveTestEnv(kNumWorkers, kNumDevsPerWorker, DEVICE_CPU); auto cp = CreateCollectiveParams(*test_env, 0, "RingGather", GATHER_COLLECTIVE, DT_FLOAT, TensorShape({1})); cp->default_rank = 0; cp->instance.impl_details.subdiv_offsets = {}; RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}}, {0}); cp->instance.impl_details.subdiv_offsets = {0}; RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}}, {0}); cp->default_rank = 3; cp->instance.impl_details.subdiv_offsets = {}; RunSubdivPermsTest(cp.get(), {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}}, {3}); } #define DEF_TEST(B, T, W, D, S, L, A) \ TEST_F(RingGathererTest, \ DaTy##B##_DevTy##T##_Wkr##W##_Dev##D##_Sdiv##S##_Len##L##_Abrt##A) { \ DataType dtype = DT_##B; \ switch (dtype) { \ case DT_FLOAT: { \ RunTest<float>(dtype, DEVICE_##T, W, D, S, L, A); \ } break; \ case DT_DOUBLE: { \ RunTest<double>(dtype, DEVICE_##T, W, D, S, L, A); \ } break; \ case DT_INT32: { \ RunTest<int32>(dtype, DEVICE_##T, W, D, S, L, A); \ } break; \ case DT_INT64: { \ RunTest<int64_t>(dtype, DEVICE_##T, W, D, S, L, A); \ } break; \ default: \ LOG(FATAL) << "Unimplemented"; \ } \ } #if !(GOOGLE_CUDA || TENSORFLOW_USE_ROCM) DEF_TEST(FLOAT, CPU, 1, 2, 1, 1, 0) DEF_TEST(FLOAT, CPU, 1, 2, 1, 2, 0) DEF_TEST(FLOAT, CPU, 1, 2, 1, 8, 0) DEF_TEST(FLOAT, CPU, 1, 2, 1, 16, 0) DEF_TEST(FLOAT, CPU, 1, 2, 1, 1001, 0) DEF_TEST(FLOAT, CPU, 2, 4, 1, 128, 0) DEF_TEST(FLOAT, CPU, 2, 8, 1, 1001, 0) DEF_TEST(FLOAT, CPU, 2, 8, 1, 4096, 0) DEF_TEST(FLOAT, CPU, 2, 8, 1, 9408, 0) DEF_TEST(FLOAT, CPU, 4, 4, 1, 32768, 0) DEF_TEST(DOUBLE, CPU, 1, 2, 1, 1001, 0) DEF_TEST(DOUBLE, CPU, 2, 8, 1, 4095, 0) DEF_TEST(INT32, CPU, 1, 2, 1, 1001, 0) DEF_TEST(INT32, CPU, 2, 8, 1, 4095, 0) DEF_TEST(INT64, CPU, 1, 2, 1, 1001, 0) DEF_TEST(INT64, CPU, 2, 8, 1, 4095, 0) DEF_TEST(FLOAT, CPU, 2, 8, 1, 9408, 1) DEF_TEST(FLOAT, CPU, 2, 8, 1, 9408, 7) DEF_TEST(FLOAT, CPU, 2, 8, 1, 9408, 11) #endif #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM DEF_TEST(FLOAT, GPU, 1, 2, 1, 1, 0) DEF_TEST(FLOAT, GPU, 1, 2, 1, 2, 0) DEF_TEST(FLOAT, GPU, 1, 2, 1, 8, 0) DEF_TEST(FLOAT, GPU, 1, 2, 1, 16, 0) DEF_TEST(FLOAT, GPU, 1, 2, 1, 1001, 0) DEF_TEST(FLOAT, GPU, 1, 8, 1, 1001, 0) DEF_TEST(FLOAT, GPU, 1, 8, 1, 4096, 0) DEF_TEST(FLOAT, GPU, 1, 8, 1, 4095, 0) DEF_TEST(FLOAT, GPU, 1, 8, 1, 32768, 0) DEF_TEST(FLOAT, GPU, 1, 4, 1, 32768, 0) DEF_TEST(DOUBLE, GPU, 1, 2, 1, 1001, 0) DEF_TEST(INT64, GPU, 1, 2, 1, 1001, 0) DEF_TEST(FLOAT, GPU, 1, 8, 1, 9408, 2) DEF_TEST(FLOAT, GPU, 1, 8, 1, 9408, 5) #endif }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/ring_gatherer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/ring_gatherer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
99f5a28d-e886-4282-beb8-9ab9d5c4ff0d
cpp
tensorflow/tensorflow
optimize_function_graph_utils
tensorflow/core/common_runtime/optimize_function_graph_utils.cc
tensorflow/core/common_runtime/optimize_function_graph_utils_test.cc
#include "tensorflow/core/common_runtime/optimize_function_graph_utils.h" #include <algorithm> #include <cstdlib> #include <iterator> #include <memory> #include <string> #include <type_traits> #include <unordered_map> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/function_body.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/common_runtime/function_optimization_registry.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/common_runtime/local_device.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/common_runtime/optimized_function_graph_info.h" #include "tensorflow/core/common_runtime/partitioning_utils.h" #include "tensorflow/core/common_runtime/placer.h" #include "tensorflow/core/common_runtime/replicate_per_replica_nodes.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/optimized_function_graph.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/host_info.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { Status ValidateNoListArguments( const protobuf::RepeatedPtrField<OpDef::ArgDef>& args, const char* arg_type, const string& function_name) { for (const OpDef::ArgDef& arg : args) { if (!arg.number_attr().empty() || !arg.type_list_attr().empty()) { return errors::InvalidArgument( "Function ", function_name, " has an ", arg_type, " named \"", arg.name(), "\" that is a list of tensors." " Multi-device functions support only single-tensor inputs " " and outputs"); } } return absl::OkStatus(); } Status ValidateMultiDeviceOptions( const FunctionDef& fdef, const FunctionLibraryRuntime::InstantiateOptions& options) { const OpDef& signature = fdef.signature(); TF_RETURN_IF_ERROR(ValidateNoListArguments(signature.input_arg(), "input", signature.name())); TF_RETURN_IF_ERROR(ValidateNoListArguments(signature.output_arg(), "output", signature.name())); if (fdef.attr().count(FunctionLibraryDefinition::kIntsOnDeviceAttr) != 0 && fdef.attr().at(FunctionLibraryDefinition::kIntsOnDeviceAttr).b()) { return errors::Unimplemented( "Function '", signature.name(), "' has `", FunctionLibraryDefinition::kIntsOnDeviceAttr, "` attribute set. This attribute is not currently supported by " "multi-device functions."); } if (options.input_devices.size() != signature.input_arg_size()) { return errors::InvalidArgument( "InstantiateOptions.input_devices must have the same length " "as the number of arguments: input_devices length = ", options.input_devices.size(), " number of arguments = ", signature.input_arg_size()); } if (!options.output_devices.empty() && options.output_devices.size() != signature.output_arg_size()) { return errors::InvalidArgument( "InstantiateOptions.output_devices must either be empty or have the " "same length as the number of arguments: output_devices length = ", options.output_devices.size(), " number of arguments = ", signature.output_arg_size()); } return absl::OkStatus(); } Status SetArgShape(const std::unordered_map<int, DtypeAndPartialTensorShape>& input_resource_dtypes_and_shapes, const std::vector<Node*>& arg_nodes) { for (Node* n : arg_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "index", &index)); DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "T", &dtype)); if (dtype == DT_RESOURCE) { auto dtype_and_shape_iter = input_resource_dtypes_and_shapes.find(index); if (dtype_and_shape_iter != input_resource_dtypes_and_shapes.end()) { AttrValue dtype_attr_value; dtype_attr_value.mutable_list()->add_type( dtype_and_shape_iter->second.dtype); n->AddAttr("_handle_dtypes", dtype_attr_value); TensorShapeProto shape_proto; dtype_and_shape_iter->second.shape.AsProto(&shape_proto); AttrValue shape_attr_value; *shape_attr_value.mutable_list()->add_shape() = shape_proto; n->AddAttr("_handle_shapes", shape_attr_value); } } } return absl::OkStatus(); } const string* AssignedOrRequestedDeviceName(const Node& node) { if (node.has_assigned_device_name()) { return &node.assigned_device_name(); } return &node.requested_device(); } void GetColocationGroup(const Node* node, string* group) { static const StringPiece kColocationAttrNameStringPiece(kColocationAttrName); const AttrValue* attr_value = node->attrs().Find(kColocationAttrNameStringPiece); if (attr_value != nullptr && attr_value->has_list() && attr_value->list().s_size() > 0) { *group = attr_value->list().s(0); } } Status WriteToCache(const std::string& dir_name, const std::string& file_name, OptimizedFunctionGraphInfo& optimized_function_graph_info, Env* env) { const absl::Time cache_writing_start_time = absl::Now(); OptimizedFunctionGraph optimized_function_graph_proto; string optimized_function_graph_proto_str; optimized_function_graph_proto = OptimizedFunctionGraphInfo::ToProto(optimized_function_graph_info); optimized_function_graph_proto.SerializeToString( &optimized_function_graph_proto_str); if (!env->FileExists(dir_name).ok()) { TF_RETURN_IF_ERROR(env->RecursivelyCreateDir(dir_name)); } { bool has_atomic_move = false; TF_RETURN_IF_ERROR(env->HasAtomicMove(dir_name, &has_atomic_move)); if (!has_atomic_move) { LOG_EVERY_POW_2(WARNING) << "Filesystem for OptimizedFunctionGraphInfo persistent cache at " << dir_name << " does not support atomic moves. Therefore the " "persistent cache is racy if you have multiple optimizations " "occurring simultaneously!"; } } std::string temp_file_name = file_name; if (!env->CreateUniqueFileName(&temp_file_name, ".pb.tmp")) { return absl::UnavailableError( absl::StrCat("Could not create a unique file inside ", dir_name)); } TF_RETURN_IF_ERROR(tsl::WriteStringToFile( env, temp_file_name, optimized_function_graph_proto_str)); TF_RETURN_IF_ERROR(env->RenameFile(temp_file_name, file_name)); const absl::Duration cache_writing_duration = absl::Now() - cache_writing_start_time; VLOG(3) << "Finished writing Tensorflow optimized graph into cache; took " << absl::ToInt64Milliseconds(cache_writing_duration) << " msecs, file name: " << file_name; return absl::OkStatus(); } absl::StatusOr<OptimizedFunctionGraphInfo> ReadFromCache( const string& file_name, Env* env) { absl::Time cache_reading_start_time = absl::Now(); OptimizedFunctionGraph optimized_function_graph_proto; string optimized_function_graph_proto_str; TF_RETURN_IF_ERROR(tsl::ReadFileToString( env, file_name, &optimized_function_graph_proto_str)); optimized_function_graph_proto.ParseFromString( optimized_function_graph_proto_str); TF_ASSIGN_OR_RETURN(absl::StatusOr<OptimizedFunctionGraphInfo> optimized_function_graph_info_restored, OptimizedFunctionGraphInfo::FromProto( std::move(optimized_function_graph_proto))); const absl::Duration cache_reading_duration = absl::Now() - cache_reading_start_time; VLOG(3) << "Finished reading Tensorflow optimized graph from cache; took " << absl::ToInt64Milliseconds(cache_reading_duration) << " msecs"; return optimized_function_graph_info_restored; } string GetFileCacheName(const string& dir_name, const string& function_name, const FunctionDef* fdef) { string plain_func_name = function_name; if (absl::StrContains(function_name, "_")) { std::vector<string> func_name_tokens = absl::StrSplit(function_name, '_'); func_name_tokens.pop_back(); plain_func_name = absl::StrJoin(func_name_tokens, "_"); } return absl::StrCat(dir_name, "/", tsl::port::JobName(), "_", tsl::port::TaskId(), "_", plain_func_name, "_", fdef->node_def_size()); } Status GetGraphAndArgRets(const string& function_name, AttrSlice attrs, core::RefCountPtr<FunctionRecord>&& fdef, const FunctionLibraryDefinition* lib_def, std::unique_ptr<Graph>* graph, std::vector<Node*>* arg_nodes, std::vector<Node*>* ret_nodes, std::vector<string>* ret_node_names, DataTypeVector* ret_types, std::vector<string>* control_ret_node_names) { std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(std::move(fdef), attrs, lib_def, &fbody)); if (!fbody) { LOG(ERROR) << "Failed to get FunctionBody for \"" << function_name << "\""; return errors::Internal("Failed to construct FunctionBody for ", function_name); } *graph = std::unique_ptr<Graph>(fbody->graph); arg_nodes->reserve(fbody->arg_nodes.size()); std::copy(fbody->arg_nodes.begin(), fbody->arg_nodes.end(), std::back_inserter(*arg_nodes)); ret_nodes->reserve(fbody->ret_nodes.size()); std::copy(fbody->ret_nodes.begin(), fbody->ret_nodes.end(), std::back_inserter(*ret_nodes)); fbody->graph = nullptr; ret_node_names->reserve(fbody->ret_nodes.size()); for (const Node* node : fbody->ret_nodes) { ret_node_names->push_back(node->name()); } for (const auto& ret_type : fbody->ret_types) { ret_types->push_back(ret_type); } control_ret_node_names->reserve(fbody->control_ret_nodes.size()); for (const Node* node : fbody->control_ret_nodes) { control_ret_node_names->push_back(node->name()); } return absl::OkStatus(); } } Status PinArgsAndRets(const std::vector<string>& input_devices, const std::vector<string>& output_devices, const DeviceSet& device_set, const std::vector<Node*>& arg_nodes, const std::vector<Node*>& ret_nodes, const FunctionLibraryDefinition* lib_def, Device* default_device) { for (Node* node : arg_nodes) { const AttrValue* attr_value; TF_RETURN_IF_ERROR(node->attrs().Find("index", &attr_value)); int64_t index = attr_value->i(); node->set_assigned_device_name(input_devices[index]); VLOG(3) << "Setting device to " << input_devices[index] << " for node " << node->name(); } for (Node* node : ret_nodes) { if (output_devices.empty()) { DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(node->attrs(), "T", &dtype)); VLOG(3) << "Trying to determine device for node " << node->name() << "[T=" << DataTypeString(dtype) << "]"; for (const auto& it : node->in_edges()) { if (it->IsControlEdge()) continue; Node* src_node = it->src(); const string* src_device = AssignedOrRequestedDeviceName(*src_node); string colocation_group = ""; GetColocationGroup(src_node, &colocation_group); VLOG(3) << "Considering src: " << src_node->name() << " src_device: " << *src_device << " colo group: " << colocation_group; while (src_device->empty() && colocation_group.empty() && src_node->IsIdentity()) { Node* input_node; TF_RETURN_IF_ERROR(src_node->input_node(0, &input_node)); src_node = input_node; src_device = AssignedOrRequestedDeviceName(*src_node); GetColocationGroup(src_node, &colocation_group); VLOG(3) << "Considering src: " << src_node->name() << " src_device: " << *src_device << " colo group: " << colocation_group; } const bool can_use_src_node_device = !(dtype == DT_RESOURCE && IsFunctionCall(*lib_def, *src_node)); if (!colocation_group.empty()) { AttrValue::ListValue colo_attr; colo_attr.add_s(colocation_group); std::vector<string> colo_slice = {colocation_group}; node->AddAttr(kColocationAttrName, colo_slice); } else if (!src_device->empty() && can_use_src_node_device) { if (dtype == DT_VARIANT && !src_node->IsArg()) { continue; } DeviceNameUtils::ParsedName parsed; if (!DeviceNameUtils::ParseFullName(*src_device, &parsed)) { return errors::InvalidArgument( "Failed to parse explicit device specification ", *src_device); } std::vector<Device*> matching_devices; device_set.FindMatchingDevices(parsed, &matching_devices); if (matching_devices.empty()) { if (default_device != nullptr) { matching_devices.push_back(default_device); } else { return errors::InvalidArgument( "Unable to find any devices for spec ", *src_device); } } else if (matching_devices.size() != 1) { bool on_same_task = true; for (int i = 1; i < matching_devices.size(); ++i) { if (!DeviceNameUtils::IsSameAddressSpace( matching_devices.at(0)->parsed_name(), matching_devices.at(i)->parsed_name())) { on_same_task = false; break; } } if (on_same_task) { continue; } if (default_device != nullptr) { int colocated_on_default_device = 0; for (int i = 0; i < matching_devices.size(); ++i) { if (DeviceNameUtils::IsSameAddressSpace( default_device->parsed_name(), matching_devices.at(i)->parsed_name())) { colocated_on_default_device++; } } if (colocated_on_default_device == 1) { continue; } } string devices = "["; for (Device* device : matching_devices) { devices.append(device->name()); devices.append(", "); } if (devices.size() > 2) { devices.resize(devices.size() - 2); } devices.append("]"); return errors::InvalidArgument( *src_device, "When FunctionLibraryRuntime::Options.output_devices are " "not specified for a multi-device function, the device " "specification on the output node must match exactly one " "device. Matched devices are ", devices); } VLOG(3) << "Setting output device to " << matching_devices[0]->name() << " for node " << SummarizeNode(*node); node->set_assigned_device_name(matching_devices[0]->name()); } else if (!src_device->empty() && !can_use_src_node_device) { VLOG(3) << "Did not set device for a resource output node " << SummarizeNode(*node); } } } else { const AttrValue* attr_value; TF_RETURN_IF_ERROR(node->attrs().Find("index", &attr_value)); int64_t index = attr_value->i(); DCHECK_GT(output_devices.size(), index); VLOG(3) << "Setting output device to " << output_devices[index] << " for return at index " << index; node->set_assigned_device_name(output_devices[index]); } } return absl::OkStatus(); } absl::StatusOr<OptimizedFunctionGraphInfo> OptimizeFunctionGraph( const string& function_name, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, const DeviceSet& dev_set, const FunctionLibraryDefinition* input_lib_def, const std::vector<CompositeDevice*>& composite_devices, Device* cpu_device, Device* default_device, Env* env, OptimizedFunctionGraph::OptimizationSource optimization_source) { const uint64_t graph_optimization_start_time_usecs = env->NowMicros(); const FunctionLibraryDefinition* lib_def = options.lib_def == nullptr ? input_lib_def : options.lib_def; core::RefCountPtr<FunctionRecord> fdef = lib_def->FindRecord(function_name); if (fdef == nullptr) { return errors::InvalidArgument("Failed to find function \"", function_name, "\" in function library: ", lib_def); } TF_RETURN_IF_ERROR(ValidateMultiDeviceOptions(fdef->fdef(), options)); std::unique_ptr<Graph> graph; std::vector<Node*> arg_nodes, ret_nodes; std::vector<string> ret_node_names; DataTypeVector ret_types; std::vector<string> control_ret_node_names; TF_RETURN_IF_ERROR(GetGraphAndArgRets( function_name, attrs, fdef.GetNewRef(), lib_def, &graph, &arg_nodes, &ret_nodes, &ret_node_names, &ret_types, &control_ret_node_names)); DEBUG_DATA_DUMPER()->DumpOpCreationStackTraces( function_name, kDebugGroupOpStacktrace, "before_opt", graph.get()); GraphDef graph_def; graph->ToGraphDef(&graph_def); FunctionLibraryDefinition reachable_lib_def = lib_def->ReachableDefinitions(graph_def); *graph_def.mutable_library() = reachable_lib_def.ToProto(); if (options.graph_collector != nullptr) { options.graph_collector->CollectRawGraph(graph_def); } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "initial", graph.get(), &reachable_lib_def, false); if (!options.xla_compile_device_type.empty()) { for (Node* node : graph->op_nodes()) { node->AddAttr("_xla_compile_device_type", options.xla_compile_device_type); if (default_device) { node->set_assigned_device_name(default_device->name()); } } } TF_RETURN_IF_ERROR( SetArgShape(options.input_resource_dtypes_and_shapes, arg_nodes)); TF_RETURN_IF_ERROR(PinArgsAndRets( options.input_devices, options.output_devices, dev_set, arg_nodes, ret_nodes, lib_def, options.config_proto.allow_soft_placement() ? default_device : nullptr)); DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_bridge", graph.get(), &reachable_lib_def, false); graph->mutable_flib_def()->set_default_registry(&reachable_lib_def); graph->mutable_flib_def()->Clear(); const bool should_run_optimization_passes = !options.is_component_function; if (!should_run_optimization_passes) { VLOG(1) << "Skipping function/graph optimization passes when instantiating " "component function " << function_name; } std::unordered_map<string, string> node_name_to_control_ret; bool control_rets_updated = false; if (should_run_optimization_passes) { FunctionOptimizationPass::FunctionOptions function_options{ options.xla_compile_device_type, options.allow_soft_placement}; TF_RETURN_IF_ERROR(FunctionOptimizationPassRegistry::Global().Run( function_name, dev_set, options.config_proto, function_options, &graph, &reachable_lib_def, &control_ret_node_names, &control_rets_updated)); } if (control_rets_updated) { for (const auto& control_ret : control_ret_node_names) { node_name_to_control_ret.emplace(control_ret, control_ret); } } else { for (const auto& control_ret : fdef->fdef().control_ret()) { node_name_to_control_ret.emplace(control_ret.second, control_ret.first); } } GraphOptimizationPassOptions optimization_options; SessionOptions session_options; session_options.env = env; session_options.config = options.config_proto; optimization_options.session_options = &session_options; optimization_options.graph = &graph; optimization_options.flib_def = &reachable_lib_def; optimization_options.device_set = &dev_set; optimization_options.is_function_graph = true; optimization_options.composite_devices = &composite_devices; optimization_options.default_function_device = default_device; optimization_options.function_def = &fdef->fdef(); optimization_options.shape_inference_on_tfe_dialect_import = options.shape_inference_on_tfe_dialect_import; optimization_options.debug_filename_prefix = function_name; DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_pre_placement_passes", graph.get(), &reachable_lib_def, false); if (should_run_optimization_passes) { TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::PRE_PLACEMENT, optimization_options)); } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_placer", graph.get(), &reachable_lib_def, false); Placer placer(graph.get(), function_name, optimization_options.flib_def, &dev_set, default_device, options.config_proto.allow_soft_placement(), options.config_proto.log_device_placement()); TF_RETURN_IF_ERROR(placer.Run(optimization_options)); DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_post_placement_passes", graph.get(), &reachable_lib_def, false); if (should_run_optimization_passes) { TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::POST_PLACEMENT, optimization_options)); } if (options.optimize_graph_fn) { DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_graph_optimization", graph.get(), &reachable_lib_def, false); Status status = options.optimize_graph_fn( std::move(ret_node_names), std::move(control_ret_node_names), &reachable_lib_def, dev_set, cpu_device, &graph); if (!status.ok()) { LOG(WARNING) << "Ignoring multi-device function optimization failure: " << status; } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "after_graph_optimization", graph.get(), &reachable_lib_def, false); } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_post_rewrite_for_exec_passes", graph.get(), &reachable_lib_def, false); if (should_run_optimization_passes) { TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::POST_REWRITE_FOR_EXEC, optimization_options)); } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "after_post_rewrite_for_exec_passes", graph.get(), &reachable_lib_def, false); graph->mutable_flib_def()->set_default_registry(nullptr); graph->mutable_flib_def()->Clear(); FunctionLibraryDefinition pruned_lib_def = reachable_lib_def.ReachableDefinitions(*graph); return OptimizedFunctionGraphInfo( function_name, std::move(graph), std::move(pruned_lib_def), node_name_to_control_ret, ret_types, ret_nodes.size(), env->NowMicros() - graph_optimization_start_time_usecs, optimization_source); } absl::StatusOr<OptimizedFunctionGraphInfo> OptimizeFunctionGraphOrReadFromFileCache( const string& function_name, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, const DeviceSet& dev_set, const FunctionLibraryDefinition* input_lib_def, const std::vector<CompositeDevice*>& composite_devices, Device* cpu_device, Device* default_device, Env* env, absl::Duration caching_threshold_duration) { const string dir_name = absl::StrCat(getenv(kGraphCachingEnvVariableName)); if (dir_name.empty() || options.is_component_function) { return OptimizeFunctionGraph(function_name, attrs, options, dev_set, input_lib_def, composite_devices, cpu_device, default_device, env, OptimizedFunctionGraph::JIT); } const FunctionLibraryDefinition* lib_def = options.lib_def == nullptr ? input_lib_def : options.lib_def; const FunctionDef* fdef = lib_def->Find(function_name); if (fdef == nullptr) { return absl::AbortedError(absl::StrCat( "Failed to find function ", function_name, " in function library: ", lib_def->ToProto().DebugString())); } const string file_name = GetFileCacheName(dir_name, function_name, fdef); if (env->FileExists(file_name).ok()) { LOG(INFO) << "TensorFlow graph cache existed; reading from cache; function name: " << function_name << ", full cache file path: " << file_name; absl::StatusOr<OptimizedFunctionGraphInfo> optimized_function_graph_info = ReadFromCache(file_name, env); if (optimized_function_graph_info.ok()) { metrics::UpdateFunctionGraphOptimizationSavingTime( optimized_function_graph_info->optimization_duration_usecs, metrics::GraphOptimizationSource::kJit); metrics::IncrementFunctionGraphOptimizationCacheHitCount( 1, metrics::GraphOptimizationSource::kJit); LOG(INFO) << "Successfully restored the Tensorflow optimized graph from " "the cache for the function: " << function_name << ", saved optimized time: " << absl::ToInt64Milliseconds(absl::Microseconds( optimized_function_graph_info->optimization_duration_usecs)) << " msecs"; return optimized_function_graph_info; } metrics::IncrementFunctionGraphOptimizationCacheFailureCount( 1, metrics::GraphOptimizationSource::kJit); LOG(ERROR) << "Reading from Tensorflow graph optimization cache failed. Continue " "to run the Tensorflow graph optimization passes instead. Error: " << optimized_function_graph_info.status(); return OptimizeFunctionGraph(function_name, attrs, options, dev_set, input_lib_def, composite_devices, cpu_device, default_device, env, OptimizedFunctionGraph::JIT); } metrics::IncrementFunctionGraphOptimizationCacheMissCount( 1, metrics::GraphOptimizationSource::kJit); VLOG(3) << "No cache existed; run the optimization passes. function name:" << " " << function_name; absl::Time optimization_start_time = absl::Now(); TF_ASSIGN_OR_RETURN( absl::StatusOr<OptimizedFunctionGraphInfo> optimized_function_graph_info, OptimizeFunctionGraph(function_name, attrs, options, dev_set, input_lib_def, composite_devices, cpu_device, default_device, env, OptimizedFunctionGraph::JIT)); const absl::Duration graph_optimization_duration = absl::Now() - optimization_start_time; VLOG(3) << "Finished running the optimization passes; took " << absl::ToInt64Seconds(graph_optimization_duration) << " secs; function name: " << function_name; if (graph_optimization_duration >= caching_threshold_duration) { LOG(INFO) << "Writing the optimized TensorFlow graph into cache: function name: " << function_name << ", full cache file path: " << file_name; Status s = WriteToCache(dir_name, file_name, optimized_function_graph_info.value(), env); if (!s.ok()) { LOG(ERROR) << "Caching the Tensorflow graph optimization results failed; " "cotinue without caching. Error message: " << s; } LOG(INFO) << "Successfully wrote the optimized Tensorflow graph into cache " "for the function: " << function_name << ", graph optimization time ( / threshold): " << absl::ToInt64Milliseconds(graph_optimization_duration) << " / (" << absl::ToInt64Milliseconds(caching_threshold_duration) << ") msecs"; } return optimized_function_graph_info; } absl::StatusOr< std::unique_ptr<std::unordered_map<string, std::unique_ptr<Graph>>>> PreprocessAndPartitionGraph( const std::string& function_name, OptimizedFunctionGraphInfo& input_optimized_graph, const FunctionLibraryRuntime::InstantiateOptions& options, const DeviceSet& dev_set, const FunctionLibraryDefinition* input_lib_def, const std::vector<CompositeDevice*>& composite_devices, Device* cpu_device, Env* env) { std::unique_ptr<Graph>& graph = input_optimized_graph.function_graph; TF_RETURN_IF_ERROR(ReplicatePerReplicaNodesInFunctionGraph( options.composite_devices, graph.get())); const FunctionLibraryDefinition* lib_def = options.lib_def == nullptr ? input_lib_def : options.lib_def; if (options.graph_collector != nullptr) { GraphDef def; graph->ToGraphDef(&def); *def.mutable_library() = lib_def->ReachableDefinitions(def).ToProto(); options.graph_collector->CollectOptimizedGraph(def); } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_partition", graph.get(), &input_optimized_graph.lib_def, VLOG_IS_ON(4)); auto device_name_to_subgraphs = std::make_unique<std::unordered_map<string, std::unique_ptr<Graph>>>(); TF_RETURN_IF_ERROR(PartitionFunctionGraph(dev_set, std::move(graph), device_name_to_subgraphs.get())); for (const auto& pair : *device_name_to_subgraphs) { std::string partitioned_func_name = absl::StrCat(function_name, "_partition_" + pair.first); const auto* optimized_subgraph = pair.second.get(); DEBUG_DATA_DUMPER()->DumpGraph( partitioned_func_name, kDebugGroupMain, "before_partition_passes", optimized_subgraph, &input_optimized_graph.lib_def, false); } GraphOptimizationPassOptions optimization_options; SessionOptions session_options; session_options.env = env; session_options.config = options.config_proto; optimization_options.session_options = &session_options; optimization_options.flib_def = &(input_optimized_graph.lib_def); optimization_options.is_function_graph = true; optimization_options.graph = nullptr; optimization_options.device_set = nullptr; optimization_options.partition_graphs = device_name_to_subgraphs.get(); optimization_options.debug_filename_prefix = function_name; if (cpu_device && std::is_same<decltype(cpu_device), LocalDevice>::value && cpu_device->tensorflow_cpu_worker_threads() != nullptr) { session_options.config.set_intra_op_parallelism_threads( cpu_device->tensorflow_cpu_worker_threads()->num_threads); } const bool should_run_optimization_passes = !options.is_component_function; if (should_run_optimization_passes) { TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::POST_PARTITIONING, optimization_options)); } for (const auto& pair : *device_name_to_subgraphs) { std::string partitioned_func_name = absl::StrCat(function_name, "_partition_" + pair.first); const auto* optimized_subgraph = pair.second.get(); DEBUG_DATA_DUMPER()->DumpGraph(partitioned_func_name, kDebugGroupMain, "after_partition_passes", optimized_subgraph, &input_optimized_graph.lib_def, false); } return std::move(device_name_to_subgraphs); } }
#include "tensorflow/core/common_runtime/optimize_function_graph_utils.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/function_testlib.h" #include "tensorflow/core/common_runtime/optimized_function_graph_info.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tsl/platform/env.h" #include "tsl/platform/status.h" namespace tensorflow { namespace { using ::testing::ElementsAre; constexpr absl::string_view kDevicePrefix = "/job:a/replica:0/task:0/device:"; void CreateCpuDeviceList(absl::string_view name_prefix, int num_devices, std::vector<std::unique_ptr<Device>>& devices) { SessionOptions options; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", num_devices}); TF_ASSERT_OK( DeviceFactory::AddDevices(options, "/job:a/replica:0/task:0", &devices)); } void TestOptimizeFunctionGraphWithFunctionNotFound(bool load_from_cache) { FunctionLibraryRuntime::InstantiateOptions opts; opts.is_multi_device_function = true; auto lib_def = std::make_unique<FunctionLibraryDefinition>(OpRegistry::Global()); std::vector<std::unique_ptr<Device>> devices; CreateCpuDeviceList(kDevicePrefix, 1, devices); DeviceSet device_set; for (const auto& device : devices) { device_set.AddDevice(device.get()); } absl::StatusOr<OptimizedFunctionGraphInfo> optimized_function_graph_info; if (load_from_cache) { optimized_function_graph_info = OptimizeFunctionGraphOrReadFromFileCache( "FindDevice", {}, opts, device_set, lib_def.get(), {}, devices[0].get(), devices[0].get(), Env::Default(), absl::ZeroDuration()); } else { optimized_function_graph_info = OptimizeFunctionGraph( "FindDevice", {}, opts, device_set, lib_def.get(), {}, devices[0].get(), devices[0].get(), Env::Default(), OptimizedFunctionGraph::AOT); } EXPECT_TRUE(absl::IsInvalidArgument(optimized_function_graph_info.status())) << "Actual status: " << optimized_function_graph_info.status(); EXPECT_TRUE( absl::StrContains(optimized_function_graph_info.status().message(), "Failed to find function")) << "Actual error message: " << optimized_function_graph_info.status().message(); } TEST(OptimizeFunctionGraphTest, OptimizeFunctionGraphReturnsErrorIfNoFunctionFound) { TestOptimizeFunctionGraphWithFunctionNotFound(false); } TEST(OptimizeFunctionGraphTest, OptimizeFunctionGraphReturnsCorrectResult) { FunctionLibraryRuntime::InstantiateOptions opts; opts.is_multi_device_function = true; FunctionDefLibrary proto; *(proto.add_function()) = test::function::FindDevice(); auto lib_def = std::make_unique<FunctionLibraryDefinition>(OpRegistry::Global(), proto); std::vector<std::unique_ptr<Device>> devices; CreateCpuDeviceList(kDevicePrefix, 3, devices); DeviceSet device_set; for (const auto& device : devices) { device_set.AddDevice(device.get()); } const absl::StatusOr<OptimizedFunctionGraphInfo> aot_result = OptimizeFunctionGraph("FindDevice", {}, opts, device_set, lib_def.get(), {}, devices[0].get(), devices[1].get(), Env::Default(), OptimizedFunctionGraph::AOT); TF_EXPECT_OK(aot_result.status()); EXPECT_EQ(aot_result->name, "FindDevice"); EXPECT_EQ(aot_result->num_return_nodes, 1); EXPECT_THAT(aot_result->ret_types, ElementsAre(DT_STRING)); EXPECT_GT(aot_result->optimization_duration_usecs, 0); EXPECT_EQ(aot_result->optimization_source, OptimizedFunctionGraph::AOT); } TEST(OptimizeFunctionGraphTest, ReloadFromCacheReturnsErrorIfNoFunctionFound) { TestOptimizeFunctionGraphWithFunctionNotFound(true); } TEST(OptimizeFunctionGraphTest, OptimizeFunctionGraphAndWriteToCache) { Env* env = Env::Default(); const string temp_dir = "/tmp/testing_cache_direcroty"; EXPECT_TRUE(env->RecursivelyCreateDir(temp_dir).ok()); setenv(kGraphCachingEnvVariableName, temp_dir.c_str(), 1); std::vector<string> empty_file_list; TF_ASSERT_OK( env->GetMatchingPaths(absl::StrCat(temp_dir, "{}, devices[0].get(), devices[1].get(), Env::Default(), absl::Hours(48)); TF_ASSERT_OK(optimized_info.status()); std::vector<string> file_list; TF_ASSERT_OK(env->GetMatchingPaths(absl::StrCat(temp_dir, "{}, devices[0].get(), devices[1].get(), Env::Default(), absl::ZeroDuration()); TF_ASSERT_OK(optimized_info.status()); file_list.clear(); TF_ASSERT_OK(env->GetMatchingPaths( absl::StrCat(temp_dir, "/_-1_FindDevice_1"), &file_list)); EXPECT_EQ(file_list.size(), 1); EXPECT_EQ(metrics::GetFunctionGraphOptimizationSavingTimeUsecs( metrics::GraphOptimizationSource::kJit), 0); EXPECT_EQ(metrics::GetFunctionGraphOptimizationCacheHitCount( metrics::GraphOptimizationSource::kJit), 0); EXPECT_EQ(metrics::GetFunctionGraphOptimizationCacheMissCount( metrics::GraphOptimizationSource::kJit), 2); optimized_info = OptimizeFunctionGraphOrReadFromFileCache( "FindDevice_1234", {}, opts, device_set, lib_def.get(), {}, devices[0].get(), devices[1].get(), Env::Default(), absl::ZeroDuration()); TF_ASSERT_OK(optimized_info.status()); file_list.clear(); TF_ASSERT_OK(env->GetMatchingPaths( absl::StrCat(temp_dir, "/_-1_FindDevice_1"), &file_list)); EXPECT_EQ(file_list.size(), 1); EXPECT_GT(metrics::GetFunctionGraphOptimizationSavingTimeUsecs( metrics::GraphOptimizationSource::kJit), 0); EXPECT_EQ(metrics::GetFunctionGraphOptimizationCacheHitCount( metrics::GraphOptimizationSource::kJit), 1); EXPECT_EQ(metrics::GetFunctionGraphOptimizationCacheMissCount( metrics::GraphOptimizationSource::kJit), 2); EXPECT_EQ(optimized_info->name, "FindDevice_1234"); EXPECT_EQ(optimized_info->num_return_nodes, 1); EXPECT_THAT(optimized_info->ret_types, ElementsAre(DT_STRING)); int64_t undeleted_files; int64_t undeleted_dirs; TF_EXPECT_OK( env->DeleteRecursively(temp_dir, &undeleted_files, &undeleted_dirs)); EXPECT_EQ(undeleted_files, 0); EXPECT_EQ(undeleted_dirs, 0); TF_ASSERT_OK( env->GetMatchingPaths(absl::StrCat(temp_dir, "/*"), &empty_file_list)); ASSERT_TRUE(empty_file_list.empty()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/optimize_function_graph_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/optimize_function_graph_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c6163921-3eb0-4635-9477-0c8012ec8a36
cpp
tensorflow/tensorflow
shape_refiner
tensorflow/core/common_runtime/shape_refiner.cc
tensorflow/core/common_runtime/shape_refiner_test.cc
#include "tensorflow/core/common_runtime/shape_refiner.h" #include <deque> #include <limits> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/common_runtime/eval_const_tensor.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/lib/core/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeAndType; using shape_inference::ShapeHandle; ShapeRefiner::ShapeRefiner(int graph_def_version, const OpRegistryInterface* ops) : graph_def_version_(graph_def_version), ops_registry_(ops), graph_runner_(Env::Default()) {} ShapeRefiner::ShapeRefiner(const VersionDef& versions, const OpRegistryInterface* ops) : ShapeRefiner(versions.producer(), ops) {} ShapeRefiner::~ShapeRefiner() { const_tensor_map_.clear(); } namespace { constexpr char kArgOp[] = "_Arg"; constexpr char kRetvalOp[] = "_Retval"; } Status ShapeRefiner::InferShapesForFunctionSubNode( const Node* node, InferenceContext* outer_context) { TF_RETURN_IF_ERROR(AddNodeInternal(node, outer_context)); InferenceContext* node_context = CHECK_NOTNULL(GetContext(node)); if (StringPiece(node->type_string()) == kArgOp) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(AttrSlice(node->def()), "index", &index)); if (index < 0 || outer_context->num_inputs() <= index) { return errors::Internal( "Function instantiation included invalid input index: ", index, " not in [0, ", outer_context->num_inputs(), ")."); } if (outer_context->input(index).SameHandle(ShapeHandle())) { VLOG(1) << "Function instantiation has undefined input shape at " << "index: " << index << " in the outer inference context."; node_context->set_output(0, node_context->UnknownShape()); } else { node_context->set_output(0, outer_context->input(index)); } auto* resource = outer_context->input_handle_shapes_and_types(index); if (resource) { node_context->set_output_handle_shapes_and_types(0, *resource); } } else if (StringPiece(node->type_string()) == kRetvalOp) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(AttrSlice(node->def()), "index", &index)); if (index < 0 || outer_context->num_outputs() <= index) { return errors::Internal( "Function instantiation included invalid output index: ", index, " not in [0, ", outer_context->num_outputs(), ")."); } ShapeHandle handle; TensorShapeProto proto; node_context->ShapeHandleToProto(node_context->input(0), &proto); TF_RETURN_IF_ERROR(outer_context->MakeShapeFromShapeProto(proto, &handle)); outer_context->set_output(index, handle); const std::vector<ShapeAndType>* resource = node_context->input_handle_shapes_and_types(0); if (resource) { std::vector<ShapeAndType> copied_shapes_and_types; for (auto& shape_and_type : *resource) { ShapeHandle handle; TensorShapeProto proto; node_context->ShapeHandleToProto(shape_and_type.shape, &proto); TF_RETURN_IF_ERROR( outer_context->MakeShapeFromShapeProto(proto, &handle)); copied_shapes_and_types.push_back( ShapeAndType(handle, shape_and_type.dtype, shape_and_type.type)); } outer_context->set_output_handle_shapes_and_types( index, copied_shapes_and_types); } } return absl::OkStatus(); } Status ShapeRefiner::InferShapesForFunction(const FunctionDef* function_def, AttrSlice attributes, InferenceContext* outer_context) { const Graph* graph; const string& fname = function_def->signature().name(); auto it = functions_.find(fname); if (it != functions_.end()) { graph = it->second.get(); } else { InstantiationResult result; TF_RETURN_IF_ERROR(InstantiateFunction( *function_def, attributes, [this](const string& op, const OpDef** sig) { return this->function_library_->LookUpOpDef(op, sig); }, &result)); Graph* new_graph = new Graph(function_library_); GraphConstructorOptions options; options.allow_internal_ops = true; TF_RETURN_IF_ERROR( ConvertNodeDefsToGraph(options, result.nodes, new_graph)); functions_[fname].reset(new_graph); graph = new_graph; } absl::flat_hash_set<const Node*> function_nodes; Status inference_status = absl::OkStatus(); { auto node_shape_inference_lambda = [this, &outer_context, &function_nodes, &inference_status](const Node* node) { if (!inference_status.ok()) return; inference_status = InferShapesForFunctionSubNode(node, outer_context); function_nodes.insert(node); }; ReverseDFS(*graph, {}, node_shape_inference_lambda); } for (const Node* node : function_nodes) { node_to_context_.erase(node); } return inference_status; } Status ShapeRefiner::AddNode(const Node* node) { return AddNodeInternal(node, nullptr); } Status ShapeRefiner::AddNodeInternal( const Node* node, shape_inference::InferenceContext* outer_context) { std::unique_ptr<InferenceContext> ic(new InferenceContext( graph_def_version_, node->def(), node->op_def(), std::vector<ShapeHandle>(node->num_inputs()), {}, {}, {})); TF_RETURN_IF_ERROR(ic->construction_status()); for (const Edge* e : node->in_edges()) { if (e->IsControlEdge()) continue; if (e->dst_input() < 0) { return tensorflow::errors::Internal( "Index ", e->dst_input(), " is negative but not a control edge."); } const Node* input = e->src(); auto it = node_to_context_.find(input); if (it == node_to_context_.end()) { ic->SetInput(e->dst_input(), ic->UnknownShape()); continue; } InferenceContext* input_ic = it->second.get(); ic->SetInput(e->dst_input(), input_ic->output(e->src_output())); const auto* in_v = input_ic->output_handle_shapes_and_types(e->src_output()); if (in_v != nullptr) { DataType input_type = e->src()->output_type(e->src_output()); DCHECK(input_type == DT_RESOURCE || input_type == DT_VARIANT); ic->set_input_handle_shapes_and_types(e->dst_input(), std::vector<ShapeAndType>(*in_v)); } } const OpRegistrationData* op_reg_data; TF_RETURN_IF_ERROR(ops_registry_->LookUp(node->type_string(), &op_reg_data)); if (op_reg_data->shape_inference_fn == nullptr && require_shape_inference_fns_) { return errors::InvalidArgument( "No shape inference function exists for op '", node->type_string(), "', did you forget to define it?"); } TF_RETURN_IF_ERROR(RunShapeFn(node, op_reg_data, ic.get(), outer_context)); node_to_context_[node].swap(ic); return absl::OkStatus(); } Status ShapeRefiner::SetShape(const Node* node, int output_port, ShapeHandle shape) { auto c = GetContext(node); if (c == nullptr) { return errors::Internal("Could not find context for ", node->name()); } if (output_port < 0 || output_port >= node->num_outputs()) { return errors::InvalidArgument( "output_port '", output_port, "' is out of range, ", "node '", node->name(), "' has ", node->num_outputs(), " outputs"); } if (node->num_outputs() > c->num_outputs()) { TF_RETURN_IF_ERROR(c->ExpandOutputs(node->num_outputs())); } ShapeHandle existing_shape = c->output(output_port); TF_RETURN_IF_ERROR(c->Merge(existing_shape, shape, &shape)); c->set_output(output_port, shape); return absl::OkStatus(); } Status ShapeRefiner::UpdateNode(const Node* node, bool relax, bool* refined) { auto it = node_to_context_.find(node); if (it == node_to_context_.end()) { *refined = true; return AddNode(node); } InferenceContext* node_context = it->second.get(); TF_RETURN_IF_ERROR(node_context->construction_status()); for (const Edge* e : node->in_edges()) { if (e->IsControlEdge()) continue; int dst_input = e->dst_input(); int src_output = e->src_output(); Node* input = e->src(); auto iter = node_to_context_.find(input); if (iter == node_to_context_.end()) { return errors::FailedPrecondition( "Input ", dst_input, " ('", input->name(), "') for '", node->name(), "' was not previously added to ShapeRefiner."); } InferenceContext* c = iter->second.get(); DCHECK_GE(dst_input, 0); ShapeHandle existing_input = node_context->input(dst_input); if (!relax) { if (node_context->MergeInput(dst_input, c->output(src_output))) { if (!SameDefinedShape(node_context, node_context->input(dst_input), existing_input)) { *refined = true; } } } else { if (node_context->RelaxInput(dst_input, c->output(src_output))) { if (!SameDefinedShape(node_context, node_context->input(dst_input), existing_input)) { *refined = true; } } } if (node_context->requested_input_tensor_as_partial_shape(dst_input)) { *refined = true; } if (e->src()->output_type(src_output) == DT_RESOURCE) { auto* outputs = c->output_handle_shapes_and_types(src_output); if (!outputs) continue; if (!relax && node_context->MergeInputHandleShapesAndTypes(dst_input, *outputs)) { *refined = true; } else if (relax) { std::vector<ShapeAndType> existing_inputs; const std::vector<ShapeAndType>* inputs = node_context->input_handle_shapes_and_types(dst_input); if (inputs) { existing_inputs = *inputs; } if (node_context->RelaxInputHandleShapesAndMergeTypes(dst_input, *outputs)) { if (IsUpdatedShapesOrTypes( node_context, existing_inputs, *node_context->input_handle_shapes_and_types(dst_input))) { *refined = true; } } } } } if (!*refined) { return absl::OkStatus(); } const OpRegistrationData* op_reg_data; TF_RETURN_IF_ERROR(ops_registry_->LookUp(node->type_string(), &op_reg_data)); if (op_reg_data->shape_inference_fn == nullptr && require_shape_inference_fns_) { return errors::InvalidArgument( "No shape inference function exists for op '", node->type_string(), "', did you forget to define it?"); } if (!op_reg_data->shape_inference_fn) { return absl::OkStatus(); } return RunShapeFn(node, op_reg_data, node_context); } Status ShapeRefiner::EvaluateConstantTensorForEdge( const Node* node, int dst_idx, bool* evaluated, Tensor* result, InferenceContext* outer_context) { const Edge* input_edge; TF_RETURN_IF_ERROR(node->input_edge(dst_idx, &input_edge)); const Node& src = *input_edge->src(); const int src_output = input_edge->src_output(); auto lookup = [&](const Node& node, int index) -> std::optional<Tensor> { if (node.IsArg() && outer_context != nullptr) { int index; if (GetNodeAttr(node.def(), "index", &index).ok() && 0 <= index && index < outer_context->num_inputs()) { const auto* tensor = outer_context->input_tensor(index); outer_context->request_input_tensor(index); if (tensor != nullptr) { return *tensor; } } } auto it = const_tensor_map_.find({node.id(), index}); if (it != const_tensor_map_.end()) { return it->second; } return std::optional<Tensor>(); }; std::optional<EvaluateConstantTensorRunner> runner; if (!disable_constant_propagation_) { runner = EvaluateConstantTensorRunner{ ops_registry_, graph_def_version_, &graph_runner_, }; } TF_ASSIGN_OR_RETURN(auto tensor, EvaluateConstantTensor( src, src_output, *this, lookup, runner)); *evaluated = tensor.has_value(); if (tensor.has_value()) { if (tensor->TotalBytes() <= kMaxTensorSize) { const_tensor_map_.emplace(std::make_pair(src.id(), src_output), *tensor); } *result = *std::move(tensor); } return absl::OkStatus(); } Status ShapeRefiner::EvaluateConstantIntScalarEdge( const Node* node, int dst_idx, bool* evaluated, int64_t* result, shape_inference::InferenceContext* outer_context) { Tensor scalar; TF_RETURN_IF_ERROR(EvaluateConstantTensorForEdge(node, dst_idx, evaluated, &scalar, outer_context)); if (*evaluated) { if (scalar.NumElements() != 1) { return errors::InvalidArgument( "EvaluateConstantIntScalarEdge called on non-scalar edge: ", scalar.NumElements()); } if (scalar.dtype() == DT_INT32) { *result = scalar.scalar<int32>()(); } else { if (scalar.dtype() != DT_INT64) { return errors::InvalidArgument( "EvaluateConstantIntScalarEdge called on non-integer edge: ", scalar.dtype()); } *result = scalar.scalar<int64_t>()(); } } return absl::OkStatus(); } Status ShapeRefiner::ConstantPartialShape( InferenceContext* target_context, const Node* node, int dst_idx, ShapeHandle* result, shape_inference::InferenceContext* outer_context) { const Edge* input_edge; TF_RETURN_IF_ERROR(node->input_edge(dst_idx, &input_edge)); InferenceContext* src_context = GetContext(input_edge->src()); if (src_context == nullptr) return errors::Internal("Missing src context"); ShapeHandle src_shape = src_context->output(input_edge->src_output()); if (src_context->Value(src_context->Rank(src_shape)) == 0) { Tensor t; bool evaluated = false; TF_RETURN_IF_ERROR(EvaluateConstantTensorForEdge(node, dst_idx, &evaluated, &t, outer_context)); if (!evaluated) { return errors::InvalidArgument( "Received a shape scalar with unknown static value. A static value " "of '-1' is required to represent an unknown shape."); } if (t.dims() == 0) { if (t.dtype() == DT_INT32 && t.scalar<int32>()() == -1) { *result = target_context->UnknownShape(); return absl::OkStatus(); } else if (t.dtype() == DT_INT64 && t.scalar<int64_t>()() == -1) { *result = target_context->UnknownShape(); return absl::OkStatus(); } } return errors::InvalidArgument( "Received an invalid shape scalar with a static value that is not " "'-1': ", t.DebugString()); } TF_RETURN_IF_ERROR(src_context->WithRank(src_shape, 1, &src_shape)); const string& src_op = input_edge->src()->type_string(); if (src_context->Value(src_context->Dim(src_shape, 0)) == 0) { *result = target_context->Scalar(); } else if (src_op == "Cast") { Tensor t; bool evaluated = false; if (EvaluateConstantTensorForEdge(node, dst_idx, &evaluated, &t, outer_context) .ok()) { if (evaluated && target_context->MakeShapeFromTensor(&t, src_shape, result).ok()) { return absl::OkStatus(); } } ShapeHandle pre_cast_shape; if (!ConstantPartialShape(target_context, input_edge->src(), 0, &pre_cast_shape, outer_context) .ok()) { TF_RETURN_IF_ERROR( target_context->MakeShapeFromTensor(nullptr, src_shape, result)); } if (!target_context->RankKnown(pre_cast_shape)) { *result = target_context->UnknownShape(); return absl::OkStatus(); } auto* dest_type = input_edge->src()->attrs().Find("DstT"); if (dest_type == nullptr || dest_type->value_case() != AttrValue::kType || (dest_type->type() != DT_INT32 && dest_type->type() != DT_INT64)) { *result = target_context->MakeShape(std::vector<DimensionHandle>( target_context->Rank(pre_cast_shape), target_context->UnknownDim())); return absl::OkStatus(); } *result = pre_cast_shape; } else if (src_op == "Shape") { *result = src_context->input(0); } else if (src_op == "ShapeN") { *result = src_context->input(input_edge->src_output()); } else if (src_op == "Pack") { std::vector<DimensionHandle> dims; for (int i = 0; i < src_context->num_inputs(); ++i) { int64_t size; bool evaluated; TF_RETURN_IF_ERROR(EvaluateConstantIntScalarEdge( input_edge->src(), i, &evaluated, &size, outer_context)); if (evaluated) { dims.push_back(size < 0 ? target_context->UnknownDim() : target_context->MakeDim(size)); } else { dims.push_back(target_context->UnknownDim()); } } *result = target_context->MakeShape(dims); } else if (src_op == "Concat" || src_op == "ConcatV2") { *result = target_context->Scalar(); const int concat_dim = src_op == "Concat" ? 0 : src_context->num_inputs() - 1; for (int i = 0; i < src_context->num_inputs(); ++i) { if (i == concat_dim) continue; ShapeHandle sub_result; TF_RETURN_IF_ERROR(ConstantPartialShape(target_context, input_edge->src(), i, &sub_result, outer_context)); if (!target_context->RankKnown(sub_result)) { *result = target_context->UnknownShape(); return absl::OkStatus(); } TF_RETURN_IF_ERROR( target_context->Concatenate(*result, sub_result, result)); } } else if (src_op == "StridedSlice") { TF_RETURN_IF_ERROR(PartialStridedSliceShape(input_edge->src(), src_context, result, outer_context)); } else if (src_op == "VariableShape") { auto* handle_data = src_context->input_handle_shapes_and_types(0); if (handle_data != nullptr && !handle_data->empty()) { *result = handle_data->at(0).shape; } else { *result = target_context->UnknownShape(); } } else { Tensor t; bool evaluated = false; TF_RETURN_IF_ERROR(EvaluateConstantTensorForEdge(node, dst_idx, &evaluated, &t, outer_context)); TF_RETURN_IF_ERROR(target_context->MakeShapeFromTensor( evaluated ? &t : nullptr, src_shape, result)); } return absl::OkStatus(); } Status ShapeRefiner::PartialStridedSliceShape( Node* slice_node, InferenceContext* ctx, ShapeHandle* result, shape_inference::InferenceContext* outer_context) { for (int i = 1; i <= 3; ++i) { ShapeHandle input_shape = ctx->input(i); if (ctx->Value(ctx->Dim(input_shape, 0)) != 1) { *result = ctx->UnknownShape(); return absl::OkStatus(); } } int begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask; TF_RETURN_IF_ERROR( GetNodeAttr(slice_node->attrs(), "begin_mask", &begin_mask)); TF_RETURN_IF_ERROR(GetNodeAttr(slice_node->attrs(), "end_mask", &end_mask)); TF_RETURN_IF_ERROR( GetNodeAttr(slice_node->attrs(), "ellipsis_mask", &ellipsis_mask)); TF_RETURN_IF_ERROR( GetNodeAttr(slice_node->attrs(), "new_axis_mask", &new_axis_mask)); TF_RETURN_IF_ERROR( GetNodeAttr(slice_node->attrs(), "shrink_axis_mask", &shrink_axis_mask)); if (!(begin_mask == 0 || begin_mask == 1) || !(end_mask == 0 || end_mask == 1) || ellipsis_mask != 0 || new_axis_mask != 0 || shrink_axis_mask != 0) { *result = ctx->UnknownShape(); return absl::OkStatus(); } bool evaluated; int64_t begin; if (begin_mask == 1) { begin = 0; } else { TF_RETURN_IF_ERROR(EvaluateConstantIntScalarEdge(slice_node, 1, &evaluated, &begin, outer_context)); if (!evaluated) { *result = ctx->UnknownShape(); return absl::OkStatus(); } } int64_t end; if (end_mask == 1) { end = std::numeric_limits<int64_t>::max(); } else { TF_RETURN_IF_ERROR(EvaluateConstantIntScalarEdge(slice_node, 2, &evaluated, &end, outer_context)); if (!evaluated) { *result = ctx->UnknownShape(); return absl::OkStatus(); } } int64_t stride; TF_RETURN_IF_ERROR(EvaluateConstantIntScalarEdge(slice_node, 3, &evaluated, &stride, outer_context)); if (!evaluated) { *result = ctx->UnknownShape(); return absl::OkStatus(); } ShapeHandle input; TF_RETURN_IF_ERROR( ConstantPartialShape(ctx, slice_node, 0, &input, outer_context)); TF_RETURN_IF_ERROR(ctx->Subshape(input, begin, end, stride, result)); return absl::OkStatus(); } Status ShapeRefiner::RunShapeFn(const Node* node, const OpRegistrationData* op_reg_data, InferenceContext* c, InferenceContext* outer_context) { std::vector<const Tensor*> input_tensors(node->num_inputs(), nullptr); std::vector<Tensor> real_tensors(node->num_inputs()); std::vector<bool> attempted_materialization(node->num_inputs()); std::vector<bool> attempted_tensor_as_shape_conversion(node->num_inputs()); std::vector<ShapeHandle> input_tensors_as_shapes; c->set_input_tensors(input_tensors); c->set_input_tensors_as_shapes(input_tensors_as_shapes); auto run_inference_lambda = [&]() { if (function_library_ && IsFunctionCall(*function_library_, *node)) { bool disable_shape_inference; if (!GetNodeAttr(AttrSlice(node->def()), "_disable_call_shape_inference", &disable_shape_inference) .ok() || !disable_shape_inference) { NameAttrList function; TF_RETURN_IF_ERROR( NameAndAttrsFromFunctionCall(node->def(), &function)); const FunctionDef* function_def = function_library_->Find(function.name()); if (function_def != nullptr) { auto const_tensor_map_copy = const_tensor_map_; const_tensor_map_.clear(); VLOG(4) << "Running shape inference for function \"" << function.name() << "\"."; Status function_inference_status = InferShapesForFunction( function_def, AttrSlice(&function.attr()), c); const_tensor_map_ = const_tensor_map_copy; VLOG(4) << "Shape inference for function \"" << function.name() << "\" returned status " << function_inference_status << "."; return function_inference_status; } } } if (op_reg_data->shape_inference_fn) { VLOG(4) << "Running shape inference function for node \"" << node->name() << "\" of type \"" << node->type_string() << "\"."; TF_RETURN_IF_ERROR(c->Run(op_reg_data->shape_inference_fn)); } else { VLOG(4) << "Unknown shape inference function for node \"" << node->name() << "\" of type \"" << node->type_string() << "\"."; TF_RETURN_IF_ERROR(c->Run(shape_inference::UnknownShape)); } VLOG(4) << "Shape inference passed for node \"" << node->name() << "\" of type \"" << node->type_string() << "\"."; return absl::OkStatus(); }; TF_RETURN_IF_ERROR(run_inference_lambda()); bool rerun_shape_fn; do { rerun_shape_fn = false; for (int i = 0; i < c->num_inputs(); ++i) { if (!c->requested_input_tensor(i)) { continue; } if (!attempted_materialization[i]) { attempted_materialization[i] = true; Tensor result; bool evaluated = false; TF_RETURN_IF_ERROR(EvaluateConstantTensorForEdge( node, i, &evaluated, &result, outer_context)); if (evaluated) { real_tensors[i] = result; input_tensors[i] = &real_tensors[i]; rerun_shape_fn = true; } } if (c->requested_input_tensor_as_partial_shape(i) && !attempted_tensor_as_shape_conversion[i]) { attempted_tensor_as_shape_conversion[i] = true; if (i >= input_tensors_as_shapes.size()) { input_tensors_as_shapes.resize(i + 1); } ShapeHandle s; TF_RETURN_IF_ERROR(ConstantPartialShape(c, node, i, &s, outer_context)); input_tensors_as_shapes[i] = s; rerun_shape_fn = true; } } if (rerun_shape_fn) { c->set_input_tensors(input_tensors); c->set_input_tensors_as_shapes(input_tensors_as_shapes); TF_RETURN_IF_ERROR(run_inference_lambda()); } } while (rerun_shape_fn); return absl::OkStatus(); } bool ShapeRefiner::SameDefinedShape(InferenceContext* c, ShapeHandle s0, ShapeHandle s1) { if (s0.SameHandle(s1)) { return true; } if (c->Rank(s0) != c->Rank(s1)) { return false; } if (!c->RankKnown(s0) && !c->RankKnown(s1)) { return false; } for (int i = 0; i < c->Rank(s0); ++i) { if (!c->Dim(s0, i).SameHandle(c->Dim(s1, i))) { int64_t val0 = c->Value(c->Dim(s0, i)); int64_t val1 = c->Value(c->Dim(s1, i)); if (val0 < 0 || val1 < 0 || val0 != val1) { return false; } } } return true; } bool ShapeRefiner::IsUpdatedShapesOrTypes( InferenceContext* c, const std::vector<ShapeAndType>& existing, const std::vector<ShapeAndType>& updated) { if (existing.size() != updated.size()) { return true; } for (int i = 0; i < existing.size(); i++) { if (!SameDefinedShape(c, existing[i].shape, updated[i].shape) || existing[i].dtype != updated[i].dtype) { return true; } } return false; } }
#include "tensorflow/core/common_runtime/shape_refiner.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/function_testlib.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" namespace tensorflow { class ShapeRefinerTest : public ::testing::Test { protected: bool SameHandle(shape_inference::DimensionHandle a, shape_inference::DimensionHandle b) { return a.SameHandle(b); } bool SameHandle(shape_inference::ShapeHandle a, shape_inference::ShapeHandle b) { return a.SameHandle(b); } bool SameDefinedShape(shape_inference::InferenceContext* c, shape_inference::ShapeHandle s0, shape_inference::ShapeHandle s1) { return ShapeRefiner::SameDefinedShape(c, s0, s1); } bool IsUpdatedShapesOrTypes( shape_inference::InferenceContext* c, const std::vector<shape_inference::ShapeAndType>& existing, const std::vector<shape_inference::ShapeAndType>& updated) { return ShapeRefiner::IsUpdatedShapesOrTypes(c, existing, updated); } static constexpr int64_t kMaxTensorSize = ShapeRefiner::kMaxTensorSize; void TestStridedSlice(const PartialTensorShape& input_shape, int begin, int end, int stride, const char* expected, int begin_mask = 0, int end_mask = 0, int ellipsis_mask = 0, int shrink_axis_mask = 0, StringPiece test_op = "TensorAsShapeInt32") { Scope root = Scope::DisabledShapeInferenceScope(); auto placeholder = ops::Placeholder(root, DT_INT32, ops::Placeholder::Shape(input_shape)); auto input = ops::Shape(root, placeholder); auto begin_op = ops::Const(root, {begin}); auto end_op = ops::Const(root, {end}); auto stride_op = ops::Const(root, {stride}); auto slice = ops::StridedSlice(root, input, begin_op, end_op, stride_op, ops::StridedSlice::BeginMask(begin_mask) .EndMask(end_mask) .EllipsisMask(ellipsis_mask) .ShrinkAxisMask(shrink_axis_mask)); Node* result; TF_ASSERT_OK(NodeBuilder("test", test_op) .Input(slice.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(placeholder.node())); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(begin_op.node())); TF_ASSERT_OK(m.AddNode(end_op.node())); TF_ASSERT_OK(m.AddNode(stride_op.node())); TF_ASSERT_OK(m.AddNode(slice.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ(ctx->DebugString(ctx->output(0)), expected); } }; namespace { #define EXPECT_SHAPE(EXPECTED, M, OP, IDX) \ do { \ shape_inference::InferenceContext* ctx = M.GetContext(OP.node()); \ EXPECT_EQ(EXPECTED, ctx->DebugString(ctx->output(IDX))); \ } while (0); #define EXPECT_RESOURCE_SINGLE_SHAPE(EXPECTED, M, OP, IDX) \ do { \ shape_inference::InferenceContext* ctx = M.GetContext(OP.node()); \ auto* v = ctx->output_handle_shapes_and_types(IDX); \ EXPECT_NE(v, nullptr); \ EXPECT_EQ(v->size(), 1); \ EXPECT_EQ(EXPECTED, ctx->DebugString((*v)[0].shape)); \ } while (0); #define EXPECT_RESOURCE_SINGLE_TYPE(EXPECTED, M, OP, IDX) \ do { \ shape_inference::InferenceContext* ctx = M.GetContext(OP.node()); \ auto* v = ctx->output_handle_shapes_and_types(IDX); \ EXPECT_NE(v, nullptr); \ EXPECT_EQ(v->size(), 1); \ EXPECT_EQ(EXPECTED, (*v)[0].dtype); \ } while (0); TEST_F(ShapeRefinerTest, Constant) { Scope root = Scope::NewRootScope(); auto c = ops::Const(root, 42.0f); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(c.node())); EXPECT_SHAPE("[]", m, c, 0); } TEST_F(ShapeRefinerTest, MatMul) { ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); Scope root = Scope::NewRootScope(); auto a = ops::Const(root, {{1.0f}, {2.0f}}); auto b = ops::Const(root, {{1.0f, 2.0f}}); auto mm = ops::MatMul(root, a, b); TF_ASSERT_OK(m.AddNode(a.node())); TF_ASSERT_OK(m.AddNode(b.node())); TF_ASSERT_OK(m.AddNode(mm.node())); EXPECT_SHAPE("[2,1]", m, a, 0); EXPECT_SHAPE("[1,2]", m, b, 0); EXPECT_SHAPE("[2,2]", m, mm, 0); } TEST_F(ShapeRefinerTest, BadShapes) { ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); Scope root = Scope::NewRootScope(); auto a = ops::Const(root, {{1.0f}, {2.0f}}); auto b = ops::Const(root, {{1.0f}, {2.0f}}); auto mm = ops::MatMul(root, a, b); TF_ASSERT_OK(m.AddNode(a.node())); TF_ASSERT_OK(m.AddNode(b.node())); Status s = m.AddNode(mm.node()); ASSERT_FALSE(s.ok()); ASSERT_TRUE(absl::StrContains(s.message(), "Dimensions must be equal, but are 1 and 2")); } TEST_F(ShapeRefinerTest, SetShape) { ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); Scope root = Scope::NewRootScope(); auto a = ops::Placeholder(root, DT_FLOAT); TF_ASSERT_OK(m.AddNode(a.node())); auto ic = m.GetContext(a.node()); ASSERT_NE(nullptr, ic); shape_inference::ShapeHandle h = ic->MakeShape({2, ic->UnknownDim()}); TF_ASSERT_OK(m.SetShape(a.node(), 0, h)); EXPECT_SHAPE("[2,?]", m, a, 0); shape_inference::ShapeHandle h2 = ic->MakeShape({ic->UnknownDim(), 2}); TF_ASSERT_OK(m.SetShape(a.node(), 0, h2)); EXPECT_SHAPE("[2,2]", m, a, 0); ASSERT_FALSE(m.SetShape(a.node(), 1, h).ok()); ASSERT_FALSE(m.SetShape(a.node(), -1, h).ok()); auto b = ops::Const(root, {{1.0f}, {2.0f}}); ASSERT_FALSE(m.SetShape(b.node(), 0, h).ok()); h = ic->MakeShape({3, ic->UnknownDim()}); ASSERT_FALSE(m.SetShape(a.node(), 0, h).ok()); } namespace { REGISTER_OP("TestOpWithNoShapeFn").Input("a: int32").Output("o: int32"); } TEST_F(ShapeRefinerTest, MissingShapeInferenceFns) { Scope root = Scope::NewRootScope(); auto a = ops::Const(root, 42); Node* b; TF_ASSERT_OK(NodeBuilder("b", "TestOpWithNoShapeFn") .Input(a.node()) .Finalize(root.graph(), &b)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(a.node())); EXPECT_FALSE(m.AddNode(b).ok()); m.set_require_shape_inference_fns(false); TF_EXPECT_OK(m.AddNode(b)); } TEST_F(ShapeRefinerTest, PropagateConstants) { { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto dim = ops::Variable(root, {}, DT_INT32); auto am = ops::ArgMax(root, input, dim); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(dim.node())); TF_ASSERT_OK(m.AddNode(am.node())); EXPECT_SHAPE("[?]", m, am, 0); } { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto dim = ops::Const(root, 1); auto am = ops::ArgMax(root, input, dim); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(dim.node())); TF_ASSERT_OK(m.AddNode(am.node())); EXPECT_SHAPE("[3]", m, am, 0); } { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto dim = ops::Const(root, 0); auto am = ops::ArgMax(root, input, dim); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(dim.node())); TF_ASSERT_OK(m.AddNode(am.node())); EXPECT_SHAPE("[2]", m, am, 0); } } TEST_F(ShapeRefinerTest, ExtractConstantSubgraphMultiOutput) { { Scope root = Scope::NewRootScope(); auto small = ops::Const(root, {static_cast<int32>(1), TensorShape({1, 1})}); auto large = ops::Const( root, {static_cast<int32>(2), TensorShape({4, kMaxTensorSize / 2})}); Node* multi; TF_ASSERT_OK(NodeBuilder("MI", "MultiIdentity") .Input(std::vector<NodeBuilder::NodeOut>{small.node(), large.node()}) .Attr("N", 2) .Finalize(root.graph(), &multi)); Node* shape_v; TF_ASSERT_OK(NodeBuilder("Test", "ShapeVectorForAllElements") .Input(multi, 0) .Finalize(root.graph(), &shape_v)); auto add = ops::Add(root, Output(multi, 0), Output(multi, 1)); Node* shape_v2; TF_ASSERT_OK(NodeBuilder("Test", "ShapeVectorForAllElements") .Input(add.node()) .Finalize(root.graph(), &shape_v2)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(small.node())); TF_ASSERT_OK(m.AddNode(large.node())); TF_ASSERT_OK(m.AddNode(multi)); TF_ASSERT_OK(m.AddNode(shape_v)); TF_ASSERT_OK(m.AddNode(add.node())); TF_ASSERT_OK(m.AddNode(shape_v2)); shape_inference::InferenceContext* ctx = m.GetContext(shape_v2); EXPECT_EQ(strings::StrCat("[", kMaxTensorSize * 2 * 3, "]"), ctx->DebugString(ctx->output(0))); } } namespace { REGISTER_OP("TestOp") .Input("a: float") .Input("b: float") .Output("o: float") .SetShapeFn([](shape_inference::InferenceContext* c) { if (c->input_tensor(0)) { if (c->input_tensor(1)) { c->set_output(0, c->Matrix(10, 10)); return absl::OkStatus(); } return shape_inference::ScalarShape(c); } return shape_inference::UnknownShape(c); }); } TEST_F(ShapeRefinerTest, InputTensorDependencies) { ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); Graph graph(OpRegistry::Global()); Node* node; Tensor a(DT_FLOAT, TensorShape({})); a.scalar<float>()() = 1.0; Tensor b(DT_FLOAT, TensorShape({})); b.scalar<float>()() = 2.0; Node* input_a = test::graph::Constant(&graph, a); Node* input_b = test::graph::Constant(&graph, b); TF_ASSERT_OK(NodeBuilder("Test", "TestOp") .Input(input_a) .Input(input_b) .Finalize(&graph, &node)); TF_ASSERT_OK(m.AddNode(input_a)); TF_ASSERT_OK(m.AddNode(input_b)); TF_ASSERT_OK(m.AddNode(node)); shape_inference::InferenceContext* ctx = m.GetContext(node); EXPECT_EQ("[10,10]", ctx->DebugString(ctx->output(0))); } namespace { REGISTER_OP("ShapeData") .Input("a: int32") .Output("o: int32") .SetShapeFn([](shape_inference::InferenceContext* c) { const Tensor* shape_data = c->input_tensor(0); if (shape_data == nullptr) { return shape_inference::UnknownShape(c); } std::vector<shape_inference::DimensionHandle> dims; dims.reserve(shape_data->NumElements()); for (int i = 0; i < shape_data->NumElements(); ++i) { dims.emplace_back(c->MakeDim(shape_data->flat<int32>()(i))); } c->set_output(0, c->MakeShape(dims)); return absl::OkStatus(); }); REGISTER_OP("ShapeDataInt64") .Input("a: int64") .Output("o: int64") .SetShapeFn([](shape_inference::InferenceContext* c) { const Tensor* shape_data = c->input_tensor(0); if (shape_data == nullptr) { return shape_inference::UnknownShape(c); } std::vector<shape_inference::DimensionHandle> dims; dims.reserve(shape_data->NumElements()); for (int i = 0; i < shape_data->NumElements(); ++i) { dims.emplace_back(c->MakeDim(shape_data->flat<int64_t>()(i))); } c->set_output(0, c->MakeShape(dims)); return absl::OkStatus(); }); REGISTER_OP("ShapeVectorForAllElements") .Input("a: int32") .Output("o: int32") .SetShapeFn([](shape_inference::InferenceContext* c) { const Tensor* shape_data = c->input_tensor(0); if (shape_data == nullptr) { return shape_inference::UnknownShape(c); } int64_t total = 0; for (int i = 0; i < shape_data->NumElements(); ++i) { total += shape_data->flat<int32>()(i); } c->set_output(0, c->Vector(total)); return absl::OkStatus(); }); REGISTER_OP("MultiIdentity") .Input("a: N * int32") .Output("o: N * int32") .Attr("N: int >= 1") .SetShapeFn([](shape_inference::InferenceContext* c) { for (int i = 0; i < c->num_inputs(); ++i) { c->set_output(i, c->input(i)); } return absl::OkStatus(); }); class MultiIdentity : public OpKernel { public: explicit MultiIdentity(OpKernelConstruction* c) : OpKernel(c) {} void Compute(OpKernelContext* c) override { for (int i = 0; i < c->num_inputs(); ++i) { c->set_output(i, c->input(i)); } } }; REGISTER_KERNEL_BUILDER(Name("MultiIdentity").Device(DEVICE_CPU), MultiIdentity); } TEST_F(ShapeRefinerTest, PropagateShapeAcrossTensorContent) { Scope root = Scope::NewRootScope(); auto input = ops::Variable(root, {2, 4}, DT_INT32); auto shape = ops::Shape(root, input); auto ones = ops::Const(root, {1}); auto sliced = ops::Slice(root, shape, ones, ones); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(sliced.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(ones.node())); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(shape.node())); TF_ASSERT_OK(m.AddNode(sliced.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[4]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateShapeAcrossTensorContentInt64) { Scope root = Scope::NewRootScope(); auto input = ops::Variable( root, {2, 4, static_cast<int64_t>(std::numeric_limits<int32>::max()) * 2}, DT_INT64); auto attrs = ops::Shape::OutType(DT_INT64); auto shape = ops::Shape(root, input, attrs); auto ones = ops::Const(root, {1}); auto sliced = ops::Slice(root, shape, ones, ones); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeDataInt64") .Input(sliced.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(ones.node())); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(shape.node())); TF_ASSERT_OK(m.AddNode(sliced.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[4]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateShapeAcrossTensorContentInt32Overflow) { Scope root = Scope::NewRootScope(); auto input = ops::Variable( root, {2, 4, static_cast<int64_t>(std::numeric_limits<int32>::max()) * 2}, DT_INT32); auto shape = ops::Shape(root, input); auto ones = ops::Const(root, {1}); auto sliced = ops::Slice(root, shape, ones, ones); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(sliced.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(ones.node())); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(shape.node())); TF_ASSERT_OK(m.AddNode(sliced.node())); EXPECT_FALSE(m.AddNode(shape_data).ok()); } TEST_F(ShapeRefinerTest, PropagateRankAcrossTensorContent) { Scope root = Scope::NewRootScope(); auto input = ops::Variable(root, {2, 4, 3}, DT_INT32); auto rank = ops::Rank(root, input); auto identity = ops::Identity(root, rank); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(identity.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(rank.node())); TF_ASSERT_OK(m.AddNode(identity.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[3]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateSizeAcrossTensorContent) { Scope root = Scope::NewRootScope(); auto input = ops::Variable(root, {1, 2, 3, 4, 5}, DT_INT32); auto size = ops::Size(root, input); auto identity = ops::Identity(root, size); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(identity.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(size.node())); TF_ASSERT_OK(m.AddNode(identity.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[120]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateSizeAcrossTensorContentInt64) { Scope root = Scope::NewRootScope(); auto input = ops::Variable( root, {1, 2, 3, 4, 5, static_cast<int64_t>(std::numeric_limits<int32>::max()) * 2}, DT_INT64); auto attrs = ops::Size::OutType(DT_INT64); auto size = ops::Size(root, input, attrs); auto identity = ops::Identity(root, size); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeDataInt64") .Input(identity.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(size.node())); TF_ASSERT_OK(m.AddNode(identity.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[515396075280]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateSizeAcrossTensorContentInt32Overflow) { Scope root = Scope::NewRootScope(); auto input = ops::Variable( root, {1, 2, 3, 4, 5, static_cast<int64_t>(std::numeric_limits<int32>::max()) * 2}, DT_INT32); auto size = ops::Size(root, input); auto identity = ops::Identity(root, size); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(identity.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(size.node())); TF_ASSERT_OK(m.AddNode(identity.node())); EXPECT_FALSE(m.AddNode(shape_data).ok()); } TEST_F(ShapeRefinerTest, PropagateShape) { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto shape = ops::Shape(root, input); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(shape.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(shape.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[3,2]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateSize) { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto size = ops::Size(root, input); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(size.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(size.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[6]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateRank) { Scope root = Scope::NewRootScope(); auto input = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); auto rank = ops::Rank(root, input); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(rank.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(rank.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[2]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, PropagateRange) { Scope root = Scope::NewRootScope(); auto begin = ops::Const(root, 1); auto limit = ops::Const(root, 11); auto delta = ops::Const(root, 3); auto range = ops::Range(root, begin, limit, delta); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(range.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(begin.node())); TF_ASSERT_OK(m.AddNode(limit.node())); TF_ASSERT_OK(m.AddNode(delta.node())); TF_ASSERT_OK(m.AddNode(range.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[1,4,7,10]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, NoPropagatePlaceholderWithDefault) { Scope root = Scope::NewRootScope(); auto constant = ops::Const<int>(root, 2); auto placeholder = ops::PlaceholderWithDefault(root, constant, PartialTensorShape()); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(placeholder.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(constant.node())); TF_ASSERT_OK(m.AddNode(placeholder.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ic = m.GetContext(shape_data); EXPECT_EQ(ic->DebugString(ic->output(0)), "?"); } TEST_F(ShapeRefinerTest, ConstantValueTwoInputsToSameNode) { Scope root = Scope::NewRootScope(); auto begin_and_delta = ops::Const(root, 1); auto limit = ops::Const(root, 4); auto range = ops::Range(root, begin_and_delta, limit, begin_and_delta); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(range.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(begin_and_delta.node())); TF_ASSERT_OK(m.AddNode(limit.node())); TF_ASSERT_OK(m.AddNode(range.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[1,2,3]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueVisitNodeTwice) { Scope root = Scope::NewRootScope(); auto begin = ops::Const(root, 1); auto limit = ops::Const(root, 8); auto delta = ops::Const(root, 3); auto d1 = ops::Add(root, begin, limit); auto d2 = ops::Add(root, begin, delta); auto flimit = ops::Sub(root, begin, d1); auto fdelta = ops::Sub(root, begin, d2); auto nl = ops::Abs(root, flimit); auto nd = ops::Abs(root, fdelta); auto range = ops::Range(root, begin, nl, nd); Node* shape_data; TF_ASSERT_OK(NodeBuilder("Test", "ShapeData") .Input(range.node()) .Finalize(root.graph(), &shape_data)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(begin.node())); TF_ASSERT_OK(m.AddNode(limit.node())); TF_ASSERT_OK(m.AddNode(delta.node())); TF_ASSERT_OK(m.AddNode(d1.node())); TF_ASSERT_OK(m.AddNode(d2.node())); TF_ASSERT_OK(m.AddNode(flimit.node())); TF_ASSERT_OK(m.AddNode(fdelta.node())); TF_ASSERT_OK(m.AddNode(nl.node())); TF_ASSERT_OK(m.AddNode(nd.node())); TF_ASSERT_OK(m.AddNode(range.node())); TF_ASSERT_OK(m.AddNode(shape_data)); shape_inference::InferenceContext* ctx = m.GetContext(shape_data); EXPECT_EQ("[1,4,7]", ctx->DebugString(ctx->output(0))); } namespace { Status TensorAsShapeShapeFn(shape_inference::InferenceContext* c) { shape_inference::ShapeHandle out; TF_RETURN_IF_ERROR(c->MakeShapeFromShapeTensor(0 , &out)); c->set_output(0, out); return absl::OkStatus(); } Status PartialTensorAsShapeShapeFn(shape_inference::InferenceContext* c) { shape_inference::ShapeHandle out; const Tensor* t = c->input_tensor(0); if (t == nullptr || t->NumElements() != 1) { c->set_output(0, c->UnknownShape()); return absl::OkStatus(); } TF_RETURN_IF_ERROR( c->MakeShapeFromTensorShape(TensorShape({t->flat<int32>()(0)}), &out)); c->set_output(0, out); return absl::OkStatus(); } REGISTER_OP("PartialTensorAsShapeInt32") .Input("a: int32") .Output("o: int32") .SetShapeFn(PartialTensorAsShapeShapeFn); REGISTER_OP("TensorAsShapeInt32") .Input("a: int32") .Output("o: int32") .SetShapeFn(TensorAsShapeShapeFn); REGISTER_OP("TensorAsShapeInt64") .Input("a: int64") .Output("o: int64") .SetShapeFn(TensorAsShapeShapeFn); REGISTER_OP("NonConstScalarInt32") .Output("o: int32") .SetDoNotOptimize() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("NonConstScalarInt64") .Output("o: int64") .SetDoNotOptimize() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("WithEmptyVectorShape") .Output("o: int32") .SetDoNotOptimize() .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->Vector(0)); return absl::OkStatus(); }); REGISTER_OP("WithPartialShape") .Output("o: int32") .SetDoNotOptimize() .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output( 0, c->MakeShape({1, shape_inference::InferenceContext::kUnknownDim, 3, shape_inference::InferenceContext::kUnknownDim, 5})); return absl::OkStatus(); }); REGISTER_OP("WithPartialShape2") .Output("o: int32") .SetDoNotOptimize() .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output( 0, c->MakeShape({6, shape_inference::InferenceContext::kUnknownDim, 8})); return absl::OkStatus(); }); REGISTER_OP("WithUnknownShape") .Output("o: int32") .SetDoNotOptimize() .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->UnknownShape()); return absl::OkStatus(); }); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_EmptyVector) { Scope root = Scope::NewRootScope(); Node* input; TF_ASSERT_OK( NodeBuilder("in", "WithEmptyVectorShape").Finalize(root.graph(), &input)); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(input) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input)); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("[]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_Shape) { for (int pass = 0; pass < 2; ++pass) { Scope root = Scope::NewRootScope(); Node* input; TF_ASSERT_OK( NodeBuilder("in", pass == 0 ? "WithPartialShape" : "WithUnknownShape") .Finalize(root.graph(), &input)); auto shape = ops::Shape(root, Output(input)); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(shape.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input)); TF_ASSERT_OK(m.AddNode(shape.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); if (pass == 0) { EXPECT_EQ("[1,?,3,?,5]", ctx->DebugString(ctx->output(0))); } else { EXPECT_EQ("?", ctx->DebugString(ctx->output(0))); } } } TEST_F(ShapeRefinerTest, ConstantValueAsShape_PackInt32) { Scope root = Scope::DisabledShapeInferenceScope(); Node* scalar_non_const; TF_ASSERT_OK(NodeBuilder("in", "NonConstScalarInt32") .Finalize(root.graph(), &scalar_non_const)); InputList inputs{ Input(ops::Const<int32>(root, 10)), Input(ops::Const<int32>(root, 20)), Input(Output(scalar_non_const)), Input(ops::Const<int32>(root, 40)), }; auto pack = ops::Stack(root, inputs); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(pack.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); for (const auto& input : inputs) { TF_ASSERT_OK(m.AddNode(input.node())); } TF_ASSERT_OK(m.AddNode(pack.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("[10,20,?,40]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_PackInt64) { Scope root = Scope::DisabledShapeInferenceScope(); Node* scalar_non_const; TF_ASSERT_OK(NodeBuilder("in", "NonConstScalarInt64") .Finalize(root.graph(), &scalar_non_const)); InputList inputs{ Input(ops::Const<int64_t>(root, int64_t{10})), Input(ops::Const<int64_t>(root, int64_t{20})), Input(Output(scalar_non_const)), Input(ops::Const<int64_t>(root, int64_t{1} << 40)), }; auto pack = ops::Stack(root, inputs); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt64") .Input(pack.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); for (const auto& input : inputs) { TF_ASSERT_OK(m.AddNode(input.node())); } TF_ASSERT_OK(m.AddNode(pack.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("[10,20,?,1099511627776]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_PackUnknownDim) { Scope root = Scope::NewRootScope(); InputList inputs{ Input(ops::Const<int64_t>(root, int64_t{10})), Input(ops::Const<int64_t>(root, int64_t{-1})), }; auto pack = ops::Stack(root, inputs); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt64") .Input(pack.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); for (const auto& input : inputs) { TF_ASSERT_OK(m.AddNode(input.node())); } TF_ASSERT_OK(m.AddNode(pack.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("[10,?]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_PackInvalidInput) { Scope root = Scope::NewRootScope(); InputList inputs{ Input(ops::Const<int64_t>(root, {int64_t{10}, int64_t{20}})), Input(ops::Const<int64_t>(root, {int64_t{10}, int64_t{21}})), }; auto pack = ops::Stack(root, inputs); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt64") .Input(pack.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); for (const auto& input : inputs) { TF_ASSERT_OK(m.AddNode(input.node())); } TF_ASSERT_OK(m.AddNode(pack.node())); EXPECT_TRUE(absl::StrContains(m.AddNode(result).message(), "but is rank 2")); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_Concat) { Scope root = Scope::DisabledShapeInferenceScope(); Graph* g = root.graph(); Node* partial_1; Node* partial_2; TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape").Finalize(g, &partial_1)); TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape2").Finalize(g, &partial_2)); auto const_input = ops::Const(root, {9, 10, 11}); OutputList concat_inputs{ ops::Shape(root, Output(partial_1)), ops::Shape(root, Output(partial_2)), const_input, }; auto concat_dim = ops::Const(root, 0); auto concat = ops::Concat(root, concat_inputs, concat_dim); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(concat.node()) .Finalize(g, &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(partial_1)); TF_ASSERT_OK(m.AddNode(partial_2)); for (const auto& o : concat_inputs) { TF_ASSERT_OK(m.AddNode(o.node())); } TF_ASSERT_OK(m.AddNode(concat_dim.node())); TF_ASSERT_OK(m.AddNode(concat.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("[1,?,3,?,5,6,?,8,9,10,11]", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_ConcatWithUnknown) { Scope root = Scope::DisabledShapeInferenceScope(); Graph* g = root.graph(); Node* scalar_non_const; TF_ASSERT_OK(NodeBuilder("in", "NonConstScalarInt32") .Finalize(root.graph(), &scalar_non_const)); Node* partial_1; Node* partial_2; Node* unknown; TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape").Finalize(g, &partial_1)); TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape2").Finalize(g, &partial_2)); TF_ASSERT_OK(NodeBuilder("in", "WithUnknownShape").Finalize(g, &unknown)); OutputList concat_inputs{ ops::Shape(root, Output(partial_1)), ops::Shape(root, Output(partial_2)), ops::Shape(root, Output(unknown)), }; auto concat_dim = ops::Const(root, 0); auto concat = ops::Concat(root, concat_inputs, concat_dim); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(concat.node()) .Finalize(g, &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(partial_1)); TF_ASSERT_OK(m.AddNode(partial_2)); TF_ASSERT_OK(m.AddNode(unknown)); for (const auto& o : concat_inputs) { TF_ASSERT_OK(m.AddNode(o.node())); } TF_ASSERT_OK(m.AddNode(concat_dim.node())); TF_ASSERT_OK(m.AddNode(concat.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ("?", ctx->DebugString(ctx->output(0))); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_ConcatInvalidDimValue) { Scope root = Scope::DisabledShapeInferenceScope(); Graph* g = root.graph(); Node* scalar_non_const; TF_ASSERT_OK(NodeBuilder("in", "NonConstScalarInt32") .Finalize(root.graph(), &scalar_non_const)); Node* partial_1; Node* partial_2; TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape").Finalize(g, &partial_1)); TF_ASSERT_OK(NodeBuilder("in", "WithPartialShape2").Finalize(g, &partial_2)); auto const_input = ops::Const(root, {9, -2, 11}); OutputList concat_inputs{ ops::Shape(root, Output(partial_1)), ops::Shape(root, Output(partial_2)), const_input, }; auto concat_dim = ops::Const(root, 0); auto concat = ops::Concat(root, concat_inputs, concat_dim); TF_ASSERT_OK(root.status()); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(concat.node()) .Finalize(g, &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(partial_1)); TF_ASSERT_OK(m.AddNode(partial_2)); for (const auto& o : concat_inputs) { TF_ASSERT_OK(m.AddNode(o.node())); } TF_ASSERT_OK(m.AddNode(concat_dim.node())); TF_ASSERT_OK(m.AddNode(concat.node())); EXPECT_EQ("Invalid value in tensor used for shape: -2", m.AddNode(result).message()); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSlice) { TestStridedSlice( {1, -1, 3, -1, 5}, 2, 5, 1, "[3,?,5]"); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceNegativeStride) { TestStridedSlice( {1, -1, 3, -1, 5}, 10, 0, -1, "[5,?,3,?]"); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceMasks) { TestStridedSlice( {1, -1, 3, -1, 5}, 3, 4, 1, "[1,?,3,?,5]", 1, 1); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceInvalidMask) { TestStridedSlice( {1, -1, 3}, 2, 3, 1, "[?,?,?]", 0, 0, 1); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceWithShrinkAxis) { TestStridedSlice( {1, -1, 3, -1, 5}, 2, 3, 1, "[3]", 0, 0, 0, 1, "PartialTensorAsShapeInt32"); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceWithShrinkAxisOnUnknownDim) { TestStridedSlice( {1, -1, 3, -1, 5}, 1, 2, 1, "?", 0, 0, 0, 1, "PartialTensorAsShapeInt32"); } TEST_F(ShapeRefinerTest, ConstantValueAsShape_StridedSliceMulti) { Scope root = Scope::DisabledShapeInferenceScope(); auto input = ops::Placeholder(root, DT_INT32); auto begin = ops::Const(root, {0, 0}); auto end = ops::Const(root, {2, 2}); auto stride = ops::Const(root, {1, 1}); auto slice = ops::StridedSlice(root, input, begin, end, stride); Node* result; TF_ASSERT_OK(NodeBuilder("test", "TensorAsShapeInt32") .Input(slice.node()) .Finalize(root.graph(), &result)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(input.node())); TF_ASSERT_OK(m.AddNode(begin.node())); TF_ASSERT_OK(m.AddNode(end.node())); TF_ASSERT_OK(m.AddNode(stride.node())); TF_ASSERT_OK(m.AddNode(slice.node())); TF_ASSERT_OK(m.AddNode(result)); shape_inference::InferenceContext* ctx = m.GetContext(result); EXPECT_EQ(ctx->DebugString(ctx->output(0)), "?"); } namespace { REGISTER_OP("Dummy"); } TEST_F(ShapeRefinerTest, SameDefinedShape) { Scope root = Scope::NewRootScope(); Graph* g = root.graph(); Node* test; TF_CHECK_OK(NodeBuilder("test", "Dummy").Finalize(g, &test)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); m.set_require_shape_inference_fns(false); TF_ASSERT_OK(m.AddNode(test)); shape_inference::InferenceContext* ctx = m.GetContext(test); auto unknown = ctx->UnknownShape(); auto unknown_b = ctx->UnknownShape(); auto s_1_2 = ctx->MakeShape({1, 2}); auto s_1_2_b = ctx->MakeShape({1, 2}); auto s_2_2 = ctx->MakeShape({2, 2}); auto s_unknown_2 = ctx->MakeShape({-1, 2}); auto s_unknown_2_b = ctx->MakeShape({-1, 2}); EXPECT_TRUE(SameDefinedShape(ctx, unknown, unknown)); EXPECT_FALSE(SameDefinedShape(ctx, unknown, unknown_b)); EXPECT_FALSE(SameDefinedShape(ctx, unknown, s_1_2)); EXPECT_TRUE(SameDefinedShape(ctx, s_1_2, s_1_2_b)); EXPECT_FALSE(SameDefinedShape(ctx, s_1_2, s_2_2)); EXPECT_TRUE(SameDefinedShape(ctx, s_unknown_2, s_unknown_2)); EXPECT_FALSE(SameDefinedShape(ctx, s_unknown_2, s_unknown_2_b)); } TEST_F(ShapeRefinerTest, IsUpdatedShapesOrTypes) { Scope root = Scope::NewRootScope(); Graph* g = root.graph(); Node* test; TF_CHECK_OK(NodeBuilder("test", "Dummy").Finalize(g, &test)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); m.set_require_shape_inference_fns(false); TF_ASSERT_OK(m.AddNode(test)); shape_inference::InferenceContext* ctx = m.GetContext(test); shape_inference::ShapeHandle unknown = ctx->UnknownShape(); std::vector<shape_inference::ShapeAndType> t0{ {ctx->MakeShape({1, 2, 3}), DT_FLOAT}, {unknown, DT_INVALID}, {ctx->MakeShape({4, 3, 2, 1}), DT_INT32}}; std::vector<shape_inference::ShapeAndType> t1{ {ctx->MakeShape({1, 2, 3}), DT_FLOAT}, {unknown, DT_INVALID}, {ctx->MakeShape({4, 3, 2, 1}), DT_INT32}}; std::vector<shape_inference::ShapeAndType> t2{ {ctx->MakeShape({1, 2, 4}), DT_FLOAT}, {ctx->UnknownShape(), DT_INVALID}, {ctx->MakeShape({4, 3, 2, 1}), DT_INT32}}; std::vector<shape_inference::ShapeAndType> t3{ {ctx->MakeShape({1, 2, 3}), DT_INT32}, {ctx->UnknownShape(), DT_INVALID}, {ctx->MakeShape({4, 3, 2, 1}), DT_INT32}}; EXPECT_FALSE(IsUpdatedShapesOrTypes(ctx, t0, t1)); EXPECT_TRUE(IsUpdatedShapesOrTypes(ctx, t0, t2)); EXPECT_TRUE(IsUpdatedShapesOrTypes(ctx, t0, t3)); } TEST_F(ShapeRefinerTest, IncrementalUpdates) { Scope root = Scope::NewRootScope(); Graph* g = root.graph(); Node* queue; TF_CHECK_OK(NodeBuilder("queue", "FIFOQueueV2") .Attr("component_types", {DT_FLOAT}) .Finalize(g, &queue)); Node* dequeue; TF_CHECK_OK(NodeBuilder("dequeue", "QueueDequeueV2") .Attr("component_types", {DT_FLOAT}) .Input(queue) .Finalize(g, &dequeue)); ShapeRefiner m(TF_GRAPH_DEF_VERSION, OpRegistry::Global()); TF_ASSERT_OK(m.AddNode(queue)); TF_ASSERT_OK(m.AddNode(dequeue)); shape_inference::InferenceContext* ctx = m.GetContext(dequeue); EXPECT_EQ("?", ctx->DebugString(ctx->output(0))); ctx = m.GetContext(queue); shape_inference::ShapeHandle shp = ctx->MakeShape({3, 7}); ctx->set_output_handle_shapes_and_types( 0, std::vector<shape_inference::ShapeAndType>{{shp, DT_FLOAT}}); bool refined = false; TF_ASSERT_OK(m.UpdateNode(dequeue, false , &refined)); EXPECT_TRUE(refined); ctx = m.GetContext(dequeue); EXPECT_EQ("[3,7]", ctx->DebugString(ctx->output(0))); ctx = m.GetContext(queue); shp = ctx->MakeShape({2, 7}); ctx->set_output_handle_shapes_and_types( 0, std::vector<shape_inference::ShapeAndType>{{shp, DT_FLOAT}}); refined = false; TF_ASSERT_OK(m.UpdateNode(dequeue, true , &refined)); EXPECT_TRUE(refined); ctx = m.GetContext(dequeue); EXPECT_EQ("[?,7]", ctx->DebugString(ctx->output(0))); ctx = m.GetContext(queue); shp = ctx->MakeShape({shape_inference::InferenceContext::kUnknownDim, 7}); ctx->set_output_handle_shapes_and_types( 0, std::vector<shape_inference::ShapeAndType>{{shp, DT_FLOAT}}); refined = false; TF_ASSERT_OK(m.UpdateNode(dequeue, true , &refined)); EXPECT_TRUE(refined); ctx = m.GetContext(dequeue); EXPECT_EQ("[?,7]", ctx->DebugString(ctx->output(0))); EXPECT_TRUE(SameHandle(ctx->Dim(ctx->output(0), 0), ctx->Dim(shp, 0))); ctx = m.GetContext(queue); shape_inference::ShapeHandle shp2 = shp; ctx->set_output_handle_shapes_and_types( 0, std::vector<shape_inference::ShapeAndType>{{shp2, DT_FLOAT}}); refined = false; TF_ASSERT_OK(m.UpdateNode(dequeue, false, &refined)); EXPECT_FALSE(refined); EXPECT_TRUE(SameHandle(ctx->Dim(shp, 0), ctx->Dim(shp2, 0))); } void TestSimpleFunctionInference(bool enable_function_inference) { FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XTimesTwo(); FunctionLibraryDefinition f_lib(OpRegistry::Global(), f_lib_proto); Scope root = Scope::NewRootScope(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto x = ops::Const(root, {{1.0f, 2.0f}}); auto x2 = test::function::Call(&root, "x2", "XTimesTwo", {x}); ShapeRefiner m(TF_GRAPH_DEF_VERSION, &f_lib); if (enable_function_inference) { m.set_function_library_for_shape_inference(&f_lib); } TF_ASSERT_OK(m.AddNode(x.node())); TF_ASSERT_OK(m.AddNode(x2.node())); EXPECT_SHAPE("[1,2]", m, x, 0); if (enable_function_inference) { EXPECT_SHAPE("[1,2]", m, x2, 0); } else { EXPECT_SHAPE("?", m, x2, 0); } } TEST_F(ShapeRefinerTest, SimpleFunctionShapeInference_Disabled) { TestSimpleFunctionInference(false ); } TEST_F(ShapeRefinerTest, SimpleFunctionShapeInference) { TestSimpleFunctionInference(true ); } TEST_F(ShapeRefinerTest, FunctionShapeInferenceFallback) { FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XTimesTwo(); FunctionLibraryDefinition f_lib(OpRegistry::Global(), f_lib_proto); Scope root = Scope::NewRootScope(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto x = ops::Const(root, {{.0f, .0f}}); auto x2 = test::function::Call(&root, "x2", "XTimesTwo", {x}); FunctionDefLibrary empty_f_lib_proto; FunctionLibraryDefinition empty_f_lib(OpRegistry::Global(), empty_f_lib_proto); ShapeRefiner m(TF_GRAPH_DEF_VERSION, &f_lib); m.set_function_library_for_shape_inference(&empty_f_lib); TF_ASSERT_OK(m.AddNode(x.node())); TF_ASSERT_OK(m.AddNode(x2.node())); EXPECT_SHAPE("[1,2]", m, x, 0); EXPECT_SHAPE("?", m, x2, 0); } TEST_F(ShapeRefinerTest, ChainedFunctionShapeInferenceWithMultipleInputs) { FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XTimesTwo(); *(f_lib_proto.add_function()) = test::function::XTimesFour(); *(f_lib_proto.add_function()) = test::function::XTimes16(); *(f_lib_proto.add_function()) = test::function::WXPlusB(); FunctionLibraryDefinition f_lib(OpRegistry::Global(), f_lib_proto); Scope root = Scope::NewRootScope(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto w = ops::Const(root, {{.0f}, {.0f}, {.0f}}); auto x = ops::Const(root, {{.0f, .0f, .0f}}); auto b = ops::Const(root, {{.0f}}); auto wxplusb = test::function::Call(&root, "wxplusb", "WXPlusB", {w, x, b}); auto wxplusb16 = test::function::Call(&root, "wxplusb16", "XTimes16", {wxplusb}); ShapeRefiner m(TF_GRAPH_DEF_VERSION, &f_lib); m.set_function_library_for_shape_inference(&f_lib); TF_ASSERT_OK(m.AddNode(w.node())); TF_ASSERT_OK(m.AddNode(x.node())); TF_ASSERT_OK(m.AddNode(b.node())); TF_ASSERT_OK(m.AddNode(wxplusb.node())); TF_ASSERT_OK(m.AddNode(wxplusb16.node())); EXPECT_SHAPE("[3,1]", m, w, 0); EXPECT_SHAPE("[1,3]", m, x, 0); EXPECT_SHAPE("[1,1]", m, b, 0); EXPECT_SHAPE("[3,3]", m, wxplusb, 0); EXPECT_SHAPE("[3,3]", m, wxplusb16, 0); } TEST_F(ShapeRefinerTest, FunctionShapeInferenceWorksForResourceHandles) { FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::Swap(); FunctionLibraryDefinition f_lib(OpRegistry::Global(), f_lib_proto); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto x1 = ops::VarHandleOp(root, DataType::DT_FLOAT, TensorShape({128, 256})); auto x2 = ops::VarHandleOp(root, DataType::DT_DOUBLE, TensorShape({1024})); auto swap = test::function::Call(&root, "swap", "Swap", {x1, x2}); EXPECT_EQ(swap.node()->num_outputs(), 2); ShapeRefiner m(TF_GRAPH_DEF_VERSION, &f_lib); m.set_function_library_for_shape_inference(&f_lib); TF_ASSERT_OK(m.AddNode(x1.node())); TF_ASSERT_OK(m.AddNode(x2.node())); TF_ASSERT_OK(m.AddNode(swap.node())); EXPECT_EQ(m.GetContext(swap.node())->num_outputs(), 2); EXPECT_RESOURCE_SINGLE_SHAPE("[128,256]", m, x1, 0); EXPECT_RESOURCE_SINGLE_SHAPE("[1024]", m, x2, 0); EXPECT_RESOURCE_SINGLE_SHAPE("[1024]", m, swap, 0); EXPECT_RESOURCE_SINGLE_SHAPE("[128,256]", m, swap, 1); EXPECT_RESOURCE_SINGLE_TYPE(DataType::DT_DOUBLE, m, swap, 0); EXPECT_RESOURCE_SINGLE_TYPE(DataType::DT_FLOAT, m, swap, 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/shape_refiner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/shape_refiner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
37982d4d-cc04-490b-a3c7-68edcd3f1dc4
cpp
tensorflow/tensorflow
gpu_bfc_allocator
tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc
tensorflow/core/common_runtime/gpu/gpu_bfc_allocator_test.cc
#include "tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.h" #include <cstdlib> #include <cstring> #include <memory> #include <string> #include <utility> #include "xla/tsl/framework/bfc_allocator.h" #include "tsl/platform/logging.h" namespace tensorflow { namespace { bool GetAllowGrowthValue(bool orig_value) { const char* force_allow_growth_string = std::getenv("TF_FORCE_GPU_ALLOW_GROWTH"); if (force_allow_growth_string == nullptr) { return orig_value; } if (strcmp("false", force_allow_growth_string) == 0) { if (orig_value) { LOG(WARNING) << "Overriding orig_value setting because the" << " TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original" << " config value was " << orig_value << "."; } return false; } else if (strcmp("true", force_allow_growth_string) == 0) { if (!orig_value) { LOG(WARNING) << "Overriding orig_value setting because the" << " TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original" << " config value was " << orig_value << "."; } return true; } LOG(ERROR) << "The TF_FORCE_GPU_ALLOW_GROWTH environment variable is set but could" << " not be parsed: \"" << force_allow_growth_string << "\". Valid" << " values are \"true\" or \"false\". Using original config value" << " of " << orig_value << "."; return orig_value; } bool GetGarbageCollectionValue() { const char* enable_gpu_garbage_collection = std::getenv("TF_ENABLE_GPU_GARBAGE_COLLECTION"); if (enable_gpu_garbage_collection == nullptr) { return true; } if (strcmp("false", enable_gpu_garbage_collection) == 0) { return false; } else if (strcmp("true", enable_gpu_garbage_collection) == 0) { return true; } LOG(ERROR) << "The TF_ENABLE_GPU_GARBAGE_COLLECTION environment variable is set but" << " could not be parsed: \"" << enable_gpu_garbage_collection << "\"." << " Valid values are \"true\" or \"false\"." << " Using the default value \"true\"."; return true; } } GPUBFCAllocator::GPUBFCAllocator( std::unique_ptr<tsl::SubAllocator> sub_allocator, size_t total_memory, const std::string& name, const Options& opts) : BFCAllocator(std::move(sub_allocator), total_memory, name, [&] { BFCAllocator::Options o; o.allow_growth = GetAllowGrowthValue(opts.allow_growth); o.allow_retry_on_failure = opts.allow_retry_on_failure; if (opts.garbage_collection.has_value()) { o.garbage_collection = *opts.garbage_collection; } else { o.garbage_collection = GetGarbageCollectionValue(); } o.fragmentation_fraction = opts.fragmentation_fraction; return o; }()) {} }
#if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) || \ (defined(TENSORFLOW_USE_ROCM) && TENSORFLOW_USE_ROCM) #include "tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.h" #include <algorithm> #include <optional> #include <vector> #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/lib/gtl/inlined_vector.h" #include "xla/tsl/lib/random/simple_philox.h" #include "tensorflow/core/common_runtime/device/device_mem_allocator.h" #include "tensorflow/core/framework/typed_allocator.h" #include "tensorflow/core/protobuf/bfc_memory_map.pb.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/types.h" namespace tsl { namespace { using stream_executor::GPUMachineManager; using tensorflow::BinSummary; using tensorflow::DeviceMemAllocator; using tensorflow::GPUBFCAllocator; using tensorflow::GPUOptions; using tensorflow::TypedAllocator; void CheckStats(Allocator* a, int64_t num_allocs, int64_t bytes_in_use, int64_t peak_bytes_in_use, int64_t largest_alloc_size) { std::optional<AllocatorStats> stats = a->GetStats(); EXPECT_TRUE(stats); if (!stats) { return; } LOG(INFO) << "Alloc stats: " << std::endl << stats->DebugString(); EXPECT_EQ(stats->bytes_in_use, bytes_in_use); EXPECT_EQ(stats->peak_bytes_in_use, peak_bytes_in_use); EXPECT_EQ(stats->num_allocs, num_allocs); EXPECT_EQ(stats->largest_alloc_size, largest_alloc_size); } class GPUBFCAllocatorTest : public ::testing::TestWithParam<std::unique_ptr<SubAllocator> (*)( size_t)> {}; std::unique_ptr<SubAllocator> CreateGPUMemAllocator(size_t) { PlatformDeviceId gpu_id(0); return absl::WrapUnique(new DeviceMemAllocator( GPUMachineManager()->ExecutorForDevice(gpu_id.value()).value(), gpu_id, stream_executor::MemoryType::kDevice, {}, {})); } std::unique_ptr<SubAllocator> CreateSubAllocator( size_t virtual_address_space_size = 1ull << 32) { return CreateGPUMemAllocator(virtual_address_space_size); } auto TestSuiteValues() { return ::testing::Values(&CreateGPUMemAllocator); } TEST_P(GPUBFCAllocatorTest, NoDups) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); CheckStats(&a, 0, 0, 0, 0); std::vector<void*> ptrs; for (int s = 1; s < 1024; s++) { void* raw = a.AllocateRaw(1, s); ptrs.push_back(raw); } CheckStats(&a, 1023, 654336, 654336, 1024); std::sort(ptrs.begin(), ptrs.end()); for (size_t i = 1; i < ptrs.size(); i++) { ASSERT_NE(ptrs[i], ptrs[i - 1]); size_t req_size = a.RequestedSize(ptrs[i - 1]); ASSERT_GT(req_size, 0); ASSERT_GE(static_cast<char*>(ptrs[i]) - static_cast<char*>(ptrs[i - 1]), req_size); } for (size_t i = 0; i < ptrs.size(); i++) { a.DeallocateRaw(ptrs[i]); } CheckStats(&a, 1023, 0, 654336, 1024); } TEST_P(GPUBFCAllocatorTest, AllocationsAndDeallocations) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); random::PhiloxRandom philox(123, 17); random::SimplePhilox rand(&philox); std::vector<void*> initial_ptrs; for (int s = 1; s < 256; s++) { size_t size = std::min<size_t>( std::max<size_t>(rand.Rand32() % 1048576, 100), 1048576); void* raw = a.AllocateRaw(1, size); initial_ptrs.push_back(raw); } std::vector<void*> existing_ptrs; for (size_t i = 0; i < initial_ptrs.size(); i++) { if (i % 2 == 1) { a.DeallocateRaw(initial_ptrs[i]); } else { existing_ptrs.push_back(initial_ptrs[i]); } } void* out_of_memory_ptr = a.AllocateRaw(1, (1 << 30) + 1); CHECK_EQ(out_of_memory_ptr, nullptr); for (int s = 1; s < 256; s++) { size_t size = std::min<size_t>( std::max<size_t>(rand.Rand32() % 1048576, 100), 1048576); void* raw = a.AllocateRaw(1, size); existing_ptrs.push_back(raw); } std::sort(existing_ptrs.begin(), existing_ptrs.end()); for (size_t i = 1; i < existing_ptrs.size(); i++) { CHECK_NE(existing_ptrs[i], existing_ptrs[i - 1]); size_t req_size = a.RequestedSize(existing_ptrs[i - 1]); ASSERT_GT(req_size, 0); ASSERT_GE(static_cast<char*>(existing_ptrs[i]) - static_cast<char*>(existing_ptrs[i - 1]), req_size); } for (size_t i = 0; i < existing_ptrs.size(); i++) { a.DeallocateRaw(existing_ptrs[i]); } } TEST_P(GPUBFCAllocatorTest, ExerciseCoalescing) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); CheckStats(&a, 0, 0, 0, 0); float* first_ptr = TypedAllocator::Allocate<float>(&a, 1024, {}); a.DeallocateRaw(first_ptr); CheckStats(&a, 1, 0, 4096, 4096); for (int i = 0; i < 1024; ++i) { float* t1 = TypedAllocator::Allocate<float>(&a, 1024, {}); int64_t* t2 = TypedAllocator::Allocate<int64_t>(&a, 1048576, {}); double* t3 = TypedAllocator::Allocate<double>(&a, 2048, {}); float* t4 = TypedAllocator::Allocate<float>(&a, 10485760, {}); a.DeallocateRaw(t1); a.DeallocateRaw(t2); a.DeallocateRaw(t3); a.DeallocateRaw(t4); } CheckStats(&a, 4097, 0, 1024 * sizeof(float) + 1048576 * sizeof(int64_t) + 2048 * sizeof(double) + 10485760 * sizeof(float), 10485760 * sizeof(float)); float* first_ptr_after = TypedAllocator::Allocate<float>(&a, 1024, {}); EXPECT_EQ(first_ptr, first_ptr_after); a.DeallocateRaw(first_ptr_after); } TEST_P(GPUBFCAllocatorTest, AllocateZeroBufSize) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); float* ptr = TypedAllocator::Allocate<float>(&a, 0, {}); EXPECT_EQ(nullptr, ptr); } TEST_P(GPUBFCAllocatorTest, TracksSizes) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); EXPECT_EQ(true, a.TracksAllocationSizes()); } TEST_P(GPUBFCAllocatorTest, AllocatedVsRequested) { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); float* t1 = TypedAllocator::Allocate<float>(&a, 1, {}); EXPECT_EQ(4, a.RequestedSize(t1)); EXPECT_EQ(256, a.AllocatedSize(t1)); a.DeallocateRaw(t1); } TEST_P(GPUBFCAllocatorTest, TestCustomMemoryLimit) { GPUBFCAllocator a(GetParam()(1ull << 32), 2 << 20, "GPU_0_bfc", {}); float* first_ptr = TypedAllocator::Allocate<float>(&a, 1 << 6, {}); float* second_ptr = TypedAllocator::Allocate<float>(&a, 2 << 20, {}); EXPECT_NE(nullptr, first_ptr); EXPECT_EQ(nullptr, second_ptr); a.DeallocateRaw(first_ptr); } TEST_P(GPUBFCAllocatorTest, AllocationsAndDeallocationsWithGrowth) { GPUOptions options; options.set_allow_growth(true); GPUBFCAllocator a(GetParam()(1ull << 32), 1LL << 31, "GPU_0_bfc", {}); random::PhiloxRandom philox(123, 17); random::SimplePhilox rand(&philox); const int32_t max_mem = 1 << 27; std::vector<void*> initial_ptrs; for (int s = 1; s < 10; s++) { size_t size = std::min<size_t>( std::max<size_t>(rand.Rand32() % max_mem, 100), max_mem); void* raw = a.AllocateRaw(1, size); initial_ptrs.push_back(raw); } std::vector<void*> existing_ptrs; for (size_t i = 0; i < initial_ptrs.size(); i++) { if (i % 2 == 1) { a.DeallocateRaw(initial_ptrs[i]); } else { existing_ptrs.push_back(initial_ptrs[i]); } } const int32_t max_mem_2 = 1 << 26; for (int s = 1; s < 10; s++) { size_t size = std::min<size_t>( std::max<size_t>(rand.Rand32() % max_mem_2, 100), max_mem_2); void* raw = a.AllocateRaw(1, size); existing_ptrs.push_back(raw); } std::sort(existing_ptrs.begin(), existing_ptrs.end()); for (size_t i = 1; i < existing_ptrs.size(); i++) { CHECK_NE(existing_ptrs[i], existing_ptrs[i - 1]); size_t req_size = a.RequestedSize(existing_ptrs[i - 1]); ASSERT_GT(req_size, 0); ASSERT_GE(static_cast<char*>(existing_ptrs[i]) - static_cast<char*>(existing_ptrs[i - 1]), req_size); } for (size_t i = 0; i < existing_ptrs.size(); i++) { a.DeallocateRaw(existing_ptrs[i]); } std::optional<AllocatorStats> stats = a.GetStats(); if (stats) { LOG(INFO) << "Alloc stats: \n" << stats->DebugString(); } } TEST_P(GPUBFCAllocatorTest, DISABLED_AllocatorReceivesZeroMemory) { GPUBFCAllocator a(GetParam()(1ul << 62), 1UL << 60, "GPU_0_bfc", {}); GPUBFCAllocator b(GetParam()(1ul << 62), 1UL << 60, "GPU_0_bfc", {}); void* amem = a.AllocateRaw(1, 1); void* bmem = b.AllocateRaw(1, 1 << 30); a.DeallocateRaw(amem); b.DeallocateRaw(bmem); } INSTANTIATE_TEST_SUITE_P(GPUBFCAllocatorTestSuite, GPUBFCAllocatorTest, TestSuiteValues()); static void BM_Allocation(::testing::benchmark::State& state) { GPUBFCAllocator a(CreateSubAllocator(1ul << 36), 1uLL << 33, "GPU_0_bfc", {}); std::vector<size_t> sizes = {256, 4096, 16384, 524288, 512, 1048576, 10485760, 104857600, 1048576000, 2048576000}; int size_index = 0; for (auto s : state) { size_t bytes = sizes[size_index++ % sizes.size()]; void* p = a.AllocateRaw(1, bytes); a.DeallocateRaw(p); } } BENCHMARK(BM_Allocation); static void BM_AllocationThreaded(::testing::benchmark::State& state) { int num_threads = state.range(0); int sub_iters = 500; for (auto s : state) { state.PauseTiming(); GPUBFCAllocator a(CreateSubAllocator(1ul << 36), 1uLL << 33, "GPU_0_bfc", {}); thread::ThreadPool pool(Env::Default(), "test", num_threads); std::atomic_int_fast32_t count(sub_iters); mutex done_lock; condition_variable done; bool done_flag = false; state.ResumeTiming(); for (int t = 0; t < num_threads; t++) { pool.Schedule([&a, &count, &done_lock, &done, &done_flag, sub_iters]() { std::vector<int> sizes = {256, 4096, 16384, 524288, 512, 1048576, 10485760, 104857600}; int size_index = 0; for (int i = 0; i < sub_iters; i++) { int bytes = sizes[size_index++ % sizes.size()]; void* p = a.AllocateRaw(1, bytes); a.DeallocateRaw(p); if (count.fetch_sub(1) == 1) { mutex_lock l(done_lock); done_flag = true; done.notify_all(); break; } } }); } mutex_lock l(done_lock); if (!done_flag) { done.wait(l); } } } BENCHMARK(BM_AllocationThreaded)->Arg(1)->Arg(4)->Arg(16); static void BM_AllocationDelayed(::testing::benchmark::State& state) { int delay = state.range(0); GPUBFCAllocator a(CreateSubAllocator(1ull << 32), 1 << 30, "GPU_0_bfc", {}); std::vector<int> sizes = {256, 4096, 16384, 4096, 512, 1024, 1024}; int size_index = 0; std::vector<void*> ptrs; ptrs.reserve(delay); for (int i = 0; i < delay; i++) { ptrs.push_back(nullptr); } int pindex = 0; for (auto s : state) { if (ptrs[pindex] != nullptr) { a.DeallocateRaw(ptrs[pindex]); ptrs[pindex] = nullptr; } int bytes = sizes[size_index++ % sizes.size()]; void* p = a.AllocateRaw(1, bytes); ptrs[pindex] = p; pindex = (pindex + 1) % ptrs.size(); } for (int i = 0; i < ptrs.size(); i++) { if (ptrs[i] != nullptr) { a.DeallocateRaw(ptrs[i]); } } } BENCHMARK(BM_AllocationDelayed)->Arg(1)->Arg(10)->Arg(100)->Arg(1000); } class GPUBFCAllocatorPrivateMethodsTest : public ::testing::TestWithParam<std::unique_ptr<SubAllocator> (*)( size_t)> { protected: void SetUp() override { CHECK_EQ(unsetenv("TF_FORCE_GPU_ALLOW_GROWTH"), 0); } void TestBinDebugInfo() { GPUBFCAllocator a(GetParam()(1ull << 32), 1 << 30, "GPU_0_bfc", {}); std::vector<void*> initial_ptrs; std::vector<size_t> initial_ptrs_allocated_sizes; const int kNumTestSizes = 5; const int kNumChunksPerSize = 2; for (int i = 0; i < kNumTestSizes; i++) { for (int j = 0; j < kNumChunksPerSize; j++) { size_t size = 256 << i; void* raw = a.AllocateRaw(1, size); ASSERT_NE(raw, nullptr); initial_ptrs.push_back(raw); initial_ptrs_allocated_sizes.push_back(a.AllocatedSize(raw)); } } std::array<BFCAllocator::BinDebugInfo, BFCAllocator::kNumBins> bin_infos; { absl::MutexLock l(&a.mutex_); bin_infos = a.get_bin_debug_info(); } { MemoryDump md = a.RecordMemoryMap(); EXPECT_EQ(md.chunk_size(), 1 + (kNumTestSizes * kNumChunksPerSize)); for (int i = 0; i < BFCAllocator::kNumBins; i++) { const BFCAllocator::BinDebugInfo& bin_info = bin_infos[i]; const BinSummary& bin_summary = md.bin_summary(i); if (i < kNumTestSizes) { const size_t requested_size = 2 * (256 << i); EXPECT_EQ(requested_size, a.RequestedSize(initial_ptrs[2 * i]) + a.RequestedSize(initial_ptrs[2 * i + 1])); size_t allocated_size = initial_ptrs_allocated_sizes[2 * i] + initial_ptrs_allocated_sizes[2 * i + 1]; EXPECT_EQ(bin_info.total_bytes_in_use, allocated_size); EXPECT_EQ(bin_summary.total_bytes_in_use(), allocated_size); EXPECT_EQ(bin_info.total_bytes_in_bin, allocated_size); EXPECT_EQ(bin_summary.total_bytes_in_bin(), allocated_size); EXPECT_EQ(bin_info.total_requested_bytes_in_use, requested_size); EXPECT_EQ(bin_info.total_chunks_in_use, kNumChunksPerSize); EXPECT_EQ(bin_summary.total_chunks_in_use(), kNumChunksPerSize); EXPECT_EQ(bin_info.total_chunks_in_bin, kNumChunksPerSize); EXPECT_EQ(bin_summary.total_chunks_in_bin(), kNumChunksPerSize); } else { EXPECT_EQ(bin_info.total_bytes_in_use, 0); EXPECT_EQ(bin_summary.total_bytes_in_use(), 0); EXPECT_EQ(bin_info.total_requested_bytes_in_use, 0); EXPECT_EQ(bin_info.total_chunks_in_use, 0); EXPECT_EQ(bin_summary.total_chunks_in_use(), 0); if (i == BFCAllocator::kNumBins - 1) { EXPECT_GT(bin_info.total_bytes_in_bin, 0); EXPECT_GT(bin_summary.total_bytes_in_bin(), 0); EXPECT_EQ(bin_info.total_chunks_in_bin, 1); EXPECT_EQ(bin_summary.total_chunks_in_bin(), 1); } else { EXPECT_EQ(bin_info.total_bytes_in_bin, 0); EXPECT_EQ(bin_summary.total_bytes_in_bin(), 0); EXPECT_EQ(bin_info.total_chunks_in_bin, 0); EXPECT_EQ(bin_summary.total_chunks_in_bin(), 0); } } } } for (size_t i = 1; i < initial_ptrs.size(); i += 2) { a.DeallocateRaw(initial_ptrs[i]); initial_ptrs[i] = nullptr; } { absl::MutexLock l(&a.mutex_); bin_infos = a.get_bin_debug_info(); } for (int i = 0; i < BFCAllocator::kNumBins; i++) { const BFCAllocator::BinDebugInfo& bin_info = bin_infos[i]; if (i < 5) { size_t requested_size = 256 << i; EXPECT_EQ(requested_size, a.RequestedSize(initial_ptrs[2 * i])); EXPECT_EQ(bin_info.total_bytes_in_use, initial_ptrs_allocated_sizes[2 * i]); EXPECT_GE(bin_info.total_bytes_in_bin, initial_ptrs_allocated_sizes[2 * i]); EXPECT_EQ(bin_info.total_requested_bytes_in_use, requested_size); EXPECT_EQ(bin_info.total_chunks_in_use, 1); EXPECT_GE(bin_info.total_chunks_in_bin, 1); } else { EXPECT_EQ(bin_info.total_bytes_in_use, 0); EXPECT_EQ(bin_info.total_requested_bytes_in_use, 0); EXPECT_EQ(bin_info.total_chunks_in_use, 0); } } } void TestForceAllowGrowth() { unsetenv("TF_FORCE_GPU_ALLOW_GROWTH"); GPUBFCAllocator::Options opts; opts.allow_growth = true; GPUBFCAllocator unset_flag_allocator(GetParam()(1ull << 32), 1LL << 31, "GPU_0_bfc", opts); EXPECT_EQ(GPUBFCAllocator::RoundedBytes(size_t{2 << 20}), unset_flag_allocator.curr_region_allocation_bytes_); setenv("TF_FORCE_GPU_ALLOW_GROWTH", "unparseable", 1); GPUBFCAllocator unparsable_flag_allocator(GetParam()(1ull << 32), 1LL << 31, "GPU_1_bfc", opts); EXPECT_EQ(GPUBFCAllocator::RoundedBytes(size_t{2 << 20}), unparsable_flag_allocator.curr_region_allocation_bytes_); setenv("TF_FORCE_GPU_ALLOW_GROWTH", "true", 1); opts.allow_growth = false; GPUBFCAllocator force_allow_growth_allocator(GetParam()(1ull << 32), 1LL << 31, "GPU_2_bfc", opts); EXPECT_EQ(GPUBFCAllocator::RoundedBytes(size_t{2 << 20}), force_allow_growth_allocator.curr_region_allocation_bytes_); setenv("TF_FORCE_GPU_ALLOW_GROWTH", "false", 1); opts.allow_growth = true; GPUBFCAllocator force_no_allow_growth_allocator( GetParam()(1ull << 32), 1LL << 31, "GPU_3_bfc", opts); EXPECT_EQ(GPUBFCAllocator::RoundedBytes(1LL << 31), force_no_allow_growth_allocator.curr_region_allocation_bytes_); } }; TEST_P(GPUBFCAllocatorPrivateMethodsTest, BinDebugInfo) { TestBinDebugInfo(); } TEST_P(GPUBFCAllocatorPrivateMethodsTest, ForceAllowGrowth) { TestForceAllowGrowth(); } INSTANTIATE_TEST_SUITE_P(GPUBFCAllocatorPrivateMethodTestSuite, GPUBFCAllocatorPrivateMethodsTest, TestSuiteValues()); class GPUBFCAllocatorTest_SubAllocatorSpecific : public ::testing::Test {}; TEST_F(GPUBFCAllocatorTest_SubAllocatorSpecific, PhysicalAllocatorOomsFragmentation) { GPUBFCAllocator::Options options; options.allow_growth = true; constexpr size_t k512MiB = 512ull << 20; GPUBFCAllocator a(CreateGPUMemAllocator( 0), k512MiB, "GPU_0_bfc", options); const size_t size = 1LL << 22; std::vector<void*> initial_ptrs; for (size_t s = 0; s < 128; s++) { void* raw = a.AllocateRaw(1, size); initial_ptrs.push_back(raw); } for (int i = 0; i < 127; ++i) { a.DeallocateRaw(initial_ptrs[i]); } void* big_alloc = a.AllocateRaw(1, k512MiB - size); EXPECT_EQ(big_alloc, nullptr); } class GPUBFCAllocatorPrivateMethodsTest_SubAllocatorSpecific : public ::testing::Test { protected: void SetUp() override { CHECK_EQ(unsetenv("TF_FORCE_GPU_ALLOW_GROWTH"), 0); } void TestRegionDeallocation() { GPUBFCAllocator::Options options; options.allow_growth = true; GPUBFCAllocator a(CreateGPUMemAllocator( 0), 1LL << 31, "GPU_0_bfc", options); const size_t size = 1LL << 22; std::vector<void*> initial_ptrs; for (size_t s = 0; s < 128; s++) { void* raw = a.AllocateRaw(1, size); initial_ptrs.push_back(raw); } { absl::MutexLock l(&a.mutex_); EXPECT_LT(1, a.region_manager_.regions().size()); } for (size_t i = 0; i < initial_ptrs.size() - 1; i++) { a.DeallocateRaw(initial_ptrs[i]); } EXPECT_EQ(true, a.DeallocateFreeRegions(0)); { absl::MutexLock l(&a.mutex_); EXPECT_EQ(1, a.region_manager_.regions().size()); } size_t num_chunks_in_bins = 0; for (int i = 0; i < BFCAllocator::kNumBins; i++) { BFCAllocator::Bin* bin = a.BinFromIndex(i); num_chunks_in_bins += bin->free_chunks.size(); } EXPECT_EQ(1, num_chunks_in_bins); } }; TEST_F(GPUBFCAllocatorPrivateMethodsTest_SubAllocatorSpecific, TestRegionDeallocation) { TestRegionDeallocation(); } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_bfc_allocator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
49b48a75-9413-4452-9358-84307792442c
cpp
tensorflow/tensorflow
gpu_debug_allocator
tensorflow/core/common_runtime/gpu/gpu_debug_allocator.cc
tensorflow/core/common_runtime/gpu/gpu_debug_allocator_test.cc
#include "tensorflow/core/common_runtime/gpu/gpu_debug_allocator.h" #include <cstddef> #include <cstdint> #include <optional> #include <vector> #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/device_id.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #define MASK_WORDS 2 #define MASK_BYTES (MASK_WORDS * sizeof(int64_t)) namespace tensorflow { namespace { int64_t* NewMask(int64_t word) { int64_t* m = new int64_t[MASK_WORDS]; for (int i = 0; i < MASK_WORDS; ++i) { m[i] = word; } return m; } int64_t* before_mask = NewMask(0xabababababababab); int64_t* after_mask = NewMask(0xcdcdcdcdcdcdcdcd); bool CheckMask(se::StreamExecutor* exec, void* ptr, int64_t* mask) { se::DeviceMemory<int64_t> gpu_ptr{se::DeviceMemoryBase{ptr, MASK_BYTES}}; int64_t tmp[MASK_WORDS]; absl::Status result = exec->SynchronousMemcpyD2H(gpu_ptr, MASK_BYTES, tmp); if (!result.ok()) { LOG(FATAL) << "Could not copy debug mask, " << result; } bool ok = true; for (int i = 0; i < MASK_WORDS; ++i) { ok &= (mask[i] == tmp[i]); if (!ok) { LOG(ERROR) << "i=" << i << " mask=" << reinterpret_cast<const void*>(mask[i]) << " field=" << reinterpret_cast<const void*>(tmp[i]); } } return ok; } void InitMask(se::StreamExecutor* exec, void* ptr, int64_t* mask) { se::DeviceMemory<int64_t> gpu_ptr{se::DeviceMemoryBase{ptr, MASK_BYTES}}; absl::Status result = exec->SynchronousMemcpyH2D(mask, MASK_BYTES, &gpu_ptr); if (!result.ok()) { LOG(FATAL) << "Could not copy debug mask, " << result; } } } GPUDebugAllocator::GPUDebugAllocator(Allocator* allocator, tsl::PlatformDeviceId platform_device_id) : base_allocator_(allocator) { stream_exec_ = se::GPUMachineManager() ->ExecutorForDevice(platform_device_id.value()) .value(); } GPUDebugAllocator::~GPUDebugAllocator() { delete base_allocator_; } void* GPUDebugAllocator::AllocateRaw(size_t alignment, size_t num_bytes) { num_bytes += (2 * MASK_BYTES); void* allocated_ptr = base_allocator_->AllocateRaw(alignment, num_bytes); if (allocated_ptr == nullptr) return allocated_ptr; void* rv = static_cast<char*>(allocated_ptr) + MASK_BYTES; InitMask(stream_exec_, allocated_ptr, before_mask); size_t req_size = base_allocator_->RequestedSize(allocated_ptr); InitMask(stream_exec_, static_cast<char*>(allocated_ptr) + req_size - MASK_BYTES, after_mask); return rv; } void GPUDebugAllocator::DeallocateRaw(void* ptr) { if (ptr != nullptr) { CHECK(CheckHeader(ptr)) << "before_mask has been overwritten"; CHECK(CheckFooter(ptr)) << "after_mask has been overwritten"; ptr = static_cast<void*>(static_cast<char*>(ptr) - MASK_BYTES); } base_allocator_->DeallocateRaw(ptr); } bool GPUDebugAllocator::TracksAllocationSizes() const { return true; } size_t GPUDebugAllocator::RequestedSize(const void* ptr) const { auto req_size = base_allocator_->RequestedSize(static_cast<const char*>(ptr) - MASK_BYTES); return req_size - 2 * MASK_BYTES; } size_t GPUDebugAllocator::AllocatedSize(const void* ptr) const { return base_allocator_->AllocatedSize(static_cast<const char*>(ptr) - MASK_BYTES); } int64_t GPUDebugAllocator::AllocationId(const void* ptr) const { return base_allocator_->AllocationId(static_cast<const char*>(ptr) - MASK_BYTES); } std::optional<tsl::AllocatorStats> GPUDebugAllocator::GetStats() { return base_allocator_->GetStats(); } bool GPUDebugAllocator::ClearStats() { return base_allocator_->ClearStats(); } bool GPUDebugAllocator::CheckHeader(void* ptr) { return CheckMask(stream_exec_, static_cast<char*>(ptr) - MASK_BYTES, before_mask); } bool GPUDebugAllocator::CheckFooter(void* ptr) { char* original_ptr = static_cast<char*>(ptr) - MASK_BYTES; size_t req_size = base_allocator_->RequestedSize(original_ptr); return CheckMask(stream_exec_, original_ptr + req_size - MASK_BYTES, after_mask); } GPUNanResetAllocator::GPUNanResetAllocator( Allocator* allocator, tsl::PlatformDeviceId platform_device_id) : base_allocator_(allocator) { stream_exec_ = se::GPUMachineManager() ->ExecutorForDevice(platform_device_id.value()) .value(); } GPUNanResetAllocator::~GPUNanResetAllocator() { delete base_allocator_; } void* GPUNanResetAllocator::AllocateRaw(size_t alignment, size_t num_bytes) { void* allocated_ptr = base_allocator_->AllocateRaw(alignment, num_bytes); if (allocated_ptr == nullptr) return allocated_ptr; size_t req_size = base_allocator_->RequestedSize(allocated_ptr); std::vector<float> nans((req_size + sizeof(float) - 1) / sizeof(float), std::nanf("")); se::DeviceMemory<float> nan_ptr{ se::DeviceMemoryBase{static_cast<float*>(allocated_ptr), req_size}}; absl::Status result = stream_exec_->SynchronousMemcpyH2D(&nans[0], req_size, &nan_ptr); if (!result.ok()) { LOG(ERROR) << "Could not initialize to NaNs, " << result; } return allocated_ptr; } void GPUNanResetAllocator::DeallocateRaw(void* ptr) { if (ptr != nullptr) { size_t req_size = base_allocator_->RequestedSize(ptr); std::vector<float> nans((req_size + sizeof(float) - 1) / sizeof(float), std::nanf("")); se::DeviceMemory<float> nan_ptr{ se::DeviceMemoryBase{static_cast<float*>(ptr), req_size}}; absl::Status result = stream_exec_->SynchronousMemcpyH2D(&nans[0], req_size, &nan_ptr); if (!result.ok()) { LOG(ERROR) << "Could not initialize to NaNs, " << result; } } base_allocator_->DeallocateRaw(ptr); } size_t GPUNanResetAllocator::RequestedSize(const void* ptr) const { return base_allocator_->RequestedSize(ptr); } size_t GPUNanResetAllocator::AllocatedSize(const void* ptr) const { return base_allocator_->AllocatedSize(ptr); } std::optional<tsl::AllocatorStats> GPUNanResetAllocator::GetStats() { return base_allocator_->GetStats(); } bool GPUNanResetAllocator::ClearStats() { return base_allocator_->ClearStats(); } }
#if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) || \ (defined(TENSORFLOW_USE_ROCM) && TENSORFLOW_USE_ROCM) #include "tensorflow/core/common_runtime/gpu/gpu_debug_allocator.h" #include <algorithm> #include <vector> #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/lib/gtl/inlined_vector.h" #include "tensorflow/core/common_runtime/device/device_mem_allocator.h" #include "tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.h" #include "tensorflow/core/framework/typed_allocator.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tensorflow { namespace { se::StreamExecutor* ExecutorForPlatformDeviceId( tsl::PlatformDeviceId platform_device_id) { return se::GPUMachineManager() ->ExecutorForDevice(platform_device_id.value()) .value(); } TEST(GPUDebugAllocatorTest, OverwriteDetection_None) { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUDebugAllocator a( new GPUBFCAllocator(absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); for (int s : {8}) { std::vector<int64_t> cpu_array(s); memset(&cpu_array[0], 0, cpu_array.size() * sizeof(int64_t)); int64_t* gpu_array = TypedAllocator::Allocate<int64_t>(&a, cpu_array.size(), {}); se::DeviceMemory<int64_t> gpu_array_ptr{se::DeviceMemoryBase{gpu_array}}; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D( &cpu_array[0], s * sizeof(int64_t), &gpu_array_ptr)); EXPECT_TRUE(a.CheckHeader(gpu_array)); EXPECT_TRUE(a.CheckFooter(gpu_array)); a.DeallocateRaw(gpu_array); } } TEST(GPUDebugAllocatorTest, OverwriteDetection_Header) { for (int s : {8, 211}) { EXPECT_DEATH( { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUDebugAllocator a( new GPUBFCAllocator( absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); std::vector<int64_t> cpu_array(s); memset(&cpu_array[0], 0, cpu_array.size() * sizeof(int64_t)); int64_t* gpu_array = TypedAllocator::Allocate<int64_t>(&a, cpu_array.size(), {}); se::DeviceMemory<int64_t> gpu_array_ptr{ se::DeviceMemoryBase{gpu_array}}; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D( &cpu_array[0], cpu_array.size() * sizeof(int64_t), &gpu_array_ptr)); se::DeviceMemory<int64_t> gpu_hdr_ptr{ se::DeviceMemoryBase{gpu_array - 1}}; float pi = 3.1417; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D(&pi, sizeof(float), &gpu_hdr_ptr)); a.DeallocateRaw(gpu_array); }, ""); } } TEST(GPUDebugAllocatorTest, OverwriteDetection_Footer) { for (int s : {8, 22}) { EXPECT_DEATH( { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUDebugAllocator a( new GPUBFCAllocator( absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); std::vector<int64_t> cpu_array(s); memset(&cpu_array[0], 0, cpu_array.size() * sizeof(int64_t)); int64_t* gpu_array = TypedAllocator::Allocate<int64_t>(&a, cpu_array.size(), {}); se::DeviceMemory<int64_t> gpu_array_ptr{ se::DeviceMemoryBase{gpu_array}}; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D( &cpu_array[0], cpu_array.size() * sizeof(int64_t), &gpu_array_ptr)); se::DeviceMemory<int64_t> gpu_ftr_ptr{ se::DeviceMemoryBase{gpu_array + s}}; float pi = 3.1417; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D(&pi, sizeof(float), &gpu_ftr_ptr)); a.DeallocateRaw(gpu_array); }, ""); } } TEST(GPUDebugAllocatorTest, ResetToNan) { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUNanResetAllocator a( new GPUBFCAllocator(absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); std::vector<float> cpu_array(1024); std::vector<float> cpu_array_result(1024); float* gpu_array = TypedAllocator::Allocate<float>(&a, cpu_array.size(), {}); se::DeviceMemory<float> gpu_array_ptr{se::DeviceMemoryBase{gpu_array}}; TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array.size() * sizeof(float), &cpu_array[0])); for (float f : cpu_array) { ASSERT_FALSE(std::isfinite(f)); } cpu_array[0] = 1.0; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D( &cpu_array[0], cpu_array.size() * sizeof(float), &gpu_array_ptr)); TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array_result.size() * sizeof(float), &cpu_array_result[0])); ASSERT_EQ(1.0, cpu_array_result[0]); a.DeallocateRaw(gpu_array); TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array_result.size() * sizeof(float), &cpu_array_result[0])); for (float f : cpu_array_result) { ASSERT_FALSE(std::isfinite(f)); } } TEST(GPUDebugAllocatorTest, ResetToNanWithHeaderFooter) { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUNanResetAllocator a( new GPUBFCAllocator(absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); std::vector<float> cpu_array(1024); std::vector<float> cpu_array_result(1024); float* gpu_array = TypedAllocator::Allocate<float>(&a, cpu_array.size(), {}); se::DeviceMemory<float> gpu_array_ptr{se::DeviceMemoryBase{gpu_array}}; TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array.size() * sizeof(float), &cpu_array[0])); for (float f : cpu_array) { ASSERT_FALSE(std::isfinite(f)); } cpu_array[0] = 1.0; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D( &cpu_array[0], cpu_array.size() * sizeof(float), &gpu_array_ptr)); TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array_result.size() * sizeof(float), &cpu_array_result[0])); ASSERT_EQ(1.0, cpu_array_result[0]); a.DeallocateRaw(gpu_array); TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array_result.size() * sizeof(float), &cpu_array_result[0])); for (float f : cpu_array_result) { ASSERT_FALSE(std::isfinite(f)); } } TEST(GPUDebugAllocatorTest, TracksSizes) { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUDebugAllocator a( new GPUBFCAllocator(absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); EXPECT_EQ(true, a.TracksAllocationSizes()); } TEST(GPUDebugAllocatorTest, AllocatedVsRequested) { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUDebugAllocator a( new GPUBFCAllocator(absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); float* t1 = TypedAllocator::Allocate<float>(&a, 1, {}); EXPECT_EQ(4, a.RequestedSize(t1)); EXPECT_EQ(256, a.AllocatedSize(t1)); a.DeallocateRaw(t1); } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_debug_allocator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_debug_allocator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
890fb4c1-2de7-4aa0-846d-d9612a5dfe98
cpp
tensorflow/tensorflow
gpu_serving_device_selector
tensorflow/core/common_runtime/gpu/gpu_serving_device_selector.cc
tensorflow/core/common_runtime/gpu/gpu_serving_device_selector_test.cc
#include "tensorflow/core/common_runtime/gpu/gpu_serving_device_selector.h" #include <algorithm> #include <cstdint> #include <memory> #include <utility> #include "absl/base/attributes.h" #include "absl/container/fixed_array.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "xla/tsl/framework/serving_device_selector.h" #include "tensorflow/core/common_runtime/gpu/gpu_scheduling_metrics_storage.h" namespace tensorflow { namespace gpu { constexpr int64_t kDefaultEstimateNs = 1; ABSL_CONST_INIT int64_t (*NowNs)() = +[]() -> int64_t { return absl::GetCurrentTimeNanos(); }; using DeviceStates = GpuServingDeviceSelector::DeviceStates; GpuServingDeviceSelector::GpuServingDeviceSelector( const int num_devices, std::unique_ptr<ServingDeviceSelector::Policy> device_selector_policy) : device_states_(num_devices), device_selector_policy_(std::move(device_selector_policy)), req_id_counter_(0) {} tsl::DeviceReservation GpuServingDeviceSelector::ReserveDevice( absl::string_view program_fingerprint) { absl::MutexLock lock(&mu_); DeviceStates device_states; device_states.states = absl::Span<const DeviceState>(device_states_); auto [it, emplaced] = execution_info_.try_emplace(program_fingerprint, ExecutionInfo()); const int device_index = device_selector_policy_->SelectDevice(program_fingerprint, device_states); ServingDeviceSelector::EnqueueHelper( device_states_.at(device_index), device_index, it->second, program_fingerprint, 0, req_id_counter_++, 1, 0, NowNs()); return tsl::DeviceReservation(device_index, this); } void GpuServingDeviceSelector::FreeDeviceReservation( const tsl::DeviceReservation& reservation) { Completed(reservation.device_index(), false); } void GpuServingDeviceSelector::Enqueue(int32_t index_on_host, absl::string_view fingerprint) { if (fingerprint.empty()) { LOG(ERROR) << "Empty fingerprint."; return; } absl::MutexLock lock(&mu_); auto [it, emplaced] = execution_info_.try_emplace(fingerprint, ExecutionInfo()); DeviceState& device_state = device_states_.at(index_on_host); ServingDeviceSelector::EnqueueHelper(device_state, index_on_host, it->second, fingerprint, 0, -1, 1, 0, NowNs()); int64_t total_estimated_time_ns = TotalEstimatedTimeTillIdleNs(); GpuSchedulingMetricsStorage::GetGlobalStorage().TotalGpuLoadNs().Set( total_estimated_time_ns); } void GpuServingDeviceSelector::Completed(int32_t index_on_host, bool had_error) { absl::MutexLock lock(&mu_); DeviceState& device_state = device_states_.at(index_on_host); ServingDeviceSelector::CompletedHelper(device_state, index_on_host, 0, min_exec_time_, had_error, NowNs()); int64_t total_estimated_time_ns = TotalEstimatedTimeTillIdleNs(); GpuSchedulingMetricsStorage::GetGlobalStorage().TotalGpuLoadNs().Set( total_estimated_time_ns); } int64_t GpuServingDeviceSelector::TotalEstimatedTimeTillIdleNs() { int64_t total_gpu_load_ns = 0; for (const auto& device_state : device_states_) { total_gpu_load_ns += ServingDeviceSelector::EstimateTimeTillIdleNs( device_state, 0, min_exec_time_.value_or(kDefaultEstimateNs), NowNs()); } return total_gpu_load_ns; } void GpuServingDeviceSelector::OverwriteNowNsFunctionForTest( int64_t (*now_ns)()) { NowNs = now_ns; } } }
#include "tensorflow/core/common_runtime/gpu/gpu_serving_device_selector.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <gtest/gtest.h> #include "absl/time/clock.h" #include "xla/tsl/framework/serving_device_selector.h" #include "xla/tsl/framework/serving_device_selector_policies.h" #include "tensorflow/core/common_runtime/gpu/gpu_scheduling_metrics_storage.h" namespace tensorflow { namespace gpu { class ServingDeviceSelectorTestHelper { public: ServingDeviceSelectorTestHelper() { GpuServingDeviceSelector::OverwriteNowNsFunctionForTest(NowNs); now_ns_ = 0; } ~ServingDeviceSelectorTestHelper() { GpuServingDeviceSelector::OverwriteNowNsFunctionForTest( absl::GetCurrentTimeNanos); } static void ElapseNs(int64_t ns) { now_ns_ += ns; } static int64_t NowNs() { return now_ns_; } private: static int64_t now_ns_; }; int64_t ServingDeviceSelectorTestHelper::now_ns_ = 0; namespace { TEST(GpuServingDeviceSelector, Basic) { GpuServingDeviceSelector selector(2, std::make_unique<tsl::RoundRobinPolicy>()); const std::string program_fingerprint = "TensorFlow"; tsl::DeviceReservation reservation = selector.ReserveDevice(program_fingerprint); EXPECT_EQ(reservation.device_index(), 0); reservation = selector.ReserveDevice(program_fingerprint); EXPECT_EQ(reservation.device_index(), 1); reservation = selector.ReserveDevice(program_fingerprint); EXPECT_EQ(reservation.device_index(), 0); } TEST(GpuServingDeviceSelector, DefaultPolicyOnlyEnqueueCall) { ServingDeviceSelectorTestHelper helper; auto policy = std::make_unique<tsl::RoundRobinPolicy>(); auto serving_device_selector = std::make_unique<tensorflow::gpu::GpuServingDeviceSelector>( 4, std::move(policy)); serving_device_selector->Enqueue(3, "16ms"); serving_device_selector->Enqueue(2, "8ms"); serving_device_selector->Enqueue(1, "4ms"); serving_device_selector->Enqueue(0, "2ms"); serving_device_selector->Enqueue(3, "16ms"); serving_device_selector->Enqueue(2, "8ms"); serving_device_selector->Enqueue(1, "4ms"); serving_device_selector->Enqueue(0, "2ms"); helper.ElapseNs(2e6); serving_device_selector->Completed(0, false); helper.ElapseNs(2e6); serving_device_selector->Completed(0, false); serving_device_selector->Completed(1, false); helper.ElapseNs(4e6); serving_device_selector->Completed(1, false); serving_device_selector->Completed(2, false); helper.ElapseNs(8e6); serving_device_selector->Completed(2, false); serving_device_selector->Completed(3, false); helper.ElapseNs(16e6); serving_device_selector->Completed(3, false); serving_device_selector->Enqueue(3, "16ms"); EXPECT_EQ( GpuSchedulingMetricsStorage::GetGlobalStorage().TotalGpuLoadNs().Get(), 16e6); serving_device_selector->Enqueue(2, "8ms"); EXPECT_EQ( GpuSchedulingMetricsStorage::GetGlobalStorage().TotalGpuLoadNs().Get(), 24e6); serving_device_selector->Enqueue(1, "4ms"); EXPECT_EQ( GpuSchedulingMetricsStorage::GetGlobalStorage().TotalGpuLoadNs().Get(), 28e6); serving_device_selector->Enqueue(0, "2ms"); EXPECT_EQ( GpuSchedulingMetricsStorage::GetGlobalStorage().TotalGpuLoadNs().Get(), 30e6); helper.ElapseNs(2e6); serving_device_selector->Completed(0, false); EXPECT_EQ( GpuSchedulingMetricsStorage::GetGlobalStorage().TotalGpuLoadNs().Get(), 22e6); helper.ElapseNs(2e6); serving_device_selector->Completed(1, false); EXPECT_EQ( GpuSchedulingMetricsStorage::GetGlobalStorage().TotalGpuLoadNs().Get(), 16e6); helper.ElapseNs(4e6); serving_device_selector->Completed(2, false); EXPECT_EQ( GpuSchedulingMetricsStorage::GetGlobalStorage().TotalGpuLoadNs().Get(), 8e6); helper.ElapseNs(8e6); serving_device_selector->Completed(3, false); EXPECT_EQ( GpuSchedulingMetricsStorage::GetGlobalStorage().TotalGpuLoadNs().Get(), 0e6); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_serving_device_selector.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_serving_device_selector_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c1d79aab-385a-4f6f-bd49-cd1c141acb1c
cpp
tensorflow/tensorflow
gpu_device
tensorflow/core/common_runtime/gpu/gpu_device.cc
tensorflow/core/common_runtime/gpu/gpu_device_test.cc
#if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) || \ (defined(TENSORFLOW_USE_ROCM) && TENSORFLOW_USE_ROCM) #if (defined(PLATFORM_GOOGLE) && defined(TF_PLATFORM_LINUX_X86_64)) #define TF_GPU_USE_PJRT #endif #if TENSORFLOW_USE_ROCM #include "rocm/include/hip/hip_runtime.h" #endif #define EIGEN_USE_GPU #include <stdlib.h> #include <string.h> #include <algorithm> #include <list> #include <map> #include <memory> #include <optional> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_split.h" #include "unsupported/Eigen/CXX11/Tensor" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/tsl/framework/allocator.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/framework/device_id_utils.h" #include "tensorflow/core/common_runtime/device/device_event_mgr.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_id_utils.h" #include "tensorflow/core/common_runtime/gpu/gpu_device.h" #include "tensorflow/core/common_runtime/gpu/gpu_id_manager.h" #include "tensorflow/core/common_runtime/gpu/gpu_process_state.h" #include "tensorflow/core/common_runtime/gpu/gpu_util.h" #include "tensorflow/core/common_runtime/gpu_device_context.h" #include "tensorflow/core/common_runtime/local_device.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/graph/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/strings/numbers.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #if GOOGLE_CUDA #include "third_party/gpus/cudnn/cudnn.h" #elif TENSORFLOW_USE_ROCM #include "tensorflow/core/platform/rocm.h" #endif #ifdef TF_GPU_USE_PJRT #include "tensorflow/compiler/jit/flags.h" #include "xla/pjrt/gpu/gpu_helpers.h" #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_stream_executor_client.h" #include "xla/stream_executor/integrations/device_host_allocator.h" #endif #include "xla/stream_executor/gpu/gpu_stream.h" #include "xla/stream_executor/gpu/scoped_activate_context.h" #include "tensorflow/core/framework/log_memory.h" #include "tensorflow/core/platform/fingerprint.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/stream_executor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/lib/scoped_annotation.h" #include "tensorflow/core/profiler/lib/scoped_memory_debug_annotation.h" #include "tensorflow/core/public/session_options.h" #include "tsl/platform/dso_loader.h" #ifdef TF_GPU_USE_PJRT #include "tensorflow/core/tfrt/common/pjrt_util.h" #endif #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/env_var.h" #include "tensorflow/core/util/stream_executor_util.h" #if !defined(PLATFORM_GOOGLE) #if GOOGLE_CUDA #include "third_party/gpus/cuda/cuda_config.h" #endif #endif namespace tensorflow { namespace { int GetPriority(const int tf_device_id, const GPUOptions& options) { int id = tf_device_id; int i = 0; int priority = 0; while (i < options.experimental().virtual_devices_size()) { const int size = options.experimental().virtual_devices().Get(i).priority_size(); if (id >= size) { id -= size; } else { priority = options.experimental().virtual_devices().Get(i).priority().Get(id); break; } i++; } return priority; } } #if GOOGLE_CUDA typedef cudaStream_t gpuStream_t; typedef cudaDeviceProp gpuDeviceProp_t; #define EIGEN_GPU_SCRATCH_SIZE (Eigen::kGpuScratchSize) using se::gpu::ScopedActivateContext; #elif TENSORFLOW_USE_ROCM typedef hipStream_t gpuStream_t; typedef hipDeviceProp_t gpuDeviceProp_t; #define EIGEN_GPU_SCRATCH_SIZE (Eigen::kGpuScratchSize) using se::gpu::ScopedActivateContext; #endif static_assert(std::is_pointer_v<gpuStream_t>, "Gpu stream handle must be a pointer"); class EigenGpuStreamDevice : public ::Eigen::StreamInterface { public: EigenGpuStreamDevice() : scratch_(nullptr), semaphore_(nullptr), context_(nullptr), device_(this) {} ~EigenGpuStreamDevice() override {} void Reinitialize(OpKernelContext* context, gpuStream_t gpu_stream, tsl::PlatformDeviceId platform_device_id, ::tensorflow::Allocator* alloc, char* scratch) { if (LogMemory::IsEnabled()) { operation_ = context->op_kernel().name() + "/EigenAllocator"; step_id_ = context->step_id(); } context_ = context; scratch_ = scratch; semaphore_ = reinterpret_cast<unsigned int*>(scratch + Eigen::kGpuScratchSize); stream_ = gpu_stream; allocator_ = alloc; device_prop_ = &Eigen::GetGpuDeviceProperties(platform_device_id.value()); } const gpuStream_t& stream() const override { return stream_; } const gpuDeviceProp_t& deviceProperties() const override { return *device_prop_; } void* allocate(size_t num_bytes) const override { void* ret = allocator_->AllocateRaw(32 , num_bytes); if (ret == nullptr) { if (context_) { context_->SetStatus(errors::ResourceExhausted( strings::StrCat("Ran out of GPU memory when allocating ", num_bytes, " bytes for ", operation_))); } else { LOG(FATAL) << "EigenAllocator for GPU ran out of memory when allocating " << num_bytes << ". See error logs for more detailed info."; } } if (LogMemory::IsEnabled() && ret != nullptr) { LogMemory::RecordRawAllocation(operation_, step_id_, num_bytes, ret, allocator_); } return ret; } void deallocate(void* buffer) const override { if (LogMemory::IsEnabled() && buffer != nullptr) { LogMemory::RecordRawDeallocation(operation_, step_id_, buffer, allocator_, true); } AsyncFreeData* afData = new AsyncFreeData(allocator_, buffer, operation_, step_id_); #if GOOGLE_CUDA cudaError_t err = cudaStreamAddCallback(stream_, asyncLogFree, afData, 0); CHECK_EQ(err, cudaSuccess); #elif TENSORFLOW_USE_ROCM hipError_t err = hipStreamAddCallback(stream_, asyncLogFree, afData, 0); CHECK_EQ(err, hipSuccess); #endif allocator_->DeallocateRaw(buffer); } void* scratchpad() const override { return scratch_; } unsigned int* semaphore() const override { return semaphore_; } const Eigen::GpuDevice& device() const { return device_; } private: struct AsyncFreeData { AsyncFreeData(::tensorflow::Allocator* a, void* p, const string& o, const int64_t s) : allocator_(a), address_(p), operation_(o), step_id_(s) {} ::tensorflow::Allocator* allocator_; void* address_; const string operation_; const int64_t step_id_; }; #if GOOGLE_CUDA static void CUDART_CB asyncLogFree(gpuStream_t stream, cudaError_t status, void* userData) #elif TENSORFLOW_USE_ROCM static void asyncLogFree(gpuStream_t stream, hipError_t status, void* userData) #endif { AsyncFreeData* data = static_cast<AsyncFreeData*>(userData); if (LogMemory::IsEnabled()) { LogMemory::RecordRawDeallocation(data->operation_, data->step_id_, data->address_, data->allocator_, false); } delete data; } string operation_; int64_t step_id_; gpuStream_t stream_; const gpuDeviceProp_t* device_prop_; ::tensorflow::Allocator* allocator_; mutable char* scratch_; mutable unsigned int* semaphore_; OpKernelContext* context_; Eigen::GpuDevice device_; EigenGpuStreamDevice(const EigenGpuStreamDevice&) = delete; void operator=(const EigenGpuStreamDevice&) = delete; }; class BaseGPUDevice::StreamGroupFactory { public: std::pair<BaseGPUDevice::StreamGroup*, bool> Emplace( tsl::TfDeviceId tf_device_id, int stream_group_within_gpu, BaseGPUDevice::StreamGroup stream_group) { mutex_lock guard(lock_); auto insert_result = streams_.emplace( key_type(tf_device_id.value(), stream_group_within_gpu), std::move(stream_group)); return std::make_pair(&insert_result.first->second, insert_result.second); } BaseGPUDevice::StreamGroup* GetOrCreate(tsl::TfDeviceId tf_device_id, int stream_group_within_gpu, se::StreamExecutor* executor, const GPUOptions& options) { mutex_lock guard(lock_); StreamGroup* group = &streams_[key_type(tf_device_id.value(), stream_group_within_gpu)]; if (!group->compute) { int priority = GetPriority(tf_device_id.value(), options); group->priority = priority; group->compute = GetInitializedStream(executor, priority); VLOG(2) << "Created stream[" << stream_group_within_gpu << "] = " << group->compute << " with priority: " << priority; #if TENSORFLOW_USE_ROCM group->nccl = GetInitializedStream(executor, priority); VLOG(2) << "Created nccl_stream[" << stream_group_within_gpu << "] = " << group->nccl; group->compute->WaitFor(group->nccl).IgnoreError(); group->nccl->WaitFor(group->compute).IgnoreError(); #endif group->host_to_device = GetInitializedStream(executor, priority); VLOG(2) << "Created host_to_device_stream[" << stream_group_within_gpu << "] = " << group->host_to_device; group->device_to_host = GetInitializedStream(executor, priority); VLOG(2) << "Created device_to_host_stream[" << stream_group_within_gpu << "] = " << group->device_to_host; int num_d2d_streams = options.experimental().num_dev_to_dev_copy_streams(); if (num_d2d_streams == 0) num_d2d_streams = 1; if (num_d2d_streams < 1 || num_d2d_streams > 4) { LOG(ERROR) << "Illegal GPUOptions.experimental.num_dev_to_dev_copy_streams=" << num_d2d_streams << " set to 1 instead."; num_d2d_streams = 1; } for (int i = 0; i < num_d2d_streams; ++i) { se::Stream* stream = GetInitializedStream(executor, priority); group->device_to_device.push_back(stream); VLOG(2) << "Created device_to_device_stream[" << stream_group_within_gpu << "] = " << group->device_to_device.back(); } } return group; } static StreamGroupFactory& Global() { static StreamGroupFactory* instance = new StreamGroupFactory(); return *instance; } void TestOnlyReset() { mutex_lock guard(lock_); for (auto& item : streams_) { auto& stream = item.second; if (stream.compute) { #ifndef TF_GPU_USE_PJRT delete stream.compute; #endif stream.compute = nullptr; } #if TENSORFLOW_USE_ROCM if (stream.nccl) { #ifndef TF_GPU_USE_PJRT delete stream.nccl; #endif stream.nccl = nullptr; } #endif if (stream.host_to_device) { #ifndef TF_GPU_USE_PJRT delete stream.host_to_device; #endif stream.host_to_device = nullptr; } if (stream.device_to_host) { #ifndef TF_GPU_USE_PJRT delete stream.device_to_host; #endif stream.device_to_host = nullptr; } while (!stream.device_to_device.empty()) { auto back = stream.device_to_device.back(); if (back) { #ifndef TF_GPU_USE_PJRT delete back; #endif } stream.device_to_device.pop_back(); } } streams_.clear(); } std::optional<tsl::TfDeviceId> FindTfDeviceId(se::Stream* compute) const { for (const auto& item : streams_) { if (item.second.compute == compute) { return tsl::TfDeviceId(std::get<0>(item.first)); } } return std::nullopt; } private: se::Stream* GetInitializedStream(se::StreamExecutor* executor, int priority) { auto stream_or_status = executor->CreateStream(priority); if (!stream_or_status.ok()) { LOG(ERROR) << "Failed to create stream: " << stream_or_status.status(); return nullptr; } auto stream_ptr = stream_or_status->get(); allocated_streams_.emplace_back(std::move(stream_or_status.value())); return stream_ptr; } mutex lock_; using key_type = std::tuple<int, int>; std::map<key_type, StreamGroup> streams_; std::vector<std::unique_ptr<se::Stream>> allocated_streams_; StreamGroupFactory() = default; StreamGroupFactory(const StreamGroupFactory&) = delete; void operator=(const StreamGroupFactory&) = delete; }; BaseGPUDevice::BaseGPUDevice(const SessionOptions& options, const string& name, Bytes memory_limit, const DeviceLocality& locality, tsl::TfDeviceId tf_device_id, const string& physical_device_desc, Allocator* gpu_allocator, Allocator* cpu_allocator, bool sync_every_op) : LocalDevice(options, Device::BuildDeviceAttributes(name, DEVICE_GPU, memory_limit, locality, physical_device_desc)), gpu_allocator_(gpu_allocator), cpu_allocator_(cpu_allocator), scoped_allocator_mgr_(new ScopedAllocatorMgr(name)), tf_device_id_(tf_device_id), sync_every_op_(sync_every_op), stream_merge_options_( options.config.gpu_options().experimental().stream_merge_options()) { set_xla_global_id(Fingerprint32(name) % std::numeric_limits<int32_t>::max()); #ifdef TF_GPU_USE_PJRT XlaShapeLayoutHelpers::ShapeDeterminationFns shape_fns{ UseNoPreferenceLayoutFn(), IdentityShapeRepresentationFn()}; pjrt_device_context_ = core::RefCountPtr<DeviceContext>( new PjRtDeviceContext(shape_fns, true)); #endif GPUProcessState::singleton()->EnableGPUDevice(); } BaseGPUDevice::~BaseGPUDevice() { delete accelerator_device_info_; if (scratch_) gpu_allocator_->DeallocateRaw(scratch_); device_context_->Unref(); } Status BaseGPUDevice::InitScratchBuffers() { mutex_lock l(scratch_init_mutex_); if (!scratch_) { DCHECK(stream_); size_t scratch_buffer_size = Eigen::kGpuScratchSize + sizeof(unsigned int); profiler::ScopedMemoryDebugAnnotation op_annotation("ScratchBuffer"); void* scratch_buffer = gpu_allocator_->AllocateRaw( Allocator::kAllocatorAlignment, scratch_buffer_size); if (scratch_buffer == nullptr) { return errors::FailedPrecondition( "Failed to allocate scratch buffer for device ", tf_device_id_.value()); } se::DeviceMemory<char> mem( se::DeviceMemoryBase(scratch_buffer, scratch_buffer_size)); TF_RETURN_IF_ERROR(executor_->SynchronousMemZero( &mem, Eigen::kGpuScratchSize + sizeof(unsigned int))); scratch_ = static_cast<char*>(scratch_buffer); } return OkStatus(); } #ifdef TF_GPU_USE_PJRT Status BaseGPUDevice::Init(const SessionOptions& options, xla::LocalDeviceState* xla_local_device_state) { #else Status BaseGPUDevice::Init(const SessionOptions& options) { #endif auto executor_status = DeviceIdUtil::ExecutorForTfDeviceId( DEVICE_GPU, se::GPUMachineManager(), tf_device_id_); if (!executor_status.status().ok()) { return errors::Internal("Failed to get StreamExecutor for device ", tf_device_id_.value()); } executor_ = executor_status.value(); #ifdef TF_GPU_USE_PJRT CHECK(xla_local_device_state != nullptr); StreamGroup stream_group; stream_group.priority = GetPriority(tf_device_id_.value(), options.config.gpu_options()); stream_group.compute = xla_local_device_state->compute_stream(); stream_group.host_to_device = xla_local_device_state->host_to_device_stream(); stream_group.device_to_host = xla_local_device_state->GetDeviceToHostStream(); std::vector<se::Stream*> d2d_streams_from_local_devices_state = xla_local_device_state->GetDeviceToDeviceStreams(); for (se::Stream* stream : d2d_streams_from_local_devices_state) { stream_group.device_to_device.push_back(stream); } std::pair<StreamGroup*, bool> emplace_result = StreamGroupFactory::Global().Emplace( tf_device_id_, 0, stream_group); if (!emplace_result.second) { LOG(WARNING) << "StreamGroup for tf_device_id: " << tf_device_id_.value() << " already exists. This usually only happens in unit tests."; } stream_ = emplace_result.first; #else stream_ = StreamGroupFactory::Global().GetOrCreate( tf_device_id_, 0, executor_, options.config.gpu_options()); #endif AllocatorAttributes attr; attr.set_on_host(true); attr.set_gpu_compatible(true); Allocator* host_memory_allocator = GetAllocator(attr); device_context_ = new GPUDeviceContext(0, stream_->compute, #if TENSORFLOW_USE_ROCM stream_->nccl, #endif stream_->host_to_device, stream_->device_to_host, stream_->device_to_device, host_memory_allocator); em_ = EventMgrFactory::Singleton()->GetEventMgr(executor_, options.config.gpu_options()); GPUKernelTracker::Params tracker_params( options.config.gpu_options().experimental().kernel_tracker_max_interval(), options.config.gpu_options().experimental().kernel_tracker_max_bytes(), options.config.gpu_options().experimental().kernel_tracker_max_pending()); timestamped_allocator_ = options.config.gpu_options().experimental().timestamped_allocator(); pending_cap_ = tracker_params.max_pending; if (timestamped_allocator_ || (tracker_params.max_interval > 0 || tracker_params.max_bytes > 0 || tracker_params.max_pending > 0)) { SharedCounter* timing_counter = nullptr; if (timestamped_allocator_) { timing_counter = GPUProcessState::singleton()->GPUAllocatorCounter(tf_device_id_); DCHECK(timing_counter); } kernel_tracker_.reset(new GPUKernelTracker( tracker_params, Env::Default(), stream_->compute, timing_counter, timestamped_allocator_ ? gpu_allocator_ : nullptr, em_)); } accelerator_device_info_ = new DeviceBase::AcceleratorDeviceInfo; accelerator_device_info_->stream = stream_->compute; accelerator_device_info_->default_context = device_context_; #ifdef TF_GPU_USE_PJRT accelerator_device_info_->pjrt_context = pjrt_device_context_.get(); bool use_pjrt = GetXlaOpsCommonFlags()->tf_xla_use_device_api.IsEnabledForGpu(); accelerator_device_info_->use_pjrt_tensor_buffer = use_pjrt && static_cast<PjRtDeviceContext*>(pjrt_device_context_.get()) ->use_pjrt_tensor_buffer(); #endif accelerator_device_info_->event_mgr = em_; tsl::PlatformDeviceId platform_device_id; TF_RETURN_IF_ERROR( GpuIdManager::TfToPlatformDeviceId(tf_device_id_, &platform_device_id)); accelerator_device_info_->gpu_id = platform_device_id.value(); set_tensorflow_accelerator_device_info(accelerator_device_info_); string gpu_thread_mode; TF_RETURN_IF_ERROR( ReadStringFromEnvVar("TF_GPU_THREAD_MODE", "global", &gpu_thread_mode)); gpu_thread_mode = absl::AsciiStrToLower(gpu_thread_mode); if (gpu_thread_mode != "global") { int64_t gpu_thread_count = -1; TF_RETURN_IF_ERROR( ReadInt64FromEnvVar("TF_GPU_THREAD_COUNT", 2, &gpu_thread_count)); if (gpu_thread_mode == "gpu_private") { thread_pool_.reset(new thread::ThreadPool( options.env, ThreadOptions(), strings::StrCat("gpu_private_", tf_device_id_.value()), static_cast<int32>(gpu_thread_count), !options.config.experimental().disable_thread_spinning(), nullptr)); set_tensorflow_device_thread_pool(thread_pool_.get()); } else if (gpu_thread_mode == "gpu_shared") { static thread::ThreadPool* thread_pool = new thread::ThreadPool( options.env, ThreadOptions(), "gpu_shared", static_cast<int32>(gpu_thread_count), !options.config.experimental().disable_thread_spinning(), nullptr); set_tensorflow_device_thread_pool(thread_pool); } else { string error_message = strings::StrCat("Invalid gpu_thread_mode: ", gpu_thread_mode); LOG(WARNING) << error_message; return errors::InvalidArgument(error_message); } } TF_ASSIGN_OR_RETURN( node_file_writer_, NodeFileWriter::GetNodeFileWriterIfEnabled(name(), env())); if (node_file_writer_) { LOG(INFO) << "Writing NodeDefs to file: " << node_file_writer_->filename(); } return OkStatus(); } string BaseGPUDevice::ComputeOpKernelDebugString(const OpKernel& op_kernel, const int& stream_id) { return strings::StrCat(op_kernel.name(), " op ", op_kernel.type_string(), " on GPU ", tf_device_id_.value(), " stream[", stream_id, "]"); } std::optional<tsl::TfDeviceId> BaseGPUDevice::FindTfDeviceId( se::Stream* compute) { return StreamGroupFactory::Global().FindTfDeviceId(compute); } namespace { const absl::flat_hash_set<std::string>* GetOpsToLogFromEnv() { auto* result = new absl::flat_hash_set<std::string>; const char* env = getenv("TF_GPU_DEBUG_OPS_TO_LOG"); if (!env) { return result; } std::vector<absl::string_view> ops = absl::StrSplit(env, ','); LOG(INFO) << "Will log inputs & outputs from the following ops: "; for (absl::string_view op : ops) { result->insert(std::string(op)); LOG(INFO) << " |" << op << "|"; } return result; } bool ShouldLogInputsAndOutputs(OpKernel* op_kernel) { static const absl::flat_hash_set<std::string>& ops_to_log = *GetOpsToLogFromEnv(); return ops_to_log.count(op_kernel->type_string()); } } Tensor BaseGPUDevice::CopyGpuTensorToHostDebugOnly(const Tensor& gpu_tensor) { Tensor host_tensor(gpu_tensor.dtype(), gpu_tensor.shape()); auto stream = device_context_->stream(); CHECK(stream ->Memcpy(host_tensor.data(), se::DeviceMemoryBase(gpu_tensor.data(), gpu_tensor.TotalBytes()), gpu_tensor.TotalBytes()) .ok()); CHECK(stream->BlockHostUntilDone().ok()); return host_tensor; } void BaseGPUDevice::LogInputs(OpKernel* op_kernel, OpKernelContext* context) { LOG(INFO) << "Inputs for " << op_kernel->name() << " (total " << context->num_inputs() << "):"; for (int i = 0; i < context->num_inputs(); i++) { if (!context->has_input(i)) { LOG(INFO) << "input # " << i << " is absent"; continue; } Tensor input = context->input_memory_type(i) == DEVICE_MEMORY ? CopyGpuTensorToHostDebugOnly(context->input(i)) : context->input(i); LOG(INFO) << "input # " << i; LOG(INFO) << input.DebugString(-1); } LOG(INFO) << ""; } void BaseGPUDevice::LogOutputs(OpKernel* op_kernel, OpKernelContext* context) { if (!context->status().ok()) { LOG(INFO) << op_kernel->name() << " failed: " << context->status().message(); return; } LOG(INFO) << "Outputs for " << op_kernel->name() << " (total " << context->num_inputs() << "):"; for (int i = 0; i < context->num_outputs(); i++) { Tensor* output_ptr = context->mutable_output(i); if (output_ptr == nullptr) { LOG(INFO) << "output # " << i << " is null"; continue; } Tensor output = context->output_memory_type(i) == DEVICE_MEMORY ? CopyGpuTensorToHostDebugOnly(*output_ptr) : *output_ptr; LOG(INFO) << "output # " << i; LOG(INFO) << output.DebugString(-1); } LOG(INFO) << ""; } void BaseGPUDevice::Compute(OpKernel* op_kernel, OpKernelContext* context) { GPUDeviceContext* gpu_device_context = device_context_; if (context->op_device_context() != nullptr) { gpu_device_context = static_cast<GPUDeviceContext*>(context->op_device_context()); } se::Stream* stream = gpu_device_context->stream(); const auto stream_id = gpu_device_context->stream_id(); const bool vlog_1 = VLOG_IS_ON(1); if (vlog_1) { VLOG(1) << "GpuDevice::ComputeHelper " << ComputeOpKernelDebugString(*op_kernel, stream_id); } if (kernel_tracker_.get()) { context->set_record_memory_consumption(true); if (pending_cap_ > 0) { kernel_tracker_->PauseWhilePendingExceeds(pending_cap_); } } ScopedActivateContext scoped_activation{stream->parent()}; profiler::ScopedMemoryDebugAnnotation op_annotation( op_kernel->name_view().data(), context->step_id()); bool should_log_inputs_and_outputs = ShouldLogInputsAndOutputs(op_kernel); if (should_log_inputs_and_outputs) { LogInputs(op_kernel, context); } op_kernel->Compute(context); if (should_log_inputs_and_outputs) { LogOutputs(op_kernel, context); } if (context->status().ok()) { if (sync_every_op_) { context->SetStatus(GPUUtil::SyncAll(this)); if (vlog_1) { VLOG(1) << "GpuDevice::ComputeHelper finished " << ComputeOpKernelDebugString(*op_kernel, stream_id); } } else if (vlog_1) { VLOG(1) << "GpuDevice::ComputeHelper scheduled " << ComputeOpKernelDebugString(*op_kernel, stream_id); } if (kernel_tracker_) { GPUKernelTracker* tracker = kernel_tracker_.get(); DCHECK(tracker); uint64 queued_count = tracker->MaybeQueue(context); if (queued_count > 0) { em_->ThenExecute(stream, [tracker, queued_count]() { tracker->RecordTerminated(queued_count); }); } } if (node_file_writer_) { Status s = node_file_writer_->RecordNodeExecution(op_kernel, context); if (!s.ok()) { LOG(ERROR) << s; context->SetStatus(s); } } } else { if (vlog_1) { VLOG(1) << "GpuDevice::ComputeHelper failed to schedule " << ComputeOpKernelDebugString(*op_kernel, stream_id); } } } Status BaseGPUDevice::Sync() { DCHECK_NE(stream_, nullptr); return stream_->compute->BlockHostUntilDone(); } void BaseGPUDevice::ComputeAsync(AsyncOpKernel* op_kernel, OpKernelContext* context, AsyncOpKernel::DoneCallback done) { GPUDeviceContext* gpu_device_context = device_context_; if (context->op_device_context() != nullptr) { gpu_device_context = static_cast<GPUDeviceContext*>(context->op_device_context()); } se::Stream* stream = gpu_device_context->stream(); const auto stream_id = gpu_device_context->stream_id(); VLOG(1) << "GpuDevice::ComputeAsync " << op_kernel->name() << " op " << op_kernel->type_string() << " on GPU" << tf_device_id_ << " stream[" << stream_id << "]"; bool should_log_inputs_and_outputs = ShouldLogInputsAndOutputs(op_kernel); if (should_log_inputs_and_outputs) { LogInputs(op_kernel, context); AsyncOpKernel::DoneCallback parent_done = done; done = [this, parent_done, should_log_inputs_and_outputs, op_kernel, context]() { LogOutputs(op_kernel, context); parent_done(); }; } ScopedActivateContext scoped_activation{stream->parent()}; op_kernel->ComputeAsync(context, std::move(done)); } Status BaseGPUDevice::MaybeCopyTensorToGPU( const AllocatorAttributes& alloc_attrs, const Tensor& from, Tensor* to, StatusCallback done) { if (alloc_attrs.on_host()) { *to = from; done(OkStatus()); return OkStatus(); } else { if (!DMAHelper::CanUseDMA(&from)) { Status err = errors::Internal("GPU copy from non-DMA ", DataTypeString(from.dtype()), " tensor"); done(err); return err; } AllocationAttributes allocation_attr; uint64 safe_alloc_frontier = 0; std::function<uint64()> freed_by_func = [this, &safe_alloc_frontier]() { safe_alloc_frontier = SafeAllocFrontier(safe_alloc_frontier); return safe_alloc_frontier; }; if (timestamped_allocator_) { allocation_attr.freed_by_func = &freed_by_func; } auto* copy = new Tensor(GetAllocator(alloc_attrs), from.dtype(), from.shape(), allocation_attr); if (!copy->IsInitialized()) { delete copy; Status err = errors::ResourceExhausted( "OOM when allocating tensor of shape ", from.shape().DebugString(), " and type ", DataTypeString(from.dtype())); done(err); return err; } auto wrapped_done = [to, copy, done = std::move(done)](const Status& s) { if (s.ok()) { *to = std::move(*copy); } delete copy; done(s); }; profiler::ScopedAnnotation annotation("MakeTensorFromProto"); device_context_->CopyCPUTensorToDevice( &from, this, copy, std::move(wrapped_done), !timestamped_allocator_ ); return OkStatus(); } } Status BaseGPUDevice::MakeTensorFromProto(const TensorProto& tensor_proto, const AllocatorAttributes alloc_attrs, Tensor* tensor) { AllocatorAttributes attr; attr.set_on_host(true); attr.set_gpu_compatible(true); Allocator* host_alloc = GetAllocator(attr); Tensor parsed(tensor_proto.dtype()); if (!parsed.FromProto(host_alloc, tensor_proto)) { return errors::InvalidArgument("Cannot parse tensor from proto: ", tensor_proto.DebugString()); } profiler::ScopedMemoryDebugAnnotation op_annotation( "MakeTensorFromProto", "dynamic", parsed.dtype(), [&parsed]() { return parsed.shape().DebugString(); }); if (parsed.dtype() == DT_VARIANT) { const Variant* from = parsed.flat<Variant>().data(); int numa_node = attributes().locality().numa_node(); Tensor copy(cpu_allocator(numa_node), DT_VARIANT, parsed.shape()); Variant* copy_variant = copy.flat<Variant>().data(); std::list<Notification> notifications; Status copy_status; auto copier = [this, &alloc_attrs, &notifications, &copy_status]( const Tensor& from, Tensor* to) { notifications.emplace_back(); Notification& n = *notifications.rbegin(); return MaybeCopyTensorToGPU(alloc_attrs, from, to, [&n, &copy_status](const Status& s) { if (copy_status.ok()) { copy_status.Update(s); } n.Notify(); }); }; Status s; for (int64_t ix = 0; ix < parsed.NumElements(); ++ix) { s = VariantDeviceCopy(VariantDeviceCopyDirection::HOST_TO_DEVICE, from[ix], &copy_variant[ix], copier); if (!s.ok()) { break; } } for (auto& n : notifications) { n.WaitForNotification(); } if (!s.ok()) { return s; } *tensor = std::move(copy); return copy_status; } else { Notification n; Status status; TF_RETURN_IF_ERROR(MaybeCopyTensorToGPU(alloc_attrs, parsed, tensor, [&n, &status](const Status& s) { status = s; n.Notify(); })); n.WaitForNotification(); return status; } } void BaseGPUDevice::CopyTensorInSameDevice(const Tensor* input_tensor, Tensor* output_tensor, const DeviceContext* device_context, StatusCallback done) { GPUUtil::CopyGPUTensorToSameGPU(static_cast<Device*>(this), device_context, input_tensor, output_tensor, std::move(done)); } ConcretePerOpGpuDevice::ConcretePerOpGpuDevice() : stream_device_(std::make_unique<EigenGpuStreamDevice>()) {} void ConcretePerOpGpuDevice::Reinitialize(OpKernelContext* context, void* gpu_stream, tsl::TfDeviceId tf_device_id, Allocator* base_allocator, char* scratch) { tsl::PlatformDeviceId platform_device_id; TF_CHECK_OK( GpuIdManager::TfToPlatformDeviceId(tf_device_id, &platform_device_id)); static_cast<EigenGpuStreamDevice*>(stream_device_.get()) ->Reinitialize(context, static_cast<gpuStream_t>(gpu_stream), platform_device_id, base_allocator, scratch); } void ConcretePerOpGpuDevice::Reinitialize( OpKernelContext* context, void* gpu_stream, tsl::PlatformDeviceId platform_device_id, Allocator* base_allocator, char* scratch) { static_cast<EigenGpuStreamDevice*>(stream_device_.get()) ->Reinitialize(context, static_cast<gpuStream_t>(gpu_stream), platform_device_id, base_allocator, scratch); } const Eigen::GpuDevice& ConcretePerOpGpuDevice::device() const { return static_cast<EigenGpuStreamDevice*>(stream_device_.get())->device(); } namespace { Status VerifyVirtualDeviceSettings( const size_t num_gpus_to_use, const GPUOptions& gpu_options, const std::vector<tsl::PlatformDeviceId>& visible_gpu_order, const std::vector<tsl::PlatformDeviceId>& valid_platform_device_ids, const std::map<int, std::pair<int, int>>& supported_priority_ranges) { const auto& virtual_devices = gpu_options.experimental().virtual_devices(); CHECK(!virtual_devices.empty()); if (gpu_options.per_process_gpu_memory_fraction() > 0) { return errors::InvalidArgument( "It's invalid to set per_process_gpu_memory_fraction when " "virtual_devices is set."); } if (num_gpus_to_use < virtual_devices.size()) { return errors::Unknown( "Not enough GPUs to create virtual devices." " num_gpus_to_use: ", num_gpus_to_use, " #virtual_devices: ", virtual_devices.size()); } if (!gpu_options.visible_device_list().empty() && visible_gpu_order.size() != virtual_devices.size()) { return errors::InvalidArgument( "The number of GPUs in visible_device_list doesn't match the number " "of elements in the virtual_devices list.", " #GPUs in visible_device_list: ", visible_gpu_order.size(), " virtual_devices.size(): ", virtual_devices.size()); } if (valid_platform_device_ids.size() != virtual_devices.size()) { return errors::Unknown( "The number of valid GPUs doesn't match the number of elements in " "the virtual_devices list.", " #valid GPUs: ", valid_platform_device_ids.size(), " virtual_devices.size(): ", virtual_devices.size()); } for (int i = 0; i < virtual_devices.size(); ++i) { if (virtual_devices.Get(0).device_ordinal().empty() != virtual_devices.Get(i).device_ordinal().empty()) { return errors::InvalidArgument( "Device ordinals must be set for all virtual devices or none. But " "the device_ordinal is specified for ", i, " while previous devices didn't have any set."); } } if (!virtual_devices.Get(0).device_ordinal().empty()) { for (int i = 0; i < virtual_devices.size(); ++i) { const size_t memory_limit_mb_size = virtual_devices.Get(i).memory_limit_mb().size(); const size_t device_ordinal_size = virtual_devices.Get(i).device_ordinal().size(); if (memory_limit_mb_size != device_ordinal_size) { return errors::InvalidArgument( "Number of virtual device ordinals specified doesn't " "match with number of memory_limit_mb specified for GPU# ", i, " memory_limit_mb size: ", memory_limit_mb_size, " and device_ordinal size: ", device_ordinal_size); } } } #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM bool priority_exists = !virtual_devices.Get(0).priority().empty(); for (int i = 0; i < virtual_devices.size(); ++i) { const auto& memory_limit_mb = virtual_devices.Get(i).memory_limit_mb(); const auto& priority = virtual_devices.Get(i).priority(); if (!priority_exists) { if (!priority.empty()) { return errors::InvalidArgument( "Priority must be set for all virtual devices or none. But the " "priority is specified for ", i, " while previous devices didn't " "have any set."); } } if (priority_exists && memory_limit_mb.size() != priority.size()) { return errors::InvalidArgument( "Number of virtual device priorities specified doesn't " "match with number of memory_limit_mb specified for GPU# ", i, " memory_limit_mb size: ", memory_limit_mb.size(), " and priority size: ", priority.size()); } const int gpu_id = valid_platform_device_ids[i].value(); auto it = supported_priority_ranges.find(gpu_id); if (it == supported_priority_ranges.end()) { return errors::Internal( "Failed to find supported priority range for GPU" " device ", gpu_id); } const std::pair<int, int>& priority_range = it->second; for (int p : priority) { if (p > priority_range.first || p < priority_range.second) { return errors::InvalidArgument( "Priority ", p, " is outside the range of supported priorities " "[", priority_range.second, ",", priority_range.first, "] for virtual device ", i, " on GPU# ", gpu_id); } } } #endif return OkStatus(); } int64_t MinSystemMemory(int64_t available_memory, int cc_major) { int64_t min_system_memory; if (available_memory < (1LL << 31)) { min_system_memory = 225 * 1024 * 1024; } else { if (cc_major <= 6) { min_system_memory = 500 * 1024 * 1024; } else if (cc_major <= 7) { min_system_memory = 1050 * 1024 * 1024; } else if (cc_major <= 8) { min_system_memory = 1536 * 1024 * 1024; } else { min_system_memory = 1800 * 1024 * 1024; } } #if defined(__GNUC__) && defined(__OPTIMIZE__) #elif !defined(__GNUC__) && defined(NDEBUG) #else min_system_memory *= 2; #endif #if defined(ANDROID_TEGRA) min_system_memory = 1 << 30; #endif VLOG(5) << "available_memory = " << available_memory; VLOG(5) << "min_system_memory = " << min_system_memory; return min_system_memory; } Status SingleVirtualDeviceMemoryLimit(const GPUOptions& gpu_options, tsl::PlatformDeviceId platform_device_id, int64_t* memory_limit) { int64_t total_memory = 0; int64_t available_memory = 0; se::StreamExecutor* se = se::GPUMachineManager() ->ExecutorForDevice(platform_device_id.value()) .value(); if (!se->DeviceMemoryUsage(&available_memory, &total_memory)) { return errors::Unknown("Failed to query available memory for GPU ", platform_device_id.value()); } int64_t allocated_memory = 0; const double per_process_gpu_memory_fraction = gpu_options.per_process_gpu_memory_fraction(); se::CudaComputeCapability cc = se->GetDeviceDescription().cuda_compute_capability(); if ((per_process_gpu_memory_fraction > 1.0 || gpu_options.experimental().use_unified_memory()) && !cc.IsAtLeast(se::CudaComputeCapability::PASCAL_)) { return errors::Internal( "Unified memory on GPUs with compute capability lower than 6.0 " "(pre-Pascal class GPUs) does not support oversubscription."); } if (per_process_gpu_memory_fraction == 0) { allocated_memory = available_memory; const int64_t min_system_memory = MinSystemMemory(available_memory, cc.major); if (min_system_memory < allocated_memory) { allocated_memory -= min_system_memory; } } else { allocated_memory = total_memory * per_process_gpu_memory_fraction; } const auto maybe_update_allocated_memory = [&](int64_t reserved_mb) { int64_t allowable_reserved_memory = reserved_mb * 1024 * 1024; if (allowable_reserved_memory <= available_memory) { allocated_memory = available_memory - allowable_reserved_memory; VLOG(1) << "Setting the GPU reserved bytes to " << strings::HumanReadableNumBytes(allocated_memory) << " MBytes"; } else { LOG(WARNING) << "The requested reserved device memory " << strings::HumanReadableNumBytes(allowable_reserved_memory) << " is larger than the available memory of " << strings::HumanReadableNumBytes(available_memory) << ". The request is ignored."; } }; if (gpu_options.experimental().gpu_system_memory_size_in_mb() > 0) { maybe_update_allocated_memory( gpu_options.experimental().gpu_system_memory_size_in_mb()); } const char* force_device_reserved_bytes = std::getenv("TF_DEVICE_MIN_SYS_MEMORY_IN_MB"); if (force_device_reserved_bytes != nullptr && strcmp(force_device_reserved_bytes, "") != 0) { int64_t reserved_mb; if (!strings::safe_strto64(force_device_reserved_bytes, &reserved_mb) || reserved_mb < 0) { LOG(WARNING) << "The requested reserved device memory " << force_device_reserved_bytes << " is invalid. The request will be ignored."; } else { maybe_update_allocated_memory(reserved_mb); } } *memory_limit = allocated_memory; return OkStatus(); } } void BaseGPUDevice::ReinitializeDevice(OpKernelContext* context, PerOpGpuDevice* device, int stream_id, Allocator* allocator) { ConcretePerOpGpuDevice* concrete_device = static_cast<ConcretePerOpGpuDevice*>(device); DCHECK(concrete_device); DCHECK_EQ(stream_id, 0); const gpuStream_t gpu_stream = reinterpret_cast<gpuStream_t>( stream_->compute->platform_specific_handle().stream); concrete_device->Reinitialize(context, gpu_stream, tf_device_id_, allocator, scratch_); } PerOpGpuDevice* BaseGPUDevice::MakeGpuDevice() { return new ConcretePerOpGpuDevice(); } Status BaseGPUDevice::ReinitializeGpuDevice(OpKernelContext* context, PerOpGpuDevice* device, DeviceContext* dc, Allocator* allocator) { TF_RETURN_IF_ERROR(InitScratchBuffers()); if (dc) { const GPUDeviceContext* gpu_dc = static_cast<GPUDeviceContext*>(dc); const int stream_id = gpu_dc->stream_id(); VLOG(1) << " eigen_gpu_device(" << dc << ") => stream[" << stream_id << "]"; CHECK_EQ(stream_id, 0); ReinitializeDevice(context, device, stream_id, allocator); } else { ReinitializeDevice(context, device, 0, allocator); } return OkStatus(); } Allocator* BaseGPUDevice::GetScopedAllocator(AllocatorAttributes attr, int64_t step_id) { if (attr.scope_id > 0) { return scoped_allocator_mgr_->GetContainer(step_id)->GetInstance( attr.scope_id); } LOG(FATAL) << "Unexpected call to BaseGPUDevice::GetScopedAllocator " << "attr.scope_id = " << attr.scope_id; return gpu_allocator_; } const int BaseGPUDeviceFactory::InterconnectMap::kSameDeviceStrength = 1000; const int BaseGPUDeviceFactory::InterconnectMap::kStreamExecutorStrength = 1; Status BaseGPUDeviceFactory::CacheDeviceIds() { if (!cached_device_ids_.empty()) { return OkStatus(); } TF_RETURN_IF_ERROR(se::ValidateGPUMachineManager()); se::Platform* gpu_manager = se::GPUMachineManager(); if (gpu_manager == nullptr) { return OkStatus(); } int device_count = gpu_manager->VisibleDeviceCount(); if (device_count <= 0) { return OkStatus(); } std::vector<tsl::PlatformDeviceId> visible_gpu_order(device_count); std::iota(visible_gpu_order.begin(), visible_gpu_order.end(), 0); TF_RETURN_IF_ERROR(GetValidDeviceIds(visible_gpu_order, &cached_device_ids_)); return OkStatus(); } Status BaseGPUDeviceFactory::ListPhysicalDevices(std::vector<string>* devices) { TF_RETURN_IF_ERROR(CacheDeviceIds()); for (tsl::PlatformDeviceId platform_device_id : cached_device_ids_) { const string device_name = strings::StrCat("/physical_device:GPU:", platform_device_id.value()); devices->push_back(device_name); } return OkStatus(); } Status BaseGPUDeviceFactory::GetDeviceDetails( int device_index, std::unordered_map<string, string>* details) { TF_RETURN_IF_ERROR(CacheDeviceIds()); if (device_index < 0 || device_index > cached_device_ids_.size()) { return errors::Internal("Invalid device index: ", device_index); } tsl::PlatformDeviceId platform_device_id = cached_device_ids_[device_index]; TF_RETURN_IF_ERROR(se::ValidateGPUMachineManager()); se::Platform* gpu_manager = se::GPUMachineManager(); if (gpu_manager == nullptr) { return errors::Internal("Cannot get GPUMachineManager"); } auto desc_status = gpu_manager->DescriptionForDevice(platform_device_id.value()); if (!desc_status.ok()) { return desc_status.status(); } auto desc = std::move(desc_status).value(); (*details)["device_name"] = desc->name(); #if GOOGLE_CUDA (*details)["compute_capability"] = desc->cuda_compute_capability().ToString(); #endif return OkStatus(); } Status BaseGPUDeviceFactory::CreateDevices( const SessionOptions& options, const string& name_prefix, std::vector<std::unique_ptr<Device>>* devices) { TF_RETURN_IF_ERROR(se::ValidateGPUMachineManager()); se::Platform* gpu_manager = se::GPUMachineManager(); if (gpu_manager == nullptr) { return OkStatus(); } if (gpu_manager->VisibleDeviceCount() <= 0) { return OkStatus(); } size_t num_gpus_to_use = INT_MAX; auto iter = options.config.device_count().find("GPU"); if (iter != options.config.device_count().end()) { num_gpus_to_use = iter->second; } const auto& gpu_options = options.config.gpu_options(); bool populate_pjrt_gpu_client_creation_info = gpu_options.experimental().populate_pjrt_gpu_client_creation_info(); #ifdef TF_GPU_USE_PJRT absl::StatusOr<PjRtGpuClientCreationInfo*> obtained_info = GetPjRtGpuClientCreationInfo(); if (obtained_info.ok() && obtained_info.value() != nullptr) { populate_pjrt_gpu_client_creation_info = false; VLOG(3) << "Previous GetPjRtGpuClientCreationInfo exists, setting " "populate_pjrt_gpu_client_creation_info to false."; } else { VLOG(3) << "Previous GetPjRtGpuClientCreationInfo does not exist. Will create."; } #endif std::vector<tsl::PlatformDeviceId> visible_gpu_order; std::vector<tsl::PlatformDeviceId> valid_platform_device_ids; VLOG(3) << "CreateGPUDevice: num_gpus_to_use: " << num_gpus_to_use << ", visible_device_list: " << gpu_options.visible_device_list() << ", populate_pjrt_gpu_client_creation_info: " << populate_pjrt_gpu_client_creation_info; if (num_gpus_to_use > 0) { TF_RETURN_IF_ERROR(tsl::ParseVisibleDeviceList( gpu_options.visible_device_list(), gpu_manager->VisibleDeviceCount(), &visible_gpu_order)); bool new_gpu_found = false; for (int i = 0; i < visible_gpu_order.size(); ++i) { int visible_gpu_id = visible_gpu_order[i].value(); if (visible_gpu_initialized_[visible_gpu_id]) { continue; } visible_gpu_initialized_[visible_gpu_id] = true; new_gpu_found = true; } if (new_gpu_found && visible_gpu_order.size() > 1) { TF_RETURN_IF_ERROR(EnablePeerAccess(visible_gpu_order)); } TF_RETURN_IF_ERROR( GetValidDeviceIds(visible_gpu_order, &valid_platform_device_ids)); } if (num_gpus_to_use > valid_platform_device_ids.size()) { num_gpus_to_use = valid_platform_device_ids.size(); } std::map<int, std::pair<int, int>> supported_priority_ranges; if (!valid_platform_device_ids.empty()) { int original_device = 0; #if GOOGLE_CUDA cudaError_t err = cudaGetDevice(&original_device); if (err != cudaSuccess) { return errors::Internal("cudaGetDevice() failed. Status: ", cudaGetErrorString(err)); } #elif TENSORFLOW_USE_ROCM hipError_t err = hipGetDevice(&original_device); if (err != hipSuccess) { return errors::Internal("hipGetDevice() failed. Status: ", hipGetErrorString(err)); } #endif for (tsl::PlatformDeviceId platform_device_id : valid_platform_device_ids) { #if GOOGLE_CUDA err = cudaSetDevice(platform_device_id.value()); if (err != cudaSuccess) { return errors::Internal( "cudaSetDevice() on GPU:", platform_device_id.value(), " failed. Status: ", cudaGetErrorString(err)); } int priority_low, priority_high; cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high); if (err != cudaSuccess) { return errors::Internal( "cudaDeviceGetStreamPriorityRange() on GPU:", original_device, " failed. Status: ", cudaGetErrorString(err)); } VLOG(1) << "Cuda stream priority range on GPU(" << original_device << "): " << priority_high << "," << priority_low; supported_priority_ranges.insert( std::make_pair(platform_device_id.value(), std::make_pair(priority_low, priority_high))); #elif TENSORFLOW_USE_ROCM err = hipSetDevice(platform_device_id.value()); if (err != hipSuccess) { return errors::Internal( "hipSetDevice() on GPU:", platform_device_id.value(), " failed. Status: ", hipGetErrorString(err)); } err = hipFree(nullptr); if (err != hipSuccess) { return errors::Internal("ROCm runtime implicit initialization on GPU:", platform_device_id.value(), " failed. Status: ", hipGetErrorString(err)); } int priority_low, priority_high; err = hipDeviceGetStreamPriorityRange(&priority_low, &priority_high); if (err != hipSuccess) { return errors::Internal( "hipDeviceGetStreamPriorityRange() on GPU:", original_device, " failed. Status: ", hipGetErrorString(err)); } VLOG(1) << "HIP stream priority range on GPU(" << original_device << "): " << priority_high << "," << priority_low; supported_priority_ranges.insert( std::make_pair(platform_device_id.value(), std::make_pair(priority_low, priority_high))); #endif } if (std::find(valid_platform_device_ids.begin(), valid_platform_device_ids.end(), original_device) == valid_platform_device_ids.end()) { original_device = valid_platform_device_ids[0].value(); } #if GOOGLE_CUDA err = cudaSetDevice(original_device); if (err != cudaSuccess) { return errors::Internal("cudaSetDevice() on GPU:", original_device, " failed. Status: ", cudaGetErrorString(err)); } #elif TENSORFLOW_USE_ROCM err = hipSetDevice(original_device); if (err != hipSuccess) { return errors::Internal("hipSetDevice() on GPU:", original_device, " failed. Status: ", hipGetErrorString(err)); } #endif #if GOOGLE_CUDA int cuda_major_version = CUDART_VERSION / 1000; int cuda_minor_version = (CUDART_VERSION / 10) % 10; VLOG(1) << "TensorFlow compiled with CUDA " << cuda_major_version << "." << cuda_minor_version << " and cuDNN " << CUDNN_MAJOR << "." << CUDNN_MINOR << "." << CUDNN_PATCHLEVEL; #endif } std::vector<InterconnectMap> interconnect_maps; TF_RETURN_IF_ERROR( GetInterconnectMaps(visible_gpu_order, gpu_manager, &interconnect_maps)); for (const InterconnectMap& im : interconnect_maps) { VLOG(1) << "Device interconnect " << im.name << " with strength " << im.strength << " edge matrix:"; string line_buf = " "; for (int i = 0; i < visible_gpu_order.size(); ++i) { strings::StrAppend(&line_buf, visible_gpu_order[i].value(), " "); } VLOG(1) << line_buf; for (int i = 0; i < visible_gpu_order.size(); ++i) { line_buf = strings::StrCat(visible_gpu_order[i].value(), ": "); tsl::PlatformDeviceId gpu_id_i = visible_gpu_order[i]; for (int j = 0; j < visible_gpu_order.size(); ++j) { tsl::PlatformDeviceId gpu_id_j = visible_gpu_order[j]; if (im.directed_links.find({gpu_id_i, gpu_id_j}) != im.directed_links.end()) { line_buf.append("Y "); } else { line_buf.append("N "); } } VLOG(1) << line_buf; } } const auto& virtual_devices = gpu_options.experimental().virtual_devices(); if (!virtual_devices.empty()) { TF_RETURN_IF_ERROR(VerifyVirtualDeviceSettings( num_gpus_to_use, gpu_options, visible_gpu_order, valid_platform_device_ids, supported_priority_ranges)); num_gpus_to_use = virtual_devices.size(); CHECK(gpu_options.visible_device_list().empty() || valid_platform_device_ids == visible_gpu_order); } if (num_gpus_to_use == 0) { return OkStatus(); } struct TfDeviceSpec { tsl::PlatformDeviceId platform_device_id; int64_t memory_limit_bytes; int index; int device_ordinal; TfDeviceSpec(tsl::PlatformDeviceId platform_device_id, int64_t memory_limit_bytes, int index, int device_ordinal) : platform_device_id(platform_device_id), memory_limit_bytes(memory_limit_bytes), index(index), device_ordinal(device_ordinal) {} }; std::vector<TfDeviceSpec> tf_device_specs; constexpr int64_t kMegaByte = 1ll << 20; for (int i = 0; i < num_gpus_to_use; ++i) { const tsl::PlatformDeviceId platform_device_id = valid_platform_device_ids[i]; if (virtual_devices.empty() || virtual_devices.Get(i).memory_limit_mb_size() == 0) { int64_t single_virtual_device_memory_limit = 0; TF_RETURN_IF_ERROR( SingleVirtualDeviceMemoryLimit(gpu_options, platform_device_id, &single_virtual_device_memory_limit)); const int num_virtual_devices = gpu_options.experimental().num_virtual_devices_per_gpu(); if (num_virtual_devices > 1) { const int64_t memory_limit_per_virtual_device = single_virtual_device_memory_limit / num_virtual_devices; for (int j = 0; j < num_virtual_devices; ++j) { tf_device_specs.emplace_back( platform_device_id, memory_limit_per_virtual_device, tf_device_specs.size(), 0); } } else { tf_device_specs.emplace_back( platform_device_id, single_virtual_device_memory_limit, tf_device_specs.size(), 0); } } else { const GPUOptions::Experimental::VirtualDevices& virtual_devices_for_gpu = virtual_devices.Get(i); for (int j = 0; j < virtual_devices_for_gpu.memory_limit_mb().size(); j++) { tf_device_specs.emplace_back( platform_device_id, static_cast<int64_t>(virtual_devices_for_gpu.memory_limit_mb(j)) * kMegaByte, tf_device_specs.size(), j < virtual_devices_for_gpu.device_ordinal().size() ? virtual_devices_for_gpu.device_ordinal(j) : 0); } } } std::sort(tf_device_specs.begin(), tf_device_specs.end(), [](const TfDeviceSpec& a, const TfDeviceSpec& b) { if (a.device_ordinal < b.device_ordinal) { return true; } else if (a.device_ordinal > b.device_ordinal) { return false; } DCHECK_EQ(a.device_ordinal, b.device_ordinal); DCHECK(std::addressof(a) == std::addressof(b) || a.index != b.index); if (a.index < b.index) { return true; } return false; }); for (int di = 0; di < tf_device_specs.size(); ++di) { tsl::TfDeviceId tf_device_id(di); TF_RETURN_IF_ERROR(GpuIdManager::InsertTfPlatformDeviceIdPair( tf_device_id, tf_device_specs[di].platform_device_id)); } LocalityMap device_localities; TF_RETURN_IF_ERROR(GetDeviceLocalities( tf_device_specs.size(), interconnect_maps, &device_localities)); #ifdef TF_GPU_USE_PJRT std::vector<se::MultiDeviceAdapter::AllocatorInfo> allocator_id_stream_tuples; allocator_id_stream_tuples.reserve(tf_device_specs.size()); std::map<int, std::unique_ptr<xla::LocalDeviceState>> local_device_states; std::set<int> allowed_devices; if (!gpu_options.visible_device_list().empty()) { for (const TfDeviceSpec& tf_device_spec : tf_device_specs) { allowed_devices.insert(tf_device_spec.platform_device_id.value()); } } TF_ASSIGN_OR_RETURN( xla::LocalClient * xla_client, xla::GetGpuXlaClient( std::nullopt, allowed_devices.empty() ? std::nullopt : std::make_optional(allowed_devices))); bool should_create_new_pjrt_client = true; xla::PjRtStreamExecutorClient* pjrt_se_client = nullptr; auto obtained_pjrt_client = GetPjRtClient(DeviceType(DEVICE_GPU)); if (obtained_pjrt_client.ok()) { pjrt_se_client = tensorflow::down_cast<xla::PjRtStreamExecutorClient*>( *obtained_pjrt_client); if (pjrt_se_client->addressable_device_count() == tf_device_specs.size()) { should_create_new_pjrt_client = false; } else { LOG(WARNING) << "A PjRt GPU Client was previously created, but the " "addressable device count: " << pjrt_se_client->addressable_device_count() << " is not equal to tf_device_specs size: " << tf_device_specs.size() << ". This usually only happens in unit tests and we will " "create a new PjRt GPU Client."; } } #endif GPUProcessState* process_state = GPUProcessState::singleton(); for (int di = 0; di < tf_device_specs.size(); ++di) { tsl::TfDeviceId tf_device_id(di); std::vector<tsl::TfDeviceId> peer_gpu_ids; size_t num_tf_gpus = tf_device_specs.size(); peer_gpu_ids.reserve(num_tf_gpus); for (int id = 0; id < num_tf_gpus; ++id) { tsl::TfDeviceId peer_tf_device_id(id); if (peer_tf_device_id != di) { peer_gpu_ids.push_back(peer_tf_device_id); } } int64_t memory_limit = tf_device_specs[di].memory_limit_bytes; Allocator* gpu_allocator = process_state->GetGPUAllocator( options.config.gpu_options(), tf_device_id, memory_limit, peer_gpu_ids); if (gpu_allocator == nullptr) { return absl::InternalError(absl::StrCat( "Failed to get memory allocator for TF GPU ", tf_device_id.value(), " with ", memory_limit, " bytes of memory.")); } auto it = device_localities.find(tf_device_id); if (it == device_localities.end()) { return errors::Internal("Failed to find DeviceLocality for GPU device ", tf_device_id.value()); } #ifdef TF_GPU_USE_PJRT const auto executor_status = DeviceIdUtil::ExecutorForTfDeviceId( DEVICE_GPU, gpu_manager, tf_device_id); if (!executor_status.status().ok()) { return absl::InternalError(absl::StrCat( "Failed to get StreamExecutor for device ", tf_device_id.value())); } xla::LocalDeviceState* local_device_state = nullptr; if (should_create_new_pjrt_client || populate_pjrt_gpu_client_creation_info) { VLOG(3) << "should_create_new_pjrt_client=" << should_create_new_pjrt_client << ", populate_pjrt_gpu_client_creation_info=" << populate_pjrt_gpu_client_creation_info << " for device ordinal " << di; const int priority = GetPriority(tf_device_id.value(), gpu_options); xla::LocalDeviceState::StreamOptions stream_options; int num_d2d_streams = gpu_options.experimental().num_dev_to_dev_copy_streams(); if (num_d2d_streams == 0) num_d2d_streams = 1; if (num_d2d_streams < 1 || num_d2d_streams > 4) { LOG(ERROR) << "Illegal GPUOptions.experimental.num_dev_to_dev_copy_streams=" << num_d2d_streams << " set to 1 instead."; num_d2d_streams = 1; } stream_options.num_device_to_device_streams = num_d2d_streams; stream_options.priority = priority; auto emplace_result = local_device_states.emplace( di, std::make_unique<xla::LocalDeviceState>( executor_status.value(), xla_client, xla::LocalDeviceState::kComputeSynchronized, 32, true, true, di, stream_options)); if (!emplace_result.second) { LOG(ERROR) << "Creating LocalDeviceState for device ordinal: " << di << " already exists! Returning an error"; return absl::InternalError(absl::StrCat( "GPU local device state for tf_device_id: ", tf_device_id.value(), " already exists.")); } local_device_state = emplace_result.first->second.get(); } else { VLOG(3) << "should_create_new_pjrt_client=" << should_create_new_pjrt_client << " for device ordinal " << di << ". Re-using local_device_state"; auto* pjrt_se_client = tensorflow::down_cast<xla::PjRtStreamExecutorClient*>( *obtained_pjrt_client); local_device_state = &(pjrt_se_client->device_state(di)); } TF_RETURN_IF_ERROR(CreateGPUDevice( options, name_prefix, tf_device_id, it->second, local_device_state, gpu_allocator, devices)); if (should_create_new_pjrt_client || populate_pjrt_gpu_client_creation_info) { auto gpu_allocator_ptr = std::unique_ptr<Allocator>(gpu_allocator); allocator_id_stream_tuples.emplace_back( std::move(gpu_allocator_ptr), local_device_state->compute_stream(), 0, tf_device_id.value()); } } if (local_device_states.empty()) { return OkStatus(); } if (should_create_new_pjrt_client || populate_pjrt_gpu_client_creation_info) { VLOG(3) << "should_create_new_pjrt_client=" << should_create_new_pjrt_client << ", populate_pjrt_gpu_client_creation_info=" << populate_pjrt_gpu_client_creation_info; auto allocator_adapter = std::make_unique<se::MultiDeviceAdapter>( gpu_manager, std::move(allocator_id_stream_tuples)); const int64_t numa_node = 0; std::unique_ptr<tsl::Allocator> pjrt_gpu_host_allocator( process_state->GetGpuHostAllocator({}, numa_node)); if (populate_pjrt_gpu_client_creation_info && !should_create_new_pjrt_client) { auto pjrt_gpu_client_creation_info = std::make_unique<PjRtGpuClientCreationInfo>(); pjrt_gpu_client_creation_info->allocator = std::move(allocator_adapter); pjrt_gpu_client_creation_info->host_memory_allocator = std::move(pjrt_gpu_host_allocator); pjrt_gpu_client_creation_info->local_device_states = std::move(local_device_states); pjrt_gpu_client_creation_info->local_client = xla_client; pjrt_gpu_client_creation_info->allowed_devices = std::move(allowed_devices); return SetPjRtGpuClientCreationInfoInTFGlobalResourceManager( std::move(pjrt_gpu_client_creation_info)); } if (should_create_new_pjrt_client) { int node_id = gpu_options.experimental().node_id(); std::vector<std::unique_ptr<xla::PjRtStreamExecutorDevice>> pjrt_devices = xla::BuildLocalDevices(std::move(local_device_states), node_id); auto& pjrt_rollout_config = GetXlaOpsCommonFlags()->tf_xla_use_device_api; pjrt_rollout_config.AllowForDeviceInXlaLaunch(DEVICE_GPU); pjrt_rollout_config.AllowForDeviceInXlaCompileOnDemand(DEVICE_GPU); pjrt_rollout_config.AllowForDeviceInXlaCompileAndRun(DEVICE_GPU); auto gpu_run_options = std::make_unique<xla::gpu::GpuExecutableRunOptions>(); #if TENSORFLOW_USE_ROCM auto platform_name = xla::RocmName(); #elif TENSORFLOW_USE_SYCL auto pjrt_platform_name = xla::SyclName(); #else auto platform_name = xla::CudaName(); #endif std::unique_ptr<xla::PjRtClient> pjrt_client = std::make_unique<xla::StreamExecutorGpuClient>( platform_name, xla_client, std::move(pjrt_devices), numa_node, std::move(allocator_adapter), std::move(pjrt_gpu_host_allocator), true, std::move(gpu_run_options), nullptr, nullptr); return SetPjRtClientInTFGlobalResourceManager(DeviceType(DEVICE_GPU), std::move(pjrt_client)); } LOG(INFO) << "Unexpectedly returning OK STATUS in " "BaseGPUDeviceFactory::CreateDevices without creating a PJRT GPU " "client when one does not already exist. If there is any problem " "with GPU computations, file a bug. (But if this occurs in a " "test environment that doesn't actually perform GPU " "computations, this might not be a problem.)"; return OkStatus(); } else { return obtained_pjrt_client.status(); } #else TF_RETURN_IF_ERROR(CreateGPUDevice(options, name_prefix, tf_device_id, it->second, gpu_allocator, devices)); } return OkStatus(); #endif } static string GetShortDeviceDescription( tsl::PlatformDeviceId platform_device_id, const se::DeviceDescription& desc) { #if GOOGLE_CUDA return strings::StrCat( "device: ", platform_device_id.value(), ", name: ", desc.name(), ", pci bus id: ", desc.pci_bus_id(), ", compute capability: ", desc.cuda_compute_capability().ToString()); #elif TENSORFLOW_USE_ROCM return strings::StrCat("device: ", platform_device_id.value(), ", name: ", desc.name(), ", pci bus id: ", desc.pci_bus_id()); #endif } #ifdef TF_GPU_USE_PJRT Status BaseGPUDeviceFactory::CreateGPUDevice( const SessionOptions& options, const string& name_prefix, tsl::TfDeviceId tf_device_id, const DeviceLocality& dev_locality, xla::LocalDeviceState* xla_local_device_state, Allocator* gpu_allocator, std::vector<std::unique_ptr<Device>>* devices) { #else Status BaseGPUDeviceFactory::CreateGPUDevice( const SessionOptions& options, const string& name_prefix, tsl::TfDeviceId tf_device_id, const DeviceLocality& dev_locality, Allocator* gpu_allocator, std::vector<std::unique_ptr<Device>>* devices) { #endif CHECK_GE(tf_device_id.value(), 0); const string device_name = strings::StrCat(name_prefix, "/device:GPU:", tf_device_id.value()); tsl::CheckValidTfDeviceId( DEVICE_GPU, se::GPUMachineManager()->VisibleDeviceCount(), tf_device_id); tsl::PlatformDeviceId platform_device_id; TF_RETURN_IF_ERROR( GpuIdManager::TfToPlatformDeviceId(tf_device_id, &platform_device_id)); int numa_node = dev_locality.numa_node(); se::Platform* gpu_manager = se::GPUMachineManager(); auto desc_status = gpu_manager->DescriptionForDevice(platform_device_id.value()); if (!desc_status.ok()) { return desc_status.status(); } auto desc = std::move(desc_status).value(); std::optional<AllocatorStats> stats = gpu_allocator->GetStats(); int64_t bytes_limit = (stats && stats->bytes_limit) ? *stats->bytes_limit : 0; std::unique_ptr<BaseGPUDevice> gpu_device = CreateGPUDevice( options, device_name, static_cast<Bytes>(bytes_limit), dev_locality, tf_device_id, GetShortDeviceDescription(platform_device_id, *desc), gpu_allocator, ProcessState::singleton()->GetCPUAllocator(numa_node)); LOG(INFO) << "Created device " << device_name << " with " << (bytes_limit >> 20) << " MB memory: " << " -> " << GetShortDeviceDescription(platform_device_id, *desc); #ifdef TF_GPU_USE_PJRT TF_RETURN_IF_ERROR(gpu_device->Init(options, xla_local_device_state)); #else TF_RETURN_IF_ERROR(gpu_device->Init(options)); #endif gpu_allocator->SetStreamAndPreallocateMemory( gpu_device->compute_stream()->platform_specific_handle().stream); devices->push_back(std::move(gpu_device)); return OkStatus(); } namespace { std::unique_ptr< std::map<std::pair<tsl::PlatformDeviceId, tsl::PlatformDeviceId>, bool>> GetPeerAccessMap(se::Platform* platform, const std::vector<tsl::PlatformDeviceId>& visible_gpu_order) { std::unique_ptr< std::map<std::pair<tsl::PlatformDeviceId, tsl::PlatformDeviceId>, bool>> map(new std::map<std::pair<tsl::PlatformDeviceId, tsl::PlatformDeviceId>, bool>); for (tsl::PlatformDeviceId platform_gpu_i : visible_gpu_order) { for (tsl::PlatformDeviceId platform_gpu_j : visible_gpu_order) { se::StreamExecutor* from = platform->ExecutorForDevice(platform_gpu_i.value()).value(); se::StreamExecutor* to = platform->ExecutorForDevice(platform_gpu_j.value()).value(); (*map)[{platform_gpu_i, platform_gpu_j}] = from->CanEnablePeerAccessTo(to); } } return map; } } Status BaseGPUDeviceFactory::GetInterconnectMaps( const std::vector<tsl::PlatformDeviceId>& visible_gpu_order, se::Platform* gpu_manager, std::vector<InterconnectMap>* maps) { auto access_map = GetPeerAccessMap(gpu_manager, visible_gpu_order); maps->resize(1); InterconnectMap& imap = maps->at(0); imap.name = "StreamExecutor"; imap.strength = InterconnectMap::kStreamExecutorStrength; for (tsl::PlatformDeviceId gpu_id_i : visible_gpu_order) { for (tsl::PlatformDeviceId gpu_id_j : visible_gpu_order) { if (gpu_id_i == gpu_id_j) continue; if ((*access_map)[{gpu_id_i, gpu_id_j}]) { imap.directed_links.insert({gpu_id_i, gpu_id_j}); } } } return OkStatus(); } Status BaseGPUDeviceFactory::GetDeviceLocalities( int num_tf_gpus, const std::vector<InterconnectMap>& interconnects, LocalityMap* localities) { std::vector<tsl::TfDeviceId> all_tf_device_ids; all_tf_device_ids.reserve(num_tf_gpus); for (int i = 0; i < num_tf_gpus; ++i) { all_tf_device_ids.push_back(tsl::TfDeviceId(i)); } for (tsl::TfDeviceId tf_device_id : all_tf_device_ids) { tsl::PlatformDeviceId platform_device_id; TF_RETURN_IF_ERROR( GpuIdManager::TfToPlatformDeviceId(tf_device_id, &platform_device_id)); se::Platform* gpu_manager = se::GPUMachineManager(); auto desc_status = gpu_manager->DescriptionForDevice(platform_device_id.value()); if (!desc_status.ok()) { return desc_status.status(); } auto desc = std::move(desc_status).value(); int numa_node = desc->numa_node(); if (numa_node < 0) { LOG(INFO) << "Could not identify NUMA node of platform GPU id " << platform_device_id << ", defaulting to 0. Your kernel may not have been built " << "with NUMA support."; numa_node = 0; } DeviceLocality dev_locality; dev_locality.set_numa_node(numa_node); dev_locality.set_bus_id(numa_node + 1); LocalLinks* links = dev_locality.mutable_links(); for (const InterconnectMap& imap : interconnects) { for (tsl::TfDeviceId tf_gpu_dst : all_tf_device_ids) { tsl::PlatformDeviceId platform_gpu_dst; TF_RETURN_IF_ERROR( GpuIdManager::TfToPlatformDeviceId(tf_gpu_dst, &platform_gpu_dst)); if (imap.directed_links.find({platform_device_id, platform_gpu_dst}) != imap.directed_links.end()) { InterconnectLink* ilink = links->add_link(); ilink->set_device_id(tf_gpu_dst.value()); ilink->set_type(imap.name); ilink->set_strength(imap.strength); } } } for (tsl::TfDeviceId tf_gpu_dst : all_tf_device_ids) { if (tf_device_id == tf_gpu_dst) continue; tsl::PlatformDeviceId platform_gpu_dst; TF_RETURN_IF_ERROR( GpuIdManager::TfToPlatformDeviceId(tf_gpu_dst, &platform_gpu_dst)); if (platform_device_id == platform_gpu_dst) { InterconnectLink* ilink = links->add_link(); ilink->set_device_id(tf_gpu_dst.value()); ilink->set_type("SAME_DEVICE"); ilink->set_strength(InterconnectMap::kSameDeviceStrength); } } (*localities)[tf_device_id] = dev_locality; VLOG(1) << "GPUDevice PlatformDeviceId " << platform_device_id << " TfDeviceId " << tf_device_id << " on bus " << dev_locality.bus_id() << " numa: " << numa_node << " pci: " << desc->pci_bus_id() << " DeviceLocality: " << dev_locality.DebugString(); } return OkStatus(); } static int GetDefaultMinGPUMultiprocessorCount( se::Platform* gpu_manager, const std::vector<tsl::PlatformDeviceId>& visible_gpu_order) { static const int kDefaultMinGPUMultiprocessorCount = 8; int max_count = -1; for (int i = 0; i < visible_gpu_order.size(); ++i) { int visible_gpu_id = visible_gpu_order[i].value(); auto description_status = gpu_manager->DescriptionForDevice(visible_gpu_id); if (!description_status.ok()) { continue; } auto description = std::move(description_status).value(); max_count = std::max(max_count, description->core_count()); } if (max_count < 0 || kDefaultMinGPUMultiprocessorCount < max_count) { return kDefaultMinGPUMultiprocessorCount; } else { return max_count; } } static int GetMinGPUMultiprocessorCount( se::Platform* gpu_manager, const std::vector<tsl::PlatformDeviceId>& visible_gpu_order) { const char* tf_min_gpu_core_count = getenv("TF_MIN_GPU_MULTIPROCESSOR_COUNT"); if (tf_min_gpu_core_count == nullptr || strcmp(tf_min_gpu_core_count, "") == 0) { return GetDefaultMinGPUMultiprocessorCount(gpu_manager, visible_gpu_order); } int min_gpu_core_count = -1; if (strings::safe_strto32(tf_min_gpu_core_count, &min_gpu_core_count)) { if (min_gpu_core_count >= 0) { return min_gpu_core_count; } } int count = GetDefaultMinGPUMultiprocessorCount(gpu_manager, visible_gpu_order); LOG(ERROR) << "Invalid minimum GPU multiprocessor count: [" << tf_min_gpu_core_count << "]. " << "Using the default value: " << count; return count; } namespace { #if GOOGLE_CUDA se::CudaComputeCapability ComputeCapabilityFromString( const std::string& version_name) { int major_part, minor_part; size_t dot_pos = version_name.find('.'); CHECK(dot_pos != string::npos) << "Illegal version name: [" << version_name << "]"; string major_str = version_name.substr(0, dot_pos); CHECK(strings::safe_strto32(major_str, &major_part)) << "Illegal version name: [" << version_name << "]"; string minor_str = version_name.substr(dot_pos + 1); CHECK(strings::safe_strto32(minor_str, &minor_part)) << "Illegal version name: [" << version_name << "]"; return se::CudaComputeCapability{major_part, minor_part}; } std::vector<se::CudaComputeCapability> GetSupportedCudaComputeCapabilities() { std::vector<se::CudaComputeCapability> cuda_caps = { ComputeCapabilityFromString("3.5"), ComputeCapabilityFromString("5.2")}; #ifdef TF_EXTRA_CUDA_CAPABILITIES #define TF_XSTRING(...) #__VA_ARGS__ #define TF_STRING(s) TF_XSTRING(s) string extra_cuda_caps = TF_STRING(TF_EXTRA_CUDA_CAPABILITIES); #undef TF_STRING #undef TF_XSTRING auto extra_capabilities = str_util::Split(extra_cuda_caps, ','); for (const auto& capability : extra_capabilities) { cuda_caps.push_back(ComputeCapabilityFromString(capability)); } #endif return cuda_caps; } #endif } Status BaseGPUDeviceFactory::EnablePeerAccess( const std::vector<tsl::PlatformDeviceId>& visible_gpu_order) { se::Platform* gpu_manager = se::GPUMachineManager(); int possible_peer_count = 0; int enabled_peer_count = 0; for (int i = 0; i < visible_gpu_order.size(); ++i) { const tsl::PlatformDeviceId platform_gpu_i = visible_gpu_order[i]; for (int j = 0; j < visible_gpu_order.size(); ++j) { const tsl::PlatformDeviceId platform_gpu_j = visible_gpu_order[j]; se::StreamExecutor* from = gpu_manager->ExecutorForDevice(platform_gpu_i.value()).value(); se::StreamExecutor* to = gpu_manager->ExecutorForDevice(platform_gpu_j.value()).value(); if (from->CanEnablePeerAccessTo(to)) { ++possible_peer_count; auto status = from->EnablePeerAccessTo(to); if (!status.ok()) { LOG(WARNING) << "Unable to enable peer access between device ordinals " << platform_gpu_i << " and " << platform_gpu_j << ", status: " << status; } else { ++enabled_peer_count; } } } } if (possible_peer_count > 0 && enabled_peer_count == 0) { return errors::Internal(possible_peer_count, " potential peer access pairs were reported by the " "driver, but no peering could be enabled."); } return OkStatus(); } Status BaseGPUDeviceFactory::GetValidDeviceIds( const std::vector<tsl::PlatformDeviceId>& visible_gpu_order, std::vector<tsl::PlatformDeviceId>* ids) { se::Platform* gpu_manager = se::GPUMachineManager(); for (int i = 0; i < visible_gpu_order.size(); ++i) { int visible_gpu_id = visible_gpu_order[i].value(); auto description_status = gpu_manager->DescriptionForDevice(visible_gpu_id); if (!description_status.ok()) { return description_status.status(); } auto description = std::move(description_status).value(); #if GOOGLE_CUDA VLOG(1) << "Found device " << i << " with properties: " << "\npciBusID: " << description->pci_bus_id() << " name: " << description->name() << " computeCapability: " << description->cuda_compute_capability().ToString() << "\ncoreClock: " << description->clock_rate_ghz() << "GHz" << " coreCount: " << description->core_count() << " deviceMemorySize: " << strings::HumanReadableNumBytes(description->device_memory_size()) << " deviceMemoryBandwidth: " << strings::HumanReadableNumBytes(description->memory_bandwidth()) << "/s"; #elif TENSORFLOW_USE_ROCM std::string gcn_arch_name = description->rocm_compute_capability().gcn_arch_name(); VLOG(1) << "Found device " << i << " with properties: " << "\npciBusID: " << description->pci_bus_id() << " name: " << description->name() << " ROCm AMDGPU Arch: " << gcn_arch_name << "\ncoreClock: " << description->clock_rate_ghz() << "GHz" << " coreCount: " << description->core_count() << " deviceMemorySize: " << strings::HumanReadableNumBytes(description->device_memory_size()) << " deviceMemoryBandwidth: " << strings::HumanReadableNumBytes(description->memory_bandwidth()) << "/s"; #endif } #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM auto handle_or = tsl::internal::DsoLoader::MaybeTryDlopenGPULibraries(); if (!handle_or.ok()) { LOG(WARNING) << "Cannot dlopen some GPU libraries. Please make sure the " "missing libraries mentioned above are installed properly " "if you would like to use GPU. Follow the guide at " "https: "download and setup the required libraries for your " "platform.\nSkipping registering " "GPU devices..."; return OkStatus(); } #endif #if GOOGLE_CUDA auto cuda_supported_capabilities = GetSupportedCudaComputeCapabilities(); if (cuda_supported_capabilities.empty()) { return errors::FailedPrecondition( "No supported cuda capabilities in binary."); } se::CudaComputeCapability min_supported_capability = *std::min_element( cuda_supported_capabilities.begin(), cuda_supported_capabilities.end()); #endif int min_gpu_core_count = GetMinGPUMultiprocessorCount(gpu_manager, visible_gpu_order); for (int i = 0; i < visible_gpu_order.size(); ++i) { const tsl::PlatformDeviceId visible_gpu_id = visible_gpu_order[i]; auto description_status = gpu_manager->DescriptionForDevice(visible_gpu_id.value()); if (!description_status.ok()) { LOG(INFO) << "Ignoring visible gpu device " << visible_gpu_id << " whose executor is in invalid state: " << description_status.status().ToString(); continue; } auto desc = std::move(description_status).value(); #if GOOGLE_CUDA if (desc->cuda_compute_capability() < min_supported_capability) { LOG(INFO) << "Ignoring visible gpu device " << "(" << GetShortDeviceDescription(visible_gpu_id, *desc) << ") " << "with Cuda compute capability " << desc->cuda_compute_capability().ToString() << ". The minimum required Cuda capability is " << min_supported_capability.ToString() << "."; continue; } #elif TENSORFLOW_USE_ROCM auto rocm_compute_capability = desc->rocm_compute_capability(); if (!rocm_compute_capability.is_supported_gfx_version()) { LOG(INFO) << "Ignoring visible gpu device " << "(" << GetShortDeviceDescription(visible_gpu_id, *desc) << ") " << "with AMDGPU version : " << rocm_compute_capability.gfx_version() << ". The supported AMDGPU versions are " << rocm_compute_capability.supported_gfx_versions_str() << "."; continue; } #endif if (desc->core_count() < min_gpu_core_count) { LOG(INFO) << "Ignoring visible gpu device " << "(" << GetShortDeviceDescription(visible_gpu_id, *desc) << ") " << "with core count: " << desc->core_count() << ". The minimum required count is " << min_gpu_core_count << ". You can adjust this requirement with the env var " "TF_MIN_GPU_MULTIPROCESSOR_COUNT."; continue; } #if defined(GOOGLE_CUDA) && !defined(PLATFORM_GOOGLE) auto compute_capabilities = {TF_CUDA_COMPUTE_CAPABILITIES}; auto device_capability = desc->cuda_compute_capability(); if (std::count_if(std::cbegin(compute_capabilities), std::cend(compute_capabilities), [&](int cc) { return cc / 10 == device_capability.major && cc % 10 <= device_capability.minor; }) == 0) { LOG(WARNING) << "TensorFlow was not built with CUDA kernel binaries " "compatible with compute capability " << device_capability.ToString() << ". CUDA kernels will be " << "jit-compiled from PTX, which could take 30 minutes or longer."; } #endif ids->push_back(visible_gpu_id); } if (!ids->empty()) { std::vector<int> raw_ids(ids->size()); std::transform(ids->begin(), ids->end(), raw_ids.begin(), [](tsl::PlatformDeviceId id) -> int { return id.value(); }); VLOG(1) << "Adding visible gpu devices: " << absl::StrJoin(raw_ids, ", "); } return OkStatus(); } uint64 BaseGPUDevice::SafeAllocFrontier(uint64 old_value) { if (timestamped_allocator_) { return kernel_tracker_->LastTerminatedCount(old_value); } else { return 0; } } int BaseGPUDevice::PendingKernels() { if (kernel_tracker_) { return kernel_tracker_->NumPending(); } return 0; } void BaseGPUDevice::TestOnlyReset() { StreamGroupFactory::Global().TestOnlyReset(); } uint64 GPUKernelTracker::MaybeQueue(OpKernelContext* ctx) { mutex_lock l(mu_); ++ops_since_last_; int64_t mem_used = ctx->persistent_memory_allocated() + ctx->temp_memory_allocated(); VLOG(2) << "kernel: " << ctx->op_kernel().name() << " mem_used: " << mem_used; mem_since_last_ += mem_used; int weight = 1; if ((mem_since_last_ < params_.max_bytes) && (ops_since_last_ < params_.max_interval)) { return 0; } else { weight = std::min( params_.max_pending, std::max(1, mem_since_last_ / std::max(16386, params_.max_bytes))); mem_since_last_ = 0; ops_since_last_ = 0; } uint64 queued_count = timing_counter_->next(); RecordQueued(queued_count, weight); return queued_count; } void GPUKernelTracker::RecordQueued(uint64 queued_count, int weight) { VLOG(2) << "RecordQueued queued_count=" << queued_count << " first_available_=" << first_available_ << " last_completed_=" << last_completed_ << " num_pending_=" << num_pending_; pending_kernels_[first_available_].queued_count = queued_count; pending_kernels_[first_available_].weight = weight; pending_kernels_[first_available_].terminated = false; ++first_available_; num_pending_ += weight; if (first_available_ >= pending_kernels_.size()) { if (last_completed_ >= 0) { first_available_ = 0; } else { pending_kernels_.resize(2 * pending_kernels_.size()); } } if (first_available_ == last_completed_) { std::vector<PendingKernel> new_buffer(pending_kernels_.size() * 2); for (int i = 0; i < pending_kernels_.size(); ++i) { int j = (i + last_completed_) % pending_kernels_.size(); new_buffer[i] = pending_kernels_[j]; } last_completed_ = 0; first_available_ = pending_kernels_.size(); pending_kernels_.swap(new_buffer); VLOG(1) << "last_completed_=" << last_completed_ << " first_available_=" << first_available_ << " num_pending_=" << num_pending_; } DCHECK_NE(first_available_, last_completed_) << "exhausted pending_kernels"; } void GPUKernelTracker::MaybeQueueProgressEvent() { mutex_lock l(mu_); if (num_pending_ == 0) { uint64 new_count = timing_counter_->next(); RecordQueued(new_count, 1); em_->ThenExecute(stream_, [this, new_count]() { RecordTerminated(new_count); }); } } void GPUKernelTracker::RecordTerminated(uint64 queued_count) { mutex_lock l(mu_); VLOG(2) << this << " RecordTerminated queued_count=" << queued_count << " first_available_=" << first_available_ << " last_completed_=" << last_completed_ << " num_pending_=" << num_pending_ << " LC=" << ((last_completed_ >= 0) ? pending_kernels_[last_completed_].queued_count : -1); DCHECK_NE(first_available_, last_completed_); DCHECK_GT(num_pending_, 0); int index = (last_completed_ + 1) % pending_kernels_.size(); int weight = 1; while (true) { if (index == first_available_) { LOG(FATAL) << "Failed to find " << queued_count << " in queue, last_completed_=" << last_completed_ << " index=" << index << " first_available_=" << first_available_ << " pending_kernels_.size()=" << pending_kernels_.size(); } if (pending_kernels_[index].queued_count == queued_count) { pending_kernels_[index].terminated = true; weight = pending_kernels_[index].weight; break; } index = (index + 1) % pending_kernels_.size(); } while (true) { int next_index = (last_completed_ + 1) % pending_kernels_.size(); if (next_index == first_available_) break; if (pending_kernels_[next_index].terminated) { last_completed_ = next_index; } else { break; } } if (last_completed_ >= 0) { int64_t v = pending_kernels_[last_completed_].queued_count; last_terminated_count_ = v; if (allocator_) { allocator_->SetSafeFrontier(v); } } num_pending_ -= weight; pending_decreased_.notify_all(); } } #endif
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #if (defined(PLATFORM_GOOGLE) && defined(TF_PLATFORM_LINUX_X86_64)) #define TF_GPU_USE_PJRT #endif #include "tensorflow/core/common_runtime/gpu/gpu_device.h" #include "xla/stream_executor/gpu/gpu_cudamallocasync_allocator.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/tests/test_macros.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/gpu/gpu_process_state.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #ifdef TF_GPU_USE_PJRT #include "xla/pjrt/pjrt_client.h" #include "tensorflow/core/tfrt/common/pjrt_util.h" #endif #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #endif namespace tensorflow { namespace { using ::testing::SizeIs; const char* kDeviceNamePrefix = "/job:localhost/replica:0/task:0"; int64_t GetTotalGPUMemory(tsl::PlatformDeviceId gpu_id) { se::StreamExecutor* se = se::GPUMachineManager()->ExecutorForDevice(gpu_id.value()).value(); int64_t total_memory, available_memory; CHECK(se->DeviceMemoryUsage(&available_memory, &total_memory)); return total_memory; } se::CudaComputeCapability GetComputeCapability() { return se::GPUMachineManager() ->ExecutorForDevice(0) .value() ->GetDeviceDescription() .cuda_compute_capability(); } void ExpectErrorMessageSubstr(const Status& s, StringPiece substr) { EXPECT_TRUE(absl::StrContains(s.ToString(), substr)) << s << ", expected substring " << substr; } } class GPUDeviceTest : public ::testing::Test { public: void TearDown() override { BaseGPUDevice::TestOnlyReset(); GPUProcessState::singleton()->TestOnlyReset(); } protected: static SessionOptions MakeSessionOptions( const string& visible_device_list = "", double per_process_gpu_memory_fraction = 0, int gpu_device_count = 1, const std::vector<std::vector<float>>& memory_limit_mb = {}, const std::vector<std::vector<int32>>& priority = {}, const std::vector<std::vector<int32>>& device_ordinal = {}, const int32 num_virtual_devices = 0, const bool use_cuda_malloc_async = false) { SessionOptions options; ConfigProto* config = &options.config; (*config->mutable_device_count())["GPU"] = gpu_device_count; GPUOptions* gpu_options = config->mutable_gpu_options(); gpu_options->set_visible_device_list(visible_device_list); gpu_options->set_per_process_gpu_memory_fraction( per_process_gpu_memory_fraction); gpu_options->mutable_experimental()->set_use_cuda_malloc_async( use_cuda_malloc_async); if (!memory_limit_mb.empty()) { for (int i = 0; i < memory_limit_mb.size(); ++i) { auto virtual_devices = gpu_options->mutable_experimental()->add_virtual_devices(); for (float mb : memory_limit_mb[i]) { virtual_devices->add_memory_limit_mb(mb); } if (i < device_ordinal.size()) { for (int o : device_ordinal[i]) { virtual_devices->add_device_ordinal(o); } } if (i < priority.size()) { for (int p : priority[i]) { virtual_devices->add_priority(p); } } } } else if (num_virtual_devices > 0) { gpu_options->mutable_experimental()->set_num_virtual_devices_per_gpu( num_virtual_devices); } return options; } void InitCPUTensor(Tensor* cpu_tensor, int num_elements, float value) { auto tensor = cpu_tensor->tensor<float, 1>(); for (int i = 0; i < num_elements; ++i) { tensor(i) = value; } } void CopyCPUToGPU(Tensor* cpu_tensor, Tensor* gpu_tensor, Device* device, DeviceContext* device_context) { TF_ASSERT_OK(device_context->CopyCPUTensorToDeviceSync(cpu_tensor, device, gpu_tensor)); } void CopyGPUToCPU(Tensor* gpu_tensor, Tensor* cpu_tensor, Device* device, DeviceContext* device_context) { TF_ASSERT_OK(device_context->CopyDeviceTensorToCPUSync( gpu_tensor, "", device, cpu_tensor)); } }; TEST_F(GPUDeviceTest, DISABLED_ON_GPU_ROCM(CudaMallocAsync)) { #ifndef GOOGLE_CUDA return; #elif CUDA_VERSION < 11020 LOG(INFO) << "CUDA toolkit too old, skipping this test: " << CUDA_VERSION; return; #else int driverVersion; cuDriverGetVersion(&driverVersion); if (driverVersion < 11020) { LOG(INFO) << "Driver version too old, skipping this test: " << driverVersion; return; } #endif SessionOptions opts = MakeSessionOptions("0", 0, 1, {}, {}, {}, 0, true); std::vector<std::unique_ptr<Device>> devices; Status status; int number_instantiated = se::GpuCudaMallocAsyncAllocator::GetInstantiatedCountTestOnly(); { status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_THAT(devices, SizeIs(1)); Device* device = devices[0].get(); auto* device_info = device->tensorflow_accelerator_device_info(); EXPECT_NE(device_info, nullptr); AllocatorAttributes allocator_attributes = AllocatorAttributes(); allocator_attributes.set_gpu_compatible(true); Allocator* allocator = devices[0]->GetAllocator(allocator_attributes); void* ptr = allocator->AllocateRaw(Allocator::kAllocatorAlignment, 1024); EXPECT_NE(ptr, nullptr); allocator->DeallocateRaw(ptr); } EXPECT_EQ(number_instantiated + 1, se::GpuCudaMallocAsyncAllocator::GetInstantiatedCountTestOnly()); EXPECT_EQ(status.code(), error::OK); } TEST_F(GPUDeviceTest, DISABLED_ON_GPU_ROCM(CudaMallocAsyncPreallocate)) { SessionOptions opts = MakeSessionOptions("0", 0, 1, {}, {}, {}, 0, true); setenv("TF_CUDA_MALLOC_ASYNC_SUPPORTED_PREALLOC", "2048", 1); std::vector<std::unique_ptr<Device>> devices; Status status; int number_instantiated = se::GpuCudaMallocAsyncAllocator::GetInstantiatedCountTestOnly(); { status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_THAT(devices, SizeIs(1)); Device* device = devices[0].get(); auto* device_info = device->tensorflow_accelerator_device_info(); CHECK(device_info); AllocatorAttributes allocator_attributes = AllocatorAttributes(); allocator_attributes.set_gpu_compatible(true); Allocator* allocator = devices[0]->GetAllocator(allocator_attributes); void* ptr = allocator->AllocateRaw(Allocator::kAllocatorAlignment, 1024); EXPECT_NE(ptr, nullptr); allocator->DeallocateRaw(ptr); } unsetenv("TF_CUDA_MALLOC_ASYNC_SUPPORTED_PREALLOC"); EXPECT_EQ(number_instantiated + 1, se::GpuCudaMallocAsyncAllocator::GetInstantiatedCountTestOnly()); EXPECT_EQ(status.code(), error::OK); } TEST_F(GPUDeviceTest, FailedToParseVisibleDeviceList) { SessionOptions opts = MakeSessionOptions("0,abc"); std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); ExpectErrorMessageSubstr(status, "Could not parse entry"); } TEST_F(GPUDeviceTest, InvalidGpuId) { SessionOptions opts = MakeSessionOptions("100"); std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); ExpectErrorMessageSubstr(status, "'visible_device_list' listed an invalid Device id"); } TEST_F(GPUDeviceTest, DuplicateEntryInVisibleDeviceList) { SessionOptions opts = MakeSessionOptions("0,0"); std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); ExpectErrorMessageSubstr(status, "visible_device_list contained a duplicate entry"); } TEST_F(GPUDeviceTest, VirtualDeviceConfigConflictsWithMemoryFractionSettings) { SessionOptions opts = MakeSessionOptions("0", 0.1, 1, {{}}); std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); ExpectErrorMessageSubstr( status, "It's invalid to set per_process_gpu_memory_fraction"); } TEST_F(GPUDeviceTest, GpuDeviceCountTooSmall) { SessionOptions opts = MakeSessionOptions("0", 0, 0, {{}}); std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::UNKNOWN); ExpectErrorMessageSubstr(status, "Not enough GPUs to create virtual devices."); } TEST_F(GPUDeviceTest, NotEnoughGpuInVisibleDeviceList) { SessionOptions opts = MakeSessionOptions("0", 0, 8, {{}, {}}); std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::UNKNOWN); ExpectErrorMessageSubstr(status, "Not enough GPUs to create virtual devices."); } TEST_F(GPUDeviceTest, VirtualDeviceConfigConflictsWithVisibleDeviceList) { if (se::GPUMachineManager()->VisibleDeviceCount() < 2) return; SessionOptions opts = MakeSessionOptions("0,1", 0, 8, {{}}); std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); ExpectErrorMessageSubstr( status, "The number of GPUs in visible_device_list doesn't " "match the number of elements in the virtual_devices " "list."); } #ifdef TF_GPU_USE_PJRT TEST_F(GPUDeviceTest, GpuDeviceWithPjrt) { SessionOptions opts = MakeSessionOptions("0"); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); EXPECT_THAT(devices, SizeIs(1)); EXPECT_GE(devices[0]->attributes().memory_limit(), 0); EXPECT_EQ(static_cast<BaseGPUDevice*>(devices[0].get())->priority(), 0); auto pjrt_client = GetPjRtClient(DeviceType(DEVICE_GPU)); EXPECT_OK(pjrt_client.status()); } #endif TEST_F(GPUDeviceTest, EmptyVirtualDeviceConfig) { SessionOptions opts = MakeSessionOptions("0"); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); EXPECT_THAT(devices, SizeIs(1)); EXPECT_GE(devices[0]->attributes().memory_limit(), 0); EXPECT_EQ(static_cast<BaseGPUDevice*>(devices[0].get())->priority(), 0); } TEST_F(GPUDeviceTest, SingleVirtualDeviceWithNoMemoryLimit) { SessionOptions opts = MakeSessionOptions("0", 0, 1, {{}}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); EXPECT_THAT(devices, SizeIs(1)); EXPECT_GE(devices[0]->attributes().memory_limit(), 0); EXPECT_EQ(static_cast<BaseGPUDevice*>(devices[0].get())->priority(), 0); } TEST_F(GPUDeviceTest, SingleVirtualDeviceWithMemoryLimitAndNoPriority) { SessionOptions opts = MakeSessionOptions("0", 0, 1, {{123}}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); EXPECT_THAT(devices, SizeIs(1)); EXPECT_EQ(devices[0]->attributes().memory_limit(), 123 << 20); EXPECT_EQ(static_cast<BaseGPUDevice*>(devices[0].get())->priority(), 0); } TEST_F(GPUDeviceTest, SingleVirtualDeviceWithInvalidPriority) { { #if TENSORFLOW_USE_ROCM SessionOptions opts = MakeSessionOptions("0", 0, 1, {{123, 456}}, {{-2, 1}}); #else SessionOptions opts = MakeSessionOptions("0", 0, 1, {{123, 456}}, {{-9999, 0}}); #endif std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); #if TENSORFLOW_USE_ROCM ExpectErrorMessageSubstr( status, "Priority -2 is outside the range of supported priorities [-1,1] for" " virtual device 0 on GPU# 0"); #else ExpectErrorMessageSubstr( status, "Priority -9999 is outside the range of supported priorities"); #endif } { #if TENSORFLOW_USE_ROCM SessionOptions opts = MakeSessionOptions("0", 0, 1, {{123, 456}}, {{-1, 2}}); #else SessionOptions opts = MakeSessionOptions("0", 0, 1, {{123, 456}}, {{0, 1}}); #endif std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); #if TENSORFLOW_USE_ROCM ExpectErrorMessageSubstr( status, "Priority 2 is outside the range of supported priorities [-1,1] for" " virtual device 0 on GPU# 0"); #else ExpectErrorMessageSubstr( status, "Priority 1 is outside the range of supported priorities"); #endif } } TEST_F(GPUDeviceTest, SingleVirtualDeviceWithMemoryLimitAndPriority) { SessionOptions opts = MakeSessionOptions("0", 0, 1, {{123}}, {{0}}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); EXPECT_THAT(devices, SizeIs(1)); EXPECT_EQ(devices[0]->attributes().memory_limit(), 123 << 20); EXPECT_EQ(static_cast<BaseGPUDevice*>(devices[0].get())->priority(), 0); } TEST_F(GPUDeviceTest, MultipleVirtualDevices) { SessionOptions opts = MakeSessionOptions("0", 0, 1, {{123, 456}}, {{0, -1}}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); EXPECT_THAT(devices, SizeIs(2)); EXPECT_EQ(devices[0]->attributes().memory_limit(), 123 << 20); EXPECT_EQ(devices[1]->attributes().memory_limit(), 456 << 20); EXPECT_EQ(static_cast<BaseGPUDevice*>(devices[0].get())->priority(), 0); EXPECT_EQ(-1, static_cast<BaseGPUDevice*>(devices[1].get())->priority()); ASSERT_EQ(devices[0]->attributes().locality().links().link_size(), 1); ASSERT_EQ(devices[1]->attributes().locality().links().link_size(), 1); EXPECT_EQ(devices[0]->attributes().locality().links().link(0).device_id(), 1); EXPECT_EQ(devices[0]->attributes().locality().links().link(0).type(), "SAME_DEVICE"); EXPECT_EQ(BaseGPUDeviceFactory::InterconnectMap::kSameDeviceStrength, devices[0]->attributes().locality().links().link(0).strength()); EXPECT_EQ(devices[1]->attributes().locality().links().link(0).device_id(), 0); EXPECT_EQ(devices[1]->attributes().locality().links().link(0).type(), "SAME_DEVICE"); EXPECT_EQ(BaseGPUDeviceFactory::InterconnectMap::kSameDeviceStrength, devices[1]->attributes().locality().links().link(0).strength()); } TEST_F(GPUDeviceTest, MultipleVirtualDevicesWithPriority) { { SessionOptions opts = MakeSessionOptions("0", 0, 1, {{123, 456}}, {{0}}); std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); ExpectErrorMessageSubstr( status, "Number of virtual device priorities specified doesn't " "match with number of memory_limit_mb specified for GPU# 0" " memory_limit_mb size: 2 and priority size: 1"); } { SessionOptions opts = MakeSessionOptions("0", 0, 1, {{123, 456}}, {{-1, 0}}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); EXPECT_THAT(devices, SizeIs(2)); EXPECT_EQ(devices[0]->attributes().memory_limit(), 123 << 20); EXPECT_EQ(devices[1]->attributes().memory_limit(), 456 << 20); EXPECT_EQ(-1, static_cast<BaseGPUDevice*>(devices[0].get())->priority()); EXPECT_EQ(static_cast<BaseGPUDevice*>(devices[1].get())->priority(), 0); } } TEST_F(GPUDeviceTest, MultipleVirtualDevicesWithDeviceOrdinal) { SessionOptions opts = MakeSessionOptions("0", 0, 1, {{1, 2}}, {}, {{2, 1}}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); EXPECT_THAT(devices, SizeIs(2)); EXPECT_EQ(devices[0]->attributes().memory_limit(), 2 << 20); EXPECT_EQ(devices[1]->attributes().memory_limit(), 1 << 20); } TEST_F(GPUDeviceTest, MultipleVirtualDevicesWithDeviceOrdinalOnMultipleDevices) { if (se::GPUMachineManager()->VisibleDeviceCount() < 2) return; SessionOptions opts = MakeSessionOptions("0,1", 0, 2, {{1, 2}, {3, 4}}, {}, {{1, 2}, {1, 2}}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); EXPECT_THAT(devices, SizeIs(4)); EXPECT_EQ(devices[0]->attributes().memory_limit(), 1 << 20); EXPECT_EQ(devices[1]->attributes().memory_limit(), 3 << 20); EXPECT_EQ(devices[2]->attributes().memory_limit(), 2 << 20); EXPECT_EQ(devices[3]->attributes().memory_limit(), 4 << 20); } TEST_F(GPUDeviceTest, MultipleVirtualDevicesWithSpecifiedNumber) { SessionOptions opts = MakeSessionOptions("0", 0, 1, {}, {}, {}, 2); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); EXPECT_THAT(devices, SizeIs(2)); EXPECT_EQ(devices[0]->attributes().memory_limit(), devices[1]->attributes().memory_limit()); ASSERT_EQ(devices[0]->attributes().locality().links().link_size(), 1); ASSERT_EQ(devices[1]->attributes().locality().links().link_size(), 1); EXPECT_EQ(devices[0]->attributes().locality().links().link(0).device_id(), 1); EXPECT_EQ(devices[0]->attributes().locality().links().link(0).type(), "SAME_DEVICE"); EXPECT_EQ(BaseGPUDeviceFactory::InterconnectMap::kSameDeviceStrength, devices[0]->attributes().locality().links().link(0).strength()); EXPECT_EQ(devices[1]->attributes().locality().links().link(0).device_id(), 0); EXPECT_EQ(devices[1]->attributes().locality().links().link(0).type(), "SAME_DEVICE"); EXPECT_EQ(BaseGPUDeviceFactory::InterconnectMap::kSameDeviceStrength, devices[1]->attributes().locality().links().link(0).strength()); } TEST_F(GPUDeviceTest, UnifiedMemoryUnavailableOnPrePascalGpus) { if (GetComputeCapability().IsAtLeast(se::CudaComputeCapability::PASCAL_)) { return; } SessionOptions opts = MakeSessionOptions("0", 1.2); opts.config.mutable_gpu_options() ->mutable_experimental() ->set_use_unified_memory(true); std::vector<std::unique_ptr<Device>> devices; Status status = DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices); EXPECT_EQ(status.code(), error::INTERNAL); ExpectErrorMessageSubstr(status, "does not support oversubscription."); } TEST_F(GPUDeviceTest, UnifiedMemoryAllocation) { static constexpr double kGpuMemoryFraction = 1.2; static constexpr tsl::PlatformDeviceId kPlatformDeviceId(0); if (!GetComputeCapability().IsAtLeast(se::CudaComputeCapability::PASCAL_)) { LOG(INFO) << "Unified memory allocation is not supported with pre-Pascal GPUs."; return; } SessionOptions opts = MakeSessionOptions("0", kGpuMemoryFraction); std::vector<std::unique_ptr<Device>> devices; TF_ASSERT_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); ASSERT_THAT(devices, SizeIs(1)); int64_t memory_limit = devices[0]->attributes().memory_limit(); ASSERT_EQ(memory_limit, static_cast<int64_t>(GetTotalGPUMemory(kPlatformDeviceId) * kGpuMemoryFraction)); AllocatorAttributes allocator_attributes = AllocatorAttributes(); allocator_attributes.set_gpu_compatible(true); Allocator* allocator = devices[0]->GetAllocator(allocator_attributes); void* ptr = allocator->AllocateRaw(Allocator::kAllocatorAlignment, (memory_limit >> 20) << 20); EXPECT_NE(ptr, nullptr); allocator->DeallocateRaw(ptr); } TEST_F(GPUDeviceTest, CopyTensorInSameDevice) { SessionOptions opts = MakeSessionOptions("0"); std::vector<std::unique_ptr<Device>> devices; TF_ASSERT_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); Device* device = devices[0].get(); auto* device_info = device->tensorflow_accelerator_device_info(); CHECK(device_info); DeviceContext* device_context = device_info->default_context; Allocator* allocator = device->GetAllocator(AllocatorAttributes()); constexpr int kNumElements = 4; Tensor input_tensor(allocator, DT_FLOAT, TensorShape({kNumElements})); Tensor output_tensor(allocator, DT_FLOAT, TensorShape({kNumElements})); Tensor cpu_tensor(cpu_allocator(), DT_FLOAT, TensorShape({kNumElements})); InitCPUTensor(&cpu_tensor, kNumElements, 0); CopyCPUToGPU(&cpu_tensor, &output_tensor, device, device_context); InitCPUTensor(&cpu_tensor, kNumElements, 1); CopyCPUToGPU(&cpu_tensor, &input_tensor, device, device_context); Notification note; device->CopyTensorInSameDevice(&input_tensor, &output_tensor, device_context, [&note](const Status& s) { TF_ASSERT_OK(s); note.Notify(); }); note.WaitForNotification(); Tensor output_cpu_tensor(cpu_allocator(), DT_FLOAT, TensorShape({kNumElements})); CopyGPUToCPU(&output_tensor, &output_cpu_tensor, device, device_context); auto input = cpu_tensor.tensor<float, 1>(); auto output = output_cpu_tensor.tensor<float, 1>(); for (int i = 0; i < kNumElements; ++i) { EXPECT_EQ(input(i), output(i)) << " for index " << i; } } TEST_F(GPUDeviceTest, DeviceDetails) { DeviceFactory* factory = DeviceFactory::GetFactory("GPU"); std::vector<string> devices; TF_ASSERT_OK(factory->ListPhysicalDevices(&devices)); EXPECT_GE(devices.size(), 1); for (int i = 0; i < devices.size(); i++) { std::unordered_map<string, string> details; TF_ASSERT_OK(factory->GetDeviceDetails(i, &details)); EXPECT_NE(details["device_name"], ""); #if TENSORFLOW_USE_ROCM EXPECT_EQ(details.count("compute_capability"), 0); #else EXPECT_NE(details["compute_capability"], ""); #endif } } TEST_F(GPUDeviceTest, StreamToIdMultipleVirtualDevices) { SessionOptions opts = MakeSessionOptions("0", 0, 1, {{123, 456}}, {{0, -1}}); std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory("GPU")->CreateDevices( opts, kDeviceNamePrefix, &devices)); for (int i = 0; i < devices.size(); i++) { EXPECT_EQ(tsl::TfDeviceId(i), *BaseGPUDevice::FindTfDeviceId( devices[i]->tensorflow_accelerator_device_info()->stream)); } EXPECT_FALSE(BaseGPUDevice::FindTfDeviceId(nullptr).has_value()); } class GPUKernelTrackerTest : public ::testing::Test { protected: void Init(const GPUKernelTracker::Params& params) { timing_counter_.reset(new SharedCounter); kernel_tracker_.reset(new GPUKernelTracker(params, Env::Default(), nullptr, timing_counter_.get(), nullptr, nullptr)); } void RecordQueued(uint64 v) { mutex_lock l(kernel_tracker_->mu_); kernel_tracker_->RecordQueued(v, 1); } std::unique_ptr<GPUKernelTracker> kernel_tracker_; std::unique_ptr<SharedCounter> timing_counter_; }; TEST_F(GPUKernelTrackerTest, CappingOnly) { Init({0 , 0 , 32 }); EXPECT_EQ(kernel_tracker_->NumPending(), 0); EXPECT_EQ(kernel_tracker_->LastTerminatedCount(0), 1); std::deque<int64_t> queued_counts; for (int i = 0; i < 32; ++i) { uint64 queued_count = timing_counter_->next(); queued_counts.push_back(queued_count); RecordQueued(queued_count); } EXPECT_EQ(kernel_tracker_->NumPending(), 32); EXPECT_EQ(kernel_tracker_->LastTerminatedCount(0), 1); while (!queued_counts.empty()) { int64_t x = queued_counts.front(); queued_counts.pop_front(); kernel_tracker_->RecordTerminated(x); EXPECT_THAT(queued_counts, SizeIs(kernel_tracker_->NumPending())); EXPECT_EQ(x, kernel_tracker_->LastTerminatedCount(0)); } EXPECT_EQ(timing_counter_->get(), kernel_tracker_->LastTerminatedCount(0)); int64_t lower_bound = timing_counter_->get(); for (int i = 0; i < 1111; ++i) { uint64 queued_count = timing_counter_->next(); queued_counts.push_back(queued_count); RecordQueued(queued_count); int64_t upper_bound = timing_counter_->get(); if (0 == (i % 16)) { size_t index = (random::New64() % queued_counts.size()); kernel_tracker_->RecordTerminated(queued_counts[index]); queued_counts.erase(queued_counts.begin() + index); EXPECT_LE(lower_bound, kernel_tracker_->LastTerminatedCount(0)); EXPECT_GE(upper_bound, kernel_tracker_->LastTerminatedCount(0)); } } while (!queued_counts.empty()) { int64_t x = queued_counts.front(); queued_counts.pop_front(); kernel_tracker_->RecordTerminated(x); EXPECT_THAT(queued_counts, SizeIs(kernel_tracker_->NumPending())); EXPECT_LE(x, kernel_tracker_->LastTerminatedCount(0)); } EXPECT_EQ(timing_counter_->get(), kernel_tracker_->LastTerminatedCount(0)); } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_device.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_device_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
56c494af-7b20-485f-bb65-2e34dfb9d524
cpp
tensorflow/tensorflow
c_plugin_coordination_service_agent
tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent.cc
tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent_test.cc
#include "tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent.h" #include <string> #include <string_view> #include "absl/time/time.h" #include "tensorflow/c/experimental/next_pluggable_device/c_api.h" #include "tensorflow/c/tf_buffer.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" namespace tensorflow { namespace { absl::StatusOr<std::string> ProcessGetKeyValueResult(TF_Buffer* result_buf, TF_Status* status) { if (TF_GetCode(status) != TF_OK) { return StatusFromTF_Status(status); } else { std::string result{static_cast<const char*>(result_buf->data), result_buf->length}; TF_DeleteBuffer(result_buf); return result; } } } Status CPluginCoordinationServiceAgent::InsertKeyValue(std::string_view key, std::string_view value) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_CoordinationServiceInsertKeyValue(key.data(), key.size(), value.data(), value.size(), agent_, status); return StatusFromTF_Status(status); } absl::StatusOr<std::string> CPluginCoordinationServiceAgent::GetKeyValue( std::string_view key) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_Buffer* result_buf = TF_CoordinationServiceGetKeyValue(key.data(), key.size(), agent_, status); return ProcessGetKeyValueResult(result_buf, status); } absl::StatusOr<std::string> CPluginCoordinationServiceAgent::GetKeyValue( std::string_view key, absl::Duration timeout) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_Buffer* result_buf = TF_CoordinationServiceGetKeyValueWithTimeout( key.data(), key.size(), absl::ToInt64Seconds(timeout), agent_, status); return ProcessGetKeyValueResult(result_buf, status); } absl::StatusOr<std::string> CPluginCoordinationServiceAgent::TryGetKeyValue( std::string_view key) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_Buffer* result_buf = TF_CoordinationServiceTryGetKeyValue( key.data(), key.size(), agent_, status); return ProcessGetKeyValueResult(result_buf, status); } Status CPluginCoordinationServiceAgent::DeleteKeyValue(std::string_view key) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_CoordinationServiceDeleteKeyValue(key.data(), key.size(), agent_, status); return StatusFromTF_Status(status); } }
#include "tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent.h" #include <memory> #include <ostream> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace tensorflow { namespace { using tsl::CoordinationClient; using tsl::CoordinationServiceAgent; using tsl::CallOptions; using tsl::DeleteKeyValueRequest; using tsl::DeleteKeyValueResponse; using tsl::GetKeyValueRequest; using tsl::GetKeyValueResponse; using tsl::InsertKeyValueRequest; using tsl::InsertKeyValueResponse; using ::testing::_; using ::testing::DoAll; using ::testing::InvokeArgument; using ::testing::Pointee; using ::testing::SetArgPointee; using ::testing::WithArgs; class ProtoStringMatcher { public: explicit ProtoStringMatcher(const tsl::protobuf::Message& expected) : expected_(expected.DebugString()) {} template <typename Message> bool MatchAndExplain(const Message& p, ::testing::MatchResultListener*) const { return p.DebugString() == expected_; } void DescribeTo(std::ostream* os) const { *os << expected_; } void DescribeNegationTo(std::ostream* os) const { *os << "not equal to expected message: " << expected_; } private: const std::string expected_; }; inline ::testing::PolymorphicMatcher<ProtoStringMatcher> EqualsProto( const tsl::protobuf::Message& x) { return ::testing::MakePolymorphicMatcher(ProtoStringMatcher(x)); } MATCHER(KvEq, "simple KeyValueEntry matcher") { const KeyValueEntry& kv0 = std::get<0>(arg); const KeyValueEntry& kv1 = std::get<1>(arg); return kv0.key() == kv1.key() && kv0.value() == kv1.value(); } class TestCoordinationClient : public CoordinationClient { public: TestCoordinationClient() = default; MOCK_METHOD(void, GetKeyValueAsync, (CallOptions * call_opts, const GetKeyValueRequest*, GetKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, TryGetKeyValueAsync, (const TryGetKeyValueRequest*, TryGetKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, InsertKeyValueAsync, (const InsertKeyValueRequest*, InsertKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, DeleteKeyValueAsync, (const DeleteKeyValueRequest*, DeleteKeyValueResponse*, StatusCallback), (override)); void GetKeyValueDirAsync(const tsl::GetKeyValueDirRequest* request, tsl::GetKeyValueDirResponse* response, StatusCallback done) override { done(absl::UnimplementedError("GetKeyValueDirAsync")); } void ResetTaskAsync(const tsl::ResetTaskRequest* request, tsl::ResetTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ResetTaskAsync")); } void ReportErrorToServiceAsync( const tsl::ReportErrorToServiceRequest* request, tsl::ReportErrorToServiceResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ReportErrorToServiceAsync")); } void BarrierAsync(const tsl::BarrierRequest* request, tsl::BarrierResponse* response, StatusCallback done) override { done(absl::UnimplementedError("BarrierAsync")); } void GetTaskStateAsync(const tsl::GetTaskStateRequest* request, tsl::GetTaskStateResponse* response, StatusCallback done) override { done(absl::UnimplementedError("GetTaskStateAsync")); } void WaitForAllTasksAsync(const tsl::WaitForAllTasksRequest* request, tsl::WaitForAllTasksResponse* response, StatusCallback done) override { done(absl::UnimplementedError("WaitForAllTasksAsync")); } void CancelBarrierAsync(const tsl::CancelBarrierRequest* request, tsl::CancelBarrierResponse* response, StatusCallback done) override { done(absl::UnimplementedError("CancelBarrierAsync")); } void RegisterTaskAsync(tsl::CallOptions*, const tsl::RegisterTaskRequest* request, tsl::RegisterTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("RegisterTaskAsync")); } void ShutdownTaskAsync(tsl::CallOptions*, const tsl::ShutdownTaskRequest* request, tsl::ShutdownTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ShutdownTaskAsync")); } void HeartbeatAsync(tsl::CallOptions*, const tsl::HeartbeatRequest* request, tsl::HeartbeatResponse* response, StatusCallback done) override { done(absl::UnimplementedError("HeartbeatAsync")); } void ReportErrorToTaskAsync(CallOptions* call_opts, const ReportErrorToTaskRequest* request, ReportErrorToTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ReportErrorToTaskAsync")); } void PollForErrorAsync(CallOptions* call_opts, const PollForErrorRequest* request, PollForErrorResponse* response, StatusCallback done) override { done(absl::UnimplementedError("PollForErrorAsync")); } }; class CPluginCoordinationServiceAgentTest : public ::testing::Test { public: void InitializeAgent(CoordinationServiceConfig config = {}) { config.set_service_leader("test_leader"); TF_ASSERT_OK(impl_->Initialize( tsl::Env::Default(), "test_job", 0, config, std::move(client_), [](Status s) { LOG(ERROR) << "Coordination agent is set to error: " << s; })); } TestCoordinationClient* GetClient() { CHECK(client_ != nullptr) << "GetClient() was called after InitializeAgent()"; return client_.get(); } protected: std::unique_ptr<CoordinationServiceAgent> impl_ = tsl::CreateCoordinationServiceAgent(); std::unique_ptr<CPluginCoordinationServiceAgent> agent_ = std::make_unique<CPluginCoordinationServiceAgent>(impl_.get()); std::unique_ptr<TestCoordinationClient> client_ = std::make_unique<TestCoordinationClient>(); }; TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_Simple_Success) { const std::string test_key = "test_key"; const std::string test_value = "test_value"; GetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValue(test_key); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_WithTimeout_Success) { const std::string test_key = "test_key"; const std::string test_value = "test_value"; GetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(10)); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_Timeout_ReturnError) { const std::string test_key = "test_key"; StatusCallback owned_done; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(WithArgs<3>([&](StatusCallback done) { owned_done = done; })); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(1)); EXPECT_EQ(result.status().code(), error::DEADLINE_EXCEEDED); owned_done(absl::CancelledError("error")); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_ZeroTimeout_ReturnError) { const std::string test_key = "test_key"; auto result = agent_->GetKeyValue(test_key, absl::ZeroDuration()); EXPECT_EQ(result.status().code(), error::INVALID_ARGUMENT); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_NegativeTimeout_ReturnError) { const std::string test_key = "test_key"; auto result = agent_->GetKeyValue(test_key, absl::Seconds(-1)); EXPECT_EQ(result.status().code(), error::INVALID_ARGUMENT); } TEST_F(CPluginCoordinationServiceAgentTest, InsertKeyValue_Success) { const std::string test_key = "test_key"; const std::string test_value = "test_value"; InsertKeyValueRequest expected_input; auto kv = expected_input.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); EXPECT_CALL(*GetClient(), InsertKeyValueAsync(Pointee(EqualsProto(expected_input)), _, _)) .WillOnce(InvokeArgument<2>(absl::OkStatus())); InitializeAgent(); TF_ASSERT_OK(agent_->InsertKeyValue(test_key, test_value)); } TEST_F(CPluginCoordinationServiceAgentTest, DeleteKeyValue_Success) { const std::string test_key = "test_x_key"; DeleteKeyValueRequest expected_input; expected_input.set_key(test_key); expected_input.set_is_directory(true); EXPECT_CALL(*GetClient(), DeleteKeyValueAsync(Pointee(EqualsProto(expected_input)), _, _)) .WillOnce(InvokeArgument<2>(absl::OkStatus())); InitializeAgent(); TF_ASSERT_OK(agent_->DeleteKeyValue(test_key)); } TEST_F(CPluginCoordinationServiceAgentTest, TryGetKeyValue_Simple_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; TryGetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), TryGetKeyValueAsync(_, _, _)) .WillByDefault(DoAll(SetArgPointee<1>(mocked_response), InvokeArgument<2>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->TryGetKeyValue(test_key); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f5f7b9eb-13c0-4e83-beba-fbe9edad6cf3
cpp
tensorflow/tensorflow
device_event_mgr
tensorflow/core/common_runtime/device/device_event_mgr.cc
tensorflow/core/common_runtime/device/device_event_mgr_test.cc
#include "tensorflow/core/common_runtime/device/device_event_mgr.h" #include <functional> #include <memory> #include <utility> #include "tensorflow/core/platform/stacktrace.h" #include "tensorflow/core/platform/stream_executor.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace { static const int kNumThreads = 2; } namespace device_event_mgr { class ThreadLabel { public: static const char* GetValue() { return value_; } static void SetValue(const char* v) { value_ = v; } private: static thread_local const char* value_; }; thread_local const char* ThreadLabel::value_ = ""; void WarnIfInCallback(std::function<void()> f) { const char* label = ThreadLabel::GetValue(); if (label && !strcmp(label, "device_event_mgr")) { if (f) { f(); } else { LOG(WARNING) << "Executing inside EventMgr callback thread: " << CurrentStackTrace(); } } } void InitThreadpoolLabels(thread::ThreadPool* threadpool) { static const char* label = "device_event_mgr"; mutex mu; int init_count = 0; condition_variable all_initialized; int exit_count = 0; condition_variable ready_to_exit; const int num_threads = threadpool->NumThreads(); for (int i = 0; i < num_threads; ++i) { threadpool->Schedule([num_threads, &mu, &init_count, &all_initialized, &exit_count, &ready_to_exit]() { device_event_mgr::ThreadLabel::SetValue(label); mutex_lock l(mu); ++init_count; if (init_count == num_threads) { all_initialized.notify_all(); } while (init_count < num_threads) { all_initialized.wait(l); } if (++exit_count == num_threads) { ready_to_exit.notify_all(); } }); } { mutex_lock l(mu); while (exit_count < num_threads) { ready_to_exit.wait(l); } } } } EventMgr::EventMgr(se::StreamExecutor* se, const GPUOptions& gpu_options) : exec_(se), polling_active_delay_usecs_(gpu_options.polling_active_delay_usecs() ? gpu_options.polling_active_delay_usecs() : 10), threadpool_(Env::Default(), "Device_Event_Manager", kNumThreads) { device_event_mgr::InitThreadpoolLabels(&threadpool_); StartPollingLoop(); } EventMgr::~EventMgr() { StopPollingLoop(); for (auto& [stream, stream_callbacks] : callbacks_) { for (auto& [event, callback] : stream_callbacks) { threadpool_.Schedule(std::move(callback)); } } } void EventMgr::StartPollingLoop() { CHECK(polling_stopped_ == nullptr); { mutex_lock l(mu_); stop_polling_ = false; } polling_stopped_ = std::make_unique<Notification>(); threadpool_.Schedule([this]() { PollLoop(); }); } void EventMgr::StopPollingLoop() { if (polling_stopped_) { { mutex_lock l(mu_); stop_polling_ = true; events_pending_.notify_all(); } polling_stopped_->WaitForNotification(); polling_stopped_.reset(nullptr); } } void EventMgr::PollLoop() { ToFreeVector to_free; while (true) { bool events_still_pending; { mutex_lock l(mu_); if (stop_polling_) { break; } if (callbacks_.empty()) { events_pending_.wait(l); } PollEvents(nullptr, &to_free); events_still_pending = !callbacks_.empty(); } FreeMemory(to_free); to_free.clear(); if (events_still_pending) { Env::Default()->SleepForMicroseconds(polling_active_delay_usecs_); } } polling_stopped_->Notify(); } void EventMgr::EnqueueCallback(se::Stream* stream, std::function<void()> func) { VLOG(2) << "EnqueueCallback with one or more callbacks pending on " << callbacks_.size() << " streams and " << free_events_.size() << " unused event objects."; if (free_events_.empty()) { free_events_.emplace_back(exec_->CreateEvent().value()); } std::unique_ptr<se::Event> e = std::move(free_events_.back()); free_events_.pop_back(); stream->RecordEvent(e.get()).IgnoreError(); bool was_empty = callbacks_.empty(); callbacks_[stream].push_back({std::move(e), std::move(func)}); if (was_empty) { events_pending_.notify_all(); } } void EventMgr::PollEvents(se::Stream* stream, absl::InlinedVector<InUse, 4UL>* to_free) { VLOG(2) << "PollEvents with one or more callbacks pending on " << callbacks_.size() << " streams and " << free_events_.size() << " unused event objects."; auto poll_events_for_stream_it = [&](auto& stream_it) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { auto& stream_callbacks = stream_it->second; auto it = stream_callbacks.begin(); while (it != stream_callbacks.end()) { auto& [event, callback] = *it; se::Event::Status s = event->PollForStatus(); bool keep_looping = true; switch (s) { case se::Event::Status::kUnknown: case se::Event::Status::kError: LOG(FATAL) << "Unexpected Event status: " << static_cast<int>(s); break; case se::Event::Status::kPending: keep_looping = false; break; case se::Event::Status::kComplete: free_events_.push_back(std::move(event)); to_free->push_back({nullptr, std::move(callback)}); ++it; break; } if (!keep_looping) { break; } } stream_callbacks.erase(stream_callbacks.begin(), it); if (stream_callbacks.empty()) { callbacks_.erase(stream_it++); } else { stream_it++; } }; if (stream != nullptr) { auto stream_it = callbacks_.find(stream); if (stream_it != callbacks_.end()) { poll_events_for_stream_it(stream_it); } } else { for (auto stream_it = callbacks_.begin(); stream_it != callbacks_.end();) { poll_events_for_stream_it(stream_it); } } } EventMgrFactory* EventMgrFactory::Singleton() { static EventMgrFactory* instance = new EventMgrFactory; return instance; } EventMgr* EventMgrFactory::GetEventMgr(se::StreamExecutor* se, const GPUOptions& gpu_options) { mutex_lock l(mu_); auto itr = event_mgr_map_.find(se); if (itr == event_mgr_map_.end()) { auto event_mgr = new EventMgr(se, gpu_options); event_mgr_map_[se] = event_mgr; return event_mgr; } else { return itr->second; } } }
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "tensorflow/core/common_runtime/device/device_event_mgr.h" #include <atomic> #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/tsl/framework/device_id.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/gpu/gpu_device.h" #include "tensorflow/core/common_runtime/gpu/gpu_process_state.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/stream_executor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/version.h" namespace tensorflow { class TEST_EventMgr : public EventMgr { public: TEST_EventMgr(se::StreamExecutor* se, const GPUOptions& gpu_options) : EventMgr(se, gpu_options) {} }; class TEST_EventMgrHelper { public: explicit TEST_EventMgrHelper(EventMgr* em) : em_(em) { StopPollingLoop(); } size_t queue_size() { mutex_lock l(em_->mu_); size_t n = 0; for (const auto& [stream, events_and_callbacks] : em_->callbacks_) { n += events_and_callbacks.size(); } return n; } size_t free_size() { mutex_lock l(em_->mu_); return em_->free_events_.size(); } void PollEvents() { while (queue_size() > 0) { EventMgr::ToFreeVector to_free; { mutex_lock l(em_->mu_); em_->PollEvents(nullptr, &to_free); } em_->FreeMemory(to_free); } } void StopPollingLoop() { return em_->StopPollingLoop(); } void StartPollingLoop() { return em_->StartPollingLoop(); } private: EventMgr* em_; }; static std::atomic_int_fast64_t live_tensor_bytes(0); class TestTensorBuffer : public TensorBuffer { public: explicit TestTensorBuffer(size_t bytes) : TensorBuffer(nullptr), bytes_(bytes) { live_tensor_bytes += bytes_; } ~TestTensorBuffer() override { live_tensor_bytes -= bytes_; } size_t size() const override { return bytes_; } TensorBuffer* root_buffer() override { return nullptr; } void FillAllocationDescription(AllocationDescription* arg) const override {} private: size_t bytes_; }; namespace { TEST(EventMgr, Empty) { auto stream_exec = se::GPUMachineManager()->ExecutorForDevice(0).value(); TEST_EventMgr em(stream_exec, GPUOptions()); TEST_EventMgrHelper th(&em); EXPECT_EQ(0, th.queue_size()); EXPECT_EQ(0, th.free_size()); } TEST(EventMgr, WarnIfInCallback) { auto stream_exec = se::GPUMachineManager()->ExecutorForDevice(0).value(); TEST_EventMgr em(stream_exec, GPUOptions()); TEST_EventMgrHelper th(&em); TF_ASSERT_OK_AND_ASSIGN(auto stream, stream_exec->CreateStream()); bool hit = false; th.StartPollingLoop(); device_event_mgr::WarnIfInCallback([&hit] { hit = true; }); EXPECT_FALSE(hit); Notification note; em.ThenExecute(stream.get(), [&hit, &note]() { device_event_mgr::WarnIfInCallback([&hit, &note] { hit = true; note.Notify(); }); }); note.WaitForNotification(); EXPECT_TRUE(hit); } } class GPUDeviceTestHelper { public: GPUDeviceTestHelper(size_t memory_limit, int pending_cap) { SessionOptions sops; device_ = DeviceFactory::NewDevice(DEVICE_GPU, sops, "/job:a/replica:0/task:0"); gpu_.reset(reinterpret_cast<BaseGPUDevice*>(device_.release())); gpu_allocator_ = GPUProcessState::singleton()->GetGPUAllocator( GPUOptions(), tsl::TfDeviceId(0), memory_limit, {}); host_allocator_ = GPUProcessState::singleton()->GetGpuHostAllocator( {}, 0); } BaseGPUDevice* gpu() { return gpu_.get(); } Allocator* gpu_allocator() { return gpu_allocator_; } Allocator* host_allocator() { return host_allocator_; } se::Stream* compute_stream() { return gpu_->stream_->compute; } se::Stream* h2d_stream() { return gpu_->stream_->host_to_device; } se::Stream* d2h_stream() { return gpu_->stream_->device_to_host; } se::Stream* d2d_stream() { return gpu_->stream_->device_to_device[0]; } EventMgr* event_mgr() { return gpu_->em_; } int pending_cap() { return gpu_->pending_cap_; } private: std::unique_ptr<Device> device_; std::unique_ptr<BaseGPUDevice> gpu_; Allocator* gpu_allocator_; Allocator* host_allocator_; }; namespace { class EMBenchmarkHelper { GPUDeviceTestHelper* gpu_helper_; std::vector<std::unique_ptr<OpKernel>> add_kernels_; std::vector<OpKernelContext::Params*> add_params_; std::vector<std::unique_ptr<OpKernelContext>> add_contexts_; NodeDef add_node_def_; NodeDef id_node_def_; gtl::InlinedVector<TensorValue, 4> add_inputs_; std::vector<AllocatorAttributes> allocator_attrs_; gtl::InlinedVector<Tensor, 4> gpu_inputs_; gtl::InlinedVector<Tensor, 4> gpu_outputs_; gtl::InlinedVector<Tensor, 4> host_inputs_; gtl::InlinedVector<Tensor, 4> host_outputs_; public: static constexpr int kTDim = 1024; int num_ops() const { return add_kernels_.size(); } size_t tensor_size() const { return add_inputs_.empty() ? 0 : add_inputs_[0]->NumElements(); } Tensor& host_outputs(int i) { return host_outputs_[i]; } Tensor& host_inputs(int i) { return host_inputs_[i]; } EMBenchmarkHelper(GPUDeviceTestHelper* h) : gpu_helper_(h) {} void ReInit(int num_ops, int tensor_size) { gpu_inputs_.clear(); while (gpu_inputs_.size() < 2) { gpu_inputs_.push_back(Tensor(gpu_helper_->gpu_allocator(), DT_FLOAT, {tensor_size}, AllocationAttributes())); } gpu_outputs_.clear(); while (gpu_outputs_.empty()) { gpu_outputs_.push_back(Tensor(gpu_helper_->gpu_allocator(), DT_FLOAT, {tensor_size}, AllocationAttributes())); } host_inputs_.clear(); while (host_inputs_.size() < 2) { int instance_index = host_inputs_.size(); host_inputs_.push_back(Tensor(gpu_helper_->host_allocator(), DT_FLOAT, {tensor_size}, AllocationAttributes())); for (int i = 0; i < tensor_size; ++i) { host_inputs_.back().flat<float>()(i) = i * (1.0 + (0.5 * instance_index)); } } host_outputs_.clear(); while (host_outputs_.empty()) { host_outputs_.push_back(Tensor(gpu_helper_->host_allocator(), DT_FLOAT, {tensor_size}, AllocationAttributes())); for (int i = 0; i < tensor_size; ++i) { host_outputs_.back().flat<float>()(i) = -1; } } add_kernels_.clear(); add_params_.clear(); while (add_kernels_.size() < num_ops) { MakeAddOp(); } } std::unique_ptr<OpKernel> GetOpKernel(const NodeDef& node_def, Status* status) { return CreateOpKernel("GPU", gpu_helper_->gpu(), gpu_helper_->gpu_allocator(), node_def, TF_GRAPH_DEF_VERSION, status); } void MakeAddOp() { if (add_kernels_.empty()) { TF_ASSERT_OK(NodeDefBuilder("add_op", "Add") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Device("/job:a/replica:0/task:0/GPU:0") .Finalize(&add_node_def_)); } Status status; add_kernels_.emplace_back(GetOpKernel(add_node_def_, &status)); TF_ASSERT_OK(status); add_params_.push_back(new OpKernelContext::Params); PrepOpKernel(add_params_.back(), add_kernels_.back().get()); } void SetOutputAttrs(OpKernelContext::Params* params, std::vector<AllocatorAttributes>* attrs) { attrs->clear(); for (int index = 0; index < params->op_kernel->num_outputs(); index++) { AllocatorAttributes attr; const bool on_host = (params->op_kernel->output_memory_types()[index] == HOST_MEMORY); attr.set_on_host(on_host); attrs->push_back(attr); } params->output_attr_array = attrs->data(); params->forward_from_array = {}; } void PrepOpKernel(OpKernelContext::Params* params, OpKernel* kernel) { params->step_id = 1; params->device = gpu_helper_->gpu(); params->log_memory = false; params->rendezvous = nullptr; params->collective_executor = nullptr; params->session_state = nullptr; params->session_handle = "session_handle"; params->tensor_store = nullptr; params->cancellation_manager = nullptr; params->call_frame = nullptr; params->function_library = nullptr; params->runner = nullptr; params->graph_collector = nullptr; params->step_container = nullptr; params->slice_reader_cache = nullptr; params->resource_manager = gpu_helper_->gpu()->resource_manager(); params->stats_collector = nullptr; params->inc_num_deferred_ops_function = nullptr; params->dec_num_deferred_ops_function = nullptr; params->op_device_context = nullptr; params->track_allocations = false; params->op_kernel = kernel; params->frame_iter = FrameAndIter(0, 0); params->is_input_dead = false; if (add_inputs_.empty()) { add_inputs_.resize(2); add_inputs_[0] = TensorValue(&gpu_inputs_[0]); add_inputs_[1] = TensorValue(&gpu_inputs_[1]); } params->inputs = add_inputs_; SetOutputAttrs(params, &allocator_attrs_); } struct TimeSet { int iter = 0; int64_t start = 0; int64_t copy_done = 0; int64_t compute_done = 0; int64_t final_copy = 0; int64_t all_done = 0; }; void DisplayTimes(std::vector<TimeSet>* times) { LOG(INFO) << "Summarize set of " << times->size() << " iters"; for (auto& ts : *times) { ts.final_copy = ts.all_done - ts.compute_done; ts.compute_done = ts.compute_done - ts.copy_done; ts.copy_done = ts.copy_done - ts.start; ts.all_done = ts.all_done - ts.start; } struct TSSort { bool operator()(const TimeSet& a, const TimeSet& b) { return a.all_done < b.all_done; } }; std::sort(times->begin(), times->end(), TSSort()); int64_t last_time = 0; for (int i = 0; i < times->size(); ++i) { if (i == (times->size() - 1) || (times->at(i).all_done >= (1.05 * last_time))) { LOG(INFO) << "rank " << i << " iter: " << times->at(i).iter << " copy: " << times->at(i).copy_done << " compute: " << times->at(i).compute_done << " copy back: " << times->at(i).final_copy << " sum: " << times->at(i).all_done; last_time = times->at(i).all_done; } } } void DoAddChain(int adds_per_copy, int rounds, bool event_after_add, std::function<void()> callback, std::vector<TimeSet>* times) { Tensor alias0(gpu_inputs_[0]); Tensor alias1(gpu_inputs_[1]); for (int r = 0; r < rounds; ++r) { if (times) { times->at(r).iter = r; times->at(r).start = Env::Default()->NowMicros(); } TF_ASSERT_OK( gpu_helper_->h2d_stream()->WaitFor(gpu_helper_->compute_stream())); const int64_t src_bytes = host_inputs_[0].TotalBytes(); se::DeviceMemoryBase gpu_dst_ptr0(DMAHelper::base(&gpu_inputs_[0]), src_bytes); TF_ASSERT_OK(gpu_helper_->h2d_stream()->Memcpy( &gpu_dst_ptr0, DMAHelper::base(&host_inputs_[0]), src_bytes)); se::DeviceMemoryBase gpu_dst_ptr1(DMAHelper::base(&gpu_inputs_[1]), src_bytes); TF_ASSERT_OK(gpu_helper_->h2d_stream()->Memcpy( &gpu_dst_ptr1, DMAHelper::base(&host_inputs_[1]), src_bytes)); TF_ASSERT_OK( gpu_helper_->compute_stream()->WaitFor(gpu_helper_->h2d_stream())); if (times) { gpu_helper_->event_mgr()->ThenExecute( gpu_helper_->compute_stream(), [times, r]() { times->at(r).copy_done = Env::Default()->NowMicros(); }); } std::unique_ptr<OpKernelContext> ctx; for (int apc = 0; apc < adds_per_copy; ++apc) { ctx.reset(new OpKernelContext(add_params_[apc], 1)); gpu_helper_->gpu()->Compute(add_kernels_[apc].get(), ctx.get()); TF_ASSERT_OK(ctx->status()); if (event_after_add) { gpu_helper_->event_mgr()->ThenExecute(gpu_helper_->compute_stream(), callback); } } if (times) { gpu_helper_->event_mgr()->ThenExecute( gpu_helper_->compute_stream(), [times, r]() { times->at(r).compute_done = Env::Default()->NowMicros(); }); } TF_ASSERT_OK( gpu_helper_->d2h_stream()->WaitFor(gpu_helper_->compute_stream())); const int64_t return_bytes = ctx->mutable_output(0)->TotalBytes(); se::DeviceMemoryBase gpu_src_ptr(DMAHelper::base(ctx->mutable_output(0)), return_bytes); TF_ASSERT_OK(gpu_helper_->d2h_stream()->Memcpy( DMAHelper::base(&host_outputs_[0]), gpu_src_ptr, return_bytes)); gpu_helper_->event_mgr()->ThenExecute(gpu_helper_->d2h_stream(), callback); if (times) { gpu_helper_->event_mgr()->ThenExecute( gpu_helper_->d2h_stream(), [times, r]() { times->at(r).all_done = Env::Default()->NowMicros(); }); } } } }; static void BM_no_ops(::testing::benchmark::State& state) { const int threads = state.range(0); const int iters = state.max_iterations; auto stream_exec = se::GPUMachineManager()->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto stream, stream_exec->CreateStream()); TEST_EventMgr em(stream_exec, GPUOptions()); auto benchmark_exec = [&]() { std::atomic<int> counter; counter.store(0, std::memory_order_seq_cst); se::Stream* stream_ptr = stream.get(); auto runner = [&em, &counter, stream_ptr, iters]() { auto callback = [&counter]() { counter.fetch_add(1); }; for (int i = 0; i < iters; ++i) { em.ThenExecute(stream_ptr, callback); } }; for (int t = 0; t < threads; ++t) { Env::Default()->SchedClosure(runner); } int expected = iters * threads; while (counter < expected) { Env::Default()->SleepForMicroseconds(1); } }; #ifdef PLATFORM_GOOGLE while (state.KeepRunningBatch(state.max_iterations)) { benchmark_exec(); } #else state.ResumeTiming(); benchmark_exec(); state.PauseTiming(); #endif } BENCHMARK(BM_no_ops)->UseRealTime()->Arg(4)->Arg(8)->Arg(32); GPUDeviceTestHelper* gpu_helper = nullptr; EMBenchmarkHelper* bm_helper = nullptr; mutex helper_mu; #ifdef PLATFORM_GOOGLE static void BM_chain_ops(::testing::benchmark::State& state, int tensor_size, int adds_per_round, bool event_after_add, int pending_cap) { #else static void BM_chain_ops(::testing::benchmark::State& state, int tensor_size, int adds_per_round, bool event_after_add, int pending_cap, int threads) { #endif const int iters = state.max_iterations; { mutex_lock l(helper_mu); if (gpu_helper && gpu_helper->pending_cap() != pending_cap) { delete bm_helper; bm_helper = nullptr; delete gpu_helper; gpu_helper = nullptr; } if (!gpu_helper) { gpu_helper = new GPUDeviceTestHelper(1 << 24, pending_cap); bm_helper = new EMBenchmarkHelper(gpu_helper); } if (bm_helper->num_ops() != adds_per_round || bm_helper->tensor_size() != tensor_size) { bm_helper->ReInit(adds_per_round, tensor_size); } } std::vector<EMBenchmarkHelper::TimeSet> times; std::vector<EMBenchmarkHelper::TimeSet>* time_ptr = nullptr; if (VLOG_IS_ON(1)) { times.resize(iters); time_ptr = &times; } std::atomic<int> counter; counter.store(0, std::memory_order_seq_cst); auto callback = [&counter]() { counter.fetch_add(1); }; int expected = 1 + (event_after_add ? adds_per_round : 0); bm_helper->DoAddChain(adds_per_round, 1, event_after_add, callback, nullptr); while (counter < expected) { Env::Default()->SleepForMicroseconds(1); } counter = 0; #ifdef PLATFORM_GOOGLE while (state.KeepRunningBatch(state.max_iterations)) { expected = iters * (1 + (event_after_add ? adds_per_round : 0)); bm_helper->DoAddChain(adds_per_round, iters, event_after_add, callback, time_ptr); while (counter < expected) { Env::Default()->SleepForMicroseconds(1); } } #else state.ResumeTiming(); expected = threads * iters * (1 + (event_after_add ? adds_per_round : 0)); for (int i = 0; i < threads; ++i) { Env::Default()->SchedClosure( [callback, iters, adds_per_round, event_after_add, time_ptr]() { bm_helper->DoAddChain(adds_per_round, iters, event_after_add, callback, time_ptr); }); } while (counter < expected) { Env::Default()->SleepForMicroseconds(1); } state.PauseTiming(); #endif VLOG(1) << "counter = " << counter << " post_execute Output: " << bm_helper->host_outputs(0).SummarizeValue(64); if (time_ptr) bm_helper->DisplayTimes(time_ptr); } #ifdef PLATFORM_GOOGLE static void BM_chain_1024_1_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 1, false, 0); } static void BM_chain_1024_1_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 1, true, 0); } static void BM_chain_1024_10_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 10, false, 0); } static void BM_chain_1024_10_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 10, true, 0); } static void BM_chain_1024_100_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 100, false, 0); } static void BM_chain_1024_100_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1024, 100, true, 0); } static void BM_chain_1M_1_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 1, false, 0); } static void BM_chain_1M_1_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 1, true, 0); } static void BM_chain_1M_10_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 10, false, 0); } static void BM_chain_1M_10_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 10, true, 0); } static void BM_chain_1M_100_false(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 100, false, 0); } static void BM_chain_1M_100_true(::testing::benchmark::State& state) { BM_chain_ops(state, 1 << 20, 100, true, 0); } BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1024_10_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_10_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_10_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1024_10_true)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_10_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_10_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_10_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_10_true)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Threads(1); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Threads(2); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Threads(8); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Threads(8); #else static void BM_chain_1024_1_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 1, false, 0, threads); } static void BM_chain_1024_1_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 1, true, 0, threads); } static void BM_chain_1024_10_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 10, false, 0, threads); } static void BM_chain_1024_10_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 10, true, 0, threads); } static void BM_chain_1024_100_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 100, false, 0, threads); } static void BM_chain_1024_100_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1024, 100, true, 0, threads); } static void BM_chain_1M_1_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 1, false, 0, threads); } static void BM_chain_1M_1_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 1, true, 0, threads); } static void BM_chain_1M_10_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 10, false, 0, threads); } static void BM_chain_1M_10_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 10, true, 0, threads); } static void BM_chain_1M_100_false(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 100, false, 0, threads); } static void BM_chain_1M_100_true(::testing::benchmark::State& state) { const int threads = state.range(0); BM_chain_ops(state, 1 << 20, 100, true, 0, threads); } BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1024_1_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1024_1_true)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1024_10_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_10_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_10_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1024_10_true)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1024_100_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1024_100_true)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1M_1_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_1_true)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_10_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_10_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_10_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_10_true)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Arg(1); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Arg(2); BENCHMARK(BM_chain_1M_100_false)->UseRealTime()->Arg(8); BENCHMARK(BM_chain_1M_100_true)->UseRealTime()->Arg(8); #endif } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/device/device_event_mgr.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/device/device_event_mgr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
abb610d2-6795-47fc-9ff4-a077f44ff498
cpp
tensorflow/tensorflow
kernel_and_device
tensorflow/core/common_runtime/eager/kernel_and_device.cc
tensorflow/core/common_runtime/eager/kernel_and_device_test.cc
#include "tensorflow/core/common_runtime/eager/kernel_and_device.h" #include <functional> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/types/optional.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/eager/attr_builder.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/platform/denormal.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/fingerprint.h" #include "tensorflow/core/platform/notification.h" #include "tensorflow/core/platform/setround.h" #include "tensorflow/core/profiler/lib/annotated_traceme.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/tensor_slice_reader_cache.h" #if !defined(IS_MOBILE_PLATFORM) #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/meta_optimizer.h" #endif namespace tensorflow { Status EagerKernelArgs::GetLocalArg(const FunctionArgIndex& index, Tensor* val) const { if (index.sub_index >= 0) { return errors::InvalidArgument("Got unexpected sub_index ", index.sub_index, " for argument ", index.index); } Tensor* arg = tensor_args_.at(index.index).tensor; if (arg) { *val = *arg; return absl::OkStatus(); } else { return errors::NotFound("Argument ", index.index, " has no local tensor."); } } std::vector<Tensor> EagerKernelArgs::GetLocalTensors() const { std::vector<Tensor> local_inputs; local_inputs.reserve(tensor_args_.size()); for (const TensorValue& tensor_value : tensor_args_) { local_inputs.push_back(*tensor_value.tensor); } return local_inputs; } std::function<void(std::function<void()>)>* KernelAndDevice::get_runner() const { if (runner_) { return runner_; } else { static auto* default_runner = new std::function<void(std::function<void()>)>( [](const std::function<void()>& f) { f(); }); return default_runner; } } KernelAndDeviceFunc::~KernelAndDeviceFunc() { if (handle_ != kInvalidHandle) { Status status = pflr_->ReleaseHandle(handle_); if (!status.ok()) { LOG(INFO) << "Ignoring error status when releasing multi-device function " "handle " << status; } } } Status KernelAndDeviceOp::Init( const bool log_device_placement, const NodeDef& ndef, GraphCollector* graph_collecto, const absl::optional<EagerFunctionParams>& eager_func_params) { if (eager_func_params.has_value()) { return absl::InternalError( "KernelAndDeviceOp does not support EagerFunctionParams."); } OpKernel* k = nullptr; if (flr_ == nullptr) { return errors::Internal( "A valid FunctionLibraryRuntime must be provided when running ops " "based on OpKernel."); } std::shared_ptr<const NodeProperties> props; TF_RETURN_IF_ERROR(NodeProperties::CreateFromNodeDef( ndef, flr_->GetFunctionLibraryDefinition(), &props)); TF_RETURN_IF_ERROR(flr_->CreateKernel(props, &k)); kernel_.reset(k); const auto* op_reg_data = OpRegistry::Global()->LookUp(ndef.op()); if (op_reg_data != nullptr) { is_distributed_communication_op_ = op_reg_data->op_def.is_distributed_communication(); } input_alloc_attrs_.resize(kernel_->num_inputs()); input_devices_.resize(kernel_->num_inputs(), device_); for (size_t i = 0; i < input_alloc_attrs_.size(); ++i) { bool host = kernel_->input_memory_types()[i] == tensorflow::HOST_MEMORY; input_alloc_attrs_[i].set_on_host(host); if (host && input_devices_[i]->device_type() != DEVICE_CPU) { input_devices_[i] = host_cpu_device_; } } output_alloc_attrs_.resize(kernel_->num_outputs()); for (size_t i = 0; i < output_alloc_attrs_.size(); ++i) { output_alloc_attrs_[i].set_on_host(kernel_->output_memory_types()[i] == tensorflow::HOST_MEMORY); } return absl::OkStatus(); } Status KernelAndDeviceFunc::InstantiateFunc( const bool log_device_placement, const NodeDef& ndef, GraphCollector* graph_collector, const absl::optional<EagerFunctionParams>& eager_func_params) { const OpDef* op_def = nullptr; const FunctionLibraryDefinition* func_lib_def; FunctionLibraryRuntime::InstantiateOptions options; if (eager_func_params.has_value() && eager_func_params.value().func_lib_def_override != nullptr) { func_lib_def = eager_func_params.value().func_lib_def_override; options.lib_def = func_lib_def; } else { if (flr_ == nullptr) { func_lib_def = pflr_->GetFLR(host_cpu_device_->name()) ->GetFunctionLibraryDefinition(); } else { func_lib_def = flr_->GetFunctionLibraryDefinition(); } } const FunctionDef* function_def = func_lib_def->Find(ndef.op()); if (function_def != nullptr) { op_def = &(function_def->signature()); } else { TF_RETURN_IF_ERROR(OpDefForOp(ndef.op(), &op_def)); } TF_RETURN_IF_ERROR( InOutTypesForNode(ndef, *op_def, &input_dtypes_, &output_dtypes_)); options.target = device_ == nullptr ? "" : device_->name(); options.is_multi_device_function = true; for (const Device* device : input_devices_) { options.input_devices.push_back(device->name()); } options.composite_devices = composite_devices_; options.input_resource_dtypes_and_shapes = input_resource_dtypes_and_shapes_; if (outputs_on_op_device_) { if (function_def == nullptr) { return errors::InvalidArgument("Failed to find function ", ndef.op()); } for (int i = 0; i < function_def->signature().output_arg_size(); ++i) { options.output_devices.push_back(options.target); } } const auto& it = ndef.attr().find("executor_type"); if (it != ndef.attr().end()) { options.executor_type = it->second.s(); } const auto& is_component_fn_it = ndef.attr().find("is_component_function"); if (is_component_fn_it != ndef.attr().end()) { options.is_component_function = is_component_fn_it->second.b(); } #if !defined(IS_MOBILE_PLATFORM) const auto& config_it = ndef.attr().find("config_proto"); if (config_it != ndef.attr().end()) { if (!options.config_proto.ParseFromString(config_it->second.s())) { return errors::InvalidArgument( "Failed to parse config_proto attribute as tensorflow::ConfigProto " "proto."); } grappler::GrapplerItem::OptimizationOptions optimization_options = grappler::CreateOptOptionsForEager(); options.optimize_graph_fn = std::bind( grappler::OptimizeGraph, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5, options.config_proto, function_def->signature().name(), optimization_options, std::placeholders::_6); } #endif options.graph_collector = graph_collector; options.allow_small_function_optimizations = allow_small_function_optimizations_; options.allow_control_flow_sync_execution = allow_control_flow_sync_execution_; options.shape_inference_on_tfe_dialect_import = shape_inference_on_tfe_dialect_import_; options.config_proto.mutable_graph_options() ->mutable_optimizer_options() ->set_do_function_inlining(true); options.config_proto.set_log_device_placement(log_device_placement); options.int_args_and_retvals_on_device = int_args_and_retvals_on_device_; if (xla_compile_device_type_.has_value()) { options.xla_compile_device_type = xla_compile_device_type_.value(); } options.allow_soft_placement = allow_soft_placement_; TF_RETURN_IF_ERROR( pflr_->Instantiate(ndef.op(), AttrSlice(ndef), options, &handle_)); return pflr_->IsCrossProcess(handle_, &is_cross_process_); } Status KernelAndDeviceFunc::Init( const bool log_device_placement, const NodeDef& ndef, GraphCollector* graph_collector, const absl::optional<EagerFunctionParams>& eager_func_params) { TF_RETURN_IF_ERROR(InstantiateFunc(log_device_placement, ndef, graph_collector, eager_func_params)); return pflr_->GetOutputDevices(handle_, &output_devices_); } namespace { struct OpExecutionState : public core::RefCounted { CancellationManager cancellation_manager; }; } Status KernelAndDeviceOp::Run( ScopedStepContainer* step_container, const EagerKernelArgs& inputs, std::vector<EagerKernelRet>* outputs, CancellationManager* cancellation_manager, const absl::optional<EagerFunctionParams>& eager_func_params, const absl::optional<ManagedStackTrace>& stack_trace, tsl::CoordinationServiceAgent* coordination_service_agent) { OpKernelContext::Params params; params.device = device_; params.frame_iter = FrameAndIter(0, 0); params.inputs = *inputs.GetTensorValues(); params.op_kernel = kernel_.get(); params.resource_manager = device_->resource_manager(); params.input_alloc_attrs = input_alloc_attrs_; params.output_attr_array = output_alloc_attrs_.data(); params.function_library = flr_; params.slice_reader_cache = &slice_reader_cache_; params.rendezvous = rendezvous_; params.stack_trace = stack_trace; OpExecutionState* op_execution_state = nullptr; CancellationManager default_cancellation_manager; if (cancellation_manager) { params.cancellation_manager = cancellation_manager; } else if (kernel_->is_deferred()) { op_execution_state = new OpExecutionState; params.cancellation_manager = &op_execution_state->cancellation_manager; params.inc_num_deferred_ops_function = [op_execution_state]() { op_execution_state->Ref(); }; params.dec_num_deferred_ops_function = [op_execution_state]() { op_execution_state->Unref(); }; } else { params.cancellation_manager = &default_cancellation_manager; } params.log_memory = log_memory_; params.runner = get_runner(); params.step_container = step_container; params.collective_executor = collective_executor_ ? collective_executor_->get() : nullptr; params.coordination_service_agent = coordination_service_agent; OpKernelContext context(&params); { port::ScopedFlushDenormal flush; port::ScopedSetRound round(FE_TONEAREST); profiler::AnnotatedTraceMe activity( [&] { return kernel_->TraceString(context, false); }, tsl::profiler::TraceMeLevel::kInfo); device_->Compute(kernel_.get(), &context); } if (op_execution_state != nullptr) { op_execution_state->Unref(); } Status s = context.status(); if (TF_PREDICT_FALSE(!s.ok())) { if (absl::IsUnavailable(s) && !is_distributed_communication_op_) { s = errors::ReplaceErrorFromNonCommunicationOps(s, kernel_->name()); } return s; } if (outputs != nullptr) { outputs->clear(); for (int i = 0; i < context.num_outputs(); ++i) { const auto* output_tensor = context.mutable_output(i); if (output_tensor != nullptr) { outputs->push_back(Tensor(*output_tensor)); } else { outputs->push_back(Tensor()); } } } return absl::OkStatus(); } std::shared_ptr<FunctionLibraryRuntime::Options> KernelAndDeviceFunc::PrepareForRun( ScopedStepContainer* step_container, std::vector<EagerKernelRet>* outputs, CancellationManager* cancellation_manager, const absl::optional<EagerFunctionParams>& eager_func_params, const absl::optional<ManagedStackTrace>& stack_trace, tsl::CoordinationServiceAgent* coordination_service_agent, tsl::core::RefCountPtr<Rendezvous>* rendezvous) { std::shared_ptr<FunctionLibraryRuntime::Options> opts = nullptr; if (eager_func_params.has_value()) { const EagerFunctionParams& params = eager_func_params.value(); if (params.step_id.has_value()) { opts = std::make_shared<FunctionLibraryRuntime::Options>( params.step_id.value()); } else { opts = std::make_shared<FunctionLibraryRuntime::Options>(); } if (params.op_id != kInvalidOpId) { opts->op_id = params.op_id; } } else { opts = std::make_shared<FunctionLibraryRuntime::Options>(); if (get_op_id_ && is_cross_process_) { opts->op_id = get_op_id_(); } } TF_CHECK_OK(rendezvous_factory_(opts->step_id, nullptr, rendezvous)); opts->rendezvous = rendezvous->get(); opts->create_rendezvous = false; std::shared_ptr<CancellationManager> local_cm; if (cancellation_manager) { opts->cancellation_manager = cancellation_manager; } else { opts->cancellation_manager = new CancellationManager; } opts->allow_dead_tensors = true; opts->step_container = step_container; opts->collective_executor = collective_executor_ ? collective_executor_->get() : nullptr; opts->stack_trace = stack_trace; opts->stats_collector = nullptr; opts->runner = get_runner(); opts->coordination_service_agent = coordination_service_agent; outputs->clear(); return opts; } Status KernelAndDeviceFunc::Run( ScopedStepContainer* step_container, const EagerKernelArgs& inputs, std::vector<EagerKernelRet>* outputs, CancellationManager* cancellation_manager, const absl::optional<EagerFunctionParams>& eager_func_params, const absl::optional<ManagedStackTrace>& stack_trace, tsl::CoordinationServiceAgent* coordination_service_agent) { tsl::profiler::TraceMe activity("KernelAndDeviceFunc::Run", tsl::profiler::TraceMeLevel::kInfo); if (inputs.HasRemoteOrPackedInputs() || eager_func_params.has_value()) { Notification n; Status status; RunAsync(step_container, inputs, outputs, cancellation_manager, eager_func_params, coordination_service_agent, [&status, &n](Status s) { status = s; n.Notify(); }); n.WaitForNotification(); return status; } tsl::core::RefCountPtr<Rendezvous> created_rendezvous; std::shared_ptr<FunctionLibraryRuntime::Options> opts = PrepareForRun( step_container, outputs, cancellation_manager, eager_func_params, stack_trace, coordination_service_agent, &created_rendezvous); std::vector<Tensor> rets; Status s; { port::ScopedFlushDenormal flush; port::ScopedSetRound round(FE_TONEAREST); s.Update(pflr_->RunSync(*opts, handle_, inputs.GetLocalTensors(), &rets)); } if (cancellation_manager == nullptr) { delete opts->cancellation_manager; } outputs->reserve(rets.size()); for (auto& v : rets) { outputs->push_back(std::move(v)); } return s; } void KernelAndDeviceFunc::RunAsync( ScopedStepContainer* step_container, const EagerKernelArgs& inputs, std::vector<EagerKernelRet>* outputs, CancellationManager* cancellation_manager, const absl::optional<EagerFunctionParams>& eager_func_params, tsl::CoordinationServiceAgent* coordination_service_agent, std::function<void(const Status&)> done) { tsl::profiler::TraceMe activity( [] { return tsl::profiler::TraceMeEncode("KernelAndDeviceFunc::RunAsync", {{"_r", 1}}); }, tsl::profiler::TraceMeLevel::kInfo); tsl::core::RefCountPtr<Rendezvous> created_rendezvous; std::shared_ptr<FunctionLibraryRuntime::Options> opts = PrepareForRun( step_container, outputs, cancellation_manager, eager_func_params, std::nullopt, coordination_service_agent, &created_rendezvous); pflr_->Run( *opts, handle_, inputs, outputs, [opts, cancellation_manager, done = std::move(done), created_rendezvous = created_rendezvous.release()](const Status& s) { if (cancellation_manager == nullptr) { delete opts->cancellation_manager; } created_rendezvous->Unref(); done(s); }); } tensorflow::Device* KernelAndDeviceOp::OutputDevice(int idx) const { if (kernel_->output_memory_types()[idx] == HOST_MEMORY) { return nullptr; } return device_; } tensorflow::Device* KernelAndDeviceFunc::OutputDevice(int idx) const { if (output_dtypes_[idx] == DT_RESOURCE) { return nullptr; } return output_devices_[idx]; } tensorflow::Device* KernelAndDeviceOp::OutputResourceDevice(int idx) const { if (kernel_->output_type(idx) == DT_RESOURCE) { return device_; } return nullptr; } tensorflow::Device* KernelAndDeviceFunc::OutputResourceDevice(int idx) const { if (output_dtypes_[idx] == DT_RESOURCE) { return output_devices_[idx]; } return nullptr; } Device* KernelAndDeviceOp::InputDevice(int i) const { return input_devices_[i]; } Device* KernelAndDeviceFunc::InputDevice(int i) const { if ((input_dtypes_[i] == DT_RESOURCE) && (composite_devices_.find(input_devices_[i]->name()) == composite_devices_.end())) { return host_cpu_device_; } else { return input_devices_[i]; } } }
#include "tensorflow/core/common_runtime/eager/kernel_and_device.h" #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/types/optional.h" #include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/attr_builder.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { class TestEnv { public: TestEnv() : flib_def_(OpRegistry::Global(), FunctionDefLibrary()) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( DeviceFactory::NewDevice("CPU", {}, "/job:a/replica:0/task:0")); cpu_device_ = devices.back().get(); device_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); OptimizerOptions opts; pflr_ = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr_.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, &flib_def_, opts, nullptr); flr_ = pflr_->GetFLR("/job:a/replica:0/task:0/device:CPU:0"); CHECK(flr_ != nullptr); } FunctionLibraryRuntime* function_library_runtime() const { return flr_; } ProcessFunctionLibraryRuntime* pflr() const { return pflr_.get(); } Device* cpu_device() { return cpu_device_; } private: FunctionLibraryDefinition flib_def_; std::unique_ptr<DeviceMgr> device_mgr_; FunctionLibraryRuntime* flr_; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr_; Device* cpu_device_; }; void BM_CreateGraph(::testing::benchmark::State& state) { for (auto s : state) { Scope root = Scope::NewRootScope(); auto C = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}}); auto M = ops::MatMul(root, C, C); TF_CHECK_OK(root.status()); } } BENCHMARK(BM_CreateGraph); void BM_RunGraph(::testing::benchmark::State& state) { Scope root = Scope::NewRootScope(); auto C = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}}); auto M = ops::MatMul(root, C, C); SessionOptions opts; opts.config.set_inter_op_parallelism_threads(1); opts.config.set_intra_op_parallelism_threads(1); ClientSession sess(root, opts); std::vector<Tensor> outputs; for (auto s : state) { outputs.clear(); TF_CHECK_OK(sess.Run({M}, &outputs)); } } BENCHMARK(BM_RunGraph); void BM_CreateAndDestroySession(::testing::benchmark::State& state) { Scope root = Scope::NewRootScope(); auto C = ops::Const(root, {{1.0, 2.0}, {3.0, 4.0}}); auto M = ops::MatMul(root, C, C); for (auto s : state) { ClientSession sess(root); } } BENCHMARK(BM_CreateAndDestroySession); void BM_KernelAndDeviceInit(::testing::benchmark::State& state) { NodeDef ndef(AttrBuilder("MatMul") .Set("T", DT_FLOAT) .Set("transpose_a", false) .Set("transpose_b", false) .NumInputs(2) .BuildNodeDef()); TestEnv env; KernelAndDeviceOp k(nullptr, false, env.function_library_runtime(), nullptr, nullptr, env.cpu_device()); for (auto s : state) { TF_CHECK_OK(k.Init({}, ndef, nullptr, std::nullopt)); } } BENCHMARK(BM_KernelAndDeviceInit); void BM_KernelAndDeviceRun(::testing::benchmark::State& state) { Tensor t(Input({{1.0f, 2.0f}, {3.0f, 4.0f}}).tensor()); absl::InlinedVector<TensorValue, 4UL> inputs; inputs.push_back(TensorValue(&t)); inputs.push_back(TensorValue(&t)); std::vector<EagerKernelRet> outputs; NodeDef ndef(AttrBuilder("MatMul") .Set("T", DT_FLOAT) .Set("transpose_a", false) .Set("transpose_b", false) .NumInputs(inputs.size()) .BuildNodeDef()); TestEnv env; KernelAndDeviceOp k(nullptr, false, env.function_library_runtime(), nullptr, nullptr, env.cpu_device()); TF_CHECK_OK(k.Init({}, ndef, nullptr, std::nullopt)); const EagerKernelArgs args(std::move(inputs)); for (auto s : state) { TF_CHECK_OK(k.Run(nullptr, args, &outputs, nullptr, std::nullopt, std::nullopt, nullptr)); } } BENCHMARK(BM_KernelAndDeviceRun); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/kernel_and_device.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/kernel_and_device_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bd82b62c-d379-4d92-a458-68403e5ddeac
cpp
tensorflow/tensorflow
eager_executor
tensorflow/core/common_runtime/eager/eager_executor.cc
tensorflow/core/common_runtime/eager/eager_executor_test.cc
#include "tensorflow/core/common_runtime/eager/eager_executor.h" #include <forward_list> #include <functional> #include <memory> #include <utility> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/util/env_var.h" namespace tensorflow { namespace { bool IsAsyncWaitForRemoteFunctionEnabled() { bool enabled = true; TF_CHECK_OK(ReadBoolFromEnvVar("TF_ENABLE_ASYNC_WAIT_FOR_REMOTE_FUNCTION", true, &enabled)); return enabled; } } EagerExecutor::EagerExecutor(bool async, bool enable_streaming_enqueue, int in_flight_nodes_limit) : next_node_id_(0), ok_(true), thread_(async ? tensorflow::Env::Default()->StartThread( tensorflow::ThreadOptions(), "eager_async_executor", std::bind(&EagerExecutor::Run, this)) : nullptr), last_eager_client_(nullptr), enable_async_wait_for_remote_function_( IsAsyncWaitForRemoteFunctionEnabled()), enable_streaming_enqueue_(enable_streaming_enqueue), in_flight_nodes_limit_(in_flight_nodes_limit) { if (async && in_flight_nodes_limit_ > 0) { VLOG(4) << "EagerExecutor InFlightNodes limit is set to " << in_flight_nodes_limit_; } } EagerExecutor::~EagerExecutor() { tensorflow::mutex_lock l(node_queue_mutex_); state_ = ExecutorState::kShutDown; nodes_pending_.notify_all(); for (const auto& cleanups_for_key : cleanups_) { for (const std::function<void()>& cleanup : cleanups_for_key.second) { cleanup(); } } } Status EagerExecutor::ShutDown() { { bool has_thread; Status status; { tensorflow::mutex_lock l(node_queue_mutex_); if (state_ != ExecutorState::kShutDown) { state_ = ExecutorState::kShuttingDown; } WaitForAllPendingNodesLocked(&l).IgnoreError(); state_ = ExecutorState::kShutDown; has_thread = thread_ != nullptr; status = status_; if (has_thread) { nodes_pending_.notify_all(); } } if (!has_thread) { return status; } } thread_exited_notification_.WaitForNotification(); return status(); } const char* EagerExecutor::StateStringLocked() { switch (state_) { case ExecutorState::kActive: return "Active"; case ExecutorState::kShuttingDown: return "ShuttingDown"; case ExecutorState::kShutDown: return "ShutDown"; } } Status EagerExecutor::SyncExecute(EagerNode* node) { if (Async()) { return errors::Internal("SyncExecute does not support async execution."); } if (node->AsAsync() != nullptr) { return errors::Internal("Executor does not support executing async nodes"); } uint64 id = next_node_id_++; Status s = node->Prepare(); if (!s.ok()) { return s; } s = node->Run(); tensorflow::mutex_lock l(node_queue_mutex_); NotifyWaiters(id); return s; } Status EagerExecutor::AddOrExecute(std::unique_ptr<EagerNode> node) { Status status; core::RefCountPtr<NodeItem> item(new NodeItem); item->id = next_node_id_++; item->node = std::move(node); item->state = NodeState::kPENDING; status = item->node->Prepare(); if (!status.ok()) { item->node->Abort(status); return status; } if (!Async()) { return RunItem(std::move(item), false); } else { tensorflow::mutex_lock l(node_queue_mutex_); DVLOG(3) << "Add node [id " << item->id << "]" << item->node->DebugString() << " with status: " << status_; if (state_ != ExecutorState::kActive) { status = errors::FailedPrecondition( "EagerExecutor accepts new EagerNodes to run only in Active state. " "Current state is '", StateStringLocked(), "'"); } else { status = status_; if (status.ok()) { node_queue_.push(std::move(item)); if (node_queue_.size() == 1) { nodes_pending_.notify_all(); } if (in_flight_nodes_limit_ == 0) { return absl::OkStatus(); } while (true) { int64_t in_flight_nodes_count = node_queue_.size() + unfinished_nodes_.size(); if (in_flight_nodes_count < in_flight_nodes_limit_) { break; } VLOG(4) << "Hitting in-flight node limit node_queue_.size() = " << node_queue_.size() << " unfinished_nodes_.size() = " << unfinished_nodes_.size() << "."; nodes_done_.wait(l); } return absl::OkStatus(); } } } item->node->Abort(status); return status; } tensorflow::Status EagerExecutor::WaitForAllPendingNodes() { tensorflow::mutex_lock l(node_queue_mutex_); return WaitForAllPendingNodesLocked(&l); } tensorflow::Status EagerExecutor::WaitForAllPendingNodesLocked( mutex_lock* lock) { tensorflow::condition_variable cond; if (!status_.ok()) return status_; if (node_queue_.empty() && unfinished_nodes_.empty()) return absl::OkStatus(); DCHECK(Async() || node_queue_.empty()); auto last_id = next_node_id_ - 1; DVLOG(3) << "Wait for Node: [id " << last_id << "] "; node_done_notifications_.insert(std::make_pair(last_id, &cond)); cond.wait(*lock); return status_; } void EagerExecutor::ClearError() { if (ok()) return; tensorflow::mutex_lock l(node_queue_mutex_); DCHECK(node_done_notifications_.empty()); DCHECK(node_queue_.empty()); status_ = absl::OkStatus(); ok_ = true; last_eager_client_ = nullptr; nodes_pending_.notify_all(); } void EagerExecutor::NodeDone(const core::RefCountPtr<NodeItem>& item, const Status& status, bool from_queue) { DVLOG(3) << "Node Done: [id " << item->id << "] " << item->node->DebugString() << " with status: " << status; DCHECK(item->state != NodeState::kDONE); item->state = NodeState::kDONE; bool async = item->node->AsAsync() != nullptr; if (status.ok() && !from_queue && !async) { return; } std::forward_list<core::RefCountPtr<NodeItem>> items_to_destroy; { mutex_lock l(node_queue_mutex_); if (!status_.ok()) return; bool need_notification = from_queue; if (from_queue) { DCHECK(!node_queue_.empty() && item.get() == node_queue_.front().get()); node_queue_.pop(); } else if (async) { need_notification = item->id == unfinished_nodes_.begin()->first; auto result = unfinished_nodes_.erase(item->id); if (result == 0) return; } if (!status.ok() && item->node->Fatal()) { need_notification = true; status_ = status; ok_ = false; if (Async()) { errors::AppendToMessage(&status_, "Encountered when executing an operation using " "EagerExecutor. This error cancels all future " "operations and poisons their output tensors."); } while (!node_queue_.empty()) { items_to_destroy.push_front(std::move(node_queue_.front())); node_queue_.pop(); } for (auto& it : unfinished_nodes_) { items_to_destroy.push_front(std::move(it.second)); } unfinished_nodes_.clear(); } if (need_notification) { NotifyWaiters(item->id); } nodes_done_.notify_all(); } for (auto& item : items_to_destroy) { item->node->Abort(status); } } void EagerExecutor::NotifyWaiters(uint64 id) { if (!node_done_notifications_.empty()) { uint64 upperbound_id = 0; if (!unfinished_nodes_.empty()) { upperbound_id = unfinished_nodes_.begin()->first - 1; } else if (!node_queue_.empty()) { upperbound_id = node_queue_.front()->id - 1; } else { upperbound_id = next_node_id_ - 1; } if (upperbound_id < id) { return; } DVLOG(3) << "Notify node done: [id " << id << " to " << upperbound_id << "] "; const auto range = status_.ok() ? std::make_pair( node_done_notifications_.lower_bound(id), node_done_notifications_.upper_bound(upperbound_id)) : std::make_pair(node_done_notifications_.begin(), node_done_notifications_.end()); for (auto it = range.first; it != range.second; ++it) { it->second->notify_all(); } node_done_notifications_.erase(range.first, range.second); } } void EagerExecutor::Run() { auto thread_exited_notifier = gtl::MakeCleanup([this] { thread_exited_notification_.Notify(); }); while (true) { core::RefCountPtr<NodeItem> curr_item; { tensorflow::mutex_lock l(node_queue_mutex_); while (node_queue_.empty() || !status_.ok()) { if (state_ == ExecutorState::kShutDown) return; nodes_pending_.wait(l); } curr_item.reset(node_queue_.front().get()); curr_item->Ref(); } Status status = RunItem(std::move(curr_item), true); if (!status.ok()) { VLOG(1) << "Failed to run item: " << status; } } } Status EagerExecutor::RunItem(core::RefCountPtr<NodeItem> item, bool from_queue) { DVLOG(3) << "Running Node: [id " << item->id << "] " << item->node->DebugString(); AsyncRemoteExecuteNode* async_remote_node = item->node->AsAsyncRemoteExecuteNode(); if (enable_async_wait_for_remote_function_) { if (async_remote_node != nullptr) { if (last_eager_client_ != nullptr && async_remote_node->eager_client() != nullptr && last_eager_client_ != async_remote_node->eager_client()) { DVLOG(3) << "Executing Sync Executor for node" << item->id; tensorflow::Status status = async_remote_node->SyncExecutors(); if (!status.ok()) { NodeDone(item, status, from_queue); return status; } last_eager_client_ = nullptr; } if (async_remote_node->eager_client() != nullptr && async_remote_node->needs_remote_inputs() && async_remote_node->allow_multiple_pending_requests()) { last_eager_client_ = async_remote_node->eager_client(); } } } AsyncEagerNode* async_node = item->node->AsAsync(); if (async_node == nullptr) { tensorflow::Status status = item->node->Run(); NodeDone(item, status, from_queue); return status; } item->state = NodeState::kSCHEDULED; auto async_ref = item.get(); async_ref->Ref(); TF_RETURN_IF_ERROR(MoveToUnfinished(std::move(item), from_queue)); async_node->RunAsync([this, async_ref](const Status& status) { core::RefCountPtr<NodeItem> async_item(async_ref); NodeDone(async_item, status, false); }); return status(); } Status EagerExecutor::MoveToUnfinished(core::RefCountPtr<NodeItem> item, bool from_queue) { tensorflow::mutex_lock l(node_queue_mutex_); if (!status_.ok()) { return status_; } if (from_queue) { DCHECK(!node_queue_.empty() && item.get() == node_queue_.front().get()); node_queue_.pop(); } DVLOG(3) << "Add Node: [id " << item->id << "] to unfinished map."; unfinished_nodes_.emplace_hint(unfinished_nodes_.end(), item->id, std::move(item)); return absl::OkStatus(); } void EagerExecutor::AddCleanup(intptr_t key, std::function<void()> callback) { cleanups_[key].push_back(callback); } void EagerExecutor::RemoveCleanups(intptr_t key) { cleanups_.erase(key); } }
#include "tensorflow/core/common_runtime/eager/eager_executor.h" #include <memory> #include <utility> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tsl/platform/status.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace { class TestState { public: enum State { kSuccess, kNotRun, kFailure }; TestState() : state_(kNotRun) {} TestState(const TestState&) = delete; TestState& operator=(const TestState&) = delete; State read_state() { return state_; } void update_success_state() { state_ = kSuccess; } void update_run_error_state() { state_ = kFailure; } private: State state_; }; class TestEagerNode : public EagerNode { public: explicit TestEagerNode(TestState* state, Status prepare_return_status = absl::OkStatus(), Status run_return_status = absl::OkStatus()) : state_(state), prepare_return_status_(prepare_return_status), run_return_status_(run_return_status) {} TestEagerNode(const TestEagerNode&) = delete; TestEagerNode& operator=(const TestEagerNode&) = delete; Status Prepare() override { return prepare_return_status_; } Status Run() override { if (run_return_status_.ok()) { state_->update_success_state(); } else { state_->update_run_error_state(); } return run_return_status_; }; void Abort(Status status) override {} string DebugString() const override { return "testEagerNode"; } private: TestState* state_; Status prepare_return_status_; Status run_return_status_; }; class TestAsyncEagerNode : public AsyncEagerNode { public: explicit TestAsyncEagerNode(TestState* state, Status prepare_return_status = absl::OkStatus(), Status run_return_status = absl::OkStatus()) : state_(state), prepare_return_status_(prepare_return_status), run_return_status_(run_return_status) {} TestAsyncEagerNode(const TestAsyncEagerNode&) = delete; TestAsyncEagerNode& operator=(const TestAsyncEagerNode&) = delete; Status Prepare() override { return prepare_return_status_; } void RunAsync(StatusCallback done) override { if (run_return_status_.ok()) { state_->update_success_state(); } else { state_->update_run_error_state(); } done(run_return_status_); }; void Abort(Status status) override {} string DebugString() const override { return "testAsyncEagerNode"; } private: TestState* state_; Status prepare_return_status_; Status run_return_status_; }; TEST(EagerExecutorTest, TestSyncExecutorWithEagerNode) { auto sync_executor = std::make_unique<EagerExecutor>( false, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestEagerNode>(state.get()); TF_ASSERT_OK(sync_executor->AddOrExecute(std::move(node))); ASSERT_EQ(state->read_state(), TestState::State::kSuccess); } TEST(EagerExecutorTest, TestSyncExecuteMethodFailureCases) { auto async_executor = std::make_unique<EagerExecutor>( true, true); auto state = std::make_unique<TestState>(); auto sync_node = std::make_unique<TestEagerNode>(state.get()); EXPECT_THAT(async_executor->SyncExecute(sync_node.get()), tensorflow::testing::StatusIs(tensorflow::error::INTERNAL)); ASSERT_EQ(state->read_state(), TestState::kNotRun); auto sync_executor = std::make_unique<EagerExecutor>( false, true); state = std::make_unique<TestState>(); auto async_node = std::make_unique<TestAsyncEagerNode>(state.get()); EXPECT_THAT(sync_executor->SyncExecute(async_node.get()), tensorflow::testing::StatusIs(tensorflow::error::INTERNAL)); ASSERT_EQ(state->read_state(), TestState::State::kNotRun); } TEST(EagerExecutorTest, TestSyncExecuteMethodSuccessCase) { auto sync_executor = std::make_unique<EagerExecutor>( false, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestEagerNode>(state.get()); TF_ASSERT_OK(sync_executor->SyncExecute(node.get())); ASSERT_EQ(state->read_state(), TestState::State::kSuccess); } TEST(EagerExecutorTest, TestSyncExecutorFailPrepare) { auto sync_executor = std::make_unique<EagerExecutor>( false, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestEagerNode>(state.get(), errors::InvalidArgument("test")); auto status = sync_executor->AddOrExecute(std::move(node)); ASSERT_EQ(status.code(), absl::StatusCode::kInvalidArgument); ASSERT_EQ(state->read_state(), TestState::State::kNotRun); } TEST(EagerExecutorTest, TestSyncExecutorFailRun) { auto sync_executor = std::make_unique<EagerExecutor>( false, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestEagerNode>(state.get(), absl::OkStatus(), errors::Internal("test")); auto status = sync_executor->AddOrExecute(std::move(node)); ASSERT_EQ(status.code(), tensorflow::error::INTERNAL); ASSERT_EQ(state->read_state(), TestState::State::kFailure); } TEST(EagerExecutorTest, TestAsyncExecutorWithAsyncEagerNode) { auto async_executor = std::make_unique<EagerExecutor>( true, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestAsyncEagerNode>(state.get()); TF_ASSERT_OK(async_executor->AddOrExecute(std::move(node))); TF_ASSERT_OK(async_executor->WaitForAllPendingNodes()); ASSERT_EQ(state->read_state(), TestState::State::kSuccess); } TEST(EagerExecutorTest, TestAsyncExecutorWithInFlightRequestLimit) { auto async_executor = std::make_unique<EagerExecutor>( true, true, 1); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestAsyncEagerNode>(state.get()); TF_ASSERT_OK(async_executor->AddOrExecute(std::move(node))); auto node1 = std::make_unique<TestAsyncEagerNode>(state.get()); TF_ASSERT_OK(async_executor->AddOrExecute(std::move(node1))); TF_ASSERT_OK(async_executor->WaitForAllPendingNodes()); ASSERT_EQ(state->read_state(), TestState::State::kSuccess); } TEST(EagerExecutorTest, TestAsyncExecutorWithEagerNode) { auto async_executor = std::make_unique<EagerExecutor>( true, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestEagerNode>(state.get()); TF_ASSERT_OK(async_executor->AddOrExecute(std::move(node))); TF_ASSERT_OK(async_executor->WaitForAllPendingNodes()); ASSERT_EQ(state->read_state(), TestState::State::kSuccess); } TEST(EagerExecutorTest, TestAsyncExecutorFailPrepare) { auto async_executor = std::make_unique<EagerExecutor>( true, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestEagerNode>(state.get(), errors::InvalidArgument("test")); auto status = async_executor->AddOrExecute(std::move(node)); ASSERT_EQ(status.code(), absl::StatusCode::kInvalidArgument); ASSERT_EQ(state->read_state(), TestState::State::kNotRun); } TEST(EagerExecutorTest, TestAsyncExecutorFailRun) { auto async_executor = std::make_unique<EagerExecutor>( true, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestEagerNode>(state.get(), absl::OkStatus(), errors::Internal("test")); TF_ASSERT_OK(async_executor->AddOrExecute(std::move(node))); auto status = async_executor->WaitForAllPendingNodes(); ASSERT_EQ(status.code(), tensorflow::error::INTERNAL); ASSERT_EQ(state->read_state(), TestState::State::kFailure); } TEST(EagerExecutorTest, TestAsyncExecutorFailPrepareWithAsyncNode) { auto async_executor = std::make_unique<EagerExecutor>( true, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestAsyncEagerNode>( state.get(), errors::InvalidArgument("test")); auto status = async_executor->AddOrExecute(std::move(node)); ASSERT_EQ(status.code(), absl::StatusCode::kInvalidArgument); ASSERT_EQ(state->read_state(), TestState::State::kNotRun); } TEST(EagerExecutorTest, TestAsyncExecutorFailRunWithAsyncNode) { auto async_executor = std::make_unique<EagerExecutor>( true, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestAsyncEagerNode>( state.get(), absl::OkStatus(), errors::Internal("test")); TF_ASSERT_OK(async_executor->AddOrExecute(std::move(node))); auto status = async_executor->WaitForAllPendingNodes(); ASSERT_EQ(status.code(), tensorflow::error::INTERNAL); ASSERT_EQ(state->read_state(), TestState::State::kFailure); } TEST(EagerExecutorTest, TestAsyncExecutorAddNodesAfterShutdown) { auto async_executor = std::make_unique<EagerExecutor>( true, true); auto state = std::make_unique<TestState>(); auto node = std::make_unique<TestAsyncEagerNode>(state.get()); TF_ASSERT_OK(async_executor->ShutDown()); EXPECT_THAT( async_executor->AddOrExecute(std::move(node)), tensorflow::testing::StatusIs(tensorflow::error::FAILED_PRECONDITION)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/eager_executor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/eager_executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0ecbd68f-03dc-483c-bf7d-7c2e09656484
cpp
tensorflow/tensorflow
eager_op_rewrite_registry
tensorflow/core/common_runtime/eager/eager_op_rewrite_registry.cc
tensorflow/core/common_runtime/eager/eager_op_rewrite_registry_test.cc
#include "tensorflow/core/common_runtime/eager/eager_op_rewrite_registry.h" #include <memory> #include <utility> namespace tensorflow { EagerOpRewriteRegistry* EagerOpRewriteRegistry::Global() { static EagerOpRewriteRegistry* global_rewrite_registry = new EagerOpRewriteRegistry; return global_rewrite_registry; } void EagerOpRewriteRegistry::Register(Phase phase, int32_t ordinal, std::unique_ptr<EagerOpRewrite> pass) { auto it_rewrites = rewrites_[phase].cbegin(); for (; it_rewrites != rewrites_[phase].cend(); ++it_rewrites) { if (it_rewrites->second == ordinal) { TF_CHECK_OK(errors::AlreadyExists( "Attempting to register Eager Rewriter ", pass->GetDebugInfo().name, " for phase ", phase, " using ordinal ", ordinal, " already occupied by Rewriter ", it_rewrites->first->GetDebugInfo().name)); } if (it_rewrites->second > ordinal) { break; } } rewrites_[phase].emplace(it_rewrites, std::make_pair(std::move(pass), ordinal)); } Status EagerOpRewriteRegistry::RunRewrite( Phase phase, EagerOperation* orig_op, std::unique_ptr<EagerOperation>* out_op) { EagerOperation* pre_op = orig_op; for (auto it_rewrites = rewrites_[phase].cbegin(); it_rewrites != rewrites_[phase].cend(); ++it_rewrites) { TF_RETURN_IF_ERROR(it_rewrites->first->Run(pre_op, out_op)); if (*out_op != nullptr) { pre_op = out_op->get(); } } return absl::OkStatus(); } }
#include "tensorflow/core/common_runtime/eager/eager_op_rewrite_registry.h" #include <memory> #include "tensorflow/core/platform/test.h" namespace tensorflow { class TestEagerOpRewrite : public EagerOpRewrite { public: TestEagerOpRewrite(string name, string file, string line) : EagerOpRewrite(name, file, line), executor_(false, true) {} static int count_; EagerExecutor executor_; Status Run(EagerOperation* orig_op, std::unique_ptr<tensorflow::EagerOperation>* out_op) override { ++count_; tensorflow::EagerOperation* op = new tensorflow::EagerOperation(&orig_op->EagerContext()); TF_RETURN_IF_ERROR(op->Reset("NoOp", nullptr, false, &executor_)); out_op->reset(op); return absl::OkStatus(); } }; int TestEagerOpRewrite::count_ = 0; REGISTER_REWRITE(EagerOpRewriteRegistry::PRE_EXECUTION, 10000, TestEagerOpRewrite); REGISTER_REWRITE(EagerOpRewriteRegistry::PRE_EXECUTION, 10001, TestEagerOpRewrite); TEST(EagerOpRewriteRegistryTest, RegisterRewritePass) { EXPECT_EQ(0, TestEagerOpRewrite::count_); StaticDeviceMgr device_mgr(DeviceFactory::NewDevice( "CPU", {}, "/job:localhost/replica:0/task:0/device:CPU:0")); tensorflow::EagerContext* ctx = new tensorflow::EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); EagerOperation orig_op(ctx); std::unique_ptr<tensorflow::EagerOperation> out_op; EXPECT_EQ(absl::OkStatus(), EagerOpRewriteRegistry::Global()->RunRewrite( EagerOpRewriteRegistry::PRE_EXECUTION, &orig_op, &out_op)); EXPECT_EQ(2, TestEagerOpRewrite::count_); EXPECT_EQ("NoOp", out_op->Name()); ctx->Unref(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/eager_op_rewrite_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/eager_op_rewrite_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ace438f3-1171-4bf3-b5af-b4186736073d
cpp
tensorflow/tensorflow
mkl_eager_op_rewrite
tensorflow/core/common_runtime/eager/mkl_eager_op_rewrite.cc
tensorflow/core/common_runtime/eager/mkl_eager_op_rewrite_test.cc
#ifdef INTEL_MKL #include <string> #include <unordered_map> #include "tensorflow/core/common_runtime/eager/eager_op_rewrite_registry.h" #include "tensorflow/core/graph/mkl_graph_util.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/util/mkl_util.h" #include "tensorflow/core/util/util.h" namespace tensorflow { class MklEagerOpRewrite : public EagerOpRewrite { public: MklEagerOpRewrite(string name, string file, string line); struct MklEagerOp { string op_name; std::function<bool(EagerOperation*)> RewriteRule; std::function<Status(EagerOperation*, std::unique_ptr<EagerOperation>*)> CreateMklOp; }; private: std::unordered_map<std::string, MklEagerOp> mkl_eager_ops_; Status Run(EagerOperation* orig_op, std::unique_ptr<tensorflow::EagerOperation>* out_op); static Status SetupNewOp(EagerOperation* orig_op, const string mkl_op_name, std::unique_ptr<EagerOperation>* new_mkl_op); static Status CreateGenericMklOp(EagerOperation* orig_op, std::unique_ptr<EagerOperation>* mkl_op); static bool RewriteConv2D(EagerOperation* op); static bool RewriteSparseMatrixMatMul(EagerOperation* op); static bool RewriteFusedBatchNormV3(EagerOperation* op); Status RewriteToMklOp(EagerOperation* orig_op, std::unique_ptr<EagerOperation>* mkl_op); bool ShouldRewriteOp(EagerOperation* op); static bool AlwaysRewrite(EagerOperation* op) { return true; } bool IsKernelRegistered(string op_name, DataType dt); void InsertMKLEagerOps(MklEagerOp op); }; REGISTER_REWRITE(EagerOpRewriteRegistry::POST_PLACEMENT, 10000, MklEagerOpRewrite); MklEagerOpRewrite::MklEagerOpRewrite(string name, string file, string line) : EagerOpRewrite(name, file, line) { InsertMKLEagerOps({"AvgPool", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps({"AvgPoolGrad", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps({"AvgPool3D", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps({"AvgPool3DGrad", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps({"BatchMatMul", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps({"BatchMatMulV2", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps({"Conv2D", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps( {"Conv2DBackpropFilter", RewriteConv2D, CreateGenericMklOp}); InsertMKLEagerOps({"Conv2DBackpropInput", RewriteConv2D, CreateGenericMklOp}); InsertMKLEagerOps({"Conv3D", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps( {"Conv3DBackpropFilterV2", RewriteConv2D, CreateGenericMklOp}); InsertMKLEagerOps( {"Conv3DBackpropInputV2", RewriteConv2D, CreateGenericMklOp}); InsertMKLEagerOps( {"DepthwiseConv2dNative", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps({"DepthwiseConv2dNativeBackpropFilter", RewriteConv2D, CreateGenericMklOp}); InsertMKLEagerOps({"DepthwiseConv2dNativeBackpropInput", RewriteConv2D, CreateGenericMklOp}); InsertMKLEagerOps({"Einsum", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps({"FusedBatchNorm", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps({"FusedBatchNormGrad", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps( {"FusedBatchNormGradV2", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps( {"FusedBatchNormGradV3", RewriteFusedBatchNormV3, CreateGenericMklOp}); InsertMKLEagerOps({"FusedBatchNormV2", AlwaysRewrite, CreateGenericMklOp}); InsertMKLEagerOps( {"FusedBatchNormV3", RewriteFusedBatchNormV3, CreateGenericMklOp}); InsertMKLEagerOps({"MatMul", AlwaysRewrite, CreateGenericMklOp}); #ifdef ENABLE_ONEDNN_V3 InsertMKLEagerOps( {"SparseMatrixMatMul", RewriteSparseMatrixMatMul, CreateGenericMklOp}); #endif }; void MklEagerOpRewrite::InsertMKLEagerOps(MklEagerOp op) { mkl_eager_ops_.insert(std::make_pair(op.op_name, op)); } Status MklEagerOpRewrite::Run( EagerOperation* orig_op, std::unique_ptr<tensorflow::EagerOperation>* out_op) { if (ShouldRewriteOp(orig_op)) { TF_CHECK_OK(RewriteToMklOp(orig_op, out_op)); } return OkStatus(); } Status MklEagerOpRewrite::SetupNewOp( EagerOperation* orig_op, const string mkl_op_name, std::unique_ptr<EagerOperation>* new_mkl_op) { bool is_remote = false; new_mkl_op->reset(new tensorflow::EagerOperation(&orig_op->EagerContext())); TF_RETURN_IF_ERROR(new_mkl_op->get()->Reset(mkl_op_name.c_str(), nullptr, is_remote, nullptr)); int num_inputs = orig_op->Inputs().size(); for (int i = 0; i < num_inputs; ++i) { TF_RETURN_IF_ERROR((*new_mkl_op)->AddInput(orig_op->Inputs()[i])); } const NodeDef& orig_ndef = orig_op->MutableAttrs()->BuildNodeDef(); AttrSlice attr_list(orig_ndef); for (const auto& attr : attr_list) { (*new_mkl_op)->MutableAttrs()->Set(attr.first, attr.second); } if (!orig_op->EagerContext().RunEagerOpAsFunction()) { (*new_mkl_op) ->MutableAttrs() ->Set("_kernel", mkl_op_registry::kMklNameChangeOpLabel); } string device_name = orig_op->DeviceName(); return (*new_mkl_op)->SetDeviceName(device_name.c_str()); } Status MklEagerOpRewrite::CreateGenericMklOp( EagerOperation* orig_op, std::unique_ptr<EagerOperation>* mkl_op) { const string mkl_op_name = mkl_op_registry::GetMklNativeOpName(orig_op->Name()); TF_CHECK_OK(SetupNewOp(orig_op, mkl_op_name, mkl_op)); return OkStatus(); } bool MklEagerOpRewrite::ShouldRewriteOp(EagerOperation* op) { if (!IsMKLEnabled()) { return false; } DataType data_type; if (op->Attrs().Get("T", &data_type) != OkStatus()) { return false; } if (op->GetDeviceParsedName().type != "CPU") { return false; } bool kernel_found = IsKernelRegistered(op->Name(), data_type); if (!kernel_found) { return false; } auto it = mkl_eager_ops_.find(op->Name()); if (it != mkl_eager_ops_.end()) { if (it->second.RewriteRule(op)) { return true; } } return false; } bool MklEagerOpRewrite::IsKernelRegistered(string op_name, DataType dt) { auto element = mkl_eager_ops_.find(op_name); if (element != mkl_eager_ops_.end()) { return (mkl_op_registry::IsMklOp( mkl_op_registry::GetMklNativeOpName(op_name), dt, true) || mkl_op_registry::IsMklOp(mkl_op_registry::GetMklOpName(op_name), dt, true)); } else { return false; } } Status MklEagerOpRewrite::RewriteToMklOp( EagerOperation* orig_op, std::unique_ptr<EagerOperation>* mkl_op) { TF_RETURN_IF_ERROR( mkl_eager_ops_[orig_op->Name()].CreateMklOp(orig_op, mkl_op)); return OkStatus(); } bool MklEagerOpRewrite::RewriteConv2D(EagerOperation* op) { const NodeDef& ndef = op->MutableAttrs()->BuildNodeDef(); string padding; TF_CHECK_OK(GetNodeAttr(ndef, "padding", &padding)); return (padding != "EXPLICIT"); } bool MklEagerOpRewrite::RewriteSparseMatrixMatMul(EagerOperation* op) { const NodeDef& ndef = op->MutableAttrs()->BuildNodeDef(); DataType T; Tensor tensor; bool adjoint_a, adjoint_b, transpose_a, transpose_b, transpose_out; TF_CHECK_OK(GetNodeAttr(ndef, "T", &T)); if (T != DT_FLOAT) { VLOG(1) << "_MklSparseMatrixMatMul only supports DT_FLOAT"; return false; } TF_CHECK_OK(GetNodeAttr(ndef, "adjoint_a", &adjoint_a)); TF_CHECK_OK(GetNodeAttr(ndef, "adjoint_b", &adjoint_b)); if (adjoint_a || adjoint_b) { VLOG(1) << "_MklNativeSparseMatrixMatMul doesn't support adjointing matrices"; return false; } TF_CHECK_OK(GetNodeAttr(ndef, "transpose_a", &transpose_a)); TF_CHECK_OK(GetNodeAttr(ndef, "transpose_b", &transpose_b)); TF_CHECK_OK(GetNodeAttr(ndef, "transpose_output", &transpose_out)); if (transpose_a || transpose_b || transpose_out) { VLOG(1) << "_MklNativeSparseMatrixMatMul doesn't support transposing matrices"; return false; } return true; } bool MklEagerOpRewrite::RewriteFusedBatchNormV3(EagerOperation* op) { const NodeDef& ndef = op->MutableAttrs()->BuildNodeDef(); if (Check5DFormat(ndef)) { VLOG(1) << "Eager Op Rewrite: FusedBatchNorm(Grad)V3 op currently does not " << "support 5D tensors."; return false; } return true; } } #endif
#if defined(INTEL_MKL) && defined(ENABLE_MKL) #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/eager_op_rewrite_registry.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/mkl_util.h" namespace tensorflow { class EagerOpRewriteTest : public ::testing::Test { public: EagerOpRewriteTest() : eager_ctx_(nullptr) {} ~EagerOpRewriteTest() { if (eager_ctx_) { eager_ctx_->Unref(); } } std::unique_ptr<tensorflow::EagerOperation> CreateOp(const string op_name) { std::unique_ptr<DeviceMgr> device_mgr = std::make_unique<StaticDeviceMgr>(DeviceFactory::NewDevice( "CPU", {}, "/job:localhost/replica:0/task:0/device:CPU:0")); bool async = false; auto rendezvous = tsl::core::RefCountPtr<tensorflow::IntraProcessRendezvous>( new tensorflow::IntraProcessRendezvous(device_mgr.get())); eager_ctx_ = new tensorflow::EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, async, device_mgr.get(), false, std::move(rendezvous), nullptr, nullptr, true); EagerExecutor executor_(false); std::unique_ptr<tensorflow::EagerOperation> op( new tensorflow::EagerOperation(eager_ctx_)); EXPECT_EQ(OkStatus(), op.get()->Reset(op_name.c_str(), nullptr, false, &executor_)); EXPECT_EQ(OkStatus(), op.get()->SetDeviceName( "/job:localhost/replica:0/task:0/device:CPU:0")); return op; } void CheckRewrite(EagerOperation* orig_op, string expected_op_name) { std::unique_ptr<tensorflow::EagerOperation> out_op; EXPECT_EQ(OkStatus(), EagerOpRewriteRegistry::Global()->RunRewrite( EagerOpRewriteRegistry::POST_PLACEMENT, orig_op, &out_op)); string actual_op_name = orig_op->Name(); if (out_op) { actual_op_name = out_op->Name(); } EXPECT_EQ(actual_op_name, expected_op_name); } protected: tensorflow::EagerContext* eager_ctx_; }; #define CONV_FORWARD_OPS "Conv2D", "Conv3D", "DepthwiseConv2dNative" #define CONV_BACKWARD_OPS \ "Conv2DBackpropInput", "Conv2DBackpropFilter", "Conv3DBackpropFilterV2", \ "Conv3DBackpropInputV2", "DepthwiseConv2dNativeBackpropFilter", \ "DepthwiseConv2dNativeBackpropInput" #define CONV_OPS CONV_FORWARD_OPS, CONV_BACKWARD_OPS #define REGISTER_TEST(NAME, T, INPUT) \ TEST_F(EagerOpRewriteTest, NAME##_##T) { \ std::vector<string> conv_ops = {CONV_OPS}; \ for (int i = 0; i < conv_ops.size(); ++i) { \ auto orig_op = CreateOp(conv_ops[i]); \ orig_op->MutableAttrs()->Set("T", T); \ orig_op->MutableAttrs()->Set("padding", "VALID"); \ CheckRewrite(orig_op.get(), \ mkl_op_registry::GetMklNativeOpName(conv_ops[i])); \ } \ } REGISTER_TEST_ALL_TYPES(ConvOps_Positive); #undef REGISTER_TEST #define REGISTER_TEST(NAME, T, INPUT) \ TEST_F(EagerOpRewriteTest, NAME##_##T) { \ std::vector<string> conv_ops = {CONV_FORWARD_OPS}; \ for (int i = 0; i < conv_ops.size(); ++i) { \ auto orig_op = CreateOp(conv_ops[i]); \ orig_op->MutableAttrs()->Set("T", T); \ orig_op->MutableAttrs()->Set("padding", "EXPLICIT"); \ CheckRewrite(orig_op.get(), \ mkl_op_registry::GetMklNativeOpName(conv_ops[i])); \ } \ } REGISTER_TEST_ALL_TYPES(ConvOpsExplicitPadding_Positive); #undef REGISTER_TEST #define REGISTER_TEST(NAME, T, INPUT) \ TEST_F(EagerOpRewriteTest, NAME##_##T) { \ std::vector<string> conv_ops = {CONV_BACKWARD_OPS}; \ for (int i = 0; i < conv_ops.size(); ++i) { \ auto orig_op = CreateOp(conv_ops[i]); \ orig_op->MutableAttrs()->Set("T", T); \ orig_op->MutableAttrs()->Set("padding", "EXPLICIT"); \ CheckRewrite(orig_op.get(), conv_ops[i]); \ } \ } REGISTER_TEST_ALL_TYPES(ConvOpsExplicitPadding_Negative); #undef REGISTER_TEST #define REGISTER_TEST(NAME, T, INPUT) \ TEST_F(EagerOpRewriteTest, NAME##_##T) { \ std::vector<string> ops = {"AvgPool", \ "AvgPoolGrad", \ "AvgPool3D", \ "AvgPool3DGrad", \ "BatchMatMul", \ "Einsum", \ "FusedBatchNorm", \ "FusedBatchNormV2", \ "FusedBatchNormV3", \ "FusedBatchNormGrad", \ "FusedBatchNormGradV2", \ "FusedBatchNormGradV3", \ "MatMul"}; \ for (int i = 0; i < ops.size(); ++i) { \ auto orig_op = CreateOp(ops[i]); \ orig_op->MutableAttrs()->Set("T", T); \ CheckRewrite(orig_op.get(), \ mkl_op_registry::GetMklNativeOpName(ops[i])); \ } \ } REGISTER_TEST_ALL_TYPES(MostOps_Positive); #undef REGISTER_TEST #define REGISTER_TEST(NAME, T, INPUT) \ TEST_F(EagerOpRewriteTest, NAME##_##T) { \ std::vector<string> Fused_BN_ops = {"FusedBatchNormV3", \ "FusedBatchNormGradV3"}; \ for (int i = 0; i < Fused_BN_ops.size(); ++i) { \ auto orig_op = CreateOp(Fused_BN_ops[i]); \ orig_op->MutableAttrs()->Set("T", T); \ orig_op->MutableAttrs()->Set("data_format", "" DATA_FORMAT ""); \ CheckRewrite(orig_op.get(), Fused_BN_ops[i]); \ } \ } #define DATA_FORMAT "NCDHW" REGISTER_TEST_ALL_TYPES(FusedBatchNormV3_5D_Negative_1); #undef DATA_FORMAT #define DATA_FORMAT "NDHWC" REGISTER_TEST_ALL_TYPES(FusedBatchNormV3_5D_Negative_2); #undef DATA_FORMAT #undef REGISTER_TEST } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/mkl_eager_op_rewrite.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/mkl_eager_op_rewrite_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
594ee246-0ac1-404d-aa23-48f0f2123e9b
cpp
tensorflow/tensorflow
context
tensorflow/core/tfrt/mlrt/interpreter/context.cc
tensorflow/core/tfrt/mlrt/interpreter/context_test.cc
#include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "absl/log/check.h" #include "absl/strings/string_view.h" #include "tensorflow/core/tfrt/mlrt/bytecode/executable.h" namespace mlrt { namespace context_internal { UserContextBase::~UserContextBase() = default; } void KernelRegistry::Register(absl::string_view name, KernelImplementation kernel) { map_.emplace(name, kernel); } KernelImplementation KernelRegistry::Get(absl::string_view name) const { DCHECK(map_.contains(name)) << "Missing kernel in registry: " << name; return map_.at(name); } void KernelRegistry::Merge(const KernelRegistry& other) { map_.insert(other.map_.begin(), other.map_.end()); } LoadedExecutable::LoadedExecutable(bc::Executable executable, const KernelRegistry& kernel_registry) : executable_(executable) { kernels_.reserve(executable_.kernel_names().size()); for (auto kernel_name : executable_.kernel_names()) { kernels_.push_back(kernel_registry.Get(kernel_name)); } functions_.reserve(executable_.functions().size()); for (auto function : executable_.functions()) { functions_[function.name().Get()] = function; } } }
#include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" namespace mlrt { namespace { struct A : KernelFrame { static constexpr char kName[] = "A"; using KernelFrame::KernelFrame; void Invoke() {} }; struct B : KernelFrame { static constexpr char kName[] = "B"; using KernelFrame::KernelFrame; void Invoke() {} }; struct C : KernelFrame { static constexpr char kName[] = "C"; using KernelFrame::KernelFrame; void Invoke() {} }; TEST(ContextTest, MergeKernelRegistry) { KernelRegistry reg_a; reg_a.Register<A>(); reg_a.Register<B>(); KernelRegistry reg_b; reg_b.Register<B>(); reg_b.Register<C>(); EXPECT_TRUE(reg_a.Get(A::kName)); EXPECT_TRUE(reg_a.Get(B::kName)); reg_a.Merge(reg_b); EXPECT_TRUE(reg_a.Get(A::kName)); EXPECT_TRUE(reg_a.Get(B::kName)); EXPECT_TRUE(reg_a.Get(C::kName)); } struct TestContext0 : UserContext<TestContext0> { int v = 0; }; struct TestContext1 : UserContext<TestContext1> { int v = 1; }; TEST(ContextTest, UserContext) { EXPECT_EQ(TestContext0::id(), 0); EXPECT_EQ(TestContext1::id(), 1); ExecutionContext execution_context(nullptr); auto test_1 = std::make_unique<TestContext1>(); auto* test_1_ptr = test_1.get(); execution_context.AddUserContext(std::move(test_1)); auto test_0 = std::make_unique<TestContext0>(); auto* test_0_ptr = test_0.get(); execution_context.AddUserContext(std::move(test_0)); EXPECT_EQ(&execution_context.GetUserContext<TestContext0>(), test_0_ptr); EXPECT_EQ(&execution_context.GetUserContext<TestContext1>(), test_1_ptr); EXPECT_EQ(execution_context.GetUserContext<TestContext0>().v, 0); EXPECT_EQ(execution_context.GetUserContext<TestContext1>().v, 1); ExecutionContext execution_context_copy( nullptr, execution_context.CopyUserContexts(), execution_context.user_error_loggers()); EXPECT_NE(&execution_context_copy.GetUserContext<TestContext0>(), test_0_ptr); EXPECT_NE(&execution_context_copy.GetUserContext<TestContext1>(), test_1_ptr); EXPECT_EQ(execution_context_copy.GetUserContext<TestContext0>().v, 0); EXPECT_EQ(execution_context_copy.GetUserContext<TestContext1>().v, 1); } TEST(ContextTest, PartialUserContext) { EXPECT_EQ(TestContext0::id(), 0); EXPECT_EQ(TestContext1::id(), 1); ExecutionContext execution_context(nullptr); auto test_1 = std::make_unique<TestContext1>(); auto* test_1_ptr = test_1.get(); execution_context.AddUserContext(std::move(test_1)); EXPECT_EQ(&execution_context.GetUserContext<TestContext1>(), test_1_ptr); EXPECT_EQ(execution_context.GetUserContext<TestContext1>().v, 1); ExecutionContext execution_context_copy( nullptr, execution_context.CopyUserContexts(), execution_context.user_error_loggers()); EXPECT_NE(&execution_context_copy.GetUserContext<TestContext1>(), test_1_ptr); EXPECT_EQ(execution_context_copy.GetUserContext<TestContext1>().v, 1); } TEST(ContextTest, UserErrorLoggerCanBeCopied) { int num_error_reported = 0; ExecutionContext execution_context(nullptr); execution_context.AddUserErrorLogger( [&num_error_reported](absl::Status status) { num_error_reported++; LOG(INFO) << "User error logger called"; }); execution_context.LogError(absl::InternalError("Test error")); ExecutionContext execution_context_copy( nullptr, execution_context.CopyUserContexts(), execution_context.user_error_loggers()); execution_context_copy.LogError(absl::InternalError("Test error")); ASSERT_EQ(num_error_reported, 2); } TEST(ContextTest, NoUserErrorLoggerRunOk) { ExecutionContext execution_context(nullptr); execution_context.LogError(absl::InternalError("Test error")); ExecutionContext execution_context_copy( nullptr, execution_context.CopyUserContexts(), execution_context.user_error_loggers()); execution_context_copy.LogError(absl::InternalError("Test error")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/interpreter/context.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/interpreter/context_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce1df6e4-04ce-46d9-852f-1d19564385cf
cpp
tensorflow/tensorflow
tensor_handle
tensorflow/core/common_runtime/eager/tensor_handle.cc
tensorflow/core/common_runtime/eager/tensor_handle_test.cc
#include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include <algorithm> #include <cstddef> #include <map> #include <memory> #include <queue> #include <string> #include <tuple> #include <utility> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "absl/types/variant.h" #include "tensorflow/c/tf_tensor_internal.h" #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/eager/eager_executor.h" #include "tensorflow/core/common_runtime/eager/tensor_handle_data.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/errors.h" #if !defined(IS_MOBILE_PLATFORM) #include "tensorflow/core/distributed_runtime/eager/remote_tensor_handle_data.h" #endif #include "tensorflow/core/framework/resource_var.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/profiler/lib/traceme.h" namespace tensorflow { namespace { int64_t GetRemoteDeviceIncarnation(Device* device) { if (device == nullptr || device->IsLocal()) return 0; return device->attributes().incarnation(); } string SafeDeviceDebugString(Device* device) { if (device == nullptr) { return "[]"; } else { return device->DebugString(); } } } TensorHandle::PackedTensorHandleData::PackedTensorHandleData( std::vector<TensorHandle*>&& handles, const TensorShape& shape) : handles_(std::move(handles)), shape_(shape) { for (auto* handle : handles_) { handle->Ref(); } } TensorHandle::PackedTensorHandleData::~PackedTensorHandleData() { for (auto* handle : handles_) { handle->Unref(); } } Status TensorHandle::PackedTensorHandleData::Shape(TensorShape* shape) const { *shape = shape_; return absl::OkStatus(); } Status TensorHandle::PackedTensorHandleData::NumDims(int* num_dims) const { *num_dims = shape_.dims(); return absl::OkStatus(); } Status TensorHandle::PackedTensorHandleData::Dim(int dim_index, int64_t* dim) const { *dim = shape_.dim_size(dim_index); return absl::OkStatus(); } Status TensorHandle::PackedTensorHandleData::NumElements( int64_t* num_elements) const { *num_elements = shape_.num_elements(); return absl::OkStatus(); } Status TensorHandle::PackedTensorHandleData::Unprotect() { for (auto* handle : handles_) { TF_RETURN_IF_ERROR( std::visit([](auto& data) { return data.Unprotect(); }, handle->data_)); } return absl::OkStatus(); } bool TensorHandle::PackedTensorHandleData::IsReady() const { { tf_shared_lock l(mu_); if (!is_poisoned_.ok()) { return true; } } for (auto* handle : handles_) { if (!handle->IsReady()) { return false; } } return true; } Status TensorHandle::PackedTensorHandleData::WaitReady( const char* caller) const { { tf_shared_lock l(mu_); if (!is_poisoned_.ok()) { return is_poisoned_; } } for (auto* handle : handles_) { TF_RETURN_IF_ERROR(handle->WaitReady(caller)); } return absl::OkStatus(); } void TensorHandle::PackedTensorHandleData::Poison(Status status) { mutex_lock l(mu_); is_poisoned_ = status; } string TensorHandle::PackedTensorHandleData::DebugString() const { string debug_str = "PackedTensorHandleData: "; for (const auto* handle : handles_) { debug_str.append( absl::StrCat(std::visit([](auto& data) { return data.DebugString(); }, handle->data_), "; ")); } return debug_str; } int TensorHandle::PackedTensorHandleData::NumPackedHandles() const { return handles_.size(); } Status TensorHandle::PackedTensorHandleData::ExtractPackedHandle( const int index, TensorHandle** handle) const { if (index < 0 || index >= handles_.size()) { return errors::InvalidArgument("Expect an index within [0, ", handles_.size(), "), but got ", index); } *handle = handles_.at(index); return absl::OkStatus(); } void TensorHandle::SetResourceHandleDtypeAndShape( std::vector<DtypeAndPartialTensorShape> dtypes_and_shapes) { handle_dtypes_and_shapes_ = std::move(dtypes_and_shapes); } Status TensorHandle::GetResourceHandleDtypesAndShapes( std::vector<DtypeAndPartialTensorShape>* result) { if (dtype != DT_RESOURCE) { return errors::InvalidArgument( "TensorHandle::GetResourceDtypeAndShape should be called on tensor " "handles with data type DT_RESOURCE. Actual tensor: ", dtype); } if (Type() != LOCAL) { *result = handle_dtypes_and_shapes_; return absl::OkStatus(); } tsl::profiler::TraceMe activity( "TensorHandle::GetResourceHandleInfo WaitReady", tsl::profiler::TraceMeLevel::kVerbose); auto& data = std::get<LocalTensorHandleData>(data_); TF_RETURN_IF_ERROR(data.WaitReady("TensorHandle::GetResourceHandleInfo")); *result = handle_dtypes_and_shapes_; return absl::OkStatus(); } int TensorHandle::NumPackedHandles() const { if (Type() != PACKED) { return 0; } return std::get<PackedTensorHandleData>(data_).NumPackedHandles(); } Status TensorHandle::ExtractPackedHandle(const int index, TensorHandle** handle) const { if (Type() != PACKED) { return errors::Internal("Invalid ExtractPackedHandleOnDevice call on a", TypeString(), " handle: ", this); } return std::get<PackedTensorHandleData>(data_).ExtractPackedHandle(index, handle); } TensorHandle* TensorHandle::CreateLocalHandle(const tensorflow::Tensor& t) { tensorflow::Tensor tensor = t; return CreateLocalHandle(std::move(tensor), nullptr, nullptr, nullptr); } TensorHandle* TensorHandle::CreateLocalHandle(tensorflow::Tensor&& t, Device* d, Device* op_device, EagerContext* ctx) { return CreateLocalHandle(std::move(t), d, op_device, nullptr, ctx); } TensorHandle* TensorHandle::CreateLocalHandle(tensorflow::Tensor&& t, Device* d, Device* op_device, Device* resource_device, EagerContext* ctx) { if (t.dtype() == DT_RESOURCE && t.NumElements() > 0) { return new TensorHandle(std::move(t), d, op_device, ctx); } else { return new TensorHandle(std::move(t), d, op_device, resource_device, ctx); } } TensorHandle::TensorHandle(tensorflow::Tensor&& t, Device* d, Device* op_device, Device* resource_device, EagerContext* ctx) : ImmediateExecutionTensorHandle(kEager), dtype(t.dtype()), device_((!ctx || d == ctx->HostCPU()) ? nullptr : d), op_device_(op_device), resource_device_(resource_device), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), ctx_(ctx), data_(absl::in_place_type<LocalTensorHandleData>, std::move(t)) { DVLOG(3) << "Creating Local TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_) << " tensor: " << t.DeviceSafeDebugString(); } TensorHandle::TensorHandle(tensorflow::Tensor&& t, Device* d, Device* op_device, EagerContext* ctx) : ImmediateExecutionTensorHandle(kEager), dtype(DT_RESOURCE), device_((!ctx || d == ctx->HostCPU()) ? nullptr : d), op_device_(op_device), resource_device_( GetResourceDevice(t.flat<class ResourceHandle>()(0), ctx)), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), ctx_(ctx), handle_dtypes_and_shapes_( t.flat<class ResourceHandle>()(0).dtypes_and_shapes()), data_(absl::in_place_type<LocalTensorHandleData>, std::move(t)) { DVLOG(3) << "Creating Local TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_) << " tensor: " << t.DeviceSafeDebugString(); } TensorHandle* TensorHandle::CreateEmptyLocalHandle(Device* d, Device* op_device, Device* resource_device, tensorflow::DataType dtype, EagerContext* ctx) { return new TensorHandle(d, op_device, resource_device, dtype, ctx); } TensorHandle::TensorHandle(Device* d, Device* op_device, Device* resource_device, tensorflow::DataType dtype, EagerContext* ctx) : ImmediateExecutionTensorHandle(kEager), dtype(dtype), device_((d == ctx->HostCPU()) ? nullptr : d), op_device_(op_device), resource_device_(resource_device), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), ctx_(ctx), data_(absl::in_place_type<LocalTensorHandleData>) { DVLOG(3) << "Creating empty Local TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_); } Status TensorHandle::CreatePackedHandle(std::vector<TensorHandle*>&& handles, const tensorflow::DataType dtype, const tensorflow::TensorShape& shape, const string& device_name, EagerContext* ctx, TensorHandle** packed_handle) { if (handles.empty()) { return errors::InvalidArgument("Handles should not be empty."); } std::vector<DtypeAndPartialTensorShape> dtypes_and_shapes; if (dtype == DT_RESOURCE) { TF_RETURN_IF_ERROR( handles.at(0)->GetResourceHandleDtypesAndShapes(&dtypes_and_shapes)); } std::vector<string> devices; devices.reserve(handles.size()); for (auto* handle : handles) { devices.push_back(handle->op_device() ? handle->op_device()->name() : ctx->HostCPU()->name()); } CompositeDevice* composite_device = nullptr; TF_RETURN_IF_ERROR(ctx->FindOrCreateCompositeDevice(devices, device_name, &composite_device)); *packed_handle = new TensorHandle(std::move(handles), composite_device, dtype, shape, ctx); (*packed_handle) ->SetResourceHandleDtypeAndShape(std::move(dtypes_and_shapes)); return absl::OkStatus(); } Status TensorHandle::CreatePackedHandle(std::vector<TensorHandle*>&& handles, EagerContext* ctx, TensorHandle** packed_handle) { if (handles.empty()) { return errors::InvalidArgument("Handles should not be empty."); } tensorflow::DataType dtype = handles.at(0)->dtype; tensorflow::TensorShape shape; TF_RETURN_IF_ERROR(handles.at(0)->Shape(&shape)); return CreatePackedHandle(std::move(handles), dtype, shape, "", ctx, packed_handle); } TensorHandle::TensorHandle(std::vector<TensorHandle*>&& handles, Device* device, const tensorflow::DataType dtype, const tensorflow::TensorShape& shape, EagerContext* ctx) : ImmediateExecutionTensorHandle(kEager), dtype(dtype), device_(device), op_device_(device), resource_device_(dtype == DT_RESOURCE ? device : nullptr), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), ctx_(ctx), data_(absl::in_place_type<PackedTensorHandleData>, std::move(handles), shape) { DVLOG(3) << "Creating a packed TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_); } #if !defined(IS_MOBILE_PLATFORM) TensorHandle* TensorHandle::CreateUnshapedRemoteHandle( int64_t op_id, int32_t output_num, const string& remote_task, tensorflow::DataType dtype, Device* d, EagerContext* ctx, const bool unknown_device) { return new TensorHandle(op_id, output_num, remote_task, dtype, d, ctx, unknown_device); } TensorHandle::TensorHandle(int64_t op_id, int32_t output_num, const string& remote_task, tensorflow::DataType dtype, Device* d, EagerContext* ctx, const bool unknown_device) : ImmediateExecutionTensorHandle(kEager), dtype(dtype), device_(d), op_device_(d), resource_device_(dtype == DT_RESOURCE ? d : nullptr), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), unknown_device_(unknown_device), ctx_(ctx), data_(absl::in_place_type<RemoteTensorHandleData>, op_id, output_num, remote_task, ctx) { DVLOG(3) << "Creating Unshaped Remote TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_); } TensorHandle* TensorHandle::CreateLazyRemoteHandle( int64_t op_id, int32_t output_num, tensorflow::DataType dtype, Device* d, const bool is_ready, EagerContext* ctx) { return new TensorHandle(op_id, output_num, dtype, d, is_ready, ctx); } TensorHandle::TensorHandle(int64_t op_id, int32_t output_num, tensorflow::DataType dtype, Device* d, const bool is_ready, EagerContext* ctx) : ImmediateExecutionTensorHandle(kEager), dtype(dtype), device_(d), op_device_(d), resource_device_(dtype == DT_RESOURCE ? d : nullptr), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), ctx_(ctx), data_(absl::in_place_type<RemoteTensorHandleData>, op_id, output_num, ctx->GetContextViewId(), is_ready) { DVLOG(3) << "Creating Lazy Remote TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_); } #endif TensorHandle::~TensorHandle() { DVLOG(3) << "Deleting tensor handle " << this; } void TensorHandle::Release() { DVLOG(3) << "Releasing tensor handle " << this; Unref(); } tensorflow::DataType TensorHandle::DataType() const { return dtype; } bool TensorHandle::IsReady() const { return std::visit([](auto& data) { return data.IsReady(); }, data_); } Status TensorHandle::WaitReady(const char* caller) const { return std::visit([caller](auto& data) { return data.WaitReady(caller); }, data_); } TensorHandle::HandleType TensorHandle::Type() const { if (data_.index() == 0) { return LOCAL; } else if (data_.index() == 1) { return PACKED; } else { return REMOTE; } } string TensorHandle::TypeString() const { if (data_.index() == 0) { return "LOCAL"; } else if (data_.index() == 1) { return "PACKED"; } else { return "REMOTE"; } } Status TensorHandle::Tensor(const tensorflow::Tensor** t) const { DVLOG(3) << "Tensor on TensorHandle: " << this; if (Type() != LOCAL) { return errors::Internal("Invalid Tensor call on a ", TypeString(), " handle: ", this); } auto& data = std::get<LocalTensorHandleData>(data_); return data.Tensor(t); } Status TensorHandle::TensorFromDevice(const Device* d, const tensorflow::Tensor** t) const { DVLOG(3) << "TensorFromDevice on TensorHandle: " << this << " device: " << d; if (d == device_) { if (Type() != LOCAL) { return errors::Internal("Invalid Tensor call on a ", TypeString(), " handle: ", this); } auto& data = std::get<LocalTensorHandleData>(data_); return data.Tensor(t); } tf_shared_lock l(mu_); auto elem = local_mirrors_.find(d); if (elem == local_mirrors_.end()) { return errors::Internal("Invalid device: ", d, " in Tensor call to handle: ", this); } auto& mirror = elem->second; return mirror.Tensor(t); } Status TensorHandle::TensorValue(const Device* d, tensorflow::TensorValue* t) { DVLOG(3) << "TensorValue on TensorHandle: " << this << " device: " << d; if (d == device_) { if (Type() != LOCAL) { return errors::Internal("Invalid TensorValue call on a ", TypeString(), " handle: ", this); } auto& data = std::get<LocalTensorHandleData>(data_); return data.TensorValue(t); } tf_shared_lock l(mu_); auto elem = local_mirrors_.find(d); if (elem == local_mirrors_.end()) { return errors::Internal("Invalid device: ", d, " in TensorValue call to handle: ", this); } auto& mirror = elem->second; return mirror.TensorValue(t); } Status TensorHandle::WaitUnknownDevice() const { if (unknown_device_) { TF_RETURN_IF_ERROR(std::visit( [](auto& data) { return data.WaitReady("TensorHandle::UnknownDevice"); }, data_)); } return absl::OkStatus(); } Device* TensorHandle::DeviceOrHostCPU(const EagerContext& ctx) const { return (device_ == nullptr) ? ctx.HostCPU() : device_; } Status TensorHandle::Shape(tensorflow::TensorShape* shape) { if (!IsReady() && inference_shape_.IsFullyDefined()) { bool fill = inference_shape_.AsTensorShape(shape); DCHECK(fill); return absl::OkStatus(); } else { return std::visit([shape](auto& data) { return data.Shape(shape); }, data_); } } Status TensorHandle::InferenceShape( shape_inference::InferenceContext* const inference_context, shape_inference::ShapeHandle* shape_handle) { if (IsReady()) { std::vector<shape_inference::DimensionHandle> dims_handle; int num_dims; TF_RETURN_IF_ERROR(NumDims(&num_dims)); for (int i = 0; i < num_dims; i++) { int64_t dims; TF_RETURN_IF_ERROR(Dim(i, &dims)); dims_handle.push_back(inference_context->MakeDim(dims)); } *shape_handle = inference_context->MakeShape(dims_handle); return absl::OkStatus(); } else { if (inference_shape_.unknown_rank()) { *shape_handle = inference_context->UnknownShape(); return absl::OkStatus(); } std::vector<shape_inference::DimensionHandle> dims_handle( inference_shape_.dims()); for (int i = 0; i < dims_handle.size(); i++) { dims_handle[i] = inference_context->MakeDim(inference_shape_.dim_size(i)); } *shape_handle = inference_context->MakeShape(dims_handle); return absl::OkStatus(); } } void TensorHandle::SetInferenceShape( shape_inference::InferenceContext* const inference_context, const shape_inference::ShapeHandle& shape_handle) { auto num_dims = inference_context->Rank(shape_handle); std::vector<int64_t> dims; if (num_dims == shape_inference::InferenceContext::kUnknownRank) { inference_shape_ = PartialTensorShape(); return; } DCHECK_GE(num_dims, 0); dims.resize(num_dims); for (size_t i = 0; i < num_dims; ++i) { dims[i] = inference_context->Value(inference_context->Dim(shape_handle, i)); } auto s = PartialTensorShape::MakePartialShape(dims.data(), num_dims, &inference_shape_); TF_DCHECK_OK(s); } Status TensorHandle::CopyInferenceShape(TensorHandle* other) { if (IsReady()) { return absl::OkStatus(); } if (other->IsReady()) { TensorShape other_shape; TF_RETURN_IF_ERROR(other->Shape(&other_shape)); inference_shape_ = other_shape; } else { inference_shape_ = other->inference_shape_; } return absl::OkStatus(); } Status TensorHandle::Shape(tensorflow::PartialTensorShape* shape) const { DCHECK(shape != nullptr); if (!IsReady() && !inference_shape_.unknown_rank()) { *shape = inference_shape_; return absl::OkStatus(); } else { auto result = std::visit( [](auto& data) { TensorShape shape; Status s = data.Shape(&shape); return std::make_pair(shape, s); }, data_); TF_RETURN_IF_ERROR(result.second); *shape = result.first; } return absl::OkStatus(); } Status TensorHandle::NumDims(int* num_dims) const { DCHECK(num_dims != nullptr); if (!IsReady() && !inference_shape_.unknown_rank()) { *num_dims = inference_shape_.dims(); return absl::OkStatus(); } else { return std::visit([num_dims](auto& data) { return data.NumDims(num_dims); }, data_); } } Status TensorHandle::Dim(int dim_index, int64_t* dim) const { DCHECK(dim != nullptr); if (!IsReady() && !inference_shape_.unknown_rank() && inference_shape_.dim_size(dim_index) != -1) { *dim = inference_shape_.dim_size(dim_index); return absl::OkStatus(); } else { return std::visit( [dim_index, dim](auto& data) { return data.Dim(dim_index, dim); }, data_); } } Status TensorHandle::NumElements(int64_t* num_elements) const { DCHECK(num_elements != nullptr); if (!IsReady() && inference_shape_.IsFullyDefined()) { *num_elements = inference_shape_.num_elements(); return absl::OkStatus(); } else { return std::visit( [num_elements](auto& data) { return data.NumElements(num_elements); }, data_); } } Status TensorHandle::Unprotect(const Device* d) { DVLOG(3) << "Unprotect on TensorHandle: " << this << " device: " << d; if (d == device_) { return std::visit([](auto& data) { return data.Unprotect(); }, data_); } tf_shared_lock l(mu_); auto elem = local_mirrors_.find(d); if (elem == local_mirrors_.end()) { return errors::Internal("Invalid device: ", d, " in Unprotect call to handle: ", this); } auto& mirror = elem->second; return mirror.Unprotect(); } bool TensorHandle::HasLocalMirror(const Device* d) const { DVLOG(3) << "HasLocalMirror on TensorHandle: " << this << " device: " << d; tf_shared_lock l(mu_); return local_mirrors_.find(d) != local_mirrors_.end(); } Status TensorHandle::AddEmptyLocalMirror(const Device* d) { DVLOG(3) << "AddEmptyLocalMirror on TensorHandle: " << this << " device: " << d; if (d == device_) { return errors::Internal("Cannot add mirror for primary device."); } mutex_lock l(mu_); if (local_mirrors_.find(d) != local_mirrors_.end()) { return errors::AlreadyExists("Attempted to duplicate a local mirror."); } local_mirrors_.emplace(std::piecewise_construct, std::forward_as_tuple(d), std::forward_as_tuple()); return absl::OkStatus(); } #if !defined(IS_MOBILE_PLATFORM) Status TensorHandle::RemoteAddress(const Device* d, const bool wait_until_ready, int64_t* op_id, int32* output_num) const { DVLOG(3) << "RemoteAddress on TensorHandle: " << this << " device: " << d << " " << d->name(); const tensorflow::RemoteTensorHandleData* remote_data = nullptr; if (d != device_) { tf_shared_lock l(mu_); auto mirror = remote_mirrors_.find(d->name()); if (mirror != remote_mirrors_.end()) { remote_data = &mirror->second; } else { return errors::FailedPrecondition( "Could not find remote mirror for specified device"); } } if (remote_data != nullptr) { auto status = remote_data->OpIdAndOutputNum(wait_until_ready, op_id, output_num); if (!status.ok()) { return errors::Internal( absl::StrCat("Remote address looked up from remote mirrors found to " "be poisoned with status ", status.ToString())); } else { return absl::OkStatus(); } } if (Type() != REMOTE) { return errors::InvalidArgument("Primary device is not remote"); } auto& data = std::get<RemoteTensorHandleData>(data_); auto status = data.OpIdAndOutputNum(wait_until_ready, op_id, output_num); if (!status.ok()) { return errors::Internal( "Remote address looked up from remote data found to be poisoned"); } else { return absl::OkStatus(); } } bool TensorHandle::HasRemoteMirror(const Device* d, uint64 context_view_id) const { DVLOG(3) << "HasRemoteMirror on TensorHandle: " << this << " device: " << d << " " << d->name(); tf_shared_lock l(mu_); auto mirror = remote_mirrors_.find(d->name()); if (mirror != remote_mirrors_.end()) { if (mirror->second.context_view_id() != context_view_id) { return false; } return true; } return false; } bool TensorHandle::HasResourceShapeMirror(const Device* d, uint64 context_view_id) const { DVLOG(3) << "HasResourceShapeMirror on TensorHandle: " << this << " device: " << d << " " << d->name(); tf_shared_lock l(mu_); auto mirror = resource_shape_mirrors_.find(d->name()); if (mirror != resource_shape_mirrors_.end()) { if (mirror->second.context_view_id() != context_view_id) { return false; } return true; } return false; } Status TensorHandle::AddUnshapedRemoteMirror(const Device* d, int64_t op_id, int output_num, const string& remote_task, EagerContext* ctx) { DVLOG(3) << "AddUnshapedRemoteMirror on TensorHandle: " << this << " device: " << d << " " << d->name() << " op_id: " << op_id << " output_num: " << output_num; mutex_lock l(mu_); auto remote_mirror = remote_mirrors_.find(d->name()); if (remote_mirror != remote_mirrors_.end()) { if (remote_mirror->second.context_view_id() > ctx->GetContextId()) { return errors::Internal( "Attempted to duplicate a remote mirror with inconsistent " "arguments."); } remote_mirrors_.erase(remote_mirror); } remote_mirrors_.emplace( std::piecewise_construct, std::forward_as_tuple(d->name()), std::forward_as_tuple(op_id, output_num, remote_task, ctx)); return absl::OkStatus(); } Status TensorHandle::AddResourceShapeMirror(const Device* d, int64_t op_id, int output_num, EagerContext* ctx) { DVLOG(3) << "AddResourceShapeMirror on TensorHandle: " << this; mutex_lock l(mu_); auto mirror = resource_shape_mirrors_.find(d->name()); if (mirror != resource_shape_mirrors_.end()) { if (mirror->second.context_view_id() == ctx->GetContextViewId()) { int64_t existing_op_id; int existing_output_num; TF_RETURN_IF_ERROR(mirror->second.OpIdAndOutputNum(false, &existing_op_id, &existing_output_num)); if (op_id == existing_op_id && output_num == existing_output_num) { return absl::OkStatus(); } return absl::InternalError( "Attempted to duplicate a resource shape mirror."); } resource_shape_mirrors_.erase(mirror); } resource_shape_mirrors_.emplace( std::piecewise_construct, std::forward_as_tuple(d->name()), std::forward_as_tuple(op_id, output_num, ctx->GetContextViewId(), true)); return absl::OkStatus(); } Status TensorHandle::SetRemoteShape(const TensorShape& shape, const Device* d, uint64 context_view_id) { return SetRemoteShapeAndDevice(shape, d, context_view_id, ""); } Status TensorHandle::SetRemoteShapeAndDevice(const TensorShape& shape, const Device* d, uint64 context_view_id, string op_device) { DVLOG(3) << "SetRemoteShape on TensorHandle: " << this << " device: " << d << " " << d->name(); if (d != device_) { tf_shared_lock l(mu_); auto remote_mirror = remote_mirrors_.find(d->name()); if (remote_mirror == remote_mirrors_.end()) { return absl::OkStatus(); } auto& mirror = remote_mirror->second; if (mirror.context_view_id() == context_view_id) { auto status = mirror.SetShape(shape); if (!status.ok()) { LOG(ERROR) << "SetShape returned " << status.message() << ". This should never occur."; } return status; } else if (mirror.context_view_id() < context_view_id) { return errors::Internal( absl::Substitute("Unexpected context_view_id ($0) which should not " "be newer than the " "one ($1) associated to the remote mirror.", context_view_id, mirror.context_view_id())); } else { LOG(WARNING) << "SetRemoteShape is ignored for a remote mirror that is " "associated with a newer context_view_id."; } return absl::OkStatus(); } if (Type() != REMOTE) { return errors::InvalidArgument( "SetRemoteShape should only be called on remote handles."); } auto& data = std::get<RemoteTensorHandleData>(data_); if (op_device.empty()) { auto status = data.SetShape(shape); if (!status.ok()) { LOG(ERROR) << "SetShape returned " << status.message() << ". This should never occur."; } return status; } else { if (!unknown_device_) { return errors::Internal("Cannot reset known devices."); } Device* device; TF_RETURN_IF_ERROR(ctx_->FindDeviceFromName(op_device.c_str(), &device)); device_ = device; op_device_ = device; resource_device_ = dtype == DT_RESOURCE ? device : nullptr; resource_remote_device_incarnation_ = GetRemoteDeviceIncarnation(resource_device_); string remote_task; if (!DeviceNameUtils::GetTaskName(device->parsed_name(), &remote_task)) { return errors::InvalidArgument( "Unable to find remote task corresponding to device ", device->name()); } auto status = data.SetShapeAndRemoteTask(shape, remote_task); if (!status.ok()) { LOG(ERROR) << "SetShape returned " << status << ". This should never occur."; } return status; } } void TensorHandle::PoisonRemote(Status status, const Device* d, uint64 context_view_id) { DVLOG(3) << "PoisonRemote on TensorHandle: " << this << " device: " << d << " " << d->name(); if (d == device_) { DCHECK(Type() == REMOTE) << "Poison can only be on remote handles: " << this; auto& data = std::get<RemoteTensorHandleData>(data_); data.Poison(status); } else { tf_shared_lock l(mu_); auto mirror = remote_mirrors_.find(d->name()); if (mirror != remote_mirrors_.end()) { if (mirror->second.context_view_id() == context_view_id) { mirror->second.Poison(status); } } } } #endif Status TensorHandle::AddLocalMirror(tensorflow::Tensor&& tensor, const Device* d) { if (d == device_) { return errors::Internal( "Local mirror assign conflicts with primary device."); } mutex_lock l(mu_); auto elem = local_mirrors_.emplace(std::piecewise_construct, std::forward_as_tuple(d), std::forward_as_tuple(std::move(tensor))); if (!elem.second) { return errors::AlreadyExists("Attempted to add existing mirror."); } return absl::OkStatus(); } Status TensorHandle::SetTensor(tensorflow::Tensor&& t, const Device* d) { DVLOG(3) << "SetTensor on TensorHandle: " << this << " device: " << d; if (d == device_) { DCHECK(Type() == LOCAL) << "SetTensor is not called on local handles."; if (t.dtype() == DT_RESOURCE && t.NumElements() > 0) { auto& resource_handle = t.flat<class ResourceHandle>()(0); handle_dtypes_and_shapes_ = resource_handle.dtypes_and_shapes(); } auto& data = std::get<LocalTensorHandleData>(data_); return data.SetTensor(std::move(t)); } else { tf_shared_lock l(mu_); auto elem = local_mirrors_.find(d); if (elem == local_mirrors_.end()) { return errors::Internal( "Attempted to set tensor for non-existent local mirror."); } auto& mirror = elem->second; return mirror.SetTensor(std::move(t)); } return absl::OkStatus(); } void TensorHandle::Poison(Status status, const Device* d) { DVLOG(3) << "Poison on TensorHandle: " << this << " device: " << d; if (d == device_) { DCHECK(Type() != REMOTE) << "Poison can only be on local handles: " << this; std::visit([status](auto& data) { data.Poison(status); }, data_); } else { tf_shared_lock l(mu_); auto elem = local_mirrors_.find(d); DCHECK(elem != local_mirrors_.end()) << "Attempted to poison non-existent local mirror, handle: " << this << " device: " << d; auto& mirror = elem->second; mirror.Poison(status); } } Status TensorHandle::CopyToDevice(const EagerContext& ctx, tensorflow::Device* d, tensorflow::Tensor* output) const { tensorflow::Device* dstd = (d == nullptr) ? ctx.HostCPU() : d; tensorflow::Device* srcd = DeviceOrHostCPU(ctx); const bool dst_cpu = dstd->tensorflow_accelerator_device_info() == nullptr; const bool src_cpu = srcd->tensorflow_accelerator_device_info() == nullptr; bool is_same_device = (srcd == dstd) || (srcd->name() == dstd->name()) || (dst_cpu && src_cpu); const tensorflow::Tensor* src = nullptr; TF_RETURN_IF_ERROR(Tensor(&src)); if (is_same_device) { *output = *src; return absl::OkStatus(); } if (!dst_cpu && (src->dtype() != tensorflow::DT_VARIANT && !tensorflow::DataTypeCanUseMemcpy(src->dtype()))) { return tensorflow::errors::InvalidArgument( "Can't copy Tensor with type ", tensorflow::DataTypeString(src->dtype()), " to device ", dstd->name(), "."); } tensorflow::AllocatorAttributes attr; if (src->dtype() == tensorflow::DT_VARIANT) { attr.set_on_host(true); } const auto* dstd_info = dstd->tensorflow_accelerator_device_info(); tensorflow::Tensor dst(dstd->GetAllocator(attr), src->dtype(), src->shape()); if (src->shape().num_elements() == 0) { *output = dst; return absl::OkStatus(); } tensorflow::DeviceContext* src_device_context = nullptr; if (!src_cpu) { src_device_context = srcd->tensorflow_accelerator_device_info()->default_context; } tensorflow::DeviceContext* dst_device_context = nullptr; if (!dst_cpu) { if (dstd_info->use_pjrt_tensor_buffer && DataType() != DT_INT4 && DataType() != DT_UINT4) { dst_device_context = dstd_info->pjrt_context; } else { dst_device_context = dstd_info->default_context; } } TF_RETURN_IF_ERROR(srcd->Sync()); tensorflow::Notification n; tensorflow::Status status; tensorflow::CopyTensor::ViaDMA("copy", src_device_context, dst_device_context, srcd, dstd, tensorflow::AllocatorAttributes(), tensorflow::AllocatorAttributes(), src, &dst, 0 , [&status, &n](const tensorflow::Status& s) { status = s; n.Notify(); }); n.WaitForNotification(); if (status.ok()) { *output = dst; return absl::OkStatus(); } return status; } Device* GetResourceDevice(const ResourceHandle& handle, EagerContext* ctx) { if (ctx == nullptr) { return nullptr; } Device* device = nullptr; if (!ctx->FindDeviceFromName(handle.device().c_str(), &device).ok()) { LOG(ERROR) << "Cannot find resource device: " << handle.device() << "."; return nullptr; } return device; } const char* TensorHandle::DeviceName(Status* status) const { status->Update(WaitUnknownDevice()); tensorflow::Device* d = op_device(); return (d == nullptr) ? "/job:localhost/replica:0/task:0/device:CPU:0" : d->name().c_str(); } const char* TensorHandle::BackingDeviceName(Status* status) const { status->Update(WaitUnknownDevice()); tensorflow::Device* d = device(); return (d == nullptr) ? "/job:localhost/replica:0/task:0/device:CPU:0" : d->name().c_str(); } const char* TensorHandle::DeviceType(Status* status) const { status->Update(WaitUnknownDevice()); tensorflow::Device* d = op_device(); return (d == nullptr) ? "CPU" : d->parsed_name().type.c_str(); } int TensorHandle::DeviceId(Status* status) const { status->Update(WaitUnknownDevice()); tensorflow::Device* d = op_device(); return (d == nullptr) ? 0 : d->parsed_name().id; } }
#include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include <iostream> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/cleanup/cleanup.h" #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using tensorflow::testing::StatusIs; using ::testing::HasSubstr; TEST(TensorHandle_ShapeTest, AsyncShape) { Tensor t(DT_UINT16, TensorShape({2, 2})); EXPECT_TRUE(t.shape().IsSameSize(TensorShape({2, 2}))); for (int64_t a = 0; a < t.shape().dim_size(0); a++) { for (int64_t b = 0; b < t.shape().dim_size(1); b++) { t.matrix<uint16>()(a, b) = uint16(a * b); } } StaticDeviceMgr device_mgr(DeviceFactory::NewDevice( "CPU", {}, "/job:localhost/replica:0/task:0/device:CPU:0")); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup ctx_cleanup = [&]() { ctx->Unref(); }; TensorHandle* sync_th = TensorHandle::CreateLocalHandle(std::move(t), nullptr, nullptr, ctx); absl::Cleanup sync_th_cleanup = [&]() { sync_th->Unref(); }; TensorHandle* async_th = TensorHandle::CreateEmptyLocalHandle( nullptr, nullptr, nullptr, DataType::DT_UINT16, ctx); absl::Cleanup async_th_cleanup = [&]() { async_th->Unref(); }; EXPECT_TRUE(async_th->CopyInferenceShape(sync_th).ok()); TensorShape sync_shape; TensorShape async_shape; EXPECT_TRUE(sync_th->Shape(&sync_shape).ok()); EXPECT_TRUE(async_th->Shape(&async_shape).ok()); EXPECT_EQ(sync_shape, async_shape); int num_dims = -1; EXPECT_TRUE(async_th->NumDims(&num_dims).ok()); EXPECT_EQ(num_dims, 2); int64_t num_elements = -1; EXPECT_TRUE(async_th->NumElements(&num_elements).ok()); EXPECT_EQ(num_elements, 4); } class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr, bool is_local) : Device(nullptr, attr), is_local_(is_local) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } bool IsLocal() const override { return is_local_; } private: const bool is_local_; }; static std::unique_ptr<FakeDevice> CreateDevice(const char* type, const char* name, bool is_local = true) { DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); int64_t incarnation = random::New64(); while (incarnation == 0) { incarnation = random::New64(); } attr.set_incarnation(incarnation); return std::make_unique<FakeDevice>(attr, is_local); } } class PackedTensorHandleTest : public ::testing::Test { public: PackedTensorHandleTest() { std::vector<std::unique_ptr<Device>> devices; devices.push_back(CreateDevice("CPU", host_name_)); for (const char* name : device_names_) { devices.push_back(CreateDevice("GPU", name)); } device_mgr_ = new StaticDeviceMgr(std::move(devices)); context_ = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, device_mgr_, false, nullptr, nullptr, nullptr, true); } ~PackedTensorHandleTest() override { delete device_mgr_; context_->Unref(); } EagerContext* context() { return context_; } std::vector<Device*> ListGPUDevices() const { auto all_devices = device_mgr_->ListDevices(); return std::vector<Device*>(all_devices.begin() + 1, all_devices.end()); } bool IsReady(TensorHandle* handle) const { return handle->IsReady(); } Status WaitReady(TensorHandle* handle) const { return handle->WaitReady("Test"); } private: const std::vector<const char*> device_names_ = { "/job:worker/replica:0/task:0/device:GPU:0", "/job:worker/replica:0/task:0/device:GPU:1", "/job:worker/replica:0/task:1/device:GPU:0", "/job:worker/replica:0/task:1/device:GPU:1"}; const char* host_name_ = "/job:worker/replica:0/task:0/device:CPU:0"; StaticDeviceMgr* device_mgr_; EagerContext* context_; }; TEST_F(PackedTensorHandleTest, PackedHandle) { tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {}; DtypeAndPartialTensorShape dtype_and_shape = {DT_FLOAT, {2, 2}}; std::vector<TensorHandle*> handles; Tensor t0(dtype, shape); Device* d0 = ListGPUDevices().at(0); TensorHandle* h0 = TensorHandle::CreateLocalHandle(std::move(t0), d0, d0, d0, context()); absl::Cleanup h0_cleanup = [&]() { h0->Unref(); }; h0->SetResourceHandleDtypeAndShape({dtype_and_shape}); handles.push_back(h0); Tensor t1(dtype, shape); Device* d1 = ListGPUDevices().at(1); TensorHandle* h1 = TensorHandle::CreateLocalHandle(std::move(t1), d1, d1, d1, context()); absl::Cleanup h1_cleanup = [&]() { h1->Unref(); }; h1->SetResourceHandleDtypeAndShape({dtype_and_shape}); handles.push_back(h1); const string remote_task = "/job:worker/replica:0/task:1"; Device* d2 = ListGPUDevices().at(2); TensorHandle* h2 = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d2, context()); absl::Cleanup h2_cleanup = [&]() { h2->Unref(); }; handles.push_back(h2); Device* d3 = ListGPUDevices().at(3); TensorHandle* h3 = TensorHandle::CreateUnshapedRemoteHandle( 1, 0, remote_task, dtype, d3, context()); absl::Cleanup h3_cleanup = [&]() { h3->Unref(); }; handles.push_back(h3); TensorHandle* packed_handle = nullptr; TF_EXPECT_OK(TensorHandle::CreatePackedHandle(std::move(handles), context(), &packed_handle)); absl::Cleanup packed_handle_cleanup = [&]() { packed_handle->Unref(); }; EXPECT_EQ(packed_handle->NumPackedHandles(), 4); EXPECT_EQ(packed_handle->Type(), TensorHandle::PACKED); EXPECT_EQ(packed_handle->dtype, dtype); TensorShape packed_shape; TF_ASSERT_OK(packed_handle->Shape(&packed_shape)); EXPECT_EQ(packed_shape, shape); std::vector<DtypeAndPartialTensorShape> dtypes_and_shapes; TF_ASSERT_OK( packed_handle->GetResourceHandleDtypesAndShapes(&dtypes_and_shapes)); EXPECT_EQ(dtypes_and_shapes.size(), 1); EXPECT_EQ(dtypes_and_shapes.at(0).dtype, DT_FLOAT); EXPECT_EQ(dtypes_and_shapes.at(0).shape.IsIdenticalTo({2, 2}), true); CompositeDevice* device = reinterpret_cast<CompositeDevice*>(packed_handle->device()); EXPECT_EQ(device->name(), "/job:worker/replica:0/task:0/device:COMPOSITE:0"); EXPECT_EQ(device->underlying_devices()->size(), 4); const std::vector<TensorHandle::HandleType> expected_handle_types = { TensorHandle::LOCAL, TensorHandle::LOCAL, TensorHandle::REMOTE, TensorHandle::REMOTE}; for (int i = 0; i < packed_handle->NumPackedHandles(); ++i) { TensorHandle* h = nullptr; TF_ASSERT_OK(packed_handle->ExtractPackedHandle(i, &h)); EXPECT_EQ(h->device(), ListGPUDevices().at(i)); EXPECT_EQ(h->Type(), expected_handle_types.at(i)); EXPECT_EQ(h->FullType().type_id(), TFT_UNSET); } EXPECT_FALSE(IsReady(packed_handle)); TF_ASSERT_OK(h2->SetRemoteShape(shape, ListGPUDevices().at(2), context()->GetContextViewId())); EXPECT_FALSE(IsReady(packed_handle)); TF_ASSERT_OK(h3->SetRemoteShape(shape, ListGPUDevices().at(3), context()->GetContextViewId())); EXPECT_TRUE(IsReady(packed_handle)); } TEST_F(PackedTensorHandleTest, PackedSingleHandle) { tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {}; Tensor t(dtype, shape); Device* d = ListGPUDevices().at(0); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t), d, d, d, context()); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; std::vector<TensorHandle*> handles = {h}; TensorHandle* packed_handle = nullptr; TF_EXPECT_OK(TensorHandle::CreatePackedHandle(std::move(handles), context(), &packed_handle)); absl::Cleanup packed_handle_cleanup = [&]() { packed_handle->Unref(); }; EXPECT_EQ(packed_handle->Type(), TensorHandle::PACKED); EXPECT_EQ(packed_handle->dtype, dtype); TensorShape packed_shape; TF_ASSERT_OK(packed_handle->Shape(&packed_shape)); EXPECT_EQ(packed_shape, shape); CompositeDevice* device = reinterpret_cast<CompositeDevice*>(packed_handle->device()); EXPECT_EQ(device->name(), "/job:worker/replica:0/task:0/device:COMPOSITE:0"); EXPECT_EQ(device->underlying_devices()->size(), 1); EXPECT_EQ(packed_handle->NumPackedHandles(), 1); TensorHandle* h0 = nullptr; TF_ASSERT_OK(packed_handle->ExtractPackedHandle(0, &h0)); EXPECT_EQ(h0->device(), d); EXPECT_TRUE(IsReady(packed_handle)); } TEST_F(PackedTensorHandleTest, PoisonHandle) { tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {}; Tensor t(dtype, shape); Device* d = ListGPUDevices().at(0); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t), d, d, d, context()); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; std::vector<TensorHandle*> handles = {h}; TensorHandle* packed_handle = nullptr; TF_EXPECT_OK(TensorHandle::CreatePackedHandle(std::move(handles), context(), &packed_handle)); absl::Cleanup packed_handle_cleanup = [&]() { packed_handle->Unref(); }; TF_EXPECT_OK(WaitReady(packed_handle)); tensorflow::Status fake_failure_status(absl::StatusCode::kAborted, "Fake failure."); packed_handle->Poison(fake_failure_status, packed_handle->device()); EXPECT_THAT(WaitReady(packed_handle), StatusIs(fake_failure_status.code(), std::string(fake_failure_status.message()))); } TEST(TensorHandle_ResourceDeviceTest, OnLocalDevice) { std::unique_ptr<Device> d0( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); StaticDeviceMgr local_device_mgr(std::move(d0)); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &local_device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup ctx_cleanup = [&]() { ctx->Unref(); }; tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {2}; Tensor t(dtype, shape); Device* d = local_device_mgr.ListDevices()[0]; TensorHandle* th = TensorHandle::CreateLocalHandle(std::move(t), d, d, d, ctx); absl::Cleanup th_cleanup = [&]() { th->Unref(); }; EXPECT_EQ(0, th->resource_remote_device_incarnation()); EXPECT_TRUE(local_device_mgr.ContainsDevice( th->resource_device()->attributes().incarnation())); std::unique_ptr<Device> d1( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); StaticDeviceMgr new_device_mgr(std::move(d1)); EXPECT_FALSE(new_device_mgr.ContainsDevice( th->resource_device()->attributes().incarnation())); } TEST(TensorHandle_ResourceDeviceTest, OnRemoteDevice) { std::unique_ptr<Device> d_local( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); StaticDeviceMgr local_device_mgr(std::move(d_local)); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &local_device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup ctx_cleanup = [&]() { ctx->Unref(); }; std::unique_ptr<Device> d0( CreateDevice("CPU", "/job:worker/task:0/device:CPU:0", false)); Device* d0_ptr = d0.get(); std::unique_ptr<Device> d1( CreateDevice("CPU", "/job:worker/task:1/device:CPU:0", false)); Device* d1_ptr = d1.get(); DynamicDeviceMgr remote_device_mgr; std::vector<std::unique_ptr<Device>> vector_d0; vector_d0.push_back(std::move(d0)); TF_ASSERT_OK(remote_device_mgr.AddDevices(std::move(vector_d0))); TensorHandle* th0 = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, "", DT_RESOURCE, d0_ptr, ctx); absl::Cleanup th0_cleanup = [&]() { th0->Unref(); }; EXPECT_TRUE(remote_device_mgr.ContainsDevice( th0->resource_remote_device_incarnation())); std::vector<std::unique_ptr<Device>> vector_d1; vector_d1.push_back(std::move(d1)); TF_ASSERT_OK(remote_device_mgr.AddDevices(std::move(vector_d1))); EXPECT_TRUE(remote_device_mgr.ContainsDevice( th0->resource_remote_device_incarnation())); TensorHandle* th1 = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, "", DT_RESOURCE, d1_ptr, ctx); absl::Cleanup th1_cleanup = [&]() { th1->Unref(); }; EXPECT_TRUE(remote_device_mgr.ContainsDevice( th1->resource_remote_device_incarnation())); std::vector<Device*> remove_d1{d1_ptr}; TF_ASSERT_OK(remote_device_mgr.RemoveDevices(std::move(remove_d1))); EXPECT_FALSE(remote_device_mgr.ContainsDevice( th1->resource_remote_device_incarnation())); EXPECT_TRUE(remote_device_mgr.ContainsDevice( th0->resource_remote_device_incarnation())); } class RemoteTensorHandleTest : public ::testing::Test { public: RemoteTensorHandleTest() { std::vector<std::unique_ptr<Device>> devices; for (const char* name : device_names_) { devices.push_back(CreateDevice("CPU", name)); } device_mgr_ = new StaticDeviceMgr(std::move(devices)); context_ = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, device_mgr_, false, nullptr, nullptr, nullptr, true); } ~RemoteTensorHandleTest() override { delete device_mgr_; context_->Unref(); } EagerContext* context() { return context_; } std::vector<Device*> ListDevices() const { return device_mgr_->ListDevices(); } private: const std::vector<const char*> device_names_ = { "/job:worker/replica:0/task:0/device:CPU:0", "/job:worker/replica:0/task:1/device:CPU:0", "/job:worker/replica:0/task:2/device:CPU:0"}; StaticDeviceMgr* device_mgr_; EagerContext* context_; }; TEST_F(RemoteTensorHandleTest, UnknownRemoteDevice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; const string remote_task = "/job:worker/replica:0/task:1"; Device* d1 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d1, context, true); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; EXPECT_EQ(h->device(), d1); Device* d2 = device_mgr.ListDevices().at(2); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d1, context->GetContextViewId(), d2->name())); Status s; EXPECT_EQ(h->BackingDeviceName(&s), d2->name()); TF_EXPECT_OK(s); EXPECT_EQ(h->device(), d2); } TEST_F(RemoteTensorHandleTest, PoisonRemote) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; const string remote_task = "/job:worker/replica:0/task:1"; Device* d1 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d1, context, true); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; EXPECT_EQ(h->device(), d1); tensorflow::Status fake_failure_status(absl::StatusCode::kAborted, "Fake failure."); h->PoisonRemote(fake_failure_status, d1, context->GetContextViewId()); Device* d2 = device_mgr.ListDevices().at(2); EXPECT_THAT(h->SetRemoteShapeAndDevice(shape, d1, context->GetContextViewId(), d2->name()), StatusIs(fake_failure_status.code(), std::string(fake_failure_status.message()))); } TEST_F(RemoteTensorHandleTest, PoisonRemoteMirror) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; const string remote_task = "/job:worker/replica:0/task:1"; Device* d1 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d1, context, true); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; EXPECT_EQ(h->device(), d1); Device* d2 = device_mgr.ListDevices().at(2); int64_t op_id = 1; int output_num = 2; TF_ASSERT_OK( h->AddUnshapedRemoteMirror(d2, op_id, output_num, remote_task, context)); tensorflow::Status fake_failure_status(absl::StatusCode::kAborted, "Fake failure."); h->PoisonRemote(fake_failure_status, d2, context->GetContextViewId()); EXPECT_THAT(h->SetRemoteShapeAndDevice(shape, d2, context->GetContextViewId(), d2->name()), StatusIs(fake_failure_status.code(), std::string(fake_failure_status.message()))); } TEST_F(RemoteTensorHandleTest, SetRemoteTensorHandleShapeTwice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; const string remote_task = "/job:worker/replica:0/task:1"; Device* d1 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d1, context, true); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; EXPECT_EQ(h->device(), d1); Device* d2 = device_mgr.ListDevices().at(2); int64_t op_id = 1; int output_num = 2; TF_ASSERT_OK( h->AddUnshapedRemoteMirror(d2, op_id, output_num, remote_task, context)); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d2, context->GetContextViewId(), d2->name())); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d1, context->GetContextViewId(), d1->name())); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d1, context->GetContextViewId(), d1->name())); TensorShape another_shape({1}); EXPECT_THAT(h->SetRemoteShapeAndDevice( another_shape, d1, context->GetContextViewId(), d1->name()), StatusIs(tensorflow::error::INTERNAL, HasSubstr("Trying to change shape to"))); } TEST_F(RemoteTensorHandleTest, SetRemoteMirrorShapeTwice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; const string remote_task = "/job:worker/replica:0/task:1"; Device* d1 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d1, context, true); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; EXPECT_EQ(h->device(), d1); Device* d2 = device_mgr.ListDevices().at(2); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d1, context->GetContextViewId(), d2->name())); int64_t op_id = 1; int output_num = 2; TF_ASSERT_OK( h->AddUnshapedRemoteMirror(d1, op_id, output_num, remote_task, context)); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d1, context->GetContextViewId(), d2->name())); TensorShape another_shape({1}); EXPECT_THAT(h->SetRemoteShapeAndDevice( another_shape, d1, context->GetContextViewId(), d2->name()), StatusIs(tensorflow::error::INTERNAL, HasSubstr("Trying to change shape to"))); } TEST(TensorHandle_LocalTest, TensorFromDeviceSameDevice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:1")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; Tensor t0(dtype, shape); Device* d0 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t0), d0, d0, d0, context); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; const Tensor* tensor_from_device; TF_EXPECT_OK(h->TensorFromDevice(d0, &tensor_from_device)); } TEST(TensorHandle_LocalTest, TensorFromDeviceDifferentDevice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:1")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; Tensor t0(dtype, shape); Device* d0 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t0), d0, d0, d0, context); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; Device* d1 = device_mgr.ListDevices().at(2); tensorflow::Tensor tensor; TF_EXPECT_OK(h->CopyToDevice(*context, d1, &tensor)); TF_EXPECT_OK(h->AddLocalMirror(std::move(tensor), d1)); const Tensor* tensor_from_device; TF_EXPECT_OK(h->TensorFromDevice(d1, &tensor_from_device)); } TEST(TensorHandle_LocalTest, TensorFromDeviceInvalidDevice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:1")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; Tensor t0(dtype, shape); Device* d0 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t0), d0, d0, d0, context); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; Device* d1 = device_mgr.ListDevices().at(2); const Tensor* tensor_from_device; EXPECT_THAT(h->TensorFromDevice(d1, &tensor_from_device), StatusIs(tensorflow::error::INTERNAL)); } TEST(TensorHandle_ResourceShapeMirror, CreateAndCheckMirror) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:1")); devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:2")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {}; Tensor t0(dtype, shape); Device* d0 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t0), d0, d0, d0, context); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; Device* d1 = device_mgr.ListDevices().at(2); int64_t op_id = 1; int output_num = 2; EXPECT_FALSE(h->HasResourceShapeMirror(d1, context->GetContextViewId())); TF_EXPECT_OK(h->AddResourceShapeMirror(d1, op_id, output_num, context)); EXPECT_TRUE(h->HasResourceShapeMirror(d1, context->GetContextViewId())); TF_EXPECT_OK(h->AddResourceShapeMirror(d1, op_id, output_num, context)); EXPECT_THAT(h->AddResourceShapeMirror(d1, op_id + 1, output_num, context), StatusIs(tensorflow::error::INTERNAL)); } TEST(TensorHandle_DeviceNameTest, OnLocalDevice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("GPU", "/job:localhost/replica:0/task:0/device:GPU:0")); StaticDeviceMgr local_device_mgr(std::move(devices)); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &local_device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup ctx_cleanup = [&]() { ctx->Unref(); }; Device* dcpu = local_device_mgr.ListDevices()[0]; Device* dgpu = local_device_mgr.ListDevices()[1]; tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {2}; Tensor tcpu(dtype, shape); Tensor tgpu(dtype, shape); Status s; TensorHandle* th_cpu = TensorHandle::CreateLocalHandle(std::move(tcpu), dcpu, dcpu, dcpu, ctx); const char* device_name = th_cpu->DeviceName(&s); absl::Cleanup th_cpu_cleanup = [&]() { th_cpu->Unref(); }; TF_EXPECT_OK(s); ASSERT_TRUE(absl::StrContains(device_name, "CPU")) << device_name; const char* backing_device_name = th_cpu->BackingDeviceName(&s); TF_EXPECT_OK(s); ASSERT_TRUE(absl::StrContains(backing_device_name, "CPU")) << backing_device_name; const char* device_type = th_cpu->DeviceType(&s); TF_EXPECT_OK(s); ASSERT_TRUE(absl::StrContains(device_type, "CPU")) << device_type; int device_id = th_cpu->DeviceId(&s); TF_EXPECT_OK(s); ASSERT_EQ(0, device_id) << device_id; TensorHandle* th_gpu = TensorHandle::CreateLocalHandle(std::move(tgpu), dgpu, dgpu, dgpu, ctx); absl::Cleanup th_gpu_cleanup = [&]() { th_gpu->Unref(); }; device_name = th_gpu->DeviceName(&s); TF_EXPECT_OK(s); ASSERT_TRUE(absl::StrContains(device_name, "GPU")) << device_name; backing_device_name = th_gpu->BackingDeviceName(&s); TF_EXPECT_OK(s); std::cout << "backing_device_name for GPU: " << backing_device_name << std::endl; ASSERT_TRUE(absl::StrContains(backing_device_name, "GPU")) << backing_device_name; device_type = th_gpu->DeviceType(&s); TF_EXPECT_OK(s); ASSERT_TRUE(absl::StrContains(device_type, "GPU")) << device_type; device_id = th_gpu->DeviceId(&s); TF_EXPECT_OK(s); ASSERT_EQ(0, device_id) << device_id; } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/tensor_handle.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/tensor_handle_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c5092579-ad27-4d89-8e94-e52defb886c3
cpp
tensorflow/tensorflow
custom_device
tensorflow/core/common_runtime/eager/custom_device.cc
tensorflow/c/eager/custom_device_test.cc
#include "tensorflow/core/common_runtime/eager/custom_device.h" #include <utility> #include <vector> #include "tensorflow/core/common_runtime/eager/custom_device_op_handler.h" namespace tensorflow { Status CustomDeviceTensorHandle::Shape(PartialTensorShape* shape) const { int num_dims; TF_RETURN_IF_ERROR(NumDims(&num_dims)); std::vector<int64_t> dims(num_dims); for (int i = 0; i < num_dims; ++i) { TF_RETURN_IF_ERROR(Dim(i, &dims[i])); } return PartialTensorShape::MakePartialShape(dims.data(), num_dims, shape); } Status CustomDeviceTensorHandle::NumElements(int64_t* num_elements) const { *num_elements = 1; int num_dims; TF_RETURN_IF_ERROR(NumDims(&num_dims)); for (int i = 0; i < num_dims; ++i) { int64_t dim; TF_RETURN_IF_ERROR(Dim(i, &dim)); if (dim < 0) { return errors::InvalidArgument( absl::StrCat("Tried to compute the number of elements of a tensor " "representing varying shapes. ", DebugString())); } *num_elements *= dim; } return absl::OkStatus(); } const char* CustomDeviceTensorHandle::DeviceType(Status* status) const { const DeviceNameUtils::ParsedName* parsed = ParsedName(status); if (!status->ok()) { return ""; } return parsed->type.c_str(); } int CustomDeviceTensorHandle::DeviceId(Status* status) const { const DeviceNameUtils::ParsedName* parsed = ParsedName(status); if (!status->ok()) { return 0; } return parsed->id; } AbstractTensorInterface* CustomDeviceTensorHandle::Resolve(Status* status) { core::RefCountPtr<ImmediateExecutionTensorHandle> copied_off( context_->GetCustomDeviceOpHandler().CopyTensorHandleToDevice( context_, this, DeviceNameUtils::ParsedNameToString(context_->HostCPUParsedName()) .c_str(), status)); if (!status->ok()) { return nullptr; } return copied_off->Resolve(status); } const DeviceNameUtils::ParsedName* CustomDeviceTensorHandle::ParsedName( Status* status) const { if (!parsed_name_.has_value()) { DeviceNameUtils::ParsedName parsed_name; if (!DeviceNameUtils::ParseFullOrLocalName(device_->name(), &parsed_name)) { *status = errors::InvalidArgument( absl::StrCat("Invalid custom device name ", device_->name())); return nullptr; } parsed_name_.emplace(std::move(parsed_name)); } return &*parsed_name_; } }
#include <memory> #include "absl/strings/match.h" #include "tensorflow/c/c_api.h" #include "tensorflow/c/eager/c_api.h" #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/c/eager/custom_device_testutil.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/test.h" TEST(CUSTOM_DEVICE, RegisterSimpleDevice) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* context = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); bool arrived = false; bool executed = false; const char* name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; RegisterLoggingDevice(context, name, true, &arrived, &executed, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(context); ASSERT_FALSE(arrived); TFE_TensorHandle* hdevice = TFE_TensorHandleCopyToDevice(hcpu, context, name, status.get()); ASSERT_TRUE(arrived); ASSERT_FALSE(executed); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); std::unique_ptr<TFE_Op, decltype(&TFE_DeleteOp)> matmul( MatMulOp(context, hcpu, hdevice), TFE_DeleteOp); TFE_OpSetDevice(matmul.get(), name, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_TensorHandle* retval; int num_retvals = 1; TFE_Execute(matmul.get(), &retval, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_TRUE(executed); TFE_DeleteTensorHandle(retval); TFE_DeleteTensorHandle(hcpu); TFE_DeleteTensorHandle(hdevice); TFE_DeleteContext(context); } TEST(CUSTOM_DEVICE, ResetOperation) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts, status.get()), TFE_DeleteContext); TFE_DeleteContextOptions(opts); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); bool arrived = false; bool executed = false; const char* custom_device_name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; RegisterLoggingDevice(context.get(), custom_device_name, true, &arrived, &executed, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); std::unique_ptr<TFE_Op, decltype(&TFE_DeleteOp)> reused_op( TFE_NewOp(context.get(), "Identity", status.get()), TFE_DeleteOp); TFE_OpReset(reused_op.get(), "Identity", custom_device_name, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_EQ(tensorflow::string(TFE_OpGetDevice(reused_op.get(), status.get())), tensorflow::string(custom_device_name)); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_OpReset(reused_op.get(), "Identity", "/job:localhost/replica:0/task:0/device:CPU:0", status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_EQ(tensorflow::string(TFE_OpGetDevice(reused_op.get(), status.get())), tensorflow::string("/job:localhost/replica:0/task:0/device:CPU:0")); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); } TEST(CUSTOM_DEVICE, MakeVariable) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); bool arrived = false; bool executed = false; const char* name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; RegisterLoggingDevice(context.get(), name, true, &arrived, &executed, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); std::unique_ptr<TFE_Op, decltype(&TFE_DeleteOp)> op( TFE_NewOp(context.get(), "VarHandleOp", status.get()), TFE_DeleteOp); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_OpSetAttrType(op.get(), "dtype", TF_FLOAT); TFE_OpSetAttrShape(op.get(), "shape", {}, 0, status.get()); TFE_OpSetAttrString(op.get(), "container", "", 0); TFE_OpSetAttrString(op.get(), "shared_name", "", 0); TFE_OpSetDevice(op.get(), name, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_TensorHandle* var_handle = nullptr; int num_retvals = 1; executed = false; TFE_Execute(op.get(), &var_handle, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_TRUE(executed); auto handle_cleaner = tensorflow::gtl::MakeCleanup( [var_handle]() { TFE_DeleteTensorHandle(var_handle); }); std::unique_ptr<TFE_TensorHandle, decltype(&TFE_DeleteTensorHandle)> one( TestScalarTensorHandle(context.get(), 111.f), TFE_DeleteTensorHandle); op.reset(TFE_NewOp(context.get(), "AssignVariableOp", status.get())); TFE_OpSetAttrType(op.get(), "dtype", TF_FLOAT); TFE_OpAddInput(op.get(), var_handle, status.get()); TFE_OpAddInput(op.get(), one.get(), status.get()); TFE_OpSetDevice(op.get(), name, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); executed = false; num_retvals = 0; TFE_Execute(op.get(), nullptr, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_TRUE(executed); op.reset(TFE_NewOp(context.get(), "ReadVariableOp", status.get())); TFE_OpAddInput(op.get(), var_handle, status.get()); TFE_OpSetDevice(op.get(), name, status.get()); TFE_OpSetAttrType(op.get(), "dtype", TF_FLOAT); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); executed = false; num_retvals = 1; TFE_TensorHandle* var_value = nullptr; TFE_Execute(op.get(), &var_value, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_TRUE(executed); auto value_cleaner = tensorflow::gtl::MakeCleanup( [var_value]() { TFE_DeleteTensorHandle(var_value); }); ASSERT_EQ(tensorflow::string(name), tensorflow::string( TFE_TensorHandleBackingDeviceName(var_value, status.get()))); TFE_TensorHandle* var_value_unpacked = UnpackTensorHandle(var_value, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); std::unique_ptr<TF_Tensor, decltype(&TF_DeleteTensor)> resolved_value( TFE_TensorHandleResolve(var_value_unpacked, status.get()), TF_DeleteTensor); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_EQ(111., *static_cast<float*>(TF_TensorData(resolved_value.get()))); op.reset(TFE_NewOp(context.get(), "DestroyResourceOp", status.get())); TFE_OpAddInput(op.get(), var_handle, status.get()); TFE_OpSetDevice(op.get(), name, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); num_retvals = 0; TFE_Execute(op.get(), nullptr, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); } TEST(CUSTOM_DEVICE, AccessVariableOnCustomDevice) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); bool arrived = false; bool executed = false; const char* name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; RegisterLoggingDevice(context.get(), name, false, &arrived, &executed, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); std::unique_ptr<TFE_Op, decltype(&TFE_DeleteOp)> op( TFE_NewOp(context.get(), "VarHandleOp", status.get()), TFE_DeleteOp); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_OpSetAttrType(op.get(), "dtype", TF_FLOAT); TFE_OpSetAttrShape(op.get(), "shape", {}, 0, status.get()); TFE_OpSetAttrString(op.get(), "container", "", 0); TFE_OpSetAttrString(op.get(), "shared_name", "", 0); TFE_OpSetDevice(op.get(), name, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_TensorHandle* var_handle = nullptr; int num_retvals = 1; executed = false; TFE_Execute(op.get(), &var_handle, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_TRUE(executed); auto handle_cleaner = tensorflow::gtl::MakeCleanup( [var_handle]() { TFE_DeleteTensorHandle(var_handle); }); std::unique_ptr<TFE_TensorHandle, decltype(&TFE_DeleteTensorHandle)> one( TestScalarTensorHandle(context.get(), 111.f), TFE_DeleteTensorHandle); op.reset(TFE_NewOp(context.get(), "AssignVariableOp", status.get())); TFE_OpSetAttrType(op.get(), "dtype", TF_FLOAT); TFE_OpAddInput(op.get(), var_handle, status.get()); TFE_OpAddInput(op.get(), one.get(), status.get()); TFE_OpSetDevice(op.get(), name, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); executed = false; num_retvals = 0; TFE_Execute(op.get(), nullptr, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_TRUE(executed); op.reset(TFE_NewOp(context.get(), "ReadVariableOp", status.get())); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_OpAddInput(op.get(), var_handle, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_OpSetAttrType(op.get(), "dtype", TF_FLOAT); executed = false; num_retvals = 1; TFE_TensorHandle* var_value = nullptr; TFE_Execute(op.get(), &var_value, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_TRUE(executed); ASSERT_EQ( tensorflow::string(name), tensorflow::string(TFE_TensorHandleDeviceName(var_value, status.get()))); TFE_DeleteTensorHandle(var_value); op.reset(TFE_NewOp(context.get(), "DestroyResourceOp", status.get())); TFE_OpAddInput(op.get(), var_handle, status.get()); TFE_OpSetDevice(op.get(), name, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); num_retvals = 0; TFE_Execute(op.get(), nullptr, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); } TEST(CUSTOM_DEVICE, InputBasedPlacement) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); const char* custom0 = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; const char* custom1 = "/job:localhost/replica:0/task:0/device:CUSTOM:1"; bool arrived = false; bool executed = false; RegisterLoggingDevice(context.get(), custom0, false, &arrived, &executed, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); RegisterLoggingDevice(context.get(), custom1, true, &arrived, &executed, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); std::unique_ptr<TFE_TensorHandle, decltype(&TFE_DeleteTensorHandle)> hcpu( TestMatrixTensorHandle(context.get()), TFE_DeleteTensorHandle); ASSERT_FALSE(arrived); std::unique_ptr<TFE_TensorHandle, decltype(&TFE_DeleteTensorHandle)> hcustom0( TFE_TensorHandleCopyToDevice(hcpu.get(), context.get(), custom0, status.get()), TFE_DeleteTensorHandle); ASSERT_TRUE(arrived); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); arrived = false; std::unique_ptr<TFE_TensorHandle, decltype(&TFE_DeleteTensorHandle)> hcustom1( TFE_TensorHandleCopyToDevice(hcpu.get(), context.get(), custom1, status.get()), TFE_DeleteTensorHandle); ASSERT_TRUE(arrived); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); std::unique_ptr<TFE_Op, decltype(&TFE_DeleteOp)> matmul( MatMulOp(context.get(), hcpu.get(), hcpu.get()), TFE_DeleteOp); TFE_TensorHandle* retval; int num_retvals = 1; TFE_Execute(matmul.get(), &retval, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_DeleteTensorHandle(retval); matmul.reset(MatMulOp(context.get(), hcustom0.get(), hcustom0.get())); num_retvals = 1; executed = false; TFE_Execute(matmul.get(), &retval, &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); ASSERT_TRUE(executed); TFE_DeleteTensorHandle(retval); matmul.reset(MatMulOp(context.get(), hcustom0.get(), hcustom1.get())); num_retvals = 1; TFE_Execute(matmul.get(), &retval, &num_retvals, status.get()); ASSERT_NE(TF_OK, TF_GetCode(status.get())); ASSERT_TRUE(absl::StrContains(TF_Message(status.get()), custom0)); ASSERT_TRUE(absl::StrContains(TF_Message(status.get()), custom1)); matmul.reset(MatMulOp(context.get(), hcustom0.get(), hcpu.get())); num_retvals = 1; executed = false; TFE_Execute(matmul.get(), &retval, &num_retvals, status.get()); EXPECT_TRUE(executed); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_DeleteTensorHandle(retval); matmul.reset(MatMulOp(context.get(), hcustom0.get(), hcpu.get())); TFE_OpSetDevice(matmul.get(), "/job:localhost/replica:0/task:0/device:CPU:0", status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); num_retvals = 1; executed = false; TFE_Execute(matmul.get(), &retval, &num_retvals, status.get()); EXPECT_FALSE(executed); ASSERT_FALSE(TF_GetCode(status.get()) == TF_OK); matmul.reset(MatMulOp(context.get(), hcustom1.get(), hcpu.get())); num_retvals = 1; executed = false; TFE_Execute(matmul.get(), &retval, &num_retvals, status.get()); EXPECT_FALSE(executed); ASSERT_FALSE(TF_GetCode(status.get()) == TF_OK); } TEST(CUSTOM_DEVICE, InvalidRegistrationError) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); bool arrived = false; bool executed = false; RegisterLoggingDevice(context.get(), "/device:CUSTOM:0", true, &arrived, &executed, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_INVALID_ARGUMENT) << TF_Message(status.get()); const char* name = "/job:localhost/replica:0/task:0/device:CUSTOM:0"; RegisterLoggingDevice(context.get(), name, true, &arrived, &executed, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); RegisterLoggingDevice(context.get(), name, true, &arrived, &executed, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_ALREADY_EXISTS) << TF_Message(status.get()); RegisterLoggingDevice( context.get(), "/job:localhost/replica:0/task:0/device:CPU:0", true, &arrived, &executed, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_ALREADY_EXISTS) << TF_Message(status.get()); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/custom_device.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/eager/custom_device_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6fbcfd3c-c07b-407f-91b7-5614abd60af0
cpp
tensorflow/tensorflow
execute
tensorflow/core/tfrt/mlrt/interpreter/execute.cc
tensorflow/core/common_runtime/eager/execute_test.cc
#include "tensorflow/core/tfrt/mlrt/interpreter/execute.h" #include <cstdint> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/tfrt/mlrt/bytecode/kernel.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/interpreter/register_span.h" #include "tensorflow/core/tfrt/mlrt/interpreter/value.h" #include "tsl/profiler/lib/traceme.h" namespace mlrt { namespace { struct CurrentExecutionInfo { ExecutionContext* current_context = nullptr; ExecutionContext* ready_context = nullptr; }; CurrentExecutionInfo& GetCurrentExecutionInfo() { static thread_local CurrentExecutionInfo current_execution_info; return current_execution_info; } void Resume(ExecutionContext& ready_context) { auto& current_execution_info = GetCurrentExecutionInfo(); auto* current_context = current_execution_info.current_context; if ((current_context != nullptr) && (current_execution_info.ready_context == nullptr) && (current_context->state() == ExecutionContext::State::kReturn) && (current_context->function_stack_size() == 1)) { current_execution_info.ready_context = &ready_context; } else { auto* work_queue = ready_context.work_queue(); DCHECK(work_queue); work_queue->AddTask([&ready_context]() { Execute(ready_context); }); } } } namespace execute_internal { void UnwindOnError(ExecutionContext& context, int64_t pc); } void Execute(ExecutionContext& ctx) { auto& current_execution_info = GetCurrentExecutionInfo(); current_execution_info.ready_context = &ctx; for (; current_execution_info.ready_context;) { current_execution_info.current_context = current_execution_info.ready_context; current_execution_info.ready_context = nullptr; auto& context = *current_execution_info.current_context; DCHECK(!context.function_stack_.empty()); int function_stack_index = context.function_stack_.size() - 1; FunctionContext* current_function = &context.function_stack_.back(); int64_t pc = current_function->pc_; auto kernels = context.loaded_executable().kernels(); auto kernel_object_iter = current_function->function_object().kernels().begin(); kernel_object_iter += pc; KernelFrame::State kstate(current_function); KernelFrame frame(&kstate); for (; context.state_ == ExecutionContext::State::kRunning; ++pc) { DCHECK(kernel_object_iter < current_function->function_object().kernels().end()); bc::Kernel kernel_object = *kernel_object_iter; frame.set_kernel(kernel_object); kernels[kernel_object.code()](frame); ++kernel_object_iter; } current_function = &context.function_stack_[function_stack_index]; current_function->pc_ = pc; current_execution_info.current_context = nullptr; switch (context.state_) { case ExecutionContext::State::kReady: { DCHECK(current_execution_info.ready_context == nullptr); context.state_ = ExecutionContext::State::kRunning; if (current_function->kernel_context().reenter) { current_function->pc_--; } current_execution_info.ready_context = &context; break; } case ExecutionContext::State::kRunning: LOG(FATAL) << "This cannot happen."; break; case ExecutionContext::State::kReturn: { tsl::profiler::TraceMe trace_me("Execute::Return"); context.function_stack_.pop_back(); if (context.function_stack_.empty()) { if (context.exit_handler_) { std::move(context.exit_handler_)(); } break; } DCHECK(current_execution_info.ready_context == nullptr); context.state_ = ExecutionContext::State::kRunning; current_execution_info.ready_context = &context; break; } case ExecutionContext::State::kSuspended: { DCHECK(current_execution_info.ready_context == nullptr); tsl::profiler::TraceMe trace_me("Execute::Suspend"); DCHECK(context.suspend_handler_); std::move(context.suspend_handler_)([&context]() { Resume(context); }); return; } case ExecutionContext::State::kError: { DCHECK(current_execution_info.ready_context == nullptr); tsl::profiler::TraceMe trace_me("Execute::Error"); execute_internal::UnwindOnError(context, -1); return; } } } } namespace execute_internal { void UnwindOnError(ExecutionContext& context, int64_t pc) { std::string function_name; if (!context.function_stack_.empty()) { function_name = context.function_stack_.back().function_object().name(); } context.LogError(context.status()); context.LogError(absl::InternalError(absl::StrCat( "UnwindOnError: start from function ", function_name, " with stack size: ", context.function_stack_.size(), " at pc: ", pc, " for context ", absl::Hex(reinterpret_cast<std::uintptr_t>(&context)), " at state ", context.state_))); while (!context.function_stack_.empty()) { DCHECK(context.state_ == ExecutionContext::State::kError); FunctionContext* current_function = &context.function_stack_.back(); Value context_value(&context); if (pc == -1) { DCHECK(context.state_ == ExecutionContext::State::kError); ++pc; RegisterSpan input_reg_span( current_function->function_object().input_regs(), current_function->regs()); for (Value& reg : input_reg_span) { reg.HandleError(context_value); if (context.state_ != ExecutionContext::State::kError) { DCHECK(context.state_ == ExecutionContext::State::kSuspended); context.LogError(absl::InternalError(absl::StrCat( "UnwindOnError: entering state", context.state_, " for context ", absl::Hex(reinterpret_cast<std::uintptr_t>(&context))))); --pc; break; } } } context.LogError(absl::InternalError( absl::StrCat("UnwindOnError: unwinding function from ", pc, " to ", current_function->pc_, " for context ", absl::Hex(reinterpret_cast<std::uintptr_t>(&context)), " at state ", context.state_))); for (; context.state_ == ExecutionContext::State::kError && pc <= current_function->pc_; ++pc) { bc::Kernel kernel = current_function->function_object().kernels()[pc]; RegisterSpan reg_span(kernel.results(), current_function->regs()); for (Value& reg : reg_span) { reg.HandleError(context_value); if (context.state_ != ExecutionContext::State::kError) { DCHECK(context.state_ == ExecutionContext::State::kSuspended); context.LogError(absl::InternalError(absl::StrCat( "UnwindOnError: entering state", context.state_, " for context ", absl::Hex(reinterpret_cast<std::uintptr_t>(&context))))); --pc; break; } } } if (context.state_ == ExecutionContext::State::kSuspended) { DCHECK(context.suspend_handler_) << "suspend_handler_ must be populated when the state is set to " "kSuspended."; context.LogError(absl::InternalError(absl::StrCat( "UnwindOnError: suspended state ", context.state_, " for context ", absl::Hex(reinterpret_cast<std::uintptr_t>(&context))))); std::move(context.suspend_handler_)([&context, pc]() { auto* work_queue = context.work_queue(); DCHECK(work_queue); work_queue->AddTask([&context, pc]() { context.state_ = ExecutionContext::State::kError; UnwindOnError(context, pc); }); }); return; } DCHECK(context.state_ != ExecutionContext::State::kSuspended); pc = -1; context.function_stack_.pop_back(); } context.LogError(absl::InternalError(absl::StrCat( "UnwindOnError: done for function ", function_name, " for context: ", absl::Hex(reinterpret_cast<std::uintptr_t>(&context)), " at state ", context.state_))); if (context.exit_handler_) { std::move(context.exit_handler_)(); } } } }
#include "tensorflow/core/common_runtime/eager/execute.h" #include <memory> #include <utility> #include <vector> #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(ExecuteTest, EagerOperationAsFunction) { StaticDeviceMgr device_mgr( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_EXPLICIT, false, &device_mgr, false, nullptr, nullptr); ctx->SetRunEagerOpAsFunction(true); auto op = std::make_unique<EagerOperation>(ctx); TF_ASSERT_OK(op->Reset( "Mul", "/job:localhost/replica:0/task:0/device:CPU:0")); Tensor input1_tensor = test::AsScalar<int64_t>(3); auto input1 = core::RefCountPtr<ImmediateExecutionTensorHandle>( ctx->CreateLocalHandleFromTFTensor(input1_tensor, ctx->HostCPUName().c_str())); TF_ASSERT_OK(op->AddInput(input1.get())); Tensor input2_tensor = test::AsScalar<int64_t>(2); auto input2 = core::RefCountPtr<ImmediateExecutionTensorHandle>( ctx->CreateLocalHandleFromTFTensor(input2_tensor, ctx->HostCPUName().c_str())); TF_ASSERT_OK(op->AddInput(input2.get())); std::vector<TensorHandle*> retvals(1); int num_retvals = retvals.size(); TF_ASSERT_OK(EagerExecute(op.get(), retvals.data(), &num_retvals)); retvals[0]->Unref(); retvals[0] = nullptr; ctx->Unref(); } TEST(ExecuteTest, SimpleFunction) { StaticDeviceMgr device_mgr( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_EXPLICIT, false, &device_mgr, false, nullptr, nullptr); const Tensor kTwo = test::AsScalar<int64_t>(2); const string function_name = "XTimesTwo"; const FunctionDef x_times_two = FunctionDefHelper::Define( function_name, {"x: int64"}, {"y: int64"}, {}, { {{"two"}, "Const", {}, {{"value", kTwo}, {"dtype", DT_INT64}}}, {{"scale"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", DT_INT64}}}, {{"y"}, "Mul", {"x", "scale"}, {{"T", DT_INT64}}}, }); TF_ASSERT_OK(ctx->AddFunctionDef(x_times_two)); auto op = std::make_unique<EagerOperation>(ctx); TF_ASSERT_OK(op->Reset( function_name.c_str(), "/job:localhost/replica:0/task:0/device:CPU:0")); Tensor input_tensor = test::AsScalar<int64_t>(3); auto input = core::RefCountPtr<ImmediateExecutionTensorHandle>( ctx->CreateLocalHandleFromTFTensor(input_tensor, ctx->HostCPUName().c_str())); TF_ASSERT_OK(op->AddInput(input.get())); monitoring::testing::CellReader<int64_t> counter_reader( "/tensorflow/core/tf_function_compile"); std::vector<TensorHandle*> retvals(1); int num_retvals = retvals.size(); TF_ASSERT_OK(EagerExecute(op.get(), retvals.data(), &num_retvals)); EXPECT_EQ(counter_reader.Delta("CPU", "disabled"), 1); retvals[0]->Unref(); retvals[0] = nullptr; ctx->Unref(); } TEST(ExecuteTest, SimpleFunctionInt32BadFullType) { StaticDeviceMgr device_mgr( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_EXPLICIT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); const Tensor kTwo = test::AsScalar<int32_t>(2); const string function_name = "XTimesTwo"; const FunctionDef x_times_two = FunctionDefHelper::Define( function_name, {"x: int32"}, {"y: int32"}, {}, { {{"two"}, "Const", {}, {{"value", kTwo}, {"dtype", DT_INT32}}}, {{"scale"}, "Cast", {"two"}, {{"SrcT", DT_INT32}, {"DstT", DT_INT32}}}, {{"y"}, "Mul", {"x", "scale"}, {{"T", DT_INT32}}}, }); TF_ASSERT_OK(ctx->AddFunctionDef(x_times_two)); auto op = std::make_unique<EagerOperation>(ctx); TF_ASSERT_OK(op->Reset( function_name.c_str(), "/job:localhost/replica:0/task:0/device:CPU:0")); Tensor input_tensor = test::AsScalar<int32_t>(3); ASSERT_NE(ctx->HostCPUName().c_str(), nullptr); Device* d = nullptr; TF_ASSERT_OK(ctx->FindDeviceFromName(ctx->HostCPUName().c_str(), &d)); auto input = core::RefCountPtr<TensorHandle>( TensorHandle::CreateLocalHandle(std::move(input_tensor), d, nullptr, ctx)); TF_ASSERT_OK(op->AddInput(input.get())); FullTypeDef ft; ft.set_type_id(TFT_TENSOR); input.get()->SetFullType(ft); std::vector<TensorHandle*> retvals(1); int num_retvals = retvals.size(); Status status = EagerExecute(op.get(), retvals.data(), &num_retvals); ASSERT_TRUE(errors::IsInvalidArgument(status)) << "Actual status: " << status; EXPECT_TRUE( absl::StrContains(status.message(), "TFT_TENSOR has 0 args instead of 1")) << "Actual: " << status.message(); ASSERT_EQ(retvals[0], nullptr); ctx->Unref(); } TEST(ExecuteTest, CompiledFunction) { StaticDeviceMgr device_mgr( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_EXPLICIT, false, &device_mgr, false, nullptr, nullptr); const Tensor kTwo = test::AsScalar<int64_t>(2); const string function_name = "XTimesTwo"; const FunctionDef x_times_two = FunctionDefHelper::Define( function_name, {"x: int64"}, {"y: int64"}, {}, { {{"two"}, "Const", {}, {{"value", kTwo}, {"dtype", DT_INT64}}}, {{"scale"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", DT_INT64}}}, {{"y"}, "Mul", {"x", "scale"}, {{"T", DT_INT64}}}, }); TF_ASSERT_OK(ctx->AddFunctionDef(x_times_two)); auto op = std::make_unique<EagerOperation>(ctx); TF_ASSERT_OK(op->Reset( function_name.c_str(), "/job:localhost/replica:0/task:0/device:CPU:0")); TF_ASSERT_OK(op->SetAttrBool("_XlaMustCompile", true)); Tensor input_tensor = test::AsScalar<int64_t>(3); auto input = core::RefCountPtr<ImmediateExecutionTensorHandle>( ctx->CreateLocalHandleFromTFTensor(input_tensor, ctx->HostCPUName().c_str())); TF_ASSERT_OK(op->AddInput(input.get())); monitoring::testing::CellReader<int64_t> counter_reader( "/tensorflow/core/tf_function_compile"); monitoring::testing::CellReader<int64_t> top_level_counter( "/tensorflow/core/tf_top_level_jit_compilation"); std::vector<TensorHandle*> retvals(1); int num_retvals = retvals.size(); TF_ASSERT_OK(EagerExecute(op.get(), retvals.data(), &num_retvals)); EXPECT_EQ(counter_reader.Delta("CPU", "enabled"), 1); EXPECT_EQ(top_level_counter.Delta("CPU"), 1); retvals[0]->Unref(); retvals[0] = nullptr; ctx->Unref(); } TEST(ExecuteTest, NestedCompiledFunction) { StaticDeviceMgr device_mgr( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_EXPLICIT, false, &device_mgr, false, nullptr, nullptr); const Tensor kTwo = test::AsScalar<int64_t>(2); const string function_name = "XTimesTwo"; const FunctionDef x_times_two = FunctionDefHelper::Define( function_name, {"x: int64"}, {"y: int64"}, {}, { {{"two"}, "Const", {}, {{"value", kTwo}, {"dtype", DT_INT64}}}, {{"scale"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", DT_INT64}}}, {{"y"}, "Mul", {"x", "scale"}, {{"T", DT_INT64}}}, }); TF_ASSERT_OK(ctx->AddFunctionDef(x_times_two)); const string call_function_name = "FunctionCall"; const FunctionDef function_call = FunctionDefHelper::Define( call_function_name, {"x: int64"}, {"y: int64"}, {}, { {{"y"}, "StatefulPartitionedCall", {"x"}, {{"_XlaMustCompile", true}, {"Tin", DataTypeSlice({DT_INT64})}, {"Tout", DataTypeSlice({DT_INT64})}, {"f", tensorflow::FunctionDefHelper::FunctionRef( "XTimesTwo", {{"T", DT_INT64}})}}}, }); TF_ASSERT_OK(ctx->AddFunctionDef(function_call)); auto op = std::make_unique<EagerOperation>(ctx); TF_ASSERT_OK(op->Reset( call_function_name.c_str(), "/job:localhost/replica:0/task:0/device:CPU:0")); Tensor input_tensor = test::AsScalar<int64_t>(3); auto input = core::RefCountPtr<ImmediateExecutionTensorHandle>( ctx->CreateLocalHandleFromTFTensor(input_tensor, ctx->HostCPUName().c_str())); TF_ASSERT_OK(op->AddInput(input.get())); monitoring::testing::CellReader<int64_t> counter_reader( "/tensorflow/core/tf_function_compile"); monitoring::testing::CellReader<int64_t> top_level_counter( "/tensorflow/core/tf_top_level_jit_compilation"); std::vector<TensorHandle*> retvals(1); int num_retvals = retvals.size(); TF_ASSERT_OK(EagerExecute(op.get(), retvals.data(), &num_retvals)); EXPECT_EQ(counter_reader.Delta("CPU", "enabled"), 1); EXPECT_EQ(counter_reader.Delta("CPU", "disabled"), 0); EXPECT_EQ(top_level_counter.Delta("CPU"), 0); retvals[0]->Unref(); retvals[0] = nullptr; ctx->Unref(); } TEST(ExecuteTest, MultipleNestedCompiledFunction) { StaticDeviceMgr device_mgr( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_EXPLICIT, false, &device_mgr, false, nullptr, nullptr); const Tensor kTwo = test::AsScalar<int64_t>(2); const string function_name = "XTimesTwo"; const FunctionDef x_times_two = FunctionDefHelper::Define( function_name, {"x: int64"}, {"y: int64"}, {}, { {{"two"}, "Const", {}, {{"value", kTwo}, {"dtype", DT_INT64}}}, {{"scale"}, "Cast", {"two"}, {{"SrcT", DT_INT64}, {"DstT", DT_INT64}}}, {{"y"}, "Mul", {"x", "scale"}, {{"T", DT_INT64}}}, }); TF_ASSERT_OK(ctx->AddFunctionDef(x_times_two)); const string call_function_name = "FunctionCall"; FunctionDef function_call = FunctionDefHelper::Define( call_function_name, {"x: int64"}, {"y: int64"}, {}, { {{"y"}, "StatefulPartitionedCall", {"x"}, {{"_XlaMustCompile", true}, {"_device", "/job:localhost/replica:0/task:0/device:CPU:0"}, {"Tin", DataTypeSlice({DT_INT64})}, {"Tout", DataTypeSlice({DT_INT64})}, {"f", tensorflow::FunctionDefHelper::FunctionRef( "XTimesTwo", {{"T", DT_INT64}})}}}, }); for (auto& node_def : *function_call.mutable_node_def()) { if (node_def.op() == "StatefulPartitionedCall") { node_def.set_device("/job:localhost/replica:0/task:0/device:CPU:0"); } } TF_ASSERT_OK(ctx->AddFunctionDef(function_call)); const string call_function_name2 = "FunctionCall2"; const FunctionDef function_call2 = FunctionDefHelper::Define( call_function_name2, {"x: int64"}, {"y: int64"}, {}, { {{"y"}, "StatefulPartitionedCall", {"x"}, {{"Tin", DataTypeSlice({DT_INT64})}, {"Tout", DataTypeSlice({DT_INT64})}, {"f", tensorflow::FunctionDefHelper::FunctionRef( "FunctionCall", {{"T", DT_INT64}})}}}, }); TF_ASSERT_OK(ctx->AddFunctionDef(function_call2)); auto op = std::make_unique<EagerOperation>(ctx); TF_ASSERT_OK(op->Reset( call_function_name2.c_str(), "/job:localhost/replica:0/task:0/device:CPU:0")); Tensor input_tensor = test::AsScalar<int64_t>(3); auto input = core::RefCountPtr<ImmediateExecutionTensorHandle>( ctx->CreateLocalHandleFromTFTensor(input_tensor, ctx->HostCPUName().c_str())); TF_ASSERT_OK(op->AddInput(input.get())); monitoring::testing::CellReader<int64_t> counter_reader( "/tensorflow/core/tf_function_compile"); monitoring::testing::CellReader<int64_t> top_level_counter( "/tensorflow/core/tf_top_level_jit_compilation"); std::vector<TensorHandle*> retvals(1); int num_retvals = retvals.size(); TF_ASSERT_OK(EagerExecute(op.get(), retvals.data(), &num_retvals)); EXPECT_EQ(counter_reader.Delta("CPU", "enabled"), 1); EXPECT_EQ(counter_reader.Delta("CPU", "disabled"), 0); EXPECT_EQ(top_level_counter.Delta("CPU"), 0); retvals[0]->Unref(); retvals[0] = nullptr; ctx->Unref(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/interpreter/execute.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/execute_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
51490e3e-50c8-4a6d-a209-b93fee91cf59
cpp
tensorflow/tensorflow
execute_node
tensorflow/core/common_runtime/eager/execute_node.cc
tensorflow/core/common_runtime/eager/execute_node_test.cc
#include "tensorflow/core/common_runtime/eager/execute_node.h" #include "xla/tsl/util/env_var.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { #if !defined(IS_MOBILE_PLATFORM) bool ExecuteNodeArgs::IsRemote(EagerContext* ctx, Device* input_device, TensorHandle* handle) { uint64 context_view_id = ctx->GetContextViewId(); if (handle->Type() == TensorHandle::REMOTE || handle->HasRemoteMirror(input_device, context_view_id)) { if (!has_remote_inputs_) { has_remote_inputs_ = true; } return true; } return false; } #endif Status ExecuteNodeArgs::InitPackedHandle(const int index, EagerContext* ctx, Device* input_device, TensorHandle* packed_handle) { int num_handles = packed_handle->NumPackedHandles(); packed_args_.emplace(index, absl::InlinedVector<TensorValue, 4UL>(num_handles)); TensorValue* packed_arg_flat = &(packed_args_[index][0]); for (int i = 0; i < num_handles; ++i) { TensorHandle* h = nullptr; TF_RETURN_IF_ERROR(packed_handle->ExtractPackedHandle(i, &h)); const Status status = h->TensorValue(h->device(), &packed_arg_flat[i]); if (!status.ok()) { #if !defined(IS_MOBILE_PLATFORM) if (IsRemote(ctx, input_device, h)) { continue; } #endif if (h->Type() == TensorHandle::PACKED) { return errors::InvalidArgument( "Nested packed handles are not supported"); } return status; } } return absl::OkStatus(); } Status ExecuteNodeArgs::Init( EagerContext* ctx, const absl::InlinedVector<TensorHandle*, 4UL>& op_inputs, const core::RefCountPtr<KernelAndDevice>& kernel) { const int n_inputs = op_inputs.size(); if (n_inputs > 0) { TensorHandle* const* op_inputs_flat = &op_inputs[0]; TensorValue* tensor_args_flat = &tensor_args_[0]; for (int i = 0; i < n_inputs; ++i) { TensorHandle* in = op_inputs_flat[i]; Device* d = kernel->InputDevice(i); Status s = in->TensorValue(ctx->CanonicalDevice(d), &tensor_args_flat[i]); if (!s.ok()) { #if !defined(IS_MOBILE_PLATFORM) if (IsRemote(ctx, d, in)) { continue; } #endif if (in->Type() != TensorHandle::PACKED) { return s; } if (!has_packed_inputs_) { has_packed_inputs_ = true; } TF_RETURN_IF_ERROR(InitPackedHandle(i, ctx, d, in)); } } } #if !defined(IS_MOBILE_PLATFORM) if (has_remote_inputs_) { const bool is_function = kernel->IsFunction(); serialize_remote_handle_ = [ctx, &op_inputs, is_function]( const FunctionArgIndex& index, eager::RemoteTensorHandle* handle) -> Status { TensorHandle* h = op_inputs[index.index]; if (op_inputs[index.index]->Type() == TensorHandle::PACKED) { TF_RETURN_IF_ERROR( op_inputs[index.index]->ExtractPackedHandle(index.sub_index, &h)); } Device* device = h->device(); bool wait_until_ready = SkipRemoteHandleWaitReady() ? false : is_function; return ctx->RemoteMgr()->SerializeRemoteTensorHandle(h, wait_until_ready, handle, device); }; } #endif return absl::OkStatus(); } Status ExecuteNodeArgs::GetLocalArg(const FunctionArgIndex& index, Tensor* val) const { Status s = EagerKernelArgs::GetLocalArg(index, val); if (s.ok()) { return absl::OkStatus(); } if (packed_args_.contains(index.index)) { Tensor* arg = packed_args_.at(index.index).at(index.sub_index).tensor; if (arg) { *val = *arg; return absl::OkStatus(); } else { return errors::NotFound("Argument (", index.index, ",", index.sub_index, ") has no local tensor."); } } else { return s; } } }
#include "tensorflow/core/common_runtime/eager/execute_node.h" #include <memory> #include <optional> #include <utility> #include <vector> #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/eager/kernel_and_device.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class TestKernelAndDeviceFunc final : public KernelAndDeviceFunc { public: TestKernelAndDeviceFunc(std::vector<Device*> input_devices, Device* host_cpu_device) : KernelAndDeviceFunc( nullptr, nullptr, {}, {}, {}, nullptr, nullptr, host_cpu_device, "", false, false, false, true, false, std::nullopt, false, Rendezvous::Factory(), nullptr), test_input_devices_(std::move(input_devices)) {} Device* InputDevice(int i) const override { return test_input_devices_[i]; } private: std::vector<Device*> test_input_devices_; }; TEST(ExecuteNodeTest, ExecuteNodeArgs) { StaticDeviceMgr device_mgr( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); Device* device0 = device_mgr.ListDevices().at(0); auto remote_device_mgr = std::make_unique<DynamicDeviceMgr>(); std::vector<std::unique_ptr<Device>> remote_devices; remote_devices.emplace_back( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:1")); TF_ASSERT_OK(remote_device_mgr->AddDevices(std::move(remote_devices))); Device* device1 = remote_device_mgr->ListDevices().at(0); Status s; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice({device0->name(), device1->name()}, 0, device_mgr.HostCPU()->parsed_name(), &s); TF_ASSERT_OK(s); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); auto remote_mgr = std::make_unique<eager::RemoteMgr>( true, ctx); TF_ASSERT_OK(ctx->InitializeRemoteMaster( nullptr, nullptr, nullptr, nullptr, std::move(remote_device_mgr), {}, EagerContext::NewContextId(), nullptr, &device_mgr, 600, nullptr, std::move(remote_mgr))); DataType dtype = DT_FLOAT; Tensor t0(dtype, TensorShape({})); t0.scalar<float>()() = {1.0f}; TensorHandle* h0 = TensorHandle::CreateLocalHandle(std::move(t0), device0, device0, ctx); Tensor t1(dtype, TensorShape({})); t1.scalar<float>()() = {2.0f}; TensorHandle* h1 = TensorHandle::CreateLocalHandle(std::move(t1), device0, device0, ctx); TensorHandle* h2 = TensorHandle::CreateLazyRemoteHandle( 1, 0, dtype, device1, true, ctx); TensorHandle* h3 = TensorHandle::CreateLazyRemoteHandle( 2, 1, dtype, device1, true, ctx); TensorHandle* packed_h = nullptr; TF_ASSERT_OK(TensorHandle::CreatePackedHandle({h1, h2}, ctx, &packed_h)); absl::InlinedVector<TensorHandle*, 4> inputs = {h0, packed_h, h3}; std::vector<Device*> input_devices; for (auto* h : inputs) { input_devices.push_back(h->DeviceOrHostCPU(*ctx)); } const core::RefCountPtr<KernelAndDevice> kernel( new TestKernelAndDeviceFunc(std::move(input_devices), device0)); ExecuteNodeArgs args(inputs.size()); TF_EXPECT_OK(args.Init(ctx, inputs, kernel)); EXPECT_TRUE(args.HasRemoteOrPackedInputs()); Tensor local0; TF_EXPECT_OK(args.GetLocalArg(FunctionArgIndex(0), &local0)); EXPECT_EQ(local0.flat<float>().size(), 1); EXPECT_EQ(local0.flat<float>()(0), 1.0); Tensor local1; TF_EXPECT_OK(args.GetLocalArg(FunctionArgIndex(1, 0), &local1)); EXPECT_EQ(local1.flat<float>().size(), 1); EXPECT_EQ(local1.flat<float>()(0), 2.0); eager::RemoteTensorHandle remote0; TF_EXPECT_OK(args.GetRemoteArg(FunctionArgIndex(1, 1), &remote0)); EXPECT_EQ(remote0.op_id(), 1); EXPECT_EQ(remote0.output_num(), 0); eager::RemoteTensorHandle remote1; TF_EXPECT_OK(args.GetRemoteArg(FunctionArgIndex(2), &remote1)); EXPECT_EQ(remote1.op_id(), 2); EXPECT_EQ(remote1.output_num(), 1); h0->Unref(); h1->Unref(); h2->Unref(); h3->Unref(); packed_h->Unref(); ctx->Unref(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/execute_node.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/execute_node_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b2e87421-cde3-430f-bfe2-9faaf3f39e73
cpp
tensorflow/tensorflow
placement_utils
tensorflow/core/common_runtime/eager/placement_utils.cc
tensorflow/core/common_runtime/eager/placement_utils_test.cc
#include "tensorflow/core/common_runtime/eager/placement_utils.h" #include <variant> #include "absl/status/status.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "tensorflow/core/common_runtime/eager/attr_builder.h" #include "tensorflow/core/common_runtime/eager/custom_device.h" #include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { namespace eager { static bool IsPinnableOp(StringPiece op_name) { static const gtl::FlatSet<string>* unpinnable_ops = new gtl::FlatSet<string>({ "RandomUniform", "RandomUniformInt", "RandomStandardNormal", "StatelessRandomUniform", "StatelessRandomUniformInt", "StatelessRandomUniformFullInt", "StatelessRandomNormal", }); return unpinnable_ops->find(string(op_name)) == unpinnable_ops->end() && !absl::StartsWith(op_name, "XRT"); } static Status ValidateTensorHandleRemoteDevice(EagerContext* ctx, int64_t device_incarnation) { if (ctx->remote_device_mgr()->ContainsDevice(device_incarnation)) { return absl::OkStatus(); } return errors::InvalidArgument( "Resource input tensor contains an invalid device. This might happen " "when the client has connected to a different cluster, or some remote " "workers have been restarted."); } bool IsColocationExempt(StringPiece op_name) { const auto& exempt_ops = InputColocationExemptionRegistry::Global()->Get(); return exempt_ops.find(string(op_name)) != exempt_ops.end(); } bool IsFunction(StringPiece op_name) { const OpDef* op_def = nullptr; Status s = OpDefForOp(string(op_name), &op_def); if (!s.ok()) { if (!absl::IsNotFound(s)) { LOG(WARNING) << "Looking up OpDef failed with error: " << s; } return true; } return false; } Status MaybePinSmallOpsToCpu( bool* result, StringPiece op_name, absl::Span<ImmediateExecutionTensorHandle* const> args, StringPiece cpu_device_name) { if (IsFunction(op_name) || IsColocationExempt(op_name) || !IsPinnableOp(op_name)) { *result = false; return absl::OkStatus(); } if (args.empty()) { *result = false; return absl::OkStatus(); } int i = 0; for (auto* arg : args) { Status s; const char* device_name = arg->DeviceName(&s); DataType dtype = arg->DataType(); TF_RETURN_IF_ERROR(s); DVLOG(2) << "for op " << op_name << " input " << i << " " << DataTypeString(dtype) << " input device = " << device_name; if (device_name != cpu_device_name) { *result = false; return absl::OkStatus(); } if (dtype != DataType::DT_INT32 && dtype != DataType::DT_INT64) { *result = false; return absl::OkStatus(); } int64_t num_elements; TF_RETURN_IF_ERROR(arg->NumElements(&num_elements)); if (num_elements > 64) { *result = false; return absl::OkStatus(); } i++; } DVLOG(1) << "Forcing op " << op_name << " to be on the CPU since all input tensors have an " "int32/int64 dtype, and are small (less than 64 elements)."; *result = true; return absl::OkStatus(); } Status MaybePinToResourceDevice(Device** device, const EagerOperation& op) { if (op.colocation_exempt()) { return absl::OkStatus(); } EagerContext& ctx = op.EagerContext(); const absl::InlinedVector<TensorHandle*, 4>* inputs; TF_RETURN_IF_ERROR(op.TensorHandleInputs(&inputs)); Device* op_device = op.Device() == kVariantDeviceNull ? ctx.HostCPU() : std::get<Device*>(op.Device()); for (int i = 0; i < inputs->size(); ++i) { TensorHandle* tensor_handle = (*inputs)[i]; if (tensor_handle->dtype == DT_RESOURCE) { if (tensor_handle->resource_remote_device_incarnation() != 0) { TF_RETURN_IF_ERROR(ValidateTensorHandleRemoteDevice( &ctx, tensor_handle->resource_remote_device_incarnation())); } Device* resource_device = tensor_handle->resource_device(); DVLOG(2) << "for op " << op.Name() << " input " << i << " " << DataTypeString(tensor_handle->dtype) << " input device = " << resource_device->name() << ", op device = " << op_device->name(); if (resource_device != op_device || op.Device() == kVariantDeviceNull) { DVLOG(1) << (resource_device != op_device ? "Changing " : "Setting ") << "device of operation " << op.Name() << " to " << resource_device->name() << " because input #" << i << " is a resource in this device."; *device = resource_device; return absl::OkStatus(); } } } return absl::OkStatus(); } } }
#include "tensorflow/core/common_runtime/eager/placement_utils.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/common_runtime/eager/execute_node.h" #include "tensorflow/core/platform/test.h" #define DEVICE_CPU0 "/job:localhost/replica:0/task:0/device:CPU:0" #define DEVICE_CPU0_TASK1 "/job:localhost/replica:0/task:1/device:CPU:0" #define DEVICE_GPU0 "/job:localhost/replica:0/task:0/device:GPU:0" namespace tensorflow { namespace { TEST(PlacementUtilsTest, IsColocationExemptFalse) { ASSERT_FALSE(eager::IsColocationExempt("Identity")); } TEST(PlacementUtilsTest, IsColocationExemptTrue) { ASSERT_TRUE(eager::IsColocationExempt("IdentityN")); } TEST(PlacementUtilsTest, IsFunctionTrue) { ASSERT_TRUE(eager::IsFunction("MyFunction")); } TEST(PlacementUtilsTest, IsFunctionFalse) { ASSERT_FALSE(eager::IsFunction("Identity")); } static Device* CreateDevice(const char* type, const char* name, bool is_local = true) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr, bool is_local) : Device(nullptr, attr), is_local_(is_local) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } bool IsLocal() const override { return is_local_; } private: const bool is_local_; }; DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); int64_t incarnation = random::New64(); while (incarnation == 0) { incarnation = random::New64(); } attr.set_incarnation(incarnation); return new FakeDevice(attr, is_local); } static void CreateLocalDeviceVector( std::vector<std::unique_ptr<Device>>& devices) { std::unique_ptr<Device> d0(CreateDevice("CPU", DEVICE_CPU0)); devices.emplace_back(std::move(d0)); std::unique_ptr<Device> d1(CreateDevice("GPU", DEVICE_GPU0)); devices.emplace_back(std::move(d1)); } static Device* CreateRemoteDeviceVector( std::vector<std::unique_ptr<Device>>& devices) { std::unique_ptr<Device> d0(CreateDevice("CPU", DEVICE_CPU0_TASK1, false)); devices.emplace_back(std::move(d0)); return devices.back().get(); } struct MaybePinSmallOpsToCpuTestCase { std::string test_name; DataType dtype; TensorShape shape; string op_name; const char* device; bool expect; }; class PlacementUtilsSmallOpsTest : public ::testing::TestWithParam<MaybePinSmallOpsToCpuTestCase> {}; TEST_P(PlacementUtilsSmallOpsTest, TestMaybePinSmallOpsToCpu) { const MaybePinSmallOpsToCpuTestCase& test_case = GetParam(); bool result; std::vector<std::unique_ptr<Device>> devices; CreateLocalDeviceVector(devices); StaticDeviceMgr device_mgr(std::move(devices)); core::RefCountPtr<EagerContext> context; context = core::RefCountPtr<EagerContext>(new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_EXPLICIT, false, &device_mgr, false, nullptr, nullptr, nullptr, true)); auto ctx = context.get(); ctx->SetRunEagerOpAsFunction(true); std::vector<ImmediateExecutionTensorHandle*> arg; Tensor input_tensor(test_case.dtype, test_case.shape); auto input = core::RefCountPtr<ImmediateExecutionTensorHandle>( ctx->CreateLocalHandleFromTFTensor(input_tensor, test_case.device)); if (test_case.op_name != "RefIdentity") { arg.push_back(input.get()); } TF_ASSERT_OK(eager::MaybePinSmallOpsToCpu(&result, test_case.op_name, arg, test_case.device)); ASSERT_EQ(result, test_case.expect); } INSTANTIATE_TEST_SUITE_P( MaybePinSmallOpsToCpuTests, PlacementUtilsSmallOpsTest, ::testing::ValuesIn<MaybePinSmallOpsToCpuTestCase>({ {"OkToPin", DT_INT64, {}, "Identity", DEVICE_CPU0, true}, {"NotOkToPin_Float", DT_FLOAT, {}, "Identity", DEVICE_CPU0, false}, {"NotOkToPin_Function", DT_INT64, {}, "MyFunction", DEVICE_CPU0, false}, {"NotOkToPin_NoInputs", DT_INT64, {}, "RefIdentity", DEVICE_CPU0, false}, {"NotOkToPin_NotCpu", DT_INT64, {}, "Identity", DEVICE_GPU0, false}, {"NotOkToPin_TooBig", DT_INT64, {65}, "Identity", DEVICE_CPU0, false}, }), [](const ::testing::TestParamInfo<PlacementUtilsSmallOpsTest::ParamType>& info) { return info.param.test_name; }); struct MaybePinToResourceDeviceTestCase { std::string test_name; DataType dtype; string op_name; const char* device; bool expect; }; class PlacementUtilsResourceDeviceTest : public ::testing::TestWithParam<MaybePinToResourceDeviceTestCase> {}; TEST_P(PlacementUtilsResourceDeviceTest, TestMaybePinToResourceDevice) { const MaybePinToResourceDeviceTestCase& test_case = GetParam(); Device* device = nullptr; std::vector<std::unique_ptr<Device>> local_devices; CreateLocalDeviceVector(local_devices); StaticDeviceMgr local_device_mgr(std::move(local_devices)); core::RefCountPtr<EagerContext> context; context = core::RefCountPtr<EagerContext>(new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_EXPLICIT, false, &local_device_mgr, false, nullptr, nullptr, nullptr, true)); auto ctx = context.get(); auto op = EagerOperation(ctx); TF_ASSERT_OK(op.Reset(test_case.op_name.c_str(), DEVICE_CPU0)); Tensor input_tensor(test_case.dtype, {}); auto input = core::RefCountPtr<ImmediateExecutionTensorHandle>( ctx->CreateLocalHandleFromTFTensor(input_tensor, test_case.device)); TF_ASSERT_OK(op.AddInput(input.get())); ASSERT_TRUE(device == nullptr); TF_ASSERT_OK(eager::MaybePinToResourceDevice(&device, op)); ASSERT_EQ(device != nullptr, test_case.expect); } INSTANTIATE_TEST_SUITE_P( MaybePinToResourceDeviceTestCase, PlacementUtilsResourceDeviceTest, ::testing::ValuesIn<MaybePinToResourceDeviceTestCase>({ {"OkToPin", DT_RESOURCE, "Identity", DEVICE_CPU0, true}, {"NotOkToPin_NotResource", DT_FLOAT, "Identity", DEVICE_CPU0, false}, {"NotOkToPin_ColocationExempt", DT_RESOURCE, "IdentityN", DEVICE_CPU0, false}, }), [](const ::testing::TestParamInfo< PlacementUtilsResourceDeviceTest::ParamType>& info) { return info.param.test_name; }); TEST(PlacementUtilsTest, MaybePinToResourceDevice_OtherDevice) { StaticDeviceMgr device_mgr( DeviceFactory::NewDevice("CPU", {}, "/job:localhost/replica:0/task:0")); Device* device0 = device_mgr.ListDevices().at(0); auto remote_device_mgr = std::make_unique<DynamicDeviceMgr>(); std::vector<std::unique_ptr<Device>> remote_devices; CreateRemoteDeviceVector(remote_devices); TF_ASSERT_OK(remote_device_mgr->AddDevices(std::move(remote_devices))); Device* device1 = remote_device_mgr->ListDevices().at(0); Status s; std::unique_ptr<CompositeDevice> composite_device = CompositeDevice::MakeDevice({device0->name(), device1->name()}, 0, device_mgr.HostCPU()->parsed_name(), &s); TF_ASSERT_OK(s); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); auto remote_mgr = std::make_unique<eager::RemoteMgr>( true, ctx); TF_ASSERT_OK(ctx->InitializeRemoteMaster( nullptr, nullptr, nullptr, nullptr, std::move(remote_device_mgr), {}, EagerContext::NewContextId(), nullptr, &device_mgr, 600, nullptr, std::move(remote_mgr))); ASSERT_NE(ctx->remote_device_mgr(), nullptr); auto op = EagerOperation(ctx); TF_ASSERT_OK(op.Reset("Identity", DEVICE_CPU0)); TensorHandle* input = TensorHandle::CreateLazyRemoteHandle( 2, 1, DT_RESOURCE, device1, true, ctx); TF_ASSERT_OK(op.AddInput(input)); ASSERT_NE(input->resource_remote_device_incarnation(), 0); Device* device = nullptr; TF_ASSERT_OK(eager::MaybePinToResourceDevice(&device, op)); ASSERT_TRUE(device != nullptr); input->Unref(); ctx->Unref(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/placement_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/placement_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
80a4a321-6ecd-4fb0-b3a8-a72aa0335a14
cpp
tensorflow/tensorflow
summary_optimizer
tensorflow/core/common_runtime/eager/summary_optimizer.cc
tensorflow/core/common_runtime/eager/summary_optimizer_test.cc
#include "tensorflow/core/common_runtime/eager/summary_optimizer.h" #include <iterator> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" namespace tensorflow::summary_optimizer { namespace { constexpr char kDisableSummariesAtRuntime[] = "disable_summaries_at_runtime"; constexpr char kFlushSummaryWriter[] = "FlushSummaryWriter"; constexpr char kWriteSummary[] = "write_summary"; constexpr char kForwardFunctionName[] = "forward_function_name"; constexpr char kBackwardFunctionName[] = "backward_function_name"; constexpr char kEmptyString[] = ""; using summary_optimizer::internal::NormalizeEdgeName; using ArgDef = OpDef::ArgDef; void UpdateNestedFunctionName(NodeDef& ndef) { for (auto& [k, v] : *ndef.mutable_attr()) { if (v.has_func()) { v.mutable_func()->set_name(StrippedFunctionName(v.func().name())); } else if (v.list().func_size() > 0) { for (auto& func : *v.mutable_list()->mutable_func()) { func.set_name(StrippedFunctionName(func.name())); } } } } void PruneDeletedInputDeps( const absl::flat_hash_set<std::string>& nodes_to_keep, NodeDef& ndef) { auto inputs = ndef.input(); ndef.clear_input(); for (const std::string& input : inputs) { if (nodes_to_keep.contains(NormalizeEdgeName(input))) { ndef.add_input(input); } } } FunctionDef StripSummary(const FunctionDef& fdef_with_summaries) { FunctionDef fdef = fdef_with_summaries; fdef.mutable_signature()->set_name( StrippedFunctionName(fdef.signature().name())); auto nodes = fdef.node_def(); fdef.clear_node_def(); absl::flat_hash_set<std::string> nodes_to_keep; absl::c_transform(nodes, std::inserter(nodes_to_keep, nodes_to_keep.end()), [](const NodeDef& node_def) { return node_def.name(); }); absl::c_transform(fdef.signature().input_arg(), std::inserter(nodes_to_keep, nodes_to_keep.end()), [](const ArgDef& input_arg) { return input_arg.name(); }); for (const NodeDef& ndef : nodes) { if (ndef.op() == kFlushSummaryWriter) nodes_to_keep.erase(ndef.name()); for (const auto& substr : absl::StrSplit(ndef.name(), '/')) { if (substr == kWriteSummary) { nodes_to_keep.erase(ndef.name()); break; } } } for (NodeDef& ndef : nodes) { if (!nodes_to_keep.contains(ndef.name())) continue; PruneDeletedInputDeps(nodes_to_keep, ndef); UpdateNestedFunctionName(ndef); *fdef.add_node_def() = std::move(ndef); } auto control_ret = fdef.control_ret(); fdef.clear_control_ret(); for (const auto& [signature_node_name, node_name] : control_ret) { if (!nodes_to_keep.contains(NormalizeEdgeName(node_name))) continue; fdef.mutable_control_ret()->insert({signature_node_name, node_name}); } auto control_outputs = fdef.signature().control_output(); fdef.mutable_signature()->clear_control_output(); for (const std::string& control_output : control_outputs) { if (!fdef.control_ret().contains(control_output)) continue; fdef.mutable_signature()->add_control_output(control_output); } for (auto& [k, v] : *fdef.mutable_attr()) { if (k == kForwardFunctionName || k == kBackwardFunctionName) { v.set_s(StrippedFunctionName(v.s())); } if (k == kDisableSummariesAtRuntime) v.clear_list(); } return fdef; } } namespace internal { std::string NormalizeEdgeName(absl::string_view name) { std::vector<std::string> edge_name = absl::StrSplit(name, absl::ByAnyChar("^:")); return edge_name[0].empty() ? edge_name[1] : edge_name[0]; } } std::pair<absl::string_view, bool> GetDisableSummariesInputArg( const FunctionDef& fdef) { auto it = fdef.attr().find(kDisableSummariesAtRuntime); if (it == fdef.attr().end()) return {kEmptyString, false}; if (it->second.has_list()) { const auto& list = it->second.list(); if (list.s_size() == 1 && list.b_size() == 1) { return {list.s(0), list.b(0)}; } } return {kEmptyString, false}; } std::vector<FunctionDef> StripSummaries(const FunctionDef& fdef, const FunctionLibraryDefinition& flib) { std::vector<FunctionDef> results; if (GetDisableSummariesInputArg(fdef).first.empty()) return results; results.push_back(StripSummary(fdef)); FunctionLibraryDefinition reachable_library = flib.ReachableDefinitions(fdef); for (const std::string& fname : reachable_library.ListFunctionNames()) { auto* nested_fdef = flib.Find(fname); if (nested_fdef == nullptr) continue; results.push_back(StripSummary(*nested_fdef)); } return results; } std::string StrippedFunctionName(absl::string_view fname) { return absl::StrCat(fname, "__instance__no_summaries"); } }
#include "tensorflow/core/common_runtime/eager/summary_optimizer.h" #include <algorithm> #include <string> #include <vector> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using ::tensorflow::summary_optimizer::GetDisableSummariesInputArg; using ::tensorflow::summary_optimizer::StrippedFunctionName; using ::tensorflow::summary_optimizer::StripSummaries; using ::tensorflow::summary_optimizer::internal::NormalizeEdgeName; using ::tsl::protobuf::TextFormat; using ::tsl::protobuf::util::MessageDifferencer; template <typename T> void CompareProto(const T& expected, const std::string& text_proto) { T proto; ASSERT_TRUE(TextFormat::ParseFromString(text_proto, &proto)); MessageDifferencer differencer; EXPECT_TRUE(differencer.Compare(expected, proto)); } TEST(SummaryOptimizerInternal, NormalizesEdgeName) { EXPECT_EQ(NormalizeEdgeName("include_summary"), "include_summary"); EXPECT_EQ(NormalizeEdgeName("^include_summary"), "include_summary"); EXPECT_EQ(NormalizeEdgeName("^include_summary:0"), "include_summary"); EXPECT_EQ(NormalizeEdgeName("^include_summary/identity:0"), "include_summary/identity"); } TEST(SummaryOptimizer, GetsDisableSummariesInputArg) { FunctionDef fdef; auto input_arg = GetDisableSummariesInputArg(fdef); EXPECT_EQ(input_arg.first, ""); EXPECT_FALSE(input_arg.second); AttrValue attr_val; ASSERT_TRUE(TextFormat::ParseFromString(R"pb( list { s: "remove_summary" b: true } )pb", &attr_val)); fdef.mutable_attr()->insert({"disable_summaries_at_runtime", attr_val}); input_arg = GetDisableSummariesInputArg(fdef); EXPECT_EQ(input_arg.first, "remove_summary"); EXPECT_TRUE(input_arg.second); } TEST(SummaryOptimizer, StripsSummaries) { FunctionDef fdef; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( signature { name: "train" # Function name should be updated. input_arg: { name: "include_summaries" } control_output: "out_pruned" # Control output should be pruned # because it was pruned from # `control_ret`. control_output: "out" } node_def { name: "x" } node_def { name: "write_summary/Identity" } # Node should get pruned based on name. node_def { name: "Identity/x" input: "write_summary/Identity" # Summary scope input should get # pruned. input: "x" } node_def { name: "nested_fn" op: "PartitionedCall" attr { key: "f" value: { func: { name: "nested_fn" } } } } node_def { name: "list_of_nested_fns" op: "SomeCustomOp" attr { key: "functions" value: { list: { func: { name: "nested_fn2" } func: { name: "nested_fn3" } } } } } node_def { op: "FlushSummaryWriter" } # Node should get pruned based on op. control_ret { key: "out_pruned", value: "write_summary/Identity:0" } # Control return should get pruned because node was pruned. control_ret { key: "out", value: "Identity/x" } attr { key: "forward_function_name" value: { s: "__inference_train_1" } # Forward function name should be updated. } attr { key: "backward_function_name" value: { s: "__inference_train_2" } # Backward function name should be updated. } attr { key: "disable_summaries_at_runtime" value: { list { s: "include_summaries" b: false } } } )pb", &fdef)); FunctionDef nested_fdef; nested_fdef.mutable_signature()->set_name("nested_fn"); FunctionDef nested_fdef2; nested_fdef2.mutable_signature()->set_name("nested_fn2"); FunctionDef nested_fdef3; nested_fdef3.mutable_signature()->set_name("nested_fn3"); FunctionLibraryDefinition flib(OpRegistry::Global()); TF_ASSERT_OK(flib.AddFunctionDef(fdef)); TF_ASSERT_OK(flib.AddFunctionDef(nested_fdef)); TF_ASSERT_OK(flib.AddFunctionDef(nested_fdef2)); TF_ASSERT_OK(flib.AddFunctionDef(nested_fdef3)); std::vector<FunctionDef> stripped_fdefs = StripSummaries(fdef, flib); ASSERT_EQ(stripped_fdefs.size(), 4); struct { bool operator()(const FunctionDef& lhs, const FunctionDef& rhs) const { return lhs.signature().name() > rhs.signature().name(); } } fdefOrdering; std::sort(stripped_fdefs.begin(), stripped_fdefs.end(), fdefOrdering); CompareProto(stripped_fdefs[0], R"pb( signature { name: "train__instance__no_summaries" input_arg: { name: "include_summaries" } control_output: "out" } node_def { name: "x" } node_def { name: "Identity/x" input: "x" } node_def { name: "nested_fn" op: "PartitionedCall" attr { key: "f" value: { func: { name: "nested_fn__instance__no_summaries" } } } } node_def { name: "list_of_nested_fns" op: "SomeCustomOp" attr { key: "functions" value: { list: { func: { name: "nested_fn2__instance__no_summaries" } func: { name: "nested_fn3__instance__no_summaries" } } } } } control_ret { key: "out", value: "Identity/x" } attr { key: "forward_function_name", value: { s: "__inference_train_1__instance__no_summaries" } } attr { key: "backward_function_name", value: { s: "__inference_train_2__instance__no_summaries" } } attr { key: "disable_summaries_at_runtime" value {} } )pb"); CompareProto(stripped_fdefs[1], R"pb( signature { name: "nested_fn__instance__no_summaries" } )pb"); CompareProto(stripped_fdefs[2], R"pb( signature { name: "nested_fn3__instance__no_summaries" } )pb"); CompareProto(stripped_fdefs[3], R"pb( signature { name: "nested_fn2__instance__no_summaries" } )pb"); } TEST(SummaryOptimizer, DoesNotStripSummariesWhenNotEnabled) { FunctionDef fdef; ASSERT_TRUE( TextFormat::ParseFromString(R"pb( signature { name: "train" } attr { key: "disable_summaries_at_runtime", value: {} } )pb", &fdef)); FunctionLibraryDefinition flib(OpRegistry::Global()); TF_ASSERT_OK(flib.AddFunctionDef(fdef)); EXPECT_TRUE(StripSummaries(fdef, flib).empty()); fdef.clear_attr(); TF_ASSERT_OK(flib.RemoveFunction("train")); TF_ASSERT_OK(flib.AddFunctionDef(fdef)); EXPECT_TRUE(StripSummaries(fdef, flib).empty()); } TEST(SummaryOptimizer, GeneratesNewFunctionName) { EXPECT_EQ(StrippedFunctionName("train"), "train__instance__no_summaries"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/summary_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/summary_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7a5d48b6-b23a-4473-9c78-e527da0dec6b
cpp
tensorflow/tensorflow
tensor_handle_data
tensorflow/core/common_runtime/eager/tensor_handle_data.cc
tensorflow/core/common_runtime/eager/tensor_handle_data_test.cc
#include "tensorflow/core/common_runtime/eager/tensor_handle_data.h" #include <utility> #include <variant> #include "tensorflow/core/common_runtime/eager/eager_executor.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/profiler/lib/traceme.h" namespace tensorflow { Status LocalTensorHandleData::Tensor(const tensorflow::Tensor** t) const { TF_RETURN_IF_ERROR(WaitReady("Tensor")); *t = &tensor_; return absl::OkStatus(); } Status LocalTensorHandleData::TensorValue(tensorflow::TensorValue* t) { TF_RETURN_IF_ERROR(WaitReady("TensorValue")); tensorflow::Tensor& tensor = tensor_; *t = tensorflow::TensorValue(&tensor); return absl::OkStatus(); } Status LocalTensorHandleData::Shape(TensorShape* shape) const { TF_RETURN_IF_ERROR(WaitReady("Shape")); *shape = tensor_.shape(); return absl::OkStatus(); } Status LocalTensorHandleData::NumDims(int* num_dims) const { TF_RETURN_IF_ERROR(WaitReady("NumDims")); *num_dims = tensor_.dims(); return absl::OkStatus(); } Status LocalTensorHandleData::Dim(int dim_index, int64_t* dim) const { TF_RETURN_IF_ERROR(WaitReady("Dim")); *dim = tensor_.dim_size(dim_index); return absl::OkStatus(); } Status LocalTensorHandleData::NumElements(int64_t* num_elements) const { TF_RETURN_IF_ERROR(WaitReady("NumElements")); *num_elements = tensor_.NumElements(); return absl::OkStatus(); } Status LocalTensorHandleData::Unprotect() { if (!IsReady()) { return errors::Internal("Cannot unprotect a non-ready tensor"); } forwarding_protection_tensor_ = tensorflow::Tensor(); return absl::OkStatus(); } Status LocalTensorHandleData::SetTensor(tensorflow::Tensor&& t) { DCHECK(!IsReady()) << "SetTensor is only called on non-ready handles."; tensor_ = std::move(t); forwarding_protection_tensor_ = tensor_; auto& state = std::get<BlockingControl>(ctrl_); state.SetReady(); return absl::OkStatus(); } string LocalTensorHandleData::DebugString() const { if (IsReady()) { return tensor_.DeviceSafeDebugString(); } else { return "LocalTensorHandleData"; } } void LocalTensorHandleData::BlockingControl::SetReady() { mutex_lock l(mu_); is_ready_ = true; } Status LocalTensorHandleData::BlockingControl::WaitReady( const char* caller) const { tf_shared_lock l(mu_); if (!is_ready_) { tsl::profiler::TraceMe activity( [caller] { return absl::StrCat(caller, " WaitReady"); }, tsl::profiler::TraceMeLevel::kInfo); DVLOG(3) << "WaitReady: " << caller << " " << this; mu_.Await(Condition(&is_ready_)); } return is_poisoned_; } void LocalTensorHandleData::BlockingControl::Poison(Status status) { mutex_lock l(mu_); if (is_ready_) { LOG(ERROR) << "Poison can only be called on non-ready handle: " << this; return; } is_poisoned_ = status; is_ready_ = true; } }
#include "tensorflow/core/common_runtime/eager/tensor_handle_data.h" #include <utility> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(TensorHandleData, TensorAttribute) { Tensor t(DT_UINT16, TensorShape({2, 2})); LocalTensorHandleData handle_data(std::move(t)); const tensorflow::Tensor* ret_tensor; TF_EXPECT_OK(handle_data.Tensor(&ret_tensor)); EXPECT_EQ(ret_tensor->dtype(), DT_UINT16); EXPECT_EQ(ret_tensor->dims(), 2); } TEST(TensorHandleData, TensorValueAttribute) { Tensor t(DT_UINT16, TensorShape({2, 2})); LocalTensorHandleData handle_data(std::move(t)); tensorflow::TensorValue tensor_value; TF_EXPECT_OK(handle_data.TensorValue(&tensor_value)); EXPECT_EQ(tensor_value.dtype(), DT_UINT16); } TEST(TensorHandleData, TensorShapeAttribute) { TensorShape shape({2, 2}); Tensor t(DT_UINT16, shape); LocalTensorHandleData handle_data(std::move(t)); tensorflow::TensorShape tensor_shape; TF_EXPECT_OK(handle_data.Shape(&tensor_shape)); EXPECT_EQ(tensor_shape, shape); } TEST(TensorHandleData, NumDimsAttribute) { Tensor t(DT_UINT16, TensorShape({2, 2})); LocalTensorHandleData handle_data(std::move(t)); int num_dims; TF_EXPECT_OK(handle_data.NumDims(&num_dims)); EXPECT_EQ(num_dims, 2); } TEST(TensorHandleData, DimAttribute) { Tensor t(DT_UINT16, TensorShape({2, 3})); LocalTensorHandleData handle_data(std::move(t)); int64_t dim; TF_EXPECT_OK(handle_data.Dim(1, &dim)); EXPECT_EQ(dim, 3); } TEST(TensorHandleData, NumElementsAttribute) { Tensor t(DT_UINT16, TensorShape({2, 3})); LocalTensorHandleData handle_data(std::move(t)); int64_t num_elements; TF_EXPECT_OK(handle_data.NumElements(&num_elements)); EXPECT_EQ(num_elements, 6); } TEST(TensorHandleData, UnprotectReady) { Tensor t(DT_UINT16, TensorShape({2, 3})); LocalTensorHandleData handle_data(std::move(t)); EXPECT_TRUE(handle_data.IsReady()); TF_EXPECT_OK(handle_data.Unprotect()); } TEST(TensorHandleData, UnprotectNotReady) { LocalTensorHandleData handle_data; EXPECT_FALSE(handle_data.IsReady()); EXPECT_THAT(handle_data.Unprotect(), tensorflow::testing::StatusIs(tensorflow::error::INTERNAL)); } TEST(TensorHandleData, DebugString) { Tensor t(DT_UINT16, TensorShape({2, 3})); LocalTensorHandleData handle_data(std::move(t)); EXPECT_THAT(handle_data.DebugString(), ::testing::HasSubstr("Tensor<type: uint16 shape: [2,3]>")); } TEST(TensorHandleData, NonBlockingControlPoisonHandle) { Tensor t(DT_UINT16, TensorShape({2, 3})); LocalTensorHandleData handle_data(std::move(t)); TF_EXPECT_OK(handle_data.IsPoisoned()); tensorflow::Status fake_failure_status(absl::StatusCode::kAborted, "Fake failure."); handle_data.Poison(fake_failure_status); TF_EXPECT_OK(handle_data.IsPoisoned()); } TEST(TensorHandleData, BlockingControlPoisonHandle) { LocalTensorHandleData handle_data; TF_EXPECT_OK(handle_data.IsPoisoned()); tensorflow::Status fake_failure_status(absl::StatusCode::kAborted, "Fake failure."); handle_data.Poison(fake_failure_status); EXPECT_THAT(handle_data.IsPoisoned(), tensorflow::testing::StatusIs( fake_failure_status.code(), std::string(fake_failure_status.message()))); } TEST(TensorHandleData, BlockingControlSetTensor) { Tensor t(DT_UINT16, TensorShape({2, 3})); LocalTensorHandleData handle_data; TF_EXPECT_OK(handle_data.SetTensor(std::move(t))); int64_t num_elements; TF_EXPECT_OK(handle_data.NumElements(&num_elements)); EXPECT_EQ(num_elements, 6); } TEST(TensorHandleData, BlockingControlNotReadyDebugString) { LocalTensorHandleData handle_data; EXPECT_THAT(handle_data.DebugString(), ::testing::HasSubstr("LocalTensorHandleData")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/tensor_handle_data.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/tensor_handle_data_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c83ba0db-1096-4396-a51b-56cd13874e1c
cpp
tensorflow/tensorflow
attr_builder
tensorflow/core/common_runtime/eager/attr_builder.cc
tensorflow/core/common_runtime/eager/attr_builder_test.cc
#include "tensorflow/core/common_runtime/eager/attr_builder.h" #include <memory> #include "absl/status/status.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/fingerprint.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/tensor_slice_reader_cache.h" namespace tensorflow { namespace { mutex g_op_name_to_attr_type_map_lock(LINKER_INITIALIZED); tensorflow::gtl::FlatMap<string, const AttrTypeMap*>* OpNameToAttrTypeMap() { static auto* const m = new tensorflow::gtl::FlatMap<string, const AttrTypeMap*>; return m; } const uint32 kIsList = 1U << 31; AttrTypeMap* DefaultFunctionAttrTypeMap() { AttrTypeMap* map = new AttrTypeMap(); (*map)["executor_type"] = TF_ATTR_STRING; (*map)["config_proto"] = TF_ATTR_STRING; return map; } const AttrTypeMap* GetDefaultFunctionAttrTypeMap() { static const AttrTypeMap* map = DefaultFunctionAttrTypeMap(); return map; } } Status OpDefForOp(const string& op_name, const OpDef** op_def) { const OpRegistrationData* op_reg_data = nullptr; Status s = OpRegistry::Global()->LookUp(op_name, &op_reg_data); if (s.ok()) { *op_def = &op_reg_data->op_def; } return s; } Status AttrTypeMapForOp(const char* op_name, const AttrTypeMap** out, bool* is_function) { { tf_shared_lock l(g_op_name_to_attr_type_map_lock); *is_function = false; *out = gtl::FindPtrOrNull(*OpNameToAttrTypeMap(), op_name); if (*out != nullptr) return absl::OkStatus(); } mutex_lock l(g_op_name_to_attr_type_map_lock); *out = gtl::FindPtrOrNull(*OpNameToAttrTypeMap(), op_name); if (*out != nullptr) return absl::OkStatus(); const OpDef* op_def = nullptr; Status s = OpDefForOp(op_name, &op_def); if (absl::IsNotFound(s)) { *out = GetDefaultFunctionAttrTypeMap(); *is_function = true; return absl::OkStatus(); } else if (!s.ok()) { return s; } std::unique_ptr<AttrTypeMap> m(new AttrTypeMap); for (const auto& attr : op_def->attr()) { string type = attr.type(); const bool is_list = (type.length() > 6 && type.compare(0, 4, "list") == 0); if (is_list) { type = type.substr(5, type.length() - 6); } uint32 t = is_list ? kIsList : 0; if (type == "string") { t |= TF_ATTR_STRING; } else if (type == "int") { t |= TF_ATTR_INT; } else if (type == "float") { t |= TF_ATTR_FLOAT; } else if (type == "bool") { t |= TF_ATTR_BOOL; } else if (type == "type") { t |= TF_ATTR_TYPE; } else if (type == "shape") { t |= TF_ATTR_SHAPE; } else if (type == "tensor") { t |= TF_ATTR_TENSOR; } else if (type == "func") { t |= TF_ATTR_FUNC; } else { return errors::Unimplemented( "TODO(agarwal): Enable support for ops with attributes of type '", type, "'"); } gtl::InsertIfNotPresent(m.get(), attr.name(), t); } *out = m.get(); auto r = OpNameToAttrTypeMap()->emplace(op_name, m.release()); DCHECK(r.second) << "AttrTypeMap already exists for " << op_name; return absl::OkStatus(); } #define DEFINE_GET_ATTR(TYPE, FIELD, ATTR_TYPE) \ template <> \ Status AttrBuilder::Get(StringPiece attr_name, TYPE* value) const { \ auto it = encoded_attrs_.find(string(attr_name)); \ if (it == encoded_attrs_.end()) { \ return errors::NotFound("No attr named '", attr_name, \ "' found in AttrBuilder for ", op_name_); \ } \ attr_tmp_.ParseFromString(it->second); \ TF_RETURN_IF_ERROR(AttrValueHasType(attr_tmp_, ATTR_TYPE)); \ *value = attr_tmp_.FIELD(); \ return OkStatus(); \ } DEFINE_GET_ATTR(float, f, "float"); DEFINE_GET_ATTR(int, i, "int"); DEFINE_GET_ATTR(int64_t, i, "int"); DEFINE_GET_ATTR(bool, b, "bool"); DEFINE_GET_ATTR(tensorflow::DataType, type, "type"); #undef DEFINE_GET_ATTR template <> Status AttrBuilder::Get(StringPiece attr_name, absl::InlinedVector<DataType, 4>* value) const { auto it = encoded_attrs_.find(string(attr_name)); if (it == encoded_attrs_.end()) { return errors::NotFound("No attr named '", attr_name, "' found in AttrBuilder for ", op_name_); } attr_tmp_.ParseFromString(it->second); TF_RETURN_IF_ERROR(AttrValueHasType(attr_tmp_, "list(type)")); for (size_t i = 0; i < attr_tmp_.list().type_size(); i++) { value->push_back(attr_tmp_.list().type(i)); } return absl::OkStatus(); } AttrBuilder& AttrBuilder::NumInputs(int n) { num_inputs_ = n; node_def_finalized_ = false; return *this; } void AttrBuilder::FillAttrValueMap(AttrValueMap* m) const { for (auto& entry : encoded_attrs_) { attr_tmp_.ParseFromString(entry.second); m->insert(AttrValueMap::value_type(entry.first, attr_tmp_)); } const OpDef* op_def = nullptr; Status s = OpDefForOp(op_name().c_str(), &op_def); if (!s.ok()) return; DCHECK(op_def); for (const auto& attr_def : op_def->attr()) { if (attr_def.has_default_value() && !m->count(attr_def.name())) { SetInAttrValueMap(m, attr_def.name(), attr_def.default_value()); } } } namespace { bool ValueMatchesDefault(const OpDef* op_def, const string& attr_name, const AttrValue& attr_value) { for (const OpDef::AttrDef& attr_def : op_def->attr()) { if (attr_def.name() == attr_name && attr_def.has_default_value() && AreAttrValuesEqual(attr_def.default_value(), attr_value)) { return true; } } return false; } } void AttrBuilder::FillAttrValueMapWithoutDefaults(AttrValueMap* m) const { const OpDef* op_def = nullptr; Status s = OpDefForOp(op_name().c_str(), &op_def); for (auto& entry : encoded_attrs_) { attr_tmp_.ParseFromString(entry.second); if (!s.ok() || !ValueMatchesDefault(op_def, entry.first, attr_tmp_)) { m->insert(AttrValueMap::value_type(entry.first, attr_tmp_)); } } } void AttrBuilder::AddAttrIfNotPresent(StringPiece attr_name, const AttrValue& value) { encoded_attrs_.emplace(string(attr_name), value.SerializeAsString()); } const NodeDef& AttrBuilder::BuildNodeDef() { if (node_def_finalized_) return node_def_; node_def_.Clear(); node_def_.set_name(op_name_); node_def_.set_op(op_name_); for (int i = 0; i < num_inputs_; ++i) { node_def_.add_input("dummy_input"); } FillAttrValueMap(node_def_.mutable_attr()); node_def_finalized_ = true; return node_def_; } void AttrBuilder::CopyAttributes(const AttrBuilder& other) { encoded_attrs_.insert(other.encoded_attrs_.begin(), other.encoded_attrs_.end()); } Status AttrTypeByName(const AttrTypeMap& m, const string& attr_name, TF_AttrType* out, unsigned char* is_list) { auto* t = gtl::FindOrNull(m, attr_name); if (t == nullptr) { return errors::InvalidArgument("Attribute '", attr_name, "' does not exist for this operation"); } *out = static_cast<TF_AttrType>(*t & ~kIsList); if (*t & kIsList) { *is_list = 1; } else { *is_list = 0; } return absl::OkStatus(); } namespace { void CombineUnordered(const tensorflow::Fprint128& a, tensorflow::Fprint128* b) { b->low64 += a.low64; b->high64 += a.high64; } inline tensorflow::Fprint128 CacheKeyHelper(StringPiece s, const tensorflow::Fprint128& b) { tensorflow::Fprint128 a = tensorflow::Fingerprint128(s); return FingerprintCat128(a, b); } inline tensorflow::Fprint128 CacheKeyHelper(StringPiece s, uint64 b) { return CacheKeyHelper(s, {b, b}); } } tensorflow::Fprint128 AttrBuilder::CacheKey(const StringPiece device) { if (!cached_cache_key_ || device != device_for_cached_cache_key_) { cached_cache_key_ = BuildCacheKeyForDevice(device); device_for_cached_cache_key_ = string(device); } return *cached_cache_key_; } tensorflow::Fprint128 AttrBuilder::BuildCacheKeyForDevice( const StringPiece device) const { tensorflow::Fprint128 f = tensorflow::Fingerprint128(op_name()); f = tsl::FingerprintCat128(f, tensorflow::Fingerprint128(device)); for (const auto& p : encoded_attrs_) { CombineUnordered( CacheKeyHelper(p.first, tensorflow::Fingerprint128(p.second)), &f); } return f; } void AttrBuilder::GetNameAttrList( tensorflow::NameAttrList* name_and_attrs) const { FillAttrValueMap(name_and_attrs->mutable_attr()); name_and_attrs->set_name(op_name()); } Status AttrBuilder::GetTypeList( absl::string_view attr_name, absl::InlinedVector<DataType, 4>* type_list) const { return Get(attr_name, type_list); } bool AttrBuilder::GetInt(absl::string_view attr_name, int64_t* result) const { Status s = Get(attr_name, result); return s.ok(); } bool AttrBuilder::GetFloat(absl::string_view attr_name, float* result) const { Status s = Get(attr_name, result); return s.ok(); } bool AttrBuilder::GetBool(absl::string_view attr_name, bool* result) const { Status s = Get(attr_name, result); return s.ok(); } bool AttrBuilder::GetType(absl::string_view attr_name, tensorflow::DataType* result) const { Status s = Get(attr_name, result); return s.ok(); } }
#include "tensorflow/core/common_runtime/eager/attr_builder.h" #include <memory> #include <vector> #include "tensorflow/c/c_api.h" #include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { TEST(AttrTypeMap, Lookup) { const AttrTypeMap* m = nullptr; bool is_function = false; Status s = AttrTypeMapForOp("SomeFunctionName", &m, &is_function); EXPECT_TRUE(s.ok()); EXPECT_TRUE(is_function); ASSERT_NE(m->end(), m->find("executor_type")); EXPECT_EQ(TF_ATTR_STRING, m->find("executor_type")->second); ASSERT_NE(m->end(), m->find("config_proto")); EXPECT_EQ(TF_ATTR_STRING, m->find("config_proto")->second); is_function = true; s = AttrTypeMapForOp("MatMul", &m, &is_function); EXPECT_FALSE(is_function); ASSERT_TRUE(s.ok()) << s; TF_AttrType t; unsigned char is_list = 1; s = AttrTypeByName(*m, "ThisAttribyteCannotPossiblyExist", &t, &is_list); EXPECT_FALSE(s.ok()); EXPECT_NE(is_list, 0); s = AttrTypeByName(*m, "transpose_a", &t, &is_list); ASSERT_TRUE(s.ok()) << s; EXPECT_EQ(TF_ATTR_BOOL, t); EXPECT_EQ(is_list, 0); s = AttrTypeMapForOp("Squeeze", &m, &is_function); ASSERT_TRUE(s.ok()) << s; s = AttrTypeByName(*m, "squeeze_dims", &t, &is_list); ASSERT_TRUE(s.ok()) << s; EXPECT_EQ(TF_ATTR_INT, t); EXPECT_NE(is_list, 0); } TEST(AttrTypeMap, CacheKey) { AttrBuilder a("op_name"); a.NumInputs(2); a.Set("T", TF_FLOAT); tensorflow::Fprint128 cache_key = a.CacheKey("cpu:0"); ASSERT_FALSE(cache_key == a.CacheKey("cpu:1")); ASSERT_TRUE(cache_key == a.CacheKey("cpu:0")); a.Set("x", 1.0); ASSERT_FALSE(cache_key == a.CacheKey("cpu:0")); } string ToString(const AttrValueMap& m) { std::vector<string> strs; for (const auto& e : m) { strs.push_back(absl::StrCat(e.first, " -> ", e.second.DebugString())); } return absl::StrJoin(strs, "\n"); } TEST(AttrBuilder, FillAttrValueMapWithoutDefaults_MatMul) { AttrBuilder a("MatMul"); a.Set("transpose_a", true); a.Set("transpose_b", false); AttrValueMap m; a.FillAttrValueMapWithoutDefaults(&m); ASSERT_EQ(1, m.size()) << ToString(m); ASSERT_EQ(true, m["transpose_a"].b()) << ToString(m); } TEST(AttrBuilder, FillAttrValueMapWithoutDefaults_UnknownOp) { AttrBuilder a("SomeUnknownOp"); a.Set("transpose_a", true); a.Set("transpose_b", false); AttrValueMap m; a.FillAttrValueMapWithoutDefaults(&m); ASSERT_EQ(2, m.size()) << ToString(m); ASSERT_EQ(true, m["transpose_a"].b()) << ToString(m); ASSERT_EQ(false, m["transpose_b"].b()) << ToString(m); } TEST(AttrBuilder, GetTypeAndNumber) { AttrBuilder a("Concat"); a.Set("T", DT_FLOAT); a.Set("N", 2); DataType type; ASSERT_TRUE(a.GetType("T", &type)); ASSERT_EQ(DT_FLOAT, type); int64_t num; ASSERT_TRUE(a.GetInt("N", &num)); ASSERT_EQ(2, num); } TEST(AttrBuilder, GetTypeList) { AttrBuilder a("IdentityN"); a.Set("T", absl::Span<const DataType>({DT_FLOAT, DT_INT64})); absl::InlinedVector<DataType, 4> type_list; Status s = a.GetTypeList("T", &type_list); ASSERT_TRUE(s.ok()) << s; ASSERT_EQ(2, type_list.size()) << type_list.size(); ASSERT_EQ(DT_FLOAT, type_list[0]) << type_list[0]; ASSERT_EQ(DT_INT64, type_list[1]) << type_list[1]; } TEST(AttrBuilder, BuildNodeDef) { AttrBuilder a("MatMul"); a.Set("transpose_a", true); a.Set("transpose_b", false); a.NumInputs(2); const NodeDef& node_def = a.BuildNodeDef(); auto attrs = node_def.attr(); EXPECT_EQ(node_def.name(), "MatMul"); ASSERT_NE(attrs.find("transpose_a"), attrs.end()); EXPECT_EQ(attrs.find("transpose_a")->second.b(), true); ASSERT_NE(attrs.find("transpose_b"), attrs.end()); EXPECT_EQ(attrs.find("transpose_b")->second.b(), false); EXPECT_EQ(node_def.input_size(), 2); } TEST(AttrBuilder, BuildNodeDef_Modified) { AttrBuilder a("MatMul"); a.Set("transpose_a", true); a.Set("transpose_b", false); a.Set("grad_x", true); a.Set("grad_y", false); a.NumInputs(2); const NodeDef& node_def = a.BuildNodeDef(); EXPECT_EQ(node_def.attr().size(), 6); a.Set("new_attr", 15); a.NumInputs(3); const NodeDef& node_def2 = a.BuildNodeDef(); auto attrs = node_def2.attr(); EXPECT_EQ(attrs.size(), 7); ASSERT_NE(attrs.find("transpose_a"), attrs.end()); EXPECT_EQ(attrs.find("transpose_a")->second.b(), true); ASSERT_NE(attrs.find("transpose_b"), attrs.end()); EXPECT_EQ(attrs.find("transpose_b")->second.b(), false); ASSERT_NE(attrs.find("grad_x"), attrs.end()); EXPECT_EQ(attrs.find("grad_x")->second.b(), true); ASSERT_NE(attrs.find("grad_y"), attrs.end()); EXPECT_EQ(attrs.find("grad_y")->second.b(), false); ASSERT_NE(attrs.find("new_attr"), attrs.end()); EXPECT_EQ(attrs.find("new_attr")->second.i(), 15); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/attr_builder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/attr_builder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7801b87e-4f22-4f70-8c3c-dc16e2b87f00
cpp
tensorflow/tensorflow
eager_operation
tensorflow/core/common_runtime/eager/eager_operation.cc
tensorflow/core/common_runtime/eager/eager_operation_test.cc
#include "tensorflow/core/common_runtime/eager/eager_operation.h" #include <memory> #include <string> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "tensorflow/c/eager/abstract_operation.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "tensorflow/c/tf_tensor_internal.h" #include "tensorflow/core/common_runtime/eager/attr_builder.h" #include "tensorflow/core/common_runtime/eager/custom_device.h" #include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/platform/casts.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/host_info.h" namespace tensorflow { void EagerOperation::Clear() { for (ImmediateExecutionTensorHandle* h : inputs_) { h->Unref(); } inputs_.clear(); custom_device_tensor_handles_count_ = 0; ClearInferenceState(); } Status EagerOperation::SetAttrValue(const char* attr_name, const AttrValue& value) { MutableAttrs()->Set(attr_name, value); return absl::OkStatus(); } Status EagerOperation::SetAttrString(const char* attr_name, const char* data, size_t length) { MutableAttrs()->Set(attr_name, StringPiece(data, length)); return absl::OkStatus(); } Status EagerOperation::SetAttrInt(const char* attr_name, int64_t value) { MutableAttrs()->Set(attr_name, static_cast<int64_t>(value)); return absl::OkStatus(); } Status EagerOperation::SetAttrFloat(const char* attr_name, float value) { MutableAttrs()->Set(attr_name, value); return absl::OkStatus(); } Status EagerOperation::SetAttrBool(const char* attr_name, bool value) { MutableAttrs()->Set(attr_name, value); return absl::OkStatus(); } Status EagerOperation::SetAttrType(const char* attr_name, DataType value) { MutableAttrs()->Set(attr_name, value); return absl::OkStatus(); } Status EagerOperation::SetAttrShape(const char* attr_name, const int64_t* dims, const int num_dims) { if (num_dims > TensorShape::MaxDimensions()) { return errors::InvalidArgument("Value specified for `", attr_name, "` has ", num_dims, " dimensions which is over the limit of ", TensorShape::MaxDimensions(), "."); } TensorShapeProto proto; if (num_dims < 0) { proto.set_unknown_rank(true); } else { for (int d = 0; d < num_dims; ++d) { proto.add_dim()->set_size(dims[d]); } } MutableAttrs()->Set(attr_name, proto); return absl::OkStatus(); } Status EagerOperation::SetAttrFunction(const char* attr_name, const AbstractOperation* value) { AttrValue attr_value; NameAttrList* func = attr_value.mutable_func(); func->set_name(value->Name()); auto* value_operation = down_cast<const EagerOperation*>(value); value_operation->Attrs().FillAttrValueMap(func->mutable_attr()); MutableAttrs()->Set(attr_name, attr_value); return absl::OkStatus(); } Status EagerOperation::SetAttrFunctionName(const char* attr_name, const char* data, size_t length) { AttrValue attr_value; NameAttrList* func = attr_value.mutable_func(); func->set_name(data, length); MutableAttrs()->Set(attr_name, attr_value); return absl::OkStatus(); } Status EagerOperation::SetAttrTensor(const char* attr_name, AbstractTensorInterface* tensor) { Tensor t = TensorFromInterface(tensor); MutableAttrs()->Set(attr_name, t); return absl::OkStatus(); } Status EagerOperation::SetAttrStringList(const char* attr_name, const void* const* values, const size_t* lengths, int num_values) { std::vector<StringPiece> v(num_values); for (int i = 0; i < num_values; ++i) { v[i] = StringPiece(static_cast<const char*>(values[i]), lengths[i]); } MutableAttrs()->Set(attr_name, v); return absl::OkStatus(); } Status EagerOperation::SetAttrFloatList(const char* attr_name, const float* values, int num_values) { MutableAttrs()->Set(attr_name, gtl::ArraySlice<const float>(values, num_values)); return absl::OkStatus(); } Status EagerOperation::SetAttrIntList(const char* attr_name, const int64_t* values, int num_values) { MutableAttrs()->Set( attr_name, gtl::ArraySlice<const int64_t>( reinterpret_cast<const int64_t*>(values), num_values)); return absl::OkStatus(); } Status EagerOperation::SetAttrTypeList(const char* attr_name, const DataType* values, int num_values) { MutableAttrs()->Set(attr_name, gtl::ArraySlice<const DataType>(values, num_values)); return absl::OkStatus(); } Status EagerOperation::SetAttrBoolList(const char* attr_name, const unsigned char* values, int num_values) { std::unique_ptr<bool[]> b(new bool[num_values]); for (int i = 0; i < num_values; ++i) { b[i] = values[i]; } MutableAttrs()->Set(attr_name, gtl::ArraySlice<const bool>(b.get(), num_values)); return absl::OkStatus(); } Status EagerOperation::SetAttrShapeList(const char* attr_name, const int64_t** dims, const int* num_dims, int num_values) { std::unique_ptr<TensorShapeProto[]> proto(new TensorShapeProto[num_values]); for (int i = 0; i < num_values; ++i) { const auto num_dims_i = num_dims[i]; if (num_dims_i > TensorShape::MaxDimensions()) { return errors::InvalidArgument( strings::StrCat("Value specified for `", attr_name, "` has ", num_dims_i, " dimensions which is over the limit of ", TensorShape::MaxDimensions(), ".")); } if (num_dims_i < 0) { proto[i].set_unknown_rank(true); } else { const int64_t* dims_i = dims[i]; auto proto_i = &proto[i]; for (int d = 0; d < num_dims_i; ++d) { proto_i->add_dim()->set_size(dims_i[d]); } } } MutableAttrs()->Set( attr_name, gtl::ArraySlice<TensorShapeProto>(proto.get(), num_values)); return absl::OkStatus(); } Status EagerOperation::SetAttrFunctionList( const char* attr_name, absl::Span<const AbstractOperation*> values) { size_t num_values = values.size(); std::unique_ptr<NameAttrList[]> funcs(new NameAttrList[num_values]); for (int i = 0; i < num_values; i++) { auto* value_operation = down_cast<const EagerOperation*>(values[i]); funcs[i].set_name(value_operation->Name()); value_operation->Attrs().FillAttrValueMap(funcs[i].mutable_attr()); } MutableAttrs()->Set( attr_name, gtl::ArraySlice<const NameAttrList>(funcs.get(), num_values)); return absl::OkStatus(); } const OpDef* EagerOperation::GetOpDef(Status* status) { const tensorflow::OpDef* op_def = OpDef(); if (op_def) return op_def; *status = OpDefForOp(Name(), &op_def); return op_def; } Status EagerOperation::InputLength(const char* input_name, int* length) { Status status; const tensorflow::OpDef* op_def = GetOpDef(&status); if (!status.ok()) { return status; } AttrValueMap attrs; Attrs().FillAttrValueMap(&attrs); NameRangeMap name_ranges; TF_RETURN_IF_ERROR( NameRangesForNode(AttrSlice(&attrs), *op_def, &name_ranges, nullptr)); auto iter = name_ranges.find(input_name); if (iter == name_ranges.end()) { return errors::InvalidArgument("Input '", input_name, "' not found"); } *length = iter->second.second - iter->second.first; return absl::OkStatus(); } absl::Span<ImmediateExecutionTensorHandle* const> EagerOperation::GetInputs() const { return absl::MakeSpan( reinterpret_cast<ImmediateExecutionTensorHandle* const*>(inputs_.data()), inputs_.size()); } Status EagerOperation::OutputLength(const char* output_name, int* length) { Status status; const tensorflow::OpDef* op_def = GetOpDef(&status); if (!status.ok()) { return status; } AttrValueMap attrs; Attrs().FillAttrValueMap(&attrs); NameRangeMap name_ranges; TF_RETURN_IF_ERROR( NameRangesForNode(AttrSlice(&attrs), *op_def, nullptr, &name_ranges)); auto iter = name_ranges.find(output_name); if (iter == name_ranges.end()) { return errors::InvalidArgument("Output '", output_name, "' not found"); } *length = iter->second.second - iter->second.first; return absl::OkStatus(); } Status EagerOperation::AddInput(AbstractTensorHandle* input) { ImmediateExecutionTensorHandle* h = down_cast<ImmediateExecutionTensorHandle*>(input); if (CustomDeviceTensorHandle::classof(h)) { custom_device_tensor_handles_count_++; } AddTensorHandle(h); return MaybeInferSingleInputAttrs(h); } Status EagerOperation::AddInputList( absl::Span<AbstractTensorHandle* const> inputs) { for (auto& input : inputs) { if (CustomDeviceTensorHandle::classof(input)) { custom_device_tensor_handles_count_++; } ImmediateExecutionTensorHandle* h = down_cast<ImmediateExecutionTensorHandle*>(input); AddTensorHandle(h); } return InferInputListAttrs(inputs.size()); } Status EagerOperation::SetInput(size_t index, ImmediateExecutionTensorHandle* input) { if (index >= inputs_.size()) { return errors::InvalidArgument("Index >= inputs.size: %d >= %d", index, inputs_.size()); } auto* previous = inputs_[index]; if (CustomDeviceTensorHandle::classof(previous)) { custom_device_tensor_handles_count_--; } if (CustomDeviceTensorHandle::classof(input)) { custom_device_tensor_handles_count_++; } input->Ref(); inputs_[index] = input; previous->Unref(); return absl::OkStatus(); } Status EagerOperation::Reset( const char* op, const char* device_name, bool remote, EagerExecutor* executor, const absl::optional<EagerFunctionParams> eager_func_params) { DCHECK(inputs_.empty()); ClearInferenceState(); bool is_function = false; TF_RETURN_IF_ERROR(AttrTypeMapForOp(op, &attr_types_, &is_function)); colocation_exempt_ = is_function; if (!is_function) { const auto& exempt_ops = InputColocationExemptionRegistry::Global()->Get(); colocation_exempt_ = exempt_ops.find(op) != exempt_ops.end(); TF_RETURN_IF_ERROR(OpDefForOp(op, &op_def_)); } else if (!remote) { const FunctionLibraryDefinition* func_lib_def; if (eager_func_params.has_value() && eager_func_params.value().func_lib_def_override != nullptr) { func_lib_def = eager_func_params.value().func_lib_def_override; } else { func_lib_def = ctx_.FuncLibDef(); } if (func_lib_def->Find(op) == nullptr) { return absl::NotFoundError(absl::StrCat( "'", op, "' is neither a type of a primitive operation nor a name " "of a function registered in binary running on ", port::Hostname(), ". Make sure the operation or function is " "registered in the binary running in this process.")); } } attrs_.Reset(op); stack_trace_.reset(); is_function_ = is_function; cancellation_manager_ = nullptr; executor_ = executor ? executor : &ctx_.Executor(); if (eager_func_params.has_value()) { eager_func_params_ = eager_func_params; } op_name_ = op; return SetDeviceName(device_name); } Status EagerOperation::MaybeInferSingleInputAttrs( ImmediateExecutionTensorHandle* handle) { if (!op_def_) return absl::OkStatus(); const auto& input_def = op_def_->input_arg(inference_arg_idx_++); if (!input_def.number_attr().empty() || !input_def.type_list_attr().empty()) { ClearInferenceState(); return absl::OkStatus(); } const std::string& type_attr = input_def.type_attr(); if (!type_attr.empty() && inference_attrs_.find(type_attr) == inference_attrs_.end()) { MutableAttrs()->Set(type_attr, handle->DataType()); inference_attrs_.insert(type_attr); } return absl::OkStatus(); } void EagerOperation::InferSingleTypeInputListAttrs( const OpDef::ArgDef& input_def, const DataType dtype, int num_inputs) { if (inference_attrs_.find(input_def.number_attr()) == inference_attrs_.end()) { MutableAttrs()->Set(input_def.number_attr(), num_inputs); inference_attrs_.insert(input_def.number_attr()); } if (inference_attrs_.find(input_def.type_attr()) == inference_attrs_.end()) { MutableAttrs()->Set(input_def.type_attr(), dtype); inference_attrs_.insert(input_def.type_attr()); } } void EagerOperation::InferMixedTypeInputListAttrs( const OpDef::ArgDef& input_def, const std::vector<DataType>& dtypes) { if (inference_attrs_.find(input_def.type_list_attr()) == inference_attrs_.end()) { MutableAttrs()->Set( input_def.type_list_attr(), gtl::ArraySlice<const DataType>(dtypes.data(), dtypes.size())); inference_attrs_.insert(input_def.type_list_attr()); } } Status EagerOperation::InferInputListAttrs(int num_inputs) { if (!op_def_) return absl::OkStatus(); int start = inference_arg_idx_; const auto& input_def = op_def_->input_arg(inference_arg_idx_++); if (!input_def.type_list_attr().empty()) { std::vector<DataType> dtypes(num_inputs); for (int i = 0; i < num_inputs; ++i) { dtypes[i] = inputs_[start + i]->DataType(); } InferMixedTypeInputListAttrs(input_def, dtypes); } else if (!input_def.type_attr().empty() && !input_def.number_attr().empty()) { InferSingleTypeInputListAttrs(input_def, inputs_[start]->DataType(), num_inputs); } else if (!input_def.number_attr().empty()) { if (inference_attrs_.find(input_def.number_attr()) == inference_attrs_.end()) { MutableAttrs()->Set(input_def.number_attr(), num_inputs); inference_attrs_.insert(input_def.number_attr()); } } else { return errors::InvalidArgument("Invalid input list definition"); } return absl::OkStatus(); } Status EagerOperation::TensorHandleInputs( const absl::InlinedVector<TensorHandle*, 4>** inputs) const { if (TF_PREDICT_TRUE(!HasCustomDeviceInput())) { *inputs = reinterpret_cast<const absl::InlinedVector<TensorHandle*, 4>*>( &inputs_); return absl::OkStatus(); } else { return errors::Internal("The operation unexpectedly had custom devices."); } } Status EagerOperation::MutableTensorHandleInputs( absl::InlinedVector<TensorHandle*, 4>** inputs) { if (TF_PREDICT_TRUE(!HasCustomDeviceInput())) { *inputs = reinterpret_cast<absl::InlinedVector<TensorHandle*, 4>*>(&inputs_); return absl::OkStatus(); } else { return errors::Internal("The operation unexpectedly had custom devices."); } } Status EagerOperation::SetDeviceName(const char* c_name) { string name(c_name != nullptr ? c_name : ""); if (name != last_set_device_name_) { if (!DeviceNameUtils::ParseFullName(name, &device_parsed_name_)) { return errors::InvalidArgument("Malformed device specification '", name, "' in eager op: ", DebugString()); } last_set_device_name_ = name; device_name_ = DeviceNameUtils::ParsedNameToString(device_parsed_name_); device_ = kVariantDeviceNull; } return absl::OkStatus(); } bool EagerOperation::IsLocal() const { if (ctx_.remote_device_mgr() == nullptr) return true; if (!device_parsed_name_.has_job && !device_parsed_name_.has_replica && !device_parsed_name_.has_task) return true; auto& host_cpu_name = ctx_.HostCPU()->parsed_name(); return device_parsed_name_.job == host_cpu_name.job && device_parsed_name_.replica == host_cpu_name.replica && device_parsed_name_.task == host_cpu_name.task; } string VariantDeviceDebugString(VariantDevice device) { if (device == kVariantDeviceNull) { return "[]"; } else if (std::holds_alternative<CustomDevice*>(device)) { return std::get<CustomDevice*>(device)->name(); } else { return std::get<Device*>(device)->DebugString(); } } const AbstractOpAttrs* EagerOperation::GetOpAttrs() const { return &attrs_; } void EagerOperation::AddAttrs(const AbstractOpAttrs* op_attrs) { attrs_.CopyAttributes(*(down_cast<const AttrBuilder*>(op_attrs))); } string EagerOperation::DebugString() const { string out; VLOG(1) << "EagerOperation::DebugString() over " << this; strings::StrAppend(&out, "Name: ", Name(), "\n"); strings::StrAppend(&out, "Device Name: [", device_name_, "]\n"); strings::StrAppend(&out, "Device: ", VariantDeviceDebugString(Device()), "\n"); for (const auto& input : inputs_) { VLOG(1) << "Input ptr: " << input; strings::StrAppend(&out, "Input: ", input->DebugString(), "\n"); } NodeDef ndef; Attrs().FillAttrValueMap(ndef.mutable_attr()); strings::StrAppend(&out, "Attrs: ", ndef.DebugString(), "\n"); return out; } void EagerOperation::AddTensorHandle(ImmediateExecutionTensorHandle* h) { h->Ref(); inputs_.push_back(h); attrs_.NumInputs(static_cast<int>(inputs_.size())); } }
#include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(EagerOperationTest, DeviceName) { StaticDeviceMgr device_mgr(DeviceFactory::NewDevice( "CPU", {}, "/job:localhost/replica:0/task:0/device:CPU:0")); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); auto op = new EagerOperation(ctx); TF_ASSERT_OK(op->SetDeviceName("/device:DONTHAVE")); EXPECT_EQ("/device:DONTHAVE:*", op->DeviceName()); TF_ASSERT_OK(op->SetDeviceName("")); EXPECT_EQ("", op->DeviceName()); TF_ASSERT_OK(op->SetDeviceName("/job:localhost")); EXPECT_EQ("/job:localhost", op->DeviceName()); EXPECT_NE(absl::OkStatus(), op->SetDeviceName("/not/a/valid/name")); delete op; ctx->Unref(); } TEST(EagerOperationTest, EagerFunctionParamsAndStepId) { StaticDeviceMgr device_mgr(DeviceFactory::NewDevice( "CPU", {}, "/job:localhost/replica:0/task:0/device:CPU:0")); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); tensorflow::FunctionDef function_def; CHECK(tensorflow::protobuf::TextFormat::ParseFromString( " signature {" " name: 'DummyFunction'" " }", &function_def)); TF_ASSERT_OK(ctx->AddFunctionDef(function_def)); auto op = new EagerOperation(ctx); EXPECT_FALSE(op->eager_func_params().has_value()); string device_name = "/job:localhost/replica:0/task:0/device:CPU:0"; TF_ASSERT_OK(op->SetDeviceName(device_name.c_str())); TF_ASSERT_OK(op->Reset("DummyFunction", device_name.c_str())); op->SetStepId(255); EXPECT_EQ(op->eager_func_params()->step_id.value(), 255); delete op; ctx->Unref(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/eager_operation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/eager_operation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
55dc148d-bb3c-4c44-8572-b7c721de9c6b
cpp
tensorflow/tensorflow
update_api_def
tensorflow/core/api_def/update_api_def.cc
tensorflow/core/api_def/update_api_def_test.cc
#include "tensorflow/core/api_def/update_api_def.h" #include <ctype.h> #include <algorithm> #include <string> #include <vector> #include "tensorflow/core/api_def/excluded_ops.h" #include "tensorflow/core/framework/api_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace { constexpr char kApiDefFileFormat[] = "api_def_%s.pbtxt"; constexpr char kDocStart[] = ".Doc(R\"doc("; constexpr char kDocEnd[] = ")doc\")"; void FillBaseApiDef(ApiDef* api_def, const OpDef& op) { api_def->set_graph_op_name(op.name()); for (auto& input_arg : op.input_arg()) { if (!input_arg.description().empty()) { auto* api_def_in_arg = api_def->add_in_arg(); api_def_in_arg->set_name(input_arg.name()); api_def_in_arg->set_description(input_arg.description()); } } for (auto& output_arg : op.output_arg()) { if (!output_arg.description().empty()) { auto* api_def_out_arg = api_def->add_out_arg(); api_def_out_arg->set_name(output_arg.name()); api_def_out_arg->set_description(output_arg.description()); } } for (auto& attr : op.attr()) { if (!attr.description().empty()) { auto* api_def_attr = api_def->add_attr(); api_def_attr->set_name(attr.name()); api_def_attr->set_description(attr.description()); } } api_def->set_summary(op.summary()); api_def->set_description(op.description()); } bool OpHasDocs(const OpDef& op) { if (!op.summary().empty() || !op.description().empty()) { return true; } for (const auto& arg : op.input_arg()) { if (!arg.description().empty()) { return true; } } for (const auto& arg : op.output_arg()) { if (!arg.description().empty()) { return true; } } for (const auto& attr : op.attr()) { if (!attr.description().empty()) { return true; } } return false; } bool CheckDocsMatch(const OpDef& op1, const OpDef& op2) { if (op1.summary() != op2.summary() || op1.description() != op2.description() || op1.input_arg_size() != op2.input_arg_size() || op1.output_arg_size() != op2.output_arg_size() || op1.attr_size() != op2.attr_size()) { return false; } for (int i = 0; i < op1.input_arg_size(); ++i) { if (op1.input_arg(i).description() != op2.input_arg(i).description()) { return false; } } for (int i = 0; i < op1.output_arg_size(); ++i) { if (op1.output_arg(i).description() != op2.output_arg(i).description()) { return false; } } for (int i = 0; i < op1.attr_size(); ++i) { if (op1.attr(i).description() != op2.attr(i).description()) { return false; } } return true; } bool ValidateOpDocs(const OpDef& op, const string& doc) { OpDefBuilder b(op.name()); for (const auto& arg : op.input_arg()) { b.Input(arg.name() + ":string"); } for (const auto& arg : op.output_arg()) { b.Output(arg.name() + ":string"); } for (const auto& attr : op.attr()) { b.Attr(attr.name() + ":string"); } b.Doc(doc); OpRegistrationData op_reg_data; TF_CHECK_OK(b.Finalize(&op_reg_data)); return CheckDocsMatch(op, op_reg_data.op_def); } } string RemoveDoc(const OpDef& op, const string& file_contents, size_t start_location) { const auto doc_start_location = file_contents.find(kDocStart, start_location); const string format_error = strings::Printf( "Could not find %s doc for removal. Make sure the doc is defined with " "'%s' prefix and '%s' suffix or remove the doc manually.", op.name().c_str(), kDocStart, kDocEnd); if (doc_start_location == string::npos) { std::cerr << format_error << std::endl; LOG(ERROR) << "Didn't find doc start"; return file_contents; } const auto doc_end_location = file_contents.find(kDocEnd, doc_start_location); if (doc_end_location == string::npos) { LOG(ERROR) << "Didn't find doc start"; std::cerr << format_error << std::endl; return file_contents; } const auto doc_start_size = sizeof(kDocStart) - 1; string doc_text = file_contents.substr( doc_start_location + doc_start_size, doc_end_location - doc_start_location - doc_start_size); if (!ValidateOpDocs(op, doc_text)) { LOG(ERROR) << "Invalid doc: " << doc_text; std::cerr << format_error << std::endl; return file_contents; } auto before_doc = file_contents.substr(0, doc_start_location); absl::StripTrailingAsciiWhitespace(&before_doc); return before_doc + file_contents.substr(doc_end_location + sizeof(kDocEnd) - 1); } namespace { void RemoveDocs(const std::vector<const OpDef*>& ops, const std::vector<string>& op_files) { std::set<string> processed_ops; for (const auto& file : op_files) { string file_contents; bool file_contents_updated = false; TF_CHECK_OK(ReadFileToString(Env::Default(), file, &file_contents)); for (auto op : ops) { if (processed_ops.find(op->name()) != processed_ops.end()) { continue; } string register_call = strings::Printf("REGISTER_OP(\"%s\")", op->name().c_str()); const auto register_call_location = file_contents.find(register_call); if (register_call_location == string::npos) { continue; } std::cout << "Removing .Doc call for " << op->name() << " from " << file << "." << std::endl; file_contents = RemoveDoc(*op, file_contents, register_call_location); file_contents_updated = true; processed_ops.insert(op->name()); } if (file_contents_updated) { TF_CHECK_OK(WriteStringToFile(Env::Default(), file, file_contents)) << "Could not remove .Doc calls in " << file << ". Make sure the file is writable."; } } } } string CreateApiDef(const OpDef& op) { ApiDefs api_defs; FillBaseApiDef(api_defs.add_op(), op); const std::vector<string> multi_line_fields = {"description"}; std::string new_api_defs_str; ::tensorflow::protobuf::TextFormat::PrintToString(api_defs, &new_api_defs_str); return PBTxtToMultiline(new_api_defs_str, multi_line_fields); } void CreateApiDefs(const OpList& ops, const string& api_def_dir, const string& op_file_pattern) { auto* excluded_ops = GetExcludedOps(); std::vector<const OpDef*> new_ops_with_docs; for (const auto& op : ops.op()) { if (excluded_ops->find(op.name()) != excluded_ops->end()) { continue; } string file_path = io::JoinPath(tensorflow::string(api_def_dir), kApiDefFileFormat); file_path = strings::Printf(file_path.c_str(), op.name().c_str()); if (!Env::Default()->FileExists(file_path).ok()) { std::cout << "Creating ApiDef file " << file_path << std::endl; const auto& api_def_text = CreateApiDef(op); TF_CHECK_OK(WriteStringToFile(Env::Default(), file_path, api_def_text)); if (OpHasDocs(op)) { new_ops_with_docs.push_back(&op); } } } if (!op_file_pattern.empty()) { std::vector<string> op_files; TF_CHECK_OK(Env::Default()->GetMatchingPaths(op_file_pattern, &op_files)); RemoveDocs(new_ops_with_docs, op_files); } } }
#include "tensorflow/core/api_def/update_api_def.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(UpdateApiDefTest, TestRemoveDocSingleOp) { const string op_def_text = R"opdef( REGISTER_OP("Op1") .Input("a: T") .Output("output: T") .Attr("b: type") .SetShapeFn(shape_inference::UnchangedShape); )opdef"; const string op_def_text_with_doc = R"opdef( REGISTER_OP("Op1") .Input("a: T") .Output("output: T") .Attr("b: type") .SetShapeFn(shape_inference::UnchangedShape) .Doc(R"doc( Summary for Op1. Description for Op1. b : Description for b. a: Description for a. output: Description for output. )doc"); )opdef"; const string op_text = R"( name: "Op1" input_arg { name: "a" description: "Description for a." } output_arg { name: "output" description: "Description for output." } attr { name: "b" description: "Description for b." } summary: "Summary for Op1." description: "Description\nfor Op1." )"; OpDef op; protobuf::TextFormat::ParseFromString(op_text, &op); EXPECT_EQ(op_def_text, RemoveDoc(op, op_def_text_with_doc, 0 )); } TEST(UpdateApiDefTest, TestRemoveDocMultipleOps) { const string op_def_text = R"opdef( REGISTER_OP("Op1") .Input("a: T") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Op2") .Input("a: T") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Op3") .Input("c: T") .SetShapeFn(shape_inference::UnchangedShape); )opdef"; const string op_def_text_with_doc = R"opdef( REGISTER_OP("Op1") .Input("a: T") .Doc(R"doc( Summary for Op1. )doc") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Op2") .Input("a: T") .SetShapeFn(shape_inference::UnchangedShape) .Doc(R"doc( Summary for Op2. )doc"); REGISTER_OP("Op3") .Input("c: T") .SetShapeFn(shape_inference::UnchangedShape) .Doc(R"doc( Summary for Op3. )doc"); )opdef"; const string op1_text = R"( name: "Op1" input_arg { name: "a" } summary: "Summary for Op1." )"; const string op2_text = R"( name: "Op2" input_arg { name: "a" } summary: "Summary for Op2." )"; const string op3_text = R"( name: "Op3" input_arg { name: "c" } summary: "Summary for Op3." )"; OpDef op1, op2, op3; protobuf::TextFormat::ParseFromString(op1_text, &op1); protobuf::TextFormat::ParseFromString(op2_text, &op2); protobuf::TextFormat::ParseFromString(op3_text, &op3); string updated_text = RemoveDoc(op2, op_def_text_with_doc, op_def_text_with_doc.find("Op2") ); EXPECT_EQ(string::npos, updated_text.find("Summary for Op2")); EXPECT_NE(string::npos, updated_text.find("Summary for Op1")); EXPECT_NE(string::npos, updated_text.find("Summary for Op3")); updated_text = RemoveDoc(op3, updated_text, updated_text.find("Op3") ); updated_text = RemoveDoc(op1, updated_text, updated_text.find("Op1") ); EXPECT_EQ(op_def_text, updated_text); } TEST(UpdateApiDefTest, TestCreateApiDef) { const string op_text = R"( name: "Op1" input_arg { name: "a" description: "Description for a." } output_arg { name: "output" description: "Description for output." } attr { name: "b" description: "Description for b." } summary: "Summary for Op1." description: "Description\nfor Op1." )"; OpDef op; protobuf::TextFormat::ParseFromString(op_text, &op); const string expected_api_def = R"(op { graph_op_name: "Op1" in_arg { name: "a" description: <<END Description for a. END } out_arg { name: "output" description: <<END Description for output. END } attr { name: "b" description: <<END Description for b. END } summary: "Summary for Op1." description: <<END Description for Op1. END } )"; EXPECT_EQ(expected_api_def, CreateApiDef(op)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/api_def/update_api_def.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/api_def/update_api_def_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f86148fb-f654-4d7d-b45a-5e7e21319870
cpp
tensorflow/tensorflow
runtime_client
tensorflow/core/function/runtime_client/runtime_client.cc
tensorflow/core/function/runtime_client/runtime_client_test.cc
#include "tensorflow/core/function/runtime_client/runtime_client.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Pass/PassManager.h" #include "mlir/Pass/PassRegistry.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/immediate_execution_context.h" #include "tensorflow/c/eager/immediate_execution_operation.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #if !defined(DISABLE_MLIR) #include "tensorflow/compiler/mlir/python/mlir.h" #endif #include "tensorflow/compiler/mlir/tensorflow/translate/import_model.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/ir/importexport/graphdef_export.h" #include "tensorflow/core/ir/importexport/graphdef_import.h" #include "tensorflow/core/ir/ops.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace core { namespace function { EagerContext& GlobalEagerContext() { static EagerContext* global_ctx = []() { SessionOptions opts; std::vector<std::unique_ptr<Device>> devices; Status&& device_init_status = DeviceFactory::AddDevices( opts, "/job:localhost/replica:0/task:0", &devices); CHECK(device_init_status.ok()); return new EagerContext( opts, ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, new DynamicDeviceMgr(std::move(devices)), true, nullptr, nullptr, nullptr, true); }(); return *global_ctx; } EagerContext& GlobalPythonEagerContext() { EagerContext* ctx = reinterpret_cast<EagerContext*>(GetCEagerContext()); DCHECK(ctx) << "The Python eager context must be initialized first."; return *ctx; } absl::StatusOr<FunctionDef> Runtime::GetFunctionProto(StringPiece name) { EagerContext& ctx = this->eager_ctx_; const FunctionDef* f = ctx.FindFunctionDef(std::string(name)); if (f == nullptr) { return Status(absl::StatusCode::kInvalidArgument, absl::StrCat("Could not find an attribute for key ", name)); } return *f; } Status Runtime::CreateFunction(const FunctionDef& fdef) { const auto& fname = fdef.signature().name(); if (this->eager_ctx_.FindFunctionByName(fname)) { TF_RETURN_WITH_CONTEXT_IF_ERROR(this->eager_ctx_.RemoveFunction(fname), "removing function ", fname); } return this->eager_ctx_.AddFunctionDef(fdef); } Status Runtime::CreateFunction(OpaqueTfgGraphFuncOp* fop) { mlir::tfg::GraphFuncOp fop_proper = *reinterpret_cast<mlir::tfg::GraphFuncOp*>(fop); return mlir::tfg::ConvertToFunctionDef(fop_proper, *this->eager_ctx_.FuncLibDef()); } Status Runtime::CreateFunction(OpaqueTfFuncOp* fop) { mlir::func::FuncOp fop_proper = *reinterpret_cast<mlir::func::FuncOp*>(fop); const auto& fname = fop_proper.getName().str(); GraphExportConfig config; FunctionDef fdef; TF_RETURN_WITH_CONTEXT_IF_ERROR( tf2xla::v2::ConvertMlirFunctionToFunctionLibraryDef(fop_proper, config, &fdef), "creating function ", fname); return CreateFunction(fdef); } Status Runtime::TransformFunction(StringPiece name, StringPiece pipeline_name, Dialect dialect) { mlir::MLIRContext ctx; mlir::PassManager pm(&ctx); std::string error; llvm::raw_string_ostream error_stream(error); if (mlir::failed(mlir::parsePassPipeline(std::string(pipeline_name), pm, error_stream))) { return Status(absl::StatusCode::kInvalidArgument, absl::StrCat("locating pass pipeline ", pipeline_name, ": ", error_stream.str())); } auto fn = GetFunctionProto(name); TF_RETURN_WITH_CONTEXT_IF_ERROR(fn.status(), "loading function ", name); GraphDef graph; *graph.mutable_library()->add_function() = *fn; tensorflow::GraphDebugInfo debug_info; if (dialect == Dialect::TFG) { auto mlir_fn = mlir::tfg::ImportGraphDef(&ctx, debug_info, graph); TF_RETURN_WITH_CONTEXT_IF_ERROR(mlir_fn.status(), "importing function ", name); mlir::StatusScopedDiagnosticHandler diagnostics_handler(&ctx); if (failed(pm.run(mlir_fn->get()))) { return diagnostics_handler.Combine( Status(absl::StatusCode::kInvalidArgument, absl::StrCat("running pass pipeline ", pipeline_name, ": "))); } for (auto fn : mlir_fn->get().getBody()->getOps<mlir::tfg::GraphFuncOp>()) { TF_RETURN_WITH_CONTEXT_IF_ERROR( CreateFunction(reinterpret_cast<OpaqueTfgGraphFuncOp*>(&fn)), absl::StrCat("updating function ", fn.getName().str())); } return absl::OkStatus(); } if (dialect == Dialect::TF) { Status status; FunctionLibraryDefinition& flib_def = *this->eager_ctx_.FuncLibDef(); std::unique_ptr<FunctionBody> fbody; status = FunctionDefToBodyHelper(*fn, AttrSlice(), &flib_def, &fbody); TF_RETURN_WITH_CONTEXT_IF_ERROR(status, "importing function ", name); auto mlir_fn = ConvertFunctionToMlir(fbody.get(), flib_def, &ctx); TF_RETURN_WITH_CONTEXT_IF_ERROR(mlir_fn.status(), "importing function ", name); mlir::StatusScopedDiagnosticHandler diagnostics_handler(&ctx); if (failed(pm.run(mlir_fn->get()))) { return diagnostics_handler.Combine( Status(absl::StatusCode::kInvalidArgument, absl::StrCat("running pass pipeline ", pipeline_name, ": "))); } for (auto fn : mlir_fn->get().getBody()->getOps<mlir::func::FuncOp>()) { TF_RETURN_WITH_CONTEXT_IF_ERROR( CreateFunction(reinterpret_cast<OpaqueTfFuncOp*>(&fn)), absl::StrCat("updating function ", fn.getName().str())); } return absl::OkStatus(); } return Status( absl::StatusCode::kInvalidArgument, absl::StrCat("Unsupported dialect: ", dialect, ". Supported dialects are Dialect::TFG and Dialect::TF.")); } absl::StatusOr<ReturnValues> Runtime::CallFunction( StringPiece name, absl::Span<AbstractTensorHandle* const> args) { EagerContext& ctx = this->eager_ctx_; ImmediateOpPtr op(ctx.CreateOperation()); TF_RETURN_WITH_CONTEXT_IF_ERROR(op->Reset(name.data(), nullptr), "initializing call op for ", name); TF_RETURN_WITH_CONTEXT_IF_ERROR(op->AddInputList(args), "preparing call args for ", name); const FunctionDef* fn_def = ctx.GetFunctionDef(string(name)); int num_retvals = fn_def->signature().output_arg_size(); int actual_retvals = num_retvals; std::vector<ImmediateExecutionTensorHandle*> retvals(num_retvals); TF_RETURN_WITH_CONTEXT_IF_ERROR( op->Execute(absl::MakeSpan( reinterpret_cast<AbstractTensorHandle**>(retvals.data()), num_retvals), &actual_retvals), "executing call op for ", name); DCHECK(num_retvals == actual_retvals); ReturnValues final_returns; for (const auto& r : retvals) { final_returns.emplace_back(ImmediateTensorHandlePtr(r)); } return final_returns; } } } }
#include "tensorflow/core/function/runtime_client/runtime_client.h" #include <stdint.h> #include <memory> #include <utility> #include <vector> #include "absl/types/span.h" #include "mlir/Parser/Parser.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "tensorflow/c/tensor_interface.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/function/testing/test_pass.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/ir/ops.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace core { namespace function { namespace { EagerContextPtr TestingEagerCtx() { SessionOptions opts; std::vector<std::unique_ptr<Device>> devices; Status&& device_init_status = DeviceFactory::AddDevices( opts, "/job:localhost/replica:0/task:0", &devices); CHECK(device_init_status.ok()); return EagerContextPtr(new EagerContext( opts, ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, new DynamicDeviceMgr(std::move(devices)), true, nullptr, nullptr, nullptr, true)); } int IntValue(ImmediateExecutionTensorHandle& h) { Status status; AbstractTensorPtr t(h.Resolve(&status)); DCHECK(status.ok()); switch (h.DataType()) { case DT_INT32: return *(static_cast<int32_t*>(t->Data())); case DT_INT64: return *(static_cast<int64_t*>(t->Data())); default: DCHECK(false) << "invalid data type"; return 0; } } ImmediateTensorHandlePtr IntScalarTensor(EagerContext& ctx, int value) { AbstractTensorPtr tensor(ctx.CreateInt32Scalar(value)); ImmediateTensorHandlePtr handle(ctx.CreateLocalHandle(tensor.get())); return handle; } FunctionDef MakeNullaryFunction() { FunctionDef fd; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(signature { name: 'NullaryFunction' output_arg { name: 'o' type: DT_INT32 } } node_def { name: 'retval' op: 'Const' attr { key: 'dtype' value { type: DT_INT32 } } attr { key: 'value' value { tensor { dtype: DT_INT32 tensor_shape {} int_val: 1 } } } } ret { key: 'o' value: 'retval:output' })pb", &fd)); return fd; } FunctionDef MakeUnaryFunction() { FunctionDef fd; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(signature { name: "UnaryFunction" input_arg { name: "x" type: DT_INT32 } output_arg { name: "ret" type: DT_INT32 } } node_def { name: "ret" op: "Identity" input: "x" attr { key: "T" value { type: DT_INT32 } } } ret { key: "ret" value: "ret:output:0" })pb", &fd)); return fd; } FunctionDef MakeBinaryFunction() { FunctionDef fd; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(signature { name: "BinaryFunction" input_arg { name: "x" type: DT_INT32 } input_arg { name: "y" type: DT_INT32 } output_arg { name: "ret" type: DT_INT32 } } node_def { name: "x_plus_y" op: "AddV2" input: "x" input: "y" attr { key: "T" value { type: DT_INT32 } } } node_def { name: "ret" op: "Identity" input: "x_plus_y:z:0" attr { key: "T" value { type: DT_INT32 } } } ret { key: "ret" value: "ret:output:0" })pb", &fd)); return fd; } FunctionDef MakeMultiplyFunction() { FunctionDef fd; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(signature { name: "MultiplyFunction" input_arg { name: "x" type: DT_INT32 } input_arg { name: "y" type: DT_INT32 } output_arg { name: "ret" type: DT_INT32 } } node_def { name: "x_times_y" op: "Mul" input: "x" input: "y" attr { key: "T" value { type: DT_INT32 } } } node_def { name: "ret" op: "Identity" input: "x_times_y:z:0" attr { key: "T" value { type: DT_INT32 } } } ret { key: "ret" value: "ret:output:0" })pb", &fd)); return fd; } TEST(GlobalContext, Basic) { Runtime rt(GlobalEagerContext()); TF_ASSERT_OK(rt.CreateFunction(MakeNullaryFunction())); absl::StatusOr<ReturnValues> rets = rt.CallFunction("NullaryFunction", {}); TF_ASSERT_OK(rets.status()); ASSERT_EQ(rets->size(), 1); ASSERT_EQ(rets->at(0)->DataType(), DT_INT32); EXPECT_EQ(IntValue(*(rets->at(0))), 1); } TEST(CreateTest, Call) { EagerContextPtr ctx = TestingEagerCtx(); Runtime rt(*ctx); TF_ASSERT_OK(rt.CreateFunction(MakeNullaryFunction())); absl::StatusOr<ReturnValues> rets = rt.CallFunction("NullaryFunction", {}); TF_ASSERT_OK(rets.status()); ASSERT_EQ(rets->size(), 1); ASSERT_EQ(rets->at(0)->DataType(), DT_INT32); EXPECT_EQ(IntValue(*(rets->at(0))), 1); } TEST(CreateTest, GetRoundtrip) { EagerContextPtr ctx = TestingEagerCtx(); Runtime rt(*ctx); TF_ASSERT_OK(rt.CreateFunction(MakeNullaryFunction())); absl::StatusOr<FunctionDef> fdef_ret = rt.GetFunctionProto("NullaryFunction"); TF_ASSERT_OK(fdef_ret.status()); FunctionDef fdef = *fdef_ret; fdef.mutable_signature()->set_name("SecondFunction"); TF_ASSERT_OK(rt.CreateFunction(fdef)); absl::StatusOr<ReturnValues> rets = rt.CallFunction("SecondFunction", {}); TF_ASSERT_OK(rets.status()); ASSERT_EQ(rets->size(), 1); ASSERT_EQ(rets->at(0)->DataType(), DT_INT32); EXPECT_EQ(IntValue(*(rets->at(0))), 1); } TEST(CreateTest, MlirFromGraphDef) { mlir::MLIRContext mctx; mctx.getOrLoadDialect<mlir::tfg::TFGraphDialect>(); auto m = mlir::parseSourceString<mlir::ModuleOp>( R"mlir( module { tfg.func @NullaryFunction() -> (tensor<i32> {tfg.dtype = i32, tfg.name = "o"}) { %Const, %ctl = Const name("retval") {dtype = i32, value = dense<1> : tensor<i32>} : () -> (tensor<i32>) return(%Const) : tensor<i32> } } )mlir", &mctx); mlir::tfg::GraphFuncOp fop = *m->getBody()->op_begin<mlir::tfg::GraphFuncOp>(); EagerContextPtr ectx = TestingEagerCtx(); Runtime rt(*ectx); OpaqueTfgGraphFuncOp* opaque_fop = reinterpret_cast<OpaqueTfgGraphFuncOp*>(&fop); TF_ASSERT_OK(rt.CreateFunction(opaque_fop)); absl::StatusOr<ReturnValues> rets = rt.CallFunction("NullaryFunction", {}); TF_ASSERT_OK(rets.status()); ASSERT_EQ(rets->size(), 1); ASSERT_EQ(rets->at(0)->DataType(), DT_INT32); EXPECT_EQ(IntValue(*(rets->at(0))), 1); } TEST(CallTest, Nullary) { EagerContextPtr ctx = TestingEagerCtx(); Runtime rt(*ctx); TF_ASSERT_OK(rt.CreateFunction(MakeNullaryFunction())); absl::StatusOr<ReturnValues> rets = rt.CallFunction("NullaryFunction", {}); TF_ASSERT_OK(rets.status()); ASSERT_EQ(rets->size(), 1); ASSERT_EQ(rets->at(0)->DataType(), DT_INT32); EXPECT_EQ(IntValue(*(rets->at(0))), 1); } TEST(CallTest, Unary) { EagerContextPtr ctx = TestingEagerCtx(); Runtime rt(*ctx); TF_ASSERT_OK(rt.CreateFunction(MakeUnaryFunction())); auto x = IntScalarTensor(*ctx, 1); absl::StatusOr<ReturnValues> rets = rt.CallFunction("UnaryFunction", {x.get()}); TF_ASSERT_OK(rets.status()); ASSERT_EQ(rets->size(), 1); ASSERT_EQ(rets->at(0)->DataType(), DT_INT32); EXPECT_EQ(IntValue(*(rets->at(0))), 1); } TEST(CallTest, Binary) { EagerContextPtr ctx = TestingEagerCtx(); Runtime rt(*ctx); TF_ASSERT_OK(rt.CreateFunction(MakeBinaryFunction())); auto x = IntScalarTensor(*ctx, 1); auto y = IntScalarTensor(*ctx, 1); absl::StatusOr<ReturnValues> rets = rt.CallFunction("BinaryFunction", {x.get(), y.get()}); TF_ASSERT_OK(rets.status()); ASSERT_EQ(rets->size(), 1); ASSERT_EQ(rets->at(0)->DataType(), DT_INT32); EXPECT_EQ(IntValue(*(rets->at(0))), 2); } TEST(TransformTest, TestPassOnBinaryFunction) { EagerContextPtr ctx = TestingEagerCtx(); Runtime rt(*ctx); TF_ASSERT_OK(rt.CreateFunction(MakeBinaryFunction())); testing::RegisterTestPass(); TF_EXPECT_OK(rt.TransformFunction("BinaryFunction", "test-pass")); auto x = IntScalarTensor(*ctx, 2); auto y = IntScalarTensor(*ctx, 3); absl::StatusOr<ReturnValues> rets = rt.CallFunction("BinaryFunction", {x.get(), y.get()}); TF_ASSERT_OK(rets.status()); ASSERT_EQ(rets->size(), 1); ASSERT_EQ(rets->at(0)->DataType(), DT_INT32); EXPECT_EQ(IntValue(*(rets->at(0))), 6); } TEST(TransformTest, TestPassOnMultiplyFunction) { EagerContextPtr ctx = TestingEagerCtx(); Runtime rt(*ctx); TF_ASSERT_OK(rt.CreateFunction(MakeMultiplyFunction())); testing::RegisterTestPass(); TF_EXPECT_OK(rt.TransformFunction("MultiplyFunction", "test-pass-tf-dialect", Runtime::Dialect::TF)); auto x = IntScalarTensor(*ctx, 2); auto y = IntScalarTensor(*ctx, 3); absl::StatusOr<ReturnValues> rets = rt.CallFunction("MultiplyFunction", {x.get(), y.get()}); TF_ASSERT_OK(rets.status()); ASSERT_EQ(rets->size(), 1); ASSERT_EQ(rets->at(0)->DataType(), DT_INT32); EXPECT_EQ(IntValue(*(rets->at(0))), 5); } TEST(TransformTest, TestMixedPassesOnBinaryFunction) { EagerContextPtr ctx = TestingEagerCtx(); Runtime rt(*ctx); TF_ASSERT_OK(rt.CreateFunction(MakeBinaryFunction())); testing::RegisterTestPass(); TF_EXPECT_OK(rt.TransformFunction("BinaryFunction", "test-pass")); TF_EXPECT_OK(rt.TransformFunction("BinaryFunction", "test-pass-tf-dialect", Runtime::Dialect::TF)); auto x = IntScalarTensor(*ctx, 2); auto y = IntScalarTensor(*ctx, 3); absl::StatusOr<ReturnValues> rets = rt.CallFunction("BinaryFunction", {x.get(), y.get()}); TF_ASSERT_OK(rets.status()); ASSERT_EQ(rets->size(), 1); ASSERT_EQ(rets->at(0)->DataType(), DT_INT32); EXPECT_EQ(IntValue(*(rets->at(0))), 5); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/function/runtime_client/runtime_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/function/runtime_client/runtime_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
acb6e25d-5035-4121-96bc-58bf96d1e10c
cpp
tensorflow/tensorflow
graph_executor
tensorflow/core/tfrt/graph_executor/graph_executor.cc
tensorflow/core/tfrt/graph_executor/graph_executor_test.cc
#include "tensorflow/core/tfrt/graph_executor/graph_executor.h" #include <algorithm> #include <array> #include <cstdint> #include <functional> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/Extensions/AllExtensions.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinDialect.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_saved_model.h" #include "tensorflow/compiler/mlir/tensorflow/translate/import_model.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_roundtrip_flags.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/compiler/mlir/tfrt/transforms/mlrt/import_model.h" #include "tensorflow/compiler/mlir/tfrt/transforms/update_op_cost_in_tfrt_mlir.h" #include "tensorflow/compiler/mlir/tfrt/translate/import_model.h" #include "tensorflow/compiler/mlir/tfrt/translate/tfrt_compile_options.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/lib/monitoring/sampler.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/monitoring/gauge.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/profiler/lib/traceme_encode.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_utils.h" #include "tensorflow/core/tfrt/common/metrics.h" #include "tensorflow/core/tfrt/fallback/cost_recorder.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/fallback/op_kernel_runner.h" #include "tensorflow/core/tfrt/graph_executor/executable_context.h" #include "tensorflow/core/tfrt/graph_executor/export_mlir.h" #include "tensorflow/core/tfrt/graph_executor/graph_execution_options.h" #include "tensorflow/core/tfrt/graph_executor/sync_resource_state.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/executable.h" #include "tensorflow/core/tfrt/mlrt/bytecode/function.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/interpreter/execute.h" #include "tensorflow/core/tfrt/mlrt/interpreter/value.h" #include "tensorflow/core/tfrt/mlrt/kernel/context.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tensorflow/core/tfrt/runtime/step_id.h" #include "tensorflow/core/tfrt/runtime/stream.h" #include "tensorflow/core/tfrt/runtime/work_queue_interface.h" #include "tensorflow/core/tfrt/stubs/tfrt_native_lowering_stub.h" #include "tensorflow/core/tfrt/utils/fallback_tensor.h" #include "tensorflow/core/tfrt/utils/tfrt_graph_execution_state.h" #include "tensorflow/core/tfrt/utils/utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/refcount.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" #include "tfrt/bef/bef_buffer.h" #include "tfrt/bef_converter/mlir_to_bef.h" #include "tfrt/core_runtime/core_runtime.h" #include "tfrt/host_context/async_dispatch.h" #include "tfrt/host_context/async_value.h" #include "tfrt/host_context/async_value_ref.h" #include "tfrt/host_context/chain.h" #include "tfrt/host_context/concurrent_work_queue.h" #include "tfrt/host_context/execution_context.h" #include "tfrt/host_context/function.h" #include "tfrt/host_context/host_context.h" #include "tfrt/host_context/request_deadline_tracker.h" #include "tfrt/host_context/resource_context.h" #include "tfrt/support/forward_decls.h" #include "tfrt/support/ref_count.h" #include "tfrt/support/string_util.h" namespace tensorflow { namespace tfrt_stub { namespace { constexpr char kDeadlineExceededMessage[] = "Deadline exceeded."; constexpr char kTensorNameJoiningDelimiter[] = "-"; constexpr char kArgumentTypeJoiningDelimiter[] = "^"; constexpr char kFallbackInitFunction[] = "_tfrt_fallback_init"; constexpr char kResourceInitFunction[] = "_tfrt_resource_init"; StepId GetNextStepId() { static StepIdGenerator gen; return gen.GetNextStepId(); } auto* graph_executor_mode = monitoring::Gauge<std::string, 2>::New( "/tfrt/graph_executor/mode", "Record the total number of imported savedmodel using different graph " "executor modes (BEF vs MLRT interpreter)", "model_name", "model_version"); } tensorflow::Status RunMlrtFunction( mlrt::bc::Function function, const mlrt::LoadedExecutable& loaded_executable, const tsl::RCReference<tfrt::RequestContext>& request_context, tfrt::ConcurrentWorkQueue& work_queue, absl::Span<const tensorflow::Tensor> inputs, std::vector<tensorflow::Tensor>* outputs, SyncResourceState* sync_resource_state) { DCHECK(function); const auto* fallback_request_state = request_context->GetDataIfExists<tfd::KernelFallbackCompatRequestState>(); DCHECK(fallback_request_state); mlrt::ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(&work_queue); tfrt::ExecutionContext exec_ctx(request_context); AddSyncContext(execution_context, *request_context->host(), sync_resource_state); execution_context.AddUserContext(std::make_unique<tf_mlrt::Context>( fallback_request_state, request_context->resource_context(), request_context->cancellation_context().get())); execution_context.AddUserErrorLogger( [fallback_request_state](absl::Status status) { if (fallback_request_state) { LOG(ERROR) << "Model " << fallback_request_state->session_metadata().name() << " version " << fallback_request_state->session_metadata().version() << " has error: " << status; } }); absl::InlinedVector<mlrt::Value, 4> mlrt_inputs; mlrt_inputs.reserve(inputs.size()); for (const auto& input : inputs) { mlrt_inputs.emplace_back(FallbackTensor(input)); } absl::InlinedVector<mlrt::Value, 4> mlrt_outputs( function.output_regs().size()); tsl::RCReference<tsl::AsyncValue> chain = tsl::MakeConstructedAsyncValueRef<tsl::Chain>(); execution_context.set_exit_handler( [chain = chain.get()]() { chain->SetStateConcrete(); }); execution_context.CallByMove(function, absl::MakeSpan(mlrt_inputs), absl::MakeSpan(mlrt_outputs)); work_queue.AddTask( [&execution_context]() { mlrt::Execute(execution_context); }); work_queue.Await(chain); if (!execution_context.status().ok()) { outputs->resize(mlrt_outputs.size(), tensorflow::Tensor()); return execution_context.status(); } for (auto& mlrt_output : mlrt_outputs) { DCHECK(mlrt_output.HasValue()); outputs->push_back(std::move(mlrt_output.Get<FallbackTensor>().tensor())); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<RequestInfo>> CreateRequestInfo( const GraphExecutionOptions& options, const GraphExecutionRunOptions& run_options, tensorflow::tfrt_stub::WorkQueueInterface* work_queue, tfrt::ResourceContext* resource_context, tfrt::ResourceContext* client_graph_resource_context, OpKernelRunnerTable* runner_table, tfd::FallbackResourceArray* resource_array, tensorflow::tfrt_stub::FallbackState& fallback_state, const tensorflow::ProcessFunctionLibraryRuntime& process_function_library_runtime, CostRecorder* cost_recorder) { auto request_info = std::make_unique<RequestInfo>(); DCHECK(options.runtime); const Runtime& runtime = *options.runtime; int64_t request_id = 0; if (work_queue != nullptr) { request_id = work_queue->id(); if (request_id == 0) request_id = GetNextStepId().id; request_info->request_queue = work_queue; } else { request_id = GetNextStepId().id; TF_ASSIGN_OR_RETURN(request_info->request_queue_owner, runtime.CreateRequestQueue(request_id)); request_info->request_queue = request_info->request_queue_owner.get(); } auto* request_queue = request_info->request_queue; request_info->runner = [request_queue](std::function<void()> f) { request_queue->AddTask(std::move(f)); }; tfrt::RequestContextBuilder request_context_builder( runtime.core_runtime()->GetHostContext(), resource_context, request_id); DCHECK(runner_table); DCHECK(resource_array); auto& fallback_request_state = request_context_builder.context_data() .emplace<tfd::KernelFallbackCompatRequestState>( &request_info->runner, &fallback_state.device_manager(), request_context_builder.id(), runner_table, resource_array, request_queue->GetIntraOpThreadPool(), options.model_metadata, &process_function_library_runtime); fallback_request_state.set_cost_recorder(cost_recorder); fallback_request_state.set_client_graph_resource_context( client_graph_resource_context); fallback_request_state.set_runtime_config(&options.runtime_config); fallback_request_state.set_cancellation_manager( &request_info->cancellation_manager); tfrt::RequestOptions request_options; request_options.priority = run_options.priority; request_context_builder.set_request_options(request_options); auto expected_req_ctx = std::move(request_context_builder).build(); if (!expected_req_ctx) { return tensorflow::errors::Internal( tfrt::StrCat(expected_req_ctx.takeError())); } request_info->tfrt_request_context = std::move(expected_req_ctx.get()); return request_info; } tensorflow::Status GraphExecutionRunOnFunction( const GraphExecutionOptions& options, const GraphExecutionRunOptions& run_options, absl::string_view signature_name, const SymbolUids& symbol_uids, const tfrt::Function* func, const mlrt::LoadedExecutable* loaded_executable, absl::Span<const tensorflow::Tensor> inputs, std::vector<tensorflow::Tensor>* outputs, tfrt::ResourceContext* resource_context, tfrt::ResourceContext* client_graph_resource_context, OpKernelRunnerTable* runner_table, tfd::FallbackResourceArray* resource_array, const Runtime& runtime, FallbackState& fallback_state, const tensorflow::ProcessFunctionLibraryRuntime& process_function_library_runtime, tfrt::RequestDeadlineTracker* req_deadline_tracker, std::optional<StreamCallbackId> stream_callback_id, CostRecorder* cost_recorder) { TF_ASSIGN_OR_RETURN( auto request_info, CreateRequestInfo(options, run_options, run_options.work_queue, resource_context, client_graph_resource_context, runner_table, resource_array, fallback_state, process_function_library_runtime, cost_recorder)); int64_t request_id = request_info->tfrt_request_context->id(); tsl::profiler::TraceMe traceme( [request_id, signature_name, &options, symbol_uids] { return tsl::profiler::TraceMeEncode( "TfrtModelRun", {{"_r", 1}, {"id", request_id}, {"signature", signature_name}, {"model_id", absl::StrCat(options.model_metadata.name(), ":", options.model_metadata.version())}, {"tf_symbol_uid", symbol_uids.tf_symbol_uid}, {"tfrt_symbol_uid", symbol_uids.tfrt_symbol_uid}}); }); if (run_options.deadline.has_value()) { auto deadline = run_options.deadline.value(); if (absl::ToChronoTime(absl::Now()) > deadline) { return tensorflow::errors::DeadlineExceeded(kDeadlineExceededMessage); } if (req_deadline_tracker == nullptr) { return tensorflow::errors::InvalidArgument( "req_deadline_tracker must be non-null"); } req_deadline_tracker->CancelRequestOnDeadline( deadline, request_info->tfrt_request_context); } ScopedStreamCallback scoped_stream_callback; if (run_options.streamed_output_callback && !stream_callback_id.has_value()) { return absl::InvalidArgumentError(absl::StrCat( "Signature '", signature_name, "' does not support streaming.")); } if (stream_callback_id.has_value()) { if (!run_options.streamed_output_callback) { return absl::InvalidArgumentError( absl::StrCat("Signature '", signature_name, "' contains streaming ops but is called using Predict " "without the streamed callback.")); } } if (run_options.streamed_output_callback) { if (!stream_callback_id.has_value()) { return absl::InvalidArgumentError(absl::StrCat( "Signature ", signature_name, " does not support streaming.")); } auto streamed_output_callback = run_options.streamed_output_callback; TF_ASSIGN_OR_RETURN( scoped_stream_callback, GetGlobalStreamCallbackRegistry().Register( options.model_metadata.name(), *stream_callback_id, StepId(request_id), std::move(streamed_output_callback))); } if (loaded_executable) { auto function = loaded_executable->GetFunction(signature_name); if (!function) { return errors::InvalidArgument(absl::StrCat( "Function not found in MLRT executable: ", signature_name)); } return RunMlrtFunction(function, *loaded_executable, request_info->tfrt_request_context, *request_info->request_queue, inputs, outputs, nullptr); } DCHECK(func); tfrt::ExecutionContext exec_ctx{request_info->tfrt_request_context}; if (run_options.work_queue) { exec_ctx.set_work_queue(run_options.work_queue); } else if (request_info->request_queue) { exec_ctx.set_work_queue(request_info->request_queue); } else { exec_ctx.set_work_queue(runtime.work_queue()); } llvm::SmallVector<tfrt::AsyncValue*, 4> arguments; auto cleanup = tensorflow::gtl::MakeCleanup([&]() { for (auto* argument : arguments) argument->DropRef(); }); arguments.push_back(tfrt::GetReadyChain().release()); for (const auto& input : inputs) { arguments.push_back( tfrt::MakeAvailableAsyncValueRef<FallbackTensor>(input).release()); } if (arguments.size() != func->argument_types().size()) return tensorflow::errors::Internal("incorrect number of inputs."); llvm::SmallVector<tfrt::RCReference<tfrt::AsyncValue>, 4> chain_and_results; chain_and_results.resize(func->result_types().size()); std::array<tfrt::RCReference<tfrt::AsyncValue>, 1> executed = { EnqueueWork(exec_ctx, [&]() -> tfrt::Chain { func->Execute(exec_ctx, arguments, chain_and_results); return {}; })}; exec_ctx.work_queue().Await(executed); exec_ctx.work_queue().Await(chain_and_results); DCHECK(!chain_and_results.empty()); tfrt::RCReference<tfrt::AsyncValue>& chain = chain_and_results[0]; auto results = llvm::drop_begin(chain_and_results, 1); tensorflow::StatusGroup status_group; if (chain->IsError()) { status_group.Update(chain->GetError()); } for (tfrt::RCReference<tfrt::AsyncValue>& result : results) { DCHECK(result->IsAvailable()); if (result->IsError()) { status_group.Update(result->GetError()); outputs->push_back(tensorflow::Tensor()); continue; } DCHECK(result->IsType<FallbackTensor>()); const auto& host_tensor = result->get<FallbackTensor>().tensor(); outputs->push_back(host_tensor); } if (request_info->tfrt_request_context->IsCancelled()) { return tensorflow::errors::DeadlineExceeded(kDeadlineExceededMessage); } return status_group.as_summary_status(); } GraphExecutor::GraphExecutor( Options options, std::unique_ptr<FallbackState> fallback_state, std::unique_ptr<tfrt::ResourceContext> resource_context, std::unique_ptr<tensorflow::tfrt_stub::TfrtGraphExecutionState> graph_execution_state, std::unique_ptr<mlrt::KernelRegistry> kernel_registry) : options_(std::move(options)), fallback_state_(std::move(fallback_state)), graph_execution_state_(std::move(graph_execution_state)), req_deadline_tracker_(options_.runtime->core_runtime()->GetHostContext()), kernel_registry_(std::move(kernel_registry)), resource_context_(std::move(resource_context)) { DCHECK(resource_context_); SetSessionCreatedMetric(); } absl::StatusOr<std::unique_ptr<GraphExecutor>> GraphExecutor::Create( Options options, std::unique_ptr<FallbackState> fallback_state, std::unique_ptr<tfrt::ResourceContext> resource_context, tensorflow::GraphDef graph_def, std::unique_ptr<mlrt::KernelRegistry> kernel_registry) { if (options.runtime == nullptr) { return errors::InvalidArgument("options.runtime must be non-null "); } if (options.enable_online_cost_analysis) { options.cost_analysis_options.version = Options::CostAnalysisOptions::kOnce; } TfrtGraphExecutionState::Options graph_execution_state_options; graph_execution_state_options.run_placer_grappler_on_functions = options.run_placer_grappler_on_functions; options.compile_options.fuse_get_resource_ops_in_hoisting = !options.enable_mlrt; graph_executor_mode ->GetCell(options.model_metadata.name(), absl::StrCat(options.model_metadata.version())) ->Set(options.enable_mlrt ? "mlrt" : "bef"); TF_ASSIGN_OR_RETURN( auto graph_execution_state, TfrtGraphExecutionState::Create(graph_execution_state_options, std::move(graph_def), *fallback_state)); return std::make_unique<GraphExecutor>( std::move(options), std::move(fallback_state), std::move(resource_context), std::move(graph_execution_state), std::move(kernel_registry)); } namespace { void CreateSortedNamesAndOriginalIndices(absl::Span<const std::string> names, std::vector<std::string>& sorted_names, std::vector<int>& original_indices) { DCHECK(sorted_names.empty()); DCHECK(original_indices.empty()); original_indices.resize(names.size()); std::iota(original_indices.begin(), original_indices.end(), 0); std::sort(original_indices.begin(), original_indices.end(), [&](int x, int y) { return names[x] < names[y]; }); sorted_names.reserve(names.size()); for (int original_index : original_indices) { DCHECK_LT(original_index, names.size()); sorted_names.push_back(names[original_index]); } } } tensorflow::Status GraphExecutor::Run( const RunOptions& run_options, absl::Span<const std::pair<std::string, tensorflow::Tensor>> inputs, absl::Span<const std::string> output_tensor_names, absl::Span<const std::string> target_tensor_names, std::vector<tensorflow::Tensor>* outputs) { std::vector<std::string> input_names; input_names.reserve(inputs.size()); for (const auto& p : inputs) input_names.push_back(p.first); std::vector<std::string> sorted_input_names; std::vector<int> input_original_indices; CreateSortedNamesAndOriginalIndices(input_names, sorted_input_names, input_original_indices); std::vector<tensorflow::DataType> sorted_input_dtypes; sorted_input_dtypes.reserve(inputs.size()); for (int original_index : input_original_indices) { sorted_input_dtypes.push_back(inputs.at(original_index).second.dtype()); } std::vector<std::string> sorted_output_names; std::vector<int> output_original_indices; CreateSortedNamesAndOriginalIndices(output_tensor_names, sorted_output_names, output_original_indices); std::vector<std::string> sorted_target_node_names(target_tensor_names.begin(), target_tensor_names.end()); std::sort(sorted_target_node_names.begin(), sorted_target_node_names.end()); TF_ASSIGN_OR_RETURN( LoadedClientGraph & loaded_client_graph, GetOrCreateLoadedClientGraph( run_options, sorted_input_names, sorted_input_dtypes, sorted_output_names, sorted_target_node_names, run_options.work_queue, {}, inputs)); auto executable_context = loaded_client_graph.executable_context(); const mlrt::LoadedExecutable* loaded_executable = nullptr; const tfrt::Function* func = nullptr; if (executable_context->IsForMlrt()) { loaded_executable = executable_context->bytecode_executable.get(); } else { func = executable_context->bef_file->GetFunction(loaded_client_graph.name()); } DCHECK(func || loaded_executable); std::vector<tensorflow::Tensor> flat_inputs; if (!loaded_client_graph.is_restore()) { flat_inputs.reserve(inputs.size()); for (int original_index : input_original_indices) { flat_inputs.push_back(inputs.at(original_index).second); } } auto now = absl::Now() + simulated_duration_; bool do_recompilation; CostRecorder* cost_recorder = loaded_client_graph.MaybeGetCostRecorder(now, &do_recompilation); std::vector<tensorflow::Tensor> flat_outputs; TF_RETURN_IF_ERROR(GraphExecutionRunOnFunction( options_, run_options, loaded_client_graph.name(), loaded_client_graph.symbol_uids(), func, loaded_executable, flat_inputs, &flat_outputs, resource_context_.get(), &executable_context->resource_context, &loaded_client_graph.runner_table(), &loaded_client_graph.resource_array(), runtime(), fallback_state(), loaded_client_graph.process_function_library_runtime(), &req_deadline_tracker_, loaded_client_graph.stream_callback_id(), cost_recorder)); if (do_recompilation) { TF_RETURN_IF_ERROR( loaded_client_graph.UpdateCost(*cost_recorder, runtime())); tensorflow::mutex_lock l(num_recompilations_mu_); num_recompilations_ += 1; } if (cost_recorder != nullptr) { loaded_client_graph.UpdateCostAnalysisData(now, do_recompilation); } auto flat_output_iter = flat_outputs.begin(); outputs->resize(flat_outputs.size()); for (int original_index : output_original_indices) { (*outputs)[original_index] = std::move(*flat_output_iter); ++flat_output_iter; } absl::Time end = absl::Now() + simulated_duration_; absl::Duration elapsed_duration = end - now; loaded_client_graph.latency_sampler()->Add( absl::ToDoubleMicroseconds(elapsed_duration)); return absl::OkStatus(); } tensorflow::Status GraphExecutor::Extend(const GraphDef& graph) { return graph_execution_state_->Extend(graph); } absl::StatusOr<std::unique_ptr<GraphExecutor::LoadedClientGraph>> GraphExecutor::ImportAndCompileClientGraph( const GraphExecutor::ClientGraph& client_graph, absl::Span<const std::pair<std::string, tensorflow::Tensor>> inputs) { auto import_start_time = absl::Now(); mlir::DialectRegistry registry; RegisterMlirDialect(registry, options_.compile_options.backend_compiler); auto context = std::make_unique<mlir::MLIRContext>( registry, mlir::MLIRContext::Threading::DISABLED); context->loadAllAvailableDialects(); ASSIGN_OR_RETURN_IN_IMPORT( auto flib_def_and_module, ImportClientGraphToMlirModule(client_graph, context.get())); auto& [flib_def, module] = flib_def_and_module; std::string checkpoint_path; if (options_.compile_options.backend_compiler && mlir::tf_saved_model::IsRestoreGraph(module.get())) { if (inputs.size() != 1) { return absl::InvalidArgumentError(absl::StrCat( "Expected 1 input for restore graph, but got ", inputs.size(), ".")); } const tensorflow::Tensor& input = inputs[0].second; if (input.dtype() != tensorflow::DT_STRING) { return absl::InvalidArgumentError( absl::StrCat("Expected string input for restore graph, but got ", input.dtype(), ".")); } checkpoint_path = input.scalar<tstring>()(); } TF_ASSIGN_OR_RETURN( auto stream_callback_id, CreateStreamCallbackId(options().model_metadata.name(), module.get())); SymbolUids symbol_uids; symbol_uids.tf_symbol_uid = MaybeUploadMlirToXsymbol(module.get()); auto import_duration = absl::Now() - import_start_time; LOG(INFO) << "TFRT finished importing client graph (" << &client_graph << "). Took " << absl::ToInt64Milliseconds(import_duration) << " ms. Client graph name: " << client_graph.name; auto compile_start_time = absl::Now(); mlir::OwningOpRef<mlir::ModuleOp> module_with_op_keys; std::shared_ptr<ExecutableContext> executable_context = nullptr; ModelRuntimeContext model_context(&options_, options_.compile_options.saved_model_dir, resource_context_.get()); if (checkpoint_path.empty()) { model_context.set_function_library_definition(&flib_def); } model_context.set_checkpoint_path(checkpoint_path); if (options_.compile_options.compile_to_sync_tfrt_dialect) { if (kernel_registry_ == nullptr) { return tensorflow::errors::Internal("Missing kernel registry in MLRT."); } ASSIGN_OR_RETURN_IN_COMPILE( executable_context, tfrt::BuildExecutableContext(module.get(), *kernel_registry_)); } else if (options_.enable_mlrt) { if (kernel_registry_ == nullptr) { return tensorflow::errors::Internal("Missing kernel registry in MLRT."); } ASSIGN_OR_RETURN_IN_COMPILE( auto bytecode_buffer, tensorflow::mlrt_compiler::ConvertTfMlirToBytecode( options_.compile_options, fallback_state(), module.get(), model_context, &module_with_op_keys)); mlrt::bc::Executable executable(bytecode_buffer.data()); auto bytecode_executable = std::make_unique<mlrt::LoadedExecutable>(executable, *kernel_registry_); executable_context = std::make_shared<ExecutableContext>( std::move(bytecode_buffer), std::move(bytecode_executable)); } else { tfrt::BefBuffer bef; TF_RETURN_IF_ERROR( tensorflow::ConvertTfMlirToBef(options_.compile_options, module.get(), &bef, model_context, &fallback_state())); ASSIGN_OR_RETURN_IN_COMPILE( auto bef_file, tfrt::CreateBefFileFromBefBuffer(runtime(), bef)); executable_context = std::make_shared<ExecutableContext>( std::move(bef), std::move(bef_file)); } symbol_uids.tfrt_symbol_uid = MaybeUploadMlirToXsymbol(module.get()); auto compile_duration = absl::Now() - compile_start_time; LOG(INFO) << "TFRT finished compiling client graph (" << &client_graph << "). Took " << absl::ToInt64Milliseconds(compile_duration) << " ms. Client graph name: " << client_graph.name; auto* latency_sampler = tensorflow::tfrt_metrics::GetTfrtGraphExecutorLatencySampler( options_.model_metadata.name(), options_.model_metadata.version(), client_graph.name); return std::make_unique<LoadedClientGraph>( client_graph.name, std::move(symbol_uids), this, std::move(context), std::move(module_with_op_keys), std::move(module), std::move(executable_context), stream_callback_id, !checkpoint_path.empty(), std::move(flib_def), latency_sampler); } absl::StatusOr<std::unique_ptr<GraphExecutor::LoadedClientGraph>> GraphExecutor::LoadClientGraph( const GraphExecutor::ClientGraph& client_graph, tensorflow::tfrt_stub::WorkQueueInterface* work_queue, absl::Span<const std::pair<std::string, tensorflow::Tensor>> inputs) { LOG(INFO) << "TFRT loading client graph (" << &client_graph << ") " << client_graph.name; TF_ASSIGN_OR_RETURN(auto loaded_client_graph, ImportAndCompileClientGraph(client_graph, inputs)); auto init_start_time = absl::Now(); if (loaded_client_graph->executable_context()->IsForMlrt()) { RETURN_IF_ERROR_IN_INIT(InitBytecode(loaded_client_graph.get())); } else { RETURN_IF_ERROR_IN_INIT(InitBef(loaded_client_graph.get(), work_queue)); } auto init_duration = absl::Now() - init_start_time; LOG(INFO) << "TFRT finished initializing client graph (" << &client_graph << "). Took " << absl::ToInt64Milliseconds(init_duration) << " ms. Client graph name: " << client_graph.name; return loaded_client_graph; } absl::StatusOr< std::pair<FunctionLibraryDefinition, mlir::OwningOpRef<mlir::ModuleOp>>> GraphExecutor::ImportClientGraphToMlirModule( const GraphExecutor::ClientGraph& client_graph, mlir::MLIRContext* context) const { tensorflow::GraphImportConfig graph_import_config; graph_import_config.graph_func_name = client_graph.name; graph_import_config.prune_unused_nodes = true; graph_import_config.enable_shape_inference = false; graph_import_config.inputs = client_graph.input_nodes; graph_import_config.outputs = client_graph.output_nodes; graph_import_config.control_outputs = client_graph.target_nodes; graph_import_config.set_original_tf_func_name = true; TF_ASSIGN_OR_RETURN( auto optimized_graph, graph_execution_state_->CreateOptimizedGraph(graph_import_config)); LOG(INFO) << "TFRT import client graph (" << &client_graph << "): Functionalization took " << absl::ToInt64Milliseconds( optimized_graph.functionalization_duration) << " ms. Client graph name: " << client_graph.name; LOG(INFO) << "TFRT import client graph (" << &client_graph << "): Grappler took " << absl::ToInt64Milliseconds(optimized_graph.grappler_duration) << " ms. Client graph name: " << client_graph.name; TF_ASSIGN_OR_RETURN( auto module, tensorflow::ConvertGraphToMlir(*optimized_graph.graph, {}, optimized_graph.graph->flib_def(), graph_import_config, context)); return std::make_pair(std::move(*optimized_graph.graph->mutable_flib_def()), std::move(module)); } tensorflow::Status GraphExecutor::InitBef( LoadedClientGraph* loaded_client_graph, tensorflow::tfrt_stub::WorkQueueInterface* work_queue) { auto* bef_file = loaded_client_graph->executable_context()->bef_file.get(); TF_ASSIGN_OR_RETURN( auto request_info, CreateRequestInfo( options_, {}, work_queue, resource_context_.get(), nullptr, &loaded_client_graph->runner_table(), &loaded_client_graph->resource_array(), fallback_state(), loaded_client_graph->process_function_library_runtime())); tfrt::ExecutionContext exec_ctx(request_info->tfrt_request_context); TF_RETURN_IF_ERROR( RunRuntimeInitializer(exec_ctx, bef_file, kFallbackInitFunction)); TF_RETURN_IF_ERROR( RunRuntimeInitializer(exec_ctx, bef_file, kResourceInitFunction)); return absl::OkStatus(); } tensorflow::Status GraphExecutor::InitBytecode( LoadedClientGraph* loaded_graph) { TF_ASSIGN_OR_RETURN( auto request_info, CreateRequestInfo(options_, {}, options_.runtime->work_queue(), resource_context_.get(), nullptr, &loaded_graph->runner_table(), &loaded_graph->resource_array(), fallback_state(), loaded_graph->process_function_library_runtime())); const auto* loaded_executable = loaded_graph->executable_context()->bytecode_executable.get(); DCHECK(loaded_executable); std::vector<tensorflow::Tensor> outputs; if (auto function = loaded_executable->GetFunction(kFallbackInitFunction)) { TF_RETURN_IF_ERROR(RunMlrtFunction( function, *loaded_executable, request_info->tfrt_request_context, *request_info->request_queue, {}, &outputs, &loaded_graph->sync_resource_state())); } if (auto function = loaded_executable->GetFunction(kResourceInitFunction)) { TF_RETURN_IF_ERROR(RunMlrtFunction( function, *loaded_executable, request_info->tfrt_request_context, *request_info->request_queue, {}, &outputs, &loaded_graph->sync_resource_state())); } return absl::OkStatus(); } absl::StatusOr<std::reference_wrapper<GraphExecutor::LoadedClientGraph>> GraphExecutor::GetOrCreateLoadedClientGraph( const RunOptions& run_options, absl::Span<const std::string> input_tensor_names, absl::Span<const tensorflow::DataType> input_tensor_dtypes, absl::Span<const std::string> output_tensor_names, absl::Span<const std::string> target_tensor_names, tensorflow::tfrt_stub::WorkQueueInterface* work_queue, absl::string_view graph_name, absl::Span<const std::pair<std::string, tensorflow::Tensor>> inputs) { const std::string joined_name = !graph_name.empty() ? std::string(graph_name) : absl::StrCat( absl::StrJoin(input_tensor_names, kTensorNameJoiningDelimiter), kArgumentTypeJoiningDelimiter, absl::StrJoin(output_tensor_names, kTensorNameJoiningDelimiter), kArgumentTypeJoiningDelimiter, absl::StrJoin(target_tensor_names, kTensorNameJoiningDelimiter)); tensorflow::mutex_lock l(loaded_client_graphs_mu_); const auto iter = loaded_client_graphs_.find(joined_name); if (iter != loaded_client_graphs_.end()) return {*iter->second}; if (run_options.disable_compilation) { return tensorflow::errors::InvalidArgument( absl::StrCat("GraphExecutor: compilation is disabled in execution but " "the compiled graph is not found for ", joined_name)); } tensorflow::GraphImportConfig::InputArrays input_nodes; DCHECK_EQ(input_tensor_names.size(), input_tensor_dtypes.size()); for (int i = 0; i < input_tensor_names.size(); ++i) { const auto& input_name = input_tensor_names[i]; auto input_dtype = input_tensor_dtypes[i]; tensorflow::ArrayInfo array_info; array_info.imported_dtype = input_dtype; array_info.shape.set_unknown_rank(true); input_nodes[input_name] = array_info; } ClientGraph client_graph{ run_options.name.empty() ? joined_name : run_options.name, std::move(input_nodes), {output_tensor_names.begin(), output_tensor_names.end()}, {target_tensor_names.begin(), target_tensor_names.end()}}; TF_ASSIGN_OR_RETURN(auto loaded_client_graph, LoadClientGraph(client_graph, work_queue, inputs)); auto* loaded_client_graph_ptr = loaded_client_graph.get(); loaded_client_graphs_[joined_name] = std::move(loaded_client_graph); return {*loaded_client_graph_ptr}; } tensorflow::Status GraphExecutor::RunWithSyncInterpreter( const std::string& graph_name, absl::Span<mlrt::Value> input_values, absl::Span<const std::string> input_names, absl::Span<const tensorflow::DataType> input_dtypes, absl::Span<const std::string> output_tensor_names, absl::Span<const std::string> target_tensor_names, absl::Span<mlrt::Value> outputs) { TF_ASSIGN_OR_RETURN( LoadedClientGraph & loaded_client_graph, GetOrCreateLoadedClientGraph( {}, input_names, input_dtypes, output_tensor_names, target_tensor_names, nullptr, graph_name.empty() ? output_tensor_names[0] : graph_name)); auto executable_context = loaded_client_graph.executable_context(); mlrt::ExecutionContext execution_context( executable_context->bytecode_executable.get()); AddSyncContext(execution_context, *options_.runtime->core_runtime()->GetHostContext(), &loaded_client_graph.sync_resource_state()); tensorflow::tfd::KernelFallbackCompatRequestState kernel_fallback_state( tfd::GetDefaultRunner(), &fallback_state().device_manager(), 0, &loaded_client_graph.runner_table(), &loaded_client_graph.resource_array(), nullptr, std::nullopt, &loaded_client_graph.process_function_library_runtime()); auto tf_context = std::make_unique<tensorflow::tf_mlrt::Context>( &kernel_fallback_state, resource_context_.get()); execution_context.AddUserContext(std::move(tf_context)); auto serving_function = executable_context->bytecode_executable->GetFunction( loaded_client_graph.name()); DCHECK(serving_function); execution_context.CallByMove(serving_function, input_values, outputs); mlrt::Execute(execution_context); return execution_context.status(); } CostRecorder* GraphExecutor::LoadedClientGraph::MaybeGetCostRecorder( absl::Time now, bool* do_recompilation) { *do_recompilation = false; tensorflow::mutex_lock l(cost_analysis_data_.mu); if (!cost_analysis_data_.is_available) { return nullptr; } const auto& options = graph_executor_->options().cost_analysis_options; absl::Duration elapsed_duration = now - cost_analysis_data_.start_time; double intended_num_updates = absl::ToDoubleSeconds(elapsed_duration) / absl::ToDoubleSeconds(options.reset_interval) * options.updates_per_interval; if (intended_num_updates - cost_analysis_data_.num_cost_updates >= 1) { cost_analysis_data_.is_available = false; *do_recompilation = 1 + cost_analysis_data_.num_cost_updates >= options.updates_per_interval; return cost_analysis_data_.cost_recorder.get(); } return nullptr; } Status GraphExecutor::LoadedClientGraph::UpdateCost( const CostRecorder& cost_recorder, const Runtime& runtime) { LOG(INFO) << "TFRT updating op costs of loaded client graph (" << this << ") " << name_; std::shared_ptr<ExecutableContext> new_executable_context = nullptr; if (executable_context()->IsForMlrt()) { auto tf_mlir_with_op_keys = ::mlir::OwningOpRef<mlir::ModuleOp>( cost_analysis_data_.tf_mlir_with_op_keys.get().clone()); TF_ASSIGN_OR_RETURN( auto bytecode_buffer, tensorflow::mlrt_compiler::ConvertTfMlirWithOpKeysToBytecode( graph_executor_->options().compile_options, graph_executor_->fallback_state(), tf_mlir_with_op_keys.get(), cost_recorder)); mlrt::bc::Executable executable(bytecode_buffer.data()); auto bytecode_executable = std::make_unique<mlrt::LoadedExecutable>( executable, *graph_executor_->kernel_registry_); new_executable_context = std::make_shared<ExecutableContext>( std::move(bytecode_buffer), std::move(bytecode_executable)); } else { auto tfrt_mlir = ::mlir::OwningOpRef<mlir::ModuleOp>( cost_analysis_data_.tfrt_mlir.get().clone()); mlir::StatusScopedDiagnosticHandler diag_handler( tfrt_mlir.get().getContext()); tfrt_compiler::UpdateOpCostInTfrtMlir(tfrt_mlir.get(), cost_recorder); auto bef = tfrt::ConvertMLIRToBEF(tfrt_mlir.get(), true); if (bef.empty()) { return diag_handler.Combine( tensorflow::errors::Internal("failed to convert MLIR to BEF.")); } bef.shrink_to_fit(); TF_ASSIGN_OR_RETURN(auto bef_file, tfrt::CreateBefFileFromBefBuffer(runtime, bef)); new_executable_context = std::make_shared<ExecutableContext>( std::move(bef), std::move(bef_file)); } { tensorflow::mutex_lock lock(executable_context_mu_); executable_context_ = std::move(new_executable_context); } return absl::OkStatus(); } GraphExecutor::LoadedClientGraph::LoadedClientGraph( std::string name, SymbolUids symbol_uids, GraphExecutor* graph_executor, std::unique_ptr<mlir::MLIRContext> mlir_context, mlir::OwningOpRef<mlir::ModuleOp> tf_mlir_with_op_keys, mlir::OwningOpRef<mlir::ModuleOp> tfrt_mlir, std::shared_ptr<ExecutableContext> executable_context, std::optional<StreamCallbackId> stream_callback_id, bool is_restore, FunctionLibraryDefinition flib_def, tsl::monitoring::SamplerCell* latency_sampler) : name_(std::move(name)), symbol_uids_(std::move(symbol_uids)), graph_executor_(graph_executor), mlir_context_(std::move(mlir_context)), executable_context_(std::move(executable_context)), stream_callback_id_(stream_callback_id), is_restore_(is_restore), flib_def_(std::move(flib_def)), pflr_(&graph_executor->fallback_state().device_manager(), graph_executor->fallback_state().session_options().env, &graph_executor->fallback_state().session_options().config, TF_GRAPH_DEF_VERSION, &flib_def_, graph_executor->fallback_state() .session_options() .config.graph_options() .optimizer_options(), nullptr, nullptr, nullptr, Rendezvous::Factory{[](int64_t, const DeviceMgr* device_mgr, tsl::core::RefCountPtr<Rendezvous>* r) { *r = tsl::core::RefCountPtr<Rendezvous>( new IntraProcessRendezvous(device_mgr)); return absl::OkStatus(); }}), latency_sampler_(latency_sampler) { const auto& options = graph_executor_->options().cost_analysis_options; if (options.version != Options::CostAnalysisOptions::kDisabled) { cost_analysis_data_.start_time = absl::Now() - options.reset_interval; cost_analysis_data_.is_available = true; cost_analysis_data_.num_cost_updates = options.updates_per_interval - 1; cost_analysis_data_.cost_recorder = std::make_unique<CostRecorder>(); if (executable_context_->IsForMlrt()) { cost_analysis_data_.tf_mlir_with_op_keys = std::move(tf_mlir_with_op_keys); } else { cost_analysis_data_.tfrt_mlir = std::move(tfrt_mlir); } } } void GraphExecutor::LoadedClientGraph::UpdateCostAnalysisData( absl::Time now, bool do_recompilation) { tensorflow::mutex_lock lock(cost_analysis_data_.mu); if (!do_recompilation) { cost_analysis_data_.num_cost_updates += 1; cost_analysis_data_.is_available = true; return; } if (graph_executor_->options().cost_analysis_options.version == Options::CostAnalysisOptions::kOnce) { cost_analysis_data_.is_available = false; cost_analysis_data_.tfrt_mlir = nullptr; cost_analysis_data_.tf_mlir_with_op_keys = nullptr; cost_analysis_data_.cost_recorder = nullptr; } else { cost_analysis_data_.cost_recorder = std::make_unique<CostRecorder>(); cost_analysis_data_.is_available = true; cost_analysis_data_.start_time = now; cost_analysis_data_.num_cost_updates = 0; } } tensorflow::Status GraphExecutor::CompileGraph( const std::string& graph_name, absl::Span<const std::string> input_tensor_names, absl::Span<const tensorflow::DataType> input_tensor_dtypes, absl::Span<const std::string> output_tensor_names, absl::Span<const std::string> target_tensor_names) { return GetOrCreateLoadedClientGraph( {}, input_tensor_names, input_tensor_dtypes, output_tensor_names, target_tensor_names, nullptr, graph_name) .status(); } void RegisterMlirDialect(mlir::DialectRegistry& registry, tensorflow::BackendCompiler* backend_compiler) { registry.insert<mlir::BuiltinDialect, mlir::func::FuncDialect>(); mlir::RegisterAllTensorFlowDialects(registry); if (backend_compiler) { backend_compiler->GetDependentDialects(registry); } } } }
#include "tensorflow/core/tfrt/graph_executor/graph_executor.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "learning/brain/experimental/tfrt/native_lowering/kernels/math_kernels.h" #include "learning/brain/experimental/tfrt/native_lowering/kernels/sync_fallback_kernels.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/graph_executor/graph_execution_options.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/interpreter/value.h" #include "tensorflow/core/tfrt/mlrt/kernel/kernel.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tsl/platform/statusor.h" #include "tfrt/cpp_tests/test_util.h" #include "tfrt/host_context/resource_context.h" #include "tfrt/tensor/dense_host_tensor.h" namespace tensorflow { namespace tfrt_stub { namespace { using ::testing::status::StatusIs; class GraphExecutorForTestingCostAnalysis : public GraphExecutor { public: int num_recompilations() { tensorflow::mutex_lock lock(num_recompilations_mu_); return num_recompilations_; } void AdvanceTime(absl::Duration duration) { simulated_duration_ = simulated_duration_ + duration; } }; class GraphExecutorTest : public ::testing::TestWithParam<bool> {}; tensorflow::Status GetSimpleGraphDef(GraphDef& graph_def) { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input = ops::Placeholder(scope.WithOpName("input"), DT_INT32); auto rank = ops::Rank(scope.WithOpName("rank"), input); return scope.ToGraphDef(&graph_def); } std::unique_ptr<mlrt::KernelRegistry> GetKernelRegistry() { auto kernel_registry = std::make_unique<mlrt::KernelRegistry>(); tensorflow::tf_mlrt::RegisterTfMlrtKernels(*kernel_registry); tfrt::cpu::RegisterMlrtMathKernels(kernel_registry.get()); tfrt::cpu::RegisterMlrtFallbackCompatKernels(kernel_registry.get()); return kernel_registry; } TEST_P(GraphExecutorTest, Vanilla) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())) auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); } TEST_P(GraphExecutorTest, OnlineCostAnalysisOptionsOverrideToOnce) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.enable_online_cost_analysis = true; options.cost_analysis_options.version = GraphExecutionOptions::CostAnalysisOptions::kDisabled; options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor_base, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); auto graph_executor = std::unique_ptr<GraphExecutorForTestingCostAnalysis>( static_cast<GraphExecutorForTestingCostAnalysis*>( graph_executor_base.release())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; EXPECT_EQ(graph_executor->num_recompilations(), 0); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); EXPECT_EQ(graph_executor->num_recompilations(), 1); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); EXPECT_EQ(graph_executor->num_recompilations(), 1); } TEST_P(GraphExecutorTest, OnlineCostAnalysisEveryTime) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.cost_analysis_options.version = GraphExecutionOptions::CostAnalysisOptions::kPeriodic; options.cost_analysis_options.reset_interval = absl::ZeroDuration(); options.cost_analysis_options.updates_per_interval = 1; options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor_base, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); auto graph_executor = std::unique_ptr<GraphExecutorForTestingCostAnalysis>( static_cast<GraphExecutorForTestingCostAnalysis*>( graph_executor_base.release())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; for (int i = 0; i < 10; ++i) { TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); EXPECT_EQ(graph_executor->num_recompilations(), i + 1); } } TEST_P(GraphExecutorTest, OnlineCostAnalysisDisabled) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.cost_analysis_options.version = GraphExecutionOptions::CostAnalysisOptions::kDisabled; options.cost_analysis_options.reset_interval = absl::ZeroDuration(); options.cost_analysis_options.updates_per_interval = 1; options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor_base, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); auto graph_executor = std::unique_ptr<GraphExecutorForTestingCostAnalysis>( static_cast<GraphExecutorForTestingCostAnalysis*>( graph_executor_base.release())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 0); } TEST_P(GraphExecutorTest, OnlineCostAnalysisPeriodic) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.cost_analysis_options.version = GraphExecutionOptions::CostAnalysisOptions::kPeriodic; options.cost_analysis_options.reset_interval = absl::Minutes(10); options.cost_analysis_options.updates_per_interval = 5; options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor_base, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); auto graph_executor = std::unique_ptr<GraphExecutorForTestingCostAnalysis>( static_cast<GraphExecutorForTestingCostAnalysis*>( graph_executor_base.release())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 1); for (int i = 0; i < 10; ++i) { TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 1); } for (int i = 0; i < 4; ++i) { graph_executor->AdvanceTime(absl::Minutes(2)); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 1); } graph_executor->AdvanceTime(absl::Minutes(2)); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 2); for (int i = 0; i < 4; ++i) { graph_executor->AdvanceTime(absl::Minutes(1000)); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 2); } graph_executor->AdvanceTime(absl::Minutes(1000)); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 3); } REGISTER_OP("TestCancel") .Input("x: T") .Output("z: T") .Attr("T: {int32}") .SetShapeFn(::tensorflow::shape_inference::UnchangedShape); class TestCancelKernel : public OpKernel { public: explicit TestCancelKernel(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* ctx) override { auto status = absl::CancelledError(); ctx->cancellation_manager()->StartCancelWithStatus(status); ctx->SetStatus(status); } }; REGISTER_KERNEL_BUILDER(Name("TestCancel").Device(DEVICE_CPU), TestCancelKernel); REGISTER_OP("TestIsCancelled").Output("z: T").Attr("T: {bool}").SetIsStateful(); class TestIsCancelledKernel : public OpKernel { public: explicit TestIsCancelledKernel(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* ctx) override { ctx->set_output( 0, tensorflow::Tensor(ctx->cancellation_manager()->IsCancelled())); } }; REGISTER_KERNEL_BUILDER(Name("TestIsCancelled").Device(DEVICE_CPU), TestIsCancelledKernel); TEST_P(GraphExecutorTest, Cancellation) { GraphDef graph_def; tensorflow::GraphDefBuilder builder( tensorflow::GraphDefBuilder::kFailImmediately); const tensorflow::TensorShape tensor_shape({10, 9}); tensorflow::Node* input = tensorflow::ops::SourceOp( "Placeholder", builder.opts() .WithName("input") .WithAttr("dtype", tensorflow::DT_INT32) .WithAttr("shape", tensor_shape)); tensorflow::ops::SourceOp("TestIsCancelled", builder.opts() .WithName("is_cancelled") .WithAttr("T", tensorflow::DT_BOOL)); tensorflow::ops::UnaryOp("TestCancel", input, builder.opts() .WithName("test_cancel") .WithAttr("T", tensorflow::DT_INT32)); TF_ASSERT_OK(builder.ToGraphDef(&graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())) auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); { std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; EXPECT_THAT(graph_executor->Run({}, inputs, {"test_cancel:0"}, {}, &outputs), StatusIs(absl::StatusCode::kCancelled)); } { std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(graph_executor->Run({}, {}, {"is_cancelled:0"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<bool>(outputs[0]), ::testing::ElementsAreArray({false})); } } INSTANTIATE_TEST_SUITE_P(GraphExecutorTestSuite, GraphExecutorTest, ::testing::Bool()); TEST_F(GraphExecutorTest, Extend) { GraphDef graph_def; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output a = ops::Const(scope.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Const(scope.WithControlDependencies(a).WithOpName("b"), 0.0f, {10, 10}); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); } auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); auto session_options = CreateDefaultSessionOptions(options); session_options.config.mutable_experimental() ->set_disable_optimize_for_static_graph(true); TF_ASSERT_OK_AND_ASSIGN(auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( session_options, graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); GraphDef extension; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input = ops::Placeholder(scope.WithOpName("input"), DT_INT32); auto rank = ops::Rank(scope.WithOpName("rank"), input); TF_ASSERT_OK(scope.ToGraphDef(&extension)); } TF_ASSERT_OK(graph_executor->Extend(extension)); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); } TEST_F(GraphExecutorTest, DisableCompilation) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; GraphExecutor::RunOptions run_options; run_options.disable_compilation = true; auto status = graph_executor->Run(run_options, inputs, {"rank"}, {}, &outputs); ASSERT_FALSE(status.ok()); EXPECT_THAT( status.ToString(), ::testing::HasSubstr("GraphExecutor: compilation is disabled in " "execution but the compiled graph is not found")); run_options.disable_compilation = false; TF_ASSERT_OK(graph_executor->Run(run_options, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); } TEST_F(GraphExecutorTest, SyncExecute) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.compile_options.compile_to_sync_tfrt_dialect = true; TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); std::vector<mlrt::Value> inputs; tfrt::DenseHostTensor dht = tfrt::CreateTensorFromValues<int32_t>({1, 3}, {1, 1, 1}); inputs.emplace_back(std::move(dht)); std::vector<mlrt::Value> results; results.resize(1); TF_ASSERT_OK(graph_executor->RunWithSyncInterpreter( "test_graph", absl::Span<mlrt::Value>(inputs), {"input"}, {DT_INT32}, {"rank"}, {}, absl::Span<mlrt::Value>(results))); tfrt::DenseHostTensor expected = tfrt::CreateTensorFromValues<int32_t>({}, {2}); EXPECT_EQ(expected, results[0].Get<tfrt::DenseHostTensor>()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/graph_executor/graph_executor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/graph_executor/graph_executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
dba42569-ea24-4bc0-b340-9f383dc1dacc
cpp
tensorflow/tensorflow
config
tensorflow/compiler/mlir/quantization/stablehlo/cc/config.cc
tensorflow/compiler/mlir/quantization/stablehlo/cc/config_test.cc
#include "tensorflow/compiler/mlir/quantization/stablehlo/cc/config.h" #include <utility> #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" namespace stablehlo::quantization { namespace { void PopulateDefaultCalibrationOptions(QuantizationConfig& quant_config) { if (!quant_config.has_calibration_options() || quant_config.calibration_options().calibration_method() == CalibrationOptions::CALIBRATION_METHOD_UNSPECIFIED) { quant_config.mutable_calibration_options()->set_calibration_method( CalibrationOptions::CALIBRATION_METHOD_MIN_MAX); } switch (quant_config.calibration_options().calibration_method()) { case CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_PERCENTILE: case CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_MSE_BRUTEFORCE: case CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_MSE_MAX_FREQUENCY: case CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_MSE_SYMMETRIC: if (quant_config.calibration_options() .calibration_parameters() .num_bins() == 0) { quant_config.mutable_calibration_options() ->mutable_calibration_parameters() ->set_num_bins(512); } if (quant_config.calibration_options().calibration_method() == CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_PERCENTILE) { if (quant_config.calibration_options() .calibration_parameters() .min_percentile() == 0) { quant_config.mutable_calibration_options() ->mutable_calibration_parameters() ->set_min_percentile(0.001); } if (quant_config.calibration_options() .calibration_parameters() .max_percentile() == 0) { quant_config.mutable_calibration_options() ->mutable_calibration_parameters() ->set_max_percentile(99.999); } } break; default: break; } } QuantizationSpec GetDefaultStaticRangePtqSpec(StaticRangePtqPreset preset) { QuantizationSpec spec{}; spec.mutable_matcher()->mutable_function_name()->set_regex( preset.enable_full_int_quantization() ? ".*" : "^.*(dot_general|gather).*"); spec.mutable_method()->mutable_static_range_ptq(); return spec; } QuantizationSpec GetDefaultWeightOnlyPtqSpec() { QuantizationSpec spec{}; spec.mutable_matcher()->mutable_function_name()->set_regex( "^.*(conv|dot_general).*"); WeightOnlyPtq& weight_only_ptq_spec = *spec.mutable_method()->mutable_weight_only_ptq(); if (auto [iter, inserted] = weight_only_ptq_spec.mutable_input_quantized_types()->try_emplace(1); inserted) { iter->second.mutable_dimension_specs(); } return spec; } QuantizationSpec GetPtqSpecForConvolution(Method::MethodCase method_case) { QuantizationSpec spec{}; if (method_case != Method::kStaticRangePtq) { return spec; } spec.mutable_matcher()->mutable_function_name()->set_regex( "composite_conv.*"); QuantizedType conv_weight_quantized_type{}; conv_weight_quantized_type.mutable_dimension_specs()->set_dimension(3); StaticRangePtq& static_range_ptq_spec = *spec.mutable_method()->mutable_static_range_ptq(); static_range_ptq_spec.mutable_input_quantized_types()->try_emplace( 1, std::move(conv_weight_quantized_type)); return spec; }; void ExpandStaticRangePtqPreset(const StaticRangePtqPreset& preset, QuantizationConfig& config) { if (config.calibration_options().representative_datasets().empty()) { auto preset_datasets = preset.representative_datasets(); config.mutable_calibration_options() ->mutable_representative_datasets() ->Add(preset_datasets.begin(), preset_datasets.end()); } QuantizationSpecs new_specs{}; *new_specs.add_specs() = GetDefaultStaticRangePtqSpec(config.static_range_ptq_preset()); *new_specs.add_specs() = GetPtqSpecForConvolution(Method::MethodCase::kStaticRangePtq); const QuantizationSpecs& previous_specs = config.specs(); new_specs.mutable_specs()->Add(previous_specs.specs().begin(), previous_specs.specs().end()); config.clear_static_range_ptq_preset(); config.mutable_specs()->Swap(&new_specs); } void ExpandWeightOnlyPtqPreset(QuantizationConfig& config) { QuantizationSpecs new_specs{}; *new_specs.add_specs() = GetDefaultWeightOnlyPtqSpec(); const QuantizationSpecs& previous_specs = config.specs(); new_specs.mutable_specs()->Add(previous_specs.specs().begin(), previous_specs.specs().end()); config.clear_weight_only_ptq_preset(); config.mutable_specs()->Swap(&new_specs); } } QuantizationConfig ExpandPresets(const QuantizationConfig& config) { QuantizationConfig new_config = config; switch (config.preset_case()) { case QuantizationConfig::kStaticRangePtqPreset: ExpandStaticRangePtqPreset(config.static_range_ptq_preset(), new_config); break; case QuantizationConfig::kWeightOnlyPtqPreset: ExpandWeightOnlyPtqPreset(new_config); break; default: break; } return new_config; } bool HasQuantizationMethod(const QuantizationSpecs& specs, Method::MethodCase method_case) { for (const auto& spec : specs.specs()) { if (spec.method().method_case() == method_case) { return true; } } return false; } QuantizationConfig PopulateDefaults( const QuantizationConfig& user_provided_config) { QuantizationConfig config = user_provided_config; PopulateDefaultCalibrationOptions(config); PipelineConfig& pipeline_config = *config.mutable_pipeline_config(); if (!pipeline_config.has_unpack_quantized_types()) { pipeline_config.set_unpack_quantized_types(true); } return config; } }
#include "tensorflow/compiler/mlir/quantization/stablehlo/cc/config.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" namespace stablehlo::quantization { namespace { using ::testing::Eq; using ::testing::SizeIs; using ::testing::StrEq; using ::testing::Truly; TEST(PopulateDefaultsTest, PopulateDefaultsForEmptyConfig) { QuantizationConfig config{}; const QuantizationConfig new_config = PopulateDefaults(config); EXPECT_TRUE(new_config.pipeline_config().unpack_quantized_types()); } TEST(PopulateDefaultsTest, PopulateDefaultsForConfigWithUnpackQuantizedTypes) { QuantizationConfig config{}; config.mutable_pipeline_config()->set_unpack_quantized_types(false); const QuantizationConfig new_config = PopulateDefaults(config); EXPECT_FALSE(new_config.pipeline_config().unpack_quantized_types()); } TEST(PopulateDefaultsTest, DefaultCalibrationOptionsPopulated) { QuantizationConfig config{}; const QuantizationConfig new_config = PopulateDefaults(config); EXPECT_THAT(new_config.calibration_options().calibration_method(), Eq(CalibrationOptions::CALIBRATION_METHOD_MIN_MAX)); } TEST(PopulateDefaultsTest, DefaultCalibrationOptionsPopulatedForUnspecifiedMethod) { QuantizationConfig config{}; CalibrationOptions& calibration_options = *config.mutable_calibration_options(); calibration_options.set_calibration_method( CalibrationOptions::CALIBRATION_METHOD_UNSPECIFIED); const QuantizationConfig new_config = PopulateDefaults(config); EXPECT_THAT(new_config.calibration_options().calibration_method(), Eq(CalibrationOptions::CALIBRATION_METHOD_MIN_MAX)); } TEST(PopulateDefaultsTest, ExplicitCalibrationOptionsNotOverridden) { QuantizationConfig config{}; CalibrationOptions& calibration_options = *config.mutable_calibration_options(); calibration_options.set_calibration_method( CalibrationOptions::CALIBRATION_METHOD_AVERAGE_MIN_MAX); calibration_options.mutable_calibration_parameters()->set_num_bins(512); const QuantizationConfig new_config = PopulateDefaults(config); EXPECT_THAT(new_config.calibration_options().calibration_method(), Eq(CalibrationOptions::CALIBRATION_METHOD_AVERAGE_MIN_MAX)); EXPECT_THAT( new_config.calibration_options().calibration_parameters().num_bins(), Eq(512)); } TEST(PopulateDefaultsTest, DefaultNumbersPopulatedForPartOfCalibrationOptions) { QuantizationConfig config{}; CalibrationOptions& calibration_options = *config.mutable_calibration_options(); calibration_options.set_calibration_method( CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_PERCENTILE); calibration_options.mutable_calibration_parameters()->set_num_bins(512); const QuantizationConfig new_config = PopulateDefaults(config); EXPECT_THAT(new_config.calibration_options().calibration_method(), Eq(CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_PERCENTILE)); EXPECT_THAT( new_config.calibration_options().calibration_parameters().num_bins(), Eq(512)); EXPECT_THAT(new_config.calibration_options() .calibration_parameters() .min_percentile(), Eq(0.001f)); EXPECT_THAT(new_config.calibration_options() .calibration_parameters() .max_percentile(), Eq(99.999f)); } TEST(PopulateDefaultsTest, DefaultNumbersPopulatedForCalibrationOptionsOfHistogramMseBruteforce) { QuantizationConfig config{}; CalibrationOptions& calibration_options = *config.mutable_calibration_options(); calibration_options.set_calibration_method( CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_MSE_BRUTEFORCE); const QuantizationConfig new_config = PopulateDefaults(config); EXPECT_THAT( new_config.calibration_options().calibration_method(), Eq(CalibrationOptions::CALIBRATION_METHOD_HISTOGRAM_MSE_BRUTEFORCE)); EXPECT_THAT( new_config.calibration_options().calibration_parameters().num_bins(), Eq(512)); EXPECT_THAT(new_config.calibration_options() .calibration_parameters() .min_percentile(), Eq(0.0f)); EXPECT_THAT(new_config.calibration_options() .calibration_parameters() .max_percentile(), Eq(0.0f)); } TEST(ExpandPresetsTest, ExpandUnspecifiedPreset) { QuantizationConfig config{}; const QuantizationConfig new_config = ExpandPresets(config); EXPECT_FALSE(new_config.has_specs()); EXPECT_FALSE(new_config.has_calibration_options()); EXPECT_FALSE(new_config.has_pipeline_config()); } TEST(ExpandPresetsTest, ExpandStaticRangePtqEnableFullIntquantization) { QuantizationConfig config{}; RepresentativeDatasetConfig& preset_dataset_config = *config.mutable_static_range_ptq_preset()->add_representative_datasets(); config.mutable_static_range_ptq_preset()->set_enable_full_int_quantization( true); preset_dataset_config.mutable_tf_record()->set_path("/test/path"); const QuantizationConfig new_config = ExpandPresets(config); ASSERT_THAT(new_config.specs().specs(), SizeIs(2)); const QuantizationSpec& default_spec = new_config.specs().specs(0); EXPECT_THAT(default_spec.matcher().function_name().regex(), StrEq(".*")); EXPECT_TRUE(default_spec.method().has_static_range_ptq()); const QuantizationSpec& conv_spec = new_config.specs().specs(1); EXPECT_THAT(conv_spec.matcher().function_name().regex(), StrEq("composite_conv.*")); ASSERT_TRUE(conv_spec.method().has_static_range_ptq()); const StaticRangePtq& srq_spec = conv_spec.method().static_range_ptq(); ASSERT_THAT(srq_spec.input_quantized_types(), SizeIs(1)); ASSERT_TRUE(srq_spec.input_quantized_types().contains(1)); ASSERT_TRUE(srq_spec.input_quantized_types().at(1).has_dimension_specs()); const QuantizedDimension& dimension_specs = srq_spec.input_quantized_types().at(1).dimension_specs(); ASSERT_TRUE(dimension_specs.has_dimension()); EXPECT_THAT(dimension_specs.dimension(), Eq(3)); ASSERT_THAT(new_config.calibration_options().representative_datasets(), SizeIs(1)); EXPECT_THAT(new_config.calibration_options() .representative_datasets(0) .tf_record() .path(), StrEq("/test/path")); } TEST(ExpandPresetsTest, ExpandStaticRangePtqPresetDefault) { QuantizationConfig config{}; RepresentativeDatasetConfig& preset_dataset_config = *config.mutable_static_range_ptq_preset()->add_representative_datasets(); preset_dataset_config.mutable_tf_record()->set_path("/test/path"); const QuantizationConfig new_config = ExpandPresets(config); ASSERT_THAT(new_config.specs().specs(), SizeIs(2)); const QuantizationSpec& spec = new_config.specs().specs(0); EXPECT_THAT(spec.matcher().function_name().regex(), StrEq("^.*(dot_general|gather).*")); EXPECT_TRUE(spec.method().has_static_range_ptq()); } TEST(ExpandPresetsTest, ExpandStaticRangePtqPresetWithTopLevelRepresentativeDataset) { QuantizationConfig config{}; RepresentativeDatasetConfig& top_level_dataset_config = *config.mutable_calibration_options()->add_representative_datasets(); top_level_dataset_config.mutable_tf_record()->set_path("/test/path/1"); RepresentativeDatasetConfig& preset_dataset_config = *config.mutable_static_range_ptq_preset()->add_representative_datasets(); preset_dataset_config.mutable_tf_record()->set_path("/test/path/2"); const QuantizationConfig new_config = ExpandPresets(config); ASSERT_THAT(new_config.calibration_options().representative_datasets(), SizeIs(1)); EXPECT_THAT(new_config.calibration_options() .representative_datasets(0) .tf_record() .path(), StrEq("/test/path/1")); } TEST(ExpandPresetsTest, ExpandStaticRangePtqPresetThenAppendExplicitSpecs) { QuantizationConfig config{}; config.mutable_static_range_ptq_preset()->set_enable_full_int_quantization( true); QuantizationSpec& user_provided_spec = *config.mutable_specs()->add_specs(); user_provided_spec.mutable_matcher()->mutable_function_name()->set_regex( "composite_dot_general_fn_1"); user_provided_spec.mutable_method()->mutable_no_quantization(); const QuantizationConfig new_config = ExpandPresets(config); ASSERT_THAT(new_config.specs().specs(), SizeIs(3)); const QuantizationSpec& first_spec = new_config.specs().specs(0); EXPECT_THAT(first_spec.matcher().function_name().regex(), StrEq(".*")); EXPECT_TRUE(first_spec.method().has_static_range_ptq()); const QuantizationSpec& second_spec = new_config.specs().specs(1); EXPECT_THAT(second_spec.matcher().function_name().regex(), StrEq("composite_conv.*")); EXPECT_TRUE(second_spec.method().has_static_range_ptq()); const QuantizationSpec& third_spec = new_config.specs().specs(2); EXPECT_THAT(third_spec.matcher().function_name().regex(), StrEq("composite_dot_general_fn_1")); EXPECT_TRUE(third_spec.method().has_no_quantization()); } TEST(ExpandPresetsTest, ExpandWeightOnlyPtqPresetDefault) { QuantizationConfig config{}; *config.mutable_weight_only_ptq_preset() = WeightOnlyPtqPreset(); const QuantizationConfig new_config = ExpandPresets(config); ASSERT_THAT(new_config.specs().specs(), SizeIs(1)); const QuantizationSpec& spec = new_config.specs().specs(0); EXPECT_THAT(spec.matcher().function_name().regex(), StrEq("^.*(conv|dot_general).*")); EXPECT_TRUE(spec.method().has_weight_only_ptq()); const WeightOnlyPtq& weight_only_ptq_spec = spec.method().weight_only_ptq(); EXPECT_THAT(weight_only_ptq_spec.input_quantized_types(), UnorderedElementsAre(Pair( 1, Truly([](const auto& quantized_type) { return quantized_type.has_dimension_specs() && !quantized_type.dimension_specs().has_dimension(); })))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/cc/config.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/cc/config_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
34fb00dd-c8fd-49ca-aa3d-7b157bea692d
cpp
tensorflow/tensorflow
tfrt_session
tensorflow/core/tfrt/tfrt_session/tfrt_session.cc
tensorflow/core/tfrt/tfrt_session/tfrt_session_test.cc
#include "tensorflow/core/tfrt/tfrt_session/tfrt_session.h" #include <algorithm> #include <cassert> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/die_if_null.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "Eigen/ThreadPool" #include "llvm/ADT/STLExtras.h" #include "tensorflow/compiler/mlir/tfrt/translate/tfrt_compile_options.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/local_session_selection.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/session_factory.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/threadpool.h" #include "tensorflow/core/platform/threadpool_interface.h" #include "tensorflow/core/platform/threadpool_options.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/graph_executor/graph_execution_options.h" #include "tensorflow/core/tfrt/graph_executor/graph_executor.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/kernel/batch_kernel.h" #include "tensorflow/core/tfrt/mlrt/kernel/kernel.h" #include "tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tensorflow/core/tfrt/runtime/tf_threadpool_concurrent_work_queue.h" #include "tensorflow/core/tfrt/runtime/work_queue_interface.h" #include "tensorflow/core/tfrt/utils/utils.h" #include "tensorflow/core/util/device_name_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/thread_annotations.h" #include "tfrt/core_runtime/core_runtime.h" #include "tfrt/host_context/concurrent_work_queue.h" #include "tfrt/host_context/resource_context.h" namespace tensorflow { namespace { class ThreadPoolInterfaceWrapper : public thread::ThreadPoolInterface { public: explicit ThreadPoolInterfaceWrapper(Eigen::ThreadPoolInterface* thread_pool) : thread_pool_{thread_pool} { DCHECK(thread_pool); } void Schedule(std::function<void()> fn) override { return thread_pool().Schedule(std::move(fn)); } void ScheduleWithHint(std::function<void()> fn, int start, int end) override { return thread_pool().ScheduleWithHint(std::move(fn), start, end); } void Cancel() override { thread_pool().Cancel(); } int NumThreads() const override { return thread_pool().NumThreads(); } int CurrentThreadId() const override { return thread_pool().CurrentThreadId(); } private: Eigen::ThreadPoolInterface& thread_pool() const { DCHECK(thread_pool_); return *thread_pool_; } Eigen::ThreadPoolInterface* thread_pool_ = nullptr; }; class TfrtSessionInterOpThreadPools { public: TfrtSessionInterOpThreadPools(int size, bool run_in_caller_thread) : thread_pools_(size), run_in_caller_thread_(run_in_caller_thread) {} void SetThreadPool(int index, ThreadPoolInterfaceWrapper* thread_pool) { thread_pools_.at(index) = thread_pool; } absl::StatusOr<ThreadPoolInterfaceWrapper*> GetThreadPool(int index) { if (index < 0 || index >= thread_pools_.size()) return errors::InvalidArgument("Invalid thread pool index ", index); return thread_pools_[index]; } bool run_in_caller_thread() const { return run_in_caller_thread_; } private: std::vector<ThreadPoolInterfaceWrapper*> thread_pools_; bool run_in_caller_thread_; }; class TfrtSession : public tensorflow::Session { public: explicit TfrtSession(const SessionOptions& options, tensorflow::tfrt_stub::Runtime* runtime, TfrtDeviceInfraTarget device_target, bool tpu_use_tpu_runner, bool use_gpu, TfrtSessionInterOpThreadPools inter_op_thread_pools, bool enable_mlrt, tensorflow::BackendCompiler* backend_compiler, std::unique_ptr<StaticDeviceMgr> device_manager) : runtime_{runtime}, device_target_{device_target}, tpu_use_tpu_runner_{tpu_use_tpu_runner}, use_gpu_{use_gpu}, inter_op_thread_pools_{std::move(inter_op_thread_pools)}, enable_mlrt_(enable_mlrt), options_{options}, backend_compiler_(backend_compiler), device_manager_(std::move(device_manager)) {} Status Create(const GraphDef& graph) override { return Create(GraphDef(graph)); } Status Create(GraphDef&& graph) override { absl::MutexLock lock(&session_state_lock_); return CreateLocked(std::move(graph)); } Status CreateLocked(GraphDef graph) TF_EXCLUSIVE_LOCKS_REQUIRED(session_state_lock_) { if (graph.node_size() == 0) { LOG(ERROR) << "Ignoring empty graph."; return absl::OkStatus(); } if (session_state_ == SessionState::kCreated) { return errors::AlreadyExists( "A Graph has already been created for this session."); } TF_RETURN_IF_ERROR(CheckNotClosedLocked()); auto options = GetGraphExecutionOptions(); tensorflow::tfrt_stub::UpdateTpuTargetByBridgeCompatibility(options, graph); auto* nodes = graph.mutable_node(); for (auto it = nodes->begin(), end = nodes->end(); it != end; ++it) { if (it->name() == "ConfigureDistributedTPU") { nodes->erase(it); break; } } auto session_options = tensorflow::tfrt_stub::CreateDefaultSessionOptions(options); session_options.config.mutable_experimental() ->set_optimize_for_static_graph( options_.config.experimental().optimize_for_static_graph()); session_options.config.mutable_experimental() ->set_disable_optimize_for_static_graph( options_.config.experimental().disable_optimize_for_static_graph()); LOG_FIRST_N(INFO, 10) << "SessionOptions: " << session_options.config.DebugString(); const auto& fdef_lib = graph.library(); TF_ASSIGN_OR_RETURN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::CreateWithDeviceMgr( session_options, fdef_lib, device_manager_.get())); auto kernel_registry = std::make_unique<mlrt::KernelRegistry>(); tensorflow::tf_mlrt::RegisterTfMlrtKernels(*kernel_registry); tensorflow::tf_mlrt::RegisterTfMlrtBatchKernels(*kernel_registry); auto resource_context = std::make_unique<tfrt::ResourceContext>(); tfrt_stub::ModelRuntimeContext model_context( &options, "unknown_export_dir", resource_context.get()); model_context.set_graph_def(&graph); model_context.set_device_mgr(&fallback_state->device_manager()); model_context.set_is_local_session( !options_.config.experimental().enable_multi_host() && !options_.config.experimental().tfrt_use_ifrt()); TF_RETURN_IF_ERROR(options.runtime->CreateRuntimeResources(model_context)); GraphOptimizationPassOptions optimization_options; optimization_options.session_options = &options_; FunctionLibraryDefinition flib_def = fallback_state->func_lib_def(); optimization_options.flib_def = &flib_def; std::unordered_map<string, std::unique_ptr<Graph>> partition_graphs; auto initial_graph = std::make_unique<tensorflow::Graph>(tensorflow::OpRegistry::Global()); tensorflow::GraphConstructorOptions opts; opts.allow_internal_ops = true; TF_RETURN_IF_ERROR( tensorflow::ConvertGraphDefToGraph(opts, graph, initial_graph.get())); partition_graphs["graph"] = std::move(initial_graph); optimization_options.partition_graphs = &partition_graphs; OptimizationPassRegistry::Global()->LogAllGroupings(1); TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::POST_PARTITIONING, optimization_options)); LOG_FIRST_N(INFO, 10) << "GraphExecutionOptions: " << options; TF_ASSIGN_OR_RETURN( graph_executor_, tensorflow::tfrt_stub::GraphExecutor::Create( options, std::move(fallback_state), std::move(resource_context), std::move(graph), std::move(kernel_registry))); session_state_ = SessionState::kCreated; return absl::OkStatus(); } Status Extend(const GraphDef& graph) override { return Extend(GraphDef(graph)); } Status Extend(GraphDef&& graph) override { absl::MutexLock lock(&session_state_lock_); return ExtendLocked(std::move(graph)); } Status ExtendLocked(GraphDef graph) TF_EXCLUSIVE_LOCKS_REQUIRED(session_state_lock_) { if (session_state_ == SessionState::kCreated) { return graph_executor_->Extend(graph); } return CreateLocked(std::move(graph)); } Status RunInternal(const RunOptions& run_options, const std::vector<std::pair<std::string, Tensor>>& inputs, const std::vector<std::string>& output_tensor_names, const std::vector<std::string>& target_node_names, std::vector<Tensor>* outputs, const thread::ThreadPoolOptions& thread_pool_options) { { absl::MutexLock lock(&session_state_lock_); if (session_state_ == SessionState::kInitialized) { return errors::Unavailable("Session not created yet."); } TF_RETURN_IF_ERROR(CheckNotClosedLocked()); } DCHECK(outputs || output_tensor_names.empty()) << "No outputs in Run()"; tensorflow::tfrt_stub::GraphExecutionRunOptions graph_execution_run_options{}; if (run_options.timeout_in_ms() > 0) { graph_execution_run_options.deadline = absl::ToChronoTime( absl::Now() + absl::Milliseconds(run_options.timeout_in_ms())); } std::unique_ptr<tensorflow::tfrt_stub::WorkQueueInterface> work_queue; auto* const intra_op_thread_pool = thread_pool_options.intra_op_threadpool; if (inter_op_thread_pools_.run_in_caller_thread() || run_options.inter_op_thread_pool() == -1) { work_queue = tfrt_stub::WrapDefaultWorkQueue( tfrt::CreateSingleThreadedWorkQueue(), intra_op_thread_pool); } else if (thread_pool_options.inter_op_threadpool != nullptr) { work_queue = std::make_unique<tensorflow::tfrt_stub::TfThreadPoolWorkQueue>( tfrt::GetUniqueInt(), intra_op_thread_pool, thread_pool_options.inter_op_threadpool); } else { TF_ASSIGN_OR_RETURN(auto* thread_pool, inter_op_thread_pools_.GetThreadPool( run_options.inter_op_thread_pool())); work_queue = std::make_unique<tensorflow::tfrt_stub::TfThreadPoolWorkQueue>( tfrt::GetUniqueInt(), intra_op_thread_pool, thread_pool); } graph_execution_run_options.work_queue = work_queue.get(); std::vector<Tensor> output_tensors; TF_RETURN_IF_ERROR(graph_executor_->Run( graph_execution_run_options, inputs, output_tensor_names, target_node_names, &output_tensors)); if (outputs) { DCHECK_EQ(output_tensors.size(), output_tensor_names.size()); outputs->swap(output_tensors); } else { DCHECK(output_tensor_names.empty()) << "No outputs in Run()"; } return absl::OkStatus(); } Status Run(const std::vector<std::pair<std::string, Tensor>>& inputs, const std::vector<std::string>& output_tensor_names, const std::vector<std::string>& target_node_names, std::vector<Tensor>* outputs) override { return RunInternal(RunOptions{}, inputs, output_tensor_names, target_node_names, outputs, {}); } Status Run(const RunOptions& run_options, const std::vector<std::pair<std::string, Tensor>>& inputs, const std::vector<std::string>& output_tensor_names, const std::vector<std::string>& target_node_names, std::vector<Tensor>* outputs, RunMetadata* run_metadata) override { return Run(run_options, inputs, output_tensor_names, target_node_names, outputs, run_metadata, {}); } Status Run(const RunOptions& run_options, const std::vector<std::pair<std::string, Tensor>>& inputs, const std::vector<std::string>& output_tensor_names, const std::vector<std::string>& target_tensor_names, std::vector<Tensor>* outputs, RunMetadata* run_metadata, const thread::ThreadPoolOptions& thread_pool_options) override { return RunInternal(run_options, inputs, output_tensor_names, target_tensor_names, outputs, thread_pool_options); } Status MakeCallable(const CallableOptions& callable_options, CallableHandle* out_handle) override { absl::MutexLock lock(&callables_lock_); *out_handle = next_callable_handle_++; assert(callables_.find(*out_handle) == callables_.end()); callables_[*out_handle] = {callable_options}; return absl::OkStatus(); } Status RunCallable(CallableHandle handle, const std::vector<Tensor>& feed_tensors, std::vector<Tensor>* fetch_tensors, RunMetadata* run_metadata) override { return RunCallable(handle, feed_tensors, fetch_tensors, run_metadata, {}); } Status RunCallable( CallableHandle handle, const std::vector<Tensor>& feed_tensors, std::vector<Tensor>* fetch_tensors, RunMetadata* run_metadata, const thread::ThreadPoolOptions& thread_pool_options) override { Callable callable; { absl::MutexLock lock(&callables_lock_); auto it = callables_.find(handle); if (it == callables_.end()) return errors::InvalidArgument("No such callable handle: ", handle); callable = it->second; } if (callable.callable_options.feed_size() != feed_tensors.size()) return errors::InvalidArgument("Invalid number of feed tensors"); std::vector<std::pair<std::string, Tensor>> inputs; for (const auto& it : llvm::zip(callable.callable_options.feed(), feed_tensors)) { inputs.emplace_back(std::make_pair(std::get<0>(it), std::get<1>(it))); } std::vector<std::string> output_tensor_names; for (const auto& tensor_name : callable.callable_options.fetch()) { output_tensor_names.emplace_back(tensor_name); } std::vector<std::string> target_node_names; for (const auto& node_name : callable.callable_options.target()) { target_node_names.emplace_back(node_name); } return Run(inputs, output_tensor_names, target_node_names, fetch_tensors); } Status ReleaseCallable(CallableHandle handle) override { absl::MutexLock lock(&callables_lock_); auto it = callables_.find(handle); if (it == callables_.end()) return errors::InvalidArgument("No such callable handle: ", handle); callables_.erase(it); return absl::OkStatus(); } Status Close() override { absl::MutexLock lock(&session_state_lock_); session_state_ = SessionState::kClosed; return absl::OkStatus(); } Status ListDevices(std::vector<DeviceAttributes>* response) override { return errors::Unimplemented("TfrtSession::ListDevices is Unimplemented."); } Status LocalDeviceManager(const DeviceMgr** output) override { *output = device_manager_.get(); return absl::OkStatus(); } Status Finalize() override { return absl::OkStatus(); } private: tfrt::HostContext* GetHostContext() { return runtime_->core_runtime()->GetHostContext(); } tensorflow::tfrt_stub::GraphExecutionOptions GetGraphExecutionOptions() const { ::tensorflow::tfrt_stub::GraphExecutionOptions options(runtime_); auto& compile_options = options.compile_options; compile_options.variable_device = DeviceNameUtils::FullName("localhost", 0, 0, "CPU", 0); compile_options.enable_grappler = true; compile_options.device_target = device_target_; compile_options.tpu_fuse_ops = tpu_use_tpu_runner_; compile_options.hoist_invariant_ops = true; compile_options.sink_in_invariant_ops = false; compile_options.cost_threshold = 1024; if (use_gpu_) { options.enable_tfrt_gpu = true; options.enable_grappler_function_optimizer = true; } compile_options.use_tpu_host_allocator_for_inputs = tpu_use_tpu_runner_; options.compile_options.backend_compiler = backend_compiler_; options.model_metadata = options_.config.experimental().session_metadata(); options.enable_mlrt = enable_mlrt_; return options; } Status CheckNotClosedLocked() const TF_EXCLUSIVE_LOCKS_REQUIRED(session_state_lock_) { if (session_state_ == SessionState::kClosed) { return errors::Cancelled("Session has been closed."); } return absl::OkStatus(); } struct Callable { CallableOptions callable_options; }; enum class SessionState { kInitialized, kCreated, kClosed, }; mutable absl::Mutex session_state_lock_; SessionState session_state_ TF_GUARDED_BY(session_state_lock_) = SessionState::kInitialized; std::unique_ptr<::tensorflow::tfrt_stub::GraphExecutor> graph_executor_; tensorflow::tfrt_stub::Runtime* runtime_ = nullptr; const TfrtDeviceInfraTarget device_target_; const bool tpu_use_tpu_runner_; const bool use_gpu_; TfrtSessionInterOpThreadPools inter_op_thread_pools_; mutable absl::Mutex callables_lock_; CallableHandle next_callable_handle_ TF_GUARDED_BY(callables_lock_) = 0; absl::flat_hash_map<CallableHandle, Callable> callables_ TF_GUARDED_BY(callables_lock_); bool enable_mlrt_ = false; SessionOptions options_ = SessionOptions(); tensorflow::BackendCompiler* backend_compiler_ = nullptr; std::unique_ptr<StaticDeviceMgr> device_manager_; }; std::unique_ptr<tensorflow::tfrt_stub::WorkQueueInterface> CreateRunHandlerWorkQueue(const TfrtThreadpoolOptions& session_options) { int num_complementary_threads = std::max(1, session_options.num_main_threads / 2); tfrt::tf::RunHandlerThreadWorkQueue::Options options; options.num_main_threads = session_options.num_main_threads; options.num_complementary_threads = num_complementary_threads; options.init_timeout_ms = absl::ToInt64Milliseconds(session_options.init_timeout); options.max_concurrent_handler = session_options.max_concurrent_handler; options.num_sub_thread_pool = session_options.num_sub_thread_pool; std::vector<int> num_threads; const int num_threads_per_pool = options.num_main_threads / options.num_sub_thread_pool; num_threads.resize(options.num_sub_thread_pool - 1, num_threads_per_pool); num_threads.push_back(options.num_main_threads - (options.num_sub_thread_pool - 1) * num_threads_per_pool); options.num_threads_in_sub_thread_pool = num_threads; options.sub_thread_request_percentage = {1.0}; options.use_adaptive_waiting_time = true; LOG_FIRST_N(INFO, 10) << "RunHandlerThreadWorkQueue Options: " << options; return std::make_unique<tfrt::tf::RunHandlerThreadWorkQueue>(options); } } class TfrtSessionFactory::ThreadPoolManager { public: absl::StatusOr<TfrtSessionInterOpThreadPools> UpdateAndGetInterOpThreadPools( const SessionOptions& options) { if (options.config.inter_op_parallelism_threads() > 0) { LOG(WARNING) << "TFRT session does not support positive " "inter_op_parallelism_threads for now"; } if (options.config.use_per_session_threads()) { return errors::InvalidArgument( "TFRT session does not yet support use_per_session_threads()"); } auto session_inter_op_thread_pool_size = options.config.session_inter_op_thread_pool_size(); if (session_inter_op_thread_pool_size > 0) { TfrtSessionInterOpThreadPools inter_op_thread_pools{ session_inter_op_thread_pool_size, false}; for (const auto& it : llvm::enumerate(options.config.session_inter_op_thread_pool())) { const ThreadPoolOptionProto& pool_options = it.value(); auto pool_index = it.index(); auto num_threads = pool_options.num_threads(); if (num_threads != 0) { TF_ASSIGN_OR_RETURN( auto* thread_pool, GetOrCreateThreadPool(options.env, pool_options, pool_index)); inter_op_thread_pools.SetThreadPool(pool_index, thread_pool); } else { inter_op_thread_pools.SetThreadPool(pool_index, GlobalThreadPool(options)); } } return inter_op_thread_pools; } else if (options.config.inter_op_parallelism_threads() < 0) { return TfrtSessionInterOpThreadPools{0, true}; } else if (session_inter_op_thread_pool_size == 0) { TfrtSessionInterOpThreadPools session_thread_pool_options{ 1, false}; session_thread_pool_options.SetThreadPool(0, GlobalThreadPool(options)); return session_thread_pool_options; } else { return errors::InvalidArgument( "session_inter_op_thread_pool_size must be >= 0"); } } private: class ThreadPoolWithNumThreads { public: ThreadPoolWithNumThreads(int num_thread, std::unique_ptr<thread::ThreadPool> thread_pool) : num_threads_(num_thread), thread_pool_(std::move(thread_pool)), thread_pool_interface_wrapper_( ABSL_DIE_IF_NULL(thread_pool_)->AsEigenThreadPool()) {} int num_threads() const { return num_threads_; } ThreadPoolInterfaceWrapper* thread_pool_interface_wrapper() { return &thread_pool_interface_wrapper_; } private: int num_threads_; std::unique_ptr<thread::ThreadPool> thread_pool_; ThreadPoolInterfaceWrapper thread_pool_interface_wrapper_; }; ThreadPoolInterfaceWrapper* GlobalThreadPool(const SessionOptions& options) { static thread::ThreadPool* const thread_pool = NewThreadPoolFromSessionOptions(options); static auto* const wrapper = new ThreadPoolInterfaceWrapper{thread_pool->AsEigenThreadPool()}; return wrapper; } absl::StatusOr<ThreadPoolInterfaceWrapper*> GetOrCreateThreadPool( Env* env, const ThreadPoolOptionProto& pool_options, int pool_index) { const int32_t num_threads = pool_options.num_threads(); CHECK_GT(num_threads, 0); const std::string& name = pool_options.global_name(); if (name.empty()) { return errors::InvalidArgument( "TFRT session does not yet support session local thread pool"); } absl::MutexLock lock(&mutex_); auto it = named_thread_pools_.find(name); if (it != named_thread_pools_.end()) { if (it->second->num_threads() != num_threads) { return errors::InvalidArgument( "TfrtSession thread pool ", name, " configured previously with num_threads=", it->second->num_threads(), "; cannot re-configure with num_threads=", num_threads); } return it->second->thread_pool_interface_wrapper(); } auto thread_pool = std::make_unique<thread::ThreadPool>( env, ThreadOptions(), absl::StrCat("TfrtSessionInter", pool_index), num_threads, false, nullptr); auto ret = named_thread_pools_.emplace( name, std::make_unique<ThreadPoolWithNumThreads>( num_threads, std::move(thread_pool))); CHECK(ret.second); return ret.first->second->thread_pool_interface_wrapper(); } mutable absl::Mutex mutex_; absl::flat_hash_map<std::string, std::unique_ptr<ThreadPoolWithNumThreads>> named_thread_pools_ ABSL_GUARDED_BY(mutex_); }; TfrtSessionFactory::TfrtSessionFactory() : thread_pool_manager_(std::make_unique<ThreadPoolManager>()) {} class InitializerRegistry { public: static InitializerRegistry& Get() { static auto* reg = new InitializerRegistry(); return *reg; } void Register(TfrtSessionFactory::RuntimeInitializer initializer) { DCHECK(initializer_ == nullptr); initializer_ = initializer; } absl::Status RunInitializer(tfrt_stub::Runtime* runtime) { LOG(INFO) << "Running Initializer within TfrtSessionFactory."; TF_RETURN_IF_ERROR(initializer_ ? initializer_(runtime) : absl::OkStatus()); return absl::OkStatus(); } private: TfrtSessionFactory::RuntimeInitializer initializer_; }; void TfrtSessionFactory::RegisterInitializer(RuntimeInitializer initializer) { InitializerRegistry::Get().Register(std::move(initializer)); } Status TfrtSessionFactory::InitializeLocked(const TfrtSessionOptions& options) { mutex_.AssertHeld(); if (options.use_tpu) { DCHECK(!options.backend_compiler); DCHECK(!options.use_gpu); device_target_ = TfrtDeviceInfraTarget::kTpurt; tpu_use_tpu_runner_ = true; } else if (options.use_gpu) { DCHECK(!options.backend_compiler); device_target_ = TfrtDeviceInfraTarget::kGpu; use_gpu_ = true; } else if (options.backend_compiler) { backend_compiler_ = options.backend_compiler; } LOG(INFO) << "Start initializing TfrtSession"; if (options.runtime != nullptr) { runtime_ = options.runtime; } else if (runtime_ == nullptr) { owned_runtime_ = tensorflow::tfrt_stub::Runtime::Create( CreateRunHandlerWorkQueue(options.threadpool_options)); runtime_ = owned_runtime_.get(); } enable_mlrt_ = options.enable_mlrt; return absl::OkStatus(); } bool TfrtSessionFactory::AcceptsOptions(const SessionOptions& options) { if (options.target == "tfrt_session") return true; if (options.target.empty()) { return options.config.experimental().use_tfrt() || GetDefaultLocalSessionImpl() == LocalSessionImpl::kTfrtSession; } return false; } Status TfrtSessionFactory::NewSession(const SessionOptions& options, Session** out_session) TF_LOCKS_EXCLUDED(mutex_) { if (options.config.intra_op_parallelism_threads() != 0) { LOG(WARNING) << "TFRT session ignores intra_op_parallelism_threads. " "Intra-op thread " "pool can only be configured by `Run()`"; } *out_session = nullptr; absl::MutexLock lock(&mutex_); std::vector<std::unique_ptr<Device>> devices; TF_RETURN_IF_ERROR(DeviceFactory::AddDevices( options, "/job:localhost/replica:0/task:0", &devices)); device_manager_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); if (!IsInitialized()) { TF_RETURN_IF_ERROR(InitializeLocked({})); TF_RETURN_IF_ERROR(InitializerRegistry::Get().RunInitializer(runtime_)); } TF_ASSIGN_OR_RETURN( auto inter_op_thread_pools, thread_pool_manager_->UpdateAndGetInterOpThreadPools(options)); auto* backend_compiler = (options.config.experimental().enable_multi_host() || options.config.experimental().tfrt_use_ifrt()) ? backend_compiler_ : nullptr; *out_session = new TfrtSession(options, runtime_, device_target_, tpu_use_tpu_runner_, use_gpu_, std::move(inter_op_thread_pools), enable_mlrt_, backend_compiler, std::move(device_manager_)); return absl::OkStatus(); } namespace { static TfrtSessionFactory* session_factory = nullptr; } tfrt_stub::Runtime* TfrtSessionFactory::GetRuntime() { DCHECK(session_factory != nullptr); absl::MutexLock lock(&session_factory->mutex_); return session_factory->runtime_; } Status InitializeTfrtSession(const TfrtSessionOptions& options) { DCHECK(session_factory != nullptr); absl::MutexLock lock(&session_factory->mutex_); DCHECK(!session_factory->IsInitialized()); return UpdateTfrtSessionOptionsLocked(options); } Status UpdateTfrtSessionOptionsLocked(const TfrtSessionOptions& options) { DCHECK(session_factory != nullptr); session_factory->mutex_.AssertHeld(); return session_factory->InitializeLocked(options); } static const bool kFactoryRgistration = [] { session_factory = new TfrtSessionFactory(); LOG(INFO) << "Registering TfrtSession"; SessionFactory::Register("tfrt_session", session_factory); return true; }(); }
#include "tensorflow/core/tfrt/tfrt_session/tfrt_session.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "absl/time/time.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/saved_model/reader.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/threadpool_options.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tensorflow/core/tfrt/utils/thread_pool.h" #include "tsl/platform/protobuf.h" namespace tensorflow { namespace { class TfrtSessionEnvironment : public ::testing::Environment { public: void SetUp() override { TfrtSessionOptions options{ .threadpool_options = tensorflow::TfrtThreadpoolOptions{ .num_main_threads = tensorflow::port::MaxParallelism(), .init_timeout = absl::Milliseconds(100), .max_concurrent_handler = 128, .num_sub_thread_pool = 1}}; TF_ASSERT_OK(InitializeTfrtSession(options)); } }; class TfrtSessionTest : public ::testing::Test { protected: void SetUp() override { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); auto* model_metadata = options.config.mutable_experimental()->mutable_session_metadata(); model_metadata->set_name("toy_v1"); model_metadata->set_version(0); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); TF_ASSERT_OK(session_->Create(meta_graph_def.graph_def())); TF_ASSERT_OK(session_->Run({}, {}, {"init"}, nullptr)); inputs_.push_back(std::make_pair( "input1", test::AsTensor<int32_t>({1, 1, 1}, TensorShape{1, 3}))); inputs_.push_back(std::make_pair( "input2", test::AsTensor<int32_t>({2, 2, 2}, TensorShape{1, 3}))); inputs_.push_back(std::make_pair( "input3", test::AsTensor<int32_t>({3, 3, 3}, TensorShape{1, 3}))); } std::unique_ptr<Session> session_; std::vector<std::pair<std::string, Tensor>> inputs_; std::vector<std::string> output_tensor_names_{"result1", "result21", "result31"}; std::vector<std::string> target_node_names_{"result22", "result32"}; }; TEST_F(TfrtSessionTest, NoTargetNodes) { std::vector<Tensor> outputs; TF_ASSERT_OK(session_->Run(inputs_, output_tensor_names_, {}, &outputs)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); test::ExpectEqual(outputs[1], test::AsTensor<int32_t>({12}, TensorShape{1, 1})); test::ExpectEqual(outputs[2], test::AsTensor<int32_t>({18}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, RunOptions) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); auto* model_metadata = options.config.mutable_experimental()->mutable_session_metadata(); model_metadata->set_name("toy_v1"); model_metadata->set_version(0); auto session = absl::WrapUnique(NewSession(options)); ASSERT_TRUE(session != nullptr); tensorflow::GraphDef graph_def; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString( R"pb( node: { name: "input" op: "Placeholder" attr: { key: "dtype" value: { type: DT_INT32 } } } node: { name: "sleep_seconds" op: "Const" attr: { key: "dtype" value: { type: DT_INT32 } } attr: { key: "value" value: { tensor: { tensor_shape: {} dtype: DT_INT32 int_val: 2 } } } } node: { name: "sleep" op: "SleepIdentityOp" input: "sleep_seconds:0" input: "input:0" attr: { key: "T" value: { type: DT_INT32 } } })pb" , &graph_def)); TF_ASSERT_OK(session->Create(graph_def)); std::vector<Tensor> outputs; RunMetadata run_metadata; TF_ASSERT_OK(session->Run( RunOptions{}, {{"input", test::AsTensor<int32_t>({1}, TensorShape{1})}}, {"sleep"}, {}, &outputs, &run_metadata)); ASSERT_EQ(outputs.size(), 1); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({1}, TensorShape{1})); RunOptions run_options; run_options.set_timeout_in_ms(1); auto status = session->Run( run_options, {{"input", test::AsTensor<int32_t>({1}, TensorShape{1})}}, {"sleep"}, {}, &outputs, &run_metadata); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), ::testing::HasSubstr("Deadline exceeded")); } TEST_F(TfrtSessionTest, ThreadPoolOptions) { std::vector<Tensor> outputs; RunMetadata run_metadata; tfrt_stub::TfThreadPool intra_op_thread_pool("tf_intra", 1); tfrt_stub::TfThreadPool inter_op_thread_pool( "tf_inter", 1); thread::ThreadPoolOptions thread_pool_options{ .inter_op_threadpool = &inter_op_thread_pool, .intra_op_threadpool = &intra_op_thread_pool}; TF_ASSERT_OK(session_->Run(RunOptions{}, inputs_, output_tensor_names_, {}, &outputs, &run_metadata, thread_pool_options)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, ThreadPoolOptions_OnlyInter) { std::vector<Tensor> outputs; RunMetadata run_metadata; tfrt_stub::TfThreadPool inter_op_thread_pool( "tf_inter", 1); thread::ThreadPoolOptions thread_pool_options{ .inter_op_threadpool = &inter_op_thread_pool, .intra_op_threadpool = nullptr}; TF_ASSERT_OK(session_->Run(RunOptions{}, inputs_, output_tensor_names_, {}, &outputs, &run_metadata, thread_pool_options)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, ThreadPoolOptions_OnlyIntra) { std::vector<Tensor> outputs; RunMetadata run_metadata; tfrt_stub::TfThreadPool intra_op_thread_pool("tf_intra", 1); thread::ThreadPoolOptions thread_pool_options{ .inter_op_threadpool = nullptr, .intra_op_threadpool = &intra_op_thread_pool}; TF_ASSERT_OK(session_->Run(RunOptions{}, inputs_, output_tensor_names_, {}, &outputs, &run_metadata, thread_pool_options)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, RunInCallerThreadSessionOptions) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); options.config.set_inter_op_parallelism_threads(-1); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); TF_ASSERT_OK(session_->Create(meta_graph_def.graph_def())); RunMetadata run_metadata; TF_ASSERT_OK(session_->Run( {}, {}, {}, {"init"}, nullptr, &run_metadata)); } TEST_F(TfrtSessionTest, RunInCallerThreadRunOptions) { std::vector<Tensor> outputs; RunOptions run_options; run_options.set_inter_op_thread_pool(-1); RunMetadata run_metadata; TF_ASSERT_OK(session_->Run(run_options, inputs_, output_tensor_names_, {}, &outputs, &run_metadata)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, DeviceManager) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); options.config.set_inter_op_parallelism_threads(-1); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); const DeviceMgr* device_manager; TF_ASSERT_OK(session_->LocalDeviceManager(&device_manager)); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); TF_ASSERT_OK(session_->Create(meta_graph_def.graph_def())); RunMetadata run_metadata; TF_ASSERT_OK(session_->Run( {}, {}, {}, {"init"}, nullptr, &run_metadata)); const DeviceMgr* device_manager_final; TF_ASSERT_OK(session_->LocalDeviceManager(&device_manager_final)); ASSERT_EQ(device_manager, device_manager_final); } TEST_F(TfrtSessionTest, IntraOpThreadPoolOptionWarning) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); options.config.set_intra_op_parallelism_threads(1); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); } TEST_F(TfrtSessionTest, Callable) { CallableOptions callable_options; std::vector<Tensor> feed_tensors; for (auto& input : inputs_) { callable_options.add_feed(input.first); feed_tensors.emplace_back(input.second); } for (auto& output : output_tensor_names_) { callable_options.add_fetch(output); } for (auto& target : target_node_names_) { callable_options.add_target(target); } Session::CallableHandle callable_handle; TF_ASSERT_OK(session_->MakeCallable(callable_options, &callable_handle)); std::vector<Tensor> outputs; RunMetadata run_metadata; TF_ASSERT_OK(session_->RunCallable(callable_handle, feed_tensors, &outputs, &run_metadata)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); TF_ASSERT_OK(session_->ReleaseCallable(callable_handle)); } TEST_F(TfrtSessionTest, Finalize) { TF_ASSERT_OK(session_->Finalize()); } TEST_F(TfrtSessionTest, WithTargetNodes) { std::vector<Tensor> outputs; TF_ASSERT_OK(session_->Run(inputs_, output_tensor_names_, target_node_names_, &outputs)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); test::ExpectEqual(outputs[1], test::AsTensor<int32_t>({12}, TensorShape{1, 1})); test::ExpectEqual(outputs[2], test::AsTensor<int32_t>({18}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, CreateWithEmptyGraphIsNoop) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); TF_ASSERT_OK(session_->Create(GraphDef())); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); TF_ASSERT_OK(session_->Create(meta_graph_def.graph_def())); } TEST_F(TfrtSessionTest, CreateAgainError) { std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); auto status = session_->Create(meta_graph_def.graph_def()); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), ::testing::HasSubstr( "A Graph has already been created for this session.")); } TEST_F(TfrtSessionTest, CreateAfterCloseError) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); TF_ASSERT_OK(session_->Close()); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); auto status = session_->Create(meta_graph_def.graph_def()); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), ::testing::HasSubstr("Session has been closed.")); } TEST_F(TfrtSessionTest, ExtendWhenNotCreated) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); TF_ASSERT_OK(session_->Extend(meta_graph_def.graph_def())); TF_ASSERT_OK(session_->Run({}, {}, {"init"}, nullptr)); std::vector<Tensor> outputs; TF_ASSERT_OK(session_->Run(inputs_, output_tensor_names_, {}, &outputs)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); test::ExpectEqual(outputs[1], test::AsTensor<int32_t>({12}, TensorShape{1, 1})); test::ExpectEqual(outputs[2], test::AsTensor<int32_t>({18}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, ExtendAfterCreate) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); options.config.mutable_experimental()->set_disable_optimize_for_static_graph( true); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); GraphDef graph_def; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output a = ops::Const(scope.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Const(scope.WithControlDependencies(a).WithOpName("b"), 0.0f, {10, 10}); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); } TF_ASSERT_OK(session_->Create(graph_def)); GraphDef extension; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input = ops::Placeholder(scope.WithOpName("input"), DT_INT32); auto rank = ops::Rank(scope.WithOpName("rank"), input); TF_ASSERT_OK(scope.ToGraphDef(&extension)); } TF_ASSERT_OK(session_->Extend(extension)); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", tensorflow::tfrt_stub::CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(session_->Run(inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(tensorflow::tfrt_stub::GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); } TEST_F(TfrtSessionTest, ExtendAfterCreate_ErrorWithStaticGraphOptimization) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); options.config.mutable_experimental()->set_optimize_for_static_graph(true); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); GraphDef graph_def; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output a = ops::Const(scope.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Const(scope.WithControlDependencies(a).WithOpName("b"), 0.0f, {10, 10}); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); } TF_ASSERT_OK(session_->Create(graph_def)); GraphDef extension; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input = ops::Placeholder(scope.WithOpName("input"), DT_INT32); auto rank = ops::Rank(scope.WithOpName("rank"), input); TF_ASSERT_OK(scope.ToGraphDef(&extension)); } auto status = session_->Extend(extension); ASSERT_FALSE(status.ok()); EXPECT_THAT( status.ToString(), ::testing::HasSubstr("Extending the graph is not supported when")); } TEST_F(TfrtSessionTest, ExtendAfterCloseError) { TF_ASSERT_OK(session_->Close()); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); auto status = session_->Extend(meta_graph_def.graph_def()); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), ::testing::HasSubstr("Session has been closed.")); } TEST_F(TfrtSessionTest, RunAfterCloseError) { TF_ASSERT_OK(session_->Close()); std::vector<Tensor> outputs; auto status = session_->Run(inputs_, output_tensor_names_, {}, &outputs); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), ::testing::HasSubstr("Session has been closed.")); } TEST_F(TfrtSessionTest, InitializeTwiceCrashes) { TfrtSessionOptions options; auto second_initialize = [](TfrtSessionOptions options) { auto status = InitializeTfrtSession(options); TF_ASSERT_OK(status); }; ASSERT_DEBUG_DEATH(second_initialize(options), ""); } TEST_F(TfrtSessionTest, GetRuntime) { auto runtime = TfrtSessionFactory::GetRuntime(); EXPECT_NE(runtime, nullptr); } TEST_F(TfrtSessionTest, RegisterTwiceCrashes) { TfrtSessionFactory::RegisterInitializer( [](tfrt_stub::Runtime*) { return absl::OkStatus(); }); ASSERT_DEBUG_DEATH(TfrtSessionFactory::RegisterInitializer( [](tfrt_stub::Runtime*) { return absl::OkStatus(); }), ""); } } } int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); testing::AddGlobalTestEnvironment(new tensorflow::TfrtSessionEnvironment()); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/tfrt_session/tfrt_session.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/tfrt_session/tfrt_session_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f83f267d-434a-4484-9e69-3ad4689bb579
cpp
tensorflow/tensorflow
stream_ops_util
tensorflow/core/tfrt/kernels/stream_ops_util.cc
tensorflow/core/tfrt/kernels/stream_ops_util_test.cc
#include "tensorflow/core/tfrt/kernels/stream_ops_util.h" #include <cstdint> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/tfrt/kernels/stream_ops_util_constants.h" namespace tensorflow { namespace tfrt_stub { absl::StatusOr<std::vector<std::pair<int64_t, std::vector<tensorflow::Tensor>>>> UnbatchStreamResults(const tensorflow::Tensor& step_ids, absl::Span<const tensorflow::Tensor> tensors) { std::vector<std::pair<int64_t, std::vector<tensorflow::Tensor>>> responses; if (step_ids.dims() > 0) { if (step_ids.dtype() != tensorflow::DT_INT64 || step_ids.dims() != 1) { return absl::InvalidArgumentError(absl::StrCat( "Expected a 1-D int64 tensor for batched step ids but got dtype=", tensorflow::DataTypeString(step_ids.dtype()), " shape=", step_ids.shape().DebugString())); } const int batch_size = step_ids.dim_size(0); for (int i = 0; i < tensors.size(); ++i) { const tensorflow::TensorShape& shape = tensors[i].shape(); if (shape.dims() < 1 || shape.dim_size(0) != batch_size) { return absl::InvalidArgumentError(absl::StrCat( "All inputs to PwStreamResults inside tf.batch_function are " "required to be batched (batch_size=", batch_size, ") but input #", i, " has shape ", shape.DebugString())); } } std::vector<int> sizes; absl::flat_hash_set<int64_t> unique_step_ids; for (int i = 0; i < step_ids.NumElements(); ++i) { const int64_t request_id = step_ids.flat<int64_t>()(i); const int64_t step_id = static_cast<uint64_t>(request_id) >> (64 - kStepIdBitSize); VLOG(1) << "PwStreamResults op is unbatching request_id=" << request_id << ", step_id=" << step_id; if (step_id <= 0) { return absl::InternalError( absl::StrCat("Invalid step id=", step_id, "; this usually indicates that `PwStreamResults` " "was called from an unsupported nested context")); } if (i != 0 && request_id == step_ids.flat<int64_t>()(0)) { break; } if (!responses.empty() && responses.back().first == step_id) { sizes.back()++; } else { responses.push_back({step_id, {}}); sizes.push_back(1); const bool inserted = unique_step_ids.insert(step_id).second; if (!inserted) { return absl::InternalError(absl::StrCat( "Non-contiguous step ids found in the step id batch: ", step_ids.DebugString(batch_size))); } } } int offset = 0; for (int i = 0; i < responses.size(); ++i) { auto& outputs = responses[i].second; outputs.resize(tensors.size()); const int limit = offset + sizes[i]; for (int j = 0; j < tensors.size(); ++j) { outputs[j] = tensors[j].Slice(offset, limit); } offset = limit; } } else { const int64_t step_id = step_ids.flat<int64_t>()(0); if (step_id <= 0) { return absl::InternalError( "Invalid step id; this usually indicates that `PwStreamResults` was " "called from an unsupported nested context"); } responses.push_back({step_id, std::vector<tensorflow::Tensor>( tensors.begin(), tensors.end())}); } return responses; } } }
#include "tensorflow/core/tfrt/kernels/stream_ops_util.h" #include <cstdint> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_matcher.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/tfrt/kernels/stream_ops_util_constants.h" namespace tensorflow { namespace tfrt_stub { namespace { using ::tensorflow::test::AsScalar; using ::tensorflow::test::AsTensor; using ::tensorflow::test::TensorEq; using ::testing::ElementsAre; using ::testing::Pair; using ::testing::UnorderedElementsAre; using ::testing::status::IsOkAndHolds; int64_t RequestId(int64_t step_id, uint32_t id) { return (step_id << kStepIdBitSize) | id; } TEST(UnbatchStreamResultsTest, ScalarStepId) { const tensorflow::Tensor step_ids = AsScalar<int64_t>(1); const std::vector<tensorflow::Tensor> tensors = { AsScalar<int32_t>(1), AsTensor<int32_t>({2, 3}), }; EXPECT_THAT(UnbatchStreamResults(step_ids, tensors), IsOkAndHolds(UnorderedElementsAre( Pair(1, ElementsAre(TensorEq(AsScalar<int32_t>(1)), TensorEq(AsTensor<int32_t>({2, 3}))))))); } TEST(UnbatchStreamResultsTest, Batched) { const tensorflow::Tensor step_ids = AsTensor<int64_t>( {RequestId(1, 0), RequestId(1, 1), RequestId(2, 0), RequestId(3, 0)}); const std::vector<tensorflow::Tensor> tensors = { AsTensor<int32_t>({1, 2, 3, 4}), AsTensor<int32_t>({5, 6, 7, 8}), }; EXPECT_THAT(UnbatchStreamResults(step_ids, tensors), IsOkAndHolds(UnorderedElementsAre( Pair(1, ElementsAre(TensorEq(AsTensor<int32_t>({1, 2})), TensorEq(AsTensor<int32_t>({5, 6})))), Pair(2, ElementsAre(TensorEq(AsTensor<int32_t>({3})), TensorEq(AsTensor<int32_t>({7})))), Pair(3, ElementsAre(TensorEq(AsTensor<int32_t>({4})), TensorEq(AsTensor<int32_t>({8}))))))); } TEST(UnbatchStreamResultsTest, BatchedUnordered) { const tensorflow::Tensor step_ids = AsTensor<int64_t>( {RequestId(2, 0), RequestId(1, 0), RequestId(1, 1), RequestId(3, 0)}); const std::vector<tensorflow::Tensor> tensors = { AsTensor<int32_t>({20, 10, 10, 30}), }; EXPECT_THAT(UnbatchStreamResults(step_ids, tensors), IsOkAndHolds(UnorderedElementsAre( Pair(1, ElementsAre(TensorEq(AsTensor<int32_t>({10, 10})))), Pair(2, ElementsAre(TensorEq(AsTensor<int32_t>({20})))), Pair(3, ElementsAre(TensorEq(AsTensor<int32_t>({30}))))))); } TEST(UnbatchStreamResultsTest, PaddingOneExample) { const tensorflow::Tensor step_ids = AsTensor<int64_t>( {RequestId(1, 0), RequestId(1, 0), RequestId(1, 0), RequestId(1, 0)}); const std::vector<tensorflow::Tensor> tensors = { AsTensor<int32_t>({10, 10, 10, 10}), }; EXPECT_THAT(UnbatchStreamResults(step_ids, tensors), IsOkAndHolds(UnorderedElementsAre( Pair(1, ElementsAre(TensorEq(AsTensor<int32_t>({10}))))))); } TEST(UnbatchStreamResultsTest, PaddingMultipleExamples) { const tensorflow::Tensor step_ids = AsTensor<int64_t>( {RequestId(1, 0), RequestId(1, 1), RequestId(2, 0), RequestId(1, 0)}); const std::vector<tensorflow::Tensor> tensors = { AsTensor<int32_t>({10, 20, 30, 10}), }; EXPECT_THAT(UnbatchStreamResults(step_ids, tensors), IsOkAndHolds(UnorderedElementsAre( Pair(1, ElementsAre(TensorEq(AsTensor<int32_t>({10, 20})))), Pair(2, ElementsAre(TensorEq(AsTensor<int32_t>({30}))))))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/kernels/stream_ops_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/kernels/stream_ops_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
af8c8af1-7b5b-4942-b777-1f91251c6e5a
cpp
tensorflow/tensorflow
ifrt_program_ops
tensorflow/core/tfrt/ops/ifrt_program_ops.cc
tensorflow/core/tfrt/kernels/ifrt_program_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" namespace tensorflow { namespace tfrt_stub { REGISTER_OP("IfrtCall") .Input("args: Tin") .Output("results: Tout") .Attr("Tin: list(type) >= 0") .Attr("Tout: list(type) >= 0") .Attr("program_id: int") .Attr("variable_arg_indices: list(int)") .SetIsStateful() .SetShapeFn(tensorflow::shape_inference::UnknownShape) .Doc(R"( Calls an IFRT program identified by the given program id. This op looks up a `ServingExecutable` from `ServingExecutableRegistry` using the program id, calls the executable with the op's inputs as arguments, and returns its results as the op's outputs. Note that this op is not part of a stable interface. Users must not use this op in their SavedModel and instead rely on Ifrt Serving's mechanism that automatically inserts this op with graph rewrite. program_id: int64 id that can be used to look up compiled programs from ServingExecutableRegistry`. variable_arg_indices: must be in sorted ascending order. The argument at position variable_arg_indices[k] in tpu program is already loaded as an ifrt array and the input `args[variable_arg_indices[k]]` is the key to look for this loaded array. )"); REGISTER_OP("IfrtLoadVariable") .Input("variable: Tin") .Output("array_key: Tout") .Output("tensor: Tout") .Attr("Tin: type") .Attr("Tout: type") .Attr("used_by_host: bool") .SetIsStateful() .SetShapeFn(tensorflow::shape_inference::UnknownShape) .Doc(R"( This op loads a restored variable tensor as a tensor future. It is areplacement of `tf.ReadVariableOp`. This op returns a scalar string tensor containing the restored variable name, which is composed from `container_name` and `shared_name` from a `var_handle` and can be used as a key within the runtime, as well as a future for the tensor. Note that this op is not part of a stable interface. Users must not use this op in their SavedModel and instead rely on Ifrt Serving's mechanism that automatically inserts this op with graph rewrite. variable: the variable handle of the variable tensor to be loaded. array_key: the key to be used to look up the loaded array by the 'IfrtCall' op. tensor: the future of the loaded tensor. The future contains a valid tensor if `use_by_host` is true. 'used_by_host': a boolean indicating whether the variable is used by the host OP or excelusively by the TPU. )"); } }
#include <cstdint> #include <memory> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/python/ifrt/test_util.h" #include "xla/tsl/framework/serving_device_selector.h" #include "xla/tsl/framework/test_util/mock_serving_device_selector.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_matcher.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/tfrt/ifrt/ifrt_executable_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tfrt_stub { namespace { using tensorflow::ifrt_serving::ServingExecutableRegistry; using tensorflow::ifrt_serving::test_utils::GetMlirModulePath; using tensorflow::ifrt_serving::test_utils::IfrtServingExecutableTestHelper; using tensorflow::test::AsTensor; using tensorflow::test::TensorEq; using ::testing::Return; class IfrtCallOpTest : public OpsTestBase { protected: Status Init(int64_t program_id, int num_inputs, DataType input_type, const std::vector<int>& variable_arg_indices, const std::vector<DataType>& output_type_list) { TF_CHECK_OK(NodeDefBuilder("op", "IfrtCall") .Input(FakeInput(num_inputs, input_type)) .Attr("program_id", program_id) .Attr("variable_arg_indices", variable_arg_indices) .Attr("Tout", output_type_list) .Finalize(node_def())); return InitOp(); } }; TEST_F(IfrtCallOpTest, Basic) { int64_t program_id = 123; TF_ASSERT_OK(Init( program_id, 2, DT_INT32, {}, {DT_INT32})); tsl::test_util::MockServingDeviceSelector selector; IfrtServingExecutableTestHelper helper(&selector); EXPECT_CALL(selector, ReserveDevice(absl::StrCat(program_id))) .Times(1) .WillOnce(Return(tsl::DeviceReservation(0, nullptr))); auto executable = helper.MakeExecutable(program_id, GetMlirModulePath("executable.mlir")); TF_ASSERT_OK_AND_ASSIGN( ServingExecutableRegistry::Handle handle, ServingExecutableRegistry::Register(program_id, std::move(executable))); auto handle_cleaner = gtl::MakeCleanup([&handle] { handle.Release(); }); AddInputFromArray<int32_t>(TensorShape({1, 3}), {1, 2, 3}); AddInputFromArray<int32_t>(TensorShape({3, 1}), {1, 2, 3}); for (int i = 0; i < helper.num_cores() + 1; ++i) { TF_ASSERT_OK(RunOpKernel()); } Tensor expected_out = AsTensor<int32_t>({14}, TensorShape({1, 1})); EXPECT_THAT(*GetOutput(0), TensorEq(expected_out)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ops/ifrt_program_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/kernels/ifrt_program_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
066c5d82-ae42-4a0c-8c65-e9015f33cc6c
cpp
tensorflow/tensorflow
gpu_runner
tensorflow/core/tfrt/gpu/kernel/gpu_runner.cc
tensorflow/core/tfrt/gpu/kernel/gpu_runner_test.cc
#include "tensorflow/core/tfrt/gpu/kernel/gpu_runner.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "llvm/ADT/SmallVector.h" #include "tensorflow/compiler/jit/pjrt_compile_util.h" #include "tensorflow/compiler/jit/pjrt_tensor_buffer_util.h" #include "tensorflow/compiler/jit/xla_compile_util.h" #include "tensorflow/compiler/jit/xla_launch_util.h" #include "tensorflow/compiler/jit/xla_platform_info.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/framework/device_id_manager.h" #include "xla/tsl/framework/serving_device_selector.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/notification.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.h" #include "tensorflow/core/tfrt/common/global_state.h" #include "tensorflow/core/tfrt/utils/fallback_tensor.h" #include "tensorflow/core/tfrt/utils/gpu_variables_table.h" #include "tsl/platform/errors.h" #include "tsl/platform/fingerprint.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" #include "tfrt/host_context/async_dispatch.h" #include "tfrt/host_context/async_value_ref.h" #include "tfrt/host_context/execution_context.h" #include "tfrt/host_context/kernel_registry.h" #include "tfrt/support/forward_decls.h" namespace tensorflow { namespace gpu { namespace { tfrt::AsyncValueRef<tfrt_stub::FallbackTensor> TransferTensorToDevice( const tfrt_stub::FallbackTensor& tensor, tfrt::HostContext* host_ctx, Device* gpu_device) { const tensorflow::Tensor& src = tensor.tensor(); tensorflow::AllocatorAttributes attr; attr.set_use_pjrt_allocator(true); tensorflow::Tensor dst(gpu_device->GetAllocator(attr), src.dtype(), src.shape()); if (src.shape().num_elements() == 0) { return tfrt::MakeAvailableAsyncValueRef<tfrt_stub::FallbackTensor>(dst); } auto result = tfrt::MakeUnconstructedAsyncValueRef<tfrt_stub::FallbackTensor>(); DeviceContext* pjrt_device_context = gpu_device->tensorflow_accelerator_device_info()->pjrt_context; bool enqueued = tfrt::EnqueueBlockingWork( host_ctx, [result = result.CopyRef(), gpu_device, pjrt_device_context, src, dst = std::move(dst)]() mutable { tensorflow::Notification n; tensorflow::Status status; pjrt_device_context->CopyCPUTensorToDevice( &src, gpu_device, &dst, [&status, &n](Status s) mutable { status = s; n.Notify(); }); n.WaitForNotification(); if (!status.ok()) { result.SetError(absl::InternalError(status.message())); } else { result.emplace(std::move(dst)); } }); if (!enqueued) { return tfrt::MakeErrorAsyncValueRef(absl::InternalError( "Failed to enqueue blocking task to transfer tensor.")); } return result; } tfrt::AsyncValueRef<tfrt_stub::FallbackTensor> TransferTensorFromDevice( const tfrt_stub::FallbackTensor& tensor, tfrt::HostContext* host_ctx, Device* cpu_device, Device* gpu_device) { const tensorflow::Tensor& src = tensor.tensor(); tensorflow::AllocatorAttributes attr; tensorflow::Tensor dst(cpu_device->GetAllocator(attr), src.dtype(), src.shape()); if (src.shape().num_elements() == 0) { return tfrt::MakeAvailableAsyncValueRef<tfrt_stub::FallbackTensor>(dst); } auto result = tfrt::MakeUnconstructedAsyncValueRef<tfrt_stub::FallbackTensor>(); DeviceContext* pjrt_device_context = gpu_device->tensorflow_accelerator_device_info()->pjrt_context; bool enqueued = tfrt::EnqueueBlockingWork( host_ctx, [result = result.CopyRef(), gpu_device, pjrt_device_context, src, dst = std::move(dst)]() mutable { tensorflow::Notification n; tensorflow::Status status; pjrt_device_context->CopyDeviceTensorToCPU( &src, "tensor_name", gpu_device, &dst, [&status, &n](Status s) mutable { status = s; n.Notify(); }); n.WaitForNotification(); if (!status.ok()) { result.SetError(absl::InternalError(status.message())); } else { result.emplace(std::move(dst)); } }); if (!enqueued) { return tfrt::MakeErrorAsyncValueRef(absl::InternalError( "Failed to enqueue blocking task to transfer tensor.")); } return result; } absl::StatusOr< llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>>> PopulateResultsFromPjRtExecutableOutputs( const XlaCompiler::CompilationResult& compilation_result, std::vector<std::unique_ptr<xla::PjRtBuffer>>& executable_outputs, Device* device, int num_outputs) { llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>> fallback_tensor_results; for (int i = 0; i < num_outputs; ++i) { const DataType& dtype = compilation_result.outputs[i].type; CHECK(!compilation_result.outputs[i].is_constant); CHECK(dtype != DT_RESOURCE); xla::PjRtBuffer* output_buffer = executable_outputs[i].get(); if (output_buffer->IsTuple()) { return absl::InvalidArgumentError( "Tuple PJRT buffer output is not supported."); } absl::Span<const int64_t> dims; std::optional<std::vector<int64_t>> logical_dims_storage; if (output_buffer->has_dynamic_dimensions()) { TF_ASSIGN_OR_RETURN(std::vector<int64_t> logical_dims, output_buffer->logical_dimensions()); logical_dims_storage.emplace(std::move(logical_dims)); dims = *logical_dims_storage; } else { dims = output_buffer->dimensions(); } TensorShape tensor_shape; for (int i = 0; i < dims.size(); ++i) { TF_RETURN_IF_ERROR(tensor_shape.AddDimWithStatus(dims[i])); } TF_ASSIGN_OR_RETURN( Tensor output_tensor, MakeTensorFromPjRtBuffer(dtype, tensor_shape, std::move(executable_outputs[i]))); auto result = tfrt::MakeAvailableAsyncValueRef<tfrt_stub::FallbackTensor>( output_tensor); fallback_tensor_results.emplace_back(std::move(result)); } return fallback_tensor_results; } absl::StatusOr< llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>>> TransferOutputsToHostIfNeeded( llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>> outputs, absl::Span<const int64_t> used_output_indices, Device* cpu_device, Device* gpu_device, tfrt::HostContext* host_ctx) { llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>> results; for (int i = 0, j = 0; i < outputs.size(); ++i) { if (j < used_output_indices.size() && i == used_output_indices[j]) { CHECK(outputs[i].IsAvailable()); tfrt::AsyncValueRef<tfrt_stub::FallbackTensor> output_on_cpu = TransferTensorFromDevice(outputs[i].get(), host_ctx, cpu_device, gpu_device); results.push_back(std::move(output_on_cpu)); ++j; } else { results.push_back(std::move(outputs[i])); } } return results; } absl::StatusOr< llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>>> TransferVariablesAndInputs(int device_idx, absl::Span<const tfrt_stub::FallbackTensor> args, absl::Span<const int64_t> resource_indices, Device* cpu_device, const absl::flat_hash_map<int, Device*>& gpu_devices, tfrt::gpu::GpuVariablesTable& vars_table, bool variables_are_shared, tfrt::HostContext* host_ctx) { llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>> results; tsl::PlatformDeviceId platform_device_id; DeviceType device_type(DEVICE_GPU); TF_RETURN_IF_ERROR(tsl::DeviceIdManager::TfToPlatformDeviceId( device_type, tsl::TfDeviceId(device_idx), &platform_device_id)); TF_ASSIGN_OR_RETURN(const std::vector<tsl::TfDeviceId> devices_on_platform, tsl::DeviceIdManager::GetTfDevicesOnPlatform( device_type, platform_device_id)); absl::flat_hash_set<int64_t> resource_indices_set(resource_indices.begin(), resource_indices.end()); const int cache_copy_idx = variables_are_shared ? platform_device_id.value() : device_idx; for (int i = 0, resource_idx = 0; i < args.size(); ++i) { if (resource_indices_set.contains(i)) { VLOG(2) << "Transfer resource arg[" << i << "]."; tfrt::AsyncValueRef<tfrt_stub::FallbackTensor> device_tensor; auto cached_device_variable = vars_table.GetDeviceVariable(args[i], cache_copy_idx); if (cached_device_variable) { VLOG(2) << "Cache hit for resource arg[" << i << "]."; device_tensor = cached_device_variable.CopyRef(); } else { VLOG(2) << "Cache miss for resource arg[" << i << "]."; int gpu_device_idx; if (variables_are_shared) { const int idx = resource_idx % devices_on_platform.size(); gpu_device_idx = devices_on_platform[idx].value(); } else { gpu_device_idx = device_idx; } VLOG(2) << "Transfer the resource arg[" << i << "] to device " << gpu_device_idx << "."; device_tensor = TransferTensorToDevice(args[i], host_ctx, gpu_devices.at(gpu_device_idx)); vars_table.AddOrUpdateDeviceVariable(args[i], cache_copy_idx, std::move(device_tensor)); device_tensor = vars_table.GetDeviceVariable(args[i], cache_copy_idx).CopyRef(); } results.push_back(device_tensor); ++resource_idx; } else { VLOG(2) << "Transfer input arg[" << i << "]."; tfrt::AsyncValueRef<tfrt_stub::FallbackTensor> device_tensor = TransferTensorToDevice(args[i], host_ctx, gpu_devices.at(device_idx)); results.push_back(device_tensor); } } return results; } absl::StatusOr<uint64_t> GenerateFingerprint( const std::string& function_name, const tfd::KernelFallbackCompatRequestState* fallback_request_state) { const FunctionLibraryDefinition* flib_def = fallback_request_state->cpu_function_library_runtime() ->GetFunctionLibraryDefinition(); const FunctionDef* fdef = flib_def->Find(function_name); if (!fdef) { return absl::InternalError( absl::StrCat("Failed to find the function ", function_name)); } return tsl::Fingerprint64( absl::StrCat(fallback_request_state->session_metadata().name(), fallback_request_state->session_metadata().version(), tsl::LegacyUnredactedDebugString(fdef->signature()))); } std::vector<XlaCompiler::Argument> BuildXlaCompilerArguments( absl::Span<const tfrt_stub::FallbackTensor> inputs) { std::vector<XlaCompiler::Argument> out; out.resize(inputs.size()); for (int input_num = 0; input_num < inputs.size(); ++input_num) { const tensorflow::Tensor& input = inputs[input_num].tensor(); CHECK_GT(input.NumElements(), 0); CHECK(input.dtype() != DT_RESOURCE); XlaCompiler::Argument& arg = out[input_num]; arg.kind = XlaCompiler::Argument::kParameter; arg.type = input.dtype(); arg.shape = input.shape(); } return out; } Status CompileProgram(const GpuRunInputs& run_inputs, int device_idx, const XlaCompiler::CompilationResult** compilation_result, xla::PjRtClient** pjrt_client, xla::PjRtLoadedExecutable** pjrt_executable) { std::vector<XlaCompiler::Argument> xla_compiler_args = BuildXlaCompilerArguments(run_inputs.args); DeviceBase* device = run_inputs.gpu_devices.at(device_idx); FunctionLibraryRuntime* flr = run_inputs.fallback_request_state->process_function_library_runtime() .GetFLR(run_inputs.gpu_devices.at(device_idx)->name()); XlaPlatformInfo platform_info = XlaPlatformInfoFromDevice(run_inputs.gpu_devices.at(device_idx)); NameAttrList function; function.set_name(run_inputs.func_name); ResourceMgr* rm = tfrt_global::GetTFGlobalResourceMgr(); return CompileToPjRtLoadedExecutable( device, platform_info, function, xla_compiler_args, DeviceCompileMode::kStrict, false, false, flr, rm, compilation_result, pjrt_client, pjrt_executable); } absl::StatusOr< llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>>> ExecuteProgram( const GpuRunInputs& run_inputs, const llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>>& transferred_args, const XlaCompiler::CompilationResult* compilation_result, xla::PjRtClient* pjrt_client, xla::PjRtLoadedExecutable* pjrt_executable, int device_idx) { std::vector<const Tensor*> inputs; for (const auto& arg : transferred_args) { if (arg.IsError()) { return absl::InternalError( absl::StrCat("Data transfer failed: ", arg.GetError().message())); } inputs.push_back(&arg->tensor()); } if (compilation_result->collective_info.has_value()) { return absl::UnimplementedError( "Execution with collectives is not supported."); } TF_ASSIGN_OR_RETURN( xla::PjRtDevice * pjrt_device, pjrt_client->LookupAddressableDevice(xla::PjRtLocalDeviceId(device_idx))); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<xla::PjRtBuffer>> executable_outputs, RunPjRtExecutable(0, inputs, {}, {}, DeviceType(DEVICE_GPU), true, *compilation_result, pjrt_device, pjrt_client, pjrt_executable)); TF_ASSIGN_OR_RETURN( llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>> results, PopulateResultsFromPjRtExecutableOutputs( *compilation_result, executable_outputs, run_inputs.gpu_devices.at(device_idx), run_inputs.num_outputs)); return TransferOutputsToHostIfNeeded( results, run_inputs.used_output_indices, run_inputs.cpu_device, run_inputs.gpu_devices.at(device_idx), run_inputs.host_ctx); } } absl::StatusOr< llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>>> GpuRunner::Run(GpuRunInputs run_inputs) { TF_ASSIGN_OR_RETURN(uint64_t fingerprint, GenerateFingerprint(run_inputs.func_name, run_inputs.fallback_request_state)); tsl::DeviceReservation device_reservation = serving_device_selector_->ReserveDevice(absl::StrCat(fingerprint)); const int device_idx = device_reservation.device_index(); VLOG(1) << "GpuRunner selected device " << device_idx << "."; const XlaCompiler::CompilationResult* compilation_result; xla::PjRtClient* pjrt_client; xla::PjRtLoadedExecutable* pjrt_executable; TF_RETURN_IF_ERROR(CompileProgram(run_inputs, device_idx, &compilation_result, &pjrt_client, &pjrt_executable)); TF_ASSIGN_OR_RETURN( llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>> transferred_args, TransferVariablesAndInputs( device_idx, run_inputs.args, run_inputs.resource_indices, run_inputs.cpu_device, run_inputs.gpu_devices, vars_table_, false, run_inputs.host_ctx)); llvm::SmallVector<tfrt::RCReference<tfrt::AsyncValue>, 4> transferred_args_to_wait; for (const auto& arg : transferred_args) { if (!arg.IsAvailable()) { transferred_args_to_wait.push_back(arg.CopyRCRef()); } } llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>> results; results.reserve(run_inputs.num_outputs); for (size_t i = 0; i < run_inputs.num_outputs; ++i) { results.emplace_back( tfrt::MakeUnconstructedAsyncValueRef<tfrt_stub::FallbackTensor>()); } tfrt::RunWhenReady( transferred_args_to_wait, [run_inputs = std::move(run_inputs), transferred_args = std::move(transferred_args), results = results, compilation_result, pjrt_client, pjrt_executable, device_idx]() mutable { auto execution_outputs = ExecuteProgram(run_inputs, transferred_args, compilation_result, pjrt_client, pjrt_executable, device_idx); CHECK_EQ(results.size(), execution_outputs->size()); if (!execution_outputs.ok()) { for (size_t i = 0; i < results.size(); ++i) { results[i].SetError( absl::InternalError(execution_outputs.status().message())); } return; } for (int i = 0; i < results.size(); ++i) { auto& result = results[i]; auto& output_av = (*execution_outputs)[i]; output_av.AndThen([result = result, output_av = output_av] { result.emplace(std::move(output_av.get().tensor())); }); } }); return results; } } }
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "tensorflow/core/tfrt/gpu/kernel/gpu_runner.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "xla/tsl/framework/serving_device_selector_policies.h" #include "tensorflow/core/common_runtime/gpu/gpu_serving_device_selector.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tfrt/host_context/concurrent_work_queue.h" #include "tfrt/host_context/diagnostic.h" #include "tfrt/host_context/function.h" #include "tfrt/host_context/host_allocator.h" #include "tfrt/host_context/host_context.h" namespace tensorflow { namespace gpu { namespace { constexpr int kNumVirtualGpuDevices = 1; constexpr char kFunctionName[] = "foo"; StatusOr<std::unique_ptr<Graph>> SampleGraphAddXY() { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); Scope scope = Scope::NewRootScope().ExitOnError(); auto a = ops::_Arg(scope.WithOpName("A"), DT_INT32, 0); auto b = ops::_Arg(scope.WithOpName("B"), DT_INT32, 1); auto c = ops::Add(scope.WithOpName("C"), a, b); auto d = ops::_Retval(scope.WithOpName("D"), c, 0); TF_RETURN_IF_ERROR(scope.ToGraph(graph.get())); return graph; } StatusOr<FunctionDef> SampleFunctionAddXY(const std::string& name) { TF_ASSIGN_OR_RETURN(auto graph, SampleGraphAddXY()); FunctionDef fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*graph, name, &fdef)); return fdef; } Status GetDevices(const tensorflow::tfd::KernelFallbackCompatRequestState* fallback_request_state, Device** cpu_device, absl::flat_hash_map<int, Device*>& gpu_devices) { *cpu_device = fallback_request_state->device_manager().HostCPU(); if (!*cpu_device) { return absl::InternalError( "Fallback request state must have a valid host cpu device."); } for (Device* device : fallback_request_state->device_manager().ListDevices()) { if (device->device_type() != DEVICE_GPU) continue; if (!gpu_devices.try_emplace(device->parsed_name().id, device).second) { return absl::InternalError(absl::StrCat( "A device with the same device ID already exists when adding ", device->name())); } } if (gpu_devices.empty()) { return absl::InternalError("No GPU device is found."); } for (const auto& [id, device] : gpu_devices) { if (id >= gpu_devices.size()) { return absl::InternalError("Device IDs are not consecutive."); } } return OkStatus(); } template <typename T> Tensor CreateTensor(const TensorShape& input_shape, gtl::ArraySlice<T> input_data, Allocator* allocator = nullptr) { Tensor tensor(DataTypeToEnum<T>::value, input_shape); test::FillValues<T>(&tensor, input_data); return tensor; } class GpuRunnerTest : public ::testing::Test { protected: void SetUp() override { tensorflow::SessionOptions session_options; TF_ASSERT_OK_AND_ASSIGN(FunctionDef fdef, SampleFunctionAddXY(kFunctionName)); tensorflow::FunctionDefLibrary fdef_lib; *fdef_lib.add_function() = fdef; TF_ASSERT_OK_AND_ASSIGN(fallback_state_, tfrt_stub::FallbackState::Create( session_options, fdef_lib)); std::function<void(std::function<void()>)> runner = [](const std::function<void()>& f) { f(); }; tfrt_stub::OpKernelRunnerTable runner_table; tfd::FallbackResourceArray resource_array; fallback_request_state_ = std::make_unique<tfd::KernelFallbackCompatRequestState>( &runner, &fallback_state_->device_manager(), 0, &runner_table, &resource_array, nullptr, std::nullopt, &fallback_state_->process_function_library_runtime()); auto host_allocator = tfrt::CreateMallocAllocator(); auto work_queue = tfrt::CreateMultiThreadedWorkQueue( 2, 2); host_context_ = std::make_unique<tfrt::HostContext>( [&](const tfrt::DecodedDiagnostic& diag) {}, std::move(host_allocator), std::move(work_queue)); tfrt::RequestContextBuilder req_ctx_builder = tfrt::RequestContextBuilder(host_context_.get(), nullptr); tfrt::Expected<tfrt::RCReference<tfrt::RequestContext>> req_ctx( std::move(req_ctx_builder).build()); ASSERT_TRUE(!!req_ctx); exec_ctx_ = std::make_unique<tfrt::ExecutionContext>(std::move(*req_ctx)); auto policy = std::make_unique<tsl::RoundRobinPolicy>(); serving_device_selector_ = std::make_unique<GpuServingDeviceSelector>( kNumVirtualGpuDevices, std::move(policy)); gpu_runner_ = std::make_unique<GpuRunner>(serving_device_selector_.get()); } std::unique_ptr<tfrt_stub::FallbackState> fallback_state_; std::unique_ptr<tfd::KernelFallbackCompatRequestState> fallback_request_state_; std::unique_ptr<tfrt::HostContext> host_context_; std::unique_ptr<tfrt::ExecutionContext> exec_ctx_; std::unique_ptr<GpuServingDeviceSelector> serving_device_selector_; std::unique_ptr<GpuRunner> gpu_runner_; }; TEST_F(GpuRunnerTest, Basic) { GpuRunInputs run_inputs; llvm::SmallVector<tfrt_stub::FallbackTensor> args; Tensor tensor1 = CreateTensor<int32>(TensorShape({1, 2}), {1, 2}); Tensor tensor2 = CreateTensor<int32>(TensorShape({1, 2}), {3, 4}); args.push_back(tfrt_stub::FallbackTensor(tensor1)); args.push_back(tfrt_stub::FallbackTensor(tensor2)); run_inputs.args = &args; run_inputs.num_outputs = 1; run_inputs.resource_indices = tfrt::ArrayRef<int64_t>(0); run_inputs.used_output_indices = tfrt::ArrayRef<int64_t>(0); run_inputs.func_name = kFunctionName; absl::flat_hash_map<int, Device*> gpu_devices; ASSERT_OK(GetDevices(fallback_request_state_.get(), &run_inputs.cpu_device, gpu_devices)); run_inputs.gpu_devices = &gpu_devices; run_inputs.fallback_request_state = fallback_request_state_.get(); run_inputs.exec_ctx = exec_ctx_.get(); TF_ASSERT_OK_AND_ASSIGN( llvm::SmallVector<tfrt::AsyncValueRef<tfrt_stub::FallbackTensor>> outputs, gpu_runner_->Run(run_inputs)); llvm::SmallVector<tfrt::RCReference<tfrt::AsyncValue>, 4> outputs_to_wait; for (const auto& output : outputs) { if (!output.IsAvailable()) { outputs_to_wait.push_back(output.CopyRCRef()); } } exec_ctx_->host()->Await(outputs_to_wait); ASSERT_EQ(outputs.size(), 1); auto expected = CreateTensor<int32>(TensorShape({1, 2}), {4, 6}); test::ExpectTensorEqual<int32>(expected, outputs[0].get().tensor()); } } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/gpu/kernel/gpu_runner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/gpu/kernel/gpu_runner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
402174c6-7916-42b0-b0e0-b7990900b8d6
cpp
tensorflow/tensorflow
saved_model
tensorflow/compiler/mlir/tfrt/saved_model/saved_model.cc
tensorflow/compiler/mlir/tfrt/tests/saved_model/saved_model_test.cc
#include "tensorflow/compiler/mlir/tfrt/saved_model/saved_model.h" #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "llvm/ADT/STLFunctionalExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/SymbolTable.h" #include "mlir/IR/Visitors.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_saved_model.h" #include "tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_type.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" #include "tfrt/bef_converter/mlir_to_bef.h" namespace tensorflow { namespace { using ::mlir::tf_saved_model::kTfSavedModelIndexPathAttr; llvm::StringRef ProcessIndexPath(mlir::ArrayAttr index_path) { if (index_path.size() == 1 && mlir::isa<mlir::StringAttr>(index_path[0])) { return mlir::cast<mlir::StringAttr>(index_path[0]).getValue(); } return ""; } absl::StatusOr<std::pair<tensorflow::DataType, tensorflow::PartialTensorShape>> ProcessTensorSpec(mlir::TensorType type) { tensorflow::DataType dtype; TF_RETURN_IF_ERROR( ConvertScalarTypeToDataType(type.getElementType(), &dtype)); if (!type.hasRank()) return std::make_pair(dtype, tensorflow::PartialTensorShape()); auto shape = type.getShape(); llvm::SmallVector<int64_t, 4> dims; dims.assign(shape.begin(), shape.end()); return std::make_pair(dtype, tensorflow::PartialTensorShape(dims)); } } Status MapFunctionSignaturesFromTFSavedModelMLIR( mlir::ModuleOp module, llvm::function_ref<void(const TFRTSavedModelSignatureInfo&)> map_fn) { mlir::SymbolTable symbol_table(module); tensorflow::Status status = absl::OkStatus(); module.walk([&symbol_table, map_fn, &status](mlir::func::FuncOp func) { auto func_names = mlir::tf_saved_model::GetExportedNames(func); if (func_names.empty()) return mlir::WalkResult::advance(); auto func_type = func.getFunctionType(); llvm::SmallVector<llvm::StringRef, 4> input_names; llvm::SmallVector< std::pair<tensorflow::DataType, tensorflow::PartialTensorShape>, 4> input_specs; llvm::SmallVector<llvm::StringRef, 4> input_devices; llvm::SmallVector<mlir::Operation*, 4> bound_inputs; for (unsigned i = 0, e = func.getNumArguments(); i != e; ++i) { if (auto input_index_path = func.getArgAttrOfType<mlir::ArrayAttr>( i, kTfSavedModelIndexPathAttr)) { input_names.push_back(ProcessIndexPath(input_index_path)); auto statusor_spec = ProcessTensorSpec( mlir::cast<mlir::TensorType>(func_type.getInput(i))); if (!statusor_spec.ok()) { status = std::move(statusor_spec).status(); return mlir::WalkResult::interrupt(); } input_specs.push_back(std::move(statusor_spec).value()); if (auto input_device = func.getArgAttrOfType<mlir::StringAttr>(i, "tf.device")) { input_devices.push_back(input_device.getValue()); } else { input_devices.push_back(""); } } if (auto* bound_input = mlir::tf_saved_model::LookupBoundInput(func, i, symbol_table)) { bound_inputs.push_back(bound_input); } } llvm::SmallVector<llvm::StringRef, 4> output_names; llvm::SmallVector< std::pair<tensorflow::DataType, tensorflow::PartialTensorShape>, 4> output_specs; for (unsigned i = 0, e = func.getNumResults(); i != e; ++i) { if (auto output_index_path = func.getResultAttrOfType<mlir::ArrayAttr>( i, kTfSavedModelIndexPathAttr)) { output_names.push_back(ProcessIndexPath(output_index_path)); auto statusor_spec = ProcessTensorSpec( mlir::cast<mlir::TensorType>(func_type.getResult(i))); if (!statusor_spec.ok()) { status = std::move(statusor_spec).status(); return mlir::WalkResult::interrupt(); } output_specs.push_back(std::move(statusor_spec).value()); } } for (auto func_name : func_names) { TFRTSavedModelSignatureInfo sig_info; sig_info.func_name = func_name; sig_info.input_names = input_names; sig_info.input_specs = input_specs; sig_info.input_devices = input_devices; sig_info.output_names = output_names; sig_info.output_specs = output_specs; sig_info.bound_inputs = bound_inputs; map_fn(sig_info); } return mlir::WalkResult::advance(); }); return status; } }
#include "tensorflow/compiler/mlir/tfrt/saved_model/saved_model.h" #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Casting.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Operation.h" #include "mlir/Parser/Parser.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_saved_model.h" #include "tensorflow/compiler/mlir/tfrt/translate/import_model.h" #include "tensorflow/compiler/mlir/tfrt/translate/tfrt_compile_options.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/graph_executor/graph_execution_options.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tsl/platform/statusor.h" #include "tfrt/bef/bef_buffer.h" #include "tfrt/host_context/resource_context.h" namespace tensorflow { namespace { TEST(SavedModelTest, MapSignatures) { std::string saved_model_mlir_path = tensorflow::GetDataDependencyFilepath( "tensorflow/compiler/mlir/tfrt/tests/saved_model/testdata/test.mlir"); mlir::DialectRegistry registry; mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); auto module = mlir::parseSourceFile<mlir::ModuleOp>(saved_model_mlir_path, &context); ASSERT_TRUE(module); std::vector<std::string> inputs; std::vector<std::pair<tensorflow::DataType, tensorflow::PartialTensorShape>> in_specs; std::vector<std::string> outputs; std::vector<std::pair<tensorflow::DataType, tensorflow::PartialTensorShape>> out_specs; std::vector<mlir::Operation*> bound_inputs; TF_ASSERT_OK(MapFunctionSignaturesFromTFSavedModelMLIR( module.get(), [&](const TFRTSavedModelSignatureInfo& sig_info) { if (sig_info.func_name != "serving_default") return; transform(sig_info.input_names, std::back_inserter(inputs), [](llvm::StringRef x) { return x.str(); }); in_specs.assign(sig_info.input_specs.begin(), sig_info.input_specs.end()); transform(sig_info.output_names, std::back_inserter(outputs), [](llvm::StringRef x) { return x.str(); }); out_specs.assign(sig_info.output_specs.begin(), sig_info.output_specs.end()); bound_inputs.assign(sig_info.bound_inputs.begin(), sig_info.bound_inputs.end()); })); ASSERT_EQ(inputs.size(), 1); EXPECT_EQ(inputs[0], "x"); ASSERT_EQ(outputs.size(), 1); EXPECT_EQ(outputs[0], "r"); ASSERT_EQ(in_specs.size(), 1); ASSERT_EQ(in_specs[0].first, tensorflow::DT_INT32); ASSERT_TRUE(in_specs[0].second.IsIdenticalTo(PartialTensorShape({1, 3}))); ASSERT_EQ(out_specs.size(), 1); ASSERT_EQ(out_specs[0].first, tensorflow::DT_INT32); ASSERT_TRUE(out_specs[0].second.IsIdenticalTo(PartialTensorShape({1, 1}))); ASSERT_EQ(bound_inputs.size(), 2); auto global_tensor = llvm::cast<mlir::tf_saved_model::GlobalTensorOp>(bound_inputs[0]); auto asset = llvm::cast<mlir::tf_saved_model::AssetOp>(bound_inputs[1]); EXPECT_EQ(global_tensor.getSymName(), "y"); EXPECT_EQ(asset.getSymName(), "z"); } TEST(SavedModelTest, CompileToBEF) { std::string saved_model_mlir_path = tensorflow::GetDataDependencyFilepath( "tensorflow/compiler/mlir/tfrt/tests/saved_model/testdata/test.mlir"); mlir::DialectRegistry registry; mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); auto module = mlir::parseSourceFile<mlir::ModuleOp>(saved_model_mlir_path, &context); ASSERT_TRUE(module); tfrt::BefBuffer bef_buffer; auto runtime = tensorflow::tfrt_stub::Runtime::Create(1); tfrt_stub::GraphExecutionOptions options(runtime.get()); tfrt::ResourceContext resource_context; tfrt_stub::ModelRuntimeContext model_context( &options, options.compile_options.saved_model_dir, &resource_context); TF_ASSERT_OK(ConvertTfMlirToBef(options.compile_options, module.get(), &bef_buffer, model_context)); } TEST(SavedModelTest, ConvertTfMlirToBefWithXlaFuncExport) { std::string saved_model_mlir_path = tensorflow::GetDataDependencyFilepath( "tensorflow/compiler/mlir/tfrt/tests/saved_model/testdata/" "xla_launch.mlir"); mlir::DialectRegistry registry; mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); auto module = mlir::parseSourceFile<mlir::ModuleOp>(saved_model_mlir_path, &context); ASSERT_TRUE(module); tfrt::BefBuffer bef_buffer; auto runtime = tensorflow::tfrt_stub::Runtime::Create(1); tfrt_stub::GraphExecutionOptions options(runtime.get()); options.compile_options.device_target = TfrtDeviceInfraTarget::kGpu; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<tfrt_stub::FallbackState> fallback_state, tfrt_stub::FallbackState::Create(SessionOptions(), FunctionDefLibrary())); tfrt::ResourceContext resource_context; tfrt_stub::ModelRuntimeContext model_context( &options, options.compile_options.saved_model_dir, &resource_context); TF_ASSERT_OK(ConvertTfMlirToBef(options.compile_options, module.get(), &bef_buffer, model_context, fallback_state.get())); EXPECT_EQ(fallback_state->process_function_library_runtime() .GetFunctionLibraryDefinition() ->num_functions(), 3); } TEST(SavedModelTest, ConvertTfMlirToBefExportingXlaReduceWindow) { std::string saved_model_mlir_path = tensorflow::GetDataDependencyFilepath( "tensorflow/compiler/mlir/tfrt/tests/saved_model/testdata/" "xla_launch_xla_reduce_window.mlir"); mlir::DialectRegistry registry; mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); auto module = mlir::parseSourceFile<mlir::ModuleOp>(saved_model_mlir_path, &context); ASSERT_TRUE(module); tfrt::BefBuffer bef_buffer; auto runtime = tensorflow::tfrt_stub::Runtime::Create(1); tfrt_stub::GraphExecutionOptions options(runtime.get()); options.compile_options.device_target = TfrtDeviceInfraTarget::kGpu; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<tfrt_stub::FallbackState> fallback_state, tfrt_stub::FallbackState::Create(SessionOptions(), FunctionDefLibrary())); tfrt::ResourceContext resource_context; tfrt_stub::ModelRuntimeContext model_context( &options, options.compile_options.saved_model_dir, &resource_context); TF_ASSERT_OK(ConvertTfMlirToBef(options.compile_options, module.get(), &bef_buffer, model_context, fallback_state.get())); EXPECT_EQ(fallback_state->process_function_library_runtime() .GetFunctionLibraryDefinition() ->num_functions(), 2); } TEST(SavedModelTest, AddXlaFunctionsOutputFunctionNames) { std::string saved_model_mlir_path = tensorflow::GetDataDependencyFilepath( "tensorflow/compiler/mlir/tfrt/tests/saved_model/testdata/" "xla_launch_xla_reduce_window.mlir"); mlir::DialectRegistry registry; mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); auto module = mlir::parseSourceFile<mlir::ModuleOp>(saved_model_mlir_path, &context); ASSERT_TRUE(module); tfrt::BefBuffer bef_buffer; auto runtime = tensorflow::tfrt_stub::Runtime::Create(1); tfrt_stub::GraphExecutionOptions options(runtime.get()); options.compile_options.device_target = TfrtDeviceInfraTarget::kGpu; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<tfrt_stub::FallbackState> fallback_state, tfrt_stub::FallbackState::Create(SessionOptions(), FunctionDefLibrary())); tfrt::ResourceContext resource_context; tfrt_stub::ModelRuntimeContext model_context( &options, options.compile_options.saved_model_dir, &resource_context); std::vector<std::string> function_names; TF_ASSERT_OK(ConvertTfMlirToBef(options.compile_options, module.get(), &bef_buffer, model_context, fallback_state.get(), &function_names)); EXPECT_THAT(function_names, ::testing::SizeIs(1)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfrt/saved_model/saved_model.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfrt/tests/saved_model/saved_model_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5c3a7bc1-a537-48b5-8488-5855798de70c
cpp
tensorflow/tensorflow
serialize_utils
tensorflow/core/tfrt/saved_model/utils/serialize_utils.cc
tensorflow/core/tfrt/saved_model/utils/serialize_utils_test.cc
#include "tensorflow/core/tfrt/saved_model/utils/serialize_utils.h" #include <cstring> #include <memory> #include <string> #include "absl/status/status.h" #include "llvm/Support/ToolOutputFile.h" #include "mlir/Support/FileUtilities.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tsl/platform/env.h" #include "tfrt/bef/bef_buffer.h" namespace tensorflow { namespace tfrt_stub { absl::Status SerializeBEF(const tfrt::BefBuffer &bef, const std::string &filepath) { std::string errorMessage; auto output = mlir::openOutputFile(filepath, &errorMessage); (output->os()).write(reinterpret_cast<const char *>(bef.data()), bef.size()); output->keep(); LOG(INFO) << "Completed serializing BEF to: " << filepath; return absl::OkStatus(); } absl::StatusOr<tfrt::BefBuffer> DeserializeBEFBuffer( const std::string &filepath) { std::string data; TF_CHECK_OK(ReadFileToString(tsl::Env::Default(), filepath, &data)); tfrt::BefBuffer bef(data.begin(), data.end()); LOG(INFO) << "Successfully loaded serialized BEF from: " << filepath; return bef; } absl::Status SerializeMLRTBytecode(const mlrt::bc::Buffer &bytecode, const std::string &filepath) { std::string errorMessage; auto output = mlir::openOutputFile(filepath, &errorMessage); (output->os()) .write(reinterpret_cast<const char *>(bytecode.data()), bytecode.size()); output->keep(); LOG(INFO) << "Completed serializing MLRTBytecode to: " << filepath; return absl::OkStatus(); } absl::StatusOr<mlrt::bc::Buffer> DeserializeMlrtBytecodeBuffer( const std::string &filepath) { std::string bytecode_data; TF_CHECK_OK(ReadFileToString(tsl::Env::Default(), filepath, &bytecode_data)); mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); allocator.Allocate(bytecode_data.length(), alignof(char)); memcpy(buffer.data(), bytecode_data.data(), bytecode_data.length()); LOG(INFO) << "Successfully loaded serialized MLRTBytecode from: " << filepath; return buffer; } } }
#include "tensorflow/core/tfrt/saved_model/utils/serialize_utils.h" #include <cstdlib> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tfrt/transforms/mlrt/import_model.h" #include "tensorflow/compiler/mlir/tfrt/translate/import_model.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tensorflow/core/tfrt/saved_model/saved_model_util.h" #include "tensorflow/core/tfrt/utils/utils.h" #include "tsl/platform/env.h" #include "tfrt/bef/bef_buffer.h" namespace tensorflow { namespace tfrt_stub { namespace { TEST(SerializeBEFTest, HandlesCompleteProcess) { tfrt::BefBuffer old_bef; const std::string saved_model_mlir_path = "third_party/tensorflow/compiler/mlir/tfrt/tests/saved_model/testdata/" "test.mlir"; mlir::DialectRegistry registry; mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); auto module = mlir::parseSourceFile<mlir::ModuleOp>(saved_model_mlir_path, &context); ASSERT_TRUE(module); std::unique_ptr<Runtime> runtime = tensorflow::tfrt_stub::Runtime::Create(1); tfrt_stub::GraphExecutionOptions options(runtime.get()); tfrt::ResourceContext resource_context; tfrt_stub::ModelRuntimeContext model_context( &options, options.compile_options.saved_model_dir, &resource_context); TF_ASSERT_OK(ConvertTfMlirToBef(options.compile_options, module.get(), &old_bef, model_context)); const std::string filepath = io::JoinPath(getenv("TEST_UNDECLARED_OUTPUTS_DIR"), std::string("serialized_bef.mlir.bef")); TF_ASSERT_OK(tensorflow::tfrt_stub::SerializeBEF(old_bef, filepath)); ASSERT_NE(old_bef.size(), 0); TF_ASSERT_OK_AND_ASSIGN(const tfrt::BefBuffer bef, DeserializeBEFBuffer(filepath)); ASSERT_TRUE(old_bef.size() == bef.size()); std::unique_ptr<Runtime> default_runtime = DefaultTfrtRuntime(1); SavedModel::Options default_options = DefaultSavedModelOptions(default_runtime.get()); TF_EXPECT_OK(tfrt::CreateBefFileFromBefBuffer( *default_options.graph_execution_options.runtime, bef) .status()); } TEST(SerializeMLRTTest, HandlesSerializeAndDeserializeProcess) { mlrt::bc::Buffer old_bytecode; const std::string saved_model_mlir_path = "third_party/tensorflow/compiler/mlir/tfrt/tests/saved_model/testdata/" "test.mlir"; mlir::DialectRegistry registry; mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); auto module = mlir::parseSourceFile<mlir::ModuleOp>(saved_model_mlir_path, &context); ASSERT_TRUE(module); mlir::OwningOpRef<mlir::ModuleOp> module_with_op_keys; std::unique_ptr<Runtime> runtime = tensorflow::tfrt_stub::Runtime::Create(1); tfrt_stub::GraphExecutionOptions options(runtime.get()); options.enable_mlrt = true; tfrt::ResourceContext resource_context; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<tfrt_stub::FallbackState> fallback_state, tfrt_stub::FallbackState::Create(SessionOptions(), FunctionDefLibrary())); tfrt_stub::ModelRuntimeContext model_context( &options, options.compile_options.saved_model_dir, &resource_context); TF_ASSERT_OK_AND_ASSIGN( old_bytecode, mlrt_compiler::ConvertTfMlirToBytecode( options.compile_options, *fallback_state, module.get(), model_context, &module_with_op_keys)); const std::string aot_package_path = GetAotPackagePath(getenv("TEST_UNDECLARED_OUTPUTS_DIR")); tsl::Env* env = tsl::Env::Default(); TF_ASSERT_OK(env->RecursivelyCreateDir(aot_package_path)); const std::string filepath = io::JoinPath(aot_package_path, std::string("serialized_mlrt.mlir.mlrt")); TF_ASSERT_OK( tensorflow::tfrt_stub::SerializeMLRTBytecode(old_bytecode, filepath)); ASSERT_NE(old_bytecode.size(), 0); mlrt::bc::Buffer bytecode; TF_ASSERT_OK_AND_ASSIGN(bytecode, DeserializeMlrtBytecodeBuffer(filepath)); ASSERT_TRUE(old_bytecode.size() == bytecode.size()); EXPECT_STREQ(old_bytecode.data(), bytecode.data()); TF_ASSERT_OK_AND_ASSIGN( bytecode, LoadMlrtAndMlir(options.compile_options, module_with_op_keys.get(), getenv("TEST_UNDECLARED_OUTPUTS_DIR"), fallback_state.get())); ASSERT_TRUE(old_bytecode.size() == bytecode.size()); EXPECT_STREQ(old_bytecode.data(), bytecode.data()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/saved_model/utils/serialize_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/saved_model/utils/serialize_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8a3f8588-637c-45e9-a35c-80b3a7189e17
cpp
tensorflow/tensorflow
cost_recorder
tensorflow/core/tfrt/fallback/cost_recorder.cc
tensorflow/core/tfrt/fallback/cost_recorder_test.cc
#include "tensorflow/core/tfrt/fallback/cost_recorder.h" #include <limits> #include <string> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/tfrt/fallback/op_cost_map.pb.h" #include "tensorflow/core/util/env_var.h" namespace tensorflow { namespace tfrt_stub { void CostRecorder::RecordCost(int64_t op_key, uint64_t execution_time) { mutex_lock l(op_cost_map_mutex_); op_cost_map_[op_key].first += execution_time; op_cost_map_[op_key].second += 1; } uint64_t CostRecorder::GetCost(int64_t op_key) const { tf_shared_lock l(op_cost_map_mutex_); const auto iter = op_cost_map_.find(op_key); if (iter == op_cost_map_.end()) return std::numeric_limits<uint32_t>::max(); const auto total_cost = iter->second.first; const auto num_ops = iter->second.second; auto r = std::max(static_cast<uint64_t>(1), static_cast<uint64_t>(total_cost / num_ops)); VLOG(2) << "Get cost for op_key=" << op_key << ", cost=" << r; return r; } Status CostRecorder::WriteToFile() const { OpCostMapProto op_cost_map_proto; { tf_shared_lock l(op_cost_map_mutex_); for (const auto& [op_key, op_cost] : op_cost_map_) { const uint64_t avg_op_cost = op_cost.first / op_cost.second; (*op_cost_map_proto.mutable_op_cost_map())[op_key] = avg_op_cost; } } std::string measured_cost_path; TF_RETURN_IF_ERROR(ReadStringFromEnvVar(MesuredCostPathEnvVarName(), "", &measured_cost_path)); return tensorflow::WriteTextProto(tensorflow::Env::Default(), measured_cost_path, op_cost_map_proto); } size_t CostRecorder::size() const { tf_shared_lock l(op_cost_map_mutex_); return op_cost_map_.size(); } } }
#include "tensorflow/core/tfrt/fallback/cost_recorder.h" #include <limits> #include <string> #include <gtest/gtest.h> #include "tensorflow/core/platform/env.h" #include "tensorflow/core/tfrt/fallback/op_cost_map.pb.h" namespace tensorflow { namespace tfrt_stub { namespace { constexpr int64_t kTestOpKey = 1; constexpr uint64_t kTestCost = 1234; constexpr uint64_t kTestAvgCost = 1851; TEST(CostRecorderTest, RecordCostTest) { CostRecorder recorder; recorder.RecordCost(kTestOpKey, kTestCost); recorder.RecordCost(kTestOpKey, kTestCost); EXPECT_EQ(recorder.size(), 1); } TEST(CostRecorderTest, GetCostTest) { CostRecorder recorder; recorder.RecordCost(kTestOpKey, kTestCost); recorder.RecordCost(kTestOpKey, 2 * kTestCost); EXPECT_EQ(recorder.size(), 1); EXPECT_EQ(recorder.GetCost(kTestOpKey), kTestAvgCost); } TEST(CostRecorderTest, GetCostDefaultValueTest) { CostRecorder recorder; ASSERT_EQ(recorder.size(), 0); EXPECT_EQ(recorder.GetCost(kTestOpKey), std::numeric_limits<uint32_t>::max()); } TEST(CostRecorderTest, WriteToFileTest) { CostRecorder recorder; ASSERT_EQ(recorder.size(), 0); std::string measured_cost_path; tensorflow::Env::Default()->LocalTempFilename(&measured_cost_path); ASSERT_EQ(setenv("TF_TFRT_MEASURED_COST_PATH", measured_cost_path.c_str(), 1), 0); TF_CHECK_OK(recorder.WriteToFile()); OpCostMapProto op_cost_map_proto; TF_CHECK_OK(tensorflow::ReadTextProto( tensorflow::Env::Default(), measured_cost_path, &op_cost_map_proto)); EXPECT_EQ(op_cost_map_proto.op_cost_map_size(), 0); } TEST(CostRecorderTest, ProtoRecordsTest) { CostRecorder recorder; recorder.RecordCost(kTestOpKey, kTestCost); recorder.RecordCost(kTestOpKey, 2 * kTestCost); ASSERT_EQ(recorder.size(), 1); std::string measured_cost_path; tensorflow::Env::Default()->LocalTempFilename(&measured_cost_path); ASSERT_EQ(setenv(CostRecorder::MesuredCostPathEnvVarName(), measured_cost_path.c_str(), 1), 0); TF_CHECK_OK(recorder.WriteToFile()); OpCostMapProto op_cost_map_proto; TF_CHECK_OK(tensorflow::ReadTextProto( tensorflow::Env::Default(), measured_cost_path, &op_cost_map_proto)); EXPECT_EQ(op_cost_map_proto.op_cost_map().find(kTestOpKey)->second, kTestAvgCost); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/fallback/cost_recorder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/fallback/cost_recorder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a547991a-c996-49e1-9bda-5e264c5885da
cpp
tensorflow/tensorflow
fallback_state
tensorflow/core/tfrt/fallback/fallback_state.cc
tensorflow/core/tfrt/fallback/fallback_state_test.cc
#include "tensorflow/core/tfrt/fallback/fallback_state.h" #include <cstddef> #include <cstdint> #include <memory> #include <new> #include <utility> #include <variant> #include <vector> #include "absl/base/nullability.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/graph_execution_state.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/types.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/tpu/virtual_device.h" #include "tsl/platform/errors.h" #include "tsl/platform/refcount.h" namespace tensorflow { namespace tfrt_stub { namespace { string DeviceName(absl::string_view name_prefix, absl::string_view device_type, int32_t task_id, size_t device_id) { return strings::StrCat(absl::StripSuffix(name_prefix, "0"), task_id, "/device:", device_type, ":", device_id); } DeviceAttributes BuildDeviceAttributes(absl::string_view name_prefix, const char *device_type, int32_t task_id, size_t device_id) { const DeviceAttributes attrs = Device::BuildDeviceAttributes( DeviceName(name_prefix, device_type, task_id, device_id), DeviceType(device_type), Bytes(16ULL << 30), DeviceLocality(), strings::StrCat("device: ", device_type, " device")); return attrs; } } absl::StatusOr<std::unique_ptr<FallbackState>> FallbackState::Create( const SessionOptions &session_options, const tensorflow::FunctionDefLibrary &fdef_lib) { std::vector<std::unique_ptr<Device>> devices; TF_RETURN_IF_ERROR(DeviceFactory::AddDevices( session_options, "/job:localhost/replica:0/task:0", &devices)); return std::make_unique<FallbackState>(session_options, std::move(devices), fdef_lib); } absl::StatusOr<std::unique_ptr<FallbackState>> FallbackState::CreateWithCpuDevice( const SessionOptions &session_options, const tensorflow::FunctionDefLibrary &fdef_lib) { std::vector<std::unique_ptr<Device>> devices; TF_RETURN_IF_ERROR(DeviceFactory::AddCpuDevices( session_options, "/job:localhost/replica:0/task:0", &devices)); return std::make_unique<FallbackState>(session_options, std::move(devices), fdef_lib); } absl::StatusOr<std::unique_ptr<FallbackState>> FallbackState::CreateWithMockGpuDevice( const SessionOptions &session_options, const tensorflow::FunctionDefLibrary &fdef_lib) { std::vector<std::unique_ptr<Device>> devices; TF_RETURN_IF_ERROR(DeviceFactory::AddCpuDevices( session_options, "/job:localhost/replica:0/task:0", &devices)); auto device_attrs = BuildDeviceAttributes("/job:localhost/replica:0/task:0", "GPU", 0, 0); devices.push_back( std::make_unique<VirtualDevice>(session_options.env, device_attrs)); return std::make_unique<FallbackState>(session_options, std::move(devices), fdef_lib); } absl::StatusOr<std::unique_ptr<FallbackState>> FallbackState::CreateWithDeviceMgr( const SessionOptions &session_options, const tensorflow::FunctionDefLibrary &fdef_lib, absl::Nonnull<DynamicDeviceMgr *> device_mgr) { return std::make_unique<FallbackState>(session_options, device_mgr, fdef_lib); } FallbackState::FallbackState(const SessionOptions &session_options, std::variant<std::vector<std::unique_ptr<Device>>, absl::Nonnull<DynamicDeviceMgr *>> device_mgr, const tensorflow::FunctionDefLibrary &fdef_lib) : session_options_(session_options), device_manager_( std::holds_alternative<std::vector<std::unique_ptr<Device>>>( device_mgr) ? std::move( std::get<std::vector<std::unique_ptr<Device>>>(device_mgr)) : std::vector<std::unique_ptr<Device>>()), device_manager_ptr_( std::holds_alternative<absl::Nonnull<DynamicDeviceMgr *>>(device_mgr) ? std::get<absl::Nonnull<DynamicDeviceMgr *>>(device_mgr) : &device_manager_), func_lib_def_(OpRegistry::Global(), fdef_lib), pflr_(device_manager_ptr_, session_options.env, &session_options.config, TF_GRAPH_DEF_VERSION, &func_lib_def_, session_options.config.graph_options().optimizer_options(), nullptr, nullptr, nullptr, Rendezvous::Factory{[](const int64_t, const DeviceMgr *device_mgr, tsl::core::RefCountPtr<Rendezvous> *r) { *r = tsl::core::RefCountPtr<Rendezvous>( new IntraProcessRendezvous(device_mgr)); return absl::OkStatus(); }}) { for (auto *d : device_manager_ptr_->ListDevices()) { device_set_.AddDevice(d); } device_set_.set_client_device(device_manager().HostCPU()); } absl::StatusOr<std::unique_ptr<GraphExecutionState>> FallbackState::CreateGraphExecutionState(GraphDef graph_def, bool run_placer) const { GraphExecutionStateOptions options; options.device_set = &device_set_; options.session_options = &session_options_; options.session_handle = "tfrt_fallback_handle"; options.run_placer = run_placer; std::unique_ptr<GraphExecutionState> execution_state; TF_RETURN_IF_ERROR(GraphExecutionState::MakeForBaseGraph( std::move(graph_def), options, &execution_state)); return execution_state; } absl::Status FallbackState::AddFunctionDef(const FunctionDef &func_def) { return func_lib_def_.AddFunctionDef(func_def); } } }
#include "tensorflow/core/tfrt/fallback/fallback_state.h" #include <memory> #include <utility> #include <variant> #include <vector> #include "absl/base/nullability.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/const_op.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace { using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; using ::testing::Not; TEST(FallbackStateTest, CreateWithCpuDeviceVector) { tensorflow::SessionOptions session_options; tensorflow::FunctionDefLibrary fdef_lib; std::vector<std::unique_ptr<Device>> devices; TF_ASSERT_OK(DeviceFactory::AddCpuDevices( session_options, "/job:localhost/replica:0/task:0", &devices)); std::variant<std::vector<std::unique_ptr<Device>>, absl::Nonnull<DynamicDeviceMgr*>> device_variant = std::move(devices); auto fallback_state = std::make_unique<tfrt_stub::FallbackState>( session_options, std::move(device_variant), fdef_lib); const auto& device_manager = fallback_state->device_manager(); EXPECT_GT(device_manager.NumDevices(), 0); EXPECT_EQ(device_manager.NumDeviceType("CPU"), 1); } TEST(FallbackStateTest, CreateWithDynamicDeviceMgr) { tensorflow::SessionOptions session_options; tensorflow::FunctionDefLibrary fdef_lib; std::vector<std::unique_ptr<Device>> devices; TF_ASSERT_OK(DeviceFactory::AddCpuDevices( session_options, "/job:localhost/replica:0/task:0", &devices)); auto static_device_mgr = std::make_unique<DynamicDeviceMgr>(std::move(devices)); absl::Nonnull<DynamicDeviceMgr*> device_mgr_ptr(static_device_mgr.get()); auto fallback_state = std::make_unique<tfrt_stub::FallbackState>( session_options, device_mgr_ptr, fdef_lib); const auto& device_manager = fallback_state->device_manager(); EXPECT_GT(device_manager.NumDevices(), 0); EXPECT_EQ(device_manager.NumDeviceType("CPU"), 1); } TEST(FallbackStateTest, CreateRendezvous) { FunctionDefLibrary flib; *flib.add_function() = FunctionDefHelper::Define( "dummy_fn", {}, {}, {}, {}); TF_ASSERT_OK_AND_ASSIGN(auto fallback_state, tfrt_stub::FallbackState::Create({}, flib)); const ProcessFunctionLibraryRuntime& pflr = fallback_state->process_function_library_runtime(); FunctionLibraryRuntime::Options opts; opts.source_device = "/job:localhost/replica:0/task:0"; opts.remote_execution = true; auto status = pflr.RunSync(opts, pflr.GetHandle("dummy_fn"), {}, nullptr); EXPECT_THAT(status, Not(StatusIs(error::FAILED_PRECONDITION, HasSubstr("rendezvous")))); } TEST(FallbackStateTest, CreateGraphExecutionState) { tensorflow::SessionOptions session_options; tensorflow::FunctionDefLibrary fdef_lib; TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tfrt_stub::FallbackState::CreateWithCpuDevice(session_options, fdef_lib)); GraphDef graphdef; { auto scope = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); Output a = ops::Const(scope.WithOpName("a"), 2.0, {1, 1}); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); } TF_ASSERT_OK_AND_ASSIGN( auto graph_execution_state, fallback_state->CreateGraphExecutionState(std::move(graphdef))); } TEST(FallbackStateTest, CreateWithMockGpuDevice) { tensorflow::SessionOptions session_options; tensorflow::FunctionDefLibrary fdef_lib; TF_ASSERT_OK_AND_ASSIGN(auto fallback_state, tfrt_stub::FallbackState::CreateWithMockGpuDevice( session_options, fdef_lib)); const auto& device_manager = fallback_state->device_manager(); EXPECT_GT(device_manager.NumDeviceType("GPU"), 0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/fallback/fallback_state.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/fallback/fallback_state_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
55717161-4c5c-47f4-9796-477dd280f8de
cpp
tensorflow/tensorflow
op_kernel_runner
tensorflow/core/tfrt/fallback/op_kernel_runner.cc
tensorflow/core/tfrt/fallback/op_kernel_runner_test.cc
#include "tensorflow/core/tfrt/fallback/op_kernel_runner.h" #include <functional> #include <memory> #include <string> #include <utility> #include "tensorflow/core/platform/errors.h" namespace tensorflow { namespace tfrt_stub { namespace { Status CheckOpDefCompatibility(const tensorflow::OpDef& op_def) { auto check_arg_def = [&](const auto& arg_def) { if (arg_def.is_ref()) return tensorflow::errors::Internal( "TFRT kernel fallback error: Unsupported ref args in ", op_def.name()); return absl::OkStatus(); }; for (const auto& arg_def : op_def.input_arg()) TF_RETURN_IF_ERROR(check_arg_def(arg_def)); for (const auto& arg_def : op_def.output_arg()) TF_RETURN_IF_ERROR(check_arg_def(arg_def)); return absl::OkStatus(); } absl::StatusOr<tensorflow::NodeDef> BuildNodeDef( const tensorflow::OpDef& op_def, absl::string_view node_name, int num_args, const std::function<Status(tensorflow::AttrValueMap*)>& attr_builder) { tensorflow::NodeDef node_def; node_def.set_name(std::string(node_name)); node_def.set_op(op_def.name()); for (int i = 0; i < num_args; ++i) { node_def.add_input("dummy_input"); } auto* attr_value_map = node_def.mutable_attr(); TF_RETURN_IF_ERROR(attr_builder(attr_value_map)); for (const auto& attr_def : op_def.attr()) { if (attr_def.has_default_value()) { attr_value_map->insert({attr_def.name(), attr_def.default_value()}); } } return node_def; } tensorflow::Status CreateOpKernel( tensorflow::FunctionLibraryRuntime* flr, tensorflow::NodeDef ndef, std::unique_ptr<tensorflow::OpKernel>* result) { std::shared_ptr<const tensorflow::NodeProperties> props; TF_RETURN_IF_ERROR(tensorflow::NodeProperties::CreateFromNodeDef( std::move(ndef), flr->GetFunctionLibraryDefinition(), &props)); tensorflow::OpKernel* k = nullptr; TF_RETURN_IF_ERROR(flr->CreateKernel(props, &k)); result->reset(k); return absl::OkStatus(); } } absl::StatusOr<OpKernelRunner> OpKernelRunner::Create( absl::string_view op_name, absl::string_view node_name, absl::string_view device_name, int num_args, const std::function<Status(tensorflow::AttrValueMap*)>& attr_builder, const tensorflow::DeviceMgr& device_manager, const tensorflow::ProcessFunctionLibraryRuntime& process_function_library_runtime) { tensorflow::Device* device = nullptr; Status s = device_manager.LookupDevice(device_name, &device); if (!s.ok()) { LOG_EVERY_N_SEC(WARNING, 30) << "Failed to find device " << device_name << " when creating OpKernel: " << op_name << ". Error: " << s << ", fallback to host device instead"; device = device_manager.HostCPU(); } return Create(op_name, node_name, num_args, attr_builder, process_function_library_runtime, device); } absl::StatusOr<OpKernelRunner> OpKernelRunner::Create( absl::string_view op_name, absl::string_view node_name, int num_args, const std::function<Status(tensorflow::AttrValueMap*)>& attr_builder, const tensorflow::ProcessFunctionLibraryRuntime& process_function_library_runtime, tensorflow::Device* device) { const OpDef* op_def = nullptr; TF_RETURN_IF_ERROR(tensorflow::OpRegistry::Global()->LookUpOpDef( std::string(op_name), &op_def)); TF_RETURN_IF_ERROR(CheckOpDefCompatibility(*op_def)); VLOG(1) << "KernelFallbackExecuteCompat creating op from OpDef: " << op_def->DebugString(); TF_ASSIGN_OR_RETURN(auto node_def, BuildNodeDef(*op_def, node_name, num_args, attr_builder)); VLOG(1) << "KernelFallbackExecuteCompat created NodeDef: " << node_def.DebugString(); tensorflow::FunctionLibraryRuntime* function_library_runtime = nullptr; function_library_runtime = process_function_library_runtime.GetFLR(device->name()); std::unique_ptr<OpKernel> op_kernel; TF_RETURN_IF_ERROR(CreateOpKernel(function_library_runtime, std::move(node_def), &op_kernel)); return OpKernelRunner(device, function_library_runtime, std::move(op_kernel)); } OpKernelRunner::OpKernelRunner( tensorflow::Device* device, tensorflow::FunctionLibraryRuntime* function_library_runtime, std::unique_ptr<tensorflow::OpKernel> op_kernel) : op_kernel_(std::move(op_kernel)), info_(std::make_unique<Info>()) { DCHECK(device); DCHECK(function_library_runtime); info_->device = device; info_->function_library_runtime = function_library_runtime; info_->resource_manager = device->resource_manager(); info_->is_async = (op_kernel_->AsAsync() != nullptr); const auto& input_memory_types = op_kernel_->input_memory_types(); auto& input_alloc_attrs = info_->input_alloc_attrs; auto& output_alloc_attrs = info_->output_alloc_attrs; input_alloc_attrs.resize(op_kernel_->num_inputs()); for (size_t i = 0, e = op_kernel_->num_inputs(); i < e; ++i) { input_alloc_attrs[i].set_on_host(input_memory_types[i] == tensorflow::HOST_MEMORY); } const auto& output_memory_types = op_kernel_->output_memory_types(); output_alloc_attrs.resize(op_kernel_->num_outputs()); for (size_t i = 0, e = output_alloc_attrs.size(); i < e; ++i) { output_alloc_attrs[i].set_on_host(output_memory_types[i] == tensorflow::HOST_MEMORY); } input_alloc_attrs_ = input_alloc_attrs; output_alloc_attrs_ = output_alloc_attrs; } void OpKernelRunner::RunAsync(OpKernelContext* context, AsyncOpKernel::DoneCallback done_callback) const { DVLOG(1) << "KernelFallbackExecuteCompat Running Async Op: " << op_kernel_->def().DebugString() << ", on Device: " << context->device()->name(); AsyncOpKernel* async = op_kernel_->AsAsync(); DCHECK(async); async->ComputeAsync(context, std::move(done_callback)); } } }
#include "tensorflow/core/tfrt/fallback/op_kernel_runner.h" #include <memory> #include <string> #include <vector> #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/fallback/op_kernel_runner_cache.h" namespace tensorflow { namespace tfrt_stub { namespace { using ::testing::IsNull; using ::testing::SizeIs; #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM constexpr const char* kDeviceType = "GPU"; #else constexpr const char* kDeviceType = "CPU"; #endif class TestOpKernel : public OpKernel { public: using OpKernel::OpKernel; ~TestOpKernel() override = default; void Compute(OpKernelContext* context) override { context->set_output(0, context->input(0)); } }; REGISTER_KERNEL_BUILDER(Name("TestOp").Device(DEVICE_CPU), TestOpKernel); REGISTER_OP("TestOp").Input("x: int32").Output("y: int32"); TEST(OpKernelRunnerTest, Create) { tensorflow::SessionOptions session_options; tensorflow::FunctionDefLibrary fdef_lib; TF_ASSERT_OK_AND_ASSIGN(auto fallback_state, FallbackState::Create(session_options, fdef_lib)); TF_ASSERT_OK_AND_ASSIGN( auto runner, OpKernelRunner::Create( "TestOp", "TestOp_node_name", "/job:localhost/replica:0/task:0/device:CPU:0", 1, [](tensorflow::AttrValueMap*) { return absl::OkStatus(); }, fallback_state->device_manager(), fallback_state->process_function_library_runtime())); ASSERT_TRUE(runner); EXPECT_EQ(runner.op_kernel()->name(), "TestOp_node_name"); } TEST(OpKernelRunnerTest, OpKernelRunnerCache) { tensorflow::SessionOptions session_options; tensorflow::FunctionDefLibrary fdef_lib; TF_ASSERT_OK_AND_ASSIGN(auto fallback_state, FallbackState::Create(session_options, fdef_lib)); OpKernelRunnerCache cache; tfrt::Location loc(nullptr, 100); TF_ASSERT_OK_AND_ASSIGN( auto* runner, cache.GetOrCreate( loc, "TestOp", "/job:localhost/replica:0/task:0/device:CPU:0", 1, [](tensorflow::AttrValueMap*) { return absl::OkStatus(); }, fallback_state->device_manager(), fallback_state->process_function_library_runtime())); ASSERT_TRUE(runner); EXPECT_EQ(runner->op_kernel()->name(), "TestOp_100_0"); TF_ASSERT_OK_AND_ASSIGN( runner, cache.GetOrCreate( loc, "TestOp", "/job:localhost/replica:0/task:0/device:CPU:0", 1, [](tensorflow::AttrValueMap*) { return absl::OkStatus(); }, fallback_state->device_manager(), fallback_state->process_function_library_runtime())); ASSERT_TRUE(runner); EXPECT_EQ(runner->op_kernel()->name(), "TestOp_100_0"); } TEST(OpKernelRunnerTest, OpKernelRunState) { SessionOptions options; auto* device_count = options.config.mutable_device_count(); device_count->insert({kDeviceType, 1}); std::vector<std::unique_ptr<Device>> devices; TF_ASSERT_OK(DeviceFactory::GetFactory(kDeviceType) ->CreateDevices(options, "/job:a/replica:0/task:0", &devices)); ASSERT_EQ(devices.size(), 1); OpKernelContext::Params params; params.device = devices[0].get(); params.ensure_eigen_gpu_device(); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM ASSERT_THAT(params.eigen_gpu_device, ::testing::NotNull()); #endif Tensor a(DT_FLOAT, TensorShape({})); Tensor b(DT_INT32, TensorShape({})); absl::InlinedVector<TensorValue, 4UL> inputs{TensorValue(&a), TensorValue(&b)}; params.inputs = inputs; Tensor c(DT_UINT8, TensorShape({})); absl::InlinedVector<TensorValue, 4UL> new_inputs{TensorValue(&c)}; OpKernelRunState run_state(new_inputs, params); EXPECT_THAT(run_state.input_tf_tensors, SizeIs(1)); EXPECT_THAT(run_state.input_tf_tensor_values, SizeIs(1)); EXPECT_EQ(run_state.params.inputs.data(), run_state.input_tf_tensor_values.data()); EXPECT_THAT(run_state.params.eigen_gpu_device, IsNull()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/fallback/op_kernel_runner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/fallback/op_kernel_runner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9023f77c-6d2f-4bb9-b69d-4e2e666b234d
cpp
tensorflow/tensorflow
stream
tensorflow/core/tfrt/runtime/stream.cc
tensorflow/core/tfrt/runtime/stream_test.cc
#include "tensorflow/core/tfrt/runtime/stream.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/utility/utility.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tsl/platform/random.h" #include "tsl/platform/threadpool_interface.h" #include "tsl/profiler/lib/traceme.h" namespace tensorflow { namespace tfrt_stub { absl::StatusOr<std::optional<StreamCallbackId>> CreateStreamCallbackId( absl::string_view model_name, mlir::ModuleOp module) { mlir::Builder builder(module.getContext()); std::vector<mlir::TF::PwStreamResultsOp> ops; module->walk([&](mlir::TF::PwStreamResultsOp op) { ops.push_back(op); }); if (ops.empty()) { return std::nullopt; } auto& stream_interface = GetGlobalStreamCallbackRegistry().stream_interface(); auto controller_address = stream_interface.controller_address(); auto controller_address_attr = builder.getStringAttr(controller_address); auto model_name_attr = builder.getStringAttr(model_name); const StreamCallbackId callback_id( static_cast<int64_t>(tsl::random::New64())); auto callback_id_attr = builder.getI64IntegerAttr(callback_id.id); for (auto op : ops) { op->setAttr("_controller_address", controller_address_attr); op->setAttr("_model_name", model_name_attr); op->setAttr("_callback_id", callback_id_attr); } return callback_id; } absl::Status StreamCallbackRegistry::CallbackState::Invoke( tsl::thread::ThreadPoolInterface* thread_pool, StreamedResult result) { { absl::MutexLock lock(&mu_); if (closed_) { return absl::InternalError( "Failed to invole the callback that is closed."); } ++num_outstanding_; } thread_pool->Schedule([this, result = std::move(result)]() mutable { InvokeCallback(std::move(result)); absl::MutexLock lock(&mu_); --num_outstanding_; }); return absl::OkStatus(); } void StreamCallbackRegistry::CallbackState::Close() { { absl::MutexLock lock(&mu_); closed_ = true; auto not_running = [this]() ABSL_SHARED_LOCKS_REQUIRED(mu_) { return num_outstanding_ == 0; }; mu_.Await(absl::Condition(&not_running)); } } void StreamCallbackRegistry::CallbackState::InvokeCallback( StreamedResult result) { absl::Duration dequeue_latency = absl::Now() - result.enqueued_time; interface().RecordDequeueLatency(model_name_, dequeue_latency); tsl::profiler::TraceMe trace_me("StreamCallbackInvocation"); trace_me.AppendMetadata([&]() { return tsl::profiler::TraceMeEncode({ {"callback_id", callback_id_.id}, {"step_id", step_id_.id}, }); }); absl::Time start_time = absl::Now(); callback_(std::move(result.tensors)); interface().RecordCallbackLatency(model_name_, absl::Now() - start_time); } absl::StatusOr<ScopedStreamCallback> StreamCallbackRegistry::Register( absl::string_view model_name, StreamCallbackId callback_id, StepId step_id, absl::AnyInvocable< void(absl::flat_hash_map<std::string, tensorflow::Tensor>)> callback) { absl::MutexLock l(&mu_); const auto [it, inserted] = stream_callbacks_.insert({std::make_pair(callback_id, step_id), nullptr}); if (!inserted) { return absl::AlreadyExistsError(absl::StrCat( "Stream callback ", callback_id, " @ ", step_id, " already exists")); } it->second = std::make_unique<CallbackState>(this, model_name, callback_id, step_id, std::move(callback)); return ScopedStreamCallback(this, callback_id, step_id); } absl::Status StreamCallbackRegistry::Invoke( tsl::thread::ThreadPoolInterface* thread_pool, StreamCallbackId callback_id, StepId step_id, StreamedResult result) { absl::MutexLock lock(&mu_); auto iter = stream_callbacks_.find({callback_id, step_id}); if (iter == stream_callbacks_.end()) { return absl::NotFoundError(absl::StrCat( "Stream callback ", callback_id, " @ ", step_id, " does not exist; this usually indicates that a streaming signature " "was called by a non-streaming request")); } auto* state = iter->second.get(); DCHECK(state); return state->Invoke(thread_pool, std::move(result)); } std::unique_ptr<StreamCallbackRegistry::CallbackState> StreamCallbackRegistry::Unregister(StreamCallbackId callback_id, StepId step_id) { absl::MutexLock l(&mu_); const auto it = stream_callbacks_.find({callback_id, step_id}); if (it == stream_callbacks_.end()) { return nullptr; } auto state = std::move(it->second); stream_callbacks_.erase(it); return state; } ScopedStreamCallback::ScopedStreamCallback(ScopedStreamCallback&& other) : registry_(other.registry_), callback_id_(other.callback_id_), step_id_(other.step_id_) { other.callback_id_ = std::nullopt; other.step_id_ = StepId::GetInvalidStepId(); } ScopedStreamCallback& ScopedStreamCallback::operator=( ScopedStreamCallback&& other) { Unregister(); registry_ = other.registry_; callback_id_ = other.callback_id_; step_id_ = other.step_id_; other.callback_id_ = std::nullopt; other.step_id_ = StepId::GetInvalidStepId(); return *this; } void ScopedStreamCallback::Unregister() { if (!callback_id_.has_value()) { return; } tsl::profiler::TraceMe trace_me("ScopedStreamCallback::Unregister"); trace_me.AppendMetadata([&]() { return tsl::profiler::TraceMeEncode({ {"callback_id", callback_id_->id}, {"step_id", step_id_.id}, }); }); DCHECK(registry_); auto state = registry_->Unregister(*callback_id_, step_id_); DCHECK(state); state->Close(); callback_id_.reset(); } StreamInterfaceFactory& GetGlobalStreamInterfaceFactory() { static auto* stream_interface_factory = new StreamInterfaceFactory; return *stream_interface_factory; } StreamCallbackRegistry& GetGlobalStreamCallbackRegistry() { static auto* stream_callback_registry = new StreamCallbackRegistry(GetGlobalStreamInterfaceFactory() .CreateControllerStreamInterface() .value()); return *stream_callback_registry; } } }
#include "tensorflow/core/tfrt/runtime/stream.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/tfrt/runtime/step_id.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tensorflow/core/tfrt/utils/thread_pool.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tfrt_stub { namespace { using ::tensorflow::test::AsTensor; using ::testing::AnyOf; using ::testing::ElementsAreArray; using ::testing::Pair; using ::testing::UnorderedElementsAre; using ::testing::status::StatusIs; TEST(StreamTest, Simple) { StreamCallbackId callback_id(1234); StepId step_id(5678); std::vector<absl::flat_hash_map<std::string, tensorflow::Tensor>> outputs; ScopedStreamCallback scoped_stream_callback; { TF_ASSERT_OK_AND_ASSIGN( scoped_stream_callback, GetGlobalStreamCallbackRegistry().Register( "test_model", callback_id, step_id, [&](absl::flat_hash_map<std::string, tensorflow::Tensor> arg) { outputs.push_back(std::move(arg)); })); std::vector<absl::flat_hash_map<std::string, tensorflow::Tensor>> expected = {{{"a", AsTensor<int32_t>({100})}, {"b", AsTensor<int32_t>({200})}}, {{"c", AsTensor<int32_t>({300})}}}; auto thread = absl::WrapUnique(tsl::Env::Default()->StartThread( tsl::ThreadOptions(), "fake_stream_client", [&]() { for (const auto& map : expected) { TfThreadPool thread_pool("test", 4); CHECK_OK(GetGlobalStreamCallbackRegistry().Invoke( &thread_pool, callback_id, step_id, {map, absl::Now()})); } })); } EXPECT_EQ(outputs.size(), 2); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]["a"]), ElementsAreArray({100})); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]["b"]), ElementsAreArray({200})); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[1]["c"]), ElementsAreArray({300})); ScopedStreamCallback scoped_stream_callback_copy; scoped_stream_callback_copy = std::move(scoped_stream_callback); auto status = GetGlobalStreamCallbackRegistry().Register( "test_model", callback_id, step_id, [&](absl::flat_hash_map<std::string, tensorflow::Tensor> arg) { outputs.push_back(std::move(arg)); }); EXPECT_THAT(status, StatusIs(absl::StatusCode::kAlreadyExists)); } TEST(StreamTest, MultipleWriters) { StreamCallbackId callback_id(1234); StepId step_id(5678); std::vector<absl::flat_hash_map<std::string, std::vector<int32_t>>> outputs; { TfThreadPool thread_pool("test", 4); TF_ASSERT_OK_AND_ASSIGN( auto scoped_stream_callback, GetGlobalStreamCallbackRegistry().Register( "test_model", callback_id, step_id, [&](absl::flat_hash_map<std::string, tensorflow::Tensor> arg) { absl::flat_hash_map<std::string, std::vector<int32_t>> out; for (const auto& p : arg) { out[p.first] = GetTfTensorData<int32_t>(p.second); } outputs.push_back(std::move(out)); })); std::vector<absl::flat_hash_map<std::string, tensorflow::Tensor>> expected = {{{"a", AsTensor<int32_t>({100})}, {"b", AsTensor<int32_t>({200})}}, {{"c", AsTensor<int32_t>({300})}}}; for (const auto& p : expected) { tsl::Env::Default()->SchedClosure([&, callback_id, step_id, p]() { TfThreadPool thread_pool("test", 4); GetGlobalStreamCallbackRegistry() .Invoke(&thread_pool, callback_id, step_id, {p, absl::Now()}) .IgnoreError(); }); } absl::SleepFor(absl::Microseconds(100)); } LOG(INFO) << "StreamCallback receives " << outputs.size() << " outputs."; for (const auto& output : outputs) { EXPECT_THAT( output, AnyOf(UnorderedElementsAre(Pair("a", ElementsAreArray({100})), Pair("b", ElementsAreArray({200}))), UnorderedElementsAre(Pair("c", ElementsAreArray({300}))))); } } class TestStreamControllerInterface : public StreamControllerInterface { public: TestStreamControllerInterface() : StreamControllerInterface("test_controller_address") {} }; TEST(StreamControllerInterface, Initialize) { GetGlobalStreamInterfaceFactory().RegisterController( []() { return std::make_unique<TestStreamControllerInterface>(); }); TF_ASSERT_OK_AND_ASSIGN( auto controller_interface, GetGlobalStreamInterfaceFactory().CreateControllerStreamInterface()); EXPECT_EQ(controller_interface->controller_address(), "test_controller_address"); } class TestStreamWorkerInterface : public StreamWorkerInterface { public: explicit TestStreamWorkerInterface(std::string worker_address) : StreamWorkerInterface(worker_address) {} absl::Status InvokeStreamCallback( const StreamCallbackId& callback_id, const std::vector<std::string>& names, const std::vector<std::pair<int64_t, std::vector<tensorflow::Tensor>>>& responses) override { return absl::OkStatus(); } }; TEST(StreamWorkerInterface, Initialize) { GetGlobalStreamInterfaceFactory().RegisterWorker( [](absl::string_view address) -> absl::StatusOr<std::unique_ptr<TestStreamWorkerInterface>> { return std::make_unique<TestStreamWorkerInterface>( "test_worker_address"); }); TF_ASSERT_OK_AND_ASSIGN( auto worker_interface, GetGlobalStreamInterfaceFactory().CreateWorkerStreamInterface()( "test_worker_address")); EXPECT_EQ(worker_interface->controller_address(), "test_worker_address"); } TEST(StepId, Generate) { StepId step_id(1234); EXPECT_EQ(step_id.id, 1234); StepIdGenerator step_id_generator; EXPECT_EQ(step_id_generator.GetNextStepId(), StepId(1)); EXPECT_EQ(step_id_generator.GetNextStepId(), StepId(2)); EXPECT_EQ(step_id_generator.GetNextStepId(), StepId(3)); } TEST(StepId, GlobalInitial) { EXPECT_EQ(GetGlobalInitialStepId(), 0); TEST_ScopedInitialStepId test_id(127); EXPECT_EQ(GetGlobalInitialStepId(), 127); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/runtime/stream.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/runtime/stream_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4e6fafa5-5d2d-4a50-9c2d-5cb980bc6d2e
cpp
tensorflow/tensorflow
runtime
tensorflow/lite/delegates/gpu/gl/runtime.cc
tensorflow/core/tfrt/runtime/runtime_test.cc
#include "tensorflow/lite/delegates/gpu/gl/runtime.h" #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <utility> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/gpu_info.h" #include "tensorflow/lite/delegates/gpu/common/memory_management.h" #include "tensorflow/lite/delegates/gpu/common/memory_management/types.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/gl_call.h" #include "tensorflow/lite/delegates/gpu/gl/gl_errors.h" #include "tensorflow/lite/delegates/gpu/gl/gl_program.h" #include "tensorflow/lite/delegates/gpu/gl/gl_texture.h" #include "tensorflow/lite/delegates/gpu/gl/object.h" #include "tensorflow/lite/delegates/gpu/gl/portable_gl31.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { namespace { struct TextureF16Maker { absl::Status operator()(const uint3& size) const { return CreateReadOnlyImageTextureF16(size, data, gl_texture); } absl::Status operator()(const uint2& size) const { return CreateReadOnlyImageTextureF16(size, data, gl_texture); } absl::Status operator()(const size_t& size) const { return CreateReadOnlyImageTextureF16(uint2(static_cast<uint32_t>(size), 1U), data, gl_texture); } absl::Span<const uint16_t> data; GlTexture* gl_texture; }; struct TextureF32Maker { absl::Status operator()(const uint3& size) const { return CreateReadOnlyImageTexture(size, data, gl_texture); } absl::Status operator()(const uint2& size) const { return CreateReadOnlyImageTexture(size, data, gl_texture); } absl::Status operator()(const size_t& size) const { return CreateReadOnlyImageTexture(uint2(static_cast<uint32_t>(size), 1U), data, gl_texture); } absl::Span<const float> data; GlTexture* gl_texture; }; absl::Status MakeGlTexture(const Object& object, const ObjectData& data, GlTexture* gl_texture) { if (object.access == AccessType::READ_WRITE || object.access == AccessType::WRITE) { return absl::InvalidArgumentError("Read-write textures are not supported"); } if (object.data_type != DataType::FLOAT16 && object.data_type != DataType::FLOAT32) { return absl::InvalidArgumentError( "Textures support float16 or float32 only."); } switch (object.data_type) { case DataType::FLOAT16: { if (data.size() % 2 != 0) { return absl::InvalidArgumentError("Texture size is not aligned"); } return std::visit( TextureF16Maker{ .data = absl::MakeConstSpan( reinterpret_cast<const uint16_t*>(data.data()), data.size() / 2), .gl_texture = gl_texture, }, object.size); } case DataType::FLOAT32: { if (data.size() % sizeof(float) != 0) { return absl::InvalidArgumentError("Texture size is not aligned"); } return std::visit( TextureF32Maker{ .data = absl::MakeConstSpan( reinterpret_cast<const float*>(data.data()), data.size() / sizeof(float)), .gl_texture = gl_texture, }, object.size); } default: return absl::InvalidArgumentError("Unsupported textures data type."); } } struct TextureRefMaker { absl::Status operator()(const uint3& size) const { return CreateReadWriteRgbaImageTexture(type, size, gl_texture); } absl::Status operator()(const uint2& size) const { return CreateReadWriteRgbaImageTexture(type, size, gl_texture); } absl::Status operator()(const size_t& size) const { return CreateReadWriteRgbaImageTexture( type, uint2(static_cast<uint32_t>(size), 1U), gl_texture); } DataType type; GlTexture* gl_texture; }; absl::Status MakeGlTextureRef(const Object& object, GlTexture* gl_texture) { return std::visit(TextureRefMaker{object.data_type, gl_texture}, object.size); } absl::Status MakeGlBuffer(const Object& object, const ObjectData& data, GlBuffer* gl_buffer) { if (data.size() % SizeOf(object.data_type) != 0) { return absl::InvalidArgumentError("Buffer size is not aligned"); } return CreateReadOnlyShaderStorageBuffer(absl::MakeConstSpan(data), gl_buffer); } absl::Status MakeBindingFunc(const Object& object, uint32_t id, const ObjectManager* objects, std::function<absl::Status()>* binding_func) { const uint32_t binding = object.binding; switch (object.object_type) { case ObjectType::BUFFER: { auto ptr = objects->FindBuffer(id); if (!ptr) { return absl::NotFoundError( absl::StrCat("Buffer ", id, " is not found")); } size_t size_in_bytes = ByteSizeOf(object); if (ptr->bytes_size() < size_in_bytes) { return absl::FailedPreconditionError( absl::StrCat("Buffer ", id, " size in bytes ", ptr->bytes_size(), " < requested size_in_bytes ", size_in_bytes)); } *binding_func = [=]() { return ptr->BindToIndex(binding); }; break; } case ObjectType::TEXTURE: { auto ptr = objects->FindTexture(id); if (!ptr) { return absl::NotFoundError( absl::StrCat("Texture ", id, " is not found")); } *binding_func = [=]() { return ptr->BindAsReadWriteImage(binding); }; break; } case ObjectType::UNKNOWN: return absl::InvalidArgumentError("Unknown object type"); } return absl::OkStatus(); } absl::Status MakeLateBindingFunc(const Object& object, uint32_t id, const ObjectManager* objects, std::function<absl::Status()>* binding_func) { const uint32_t binding = object.binding; switch (object.object_type) { case ObjectType::BUFFER: { auto ptr = objects->FindBuffer(id); if (!ptr) { return absl::NotFoundError( absl::StrCat("Buffer ", id, " is not found")); } *binding_func = [=]() { auto ptr = objects->FindBuffer(id); if (!ptr) { return absl::NotFoundError( absl::StrCat("Buffer ", id, " is not found")); } if (!ptr->is_valid()) { return absl::InvalidArgumentError("Buffer is not initialized."); } size_t size_in_bytes = ByteSizeOf(object); if (ptr->bytes_size() < size_in_bytes) { return absl::FailedPreconditionError( absl::StrCat("Buffer ", id, " size in bytes ", ptr->bytes_size(), " < requested size_in_bytes ", size_in_bytes)); } return ptr->BindToIndex(binding); }; break; } case ObjectType::TEXTURE: { auto ptr = objects->FindTexture(id); if (!ptr) { return absl::NotFoundError( absl::StrCat("Texture ", id, " is not found")); } *binding_func = [=]() { auto ptr = objects->FindTexture(id); if (!ptr) { return absl::NotFoundError( absl::StrCat("Texture ", id, " is not found")); } if (!ptr->is_valid()) { return absl::InvalidArgumentError("Texture is not initialized."); } return ptr->BindAsReadWriteImage(binding); }; break; } case ObjectType::UNKNOWN: return absl::InvalidArgumentError("Unknown object type"); } return absl::OkStatus(); } } Runtime::Runtime(const RuntimeOptions& options, const GpuInfo& gpu_info, CommandQueue* command_queue, const ObjectManager* external_objects) : options_(options), gpu_info_(gpu_info), external_objects_(external_objects), command_queue_(command_queue) { programs_.reserve(256); if (options_.bundle_readonly_objects) { shared_readonly_buffer_ = std::make_unique<SharedBufferData>(); } } absl::Status Runtime::AddProgram(const GlShader& shader, const std::vector<Variable>& parameters, const std::vector<Object>& objects, const uint3& num_workgroups) { GlProgram program; RETURN_IF_ERROR(GlProgram::CreateWithShader(shader, &program)); for (auto& parameter : parameters) { RETURN_IF_ERROR(program.SetParameter(parameter)); } programs_.emplace_back( CompiledProgramDescriptor{std::move(program), num_workgroups, {}}); for (auto& object : objects) { auto& program = programs_.back(); BindFunc binding_func; if (IsRef(object)) { absl::Status status = MakeLateBindingFunc( object, GetRef(object), external_objects_, &binding_func); if (!status.ok()) { if (absl::IsNotFound(status)) { program.refs.push_back(object); continue; } return status; } } else { uint32_t id; RETURN_IF_ERROR(AllocateConstObject(object, &id)); RETURN_IF_ERROR( MakeBindingFunc(object, id, &const_objects_, &binding_func)); } program.bindings.push_back(std::move(binding_func)); } return absl::OkStatus(); } absl::Status Runtime::AllocateInternalObject(const Object& object) { const ObjectRef ref = GetRef(object); switch (object.object_type) { case ObjectType::BUFFER: { GlBuffer gl_buffer; RETURN_IF_ERROR(CreateReadWriteShaderStorageBuffer<uint8_t>( ByteSizeOf(object), &gl_buffer)); RETURN_IF_ERROR( internal_objects_.RegisterBuffer(ref, std::move(gl_buffer))); break; } case ObjectType::TEXTURE: { GlTexture gl_texture; RETURN_IF_ERROR(MakeGlTextureRef(object, &gl_texture)); RETURN_IF_ERROR( internal_objects_.RegisterTexture(ref, std::move(gl_texture))); break; } default: return absl::InternalError("Unexpected internal object type"); } return absl::OkStatus(); } absl::Status Runtime::AllocateConstObject(const Object& object, uint32_t* id) { const ObjectData* data = GetData(object); if (data == nullptr) { return absl::InternalError( "Unable to allocate reference as a const object"); } *id = next_const_id_++; switch (object.object_type) { case ObjectType::BUFFER: { GlBuffer gl_buffer; if (!shared_readonly_buffer_ || !shared_readonly_buffer_->Add(*data, &gl_buffer)) { RETURN_IF_ERROR(MakeGlBuffer(object, *data, &gl_buffer)); } RETURN_IF_ERROR(const_objects_.RegisterBuffer(*id, std::move(gl_buffer))); break; } case ObjectType::TEXTURE: { GlTexture gl_texture; RETURN_IF_ERROR(MakeGlTexture(object, *data, &gl_texture)); RETURN_IF_ERROR( const_objects_.RegisterTexture(*id, std::move(gl_texture))); break; } case ObjectType::UNKNOWN: return absl::InternalError("Unknown object type"); } return absl::OkStatus(); } absl::Status Runtime::PrepareForExecution() { if (shared_readonly_buffer_ && !shared_readonly_buffer_->empty()) { GlBuffer shared_buffer; RETURN_IF_ERROR( shared_readonly_buffer_->CreateSharedGlBuffer(&shared_buffer)); shared_readonly_buffer_.reset(nullptr); RETURN_IF_ERROR(const_objects_.RegisterBuffer(next_const_id_++, std::move(shared_buffer))); } if (options_.reuse_internal_objects) { std::vector<Object> shared_objects; RETURN_IF_ERROR(AssignInternalObjects(&shared_objects)); for (const Object& object : shared_objects) { RETURN_IF_ERROR(AllocateInternalObject(object)); } } for (auto& program : programs_) { for (auto& object : program.refs) { BindFunc binding; ObjectRef ref = GetRef(object); absl::Status status = MakeBindingFunc(object, ref, &internal_objects_, &binding); if (!status.ok()) { if (absl::IsNotFound(status)) { RETURN_IF_ERROR(AllocateInternalObject(object)); RETURN_IF_ERROR( MakeBindingFunc(object, ref, &internal_objects_, &binding)); } else { return status; } } program.bindings.push_back(std::move(binding)); } program.refs.clear(); } return absl::OkStatus(); } namespace { const size_t kNotAssigned = std::numeric_limits<size_t>::max(); struct CombinedUsageRecords { std::vector<TensorUsageRecord<size_t>> buffers; std::vector<TensorUsageRecord<size_t>> textures_1d; std::vector<TensorUsageRecord<uint2>> textures_2d; std::vector<TensorUsageRecord<uint3>> textures_3d; std::vector<size_t> usage_refs; }; template <typename TensorSizeT> void UpdateUsageRecord(TensorUsageRecord<TensorSizeT>* usage_rec, size_t task_id) { usage_rec->first_task = std::min(usage_rec->first_task, task_id); usage_rec->last_task = std::max(usage_rec->last_task, task_id); } struct AddUsageRecordForTextureFunc { void operator()(const uint3& size) const { auto& usage_ref = usage_records->usage_refs[object_ref]; if (usage_ref == kNotAssigned) { usage_ref = usage_records->textures_3d.size(); usage_records->textures_3d.emplace_back(size, program_id, program_id); } else { UpdateUsageRecord(&usage_records->textures_3d[usage_ref], program_id); } } void operator()(const uint2& size) const { auto& usage_ref = usage_records->usage_refs[object_ref]; if (usage_ref == kNotAssigned) { usage_ref = usage_records->textures_2d.size(); usage_records->textures_2d.emplace_back(size, program_id, program_id); } else { UpdateUsageRecord(&usage_records->textures_2d[usage_ref], program_id); } } void operator()(size_t size) const { auto& usage_ref = usage_records->usage_refs[object_ref]; if (usage_ref == kNotAssigned) { usage_ref = usage_records->textures_1d.size(); usage_records->textures_1d.emplace_back(size, program_id, program_id); } else { UpdateUsageRecord(&usage_records->textures_1d[usage_ref], program_id); } } CombinedUsageRecords* usage_records; const ObjectRef& object_ref; const size_t program_id; }; absl::Status AddUsageRecord(CombinedUsageRecords* usage_records, const Object& object, const size_t program_id) { auto ref = GetRef(object); if (ref >= usage_records->usage_refs.size()) { usage_records->usage_refs.resize(ref + 1, kNotAssigned); } auto& usage_ref = usage_records->usage_refs[ref]; if (object.object_type == ObjectType::BUFFER) { if (usage_ref == kNotAssigned) { usage_ref = usage_records->buffers.size(); usage_records->buffers.emplace_back( NumElements(object.size), program_id, program_id); } else { UpdateUsageRecord(&usage_records->buffers[usage_ref], program_id); } return absl::OkStatus(); } if (object.object_type == ObjectType::TEXTURE) { std::visit(AddUsageRecordForTextureFunc{usage_records, ref, program_id}, object.size); return absl::OkStatus(); } return absl::InternalError("Unexpected object type"); } absl::Status ApplyBuffersAssignment( const ObjectsAssignment<size_t>& assignment, const std::vector<size_t>& global_ref_to_usage_rec, const std::vector<Object*>& global_ref_to_object_ptr, std::vector<ObjectRef>* global_ref_to_shared_ref, std::vector<Object>* shared_objects) { std::vector<ObjectRef> assigned_id_to_shared_ref( assignment.object_sizes.size(), kInvalidObjectRef); for (size_t global_ref = 0; global_ref < global_ref_to_usage_rec.size(); ++global_ref) { const auto& usage_rec_id = global_ref_to_usage_rec[global_ref]; Object* object = global_ref_to_object_ptr[global_ref]; if (usage_rec_id == kNotAssigned || object == nullptr || object->object_type != ObjectType::BUFFER) { continue; } size_t assigned_id = assignment.object_ids[usage_rec_id]; ObjectRef shared_ref = assigned_id_to_shared_ref[assigned_id]; if (shared_ref == kInvalidObjectRef) { shared_ref = shared_objects->size(); Object shared_object = *object; shared_object.access = AccessType::READ_WRITE; shared_object.object = shared_ref; shared_object.size = assignment.object_sizes[assigned_id]; shared_objects->push_back(std::move(shared_object)); assigned_id_to_shared_ref[assigned_id] = shared_ref; } (*global_ref_to_shared_ref)[global_ref] = shared_ref; } return absl::OkStatus(); } template <typename ObjectSizeT> absl::Status ApplyTexturesAssignment( const ObjectsAssignment<ObjectSizeT>& assignment, const std::vector<size_t>& global_ref_to_usage_rec, const std::vector<Object*>& global_ref_to_object_ptr, std::vector<ObjectRef>* global_ref_to_shared_ref, std::vector<Object>* shared_objects) { std::vector<ObjectRef> assigned_id_to_shared_ref( assignment.object_sizes.size(), kInvalidObjectRef); for (size_t global_ref = 0; global_ref < global_ref_to_usage_rec.size(); ++global_ref) { const auto& usage_rec_id = global_ref_to_usage_rec[global_ref]; Object* object = global_ref_to_object_ptr[global_ref]; if (usage_rec_id == kNotAssigned || object == nullptr || object->object_type != ObjectType::TEXTURE || !std::holds_alternative<ObjectSizeT>(object->size)) { continue; } size_t assigned_id = assignment.object_ids[usage_rec_id]; ObjectRef shared_ref = assigned_id_to_shared_ref[assigned_id]; if (shared_ref == kInvalidObjectRef) { shared_ref = shared_objects->size(); Object shared_object = *object; shared_object.access = AccessType::READ_WRITE; shared_object.object = shared_ref; shared_object.size = assignment.object_sizes[assigned_id]; shared_objects->push_back(std::move(shared_object)); assigned_id_to_shared_ref[assigned_id] = shared_ref; } (*global_ref_to_shared_ref)[global_ref] = shared_ref; } return absl::OkStatus(); } } absl::Status Runtime::AssignInternalObjects( std::vector<Object>* shared_objects) { std::map<DataType, CombinedUsageRecords> usage_records_by_data_type; std::vector<Object*> global_ref_to_object_ptr; for (size_t i = 0; i < programs_.size(); ++i) { for (auto& object : programs_[i].refs) { auto ref = GetRef(object); if (ref >= global_ref_to_object_ptr.size()) { global_ref_to_object_ptr.resize(ref + 1, nullptr); } if (global_ref_to_object_ptr[ref] == nullptr) { global_ref_to_object_ptr[ref] = &object; } RETURN_IF_ERROR(AddUsageRecord( &usage_records_by_data_type[object.data_type], object, i)); } } std::vector<ObjectRef> global_ref_to_shared_ref( global_ref_to_object_ptr.size(), kInvalidObjectRef); for (const auto& it : usage_records_by_data_type) { const CombinedUsageRecords& usage_records = it.second; if (!usage_records.buffers.empty()) { ObjectsAssignment<size_t> buffer_assignment; RETURN_IF_ERROR(AssignObjectsToTensors(usage_records.buffers, MemoryStrategy::GREEDY_BEST, &buffer_assignment)); RETURN_IF_ERROR(ApplyBuffersAssignment( buffer_assignment, usage_records.usage_refs, global_ref_to_object_ptr, &global_ref_to_shared_ref, shared_objects)); } if (!usage_records.textures_1d.empty()) { ObjectsAssignment<size_t> texture_1d_assignment; RETURN_IF_ERROR(AssignObjectsToTensors(usage_records.textures_1d, MemoryStrategy::GREEDY_BEST, &texture_1d_assignment)); RETURN_IF_ERROR(ApplyTexturesAssignment( texture_1d_assignment, usage_records.usage_refs, global_ref_to_object_ptr, &global_ref_to_shared_ref, shared_objects)); } if (!usage_records.textures_2d.empty()) { ObjectsAssignment<uint2> texture_2d_assignment; RETURN_IF_ERROR(AssignObjectsToTensors(usage_records.textures_2d, MemoryStrategy::GREEDY_IN_ORDER, &texture_2d_assignment)); RETURN_IF_ERROR(ApplyTexturesAssignment( texture_2d_assignment, usage_records.usage_refs, global_ref_to_object_ptr, &global_ref_to_shared_ref, shared_objects)); } if (!usage_records.textures_3d.empty()) { ObjectsAssignment<uint3> texture_3d_assignment; RETURN_IF_ERROR(AssignObjectsToTensors(usage_records.textures_3d, MemoryStrategy::GREEDY_IN_ORDER, &texture_3d_assignment)); RETURN_IF_ERROR(ApplyTexturesAssignment( texture_3d_assignment, usage_records.usage_refs, global_ref_to_object_ptr, &global_ref_to_shared_ref, shared_objects)); } } for (size_t i = 0; i < programs_.size(); ++i) { for (auto& object : programs_[i].refs) { object.object = global_ref_to_shared_ref[GetRef(object)]; } } return absl::OkStatus(); } absl::Status Runtime::Execute() { for (const auto& descriptor : programs_) { for (auto& b : descriptor.bindings) { RETURN_IF_ERROR(b()); } RETURN_IF_ERROR(command_queue_->Dispatch(descriptor.program, descriptor.num_workgroups)); } return absl::OkStatus(); } } } }
#include "tensorflow/core/tfrt/runtime/runtime.h" #include <gtest/gtest.h> namespace tensorflow { namespace tfrt_stub { namespace { TEST(RuntimeTest, GlobalRuntimeWorks) { EXPECT_EQ(GetGlobalRuntime(), nullptr); SetGlobalRuntime(Runtime::Create(4)); EXPECT_NE(GetGlobalRuntime(), nullptr); EXPECT_EQ(GetGlobalRuntime(), GetGlobalRuntime()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/runtime.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/runtime/runtime_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6fdff665-ed54-4a1b-8aa2-c0280a997a05
cpp
tensorflow/tensorflow
tf_threadpool_concurrent_work_queue
tensorflow/core/tfrt/runtime/tf_threadpool_concurrent_work_queue.cc
tensorflow/core/tfrt/runtime/tf_threadpool_concurrent_work_queue_test.cc
#include "tensorflow/core/tfrt/runtime/tf_threadpool_concurrent_work_queue.h" #include <memory> #include <optional> #include <utility> #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/threadpool.h" #include "tensorflow/core/platform/threadpool_interface.h" #include "tensorflow/core/tfrt/utils/thread_pool.h" #include "tfrt/host_context/async_value.h" #include "tfrt/host_context/execution_context.h" #include "tfrt/host_context/task_function.h" #include "tfrt/support/forward_decls.h" #include "tfrt/support/latch.h" namespace tensorflow { namespace tfrt_stub { using ::tensorflow::thread::ThreadPoolInterface; absl::StatusOr<std::unique_ptr<WorkQueueInterface>> TfThreadPoolWorkQueue::InitializeRequest(int64_t request_id) const { return {std::make_unique<TfThreadPoolWorkQueue>( request_id, intra_op_threadpool_, inter_op_threadpool_)}; } void TfThreadPoolWorkQueue::AddTask(tfrt::TaskFunction work) { auto* copy = new tfrt::TaskFunction( tensorflow::tfrt_stub::WrapWork(id(), "inter", std::move(work))); inter_op_threadpool_->Schedule([copy] { (*copy)(); delete copy; }); } std::optional<tfrt::TaskFunction> TfThreadPoolWorkQueue::AddBlockingTask( tfrt::TaskFunction work, bool allow_queuing) { AddTask(std::move(work)); return std::nullopt; } void TfThreadPoolWorkQueue::Quiesce() { } void TfThreadPoolWorkQueue::Await( tfrt::ArrayRef<tfrt::RCReference<tfrt::AsyncValue>> values) { tfrt::latch values_remaining(values.size()); for (auto& value : values) { value->AndThen([&values_remaining]() { values_remaining.count_down(); }); } values_remaining.wait(); } bool TfThreadPoolWorkQueue::IsInWorkerThread() const { return true; } std::unique_ptr<TfThreadPoolWorkQueue> CreateDefaultTfThreadPoolWorkQueue( int num_inter_op_threads, int num_intra_op_threads) { struct ThreadPools { TfThreadPool inter_op_threadpool; TfThreadPool intra_op_threadpool; ThreadPools(int num_inter_op_threads, int num_intra_op_threads) : inter_op_threadpool("default_work_queue_inter", num_inter_op_threads), intra_op_threadpool("default_work_queue_intra", num_intra_op_threads) {} }; class Wrapper : public TfThreadPoolWorkQueue { public: explicit Wrapper(std::unique_ptr<ThreadPools> thread_pools) : TfThreadPoolWorkQueue( &thread_pools->intra_op_threadpool, &thread_pools->inter_op_threadpool), thread_pools_(std::move(thread_pools)) {} ~Wrapper() override = default; private: std::unique_ptr<ThreadPools> thread_pools_; }; return std::make_unique<Wrapper>(std::make_unique<ThreadPools>( num_inter_op_threads, num_intra_op_threads)); } } }
#include "tensorflow/core/tfrt/runtime/tf_threadpool_concurrent_work_queue.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/tfrt/utils/thread_pool.h" #include "tfrt/host_context/host_allocator.h" #include "tfrt/host_context/host_context.h" #include "tfrt/support/latch.h" namespace tensorflow { namespace tfrt_stub { namespace { const int32_t kNumThreads = 2; class TfThreadpoolWorkQueueTest : public ::testing::Test { protected: TfThreadpoolWorkQueueTest() : tf_threadpool_cwq_(CreateDefaultTfThreadPoolWorkQueue( kNumThreads, kNumThreads)) {} std::unique_ptr<TfThreadPoolWorkQueue> tf_threadpool_cwq_; }; TEST_F(TfThreadpoolWorkQueueTest, GetParallelismLevelOk) { EXPECT_GT(tf_threadpool_cwq_->GetParallelismLevel(), 0); } TEST_F(TfThreadpoolWorkQueueTest, GetNameOk) { EXPECT_EQ(tf_threadpool_cwq_->name(), "TfThreadPoolWorkQueue"); } TEST_F(TfThreadpoolWorkQueueTest, InitializeRequestOk) { tfrt::RequestContextBuilder ctx_builder(nullptr, nullptr); auto queue = tf_threadpool_cwq_->InitializeRequest(0); TF_ASSERT_OK(queue.status()); EXPECT_NE(*queue, nullptr); EXPECT_NE((*queue)->GetIntraOpThreadPool(), nullptr); } TEST_F(TfThreadpoolWorkQueueTest, IsInWorkerThreadOk) { EXPECT_TRUE(tf_threadpool_cwq_->IsInWorkerThread()); } TEST_F(TfThreadpoolWorkQueueTest, RunningBlockingTask) { tfrt::latch latch(10); int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { tf_threadpool_cwq_->AddBlockingTask(tfrt::TaskFunction([&n, &m, &latch] { { tensorflow::mutex_lock lock(m); ++n; } latch.count_down(); }), true); } latch.wait(); EXPECT_EQ(n, 10); } TEST_F(TfThreadpoolWorkQueueTest, RunningNonBlockingTask) { tfrt::latch latch(10); int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { tf_threadpool_cwq_->AddTask(tfrt::TaskFunction([&n, &m, &latch] { { tensorflow::mutex_lock lock(m); ++n; } latch.count_down(); })); } latch.wait(); EXPECT_EQ(n, 10); } TEST_F(TfThreadpoolWorkQueueTest, RunningMixedTask) { tfrt::latch latch(20); int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { tf_threadpool_cwq_->AddTask(tfrt::TaskFunction([&n, &m, &latch] { { tensorflow::mutex_lock lock(m); ++n; } latch.count_down(); })); tf_threadpool_cwq_->AddBlockingTask(tfrt::TaskFunction([&n, &m, &latch] { { tensorflow::mutex_lock lock(m); ++n; } latch.count_down(); }), true); } latch.wait(); EXPECT_EQ(n, 20); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/runtime/tf_threadpool_concurrent_work_queue.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/runtime/tf_threadpool_concurrent_work_queue_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bd13b244-2252-4f7c-8e58-0f8f18afb81d
cpp
tensorflow/tensorflow
work_queue_interface
tensorflow/core/tfrt/runtime/work_queue_interface.cc
tensorflow/core/tfrt/runtime/work_queue_interface_test.cc
#include "tensorflow/core/tfrt/runtime/work_queue_interface.h" #include <memory> #include <optional> #include <string> #include <utility> #include "tfrt/host_context/execution_context.h" namespace tensorflow { namespace tfrt_stub { namespace { class DefaultWorkQueueWrapper : public WorkQueueInterface { public: explicit DefaultWorkQueueWrapper( std::unique_ptr<tfrt::ConcurrentWorkQueue> work_queue) : WorkQueueInterface(0), work_queue_owner_(std::move(work_queue)), work_queue_(work_queue_owner_.get()) {} DefaultWorkQueueWrapper(std::unique_ptr<tfrt::ConcurrentWorkQueue> work_queue, thread::ThreadPoolInterface* intra_thread_pool) : WorkQueueInterface(0, intra_thread_pool), work_queue_owner_(std::move(work_queue)), work_queue_(work_queue_owner_.get()) {} DefaultWorkQueueWrapper(int64_t request_id, tfrt::ConcurrentWorkQueue* work_queue, thread::ThreadPoolInterface* intra_thread_pool) : WorkQueueInterface(request_id, intra_thread_pool), work_queue_(work_queue) {} ~DefaultWorkQueueWrapper() override = default; private: std::string name() const override { return work_queue_->name(); } void AddTask(tfrt::TaskFunction work) override { work_queue_->AddTask(WrapWork(id(), "inter", std::move(work))); } std::optional<tfrt::TaskFunction> AddBlockingTask( tfrt::TaskFunction work, bool allow_queuing) override { return work_queue_->AddBlockingTask( WrapWork(id(), "blocking", std::move(work)), allow_queuing); } void Await( llvm::ArrayRef<tfrt::RCReference<tfrt::AsyncValue>> values) override { work_queue_->Await(values); } void Quiesce() override { work_queue_->Quiesce(); } int GetParallelismLevel() const override { return work_queue_->GetParallelismLevel(); } bool IsInWorkerThread() const override { return work_queue_->IsInWorkerThread(); } absl::StatusOr<std::unique_ptr<WorkQueueInterface>> InitializeRequest( int64_t request_id) const override { return {std::make_unique<DefaultWorkQueueWrapper>(request_id, work_queue_, GetIntraOpThreadPool())}; } private: std::unique_ptr<tfrt::ConcurrentWorkQueue> work_queue_owner_; tfrt::ConcurrentWorkQueue* work_queue_ = nullptr; }; } std::unique_ptr<WorkQueueInterface> WrapDefaultWorkQueue( std::unique_ptr<tfrt::ConcurrentWorkQueue> work_queue) { return std::make_unique<DefaultWorkQueueWrapper>(std::move(work_queue)); } std::unique_ptr<WorkQueueInterface> WrapDefaultWorkQueue( std::unique_ptr<tfrt::ConcurrentWorkQueue> work_queue, thread::ThreadPoolInterface* intra_thread_pool) { return std::make_unique<DefaultWorkQueueWrapper>(std::move(work_queue), intra_thread_pool); } } }
#include "tensorflow/core/tfrt/runtime/work_queue_interface.h" #include <thread> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/tfrt/utils/thread_pool.h" #include "tfrt/cpp_tests/test_util.h" #include "tfrt/host_context/execution_context.h" #include "tfrt/host_context/task_function.h" namespace tensorflow { namespace tfrt_stub { namespace { TEST(DefaultWorkQueueWrapperTest, Name) { auto work_queue = tfrt::CreateSingleThreadedWorkQueue(); auto work_queue_ptr = work_queue.get(); auto work_queue_wrapper = WrapDefaultWorkQueue(std::move(work_queue)); EXPECT_EQ(work_queue_wrapper->name(), work_queue_ptr->name()); } TEST(DefaultWorkQueueWrapperTest, AddTask_OnlyTask) { auto work_queue = tfrt::CreateSingleThreadedWorkQueue(); auto work_queue_wrapper = WrapDefaultWorkQueue(std::move(work_queue)); auto av = tfrt::MakeUnconstructedAsyncValueRef<int>().ReleaseRCRef(); work_queue_wrapper->AddTask( tfrt::TaskFunction([av] { av->emplace<int>(0); })); work_queue_wrapper->Await(std::move(av)); } TEST(DefaultWorkQueueWrapperTest, AddBlockingTask_TaskAndAllowQueueing) { auto work_queue = tfrt::CreateSingleThreadedWorkQueue(); auto work_queue_wrapper = WrapDefaultWorkQueue(std::move(work_queue)); auto av = tfrt::MakeUnconstructedAsyncValueRef<int>().ReleaseRCRef(); std::thread thread{[&] { auto work = work_queue_wrapper->AddBlockingTask( tfrt::TaskFunction([&] { av->emplace<int>(0); }), true); }}; work_queue_wrapper->Await(std::move(av)); thread.join(); } TEST(DefaultWorkQueueWrapperTest, GetParallelismLevel) { auto work_queue = tfrt::CreateSingleThreadedWorkQueue(); auto work_queue_ptr = work_queue.get(); auto work_queue_wrapper = WrapDefaultWorkQueue(std::move(work_queue)); EXPECT_EQ(work_queue_wrapper->GetParallelismLevel(), work_queue_ptr->GetParallelismLevel()); } TEST(DefaultWorkQueueWrapperTest, IsInWorkerThread) { auto work_queue = tfrt::CreateSingleThreadedWorkQueue(); auto work_queue_ptr = work_queue.get(); auto work_queue_wrapper = WrapDefaultWorkQueue(std::move(work_queue)); EXPECT_EQ(work_queue_wrapper->IsInWorkerThread(), work_queue_ptr->IsInWorkerThread()); } TEST(DefaultWorkQueueWrapperTest, IntraOpThreadPool) { auto work_queue = tfrt::CreateSingleThreadedWorkQueue(); TfThreadPool intra_op_thread_pool("tf_intra", 1); auto work_queue_wrapper = WrapDefaultWorkQueue(std::move(work_queue), &intra_op_thread_pool); TF_ASSERT_OK_AND_ASSIGN(auto queue, work_queue_wrapper->InitializeRequest( 0)); EXPECT_NE(queue, nullptr); EXPECT_EQ(queue->GetIntraOpThreadPool(), &intra_op_thread_pool); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/runtime/work_queue_interface.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/runtime/work_queue_interface_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b63e28df-3ad9-4432-842c-d1391ddc96bc
cpp
tensorflow/tensorflow
fallback_tensor
tensorflow/core/tfrt/utils/fallback_tensor.cc
tensorflow/core/tfrt/utils/fallback_tensor_test.cc
#include "tensorflow/core/tfrt/utils/fallback_tensor.h" #include <utility> #include "tensorflow/core/common_runtime/dma_helper.h" namespace tensorflow { namespace tfrt_stub { namespace { class ImmutableTensorBuffer final : public tensorflow::TensorBuffer { public: static tensorflow::core::RefCountPtr<ImmutableTensorBuffer> Create( tensorflow::Tensor tensor); explicit ImmutableTensorBuffer(tensorflow::Tensor tensor) : tensorflow::TensorBuffer(tensor.data()), tensor_(std::move(tensor)) { if (auto* buf = tensorflow::DMAHelper::buffer(&tensor_)) { root_buffer_ = buf->root_buffer(); } else { root_buffer_ = this; } } ~ImmutableTensorBuffer() override = default; size_t size() const override { return tensorflow::DMAHelper::buffer(&tensor_)->size(); } bool OwnsMemory() const override { return false; } tensorflow::TensorBuffer* root_buffer() override { return root_buffer_; } void FillAllocationDescription(AllocationDescription* proto) const override {} bool GetAllocatedBytes(size_t*) const override { return false; } private: tensorflow::Tensor tensor_; tensorflow::TensorBuffer* root_buffer_ = nullptr; }; tensorflow::core::RefCountPtr<ImmutableTensorBuffer> ImmutableTensorBuffer::Create(tensorflow::Tensor tensor) { return tensorflow::core::RefCountPtr<ImmutableTensorBuffer>( new ImmutableTensorBuffer(std::move(tensor))); } } ImmutableTensor ImmutableTensor::Create(tensorflow::Tensor tensor) { auto dtype = tensor.dtype(); auto shape = tensor.shape(); auto immutable_buffer = ImmutableTensorBuffer::Create(std::move(tensor)); return ImmutableTensor( tensorflow::Tensor(dtype, shape, std::move(immutable_buffer))); } } }
#include "tensorflow/core/tfrt/utils/fallback_tensor.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/framework/tensor_shape.h" namespace tensorflow { namespace tfrt_stub { namespace { TEST(FallbackTensorTest, ImmutableTensor) { int32_t scalar = 123; tensorflow::Tensor tensor(scalar); auto immutable_tensor = ImmutableTensor::Create(tensor); ASSERT_EQ(immutable_tensor.tensor().NumElements(), 1); ASSERT_EQ(immutable_tensor.tensor().dtype(), tensorflow::DT_INT32); auto flat = immutable_tensor.tensor().flat<int32_t>(); EXPECT_EQ(flat(0), 123); EXPECT_FALSE(immutable_tensor.tensor().RefCountIsOne()); EXPECT_EQ(tensor.TotalBytes(), immutable_tensor.tensor().TotalBytes()); } TEST(FallbackTensorTest, StringImmutableTensor) { tensorflow::tstring scalar = "string"; tensorflow::Tensor tensor(scalar); auto immutable_tensor = ImmutableTensor::Create(tensor); ASSERT_EQ(immutable_tensor.tensor().NumElements(), 1); ASSERT_EQ(immutable_tensor.tensor().dtype(), tensorflow::DT_STRING); auto flat = immutable_tensor.tensor().flat<tensorflow::tstring>(); EXPECT_EQ(flat(0), "string"); EXPECT_FALSE(immutable_tensor.tensor().RefCountIsOne()); EXPECT_EQ(tensor.TotalBytes(), immutable_tensor.tensor().TotalBytes()); } TEST(FallbackTensorTest, FallbackTensor) { int32_t scalar = 123; tensorflow::Tensor tensor(scalar); { FallbackTensor fallback_tensor(tensor); EXPECT_FALSE(fallback_tensor.is_immutable()); ASSERT_EQ(fallback_tensor.tensor().NumElements(), 1); ASSERT_EQ(fallback_tensor.tensor().dtype(), tensorflow::DT_INT32); auto flat = fallback_tensor.tensor().flat<int32_t>(); EXPECT_EQ(flat(0), 123); FallbackTensor copy(fallback_tensor); FallbackTensor assign; assign = fallback_tensor; ASSERT_EQ(copy.tensor().NumElements(), 1); ASSERT_EQ(copy.tensor().dtype(), tensorflow::DT_INT32); EXPECT_EQ(copy.tensor().flat<int32_t>()(0), 123); ASSERT_EQ(assign.tensor().NumElements(), 1); ASSERT_EQ(assign.tensor().dtype(), tensorflow::DT_INT32); EXPECT_EQ(assign.tensor().flat<int32_t>()(0), 123); fallback_tensor = {}; ASSERT_EQ(copy.tensor().NumElements(), 1); ASSERT_EQ(copy.tensor().dtype(), tensorflow::DT_INT32); EXPECT_EQ(copy.tensor().flat<int32_t>()(0), 123); ASSERT_EQ(assign.tensor().NumElements(), 1); ASSERT_EQ(assign.tensor().dtype(), tensorflow::DT_INT32); EXPECT_EQ(assign.tensor().flat<int32_t>()(0), 123); } auto immutable_tensor = ImmutableTensor::Create(tensor); { FallbackTensor fallback_tensor(&immutable_tensor); EXPECT_TRUE(fallback_tensor.is_immutable()); ASSERT_EQ(fallback_tensor.tensor().NumElements(), 1); ASSERT_EQ(fallback_tensor.tensor().dtype(), tensorflow::DT_INT32); auto flat = fallback_tensor.tensor().flat<int32_t>(); EXPECT_EQ(flat(0), 123); FallbackTensor copy(fallback_tensor); FallbackTensor assign; assign = fallback_tensor; ASSERT_EQ(copy.tensor().NumElements(), 1); ASSERT_EQ(copy.tensor().dtype(), tensorflow::DT_INT32); EXPECT_EQ(copy.tensor().flat<int32_t>()(0), 123); ASSERT_EQ(assign.tensor().NumElements(), 1); ASSERT_EQ(assign.tensor().dtype(), tensorflow::DT_INT32); EXPECT_EQ(assign.tensor().flat<int32_t>()(0), 123); fallback_tensor = {}; ASSERT_EQ(copy.tensor().NumElements(), 1); ASSERT_EQ(copy.tensor().dtype(), tensorflow::DT_INT32); EXPECT_EQ(copy.tensor().flat<int32_t>()(0), 123); ASSERT_EQ(assign.tensor().NumElements(), 1); ASSERT_EQ(assign.tensor().dtype(), tensorflow::DT_INT32); EXPECT_EQ(assign.tensor().flat<int32_t>()(0), 123); } } TEST(FallbackTensorTest, FallbackTensorCopy) { int32_t scalar = 123; tensorflow::Tensor tensor(scalar); { FallbackTensor fallback_tensor(tensor); EXPECT_FALSE(fallback_tensor.is_immutable()); auto copy = fallback_tensor; EXPECT_TRUE(copy.is_immutable()); } auto immutable_tensor = ImmutableTensor::Create(tensor); { FallbackTensor fallback_tensor(&immutable_tensor); EXPECT_TRUE(fallback_tensor.is_immutable()); auto copy = fallback_tensor; EXPECT_TRUE(copy.is_immutable()); } } TEST(FallbackTensorTest, FallbackTensorCopyRootBuffer) { int32_t scalar = 123; tensorflow::Tensor tensor(scalar); auto immutable_tensor = ImmutableTensor::Create(tensor); FallbackTensor fallback_tensor(&immutable_tensor); EXPECT_TRUE(fallback_tensor.is_immutable()); EXPECT_EQ(fallback_tensor.buffer()->root_buffer(), tensorflow::DMAHelper::buffer(&tensor)); FallbackTensor copy = fallback_tensor; EXPECT_TRUE(copy.is_immutable()); EXPECT_EQ(copy.buffer()->root_buffer(), tensorflow::DMAHelper::buffer(&tensor)); } TEST(FallbackTensorTest, EmptyTensor) { tensorflow::Tensor tensor(tensorflow::DT_FLOAT, tensorflow::TensorShape({1, 0})); FallbackTensor fallback_tensor(tensor); auto copy = fallback_tensor; ASSERT_FALSE(copy.buffer()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/utils/fallback_tensor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/utils/fallback_tensor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b3e3da25-86c9-4535-8cb3-d5716a14c2c4
cpp
tensorflow/tensorflow
tfrt_graph_execution_state
tensorflow/core/tfrt/utils/tfrt_graph_execution_state.cc
tensorflow/core/tfrt/utils/tfrt_graph_execution_state_test.cc
#include "tensorflow/core/tfrt/utils/tfrt_graph_execution_state.h" #include <algorithm> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/types/span.h" #include "tensorflow/compiler/mlir/tensorflow/translate/upgrade_graph.h" #include "tensorflow/core/common_runtime/function_body.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { namespace tfrt_stub { namespace { absl::flat_hash_set<std::string> FindFunctionsToOptimize( const GraphDef& graph_def) { static const auto* const kOpWhitelist = new absl::flat_hash_set<std::string>{ "PartitionedCall", "StatefulPartitionedCall", "BatchFunction"}; absl::flat_hash_map< std::string , absl::flat_hash_set<std::string> > function_to_ops; auto build_map = [&](const auto& node_defs) { for (const auto& node_def : node_defs) { for (const auto& p : node_def.attr()) { const AttrValue& attr_value = p.second; if (!attr_value.has_func()) continue; function_to_ops[attr_value.func().name()].insert(node_def.op()); } } }; build_map(graph_def.node()); for (const auto& function_def : graph_def.library().function()) { build_map(function_def.node_def()); } absl::flat_hash_set<std::string> functions_to_optimize; for (const auto& p : function_to_ops) { const std::string& function_name = p.first; const absl::flat_hash_set<std::string>& ops = p.second; if (std::all_of(ops.begin(), ops.end(), [](const auto& op) { return kOpWhitelist->contains(op); })) { functions_to_optimize.insert(function_name); } } return functions_to_optimize; } absl::StatusOr<absl::flat_hash_set<std::string>> PreprocessGraph( tensorflow::GraphDef& graph_def, bool run_placer_grappler_on_functions) { if (VLOG_IS_ON(1)) { DumpGraphDefToFile("before_generate_resource_shared_name_graph_def", graph_def); } TF_RETURN_IF_ERROR(tensorflow::GenerateResourceSharedNameIfEmpty( graph_def, tensorflow::OpRegistry::Global())); if (VLOG_IS_ON(2)) { DumpGraphDefToFile("after_generate_resource_shared_name_graph_def", graph_def); } if (run_placer_grappler_on_functions) { return FindFunctionsToOptimize(graph_def); } return absl::flat_hash_set<std::string>(); } } absl::StatusOr<std::unique_ptr<TfrtGraphExecutionState>> TfrtGraphExecutionState::Create(const TfrtGraphExecutionState::Options& options, tensorflow::GraphDef graph_def, const FallbackState& fallback_state) { TF_ASSIGN_OR_RETURN( auto functions_to_optimize, PreprocessGraph(graph_def, options.run_placer_grappler_on_functions)); TF_ASSIGN_OR_RETURN(auto graph_execution_state, fallback_state.CreateGraphExecutionState( std::move(graph_def), options.run_placer_on_graph)); return std::make_unique<TfrtGraphExecutionState>( options, std::move(graph_execution_state), fallback_state, std::move(functions_to_optimize)); } namespace { CallableOptions PopulateCallableOptions( CallableOptions& callable_options, absl::Span<const std::string> feed_tensor_names, absl::Span<const std::string> fetch_tensor_names, absl::Span<const std::string> target_tensor_names) { callable_options.mutable_feed()->Reserve(feed_tensor_names.size()); for (const auto& feed : feed_tensor_names) { callable_options.add_feed(feed); } callable_options.mutable_fetch()->Reserve(fetch_tensor_names.size()); for (const auto& fetch : fetch_tensor_names) { callable_options.add_fetch(fetch); } callable_options.mutable_target()->Reserve(target_tensor_names.size()); for (const auto& target : target_tensor_names) { callable_options.add_target(target); } return callable_options; } tensorflow::GraphDef CreateGraphDefFromGraphAndFlibDef( const tensorflow::Graph& graph, const tensorflow::FunctionLibraryDefinition& flib_def) { tensorflow::GraphDef graph_def; graph.ToGraphDef(&graph_def); *graph_def.mutable_library() = flib_def.ToProto(); return graph_def; } absl::StatusOr<std::unique_ptr<tensorflow::Graph>> CreatePrunedGraph( tensorflow::GraphDef graph_def, const CallableOptions& callable_options) { VLOG(1) << "Creating pruned graph: " << callable_options.DebugString(); TF_RETURN_IF_ERROR(PruneGraphDef(graph_def, callable_options)); if (VLOG_IS_ON(2)) { DumpGraphDefToFile("before_eliminate_ref_variables_graph_def", graph_def); } TF_RETURN_IF_ERROR(EliminateRefVariablesFromV1ControlFlow(graph_def)); RemoveInputShapesInFunctions(graph_def); auto pruned_graph = std::make_unique<tensorflow::Graph>(tensorflow::OpRegistry::Global()); tensorflow::GraphConstructorOptions options; options.allow_internal_ops = true; options.add_default_attributes = true; TF_RETURN_IF_ERROR(ConvertGraphDefToGraph(options, std::move(graph_def), pruned_graph.get())); return pruned_graph; } NodeDef CreateNewIdentityNode(const NodeDef& node, const std::string& input_name, const std::string& identity_name) { NodeDef identity; identity.set_name(identity_name); identity.set_op("Identity"); identity.add_input(input_name); identity.set_device(node.device()); for (const auto& name_and_attr : node.attr()) { if (name_and_attr.first == "T") { identity.mutable_attr()->insert(name_and_attr); break; } } return identity; } } absl::StatusOr<TfrtGraphExecutionState::OptimizationResult> TfrtGraphExecutionState::CreateOptimizedGraph( tensorflow::GraphImportConfig& graph_import_config) { OptimizationResult result; tensorflow::BuildGraphOptions build_graph_options; std::vector<std::string> inputs; inputs.reserve(graph_import_config.inputs.size()); for (const auto& input : graph_import_config.inputs) { inputs.push_back(input.first); } PopulateCallableOptions(build_graph_options.callable_options, inputs, graph_import_config.outputs, graph_import_config.control_outputs); auto graph_def = CreateGraphDefFromGraphAndFlibDef(graph(), flib_def()); if (VLOG_IS_ON(1)) { DumpGraphDefToFile("before_pruning", graph_def); } TF_ASSIGN_OR_RETURN(result.graph, CreatePrunedGraph(std::move(graph_def), build_graph_options.callable_options)); DCHECK(result.graph); if (VLOG_IS_ON(1)) { DumpGraphToFile("after_pruning", *result.graph); } const auto functionalization_start_time = absl::Now(); TF_RETURN_IF_ERROR(tensorflow::UpgradeLegacyGraph( result.graph.get(), const_cast<tensorflow::FunctionLibraryDefinition*>( &result.graph->flib_def()), false)); if (VLOG_IS_ON(1)) { DumpGraphToFile("after_functionalization", *result.graph); } auto grappler_start_time = absl::Now(); result.functionalization_duration = grappler_start_time - functionalization_start_time; auto status_or_optimized_graph = OptimizeGraph(*result.graph, build_graph_options); if (status_or_optimized_graph.ok()) { result.graph = std::move(status_or_optimized_graph.value()); } else { LOG(WARNING) << "TFRT failed to optimize graph: " << status_or_optimized_graph.status(); } if (VLOG_IS_ON(1)) { DumpGraphToFile("after_grappler", *result.graph); } result.grappler_duration = absl::Now() - grappler_start_time; return result; } Status TfrtGraphExecutionState::Extend(const GraphDef& graph) { std::unique_ptr<GraphExecutionState> new_state; absl::MutexLock lock(&graph_execution_state_mu_); TF_RETURN_IF_ERROR(graph_execution_state_->Extend(graph, &new_state)); graph_execution_state_.swap(new_state); auto* graph_def = graph_execution_state_->original_graph_def(); DCHECK_NE(graph_def, nullptr); TF_ASSIGN_OR_RETURN( functions_to_optimize_, PreprocessGraph(*graph_def, options_.run_placer_grappler_on_functions)); return absl::OkStatus(); } namespace { absl::StatusOr<const NodeDef*> FindLoopCondFromExitNode( const NodeDef& exit_node, const absl::flat_hash_map<std::string, NodeDef*>& name_to_node) { const NodeDef* switch_node = nullptr; for (const std::string& tensor_name : exit_node.input()) { const std::string node_name = grappler::NodeName(tensor_name); if (!name_to_node.contains(node_name)) { return errors::InvalidArgument("Graph does not contain input ", node_name, " of exit node ", exit_node.name()); } const NodeDef* node = name_to_node.at(node_name); if (node->op() == "Switch") { switch_node = node; break; } } if (switch_node == nullptr) { return errors::InvalidArgument("Exit node ", exit_node.name(), " does not have a Switch node as its ", "predecessor."); } for (const std::string& tensor_name : switch_node->input()) { const std::string node_name = grappler::NodeName(tensor_name); if (!name_to_node.contains(node_name)) { return errors::InvalidArgument("Graph does not contain input ", node_name, " of switch node ", switch_node->name()); } const NodeDef* node = name_to_node.at(node_name); if (node->op() == "LoopCond") { return node; } } return errors::InvalidArgument("Switch node ", switch_node->name(), " does not have a LoopCond node as its ", "predecessor."); } } Status PruneGraphDef(GraphDef& graph_def, const CallableOptions& callable_options) { absl::flat_hash_map<std::string, NodeDef*> name_to_node; absl::flat_hash_set<const NodeDef*> exit_nodes; for (auto& node : *graph_def.mutable_node()) { name_to_node[node.name()] = &node; if (node.op() == "Exit") { exit_nodes.insert(&node); } if (node.op() == "_Send" || node.op() == "_Recv") { return errors::InvalidArgument( "TFRT prune graphdef cannot handle graphs contains _Send and _Recv " "ops."); } } absl::flat_hash_map<const NodeDef*, absl::flat_hash_set<const NodeDef*>> loop_cond_to_exit_nodes; for (const NodeDef* exit_node : exit_nodes) { TF_ASSIGN_OR_RETURN(const NodeDef* loop_cond_node, FindLoopCondFromExitNode(*exit_node, name_to_node)); loop_cond_to_exit_nodes[loop_cond_node].insert(exit_node); } std::vector<const NodeDef*> queue; absl::flat_hash_set<std::string> fetch_node_names; for (const std::string& tensor_name : callable_options.fetch()) { const NodeDef* node = name_to_node[grappler::NodeName(tensor_name)]; if (!node) { return errors::InvalidArgument("Graph does not contain fetch node ", tensor_name, "."); } queue.push_back(node); fetch_node_names.insert(node->name()); } for (const std::string& tensor_name : callable_options.target()) { const NodeDef* node = name_to_node[grappler::NodeName(tensor_name)]; if (!node) { return errors::InvalidArgument("Graph does not contain target node ", tensor_name, "."); } queue.push_back(node); fetch_node_names.insert(node->name()); } absl::flat_hash_set<NodeDef*> feed_node_defs; for (const std::string& tensor_name : callable_options.feed()) { NodeDef* node = name_to_node[grappler::NodeName(tensor_name)]; if (!node) { return errors::InvalidArgument("Graph does not contain feed node ", tensor_name, "."); } if (node->op() == "Const") { node->clear_input(); } queue.push_back(node); feed_node_defs.insert(node); } absl::flat_hash_set<const NodeDef*> visited; std::vector<NodeDef> keep; while (!queue.empty()) { const NodeDef* node = queue.back(); queue.pop_back(); if (!visited.insert(node).second) { continue; } keep.push_back(*node); if (node->op() == "LoopCond") { for (const NodeDef* exit_node : loop_cond_to_exit_nodes[node]) { queue.push_back(exit_node); } } for (const std::string& tensor_name : node->input()) { const NodeDef* in = name_to_node[grappler::NodeName(tensor_name)]; if (!in) { return errors::InvalidArgument("Graph does not contain input ", grappler::NodeName(tensor_name), " of node ", node->name(), "."); } queue.push_back(in); } } graph_def.clear_node(); for (auto& node : keep) { if (fetch_node_names.contains(node.name())) { if (node.op() == "Exit") { auto renamed_exit_node = node; renamed_exit_node.set_name( absl::StrCat(renamed_exit_node.name(), "/tfrt_renamed")); node.set_op("Identity"); *node.mutable_input(0) = renamed_exit_node.name(); *graph_def.add_node() = std::move(renamed_exit_node); } } *graph_def.add_node() = std::move(node); } return absl::OkStatus(); } Status EliminateRefVariablesFromV1ControlFlow(tensorflow::GraphDef& graph_def) { auto* op_factory = OpRegistry::Global(); absl::flat_hash_set<std::string> ref_nodes; for (const auto& node : graph_def.node()) { if (node.op() == "RefEnter" || node.op() == "RefSwitch") { ref_nodes.insert(node.name()); } } tensorflow::GraphDef updated_graph_def; absl::flat_hash_set<std::string> new_identities; for (auto& node : *graph_def.mutable_node()) { std::string* ref_input_name = nullptr; if (node.op() == "RefEnter") { node.set_op("Enter"); if (node.input_size() != 1) { return errors::InvalidArgument("RefEnter node ", node.name(), " does not have exactly 1 input."); } ref_input_name = node.mutable_input(0); } else if (node.op() == "RefSwitch") { node.set_op("Switch"); if (node.input_size() != 2) { return errors::InvalidArgument("RefSwitch node", node.name(), " does not have exactly 2 inputs."); } ref_input_name = node.mutable_input(0); } else { std::string ref_input; for (const auto& tensor_name : node.input()) { std::string input = grappler::NodeName(tensor_name); if (ref_nodes.contains(input)) { ref_input = std::move(input); break; } } if (!ref_input.empty()) { const OpDef* op_def; TF_RETURN_IF_ERROR(op_factory->LookUpOpDef(node.op(), &op_def)); for (const auto& input_arg : op_def->input_arg()) { if (input_arg.is_ref()) { return errors::Unimplemented( "Cannot in-place update ref node ", ref_input, " to the non-ref counterpart since its user node ", node.name(), " requires its input to be refs."); } } } } if (ref_input_name != nullptr) { std::string identity_name = absl::StrCat(grappler::NodeName(*ref_input_name), "/identity"); if (!new_identities.contains(identity_name)) { *updated_graph_def.add_node() = CreateNewIdentityNode(node, *ref_input_name, identity_name); new_identities.insert(identity_name); } *ref_input_name = std::move(identity_name); } *updated_graph_def.add_node() = std::move(node); } graph_def.mutable_node()->Swap(updated_graph_def.mutable_node()); return absl::OkStatus(); } void RemoveInputShapesInFunctions(tensorflow::GraphDef& graph_def) { for (tensorflow::FunctionDef& function_def : *graph_def.mutable_library()->mutable_function()) { function_def.mutable_attr()->erase("_input_shapes"); } } namespace { Status OptimizeFunctions( FunctionDefLibrary& flib_proto, const FunctionLibraryDefinition& flib, const FallbackState& fallback_state, const absl::flat_hash_set<std::string>& functions_to_optimize) { for (FunctionDef& fdef : *flib_proto.mutable_function()) { if (!functions_to_optimize.contains(fdef.signature().name())) { continue; } std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(fdef, AttrSlice(), &flib, &fbody)); tensorflow::Graph* graph = fbody->graph; tensorflow::GraphDef graph_def; graph->ToGraphDef(&graph_def); *graph_def.mutable_library() = flib.ToProto(); TF_ASSIGN_OR_RETURN( auto graph_execution_state, fallback_state.CreateGraphExecutionState(std::move(graph_def))); std::unique_ptr<tensorflow::Graph> optimized_graph; std::unique_ptr<tensorflow::FunctionLibraryDefinition> optimized_flib; tensorflow::BuildGraphOptions build_graph_options; std::vector<std::string> args; args.reserve(fbody->arg_nodes.size()); for (const auto& arg : fbody->arg_nodes) args.push_back(arg->name()); std::vector<std::string> rets; rets.reserve(fbody->ret_nodes.size()); for (const auto& ret : fbody->ret_nodes) rets.push_back(ret->name()); std::vector<std::string> control_rets; control_rets.reserve(fbody->control_ret_nodes.size()); for (const auto& control_ret : fbody->control_ret_nodes) { control_rets.push_back(control_ret->name()); } PopulateCallableOptions(build_graph_options.callable_options, args, rets, control_rets); auto status = graph_execution_state->OptimizeGraph( build_graph_options, *graph_execution_state->full_graph(), &flib, &optimized_graph, &optimized_flib); if (!status.ok()) { LOG(ERROR) << "TFRT failed to optimize graph (converted from function: " << fdef.signature().name() << "): " << status; continue; } TF_RETURN_IF_ERROR( optimized_graph->AddFunctionLibrary(optimized_flib->ToProto())); FunctionDef new_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*optimized_graph, fdef.signature().name(), &new_fdef)); fdef = std::move(new_fdef); } return absl::OkStatus(); } } absl::StatusOr<std::unique_ptr<tensorflow::Graph>> TfrtGraphExecutionState::OptimizeGraph( const tensorflow::Graph& graph, const tensorflow::BuildGraphOptions& build_graph_options) { std::unique_ptr<tensorflow::Graph> optimized_graph; std::unique_ptr<tensorflow::FunctionLibraryDefinition> optimized_flib; { absl::MutexLock lock(&graph_execution_state_mu_); TF_RETURN_IF_ERROR(graph_execution_state_->OptimizeGraph( build_graph_options, graph, &graph.flib_def(), &optimized_graph, &optimized_flib)); } FunctionDefLibrary optimized_flib_proto = optimized_flib->ToProto(); if (options_.run_placer_grappler_on_functions) { TF_RETURN_IF_ERROR(OptimizeFunctions(optimized_flib_proto, *optimized_flib, fallback_state_, functions_to_optimize_)); optimized_graph->mutable_flib_def()->Clear(); } TF_RETURN_IF_ERROR(optimized_graph->AddFunctionLibrary(optimized_flib_proto)); return optimized_graph; } } }
#include "tensorflow/core/tfrt/utils/tfrt_graph_execution_state.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/cc/ops/while_loop.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/utils/grappler_test.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace tfrt_stub { namespace { using ::testing::_; using ::testing::ElementsAre; using ::testing::EqualsProto; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::Pair; using ::testing::proto::IgnoringFieldPaths; using ::testing::proto::IgnoringRepeatedFieldOrdering; class PruneGraphDefTest : public grappler::GrapplerTest {}; TEST_F(PruneGraphDefTest, ConstFeedWithInput) { GraphDef graphdef; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output a = ops::Const(scope.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Const(scope.WithControlDependencies(a).WithOpName("b"), 0.0f, {10, 10}); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); } CallableOptions callable_options; callable_options.add_feed("b"); callable_options.add_fetch("c"); TF_ASSERT_OK(PruneGraphDef(graphdef, callable_options)); GraphDef expected; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output b = ops::Const(scope.WithOpName("b"), 0.0f, {10, 10}); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&expected)); } CompareGraphs(expected, graphdef); } Status LessThanTenCond(const Scope& scope, const std::vector<Output>& inputs, Output* output) { *output = ops::Less(scope, inputs[0], 10); return scope.status(); } Status AddOneBody(const Scope& scope, const std::vector<Output>& inputs, std::vector<Output>* outputs) { outputs->push_back(ops::AddN(scope, {inputs[0], 1})); return scope.status(); } TEST_F(PruneGraphDefTest, InsertIdentityForLoopExitFeed) { GraphDef graphdef; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); std::vector<Output> inputs; inputs.push_back(ops::Placeholder(scope.WithOpName("input"), DT_INT32)); std::vector<Output> outputs; TF_ASSERT_OK(ops::BuildWhileLoop(scope.NewSubScope("while"), inputs, LessThanTenCond, AddOneBody, "test_loop", &outputs)); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); } CallableOptions callable_options; callable_options.add_feed("input"); callable_options.add_fetch("while/Exit"); TF_ASSERT_OK(PruneGraphDef(graphdef, callable_options)); for (const auto& node : graphdef.node()) { if (node.op() == "Exit") { EXPECT_EQ(node.name(), "while/Exit/tfrt_renamed"); } if (node.name() == "while/Exit") { EXPECT_EQ(node.op(), "Identity"); ASSERT_EQ(node.input().size(), 1); EXPECT_EQ(node.input(0), "while/Exit/tfrt_renamed"); } } } TEST_F(PruneGraphDefTest, EliminateRefEntersFromControlFlow) { GraphDef graphdef; absl::flat_hash_map<std::string, NodeDef> name_to_node; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); std::vector<Output> inputs; inputs.push_back(ops::Placeholder(scope.WithOpName("input"), DT_INT32)); std::vector<Output> outputs1; std::vector<Output> outputs2; TF_ASSERT_OK(ops::BuildWhileLoop(scope.NewSubScope("while"), inputs, LessThanTenCond, AddOneBody, "test_loop", &outputs1)); TF_ASSERT_OK(ops::BuildWhileLoop(scope.NewSubScope("while"), inputs, LessThanTenCond, AddOneBody, "test_loop2", &outputs2)); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); for (auto& node : *graphdef.mutable_node()) { if (node.op() == "Enter") { node.set_op("RefEnter"); } name_to_node.insert({node.name(), node}); } } TF_ASSERT_OK(EliminateRefVariablesFromV1ControlFlow(graphdef)); int num_identity_op = 0; int num_enter_op = 0; int num_ref_enter_op = 0; for (const auto& node : graphdef.node()) { if (node.op() == "Identity") { num_identity_op++; EXPECT_EQ(node.name(), "input/identity"); ASSERT_EQ(node.input().size(), 1); EXPECT_EQ(node.input(0), "input"); EXPECT_THAT(node.attr(), ElementsAre(Pair("T", _))); } else if (node.op() == "RefEnter") { num_ref_enter_op++; } else if (node.op() == "Enter") { EXPECT_EQ(num_identity_op, 1); num_enter_op++; ASSERT_EQ(node.input().size(), 1); EXPECT_EQ(node.input(0), "input/identity"); EXPECT_THAT( node, IgnoringFieldPaths({"input", "op"}, EqualsProto(name_to_node.at(node.name())))); } else { EXPECT_THAT(node, EqualsProto(name_to_node.at(node.name()))); } name_to_node.erase(node.name()); } EXPECT_EQ(num_identity_op, 1); EXPECT_EQ(num_enter_op, 2); EXPECT_EQ(num_ref_enter_op, 0); EXPECT_THAT(name_to_node, IsEmpty()); } TEST_F(PruneGraphDefTest, EliminateRefSwitchesFromControlFlow) { GraphDef graphdef; absl::flat_hash_map<std::string, NodeDef> name_to_node; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output cond_a = ops::Placeholder(scope.WithOpName("cond_a"), DT_BOOL); Output cond_b = ops::Placeholder(scope.WithOpName("cond_b"), DT_BOOL); Output input = ops::Placeholder(scope.WithOpName("input"), DT_FLOAT); ops::Switch switch_a(scope.WithOpName("switch_a"), input, cond_a); ops::Switch switch_b(scope.WithOpName("switch_b"), input, cond_b); Output switch_a_true = ops::Identity(scope.WithOpName("switch_a_true"), switch_a.output_true); Output switch_b_true = ops::Identity(scope.WithOpName("switch_b_true"), switch_b.output_true); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); for (auto& node : *graphdef.mutable_node()) { if (node.op() == "Switch") { node.set_op("RefSwitch"); } name_to_node.insert({node.name(), node}); } } TF_ASSERT_OK(EliminateRefVariablesFromV1ControlFlow(graphdef)); int num_identity_op = 0; int num_switch_op = 0; int num_ref_switch_op = 0; for (const auto& node : graphdef.node()) { if (node.name() == "switch_a_true" || node.name() == "switch_b_true") { EXPECT_THAT(node, EqualsProto(name_to_node.at(node.name()))); } else if (node.op() == "Identity") { num_identity_op++; EXPECT_EQ(node.name(), "input/identity"); ASSERT_EQ(node.input().size(), 1); EXPECT_EQ(node.input(0), "input"); EXPECT_THAT(node.attr(), ElementsAre(Pair("T", _))); } else if (node.op() == "RefSwitch") { num_ref_switch_op++; } else if (node.op() == "Switch") { EXPECT_EQ(num_identity_op, 1); num_switch_op++; ASSERT_EQ(node.input().size(), 2); EXPECT_TRUE(node.input(0) == "input/identity" || node.input(1) == "input/identity"); EXPECT_THAT( node, IgnoringFieldPaths({"input", "op"}, EqualsProto(name_to_node.at(node.name())))); } else { EXPECT_THAT(node, EqualsProto(name_to_node.at(node.name()))); } name_to_node.erase(node.name()); } EXPECT_EQ(num_identity_op, 1); EXPECT_EQ(num_switch_op, 2); EXPECT_EQ(num_ref_switch_op, 0); EXPECT_THAT(name_to_node, IsEmpty()); } TEST_F(PruneGraphDefTest, EliminateRefVariablesFromV1ControlFlowFailed) { GraphDef graphdef; absl::flat_hash_map<std::string, NodeDef> name_to_node; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output cond = ops::Placeholder(scope.WithOpName("cond"), DT_BOOL); Output input = ops::Placeholder(scope.WithOpName("input"), DT_FLOAT); ops::Switch switch_op(scope.WithOpName("switch"), input, cond); Output var = ops::Variable(scope.WithOpName("var"), {}, DataType::DT_FLOAT); Output assign = ops::Assign(scope.WithOpName("assign"), var, switch_op.output_true); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); for (auto& node : *graphdef.mutable_node()) { if (node.op() == "Switch") { node.set_op("RefSwitch"); } name_to_node.insert({node.name(), node}); } } const auto status = EliminateRefVariablesFromV1ControlFlow(graphdef); EXPECT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), HasSubstr("requires its input to be refs")); } TEST_F(PruneGraphDefTest, KeepLoopStructureComplete) { GraphDef graphdef; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); std::vector<Output> inputs; inputs.push_back(ops::Placeholder(scope.WithOpName("input"), DT_INT32)); std::vector<Output> outputs; TF_ASSERT_OK(ops::BuildWhileLoop(scope.NewSubScope("while"), inputs, LessThanTenCond, AddOneBody, "test_loop", &outputs)); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); } CallableOptions callable_options; callable_options.add_feed("input"); callable_options.add_fetch("while/LoopCond"); GraphDef original_graphdef = graphdef; TF_ASSERT_OK(PruneGraphDef(graphdef, callable_options)); EXPECT_THAT(graphdef, IgnoringRepeatedFieldOrdering(EqualsProto(original_graphdef))); } class OptimizeGraphTest : public grappler::GrapplerTest {}; TEST_F(OptimizeGraphTest, OptimizeFunctions) { GraphDef graphdef; tensorflow::FunctionDefLibrary fdef_lib; { auto scope = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); const Tensor kThree = test::AsScalar<float>(3.0); auto fdef = tensorflow::FunctionDefHelper::Create( "Pow3", {"x: float"}, {"y: float"}, {}, {{{"three"}, "Const", {}, {{"dtype", DT_FLOAT}, {"value", kThree}}}, {{"pow3"}, "Pow", {"x", "three:output:0"}, {{"T", DT_FLOAT}}}}, {{"y", "pow3:z:0"}}); tensorflow::FunctionDefLibrary fdef_lib; *fdef_lib.add_function() = fdef; TF_ASSERT_OK(scope.graph()->AddFunctionLibrary(fdef_lib)); Output a = ops::Const(scope.WithOpName("a"), 2.0, {1, 1}); std::vector<tensorflow::Output> inputs = {a}; std::vector<tensorflow::DataType> output_dtypes = { fdef.signature().output_arg(0).type()}; tensorflow::NameAttrList func_attr; func_attr.set_name(fdef.signature().name()); auto pcall = ops::PartitionedCall(scope, inputs, output_dtypes, func_attr); Output b = pcall.output.front(); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); } TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create({}, fdef_lib)); TfrtGraphExecutionState::Options options; options.run_placer_grappler_on_functions = true; TF_ASSERT_OK_AND_ASSIGN( auto graph_execution_state, TfrtGraphExecutionState::Create(options, graphdef, *fallback_state)); tensorflow::GraphImportConfig graph_import_config; graph_import_config.prune_unused_nodes = true; graph_import_config.enable_shape_inference = false; tensorflow::ArrayInfo array_info; array_info.imported_dtype = DT_FLOAT; array_info.shape.set_unknown_rank(true); graph_import_config.inputs["a"] = array_info; graph_import_config.outputs = {"c"}; TF_ASSERT_OK_AND_ASSIGN( auto optimized_graph, graph_execution_state->CreateOptimizedGraph(graph_import_config)); GraphDef optimized_graph_def; optimized_graph.graph->ToGraphDef(&optimized_graph_def); GraphDef expected; { auto scope = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); const Tensor kThree = test::AsScalar<float>(3.0); auto fdef = tensorflow::FunctionDefHelper::Create( "Pow3", {"x: float"}, {"y_retval: float"}, {}, {{{"ArithmeticOptimizer/ConvertPow__inner_pow3"}, "Square", {"x"}, {{"dtype", DT_FLOAT}}, {}, "/job:localhost/replica:0/task:0/device:CPU:0"}, {{"pow3"}, "Mul", {"ArithmeticOptimizer/ConvertPow__inner_pow3:y:0", "x"}, {{"T", DT_FLOAT}}, {}, "/job:localhost/replica:0/task:0/device:CPU:0"}}, {{"y_retval", "pow3:z:0"}}); tensorflow::FunctionDefLibrary fdef_lib; *fdef_lib.add_function() = fdef; TF_ASSERT_OK(scope.graph()->AddFunctionLibrary(fdef_lib)); Output a = ops::Const(scope.WithOpName("a"), 2.0, {1, 1}); std::vector<tensorflow::Output> inputs = {a}; std::vector<tensorflow::DataType> output_dtypes = { fdef.signature().output_arg(0).type()}; tensorflow::NameAttrList func_attr; func_attr.set_name(fdef.signature().name()); auto pcall = ops::PartitionedCall(scope, inputs, output_dtypes, func_attr); Output b = pcall.output.front(); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&expected)); } CompareGraphs(expected, optimized_graph_def); CompareFunctions(expected.library().function(0), optimized_graph_def.library().function(0)); } TEST_F(OptimizeGraphTest, OptimizeFunctionsUsedByFunctionNodes) { GraphDef graphdef; tensorflow::FunctionDefLibrary fdef_lib; { auto scope = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); const Tensor kThree = test::AsScalar<float>(3.0); auto pow3_fdef = tensorflow::FunctionDefHelper::Create( "Pow3", {"x: float"}, {"y: float"}, {}, {{{"three"}, "Const", {}, {{"dtype", DT_FLOAT}, {"value", kThree}}}, {{"pow3"}, "Pow", {"x", "three:output:0"}, {{"T", DT_FLOAT}}}}, {{"y", "pow3:z:0"}}); const Tensor kOne = test::AsScalar<float>(1.0); auto base2pow3_fdef = tensorflow::FunctionDefHelper::Create( "Add1Pow3", {"x: float"}, {"y: float"}, {}, {{{"one"}, "Const", {}, {{"dtype", DT_FLOAT}, {"value", kOne}}}, {{"add"}, "Add", {"x", "one:output:0"}, {{"T", DT_FLOAT}}}, {{"pcall"}, "PartitionedCall", {"add:z:0"}, {{"Tin", DataTypeSlice({DT_FLOAT})}, {"Tout", DataTypeSlice({DT_FLOAT})}, {"f", tensorflow::FunctionDefHelper::FunctionRef( "Pow3", {{"T", DT_FLOAT}})}}}}, {{"y", "pcall:output:0"}}); tensorflow::FunctionDefLibrary fdef_lib; *fdef_lib.add_function() = pow3_fdef; *fdef_lib.add_function() = base2pow3_fdef; TF_ASSERT_OK(scope.graph()->AddFunctionLibrary(fdef_lib)); Output a = ops::Const(scope.WithOpName("a"), 1.0, {1, 1}); std::vector<tensorflow::Output> inputs = {a}; std::vector<tensorflow::DataType> output_dtypes = { base2pow3_fdef.signature().output_arg(0).type()}; tensorflow::NameAttrList func_attr; func_attr.set_name(base2pow3_fdef.signature().name()); auto pcall = ops::PartitionedCall(scope, inputs, output_dtypes, func_attr); Output b = pcall.output.front(); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); } TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create({}, fdef_lib)); TfrtGraphExecutionState::Options options; options.run_placer_grappler_on_functions = true; TF_ASSERT_OK_AND_ASSIGN( auto graph_execution_state, TfrtGraphExecutionState::Create(options, graphdef, *fallback_state)); tensorflow::GraphImportConfig graph_import_config; graph_import_config.prune_unused_nodes = true; graph_import_config.enable_shape_inference = false; tensorflow::ArrayInfo array_info; array_info.imported_dtype = DT_FLOAT; array_info.shape.set_unknown_rank(true); graph_import_config.inputs["a"] = array_info; graph_import_config.outputs = {"c"}; TF_ASSERT_OK_AND_ASSIGN( auto optimized_graph, graph_execution_state->CreateOptimizedGraph(graph_import_config)); GraphDef optimized_graph_def; optimized_graph.graph->ToGraphDef(&optimized_graph_def); GraphDef expected; { auto scope = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); const Tensor kThree = test::AsScalar<float>(3.0); auto pow3_fdef = tensorflow::FunctionDefHelper::Create( "Pow3", {"x: float"}, {"y_retval: float"}, {}, {{{"ArithmeticOptimizer/ConvertPow__inner_pow3"}, "Square", {"x"}, {{"dtype", DT_FLOAT}}, {}, "/job:localhost/replica:0/task:0/device:CPU:0"}, {{"pow3"}, "Mul", {"ArithmeticOptimizer/ConvertPow__inner_pow3:y:0", "x"}, {{"T", DT_FLOAT}}, {}, "/job:localhost/replica:0/task:0/device:CPU:0"}}, {{"y_retval", "pow3:z:0"}}); const Tensor kOne = test::AsScalar<float>(1.0); auto base2pow3_fdef = tensorflow::FunctionDefHelper::Create( "Add1Pow3", {"x: float"}, {"y: float"}, {}, {{{"one"}, "Const", {}, {{"dtype", DT_FLOAT}, {"value", kOne}}}, {{"add"}, "Add", {"x", "one:output:0"}, {{"T", DT_FLOAT}}}, {{"pcall"}, "PartitionedCall", {"add:z:0"}, {{"Tin", DataTypeSlice({DT_FLOAT})}, {"Tout", DataTypeSlice({DT_FLOAT})}, {"f", tensorflow::FunctionDefHelper::FunctionRef( "Pow3", {{"T", DT_FLOAT}})}}}}, {{"y", "pcall:output:0"}}); tensorflow::FunctionDefLibrary fdef_lib; *fdef_lib.add_function() = pow3_fdef; *fdef_lib.add_function() = base2pow3_fdef; TF_ASSERT_OK(scope.graph()->AddFunctionLibrary(fdef_lib)); Output a = ops::Const(scope.WithOpName("a"), 1.0, {1, 1}); std::vector<tensorflow::Output> inputs = {a}; std::vector<tensorflow::DataType> output_dtypes = { base2pow3_fdef.signature().output_arg(0).type()}; tensorflow::NameAttrList func_attr; func_attr.set_name(base2pow3_fdef.signature().name()); auto pcall = ops::PartitionedCall(scope, inputs, output_dtypes, func_attr); Output b = pcall.output.front(); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&expected)); } CompareFunctions(expected.library().function(1), optimized_graph_def.library().function(1)); ASSERT_EQ("Pow3", optimized_graph_def.library().function(1).signature().name()); } TEST_F(OptimizeGraphTest, DontOptimizeUnsafeFunction) { GraphDef graphdef; tensorflow::FunctionDefLibrary fdef_lib; { auto scope = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); const Tensor kThree = test::AsScalar<float>(3.0); auto fdef = tensorflow::FunctionDefHelper::Create( "Pow3", {"x: float"}, {"y: float"}, {}, {{{"three"}, "Const", {}, {{"dtype", DT_FLOAT}, {"value", kThree}}}, {{"pow3"}, "Pow", {"x", "three:output:0"}, {{"T", DT_FLOAT}}}}, {{"y", "pow3:z:0"}}); tensorflow::FunctionDefLibrary fdef_lib; *fdef_lib.add_function() = fdef; TF_ASSERT_OK(scope.graph()->AddFunctionLibrary(fdef_lib)); Output a = ops::Const(scope.WithOpName("a"), 2.0, {1, 1}); Output cond = ops::Const(scope.WithOpName("cond"), true, {1, 1}); std::vector<tensorflow::Output> inputs = {a}; std::vector<tensorflow::DataType> output_dtypes = { fdef.signature().output_arg(0).type()}; tensorflow::NameAttrList func_attr; func_attr.set_name(fdef.signature().name()); auto if_op = ops::If(scope, cond, inputs, output_dtypes, func_attr, func_attr); Output b = if_op.output.front(); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); } TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create({}, fdef_lib)); TfrtGraphExecutionState::Options options; options.run_placer_grappler_on_functions = true; TF_ASSERT_OK_AND_ASSIGN( auto graph_execution_state, TfrtGraphExecutionState::Create(options, graphdef, *fallback_state)); tensorflow::GraphImportConfig graph_import_config; graph_import_config.prune_unused_nodes = true; graph_import_config.enable_shape_inference = false; tensorflow::ArrayInfo array_info; array_info.imported_dtype = DT_FLOAT; array_info.shape.set_unknown_rank(true); graph_import_config.inputs["a"] = array_info; graph_import_config.outputs = {"c"}; TF_ASSERT_OK_AND_ASSIGN( auto optimized_graph, graph_execution_state->CreateOptimizedGraph(graph_import_config)); GraphDef optimized_graph_def; optimized_graph.graph->ToGraphDef(&optimized_graph_def); CompareGraphs(graphdef, optimized_graph_def); CompareFunctions(graphdef.library().function(0), optimized_graph_def.library().function(0)); } TEST_F(OptimizeGraphTest, FunctionBecomeUnsafeIfAnyOpIsUnsafe) { GraphDef graphdef; tensorflow::FunctionDefLibrary fdef_lib; { auto scope = tensorflow::Scope::NewRootScope().WithDevice( "/job:localhost/replica:0/task:0/device:CPU:0"); const Tensor kThree = test::AsScalar<float>(3.0); auto fdef = tensorflow::FunctionDefHelper::Create( "Pow3", {"x: float"}, {"y: float"}, {}, {{{"three"}, "Const", {}, {{"dtype", DT_FLOAT}, {"value", kThree}}}, {{"pow3"}, "Pow", {"x", "three:output:0"}, {{"T", DT_FLOAT}}}}, {{"y", "pow3:z:0"}}); tensorflow::FunctionDefLibrary fdef_lib; *fdef_lib.add_function() = fdef; TF_ASSERT_OK(scope.graph()->AddFunctionLibrary(fdef_lib)); Output a = ops::Const(scope.WithOpName("a"), 2.0, {1, 1}); Output cond = ops::Const(scope.WithOpName("cond"), true, {1, 1}); std::vector<tensorflow::Output> inputs = {a}; std::vector<tensorflow::DataType> output_dtypes = { fdef.signature().output_arg(0).type()}; tensorflow::NameAttrList func_attr; func_attr.set_name(fdef.signature().name()); auto if_op = ops::If(scope, cond, inputs, output_dtypes, func_attr, func_attr); Output b = if_op.output.front(); inputs = {b}; auto pcall = ops::PartitionedCall(scope, inputs, output_dtypes, func_attr); Output c = pcall.output.front(); Output d = ops::Identity(scope.WithOpName("d"), c); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); } TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create({}, fdef_lib)); TfrtGraphExecutionState::Options options; options.run_placer_grappler_on_functions = true; TF_ASSERT_OK_AND_ASSIGN( auto graph_execution_state, TfrtGraphExecutionState::Create(options, graphdef, *fallback_state)); tensorflow::GraphImportConfig graph_import_config; graph_import_config.prune_unused_nodes = true; graph_import_config.enable_shape_inference = false; tensorflow::ArrayInfo array_info; array_info.imported_dtype = DT_FLOAT; array_info.shape.set_unknown_rank(true); graph_import_config.inputs["a"] = array_info; graph_import_config.outputs = {"d"}; TF_ASSERT_OK_AND_ASSIGN( auto optimized_graph, graph_execution_state->CreateOptimizedGraph(graph_import_config)); GraphDef optimized_graph_def; optimized_graph.graph->ToGraphDef(&optimized_graph_def); CompareFunctions(graphdef.library().function(0), optimized_graph_def.library().function(0)); } class ExtendGraphTest : public grappler::GrapplerTest {}; TEST_F(ExtendGraphTest, ExtendGraph) { GraphDef graphdef; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output a = ops::Const(scope.WithOpName("a"), 0.0f, {10, 10}); TF_ASSERT_OK(scope.ToGraphDef(&graphdef)); } SessionOptions session_options; session_options.config.mutable_experimental() ->set_disable_optimize_for_static_graph(true); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create(session_options, {})); TfrtGraphExecutionState::Options options; options.run_placer_grappler_on_functions = false; TF_ASSERT_OK_AND_ASSIGN( auto graph_execution_state, TfrtGraphExecutionState::Create(options, graphdef, *fallback_state)); GraphDef extension; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output b = ops::Const(scope.WithOpName("b"), 0.0f, {10, 10}); TF_ASSERT_OK(scope.ToGraphDef(&extension)); } TF_ASSERT_OK(graph_execution_state->Extend(extension)); GraphDef expected; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output a = ops::Const(scope.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Const(scope.WithOpName("b"), 0.0f, {10, 10}); TF_ASSERT_OK(scope.ToGraphDef(&expected)); } ASSERT_NE(graph_execution_state->original_graph_def(), nullptr); CompareGraphs(expected, *graph_execution_state->original_graph_def()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/utils/tfrt_graph_execution_state.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/utils/tfrt_graph_execution_state_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c8b735fe-1061-46a4-98c4-74adb45572e5
cpp
tensorflow/tensorflow
node_io_dump_rewriter
tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter.cc
tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter_test.cc
#include "tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter.h" #include <cstdlib> #include <memory> #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/function_body.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tfrt_stub { namespace { absl::StatusOr<std::string> GetDumpDir(absl::string_view dump_dir) { if (!dump_dir.empty()) return std::string(dump_dir); const char* prefix = getenv("TF_DUMP_GRAPH_PREFIX"); if (prefix != nullptr) return std::string(prefix); return errors::InvalidArgument("TF_DUMP_GRAPH_PREFIX not specified"); } Status InsertDumpOpsForNode(Graph& graph, Node& node, absl::string_view dump_dir) { auto insert = [&](bool is_input, const std::vector<const Edge*> edges) { for (const Edge* edge : edges) { if (edge->IsControlEdge()) continue; Node* dump_node; TF_RETURN_IF_ERROR( NodeBuilder(absl::StrCat(edge->src()->name(), "/", edge->src_output(), "/debug_identity"), "DebugIdentityV3") .Attr("io_of_node", node.name()) .Attr("is_input", is_input) .Attr("io_index", is_input ? edge->dst_input() : edge->src_output()) .Attr("tensor_name", absl::StrCat(edge->src()->name(), ":", edge->src_output())) .Attr("debug_urls", {absl::StrCat("file: .Input(edge->src(), edge->src_output()) .Finalize(&graph, &dump_node)); TF_RETURN_IF_ERROR( graph.UpdateEdge(dump_node, 0, edge->dst(), edge->dst_input())); } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(insert(true, {node.in_edges().begin(), node.in_edges().end()})); TF_RETURN_IF_ERROR(insert( false, {node.out_edges().begin(), node.out_edges().end()})); return absl::OkStatus(); } } Status InsertDumpOps(Graph& graph, const absl::flat_hash_set<std::string>& nodes_to_dump, absl::string_view dump_dir) { TF_ASSIGN_OR_RETURN(auto dir, GetDumpDir(dump_dir)); auto insert = [&](Graph& graph) { for (Node* node : graph.op_nodes()) { if (nodes_to_dump.contains(node->name())) { TF_RETURN_IF_ERROR(InsertDumpOpsForNode(graph, *node, dir)); } } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(insert(graph)); for (const auto& fname : graph.flib_def().ListFunctionNames()) { std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *graph.flib_def().Find(fname), AttrSlice(), &graph.flib_def(), &fbody)); TF_RETURN_IF_ERROR(insert(*fbody->graph)); FunctionDef new_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*fbody->graph, fname, &new_fdef)); TF_RETURN_IF_ERROR( graph.mutable_flib_def()->ReplaceFunction(fname, new_fdef)); } return absl::OkStatus(); } Status InsertDumpOps(MetaGraphDef& meta_graph_def, const absl::flat_hash_set<std::string>& nodes_to_dump, absl::string_view dump_dir) { Graph graph(OpRegistry::Global()); TF_RETURN_IF_ERROR( ConvertGraphDefToGraph({}, meta_graph_def.graph_def(), &graph)); TF_RETURN_IF_ERROR(InsertDumpOps(graph, nodes_to_dump, dump_dir)); graph.ToGraphDef(meta_graph_def.mutable_graph_def()); return absl::OkStatus(); } } }
#include "tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter.h" #include <dirent.h> #include <cstddef> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/saved_model/reader.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/tfrt/saved_model/saved_model.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace tensorflow { namespace tfrt_stub { namespace { constexpr absl::string_view kDumpSubDirName = "node-io-dump"; const Node* FindNode(const Graph* graph, absl::string_view node_name) { for (Node* node : graph->nodes()) { if (node->name() == node_name) return node; } return nullptr; } const Node* GetInputNode(const Node* node, size_t index) { const Node* input_node; CHECK_OK(node->input_node(index, &input_node)); return input_node; } const Node* GetOutputNode(const Node* node, size_t index) { for (const Edge* edge : node->out_edges()) { if (edge->src_output() == index) return edge->dst(); } return nullptr; } absl::StatusOr<std::vector<std::string>> GetFilenames( absl::string_view dump_dir) { auto dump_sub_dir = absl::StrCat(dump_dir, "/", kDumpSubDirName); DIR* dir = opendir(dump_sub_dir.data()); if (dir == nullptr) { return absl::InvalidArgumentError( absl::StrCat("can't open directory: ", dump_sub_dir)); } std::vector<std::string> step_dirs; struct dirent* entry; while ((entry = readdir(dir)) != nullptr) { if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) { continue; } if (entry->d_type != DT_DIR) { return absl::InternalError(absl::StrCat( "Found non-directory entry under dump_sub_dir: ", entry->d_name)); } step_dirs.push_back(absl::StrCat(dump_sub_dir, "/", entry->d_name)); } closedir(dir); CHECK_EQ(step_dirs.size(), 1); dir = opendir(step_dirs[0].data()); if (dir == nullptr) { return absl::InvalidArgumentError( absl::StrCat("can't open directory: ", step_dirs[0])); } std::vector<std::string> filenames; while ((entry = readdir(dir)) != nullptr) { if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) { continue; } if (entry->d_type == DT_DIR) { return absl::InternalError(absl::StrCat( "Found directory entry under step_dir: ", entry->d_name)); } filenames.push_back(entry->d_name); } closedir(dir); return filenames; } TEST(NodeIoDumpRewriterTest, OnGraph) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); Scope scope = Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input_a = ops::Placeholder(scope.WithOpName("input_a"), DT_INT32); auto input_b = ops::Placeholder(scope.WithOpName("input_b"), DT_INT32); auto add = ops::Add(scope.WithOpName("add"), input_a, input_b); auto output = ops::Identity(scope.WithOpName("output"), add); TF_ASSERT_OK(scope.ToGraph(graph.get())); Env* env = Env::Default(); const string dump_dir = ::tsl::io::JoinPath(::tsl::testing::TmpDir(), "OnGraph"); if (!env->FileExists(dump_dir).ok()) { ASSERT_TRUE(env->RecursivelyCreateDir(dump_dir).ok()); } TF_ASSERT_OK(InsertDumpOps(*graph, {"add"}, dump_dir)); auto* node = FindNode(graph.get(), "add"); EXPECT_EQ(node->num_inputs(), 2); EXPECT_EQ(GetInputNode(node, 0)->name(), "input_a/0/debug_identity"); EXPECT_EQ(GetInputNode(node, 1)->name(), "input_b/0/debug_identity"); EXPECT_EQ(node->num_outputs(), 1); EXPECT_EQ(GetOutputNode(node, 0)->name(), "add/0/debug_identity"); } TEST(NodeIoDumpRewriterTest, OnSavedModelV1) { std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); Env* env = Env::Default(); const string dump_dir = ::tsl::io::JoinPath(::tsl::testing::TmpDir(), "OnSavedModelV1"); if (!env->FileExists(dump_dir).ok()) { ASSERT_TRUE(env->RecursivelyCreateDir(dump_dir).ok()); } TF_ASSERT_OK(InsertDumpOps(meta_graph_def, {"Add"}, dump_dir)); auto runtime = DefaultTfrtRuntime(1); SavedModel::Options options(runtime.get()); options.graph_execution_options.compile_options.enable_grappler = false; TF_ASSERT_OK_AND_ASSIGN( auto saved_model, SavedModelImpl::LoadSavedModel(options, meta_graph_def, saved_model_dir)); std::vector<tensorflow::Tensor> inputs; inputs.push_back( CreateTfTensor<int32_t>({1, 3}, {1, 1, 1})); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(saved_model->Run({}, "another_toy", inputs, &outputs)); ASSERT_EQ(outputs.size(), 2); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({6})); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[1]), ::testing::ElementsAreArray({12})); ASSERT_OK_AND_ASSIGN(auto filenames, GetFilenames(dump_dir)); ASSERT_EQ(filenames.size(), 3); EXPECT_TRUE(absl::StartsWith(filenames[0], "Add:out:0_")); EXPECT_TRUE(absl::StartsWith(filenames[1], "Add:in:0_")); EXPECT_TRUE(absl::StartsWith(filenames[2], "Add:in:1_")); } TEST(NodeIoDumpRewriterTest, OnSavedModelV2) { std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v2"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); Env* env = Env::Default(); const string dump_dir = ::tsl::io::JoinPath(::tsl::testing::TmpDir(), "OnSavedModelV2"); if (!env->FileExists(dump_dir).ok()) { ASSERT_TRUE(env->RecursivelyCreateDir(dump_dir).ok()); } TF_ASSERT_OK(InsertDumpOps(meta_graph_def, {"result"}, dump_dir)); auto runtime = DefaultTfrtRuntime(1); SavedModel::Options options(runtime.get()); options.graph_execution_options.compile_options.enable_grappler = false; TF_ASSERT_OK_AND_ASSIGN( auto saved_model, SavedModelImpl::LoadSavedModel(options, meta_graph_def, saved_model_dir)); std::vector<tensorflow::Tensor> inputs; inputs.push_back( CreateTfTensor<int32_t>({1, 3}, {1, 1, 1})); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(saved_model->Run({}, "serving_default", inputs, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({6})); ASSERT_OK_AND_ASSIGN(auto filenames, GetFilenames(dump_dir)); ASSERT_EQ(filenames.size(), 3); EXPECT_TRUE(absl::StartsWith(filenames[0], "result:out:0_")); EXPECT_TRUE(absl::StartsWith(filenames[1], "result:in:1_")); EXPECT_TRUE(absl::StartsWith(filenames[2], "result:in:0_")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2f94b5e9-140b-4097-af52-b4d19366be44
cpp
tensorflow/tensorflow
create_pjrt_client_util
tensorflow/core/tfrt/common/create_pjrt_client_util.cc
tensorflow/core/tfrt/common/create_pjrt_client_util_test.cc
#include "tensorflow/core/tfrt/common/create_pjrt_client_util.h" #include <optional> #include <set> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/pjrt/pjrt_client.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/tfrt/common/global_state.h" #include "tensorflow/core/tfrt/common/pjrt_state.h" #include "tsl/platform/errors.h" namespace tensorflow { absl::StatusOr<xla::PjRtClient*> GetOrCreatePjRtClient( const DeviceType& device_type, std::optional<std::set<int>> allowed_devices) { ResourceMgr* rmgr = tfrt_global::GetTFGlobalResourceMgr(); PjRtState* pjrt_state; TF_RETURN_IF_ERROR(rmgr->LookupOrCreate<PjRtState>( rmgr->default_container(), kPjRtStateResourceName, &pjrt_state, [&](PjRtState** ret) { *ret = PjRtState::Create(); return absl::OkStatus(); })); core::ScopedUnref pjrt_state_ref(pjrt_state); return pjrt_state->GetOrCreatePjRtClient(device_type); } }
#include "tensorflow/core/tfrt/common/create_pjrt_client_util.h" #include "absl/strings/str_cat.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "tensorflow/core/framework/types.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(CreatePjRtClientTest, GetNotExistPjRtClientNotImplemented) { EXPECT_THAT( GetOrCreatePjRtClient(DEVICE_CPU), StatusIs(error::NOT_FOUND, HasSubstr(absl::StrCat("The PJRT client factory of `", DEVICE_CPU, "` is not registered")))); } #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM TEST(CreatePjRtClientTest, GetNotExistGpuPjRtClient) { TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, GetOrCreatePjRtClient(DEVICE_XLA_GPU)); EXPECT_THAT(pjrt_client, ::testing::NotNull()); } #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/create_pjrt_client_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/create_pjrt_client_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6e49f4a9-c87d-4ea6-9c68-73d8c7379601
cpp
tensorflow/tensorflow
pjrt_state
tensorflow/core/tfrt/common/pjrt_state.cc
tensorflow/core/tfrt/common/pjrt_state_test.cc
#include "tensorflow/core/tfrt/common/pjrt_state.h" #include <memory> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/tf_pjrt_client.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/tfrt/common/pjrt_client_factory_options.h" #include "tensorflow/core/tfrt/common/pjrt_client_factory_registry.h" #include "tsl/platform/statusor.h" namespace tensorflow { PjRtState* PjRtState::Create() { return new PjRtState(); } absl::StatusOr<xla::PjRtClient*> PjRtState::GetPjRtClient( const DeviceType& device_type) { absl::MutexLock lock(&mu_); if (auto it = clients_.find(device_type); it != clients_.end()) { return it->second.get(); } return errors::NotFound("PjRt client not found for device type ", device_type); } absl::StatusOr<xla::PjRtClient*> PjRtState::GetOrCreatePjRtClient( const DeviceType& device_type) { absl::MutexLock lock(&mu_); if (auto it = clients_.find(device_type); it != clients_.end()) { return it->second.get(); } std::unique_ptr<xla::PjRtClient> pjrt_client; xla::PjrtClientFactoryOptions options = xla::PjrtClientFactoryOptions(); TF_ASSIGN_OR_RETURN(std::unique_ptr<xla::PjRtClient> client, xla::PjrtClientFactoryRegistry::Get().GetPjrtClient( device_type, options)); pjrt_client = xla::TfPjRtClient::CreateTfPjRtClient(std::move(client)); clients_[device_type] = std::move(pjrt_client); return clients_[device_type].get(); } Status PjRtState::SetPjRtClient(const DeviceType& device_type, std::unique_ptr<xla::PjRtClient> client) { absl::MutexLock lock(&mu_); if (auto it = clients_.find(device_type); it != clients_.end()) { unused_.push_back(std::move(it->second)); } clients_[device_type] = std::move(client); return absl::OkStatus(); } Status PjRtState::MovePjRtClientToUnused(const DeviceType& device_type) { absl::MutexLock lock(&mu_); if (auto it = clients_.find(device_type); it != clients_.end()) { unused_.push_back(std::move(it->second)); clients_.erase(it); return absl::OkStatus(); } return errors::NotFound("PjRt client not found for device type ", device_type); } Status PjRtState::SetPjRtGpuClientCreationInfo( std::unique_ptr<PjRtGpuClientCreationInfo> info) { absl::MutexLock lock(&mu_); pjrt_gpu_client_creation_info_ = std::move(info); return absl::OkStatus(); } PjRtGpuClientCreationInfo* PjRtState::GetPjRtGpuClientCreationInfo() { absl::MutexLock lock(&mu_); return pjrt_gpu_client_creation_info_.get(); } string PjRtState::DebugString() const { return "PjRtState"; } }
#include "tensorflow/core/tfrt/common/pjrt_state.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/pjrt/cpu/cpu_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/protobuf/error_codes.pb.h" namespace { using tensorflow::PjRtState; using ::testing::HasSubstr; using ::tsl::testing::StatusIs; class PjRtStateTestFixture : public testing::Test { protected: PjRtStateTestFixture() { pjrt_state_ = PjRtState::Create(); } ~PjRtStateTestFixture() override { tensorflow::core::ScopedUnref pjrt_state_ref(pjrt_state_); } PjRtState* pjrt_state_; }; TEST_F(PjRtStateTestFixture, SetAndGetPjRtClient) { TF_ASSERT_OK(pjrt_state_->SetPjRtClient( tensorflow::DEVICE_CPU, xla::GetTfrtCpuClient(true, 1) .value())); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, pjrt_state_->GetPjRtClient(tensorflow::DEVICE_CPU)); EXPECT_THAT(pjrt_client, testing::NotNull()); } TEST_F(PjRtStateTestFixture, AddAlreadyExistsPjRtClient) { TF_ASSERT_OK(pjrt_state_->SetPjRtClient( tensorflow::DEVICE_CPU, xla::GetTfrtCpuClient(true, 1) .value())); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client_1, pjrt_state_->GetPjRtClient(tensorflow::DEVICE_CPU)); TF_ASSERT_OK(pjrt_state_->SetPjRtClient( tensorflow::DEVICE_CPU, xla::GetTfrtCpuClient(true, 1) .value())); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client_2, pjrt_state_->GetPjRtClient(tensorflow::DEVICE_CPU)); EXPECT_NE(pjrt_client_1, pjrt_client_2); } TEST_F(PjRtStateTestFixture, GetNotExistPjRtClient) { EXPECT_THAT(pjrt_state_->GetPjRtClient(tensorflow::DEVICE_CPU), StatusIs(tensorflow::error::NOT_FOUND, HasSubstr("PjRt client not found for device type"))); } TEST_F(PjRtStateTestFixture, DeletePjRtClient) { TF_ASSERT_OK_AND_ASSIGN( auto pjrt_client, xla::GetTfrtCpuClient(true, 1)); xla::PjRtClient* pjrt_client_ptr = pjrt_client.get(); TF_ASSERT_OK(pjrt_state_->SetPjRtClient(tensorflow::DEVICE_CPU, std::move(pjrt_client))); TF_ASSERT_OK(pjrt_state_->MovePjRtClientToUnused(tensorflow::DEVICE_CPU)); EXPECT_THAT(pjrt_state_->GetPjRtClient(tensorflow::DEVICE_CPU), StatusIs(tensorflow::error::NOT_FOUND, HasSubstr("PjRt client not found for device type"))); EXPECT_EQ(pjrt_client_ptr->platform_name(), "cpu"); } TEST_F(PjRtStateTestFixture, DeleteNotExistPjRtClient) { EXPECT_THAT(pjrt_state_->MovePjRtClientToUnused(tensorflow::DEVICE_CPU), StatusIs(tensorflow::error::NOT_FOUND, HasSubstr("PjRt client not found for device type"))); } TEST_F(PjRtStateTestFixture, GetOrCreatePjRtClientExist) { TF_ASSERT_OK_AND_ASSIGN( auto pjrt_client, xla::GetTfrtCpuClient(true, 1)); auto pjrt_client_ptr = pjrt_client.get(); TF_ASSERT_OK(pjrt_state_->SetPjRtClient(tensorflow::DEVICE_CPU, std::move(pjrt_client))); TF_ASSERT_OK_AND_ASSIGN( auto pjrt_client_get, pjrt_state_->GetOrCreatePjRtClient(tensorflow::DEVICE_CPU)); EXPECT_THAT(pjrt_client_get, pjrt_client_ptr); } TEST_F(PjRtStateTestFixture, GetOrCreatePjRtClientNotExist) { TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, pjrt_state_->GetOrCreatePjRtClient( tensorflow::DEVICE_CPU)); EXPECT_THAT(pjrt_client, testing::NotNull()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/pjrt_state.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/pjrt_state_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7569af85-4644-4ab1-890f-3d81139b5f07
cpp
tensorflow/tensorflow
pjrt_gpu_client_registration
tensorflow/core/tfrt/common/pjrt_gpu_client_registration.cc
tensorflow/core/tfrt/common/pjrt_gpu_client_registration_test.cc
#include <memory> #include <utility> #include "absl/status/statusor.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/pjrt/gpu/se_gpu_pjrt_client.h" #include "xla/pjrt/pjrt_client.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/tfrt/common/pjrt_client_factory_options.h" #include "tensorflow/core/tfrt/common/pjrt_client_factory_registry.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<std::unique_ptr<xla::PjRtClient>> GetGpuClient( const PjrtClientFactoryOptions& option) { xla::GpuClientOptions gpu_client_options; gpu_client_options.node_id = option.gpu_options.node_id; gpu_client_options.num_nodes = 1; gpu_client_options.allowed_devices = option.gpu_options.allowed_devices; gpu_client_options.platform_name = option.gpu_options.platform_name; TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtClient> client, xla::GetStreamExecutorGpuClient(gpu_client_options)); return std::move(client); } REGISTER_PJRT_CLIENT_FACTORY(gpu_client, tensorflow::DEVICE_GPU, GetGpuClient); REGISTER_PJRT_CLIENT_FACTORY(xla_gpu_client, tensorflow::DEVICE_XLA_GPU, GetGpuClient); }
#include <gtest/gtest.h> #include "xla/tsl/framework/device_type.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/tfrt/common/pjrt_client_factory_options.h" #include "tensorflow/core/tfrt/common/pjrt_client_factory_registry.h" #include "tsl/platform/statusor.h" namespace xla { namespace { TEST(PjrtGpuClientCreateTest, TestGpuCreateOption) { PjrtClientFactoryOptions options = PjrtClientFactoryOptions(); TF_ASSERT_OK_AND_ASSIGN( auto client, xla::PjrtClientFactoryRegistry::Get().GetPjrtClient( tsl::DeviceType(tensorflow::DEVICE_GPU), options)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/pjrt_gpu_client_registration.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/pjrt_gpu_client_registration_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e75402be-4462-469a-b7e4-f4278767815f
cpp
tensorflow/tensorflow
pjrt_cpu_client_registration
tensorflow/core/tfrt/common/pjrt_cpu_client_registration.cc
tensorflow/core/tfrt/common/pjrt_cpu_client_registration_test.cc
#include <memory> #include <utility> #include "absl/status/statusor.h" #include "xla/pjrt/cpu/cpu_client.h" #include "xla/pjrt/pjrt_client.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/tfrt/common/pjrt_client_factory_options.h" #include "tensorflow/core/tfrt/common/pjrt_client_factory_registry.h" #include "tsl/platform/statusor.h" namespace xla { absl::StatusOr<std::unique_ptr<xla::PjRtClient>> GetCpuClient( const PjrtClientFactoryOptions& option) { TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtClient> client, xla::GetTfrtCpuClient(option.cpu_options.asynchronous)); return std::move(client); } REGISTER_PJRT_CLIENT_FACTORY(cpu_client, tensorflow::DEVICE_CPU, GetCpuClient); }
#include <gtest/gtest.h> #include "xla/tsl/framework/device_type.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/tfrt/common/pjrt_client_factory_options.h" #include "tensorflow/core/tfrt/common/pjrt_client_factory_registry.h" #include "tsl/platform/statusor.h" namespace xla { namespace { TEST(PjrtCpuClientCreateTest, TestCpuCreateoption) { PjrtClientFactoryOptions options = PjrtClientFactoryOptions(); options.cpu_options.asynchronous = true; TF_ASSERT_OK_AND_ASSIGN( auto client, xla::PjrtClientFactoryRegistry::Get().GetPjrtClient( tsl::DeviceType(tensorflow::DEVICE_CPU), options)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/pjrt_cpu_client_registration.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/pjrt_cpu_client_registration_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
31a835cc-caae-4afb-b0a3-525ca43c83f7
cpp
tensorflow/tensorflow
pjrt_util
tensorflow/core/tfrt/common/pjrt_util.cc
tensorflow/core/tfrt/common/pjrt_util_test.cc
#include "tensorflow/core/tfrt/common/pjrt_util.h" #include <memory> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/pjrt/pjrt_client.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/tfrt/common/global_state.h" #include "tensorflow/core/tfrt/common/pjrt_state.h" #include "tsl/platform/errors.h" namespace tensorflow { Status SetPjRtClientInTFGlobalResourceManager( const DeviceType& device_type, std::unique_ptr<xla::PjRtClient> client) { ResourceMgr* rmgr = tfrt_global::GetTFGlobalResourceMgr(); PjRtState* pjrt_state; TF_RETURN_IF_ERROR(rmgr->LookupOrCreate<PjRtState>( rmgr->default_container(), kPjRtStateResourceName, &pjrt_state, [&](PjRtState** ret) { *ret = PjRtState::Create(); return absl::OkStatus(); })); core::ScopedUnref pjrt_state_ref(pjrt_state); if (client == nullptr) { return errors::InvalidArgument("PJRT client is nullptr."); } TF_RETURN_IF_ERROR(pjrt_state->SetPjRtClient(device_type, std::move(client))); return absl::OkStatus(); } absl::StatusOr<xla::PjRtClient*> GetPjRtClient(const DeviceType& device_type) { ResourceMgr* rmgr = tfrt_global::GetTFGlobalResourceMgr(); PjRtState* pjrt_state; TF_RETURN_IF_ERROR(rmgr->LookupOrCreate<PjRtState>( rmgr->default_container(), kPjRtStateResourceName, &pjrt_state, [&](PjRtState** ret) { *ret = PjRtState::Create(); return absl::OkStatus(); })); core::ScopedUnref pjrt_state_ref(pjrt_state); return pjrt_state->GetPjRtClient(device_type); } absl::Status SetPjRtGpuClientCreationInfoInTFGlobalResourceManager( std::unique_ptr<PjRtGpuClientCreationInfo> info) { ResourceMgr* rmgr = tfrt_global::GetTFGlobalResourceMgr(); PjRtState* pjrt_state; TF_RETURN_IF_ERROR(rmgr->LookupOrCreate<PjRtState>( rmgr->default_container(), kPjRtStateResourceName, &pjrt_state, [&](PjRtState** ret) { *ret = PjRtState::Create(); return absl::OkStatus(); })); core::ScopedUnref pjrt_state_ref(pjrt_state); if (info == nullptr) { return absl::InvalidArgumentError("PJRT client creation info is nullptr."); } TF_RETURN_IF_ERROR(pjrt_state->SetPjRtGpuClientCreationInfo(std::move(info))); return absl::OkStatus(); } absl::StatusOr<PjRtGpuClientCreationInfo*> GetPjRtGpuClientCreationInfo() { ResourceMgr* rmgr = tfrt_global::GetTFGlobalResourceMgr(); PjRtState* pjrt_state; TF_RETURN_IF_ERROR(rmgr->LookupOrCreate<PjRtState>( rmgr->default_container(), kPjRtStateResourceName, &pjrt_state, [&](PjRtState** ret) { *ret = PjRtState::Create(); return absl::OkStatus(); })); core::ScopedUnref pjrt_state_ref(pjrt_state); return pjrt_state->GetPjRtGpuClientCreationInfo(); } }
#include "tensorflow/core/tfrt/common/pjrt_util.h" #include <memory> #include <utility> #include "xla/pjrt/cpu/cpu_client.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/tfrt/common/pjrt_state.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace { using ::testing::ElementsAre; using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(PjRtUtilTest, SetGetAndDeletePjRtClient) { TF_ASSERT_OK(SetPjRtClientInTFGlobalResourceManager( DEVICE_CPU, xla::GetTfrtCpuClient(true, 1) .value())); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, GetPjRtClient(DEVICE_CPU)); EXPECT_THAT(pjrt_client, ::testing::NotNull()); } TEST(PjRtStateResourceManagerTest, SetNullPjRtClient) { EXPECT_THAT( SetPjRtClientInTFGlobalResourceManager(DEVICE_CPU, nullptr), StatusIs(error::INVALID_ARGUMENT, HasSubstr("PJRT client is nullptr"))); } TEST(PjRtGpuClientCreationInfoTest, SetAndGet) { auto info = std::make_unique<PjRtGpuClientCreationInfo>(); info->allowed_devices.insert(123); TF_ASSERT_OK( SetPjRtGpuClientCreationInfoInTFGlobalResourceManager(std::move(info))); TF_ASSERT_OK_AND_ASSIGN(PjRtGpuClientCreationInfo * retrieved_info, GetPjRtGpuClientCreationInfo()); EXPECT_THAT(retrieved_info->allowed_devices, ElementsAre(123)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/pjrt_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/pjrt_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c45b2d03-f0b3-41f2-a12e-10706399826b
cpp
tensorflow/tensorflow
async_value_tensor
tensorflow/core/tfrt/common/async_value_tensor.cc
tensorflow/core/tfrt/common/async_value_tensor_test.cc
#include "tensorflow/core/tfrt/common/async_value_tensor.h" #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include "absl/log/check.h" #include "xla/pjrt/pjrt_client.h" #include "tensorflow/core/framework/tensor.h" #include "tfrt/host_context/async_value.h" #include "tfrt/support/forward_decls.h" namespace tensorflow { namespace { constexpr uintptr_t kTag = 0x1ULL; } AsyncValueTensor* AsyncValueTensor::FromTensor( const Tensor* tensor) { AsyncValueTensor* av_tensor = FromOpaquePointer(const_cast<char*>(tensor->tensor_data().data())); return av_tensor; } const tfrt::RCReference<tfrt::AsyncValue>& AsyncValueTensor::GetAsyncRef() { return av_ref_; } void AsyncValueTensor::SetAsyncRef(tfrt::RCReference<tfrt::AsyncValue> av_ref) { av_ref_ = std::move(av_ref); } std::shared_ptr<xla::PjRtBuffer> AsyncValueTensor::GetBuffer() { return buffer_; } void AsyncValueTensor::SetBuffer(std::shared_ptr<xla::PjRtBuffer> buffer) { buffer_ = std::move(buffer); } AsyncValueTensor* AsyncValueTensor::FromOpaquePointer(void* ptr) { uintptr_t value = reinterpret_cast<uintptr_t>(ptr); if (value & kTag) { return reinterpret_cast<AsyncValueTensor*>(value & ~kTag); } else { return nullptr; } } void* AsyncValueTensor::ToOpaquePointer(AsyncValueTensor* tensor) { uintptr_t value = reinterpret_cast<uintptr_t>(tensor); CHECK_EQ(value & kTag, 0); value |= kTag; return reinterpret_cast<AsyncValueTensor*>(value); } void* AsyncValueAllocator::AllocateRaw(size_t alignment, size_t num_bytes) { return AsyncValueTensor::ToOpaquePointer(new AsyncValueTensor); } void AsyncValueAllocator::DeallocateRaw(void* ptr) { delete AsyncValueTensor::FromOpaquePointer(ptr); } }
#include "tensorflow/core/tfrt/common/async_value_tensor.h" #include <cstdint> #include <memory> #include <gtest/gtest.h> #include "xla/pjrt/pjrt_client.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" namespace tensorflow { namespace { TEST(AsyncValueTensorTest, InvalidTensor) { tensorflow::Tensor tensor(tensorflow::DT_INT64, tensorflow::TensorShape({1})); AsyncValueTensor* avt = AsyncValueTensor::FromTensor(&tensor); ASSERT_EQ(avt, nullptr); } TEST(AsyncValueTensorTest, SetAndGetAsyncValue) { AsyncValueAllocator allocator; tensorflow::Tensor tensor(&allocator, tensorflow::DT_INT64, tensorflow::TensorShape({1})); AsyncValueTensor* avt = AsyncValueTensor::FromTensor(&tensor); ASSERT_NE(avt, nullptr); tsl::AsyncValueRef<int32_t> value = tsl::MakeConstructedAsyncValueRef<int32_t>(123); avt->SetAsyncRef(value.CopyRCRef()); auto ret_value = avt->GetAsyncRef(); ASSERT_EQ(ret_value, value.CopyRCRef()); } TEST(AsyncValueTensorTest, SetAndGetBuffer) { AsyncValueAllocator allocator; tensorflow::Tensor tensor(&allocator, tensorflow::DT_INT64, tensorflow::TensorShape({1})); AsyncValueTensor* avt = AsyncValueTensor::FromTensor(&tensor); ASSERT_NE(avt, nullptr); std::shared_ptr<xla::PjRtBuffer> buffer; avt->SetBuffer(buffer); auto ret_buffer = avt->GetBuffer(); ASSERT_EQ(ret_buffer, buffer); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/async_value_tensor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/async_value_tensor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ed9a3fba-817e-4f60-bc20-9c5d849e2c26
cpp
tensorflow/tensorflow
ifrt_serving_executable
tensorflow/core/tfrt/ifrt/ifrt_serving_executable.cc
tensorflow/core/tfrt/ifrt/ifrt_serving_executable_test.cc
#include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/FormatVariadic.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/extract_callback.h" #include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/ifrt_types.h" #include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/tf2hlo.h" #include "tensorflow/compiler/mlir/tfrt/utils/export.h" #include "tensorflow/compiler/tf2xla/host_compute_metadata.pb.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/pjrt/host_callback.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/hlo/hlo_program.h" #include "xla/python/ifrt/host_callback.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/pjrt_ifrt/pjrt_host_callback.h" #include "xla/python/pjrt_ifrt/xla_compiler.h" #include "xla/service/computation_placer.h" #include "xla/shape.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/tsl/framework/serving_device_selector.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/protobuf/tpu/compile_metadata.pb.h" #include "tensorflow/core/tfrt/ifrt/ifrt_config.pb.h" #include "tensorflow/core/tfrt/ifrt/ifrt_device_utils.h" #include "tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_utils.h" #include "tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.h" #include "tensorflow/core/tfrt/ifrt/ifrt_tensor_utils.h" #include "tensorflow/core/tfrt/ifrt/sharding_utils.h" #include "tensorflow/core/tfrt/ifrt/tf_host_callback.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/tstring.h" #include "tfrt/host_context/concurrent_work_queue.h" namespace tensorflow { namespace ifrt_serving { namespace { bool IsSingleDevice( const tensorflow::tpu::TPUCompileMetadataProto& compile_metadata) { return compile_metadata.num_replicas() == 1 && compile_metadata.num_cores_per_replica() == 1; } absl::StatusOr<std::vector<DtypeAndShape>> BuildDtypeAndShape( absl::Span<const tensorflow::Tensor> inputs, absl::Span<const int> variable_arg_indices, const IfrtRestoreTensorRegistry& ifrt_restore_tensor_registry) { std::vector<DtypeAndShape> dtypes_and_shapes; dtypes_and_shapes.reserve(inputs.size()); int variable_index = 0; for (int i = 0; i < inputs.size(); i++) { if (variable_index < variable_arg_indices.size() && i == variable_arg_indices[variable_index]) { TF_ASSIGN_OR_RETURN(auto dtype_and_shape, ifrt_restore_tensor_registry.GetDtypeAndShape( inputs[i].scalar<tsl::tstring>()())); dtypes_and_shapes.push_back(std::move(dtype_and_shape)); variable_index++; } else { dtypes_and_shapes.push_back(DtypeAndShape{.dtype = inputs[i].dtype(), .shape = inputs[i].shape()}); } } return dtypes_and_shapes; } absl::StatusOr<xla::DeviceAssignment> GetRuntimeXlaDeviceAssignment( const tsl::RCReference<xla::ifrt::DeviceList>& device_list, int num_replicas, int num_cores_per_replica) { const int num_devices = num_replicas * num_cores_per_replica; const absl::Span<xla::ifrt::Device* const> devices = device_list->devices(); if (devices.size() != num_devices) { return absl::InternalError( absl::StrCat("Device assignment has ", devices.size(), " devices, but expected ", num_devices)); } xla::DeviceAssignment da(num_replicas, num_cores_per_replica); int device_index = 0; for (int replica_idx = 0; replica_idx < num_replicas; replica_idx++) { for (int core_idx = 0; core_idx < num_cores_per_replica; core_idx++, device_index++) { da(replica_idx, core_idx) = devices[device_index]->Id().value(); VLOG(3) << "Added IFRT device id: " << da(replica_idx, core_idx); } } return da; } static constexpr absl::string_view kDeviceAssignmentAttr = "device_assignment"; static constexpr absl::string_view kEntryFuncName = "main"; absl::StatusOr<std::vector<xla::ifrt::Device*>> GetAssignedDevices( mlir::ModuleOp module, const xla::ifrt::Client& ifrt_client, int num_replicas, int num_cores_per_replica) { auto op = module.lookupSymbol<mlir::func::FuncOp>(kEntryFuncName); if (!op) { return absl::InternalError("Could not find entry function in MLIR Module."); } auto device_assignment_attr = op->getAttrOfType<mlir::ArrayAttr>(kDeviceAssignmentAttr); std::optional<std::vector<int>> device_assignment_attr_val; if (device_assignment_attr && !device_assignment_attr.getValue().empty()) { std::vector<int> coords; coords.reserve(num_replicas * num_cores_per_replica); for (auto coord_attr : device_assignment_attr.getValue()) { auto coord_attr_val = mlir::dyn_cast<mlir::IntegerAttr>(coord_attr); if (!coord_attr_val) { return absl::InternalError( llvm::formatv("Device assignment attribute is not an integer: {0}", device_assignment_attr) .str()); } coords.push_back(coord_attr_val.getInt()); } device_assignment_attr_val = std::move(coords); } return GetAssignedIfrtDevices(ifrt_client, num_replicas, num_cores_per_replica, device_assignment_attr_val); } } absl::StatusOr<std::unique_ptr<IfrtServingExecutable>> IfrtServingExecutable::Create( int64_t program_id, absl::string_view model_name, absl::string_view signature_name, mlir::OwningOpRef<mlir::ModuleOp> module, std::shared_ptr<xla::ifrt::Client> client, tsl::thread::ThreadPool* thread_pool, IfrtLoadedVariableRegistry* ifrt_loaded_variable_registry, const IfrtRestoreTensorRegistry* ifrt_restore, tfrt::ConcurrentWorkQueue* checkpoint_loader_queue, tensorflow::DeviceMgr* device_mgr, tensorflow::XlaHelpers::ShapeRepresentationFn shape_representation_fn, IfrtServingCoreSelector* ifrt_serving_core_selector, tsl::protobuf::Message* compilation_environement_proto) { TF_ASSIGN_OR_RETURN( tensorflow::tpu::TPUCompileMetadataProto original_compile_metadata, GetCompileMetadata(*module, *client)); TF_ASSIGN_OR_RETURN( std::vector<xla::ifrt::Device*> assigned_devices, GetAssignedDevices(*module, *client, original_compile_metadata.num_replicas(), original_compile_metadata.num_cores_per_replica())); auto executable = absl::WrapUnique(new IfrtServingExecutable( program_id, model_name, signature_name, std::move(module), std::move(client), thread_pool, ifrt_loaded_variable_registry, ifrt_restore, checkpoint_loader_queue, device_mgr, std::move(shape_representation_fn), ifrt_serving_core_selector, std::move(original_compile_metadata), xla::ifrt::BasicDeviceList::Create(xla::ifrt::BasicDeviceList::Devices( assigned_devices.begin(), assigned_devices.end())), compilation_environement_proto)); return executable; } absl::StatusOr<tsl::RCReference<xla::ifrt::Array>> IfrtServingExecutable::ConvertTensorToArray( const tensorflow::Tensor& tensor, const tsl::RCReference<xla::ifrt::DeviceList>& device_list, const xla::OpSharding& sharding) { xla::ifrt::Shape input_shape = ToIfrtShape(tensor.shape()); VLOG(2) << "Converting tensor of shape " << input_shape; TF_ASSIGN_OR_RETURN(auto hlo_sharding, xla::HloSharding::FromProto(sharding)); return MakeArrayFromTensor(*ifrt_client_, tensor, device_list, std::move(hlo_sharding), thread_pool_); } absl::StatusOr<std::vector<tensorflow::FunctionDef>> BuildFunctionDef( mlir::ModuleOp module) { std::vector<tensorflow::FunctionDef> function_defs; TF_RETURN_IF_ERROR(ExportFunctionDefs( module, [&](tensorflow::FunctionDef function_def) { function_defs.push_back(std::move(function_def)); return absl::OkStatus(); }, false)); return function_defs; } struct HostCallbackBuilderInfo { tensorflow::tf2xla::HostTransferMetadata device_to_host; tensorflow::tf2xla::HostTransferMetadata host_to_device; }; absl::StatusOr<absl::flat_hash_map<std::string, HostCallbackBuilderInfo>> GroupHostCallbackByKey(const Tf2HloResult& tf2hlo_result) { absl::flat_hash_map<std::string, HostCallbackBuilderInfo> host_callbacks; for (const auto& device_to_host : tf2hlo_result.host_compute_metadata.device_to_host()) { auto& host_callback = host_callbacks[device_to_host.key()]; host_callback.device_to_host = device_to_host; } for (const auto& host_to_device : tf2hlo_result.host_compute_metadata.host_to_device()) { auto& host_callback = host_callbacks[host_to_device.key()]; host_callback.host_to_device = host_to_device; } return host_callbacks; } absl::StatusOr<xla::HostCallback> BuildHostCallback( absl::string_view key, const HostCallbackBuilderInfo& builder_info, mlir::ModuleOp module, tensorflow::DeviceMgr* device_mgr, std::vector<std::unique_ptr<TfHostCallback>>& tf_host_callbacks) { VLOG(2) << "BuildHostCallback for key: " << key; DCHECK(device_mgr); xla::HostCallback host_callback; std::vector<DtypeAndShape> operand_type_and_shapes; std::vector<DtypeAndShape> result_type_and_shapes; auto to_xla_shape = [](tensorflow::DataType data_type, const tensorflow::TensorShapeProto& shape) -> absl::StatusOr<xla::Shape> { xla::Shape xla_shape; TF_ASSIGN_OR_RETURN(tensorflow::TensorShape tensor_shape, tensorflow::TensorShape::BuildTensorShape(shape)); if (absl::Status status = tensorflow::TensorShapeToXLAShape( data_type, tensor_shape, &xla_shape); status.ok()) { return xla_shape; } else { return status; } }; operand_type_and_shapes.reserve(builder_info.device_to_host.metadata_size()); result_type_and_shapes.reserve(builder_info.host_to_device.metadata_size()); for (const auto& metadata : builder_info.device_to_host.metadata()) { TF_ASSIGN_OR_RETURN(xla::Shape shape, to_xla_shape(metadata.type(), metadata.shape())); uint16_t channel_id = static_cast<uint16_t>(metadata.channel_id()); VLOG(2) << "Channel id: " << channel_id; host_callback.operands.push_back( {.channel_id = channel_id, .shape = shape}); operand_type_and_shapes.push_back( DtypeAndShape{.dtype = metadata.type(), .shape = metadata.shape()}); } for (const auto& metadata : builder_info.host_to_device.metadata()) { TF_ASSIGN_OR_RETURN(xla::Shape shape, to_xla_shape(metadata.type(), metadata.shape())); uint16_t channel_id = static_cast<uint16_t>(metadata.channel_id()); VLOG(2) << "Channel id: " << channel_id; host_callback.results.push_back( {.channel_id = channel_id, .shape = std::move(shape)}); result_type_and_shapes.push_back( DtypeAndShape{.dtype = metadata.type(), .shape = metadata.shape()}); } TF_ASSIGN_OR_RETURN(mlir::OwningOpRef<mlir::ModuleOp> callback_module, ExtractCallbackModule(module, key)); TF_ASSIGN_OR_RETURN(std::vector<tensorflow::FunctionDef> function_defs, BuildFunctionDef(*callback_module)); TF_ASSIGN_OR_RETURN( std::unique_ptr<TfHostCallback> tf_host_callback, TfHostCallback::Create(function_defs, key, operand_type_and_shapes, result_type_and_shapes, device_mgr)); host_callback.callback = [tf_host_callback = tf_host_callback.get()]( void** output, void** input) { return tf_host_callback->Call(input, output); }; tf_host_callbacks.push_back(std::move(tf_host_callback)); return host_callback; } absl::StatusOr<std::vector<xla::HostCallback>> BuildHostCallbacks( const Tf2HloResult& tf2hlo_result, mlir::ModuleOp module, tensorflow::DeviceMgr* device_mgr, std::vector<std::unique_ptr<TfHostCallback>>& tf_host_callbacks) { TF_ASSIGN_OR_RETURN(auto host_callback_maps, GroupHostCallbackByKey(tf2hlo_result)); std::vector<xla::HostCallback> host_callbacks; host_callbacks.reserve(host_callback_maps.size()); for (const auto& [entry_function, builder_info] : host_callback_maps) { TF_ASSIGN_OR_RETURN(auto host_callback, BuildHostCallback(entry_function, builder_info, module, device_mgr, tf_host_callbacks)); host_callbacks.push_back(std::move(host_callback)); } return host_callbacks; } absl::StatusOr<IfrtServingExecutable::SharedCachedExecutableBundle> IfrtServingExecutable::CreateExecutableSynchronously( mlir::OwningOpRef<mlir::ModuleOp> module_copy, const tensorflow::tpu::TPUCompileMetadataProto& compile_metadata, absl::Span<const DtypeAndShape> dtypes_and_shapes) { TF_ASSIGN_OR_RETURN( Tf2HloResult tf2hlo_result, CompileTfToHlo(*module_copy, dtypes_and_shapes, signature_name(), *ifrt_client_, compile_metadata, shape_representation_fn_)); const int num_replicas = tf2hlo_result.compile_metadata.num_replicas(); const int num_partitions = tf2hlo_result.compile_metadata.num_cores_per_replica(); VLOG(2) << " Number of replcas is " << num_replicas << " and num_partitions is " << num_partitions; if (num_replicas > 1) { return absl::UnimplementedError( absl::StrCat("Only support single replica, but replica number is ", num_replicas, " and num_partitions is ", num_partitions)); } xla::CompileOptions xla_compile_options; if (compilation_environment_proto_) { tsl::protobuf::Message* comp_env_copy = compilation_environment_proto_->New(); comp_env_copy->CopyFrom(*compilation_environment_proto_); TF_RETURN_IF_ERROR( xla_compile_options.executable_build_options.mutable_comp_envs() ->AddEnv(absl::WrapUnique<tsl::protobuf::Message>(comp_env_copy))); } xla_compile_options.executable_build_options.set_num_replicas(num_replicas); xla_compile_options.executable_build_options.set_num_partitions( num_partitions); xla_compile_options.executable_build_options.set_use_spmd_partitioning( original_compile_metadata_.use_spmd_for_xla_partitioning()); xla_compile_options.parameter_is_tupled_arguments = false; if (UsePortableExecution(compile_metadata)) { xla_compile_options.compile_portable_executable = true; } else { TF_ASSIGN_OR_RETURN( xla::DeviceAssignment da, GetRuntimeXlaDeviceAssignment(assigned_device_list_, num_replicas, num_partitions)); VLOG(2) << "Device assignment :" << da.ToString(); xla_compile_options.executable_build_options.set_device_assignment(da); } std::vector<std::unique_ptr<TfHostCallback>> tf_host_callbacks; TF_ASSIGN_OR_RETURN(auto host_callbacks, BuildHostCallbacks(tf2hlo_result, *module_copy, device_mgr_, tf_host_callbacks)); std::vector<tsl::RCReference<xla::ifrt::LoadedHostCallback>> loaded_host_callbacks; loaded_host_callbacks.reserve(host_callbacks.size()); for (const auto& host_callback : host_callbacks) { loaded_host_callbacks.push_back( tsl::MakeRef<xla::ifrt::PjRtHostSendAndRecvLoadedHostCallback>( ifrt_client_.get(), std::make_unique<xla::HostCallback>(host_callback))); } TF_ASSIGN_OR_RETURN( std::unique_ptr<xla::ifrt::LoadedExecutable> ifrt_executable, ifrt_client_->GetDefaultCompiler()->Compile( std::make_unique<xla::ifrt::HloProgram>( tf2hlo_result.mlir_hlo_module.get()), std::make_unique<xla::ifrt::XlaCompileOptions>( xla_compile_options, loaded_host_callbacks))); SharedCachedExecutableBundle executable_bundle = std::make_shared<CachedExecutableBundle>(); executable_bundle->ifrt_executable = std::move(ifrt_executable); executable_bundle->compile_metadata = std::move(tf2hlo_result.compile_metadata); executable_bundle->host_callbacks = std::move(tf_host_callbacks); return executable_bundle; } xla::ifrt::Future<IfrtServingExecutable::SharedCachedExecutableBundle> IfrtServingExecutable::LookUpOrCreateExecutable( const tensorflow::tpu::TPUCompileMetadataProto& compile_metadata, absl::Span<const DtypeAndShape> dtypes_and_shapes) { std::vector<tensorflow::TensorShape> input_shapes; for (const auto& dtype_and_shape : dtypes_and_shapes) { input_shapes.push_back(dtype_and_shape.shape); } Key key = {.input_shapes = std::move(input_shapes)}; xla::ifrt::Promise<SharedCachedExecutableBundle> promise; xla::ifrt::Future<SharedCachedExecutableBundle> future; mlir::OwningOpRef<mlir::ModuleOp> module_copy; { absl::MutexLock lock(&mutex_); const auto it = executable_bundles_.find(key); if (it != executable_bundles_.end()) { return it->second; } if (is_frozen_) { xla::ifrt::Future<SharedCachedExecutableBundle> frozen_future( absl::FailedPreconditionError( "Cannot compile for new input shapes after the executable is " "already frozen.")); return frozen_future; } promise = xla::ifrt::Future<SharedCachedExecutableBundle>::CreatePromise(); future = xla::ifrt::Future<SharedCachedExecutableBundle>(promise); executable_bundles_.emplace(key, future); module_copy = mlir::OwningOpRef<mlir::ModuleOp>(module_->clone()); } LOG(INFO) << "Cache missed. Building executable"; absl::StatusOr<SharedCachedExecutableBundle> executable_bundle = CreateExecutableSynchronously(std::move(module_copy), compile_metadata, dtypes_and_shapes); promise.Set(std::move(executable_bundle)); return future; } void IfrtServingExecutable::Freeze() { LOG(INFO) << "Freezing executable. Program id: " << program_id_; absl::MutexLock lock(&mutex_); is_frozen_ = true; module_ = nullptr; } bool IfrtServingExecutable::UsePortableExecution( const tensorflow::tpu::TPUCompileMetadataProto& compile_metadata) { return IsSingleDevice(compile_metadata) && ifrt_serving_core_selector_; } absl::StatusOr<std::vector<tensorflow::Tensor>> IfrtServingExecutable::Execute( absl::Span<const tensorflow::Tensor> inputs, absl::Span<const int> variable_arg_indices) { for (int i = 1; i < variable_arg_indices.size(); i++) { if (variable_arg_indices[i] <= variable_arg_indices[i - 1]) { return absl::FailedPreconditionError(absl::StrCat( "Expected variable_arg_indices in ascending order. But subsequence " "starting at ", i - 1, ": (", variable_arg_indices[i - 1], ", ", variable_arg_indices[i], ")", " is not in ascending order")); } } if (!variable_arg_indices.empty() && inputs.size() <= variable_arg_indices.back()) { return absl::FailedPreconditionError(absl::StrCat( "Expected at most ", inputs.size(), " inputs, but got up to ", variable_arg_indices.back(), " variables.")); } for (const int i : variable_arg_indices) { if (inputs[i].dtype() != tensorflow::DT_STRING || !tensorflow::TensorShapeUtils::IsScalar(inputs[i].shape())) { return absl::FailedPreconditionError( absl::StrCat("Expected a scalar tensor as loaded variable array key, " "but got type ", inputs[i].dtype(), " and shape ", inputs[i].shape().DebugString(), " at index ", i)); } } TF_ASSIGN_OR_RETURN(std::vector<DtypeAndShape> dtypes_and_shapes, BuildDtypeAndShape(inputs, variable_arg_indices, ifrt_restore_tensor_registry_)); tensorflow::tpu::TPUCompileMetadataProto compile_metadata = original_compile_metadata_; TF_RETURN_IF_ERROR( UpdateCompileMetadata(compile_metadata, dtypes_and_shapes)); tsl::DeviceReservation device_reservation(kNoCoreSelectedIndex, nullptr); tsl::RCReference<xla::ifrt::DeviceList> device_list; if (UsePortableExecution(compile_metadata)) { device_reservation = ifrt_serving_core_selector_->ReserveDevice(program_id_); compile_metadata.clear_device_assignment(); TF_ASSIGN_OR_RETURN(xla::ifrt::Device * device, ifrt_client_->LookupDevice(xla::ifrt::DeviceId( device_reservation.device_index()))); device_list = xla::ifrt::BasicDeviceList::Create( xla::ifrt::BasicDeviceList::Devices({device})); } else { device_list = assigned_device_list_; } TF_ASSIGN_OR_RETURN(SharedCachedExecutableBundle executable_bundle, LookUpOrCreateExecutable( compile_metadata, absl::MakeSpan(dtypes_and_shapes)) .Await()); if (executable_bundle->compile_metadata.args().size() != dtypes_and_shapes.size()) { return absl::InternalError(absl::StrCat( "Expected ", executable_bundle->compile_metadata.args().size(), " but got ", dtypes_and_shapes.size(), " arguments")); } TF_RETURN_IF_ERROR(AsyncLoadIfrtArray(inputs, variable_arg_indices, *executable_bundle, device_list)); VLOG(2) << "Completed AsyncLoadIfrtArray"; std::vector<tsl::RCReference<xla::ifrt::Array>> args; args.reserve(inputs.size()); int variable_index = 0; for (int i = 0; i < inputs.size(); i++) { if (variable_index < variable_arg_indices.size() && i == variable_arg_indices[variable_index]) { std::vector<int> device_ids; device_ids.reserve(device_list->size()); for (xla::ifrt::Device* device : device_list->devices()) { device_ids.push_back(device->Id().value()); } TF_ASSIGN_OR_RETURN( xla::HloSharding hlo_sharding, xla::HloSharding::FromProto( executable_bundle->compile_metadata.args()[i].sharding())); IfrtLoadedVariableRegistry::Key key{ .device_ids = std::move(device_ids), .input_name = inputs[i].scalar<tsl::tstring>()(), .hlo_sharding = std::move(hlo_sharding), }; TF_ASSIGN_OR_RETURN( auto loaded_variable, ifrt_loaded_variable_registry_.GetLoadedVariable(key)); TF_ASSIGN_OR_RETURN(tsl::RCReference<xla::ifrt::Array> single_array, loaded_variable.array.Await()); args.push_back(std::move(single_array)); variable_index++; } else { TF_ASSIGN_OR_RETURN( auto single_array, ConvertTensorToArray( inputs[i], device_list, executable_bundle->compile_metadata.args()[i].sharding())); args.push_back(single_array); } } DCHECK_EQ(args.size(), dtypes_and_shapes.size()); VLOG(2) << "Start Execution"; std::optional<tsl::RCReference<xla::ifrt::DeviceList>> execution_device_list; if (UsePortableExecution(compile_metadata)) { execution_device_list = device_list; } TF_ASSIGN_OR_RETURN( auto execution_result, executable_bundle->ifrt_executable->Execute( absl::MakeSpan(args), {.fill_status = true}, std::move(execution_device_list))); auto status = execution_result.status.Await(); TF_RETURN_IF_ERROR(status); if (executable_bundle->compile_metadata.retvals().size() != execution_result.outputs.size()) { return absl::InternalError(absl::StrCat( "Expect ", executable_bundle->compile_metadata.retvals().size(), " but got ", execution_result.outputs.size(), " outputs")); } std::vector<xla::ifrt::Future<tensorflow::Tensor>> output_futures; output_futures.reserve(execution_result.outputs.size()); for (int i = 0; i < execution_result.outputs.size(); ++i) { tensorflow::TensorShape tensor_shape; const tsl::RCReference<xla::ifrt::Array>& array_for_copy = execution_result.outputs[i]; const tpu::TPUCompileMetadataProto::Retval& metadata_retval = executable_bundle->compile_metadata.retvals()[i]; VLOG(2) << "Output sharding: " << array_for_copy->sharding().DebugString(); TF_ASSIGN_OR_RETURN(auto hlo_sharding, xla::HloSharding::FromProto( metadata_retval.sharding())); output_futures.push_back(MakeTensorFromArray(*ifrt_client_, *array_for_copy, hlo_sharding, device_list, thread_pool_)); } std::vector<tensorflow::Tensor> outputs; outputs.reserve(output_futures.size()); for (auto& output_future : output_futures) { TF_ASSIGN_OR_RETURN(auto tensor, output_future.Await()); outputs.push_back(std::move(tensor)); } return outputs; } absl::Status IfrtServingExecutable::AsyncLoadIfrtArray( absl::Span<const tensorflow::Tensor> inputs, absl::Span<const int> variable_arg_indices, const CachedExecutableBundle& executable_bundle, const tsl::RCReference<xla::ifrt::DeviceList>& devices) { for (const int i : variable_arg_indices) { if (inputs[i].dtype() != tensorflow::DT_STRING || !tensorflow::TensorShapeUtils::IsScalar(inputs[i].shape())) { return absl::FailedPreconditionError( absl::StrCat("Expected a scalar tensor as loaded variable array key, " "but got type ", inputs[i].dtype(), " and shape ", inputs[i].shape().DebugString(), " at index ", i)); } std::string runtime_name = inputs[i].scalar<tsl::tstring>()(); TF_ASSIGN_OR_RETURN( xla::HloSharding hlo_sharding, xla::HloSharding::FromProto( executable_bundle.compile_metadata.args()[i].sharding())); VariableDeviceShardingConfig sharding_config{ .hlo_sharding = std::move(hlo_sharding), }; for (xla::ifrt::Device* device : devices->devices()) { sharding_config.device_ids.push_back(device->Id().value()); } TF_RETURN_IF_ERROR( ifrt_serving::AsyncLoadRestoredTensorAsIfrtLoadedVariable( runtime_name, ifrt_client_, thread_pool_, ifrt_restore_tensor_registry_, ifrt_loaded_variable_registry_, checkpoint_loader_queue_, sharding_config)); } return absl::OkStatus(); } } }
#include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/test_util.h" #include "xla/tsl/framework/serving_device_selector.h" #include "xla/tsl/framework/test_util/mock_serving_device_selector.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_matcher.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/tstring.h" namespace tensorflow { namespace ifrt_serving { namespace { using tensorflow::ifrt_serving::test_utils::GetMlirModulePath; using ::tensorflow::test::AsTensor; using ::tensorflow::test::TensorEq; using ::testing::ElementsAre; using ::testing::Return; using ::tsl::testing::StatusIs; struct VariableInputTestParam { std::vector<tensorflow::Tensor> in_tensors; std::vector<bool> is_variable; std::vector<tensorflow::Tensor> expected_out_tensors; }; using VariableInputTest = ::testing::TestWithParam<VariableInputTestParam>; class IfrtServingExecutableTest : public ::testing::Test { protected: explicit IfrtServingExecutableTest() { helper_ = std::make_unique<test_utils::IfrtServingExecutableTestHelper>( &selector_); } tsl::test_util::MockServingDeviceSelector selector_; std::unique_ptr<test_utils::IfrtServingExecutableTestHelper> helper_; }; TEST_F(IfrtServingExecutableTest, Basic) { int64_t program_id = 123456; EXPECT_CALL(selector_, ReserveDevice(absl::StrCat(program_id))) .Times(1) .WillOnce(Return(tsl::DeviceReservation(0, nullptr))); auto executable = helper_->MakeExecutable(program_id, GetMlirModulePath("executable.mlir")); auto x = AsTensor<int32_t>({1, 2, 3}, tensorflow::TensorShape({1, 3})); auto y = AsTensor<int32_t>({1, 2, 3}, tensorflow::TensorShape({3, 1})); std::vector<tensorflow::Tensor> inputs{x, y}; for (int i = 0; i < helper_->num_cores(); i++) { TF_ASSERT_OK(executable->Execute(absl::MakeSpan(inputs), {}).status()); } TF_ASSERT_OK_AND_ASSIGN(auto result, executable->Execute(absl::MakeSpan(inputs), {})); const auto expected_out = AsTensor<int32_t>({14}, tensorflow::TensorShape({1, 1})); EXPECT_THAT(result, ElementsAre(TensorEq(expected_out))); } TEST_F(IfrtServingExecutableTest, MultipleShapes) { int64_t program_id = 123456; EXPECT_CALL(selector_, ReserveDevice(absl::StrCat(program_id))) .Times(6) .WillRepeatedly( [](::testing::Unused) { return tsl::DeviceReservation(0, nullptr); }); auto executable = helper_->MakeExecutable(program_id, GetMlirModulePath("executable.mlir")); auto x1 = AsTensor<int32_t>({1, 2, 3}, tensorflow::TensorShape({1, 3})); auto y1 = AsTensor<int32_t>({1, 2, 3}, tensorflow::TensorShape({3, 1})); const auto expected_out1 = AsTensor<int32_t>({14}, tensorflow::TensorShape({1, 1})); std::vector<tensorflow::Tensor> inputs1{x1, y1}; auto x2 = AsTensor<int32_t>({1, 2, 3, 4}, tensorflow::TensorShape({1, 4})); auto y2 = AsTensor<int32_t>({1, 2, 3, 4}, tensorflow::TensorShape({4, 1})); const auto expected_out2 = AsTensor<int32_t>({30}, tensorflow::TensorShape({1, 1})); std::vector<tensorflow::Tensor> inputs2{x2, y2}; std::vector<tensorflow::Tensor> outputs1, outputs2; for (int i = 0; i < helper_->num_cores(); i++) { TF_ASSERT_OK(executable->Execute(absl::MakeSpan(inputs1), {}).status()); } for (int i = 0; i < 3; i++) { TF_ASSERT_OK_AND_ASSIGN(outputs1, executable->Execute(absl::MakeSpan(inputs1), {})); TF_ASSERT_OK_AND_ASSIGN(outputs2, executable->Execute(absl::MakeSpan(inputs2), {})); } ASSERT_EQ(executable->num_executables(), 2); EXPECT_THAT(outputs1, ElementsAre(TensorEq(expected_out1))); EXPECT_THAT(outputs2, ElementsAre(TensorEq(expected_out2))); } TEST_F(IfrtServingExecutableTest, ReturnFailOnUncompiledShapeAfterFrozen) { int64_t program_id = 123456; EXPECT_CALL(selector_, ReserveDevice(absl::StrCat(program_id))) .Times(3) .WillRepeatedly( [](::testing::Unused) { return tsl::DeviceReservation(0, nullptr); }); auto executable = helper_->MakeExecutable(program_id, GetMlirModulePath("executable.mlir")); auto x1 = AsTensor<int32_t>({1, 2, 3}, tensorflow::TensorShape({1, 3})); auto y1 = AsTensor<int32_t>({1, 2, 3}, tensorflow::TensorShape({3, 1})); const auto expected_out1 = AsTensor<int32_t>({14}, tensorflow::TensorShape({1, 1})); std::vector<tensorflow::Tensor> inputs1{x1, y1}; std::vector<tensorflow::Tensor> outputs1; for (int i = 0; i < helper_->num_cores(); i++) { TF_ASSERT_OK(executable->Execute(absl::MakeSpan(inputs1), {}).status()); } TF_ASSERT_OK_AND_ASSIGN(outputs1, executable->Execute(absl::MakeSpan(inputs1), {})); executable->Freeze(); outputs1.clear(); TF_ASSERT_OK_AND_ASSIGN(outputs1, executable->Execute(absl::MakeSpan(inputs1), {})); EXPECT_THAT(outputs1, ElementsAre(TensorEq(expected_out1))); auto x2 = AsTensor<int32_t>({1, 2, 3, 4}, tensorflow::TensorShape({1, 4})); auto y2 = AsTensor<int32_t>({1, 2, 3, 4}, tensorflow::TensorShape({4, 1})); std::vector<tensorflow::Tensor> inputs2{x2, y2}; std::vector<tensorflow::Tensor> outputs2; auto status = executable->Execute(absl::MakeSpan(inputs2), {}); EXPECT_THAT(status, StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_F(IfrtServingExecutableTest, Spmd) { int64_t program_id = 111111; EXPECT_CALL(selector_, ReserveDevice(absl::StrCat(program_id))).Times(0); auto executable = helper_->MakeExecutable( program_id, GetMlirModulePath("spmd_executable.mlir")); auto x = AsTensor<int32_t>({1, 2, 3, 4, 5, 6, 7, 8}, tensorflow::TensorShape({4, 2})); auto y = AsTensor<int32_t>({11, 12, 13, 14, 15, 16, 17, 18}, tensorflow::TensorShape({4, 2})); auto z = AsTensor<int32_t>({21, 22, 23, 24, 25, 26, 27, 28}, tensorflow::TensorShape({4, 2})); const auto expected_out = AsTensor<int32_t>({33, 36, 39, 42, 45, 48, 51, 54}, tensorflow::TensorShape({4, 2})); std::vector<tensorflow::Tensor> inputs{x, y, z}; TF_ASSERT_OK_AND_ASSIGN(auto result, executable->Execute(absl::MakeSpan(inputs), {})); EXPECT_THAT(result, ElementsAre(TensorEq(expected_out))); } TEST_F(IfrtServingExecutableTest, SpmdTwoReturns) { int64_t program_id = 111111; EXPECT_CALL(selector_, ReserveDevice(absl::StrCat(program_id))).Times(0); auto executable = helper_->MakeExecutable( program_id, GetMlirModulePath("spmd_executable_two_returns.mlir")); auto x = AsTensor<int32_t>({1, 2, 3, 4, 5, 6, 7, 8}, tensorflow::TensorShape({4, 2})); auto y = AsTensor<int32_t>({11, 12, 13, 14, 15, 16, 17, 18}, tensorflow::TensorShape({4, 2})); auto z = AsTensor<int32_t>({21, 22, 23, 24, 25, 26, 27, 28}, tensorflow::TensorShape({4, 2})); const auto expected_out0 = AsTensor<int32_t>({33, 36, 39, 42, 45, 48, 51, 54}, tensorflow::TensorShape({4, 2})); const auto expected_out1 = AsTensor<int32_t>({20, 20, 20, 20, 20, 20, 20, 20}, tensorflow::TensorShape({4, 2})); std::vector<tensorflow::Tensor> inputs{x, y, z}; TF_ASSERT_OK_AND_ASSIGN(auto result, executable->Execute(absl::MakeSpan(inputs), {})); EXPECT_THAT(result, ElementsAre(TensorEq(expected_out0), TensorEq(expected_out1))); } TEST_F(IfrtServingExecutableTest, NoReturn) { int64_t program_id = 111111; EXPECT_CALL(selector_, ReserveDevice(absl::StrCat(program_id))) .Times(1) .WillRepeatedly( [](::testing::Unused) { return tsl::DeviceReservation(0, nullptr); }); auto executable = helper_->MakeExecutable( program_id, GetMlirModulePath("executable_no_return.mlir")); auto x = AsTensor<int32_t>({1, 2, 3}, tensorflow::TensorShape({1, 3})); auto y = AsTensor<int32_t>({1, 2, 3}, tensorflow::TensorShape({3, 1})); std::vector<tensorflow::Tensor> inputs{x, y}; for (int i = 0; i < helper_->num_cores(); i++) { TF_ASSERT_OK(executable->Execute(absl::MakeSpan(inputs), {}).status()); } TF_ASSERT_OK_AND_ASSIGN(auto result, executable->Execute(absl::MakeSpan(inputs), {})); ASSERT_EQ(result.size(), 0); } TEST_P(VariableInputTest, InterleaveVariable) { tsl::test_util::MockServingDeviceSelector device_selector; test_utils::IfrtServingExecutableTestHelper helper(&device_selector); int64_t program_id = 111111; EXPECT_CALL(device_selector, ReserveDevice(absl::StrCat(program_id))) .Times(1) .WillRepeatedly( [](::testing::Unused) { return tsl::DeviceReservation(0, nullptr); }); auto executable = helper.MakeExecutable( program_id, GetMlirModulePath("executable_long_inputs.mlir")); IfrtRestoreTensorRegistry* ifrt_restore_tensor_registry = helper.ifrt_restore_tensor_registry(); std::vector<tensorflow::Tensor> inputs; std::vector<int> loaded_variable_indices; for (int i = 0; i < GetParam().in_tensors.size(); i++) { if (GetParam().is_variable[i]) { auto input_tensor_promise = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto input_tensor_future = xla::ifrt::Future<tensorflow::Tensor>(input_tensor_promise); IfrtRestoreTensorRegistry::RestoredTensorInfo restore_tensor_info = { .dtype_and_shape{.dtype = GetParam().in_tensors[i].dtype(), .shape = GetParam().in_tensors[i].shape()}, .tensor_future = input_tensor_future}; std::string variable_name = absl::StrCat("variable_", i); ASSERT_OK(ifrt_restore_tensor_registry->TryRegister(variable_name, restore_tensor_info)); loaded_variable_indices.push_back(i); input_tensor_promise.Set(GetParam().in_tensors[i]); tensorflow::Tensor key_tensor(tensorflow::DT_STRING, {}); key_tensor.scalar<tsl::tstring>()() = variable_name; inputs.push_back(key_tensor); } else { inputs.push_back(GetParam().in_tensors[i]); } } ASSERT_EQ(inputs.size(), GetParam().is_variable.size()); for (int i = 0; i < helper.num_cores(); i++) { TF_ASSERT_OK(executable ->Execute(absl::MakeSpan(inputs), absl::MakeSpan(loaded_variable_indices)) .status()); } TF_ASSERT_OK_AND_ASSIGN( auto result, executable->Execute(absl::MakeSpan(inputs), absl::MakeSpan(loaded_variable_indices))); EXPECT_THAT(result, ElementsAre(TensorEq(GetParam().expected_out_tensors[0]), TensorEq(GetParam().expected_out_tensors[1]), TensorEq(GetParam().expected_out_tensors[2]))); } INSTANTIATE_TEST_SUITE_P( VariableInputTests, VariableInputTest, ::testing::ValuesIn<VariableInputTestParam>( { { .in_tensors = { AsTensor<int32_t>({2, 2}, TensorShape({1, 2})), AsTensor<int32_t>({3, 3}, TensorShape({2, 1})), AsTensor<int32_t>({4, 4}, TensorShape({1, 2})), AsTensor<int32_t>({5, 5}, TensorShape({2, 1})), AsTensor<int32_t>({10, 10}, TensorShape({1, 2})), }, .is_variable = {true, true, true, true, true}, .expected_out_tensors = { AsTensor<int32_t>({12}, TensorShape({1, 1})), AsTensor<int32_t>({40}, TensorShape({1, 1})), AsTensor<int32_t>({100}, TensorShape({1, 1})), }, }, { .in_tensors = { AsTensor<int32_t>({2, 2}, TensorShape({1, 2})), AsTensor<int32_t>({3, 3}, TensorShape({2, 1})), AsTensor<int32_t>({4, 4}, TensorShape({1, 2})), AsTensor<int32_t>({5, 5}, TensorShape({2, 1})), AsTensor<int32_t>({10, 10}, TensorShape({1, 2})), }, .is_variable = {false, false, false, false, false}, .expected_out_tensors = { AsTensor<int32_t>({12}, TensorShape({1, 1})), AsTensor<int32_t>({40}, TensorShape({1, 1})), AsTensor<int32_t>({100}, TensorShape({1, 1})), }, }, { .in_tensors = { AsTensor<int32_t>({2, 2}, TensorShape({1, 2})), AsTensor<int32_t>({3, 3}, TensorShape({2, 1})), AsTensor<int32_t>({4, 4}, TensorShape({1, 2})), AsTensor<int32_t>({5, 5}, TensorShape({2, 1})), AsTensor<int32_t>({10, 10}, TensorShape({1, 2})), }, .is_variable = {false, false, false, true, true}, .expected_out_tensors = { AsTensor<int32_t>({12}, TensorShape({1, 1})), AsTensor<int32_t>({40}, TensorShape({1, 1})), AsTensor<int32_t>({100}, TensorShape({1, 1})), }, }, { .in_tensors = { AsTensor<int32_t>({2, 2}, TensorShape({1, 2})), AsTensor<int32_t>({3, 3}, TensorShape({2, 1})), AsTensor<int32_t>({4, 4}, TensorShape({1, 2})), AsTensor<int32_t>({5, 5}, TensorShape({2, 1})), AsTensor<int32_t>({10, 10}, TensorShape({1, 2})), }, .is_variable = {true, true, false, false, false}, .expected_out_tensors = { AsTensor<int32_t>({12}, TensorShape({1, 1})), AsTensor<int32_t>({40}, TensorShape({1, 1})), AsTensor<int32_t>({100}, TensorShape({1, 1})), }, }, { .in_tensors = { AsTensor<int32_t>({2, 2}, TensorShape({1, 2})), AsTensor<int32_t>({3, 3}, TensorShape({2, 1})), AsTensor<int32_t>({4, 4}, TensorShape({1, 2})), AsTensor<int32_t>({5, 5}, TensorShape({2, 1})), AsTensor<int32_t>({10, 10}, TensorShape({1, 2})), }, .is_variable = {true, false, false, true, false}, .expected_out_tensors = { AsTensor<int32_t>({12}, TensorShape({1, 1})), AsTensor<int32_t>({40}, TensorShape({1, 1})), AsTensor<int32_t>({100}, TensorShape({1, 1})), }, }, { .in_tensors = { AsTensor<int32_t>({2, 2}, TensorShape({1, 2})), AsTensor<int32_t>({3, 3}, TensorShape({2, 1})), AsTensor<int32_t>({4, 4}, TensorShape({1, 2})), AsTensor<int32_t>({5, 5}, TensorShape({2, 1})), AsTensor<int32_t>({10, 10}, TensorShape({1, 2})), }, .is_variable = {false, true, true, false, true}, .expected_out_tensors = { AsTensor<int32_t>({12}, TensorShape({1, 1})), AsTensor<int32_t>({40}, TensorShape({1, 1})), AsTensor<int32_t>({100}, TensorShape({1, 1})), }, }, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_serving_executable.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_serving_executable_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8323374f-8b1c-43c0-bf25-98a044b762e4
cpp
tensorflow/tensorflow
ifrt_restore_tensor_registry
tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.cc
tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry_test.cc
#include "tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.h" #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/ifrt_types.h" #include "xla/python/ifrt/future.h" #include "tensorflow/core/framework/tensor.h" namespace tensorflow { namespace ifrt_serving { absl::Status IfrtRestoreTensorRegistry::TryRegister( absl::string_view name, RestoredTensorInfo restored_tensor_info) { absl::MutexLock lock(&mutex_); auto& info = restored_tensors_[name]; if (info.tensor_future.IsValid()) { return absl::AlreadyExistsError( absl::StrCat("Variable '", name, "' already registered.")); } info = std::move(restored_tensor_info); return absl::OkStatus(); } xla::ifrt::Future<tensorflow::Tensor> IfrtRestoreTensorRegistry::GetRestoredTensor(absl::string_view name) const { absl::MutexLock lock(&mutex_); auto it = restored_tensors_.find(name); if (it == restored_tensors_.end()) { return xla::ifrt::Future<tensorflow::Tensor>( absl::NotFoundError(absl::StrCat("Variable '", name, "' not found."))); } return it->second.tensor_future; } absl::Status IfrtRestoreTensorRegistry::SetUsedByHost(absl::string_view name) { absl::MutexLock lock(&mutex_); auto it = restored_tensors_.find(name); if (it == restored_tensors_.end()) { return absl::NotFoundError( absl::StrCat("Variable '", name, "' not found.")); } it->second.used_by_host = true; return absl::OkStatus(); } void IfrtRestoreTensorRegistry::Freeze() { absl::MutexLock lock(&mutex_); xla::ifrt::Future<tensorflow::Tensor> release_tensor_future( absl::UnavailableError("Tensor is already release.")); for (auto& [name, info] : restored_tensors_) { if (!info.used_by_host) { info.tensor_future = release_tensor_future; } } } absl::StatusOr<DtypeAndShape> IfrtRestoreTensorRegistry::GetDtypeAndShape( absl::string_view name) const { absl::MutexLock lock(&mutex_); auto it = restored_tensors_.find(name); if (it == restored_tensors_.end()) { return absl::NotFoundError( absl::StrCat("Variable '", name, "' not found.")); } return it->second.dtype_and_shape; } } }
#include "tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.h" #include <cstdint> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/ifrt_types.h" #include "xla/python/ifrt/future.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" using tsl::testing::IsOk; using tsl::testing::StatusIs; namespace tensorflow { namespace ifrt_serving { namespace { TEST(IfrtRestoreTensorRegistryTest, RetrieveNonRegisteredTensorFails) { IfrtRestoreTensorRegistry registry; EXPECT_THAT(registry.GetRestoredTensor("input_tensor_1").Await(), StatusIs(absl::StatusCode::kNotFound)); } TEST(IfrtRestoreTensorRegistryTest, RetrieveNonRegisteredTensorDTypeAndShapeFails) { IfrtRestoreTensorRegistry registry; EXPECT_THAT(registry.GetDtypeAndShape("input_tensor_1"), StatusIs(absl::StatusCode::kNotFound)); } TEST(IfrtRestoreTensorRegistryTest, SetNonExistedTensorAsUsedByHostFails) { IfrtRestoreTensorRegistry registry; EXPECT_THAT(registry.SetUsedByHost("input_tensor_1"), StatusIs(absl::StatusCode::kNotFound)); } TEST(IfrtRestoreTensorRegistryTest, RegisteredExistedTensorFails) { auto input_tensor = test::AsTensor<int32_t>({1, 2, 3, 4}, tensorflow::TensorShape({2, 2})); auto promise = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto future = xla::ifrt::Future<tensorflow::Tensor>(promise); IfrtRestoreTensorRegistry::RestoredTensorInfo restored_tensor_info = { .used_by_host = false, .dtype_and_shape = { .dtype = DT_INT32, .shape = tensorflow::TensorShape({2, 2}), }, .tensor_future = future}; IfrtRestoreTensorRegistry registry; EXPECT_THAT(registry.TryRegister("input_tensor_2", restored_tensor_info), IsOk()); promise.Set(input_tensor); EXPECT_THAT(registry.TryRegister("input_tensor_2", restored_tensor_info), StatusIs(absl::StatusCode::kAlreadyExists)); } TEST(IfrtRestoreTensorRegistryTest, SetTensorAsUsedByHost) { auto promise = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto future = xla::ifrt::Future<tensorflow::Tensor>(promise); IfrtRestoreTensorRegistry::RestoredTensorInfo restored_tensor_info = { .used_by_host = false, .dtype_and_shape = { .dtype = DT_INT32, .shape = tensorflow::TensorShape({2, 2}), }, .tensor_future = future}; IfrtRestoreTensorRegistry registry; EXPECT_THAT(registry.TryRegister("input_tensor_1", restored_tensor_info), IsOk()); EXPECT_THAT(registry.SetUsedByHost("input_tensor_1"), IsOk()); } TEST(IfrtRestoreTensorRegistryTest, RegisteredTensorCanBeRetrieved) { auto input_tensor = test::AsTensor<int32_t>({1, 2, 3, 4}, tensorflow::TensorShape({2, 2})); auto promise = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto future = xla::ifrt::Future<tensorflow::Tensor>(promise); IfrtRestoreTensorRegistry::RestoredTensorInfo restored_tensor_info = { .used_by_host = false, .dtype_and_shape = { .dtype = DT_INT32, .shape = tensorflow::TensorShape({2, 2}), }, .tensor_future = future}; IfrtRestoreTensorRegistry registry; EXPECT_THAT(registry.TryRegister("input_tensor_1", restored_tensor_info), IsOk()); promise.Set(input_tensor); TF_ASSERT_OK_AND_ASSIGN(tensorflow::Tensor retrieved, registry.GetRestoredTensor("input_tensor_1").Await()); test::ExpectEqual(retrieved, input_tensor); TF_ASSERT_OK_AND_ASSIGN(DtypeAndShape dtype_and_shape, registry.GetDtypeAndShape("input_tensor_1")); EXPECT_TRUE( dtype_and_shape.shape.IsSameSize(tensorflow::TensorShape({2, 2}))); EXPECT_EQ(dtype_and_shape.dtype, DT_INT32); } TEST(IfrtRestoreTensorRegistryTest, RegisteredTensorDTypeAndShapeCanBeRetrieved) { auto input_tensor = test::AsTensor<int32_t>({1, 2, 3, 4}, tensorflow::TensorShape({2, 2})); auto promise = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto future = xla::ifrt::Future<tensorflow::Tensor>(promise); IfrtRestoreTensorRegistry::RestoredTensorInfo restored_tensor_info = { .used_by_host = false, .dtype_and_shape = { .dtype = DT_INT32, .shape = tensorflow::TensorShape({2, 2}), }, .tensor_future = future}; IfrtRestoreTensorRegistry registry; EXPECT_THAT(registry.TryRegister("input_tensor_1", restored_tensor_info), IsOk()); TF_ASSERT_OK_AND_ASSIGN(DtypeAndShape dtype_and_shape, registry.GetDtypeAndShape("input_tensor_1")); EXPECT_TRUE( dtype_and_shape.shape.IsSameSize(tensorflow::TensorShape({2, 2}))); EXPECT_EQ(dtype_and_shape.dtype, DT_INT32); } TEST(IfrtRestoreTensorRegistryTest, FeezeTensorRegistry) { auto input_tensor = test::AsTensor<int32_t>({1, 2, 3, 4}, tensorflow::TensorShape({2, 2})); auto promise1 = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto future1 = xla::ifrt::Future<tensorflow::Tensor>(promise1); auto promise2 = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto future2 = xla::ifrt::Future<tensorflow::Tensor>(promise2); IfrtRestoreTensorRegistry::RestoredTensorInfo restored_tensor_info1 = { .used_by_host = false, .dtype_and_shape = { .dtype = DT_INT32, .shape = tensorflow::TensorShape({2, 2}), }, .tensor_future = future1}; IfrtRestoreTensorRegistry::RestoredTensorInfo restored_tensor_info2 = { .used_by_host = true, .dtype_and_shape = { .dtype = DT_INT32, .shape = tensorflow::TensorShape({2, 2}), }, .tensor_future = future2}; IfrtRestoreTensorRegistry registry; TF_ASSERT_OK(registry.TryRegister("input_tensor_1", restored_tensor_info1)); TF_ASSERT_OK(registry.TryRegister("input_tensor_2", restored_tensor_info2)); promise1.Set(input_tensor); promise2.Set(input_tensor); registry.Freeze(); EXPECT_THAT(registry.GetRestoredTensor("input_tensor_1").Await(), StatusIs(absl::StatusCode::kUnavailable)); TF_ASSERT_OK_AND_ASSIGN(tensorflow::Tensor retrieved, registry.GetRestoredTensor("input_tensor_2").Await()); test::ExpectEqual(retrieved, input_tensor); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ae917258-0a9b-4bd7-b025-c4d9b3ac9c98
cpp
tensorflow/tensorflow
ifrt_serving_core_selector
tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.cc
tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector_test.cc
#include "tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.h" #include <cstdint> #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "xla/tsl/framework/serving_device_selector.h" namespace tensorflow { namespace ifrt_serving { IfrtServingCoreSelector::IfrtServingCoreSelector( tsl::ServingDeviceSelector* device_selector, int num_cores) : device_selector_(device_selector), num_cores_(num_cores) {} tsl::DeviceReservation IfrtServingCoreSelector::ReserveDevice( int64_t program_id) { absl::MutexLock lock(&mu_); int64_t run_count = run_counter_[program_id]++; if (run_count < num_cores_) { return tsl::DeviceReservation(run_count, nullptr); } return device_selector_->ReserveDevice(absl::StrCat(program_id)); } } }
#include "tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.h" #include <cstdint> #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "xla/tsl/framework/serving_device_selector.h" #include "xla/tsl/framework/test_util/mock_serving_device_selector.h" namespace tensorflow { namespace ifrt_serving { namespace { class IfrtServingCoreSelectorTest : public ::testing::Test { protected: explicit IfrtServingCoreSelectorTest() { core_selector_ = std::make_unique<IfrtServingCoreSelector>( &serving_device_selector_, num_cores_); } tsl::test_util::MockServingDeviceSelector serving_device_selector_; std::unique_ptr<IfrtServingCoreSelector> core_selector_; int num_cores_ = 2; }; TEST_F(IfrtServingCoreSelectorTest, ReservedDevicesReturns) { int64_t program_id1 = 111111; EXPECT_CALL(serving_device_selector_, ReserveDevice(absl::StrCat(program_id1))) .WillOnce([this](::testing::Unused) { return tsl::DeviceReservation(0, &serving_device_selector_); }); for (int i = 0; i < num_cores_; ++i) { EXPECT_THAT(core_selector_->ReserveDevice(program_id1).device_index(), i); } tsl::DeviceReservation reservation = core_selector_->ReserveDevice(program_id1); EXPECT_THAT(reservation.device_index(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
233cc73f-0e99-48c3-84bf-b56c721034a9
cpp
tensorflow/tensorflow
sharding_utils
tensorflow/core/tpu/kernels/sharding_utils.cc
tensorflow/core/tpu/kernels/sharding_utils_test.cc
#include "tensorflow/core/tpu/kernels/sharding_utils.h" #include <cstdint> #include <functional> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "Eigen/Core" #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" namespace tensorflow { namespace sharding_internal { absl::Status ValidateShapesForSlice(absl::string_view input_name, const Tensor* input, const std::vector<int32_t>& num_splits, const std::vector<int32_t>& paddings) { const auto& ishape = input->shape(); Status s; const int rank = ishape.dims(); const auto& input_shape = ishape.dim_sizes(); if (rank <= 0 || rank > 8) { s = absl::InvalidArgumentError(absl::StrCat( input_name, " must have rank in range (0, 8], but got ", rank, ".")); } else if (rank != num_splits.size()) { s = absl::InvalidArgumentError(absl::StrCat( input_name, " rank must be the same as 'num_splits' length ", num_splits.size(), ", but got rank ", rank, ".")); } else { for (int dim = 0; dim < rank; ++dim) { const auto input_shape_dim = input_shape[dim]; const auto paddings_dim = paddings[dim]; const auto num_splits_dim = num_splits[dim]; if ((input_shape_dim + paddings_dim) % num_splits_dim != 0) { s = absl::InvalidArgumentError(absl::StrCat( input_name, " shape dimension ", dim, " (", input_shape_dim, ") with padding ", paddings_dim, " must be evenly divisible by 'num_splits' ", num_splits_dim, ".")); break; } } } return s; } } template <> Eigen::DSizes<Eigen::DenseIndex, 1> GetSliceIndices( absl::Span<const int32_t> num_partitions, const Eigen::DSizes<Eigen::DenseIndex, 1>& slice_shape, const int index) { Eigen::DSizes<Eigen::DenseIndex, 1> subscript; subscript[0] = index * slice_shape[0]; return subscript; } template <> Eigen::DSizes<Eigen::DenseIndex, 2> GetSliceIndices( absl::Span<const int32_t> num_partitions, const Eigen::DSizes<Eigen::DenseIndex, 2>& slice_shape, const int index) { Eigen::DSizes<Eigen::DenseIndex, 2> subscript; subscript[1] = (index % num_partitions[1]) * slice_shape[1]; subscript[0] = (index / num_partitions[1]) * slice_shape[0]; return subscript; } template <> Eigen::DSizes<Eigen::DenseIndex, 3> GetSliceIndices( absl::Span<const int32_t> num_partitions, const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_shape, const int index) { Eigen::DSizes<Eigen::DenseIndex, 3> subscript; subscript[2] = (index % num_partitions[2]) * slice_shape[2]; subscript[1] = ((index / num_partitions[2]) % num_partitions[1]) * slice_shape[1]; subscript[0] = (index / (num_partitions[2] * num_partitions[1])) * slice_shape[0]; return subscript; } template <> Eigen::DSizes<Eigen::DenseIndex, 4> GetSliceIndices( absl::Span<const int32_t> num_partitions, const Eigen::DSizes<Eigen::DenseIndex, 4>& slice_shape, const int index) { Eigen::DSizes<Eigen::DenseIndex, 4> subscript; subscript[3] = (index % num_partitions[3]) * slice_shape[3]; subscript[2] = ((index / num_partitions[3]) % num_partitions[2]) * slice_shape[2]; subscript[1] = ((index / (num_partitions[3] * num_partitions[2])) % num_partitions[1]) * slice_shape[1]; subscript[0] = (index / (num_partitions[3] * num_partitions[2] * num_partitions[1])) * slice_shape[0]; return subscript; } template <> Eigen::DSizes<Eigen::DenseIndex, 5> GetSliceIndices( absl::Span<const int32_t> num_partitions, const Eigen::DSizes<Eigen::DenseIndex, 5>& slice_shape, const int index) { Eigen::DSizes<Eigen::DenseIndex, 5> subscript; subscript[4] = (index % num_partitions[4]) * slice_shape[4]; subscript[3] = ((index / num_partitions[4]) % num_partitions[3]) * slice_shape[3]; subscript[2] = ((index / (num_partitions[4] * num_partitions[3])) % num_partitions[2]) * slice_shape[2]; subscript[1] = ((index / (num_partitions[4] * num_partitions[3] * num_partitions[2])) % num_partitions[1]) * slice_shape[1]; subscript[0] = (index / (num_partitions[4] * num_partitions[3] * num_partitions[2] * num_partitions[1])) * slice_shape[0]; return subscript; } template <> Eigen::DSizes<Eigen::DenseIndex, 6> GetSliceIndices( absl::Span<const int32_t> num_partitions, const Eigen::DSizes<Eigen::DenseIndex, 6>& slice_shape, const int index) { Eigen::DSizes<Eigen::DenseIndex, 6> subscript; subscript[5] = (index % num_partitions[5]) * slice_shape[5]; subscript[4] = ((index / num_partitions[5]) % num_partitions[4]) * slice_shape[4]; subscript[3] = ((index / (num_partitions[5] * num_partitions[4])) % num_partitions[3]) * slice_shape[3]; subscript[2] = ((index / (num_partitions[5] * num_partitions[4] * num_partitions[3])) % num_partitions[2]) * slice_shape[2]; subscript[1] = ((index / (num_partitions[5] * num_partitions[4] * num_partitions[3] * num_partitions[2])) % num_partitions[1]) * slice_shape[1]; subscript[0] = (index / (num_partitions[5] * num_partitions[4] * num_partitions[3] * num_partitions[2] * num_partitions[1])) * slice_shape[0]; return subscript; } template <> Eigen::DSizes<Eigen::DenseIndex, 7> GetSliceIndices( absl::Span<const int32_t> num_partitions, const Eigen::DSizes<Eigen::DenseIndex, 7>& slice_shape, const int index) { Eigen::DSizes<Eigen::DenseIndex, 7> subscript; subscript[6] = (index % num_partitions[6]) * slice_shape[6]; subscript[5] = ((index / num_partitions[6]) % num_partitions[5]) * slice_shape[5]; subscript[4] = ((index / (num_partitions[6] * num_partitions[5])) % num_partitions[4]) * slice_shape[4]; subscript[3] = ((index / (num_partitions[6] * num_partitions[5] * num_partitions[4])) % num_partitions[3]) * slice_shape[3]; subscript[2] = ((index / (num_partitions[6] * num_partitions[5] * num_partitions[4] * num_partitions[3])) % num_partitions[2]) * slice_shape[2]; subscript[1] = ((index / (num_partitions[6] * num_partitions[5] * num_partitions[4] * num_partitions[3] * num_partitions[2])) % num_partitions[1]) * slice_shape[1]; subscript[0] = (index / (num_partitions[6] * num_partitions[5] * num_partitions[4] * num_partitions[3] * num_partitions[2] * num_partitions[1])) * slice_shape[0]; return subscript; } template <> Eigen::DSizes<Eigen::DenseIndex, 8> GetSliceIndices( absl::Span<const int32_t> num_partitions, const Eigen::DSizes<Eigen::DenseIndex, 8>& slice_shape, const int index) { Eigen::DSizes<Eigen::DenseIndex, 8> subscript; subscript[7] = (index % num_partitions[7]) * slice_shape[7]; subscript[6] = ((index / num_partitions[7]) % num_partitions[6]) * slice_shape[6]; subscript[5] = ((index / (num_partitions[7] * num_partitions[6])) % num_partitions[5]) * slice_shape[5]; subscript[4] = ((index / (num_partitions[7] * num_partitions[6] * num_partitions[5])) % num_partitions[4]) * slice_shape[4]; subscript[3] = ((index / (num_partitions[7] * num_partitions[6] * num_partitions[5] * num_partitions[4])) % num_partitions[3]) * slice_shape[3]; subscript[2] = ((index / (num_partitions[7] * num_partitions[6] * num_partitions[5] * num_partitions[4] * num_partitions[3])) % num_partitions[2]) * slice_shape[2]; subscript[1] = ((index / (num_partitions[7] * num_partitions[6] * num_partitions[5] * num_partitions[4] * num_partitions[3] * num_partitions[2])) % num_partitions[1]) * slice_shape[1]; subscript[0] = (index / (num_partitions[7] * num_partitions[6] * num_partitions[5] * num_partitions[4] * num_partitions[3] * num_partitions[2] * num_partitions[1])) * slice_shape[0]; return subscript; } }
#define EIGEN_USE_THREADS #include "tensorflow/core/tpu/kernels/sharding_utils.h" #include <cstdint> #include <memory> #include <vector> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "unsupported/Eigen/CXX11/Tensor" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tensorflow { namespace { Eigen::ThreadPoolDevice CreateThreadPoolDevice() { constexpr int kMaxParallelism = 16; auto thread_pool = std::make_unique<tsl::thread::ThreadPool>( tsl::Env::Default(), tsl::ThreadOptions(), "Resharding", kMaxParallelism); Eigen::ThreadPoolDevice device(thread_pool->AsEigenThreadPool(), kMaxParallelism); return device; } TEST(XlaNDSplitterTest, NoSplits) { auto device = CreateThreadPoolDevice(); const TensorShape input_shape({2, 2, 2}); const std::vector<int32_t> num_splits = {1, 1, 1}; const std::vector<int> paddings(num_splits.size(), 0); const int num_outputs = 1; auto input_tensor = test::AsTensor<int32_t>({0, 1, 2, 3, 4, 5, 6, 7}, input_shape); std::vector<Tensor> output_tensors; output_tensors.resize(num_outputs); auto allocate_output_fn = [&](int i, const TensorShape& output_slice_shape, Tensor** tensor) { if (i < 0 || i >= output_tensors.size()) { return absl::InvalidArgumentError(absl::StrCat( "Index ", i, " out of range [0, ", output_tensors.size(), "]")); } output_tensors[i] = Tensor(tensorflow::DT_INT32, output_slice_shape); *tensor = &output_tensors[i]; return absl::OkStatus(); }; auto assign_or_copy_value_fn = [&](const Tensor& input) -> Status { output_tensors[0] = input; return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN( auto splitter, (XlaNDSplitter<Eigen::ThreadPoolDevice, int32_t>::Create( num_splits, num_outputs, paddings, false))); TF_ASSERT_OK(splitter.Split(&input_tensor, "test", assign_or_copy_value_fn, allocate_output_fn, device)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 2, 3, 4, 5, 6, 7}, TensorShape({2, 2, 2}))); } TEST(XlaNDSplitterTest, NoSplitsWithPadding) { auto device = CreateThreadPoolDevice(); const TensorShape input_shape({2, 1, 1}); const std::vector<int32_t> num_splits = {1, 1, 1}; const std::vector<int> paddings = {0, 1, 1}; const int num_outputs = 1; auto input_tensor = test::AsTensor<int32_t>({0, 1}, input_shape); std::vector<Tensor> output_tensors; output_tensors.resize(num_outputs); auto allocate_output_fn = [&](int i, const TensorShape& output_slice_shape, Tensor** tensor) { if (i < 0 || i >= output_tensors.size()) { return absl::InvalidArgumentError(absl::StrCat( "Index ", i, " out of range [0, ", output_tensors.size(), "]")); } output_tensors[i] = Tensor(tensorflow::DT_INT32, output_slice_shape); *tensor = &output_tensors[i]; return absl::OkStatus(); }; auto assign_or_copy_value_fn = [&](const Tensor& input) -> Status { output_tensors[0] = input; return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN( auto splitter, (XlaNDSplitter<Eigen::ThreadPoolDevice, int32_t>::Create( num_splits, num_outputs, paddings, true))); TF_ASSERT_OK(splitter.Split(&input_tensor, "test", assign_or_copy_value_fn, allocate_output_fn, device)); ASSERT_EQ(output_tensors.size(), 1); std::vector<int32_t> expected_values(3 * 3 * 3); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 0, 0, 0, 1, 0, 0, 0}, TensorShape({2, 2, 2}))); } TEST(XlaNDSplitterTest, SplitNoPadding) { auto device = CreateThreadPoolDevice(); const TensorShape input_shape({4, 4}); const std::vector<int32_t> num_splits = {2, 2}; const std::vector<int32_t> paddings(num_splits.size(), 0); const int num_outputs = 4; auto input_tensor = test::AsTensor<int32_t>( {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, input_shape); std::vector<Tensor> output_tensors; output_tensors.resize(num_outputs); auto allocate_output_fn = [&](int i, const TensorShape& output_slice_shape, Tensor** tensor) { if (i < 0 || i >= output_tensors.size()) { return absl::InvalidArgumentError(absl::StrCat( "Index ", i, " out of range [0, ", output_tensors.size(), "]")); } output_tensors[i] = Tensor(tensorflow::DT_INT32, output_slice_shape); *tensor = &output_tensors[i]; return absl::OkStatus(); }; auto assign_or_copy_value_fn = [&](const Tensor& input) -> Status { output_tensors[0] = input; return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN( auto splitter, (XlaNDSplitter<Eigen::ThreadPoolDevice, int32_t>::Create( num_splits, num_outputs, paddings, true))); TF_ASSERT_OK(splitter.Split(&input_tensor, "test", assign_or_copy_value_fn, allocate_output_fn, device)); ASSERT_EQ(output_tensors.size(), num_outputs); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 4, 5}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[1], test::AsTensor<int32_t>({2, 3, 6, 7}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[2], test::AsTensor<int32_t>({8, 9, 12, 13}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[3], test::AsTensor<int32_t>({10, 11, 14, 15}, TensorShape({2, 2}))); } TEST(XlaNDSplitterTest, SplitPartialPadding) { auto device = CreateThreadPoolDevice(); const TensorShape input_shape({3, 3}); const std::vector<int32_t> num_splits = {2, 2}; const std::vector<int32_t> paddings = {1, 1}; const int num_outputs = 4; auto input_tensor = test::AsTensor<int32_t>({0, 1, 2, 3, 4, 5, 6, 7, 8}, input_shape); std::vector<Tensor> output_tensors; output_tensors.resize(num_outputs); auto allocate_output_fn = [&](int i, const TensorShape& output_slice_shape, Tensor** tensor) { if (i < 0 || i >= output_tensors.size()) { return absl::InvalidArgumentError(absl::StrCat( "Index ", i, " out of range [0, ", output_tensors.size(), "]")); } output_tensors[i] = Tensor(tensorflow::DT_INT32, output_slice_shape); *tensor = &output_tensors[i]; return absl::OkStatus(); }; auto assign_or_copy_value_fn = [&](const Tensor& input) -> Status { output_tensors[0] = input; return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN( auto splitter, (XlaNDSplitter<Eigen::ThreadPoolDevice, int32_t>::Create( num_splits, num_outputs, paddings, true))); TF_ASSERT_OK(splitter.Split(&input_tensor, "test", assign_or_copy_value_fn, allocate_output_fn, device)); ASSERT_EQ(output_tensors.size(), num_outputs); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 3, 4}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[1], test::AsTensor<int32_t>({2, 0, 5, 0}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[2], test::AsTensor<int32_t>({6, 7, 0, 0}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[3], test::AsTensor<int32_t>({8, 0, 0, 0}, TensorShape({2, 2}))); } TEST(XlaNDSplitterTest, SplitCompletePadding) { auto device = CreateThreadPoolDevice(); const TensorShape input_shape({2, 1}); const std::vector<int32_t> num_splits = {2, 2}; const std::vector<int32_t> paddings = {2, 3}; const int num_outputs = 4; auto input_tensor = test::AsTensor<int32_t>({0, 1}, input_shape); std::vector<Tensor> output_tensors; output_tensors.resize(num_outputs); auto allocate_output_fn = [&](int i, const TensorShape& output_slice_shape, Tensor** tensor) { if (i < 0 || i >= output_tensors.size()) { return absl::InvalidArgumentError(absl::StrCat( "Index ", i, " out of range [0, ", output_tensors.size(), "]")); } output_tensors[i] = Tensor(tensorflow::DT_INT32, output_slice_shape); *tensor = &output_tensors[i]; return absl::OkStatus(); }; auto assign_or_copy_value_fn = [&](const Tensor& input) -> Status { output_tensors[0] = input; return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN( auto splitter, (XlaNDSplitter<Eigen::ThreadPoolDevice, int32_t>::Create( num_splits, num_outputs, paddings, true))); TF_ASSERT_OK(splitter.Split(&input_tensor, "test", assign_or_copy_value_fn, allocate_output_fn, device)); ASSERT_EQ(output_tensors.size(), num_outputs); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 0, 1, 0}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[1], test::AsTensor<int32_t>({0, 0, 0, 0}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[2], test::AsTensor<int32_t>({0, 0, 0, 0}, TensorShape({2, 2}))); test::ExpectTensorEqual<int32_t>( output_tensors[3], test::AsTensor<int32_t>({0, 0, 0, 0}, TensorShape({2, 2}))); } TEST(XlaNDConcatenatorTest, NoConcats) { auto device = CreateThreadPoolDevice(); const TensorShape input_shape({2, 2, 2}); const TensorShape output_shape({2, 2, 2}); const std::vector<int32_t> num_concats = {1, 1, 1}; const std::vector<int> paddings(num_concats.size(), 0); int num_slices = 1; auto tensor0 = test::AsTensor<int32_t>({0, 1, 2, 3, 4, 5, 6, 7}, input_shape); std::vector<Tensor> input_tensors; input_tensors.push_back(tensor0); std::vector<Tensor> output_tensors; output_tensors.reserve(1); auto get_output_fn = [&]() { output_tensors.push_back(Tensor(tensorflow::DT_INT32, output_shape)); return &output_tensors.back(); }; auto assign_or_copy_value_fn = [&](const Tensor& input) -> Status { output_tensors.push_back(input); return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN( auto concatenator, (XlaNDConcatenator<Eigen::ThreadPoolDevice, int32_t>::Create( num_concats, num_slices, paddings, true))); TF_ASSERT_OK(concatenator.ComputeInternal(absl::MakeSpan(input_tensors), assign_or_copy_value_fn, get_output_fn, device)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 2, 3, 4, 5, 6, 7}, TensorShape({2, 2, 2}))); } TEST(XlaNDConcatenatorTest, ConcatNoPadding) { auto device = CreateThreadPoolDevice(); const TensorShape input_shape({2, 2}); const TensorShape output_shape({4, 4}); const std::vector<int32_t> num_concats = {2, 2}; const std::vector<int> paddings(num_concats.size(), 0); int num_slices = 4; auto tensor0 = test::AsTensor<int32_t>({0, 1, 2, 3}, input_shape); auto tensor1 = test::AsTensor<int32_t>({4, 5, 6, 7}, input_shape); auto tensor2 = test::AsTensor<int32_t>({8, 9, 10, 11}, input_shape); auto tensor3 = test::AsTensor<int32_t>({12, 13, 14, 15}, input_shape); std::vector<Tensor> input_tensors; input_tensors.push_back(tensor0); input_tensors.push_back(tensor1); input_tensors.push_back(tensor2); input_tensors.push_back(tensor3); std::vector<Tensor> output_tensors; output_tensors.reserve(1); auto get_output_fn = [&]() { output_tensors.push_back(Tensor(tensorflow::DT_INT32, output_shape)); return &output_tensors.back(); }; auto assign_or_copy_value_fn = [&](const Tensor& input) -> Status { output_tensors.push_back(input); return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN( auto concatenator, (XlaNDConcatenator<Eigen::ThreadPoolDevice, int32_t>::Create( num_concats, num_slices, paddings, true))); TF_ASSERT_OK(concatenator.ComputeInternal(absl::MakeSpan(input_tensors), assign_or_copy_value_fn, get_output_fn, device)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15}, TensorShape({4, 4}))); } TEST(XlaNDConcatenatorTest, ConcatPartialPadding) { auto device = CreateThreadPoolDevice(); const TensorShape input_shape({2, 2}); const TensorShape output_shape({3, 3}); const std::vector<int32_t> num_concats = {2, 2}; const std::vector<int> paddings = {1, 1}; int num_slices = 4; auto tensor0 = test::AsTensor<int32_t>({0, 1, 2, 3}, input_shape); auto tensor1 = test::AsTensor<int32_t>({4, 5, 6, 7}, input_shape); auto tensor2 = test::AsTensor<int32_t>({8, 9, 10, 11}, input_shape); auto tensor3 = test::AsTensor<int32_t>({12, 13, 14, 15}, input_shape); std::vector<Tensor> input_tensors; input_tensors.push_back(tensor0); input_tensors.push_back(tensor1); input_tensors.push_back(tensor2); input_tensors.push_back(tensor3); std::vector<Tensor> output_tensors; output_tensors.reserve(1); auto get_output_fn = [&]() { output_tensors.push_back(Tensor(tensorflow::DT_INT32, output_shape)); return &output_tensors.back(); }; auto assign_or_copy_value_fn = [&](const Tensor& input) -> Status { output_tensors.push_back(input); return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN( auto concatenator, (XlaNDConcatenator<Eigen::ThreadPoolDevice, int32_t>::Create( num_concats, num_slices, paddings, true))); TF_ASSERT_OK(concatenator.ComputeInternal(absl::MakeSpan(input_tensors), assign_or_copy_value_fn, get_output_fn, device)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 4, 2, 3, 6, 8, 9, 12}, TensorShape({3, 3}))); } TEST(XlaNDConcatenatorTest, ConcatCompletePadding) { auto device = CreateThreadPoolDevice(); const TensorShape input_shape({2, 2}); const TensorShape output_shape({2, 2}); const std::vector<int32_t> num_concats = {2, 2}; const std::vector<int> paddings = {2, 2}; int num_slices = 4; auto tensor0 = test::AsTensor<int32_t>({0, 1, 2, 3}, input_shape); auto tensor1 = test::AsTensor<int32_t>({4, 5, 6, 7}, input_shape); auto tensor2 = test::AsTensor<int32_t>({8, 9, 10, 11}, input_shape); auto tensor3 = test::AsTensor<int32_t>({12, 13, 14, 15}, input_shape); std::vector<Tensor> input_tensors; input_tensors.push_back(tensor0); input_tensors.push_back(tensor1); input_tensors.push_back(tensor2); input_tensors.push_back(tensor3); std::vector<Tensor> output_tensors; output_tensors.reserve(1); auto get_output_fn = [&]() { output_tensors.push_back(Tensor(tensorflow::DT_INT32, output_shape)); return &output_tensors.back(); }; auto assign_or_copy_value_fn = [&](const Tensor& input) -> Status { output_tensors.push_back(input); return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN( auto concatenator, (XlaNDConcatenator<Eigen::ThreadPoolDevice, int32_t>::Create( num_concats, num_slices, paddings, true))); TF_ASSERT_OK(concatenator.ComputeInternal(absl::MakeSpan(input_tensors), assign_or_copy_value_fn, get_output_fn, device)); ASSERT_EQ(output_tensors.size(), 1); test::ExpectTensorEqual<int32_t>( output_tensors[0], test::AsTensor<int32_t>({0, 1, 2, 3}, TensorShape({2, 2}))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/kernels/sharding_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tpu/kernels/sharding_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f8e4857a-743f-4562-bda6-e2d2ac928b31
cpp
tensorflow/tensorflow
ifrt_loaded_variable_utils
tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_utils.cc
tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_utils_test.cc
#include "tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_utils.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/ifrt_types.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/future.h" #include "xla/tsl/concurrency/ref_count.h" #include "tensorflow/core/framework/resource_handle.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.h" #include "tensorflow/core/tfrt/ifrt/sharding_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tfrt/host_context/concurrent_work_queue.h" namespace tensorflow { namespace ifrt_serving { namespace { absl::StatusOr<tsl::RCReference<xla::ifrt::Array>> LoadIfrtVariable( std::shared_ptr<xla::ifrt::Client> ifrt_client, const tsl::thread::ThreadPool& thread_pool, const tensorflow::Tensor& variable, const VariableDeviceShardingConfig& sharding_config) { return tensorflow::ifrt_serving::MakeArrayFromTensor( *ifrt_client, variable, sharding_config.device_ids, sharding_config.hlo_sharding, thread_pool); } } absl::StatusOr<ifrt_serving::DtypeAndShape> GetDtypeAndShape( const ResourceHandle& resource_handle) { const std::vector<DtypeAndPartialTensorShape>& dtype_and_partial_shapes = resource_handle.dtypes_and_shapes(); if (dtype_and_partial_shapes.size() != 1) { return absl::InvalidArgumentError(absl::StrCat( "Expected 1 dtype and shape, got ", dtype_and_partial_shapes.size())); } ifrt_serving::DtypeAndShape dtype_and_shape; if (!dtype_and_partial_shapes.front().shape.AsTensorShape( &dtype_and_shape.shape)) { return absl::InvalidArgumentError( absl::StrCat("Failed to convert partial shape to full tensor shape: ", dtype_and_partial_shapes.front().shape.DebugString())); } dtype_and_shape.dtype = dtype_and_partial_shapes.front().dtype; return dtype_and_shape; } std::string GetRuntimeNameFromVarHandle(const ResourceHandle& handle) { return absl::StrCat(handle.container(), "__", handle.name()); } absl::Status AsyncLoadRestoredTensorAsIfrtLoadedVariable( absl::string_view runtime_name, std::shared_ptr<xla::ifrt::Client> ifrt_client, const tsl::thread::ThreadPool& thread_pool, const ifrt_serving::IfrtRestoreTensorRegistry& ifrt_restore_tensor_registry, ifrt_serving::IfrtLoadedVariableRegistry& ifrt_loaded_variable_registry, tfrt::ConcurrentWorkQueue* checkpoint_loader_queue, const VariableDeviceShardingConfig& sharding_config) { IfrtLoadedVariableRegistry::Key loaded_variable_key{ .device_ids = sharding_config.device_ids, .input_name = std::string(runtime_name), .hlo_sharding = sharding_config.hlo_sharding, }; if (ifrt_loaded_variable_registry.GetLoadedVariable(loaded_variable_key) .ok()) { VLOG(1) << "Found alread registered variable for " << runtime_name; return absl::OkStatus(); } xla::ifrt::Future<tensorflow::Tensor> restored_tensor_future = ifrt_restore_tensor_registry.GetRestoredTensor(runtime_name); if (!restored_tensor_future.IsValid()) { return absl::InternalError(absl::StrCat( "LoadVariableOp: failed to fetch variable tensor: ", runtime_name)); } auto loaded_variable_promise = xla::ifrt::Future<tsl::RCReference<xla::ifrt::Array>>::CreatePromise(); auto loaded_variable_future = xla::ifrt::Future<tsl::RCReference<xla::ifrt::Array>>( loaded_variable_promise); TF_ASSIGN_OR_RETURN( absl::StatusOr<ifrt_serving::DtypeAndShape> dtype_and_shape, ifrt_restore_tensor_registry.GetDtypeAndShape(runtime_name)); TF_RETURN_IF_ERROR(ifrt_loaded_variable_registry.TryRegisterLoadedVariable( loaded_variable_key, [&]() -> absl::StatusOr< ifrt_serving::IfrtLoadedVariableRegistry::LoadedVariable> { return ifrt_serving::IfrtLoadedVariableRegistry::LoadedVariable( {.array = loaded_variable_future}); })); restored_tensor_future.OnReady( [ifrt_client = std::move(ifrt_client), &thread_pool = thread_pool, checkpoint_loader_queue = checkpoint_loader_queue, sharding_config = sharding_config, loaded_variable_promise = std::move(loaded_variable_promise)]( absl::StatusOr<tensorflow::Tensor> restored_tensor) mutable { if (!restored_tensor.ok()) { loaded_variable_promise.Set(restored_tensor.status()); return; } checkpoint_loader_queue->AddTask( [ifrt_client = ifrt_client, &thread_pool = thread_pool, sharding_config = std::move(sharding_config), restored_tensor = std::move(*restored_tensor), loaded_variable_promise = std::move(loaded_variable_promise)]() mutable { absl::StatusOr<tsl::RCReference<xla::ifrt::Array>> variable_array = LoadIfrtVariable(ifrt_client, thread_pool, restored_tensor, sharding_config); loaded_variable_promise.Set(std::move(variable_array)); }); }); return absl::OkStatus(); } } }
#include "tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_utils.h" #include <cstdint> #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/test_util.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/resource_handle.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_matcher.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/tfrt/ifrt/ifrt_config.pb.h" #include "tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.h" #include "tsl/platform/env.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" #include "tfrt/host_context/concurrent_work_queue.h" namespace tensorflow { namespace ifrt_serving { namespace { using tensorflow::test::TensorEq; using tsl::testing::StatusIs; TEST(ShardingUtilsTest, ShardTensorToIfrtLoadedVariableNotFoundWrongName) { auto input_tensor = test::AsTensor<int32_t>({1, 2, 3, 4}, tensorflow::TensorShape({2, 2})); Tensor variable_handle(DT_RESOURCE, TensorShape({})); ResourceHandle resource_handle; resource_handle.set_name("var_x"); resource_handle.set_dtypes_and_shapes({{ DT_INT32, TensorShape({2, 2}), }}); variable_handle.flat<ResourceHandle>()(0) = std::move(resource_handle); IfrtRestoreTensorRegistry restored_tensor_registry; TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::ifrt::Client> client, xla::ifrt::test_util::GetClient()); constexpr int kMaxParallelism = 16; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), tsl::ThreadOptions(), "Resharding", kMaxParallelism); IfrtLoadedVariableRegistry loaded_variable_registry; auto restore_work_queue = tfrt::CreateMultiThreadedWorkQueue( 4, 4); VariableDeviceShardingConfig sharding_config = { .device_ids = {0}, .hlo_sharding = xla::HloSharding::Replicate(), }; auto promise = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto future = xla::ifrt::Future<tensorflow::Tensor>(promise); IfrtRestoreTensorRegistry::RestoredTensorInfo restored_tensor_info = { false, GetDtypeAndShape(variable_handle.scalar<ResourceHandle>()()).value(), future}; TF_ASSERT_OK(restored_tensor_registry.TryRegister("var_x_wrong", restored_tensor_info)); promise.Set(input_tensor); EXPECT_THAT( AsyncLoadRestoredTensorAsIfrtLoadedVariable( "var_x", client, thread_pool, restored_tensor_registry, loaded_variable_registry, restore_work_queue.get(), sharding_config), StatusIs(absl::StatusCode::kNotFound)); } TEST(ShardingUtilsTest, ShardTensorToIfrtLoadedVariableSucceed) { auto input_tensor = test::AsTensor<int32_t>({1, 2, 3, 4}, TensorShape({2, 2})); Tensor variable_handle(DT_RESOURCE, TensorShape({})); ResourceHandle resource_handle; resource_handle.set_name("var_x"); resource_handle.set_dtypes_and_shapes({{ DT_INT32, TensorShape({2, 2}), }}); variable_handle.flat<ResourceHandle>()(0) = std::move(resource_handle); IfrtRestoreTensorRegistry restored_tensor_registry; TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::ifrt::Client> client, xla::ifrt::test_util::GetClient()); constexpr int kMaxParallelism = 16; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), tsl::ThreadOptions(), "Resharding", kMaxParallelism); IfrtLoadedVariableRegistry loaded_variable_registry; auto restore_work_queue = tfrt::CreateMultiThreadedWorkQueue( 4, 4); VariableDeviceShardingConfig sharding_config{ .device_ids = {0}, .hlo_sharding = xla::HloSharding::Replicate(), }; auto promise = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto future = xla::ifrt::Future<tensorflow::Tensor>(promise); IfrtRestoreTensorRegistry::RestoredTensorInfo restored_tensor_info = { false, GetDtypeAndShape(variable_handle.scalar<ResourceHandle>()()).value(), future}; TF_ASSERT_OK( restored_tensor_registry.TryRegister("var_x", restored_tensor_info)); TF_ASSERT_OK(AsyncLoadRestoredTensorAsIfrtLoadedVariable( "var_x", client, thread_pool, restored_tensor_registry, loaded_variable_registry, restore_work_queue.get(), sharding_config)); promise.Set(input_tensor); IfrtLoadedVariableRegistry::Key key{ .device_ids = {0}, .input_name = "var_x", .hlo_sharding = sharding_config.hlo_sharding, }; TF_ASSERT_OK_AND_ASSIGN(auto v, loaded_variable_registry.GetLoadedVariable(key)); TF_ASSERT_OK_AND_ASSIGN(auto assembled_array, v.array.Await()); TF_ASSERT_OK_AND_ASSIGN(auto disassembled_arrays, assembled_array->DisassembleIntoSingleDeviceArrays( xla::ifrt::ArrayCopySemantics::kAlwaysCopy)); ASSERT_EQ(disassembled_arrays.size(), 1); for (int i = 0; i < disassembled_arrays.size(); ++i) { tensorflow::Tensor host_tensor(input_tensor.dtype(), input_tensor.shape()); TF_ASSERT_OK( disassembled_arrays[i] ->CopyToHostBuffer(host_tensor.data(), {}, xla::ifrt::ArrayCopySemantics::kAlwaysCopy) .Await()); EXPECT_THAT(host_tensor, TensorEq(input_tensor)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ca34a38a-e8e5-4fb3-b1d4-e583a80562a1
cpp
tensorflow/tensorflow
ifrt_executable_registry
tensorflow/core/tfrt/ifrt/ifrt_executable_registry.cc
tensorflow/core/tfrt/ifrt/ifrt_executable_registry_test.cc
#include "tensorflow/core/tfrt/ifrt/ifrt_executable_registry.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable.h" namespace tensorflow { namespace ifrt_serving { ServingExecutableRegistry::Handle::Handle(Handle&& other) { *this = std::move(other); } ServingExecutableRegistry::Handle& ServingExecutableRegistry::Handle::operator=( Handle&& other) { if (this != &other) { program_id_ = std::move(other.program_id_); other.program_id_ = std::nullopt; } return *this; } ServingExecutableRegistry::Handle::~Handle() { Release(); } absl::Status ServingExecutableRegistry::Handle::Freeze() { if (!program_id_.has_value()) { return absl::FailedPreconditionError("Program is not registered"); } absl::MutexLock l(&ServingExecutableRegistry::mu_); const auto it = ServingExecutableRegistry::executables_->find(*program_id_); if (it == ServingExecutableRegistry::executables_->end()) { return absl::NotFoundError( absl::StrCat("Program ", *program_id_, " not found in the registry")); } VLOG(1) << "Freeze the program " << *program_id_ << " from signature '" << it->second->signature_name() << "' of model '" << it->second->model_name() << "'"; it->second->Freeze(); return absl::OkStatus(); } void ServingExecutableRegistry::Handle::Release() { if (!program_id_.has_value()) { return; } absl::MutexLock l(&ServingExecutableRegistry::mu_); const auto it = ServingExecutableRegistry::executables_->find(*program_id_); if (it == ServingExecutableRegistry::executables_->end()) { LOG(ERROR) << "Program " << *program_id_ << " not found in the registry"; return; } VLOG(1) << "Unregistering program " << *program_id_ << " from signature '" << it->second->signature_name() << "' of model '" << it->second->model_name() << "'"; ServingExecutableRegistry::executables_->erase(it); program_id_ = std::nullopt; } ServingExecutableRegistry::Handle::Handle(int64_t program_id) : program_id_(program_id) {} absl::StatusOr<ServingExecutableRegistry::Handle> ServingExecutableRegistry::Register( int64_t program_id, std::unique_ptr<IfrtServingExecutable> executable) { absl::MutexLock l(&mu_); VLOG(1) << "Registering program " << program_id << " from signature '" << executable->signature_name() << "' of model '" << executable->model_name() << "'" << ", address is " << executable.get(); if (!executables_->insert({program_id, std::move(executable)}).second) { return absl::AlreadyExistsError(absl::StrCat( "Program ", program_id, " already exists in the program registry")); } return Handle(program_id); } IfrtServingExecutable* ServingExecutableRegistry::Lookup(int64_t program_id) { absl::ReaderMutexLock l(&mu_); VLOG(1) << "Looking up program " << program_id; const auto it = executables_->find(program_id); return it != executables_->end() ? it->second.get() : nullptr; } ABSL_CONST_INIT absl::Mutex ServingExecutableRegistry::mu_(absl::kConstInit); absl::flat_hash_map<int64_t, std::unique_ptr<IfrtServingExecutable>>* const ServingExecutableRegistry::executables_ = new absl::flat_hash_map<int64_t, std::unique_ptr<IfrtServingExecutable>>(); } }
#include "tensorflow/core/tfrt/ifrt/ifrt_executable_registry.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/InitAllDialects.h" #include "mlir/Parser/Parser.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/test_util.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable.h" #include "tensorflow/core/tfrt/ifrt/tf_host_callback.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tfrt/host_context/concurrent_work_queue.h" namespace tensorflow { namespace ifrt_serving { namespace { tsl::thread::ThreadPool& GetThreadPool() { constexpr int kMaxParallelism = 16; static auto* thread_pool = new tsl::thread::ThreadPool(tsl::Env::Default(), tsl::ThreadOptions(), "IfrtSharding", kMaxParallelism); return *thread_pool; } absl::StatusOr<std::unique_ptr<IfrtServingExecutable>> CreateIfrtServingExecutable(mlir::MLIRContext& context, int64_t program_id) { constexpr absl::string_view kDataDirectory = "tensorflow/core/tfrt/ifrt/testdata"; std::string mlir_module_path = tensorflow::GetDataDependencyFilepath( absl::StrCat(kDataDirectory, "/executable.mlir")); mlir::OwningOpRef<mlir::ModuleOp> mlir_module = mlir::parseSourceFile<mlir::ModuleOp>(mlir_module_path, &context); if (!mlir_module) { return absl::InvalidArgumentError( absl::StrCat("Failed to parse MLIR file: ", mlir_module_path)); } TF_ASSIGN_OR_RETURN(std::shared_ptr<xla::ifrt::Client> client, xla::ifrt::test_util::GetClient()); IfrtLoadedVariableRegistry ifrt_loaded_variable_registry; IfrtRestoreTensorRegistry ifrt_restore_tensor_registry; std::unique_ptr<tfrt::ConcurrentWorkQueue> work_queue = tfrt::CreateMultiThreadedWorkQueue( 4, 4); TF_ASSIGN_OR_RETURN(std::unique_ptr<tensorflow::DynamicDeviceMgr> device_mgr, CreateTfDynamicDeviceMgr()); return IfrtServingExecutable::Create( program_id, "test", "main", std::move(mlir_module), client, &GetThreadPool(), &ifrt_loaded_variable_registry, &ifrt_restore_tensor_registry, work_queue.get(), device_mgr.get(), tensorflow::IdentityShapeRepresentationFn(), nullptr, nullptr); } TEST(IfrtExecutableRegistry, Basic) { mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); int64_t program_id = 1234; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<IfrtServingExecutable> executable, CreateIfrtServingExecutable(context, program_id)); IfrtServingExecutable* raw_ptr = executable.get(); TF_ASSERT_OK_AND_ASSIGN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); IfrtServingExecutable* executable_ptr = ServingExecutableRegistry::Lookup(program_id); ASSERT_EQ(executable_ptr, raw_ptr); } TEST(IfrtExecutableRegistry, DuplicateRegistrationFails) { mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); int64_t program_id = 1234; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<IfrtServingExecutable> executable, CreateIfrtServingExecutable(context, program_id)); TF_ASSERT_OK_AND_ASSIGN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); EXPECT_THAT( ServingExecutableRegistry::Register(program_id, std::move(executable)), testing::StatusIs(absl::StatusCode::kAlreadyExists)); } TEST(IfrtExecutableRegistry, ReleaseOk) { mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); int64_t program_id = 1234; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<IfrtServingExecutable> executable, CreateIfrtServingExecutable(context, program_id)); TF_ASSERT_OK_AND_ASSIGN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); handle.Release(); EXPECT_EQ(ServingExecutableRegistry::Lookup(program_id), nullptr); } TEST(IfrtExecutableRegistry, FreezeOk) { mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); int64_t program_id = 1234; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<IfrtServingExecutable> executable, CreateIfrtServingExecutable(context, program_id)); IfrtServingExecutable* raw_ptr = executable.get(); TF_ASSERT_OK_AND_ASSIGN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); ASSERT_OK(handle.Freeze()); IfrtServingExecutable* executable_ptr = ServingExecutableRegistry::Lookup(program_id); ASSERT_EQ(executable_ptr, raw_ptr); } TEST(IfrtExecutableRegistry, FreezeFailedProgramNotRegistered) { mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); int64_t program_id = 1234; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<IfrtServingExecutable> executable, CreateIfrtServingExecutable(context, program_id)); TF_ASSERT_OK_AND_ASSIGN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); handle.Release(); EXPECT_THAT(handle.Freeze(), testing::StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(IfrtExecutableRegistry, InvalidProgramIdShallReturnNull) { int64_t program_id = 1234; IfrtServingExecutable* executable_ptr = ServingExecutableRegistry::Lookup(program_id); ASSERT_EQ(executable_ptr, nullptr); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_executable_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_executable_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f5a8fa47-b710-49c7-b98f-355ccd37a6f2
cpp
tensorflow/tensorflow
ifrt_device_utils
tensorflow/core/tfrt/ifrt/ifrt_device_utils.cc
tensorflow/core/tfrt/ifrt/ifrt_device_utils_test.cc
#include "tensorflow/core/tfrt/ifrt/ifrt_device_utils.h" #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "tensorflow/compiler/tf2xla/host_compute_metadata.pb.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/attribute_map.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/host_callback.h" #include "xla/service/computation_placer.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/protobuf/tpu/compile_metadata.pb.h" #include "tensorflow/core/tfrt/ifrt/grid.h" #include "tensorflow/core/tfrt/ifrt/ifrt_config.pb.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace ifrt_serving { static constexpr int kTpuTopologyRank = 4; absl::StatusOr<std::vector<xla::ifrt::Device*>> GetAssignedIfrtDevices( const xla::ifrt::Client& ifrt_client, int num_replicas, int num_cores_per_replica, std::optional<std::vector<int>> device_assignment) { const int num_devices = num_replicas * num_cores_per_replica; bool no_device_coordinates = false; for (auto* device : ifrt_client.devices()) { if (!device->Attributes().map().contains("coords") || !device->Attributes().map().contains("core_on_chip")) { no_device_coordinates = true; break; } } if (!device_assignment || device_assignment->empty() || no_device_coordinates) { TF_ASSIGN_OR_RETURN(xla::DeviceAssignment xla_device_assignment, ifrt_client.GetDefaultDeviceAssignment( num_replicas, num_cores_per_replica)); VLOG(3) << "Getting default device lists"; std::vector<xla::ifrt::Device*> devices; devices.reserve(num_devices); for (int replica_idx = 0; replica_idx < num_replicas; replica_idx++) { for (int core_idx = 0; core_idx < num_cores_per_replica; core_idx++) { auto device_id = xla_device_assignment(replica_idx, core_idx); TF_ASSIGN_OR_RETURN( xla::ifrt::Device * device, ifrt_client.LookupDevice(xla::ifrt::DeviceId(device_id))); devices.push_back(device); } } return devices; } absl::flat_hash_map<GridCoords, int> devices_from_attribute; std::vector<int> coord; coord.reserve(kTpuTopologyRank); int device_index = 0; for (auto coord_attr : *device_assignment) { coord.push_back(coord_attr); if (coord.size() == kTpuTopologyRank) { devices_from_attribute.insert( {GridCoords(coord[0], coord[1], coord[2], coord[3]), device_index}); device_index++; coord.clear(); } } if (!coord.empty()) { return absl::FailedPreconditionError( absl::StrCat("Device assignment attribute is expected to be a multiple " "of 4, but got ", device_assignment->size())); } if (devices_from_attribute.size() != num_devices) { return absl::FailedPreconditionError( absl::StrCat("Device assignment has ", devices_from_attribute.size(), " devices, but expected ", num_devices)); } struct IfrtDeviceGrid { xla::ifrt::Device* device; GridCoords grid; int index_at_attribute; }; std::vector<IfrtDeviceGrid> ifrt_devices; ifrt_devices.reserve(num_devices); for (auto* device : ifrt_client.devices()) { GridCoords grid; auto coords_it = device->Attributes().map().find("coords"); auto core_on_chip_it = device->Attributes().map().find("core_on_chip"); if (coords_it != device->Attributes().map().end() && core_on_chip_it != device->Attributes().map().end()) { VLOG(3) << "Adding coords and core_on_chip attributes:" << device->DebugString(); auto coords_list = std::get<xla::ifrt::AttributeMap::Int64ListValue>(coords_it->second); auto core_on_chip = std::get<xla::ifrt::AttributeMap::Int64Value>( core_on_chip_it->second); if (coords_list.value.size() != 3) { return absl::InternalError(absl::StrCat( "Expected coords to be of size 3, but got ", coords_list.value.size(), " for device ", device->DebugString())); } grid = GridCoords(coords_list.value[0], coords_list.value[1], coords_list.value[2], core_on_chip.value); } else { return absl::InternalError( absl::StrCat("Device ", device->DebugString(), " does not have coords or core_on_chip attribute.")); } auto device_it_from_attribute = devices_from_attribute.find(grid); if (device_it_from_attribute == devices_from_attribute.end()) { VLOG(1) << "Device coordinates " << grid.ToString() << " does not match any TPU device assigned " << absl::StrJoin(*device_assignment, " "); continue; } ifrt_devices.push_back( {.device = device, .grid = grid, .index_at_attribute = device_it_from_attribute->second}); } if (ifrt_devices.size() != num_devices) { return absl::FailedPreconditionError(absl::StrCat( "Match ", ifrt_devices.size(), " devices, but expected ", num_devices)); } absl::c_sort(ifrt_devices, [&](const auto& lhs, const auto& rhs) { return lhs.index_at_attribute < rhs.index_at_attribute; }); std::vector<xla::ifrt::Device*> result; result.reserve(ifrt_devices.size()); for (auto& device_grid : ifrt_devices) { result.push_back(device_grid.device); VLOG(3) << "Device: " << device_grid.device->DebugString() << " is assigned"; } return result; } } }
#include "tensorflow/core/tfrt/ifrt/ifrt_device_utils.h" #include <memory> #include <optional> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/python/ifrt/attribute_map.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/mock.h" #include "xla/service/computation_placer.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace ifrt_serving { namespace { using ::testing::ElementsAre; using ::testing::Return; using ::testing::ReturnRef; using ::tsl::testing::StatusIs; static constexpr int kNumReplicas = 1; static constexpr int kNumCoresPerReplica = 2; static constexpr int kNumDevices = 4; static constexpr int kDeviceIdOffset = 8; class IfrtDeviceUtilsTest : public ::testing::Test { protected: void SetUp() override { mocked_devices_.reserve(kNumDevices); devices_.reserve(kNumDevices); for (int i = 0; i < kNumDevices; ++i) { mocked_devices_.push_back(std::make_unique<xla::ifrt::MockDevice>()); ON_CALL(*mocked_devices_[i], Attributes()) .WillByDefault(ReturnRef(device_attributes_maps_[i])); ON_CALL(*mocked_devices_[i], Id()) .WillByDefault(Return(xla::ifrt::DeviceId(kDeviceIdOffset + i))); ON_CALL(client_, LookupDevice(xla::ifrt::DeviceId(kDeviceIdOffset + i))) .WillByDefault(Return(mocked_devices_[i].get())); devices_.push_back(mocked_devices_[i].get()); }; ON_CALL(client_, devices()).WillByDefault(Return(devices_)); xla::DeviceAssignment assignment(kNumReplicas, kNumCoresPerReplica); assignment(0, 0) = kDeviceIdOffset + 2; assignment(0, 1) = kDeviceIdOffset + 3; ON_CALL(client_, GetDefaultDeviceAssignment(kNumReplicas, kNumCoresPerReplica)) .WillByDefault(Return(assignment)); } xla::ifrt::MockClient client_; std::vector<std::unique_ptr<xla::ifrt::MockDevice>> mocked_devices_; std::vector<xla::ifrt::Device*> devices_; std::vector<xla::ifrt::AttributeMap> device_attributes_maps_ = { xla::ifrt::AttributeMap(xla::ifrt::AttributeMap::Map{ {"coords", xla::ifrt::AttributeMap::Int64ListValue({1, 0, 0})}, {"core_on_chip", xla::ifrt::AttributeMap::Int64Value(0)}}), xla::ifrt::AttributeMap(xla::ifrt::AttributeMap::Map{ {"coords", xla::ifrt::AttributeMap::Int64ListValue({1, 0, 0})}, {"core_on_chip", xla::ifrt::AttributeMap::Int64Value(1)}}), xla::ifrt::AttributeMap(xla::ifrt::AttributeMap::Map{ {"coords", xla::ifrt::AttributeMap::Int64ListValue({2, 0, 0})}, {"core_on_chip", xla::ifrt::AttributeMap::Int64Value(0)}}), xla::ifrt::AttributeMap(xla::ifrt::AttributeMap::Map{ {"coords", xla::ifrt::AttributeMap::Int64ListValue({2, 0, 0})}, {"core_on_chip", xla::ifrt::AttributeMap::Int64Value(1)}}), }; }; TEST_F(IfrtDeviceUtilsTest, Basic) { std::vector<int> device_assignment_attr = {1, 0, 0, 1, 1, 0, 0, 0}; TF_ASSERT_OK_AND_ASSIGN( auto devices_from_attribute, GetAssignedIfrtDevices(client_, kNumReplicas, kNumCoresPerReplica, device_assignment_attr)); EXPECT_THAT(devices_from_attribute, ElementsAre(devices_[1], devices_[0])); } TEST_F(IfrtDeviceUtilsTest, SeparateXCoordinates) { std::vector<int> device_assignment_attr = {1, 0, 0, 1, 2, 0, 0, 0}; TF_ASSERT_OK_AND_ASSIGN( auto devices_from_attribute, GetAssignedIfrtDevices(client_, kNumReplicas, kNumCoresPerReplica, device_assignment_attr)); EXPECT_THAT(devices_from_attribute, ElementsAre(devices_[1], devices_[2])); } TEST_F(IfrtDeviceUtilsTest, EmptyDeviceAssignmentShallReturnDefault) { TF_ASSERT_OK_AND_ASSIGN( auto devices_from_attribute, GetAssignedIfrtDevices(client_, kNumReplicas, kNumCoresPerReplica, std::nullopt)); EXPECT_THAT(devices_from_attribute, ElementsAre(devices_[2], devices_[3])); } TEST_F(IfrtDeviceUtilsTest, MismatchCoordinatesShallFail) { std::vector<int> device_assignment_attr = {1, 0, 0, 1, 3, 0, 0, 0}; auto status = GetAssignedIfrtDevices(client_, 1, 2, device_assignment_attr); EXPECT_THAT(status, StatusIs(absl::StatusCode::kFailedPrecondition)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_device_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_device_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b4226e9b-7fbf-4289-b06e-d2775cb74417
cpp
tensorflow/tensorflow
tf_host_callback
tensorflow/core/tfrt/ifrt/tf_host_callback.cc
tensorflow/core/tfrt/ifrt/tf_host_callback_test.cc
#include "tensorflow/core/tfrt/ifrt/tf_host_callback.h" #include <cstddef> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/cleanup/cleanup.h" #include "absl/container/fixed_array.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/immediate_execution_context.h" #include "tensorflow/c/eager/immediate_execution_operation.h" #include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/ifrt_types.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tsl/platform/casts.h" #include "tsl/platform/errors.h" #include "tsl/platform/refcount.h" #include "tsl/profiler/lib/traceme.h" namespace tensorflow { namespace ifrt_serving { namespace { using RefCountHandle = ::tsl::core::RefCountPtr<tensorflow::TensorHandle>; size_t GetSizeInBytes(const tensorflow::Tensor& tensor) { return tensor.shape().num_elements() * DataTypeSize(tensor.dtype()); } tensorflow::Tensor GetTensor(const DtypeAndShape& dtype_and_shape, void* src) { DCHECK(DataTypeCanUseMemcpy(dtype_and_shape.dtype)); tensorflow::Tensor t(dtype_and_shape.dtype, dtype_and_shape.shape); std::memcpy(t.data(), src, GetSizeInBytes(t)); return t; } void CopyToBuffer(void* dst, const tensorflow::Tensor& tensor) { DCHECK(DataTypeCanUseMemcpy(tensor.dtype())); std::memcpy(dst, tensor.data(), GetSizeInBytes(tensor)); } } absl::Status TfHostCallback::Call(void** inputs, void** outputs) { tsl::profiler::TraceMe trace_me("TfHostCallback::Call"); tensorflow::ImmediateOpPtr op(ctx_->CreateOperation()); TF_RETURN_IF_ERROR( op->Reset(entry_function_name_.c_str(), nullptr)); ctx_->StartStep(); absl::Cleanup cleanup_step = [this]() { ctx_->EndStep(); }; for (int i = 0; i < operand_type_and_shapes_.size(); ++i) { tensorflow::Tensor t = GetTensor(operand_type_and_shapes_[i], inputs[i]); RefCountHandle handle(tensorflow::down_cast<tensorflow::TensorHandle*>( ctx_->CreateLocalHandleFromTFTensor(t, nullptr))); TF_RETURN_IF_ERROR(op->AddInput(handle.get())); } int num_outputs = result_type_and_shapes_.size(); absl::FixedArray<tensorflow::AbstractTensorHandle*> output_raw_handles( num_outputs); TF_RETURN_IF_ERROR( op->Execute(absl::MakeSpan(output_raw_handles), &num_outputs)); std::vector<RefCountHandle> output_handles; output_handles.reserve(num_outputs); for (auto* output_raw_handle : output_raw_handles) { output_handles.emplace_back( tensorflow::down_cast<tensorflow::TensorHandle*>(output_raw_handle)); } if (result_type_and_shapes_.size() != num_outputs) { return absl::InternalError(absl::StrCat( "TF host callback invocation expected ", result_type_and_shapes_.size(), " results, instead got ", num_outputs)); } for (int i = 0; i < num_outputs; ++i) { const tensorflow::Tensor* tensor; TF_RETURN_IF_ERROR(output_handles[i]->Tensor(&tensor)); CopyToBuffer(outputs[i], *tensor); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<TfHostCallback>> TfHostCallback::Create( absl::Span<const tensorflow::FunctionDef> functions, absl::string_view entry_function_name, absl::Span<const DtypeAndShape> operand_type_and_shapes, absl::Span<const DtypeAndShape> result_type_and_shapes, tensorflow::DeviceMgr* device_mgr) { tensorflow::SessionOptions options; options.config.add_device_filters("/device:CPU:*"); DCHECK(device_mgr != nullptr); tensorflow::EagerContextPtr ctx(new tensorflow::EagerContext( options, tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, device_mgr, false, nullptr, nullptr, nullptr, true)); for (const tensorflow::FunctionDef& function : functions) { TF_RETURN_IF_ERROR(ctx->AddFunctionDef(function)); } return absl::WrapUnique( new TfHostCallback(entry_function_name, operand_type_and_shapes, result_type_and_shapes, std::move(ctx))); } absl::StatusOr<std::unique_ptr<tensorflow::DynamicDeviceMgr>> CreateTfDynamicDeviceMgr() { std::vector<std::unique_ptr<tensorflow::Device>> devices; TF_RETURN_IF_ERROR(tensorflow::DeviceFactory::AddCpuDevices( tensorflow::SessionOptions(), "/job:localhost/replica:0/task:0", &devices)); return std::make_unique<tensorflow::DynamicDeviceMgr>(std::move(devices)); } } }
#include "tensorflow/core/tfrt/ifrt/tf_host_callback.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/ifrt_types.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_matcher.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace ifrt_serving { namespace { using ::tensorflow::test::AsTensor; using ::tensorflow::test::TensorEq; absl::StatusOr<tensorflow::FunctionDef> ToFunctionDef( tensorflow::Scope scope, const std::string& function_name) { auto graph = std::make_unique<tensorflow::Graph>(tensorflow::OpRegistry::Global()); TF_RETURN_IF_ERROR(scope.ToGraph(graph.get())); tensorflow::FunctionDef function_def; TF_RETURN_IF_ERROR( tensorflow::GraphToFunctionDef(*graph, function_name, &function_def)); return function_def; } absl::StatusOr<tensorflow::FunctionDef> MakeAddOneFunctionDef( const std::string& function_name) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); { auto arg0 = tensorflow::ops::_Arg(scope.WithOpName("arg0"), tensorflow::DT_FLOAT, 0); auto const0_value = tensorflow::test::AsScalar<float>(1); auto const0 = tensorflow::ops::Const(scope.WithOpName("const0"), tensorflow::Input::Initializer(const0_value)); auto add0 = tensorflow::ops::Add(scope.WithOpName("add0"), arg0, const0); auto retval0 = tensorflow::ops::_Retval(scope.WithOpName("retval0"), add0, 0); } return ToFunctionDef(std::move(scope), function_name); } absl::StatusOr<std::vector<tensorflow::FunctionDef>> MakeAddOneWithCallFunctionDef(const std::string& function_name) { std::vector<tensorflow::FunctionDef> function_defs; TF_ASSIGN_OR_RETURN(function_defs.emplace_back(), MakeAddOneFunctionDef("add")); tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); { auto arg0 = tensorflow::ops::_Arg(scope.WithOpName("arg0"), tensorflow::DT_FLOAT, 0); tensorflow::NameAttrList f; f.set_name("add"); auto call = tensorflow::ops::StatefulPartitionedCall( scope.WithOpName("call"), {arg0.output}, {tensorflow::DT_FLOAT}, f); auto retval0 = tensorflow::ops::_Retval(scope.WithOpName("retval0"), call.output[0], 0); } TF_ASSIGN_OR_RETURN(function_defs.emplace_back(), ToFunctionDef(std::move(scope), function_name)); return function_defs; } absl::StatusOr<tensorflow::FunctionDef> MakeAssignVarFunctionDef( const std::string& function_name) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); { auto arg0 = tensorflow::ops::_Arg(scope.WithOpName("arg0"), tensorflow::DT_INT32, 0); auto var = tensorflow::ops::VarHandleOp( scope.WithOpName("var"), tensorflow::DT_INT32, tensorflow::TensorShape(), tensorflow::ops::VarHandleOp::Attrs().SharedName("var")); tensorflow::ops::AssignVariableOp assign_op(scope.WithOpName("assign"), var, arg0); } return ToFunctionDef(std::move(scope), function_name); } absl::StatusOr<tensorflow::FunctionDef> MakeAddVarFunctionDef( const std::string& function_name) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); { auto arg0 = tensorflow::ops::_Arg(scope.WithOpName("arg0"), tensorflow::DT_INT32, 0); auto var = tensorflow::ops::VarHandleOp( scope.WithOpName("var"), tensorflow::DT_INT32, tensorflow::TensorShape(), tensorflow::ops::VarHandleOp::Attrs().SharedName("var")); auto read = tensorflow::ops::ReadVariableOp(scope.WithOpName("read"), var, tensorflow::DT_INT32); auto add = tensorflow::ops::Add(scope.WithOpName("add"), read, arg0); tensorflow::ops::AssignVariableOp assign_op(scope.WithOpName("assign"), var, add); auto retval0 = tensorflow::ops::_Retval(scope.WithOpName("retval0"), add, 0); } return ToFunctionDef(std::move(scope), function_name); } TEST(TfHostCallbackTest, Simple) { ASSERT_OK_AND_ASSIGN(auto function_defs, MakeAddOneWithCallFunctionDef("main")); auto in = AsTensor<float>({2.5f}, tensorflow::TensorShape({1})); void* in_ptrs[1] = {in.data()}; std::vector<DtypeAndShape> in_dtype_shapes; in_dtype_shapes.push_back({.dtype = in.dtype(), .shape = in.shape()}); auto out = AsTensor<float>({0.0f}, tensorflow::TensorShape({1})); void* out_ptrs[1] = {out.data()}; std::vector<DtypeAndShape> out_dtype_shapes; out_dtype_shapes.push_back({.dtype = out.dtype(), .shape = out.shape()}); ASSERT_OK_AND_ASSIGN(auto device_mgr, CreateTfDynamicDeviceMgr()); ASSERT_OK_AND_ASSIGN(auto tf_host_callback, tensorflow::ifrt_serving::TfHostCallback::Create( function_defs, "main", in_dtype_shapes, out_dtype_shapes, device_mgr.get())); ASSERT_OK(tf_host_callback->Call(in_ptrs, out_ptrs)); EXPECT_THAT(out, TensorEq(AsTensor<float>({3.5f}, tensorflow::TensorShape({1})))); } TEST(TfHostCallbackTest, SharedState) { tensorflow::ConfigProto session_config; ASSERT_OK_AND_ASSIGN(auto state, CreateTfDynamicDeviceMgr()); std::unique_ptr<TfHostCallback> assign_callback; { ASSERT_OK_AND_ASSIGN(auto functions, MakeAssignVarFunctionDef("main")); std::vector<DtypeAndShape> in_dtype_shapes; in_dtype_shapes.push_back( {.dtype = DT_INT32, .shape = tensorflow::TensorShape({1})}); std::vector<DtypeAndShape> out_dtype_shapes; ASSERT_OK_AND_ASSIGN( assign_callback, TfHostCallback::Create({functions}, "main", in_dtype_shapes, out_dtype_shapes, state.get())); } std::unique_ptr<TfHostCallback> incr_callback; { ASSERT_OK_AND_ASSIGN(auto functions, MakeAddVarFunctionDef("main")); std::vector<DtypeAndShape> in_dtype_shapes; in_dtype_shapes.push_back( {.dtype = DT_INT32, .shape = tensorflow::TensorShape({1})}); std::vector<DtypeAndShape> out_dtype_shapes; out_dtype_shapes.push_back( {.dtype = DT_INT32, .shape = tensorflow::TensorShape({1})}); ASSERT_OK_AND_ASSIGN( incr_callback, TfHostCallback::Create({functions}, "main", in_dtype_shapes, out_dtype_shapes, state.get())); } constexpr int32_t kInit = 2; { auto in = AsTensor<int32_t>({kInit}, tensorflow::TensorShape({1})); void* in_ptrs[1] = {in.data()}; void* out_ptrs[0]; ASSERT_OK(assign_callback->Call(in_ptrs, out_ptrs)); } for (int i = 0; i < 3; ++i) { auto in = AsTensor<int32_t>({1}, tensorflow::TensorShape({1})); void* in_ptrs[1] = {in.data()}; auto out = AsTensor<int32_t>({0}, tensorflow::TensorShape({1})); void* out_ptrs[1] = {out.data()}; ASSERT_OK(incr_callback->Call(in_ptrs, out_ptrs)); EXPECT_THAT(out, TensorEq(AsTensor<int32_t>({kInit + i + 1}, tensorflow::TensorShape({1})))); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/tf_host_callback.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/tf_host_callback_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c775d3d1-0469-48e5-a02a-d44ccc159d13
cpp
tensorflow/tensorflow
attribute
tensorflow/core/tfrt/mlrt/attribute/attribute.cc
tensorflow/core/tfrt/mlrt/attribute/attribute_test.cc
#include "tensorflow/core/tfrt/mlrt/attribute/attribute.h" #include <cstring> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_attributes.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_type.h" #include "tensorflow/compiler/mlir/tfrt/translate/mlrt/mlir_to_bytecode.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace tf_mlrt { absl::StatusOr<std::string> EncodeTensorflowAttribute( const mlrt::ModuleEmitterContext& module_context, mlir::Attribute attr) { if (auto result = mlrt::EncodeSimpleAttribute(module_context, attr)) { return std::move(*result); } if (auto dense_attr = mlir::dyn_cast<mlir::DenseElementsAttr>(attr)) { auto element_type = dense_attr.getElementType(); tensorflow::DataType dtype; TF_RETURN_IF_ERROR(tensorflow::ConvertToDataType(element_type, &dtype)); if (dtype == tensorflow::DT_STRING) { return absl::InvalidArgumentError( "String tensor attribute is not yet supported"); } mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); auto tensor_ctor = mlrt::bc::New<TensorAttr>(&allocator, dtype); auto shaped_type = dense_attr.getType(); size_t num_elements = shaped_type.getNumElements(); tensor_ctor.set_num_elements(num_elements); std::vector<int64_t> shape(shaped_type.getShape().begin(), shaped_type.getShape().end()); tensor_ctor.construct_shape(shape); if (dtype == tensorflow::DT_BOOL) { std::vector<uint8_t> data(num_elements); int i = 0; for (auto v : dense_attr.getValues<bool>()) { data[i++] = static_cast<uint8_t>(v); } tensor_ctor.construct_data(data.size()) .Place(reinterpret_cast<const char*>(data.data()), data.size()); } else { auto raw_data = dense_attr.getRawData(); if (dense_attr.isSplat()) { std::vector<char> data(raw_data.size() * num_elements); char* p = data.data(); for (int i = 0; i < num_elements; ++i, p += raw_data.size()) { std::memcpy(p, raw_data.data(), raw_data.size()); } tensor_ctor.construct_data(data.size()).Place(data.data(), data.size()); } else { tensor_ctor.construct_data(raw_data.size()) .Place(raw_data.data(), raw_data.size()); } } return std::string(buffer.data(), buffer.size()); } if (auto type_attr = mlir::dyn_cast<mlir::TypeAttr>(attr)) { tensorflow::DataType dtype; TF_RETURN_IF_ERROR( tensorflow::ConvertToDataType(type_attr.getValue(), &dtype)); std::string data(sizeof(dtype), '\0'); std::memcpy(data.data(), &dtype, sizeof(dtype)); return data; } if (auto shape_attr = mlir::dyn_cast<mlir::TF::ShapeAttr>(attr)) { llvm::ArrayRef<int64_t> shape; if (!shape_attr.getUnranked()) { auto shape_or = shape_attr.getValue(); if (!shape_or.has_value()) { std::string attr_str; llvm::raw_string_ostream os(attr_str); attr.print(os); return absl::InvalidArgumentError( absl::StrCat("Failed to get shape from shape attr: ", attr_str)); } shape = *shape_or; } mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); auto shape_attr_ctor = mlrt::bc::New<ShapeAttr>(&allocator); shape_attr_ctor.set_unranked(shape_attr.getUnranked()); std::vector<int64_t> shape_vec(shape.begin(), shape.end()); shape_attr_ctor.construct_shape(shape_vec); return std::string(buffer.data(), buffer.size()); } if (auto array_attr = mlir::dyn_cast<mlir::ArrayAttr>(attr)) { mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); auto ctor = mlrt::bc::New<mlrt::bc::Vector<tensorflow::DataType>>( &allocator, array_attr.size()); int i; for (i = 0; i < array_attr.size(); ++i) { if (auto type_attr = mlir::dyn_cast<mlir::TypeAttr>(array_attr[i])) { tensorflow::DataType dtype; TF_RETURN_IF_ERROR( tensorflow::ConvertToDataType(type_attr.getValue(), &dtype)); ctor.ConstructAt(i, dtype); } else { break; } } if (i == array_attr.size()) { return std::string(buffer.data(), buffer.size()); } } std::string attr_str; llvm::raw_string_ostream os(attr_str); attr.print(os); return absl::InvalidArgumentError( absl::StrCat("Try to encode unsupported attribute: ", attr_str)); } } }
#include "tensorflow/core/tfrt/mlrt/attribute/attribute.h" #include <array> #include <cstring> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "llvm/ADT/ArrayRef.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_attributes.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.h" #include "tensorflow/compiler/mlir/tfrt/translate/mlrt/mlir_to_bytecode.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tf_mlrt { namespace { TEST(AttributeTest, TensorAttr) { mlir::MLIRContext mlir_context; mlir::Builder builder(&mlir_context); std::array<int64_t, 4> data = {0, 1, 2, 3}; auto dense_i64_attr = builder.getI64VectorAttr(data); mlrt::AttributeEncoderRegistry attribute_encoder_registry; mlrt::ModuleEmitterContext emitter_context(&attribute_encoder_registry); TF_ASSERT_OK_AND_ASSIGN( auto attr_buffer, EncodeTensorflowAttribute(emitter_context, dense_i64_attr)); TensorAttr tensor_attr(attr_buffer.data()); EXPECT_EQ(tensor_attr.dtype(), tensorflow::DT_INT64); EXPECT_THAT(tensor_attr.shape(), ::testing::ElementsAreArray({4})); EXPECT_EQ( absl::string_view(tensor_attr.data().data(), tensor_attr.data().size()), absl::string_view(reinterpret_cast<const char*>(data.data()), data.size() * sizeof(int64_t))); } TEST(AttributeTest, BoolTensorAttr) { mlir::MLIRContext mlir_context; mlir::Builder builder(&mlir_context); auto dense_bool_attr = builder.getBoolVectorAttr({true, false, true, false}); mlrt::AttributeEncoderRegistry attribute_encoder_registry; mlrt::ModuleEmitterContext emitter_context(&attribute_encoder_registry); TF_ASSERT_OK_AND_ASSIGN( auto attr_buffer, EncodeTensorflowAttribute(emitter_context, dense_bool_attr)); TensorAttr tensor_attr(attr_buffer.data()); EXPECT_EQ(tensor_attr.dtype(), tensorflow::DT_BOOL); EXPECT_THAT(tensor_attr.shape(), ::testing::ElementsAreArray({4})); std::array<uint8_t, 4> expected_data = {1, 0, 1, 0}; EXPECT_EQ( absl::string_view(tensor_attr.data().data(), tensor_attr.data().size()), absl::string_view(reinterpret_cast<const char*>(expected_data.data()), expected_data.size() * sizeof(uint8_t))); } TEST(AttributeTest, SplatTensorAttr) { mlir::MLIRContext mlir_context; mlir::Builder builder(&mlir_context); auto dense_splat_i64_attr = mlir::DenseElementsAttr::get<int64_t>( mlir::RankedTensorType::get(4, builder.getI64Type()), 100); mlrt::AttributeEncoderRegistry attribute_encoder_registry; mlrt::ModuleEmitterContext emitter_context(&attribute_encoder_registry); TF_ASSERT_OK_AND_ASSIGN( auto attr_buffer, EncodeTensorflowAttribute(emitter_context, dense_splat_i64_attr)); TensorAttr tensor_attr(attr_buffer.data()); EXPECT_EQ(tensor_attr.dtype(), tensorflow::DT_INT64); EXPECT_THAT(tensor_attr.shape(), ::testing::ElementsAreArray({4})); EXPECT_EQ(tensor_attr.data().size(), 4 * sizeof(int64_t)); const char* p = tensor_attr.data().data(); for (int i = 0; i < 4; ++i, p += sizeof(int64_t)) { int64_t v; std::memcpy(&v, p, sizeof(int64_t)); EXPECT_EQ(v, 100); } } TEST(AttributeTest, TypedAttr) { mlir::MLIRContext mlir_context; mlir_context.loadDialect<mlir::TF::TensorFlowDialect>(); mlir::Builder builder(&mlir_context); auto type_attr = mlir::TypeAttr::get(builder.getType<mlir::IntegerType>(32)); mlrt::AttributeEncoderRegistry attribute_encoder_registry; mlrt::ModuleEmitterContext emitter_context(&attribute_encoder_registry); TF_ASSERT_OK_AND_ASSIGN( auto attr_buffer, EncodeTensorflowAttribute(emitter_context, type_attr)); tensorflow::DataType dtype; std::memcpy(&dtype, attr_buffer.data(), sizeof(dtype)); EXPECT_EQ(dtype, DT_INT32); } TEST(AttributeTest, ShapeAttr) { mlir::MLIRContext mlir_context; mlir_context.loadDialect<mlir::TF::TensorFlowDialect>(); std::array<int64_t, 4> data = {1, 2, 3, 4}; auto shape_attr = mlir::TF::ShapeAttr::get( &mlir_context, llvm::ArrayRef<int64_t>(data.begin(), data.end()), false); mlrt::AttributeEncoderRegistry attribute_encoder_registry; mlrt::ModuleEmitterContext emitter_context(&attribute_encoder_registry); TF_ASSERT_OK_AND_ASSIGN( auto attr_buffer, EncodeTensorflowAttribute(emitter_context, shape_attr)); ShapeAttr shape_attr_decoded(attr_buffer.data()); EXPECT_EQ(shape_attr_decoded.unranked(), false); EXPECT_THAT(shape_attr_decoded.dims(), ::testing::ElementsAreArray({1, 2, 3, 4})); } TEST(AttributeTest, DtypeArrayAttr) { mlir::MLIRContext mlir_context; mlir_context.loadDialect<mlir::TF::TensorFlowDialect>(); mlir::Builder builder(&mlir_context); std::array<mlir::Attribute, 4> arr = { mlir::TypeAttr::get(builder.getType<mlir::IntegerType>(32)), mlir::TypeAttr::get(builder.getType<mlir::IntegerType>(64)), mlir::TypeAttr::get(builder.getType<mlir::Float32Type>()), mlir::TypeAttr::get(builder.getType<mlir::IntegerType>(1))}; auto arr_attr = mlir::ArrayAttr::get( &mlir_context, llvm::ArrayRef<mlir::Attribute>(arr.begin(), arr.end())); mlrt::AttributeEncoderRegistry attribute_encoder_registry; mlrt::ModuleEmitterContext emitter_context(&attribute_encoder_registry); TF_ASSERT_OK_AND_ASSIGN(auto attr_buffer, EncodeTensorflowAttribute(emitter_context, arr_attr)); mlrt::bc::Vector<tensorflow::DataType> dtype_arr(attr_buffer.data()); EXPECT_THAT(dtype_arr, ::testing::ElementsAreArray( {DT_INT32, DT_INT64, DT_FLOAT, DT_BOOL})); } TEST(AttributeTest, UnsupportedAttr) { mlir::MLIRContext mlir_context; mlir_context.loadDialect<mlir::TF::TensorFlowDialect>(); mlir::Builder builder(&mlir_context); auto dense_string_attr = mlir::DenseStringElementsAttr::get( mlir::RankedTensorType::get({2}, builder.getType<mlir::TF::StringType>()), {"a", "b"}); mlrt::AttributeEncoderRegistry attribute_encoder_registry; mlrt::ModuleEmitterContext emitter_context(&attribute_encoder_registry); EXPECT_THAT( EncodeTensorflowAttribute(emitter_context, dense_string_attr), ::tsl::testing::StatusIs(absl::StatusCode::kInvalidArgument, "String tensor attribute is not yet supported")); EXPECT_THAT( EncodeTensorflowAttribute(emitter_context, builder.getUnitAttr()), ::tsl::testing::StatusIs(absl::StatusCode::kInvalidArgument, "Try to encode unsupported attribute: unit")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/attribute/attribute.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/attribute/attribute_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1764824f-014b-48c7-86d7-e5d951be561b
cpp
tensorflow/tensorflow
shard_restore_util
tensorflow/core/tfrt/mlrt/kernel/shard_restore_util.cc
tensorflow/core/tfrt/mlrt/kernel/shard_restore_util_test.cc
#include "tensorflow/core/tfrt/mlrt/kernel/shard_restore_util.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <queue> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/types/span.h" namespace tensorflow { namespace tf_mlrt { std::vector<std::vector<int>> ShardVariables( int num_shards, absl::Span<int64_t> variable_sizes) { DCHECK_GT(num_shards, 0); struct IndexSize { int index; int64_t size; }; std::vector<IndexSize> variable_index_sizes; variable_index_sizes.reserve(variable_sizes.size()); for (int i = 0; i < variable_sizes.size(); ++i) { variable_index_sizes.push_back({.index = i, .size = variable_sizes[i]}); } std::sort( variable_index_sizes.begin(), variable_index_sizes.end(), [&](const IndexSize& a, const IndexSize& b) { return a.size > b.size; }); struct RestoreVariableCluster { std::vector<int> indices; size_t total_size = 0; }; auto cmp = [](const RestoreVariableCluster& a, const RestoreVariableCluster& b) { return a.total_size > b.total_size; }; std::priority_queue<RestoreVariableCluster, std::vector<RestoreVariableCluster>, decltype(cmp)> min_heap(cmp); for (int i = 0; i < num_shards; ++i) { min_heap.push(RestoreVariableCluster()); } for (int i = 0; i < variable_index_sizes.size(); ++i) { RestoreVariableCluster min_cluster = min_heap.top(); min_heap.pop(); min_cluster.total_size += variable_index_sizes[i].size; min_cluster.indices.push_back(variable_index_sizes[i].index); min_heap.push(std::move(min_cluster)); } std::vector<std::vector<int>> shards; shards.reserve(min_heap.size()); while (!min_heap.empty()) { auto& min_cluster = min_heap.top(); if (min_cluster.total_size > 0) { shards.push_back(min_cluster.indices); } min_heap.pop(); } return shards; } } }
#include "tensorflow/core/tfrt/mlrt/kernel/shard_restore_util.h" #include <cstdint> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" namespace tensorflow { namespace tf_mlrt { namespace { using ::testing::ElementsAre; using ::testing::UnorderedElementsAre; TEST(ShardRestoreUtilTest, Basic) { int num_shards = 2; std::vector<int64_t> shard_sizes = {8, 10, 3}; std::vector<std::vector<int>> shards = ShardVariables(num_shards, absl::MakeSpan(shard_sizes)); EXPECT_EQ(shards.size(), 2); EXPECT_THAT(shards[0], ElementsAre(1)); EXPECT_THAT(shards[1], ElementsAre(0, 2)); } TEST(ShardRestoreUtilTest, Imbalance) { int num_shards = 2; std::vector<int64_t> shard_sizes = {3, 3, 10, 3}; std::vector<std::vector<int>> shards = ShardVariables(num_shards, absl::MakeSpan(shard_sizes)); EXPECT_EQ(shards.size(), 2); EXPECT_THAT(shards[0], UnorderedElementsAre(0, 1, 3)); EXPECT_THAT(shards[1], ElementsAre(2)); } TEST(ShardRestoreUtilTest, SingleShard) { int num_shards = 1; std::vector<int64_t> shard_sizes = {10, 2}; std::vector<std::vector<int>> shards = ShardVariables(num_shards, absl::MakeSpan(shard_sizes)); EXPECT_EQ(shards.size(), 1); EXPECT_THAT(shards[0], ElementsAre(0, 1)); } TEST(ShardRestoreUtilTest, NumVariablesLessThanShard) { int num_shards = 2; std::vector<int64_t> shard_sizes = {1}; std::vector<std::vector<int>> shards = ShardVariables(num_shards, absl::MakeSpan(shard_sizes)); EXPECT_EQ(shards.size(), 1); EXPECT_THAT(shards[0], ElementsAre(0)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/kernel/shard_restore_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/kernel/shard_restore_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
908bf121-508e-4c4a-9d0d-8904854bb57f
cpp
tensorflow/tensorflow
ifrt_ops_kernel
tensorflow/core/tfrt/mlrt/kernel/ifrt_ops_kernel.cc
tensorflow/core/tfrt/mlrt/kernel/ifrt_ops_kernel_test.cc
#include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/python/ifrt/future.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_handle.h" #include "tensorflow/core/framework/resource_var.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/tfrt/ifrt/checkpoint_loader.h" #include "tensorflow/core/tfrt/ifrt/ifrt_config.pb.h" #include "tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_utils.h" #include "tensorflow/core/tfrt/ifrt/ifrt_model_context.h" #include "tensorflow/core/tfrt/ifrt/ifrt_model_restore_context.h" #include "tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/interpreter/future.h" #include "tensorflow/core/tfrt/mlrt/kernel/context.h" #include "tensorflow/core/tfrt/mlrt/kernel/kernel.h" #include "tensorflow/core/tfrt/utils/fallback_tensor.h" #include "tsl/platform/errors.h" #include "tsl/platform/tstring.h" using tensorflow::ifrt_serving::IfrtModelContext; namespace tensorflow { namespace tf_mlrt { namespace { struct MlrtIfrtRestoreVariableKernel : mlrt::KernelFrame { using KernelFrame::KernelFrame; static constexpr char kName[] = "tf_mlrt.ifrt_restore_variable"; tensorflow::tfrt_stub::FallbackTensor prefix() const { DCHECK_GT(arguments().size(), 3); return arguments()[0].Get<tensorflow::tfrt_stub::FallbackTensor>(); } tensorflow::tfrt_stub::FallbackTensor tensor_names() const { DCHECK_GT(arguments().size(), 3); return arguments()[1].Get<tensorflow::tfrt_stub::FallbackTensor>(); } tensorflow::tfrt_stub::FallbackTensor shape_and_slices() const { DCHECK_GT(arguments().size(), 3); return arguments()[2].Get<tensorflow::tfrt_stub::FallbackTensor>(); } mlrt::bc::Vector<tensorflow::DataType> restored_dtypes() const { return attributes().GetAs<mlrt::bc::Vector<tensorflow::DataType>>(0); } mlrt::bc::Vector<bool> truncate_in_cast() const { return attributes().GetAs<mlrt::bc::Vector<bool>>(1); } std::vector<tensorflow::tfrt_stub::FallbackTensor> var_handles() const { DCHECK_GT(arguments().size(), 3); std::vector<tensorflow::tfrt_stub::FallbackTensor> result; result.reserve(arguments().size() - 3); for (int i = 3; i < arguments().size(); ++i) { result.push_back( arguments()[i].Get<tensorflow::tfrt_stub::FallbackTensor>()); } return result; } Context& context() { return execution_context().GetUserContext<Context>(); } void Invoke(); private: static constexpr int kNumRestoreClusters = 4; absl::Status InvokeHelper(); absl::Status ValidateInput(); }; void MlrtIfrtRestoreVariableKernel::Invoke() { absl::Status status = InvokeHelper(); if (!status.ok()) { execution_context().Fail(std::move(status)); return; } } absl::Status MlrtIfrtRestoreVariableKernel::ValidateInput() { if (prefix().tensor().NumElements() != 1) { return absl::InvalidArgumentError( "The prefix tensor must be a scalar tensor."); } if (!TensorShapeUtils::IsVector(tensor_names().tensor().shape()) || !TensorShapeUtils::IsVector(shape_and_slices().tensor().shape())) { return absl::InvalidArgumentError( absl::StrCat("Input tensor_names and shape_and_slices " "should be an 1-D tensors, got ", tensor_names().tensor().shape().DebugString(), " and ", shape_and_slices().tensor().shape().DebugString())); } if (tensor_names().tensor().NumElements() != shape_and_slices().tensor().NumElements()) { return absl::InvalidArgumentError( "The tensor_names and shape_and_slices tensors must have the same " "number of elements."); } if (tensor_names().tensor().NumElements() != var_handles().size()) { return absl::InvalidArgumentError( "The tensor_names and var_handles must have the same number of " "elements."); } if (tensor_names().tensor().NumElements() != restored_dtypes().size()) { return absl::InvalidArgumentError( "The tensor_names and restored_dtypes must have the same number of " "elements."); } if (tensor_names().tensor().NumElements() != truncate_in_cast().size()) { return absl::InvalidArgumentError( "The tensor_names and truncate_in_cast must have the same number of " "elements."); } return absl::OkStatus(); } absl::Status MlrtIfrtRestoreVariableKernel::InvokeHelper() { std::optional<ifrt_serving::IfrtModelRestoreContext*> model_restore_context = context() .resource_context() .GetResource<ifrt_serving::IfrtModelRestoreContext>( ifrt_serving::kIfrtModelRestoreContextName); if (!model_restore_context.has_value()) { return absl::InternalError( "Did not find IfrtModelRestoreContext resource."); } if (*model_restore_context == nullptr) { return absl::InternalError("IfrtModelRestoreContext must not be null."); } ifrt_serving::CheckpointLoader* checkpoint_loader = (*model_restore_context)->checkpoint_loader(); if (!checkpoint_loader) { return absl::InternalError("CheckpointLoader must not be null."); } TF_RETURN_IF_ERROR(ValidateInput()); std::vector<tensorflow::DataType> restored_dtypes_vec( restored_dtypes().begin(), restored_dtypes().end()); std::vector<bool> truncate_in_cast_vec(truncate_in_cast().begin(), truncate_in_cast().end()); return checkpoint_loader->Load(prefix(), var_handles(), tensor_names(), shape_and_slices(), restored_dtypes_vec, truncate_in_cast_vec, context()); } class MlrtIfrtLoadVariableKernel : public mlrt::KernelFrame { public: using KernelFrame::KernelFrame; static constexpr char kName[] = "tf_mlrt.ifrt_load_variable"; const tensorflow::Tensor& variable_handler_tensor() const { DCHECK_GE(arguments().size(), 1); const tensorflow::Tensor& ret = arguments()[0].Get<tensorflow::tfrt_stub::FallbackTensor>().tensor(); DCHECK_EQ(ret.NumElements(), 1); return ret; } bool used_by_host() const { DCHECK_EQ(attributes().size(), 1); return attributes().GetAs<bool>(0); } Context& context() { return execution_context().GetUserContext<Context>(); } void Invoke(); private: absl::Status InvokeHelper(); }; void MlrtIfrtLoadVariableKernel::Invoke() { absl::Status status = InvokeHelper(); if (!status.ok()) { execution_context().Fail(std::move(status)); return; } } absl::Status MlrtIfrtLoadVariableKernel::InvokeHelper() { DCHECK_EQ(2, results().size()); std::optional<IfrtModelContext*> ifrt_model_context = context().resource_context().GetResource<IfrtModelContext>( "IfrtModelContext"); if (!ifrt_model_context.has_value()) { return absl::FailedPreconditionError( "LoadVariableOp: failed to fetch IfrtModelContext: "); } auto tensor_promise = mlrt::Promise::Allocate<tensorflow::tfrt_stub::FallbackTensor>(); auto tensor_future = tensor_promise.GetFuture(); ifrt_serving::IfrtRestoreTensorRegistry& ifrt_restore_tensor_registry = (*ifrt_model_context)->GetRestoreTensorRegistry(); auto& resource_handle = variable_handler_tensor().scalar<ResourceHandle>()(); std::string runtime_name = ifrt_serving::GetRuntimeNameFromVarHandle(resource_handle); if (used_by_host()) { if (ifrt_restore_tensor_registry.SetUsedByHost(runtime_name).ok()) { xla::ifrt::Future<tensorflow::Tensor> restored_tensor_future = ifrt_restore_tensor_registry.GetRestoredTensor(runtime_name); restored_tensor_future.OnReady( [tensor_promise = std::move(tensor_promise)]( absl::StatusOr<tensorflow::Tensor> restored_tensor) mutable { if (!restored_tensor.ok()) { std::move(tensor_promise).SetError(restored_tensor.status()); return; } std::move(tensor_promise) .Set<tensorflow::tfrt_stub::FallbackTensor>( tensorflow::tfrt_stub::FallbackTensor(*restored_tensor)); }); } else { auto resource_manager = context() .fallback_request_state() .device_manager() .HostCPU() ->resource_manager(); DCHECK(resource_manager); Var* variable; TF_RETURN_IF_ERROR(resource_manager->Lookup( resource_handle.container(), resource_handle.name(), &variable)); if (tensorflow::Tensor* t = variable->tensor(); t != nullptr) { std::move(tensor_promise) .Set<tensorflow::tfrt_stub::FallbackTensor>( tensorflow::tfrt_stub::FallbackTensor(*t)); } else { std::move(tensor_promise) .SetError(absl::InternalError( absl::StrCat("Variable ", resource_handle.name(), " is not found in either " "IfrtRestoreTensorRegistry or ResourceManager"))); } } } else { std::move(tensor_promise) .Set<tensorflow::tfrt_stub::FallbackTensor>( tensorflow::tfrt_stub::FallbackTensor()); } tensorflow::Tensor key_tensor(tensorflow::DT_STRING, {}); key_tensor.scalar<tsl::tstring>()() = runtime_name; results()[0].Set(tensorflow::tfrt_stub::FallbackTensor(key_tensor)); results()[1].Set(std::move(tensor_future)); return absl::OkStatus(); } void RegisterTfMlrtIfrtKernels(mlrt::KernelRegistry& registry) { registry.Register<MlrtIfrtLoadVariableKernel>(); registry.Register<MlrtIfrtRestoreVariableKernel>(); } } const bool kUnused = [] { RegisterTfMlrtIfrtKernels(GetTfMlrtOptionalKernelRegistry()); return true; }(); } }
#include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/synchronization/notification.h" #include "absl/types/span.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/test_util.h" #include "xla/tsl/framework/test_util/mock_serving_device_selector.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/resource_var.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_matcher.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/fallback/op_kernel_runner.h" #include "tensorflow/core/tfrt/ifrt/checkpoint_loader.h" #include "tensorflow/core/tfrt/ifrt/ifrt_config.pb.h" #include "tensorflow/core/tfrt/ifrt/ifrt_model_context.h" #include "tensorflow/core/tfrt/ifrt/ifrt_model_restore_context.h" #include "tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/executable.h" #include "tensorflow/core/tfrt/mlrt/interpreter/builtin_kernels.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/interpreter/execute.h" #include "tensorflow/core/tfrt/mlrt/interpreter/interpreter_testutil.h" #include "tensorflow/core/tfrt/mlrt/interpreter/value.h" #include "tensorflow/core/tfrt/mlrt/kernel/context.h" #include "tensorflow/core/tfrt/mlrt/kernel/kernel.h" #include "tensorflow/core/tfrt/utils/fallback_tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/refcount.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/tstring.h" #include "tfrt/host_context/concurrent_work_queue.h" #include "tfrt/host_context/resource_context.h" namespace tensorflow { namespace tf_mlrt { namespace { using tensorflow::test::AsScalar; using tensorflow::test::AsTensor; using tensorflow::test::ExpectEqual; using tensorflow::test::TensorEq; constexpr absl::string_view kContainer = "test"; constexpr absl::string_view kSharedName = "y"; constexpr absl::string_view kVariableRuntimeName = "test__y"; tsl::thread::ThreadPool& GetThreadPool() { constexpr int kMaxParallelism = 16; static tsl::thread::ThreadPool* thread_pool = new tsl::thread::ThreadPool(tsl::Env::Default(), tsl::ThreadOptions(), "IfrtSharding", kMaxParallelism); return *thread_pool; } std::string EncodeRestoreDtypesInt32(int num_outputs) { mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); auto ctor = mlrt::bc::New<mlrt::bc::Vector<tensorflow::DataType>>( &allocator, num_outputs); for (int i = 0; i < num_outputs; ++i) { ctor.ConstructAt(i, tensorflow::DT_INT32); } return std::string(buffer.data(), buffer.size()); } std::string EncodeTruncateInCast(int num_outputs) { mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); auto ctor = mlrt::bc::New<mlrt::bc::Vector<bool>>(&allocator, num_outputs); for (int i = 0; i < num_outputs; ++i) { ctor.ConstructAt(i, false); } return std::string(buffer.data(), buffer.size()); } mlrt::bc::Buffer CreateExecutableForIfrtRestoreVariableOp( int num_variables = 1) { mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); auto executable_ctor = mlrt::bc::New<mlrt::bc::Executable>(&allocator); mlrt::testing::SymbolTable kernels; std::vector<std::string> kernel_names = { "tf_mlrt.createop", "tf_mlrt.executeop", "tf_mlrt.ifrt_restore_variable", "return"}; executable_ctor.construct_kernel_names(kernel_names.size()) .Assign(kernel_names); kernels.Def(kernel_names); static constexpr int kNumAttributes = 5; mlrt::testing::AttributeTable attributes(executable_ctor.construct_attributes( kNumAttributes + 2 * (num_variables - 1))); std::string restore_dtypes = EncodeRestoreDtypesInt32(num_variables); attributes.Add("restore_dtypes", restore_dtypes); std::vector<bool> truncate_in_cast(num_variables, false); attributes.Add("truncate_in_cast", EncodeTruncateInCast(num_variables)); for (int i = 0; i < num_variables; ++i) { attributes.Add( absl::StrCat("var_handle_op_node_def", i), absl::Substitute( R"pb(name: "$0" op: "VarHandleOp" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "container" value { s: "$1" } } attr { key: "shared_name" value { s: "$2" } } attr { key: "dtype" value { type: DT_INT16 } } attr { key: "shape" value { shape { dim { size: 3 } } } } )pb", absl::StrCat("VarHandleOp", i), kContainer, absl::StrCat(kSharedName, i))); attributes.Add(absl::StrCat("var_handle_op_key", i), i); } auto functions_ctor = executable_ctor.construct_functions(1); { auto function_ctor = functions_ctor.ConstructAt(0); function_ctor.construct_name("main"); mlrt::testing::SymbolTable regs; function_ctor.construct_input_regs(3).Assign( regs.Def({"prefix_tensor", "name_tensor", "slice_tensor"})); const int kNumKernels = 4; auto kernels_ctor = function_ctor.construct_kernels(kNumKernels + 2 * (num_variables - 1)); int kernel_index = 0; std::vector<std::string> variable_handle_names; variable_handle_names.reserve(num_variables); for (int i = 0; i < num_variables; ++i) { variable_handle_names.push_back(absl::StrCat("variable_handle", i)); std::string variable_handle_op_node_def = absl::StrCat("var_handle_op_node_def", i); std::string variable_handle_op_key = absl::StrCat("var_handle_op_key", i); { auto createop_ctor = kernels_ctor.ConstructAt(kernel_index); createop_ctor.set_code(kernels.Use("tf_mlrt.createop")); createop_ctor.construct_arguments(0); createop_ctor.construct_results(0); createop_ctor.construct_attributes(2).Assign( {attributes.GetHandle(variable_handle_op_node_def), attributes.GetHandle(variable_handle_op_key)}); kernel_index++; } { auto executeop_ctor = kernels_ctor.ConstructAt(kernel_index); executeop_ctor.set_code(kernels.Use("tf_mlrt.executeop")); executeop_ctor.construct_arguments(0); executeop_ctor.construct_results(1).Assign( {regs.Def(variable_handle_names.back())}); executeop_ctor.construct_attributes(2).Assign( {attributes.GetHandle(variable_handle_op_node_def), attributes.GetHandle(variable_handle_op_key)}); executeop_ctor.construct_last_uses(1).Assign({0}); kernel_index++; } } { std::vector<std::string> args; args.reserve(3 + num_variables); args.push_back("prefix_tensor"); args.push_back("name_tensor"); args.push_back("slice_tensor"); for (int i = 0; i < num_variables; ++i) { args.push_back(variable_handle_names[i]); } auto restore_ctor = kernels_ctor.ConstructAt(kernel_index); restore_ctor.set_code(kernels.Use("tf_mlrt.ifrt_restore_variable")); restore_ctor.construct_arguments(args.size()).Assign(regs.Use(args)); restore_ctor.construct_results(0); restore_ctor.construct_attributes(2).Assign( {attributes.GetHandle("restore_dtypes"), attributes.GetHandle("truncate_in_cast")}); kernel_index++; } { auto return_ctor = kernels_ctor.ConstructAt(kernel_index); return_ctor.set_code(kernels.Use("return")); return_ctor.construct_arguments(0); kernel_index++; } function_ctor.set_num_regs(regs.size()); } return buffer; } mlrt::bc::Buffer CreateExecutableForIfrtLoadVariableOp( bool redundant_ifrt_load_variable_op = false, bool used_by_host = false) { mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); auto executable_ctor = mlrt::bc::New<mlrt::bc::Executable>(&allocator); mlrt::testing::SymbolTable kernels; std::vector<std::string> kernel_names = { "tf_mlrt.createop", "tf_mlrt.executeop", "tf_mlrt.ifrt_load_variable", "return"}; executable_ctor.construct_kernel_names(kernel_names.size()) .Assign(kernel_names); kernels.Def(kernel_names); mlrt::testing::AttributeTable attributes( executable_ctor.construct_attributes(3)); attributes.Add("var_handle_op_node_def", absl::Substitute( R"pb(name: "VarHandleOp" op: "VarHandleOp" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "container" value { s: "$0" } } attr { key: "shared_name" value { s: "$1" } } attr { key: "dtype" value { type: DT_INT32 } } attr { key: "shape" value { shape { dim { size: 1 } } } } )pb", kContainer, kSharedName)); attributes.Add("var_handle_op_key", 0); attributes.Add("used_by_host", used_by_host); auto functions_ctor = executable_ctor.construct_functions(1); { auto function_ctor = functions_ctor.ConstructAt(0); function_ctor.construct_name("main"); mlrt::testing::SymbolTable regs; function_ctor.construct_output_regs(2).Assign( {regs.Def("output_tensor"), regs.Def("output_future")}); const int kNumKernels = 4 + (redundant_ifrt_load_variable_op ? 1 : 0); auto kernels_ctor = function_ctor.construct_kernels(kNumKernels); int kernel_index = 0; { auto createop_ctor = kernels_ctor.ConstructAt(kernel_index); createop_ctor.set_code(kernels.Use("tf_mlrt.createop")); createop_ctor.construct_arguments(0); createop_ctor.construct_results(0); createop_ctor.construct_attributes(2).Assign( {attributes.GetHandle("var_handle_op_node_def"), attributes.GetHandle("var_handle_op_key")}); kernel_index++; } { auto executeop_ctor = kernels_ctor.ConstructAt(kernel_index); executeop_ctor.set_code(kernels.Use("tf_mlrt.executeop")); executeop_ctor.construct_arguments(0); executeop_ctor.construct_results(1).Assign({regs.Def("variable_handle")}); executeop_ctor.construct_attributes(2).Assign( {attributes.GetHandle("var_handle_op_node_def"), attributes.GetHandle("var_handle_op_key")}); kernel_index++; } { auto kernel_ctor = kernels_ctor.ConstructAt(kernel_index); kernel_ctor.set_code(kernels.Use("tf_mlrt.ifrt_load_variable")); kernel_ctor.construct_results(2).Assign( {regs.Use("output_tensor"), regs.Use("output_future")}); kernel_ctor.construct_arguments(1).Assign({regs.Use("variable_handle")}); kernel_ctor.construct_attributes(1).Assign( {attributes.GetHandle("used_by_host")}); kernel_ctor.construct_last_uses(1).Assign( {redundant_ifrt_load_variable_op ? 0 : 1}); kernel_index++; } if (redundant_ifrt_load_variable_op) { auto kernel_ctor = kernels_ctor.ConstructAt(kernel_index); kernel_ctor.set_code(kernels.Use("tf_mlrt.ifrt_load_variable")); kernel_ctor.construct_results(2).Assign( {regs.Def("dummy"), regs.Def("dummy_future2")}); kernel_ctor.construct_attributes(1).Assign( {attributes.GetHandle("used_by_host")}); kernel_ctor.construct_arguments(1).Assign({regs.Use("variable_handle")}); kernel_ctor.construct_last_uses(1).Assign({1}); kernel_index++; } { auto kernel_ctor = kernels_ctor.ConstructAt(kernel_index); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(2).Assign( {regs.Use("output_tensor"), regs.Use("output_future")}); kernel_index++; } DCHECK_EQ(kernel_index, kNumKernels); function_ctor.set_num_regs(regs.size()); } return buffer; } class KernelTest : public ::testing::Test { protected: void SetUp() override { mlrt::RegisterBuiltinKernels(registry_); RegisterTfMlrtKernels(registry_); execution_work_queue_ = tfrt::CreateMultiThreadedWorkQueue( 4, 4); restore_work_queue_ = tfrt::CreateMultiThreadedWorkQueue( 4, 4); TF_ASSERT_OK_AND_ASSIGN(fallback_state_, tfrt_stub::FallbackState::Create( session_options_, fdef_lib_)); runner_ = [](const std::function<void()>& f) { f(); }; fallback_request_state_ = std::make_unique<tfd::KernelFallbackCompatRequestState>( &runner_, &fallback_state_->device_manager(), 0, &runner_table_, &resource_array_, nullptr, std::nullopt, &fallback_state_->process_function_library_runtime()); TF_ASSERT_OK_AND_ASSIGN(client_, xla::ifrt::test_util::GetClient()); resource_context_ .CreateResource<tensorflow::ifrt_serving::IfrtModelContext>( "IfrtModelContext", client_, ifrt_core_selector_.get(), &GetThreadPool(), nullptr); tf_context_ = std::make_unique<Context>(fallback_request_state_.get(), &resource_context_); ifrt_model_context_ = resource_context_ .GetResource<tensorflow::ifrt_serving::IfrtModelContext>( "IfrtModelContext") .value(); ifrt_model_context_->set_checkpoint_loader_queue(restore_work_queue_.get()); resource_context_ .CreateResource<tensorflow::ifrt_serving::IfrtModelRestoreContext>( ifrt_serving::kIfrtModelRestoreContextName, std::make_unique<tensorflow::ifrt_serving::CheckpointLoader>( &ifrt_model_context_->GetRestoreTensorRegistry(), ifrt_model_context_->checkpoint_loader_queue())); serving_device_selector_ = std::make_unique<tsl::test_util::MockServingDeviceSelector>(); ifrt_core_selector_ = std::make_unique<ifrt_serving::IfrtServingCoreSelector>( serving_device_selector_.get(), client_->addressable_device_count()); } std::unique_ptr<tsl::test_util::MockServingDeviceSelector> serving_device_selector_; std::unique_ptr<ifrt_serving::IfrtServingCoreSelector> ifrt_core_selector_; mlrt::KernelRegistry registry_; std::unique_ptr<tfrt::ConcurrentWorkQueue> execution_work_queue_; std::unique_ptr<tfrt::ConcurrentWorkQueue> restore_work_queue_; tensorflow::SessionOptions session_options_; tensorflow::FunctionDefLibrary fdef_lib_; std::function<void(std::function<void()>)> runner_; tfrt_stub::OpKernelRunnerTable runner_table_; tfd::FallbackResourceArray resource_array_; std::unique_ptr<tfrt_stub::FallbackState> fallback_state_; tfrt::ResourceContext resource_context_; std::shared_ptr<xla::ifrt::Client> client_; std::unique_ptr<tfd::KernelFallbackCompatRequestState> fallback_request_state_; std::unique_ptr<Context> tf_context_; tensorflow::ifrt_serving::IfrtModelContext* ifrt_model_context_; }; TEST_F(KernelTest, IfrtLoadVariableOpCanGetTensorFromResourceManager) { auto buffer = CreateExecutableForIfrtLoadVariableOp( false, true); mlrt::bc::Executable executable(buffer.data()); mlrt::LoadedExecutable loaded_executable(executable, registry_); mlrt::ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(execution_work_queue_.get()); execution_context.AddUserContext(std::move(tf_context_)); tensorflow::Tensor input_tensor; TF_CHECK_OK(tensorflow::Tensor::BuildTensor(DT_INT32, {}, &input_tensor)); input_tensor.scalar<int32_t>()() = 1234; tsl::core::RefCountPtr<Var> variable(new Var(DT_INT32)); *variable->tensor() = input_tensor; variable->is_initialized = true; ASSERT_OK( fallback_state_->device_manager().HostCPU()->resource_manager()->Create( std::string(kContainer), std::string(kSharedName), &(*variable))); std::vector<mlrt::Value> args; std::vector<uint8_t> last_uses; std::vector<mlrt::Value> results; results.resize(2); absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); execution_context.Call(executable.functions()[0], last_uses, absl::MakeSpan(args), absl::MakeSpan(results)); mlrt::Execute(execution_context); notification.WaitForNotification(); TF_ASSERT_OK(execution_context.status()); ExpectEqual(results[0].Get<tfrt_stub::FallbackTensor>().tensor(), AsScalar(tsl::tstring(kVariableRuntimeName))); auto returned_future = results[1].Get<mlrt::Future>(); ASSERT_TRUE(returned_future.IsReady()); EXPECT_THAT(returned_future.Get<tfrt_stub::FallbackTensor>().tensor(), TensorEq(input_tensor)); } TEST_F(KernelTest, IfrtLoadVariableOp) { auto buffer = CreateExecutableForIfrtLoadVariableOp(); mlrt::bc::Executable executable(buffer.data()); mlrt::LoadedExecutable loaded_executable(executable, registry_); mlrt::ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(execution_work_queue_.get()); execution_context.AddUserContext(std::move(tf_context_)); tensorflow::Tensor input_tensor; TF_CHECK_OK(tensorflow::Tensor::BuildTensor(DT_INT32, {}, &input_tensor)); input_tensor.scalar<int32_t>()() = 1234; auto input_tensor_promise = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto input_tensor_future = xla::ifrt::Future<tensorflow::Tensor>(input_tensor_promise); ifrt_serving::IfrtRestoreTensorRegistry::RestoredTensorInfo restore_tensor_info{.dtype_and_shape = {.dtype = input_tensor.dtype(), .shape = input_tensor.shape()}, .tensor_future = input_tensor_future}; input_tensor_promise.Set(input_tensor); TF_ASSERT_OK(ifrt_model_context_->GetRestoreTensorRegistry().TryRegister( kVariableRuntimeName, restore_tensor_info)); std::vector<mlrt::Value> args; std::vector<uint8_t> last_uses; std::vector<mlrt::Value> results; results.resize(2); absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); execution_context.Call(executable.functions()[0], last_uses, absl::MakeSpan(args), absl::MakeSpan(results)); mlrt::Execute(execution_context); notification.WaitForNotification(); TF_ASSERT_OK(execution_context.status()); ExpectEqual(results[0].Get<tfrt_stub::FallbackTensor>().tensor(), AsScalar(tsl::tstring(kVariableRuntimeName))); auto returned_future = results[1].Get<mlrt::Future>(); ASSERT_TRUE(returned_future.IsReady()); EXPECT_THAT(returned_future.Get<tfrt_stub::FallbackTensor>().tensor(), TensorEq(tensorflow::Tensor())); } TEST_F(KernelTest, DuplicateIfrtLoadVariableOpShallSucceed) { auto buffer = CreateExecutableForIfrtLoadVariableOp( true); mlrt::bc::Executable executable(buffer.data()); mlrt::LoadedExecutable loaded_executable(executable, registry_); mlrt::ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(execution_work_queue_.get()); execution_context.AddUserContext(std::move(tf_context_)); tensorflow::Tensor input_tensor; TF_CHECK_OK(tensorflow::Tensor::BuildTensor(DT_INT32, {}, &input_tensor)); input_tensor.scalar<int32_t>()() = 1234; auto input_tensor_promise = xla::ifrt::Future<tensorflow::Tensor>::CreatePromise(); auto input_tensor_future = xla::ifrt::Future<tensorflow::Tensor>(input_tensor_promise); ifrt_serving::IfrtRestoreTensorRegistry::RestoredTensorInfo restore_tensor_info{.dtype_and_shape = {.dtype = input_tensor.dtype(), .shape = input_tensor.shape()}, .tensor_future = input_tensor_future}; input_tensor_promise.Set(input_tensor); TF_ASSERT_OK(ifrt_model_context_->GetRestoreTensorRegistry().TryRegister( kVariableRuntimeName, restore_tensor_info)); std::vector<mlrt::Value> args; std::vector<uint8_t> last_uses; std::vector<mlrt::Value> results; results.resize(2); absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); execution_context.Call(executable.functions()[0], last_uses, absl::MakeSpan(args), absl::MakeSpan(results)); mlrt::Execute(execution_context); notification.WaitForNotification(); TF_ASSERT_OK(execution_context.status()); ExpectEqual(results[0].Get<tfrt_stub::FallbackTensor>().tensor(), AsScalar(tsl::tstring(kVariableRuntimeName))); auto returned_future = results[1].Get<mlrt::Future>(); ASSERT_TRUE(returned_future.IsReady()); EXPECT_THAT(returned_future.Get<tfrt_stub::FallbackTensor>().tensor(), TensorEq(tensorflow::Tensor())); } TEST_F(KernelTest, IfrtRestoreVariableOp) { std::string checkpoint_prefix = tensorflow::GetDataDependencyFilepath( "tensorflow/core/tfrt/mlrt/kernel/testdata/" "gen_checkpoint_data/variables") + "/variables"; auto buffer = CreateExecutableForIfrtRestoreVariableOp(); mlrt::bc::Executable executable(buffer.data()); mlrt::LoadedExecutable loaded_executable(executable, registry_); mlrt::ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(execution_work_queue_.get()); execution_context.AddUserContext(std::move(tf_context_)); xla::ifrt::Future<tensorflow::Tensor> uninitialized_entry = ifrt_model_context_->GetRestoreTensorRegistry().GetRestoredTensor( kVariableRuntimeName); ASSERT_TRUE(uninitialized_entry.IsReady()); EXPECT_THAT(uninitialized_entry.Await().status(), ::tsl::testing::StatusIs(absl::StatusCode::kNotFound)); std::vector<mlrt::Value> args; args.resize(3); tensorflow::Tensor prefix_tensor = AsTensor<tsl::tstring>({tsl::tstring(checkpoint_prefix)}); args.at(0).Set(tfrt_stub::FallbackTensor(std::move(prefix_tensor))); tensorflow::Tensor name_tensor = AsTensor<tsl::tstring>({tsl::tstring("w/.ATTRIBUTES/VARIABLE_VALUE")}); args.at(1).Set(tfrt_stub::FallbackTensor(std::move(name_tensor))); tensorflow::Tensor slice_tensor = AsTensor<tsl::tstring>({tsl::tstring("")}); args.at(2).Set(tfrt_stub::FallbackTensor(std::move(slice_tensor))); std::vector<uint8_t> last_uses = {true, true, true}; std::vector<mlrt::Value> results; absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); execution_context.Call(executable.functions()[0], last_uses, absl::MakeSpan(args), absl::MakeSpan(results)); mlrt::Execute(execution_context); notification.WaitForNotification(); TF_ASSERT_OK(execution_context.status()); xla::ifrt::Future<tensorflow::Tensor> restored_future = ifrt_model_context_->GetRestoreTensorRegistry().GetRestoredTensor( absl::StrCat(kVariableRuntimeName, 0)); absl::StatusOr<tensorflow::Tensor> restored_tensor = restored_future.Await(); TF_ASSERT_OK(restored_tensor.status()); EXPECT_THAT(*restored_tensor, TensorEq(AsTensor<int16_t>({1, 2, 3}, {3}))); } TEST_F(KernelTest, IfrtRestoreVariableOp4Variables) { std::string checkpoint_prefix = tensorflow::GetDataDependencyFilepath( "tensorflow/core/tfrt/mlrt/kernel/testdata/" "gen_checkpoint_data/variables") + "/variables"; static constexpr int kNumVariables = 4; auto buffer = CreateExecutableForIfrtRestoreVariableOp(kNumVariables); mlrt::bc::Executable executable(buffer.data()); mlrt::LoadedExecutable loaded_executable(executable, registry_); mlrt::ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(execution_work_queue_.get()); execution_context.AddUserContext(std::move(tf_context_)); xla::ifrt::Future<tensorflow::Tensor> uninitialized_entry = ifrt_model_context_->GetRestoreTensorRegistry().GetRestoredTensor( kVariableRuntimeName); ASSERT_TRUE(uninitialized_entry.IsReady()); EXPECT_THAT(uninitialized_entry.Await().status(), ::tsl::testing::StatusIs(absl::StatusCode::kNotFound)); std::vector<mlrt::Value> args; args.resize(3); tensorflow::Tensor prefix_tensor = AsTensor<tsl::tstring>({tsl::tstring(checkpoint_prefix)}); args.at(0).Set(tfrt_stub::FallbackTensor(std::move(prefix_tensor))); tensorflow::Tensor name_tensor = AsTensor<tsl::tstring>({tsl::tstring("w/.ATTRIBUTES/VARIABLE_VALUE"), tsl::tstring("w1/.ATTRIBUTES/VARIABLE_VALUE"), tsl::tstring("w2/.ATTRIBUTES/VARIABLE_VALUE"), tsl::tstring("w3/.ATTRIBUTES/VARIABLE_VALUE")}); args.at(1).Set(tfrt_stub::FallbackTensor(std::move(name_tensor))); tensorflow::Tensor slice_tensor = AsTensor<tsl::tstring>( {tsl::tstring(""), tsl::tstring(""), tsl::tstring(""), tsl::tstring("")}); args.at(2).Set(tfrt_stub::FallbackTensor(std::move(slice_tensor))); std::vector<uint8_t> last_uses = {true, true, true}; std::vector<mlrt::Value> results; absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); execution_context.Call(executable.functions()[0], last_uses, absl::MakeSpan(args), absl::MakeSpan(results)); mlrt::Execute(execution_context); notification.WaitForNotification(); TF_ASSERT_OK(execution_context.status()); xla::ifrt::Future<tensorflow::Tensor> restored_future = ifrt_model_context_->GetRestoreTensorRegistry().GetRestoredTensor( absl::StrCat(kVariableRuntimeName, 0)); absl::StatusOr<tensorflow::Tensor> restored_tensor = restored_future.Await(); TF_ASSERT_OK(restored_tensor.status()); EXPECT_THAT(*restored_tensor, TensorEq(AsTensor<int16_t>({1, 2, 3}, {3}))); xla::ifrt::Future<tensorflow::Tensor> restored_future1 = ifrt_model_context_->GetRestoreTensorRegistry().GetRestoredTensor( absl::StrCat(kVariableRuntimeName, 1)); absl::StatusOr<tensorflow::Tensor> restored_tensor1 = restored_future1.Await(); TF_ASSERT_OK(restored_tensor1.status()); EXPECT_THAT(*restored_tensor1, TensorEq(AsTensor<int16_t>({4, 5, 6}, {3}))); xla::ifrt::Future<tensorflow::Tensor> restored_future2 = ifrt_model_context_->GetRestoreTensorRegistry().GetRestoredTensor( absl::StrCat(kVariableRuntimeName, 2)); absl::StatusOr<tensorflow::Tensor> restored_tensor2 = restored_future2.Await(); TF_ASSERT_OK(restored_tensor2.status()); EXPECT_THAT(*restored_tensor2, TensorEq(AsTensor<int16_t>({7, 8, 9}, {3}))); xla::ifrt::Future<tensorflow::Tensor> restored_future3 = ifrt_model_context_->GetRestoreTensorRegistry().GetRestoredTensor( absl::StrCat(kVariableRuntimeName, 3)); absl::StatusOr<tensorflow::Tensor> restored_tensor3 = restored_future3.Await(); TF_ASSERT_OK(restored_tensor3.status()); EXPECT_THAT(*restored_tensor3, TensorEq(AsTensor<int16_t>({10, 11, 12}, {3}))); } TEST_F(KernelTest, IfrtRestoreVariableOpInValidInput) { std::string checkpoint_prefix = tensorflow::GetDataDependencyFilepath( "tensorflow/core/tfrt/mlrt/kernel/testdata/" "gen_checkpoint_data/variables") + "/variables"; static constexpr int kNumVariables = 4; auto buffer = CreateExecutableForIfrtRestoreVariableOp(kNumVariables); mlrt::bc::Executable executable(buffer.data()); mlrt::LoadedExecutable loaded_executable(executable, registry_); mlrt::ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(execution_work_queue_.get()); execution_context.AddUserContext(std::move(tf_context_)); xla::ifrt::Future<tensorflow::Tensor> uninitialized_entry = ifrt_model_context_->GetRestoreTensorRegistry().GetRestoredTensor( kVariableRuntimeName); ASSERT_TRUE(uninitialized_entry.IsReady()); EXPECT_THAT(uninitialized_entry.Await().status(), ::tsl::testing::StatusIs(absl::StatusCode::kNotFound)); std::vector<mlrt::Value> args; args.resize(3); tensorflow::Tensor prefix_tensor = AsTensor<tsl::tstring>({tsl::tstring(checkpoint_prefix)}); args.at(0).Set(tfrt_stub::FallbackTensor(std::move(prefix_tensor))); tensorflow::Tensor name_tensor = AsTensor<tsl::tstring>({tsl::tstring("w/.ATTRIBUTES/VARIABLE_VALUE"), tsl::tstring("w1/.ATTRIBUTES/VARIABLE_VALUE"), tsl::tstring("w2/.ATTRIBUTES/VARIABLE_VALUE"), tsl::tstring("w3/.ATTRIBUTES/VARIABLE_VALUE")}); args.at(1).Set(tfrt_stub::FallbackTensor(std::move(name_tensor))); tensorflow::Tensor slice_tensor = AsTensor<tsl::tstring>( {tsl::tstring(""), tsl::tstring(""), tsl::tstring("")}); args.at(2).Set(tfrt_stub::FallbackTensor(std::move(slice_tensor))); std::vector<uint8_t> last_uses = {true, true, true}; std::vector<mlrt::Value> results; absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); execution_context.Call(executable.functions()[0], last_uses, absl::MakeSpan(args), absl::MakeSpan(results)); mlrt::Execute(execution_context); notification.WaitForNotification(); EXPECT_THAT(execution_context.status(), ::tsl::testing::StatusIs(absl::StatusCode::kInvalidArgument)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/kernel/ifrt_ops_kernel.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/kernel/ifrt_ops_kernel_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
49a0ec33-fc7c-48d1-bb5c-a573c76e4ae8
cpp
tensorflow/tensorflow
run_handler_concurrent_work_queue
tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue.cc
tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue_test.cc
#include "tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue.h" #include <memory> #include <optional> #include <ostream> #include <utility> #include "absl/strings/str_join.h" #include "tensorflow/core/tfrt/run_handler_thread_pool/run_handler.h" #include "tfrt/host_context/async_dispatch.h" #include "tfrt/host_context/async_value.h" #include "tfrt/host_context/execution_context.h" namespace tfrt { namespace tf { RunHandlerThreadWorkQueue::RunHandlerThreadWorkQueue(const Options& options) : options_(options), quiescing_state_(std::make_unique<::tfrt::internal::QuiescingState>()), non_blocking_work_queue_(quiescing_state_.get(), 1), blocking_work_queue_(quiescing_state_.get(), 1) { CHECK(options.num_threads_in_sub_thread_pool.size() == options.num_sub_thread_pool); CHECK(options.sub_thread_request_percentage.size() == options.num_sub_thread_pool); RunHandlerPool::Options pool_options; pool_options.num_inter_op_threads = options.num_main_threads; pool_options.num_intra_op_threads = options.num_complementary_threads; pool_options.max_concurrent_handler = options.max_concurrent_handler; pool_options.blocking_threads_max_sleep_time_micro_sec = options.blocking_threads_max_sleep_time_micro_sec; pool_options.non_blocking_threads_sleep_time_micro_sec = options.non_blocking_threads_sleep_time_micro_sec; pool_options.num_sub_thread_pool = options.num_sub_thread_pool; pool_options.num_threads_in_sub_thread_pool = options.num_threads_in_sub_thread_pool; pool_options.sub_thread_request_percentage = options.sub_thread_request_percentage; pool_options.enable_wake_up = options.enable_wake_up; pool_options.wait_if_no_active_request = options.wait_if_no_active_request; pool_options.use_adaptive_waiting_time = options.use_adaptive_waiting_time; handler_pool_ = std::make_unique<RunHandlerPool>(pool_options); } absl::StatusOr<std::unique_ptr<tensorflow::tfrt_stub::WorkQueueInterface>> RunHandlerThreadWorkQueue::InitializeRequest(int64_t request_id) const { RunHandlerOptions options; std::unique_ptr<RunHandler> handler = handler_pool_->Get(request_id, options_.init_timeout_ms, options); if (!handler) { return tensorflow::errors::Internal(absl::StrCat( "Could not obtain RunHandler for request after waiting for ", options_.init_timeout_ms, " ms.")); } return {std::make_unique<RunHandlerWorkQueue>(std::move(handler))}; } void RunHandlerThreadWorkQueue::AddTask(TaskFunction work) { non_blocking_work_queue_.AddTask(std::move(work)); } std::optional<TaskFunction> RunHandlerThreadWorkQueue::AddBlockingTask( TaskFunction work, bool allow_queuing) { if (allow_queuing) { return blocking_work_queue_.EnqueueBlockingTask(std::move(work)); } else { return blocking_work_queue_.RunBlockingTask(std::move(work)); } return std::nullopt; } void RunHandlerThreadWorkQueue::Quiesce() { handler_pool_->Quiesce(); non_blocking_work_queue_.Quiesce(); blocking_work_queue_.Quiesce(); } void RunHandlerThreadWorkQueue::Await( ArrayRef<RCReference<AsyncValue>> values) { tfrt::Await(values); } bool RunHandlerThreadWorkQueue::IsInWorkerThread() const { return true; } std::ostream& operator<<(std::ostream& strm, const RunHandlerThreadWorkQueue::Options& options) { return strm << "{" << "num_main_threads = " << options.num_main_threads << ", num_complementary_threads = " << options.num_complementary_threads << ", init_timeout_ms = " << options.init_timeout_ms << ", max_concurrent_handler = " << options.max_concurrent_handler << ", num_sub_thread_pool = " << options.num_sub_thread_pool << ", num_threads_in_sub_thread_pool = [" << absl::StrJoin(options.num_threads_in_sub_thread_pool, ",") << "]" << ", sub_thread_request_percentage = [" << absl::StrJoin(options.sub_thread_request_percentage, ",") << "]" << ", non_blocking_threads_sleep_time_micro_sec = " << options.non_blocking_threads_sleep_time_micro_sec << ", blocking_threads_max_sleep_time_micro_sec = " << options.blocking_threads_max_sleep_time_micro_sec << ", use_adaptive_waiting_time = " << options.use_adaptive_waiting_time << ", wait_if_no_active_request = " << options.wait_if_no_active_request << ", enable_wake_up = " << options.enable_wake_up << "}"; } } }
#include "tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue.h" #include <cstdio> #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tfrt/host_context/concurrent_work_queue.h" #include "tfrt/host_context/diagnostic.h" #include "tfrt/host_context/execution_context.h" #include "tfrt/host_context/host_allocator.h" #include "tfrt/host_context/host_context.h" #include "tfrt/host_context/task_function.h" #include "tfrt/support/mutex.h" namespace tfrt { namespace tf { namespace { const int kNumMainThreads = 1; const int kNumComplementaryThreads = 1; class RunHandlerThreadWorkQueueTest : public ::testing::Test { protected: void SetUp() override { RunHandlerThreadWorkQueue::Options options; options.num_complementary_threads = kNumComplementaryThreads; options.num_main_threads = kNumMainThreads; options.init_timeout_ms = 100; pool_ = std::make_unique<RunHandlerThreadWorkQueue>(options); auto decoded_diagnostic_handler = [&](const DecodedDiagnostic& diag) {}; std::unique_ptr<ConcurrentWorkQueue> work_queue = CreateSingleThreadedWorkQueue(); std::unique_ptr<HostAllocator> host_allocator = CreateMallocAllocator(); host_ = std::make_unique<HostContext>(decoded_diagnostic_handler, std::move(host_allocator), std::move(work_queue)); RequestContextBuilder req_ctx_builder{host_.get(), nullptr}; auto queue = pool_->InitializeRequest(100); TF_CHECK_OK(queue.status()); queue_ = std::move(*queue); auto req_ctx = std::move(req_ctx_builder).build(); ASSERT_TRUE(static_cast<bool>(req_ctx)); exec_ctx_ = std::make_unique<ExecutionContext>(std::move(*req_ctx)); } std::unique_ptr<RunHandlerThreadWorkQueue> pool_; std::unique_ptr<tensorflow::tfrt_stub::WorkQueueInterface> queue_; std::unique_ptr<HostContext> host_; std::unique_ptr<ExecutionContext> exec_ctx_; }; TEST_F(RunHandlerThreadWorkQueueTest, RunningBlockingTask) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { ASSERT_FALSE(pool_->AddBlockingTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; }), true)); } pool_->Quiesce(); EXPECT_EQ(n, 10); } TEST_F(RunHandlerThreadWorkQueueTest, RunningBlockingTaskNoExecCtx) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { pool_->AddBlockingTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; }), true); } pool_->Quiesce(); EXPECT_EQ(n, 10); } TEST_F(RunHandlerThreadWorkQueueTest, RunningBlockingTaskNoQueueing) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { ASSERT_FALSE(pool_->AddBlockingTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; }), false)); } pool_->Quiesce(); EXPECT_EQ(n, 10); } TEST_F(RunHandlerThreadWorkQueueTest, RunningNonBlockingTask) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { queue_->AddTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; })); } pool_->Quiesce(); EXPECT_EQ(n, 10); } TEST_F(RunHandlerThreadWorkQueueTest, RunningNonBlockingTaskWithNoExecCtx) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { pool_->AddTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; })); } pool_->Quiesce(); EXPECT_EQ(n, 10); } TEST_F(RunHandlerThreadWorkQueueTest, RunningMixedTask) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { queue_->AddTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; })); ASSERT_FALSE(pool_->AddBlockingTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; }), true)); } pool_->Quiesce(); EXPECT_EQ(n, 20); } TEST_F(RunHandlerThreadWorkQueueTest, NameReturnsValidString) { EXPECT_TRUE(absl::StrContains(pool_->name(), "RunHandlerThreadWorkQueue")); } TEST_F(RunHandlerThreadWorkQueueTest, GetParallelismLevelOk) { EXPECT_EQ(pool_->GetParallelismLevel(), kNumComplementaryThreads + kNumMainThreads); } TEST_F(RunHandlerThreadWorkQueueTest, IsWorkerThreadOk) { EXPECT_TRUE(pool_->IsInWorkerThread()); } TEST_F(RunHandlerThreadWorkQueueTest, NoHandlerReturnsError) { RunHandlerThreadWorkQueue::Options options; options.num_complementary_threads = 0; options.num_main_threads = 0; options.init_timeout_ms = 1; options.max_concurrent_handler = 0; auto queue = std::make_unique<RunHandlerThreadWorkQueue>(options); tfrt::RequestContextBuilder ctx_builder(nullptr, nullptr); EXPECT_THAT( queue->InitializeRequest(100), tensorflow::testing::StatusIs( tensorflow::error::INTERNAL, "Could not obtain RunHandler for request after waiting for 1 ms.")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9a3a494c-3b74-4871-a96d-6f77ba7803fe
cpp
tensorflow/tensorflow
mutable_graph_view
tensorflow/core/grappler/mutable_graph_view.cc
tensorflow/core/grappler/mutable_graph_view_test.cc
#include "tensorflow/core/grappler/mutable_graph_view.h" #include <algorithm> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace grappler { namespace { bool IsTensorIdPortValid(const TensorId& tensor_id) { return tensor_id.index() >= Graph::kControlSlot; } bool IsTensorIdRegular(const TensorId& tensor_id) { return tensor_id.index() > Graph::kControlSlot; } bool IsTensorIdControlling(const TensorId& tensor_id) { return tensor_id.index() == Graph::kControlSlot; } bool IsOutputPortControlling(const MutableGraphView::OutputPort& port) { return port.port_id == Graph::kControlSlot; } bool IsIdentityConsumingSwitch(const MutableGraphView& graph, const NodeDef& node) { if ((IsIdentity(node) || IsIdentityNSingleInput(node)) && node.input_size() > 0) { TensorId tensor_id = ParseTensorName(node.input(0)); if (IsTensorIdControlling(tensor_id)) { return false; } NodeDef* input_node = graph.GetNode(tensor_id.node()); if (input_node == nullptr) { return false; } return IsSwitch(*input_node); } return false; } bool CanDedupControlWithRegularInput(const MutableGraphView& graph, const NodeDef& control_node) { return !IsIdentityConsumingSwitch(graph, control_node); } bool CanDedupControlWithRegularInput(const MutableGraphView& graph, absl::string_view control_node_name) { NodeDef* control_node = graph.GetNode(control_node_name); if (control_node == nullptr) { return false; } return CanDedupControlWithRegularInput(graph, *control_node); } bool HasRegularFaninNode(const MutableGraphView& graph, const NodeDef& node, absl::string_view fanin_node_name) { const int num_regular_fanins = graph.NumFanins(node, false); for (int i = 0; i < num_regular_fanins; ++i) { if (ParseTensorName(node.input(i)).node() == fanin_node_name) { return true; } } return false; } using FanoutsMap = absl::flat_hash_map<MutableGraphView::OutputPort, absl::flat_hash_set<MutableGraphView::InputPort>>; void SwapControlledFanoutInputs(const MutableGraphView& graph, const FanoutsMap::iterator& control_fanouts, absl::string_view to_node_name) { absl::string_view from_node_name(control_fanouts->first.node->name()); string control = TensorIdToString({to_node_name, Graph::kControlSlot}); for (const auto& control_fanout : control_fanouts->second) { const int start = graph.NumFanins(*control_fanout.node, false); for (int i = start; i < control_fanout.node->input_size(); ++i) { TensorId tensor_id = ParseTensorName(control_fanout.node->input(i)); if (tensor_id.node() == from_node_name) { control_fanout.node->set_input(i, control); break; } } } } void SwapRegularFanoutInputs(FanoutsMap* fanouts, NodeDef* from_node, absl::string_view to_node_name, int max_port) { MutableGraphView::OutputPort port; port.node = from_node; for (int i = 0; i <= max_port; ++i) { port.port_id = i; auto it = fanouts->find(port); if (it == fanouts->end()) { continue; } string input = TensorIdToString({to_node_name, i}); for (const auto& fanout : it->second) { fanout.node->set_input(fanout.port_id, input); } } } using MaxOutputPortsMap = absl::flat_hash_map<const NodeDef*, int>; void SwapFanoutInputs(const MutableGraphView& graph, FanoutsMap* fanouts, MaxOutputPortsMap* max_output_ports, NodeDef* from_node, NodeDef* to_node) { auto from_control_fanouts = fanouts->find({from_node, Graph::kControlSlot}); if (from_control_fanouts != fanouts->end()) { SwapControlledFanoutInputs(graph, from_control_fanouts, to_node->name()); } auto to_control_fanouts = fanouts->find({to_node, Graph::kControlSlot}); if (to_control_fanouts != fanouts->end()) { SwapControlledFanoutInputs(graph, to_control_fanouts, from_node->name()); } auto from_max_port = max_output_ports->find(from_node); if (from_max_port != max_output_ports->end()) { SwapRegularFanoutInputs(fanouts, from_node, to_node->name(), from_max_port->second); } auto to_max_port = max_output_ports->find(to_node); if (to_max_port != max_output_ports->end()) { SwapRegularFanoutInputs(fanouts, to_node, from_node->name(), to_max_port->second); } } void SwapFanoutsMapValues(FanoutsMap* fanouts, const MutableGraphView::OutputPort& from_port, const FanoutsMap::iterator& from_fanouts, const MutableGraphView::OutputPort& to_port, const FanoutsMap::iterator& to_fanouts) { const bool from_exists = from_fanouts != fanouts->end(); const bool to_exists = to_fanouts != fanouts->end(); if (from_exists && to_exists) { std::swap(from_fanouts->second, to_fanouts->second); } else if (from_exists) { auto node = fanouts->extract(from_fanouts); fanouts->emplace(to_port, std::move(node.mapped())); } else if (to_exists) { auto node = fanouts->extract(to_port); fanouts->emplace(from_port, std::move(node.mapped())); } } void SwapRegularFanoutsAndMaxPortValues(FanoutsMap* fanouts, MaxOutputPortsMap* max_output_ports, NodeDef* from_node, NodeDef* to_node) { auto from_max_port = max_output_ports->find(from_node); auto to_max_port = max_output_ports->find(to_node); bool from_exists = from_max_port != max_output_ports->end(); bool to_exists = to_max_port != max_output_ports->end(); auto forward_fanouts = [fanouts](NodeDef* from, NodeDef* to, int start, int end) { for (int i = start; i <= end; ++i) { MutableGraphView::OutputPort from_port(from, i); auto node = fanouts->extract(from_port); if (!node.empty()) { MutableGraphView::OutputPort to_port(to, i); fanouts->emplace(to_port, std::move(node.mapped())); } } }; if (from_exists && to_exists) { const int from = from_max_port->second; const int to = to_max_port->second; const int shared = std::min(from, to); for (int i = 0; i <= shared; ++i) { MutableGraphView::OutputPort from_port(from_node, i); auto from_fanouts = fanouts->find(from_port); MutableGraphView::OutputPort to_port(to_node, i); auto to_fanouts = fanouts->find(to_port); SwapFanoutsMapValues(fanouts, from_port, from_fanouts, to_port, to_fanouts); } if (to > from) { forward_fanouts(to_node, from_node, shared + 1, to); } else if (from > to) { forward_fanouts(from_node, to_node, shared + 1, from); } std::swap(from_max_port->second, to_max_port->second); } else if (from_exists) { forward_fanouts(from_node, to_node, 0, from_max_port->second); max_output_ports->emplace(to_node, from_max_port->second); max_output_ports->erase(from_node); } else if (to_exists) { forward_fanouts(to_node, from_node, 0, to_max_port->second); max_output_ports->emplace(from_node, to_max_port->second); max_output_ports->erase(to_node); } } bool HasFanoutValue(const FanoutsMap& fanouts, const FanoutsMap::iterator& it) { return it != fanouts.end() && !it->second.empty(); } Status MutationError(absl::string_view function_name, absl::string_view params, absl::string_view msg) { return errors::InvalidArgument(absl::Substitute( "MutableGraphView::$0($1) error: $2.", function_name, params, msg)); } using ErrorHandler = std::function<Status(absl::string_view)>; ErrorHandler UpdateFanoutsError(absl::string_view from_node_name, absl::string_view to_node_name) { return [from_node_name, to_node_name](absl::string_view msg) { string params = absl::Substitute("from_node_name='$0', to_node_name='$1'", from_node_name, to_node_name); return MutationError("UpdateFanouts", params, msg); }; } Status CheckFaninIsRegular(const TensorId& fanin, ErrorHandler handler) { if (!IsTensorIdRegular(fanin)) { return handler(absl::Substitute("fanin '$0' must be a regular tensor id", fanin.ToString())); } return absl::OkStatus(); } Status CheckFaninIsValid(const TensorId& fanin, ErrorHandler handler) { if (!IsTensorIdPortValid(fanin)) { return handler(absl::Substitute("fanin '$0' must be a valid tensor id", fanin.ToString())); } return absl::OkStatus(); } Status CheckAddingFaninToSelf(absl::string_view node_name, const TensorId& fanin, ErrorHandler handler) { if (node_name == fanin.node()) { return handler( absl::Substitute("can't add fanin '$0' to self", fanin.ToString())); } return absl::OkStatus(); } Status CheckRemovingFaninFromSelf(absl::string_view node_name, const TensorId& fanin, ErrorHandler handler) { if (node_name == fanin.node()) { return handler(absl::Substitute("can't remove fanin '$0' from self", fanin.ToString())); } return absl::OkStatus(); } string NodeMissingErrorMsg(absl::string_view node_name) { return absl::Substitute("node '$0' was not found", node_name); } Status CheckNodeExists(absl::string_view node_name, NodeDef* node, ErrorHandler handler) { if (node == nullptr) { return handler(NodeMissingErrorMsg(node_name)); } return absl::OkStatus(); } Status CheckPortRange(int port, int min, int max, ErrorHandler handler) { if (port < min || port > max) { if (max < min) { return handler("no available ports as node has no regular fanins"); } return handler( absl::Substitute("port must be in range [$0, $1]", min, max)); } return absl::OkStatus(); } string SwapNodeNamesSwitchControlErrorMsg(absl::string_view node_name) { return absl::Substitute( "can't swap node name '$0' as it will become a Switch control dependency", node_name); } string GeneratedNameForIdentityConsumingSwitch( const MutableGraphView::OutputPort& fanin) { return AddPrefixToNodeName( absl::StrCat(fanin.node->name(), "_", fanin.port_id), kMutableGraphViewCtrl); } string PrintInTextFormat(const protobuf::MessageLite& message) { return message.ShortDebugString(); } string PrintInTextFormat(const protobuf::Message& message) { string message_text; ::tensorflow::protobuf::TextFormat::Printer printer; printer.SetSingleLineMode(true); printer.PrintToString(message, &message_text); if (!message_text.empty() && message_text[message_text.size() - 1] == ' ') { message_text.resize(message_text.size() - 1); } return message_text; } } void MutableGraphView::AddAndDedupFanouts(NodeDef* node) { absl::flat_hash_set<absl::string_view> fanins; absl::flat_hash_set<absl::string_view> controlling_fanins; int max_input_port = -1; int pos = 0; const int last_idx = node->input_size() - 1; int last_pos = last_idx; while (pos <= last_pos) { TensorId tensor_id = ParseTensorName(node->input(pos)); absl::string_view input_node_name = tensor_id.node(); bool is_control_input = IsTensorIdControlling(tensor_id); bool can_dedup_control_with_regular_input = CanDedupControlWithRegularInput(*this, input_node_name); bool can_dedup_control = is_control_input && (can_dedup_control_with_regular_input || controlling_fanins.contains(input_node_name)); if (!gtl::InsertIfNotPresent(&fanins, input_node_name) && can_dedup_control) { node->mutable_input()->SwapElements(pos, last_pos); --last_pos; } else { OutputPort output(nodes()[input_node_name], tensor_id.index()); if (is_control_input) { fanouts()[output].emplace(node, Graph::kControlSlot); } else { max_input_port = pos; int& max_port = max_regular_output_port()[output.node]; max_port = std::max(max_port, output.port_id); fanouts()[output].emplace(node, pos); } ++pos; } if (is_control_input) { controlling_fanins.insert(input_node_name); } } if (last_pos < last_idx) { node->mutable_input()->DeleteSubrange(last_pos + 1, last_idx - last_pos); } if (max_input_port > -1) { max_regular_input_port()[node] = max_input_port; } } void MutableGraphView::UpdateMaxRegularOutputPortForRemovedFanin( const OutputPort& fanin, const absl::flat_hash_set<InputPort>& fanin_fanouts) { int max_port = max_regular_output_port()[fanin.node]; if (!fanin_fanouts.empty() || max_port != fanin.port_id) { return; } bool updated_max_port = false; for (int i = fanin.port_id - 1; i >= 0; --i) { OutputPort fanin_port(fanin.node, i); if (!fanouts()[fanin_port].empty()) { max_regular_output_port()[fanin.node] = i; updated_max_port = true; break; } } if (!updated_max_port) { max_regular_output_port().erase(fanin.node); } } void MutableGraphView::UpdateMaxRegularOutputPortForAddedFanin( const OutputPort& fanin) { if (max_regular_output_port()[fanin.node] < fanin.port_id) { max_regular_output_port()[fanin.node] = fanin.port_id; } } const absl::flat_hash_set<MutableGraphView::InputPort>& MutableGraphView::GetFanout(const GraphView::OutputPort& port) const { return GetFanout(MutableGraphView::OutputPort(const_cast<NodeDef*>(port.node), port.port_id)); } absl::flat_hash_set<MutableGraphView::OutputPort> MutableGraphView::GetFanin( const GraphView::InputPort& port) const { return GetFanin(MutableGraphView::InputPort(const_cast<NodeDef*>(port.node), port.port_id)); } const MutableGraphView::OutputPort MutableGraphView::GetRegularFanin( const GraphView::InputPort& port) const { return GetRegularFanin(MutableGraphView::InputPort( const_cast<NodeDef*>(port.node), port.port_id)); } NodeDef* MutableGraphView::AddNode(NodeDef&& node) { auto* node_in_graph = graph()->add_node(); *node_in_graph = std::move(node); AddUniqueNodeOrDie(node_in_graph); AddAndDedupFanouts(node_in_graph); return node_in_graph; } Status MutableGraphView::AddSubgraph(GraphDef&& subgraph) { const int function_size = subgraph.library().function_size(); if (function_size > 0) { absl::flat_hash_map<absl::string_view, const FunctionDef*> graph_fdefs; for (const FunctionDef& fdef : graph()->library().function()) { graph_fdefs.emplace(fdef.signature().name(), &fdef); } for (FunctionDef& fdef : *subgraph.mutable_library()->mutable_function()) { const auto graph_fdef = graph_fdefs.find(fdef.signature().name()); if (graph_fdef == graph_fdefs.end()) { VLOG(3) << "Add new function definition: " << fdef.signature().name(); graph()->mutable_library()->add_function()->Swap(&fdef); } else { if (!FunctionDefsEqual(fdef, *graph_fdef->second)) { return MutationError( "AddSubgraph", absl::Substitute("function_size=$0", function_size), absl::StrCat( "Found different function definition with the same name: ", fdef.signature().name())); } } } } int node_size_before = graph()->node_size(); for (NodeDef& node : *subgraph.mutable_node()) { auto* node_in_graph = graph()->add_node(); node_in_graph->Swap(&node); TF_RETURN_IF_ERROR(AddUniqueNode(node_in_graph)); } for (int i = node_size_before; i < graph()->node_size(); ++i) { NodeDef* node = graph()->mutable_node(i); AddAndDedupFanouts(node); } return absl::OkStatus(); } Status MutableGraphView::UpdateNode( absl::string_view node_name, absl::string_view op, absl::string_view device, absl::Span<const std::pair<string, AttrValue>> attrs) { auto error_status = [node_name, op, device, attrs](absl::string_view msg) { std::vector<string> attr_strs; attr_strs.reserve(attrs.size()); for (const auto& attr : attrs) { string attr_str = absl::Substitute("('$0', $1)", attr.first, PrintInTextFormat(attr.second)); attr_strs.push_back(attr_str); } string params = absl::Substitute("node_name='$0', op='$1', device='$2', attrs={$3}", node_name, op, device, absl::StrJoin(attr_strs, ", ")); return MutationError("UpdateNodeOp", params, msg); }; NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); MutableGraphView::OutputPort control_port(node, Graph::kControlSlot); auto control_fanouts = GetFanout(control_port); if (op == "Switch" && !control_fanouts.empty()) { return error_status( "can't change node op to Switch when node drives a control dependency " "(alternatively, we could add the identity node needed, but it seems " "like an unlikely event and probably a mistake)"); } if (node->device() != device) { node->set_device(string(device)); } node->mutable_attr()->clear(); for (const auto& attr : attrs) { (*node->mutable_attr())[attr.first] = attr.second; } if (node->op() == op) { return absl::OkStatus(); } node->set_op(string(op)); if (CanDedupControlWithRegularInput(*this, *node)) { for (const auto& control_fanout : control_fanouts) { if (HasRegularFaninNode(*this, *control_fanout.node, node->name())) { RemoveControllingFaninInternal(control_fanout.node, node); } } } return absl::OkStatus(); } Status MutableGraphView::UpdateNodeName(absl::string_view from_node_name, absl::string_view to_node_name, bool update_fanouts) { auto error_status = [from_node_name, to_node_name, update_fanouts](absl::string_view msg) { string params = absl::Substitute( "from_node_name='$0', to_node_name='$1', update_fanouts=$2", from_node_name, to_node_name, update_fanouts); return MutationError("UpdateNodeName", params, msg); }; NodeDef* node = GetNode(from_node_name); TF_RETURN_IF_ERROR(CheckNodeExists(from_node_name, node, error_status)); if (node->name() == to_node_name) { return absl::OkStatus(); } if (HasNode(to_node_name)) { return error_status( "can't update node name because new node name is in use"); } auto max_output_port = max_regular_output_port().find(node); const bool has_max_output_port = max_output_port != max_regular_output_port().end(); auto control_fanouts = fanouts().find({node, Graph::kControlSlot}); if (update_fanouts) { SwapControlledFanoutInputs(*this, control_fanouts, to_node_name); if (has_max_output_port) { SwapRegularFanoutInputs(&fanouts(), node, to_node_name, max_output_port->second); } } else if (has_max_output_port || HasFanoutValue(fanouts(), control_fanouts)) { return error_status("can't update node name because node has fanouts"); } nodes().erase(node->name()); node->set_name(string(to_node_name)); nodes().emplace(node->name(), node); return absl::OkStatus(); } Status MutableGraphView::SwapNodeNames(absl::string_view from_node_name, absl::string_view to_node_name, bool update_fanouts) { auto error_status = [from_node_name, to_node_name, update_fanouts](absl::string_view msg) { string params = absl::Substitute( "from_node_name='$0', to_node_name='$1', update_fanouts=$2", from_node_name, to_node_name, update_fanouts); return MutationError("SwapNodeNames", params, msg); }; NodeDef* from_node = GetNode(from_node_name); TF_RETURN_IF_ERROR(CheckNodeExists(from_node_name, from_node, error_status)); if (from_node_name == to_node_name) { return absl::OkStatus(); } NodeDef* to_node = GetNode(to_node_name); TF_RETURN_IF_ERROR(CheckNodeExists(to_node_name, to_node, error_status)); auto swap_names = [this, from_node, to_node]() { nodes().erase(from_node->name()); nodes().erase(to_node->name()); std::swap(*from_node->mutable_name(), *to_node->mutable_name()); nodes().emplace(from_node->name(), from_node); nodes().emplace(to_node->name(), to_node); }; if (update_fanouts) { SwapFanoutInputs(*this, &fanouts(), &max_regular_output_port(), from_node, to_node); swap_names(); return absl::OkStatus(); } bool from_is_switch = IsSwitch(*from_node); MutableGraphView::OutputPort to_control(to_node, Graph::kControlSlot); auto to_control_fanouts = fanouts().find(to_control); if (from_is_switch && HasFanoutValue(fanouts(), to_control_fanouts)) { return error_status(SwapNodeNamesSwitchControlErrorMsg(from_node_name)); } bool to_is_switch = IsSwitch(*to_node); MutableGraphView::OutputPort from_control(from_node, Graph::kControlSlot); auto from_control_fanouts = fanouts().find(from_control); if (to_is_switch && HasFanoutValue(fanouts(), from_control_fanouts)) { return error_status(SwapNodeNamesSwitchControlErrorMsg(to_node_name)); } swap_names(); SwapFanoutsMapValues(&fanouts(), from_control, from_control_fanouts, to_control, to_control_fanouts); SwapRegularFanoutsAndMaxPortValues(&fanouts(), &max_regular_output_port(), from_node, to_node); auto update_fanins = [this](NodeDef* node, absl::string_view old_node_name) { for (int i = 0; i < node->input_size(); ++i) { TensorId tensor_id = ParseTensorName(node->input(i)); if (tensor_id.node() == node->name()) { const int idx = tensor_id.index(); const int node_idx = IsTensorIdControlling(tensor_id) ? Graph::kControlSlot : i; MutableGraphView::OutputPort from_fanin(node, idx); absl::flat_hash_set<InputPort>* from_fanouts = &fanouts()[from_fanin]; from_fanouts->erase({node, node_idx}); UpdateMaxRegularOutputPortForRemovedFanin(from_fanin, *from_fanouts); MutableGraphView::OutputPort to_fanin(nodes().at(old_node_name), idx); fanouts()[to_fanin].insert({node, node_idx}); UpdateMaxRegularOutputPortForAddedFanin(to_fanin); node->set_input(i, TensorIdToString({old_node_name, idx})); } } }; update_fanins(from_node, to_node->name()); update_fanins(to_node, from_node->name()); auto dedup_control_fanouts = [this](NodeDef* node, const FanoutsMap::iterator& control_fanouts) { if (CanDedupControlWithRegularInput(*this, *node) && control_fanouts != fanouts().end()) { for (auto it = control_fanouts->second.begin(); it != control_fanouts->second.end();) { const auto& control_fanout = *it++; if (HasRegularFaninNode(*this, *control_fanout.node, node->name())) { RemoveControllingFaninInternal(control_fanout.node, node); } } } }; auto dedup_switch_control = [this, dedup_control_fanouts](NodeDef* node) { OutputPort port; port.node = node; const int max_port = gtl::FindWithDefault(max_regular_output_port(), node, -1); for (int i = 0; i <= max_port; ++i) { port.port_id = i; auto it = fanouts().find(port); if (it == fanouts().end()) { continue; } for (const auto& fanout : it->second) { auto fanout_controls = fanouts().find({fanout.node, Graph::kControlSlot}); dedup_control_fanouts(fanout.node, fanout_controls); } } }; if (!from_is_switch) { if (to_is_switch) { dedup_switch_control(from_node); } else { auto from_control_fanouts = fanouts().find(from_control); dedup_control_fanouts(from_node, from_control_fanouts); } } if (!to_is_switch) { if (from_is_switch) { dedup_switch_control(to_node); } else { auto to_control_fanouts = fanouts().find(to_control); dedup_control_fanouts(to_node, to_control_fanouts); } } return absl::OkStatus(); } Status MutableGraphView::UpdateFanouts(absl::string_view from_node_name, absl::string_view to_node_name) { NodeDef* from_node = GetNode(from_node_name); TF_RETURN_IF_ERROR( CheckNodeExists(from_node_name, from_node, UpdateFanoutsError(from_node_name, to_node_name))); NodeDef* to_node = GetNode(to_node_name); TF_RETURN_IF_ERROR(CheckNodeExists( to_node_name, to_node, UpdateFanoutsError(from_node_name, to_node_name))); return UpdateFanoutsInternal(from_node, to_node); } Status MutableGraphView::UpdateFanoutsInternal(NodeDef* from_node, NodeDef* to_node) { VLOG(2) << absl::Substitute("Update fanouts from '$0' to '$1'.", from_node->name(), to_node->name()); if (from_node == to_node) { return absl::OkStatus(); } const auto add_edge = [this](const OutputPort& output_port, const InputPort& input_port) { fanouts()[output_port].insert(input_port); }; const auto remove_edge = [this](const OutputPort& output_port, const InputPort& input_port) { fanouts()[output_port].erase(input_port); }; auto control_fanouts = GetFanout(GraphView::OutputPort(from_node, Graph::kControlSlot)); bool to_node_is_switch = IsSwitch(*to_node); for (const InputPort& control_port : control_fanouts) { if (control_port.node == to_node) continue; if (to_node_is_switch) { return UpdateFanoutsError(from_node->name(), to_node->name())( absl::Substitute("can't update fanouts to node '$0' as it will " "become a Switch control dependency", to_node->name())); } NodeDef* node = control_port.node; RemoveControllingFaninInternal(node, from_node); AddFaninInternal(node, {to_node, Graph::kControlSlot}); } auto regular_edges = GetFanoutEdges(*from_node, false); int keep_max_regular_output_port = -1; for (const Edge& edge : regular_edges) { const OutputPort output_port = edge.src; const InputPort input_port = edge.dst; if (input_port.node == to_node) { keep_max_regular_output_port = std::max(keep_max_regular_output_port, output_port.port_id); continue; } input_port.node->set_input( input_port.port_id, TensorIdToString({to_node->name(), output_port.port_id})); remove_edge(output_port, input_port); add_edge(OutputPort(to_node, output_port.port_id), input_port); if (CanDedupControlWithRegularInput(*this, *to_node)) { RemoveControllingFaninInternal(input_port.node, to_node); } } max_regular_output_port()[to_node] = max_regular_output_port()[from_node]; if (keep_max_regular_output_port >= 0) { max_regular_output_port()[from_node] = keep_max_regular_output_port; } else { max_regular_output_port().erase(from_node); } return absl::OkStatus(); } bool MutableGraphView::AddFaninInternal(NodeDef* node, const OutputPort& fanin) { int num_regular_fanins = NumFanins(*node, false); bool input_is_control = IsOutputPortControlling(fanin); bool can_dedup_control_with_regular_input = CanDedupControlWithRegularInput(*this, *fanin.node); if (input_is_control) { const int start = can_dedup_control_with_regular_input ? 0 : num_regular_fanins; for (int i = start; i < node->input_size(); ++i) { if (ParseTensorName(node->input(i)).node() == fanin.node->name()) { return false; } } } InputPort input; input.node = node; input.port_id = input_is_control ? Graph::kControlSlot : num_regular_fanins; node->add_input(TensorIdToString({fanin.node->name(), fanin.port_id})); if (!input_is_control) { const int last_node_input = node->input_size() - 1; if (num_regular_fanins < last_node_input) { node->mutable_input()->SwapElements(last_node_input, num_regular_fanins); } } fanouts()[fanin].insert(input); if (max_regular_output_port()[fanin.node] < fanin.port_id) { max_regular_output_port()[fanin.node] = fanin.port_id; } if (!input_is_control) { max_regular_input_port()[node] = num_regular_fanins; if (can_dedup_control_with_regular_input) { RemoveControllingFaninInternal(node, fanin.node); } } return true; } Status MutableGraphView::AddRegularFanin(absl::string_view node_name, const TensorId& fanin) { auto error_status = [node_name, fanin](absl::string_view msg) { string params = absl::Substitute("node_name='$0', fanin='$1'", node_name, fanin.ToString()); return MutationError("AddRegularFanin", params, msg); }; TF_RETURN_IF_ERROR(CheckFaninIsRegular(fanin, error_status)); TF_RETURN_IF_ERROR(CheckAddingFaninToSelf(node_name, fanin, error_status)); NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); NodeDef* fanin_node = GetNode(fanin.node()); TF_RETURN_IF_ERROR(CheckNodeExists(fanin.node(), fanin_node, error_status)); AddFaninInternal(node, {fanin_node, fanin.index()}); return absl::OkStatus(); } Status MutableGraphView::AddRegularFaninByPort(absl::string_view node_name, int port, const TensorId& fanin) { auto error_status = [node_name, port, fanin](absl::string_view msg) { string params = absl::Substitute("node_name='$0', port=$1, fanin='$2'", node_name, port, fanin.ToString()); return MutationError("AddRegularFaninByPort", params, msg); }; TF_RETURN_IF_ERROR(CheckFaninIsRegular(fanin, error_status)); TF_RETURN_IF_ERROR(CheckAddingFaninToSelf(node_name, fanin, error_status)); NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); const int num_regular_fanins = NumFanins(*node, false); TF_RETURN_IF_ERROR( CheckPortRange(port, 0, num_regular_fanins, error_status)); NodeDef* fanin_node = GetNode(fanin.node()); TF_RETURN_IF_ERROR(CheckNodeExists(fanin.node(), fanin_node, error_status)); const int last_node_input = node->input_size(); node->add_input(TensorIdToString(fanin)); node->mutable_input()->SwapElements(num_regular_fanins, last_node_input); for (int i = num_regular_fanins - 1; i >= port; --i) { TensorId tensor_id = ParseTensorName(node->input(i)); OutputPort fanin_port(nodes()[tensor_id.node()], tensor_id.index()); absl::flat_hash_set<InputPort>* fanouts_set = &fanouts()[fanin_port]; fanouts_set->erase({node, i}); fanouts_set->insert({node, i + 1}); node->mutable_input()->SwapElements(i, i + 1); } OutputPort fanin_port(fanin_node, fanin.index()); fanouts()[fanin_port].insert({node, port}); UpdateMaxRegularOutputPortForAddedFanin(fanin_port); max_regular_input_port()[node] = num_regular_fanins; if (CanDedupControlWithRegularInput(*this, *fanin_node)) { RemoveControllingFaninInternal(node, fanin_node); } return absl::OkStatus(); } NodeDef* MutableGraphView::GetControllingFaninToAdd(absl::string_view node_name, const OutputPort& fanin, string* error_msg) { if (!IsSwitch(*fanin.node)) { return fanin.node; } else { if (IsOutputPortControlling(fanin)) { TensorId tensor_id(fanin.node->name(), fanin.port_id); *error_msg = absl::Substitute( "can't add fanin '$0' as it will become a Switch control dependency", tensor_id.ToString()); return nullptr; } for (const auto& fanout : GetFanout(fanin)) { if (IsIdentity(*fanout.node) || IsIdentityNSingleInput(*fanout.node)) { if (fanout.node->name() == node_name) { *error_msg = absl::Substitute("can't add found fanin '$0' to self", AsControlDependency(fanout.node->name())); return nullptr; } return fanout.node; } } if (GeneratedNameForIdentityConsumingSwitch(fanin) == node_name) { *error_msg = absl::Substitute("can't add generated fanin '$0' to self", AsControlDependency(string(node_name))); } } return nullptr; } NodeDef* MutableGraphView::GetOrCreateIdentityConsumingSwitch( const OutputPort& fanin) { string identity_name = GeneratedNameForIdentityConsumingSwitch(fanin); NodeDef* identity_node = GetNode(identity_name); if (identity_node == nullptr) { NodeDef new_node; new_node.set_name(identity_name); new_node.set_op("Identity"); new_node.set_device(fanin.node->device()); (*new_node.mutable_attr())["T"].set_type(fanin.node->attr().at("T").type()); new_node.add_input(TensorIdToString({fanin.node->name(), fanin.port_id})); identity_node = AddNode(std::move(new_node)); } return identity_node; } Status MutableGraphView::AddControllingFanin(absl::string_view node_name, const TensorId& fanin) { auto error_status = [node_name, fanin](absl::string_view msg) { string params = absl::Substitute("node_name='$0', fanin='$1'", node_name, fanin.ToString()); return MutationError("AddControllingFanin", params, msg); }; TF_RETURN_IF_ERROR(CheckFaninIsValid(fanin, error_status)); TF_RETURN_IF_ERROR(CheckAddingFaninToSelf(node_name, fanin, error_status)); NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); NodeDef* fanin_node = GetNode(fanin.node()); TF_RETURN_IF_ERROR(CheckNodeExists(fanin.node(), fanin_node, error_status)); OutputPort fanin_port(fanin_node, fanin.index()); string error_msg = ""; NodeDef* control_node = GetControllingFaninToAdd( node_name, {fanin_node, fanin.index()}, &error_msg); if (!error_msg.empty()) { return error_status(error_msg); } if (control_node == nullptr) { control_node = GetOrCreateIdentityConsumingSwitch(fanin_port); } AddFaninInternal(node, {control_node, Graph::kControlSlot}); return absl::OkStatus(); } bool MutableGraphView::RemoveRegularFaninInternal(NodeDef* node, const OutputPort& fanin) { auto remove_input = [this, node](const OutputPort& fanin_port, int node_input_port, bool update_max_port) { InputPort input(node, node_input_port); absl::flat_hash_set<InputPort>* fanouts_set = &fanouts()[fanin_port]; fanouts_set->erase(input); if (update_max_port) { UpdateMaxRegularOutputPortForRemovedFanin(fanin_port, *fanouts_set); } return fanouts_set; }; auto mutable_inputs = node->mutable_input(); bool modified = false; const int num_regular_fanins = NumFanins(*node, false); int i; int curr_pos = 0; for (i = 0; i < num_regular_fanins; ++i) { TensorId tensor_id = ParseTensorName(node->input(i)); if (tensor_id.node() == fanin.node->name() && tensor_id.index() == fanin.port_id) { remove_input(fanin, i, true); modified = true; } else if (modified) { OutputPort fanin_port(nodes()[tensor_id.node()], tensor_id.index()); auto fanouts_set = remove_input(fanin_port, i, false); fanouts_set->insert({node, curr_pos}); mutable_inputs->SwapElements(i, curr_pos); ++curr_pos; } else { ++curr_pos; } } if (modified) { const int last_regular_input_port = curr_pos - 1; if (last_regular_input_port < 0) { max_regular_input_port().erase(node); } else { max_regular_input_port()[node] = last_regular_input_port; } if (curr_pos < i) { mutable_inputs->DeleteSubrange(curr_pos, i - curr_pos); } } return modified; } Status MutableGraphView::RemoveRegularFanin(absl::string_view node_name, const TensorId& fanin) { auto error_status = [node_name, fanin](absl::string_view msg) { string params = absl::Substitute("node_name='$0', fanin='$1'", node_name, fanin.ToString()); return MutationError("RemoveRegularFanin", params, msg); }; TF_RETURN_IF_ERROR(CheckFaninIsRegular(fanin, error_status)); TF_RETURN_IF_ERROR( CheckRemovingFaninFromSelf(node_name, fanin, error_status)); NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); NodeDef* fanin_node = GetNode(fanin.node()); TF_RETURN_IF_ERROR(CheckNodeExists(fanin.node(), fanin_node, error_status)); RemoveRegularFaninInternal(node, {fanin_node, fanin.index()}); return absl::OkStatus(); } Status MutableGraphView::RemoveRegularFaninByPort(absl::string_view node_name, int port) { auto error_status = [node_name, port](absl::string_view msg) { string params = absl::Substitute("node_name='$0', port=$1", node_name, port); return MutationError("RemoveRegularFaninByPort", params, msg); }; NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); const int last_regular_fanin_port = gtl::FindWithDefault(max_regular_input_port(), node, -1); TF_RETURN_IF_ERROR( CheckPortRange(port, 0, last_regular_fanin_port, error_status)); TensorId tensor_id = ParseTensorName(node->input(port)); OutputPort fanin_port(nodes()[tensor_id.node()], tensor_id.index()); fanouts()[fanin_port].erase({node, port}); auto mutable_inputs = node->mutable_input(); for (int i = port + 1; i <= last_regular_fanin_port; ++i) { TensorId tensor_id = ParseTensorName(node->input(i)); OutputPort fanin_port(nodes()[tensor_id.node()], tensor_id.index()); absl::flat_hash_set<InputPort>* fanouts_set = &fanouts()[fanin_port]; fanouts_set->erase({node, i}); fanouts_set->insert({node, i - 1}); mutable_inputs->SwapElements(i - 1, i); } const int last_node_input = node->input_size() - 1; if (last_regular_fanin_port < last_node_input) { mutable_inputs->SwapElements(last_regular_fanin_port, last_node_input); } mutable_inputs->RemoveLast(); const int updated_last_regular_input_port = last_regular_fanin_port - 1; if (updated_last_regular_input_port < 0) { max_regular_input_port().erase(node); } else { max_regular_input_port()[node] = updated_last_regular_input_port; } return absl::OkStatus(); } bool MutableGraphView::RemoveControllingFaninInternal(NodeDef* node, NodeDef* fanin_node) { for (int i = node->input_size() - 1; i >= 0; --i) { TensorId tensor_id = ParseTensorName(node->input(i)); if (tensor_id.index() > Graph::kControlSlot) { break; } if (tensor_id.node() == fanin_node->name()) { fanouts()[{fanin_node, Graph::kControlSlot}].erase( {node, Graph::kControlSlot}); node->mutable_input()->SwapElements(i, node->input_size() - 1); node->mutable_input()->RemoveLast(); return true; } } return false; } Status MutableGraphView::RemoveControllingFanin( absl::string_view node_name, absl::string_view fanin_node_name) { auto error_status = [node_name, fanin_node_name](absl::string_view msg) { string params = absl::Substitute("node_name='$0', fanin_node_name='$1'", node_name, fanin_node_name); return MutationError("RemoveControllingFanin", params, msg); }; TF_RETURN_IF_ERROR(CheckRemovingFaninFromSelf( node_name, {fanin_node_name, Graph::kControlSlot}, error_status)); NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); NodeDef* fanin_node = GetNode(fanin_node_name); TF_RETURN_IF_ERROR( CheckNodeExists(fanin_node_name, fanin_node, error_status)); RemoveControllingFaninInternal(node, fanin_node); return absl::OkStatus(); } Status MutableGraphView::RemoveAllFanins(absl::string_view node_name, bool keep_controlling_fanins) { NodeDef* node = GetNode(node_name); if (node == nullptr) { string params = absl::Substitute("node_name='$0', keep_controlling_fanins=$1", node_name, keep_controlling_fanins); return MutationError("RemoveAllFanins", params, NodeMissingErrorMsg(node_name)); } if (node->input().empty()) { return absl::OkStatus(); } const int num_regular_fanins = NumFanins(*node, false); RemoveFaninsInternal(node, keep_controlling_fanins); if (keep_controlling_fanins) { if (num_regular_fanins == 0) { return absl::OkStatus(); } else if (num_regular_fanins < node->input_size()) { node->mutable_input()->DeleteSubrange(0, num_regular_fanins); } else { node->clear_input(); } } else { node->clear_input(); } return absl::OkStatus(); } Status MutableGraphView::UpdateFanin(absl::string_view node_name, const TensorId& from_fanin, const TensorId& to_fanin) { auto error_status = [node_name, from_fanin, to_fanin](absl::string_view msg) { string params = absl::Substitute("node_name='$0', from_fanin='$1', to_fanin='$2'", node_name, from_fanin.ToString(), to_fanin.ToString()); return MutationError("UpdateFanin", params, msg); }; TF_RETURN_IF_ERROR(CheckFaninIsValid(from_fanin, error_status)); TF_RETURN_IF_ERROR(CheckFaninIsValid(to_fanin, error_status)); NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); NodeDef* from_fanin_node = GetNode(from_fanin.node()); TF_RETURN_IF_ERROR( CheckNodeExists(from_fanin.node(), from_fanin_node, error_status)); NodeDef* to_fanin_node = GetNode(to_fanin.node()); TF_RETURN_IF_ERROR( CheckNodeExists(to_fanin.node(), to_fanin_node, error_status)); bool to_fanin_is_control = IsTensorIdControlling(to_fanin); if (to_fanin_is_control && IsSwitch(*to_fanin_node)) { return error_status( absl::Substitute("can't update to fanin '$0' as it will become a " "Switch control dependency", to_fanin.ToString())); } if (node_name == from_fanin.node() || node_name == to_fanin.node()) { return error_status("can't update fanin to or from self"); } if (from_fanin == to_fanin) { return absl::OkStatus(); } bool from_fanin_is_control = IsTensorIdControlling(from_fanin); if (from_fanin_is_control || to_fanin_is_control) { bool modified = false; if (from_fanin_is_control) { modified |= RemoveControllingFaninInternal(node, from_fanin_node); } else { modified |= RemoveRegularFaninInternal( node, {from_fanin_node, from_fanin.index()}); } if (modified) { AddFaninInternal(node, {to_fanin_node, to_fanin.index()}); } return absl::OkStatus(); } string to_fanin_string = TensorIdToString(to_fanin); const int num_regular_fanins = NumFanins(*node, false); bool modified = false; for (int i = 0; i < num_regular_fanins; ++i) { if (ParseTensorName(node->input(i)) == from_fanin) { InputPort input(node, i); OutputPort from_fanin_port(from_fanin_node, from_fanin.index()); fanouts()[from_fanin_port].erase(input); OutputPort to_fanin_port(to_fanin_node, to_fanin.index()); fanouts()[to_fanin_port].insert(input); node->set_input(i, to_fanin_string); modified = true; } } if (modified) { OutputPort from_fanin_port(from_fanin_node, from_fanin.index()); UpdateMaxRegularOutputPortForRemovedFanin( {from_fanin_node, from_fanin.index()}, fanouts()[from_fanin_port]); if (max_regular_output_port()[to_fanin_node] < to_fanin.index()) { max_regular_output_port()[to_fanin_node] = to_fanin.index(); } if (CanDedupControlWithRegularInput(*this, *to_fanin_node)) { RemoveControllingFaninInternal(node, to_fanin_node); } } return absl::OkStatus(); } Status MutableGraphView::UpdateRegularFaninByPort(absl::string_view node_name, int port, const TensorId& fanin) { auto error_status = [node_name, port, fanin](absl::string_view msg) { string params = absl::Substitute("node_name='$0', port=$1, fanin='$2'", node_name, port, fanin.ToString()); return MutationError("UpdateRegularFaninByPort", params, msg); }; TF_RETURN_IF_ERROR(CheckFaninIsRegular(fanin, error_status)); TF_RETURN_IF_ERROR(CheckAddingFaninToSelf(node_name, fanin, error_status)); NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); const int last_regular_fanin_port = gtl::FindWithDefault(max_regular_input_port(), node, -1); TF_RETURN_IF_ERROR( CheckPortRange(port, 0, last_regular_fanin_port, error_status)); NodeDef* fanin_node = GetNode(fanin.node()); TF_RETURN_IF_ERROR(CheckNodeExists(fanin.node(), fanin_node, error_status)); TensorId tensor_id = ParseTensorName(node->input(port)); if (tensor_id == fanin) { return absl::OkStatus(); } InputPort input(node, port); OutputPort from_fanin_port(nodes()[tensor_id.node()], tensor_id.index()); absl::flat_hash_set<InputPort>* from_fanouts = &fanouts()[from_fanin_port]; from_fanouts->erase(input); UpdateMaxRegularOutputPortForRemovedFanin(from_fanin_port, *from_fanouts); OutputPort to_fanin_port(fanin_node, fanin.index()); fanouts()[to_fanin_port].insert(input); UpdateMaxRegularOutputPortForAddedFanin(to_fanin_port); node->set_input(port, TensorIdToString(fanin)); if (CanDedupControlWithRegularInput(*this, *fanin_node)) { RemoveControllingFaninInternal(node, fanin_node); } return absl::OkStatus(); } Status MutableGraphView::SwapRegularFaninsByPorts(absl::string_view node_name, int from_port, int to_port) { auto error_status = [node_name, from_port, to_port](absl::string_view msg) { string params = absl::Substitute("node_name='$0', from_port=$1, to_port=$2", node_name, from_port, to_port); return MutationError("SwapRegularFaninsByPorts", params, msg); }; NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); const int last_regular_fanin_port = gtl::FindWithDefault(max_regular_input_port(), node, -1); TF_RETURN_IF_ERROR(CheckPortRange(from_port, 0, last_regular_fanin_port, error_status)); TF_RETURN_IF_ERROR(CheckPortRange(to_port, 0, last_regular_fanin_port, error_status)); if (from_port == to_port) { return absl::OkStatus(); } TensorId from_fanin = ParseTensorName(node->input(from_port)); TensorId to_fanin = ParseTensorName(node->input(to_port)); if (from_fanin == to_fanin) { return absl::OkStatus(); } InputPort from_input(node, from_port); InputPort to_input(node, to_port); NodeDef* from_fanin_node = GetNode(from_fanin.node()); absl::flat_hash_set<InputPort>* from_fanouts = &fanouts()[{from_fanin_node, from_fanin.index()}]; from_fanouts->erase(from_input); from_fanouts->insert(to_input); NodeDef* to_fanin_node = GetNode(to_fanin.node()); absl::flat_hash_set<InputPort>* to_fanouts = &fanouts()[{to_fanin_node, to_fanin.index()}]; to_fanouts->erase(to_input); to_fanouts->insert(from_input); node->mutable_input()->SwapElements(from_port, to_port); return absl::OkStatus(); } Status MutableGraphView::UpdateAllRegularFaninsToControlling( absl::string_view node_name) { auto error_status = [node_name](absl::string_view msg) { string params = absl::Substitute("node_name='$0'", node_name); return MutationError("UpdateAllRegularFaninsToControlling", params, msg); }; NodeDef* node = GetNode(node_name); TF_RETURN_IF_ERROR(CheckNodeExists(node_name, node, error_status)); const int num_regular_fanins = NumFanins(*node, false); std::vector<OutputPort> regular_fanins; regular_fanins.reserve(num_regular_fanins); std::vector<NodeDef*> controlling_fanins; controlling_fanins.reserve(num_regular_fanins); for (int i = 0; i < num_regular_fanins; ++i) { TensorId tensor_id = ParseTensorName(node->input(i)); OutputPort fanin_port(nodes()[tensor_id.node()], tensor_id.index()); string error_msg = ""; NodeDef* control_node = GetControllingFaninToAdd(node_name, fanin_port, &error_msg); if (!error_msg.empty()) { return error_status(error_msg); } regular_fanins.push_back(fanin_port); controlling_fanins.push_back(control_node); } int pos = 0; InputPort input_port(node, Graph::kControlSlot); absl::flat_hash_set<absl::string_view> controls; for (int i = 0; i < num_regular_fanins; ++i) { OutputPort fanin_port = regular_fanins[i]; NodeDef* control = controlling_fanins[i]; if (control == nullptr) { control = GetOrCreateIdentityConsumingSwitch(fanin_port); } fanouts()[fanin_port].erase({node, i}); if (controls.contains(control->name())) { continue; } controls.insert(control->name()); node->set_input(pos, AsControlDependency(control->name())); fanouts()[{control, Graph::kControlSlot}].insert(input_port); ++pos; } for (int i = num_regular_fanins; i < node->input_size(); ++i) { TensorId tensor_id = ParseTensorName(node->input(i)); if (controls.contains(tensor_id.node())) { continue; } controls.insert(tensor_id.node()); node->mutable_input()->SwapElements(pos, i); ++pos; } node->mutable_input()->DeleteSubrange(pos, node->input_size() - pos); max_regular_input_port().erase(node); return absl::OkStatus(); } Status MutableGraphView::CheckNodesCanBeDeleted( const absl::flat_hash_set<string>& nodes_to_delete) { std::vector<string> missing_nodes; std::vector<string> nodes_with_fanouts; for (const string& node_name_to_delete : nodes_to_delete) { NodeDef* node = GetNode(node_name_to_delete); if (node == nullptr) { missing_nodes.push_back(node_name_to_delete); continue; } const int max_port = gtl::FindWithDefault(max_regular_output_port(), node, Graph::kControlSlot); for (int i = Graph::kControlSlot; i <= max_port; ++i) { auto it = fanouts().find({node, i}); bool has_retained_fanout = false; if (it != fanouts().end()) { for (const auto& fanout : it->second) { if (!nodes_to_delete.contains(fanout.node->name())) { has_retained_fanout = true; break; } } } if (has_retained_fanout) { nodes_with_fanouts.push_back(node_name_to_delete); break; } } } auto sort_and_sample = [](std::vector<string>* s) { constexpr int kMaxNodeNames = 5; std::sort(s->begin(), s->end()); if (s->size() > kMaxNodeNames) { return absl::StrCat( absl::StrJoin(s->begin(), s->begin() + kMaxNodeNames, ", "), ", ..."); } return absl::StrJoin(*s, ", "); }; if (!missing_nodes.empty()) { VLOG(2) << absl::Substitute("Attempting to delete missing node(s) [$0].", sort_and_sample(&missing_nodes)); } if (!nodes_with_fanouts.empty()) { std::vector<string> input_node_names(nodes_to_delete.begin(), nodes_to_delete.end()); string params = absl::Substitute("nodes_to_delete={$0}", sort_and_sample(&input_node_names)); string error_msg = absl::Substitute("can't delete node(s) with retained fanouts(s) [$0]", sort_and_sample(&nodes_with_fanouts)); return MutationError("DeleteNodes", params, error_msg); } return absl::OkStatus(); } Status MutableGraphView::DeleteNodes( const absl::flat_hash_set<string>& nodes_to_delete) { TF_RETURN_IF_ERROR(CheckNodesCanBeDeleted(nodes_to_delete)); for (const string& node_name_to_delete : nodes_to_delete) { NodeDef* node = GetNode(node_name_to_delete); if (node != nullptr) { RemoveFaninsInternal(node, false); RemoveFanoutsInternal(node); } } for (const string& node_name_to_delete : nodes_to_delete) { nodes().erase(node_name_to_delete); } int pos = 0; const int last_idx = graph()->node_size() - 1; int last_pos = last_idx; while (pos <= last_pos) { if (nodes_to_delete.contains(graph()->node(pos).name())) { graph()->mutable_node()->SwapElements(pos, last_pos); --last_pos; } else { ++pos; } } if (last_pos < last_idx) { graph()->mutable_node()->DeleteSubrange(last_pos + 1, last_idx - last_pos); } return absl::OkStatus(); } void MutableGraphView::RemoveFaninsInternal(NodeDef* deleted_node, bool keep_controlling_fanins) { for (int i = 0; i < deleted_node->input_size(); ++i) { TensorId tensor_id = ParseTensorName(deleted_node->input(i)); bool is_control = IsTensorIdControlling(tensor_id); if (keep_controlling_fanins && is_control) { break; } OutputPort fanin(nodes()[tensor_id.node()], tensor_id.index()); InputPort input; input.node = deleted_node; input.port_id = is_control ? Graph::kControlSlot : i; auto it = fanouts().find(fanin); if (it != fanouts().end()) { absl::flat_hash_set<InputPort>* fanouts_set = &it->second; fanouts_set->erase(input); UpdateMaxRegularOutputPortForRemovedFanin(fanin, *fanouts_set); } } max_regular_input_port().erase(deleted_node); } void MutableGraphView::RemoveFanoutsInternal(NodeDef* deleted_node) { const int max_port = gtl::FindWithDefault(max_regular_output_port(), deleted_node, -1); for (int i = Graph::kControlSlot; i <= max_port; ++i) { fanouts().erase({deleted_node, i}); } max_regular_output_port().erase(deleted_node); } } }
#include "tensorflow/core/grappler/mutable_graph_view.h" #include "absl/strings/substitute.h" #include "absl/types/span.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using ::tensorflow::test::function::NDef; using FDH = FunctionDefHelper; void CompareNodeFanins(const MutableGraphView& graph, NodeDef* node, absl::Span<const string> fanins) { ASSERT_EQ(node->input_size(), fanins.size()); for (int i = 0; i < node->input_size(); ++i) { TensorId tensor_id = ParseTensorName(fanins[i]); EXPECT_EQ(ParseTensorName(node->input(i)), tensor_id); int port; if (tensor_id.index() == Graph::kControlSlot) { port = Graph::kControlSlot; } else { port = i; } MutableGraphView::InputPort input_port(node, port); MutableGraphView::OutputPort output_port = graph.GetOutputPort(tensor_id.node(), tensor_id.index()); EXPECT_TRUE(graph.GetFanin(input_port).contains(output_port)); EXPECT_TRUE(graph.GetFanout(output_port).contains(input_port)); } } void CompareNodeFanouts(const MutableGraphView& graph, NodeDef* node, absl::Span<const string> fanouts) { auto node_fanouts = graph.GetFanouts(*node, true); EXPECT_EQ(node_fanouts.size(), fanouts.size()); for (const string& fanout : fanouts) { TensorId tensor_id = ParseTensorName(fanout); MutableGraphView::InputPort input_port(graph.GetNode(tensor_id.node()), tensor_id.index()); EXPECT_TRUE(node_fanouts.contains(input_port)); } } void CheckNode(const MutableGraphView& graph, absl::string_view node_name, absl::string_view op, absl::string_view device, absl::Span<const std::pair<string, FDH::AttrValueWrapper>> attrs, absl::Span<const string> fanins, absl::Span<const string> fanouts) { NodeDef* node = graph.GetNode(node_name); ASSERT_NE(node, nullptr); EXPECT_EQ(node->op(), op); EXPECT_EQ(node->device(), device); EXPECT_EQ(node->attr_size(), attrs.size()); for (const auto& attr : attrs) { auto it = node->attr().find(attr.first); ASSERT_NE(it, node->attr().end()); EXPECT_TRUE(AreAttrValuesEqual(it->second, attr.second.proto)); } CompareNodeFanins(graph, node, fanins); CompareNodeFanouts(graph, node, fanouts); } void CheckGraph(const MutableGraphView& mutable_graph) { GraphView immutable_graph(mutable_graph.graph()); EXPECT_EQ(mutable_graph.graph()->node_size(), immutable_graph.graph()->node_size()); EXPECT_EQ(mutable_graph.graph(), immutable_graph.graph()); auto check_edges = [](const absl::flat_hash_set<MutableGraphView::Edge>& mutable_edges, const absl::flat_hash_set<GraphView::Edge>& immutable_edges) { EXPECT_EQ(mutable_edges.size(), immutable_edges.size()); for (const auto& fanin_edge : mutable_edges) { GraphView::Edge immutable_edge( {fanin_edge.src.node, fanin_edge.src.port_id}, {fanin_edge.dst.node, fanin_edge.dst.port_id}); EXPECT_TRUE(immutable_edges.contains(immutable_edge)); } }; for (auto& node : *mutable_graph.graph()->mutable_node()) { EXPECT_EQ(&node, immutable_graph.GetNode(node.name())); auto mutable_fanins = mutable_graph.GetFanins(node, true); auto immutable_fanins = immutable_graph.GetFanins(node, true); EXPECT_EQ(mutable_fanins.size(), immutable_fanins.size()); for (const auto& fanin : mutable_fanins) { GraphView::OutputPort immutable_fanin(fanin.node, fanin.port_id); EXPECT_TRUE(immutable_fanins.contains(immutable_fanin)); } auto mutable_fanouts = mutable_graph.GetFanouts(node, true); auto immutable_fanouts = immutable_graph.GetFanouts(node, true); EXPECT_EQ(mutable_fanouts.size(), immutable_fanouts.size()); for (const auto& fanout : mutable_fanouts) { GraphView::InputPort immutable_fanout(fanout.node, fanout.port_id); EXPECT_TRUE(immutable_fanouts.contains(immutable_fanout)); } auto mutable_fanin_edges = mutable_graph.GetFaninEdges(node, true); auto immutable_fanin_edges = immutable_graph.GetFaninEdges(node, true); check_edges(mutable_fanin_edges, immutable_fanin_edges); auto mutable_fanout_edges = mutable_graph.GetFanoutEdges(node, true); auto immutable_fanout_edges = immutable_graph.GetFanoutEdges(node, true); check_edges(mutable_fanout_edges, immutable_fanout_edges); } } TEST(MutableGraphViewTest, AddSubgraph) { GraphDef graph_def = test::function::GDef( { NDef("foo", "NotImportant", {}, {}), NDef("bar", "NotImportant", {}, {}), NDef("baz", "NotImportant", {"foo", "bar"}), }, {}); MutableGraphView graph(&graph_def); GraphDef subgraph = test::function::GDef( { NDef("s/n0", "NotImportant", {}, {}), NDef("s/n1", "NotImportant", {"bar", "s/n0"}, {}), }, {}); TF_EXPECT_OK(graph.AddSubgraph(std::move(subgraph))); CheckNode(graph, "bar", "NotImportant", "", {}, {}, {"baz:1", "s/n1"}); CheckNode(graph, "s/n1", "NotImportant", "", {}, {"bar", "s/n0"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddSubgraphAndAddFunction) { GraphDef graph_def; MutableGraphView graph(&graph_def); FunctionDef x_times_two = test::function::XTimesTwo(); GraphDef subgraph = test::function::GDef({}, {x_times_two}); TF_EXPECT_OK(graph.AddSubgraph(std::move(subgraph))); EXPECT_EQ(graph_def.library().function_size(), 1); } TEST(MutableGraphViewTest, AddSubgraphAndSkipSameFunction) { FunctionDef x_times_two = test::function::XTimesTwo(); GraphDef graph_def = test::function::GDef({}, {x_times_two}); MutableGraphView graph(&graph_def); GraphDef subgraph = test::function::GDef({}, {x_times_two}); TF_EXPECT_OK(graph.AddSubgraph(std::move(subgraph))); EXPECT_EQ(graph_def.library().function_size(), 1); } TEST(MutableGraphViewTest, AddSubgraphAndFailIfFunctionDifferent) { FunctionDef x_times_four = test::function::XTimesFour(); x_times_four.mutable_signature()->set_name("XTimesTwo"); GraphDef graph_def = test::function::GDef({}, {x_times_four}); MutableGraphView graph(&graph_def); FunctionDef x_times_two = test::function::XTimesTwo(); GraphDef subgraph = test::function::GDef({}, {x_times_two}); Status status = graph.AddSubgraph(std::move(subgraph)); EXPECT_FALSE(status.ok()); EXPECT_EQ(status.message(), "MutableGraphView::AddSubgraph(function_size=1) error: Found " "different function definition with the same name: XTimesTwo."); } TEST(MutableGraphViewTest, UpdateNodeNoDedupControlDependency) { constexpr char kDevice[] = "/device:foo:0"; GraphDef graph_def = test::function::GDef( {NDef("bar_1", "Switch", {}, {}), NDef("bar_2", "Identity", {"bar_1:1"}), NDef("other", "NotImportant", {}, {}), NDef("foo_1", "NotImportant", {"bar_2", "other", "bar_2:1", "^bar_2"}), NDef("foo_2", "NotImportant", {"other:1", "bar_2:2", "^bar_2"})}, {}); MutableGraphView graph(&graph_def); AttrValue list_value; list_value.mutable_list()->add_type(DT_FLOAT); TF_EXPECT_OK( graph.UpdateNode("bar_2", "IdentityN", kDevice, {{"T", list_value}})); CheckNode(graph, "bar_1", "Switch", "", {}, {}, {"bar_2"}); CheckNode(graph, "bar_2", "IdentityN", kDevice, {{"T", list_value}}, {"bar_1:1"}, {"foo_1", "foo_1:2", "^foo_1", "foo_2:1", "^foo_2"}); CheckNode(graph, "other", "NotImportant", "", {}, {}, {"foo_1:1", "foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"bar_2", "other", "bar_2:1", "^bar_2"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"other:1", "bar_2:2", "^bar_2"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateNodeDedupControlDependency) { constexpr char kDevice[] = "/device:foo:0"; GraphDef graph_def = test::function::GDef( {NDef("bar_1", "Switch", {}, {}), NDef("bar_2", "Identity", {"bar_1:1"}), NDef("other", "NotImportant", {}, {}), NDef("foo_1", "NotImportant", {"bar_2", "other", "bar_2:1", "^bar_2"}), NDef("foo_2", "NotImportant", {"other:1", "bar_2:2", "^bar_2"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.UpdateNode("bar_2", "NotImportant", kDevice, {})); CheckNode(graph, "bar_1", "Switch", "", {}, {}, {"bar_2"}); CheckNode(graph, "bar_2", "NotImportant", kDevice, {}, {"bar_1:1"}, {"foo_1", "foo_1:2", "foo_2:1"}); CheckNode(graph, "other", "NotImportant", "", {}, {}, {"foo_1:1", "foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"bar_2", "other", "bar_2:1"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"other:1", "bar_2:2"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateNodeSwitchNoControlDependency) { constexpr char kDevice[] = "/device:foo:0"; GraphDef graph_def = test::function::GDef({NDef("foo", "NotImportant", {}, {}), NDef("bar", "NotImportant", {"foo:1"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.UpdateNode("foo", "Switch", kDevice, {})); CheckNode(graph, "foo", "Switch", kDevice, {}, {}, {"bar"}); CheckNode(graph, "bar", "NotImportant", "", {}, {"foo:1"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateNodeSwitchControlDependency) { constexpr char kDevice[] = "/device:foo:0"; GraphDef graph_def = test::function::GDef({NDef("foo", "NotImportant", {}, {}), NDef("bar", "NotImportant", {"^foo"})}, {}); MutableGraphView graph(&graph_def); AttrValue attr; attr.set_type(DT_FLOAT); Status s = graph.UpdateNode("foo", "Switch", kDevice, {{"T", attr}}); EXPECT_FALSE(s.ok()); string expected_msg = "MutableGraphView::UpdateNodeOp(node_name='foo', op='Switch', " "device='/device:foo:0', attrs={('T', type: DT_FLOAT)}) error: can't " "change node op to Switch when node drives a control dependency " "(alternatively, we could add the identity node needed, but it seems " "like an unlikely event and probably a mistake)."; EXPECT_EQ(s.message(), expected_msg); CheckNode(graph, "foo", "NotImportant", "", {}, {}, {"^bar"}); CheckNode(graph, "bar", "NotImportant", "", {}, {"^foo"}, {}); CheckGraph(graph); } absl::flat_hash_map<string, std::vector<string>> GetNodeInputsFromGraph( const GraphDef& graph, absl::string_view node_to_exclude) { absl::flat_hash_map<string, std::vector<string>> node_inputs; for (const auto& node : graph.node()) { if (node.name() == node_to_exclude) { continue; } node_inputs[node.name()] = std::vector<string>(node.input().begin(), node.input().end()); } return node_inputs; } void CheckUnmodifiedNodeFanins( const GraphDef& graph, absl::string_view node_to_exclude, const absl::flat_hash_map<string, std::vector<string>>& unmodified_node_inputs) { for (const auto& node : graph.node()) { if (node.name() == node_to_exclude) { continue; } auto it = unmodified_node_inputs.find(node.name()); ASSERT_NE(it, unmodified_node_inputs.end()); ASSERT_EQ(it->second.size(), node.input_size()); for (int i = 0; i < node.input_size(); ++i) { EXPECT_EQ(node.input(i), it->second[i]); } } } void TestUpdateNodeName(absl::string_view from_node_name, bool node_exists, absl::string_view to_node_name, bool update_fanouts, bool success, const string& error_msg, absl::Span<const string> expected_fanins) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"a"}), NDef("c", "NotImportant", {}, {})}, {}); MutableGraphView graph(&graph_def); NodeDef* node = graph.GetNode(from_node_name); if (node_exists) { EXPECT_NE(node, nullptr); } else { EXPECT_EQ(node, nullptr); } absl::flat_hash_map<string, std::vector<string>> unmodified_node_inputs = GetNodeInputsFromGraph(graph_def, from_node_name); Status s = graph.UpdateNodeName(from_node_name, to_node_name, update_fanouts); EXPECT_EQ(s.ok(), success); string updated_node_name; if (success) { updated_node_name = string(to_node_name); } else { updated_node_name = string(from_node_name); EXPECT_EQ(s.message(), error_msg); } if (node_exists) { EXPECT_EQ(node->name(), updated_node_name); CompareNodeFanins(graph, node, expected_fanins); } CheckUnmodifiedNodeFanins(graph_def, updated_node_name, unmodified_node_inputs); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateNodeName) { string error_msg; TestUpdateNodeName("b", true, "d", false, true, error_msg, {"a"}); TestUpdateNodeName("b", true, "b", false, true, error_msg, {"a"}); TestUpdateNodeName("a", true, "a", false, true, error_msg, {}); error_msg = "MutableGraphView::UpdateNodeName(from_node_name='c', to_node_name='b', " "update_fanouts=false) error: can't update node name because new node " "name is in use."; TestUpdateNodeName("c", true, "b", false, false, error_msg, {}); error_msg = "MutableGraphView::UpdateNodeName(from_node_name='a', to_node_name='b', " "update_fanouts=true) error: can't update node name because new node " "name is in use."; TestUpdateNodeName("a", true, "b", true, false, error_msg, {}); error_msg = "MutableGraphView::UpdateNodeName(from_node_name='a', to_node_name='d', " "update_fanouts=false) error: can't update node name because node has " "fanouts."; TestUpdateNodeName("a", true, "d", false, false, error_msg, {}); error_msg = "MutableGraphView::UpdateNodeName(from_node_name='d', to_node_name='e', " "update_fanouts=false) error: node 'd' was not found."; TestUpdateNodeName("d", false, "e", false, false, error_msg, {}); error_msg = "MutableGraphView::UpdateNodeName(from_node_name='d', to_node_name='e', " "update_fanouts=true) error: node 'd' was not found."; TestUpdateNodeName("d", false, "e", true, false, error_msg, {}); } TEST(MutableGraphViewTest, UpdateNodeNameWithFanouts) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"a:2"}), NDef("c", "NotImportant", {"b", "^a"}), NDef("d", "NotImportant", {"^b", "^a"}), NDef("e", "NotImportant", {"b:2", "c:4", "b:1", "^a"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.UpdateNodeName("b", "f", true)); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"f", "^c", "^d", "^e"}); CheckNode(graph, "f", "NotImportant", "", {}, {"a:2"}, {"c", "^d", "e", "e:2"}); CheckNode(graph, "c", "NotImportant", "", {}, {"f", "^a"}, {"e:1"}); CheckNode(graph, "d", "NotImportant", "", {}, {"^f", "^a"}, {}); CheckNode(graph, "e", "NotImportant", "", {}, {"f:2", "c:4", "f:1", "^a"}, {}); CheckGraph(graph); } GraphDef SimpleSwapNodeNamesMutationGraph() { return test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("switch_1", "Switch", {"a"}), NDef("identity_1", "Identity", {"switch_1:1"}), NDef("b", "NotImportant", {}, {}), NDef("switch_2", "Switch", {"b"}), NDef("identity_2", "Identity", {"switch_2:0"}), NDef("foo_1", "NotImportant", {"identity_1", "^identity_1"}), NDef("foo_2", "NotImportant", {"identity_2", "^identity_2"})}, {}); } void TestSwapNodeNames(bool update_fanouts) { GraphDef graph_def = SimpleSwapNodeNamesMutationGraph(); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.SwapNodeNames("foo_1", "foo_2", update_fanouts)); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"switch_1"}); CheckNode(graph, "switch_1", "Switch", "", {}, {"a"}, {"identity_1"}); CheckNode(graph, "identity_1", "Identity", "", {}, {"switch_1:1"}, {"foo_2", "^foo_2"}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"switch_2"}); CheckNode(graph, "switch_2", "Switch", "", {}, {"b"}, {"identity_2"}); CheckNode(graph, "identity_2", "Identity", "", {}, {"switch_2:0"}, {"foo_1", "^foo_1"}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"identity_1", "^identity_1"}, {}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"identity_2", "^identity_2"}, {}); CheckGraph(graph); } TEST(MutableGraphView, SwapNodeNames) { TestSwapNodeNames(false); TestSwapNodeNames(true); } void TestSwapNodeNamesWithSameNames(bool update_fanouts) { GraphDef graph_def = SimpleSwapNodeNamesMutationGraph(); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.SwapNodeNames("identity_1", "identity_1", update_fanouts)); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"switch_1"}); CheckNode(graph, "switch_1", "Switch", "", {}, {"a"}, {"identity_1"}); CheckNode(graph, "identity_1", "Identity", "", {}, {"switch_1:1"}, {"foo_1", "^foo_1"}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"switch_2"}); CheckNode(graph, "switch_2", "Switch", "", {}, {"b"}, {"identity_2"}); CheckNode(graph, "identity_2", "Identity", "", {}, {"switch_2:0"}, {"foo_2", "^foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"identity_1", "^identity_1"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"identity_2", "^identity_2"}, {}); CheckGraph(graph); } TEST(MutableGraphView, SwapNodeNamesSameName) { TestSwapNodeNamesWithSameNames(false); TestSwapNodeNamesWithSameNames(true); } TEST(MutableGraphView, SwapNodeNamesBetweenSwitches) { GraphDef graph_def = SimpleSwapNodeNamesMutationGraph(); MutableGraphView graph(&graph_def); TF_EXPECT_OK( graph.SwapNodeNames("switch_1", "switch_2", false)); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"switch_2"}); CheckNode(graph, "switch_2", "Switch", "", {}, {"a"}, {"identity_2"}); CheckNode(graph, "identity_1", "Identity", "", {}, {"switch_1:1"}, {"foo_1", "^foo_1"}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"switch_1"}); CheckNode(graph, "switch_1", "Switch", "", {}, {"b"}, {"identity_1"}); CheckNode(graph, "identity_2", "Identity", "", {}, {"switch_2:0"}, {"foo_2", "^foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"identity_1", "^identity_1"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"identity_2", "^identity_2"}, {}); CheckGraph(graph); } TEST(MutableGraphView, SwapNodeNamesBetweenSwitchesAndUpdateFanouts) { GraphDef graph_def = SimpleSwapNodeNamesMutationGraph(); MutableGraphView graph(&graph_def); TF_EXPECT_OK( graph.SwapNodeNames("switch_1", "switch_2", true)); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"switch_2"}); CheckNode(graph, "switch_2", "Switch", "", {}, {"a"}, {"identity_1"}); CheckNode(graph, "identity_1", "Identity", "", {}, {"switch_2:1"}, {"foo_1", "^foo_1"}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"switch_1"}); CheckNode(graph, "switch_1", "Switch", "", {}, {"b"}, {"identity_2"}); CheckNode(graph, "identity_2", "Identity", "", {}, {"switch_1:0"}, {"foo_2", "^foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"identity_1", "^identity_1"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"identity_2", "^identity_2"}, {}); CheckGraph(graph); } TEST(MutableGraphView, SwapNodeNamesSwitchAndNonSwitch) { GraphDef graph_def = SimpleSwapNodeNamesMutationGraph(); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.SwapNodeNames("a", "switch_1", false)); CheckNode(graph, "switch_1", "NotImportant", "", {}, {}, {"a", "identity_1"}); CheckNode(graph, "a", "Switch", "", {}, {"switch_1"}, {}); CheckNode(graph, "identity_1", "Identity", "", {}, {"switch_1:1"}, {"foo_1"}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"switch_2"}); CheckNode(graph, "switch_2", "Switch", "", {}, {"b"}, {"identity_2"}); CheckNode(graph, "identity_2", "Identity", "", {}, {"switch_2:0"}, {"foo_2", "^foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"identity_1"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"identity_2", "^identity_2"}, {}); CheckGraph(graph); } TEST(MutableGraphView, SwapNodeNamesSwitchAndNonSwitchAndUpdateFanouts) { GraphDef graph_def = SimpleSwapNodeNamesMutationGraph(); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.SwapNodeNames("a", "switch_1", true)); CheckNode(graph, "switch_1", "NotImportant", "", {}, {}, {"a"}); CheckNode(graph, "a", "Switch", "", {}, {"switch_1"}, {"identity_1"}); CheckNode(graph, "identity_1", "Identity", "", {}, {"a:1"}, {"foo_1", "^foo_1"}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"switch_2"}); CheckNode(graph, "switch_2", "Switch", "", {}, {"b"}, {"identity_2"}); CheckNode(graph, "identity_2", "Identity", "", {}, {"switch_2:0"}, {"foo_2", "^foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"identity_1", "^identity_1"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"identity_2", "^identity_2"}, {}); CheckGraph(graph); } TEST(MutableGraphView, SwapNodeNamesNonSwitchAndSwitch) { GraphDef graph_def = SimpleSwapNodeNamesMutationGraph(); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.SwapNodeNames("switch_2", "b", false)); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"switch_1"}); CheckNode(graph, "switch_1", "Switch", "", {}, {"a"}, {"identity_1"}); CheckNode(graph, "identity_1", "Identity", "", {}, {"switch_1:1"}, {"foo_1", "^foo_1"}); CheckNode(graph, "switch_2", "NotImportant", "", {}, {}, {"b", "identity_2"}); CheckNode(graph, "b", "Switch", "", {}, {"switch_2"}, {}); CheckNode(graph, "identity_2", "Identity", "", {}, {"switch_2:0"}, {"foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"identity_1", "^identity_1"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"identity_2"}, {}); CheckGraph(graph); } TEST(MutableGraphView, SwapNodeNamesNonSwitchAndSwitchAndUpdateFanouts) { GraphDef graph_def = SimpleSwapNodeNamesMutationGraph(); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.SwapNodeNames("switch_2", "b", true)); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"switch_1"}); CheckNode(graph, "switch_1", "Switch", "", {}, {"a"}, {"identity_1"}); CheckNode(graph, "identity_1", "Identity", "", {}, {"switch_1:1"}, {"foo_1", "^foo_1"}); CheckNode(graph, "switch_2", "NotImportant", "", {}, {}, {"b"}); CheckNode(graph, "b", "Switch", "", {}, {"switch_2"}, {"identity_2"}); CheckNode(graph, "identity_2", "Identity", "", {}, {"b:0"}, {"foo_2", "^foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"identity_1", "^identity_1"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"identity_2", "^identity_2"}, {}); CheckGraph(graph); } void TestSwapNodeNamesSimpleSelfLoop(bool update_fanouts) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {"b:7"}), NDef("b", "NotImportant", {"a:10"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.SwapNodeNames("a", "b", update_fanouts)); CheckNode(graph, "a", "NotImportant", "", {}, {"b:10"}, {"b:0"}); CheckNode(graph, "b", "NotImportant", "", {}, {"a:7"}, {"a:0"}); CheckGraph(graph); } TEST(MutableGraphView, SwapNodeNamesSelfLoops) { TestSwapNodeNamesSimpleSelfLoop(false); TestSwapNodeNamesSimpleSelfLoop(true); } void TestSwapNodeNamesError(absl::string_view from_node_name, absl::string_view to_node_name, bool update_fanouts, const string& error_msg) { GraphDef graph_def = SimpleSwapNodeNamesMutationGraph(); MutableGraphView graph(&graph_def); Status s = graph.SwapNodeNames(from_node_name, to_node_name, update_fanouts); EXPECT_EQ(s.ok(), false); EXPECT_EQ(s.message(), error_msg); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"switch_1"}); CheckNode(graph, "switch_1", "Switch", "", {}, {"a"}, {"identity_1"}); CheckNode(graph, "identity_1", "Identity", "", {}, {"switch_1:1"}, {"foo_1", "^foo_1"}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"switch_2"}); CheckNode(graph, "switch_2", "Switch", "", {}, {"b"}, {"identity_2"}); CheckNode(graph, "identity_2", "Identity", "", {}, {"switch_2:0"}, {"foo_2", "^foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"identity_1", "^identity_1"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"identity_2", "^identity_2"}, {}); CheckGraph(graph); } TEST(MutableGraphView, SwapNodeNamesError) { string error_msg; error_msg = "MutableGraphView::SwapNodeNames(from_node_name='foo_3', " "to_node_name='foo_2', update_fanouts=false) error: node 'foo_3' was not " "found."; TestSwapNodeNamesError("foo_3", "foo_2", false, error_msg); error_msg = "MutableGraphView::SwapNodeNames(from_node_name='foo_3', " "to_node_name='foo_2', update_fanouts=true) error: node 'foo_3' was not " "found."; TestSwapNodeNamesError("foo_3", "foo_2", true, error_msg); error_msg = "MutableGraphView::SwapNodeNames(from_node_name='foo_1', " "to_node_name='foo_4', update_fanouts=false) error: node 'foo_4' was not " "found."; TestSwapNodeNamesError("foo_1", "foo_4", false, error_msg); error_msg = "MutableGraphView::SwapNodeNames(from_node_name='foo_1', " "to_node_name='foo_4', update_fanouts=true) error: node 'foo_4' was not " "found."; TestSwapNodeNamesError("foo_1", "foo_4", true, error_msg); error_msg = "MutableGraphView::SwapNodeNames(from_node_name='foo_5', " "to_node_name='foo_6', update_fanouts=false) error: node 'foo_5' was not " "found."; TestSwapNodeNamesError("foo_5", "foo_6", false, error_msg); error_msg = "MutableGraphView::SwapNodeNames(from_node_name='foo_5', " "to_node_name='foo_6', update_fanouts=true) error: node 'foo_5' was not " "found."; TestSwapNodeNamesError("foo_5", "foo_6", true, error_msg); error_msg = "MutableGraphView::SwapNodeNames(from_node_name='switch_2', " "to_node_name='identity_1', update_fanouts=false) error: can't swap node " "name 'switch_2' as it will become a Switch control dependency."; TestSwapNodeNamesError("switch_2", "identity_1", false, error_msg); error_msg = "MutableGraphView::SwapNodeNames(from_node_name='identity_2', " "to_node_name='switch_1', update_fanouts=false) error: can't swap node " "name 'switch_1' as it will become a Switch control dependency."; TestSwapNodeNamesError("identity_2", "switch_1", false, error_msg); } TEST(MutableGraphViewTest, AddAndUpdateFanouts) { GraphDef graph_def = test::function::GDef( {NDef("bar", "NotImportant", {}, {}), NDef("other", "NotImportant", {}, {}), NDef("foo_1", "NotImportant", {"bar", "other", "bar:1", "^bar"}), NDef("foo_2", "NotImportant", {"other:1", "bar:2", "^bar"}), NDef("foo_3", "NotImportant", {"other:2", "^bar"})}, {}); MutableGraphView graph(&graph_def); NodeDef* new_bar = graph.AddNode(NDef("new_bar", "NotImportant", {}, {})); TF_EXPECT_OK(graph.UpdateFanouts("bar", new_bar->name())); CheckNode(graph, "bar", "NotImportant", "", {}, {}, {}); CheckNode(graph, "other", "NotImportant", "", {}, {}, {"foo_1:1", "foo_2", "foo_3"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"new_bar", "other", "new_bar:1"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"other:1", "new_bar:2"}, {}); CheckNode(graph, "foo_3", "NotImportant", "", {}, {"other:2", "^new_bar"}, {}); CheckNode(graph, "new_bar", "NotImportant", "", {}, {}, {"foo_1:0", "foo_1:2", "foo_2:1", "^foo_3"}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddAndUpdateFanoutsKeepControls) { GraphDef graph_def = test::function::GDef( {NDef("bar_1", "Switch", {}, {}), NDef("bar_2", "Identity", {"bar_1:1"}), NDef("other", "NotImportant", {}, {}), NDef("foo_1", "NotImportant", {"bar_2", "other", "bar_2:1", "^bar_2"}), NDef("foo_2", "NotImportant", {"other:1", "bar_2:2", "^bar_2"})}, {}); MutableGraphView graph(&graph_def); NodeDef* new_bar = graph.AddNode(NDef("new_bar", "Identity", {"bar_1:2"})); TF_EXPECT_OK(graph.UpdateFanouts("bar_2", new_bar->name())); CheckNode(graph, "bar_1", "Switch", "", {}, {}, {"bar_2", "new_bar"}); CheckNode(graph, "bar_2", "Identity", "", {}, {"bar_1:1"}, {}); CheckNode(graph, "other", "NotImportant", "", {}, {}, {"foo_1:1", "foo_2"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"new_bar", "other", "new_bar:1", "^new_bar"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"other:1", "new_bar:2", "^new_bar"}, {}); CheckNode(graph, "new_bar", "Identity", "", {}, {"bar_1:2"}, {"foo_1", "foo_1:2", "^foo_1", "foo_2:1", "^foo_2"}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddAndUpdateFanoutsWithoutSelfLoops) { GraphDef graph_def = test::function::GDef({NDef("bar", "NotImportant", {}, {}), NDef("foo_1", "NotImportant", {"bar", "^bar"}), NDef("foo_2", "NotImportant", {"^bar"})}, {}); MutableGraphView graph(&graph_def); NodeDef* new_bar = graph.AddNode(NDef("new_bar", "NewBar", {"bar"}, {})); TF_EXPECT_OK(graph.UpdateFanouts("bar", new_bar->name())); CheckNode(graph, "bar", "NotImportant", "", {}, {}, {"new_bar"}); CheckNode(graph, "foo_1", "NotImportant", "", {}, {"new_bar"}, {}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"^new_bar"}, {}); CheckNode(graph, "new_bar", "NewBar", "", {}, {"bar"}, {"foo_1", "^foo_2"}); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateFanoutsToSwitchWithControlFromSwitch) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "Switch", {}, {}), NDef("c", "NotImportant", {}, {}), NDef("d", "NotImportant", {}, {}), NDef("e", "NotImportant", {"c", "b", "^a", "^d"})}, {}); MutableGraphView graph(&graph_def); Status s = graph.UpdateFanouts("a", "b"); EXPECT_FALSE(s.ok()); string expected_msg = "MutableGraphView::UpdateFanouts(from_node_name='a', to_node_name='b') " "error: can't update fanouts to node 'b' as it will become a Switch " "control dependency."; EXPECT_EQ(s.message(), expected_msg); s = graph.UpdateFanouts("d", "b"); EXPECT_FALSE(s.ok()); expected_msg = "MutableGraphView::UpdateFanouts(from_node_name='d', to_node_name='b') " "error: can't update fanouts to node 'b' as it will become a Switch " "control dependency."; EXPECT_EQ(s.message(), expected_msg); EXPECT_EQ(graph.graph()->node_size(), 5); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"^e"}); CheckNode(graph, "b", "Switch", "", {}, {}, {"e:1"}); CheckNode(graph, "c", "NotImportant", "", {}, {}, {"e:0"}); CheckNode(graph, "d", "NotImportant", "", {}, {}, {"^e"}); CheckNode(graph, "e", "NotImportant", "", {}, {"c", "b", "^a", "^d"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateFanoutsToSwitchWithNoControlFromSwitch) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "Switch", {}, {}), NDef("c", "NotImportant", {}, {}), NDef("d", "NotImportant", {}, {}), NDef("e", "NotImportant", {"c", "b", "^a", "^d"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.UpdateFanouts("c", "b")); EXPECT_EQ(graph.graph()->node_size(), 5); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"^e"}); CheckNode(graph, "b", "Switch", "", {}, {}, {"e:0", "e:1"}); CheckNode(graph, "c", "NotImportant", "", {}, {}, {}); CheckNode(graph, "d", "NotImportant", "", {}, {}, {"^e"}); CheckNode(graph, "e", "NotImportant", "", {}, {"b", "b", "^a", "^d"}, {}); CheckGraph(graph); } GraphDef SimpleMutateFaninGraph() { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {}, {}), NDef("c", "NotImportant", {}, {}), NDef("d", "NotImportant", {}, {}), NDef("foo_1", "NotImportant", {"a"}), NDef("foo_2", "NotImportant", {"b", "^a", "^c"}), NDef("foo_3", "NotImportant", {"b", "a:1", "a:1"}), NDef("foo_4", "NotImportant", {"a", "b:2", "b:2", "^c", "^d"}), NDef("foo_5", "NotImportant", {}), NDef("foo_6", "NotImportant", {"^a", "^b"})}, {}); return graph_def; } void TestAddRegularFanin(absl::string_view node_name, bool node_exists, const TensorId& fanin_to_add, bool success, const string& error_msg, absl::Span<const string> expected_fanins) { GraphDef graph_def = SimpleMutateFaninGraph(); MutableGraphView graph(&graph_def); NodeDef* node = graph.GetNode(node_name); if (node_exists) { EXPECT_NE(node, nullptr); } else { EXPECT_EQ(node, nullptr); } absl::flat_hash_map<string, std::vector<string>> unmodified_node_inputs = GetNodeInputsFromGraph(graph_def, node_name); Status s = graph.AddRegularFanin(node_name, fanin_to_add); EXPECT_EQ(s.ok(), success); if (!success) { EXPECT_EQ(s.message(), error_msg); } if (node_exists) { CompareNodeFanins(graph, node, expected_fanins); } CheckUnmodifiedNodeFanins(graph_def, node_name, unmodified_node_inputs); CheckGraph(graph); } TEST(MutableGraphViewTest, AddRegularFanin) { string error_msg; TestAddRegularFanin("foo_1", true, {"b", 1}, true, error_msg, {"a", "b:1"}); TestAddRegularFanin("foo_3", true, {"b", 2}, true, error_msg, {"b", "a:1", "a:1", "b:2"}); TestAddRegularFanin("foo_2", true, {"a", 0}, true, error_msg, {"b", "a", "^c"}); TestAddRegularFanin("foo_4", true, {"a", 1}, true, error_msg, {"a", "b:2", "b:2", "a:1", "^d", "^c"}); TestAddRegularFanin("foo_5", true, {"a", 1}, true, error_msg, {"a:1"}); TestAddRegularFanin("foo_6", true, {"c", 1}, true, error_msg, {"c:1", "^b", "^a"}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_1', fanin='^b') error: " "fanin '^b' must be a regular tensor id."; TestAddRegularFanin("foo_1", true, {"b", Graph::kControlSlot}, false, error_msg, {"a"}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_3', fanin='^c') error: " "fanin '^c' must be a regular tensor id."; TestAddRegularFanin("foo_3", true, {"c", Graph::kControlSlot}, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_2', fanin='^d') error: " "fanin '^d' must be a regular tensor id."; TestAddRegularFanin("foo_2", true, {"d", Graph::kControlSlot}, false, error_msg, {"b", "^a", "^c"}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_4', fanin='^a') error: " "fanin '^a' must be a regular tensor id."; TestAddRegularFanin("foo_4", true, {"a", Graph::kControlSlot}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_5', fanin='^a') error: " "fanin '^a' must be a regular tensor id."; TestAddRegularFanin("foo_5", true, {"a", Graph::kControlSlot}, false, error_msg, {}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_6', fanin='^c') error: " "fanin '^c' must be a regular tensor id."; TestAddRegularFanin("foo_6", true, {"c", Graph::kControlSlot}, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_2', fanin='^a') error: " "fanin '^a' must be a regular tensor id."; TestAddRegularFanin("foo_2", true, {"a", Graph::kControlSlot}, false, error_msg, {"b", "^a", "^c"}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_missing', fanin='a:0') " "error: node 'foo_missing' was not found."; TestAddRegularFanin("foo_missing", false, {"a", 0}, false, error_msg, {}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_1', " "fanin='bar_missing:0') error: node 'bar_missing' was not found."; TestAddRegularFanin("foo_1", true, {"bar_missing", 0}, false, error_msg, {"a"}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_missing', " "fanin='bar_missing:0') error: node 'foo_missing' was not found."; TestAddRegularFanin("foo_missing", false, {"bar_missing", 0}, false, error_msg, {}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_missing', " "fanin='^bar_missing') error: fanin '^bar_missing' must be a regular " "tensor id."; TestAddRegularFanin("foo_missing", false, {"bar_missing", Graph::kControlSlot}, false, error_msg, {}); error_msg = "MutableGraphView::AddRegularFanin(node_name='foo_6', fanin='foo_6:2') " "error: can't add fanin 'foo_6:2' to self."; TestAddRegularFanin("foo_6", true, {"foo_6", 2}, false, error_msg, {"^a", "^b"}); } void TestAddRegularFaninByPort(absl::string_view node_name, bool node_exists, int port, const TensorId& fanin_to_add, bool success, const string& error_msg, absl::Span<const string> expected_fanins) { GraphDef graph_def = SimpleMutateFaninGraph(); MutableGraphView graph(&graph_def); NodeDef* node = graph.GetNode(node_name); if (node_exists) { EXPECT_NE(node, nullptr); } else { EXPECT_EQ(node, nullptr); } absl::flat_hash_map<string, std::vector<string>> unmodified_node_inputs = GetNodeInputsFromGraph(graph_def, node_name); Status s = graph.AddRegularFaninByPort(node_name, port, fanin_to_add); EXPECT_EQ(s.ok(), success); if (!success) { EXPECT_EQ(s.message(), error_msg); } if (node_exists) { CompareNodeFanins(graph, node, expected_fanins); } CheckUnmodifiedNodeFanins(graph_def, node_name, unmodified_node_inputs); CheckGraph(graph); } TEST(MutableGraphViewTest, AddRegularFaninByPort) { string error_msg; TestAddRegularFaninByPort("foo_3", true, 0, {"d", 2}, true, error_msg, {"d:2", "b", "a:1", "a:1"}); TestAddRegularFaninByPort("foo_3", true, 3, {"d", 2}, true, error_msg, {"b", "a:1", "a:1", "d:2"}); TestAddRegularFaninByPort("foo_3", true, 2, {"d", 2}, true, error_msg, {"b", "a:1", "d:2", "a:1"}); TestAddRegularFaninByPort("foo_2", true, 0, {"d", 2}, true, error_msg, {"d:2", "b", "^c", "^a"}); TestAddRegularFaninByPort("foo_2", true, 1, {"d", 2}, true, error_msg, {"b", "d:2", "^c", "^a"}); TestAddRegularFaninByPort("foo_4", true, 2, {"d", 2}, true, error_msg, {"a", "b:2", "d:2", "b:2", "^c"}); TestAddRegularFaninByPort("foo_5", true, 0, {"d", 2}, true, error_msg, {"d:2"}); TestAddRegularFaninByPort("foo_6", true, 0, {"d", 2}, true, error_msg, {"d:2", "^b", "^a"}); TestAddRegularFaninByPort("foo_6", true, 0, {"b", 2}, true, error_msg, {"b:2", "^a"}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_4', port=2, " "fanin='^d') error: fanin '^d' must be a regular tensor id."; TestAddRegularFaninByPort( "foo_4", true, 2, {"d", Graph::kControlSlot}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_5', port=-1, " "fanin='d:2') error: port must be in range [0, 0]."; TestAddRegularFaninByPort("foo_5", true, -1, {"d", 2}, false, error_msg, {}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_5', port=1, " "fanin='d:2') error: port must be in range [0, 0]."; TestAddRegularFaninByPort("foo_5", true, 1, {"d", 2}, false, error_msg, {}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_6', port=-1, " "fanin='d:2') error: port must be in range [0, 0]."; TestAddRegularFaninByPort("foo_6", true, -1, {"d", 2}, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_6', port=1, " "fanin='d:2') error: port must be in range [0, 0]."; TestAddRegularFaninByPort("foo_6", true, 1, {"d", 2}, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_4', port=-1, " "fanin='d:2') error: port must be in range [0, 3]."; TestAddRegularFaninByPort( "foo_4", true, -1, {"d", 2}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_4', port=4, " "fanin='d:2') error: port must be in range [0, 3]."; TestAddRegularFaninByPort("foo_4", true, 4, {"d", 2}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_missing', " "port=0, fanin='a:0') error: node 'foo_missing' was not found."; TestAddRegularFaninByPort("foo_missing", false, 0, {"a", 0}, false, error_msg, {}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_1', port=0, " "fanin='bar_missing:0') error: node 'bar_missing' was not found."; TestAddRegularFaninByPort("foo_1", true, 0, {"bar_missing", 0}, false, error_msg, {"a"}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_missing', " "port=0, fanin='bar_missing:0') error: node 'foo_missing' was not found."; TestAddRegularFaninByPort("foo_missing", false, 0, {"bar_missing", 0}, false, error_msg, {}); error_msg = "MutableGraphView::AddRegularFaninByPort(node_name='foo_6', port=0, " "fanin='foo_6:2') error: can't add fanin 'foo_6:2' to self."; TestAddRegularFaninByPort("foo_6", true, 0, {"foo_6", 2}, false, error_msg, {"^a", "^b"}); } void CheckFanoutRemoved(const MutableGraphView& graph, const TensorId& fanin, absl::string_view node_name) { MutableGraphView::OutputPort output_port = graph.GetOutputPort(fanin.node(), fanin.index()); auto fanouts = graph.GetFanout(output_port); for (auto fanout : fanouts) { EXPECT_NE(fanout.node->name(), fanin.node()); } } void TestRemoveRegularFanin(absl::string_view node_name, bool node_exists, const TensorId& fanin_to_remove, bool success, const string& error_msg, absl::Span<const string> expected_fanins) { GraphDef graph_def = SimpleMutateFaninGraph(); MutableGraphView graph(&graph_def); NodeDef* node = graph.GetNode(node_name); if (node_exists) { EXPECT_NE(nullptr, node); } else { EXPECT_EQ(nullptr, node); } absl::flat_hash_map<string, std::vector<string>> unmodified_node_inputs = GetNodeInputsFromGraph(graph_def, node_name); Status s = graph.RemoveRegularFanin(node_name, fanin_to_remove); EXPECT_EQ(s.ok(), success); if (!success) { EXPECT_EQ(s.message(), error_msg); } if (node_exists) { CompareNodeFanins(graph, node, expected_fanins); if (success) { CheckFanoutRemoved(graph, fanin_to_remove, node_name); } } CheckUnmodifiedNodeFanins(graph_def, node_name, unmodified_node_inputs); CheckGraph(graph); } TEST(MutableGraphViewTest, RemoveRegularFanin) { string error_msg; TestRemoveRegularFanin("foo_1", true, {"a", 0}, true, error_msg, {}); TestRemoveRegularFanin("foo_3", true, {"a", 1}, true, error_msg, {"b"}); TestRemoveRegularFanin("foo_2", true, {"b", 0}, true, error_msg, {"^a", "^c"}); TestRemoveRegularFanin("foo_4", true, {"b", 2}, true, error_msg, {"a", "^c", "^d"}); TestRemoveRegularFanin("foo_4", true, {"a", 0}, true, error_msg, {"b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_2', fanin='^a') " "error: fanin '^a' must be a regular tensor id."; TestRemoveRegularFanin("foo_2", true, {"a", Graph::kControlSlot}, false, error_msg, {"b", "^a", "^c"}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_4', fanin='^d') " "error: fanin '^d' must be a regular tensor id."; TestRemoveRegularFanin( "foo_4", true, {"d", Graph::kControlSlot}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_6', fanin='^a') " "error: fanin '^a' must be a regular tensor id."; TestRemoveRegularFanin("foo_6", true, {"a", Graph::kControlSlot}, false, error_msg, {"^a", "^b"}); error_msg = ""; TestRemoveRegularFanin("foo_5", true, {"a", 1}, true, error_msg, {}); TestRemoveRegularFanin("foo_6", true, {"a", 1}, true, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_1', fanin='^b') " "error: fanin '^b' must be a regular tensor id."; TestRemoveRegularFanin("foo_1", true, {"b", Graph::kControlSlot}, false, error_msg, {"a"}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_3', fanin='^c') " "error: fanin '^c' must be a regular tensor id."; TestRemoveRegularFanin("foo_3", true, {"c", Graph::kControlSlot}, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_5', fanin='^a') " "error: fanin '^a' must be a regular tensor id."; TestRemoveRegularFanin("foo_5", true, {"a", Graph::kControlSlot}, false, error_msg, {}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_missing', " "fanin='a:0') error: node 'foo_missing' was not found."; TestRemoveRegularFanin("foo_missing", false, {"a", 0}, false, error_msg, {}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_1', " "fanin='bar_missing:0') error: node 'bar_missing' was not found."; TestRemoveRegularFanin("foo_1", true, {"bar_missing", 0}, false, error_msg, {"a"}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_missing', " "fanin='bar_missing:0') error: node 'foo_missing' was not found."; TestRemoveRegularFanin("foo_missing", false, {"bar_missing", 0}, false, error_msg, {}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_missing', " "fanin='^bar_missing') error: fanin '^bar_missing' must be a regular " "tensor id."; TestRemoveRegularFanin("foo_missing", false, {"bar_missing", Graph::kControlSlot}, false, error_msg, {}); error_msg = "MutableGraphView::RemoveRegularFanin(node_name='foo_6', " "fanin='foo_6:2') error: can't remove fanin 'foo_6:2' from self."; TestRemoveRegularFanin("foo_6", true, {"foo_6", 2}, false, error_msg, {"^a", "^b"}); } void TestRemoveRegularFaninByPort(absl::string_view node_name, bool node_exists, int port, bool success, const string& error_msg, absl::Span<const string> expected_fanins) { GraphDef graph_def = SimpleMutateFaninGraph(); MutableGraphView graph(&graph_def); NodeDef* node = graph.GetNode(node_name); if (node_exists) { EXPECT_NE(nullptr, node); } else { EXPECT_EQ(nullptr, node); } absl::flat_hash_map<string, std::vector<string>> unmodified_node_inputs = GetNodeInputsFromGraph(graph_def, node_name); Status s = graph.RemoveRegularFaninByPort(node_name, port); EXPECT_EQ(s.ok(), success); if (!success) { EXPECT_EQ(s.message(), error_msg); } if (node_exists) { CompareNodeFanins(graph, node, expected_fanins); } CheckUnmodifiedNodeFanins(graph_def, node_name, unmodified_node_inputs); CheckGraph(graph); } TEST(MutableGraphViewTest, RemoveRegularFaninByPort) { string error_msg; TestRemoveRegularFaninByPort("foo_3", true, 0, true, error_msg, {"a:1", "a:1"}); TestRemoveRegularFaninByPort("foo_3", true, 2, true, error_msg, {"b", "a:1"}); TestRemoveRegularFaninByPort("foo_3", true, 1, true, error_msg, {"b", "a:1"}); TestRemoveRegularFaninByPort("foo_4", true, 0, true, error_msg, {"b:2", "b:2", "^d", "^c"}); TestRemoveRegularFaninByPort("foo_4", true, 2, true, error_msg, {"a", "b:2", "^d", "^c"}); TestRemoveRegularFaninByPort("foo_4", true, 1, true, error_msg, {"a", "b:2", "^d", "^c"}); error_msg = "MutableGraphView::RemoveRegularFaninByPort(node_name='foo_5', port=0) " "error: no available ports as node has no regular fanins."; TestRemoveRegularFaninByPort("foo_5", true, 0, false, error_msg, {}); error_msg = "MutableGraphView::RemoveRegularFaninByPort(node_name='foo_6', port=1) " "error: no available ports as node has no regular fanins."; TestRemoveRegularFaninByPort("foo_6", true, 1, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::RemoveRegularFaninByPort(node_name='foo_3', port=-1) " "error: port must be in range [0, 2]."; TestRemoveRegularFaninByPort("foo_3", true, -1, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::RemoveRegularFaninByPort(node_name='foo_3', port=3) " "error: port must be in range [0, 2]."; TestRemoveRegularFaninByPort("foo_3", true, 3, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::RemoveRegularFaninByPort(node_name='foo_4', port=-1) " "error: port must be in range [0, 2]."; TestRemoveRegularFaninByPort("foo_4", true, -1, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::RemoveRegularFaninByPort(node_name='foo_4', port=3) " "error: port must be in range [0, 2]."; TestRemoveRegularFaninByPort("foo_4", true, 3, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::RemoveRegularFaninByPort(node_name='foo_missing', " "port=0) error: node 'foo_missing' was not found."; TestRemoveRegularFaninByPort("foo_missing", false, 0, false, error_msg, {}); } void TestRemoveAllFanins(absl::string_view node_name, bool node_exists, bool keep_controlling_nodes, bool success, const string& error_msg, absl::Span<const string> expected_fanins) { GraphDef graph_def = SimpleMutateFaninGraph(); MutableGraphView graph(&graph_def); NodeDef* node = graph.GetNode(node_name); absl::flat_hash_set<string> fanin_strings; if (node_exists) { EXPECT_NE(node, nullptr); fanin_strings.insert(node->input().begin(), node->input().end()); } else { EXPECT_EQ(node, nullptr); } absl::flat_hash_map<string, std::vector<string>> unmodified_node_inputs = GetNodeInputsFromGraph(graph_def, node_name); Status s = graph.RemoveAllFanins(node_name, keep_controlling_nodes); EXPECT_EQ(s.ok(), success); if (!success) { EXPECT_EQ(s.message(), error_msg); } if (node_exists) { CompareNodeFanins(graph, node, expected_fanins); if (success) { TensorId tensor_id; auto retained_inputs = absl::flat_hash_set<string>(node->input().begin(), node->input().end()); for (const string& fanin : fanin_strings) { if (!retained_inputs.contains(fanin)) { tensor_id = ParseTensorName(fanin); CheckFanoutRemoved(graph, tensor_id, node_name); } } } } CheckUnmodifiedNodeFanins(graph_def, node_name, unmodified_node_inputs); CheckGraph(graph); } TEST(MutableGraphViewTest, RemoveAllFanins) { string error_msg; TestRemoveAllFanins("foo_3", true, false, true, error_msg, {}); TestRemoveAllFanins("foo_4", true, false, true, error_msg, {}); TestRemoveAllFanins("foo_3", true, true, true, error_msg, {}); TestRemoveAllFanins("foo_4", true, true, true, error_msg, {"^c", "^d"}); TestRemoveAllFanins("foo_5", true, false, true, error_msg, {}); TestRemoveAllFanins("foo_5", true, true, true, error_msg, {}); TestRemoveAllFanins("foo_6", true, false, true, error_msg, {}); TestRemoveAllFanins("foo_6", true, true, true, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::RemoveAllFanins(node_name='foo_missing', " "keep_controlling_fanins=false) error: node 'foo_missing' was not found."; TestRemoveAllFanins("foo_missing", false, false, false, error_msg, {}); error_msg = "MutableGraphView::RemoveAllFanins(node_name='foo_missing', " "keep_controlling_fanins=true) error: node 'foo_missing' was not found."; TestRemoveAllFanins("foo_missing", false, true, false, error_msg, {}); } void TestUpdateFanin(absl::string_view node_name, bool node_exists, const TensorId& from_fanin, const TensorId& to_fanin, bool success, const string& error_msg, absl::Span<const string> expected_fanins) { GraphDef graph_def = SimpleMutateFaninGraph(); MutableGraphView graph(&graph_def); NodeDef* node = graph.GetNode(node_name); if (node_exists) { EXPECT_NE(node, nullptr); } else { EXPECT_EQ(node, nullptr); } absl::flat_hash_map<string, std::vector<string>> unmodified_node_inputs = GetNodeInputsFromGraph(graph_def, node_name); Status s = graph.UpdateFanin(node_name, from_fanin, to_fanin); EXPECT_EQ(s.ok(), success); if (!success) { EXPECT_EQ(s.message(), error_msg); } if (node_exists) { CompareNodeFanins(graph, node, expected_fanins); if (success) { CheckFanoutRemoved(graph, from_fanin, node_name); } } CheckUnmodifiedNodeFanins(graph_def, node_name, unmodified_node_inputs); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateFanin) { string error_msg; TestUpdateFanin("foo_4", true, {"b", 2}, {"b", 3}, true, error_msg, {"a", "b:3", "b:3", "^c", "^d"}); TestUpdateFanin("foo_4", true, {"b", 2}, {"b", Graph::kControlSlot}, true, error_msg, {"a", "^c", "^d", "^b"}); TestUpdateFanin( "foo_4", true, {"d", Graph::kControlSlot}, {"d", 1}, true, error_msg, {"a", "b:2", "b:2", "d:1", "^c"}); TestUpdateFanin("foo_4", true, {"c", Graph::kControlSlot}, {"b", Graph::kControlSlot}, true, error_msg, {"a", "b:2", "b:2", "^d"}); TestUpdateFanin("foo_4", true, {"c", Graph::kControlSlot}, {"d", Graph::kControlSlot}, true, error_msg, {"a", "b:2", "b:2", "^d"}); TestUpdateFanin("foo_1", true, {"a", -1}, {"a", -1}, true, error_msg, {"a"}); TestUpdateFanin("foo_1", true, {"a", 0}, {"a", 0}, true, error_msg, {"a"}); TestUpdateFanin("foo_1", true, {"a", 1}, {"a", 1}, true, error_msg, {"a"}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_missing', " "from_fanin='a:0', to_fanin='a:1') error: node 'foo_missing' was not " "found."; TestUpdateFanin("foo_missing", false, {"a", 0}, {"a", 1}, false, error_msg, {}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_1', " "from_fanin='from_bar_missing:0', to_fanin='a:1') error: node " "'from_bar_missing' was not found."; TestUpdateFanin("foo_1", true, {"from_bar_missing", 0}, {"a", 1}, false, error_msg, {"a"}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_1', from_fanin='a:0', " "to_fanin='to_bar_missing:1') error: node 'to_bar_missing' was not " "found."; TestUpdateFanin("foo_1", true, {"a", 0}, {"to_bar_missing", 1}, false, error_msg, {"a"}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_missing', " "from_fanin='from_bar_missing:0', to_fanin='to_bar_missing:1') error: " "node 'foo_missing' was not found."; TestUpdateFanin("foo_missing", false, {"from_bar_missing", 0}, {"to_bar_missing", 1}, false, error_msg, {}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_1', from_fanin='a:-2', " "to_fanin='a:0') error: fanin 'a:-2' must be a valid tensor id."; TestUpdateFanin("foo_1", true, {"a", -2}, {"a", 0}, false, error_msg, {"a"}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_1', from_fanin='a:0', " "to_fanin='a:-2') error: fanin 'a:-2' must be a valid tensor id."; TestUpdateFanin("foo_1", true, {"a", 0}, {"a", -2}, false, error_msg, {"a"}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_missing', " "from_fanin='from_bar_missing:-2', to_fanin='to_bar_missing:-3') error: " "fanin 'from_bar_missing:-2' must be a valid tensor id."; TestUpdateFanin("foo_missing", false, {"from_bar_missing", -2}, {"to_bar_missing", -3}, false, error_msg, {}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_4', from_fanin='b:2', " "to_fanin='foo_4:3') error: can't update fanin to or from self."; TestUpdateFanin("foo_4", true, {"b", 2}, {"foo_4", 3}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_4', from_fanin='b:2', " "to_fanin='^foo_4') error: can't update fanin to or from self."; TestUpdateFanin( "foo_4", true, {"b", 2}, {"foo_4", Graph::kControlSlot}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_4', from_fanin='^c', " "to_fanin='foo_4:4') error: can't update fanin to or from self."; TestUpdateFanin( "foo_4", true, {"c", Graph::kControlSlot}, {"foo_4", 4}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::UpdateFanin(node_name='foo_4', from_fanin='^c', " "to_fanin='^foo_4') error: can't update fanin to or from self."; TestUpdateFanin("foo_4", true, {"c", Graph::kControlSlot}, {"foo_4", Graph::kControlSlot}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); } void TestUpdateFaninFromFaninToNodeAsSwitchControl(const TensorId& fanin) { string tensor_id_str = TensorIdToString(fanin); GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "Switch", {}, {}), NDef("c", "NotImportant", {tensor_id_str})}, {}); MutableGraphView graph(&graph_def); Status s = graph.UpdateFanin("c", fanin, {"b", Graph::kControlSlot}); EXPECT_FALSE(s.ok()); string expected_msg = absl::Substitute( "MutableGraphView::UpdateFanin(node_name='c', from_fanin='$0', " "to_fanin='^b') error: can't update to fanin '^b' as it will become a " "Switch control dependency.", fanin.ToString()); EXPECT_EQ(s.message(), expected_msg); EXPECT_EQ(graph.graph()->node_size(), 3); string fanout = IsControlInput(fanin) ? AsControlDependency("c") : "c"; CheckNode(graph, "a", "NotImportant", "", {}, {}, {fanout}); CheckNode(graph, "b", "Switch", "", {}, {}, {}); CheckNode(graph, "c", "NotImportant", "", {}, {tensor_id_str}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateFaninToNodeAsSwitchControl) { TestUpdateFaninFromFaninToNodeAsSwitchControl({"a", 0}); TestUpdateFaninFromFaninToNodeAsSwitchControl({"a", 1}); TestUpdateFaninFromFaninToNodeAsSwitchControl({"a", Graph::kControlSlot}); } void TestUpdateRegularFaninByPort(absl::string_view node_name, bool node_exists, int port, const TensorId& fanin, bool success, const string& error_msg, absl::Span<const string> expected_fanins) { GraphDef graph_def = SimpleMutateFaninGraph(); MutableGraphView graph(&graph_def); NodeDef* node = graph.GetNode(node_name); if (node_exists) { EXPECT_NE(node, nullptr); } else { EXPECT_EQ(node, nullptr); } absl::flat_hash_map<string, std::vector<string>> unmodified_node_inputs = GetNodeInputsFromGraph(graph_def, node_name); Status s = graph.UpdateRegularFaninByPort(node_name, port, fanin); EXPECT_EQ(s.ok(), success); if (!success) { EXPECT_EQ(s.message(), error_msg); } if (node_exists) { CompareNodeFanins(graph, node, expected_fanins); } CheckUnmodifiedNodeFanins(graph_def, node_name, unmodified_node_inputs); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateRegularFaninByPort) { string error_msg; TestUpdateRegularFaninByPort( "foo_3", true, 0, {"d", 2}, true, error_msg, {"d:2", "a:1", "a:1"}); TestUpdateRegularFaninByPort( "foo_3", true, 2, {"d", 2}, true, error_msg, {"b", "a:1", "d:2"}); TestUpdateRegularFaninByPort( "foo_3", true, 1, {"d", 2}, true, error_msg, {"b", "d:2", "a:1"}); TestUpdateRegularFaninByPort( "foo_4", true, 0, {"d", 2}, true, error_msg, {"d:2", "b:2", "b:2", "^c"}); TestUpdateRegularFaninByPort( "foo_4", true, 2, {"d", 2}, true, error_msg, {"a", "b:2", "d:2", "^c"}); TestUpdateRegularFaninByPort( "foo_4", true, 1, {"d", 2}, true, error_msg, {"a", "d:2", "b:2", "^c"}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_4', port=1, " "fanin='^d') error: fanin '^d' must be a regular tensor id."; TestUpdateRegularFaninByPort( "foo_4", true, 1, {"d", Graph::kControlSlot}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_5', port=-1, " "fanin='d:2') error: no available ports as node has no regular fanins."; TestUpdateRegularFaninByPort("foo_5", true, -1, {"d", 2}, false, error_msg, {}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_5', port=0, " "fanin='d:2') error: no available ports as node has no regular fanins."; TestUpdateRegularFaninByPort("foo_5", true, 0, {"d", 2}, false, error_msg, {}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_5', port=1, " "fanin='d:2') error: no available ports as node has no regular fanins."; TestUpdateRegularFaninByPort("foo_5", true, 1, {"d", 2}, false, error_msg, {}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_6', port=-1, " "fanin='d:2') error: no available ports as node has no regular fanins."; TestUpdateRegularFaninByPort("foo_6", true, -1, {"d", 2}, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_6', port=0, " "fanin='d:2') error: no available ports as node has no regular fanins."; TestUpdateRegularFaninByPort("foo_6", true, 0, {"d", 2}, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_6', port=1, " "fanin='d:2') error: no available ports as node has no regular fanins."; TestUpdateRegularFaninByPort("foo_6", true, 1, {"d", 2}, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_3', port=-1, " "fanin='d:2') error: port must be in range [0, 2]."; TestUpdateRegularFaninByPort( "foo_3", true, -1, {"d", 2}, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_3', port=3, " "fanin='d:2') error: port must be in range [0, 2]."; TestUpdateRegularFaninByPort( "foo_3", true, 3, {"d", 2}, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_4', port=-1, " "fanin='d:2') error: port must be in range [0, 2]."; TestUpdateRegularFaninByPort( "foo_4", true, -1, {"d", 2}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_4', port=3, " "fanin='d:2') error: port must be in range [0, 2]."; TestUpdateRegularFaninByPort( "foo_4", true, 3, {"d", 2}, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_missing', " "port=0, fanin='a:0') error: node 'foo_missing' was not found."; TestUpdateRegularFaninByPort("foo_missing", false, 0, {"a", 0}, false, error_msg, {}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_1', port=0, " "fanin='bar_missing:0') error: node 'bar_missing' was not " "found."; TestUpdateRegularFaninByPort("foo_1", true, 0, {"bar_missing", 0}, false, error_msg, {"a"}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_missing', " "port=0, fanin='bar_missing:0') error: node 'foo_missing' was not found."; TestUpdateRegularFaninByPort("foo_missing", false, 0, {"bar_missing", 0}, false, error_msg, {}); error_msg = "MutableGraphView::UpdateRegularFaninByPort(node_name='foo_6', port=0, " "fanin='foo_6:2') error: can't add fanin 'foo_6:2' to self."; TestUpdateRegularFaninByPort("foo_6", true, 0, {"foo_6", 2}, false, error_msg, {"^a", "^b"}); } void TestSwapRegularFaninsByPorts(absl::string_view node_name, bool node_exists, int from_port, int to_port, bool success, const string& error_msg, absl::Span<const string> expected_fanins) { GraphDef graph_def = SimpleMutateFaninGraph(); MutableGraphView graph(&graph_def); NodeDef* node = graph.GetNode(node_name); if (node_exists) { EXPECT_NE(node, nullptr); } else { EXPECT_EQ(node, nullptr); } absl::flat_hash_map<string, std::vector<string>> unmodified_node_inputs = GetNodeInputsFromGraph(graph_def, node_name); Status s = graph.SwapRegularFaninsByPorts(node_name, from_port, to_port); EXPECT_EQ(s.ok(), success); if (!success) { EXPECT_EQ(s.message(), error_msg); } if (node_exists) { CompareNodeFanins(graph, node, expected_fanins); } CheckUnmodifiedNodeFanins(graph_def, node_name, unmodified_node_inputs); CheckGraph(graph); } TEST(MutableGraphViewTest, SwapRegularFaninsByPorts) { string error_msg; TestSwapRegularFaninsByPorts("foo_3", true, 0, 2, true, error_msg, {"a:1", "a:1", "b"}); TestSwapRegularFaninsByPorts("foo_3", true, 2, 0, true, error_msg, {"a:1", "a:1", "b"}); TestSwapRegularFaninsByPorts("foo_4", true, 0, 2, true, error_msg, {"b:2", "b:2", "a", "^c", "^d"}); TestSwapRegularFaninsByPorts("foo_4", true, 2, 0, true, error_msg, {"b:2", "b:2", "a", "^c", "^d"}); TestSwapRegularFaninsByPorts("foo_3", true, 0, 1, true, error_msg, {"a:1", "b", "a:1"}); TestSwapRegularFaninsByPorts("foo_3", true, 1, 0, true, error_msg, {"a:1", "b", "a:1"}); TestSwapRegularFaninsByPorts("foo_4", true, 0, 1, true, error_msg, {"b:2", "a", "b:2", "^c", "^d"}); TestSwapRegularFaninsByPorts("foo_4", true, 1, 0, true, error_msg, {"b:2", "a", "b:2", "^c", "^d"}); TestSwapRegularFaninsByPorts("foo_4", true, 1, 1, true, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); TestSwapRegularFaninsByPorts("foo_4", true, 1, 2, true, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_5', " "from_port=-1, to_port=0) error: no available ports as node has no " "regular fanins."; TestSwapRegularFaninsByPorts("foo_5", true, -1, 0, false, error_msg, {}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_5', " "from_port=0, to_port=-1) error: no available ports as node has no " "regular fanins."; TestSwapRegularFaninsByPorts("foo_5", true, 0, -1, false, error_msg, {}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_5', " "from_port=0, to_port=0) error: no available ports as node has no " "regular fanins."; TestSwapRegularFaninsByPorts("foo_5", true, 0, 0, false, error_msg, {}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_5', " "from_port=0, to_port=1) error: no available ports as node has no " "regular fanins."; TestSwapRegularFaninsByPorts("foo_5", true, 0, 1, false, error_msg, {}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_5', " "from_port=1, to_port=0) error: no available ports as node has no " "regular fanins."; TestSwapRegularFaninsByPorts("foo_5", true, 1, 0, false, error_msg, {}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_6', " "from_port=-1, to_port=0) error: no available ports as node has no " "regular fanins."; TestSwapRegularFaninsByPorts("foo_6", true, -1, 0, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_6', " "from_port=0, to_port=-1) error: no available ports as node has no " "regular fanins."; TestSwapRegularFaninsByPorts("foo_6", true, 0, -1, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_6', " "from_port=0, to_port=0) error: no available ports as node has no " "regular fanins."; TestSwapRegularFaninsByPorts("foo_6", true, 0, 0, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_6', " "from_port=0, to_port=1) error: no available ports as node has no " "regular fanins."; TestSwapRegularFaninsByPorts("foo_6", true, 0, 1, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_6', " "from_port=1, to_port=0) error: no available ports as node has no " "regular fanins."; TestSwapRegularFaninsByPorts("foo_6", true, 1, 0, false, error_msg, {"^a", "^b"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_3', " "from_port=-1, to_port=0) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_3", true, -1, 0, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_3', " "from_port=0, to_port=-1) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_3", true, 0, -1, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_3', " "from_port=0, to_port=3) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_3", true, 0, 3, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_3', " "from_port=3, to_port=0) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_3", true, 3, 0, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_3', " "from_port=-1, to_port=3) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_3", true, -1, 3, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_3', " "from_port=3, to_port=-1) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_3", true, 3, -1, false, error_msg, {"b", "a:1", "a:1"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_4', " "from_port=-1, to_port=0) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_4", true, -1, 0, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_4', " "from_port=0, to_port=-1) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_4", true, 0, -1, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_4', " "from_port=0, to_port=3) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_4", true, 0, 3, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_4', " "from_port=3, to_port=0) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_4", true, 3, 0, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_4', " "from_port=-1, to_port=3) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_4", true, -1, 3, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_4', " "from_port=3, to_port=-1) error: port must be in range [0, 2]."; TestSwapRegularFaninsByPorts("foo_4", true, 3, -1, false, error_msg, {"a", "b:2", "b:2", "^c", "^d"}); error_msg = "MutableGraphView::SwapRegularFaninsByPorts(node_name='foo_missing', " "from_port=0, to_port=1) error: node 'foo_missing' was not found."; TestSwapRegularFaninsByPorts("foo_missing", false, 0, 1, false, error_msg, {}); } TEST(MutableGraphViewTest, DedupControllingFaninsOnGraphInit) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {}, {}), NDef("c", "Switch", {}, {}), NDef("d", "Identity", {"c:1"}), NDef("foo_1", "IdentityN", {"a", "b:1", "^b"}), NDef("foo_2", "IdentityN", {"a", "^b", "^b"}), NDef("foo_3", "IdentityN", {"a", "b:1", "^b", "^b"}), NDef("foo_4", "IdentityN", {"a:2", "b:1", "^b", "^b", "^a", "^a"}), NDef("foo_5", "NotImportant", {"a:2", "b:1", "^b", "^b", "^a", "^a"}), NDef("foo_6", "Identity", {"d", "^d"}), NDef("foo_7", "NotImportant", {"a:3", "b:2", "d", "^d", "^d", "^a", "^b", "^a", "^b"})}, {}); MutableGraphView graph(&graph_def); EXPECT_EQ(graph.graph()->node_size(), 11); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"foo_1", "foo_2", "foo_3", "foo_4", "foo_5", "foo_7"}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"foo_1:1", "^foo_2", "foo_3:1", "foo_4:1", "foo_5:1", "foo_7:1"}); CheckNode(graph, "c", "Switch", "", {}, {}, {"d"}); CheckNode(graph, "d", "Identity", "", {}, {"c:1"}, {"foo_6", "^foo_6", "foo_7:2", "^foo_7"}); CheckNode(graph, "foo_1", "IdentityN", "", {}, {"a", "b:1"}, {}); CheckNode(graph, "foo_2", "IdentityN", "", {}, {"a", "^b"}, {}); CheckNode(graph, "foo_3", "IdentityN", "", {}, {"a", "b:1"}, {}); CheckNode(graph, "foo_4", "IdentityN", "", {}, {"a:2", "b:1"}, {}); CheckNode(graph, "foo_5", "NotImportant", "", {}, {"a:2", "b:1"}, {}); CheckNode(graph, "foo_6", "Identity", "", {}, {"d", "^d"}, {}); CheckNode(graph, "foo_7", "NotImportant", "", {}, {"a:3", "b:2", "d", "^d"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, DedupControllingFaninsOnAddFanin) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"^a"}), NDef("c", "NotImportant", {"a:1"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.AddRegularFanin("b", {"a", 2})); CheckNode(graph, "b", "NotImportant", "", {}, {"a:2"}, {}); TF_EXPECT_OK(graph.AddControllingFanin("c", {"a", Graph::kControlSlot})); CheckNode(graph, "c", "NotImportant", "", {}, {"a:1"}, {}); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b:0", "c:0"}); CheckGraph(graph); } TEST(MutableGraphViewTest, NoDedupControllingFaninsOnAddFanin) { GraphDef graph_def = test::function::GDef( {NDef("a", "Switch", {}, {}), NDef("b", "Identity", {"a:1"}), NDef("c", "", {}, {}), NDef("d", "", {}, {})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.AddRegularFanin("c", {"b", 2})); CheckNode(graph, "c", "", "", {}, {"b:2"}, {}); TF_EXPECT_OK(graph.AddControllingFanin("c", {"b", Graph::kControlSlot})); CheckNode(graph, "c", "", "", {}, {"b:2", "^b"}, {}); TF_EXPECT_OK(graph.AddControllingFanin("c", {"b", Graph::kControlSlot})); CheckNode(graph, "c", "", "", {}, {"b:2", "^b"}, {}); TF_EXPECT_OK(graph.AddRegularFanin("c", {"b", 2})); CheckNode(graph, "c", "", "", {}, {"b:2", "b:2", "^b"}, {}); TF_EXPECT_OK(graph.AddControllingFanin("d", {"b", Graph::kControlSlot})); CheckNode(graph, "d", "", "", {}, {"^b"}, {}); TF_EXPECT_OK(graph.AddControllingFanin("d", {"b", Graph::kControlSlot})); CheckNode(graph, "d", "", "", {}, {"^b"}, {}); CheckNode(graph, "a", "Switch", "", {}, {}, {"b"}); CheckNode(graph, "b", "Identity", "", {}, {"a:1"}, {"c:0", "c:1", "^c", "^d"}); CheckGraph(graph); } TEST(MutableGraphViewTest, DedupControllingFaninsOnAddFaninByPort) { GraphDef graph_def = test::function::GDef({NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"c", "^a"}), NDef("c", "NotImportant", {"a:1"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.AddRegularFaninByPort("b", 0, {"a", 2})); CheckNode(graph, "b", "NotImportant", "", {}, {"a:2", "c"}, {}); TF_EXPECT_OK(graph.AddControllingFanin("c", {"a", Graph::kControlSlot})); CheckNode(graph, "c", "NotImportant", "", {}, {"a:1"}, {"b:1"}); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b:0", "c:0"}); CheckGraph(graph); } TEST(MutableGraphViewTest, NoDedupControllingFaninsOnAddFaninByPort) { GraphDef graph_def = test::function::GDef( {NDef("a", "Switch", {}, {}), NDef("b", "Identity", {"a:1"}), NDef("c", "", {}, {}), NDef("d", "", {"c:2"}, {})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.AddRegularFaninByPort("d", 1, {"b", 2})); CheckNode(graph, "d", "", "", {}, {"c:2", "b:2"}, {}); TF_EXPECT_OK(graph.AddControllingFanin("d", {"b", Graph::kControlSlot})); CheckNode(graph, "d", "", "", {}, {"c:2", "b:2", "^b"}, {}); TF_EXPECT_OK(graph.AddRegularFaninByPort("d", 0, {"b", 2})); CheckNode(graph, "d", "", "", {}, {"b:2", "c:2", "b:2", "^b"}, {}); CheckNode(graph, "a", "Switch", "", {}, {}, {"b:0"}); CheckNode(graph, "b", "Identity", "", {}, {"a:1"}, {"d:0", "d:2", "^d"}); CheckNode(graph, "c", "", "", {}, {}, {"d:1"}); CheckGraph(graph); } TEST(MutableGraphViewTest, DedupControllingFaninsOnUpdateFanin) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {}, {}), NDef("c", "NotImportant", {"a:1", "^b"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.UpdateFanin("c", {"a", 1}, {"b", 2})); CheckNode(graph, "a", "NotImportant", "", {}, {}, {}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"c"}); CheckNode(graph, "c", "NotImportant", "", {}, {"b:2"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, NoDedupControllingFaninsOnUpdateFanin) { GraphDef graph_def = test::function::GDef( {NDef("a", "Switch", {}, {}), NDef("b", "Identity", {"a:1"}), NDef("c", "Identity", {"a:2"}), NDef("d", "NotImportant", {"c", "^b"}), NDef("e", "NotImportant", {"b", "^c"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.UpdateFanin("d", {"b", Graph::kControlSlot}, {"c", Graph::kControlSlot})); CheckNode(graph, "d", "NotImportant", "", {}, {"c", "^c"}, {}); TF_EXPECT_OK(graph.UpdateFanin("e", {"b", 0}, {"c", 3})); CheckNode(graph, "e", "NotImportant", "", {}, {"c:3", "^c"}, {}); TF_EXPECT_OK(graph.UpdateFanin("e", {"c", 3}, {"c", Graph::kControlSlot})); CheckNode(graph, "e", "NotImportant", "", {}, {"^c"}, {}); CheckNode(graph, "a", "Switch", "", {}, {}, {"b:0", "c:0"}); CheckNode(graph, "b", "Identity", "", {}, {"a:1"}, {}); CheckNode(graph, "c", "Identity", "", {}, {"a:2"}, {"d:0", "^d", "^e"}); CheckGraph(graph); } TEST(MutableGraphViewTest, DedupControllingFaninsOnUpdateFaninByPort) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {}, {}), NDef("c", "NotImportant", {"a:1", "^b"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.UpdateRegularFaninByPort("c", 0, {"b", 2})); CheckNode(graph, "a", "NotImportant", "", {}, {}, {}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"c"}); CheckNode(graph, "c", "NotImportant", "", {}, {"b:2"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, NoDedupControllingFaninsOnUpdateFaninByPort) { GraphDef graph_def = test::function::GDef( {NDef("a", "Switch", {}, {}), NDef("b", "Identity", {"a:1"}), NDef("c", "Identity", {"a:2"}), NDef("d", "NotImportant", {"c", "^b"}), NDef("e", "NotImportant", {"b", "^c"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.UpdateRegularFaninByPort("d", 0, {"b", 1})); CheckNode(graph, "d", "NotImportant", "", {}, {"b:1", "^b"}, {}); TF_EXPECT_OK(graph.UpdateRegularFaninByPort("e", 0, {"c", 2})); CheckNode(graph, "e", "NotImportant", "", {}, {"c:2", "^c"}, {}); CheckNode(graph, "a", "Switch", "", {}, {}, {"b:0", "c:0"}); CheckNode(graph, "b", "Identity", "", {}, {"a:1"}, {"d:0", "^d"}); CheckNode(graph, "c", "Identity", "", {}, {"a:2"}, {"e:0", "^e"}); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateMaxRegularOutputPortOnAddFanin) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"a:1"}), NDef("c", "NotImportant", {"^b"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.AddRegularFanin("c", {"a", 3})); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b", "c"}); CheckNode(graph, "b", "NotImportant", "", {}, {"a:1"}, {"^c"}); CheckNode(graph, "c", "NotImportant", "", {}, {"a:3", "^b"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateMaxRegularOutputPortOnRemoveFanin) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"a:1"}), NDef("c", "NotImportant", {"a:2"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.RemoveRegularFanin("c", {"a", 2})); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b"}); CheckNode(graph, "b", "NotImportant", "", {}, {"a:1"}, {}); CheckNode(graph, "c", "NotImportant", "", {}, {}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, KeepMaxRegularOutputPortOnRemoveFanin) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"a:1"}), NDef("c", "NotImportant", {"a:2"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.RemoveRegularFanin("b", {"a", 1})); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"c"}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {}); CheckNode(graph, "c", "NotImportant", "", {}, {"a:2"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateMaxRegularOutputPortOnUpdateFanin) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"a:1"}), NDef("c", "NotImportant", {"a:2"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.UpdateFanin("c", {"a", 2}, {"b", 3})); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b"}); CheckNode(graph, "b", "NotImportant", "", {}, {"a:1"}, {"c"}); CheckNode(graph, "c", "NotImportant", "", {}, {"b:3"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddControllingFaninMissing) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {}, {})}, {}); MutableGraphView graph(&graph_def); Status s = graph.AddControllingFanin("a", {"c", Graph::kControlSlot}); EXPECT_FALSE(s.ok()); string expected_msg = "MutableGraphView::AddControllingFanin(node_name='a', fanin='^c') error: " "node 'c' was not found."; EXPECT_EQ(s.message(), expected_msg); s = graph.AddControllingFanin("d", {"a", Graph::kControlSlot}); EXPECT_FALSE(s.ok()); expected_msg = "MutableGraphView::AddControllingFanin(node_name='d', fanin='^a') error: " "node 'd' was not found."; EXPECT_EQ(s.message(), expected_msg); s = graph.AddControllingFanin("c", {"d", Graph::kControlSlot}); EXPECT_FALSE(s.ok()); expected_msg = "MutableGraphView::AddControllingFanin(node_name='c', fanin='^d') error: " "node 'c' was not found."; EXPECT_EQ(s.message(), expected_msg); ASSERT_EQ(graph.graph()->node_size(), 2); CheckNode(graph, "a", "NotImportant", "", {}, {}, {}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddControllingFaninExistingControl) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {}, {})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.AddControllingFanin("a", {"b", Graph::kControlSlot})); TF_EXPECT_OK(graph.AddControllingFanin("a", {"b", Graph::kControlSlot})); ASSERT_EQ(graph.graph()->node_size(), 2); CheckNode(graph, "a", "NotImportant", "", {}, {"^b"}, {}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"^a"}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddControllingFaninNotSwitch) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {}, {})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.AddControllingFanin("a", {"b", 2})); TF_EXPECT_OK(graph.AddControllingFanin("a", {"b", 2})); ASSERT_EQ(graph.graph()->node_size(), 2); CheckNode(graph, "a", "NotImportant", "", {}, {"^b"}, {}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"^a"}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddControllingFaninSwitch) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "Switch", {}, {})}, {}); MutableGraphView graph(&graph_def); Status s = graph.AddControllingFanin("a", {"b", Graph::kControlSlot}); EXPECT_FALSE(s.ok()); string expected_msg = "MutableGraphView::AddControllingFanin(node_name='a', fanin='^b') error: " "can't add fanin '^b' as it will become a Switch control dependency."; EXPECT_EQ(s.message(), expected_msg); ASSERT_EQ(graph.graph()->node_size(), 2); CheckNode(graph, "a", "NotImportant", "", {}, {}, {}); CheckNode(graph, "b", "Switch", "", {}, {}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddControllingFaninSwitchWithIdentity) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("switch", "Switch", {}, {}), NDef("identity", "Identity", {"switch"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.AddControllingFanin("a", {"switch", 0})); TF_EXPECT_OK(graph.AddControllingFanin("a", {"switch", 0})); ASSERT_EQ(graph.graph()->node_size(), 3); CheckNode(graph, "a", "NotImportant", "", {}, {"^identity"}, {}); CheckNode(graph, "switch", "Switch", "", {}, {}, {"identity"}); CheckNode(graph, "identity", "Identity", "", {}, {"switch"}, {"^a"}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddControllingFaninSwitchWithNoExistingIdentity) { constexpr char kDevice[] = "/device:foo:0"; GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("switch", "Switch", {}, {{"T", DT_FLOAT}}, kDevice)}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.AddControllingFanin("a", {"switch", 0})); TF_EXPECT_OK(graph.AddControllingFanin("a", {"switch", 0})); ASSERT_EQ(graph.graph()->node_size(), 3); CheckNode(graph, "a", "NotImportant", "", {}, {"^ConstantFoldingCtrl/switch_0"}, {}); CheckNode(graph, "switch", "Switch", kDevice, {{"T", DT_FLOAT}}, {}, {"ConstantFoldingCtrl/switch_0"}); CheckNode(graph, "ConstantFoldingCtrl/switch_0", "Identity", kDevice, {{"T", DT_FLOAT}}, {"switch"}, {"^a"}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddControllingFaninSwitchWithExistingAddedIdentity) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("switch", "Switch", {}, {}), NDef("ConstantFoldingCtrl/switch_0", "Identity", {"switch"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.AddControllingFanin("a", {"switch", 0})); TF_EXPECT_OK(graph.AddControllingFanin("a", {"switch", 0})); ASSERT_EQ(graph.graph()->node_size(), 3); CheckNode(graph, "a", "NotImportant", "", {}, {"^ConstantFoldingCtrl/switch_0"}, {}); CheckNode(graph, "switch", "Switch", "", {}, {}, {"ConstantFoldingCtrl/switch_0"}); CheckNode(graph, "ConstantFoldingCtrl/switch_0", "Identity", "", {}, {"switch"}, {"^a"}); CheckGraph(graph); } void TestAddControllingFaninSelfLoops(absl::string_view node_name, const TensorId& fanin, const string& error_msg) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "Switch", {}, {{"T", DT_FLOAT}}), NDef("c", "Identity", {"b:0"}), NDef("d", "Identity", {"b:1"}), NDef("e", "NotImportant", {"^a"})}, {}); MutableGraphView graph(&graph_def); Status s = graph.AddControllingFanin(node_name, fanin); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), error_msg); EXPECT_EQ(graph.graph()->node_size(), 5); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"^e"}); CheckNode(graph, "b", "Switch", "", {{"T", DT_FLOAT}}, {}, {"c", "d"}); CheckNode(graph, "c", "Identity", "", {}, {"b"}, {}); CheckNode(graph, "d", "Identity", "", {}, {"b:1"}, {}); CheckNode(graph, "e", "NotImportant", "", {}, {"^a"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, AddControllingFaninSelfLoops) { string error_msg = "MutableGraphView::AddControllingFanin(node_name='a', fanin='^a') error: " "can't add fanin '^a' to self."; TestAddControllingFaninSelfLoops("a", {"a", Graph::kControlSlot}, error_msg); error_msg = "MutableGraphView::AddControllingFanin(node_name='c', fanin='b:0') " "error: can't add found fanin '^c' to self."; TestAddControllingFaninSelfLoops("c", {"b", 0}, error_msg); error_msg = "MutableGraphView::AddControllingFanin(node_name='d', fanin='b:1') " "error: can't add found fanin '^d' to self."; TestAddControllingFaninSelfLoops("d", {"b", 1}, error_msg); } TEST(MutableGraphViewTest, AddControllingFaninSelfLoopsGeneratedIdentity) { GraphDef graph_def = test::function::GDef({NDef("a", "NotImportant", {}, {}), NDef("b", "Switch", {}, {{"T", DT_FLOAT}}), NDef("c", "NotImportant", {}), NDef("ConstantFoldingCtrl/b_1", "Identity", {})}, {}); MutableGraphView graph(&graph_def); Status s = graph.AddControllingFanin("ConstantFoldingCtrl/b_1", {"b", 1}); EXPECT_FALSE(s.ok()); string expected_msg = "MutableGraphView::AddControllingFanin(node_name='ConstantFoldingCtrl/" "b_1', fanin='b:1') error: can't add generated fanin " "'^ConstantFoldingCtrl/b_1' to self."; EXPECT_EQ(s.message(), expected_msg); EXPECT_EQ(graph.graph()->node_size(), 4); CheckNode(graph, "a", "NotImportant", "", {}, {}, {}); CheckNode(graph, "b", "Switch", "", {{"T", DT_FLOAT}}, {}, {}); CheckNode(graph, "c", "NotImportant", "", {}, {}, {}); CheckNode(graph, "ConstantFoldingCtrl/b_1", "Identity", "", {}, {}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, RemoveControllingFaninMissing) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {}, {}), NDef("c", "NotImportant", {}, {}), NDef("d", "NotImportant", {"^a", "^b"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.RemoveControllingFanin("d", "c")); ASSERT_EQ(graph.graph()->node_size(), 4); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"^d"}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"^d"}); CheckNode(graph, "c", "NotImportant", "", {}, {}, {}); CheckNode(graph, "d", "NotImportant", "", {}, {"^a", "^b"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, RemoveControllingFaninExisting) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {}, {}), NDef("c", "NotImportant", {}, {}), NDef("d", "NotImportant", {"^a", "^b", "^c"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.RemoveControllingFanin("d", "a")); TF_EXPECT_OK(graph.RemoveControllingFanin("d", "a")); ASSERT_EQ(graph.graph()->node_size(), 4); CheckNode(graph, "a", "NotImportant", "", {}, {}, {}); CheckNode(graph, "b", "NotImportant", "", {}, {}, {"^d"}); CheckNode(graph, "c", "NotImportant", "", {}, {}, {"^d"}); CheckNode(graph, "d", "NotImportant", "", {}, {"^c", "^b"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, RemoveControllingFaninOnRegularFanin) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"a"}), NDef("c", "NotImportant", {"a", "b"})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.RemoveControllingFanin("c", "a")); TF_EXPECT_OK(graph.RemoveControllingFanin("c", "b")); ASSERT_EQ(graph.graph()->node_size(), 3); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b", "c"}); CheckNode(graph, "b", "NotImportant", "", {}, {"a"}, {"c:1"}); CheckNode(graph, "c", "NotImportant", "", {}, {"a", "b"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, RemoveControllingFaninSelfLoop) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"a"}), NDef("c", "NotImportant", {"a", "b"})}, {}); MutableGraphView graph(&graph_def); Status s = graph.RemoveControllingFanin("c", "c"); EXPECT_FALSE(s.ok()); string expected_msg = "MutableGraphView::RemoveControllingFanin(node_name='c', " "fanin_node_name='c') error: can't remove fanin '^c' from " "self."; EXPECT_EQ(s.message(), expected_msg); ASSERT_EQ(graph.graph()->node_size(), 3); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b", "c"}); CheckNode(graph, "b", "NotImportant", "", {}, {"a"}, {"c:1"}); CheckNode(graph, "c", "NotImportant", "", {}, {"a", "b"}, {}); CheckGraph(graph); } void TestUpdateAllRegularFaninsToControlling( absl::string_view node_name, bool node_exists, bool success, const string& error_msg, absl::Span<const string> expected_fanins) { constexpr char kDevice[] = "/device:foo:0"; GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("switch", "Switch", {}, {{"T", DT_FLOAT}}, kDevice), NDef("b", "NotImportant", {"switch:1"}, {}), NDef("ConstantFoldingCtrl/switch_1", "Identity", {"switch:1"}, {{"T", DT_FLOAT}}, kDevice), NDef("c", "NotImportant", {"a", "^b"}, {}), NDef("d", "NotImportant", {"b", "c"}, {}), NDef("e", "NotImportant", {"^d"}, {})}, {}); MutableGraphView graph(&graph_def); NodeDef* node = graph.GetNode(node_name); if (node_exists) { EXPECT_NE(node, nullptr); } else { EXPECT_EQ(node, nullptr); } absl::flat_hash_map<string, std::vector<string>> unmodified_node_inputs = GetNodeInputsFromGraph(graph_def, node_name); Status s = graph.UpdateAllRegularFaninsToControlling(node_name); EXPECT_EQ(s.ok(), success); if (!success) { EXPECT_EQ(s.message(), error_msg); } if (node_exists) { CompareNodeFanins(graph, node, expected_fanins); } CheckUnmodifiedNodeFanins(graph_def, node_name, unmodified_node_inputs); CheckGraph(graph); } TEST(MutableGraphViewTest, UpdateAllRegularFaninsToControlling) { string error_msg; TestUpdateAllRegularFaninsToControlling("a", true, true, error_msg, {}); TestUpdateAllRegularFaninsToControlling("c", true, true, error_msg, {"^a", "^b"}); TestUpdateAllRegularFaninsToControlling("d", true, true, error_msg, {"^b", "^c"}); TestUpdateAllRegularFaninsToControlling("e", true, true, error_msg, {"^d"}); TestUpdateAllRegularFaninsToControlling("b", true, true, error_msg, {"^ConstantFoldingCtrl/switch_1"}); error_msg = "MutableGraphView::UpdateAllRegularFaninsToControlling(node_name='f') " "error: node 'f' was not found."; TestUpdateAllRegularFaninsToControlling("f", false, false, error_msg, {}); error_msg = "MutableGraphView::UpdateAllRegularFaninsToControlling(node_name='" "ConstantFoldingCtrl/switch_1') error: can't add found fanin " "'^ConstantFoldingCtrl/switch_1' to self."; TestUpdateAllRegularFaninsToControlling("ConstantFoldingCtrl/switch_1", true, false, error_msg, {"switch:1"}); } TEST(MutableGraphViewTest, UpdateAllRegularFaninsToControllingConsumingSwitch) { constexpr char kDevice[] = "/device:foo:0"; GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("switch", "Switch", {}, {{"T", DT_FLOAT}}, kDevice), NDef("b", "NotImportant", {"switch:1"}, {})}, {}); MutableGraphView graph(&graph_def); TF_EXPECT_OK(graph.UpdateAllRegularFaninsToControlling("b")); EXPECT_EQ(graph.graph()->node_size(), 4); CheckNode(graph, "a", "NotImportant", "", {}, {}, {}); CheckNode(graph, "switch", "Switch", kDevice, {{"T", DT_FLOAT}}, {}, {"ConstantFoldingCtrl/switch_1"}); CheckNode(graph, "b", "NotImportant", "", {}, {"^ConstantFoldingCtrl/switch_1"}, {}); CheckNode(graph, "ConstantFoldingCtrl/switch_1", "Identity", kDevice, {{"T", DT_FLOAT}}, {"switch:1"}, {"^b"}); CheckGraph(graph); } TEST(MutableGraphViewTest, DeleteNodes) { GraphDef graph_def = test::function::GDef( {NDef("bar", "NotImportant", {}, {}), NDef("other", "NotImportant", {}, {}), NDef("foo_1", "NotImportant", {"bar", "other", "bar:1", "^bar"}), NDef("foo_2", "NotImportant", {"other:1", "bar:2", "^bar"})}, {}); MutableGraphView graph(&graph_def); EXPECT_NE(graph.GetNode("foo_1"), nullptr); TF_EXPECT_OK(graph.DeleteNodes({"foo_1"})); EXPECT_EQ(graph.graph()->node_size(), 3); EXPECT_EQ(graph.GetNode("foo_1"), nullptr); CheckNode(graph, "bar", "NotImportant", "", {}, {}, {"foo_2:1"}); CheckNode(graph, "other", "NotImportant", "", {}, {}, {"foo_2"}); CheckNode(graph, "foo_2", "NotImportant", "", {}, {"other:1", "bar:2"}, {}); CheckGraph(graph); } GraphDef SimpleDeleteNodeGraph() { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"a:2"}), NDef("c", "NotImportant", {"a:5", "^b"}), NDef("d", "NotImportant", {}), NDef("e", "NotImportant", {"d:2"}), NDef("f", "NotImportant", {"d:3", "^e"})}, {}); return graph_def; } TEST(MutableGraphViewTest, DeleteNodesWithFanoutsBeingDeleted) { GraphDef graph_def = SimpleDeleteNodeGraph(); MutableGraphView graph(&graph_def); EXPECT_NE(graph.GetNode("a"), nullptr); EXPECT_NE(graph.GetNode("b"), nullptr); EXPECT_NE(graph.GetNode("c"), nullptr); TF_EXPECT_OK(graph.DeleteNodes({"c", "a", "b"})); EXPECT_EQ(graph.graph()->node_size(), 3); EXPECT_EQ(graph.GetNode("a"), nullptr); EXPECT_EQ(graph.GetNode("b"), nullptr); EXPECT_EQ(graph.GetNode("c"), nullptr); CheckNode(graph, "d", "NotImportant", "", {}, {}, {"e", "f"}); CheckNode(graph, "e", "NotImportant", "", {}, {"d:2"}, {"^f"}); CheckNode(graph, "f", "NotImportant", "", {}, {"d:3", "^e"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, DeleteMissingNodes) { GraphDef graph_def = SimpleDeleteNodeGraph(); MutableGraphView graph(&graph_def); EXPECT_EQ(graph.GetNode("g"), nullptr); EXPECT_EQ(graph.GetNode("h"), nullptr); TF_EXPECT_OK(graph.DeleteNodes({"g", "h"})); EXPECT_EQ(graph.graph()->node_size(), 6); EXPECT_EQ(graph.GetNode("g"), nullptr); EXPECT_EQ(graph.GetNode("h"), nullptr); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b", "c"}); CheckNode(graph, "b", "NotImportant", "", {}, {"a:2"}, {"^c"}); CheckNode(graph, "c", "NotImportant", "", {}, {"a:5", "^b"}, {}); CheckNode(graph, "d", "NotImportant", "", {}, {}, {"e", "f"}); CheckNode(graph, "e", "NotImportant", "", {}, {"d:2"}, {"^f"}); CheckNode(graph, "f", "NotImportant", "", {}, {"d:3", "^e"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, DeleteMissingNodesAndNodesWithFanoutsBeingDeleted) { GraphDef graph_def = SimpleDeleteNodeGraph(); MutableGraphView graph(&graph_def); EXPECT_NE(graph.GetNode("d"), nullptr); EXPECT_NE(graph.GetNode("e"), nullptr); EXPECT_NE(graph.GetNode("f"), nullptr); TF_EXPECT_OK(graph.DeleteNodes({"d", "e", "f", "g", "h"})); EXPECT_EQ(graph.graph()->node_size(), 3); EXPECT_EQ(graph.GetNode("d"), nullptr); EXPECT_EQ(graph.GetNode("e"), nullptr); EXPECT_EQ(graph.GetNode("f"), nullptr); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b", "c"}); CheckNode(graph, "b", "NotImportant", "", {}, {"a:2"}, {"^c"}); CheckNode(graph, "c", "NotImportant", "", {}, {"a:5", "^b"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, DeleteNodesWithError) { GraphDef graph_def = SimpleDeleteNodeGraph(); MutableGraphView graph(&graph_def); Status s = graph.DeleteNodes({"b", "a"}); EXPECT_FALSE(s.ok()); string error_msg = "MutableGraphView::DeleteNodes(nodes_to_delete={a, b}) error: can't " "delete node(s) with retained fanouts(s) [a, b]."; EXPECT_EQ(s.message(), error_msg); EXPECT_EQ(graph.graph()->node_size(), 6); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b", "c"}); CheckNode(graph, "b", "NotImportant", "", {}, {"a:2"}, {"^c"}); CheckNode(graph, "c", "NotImportant", "", {}, {"a:5", "^b"}, {}); CheckNode(graph, "d", "NotImportant", "", {}, {}, {"e", "f"}); CheckNode(graph, "e", "NotImportant", "", {}, {"d:2"}, {"^f"}); CheckNode(graph, "f", "NotImportant", "", {}, {"d:3", "^e"}, {}); CheckGraph(graph); } TEST(MutableGraphViewTest, DeleteNodesWithLargeError) { GraphDef graph_def = test::function::GDef( {NDef("a", "NotImportant", {}, {}), NDef("b", "NotImportant", {"a:2"}), NDef("c", "NotImportant", {"^b"}), NDef("d", "NotImportant", {"c:6"}), NDef("e", "NotImportant", {"d:2"}), NDef("f", "NotImportant", {"d:3", "^e"}), NDef("g", "NotImportant", {"f"}), NDef("h", "NotImportant", {"a"}), NDef("i", "NotImportant", {"b"}), NDef("j", "NotImportant", {"c"}), NDef("k", "NotImportant", {"d"}), NDef("l", "NotImportant", {"e"}), NDef("m", "NotImportant", {"f"})}, {}); MutableGraphView graph(&graph_def); Status s = graph.DeleteNodes({"a", "b", "c", "d", "e", "f"}); EXPECT_FALSE(s.ok()); string error_msg = "MutableGraphView::DeleteNodes(nodes_to_delete={a, b, c, d, e, ...}) " "error: can't delete node(s) with retained fanouts(s) [a, b, c, d, e, " "...]."; EXPECT_EQ(s.message(), error_msg); EXPECT_EQ(graph.graph()->node_size(), 13); CheckNode(graph, "a", "NotImportant", "", {}, {}, {"b", "h"}); CheckNode(graph, "b", "NotImportant", "", {}, {"a:2"}, {"^c", "i"}); CheckNode(graph, "c", "NotImportant", "", {}, {"^b"}, {"d", "j"}); CheckNode(graph, "d", "NotImportant", "", {}, {"c:6"}, {"e", "f", "k"}); CheckNode(graph, "e", "NotImportant", "", {}, {"d:2"}, {"^f", "l"}); CheckNode(graph, "f", "NotImportant", "", {}, {"d:3", "^e"}, {"g", "m"}); CheckNode(graph, "g", "NotImportant", "", {}, {"f"}, {}); CheckNode(graph, "h", "NotImportant", "", {}, {"a"}, {}); CheckNode(graph, "i", "NotImportant", "", {}, {"b"}, {}); CheckNode(graph, "j", "NotImportant", "", {}, {"c"}, {}); CheckNode(graph, "k", "NotImportant", "", {}, {"d"}, {}); CheckNode(graph, "l", "NotImportant", "", {}, {"e"}, {}); CheckNode(graph, "m", "NotImportant", "", {}, {"f"}, {}); CheckGraph(graph); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/mutable_graph_view.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/mutable_graph_view_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
302cc88e-5ab4-4ce3-bf18-b8cadb005346
cpp
tensorflow/tensorflow
graph_topology_view
tensorflow/core/grappler/graph_topology_view.cc
tensorflow/core/grappler/graph_topology_view_test.cc
#include "tensorflow/core/grappler/graph_topology_view.h" #include <algorithm> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" namespace tensorflow { namespace grappler { namespace { template <typename T> inline void SortAndRemoveDuplicates(T* v) { std::sort(v->begin(), v->end()); v->erase(std::unique(v->begin(), v->end()), v->end()); } } Status GraphTopologyView::InitializeFromGraph( const GraphDef& graph, const absl::Span<const GraphView::Edge> ephemeral_edges, bool ignore_control_edges) { if (graph_ != nullptr) { return errors::InvalidArgument("GraphTopologyView is already initialized."); } graph_ = &graph; num_nodes_ = graph.node_size(); index_to_node_name_.resize(num_nodes_); node_name_to_index_.rehash(num_nodes_); fanins_.resize(num_nodes_); fanouts_.resize(num_nodes_); for (int node_idx = 0; node_idx < num_nodes_; ++node_idx) { const NodeDef& node = graph.node(node_idx); node_name_to_index_.emplace(node.name(), node_idx); index_to_node_name_.emplace_back(node.name()); } for (const GraphView::Edge& edge : ephemeral_edges) { const auto src = node_name_to_index_.find(edge.src.node->name()); const bool valid_src = src != node_name_to_index_.end(); if (!valid_src) { const string error_message = absl::StrCat("Non-existent src node: ", edge.src.node->name()); if (skip_invalid_edges_) { VLOG(0) << "Skip error: " << error_message; } else { return errors::InvalidArgument(error_message); } } const auto dst = node_name_to_index_.find(edge.dst.node->name()); const bool valid_dst = dst != node_name_to_index_.end(); if (!valid_dst) { const string error_message = absl::StrCat("Non-existent dst node: ", edge.dst.node->name()); if (skip_invalid_edges_) { VLOG(0) << "Skip error: " << error_message; } else { return errors::InvalidArgument(error_message); } } if (valid_dst && valid_src) { const int src_idx = src->second; const int dst_idx = dst->second; if (ignore_control_edges && (src_idx < 0 || dst_idx < 0)) { continue; } fanins_[dst_idx].push_back(src_idx); fanouts_[src_idx].push_back(dst_idx); } } for (int node_idx = 0; node_idx < num_nodes_; ++node_idx) { const NodeDef& node = graph.node(node_idx); fanins_[node_idx].reserve(node.input_size()); for (const string& input : node.input()) { TensorId tensor = ParseTensorName(input); if (ignore_control_edges && IsTensorIdControl(tensor)) { continue; } const auto it = node_name_to_index_.find(tensor.node()); const bool valid_input = it != node_name_to_index_.end(); if (!valid_input) { const string error_message = absl::StrCat("Non-existent input ", input, " in node ", node.name()); if (skip_invalid_edges_) { VLOG(3) << "Skip error: " << error_message; } else { return errors::InvalidArgument(error_message); } } if (valid_input) { const int input_idx = it->second; fanins_[node_idx].push_back(input_idx); fanouts_[input_idx].push_back(node_idx); } } SortAndRemoveDuplicates(&fanins_[node_idx]); } for (int node_idx = 0; node_idx < num_nodes_; ++node_idx) { SortAndRemoveDuplicates(&fanouts_[node_idx]); } return absl::OkStatus(); } Status GraphTopologyView::InitializeFromGraph( const GraphDef& graph, const absl::Span<const GraphView::Edge> ephemeral_edges) { return InitializeFromGraph(graph, ephemeral_edges, false); } Status GraphTopologyView::InitializeFromGraph(const GraphDef& graph, bool ignore_control_edges) { return InitializeFromGraph(graph, absl::Span<GraphView::Edge>(), ignore_control_edges); } Status GraphTopologyView::InitializeFromGraph(const GraphDef& graph) { return InitializeFromGraph(graph, absl::Span<GraphView::Edge>(), false); } bool GraphTopologyView::HasNode(const absl::string_view node_name) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; const auto it = node_name_to_index_.find(node_name); return it != node_name_to_index_.end(); } const NodeDef* GraphTopologyView::GetNode( const absl::string_view node_name) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; const auto it = node_name_to_index_.find(node_name); return it == node_name_to_index_.end() ? nullptr : &graph_->node(it->second); } const NodeDef* GraphTopologyView::GetNode(int node_idx) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; DCHECK(node_idx >= 0 && node_idx < num_nodes_) << "node_idx is out of range"; return &graph_->node(node_idx); } const absl::optional<int> GraphTopologyView::GetNodeIndex( const absl::string_view node_name) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; const auto it = node_name_to_index_.find(node_name); DCHECK(it != node_name_to_index_.end()) << "Node doesn't exist in a graph"; return it == node_name_to_index_.end() ? absl::nullopt : absl::make_optional(it->second); } const absl::optional<int> GraphTopologyView::GetNodeIndex( const NodeDef& node) const { return GetNodeIndex(node.name()); } const absl::InlinedVector<int, 4>& GraphTopologyView::GetFanin( int node_idx) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; const bool is_valid_node_idx = node_idx >= 0 && node_idx < num_nodes_; DCHECK(is_valid_node_idx) << "node_idx is out of range"; return is_valid_node_idx ? fanins_[node_idx] : empty_fanin_; } const absl::InlinedVector<int, 2>& GraphTopologyView::GetFanout( int node_idx) const { DCHECK(is_initialized()) << "GraphTopologyView is not initialized"; const bool is_valid_node_idx = node_idx >= 0 && node_idx < num_nodes_; DCHECK(is_valid_node_idx) << "node_idx is out of range"; return is_valid_node_idx ? fanouts_[node_idx] : empty_fanout_; } } }
#include "tensorflow/core/grappler/graph_topology_view.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { class GraphTopologyViewTest : public ::testing::Test { protected: using NodeConfig = std::pair<string, std::vector<string>>; static GraphDef CreateGraph(const std::vector<NodeConfig>& nodes) { GraphDef graph; for (const NodeConfig& node : nodes) { const auto& node_name = node.first; const auto& node_inputs = node.second; NodeDef node_def; node_def.set_name(node_name); for (const string& input : node_inputs) { node_def.add_input(input); } *graph.add_node() = std::move(node_def); } return graph; } }; TEST_F(GraphTopologyViewTest, SimpleGraph) { const GraphDef graph = CreateGraph({ {"a", {}}, {"b", {}}, {"c", {"a", "b"}}, {"d", {"a", "c"}}, }); GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); EXPECT_TRUE(graph_view.is_initialized()); const NodeDef* a_by_name = graph_view.GetNode("a"); const NodeDef* a_by_idx = graph_view.GetNode(0); ASSERT_TRUE(a_by_name); ASSERT_TRUE(a_by_idx); EXPECT_EQ(a_by_name, a_by_idx); const NodeDef* b_by_name = graph_view.GetNode("b"); const NodeDef* b_by_idx = graph_view.GetNode(1); ASSERT_TRUE(b_by_name); ASSERT_TRUE(b_by_idx); EXPECT_EQ(b_by_name, b_by_idx); const absl::optional<int> b_idx = graph_view.GetNodeIndex(*b_by_name); ASSERT_TRUE(b_idx.has_value()); EXPECT_EQ(b_idx.value(), 1); const absl::optional<int> c_idx = graph_view.GetNodeIndex("c"); ASSERT_TRUE(c_idx.has_value()); EXPECT_EQ(c_idx.value(), 2); using Fanin = absl::InlinedVector<int, 4>; EXPECT_EQ(graph_view.GetFanin(0), Fanin()); EXPECT_EQ(graph_view.GetFanin(1), Fanin()); EXPECT_EQ(graph_view.GetFanin(2), Fanin({0, 1})); EXPECT_EQ(graph_view.GetFanin(3), Fanin({0, 2})); using Fanout = absl::InlinedVector<int, 2>; EXPECT_EQ(graph_view.GetFanout(0), Fanout({2, 3})); EXPECT_EQ(graph_view.GetFanout(1), Fanout({2})); EXPECT_EQ(graph_view.GetFanout(2), Fanout({3})); EXPECT_EQ(graph_view.GetFanout(3), Fanout()); } TEST_F(GraphTopologyViewTest, GraphWithALoop) { const GraphDef graph = CreateGraph({ {"a", {}}, {"b", {}}, {"c", {"a", "b", "d"}}, {"d", {"a", "c"}}, }); GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); EXPECT_TRUE(graph_view.is_initialized()); using Fanin = absl::InlinedVector<int, 4>; EXPECT_EQ(graph_view.GetFanin(2), Fanin({0, 1, 3})); EXPECT_EQ(graph_view.GetFanin(3), Fanin({0, 2})); using Fanout = absl::InlinedVector<int, 2>; EXPECT_EQ(graph_view.GetFanout(2), Fanout({3})); EXPECT_EQ(graph_view.GetFanout(3), Fanout({2})); } TEST_F(GraphTopologyViewTest, GraphWithControls) { const GraphDef graph = CreateGraph({ {"a", {}}, {"b", {}}, {"c", {"a", "b", "^d"}}, {"d", {"a", "c"}}, }); { GraphTopologyView graph_view; TF_CHECK_OK(graph_view.InitializeFromGraph(graph)); EXPECT_TRUE(graph_view.is_initialized()); using Fanin = absl::InlinedVector<int, 4>; EXPECT_EQ(graph_view.GetFanin(2), Fanin({0, 1, 3})); EXPECT_EQ(graph_view.GetFanin(3), Fanin({0, 2})); using Fanout = absl::InlinedVector<int, 2>; EXPECT_EQ(graph_view.GetFanout(2), Fanout({3})); EXPECT_EQ(graph_view.GetFanout(3), Fanout({2})); } { GraphTopologyView graph_view; TF_CHECK_OK( graph_view.InitializeFromGraph(graph, true)); EXPECT_TRUE(graph_view.is_initialized()); using Fanin = absl::InlinedVector<int, 4>; EXPECT_EQ(graph_view.GetFanin(2), Fanin({0, 1})); EXPECT_EQ(graph_view.GetFanin(3), Fanin({0, 2})); using Fanout = absl::InlinedVector<int, 2>; EXPECT_EQ(graph_view.GetFanout(2), Fanout({3})); EXPECT_EQ(graph_view.GetFanout(3), Fanout({})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_topology_view.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_topology_view_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bb3eda25-8fdd-4ad9-89dd-5e546b6e1c89
cpp
tensorflow/tensorflow
grappler_item
tensorflow/core/grappler/grappler_item.cc
tensorflow/core/grappler/grappler_item_test.cc
#include "tensorflow/core/grappler/grappler_item.h" #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_join.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/transitive_fanin.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace grappler { GrapplerItem::OptimizationOptions CreateOptOptionsForEager() { GrapplerItem::OptimizationOptions optimization_options; optimization_options.allow_pruning_stateful_and_dataset_ops = true; optimization_options.is_eager_mode = true; optimization_options.optimize_function_library = false; return optimization_options; } GrapplerItem GrapplerItem::WithGraph(GraphDef&& graph_def) const { GrapplerItem item; item.id = id; item.feed = feed; item.fetch = fetch; item.init_ops = init_ops; item.keep_ops = keep_ops; item.expected_init_time = expected_init_time; item.save_op = save_op; item.restore_op = restore_op; item.save_restore_loc_tensor = save_restore_loc_tensor; item.queue_runners = queue_runners; item.devices_ = devices_; item.optimization_options_ = optimization_options_; item.graph.Swap(&graph_def); return item; } std::vector<const NodeDef*> GrapplerItem::MainOpsFanin() const { std::vector<const NodeDef*> fanin_nodes; TF_CHECK_OK(ComputeTransitiveFanin(graph, fetch, &fanin_nodes)); return fanin_nodes; } std::vector<const NodeDef*> GrapplerItem::EnqueueOpsFanin() const { std::vector<string> enqueue_ops; for (const auto& queue_runner : queue_runners) { for (const string& enqueue_op : queue_runner.enqueue_op_name()) { enqueue_ops.push_back(enqueue_op); } } std::vector<const NodeDef*> fanin_nodes; TF_CHECK_OK(ComputeTransitiveFanin(graph, fetch, &fanin_nodes)); return fanin_nodes; } std::vector<const NodeDef*> GrapplerItem::InitOpsFanin() const { std::vector<const NodeDef*> fanin_nodes; TF_CHECK_OK(ComputeTransitiveFanin(graph, init_ops, &fanin_nodes)); return fanin_nodes; } std::vector<const NodeDef*> GrapplerItem::MainVariables() const { std::vector<const NodeDef*> fanin; TF_CHECK_OK(ComputeTransitiveFanin(graph, init_ops, &fanin)); std::vector<const NodeDef*> vars; for (const NodeDef* node : fanin) { if (IsVariable(*node)) { vars.push_back(node); } } return vars; } std::unordered_set<string> GrapplerItem::NodesToPreserve() const { std::unordered_set<string> result; for (const string& f : fetch) { VLOG(1) << "Add fetch " << f; result.insert(NodeName(f)); } for (const auto& f : feed) { VLOG(1) << "Add feed " << f.first; result.insert(NodeName(f.first)); } for (const auto& node : init_ops) { result.insert(NodeName(node)); } for (const auto& node : keep_ops) { result.insert(NodeName(node)); } if (!save_op.empty()) { result.insert(NodeName(save_op)); } if (!restore_op.empty()) { result.insert(NodeName(restore_op)); } if (!save_restore_loc_tensor.empty()) { result.insert(NodeName(save_restore_loc_tensor)); } for (const auto& queue_runner : queue_runners) { for (const string& enqueue_op : queue_runner.enqueue_op_name()) { result.insert(NodeName(enqueue_op)); } if (!queue_runner.close_op_name().empty()) { result.insert(NodeName(queue_runner.close_op_name())); } if (!queue_runner.cancel_op_name().empty()) { result.insert(NodeName(queue_runner.cancel_op_name())); } } absl::optional<FunctionLibraryDefinition> fn_library; if (!optimization_options_.allow_pruning_stateful_and_dataset_ops) { fn_library.emplace(OpRegistry::Global(), graph.library()); } for (const NodeDef& node : graph.node()) { const auto attrs = AttrSlice(&node.attr()); if (!optimization_options_.allow_pruning_stateful_and_dataset_ops && (IsStateful(node, &*fn_library) || IsDataset(node))) { result.insert(node.name()); } bool do_not_remove; if (TryGetNodeAttr(attrs, "_grappler_do_not_remove", &do_not_remove) && do_not_remove) { result.insert(node.name()); } } return result; } const std::unordered_set<string>& GrapplerItem::devices() const { return devices_; } Status GrapplerItem::AddDevice(const string& device) { DeviceNameUtils::ParsedName name; if (!DeviceNameUtils::ParseFullName(device, &name)) { return errors::InvalidArgument("Invalid device name: device=", device); } else if (!name.has_job || !name.has_replica || !name.has_task || !name.has_type || !name.has_id) { return errors::InvalidArgument("Not a fully defined device name: device=", device); } devices_.insert(DeviceNameUtils::ParsedNameToString(name)); return absl::OkStatus(); } Status GrapplerItem::AddDevices(const GrapplerItem& other) { std::vector<absl::string_view> invalid_devices; for (const string& device : other.devices()) { Status added = AddDevice(device); if (!added.ok()) invalid_devices.emplace_back(device); } return invalid_devices.empty() ? absl::OkStatus() : errors::InvalidArgument("Skipped invalid devices: [", absl::StrJoin(invalid_devices, ", "), "]"); } Status GrapplerItem::InferDevicesFromGraph() { absl::flat_hash_set<absl::string_view> invalid_devices; for (const NodeDef& node : graph.node()) { Status added = AddDevice(node.device()); if (!added.ok()) invalid_devices.insert(node.device()); } VLOG(2) << "Inferred device set: [" << absl::StrJoin(devices_, ", ") << "]"; return invalid_devices.empty() ? absl::OkStatus() : errors::InvalidArgument("Skipped invalid devices: [", absl::StrJoin(invalid_devices, ", "), "]"); } void GrapplerItem::ClearDevices() { devices_.clear(); } const GrapplerItem::OptimizationOptions& GrapplerItem::optimization_options() const { return optimization_options_; } GrapplerItem::OptimizationOptions& GrapplerItem::optimization_options() { return optimization_options_; } } }
#include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class GrapplerItemTest : public ::testing::Test {}; TEST_F(GrapplerItemTest, Basic) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {{"CPU:0"}}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); EXPECT_TRUE(item.InitOpsFanin().empty()); std::vector<string> graph_nodes; for (const auto& node : item.graph.node()) { graph_nodes.push_back(node.name()); } std::vector<string> main_ops; for (const auto& node : item.MainOpsFanin()) { main_ops.push_back(node->name()); } std::sort(graph_nodes.begin(), graph_nodes.end()); std::sort(main_ops.begin(), main_ops.end()); EXPECT_EQ(main_ops, graph_nodes); } TEST_F(GrapplerItemTest, InferDevices) { using test::function::NDef; const string cpu0 = "/job:work/replica:1/task:1/device:CPU:0"; const string cpu1 = "/job:work/replica:1/task:1/device:CPU:1"; const string cpu2 = "/device:CPU:2"; GrapplerItem item; item.graph = test::function::GDef( { NDef("a", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu0), NDef("b", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu1), NDef("c", "Placeholder", {}, {{"dtype", DT_FLOAT}}, cpu2), }, {} ); ASSERT_FALSE(item.InferDevicesFromGraph().ok()); EXPECT_EQ(item.devices().size(), 2); EXPECT_NE(item.devices().find(cpu0), item.devices().end()); EXPECT_NE(item.devices().find(cpu1), item.devices().end()); item.ClearDevices(); EXPECT_EQ(item.devices().size(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/grappler_item.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/grappler_item_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9c4ce22d-cbf0-4e42-b3eb-255b77c035b5
cpp
tensorflow/tensorflow
grappler_item_builder
tensorflow/core/grappler/grappler_item_builder.cc
tensorflow/core/grappler/grappler_item_builder_test.cc
#include "tensorflow/core/grappler/grappler_item_builder.h" #include <type_traits> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_optimizer.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variable.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/grappler/inputs/utils.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/model_pruner.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/protobuf_internal.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saver.pb.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace grappler { namespace { void InitializeTensor(DataType type, Tensor* tensor) { const int period = 7; if (type == DT_FLOAT) { auto flat = tensor->flat<float>(); for (int i = 0; i < flat.size(); i++) { flat(i) = static_cast<float>(i % period) / 10.0f; } } else if (type == DT_INT64) { auto flat = tensor->flat<int64_t>(); for (int i = 0; i < flat.size(); i++) { flat(i) = i % period; } } else if (type != DT_STRING && type != DT_RESOURCE && type != DT_VARIANT) { memset(const_cast<char*>(tensor->tensor_data().data()), 0, tensor->tensor_data().size()); } } Status PruneGraph(GrapplerItem* item) { ModelPruner pruner; GraphDef pruned_graph; Cluster* cluster = nullptr; TF_RETURN_IF_ERROR(pruner.Optimize(cluster, *item, &pruned_graph)); item->graph = std::move(pruned_graph); return absl::OkStatus(); } Status ReplaceUnknownShapeDim(const ItemConfig& cfg, const TensorShapeProto& shape_pb_in, TensorShapeProto* shape_pb_out, TensorShape* shape_out) { std::vector<int32> dims; for (const auto& dim_proto : shape_pb_in.dim()) { if (cfg.placeholder_unknown_output_shape_dim >= 0 && dim_proto.size() == -1) { dims.push_back(cfg.placeholder_unknown_output_shape_dim); shape_pb_out->add_dim()->set_size( cfg.placeholder_unknown_output_shape_dim); } else { dims.push_back(std::max<int32>(1, dim_proto.size())); shape_pb_out->add_dim()->set_size(dim_proto.size()); } } return TensorShapeUtils::MakeShape(dims.data(), dims.size(), shape_out); } Status UpdatePlaceholderShape( const ItemConfig& cfg, const std::unordered_set<string>& signature_feed_nodes, GrapplerItem* new_item, NodeDef* node) { if (node->attr().count("dtype") == 0) { return absl::InternalError(absl::StrCat("Unknown type for placeholder ", node->name(), ", skipping this input")); } DataType type = node->attr().at("dtype").type(); if (node->attr().count("shape") == 0) { return absl::InternalError(absl::StrCat("Unknown shape for placeholder ", node->name(), ", skipping this input")); } TensorShape shape; TensorShapeProto shape_proto; Status make_shape_status = ReplaceUnknownShapeDim( cfg, node->attr().at("shape").shape(), &shape_proto, &shape); if (!make_shape_status.ok()) { return absl::InternalError( absl::StrCat("Invalid shape for placeholder ", node->name(), ": ", make_shape_status.ToString(), ", skipping this input")); } if ((cfg.placeholder_unknown_output_shape_dim >= 0) && (shape.dims() == 0) && (node->attr().count("_output_shapes") == 1)) { const auto& output_shapes = node->attr().at("_output_shapes").list().shape(0); if (output_shapes.dim_size() != 0) { shape.Clear(); shape_proto.clear_dim(); for (const auto& dim : output_shapes.dim()) { auto size = dim.size(); if (size == -1) size = cfg.placeholder_unknown_output_shape_dim; TF_RETURN_IF_ERROR(shape.AddDimWithStatus(size)); shape_proto.add_dim()->set_size(size); } } } Tensor fake_input(type, shape); InitializeTensor(type, &fake_input); if (cfg.feed_nodes.empty()) { if (signature_feed_nodes.count(node->name()) == 0) { new_item->feed.emplace_back(node->name(), fake_input); } } else if (cfg.feed_nodes.count(node->name()) > 0) { auto it = find_if(new_item->feed.begin(), new_item->feed.end(), [&node](std::pair<string, Tensor>& f) { return f.first == node->name(); }); DCHECK(it != new_item->feed.end()); it->second = fake_input; } if (!shape_proto.dim().empty()) *(node->mutable_attr()->at("shape").mutable_shape()) = shape_proto; return absl::OkStatus(); } } Status RuntimeGraphOptimizer(const GraphDef& graph_def_arg, GraphDef* output_graph_def, const ItemConfig& cfg) { if (!cfg.apply_optimizations && !cfg.inline_functions && !cfg.erase_noinline_attributes) { if (output_graph_def != &graph_def_arg) { *output_graph_def = graph_def_arg; } return absl::OkStatus(); } SessionOptions options; GraphDef graph_def(graph_def_arg); if (cfg.erase_noinline_attributes) { for (auto& func : *graph_def.mutable_library()->mutable_function()) { func.mutable_attr()->erase("_noinline"); } } std::vector<std::unique_ptr<Device>> devices; DeviceFactory* cpu_factory = DeviceFactory::GetFactory("CPU"); TF_RETURN_IF_ERROR(cpu_factory->CreateDevices( options, "/job:localhost/replica:0/task:0", &devices)); Device* cpu_device = devices[0].get(); auto dvc_mgr = std::make_unique<StaticDeviceMgr>(std::move(devices)); FunctionLibraryDefinition function_library(OpRegistry::Global(), graph_def.library()); Env* env = Env::Default(); OptimizerOptions* optimizer_opts = options.config.mutable_graph_options()->mutable_optimizer_options(); if (cfg.apply_optimizations) { optimizer_opts->set_opt_level(::tensorflow::OptimizerOptions::L1); } else { optimizer_opts->set_opt_level(::tensorflow::OptimizerOptions::L0); } optimizer_opts->set_do_function_inlining(cfg.inline_functions); std::unique_ptr<ProcessFunctionLibraryRuntime> pflr( new ProcessFunctionLibraryRuntime(dvc_mgr.get(), env, &options.config, graph_def.versions().producer(), &function_library, *optimizer_opts)); FunctionLibraryRuntime* flr = pflr->GetFLR(cpu_device->name()); GraphConstructorOptions graph_ctor_opts; graph_ctor_opts.allow_internal_ops = true; graph_ctor_opts.expect_device_spec = false; std::unique_ptr<Graph> graphptr(new Graph(function_library)); TF_RETURN_IF_ERROR(ConvertGraphDefToGraph( graph_ctor_opts, std::move(graph_def), graphptr.get())); ::tensorflow::GraphOptimizer optimizer(*optimizer_opts); optimizer.Optimize(flr, env, cpu_device, &graphptr, tensorflow::GraphOptimizer::Options()); graphptr->ToGraphDef(output_graph_def); return AddDefaultAttrsToGraphDef(output_graph_def, *graphptr->op_registry(), 0, true); } std::unique_ptr<GrapplerItem> GrapplerItemFromMetaGraphDef( const string& id, const MetaGraphDef& meta_graph, const ItemConfig& cfg) { if (id.empty()) { LOG(ERROR) << "id must be non-empty."; return nullptr; } std::unique_ptr<GrapplerItem> new_item(new GrapplerItem()); new_item->id = id; new_item->graph = meta_graph.graph_def(); for (const auto& feed_node : cfg.feed_nodes) { const string feed_name = NodeName(feed_node); new_item->feed.emplace_back(feed_name, Tensor()); } for (const auto& fetch_node : cfg.fetch_nodes) { new_item->fetch.emplace_back(NodeName(fetch_node)); } if (new_item->fetch.empty() && meta_graph.collection_def().count("train_op") > 0) { const CollectionDef& nodes = meta_graph.collection_def().at("train_op"); if (nodes.has_node_list()) { for (const auto& node : nodes.node_list().value()) { new_item->fetch.push_back(NodeName(node)); } } } std::unordered_set<string> signature_feed_nodes; std::unordered_set<string> signature_fetch_nodes; for (const auto& name_and_signature : meta_graph.signature_def()) { for (const auto& name_and_input : name_and_signature.second.inputs()) { const TensorInfo& input = name_and_input.second; if (input.has_coo_sparse()) { int64_t dim = std::max(1, cfg.placeholder_unknown_output_shape_dim); TensorShape shape_1d({dim}); TensorShape shape_2d({dim, dim}); if (gtl::InsertIfNotPresent( &signature_feed_nodes, NodeName(input.coo_sparse().values_tensor_name()))) { Tensor value_tensor(input.dtype(), shape_1d); InitializeTensor(input.dtype(), &value_tensor); new_item->feed.emplace_back( NodeName(input.coo_sparse().values_tensor_name()), value_tensor); } if (gtl::InsertIfNotPresent( &signature_feed_nodes, NodeName(input.coo_sparse().indices_tensor_name()))) { Tensor indices_tensor(DT_INT64, shape_2d); InitializeTensor(input.dtype(), &indices_tensor); new_item->feed.emplace_back( NodeName(input.coo_sparse().indices_tensor_name()), indices_tensor); } if (gtl::InsertIfNotPresent( &signature_feed_nodes, NodeName(input.coo_sparse().dense_shape_tensor_name()))) { Tensor dense_shape_tensor(DT_INT64, shape_1d); InitializeTensor(input.dtype(), &dense_shape_tensor); new_item->feed.emplace_back( NodeName(input.coo_sparse().dense_shape_tensor_name()), dense_shape_tensor); } } else { if (gtl::InsertIfNotPresent(&signature_feed_nodes, NodeName(input.name()))) { TensorShape shape; TensorShapeProto shape_proto; Status s = ReplaceUnknownShapeDim(cfg, input.tensor_shape(), &shape_proto, &shape); if (!s.ok()) { LOG(ERROR) << "Invalid shape for signature input " << input.name() << ": " << s << ", skipping this input"; return nullptr; } Tensor fake_input(input.dtype(), shape); InitializeTensor(input.dtype(), &fake_input); new_item->feed.emplace_back(NodeName(input.name()), fake_input); } } } for (const auto& name_and_output : name_and_signature.second.outputs()) { const TensorInfo& output = name_and_output.second; if (output.has_coo_sparse()) { if (gtl::InsertIfNotPresent( &signature_fetch_nodes, NodeName(output.coo_sparse().values_tensor_name()))) { new_item->fetch.push_back( NodeName(output.coo_sparse().values_tensor_name())); } if (gtl::InsertIfNotPresent( &signature_fetch_nodes, NodeName(output.coo_sparse().indices_tensor_name()))) { new_item->fetch.push_back( NodeName(output.coo_sparse().indices_tensor_name())); } if (gtl::InsertIfNotPresent( &signature_fetch_nodes, NodeName(output.coo_sparse().dense_shape_tensor_name()))) { new_item->fetch.push_back( NodeName(output.coo_sparse().dense_shape_tensor_name())); } } else { if (gtl::InsertIfNotPresent(&signature_fetch_nodes, NodeName(output.name()))) { new_item->fetch.push_back(NodeName(output.name())); } } } } for (const auto& feed : new_item->feed) { if (feed.first.empty()) { LOG(ERROR) << "Invalid feed node name skipping this input"; return nullptr; } else { VLOG(1) << "Will use feed node " << feed.first; } } for (const auto& fetch : new_item->fetch) { if (fetch.empty()) { LOG(ERROR) << "Invalid fetch node name skipping this input"; return nullptr; } else { VLOG(1) << "Will use fetch node " << fetch; } } if (new_item->fetch.empty()) { LOG(ERROR) << "Failed to detect the fetch node(s), skipping this input"; return nullptr; } for (const string& var_collection : {"variables", "local_variables", "model_variables", "trainable_variables"}) { if (meta_graph.collection_def().count(var_collection) == 0) { continue; } const CollectionDef& vars = meta_graph.collection_def().at(var_collection); for (const auto& raw_var : vars.bytes_list().value()) { VariableDef var; var.ParseFromString(raw_var); if (!var.initializer_name().empty()) { new_item->init_ops.push_back(NodeName(var.initializer_name())); } } } if (meta_graph.collection_def().count("table_initializer") > 0) { const CollectionDef& inits = meta_graph.collection_def().at("table_initializer"); if (inits.has_node_list()) { for (const auto& node : inits.node_list().value()) { new_item->init_ops.push_back(NodeName(node)); new_item->expected_init_time += 30 * 60; } } } std::unordered_map<string, string> asset_node_to_value; if (!cfg.assets_directory_override.empty()) { if (meta_graph.collection_def().count("saved_model_assets") > 0) { const CollectionDef& collection = meta_graph.collection_def().at("saved_model_assets"); const auto& any_assets = collection.any_list().value(); if (!any_assets.empty()) { if (std::is_base_of<protobuf::Message, AssetFileDef>()) { for (const auto& any_asset : any_assets) { AssetFileDef asset_file_def; if (!ParseAny(any_asset, &asset_file_def, "tensorflow.AssetFileDef") .ok()) { LOG(ERROR) << "Failed to parse AssetFile."; continue; } string asset_filepath = io::JoinPath(cfg.assets_directory_override, asset_file_def.filename()); if (!FilesExist({asset_filepath}, nullptr)) { LOG(ERROR) << "Can't access one or more of the asset files " << asset_filepath << ", skipping this input"; return nullptr; } asset_node_to_value[NodeName(asset_file_def.tensor_info().name())] = asset_filepath; } } else { LOG(ERROR) << "Can't parse AssetFileDef when using lite protos."; return nullptr; } } } } else if (meta_graph.collection_def().count("asset_filepaths") > 0) { const CollectionDef& file_paths = meta_graph.collection_def().at("asset_filepaths"); std::vector<string> paths; for (const auto& raw_path : file_paths.bytes_list().value()) { paths.push_back(raw_path); } if (!FilesExist(paths, nullptr)) { LOG(ERROR) << "Can't access one or more of the asset files, skipping " "this input"; return nullptr; } } if (meta_graph.collection_def().count("queue_runners") > 0) { const CollectionDef& vars = meta_graph.collection_def().at("queue_runners"); for (const auto& raw : vars.bytes_list().value()) { QueueRunnerDef queue_runner; if (!queue_runner.ParseFromString(raw)) { LOG(ERROR) << "Could not parse queue_runners, skipping this input"; return nullptr; } if (queue_runner.cancel_op_name().empty()) { LOG(ERROR) << "Queue without a cancel op, skipping this input"; return nullptr; } new_item->queue_runners.push_back(queue_runner); } } for (const auto& col : meta_graph.collection_def()) { const CollectionDef& collection = col.second; for (const string& node : collection.node_list().value()) { new_item->keep_ops.push_back(NodeName(node)); } } for (auto& node : *new_item->graph.mutable_node()) { if (IsPlaceholder(node) && node.op() != "PlaceholderWithDefault") { Status s = UpdatePlaceholderShape(cfg, signature_feed_nodes, new_item.get(), &node); if (!s.ok()) return nullptr; } else if (IsConstant(node)) { auto it = asset_node_to_value.find(node.name()); if (it != asset_node_to_value.end()) { auto iter = node.mutable_attr()->find("value"); if (iter == node.attr().end()) { LOG(ERROR) << "Value attribute expected in const op for asset files"; return nullptr; } if (!iter->second.has_tensor() || iter->second.tensor().string_val_size() != 1) { LOG(INFO) << "Unexpected AttrValue proto: " << iter->second.DebugString(); return nullptr; } LOG(INFO) << "Using asset file " << it->second << " for node " << node.name(); *(iter->second.mutable_tensor()->mutable_string_val(0)) = it->second; } } node.mutable_attr()->erase("_output_shapes"); if (cfg.ignore_user_placement) { node.clear_device(); } if (cfg.ignore_colocation) { auto attr = node.mutable_attr(); auto it = attr->find("_class"); if (it != attr->end()) { attr->erase(it); } } } if (meta_graph.collection_def().count("savers") > 0) { const CollectionDef& savers = meta_graph.collection_def().at("savers"); for (const auto& raw : savers.bytes_list().value()) { SaverDef saver; if (!saver.ParseFromString(raw)) { continue; } if (saver.filename_tensor_name().empty()) { continue; } new_item->save_op = saver.save_tensor_name(); new_item->restore_op = saver.restore_op_name(); new_item->save_restore_loc_tensor = saver.filename_tensor_name(); break; } } else { const SaverDef& saver = meta_graph.saver_def(); new_item->save_op = saver.save_tensor_name(); new_item->restore_op = saver.restore_op_name(); new_item->save_restore_loc_tensor = saver.filename_tensor_name(); } Status attr_status = AddDefaultAttrsToGraphDef( &new_item->graph, FunctionLibraryDefinition(OpRegistry::Global(), new_item->graph.library()), 0, true); if (!attr_status.ok()) { LOG(ERROR) << "Failed to instantiate default attribute values: " << attr_status.message(); return nullptr; } VLOG(1) << "Number of nodes in graph before RuntimeGraphOptimizer: " << new_item->graph.node_size(); Status optimize_status = RuntimeGraphOptimizer(new_item->graph, &new_item->graph, cfg); if (!optimize_status.ok()) { LOG(ERROR) << "Graph preprocessing failed: " << optimize_status; return nullptr; } VLOG(1) << "Number of nodes in graph after RuntimeGraphOptimizer: " << new_item->graph.node_size(); if (cfg.prune_graph) { VLOG(1) << "Pruning graph..."; auto status = PruneGraph(new_item.get()); if (!status.ok()) { LOG(ERROR) << "Pruning failed: " << status.message(); return nullptr; } VLOG(1) << "Number of nodes in graph after pruning: " << new_item->graph.node_size(); } std::unordered_set<string> nodes; for (const auto& node : new_item->graph.node()) { nodes.insert(node.name()); } for (const auto& feed : new_item->feed) { if (nodes.find(feed.first) == nodes.end()) { LOG(ERROR) << "Feed node " << feed.first << " doesn't exist in graph"; return nullptr; } } for (const auto& fetch : new_item->fetch) { if (nodes.find(fetch) == nodes.end()) { LOG(ERROR) << "Fetch node " << fetch << " doesn't exist in graph"; return nullptr; } } for (const auto& init : new_item->init_ops) { if (nodes.find(init) == nodes.end()) { LOG(ERROR) << "Init node " << init << " doesn't exist in graph"; return nullptr; } } return new_item; } std::unique_ptr<GrapplerItem> GrapplerItemFromMetaGraphDefFile( const string& id, const string& meta_graph_file, const ItemConfig& cfg) { MetaGraphDef meta_graph; if (!ReadMetaGraphDefFromFile(meta_graph_file, &meta_graph).ok()) { LOG(ERROR) << "Failed to read " << meta_graph_file; return nullptr; } return GrapplerItemFromMetaGraphDef(id, meta_graph, cfg); } } }
#include "tensorflow/core/grappler/grappler_item_builder.h" #include "google/protobuf/any.pb.h" #include "tensorflow/cc/framework/gradients.h" #include "tensorflow/cc/gradients/grad_testutil.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" namespace tensorflow { namespace grappler { namespace { class GrapplerItemBuilderTest : public ::testing::Test {}; TEST_F(GrapplerItemBuilderTest, AssetFilepathOverrideTest) { MetaGraphDef meta_graph; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output var = ops::Variable(s.WithOpName("var"), TensorShape(), DataType::DT_FLOAT); Output filename_node = ops::Const(s.WithOpName("filename"), string("model"), TensorShape()); Output tensor_name = ops::Const(s.WithOpName("tensorname"), string("var"), TensorShape()); Output restore = ops::Restore(s.WithOpName("restore"), filename_node, tensor_name, DataType::DT_FLOAT); Output assign = ops::Assign(s.WithOpName("assign"), var, restore); TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); string temp_dir = testing::TmpDir(); Env *env = Env::Default(); string filename = io::JoinPath(temp_dir, "grappler_item_builder_test_filename"); env->DeleteFile(filename).IgnoreError(); std::unique_ptr<WritableFile> file_to_write; TF_CHECK_OK(env->NewWritableFile(filename, &file_to_write)); TF_CHECK_OK(file_to_write->Close()); TF_CHECK_OK(env->FileExists(filename)); LOG(INFO) << filename; AssetFileDef asset_file_def; *asset_file_def.mutable_tensor_info()->mutable_name() = "filename"; *asset_file_def.mutable_filename() = "grappler_item_builder_test_filename"; (*meta_graph.mutable_collection_def())["saved_model_assets"] .mutable_any_list() ->add_value() ->PackFrom(asset_file_def); *((*meta_graph.mutable_collection_def())["train_op"] .mutable_node_list() ->add_value()) = "assign"; ItemConfig cfg; cfg.assets_directory_override = temp_dir; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); for (const NodeDef &node : item->graph.node()) { if (node.name() == "filename") { const auto iter = node.attr().find("value"); ASSERT_TRUE(iter != node.attr().end()); ASSERT_TRUE(iter->second.has_tensor()); ASSERT_EQ(1, iter->second.tensor().string_val_size()); string tensor_string_val = iter->second.tensor().string_val(0); EXPECT_EQ(tensor_string_val, filename); } } } TEST_F(GrapplerItemBuilderTest, AssetFilepathOverrideTest_FileNotAccessible) { MetaGraphDef meta_graph; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output var = ops::Variable(s.WithOpName("var"), TensorShape(), DataType::DT_FLOAT); Output filename_node1 = ops::Const(s.WithOpName("filename1"), string("model1"), TensorShape()); Output filename_node2 = ops::Const(s.WithOpName("filename2"), string("model2"), TensorShape()); Output tensor_name = ops::Const(s.WithOpName("tensorname"), string("var"), TensorShape()); Output restore1 = ops::Restore(s.WithOpName("restore1"), filename_node1, tensor_name, DataType::DT_FLOAT); Output restore2 = ops::Restore(s.WithOpName("restore2"), filename_node1, tensor_name, DataType::DT_FLOAT); Output assign1 = ops::Assign(s.WithOpName("assign1"), var, restore1); Output assign2 = ops::Assign(s.WithOpName("assign2"), var, restore2); TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); string temp_dir = testing::TmpDir(); Env *env = Env::Default(); string filename1 = io::JoinPath(temp_dir, "grappler_item_builder_test_filename1"); env->DeleteFile(filename1).IgnoreError(); std::unique_ptr<WritableFile> file_to_write; TF_CHECK_OK(env->NewWritableFile(filename1, &file_to_write)); TF_CHECK_OK(file_to_write->Close()); TF_CHECK_OK(env->FileExists(filename1)); AssetFileDef asset_file_def1; *asset_file_def1.mutable_tensor_info()->mutable_name() = "filename1"; *asset_file_def1.mutable_filename() = "grappler_item_builder_test_filename1"; string filename2 = io::JoinPath(temp_dir, "grappler_item_builder_test_filename1"); env->DeleteFile(filename2).IgnoreError(); EXPECT_FALSE(env->FileExists(filename2).ok()); AssetFileDef asset_file_def2; *asset_file_def2.mutable_tensor_info()->mutable_name() = "filename2"; *asset_file_def2.mutable_filename() = "grappler_item_builder_test_filename2"; (*meta_graph.mutable_collection_def())["saved_model_assets"] .mutable_any_list() ->add_value() ->PackFrom(asset_file_def1); (*meta_graph.mutable_collection_def())["saved_model_assets"] .mutable_any_list() ->add_value() ->PackFrom(asset_file_def2); *((*meta_graph.mutable_collection_def())["train_op"] .mutable_node_list() ->add_value()) = "assign1"; *((*meta_graph.mutable_collection_def())["train_op"] .mutable_node_list() ->add_value()) = "assign2"; ItemConfig cfg; cfg.assets_directory_override = temp_dir; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item == nullptr); } TEST_F(GrapplerItemBuilderTest, GraphWithFunctions) { MetaGraphDef meta_graph; constexpr char device[] = "/cpu:0"; *meta_graph.mutable_graph_def() = test::function::GDef( {test::function::NDef("x", "Const", {}, {{"dtype", DT_FLOAT}}, device), test::function::NDef("y", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, device)}, { test::function::XTimesTwo(), }); CollectionDef train_op; train_op.mutable_node_list()->add_value("y"); (*meta_graph.mutable_collection_def())["train_op"] = train_op; ItemConfig cfg; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); } TEST_F(GrapplerItemBuilderTest, GraphWithCustomOps) { MetaGraphDef meta_graph; constexpr char device[] = "/cpu:0"; *meta_graph.mutable_graph_def() = test::function::GDef( {test::function::NDef("x", "Const", {}, {{"dtype", DT_FLOAT}}, device), test::function::NDef("y", "CustomOp", {"x"}, {{"T", DT_FLOAT}}, device)}, {}); CollectionDef train_op; train_op.mutable_node_list()->add_value("y"); (*meta_graph.mutable_collection_def())["train_op"] = train_op; ItemConfig cfg; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); } TEST_F(GrapplerItemBuilderTest, FromGraphWithSignatureDef) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), 0); auto y = ops::Const(s.WithOpName("y"), 1); auto z = ops::Add(s.WithOpName("z"), x, y); MetaGraphDef meta_graph; TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); TensorInfo input, output; input.set_name("x"); input.set_dtype(DT_FLOAT); output.set_name("z"); SignatureDef serving_signature; (*serving_signature.mutable_inputs())["input"] = input; (*serving_signature.mutable_outputs())["output"] = output; (*meta_graph.mutable_signature_def())["serving"] = serving_signature; TensorInfo input2, output2; input.set_name("x"); input.set_dtype(DT_FLOAT); output.set_name("z"); SignatureDef serving_signature2; (*serving_signature.mutable_inputs())["input2"] = input2; (*serving_signature.mutable_outputs())["output2"] = output2; (*meta_graph.mutable_signature_def())["serving2"] = serving_signature2; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, ItemConfig()); ASSERT_TRUE(item != nullptr); EXPECT_EQ(item->feed.size(), 1); EXPECT_EQ(item->fetch.size(), 1); EXPECT_EQ(item->feed[0].first, "x"); EXPECT_EQ(item->fetch[0], "z"); } TEST_F(GrapplerItemBuilderTest, FromGraphWithIncompleteSignatureDef) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), 0); auto y = ops::Const(s.WithOpName("y"), 1); MetaGraphDef meta_graph; TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); CollectionDef train_op; train_op.mutable_node_list()->add_value("y"); (*meta_graph.mutable_collection_def())["train_op"] = train_op; TensorInfo input, output; input.set_name("x"); input.set_dtype(DT_FLOAT); output.mutable_coo_sparse()->set_values_tensor_name("z"); SignatureDef serving_signature; (*serving_signature.mutable_inputs())["input"] = input; (*serving_signature.mutable_outputs())["output"] = output; (*meta_graph.mutable_signature_def())["serving"] = serving_signature; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, ItemConfig()); ASSERT_TRUE(item == nullptr); } TEST_F(GrapplerItemBuilderTest, FromGraphWithUnknownDimInSignatureInput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto shape_1d = PartialTensorShape({-1}); auto x = ops::Placeholder(s.WithOpName("x"), DT_FLOAT, ops::Placeholder::Shape(shape_1d)); auto y = ops::Const(s.WithOpName("y"), static_cast<float>(1.0)); auto z = ops::Add(s.WithOpName("z"), x, y); MetaGraphDef meta_graph; TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); TensorInfo input, output; input.set_name("x"); input.set_dtype(DT_FLOAT); shape_1d.AsProto(input.mutable_tensor_shape()); output.set_name("z"); SignatureDef serving_signature; (*serving_signature.mutable_inputs())["input"] = input; (*serving_signature.mutable_outputs())["output"] = output; (*meta_graph.mutable_signature_def())["serving"] = serving_signature; ItemConfig cfg; cfg.placeholder_unknown_output_shape_dim = 64; std::unique_ptr<GrapplerItem> item1 = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item1 != nullptr); ASSERT_EQ(item1->feed.size(), 1); EXPECT_EQ(item1->feed[0].second.NumElements(), 64); std::unique_ptr<GrapplerItem> item2 = GrapplerItemFromMetaGraphDef("0", meta_graph, ItemConfig()); ASSERT_TRUE(item2 != nullptr); ASSERT_EQ(item2->feed.size(), 1); EXPECT_EQ(item2->feed[0].second.NumElements(), 1); } TEST_F(GrapplerItemBuilderTest, ExplicitFeedAndFetch) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), 0); auto y = ops::Const(s.WithOpName("y"), 1); auto z = ops::Add(s.WithOpName("z"), x, y); MetaGraphDef meta_graph; TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); ItemConfig config; config.feed_nodes.insert("x"); config.fetch_nodes.insert("z"); std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, config); ASSERT_TRUE(item != nullptr); EXPECT_EQ(item->feed.size(), 1); EXPECT_EQ(item->fetch.size(), 1); EXPECT_EQ(item->feed[0].first, "x"); EXPECT_EQ(item->fetch[0], "z"); } TEST_F(GrapplerItemBuilderTest, UnknownRankPlaceholderTest) { MetaGraphDef meta_graph; const char* text_proto = R"EOF( graph_def { node { name: "x" op: "Placeholder" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { unknown_rank: true } } } } versions { producer: 51 } } collection_def { key: "train_op" value { node_list { value: "x:0" } } } )EOF"; CHECK(protobuf::TextFormat::ParseFromString(text_proto, &meta_graph)); ItemConfig cfg; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); const NodeDef& node = item->graph.node(0); const auto iter = node.attr().find("shape"); ASSERT_TRUE(iter != node.attr().end()); ASSERT_TRUE(iter->second.has_shape()); const auto& shape = iter->second.shape(); EXPECT_TRUE(shape.unknown_rank()); } TEST_F(GrapplerItemBuilderTest, ConfigPlaceholderTest) { MetaGraphDef meta_graph; const char* text_proto = R"EOF( graph_def { node { name: "x" op: "Placeholder" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { dim { size: -1 } dim { size: -1 } } } } } versions { producer: 51 } } collection_def { key: "train_op" value { node_list { value: "x:0" } } } )EOF"; CHECK(protobuf::TextFormat::ParseFromString(text_proto, &meta_graph)); ItemConfig cfg; cfg.placeholder_unknown_output_shape_dim = 64; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); const NodeDef& node = item->graph.node(0); const auto iter = node.attr().find("shape"); ASSERT_TRUE(iter != node.attr().end()); ASSERT_TRUE(iter->second.has_shape()); const auto& shape = iter->second.shape(); EXPECT_EQ(shape.dim_size(), 2); EXPECT_EQ(shape.dim(0).size(), 64); EXPECT_EQ(shape.dim(1).size(), 64); } TEST_F(GrapplerItemBuilderTest, OutputShapePlaceholderTest) { MetaGraphDef meta_graph; const char* text_proto = R"EOF( graph_def { node { name: "x" op: "Placeholder" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { unknown_rank: true } } } attr { key: "_output_shapes" value { list { shape { dim { size: -1 } dim { size: 32 } } } } } } versions { producer: 51 } } collection_def { key: "train_op" value { node_list { value: "x:0" } } } )EOF"; CHECK(protobuf::TextFormat::ParseFromString(text_proto, &meta_graph)); ItemConfig cfg; cfg.placeholder_unknown_output_shape_dim = 64; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); const NodeDef& node = item->graph.node(0); const auto iter = node.attr().find("shape"); ASSERT_TRUE(iter != node.attr().end()); ASSERT_TRUE(iter->second.has_shape()); const auto& shape = iter->second.shape(); EXPECT_EQ(shape.dim_size(), 2); EXPECT_EQ(shape.dim(0).size(), 64); EXPECT_EQ(shape.dim(1).size(), 32); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/grappler_item_builder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/grappler_item_builder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
442c8e38-f2cc-4d7b-8e1c-cf95d427ea3c
cpp
tensorflow/tensorflow
cost_estimator
tensorflow/core/grappler/costs/cost_estimator.cc
tensorflow/core/grappler/costs/cost_estimator_test.cc
#include "tensorflow/core/grappler/costs/cost_estimator.h" namespace tensorflow { namespace grappler { Costs CombineCosts(const Costs& left, const Costs& right) { CHECK_NE(left.max_memory, kMemoryUnknown); CHECK_NE(left.max_per_op_buffers, kMemoryUnknown); CHECK_NE(left.max_per_op_streaming, kMemoryUnknown); Costs result = left; result.execution_time += right.execution_time; result.compute_time += right.compute_time; result.memory_time += right.memory_time; result.network_time += right.network_time; result.intermediate_memory_time += right.intermediate_memory_time; result.intermediate_memory_read_time += right.intermediate_memory_read_time; result.intermediate_memory_write_time += right.intermediate_memory_write_time; if (right.max_per_op_buffers != kMemoryUnknown) { result.max_per_op_buffers = std::max(left.max_per_op_buffers, right.max_per_op_buffers); } if (right.max_per_op_streaming != kMemoryUnknown) { result.max_per_op_streaming = std::max(left.max_per_op_streaming, right.max_per_op_streaming); } result.num_ops_total += right.num_ops_total; if (right.inaccurate) { result.inaccurate = true; } result.num_ops_with_unknown_shapes += right.num_ops_with_unknown_shapes; if (right.max_memory != kMemoryUnknown) { result.max_memory += right.max_memory; } return result; } Costs MultiplyCosts(const Costs& costs, int multiplier) { CHECK_GE(multiplier, 0); if (multiplier == 0) { return Costs::ZeroCosts(); } if (multiplier == 1) { return costs; } Costs result = costs; result.execution_time *= multiplier; result.compute_time *= multiplier; result.memory_time *= multiplier; result.network_time *= multiplier; result.intermediate_memory_time *= multiplier; result.intermediate_memory_read_time *= multiplier; result.intermediate_memory_write_time *= multiplier; return result; } } }
#include "tensorflow/core/grappler/costs/cost_estimator.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { TEST(CostEstimatorTest, CombineCosts) { Costs c = Costs::ZeroCosts(); c.execution_time = Costs::NanoSeconds(1); c.compute_time = Costs::NanoSeconds(2); c.memory_time = Costs::NanoSeconds(3); c.intermediate_memory_time = Costs::NanoSeconds(4); c.intermediate_memory_read_time = Costs::NanoSeconds(5); c.intermediate_memory_write_time = Costs::NanoSeconds(6); c.max_memory = 1; c.max_per_op_buffers = 2; c.max_per_op_streaming = 3; c.num_ops_total = 1; c.inaccurate = false; c.num_ops_with_unknown_shapes = 0; Costs sum = CombineCosts(c, c); EXPECT_EQ(sum.execution_time, Costs::NanoSeconds(2)); EXPECT_EQ(sum.compute_time, Costs::NanoSeconds(4)); EXPECT_EQ(sum.memory_time, Costs::NanoSeconds(6)); EXPECT_EQ(sum.intermediate_memory_time, Costs::NanoSeconds(8)); EXPECT_EQ(sum.intermediate_memory_read_time, Costs::NanoSeconds(10)); EXPECT_EQ(sum.intermediate_memory_write_time, Costs::NanoSeconds(12)); EXPECT_EQ(sum.max_memory, 2); EXPECT_EQ(sum.max_per_op_buffers, 2); EXPECT_EQ(sum.max_per_op_streaming, 3); EXPECT_EQ(sum.num_ops_total, 2); EXPECT_FALSE(sum.inaccurate); EXPECT_EQ(sum.num_ops_with_unknown_shapes, 0); } TEST(CostEstimatorTest, MultiplyCosts) { Costs c = Costs::ZeroCosts(); c.execution_time = Costs::NanoSeconds(1); c.compute_time = Costs::NanoSeconds(2); c.memory_time = Costs::NanoSeconds(3); c.intermediate_memory_time = Costs::NanoSeconds(4); c.intermediate_memory_read_time = Costs::NanoSeconds(5); c.intermediate_memory_write_time = Costs::NanoSeconds(6); c.max_memory = 1; c.max_per_op_buffers = 2; c.max_per_op_streaming = 3; c.num_ops_total = 1; c.inaccurate = false; c.num_ops_with_unknown_shapes = 0; Costs product = MultiplyCosts(c, 10); EXPECT_EQ(product.execution_time, Costs::NanoSeconds(10)); EXPECT_EQ(product.compute_time, Costs::NanoSeconds(20)); EXPECT_EQ(product.memory_time, Costs::NanoSeconds(30)); EXPECT_EQ(product.intermediate_memory_time, Costs::NanoSeconds(40)); EXPECT_EQ(product.intermediate_memory_read_time, Costs::NanoSeconds(50)); EXPECT_EQ(product.intermediate_memory_write_time, Costs::NanoSeconds(60)); EXPECT_EQ(product.max_memory, 1); EXPECT_EQ(product.max_per_op_buffers, 2); EXPECT_EQ(product.max_per_op_streaming, 3); EXPECT_EQ(product.num_ops_total, 1); EXPECT_FALSE(product.inaccurate); EXPECT_EQ(product.num_ops_with_unknown_shapes, 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/cost_estimator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/cost_estimator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ab750f69-b902-438c-9461-e3c414849229
cpp
tensorflow/tensorflow
analytical_cost_estimator
tensorflow/core/grappler/costs/analytical_cost_estimator.cc
tensorflow/core/grappler/costs/analytical_cost_estimator_test.cc
#include "tensorflow/core/grappler/costs/analytical_cost_estimator.h" #include <limits> #include <unordered_map> #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/graph/types.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/costs/op_performance_data.pb.h" #include "tensorflow/core/grappler/costs/utils.h" #include "tensorflow/core/grappler/costs/virtual_placer.h" #include "tensorflow/core/grappler/costs/virtual_scheduler.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/util/overflow.h" namespace tensorflow { namespace grappler { namespace { Status AddCostNode(ReadyNodeManager* node_manager, const OpContext& op_context, int node_id, const Costs& node_costs, gtl::FlatMap<string, CostGraphDef::Node*>* name_to_cost_node, gtl::FlatMap<string, int>* name_to_id, CostGraphDef* cost_graph) { const string& op_name = op_context.name; auto it = name_to_cost_node->find(op_name); CostGraphDef::Node* node; if (it != name_to_cost_node->end()) { node = it->second; node->clear_input_info(); node->clear_output_info(); } else { node = cost_graph->add_node(); (*name_to_cost_node)[op_name] = node; node->set_name(op_name); node->set_id(node_id); (*name_to_id)[node->name()] = node->id(); } node->set_device(op_context.device_name); node->set_compute_cost(node_costs.execution_time.asMicroSeconds().count()); node->set_compute_time(node_costs.compute_time.asMicroSeconds().count()); node->set_memory_time(node_costs.memory_time.asMicroSeconds().count()); node->set_temporary_memory_size(node_costs.temporary_memory); node->set_persistent_memory_size(node_costs.persistent_memory); node->set_inaccurate(node_costs.inaccurate); for (const string& input : node_manager->GetCurrNode()->input()) { int input_port; string input_name = ParseNodeName(input, &input_port); if (name_to_id->find(input_name) == name_to_id->end()) { if (!IsMerge(*node_manager->GetCurrNode())) VLOG(1) << "input: " << input << " not found for non-Merge node: " << op_name; continue; } if (IsControlInput(input)) { node->add_control_input(name_to_id->at(input_name)); } else { auto* input_info = node->add_input_info(); input_info->set_preceding_node(name_to_id->at(input_name)); input_info->set_preceding_port(input_port); } } for (const auto& output : op_context.op_info.outputs()) { auto output_info = node->add_output_info(); output_info->set_alias_input_port(-1); output_info->set_dtype(output.dtype()); *output_info->mutable_shape() = output.shape(); int64_t size = DataTypeSize(output.dtype()); for (const auto& dim : output.shape().dim()) { size = MultiplyWithoutOverflow(size, std::max<int64_t>(1, dim.size())); if (size < 0) { return errors::InvalidArgument( "Integer overflow encountered in dimension size."); } } output_info->set_size(size); } return absl::OkStatus(); } } AnalyticalCostEstimator::AnalyticalCostEstimator( Cluster* cluster, bool use_static_shapes, bool use_aggressive_shape_inference) : AnalyticalCostEstimator( cluster, std::make_unique<OpLevelCostEstimator>(), ReadyNodeManagerFactory("FirstReady"), use_static_shapes, use_aggressive_shape_inference) {} AnalyticalCostEstimator::AnalyticalCostEstimator( Cluster* cluster, std::unique_ptr<OpLevelCostEstimator> node_estimator, std::unique_ptr<ReadyNodeManager> node_manager, bool use_static_shapes, bool use_aggressive_shape_inference) : node_estimator_(std::move(node_estimator)), node_manager_(std::move(node_manager)), use_static_shapes_(use_static_shapes), use_aggressive_shape_inference_(use_aggressive_shape_inference) { scheduler_ = std::make_unique<VirtualScheduler>( use_static_shapes_, use_aggressive_shape_inference_, cluster, node_manager_.get(), std::make_unique<VirtualPlacer>(cluster->GetDevices())); } AnalyticalCostEstimator::AnalyticalCostEstimator( Cluster* cluster, std::unique_ptr<OpLevelCostEstimator> node_estimator, std::unique_ptr<ReadyNodeManager> node_manager, std::unique_ptr<VirtualPlacer> placer, bool use_static_shapes, bool use_aggressive_shape_inference) : node_estimator_(std::move(node_estimator)), node_manager_(std::move(node_manager)), use_static_shapes_(use_static_shapes), use_aggressive_shape_inference_(use_aggressive_shape_inference) { scheduler_ = std::make_unique<VirtualScheduler>( use_static_shapes_, use_aggressive_shape_inference_, cluster, node_manager_.get(), std::move(placer)); } Status AnalyticalCostEstimator::Initialize(const GrapplerItem& item) { item_ = &item; return absl::OkStatus(); } Status AnalyticalCostEstimator::PredictCosts(const GraphDef& optimized_graph, RunMetadata* run_metadata, Costs* costs) const { std::unique_ptr<GrapplerItem> item_storage; const GrapplerItem* item; if (&optimized_graph == &item_->graph) { item = item_; } else { GraphDef graph_copy = optimized_graph; item_storage = std::make_unique<GrapplerItem>( item_->WithGraph(std::move(graph_copy))); item = item_storage.get(); } auto status = scheduler_->Init(item); if (!status.ok()) { if (costs) { costs->execution_time = Costs::Duration::max(); } return status; } gtl::FlatMap<string, CostGraphDef::Node*> name_to_cost_node; CostGraphDef* cost_graph = nullptr; if (run_metadata) { cost_graph = run_metadata->mutable_cost_graph(); for (auto& node : *cost_graph->mutable_node()) { name_to_cost_node[node.name()] = &node; } } std::vector<string> inaccurate_nodes; int nodes_executed = 0; int node_id = 0; gtl::FlatMap<string, int> name_to_id; Costs node_costs; do { ++nodes_executed; OpContext op_context = scheduler_->GetCurrNode(); node_costs = node_estimator_->PredictCosts(op_context); if (node_costs.inaccurate) { inaccurate_nodes.push_back(op_context.name); if (node_costs.num_ops_with_unknown_shapes > 0) VLOG(4) << op_context.name << " has " << node_costs.num_ops_with_unknown_shapes << " unknown shapes"; } if (cost_graph) { Status s = AddCostNode(node_manager_.get(), op_context, node_id++, node_costs, &name_to_cost_node, &name_to_id, cost_graph); if (!s.ok()) { return s; } } } while (scheduler_->MarkCurrNodeExecuted(node_costs)); VLOG(1) << inaccurate_nodes.size() << " out of " << nodes_executed << " nodes have inaccurate time estimation"; if (VLOG_IS_ON(3)) { for (const auto& node : inaccurate_nodes) { VLOG(4) << "Node with inaccurate time estimation: " << node; } } if (costs) { *costs = scheduler_->Summary(run_metadata); } else if (run_metadata) { scheduler_->GenerateRunMetadata(run_metadata); } if (VLOG_IS_ON(1)) { bool verbose = VLOG_IS_ON(2); if (run_metadata) { VLOG(1) << GetStatsStringFromRunMetadata(*run_metadata, verbose); } else { RunMetadata run_metadata; scheduler_->GenerateRunMetadata(&run_metadata); VLOG(1) << GetStatsStringFromRunMetadata(run_metadata, verbose); } } return absl::OkStatus(); } } }
#include "tensorflow/core/grappler/costs/virtual_scheduler.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/costs/analytical_cost_estimator.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { class AnalyticalCostEstimatorTest : public ::testing::Test { protected: void SetUp() override { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); cpu_device.set_num_cores(4); cpu_device.set_frequency(2600); cpu_device.set_bandwidth(24 * 1024 * 1024); devices["/job:localhost/replica:0/task:0/cpu:0"] = cpu_device; DeviceProperties gpu_device; gpu_device.set_type("GPU"); gpu_device.set_num_cores(12); gpu_device.set_frequency(1100); gpu_device.set_bandwidth(180 * 1024 * 1024); (*gpu_device.mutable_environment())["architecture"] = "6"; devices["/job:localhost/replica:0/task:0/device:GPU:0"] = gpu_device; cluster_.reset(new VirtualCluster(devices)); } GrapplerItem CreateMiniGraph() { const int batch = 1; const int width = 28; const int height = 28; const int num_channels = 1; const int num_labels = 10; const int kernel_size = 3; const int conv_filters = 32; Scope s = Scope::NewRootScope(); auto images = ops::RandomUniform( s.WithOpName("image"), {batch, width, height, num_channels}, DT_FLOAT); auto labels = ops::RandomUniform(s.WithOpName("label"), {batch, num_labels}, DT_FLOAT); auto w = ops::Variable( s.WithOpName("W"), {kernel_size, kernel_size, num_channels, conv_filters}, DT_FLOAT); auto b = ops::Variable(s.WithOpName("B"), {conv_filters}, DT_FLOAT); auto conv = ops::Conv2D(s.WithOpName("conv"), images, w, {1, 1, 1, 1}, "SAME"); auto bias = ops::Add(s.WithOpName("bias"), conv, b); auto relu = ops::Relu(s.WithOpName("relu"), bias); auto flat_shape = ops::Const(s.WithOpName("flat_shape"), {batch, width * height * conv_filters}); auto flat = ops::Reshape(s.WithOpName("flat"), relu, flat_shape); auto w2 = ops::Variable(s.WithOpName("W2"), {width * height * conv_filters, num_labels}, DT_FLOAT); auto b2 = ops::Variable(s.WithOpName("B2"), {num_labels}, DT_FLOAT); auto matmul = ops::MatMul(s.WithOpName("matmul"), flat, w2); auto logits = ops::Add(s.WithOpName("logits"), matmul, b2); auto softmax = ops::Softmax(s.WithOpName("softmax"), logits); auto lsm = ops::Log(s.WithOpName("lsm"), softmax); GrapplerItem item; item.fetch.push_back("lsm"); TF_CHECK_OK(s.ToGraphDef(&item.graph)); return item; } std::unique_ptr<VirtualCluster> cluster_; }; TEST_F(AnalyticalCostEstimatorTest, SimpleTest) { GrapplerItem item = CreateMiniGraph(); AnalyticalCostEstimator estimator(cluster_.get(), true, true); TF_ASSERT_OK(estimator.Initialize(item)); RunMetadata run_metadata; Costs summary; TF_ASSERT_OK(estimator.PredictCosts(item.graph, &run_metadata, &summary)); EXPECT_EQ(Costs::NanoSeconds(9158), summary.execution_time); EXPECT_EQ(15, summary.num_ops_total); EXPECT_TRUE(summary.inaccurate); EXPECT_EQ(0, summary.num_ops_with_unknown_shapes); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/analytical_cost_estimator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/analytical_cost_estimator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1b74e393-915d-4eaa-9c6c-9893a7f52c8c
cpp
tensorflow/tensorflow
virtual_scheduler
tensorflow/core/grappler/costs/virtual_scheduler.cc
tensorflow/core/grappler/costs/virtual_scheduler_test.cc
#include "tensorflow/core/grappler/costs/virtual_scheduler.h" #include <algorithm> #include <functional> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_replace.h" #include "tensorflow/core/framework/allocation_description.pb.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_description.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/grappler/clusters/utils.h" #include "tensorflow/core/grappler/costs/utils.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/transitive_fanin.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/numbers.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace grappler { const char kAttrInputSrc[] = "input_source_"; const char kAttrSrcDevice[] = "send_device"; const char kAttrDstDevice[] = "recv_device"; const char kAttrTensorName[] = "tensor_name"; const char kChannelDevice[] = "Channel"; const char kStreaming[] = "_streaming"; namespace { using ::tensorflow::strings::HumanReadableNumBytes; float Round2(const float x) { return ::round(100.0 * x) / 100.0; } Costs& FindOrCreateZero(const string& op_name, std::map<string, Costs>* op_cost) { auto it = op_cost->find(op_name); if (it == op_cost->end()) { it = op_cost->emplace(op_name, Costs::ZeroCosts()).first; } return it->second; } struct RecvNodeDescriptor { const NodeDef* node; const int port_num; const string device; RecvNodeDescriptor(const NodeDef* node_, const int port_num_, const string& device_) : node(node_), port_num(port_num_), device(device_) {} }; struct RecvNodeDescriptorHash { std::size_t operator()(const RecvNodeDescriptor& recv_node) const { return std::hash<const NodeDef*>()(recv_node.node) ^ std::hash<int>()(recv_node.port_num) ^ std::hash<string>()(recv_node.device); } }; struct RecvNodeDescriptorEqual { bool operator()(const RecvNodeDescriptor& a, const RecvNodeDescriptor& b) const { return a.node == b.node && a.port_num == b.port_num && a.device == b.device; } }; void UpdateDeviceAnnotationState(const NodeDef* node, const NodeState& node_state, DeviceState* device) { if (node->attr().count(kOutputShapes) == 0) return; int64_t execution_count = node->attr().count(kExecutionCount) == 0 ? 1 : node->attr().at(kExecutionCount).i(); auto& shape_annotation_stats = device->shape_annotation_stats; shape_annotation_stats.num_ops_annotated += 1; shape_annotation_stats.num_ops_executed += execution_count; shape_annotation_stats.num_ops_executed_more_than_once += execution_count > 1 ? 1 : 0; shape_annotation_stats.num_ops_with_incompatible_shapes += node_state.shape_incompatible ? 1 : 0; shape_annotation_stats.num_ops_with_dynamic_shapes += (execution_count > 1 && node->attr().count(kOutputSame) == 0) ? 1 : 0; } bool IsStreamingPort(const NodeDef& node, const int port) { if (!node.attr().contains(kStreaming)) return false; auto& attr_list = node.attr().at(kStreaming).list(); bool is_streaming_port = false; if (port >= 0 && port < attr_list.b().size()) { is_streaming_port = attr_list.b(port); } return is_streaming_port; } } void LIFOManager::AddNode(const NodeDef* node) { if (IsMerge(*node)) { nodes_.push_front(node); } else { nodes_.push_back(node); } } const NodeDef* LIFOManager::GetCurrNode() { CHECK(!nodes_.empty()) << "GetCurrNode(), but there's no ready node"; if (curr_pos_ == nodes_.end()) { curr_pos_ = --(nodes_.rbegin().base()); } return *curr_pos_; } void LIFOManager::RemoveCurrNode() { GetCurrNode(); nodes_.erase(curr_pos_); curr_pos_ = nodes_.end(); } HeapReadyManager::HeapReadyManager() : ReadyNodeManager() { std::make_heap(nodes_.begin(), nodes_.end()); } Status HeapReadyManager::Init( const std::unordered_map<const NodeDef*, NodeState>* node_map) { node_map_ = node_map; nodes_.clear(); curr_node_ = nullptr; greater_ = Greater(); return absl::OkStatus(); } void HeapReadyManager::AddNode(const NodeDef* node) { nodes_.push_back(node); std::push_heap(nodes_.begin(), nodes_.end(), greater_); } const NodeDef* HeapReadyManager::GetCurrNode() { if (curr_node_) return curr_node_; if (nodes_.empty()) { CHECK(!nodes_.empty()) << "GetCurrNode(), but there's no ready node"; } const std::string node_name = nodes_.front()->name(); curr_node_ = nodes_.front(); std::pop_heap(nodes_.begin(), nodes_.end(), greater_); nodes_.pop_back(); return curr_node_; } void HeapReadyManager::RemoveCurrNode() { if (curr_node_) { curr_node_ = nullptr; } else { std::pop_heap(nodes_.begin(), nodes_.end(), greater_); nodes_.pop_back(); } } bool HeapReadyManager::Empty() const { return nodes_.empty() && curr_node_ == nullptr; } bool FirstReadyCmp( const std::unordered_map<const NodeDef*, NodeState>* node_map, const NodeDef* a, const NodeDef* b) { if (node_map->at(a).time_ready == node_map->at(b).time_ready) { return a->name().compare(b->name()) > 0; } else { return node_map->at(a).time_ready > node_map->at(b).time_ready; } } std::function<bool(const NodeDef*, const NodeDef*)> FirstReadyManager::Greater() { auto greater = [this](const NodeDef* a, const NodeDef* b) -> bool { return FirstReadyCmp(node_map_, a, b); }; return greater; } std::function<bool(const NodeDef*, const NodeDef*)> PriorityReadyManager::Greater() { auto greater = [this](const NodeDef* a, const NodeDef* b) -> bool { auto pri_a = node_priority_.at(a->name()); auto pri_b = node_priority_.at(b->name()); if (pri_a == pri_b) { return FirstReadyCmp(node_map_, a, b); } return pri_a > pri_b; }; return greater; } void PriorityReadyManager::AddNode(const NodeDef* node) { if (node_priority_.count(node->name()) == 0) { VLOG(3) << "Priority of node " << node->name() << " not found."; node_priority_[node->name()] = 0; } HeapReadyManager::AddNode(node); } Status PriorityReadyManager::SetPriority( const std::unordered_map<string, int>& node_priority) { node_priority_ = node_priority; return absl::OkStatus(); } CompositeNodeManager::CompositeNodeManager() : ReadyNodeManager(), send_manager_(), recv_manager_() {} Status CompositeNodeManager::Init( const std::unordered_map<const NodeDef*, NodeState>* node_map) { node_map_ = node_map; TF_RETURN_IF_ERROR(send_manager_.Init(node_map)); TF_RETURN_IF_ERROR(recv_manager_.Init(node_map)); curr_node_ = nullptr; return absl::OkStatus(); } void CompositeNodeManager::AddNode(const NodeDef* node) { if (IsSend(*node)) { send_manager_.AddNode(node); } else if (IsRecv(*node)) { recv_manager_.AddNode(node); } else { const auto& device = node_map_->at(node).device_name; ops_lifo_map_[device].AddNode(node); } } const NodeDef* CompositeNodeManager::GetCurrNode() { if (curr_node_) return curr_node_; std::vector<std::pair<const NodeDef*, Costs::Duration>> candidates; for (auto& ops_lifo : ops_lifo_map_) { if (!ops_lifo.second.Empty()) { const auto* op = ops_lifo.second.GetCurrNode(); candidates.emplace_back(op, node_map_->at(op).time_ready); } } if (!send_manager_.Empty()) { const auto* send = send_manager_.GetCurrNode(); candidates.emplace_back(send, node_map_->at(send).time_ready); } if (!recv_manager_.Empty()) { const auto* recv = recv_manager_.GetCurrNode(); candidates.emplace_back(recv, node_map_->at(recv).time_ready); } CHECK(!candidates.empty()); auto first_ready = std::min_element( candidates.begin(), candidates.end(), [](const std::pair<const NodeDef*, Costs::Duration>& a, const std::pair<const NodeDef*, Costs::Duration>& b) { if (a.second == b.second) { int a_score = 2 * IsSend(*a.first) + IsRecv(*a.first); int b_score = 2 * IsSend(*b.first) + IsRecv(*b.first); if (a_score == b_score) { return a.first->name().compare(b.first->name()) < 0; } else { return a_score > b_score; } } else { return a.second < b.second; } }); curr_node_ = first_ready->first; return curr_node_; } void CompositeNodeManager::RemoveCurrNode() { const auto* node = GetCurrNode(); if (IsSend(*node)) { send_manager_.RemoveCurrNode(); } else if (IsRecv(*node)) { recv_manager_.RemoveCurrNode(); } else { const auto device = node_map_->at(node).device_name; ops_lifo_map_[device].RemoveCurrNode(); } curr_node_ = nullptr; } bool CompositeNodeManager::Empty() const { bool empty = true; for (const auto& ops_lifo : ops_lifo_map_) { empty &= ops_lifo.second.Empty(); } return empty && send_manager_.Empty() && recv_manager_.Empty(); } std::unique_ptr<ReadyNodeManager> ReadyNodeManagerFactory( const string& ready_node_manager) { if (ready_node_manager == "FIFO") { return std::make_unique<FIFOManager>(); } else if (ready_node_manager == "LIFO") { return std::make_unique<LIFOManager>(); } else if (ready_node_manager == "FirstReady") { return std::make_unique<FirstReadyManager>(); } else if (ready_node_manager == "Composite") { return std::make_unique<CompositeNodeManager>(); } LOG(FATAL) << "Not a valid ready node manager: " << ready_node_manager; return nullptr; } SchedulerState::~SchedulerState() {} SchedulerState::SchedulerState(const bool use_static_shapes, const bool use_aggressive_shape_inference, Cluster* cluster, std::unique_ptr<VirtualPlacer> placer) : graph_costs_(Costs::ZeroCosts()), cluster_(cluster), use_static_shapes_(use_static_shapes), use_aggressive_shape_inference_(use_aggressive_shape_inference), placer_(std::move(placer)) { DCHECK(placer_); graph_costs_.num_ops_total = 0; initialized_ = false; track_mem_usage_snapshot_ = VLOG_IS_ON(1); } Status SchedulerState::Init(const GrapplerItem* item, std::vector<const NodeDef*>* initial_nodes, bool create_explicit_channel_device) { initialized_ = false; node_map_.clear(); device_.clear(); additional_nodes_.clear(); graph_costs_ = Costs::ZeroCosts(); graph_costs_.num_ops_total = 0; op_to_cost_.clear(); op_counts_.clear(); op_costs_.clear(); initial_nodes->clear(); graph_properties_ = std::make_unique<GraphProperties>(*item); if (use_static_shapes_) { TF_RETURN_IF_ERROR(graph_properties_->InferStatically( true, use_aggressive_shape_inference_, true)); } else { TF_RETURN_IF_ERROR(graph_properties_->InferDynamically(cluster_)); } grappler_item_ = item; const auto& graph = grappler_item_->graph; const auto& fetch_nodes = grappler_item_->fetch; std::set<string> feed_nodes; for (const auto& f : grappler_item_->feed) { auto iter_and_inserted_flag = feed_nodes.insert(f.first); QCHECK(iter_and_inserted_flag.second) << "Duplicate feed node found: " << f.first; } std::unordered_map<string, const NodeDef*> name_to_node; std::vector<const NodeDef*> fetch_fanin_nodes; TF_RETURN_IF_ERROR(ComputeTransitiveFanin(graph, fetch_nodes, &name_to_node, &fetch_fanin_nodes)); std::unordered_map<string, const NodeDef*> name_to_send; for (const auto& node : graph.node()) { if (IsSend(node)) { const auto& attr = node.attr(); name_to_send[attr.at("tensor_name").s()] = &node; } } std::unordered_map<RecvNodeDescriptor, const NodeDef*, RecvNodeDescriptorHash, RecvNodeDescriptorEqual> cached_recv_nodes; for (const auto* curr_node : fetch_fanin_nodes) { auto& curr_node_state = GetNodeStateOrCreateIt(curr_node); const string curr_node_device = DeviceName(curr_node); std::vector<string> inputs; if (IsRecv(*curr_node)) { const auto& attr = curr_node->attr(); if (attr.count("tensor_name")) { const auto& send_node_name = attr.at("tensor_name").s(); auto it = name_to_send.find(send_node_name); if (it != name_to_send.end()) { const NodeDef* send = it->second; inputs = {send->name()}; } } } else { for (const string& input : curr_node->input()) { inputs.push_back(input); } } for (const string& input_node_name : inputs) { const string node_name = NodeName(input_node_name); const NodeDef* input_node = name_to_node[node_name]; if (input_node == nullptr) { return absl::InvalidArgumentError( absl::StrCat("Unknown node: ", node_name)); } const string in_device = DeviceName(input_node); const auto input_node_port_num = NodePosition(input_node_name); if (curr_node_device == in_device || IsControlInput(input_node_name)) { curr_node_state.inputs.push_back( std::make_pair(input_node, input_node_port_num)); auto& input_node_state = GetNodeStateOrCreateIt(input_node); input_node_state.outputs[input_node_port_num].push_back(curr_node); } else { RecvNodeDescriptor recv_node(input_node, input_node_port_num, curr_node_device); auto it = cached_recv_nodes.find(recv_node); if (it != cached_recv_nodes.end()) { const NodeDef* recv_op = it->second; curr_node_state.inputs.push_back(std::make_pair(recv_op, 0)); auto& input_node_state = node_map_.at(recv_op); input_node_state.outputs[0].push_back(curr_node); } else { auto send_and_recv = CreateSendRecv(input_node, curr_node, input_node, input_node_name, create_explicit_channel_device); const auto* send = send_and_recv.first; const auto* recv = send_and_recv.second; curr_node_state.inputs.push_back(std::make_pair(recv, 0)); auto& input_node_state = GetNodeStateOrCreateIt(input_node); input_node_state.outputs[input_node_port_num].push_back(send); cached_recv_nodes[recv_node] = recv; } } } const bool given_as_feed = feed_nodes.find(curr_node->name()) != feed_nodes.end(); const bool has_no_inputs = inputs.empty(); if (given_as_feed || has_no_inputs) { curr_node_state.time_ready = Costs::Duration(); initial_nodes->push_back(curr_node); VLOG(3) << "Added ready node: " << curr_node->name(); } feed_nodes.erase(curr_node->name()); if (IsPersistent(*curr_node)) { auto& device_state = device_[curr_node_device]; for (int port_num = 0, port_num_end = curr_node_state.output_properties.size(); port_num < port_num_end; ++port_num) { device_state.persistent_nodes.insert( std::make_pair(curr_node, port_num)); } } } if (initial_nodes->empty()) { return errors::InvalidArgument("No ready nodes in the graph."); } if (!feed_nodes.empty()) { VLOG(1) << "Some feed nodes were not consumed by the fetch fanin: " << absl::StrJoin(feed_nodes, ","); } initialized_ = true; return absl::OkStatus(); } void SchedulerState::MaybeUpdateInputOutput(const NodeDef* node) { CHECK(!initialized_) << "MaybeUpdateInputOutput is called after Init()."; if ((IsSend(*node) || IsRecv(*node)) && node->attr().count(kAttrInputSrc)) { auto& node_state = node_map_[node]; auto& inputs = node_state.input_properties; auto& outputs = node_state.output_properties; CHECK(inputs.empty()); CHECK(outputs.empty()); const auto& attr = node->attr(); const auto& input_source_name = attr.at(kAttrInputSrc).s(); if (IsControlInput(input_source_name)) { OpInfo::TensorProperties control_message; control_message.set_dtype(DT_FLOAT); control_message.mutable_shape()->add_dim()->set_size(1); auto* value = control_message.mutable_value(); value->add_float_val(1); inputs.push_back(control_message); outputs.push_back(control_message); } else { const auto& output_properties = graph_properties_->GetOutputProperties(NodeName(input_source_name)); if (!output_properties.empty()) { const auto input_node_port_num = NodePosition(input_source_name); CHECK_GT(output_properties.size(), input_node_port_num); inputs.push_back(output_properties[input_node_port_num]); outputs.push_back(output_properties[input_node_port_num]); } } } } string SchedulerState::DeviceName(const NodeDef* node) const { return placer_->get_canonical_device_name(*node); } string SchedulerState::SanitizedDeviceName(const NodeDef* node) const { return absl::StrReplaceAll(placer_->get_canonical_device_name(*node), {{":", "_"}}); } string SchedulerState::ChannelDeviceName(const NodeDef* from, const NodeDef* to) const { CHECK(!initialized_) << "ChannelDeviceName is called after Init()."; return absl::StrCat(kChannelDevice, "_from_", SanitizedDeviceName(from), "_to_", SanitizedDeviceName(to)); } std::pair<const NodeDef*, const NodeDef*> SchedulerState::CreateSendRecv( const NodeDef* from, const NodeDef* to, const NodeDef* input_node, const string& input_name, bool create_channel_device) { CHECK(!initialized_) << "CreateSendRecv is called after Init()."; auto input_node_port_num = NodePosition(input_name); string src_name; bool control_input = false; if (input_node_port_num >= 0) { src_name = absl::StrCat(from->name(), "_", input_node_port_num); } else { src_name = absl::StrCat(from->name(), "_minus1"); control_input = true; } auto* send = new NodeDef(); send->set_name("Send_" + src_name + "_from_" + SanitizedDeviceName(from) + "_to_" + SanitizedDeviceName(to)); send->set_op("_Send"); send->add_input(from->name()); auto send_device = create_channel_device ? ChannelDeviceName(from, to) : DeviceName(from); send->set_device(send_device); auto& send_attr = *(send->mutable_attr()); send_attr[kAttrInputSrc].set_s(input_name); send_attr[kAttrSrcDevice].set_s(DeviceName(from)); send_attr[kAttrDstDevice].set_s(DeviceName(to)); if (input_node->attr().count(kAttrTensorName)) { send_attr[kAttrTensorName].set_s( input_node->attr().at(kAttrTensorName).s()); } auto* recv = new NodeDef(); recv->set_name("Recv_" + src_name + "_on_" + SanitizedDeviceName(to)); recv->set_op("_Recv"); recv->add_input(send->name()); recv->set_device(DeviceName(to)); auto& recv_attr = *(recv->mutable_attr()); recv_attr[kAttrInputSrc].set_s(input_name); if (input_node->attr().count(kAttrTensorName)) { recv_attr[kAttrTensorName].set_s( input_node->attr().at(kAttrTensorName).s()); } if (from->attr().contains(kStreaming) && !control_input) { if (input_node_port_num >= from->attr().at(kStreaming).list().b_size()) { LOG(ERROR) << from->name() << " port index larger than length of _streaming attribute list."; } else if (from->attr().at(kStreaming).list().b(input_node_port_num)) { send_attr[kStreaming].mutable_list()->add_b(true); recv_attr[kStreaming].mutable_list()->add_b(true); } } auto& send_node_state = GetNodeStateOrCreateIt(send); send_node_state.device_name = send->device(); send_node_state.inputs.push_back(std::make_pair(from, input_node_port_num)); send_node_state.outputs[0].push_back(recv); auto& recv_node_state = GetNodeStateOrCreateIt(recv); recv_node_state.inputs.push_back(std::make_pair(send, 0)); recv_node_state.outputs[0].push_back(to); additional_nodes_.emplace_back(std::unique_ptr<NodeDef>(send)); additional_nodes_.emplace_back(std::unique_ptr<NodeDef>(recv)); return std::make_pair(send, recv); } OpContext SchedulerState::CreateOpContext(const NodeDef* node) const { DeviceProperties device; device = placer_->get_device(*node); if (IsSend(*node)) { device.set_type(kChannelDevice); } OpContext op_context; const auto& node_state = node_map_.at(node); op_context.name = node->name(); op_context.device_name = node_state.device_name; auto& op_info = op_context.op_info; op_info.set_op(node->op()); *op_info.mutable_attr() = node->attr(); for (auto& input : node_state.input_properties) { *op_info.add_inputs() = input; } for (auto& output : node_state.output_properties) { *op_info.add_outputs() = output; } op_info.mutable_device()->Swap(&device); if (grappler_item_->graph.has_library()) { op_context.function_library = &grappler_item_->graph.library(); } return op_context; } NodeState& SchedulerState::GetNodeStateOrCreateIt(const NodeDef* node) { CHECK(!initialized_) << "GetNodeStateOrCreateIt is called after Init()."; auto it = node_map_.find(node); if (it != node_map_.end()) { return it->second; } it = node_map_.emplace(node, NodeState()).first; auto& node_state = it->second; node_state.input_properties = graph_properties_->GetInputProperties(node->name()); node_state.output_properties = graph_properties_->GetOutputProperties(node->name()); node_state.shape_incompatible = graph_properties_->CheckShapeIncompatible(node->name()); MaybeUpdateInputOutput(node); if (!IsSend(*node)) { node_state.device_name = DeviceName(node); } for (size_t i = 0; i < node_state.output_properties.size(); ++i) { node_state.time_no_references[i] = Costs::Duration::max(); node_state.num_outputs_executed[i] = 0; node_state.outputs[i] = {}; } node_state.time_no_references[-1] = Costs::Duration::max(); node_state.num_outputs_executed[-1] = 0; node_state.outputs[-1] = {}; node_state.time_scheduled = Costs::Duration().infinity(); return it->second; } void SchedulerState::GetOutputNodes(const NodeDef* node, const Costs::Duration& curr_time, std::vector<const NodeDef*>* output_nodes) { int slot = -1; if (IsSwitch(*node) && node->attr().count(kOutputSlots) > 0 && node->attr().at(kOutputSlots).list().i_size() > 0) { slot = node->attr().at(kOutputSlots).list().i(0); for (int i = 1; i < node->attr().at(kOutputSlots).list().i_size(); ++i) { if (slot != node->attr().at(kOutputSlots).list().i(i)) { slot = -1; break; } } } auto& node_state = node_map_[node]; for (const auto& port_num_output_pair : node_state.outputs) { if (slot >= 0 && port_num_output_pair.first != slot) continue; for (auto* output_node : port_num_output_pair.second) { auto& output_state = node_map_[output_node]; output_state.num_inputs_ready++; int output_state_inputs_size = output_state.inputs.size(); if (output_state.num_inputs_ready == output_state_inputs_size || IsMerge(*output_node)) { output_state.time_ready = curr_time; output_nodes->push_back(output_node); VLOG(3) << " Add output: " << output_node->name(); } } } } std::vector<const NodeDef*> SchedulerState::MarkNodeExecuted( const NodeDef* node, const Costs& node_costs, const OpContext& op_context, bool extract_execution_count_attr, const std::string& override_device_name) { auto& node_state = node_map_[node]; bool previously_executed_merge = IsMerge(*node) && (node_state.time_finished != Costs::Duration::max()); node_state.execution_count = 1; if (extract_execution_count_attr && node->attr().count(kExecutionCount) > 0) { node_state.execution_count = node->attr().at(kExecutionCount).i(); } node_state.node_costs = node_costs; Costs total_node_costs = node_state.TotalNodeCosts(); graph_costs_ = CombineCosts(graph_costs_, total_node_costs); const string& op_name = node->op(); auto& op_cost = FindOrCreateZero(op_name, &op_to_cost_); op_cost = CombineCosts(op_cost, total_node_costs); if (VLOG_IS_ON(2)) { string node_description = GetOpDescription(op_context.op_info); op_counts_[node_description] += 1; op_costs_[node_description] = std::make_pair(total_node_costs.execution_time.asMicroSeconds().count(), !node_costs.inaccurate); } std::string device_name = node_state.device_name; if (!override_device_name.empty()) { device_name = override_device_name; } auto& device = device_[device_name]; device.nodes_executed.push_back(node); if (node_state.time_scheduled == Costs::Duration().infinity()) { node_state.time_scheduled = std::max(device.GetCurrTime(), node_state.time_ready); device.device_costs.execution_time = node_state.time_scheduled; } device.device_costs = CombineCosts(device.device_costs, total_node_costs); auto curr_time = device.GetCurrTime(); node_state.time_finished = curr_time; UpdateDeviceAnnotationState(node, node_state, &device); if (!IsPersistent(*node)) { for (const auto& port_num_output_pair : node_state.outputs) { int port_num = port_num_output_pair.first; if (node_state.outputs[port_num].empty()) { node_state.time_no_references[port_num] = curr_time; } else { if (node_state.node_costs.persistent_output_ports.contains(port_num)) { continue; } if (!IsStreamingPort(*node, port_num)) { device.memory_usage += GetOrCalculateOutputSize(node_state, port_num); } device.nodes_in_memory.insert(std::make_pair(node, port_num)); } } } for (const auto& port : node_costs.persistent_output_ports) { device.persistent_nodes.insert({node, port}); } auto& device_op_cost = FindOrCreateZero(op_name, &device.op_to_cost); device_op_cost = CombineCosts(device_op_cost, total_node_costs); VLOG(3) << "Op scheduled -- name: " << node->name() << ", op: " << node->op() << ", device: " << node->device() << ", execution_count: " << node_state.execution_count << ", ready: " << node_state.time_ready.count() << ", scheduled: " << node_state.time_scheduled.count() << ", finished: " << node_state.time_finished.count(); VLOG(5) << " Current device memory usage (before deallocation): " << device.memory_usage; std::vector<const NodeDef*> new_nodes; if (previously_executed_merge) { VLOG(1) << "node [ " << node->name() << ", " << node->op() << " ] " << "is executed more than once. " << "Skip scheduling its output nodes."; } else { GetOutputNodes(node, curr_time, &new_nodes); } if (!IsPersistent(*node)) { if (device.memory_usage > device.max_memory_usage) { device.max_memory_usage = device.memory_usage; if (track_mem_usage_snapshot_) { device.mem_usage_snapshot_at_peak = device.nodes_in_memory; } } } if (track_mem_usage_snapshot_) { device.temporary_memory_usage_trace.push_back( {node->name(), device.memory_usage}); } for (const auto& input_port : node_state.inputs) { auto* input = input_port.first; auto port = input_port.second; auto& input_state = node_map_[input]; input_state.num_outputs_executed[port]++; int input_state_outputs_size_ = input_state.outputs[port].size(); if (input_state.node_costs.persistent_output_ports.contains(port)) continue; if (input_state.num_outputs_executed[port] == input_state_outputs_size_ && !IsPersistent(*input)) { input_state.time_no_references[port] = curr_time; auto& input_device = device_[input_state.device_name]; if (!IsStreamingPort(*input, port)) { input_device.memory_usage -= GetOrCalculateOutputSize(input_state, port); } input_device.nodes_in_memory.erase(std::make_pair(input, port)); } } return new_nodes; } Costs SchedulerState::Summary() const { VLOG(1) << graph_costs_.num_ops_total << " ops processed in total, with " << graph_costs_.num_ops_with_unknown_shapes << " having unknown shapes"; VLOG(1) << "Expected execution time: " << graph_costs_.execution_time.count(); VLOG(1) << "Expected compute time: " << graph_costs_.compute_time.count(); VLOG(1) << "Expected memory time: " << graph_costs_.memory_time.count(); VLOG(1) << "Expected intermediate memory time: " << graph_costs_.intermediate_memory_time.count(); VLOG(1) << "Expected max memory: " << graph_costs_.max_memory; VLOG(1) << "Expected max per-op buffers: " << graph_costs_.max_per_op_buffers; VLOG(1) << "Expected max per-op streaming buffers: " << graph_costs_.max_per_op_streaming; VLOG(1) << "Per-op execution time / compute time / memory time" << " / intermediate memory time:"; for (const auto& op_cost_pair : op_to_cost_) { const auto& op = op_cost_pair.first; const auto& cost = op_cost_pair.second.execution_time.count(); const auto& compute_cost = op_cost_pair.second.compute_time.count(); const auto& memory_cost = op_cost_pair.second.memory_time.count(); const auto& intermediate_memory_cost = op_cost_pair.second.intermediate_memory_time.count(); const bool is_op_cost_accurate = !op_cost_pair.second.inaccurate; if (cost) { VLOG(1) << absl::StrFormat(" + %30s : %c %10d / %10d / %10d / %10d", op, (is_op_cost_accurate ? ' ' : '~'), cost, compute_cost, memory_cost, intermediate_memory_cost); } } VLOG(1) << "Devices:"; Costs critical_path_costs = Costs::ZeroCosts(); std::vector<string> device_names; device_names.reserve(device_.size()); for (auto& it : device_) { device_names.push_back(it.first); } std::sort(device_names.begin(), device_names.end()); for (const auto& name : device_names) { const auto& state = device_.at(name); std::map<string, int64_t> op_to_memory; int64_t persistent_memory_usage = 0; std::set<string> persistent_ops; for (const auto& node_port : state.persistent_nodes) { const auto* node = node_port.first; const auto port = node_port.second; int64_t output_size = 0; auto it = node_map_.find(node); if (it != node_map_.end()) { output_size = GetOrCalculateOutputSize(it->second, port); } persistent_memory_usage += output_size; op_to_memory[node->op()] += output_size; persistent_ops.insert(node->op()); } int64_t max_memory_usage = persistent_memory_usage + state.max_memory_usage; critical_path_costs.estimated_max_memory_per_device[name] = max_memory_usage; const Costs::NanoSeconds wall_time_ns = state.GetCurrTime(); VLOG(1) << "Device = " << name << ", num_nodes = " << state.nodes_executed.size() << ", wall_time_ns = " << wall_time_ns.count() << ", memory usage: " << "persistent = " << HumanReadableNumBytes(persistent_memory_usage) << ", peak = " << HumanReadableNumBytes(state.max_memory_usage) << ", total = " << HumanReadableNumBytes(max_memory_usage) << ", at the end: " << HumanReadableNumBytes(state.memory_usage); VLOG(1) << state.device_costs.num_ops_total << " ops processed in total, with " << state.device_costs.num_ops_with_unknown_shapes << " having unknown shapes"; const auto& device_annotation_stats = state.shape_annotation_stats; if (device_annotation_stats.num_ops_annotated > 0) { VLOG(1) << device_annotation_stats.num_ops_annotated << " ops with shape annotation, with " << device_annotation_stats.num_ops_executed_more_than_once << " executed more than once, " << device_annotation_stats.num_ops_with_dynamic_shapes << " with dynamic shapes, " << device_annotation_stats.num_ops_with_incompatible_shapes << " with incompatible shapes, " << device_annotation_stats.num_ops_executed << " ops executed in total."; } VLOG(1) << "Per-op execution time / compute time / memory time " << " / intermediate memory time" << " (and memory usage at peak memory usage):"; for (const auto& node_port : state.mem_usage_snapshot_at_peak) { const auto* node = node_port.first; const auto port = node_port.second; auto it = node_map_.find(node); if (it != node_map_.end()) { op_to_memory[node->op()] += GetOrCalculateOutputSize(it->second, port); } } Costs::NanoSeconds total_compute_time_ns; bool is_total_cost_accurate = true; for (const auto& op_cost_pair : state.op_to_cost) { const auto& op = op_cost_pair.first; const auto& cost = op_cost_pair.second.execution_time.count(); const auto& compute_cost = op_cost_pair.second.compute_time.count(); const auto& memory_cost = op_cost_pair.second.memory_time.count(); const auto& intermediate_memory_cost = op_cost_pair.second.intermediate_memory_time.count(); total_compute_time_ns += op_cost_pair.second.execution_time; const bool is_op_cost_accurate = !op_cost_pair.second.inaccurate; if (!is_op_cost_accurate) { is_total_cost_accurate = false; } int64_t op_mem_usage = 0; auto it = op_to_memory.find(op); if (it != op_to_memory.end()) { op_mem_usage = it->second; } const float mem_usage_percent = max_memory_usage > 0 ? Round2(100.0 * op_mem_usage / max_memory_usage) : 0.0; if (cost || mem_usage_percent > 1.0) { VLOG(1) << absl::StrFormat( " + %30s : %c %10d / %10d / %10d / %10d", op.c_str(), (is_op_cost_accurate ? ' ' : '~'), cost, compute_cost, memory_cost, intermediate_memory_cost) << " (" << HumanReadableNumBytes(op_mem_usage) << " [" << mem_usage_percent << "%] " << (persistent_ops.count(op) > 0 ? ": persistent op)" : ")"); } } int utilization = 0; if (wall_time_ns.count() > 0) { utilization = total_compute_time_ns.count() * 100 / wall_time_ns.count(); } VLOG(1) << "Device = " << name << ", total_compute_time_ns = " << (is_total_cost_accurate ? "" : "~") << total_compute_time_ns.count() << ", utilization = " << utilization << "%"; if (critical_path_costs.execution_time <= state.GetCurrTime()) { critical_path_costs = state.device_costs; critical_path_costs.persistent_memory = persistent_memory_usage; critical_path_costs.temporary_memory = state.max_memory_usage; critical_path_costs.max_memory = max_memory_usage; } } if (VLOG_IS_ON(2)) { VLOG(2) << "Node description, counts, cost:"; for (const auto& item : op_counts_) { int cost; bool is_cost_accurate; std::tie(cost, is_cost_accurate) = op_costs_.at(item.first); VLOG(2) << "Node: " << item.first << ", Count: " << item.second << ", Individual Cost: " << (is_cost_accurate ? "" : "~") << cost << " us"; } } VLOG(1) << "Critical path execution time: " << critical_path_costs.execution_time.count(); return critical_path_costs; } Costs SchedulerState::Summary(RunMetadata* metadata) { if (metadata) GenerateRunMetadata(metadata); return Summary(); } void SchedulerState::GenerateRunMetadata(RunMetadata* metadata) { StepStats* stepstats = metadata->mutable_step_stats(); for (const auto& device : device_) { GraphDef* device_partition_graph = metadata->add_partition_graphs(); DeviceStepStats* device_stepstats = stepstats->add_dev_stats(); device_stepstats->set_device(device.first); for (const auto& node_def : device.second.nodes_executed) { if (node_map_.find(node_def) == node_map_.end()) { continue; } const NodeState& nodestate = node_map_.at(node_def); NodeExecStats* node_stats = device_stepstats->add_node_stats(); uint64 total_output_size = 0; uint64_t persistent_output_size = 0; for (int slot = 0, slot_end = nodestate.output_properties.size(); slot < slot_end; slot++) { const auto& properties = nodestate.output_properties[slot]; NodeOutput* no = node_stats->add_output(); no->set_slot(slot); TensorDescription* tensor_descr = no->mutable_tensor_description(); tensor_descr->set_dtype(properties.dtype()); *tensor_descr->mutable_shape() = properties.shape(); const int64_t tensor_size_requested = CalculateOutputSize(nodestate.output_properties, slot); const int64_t tensor_size_allocated = GetOrCalculateOutputSize(nodestate, slot); total_output_size += tensor_size_allocated; if (nodestate.node_costs.persistent_output_ports.contains(slot)) { persistent_output_size += tensor_size_allocated; } tensor_descr->mutable_allocation_description()->set_requested_bytes( tensor_size_requested); tensor_descr->mutable_allocation_description()->set_allocated_bytes( tensor_size_allocated); } if (node_def->op() != "HloGenericOp") { node_stats->set_timeline_label(node_def->op()); } else { string timeline_label; if (node_def->attr().count("hlo_opcode") > 0) { absl::StrAppend(&timeline_label, node_def->attr().at("hlo_opcode").s()); } if (node_def->attr().count("_hlo_metadata_op_type") > 0) { absl::StrAppend(&timeline_label, "/", node_def->attr().at("_hlo_metadata_op_type").s()); } node_stats->set_timeline_label(timeline_label); } node_stats->set_node_name(node_def->name()); node_stats->set_op_start_rel_micros(0); node_stats->set_all_start_micros( nodestate.time_scheduled.asMicroSeconds().count()); node_stats->set_op_end_rel_micros( nodestate.time_finished.asMicroSeconds().count() - nodestate.time_scheduled.asMicroSeconds().count()); node_stats->set_all_end_rel_micros( nodestate.time_finished.asMicroSeconds().count() - nodestate.time_scheduled.asMicroSeconds().count()); node_stats->set_op_start_rel_nanos(0); node_stats->set_all_start_nanos(nodestate.time_scheduled.count()); node_stats->set_op_end_rel_nanos(nodestate.time_finished.count() - nodestate.time_scheduled.count()); node_stats->set_all_end_rel_nanos(nodestate.time_finished.count() - nodestate.time_scheduled.count()); auto* mem_stats = node_stats->mutable_memory_stats(); mem_stats->set_temp_memory_size(0); int64_t persistent_memory_size = 0; if (IsPersistent(*node_def)) { persistent_memory_size = total_output_size; } else { persistent_memory_size = persistent_output_size; } mem_stats->set_persistent_memory_size(persistent_memory_size); *device_partition_graph->add_node() = *node_def; } } } const std::unordered_map<string, int64_t> SchedulerState::GetPeakMemoryUsage() const { std::unordered_map<string, int64_t> result; for (const auto& device : device_) { const string& name = device.first; const DeviceState& state = device.second; result[name] = state.max_memory_usage; } return result; } const std::unordered_map<string, int64_t> SchedulerState::GetPersistentMemoryUsage() const { std::unordered_map<string, int64_t> result; for (const auto& device : device_) { const string& name = device.first; const DeviceState& state = device.second; int64_t persistent_memory_usage = 0; for (const auto& node_port : state.persistent_nodes) { const auto* node = node_port.first; const auto port = node_port.second; const auto& node_state = node_map_.at(node); persistent_memory_usage += GetOrCalculateOutputSize(node_state, port); } result[name] = persistent_memory_usage; } return result; } void SchedulerState::SetNodeStateTimeScheduled(const NodeDef* node) { auto& node_state = node_map_.at(node); auto& device = device_[node_state.device_name]; node_state.time_scheduled = device.GetCurrTime(); } int64_t SchedulerState::GetOrCalculateOutputSize(const NodeState& node_state, int port_num) const { auto& node_costs = node_state.node_costs; auto it = node_costs.output_tensor_size_bytes.find(port_num); if (it != node_costs.output_tensor_size_bytes.end()) { return it->second; } return CalculateOutputSize(node_state.output_properties, port_num); } VirtualScheduler::~VirtualScheduler() {} VirtualScheduler::VirtualScheduler(const bool use_static_shapes, const bool use_aggressive_shape_inference, Cluster* cluster, ReadyNodeManager* ready_nodes, std::unique_ptr<VirtualPlacer> placer) : scheduler_state_(std::make_unique<SchedulerState>( use_static_shapes, use_aggressive_shape_inference, cluster, std::move(placer))), ready_nodes_(ready_nodes) {} VirtualScheduler::VirtualScheduler( ReadyNodeManager* ready_nodes, std::unique_ptr<SchedulerState> scheduler_state) : scheduler_state_(std::move(scheduler_state)), ready_nodes_(ready_nodes) {} Status VirtualScheduler::Init(const GrapplerItem* item) { TF_RETURN_IF_ERROR(ready_nodes_->Init(GetNodeStates())); std::vector<const NodeDef*> initial_nodes; auto status = scheduler_state_->Init(item, &initial_nodes); if (status.ok()) { for (auto node : initial_nodes) { ready_nodes_->AddNode(node); } } return status; } OpContext VirtualScheduler::GetCurrNode() { const NodeDef* node = ready_nodes_->GetCurrNode(); return scheduler_state_->CreateOpContext(node); } bool VirtualScheduler::MarkCurrNodeExecuted(const Costs& node_costs) { const NodeDef* node = ready_nodes_->GetCurrNode(); auto new_nodes = scheduler_state_->MarkNodeExecuted( node, node_costs, scheduler_state_->CreateOpContext(ready_nodes_->GetCurrNode())); for (auto node : new_nodes) { ready_nodes_->AddNode(node); } ready_nodes_->RemoveCurrNode(); return !ready_nodes_->Empty(); } } }
#include "tensorflow/core/grappler/costs/virtual_scheduler.h" #include <algorithm> #include <cstdint> #include <string> #include "absl/strings/match.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/allocation_description.pb.h" #include "tensorflow/core/framework/tensor_description.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/costs/utils.h" #include "tensorflow/core/grappler/costs/virtual_placer.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { constexpr char kCPU0[] = "/job:localhost/replica:0/task:0/cpu:0"; constexpr char kCPU1[] = "/job:localhost/replica:0/task:0/cpu:1"; constexpr char kChannelFrom0To1[] = "Channel from CPU0 to CPU1"; constexpr char kChannelFrom1To0[] = "Channel from CPU1 to CPU0"; constexpr char kConv2D[] = "Conv2D"; constexpr char kSend[] = "_Send"; constexpr char kRecv[] = "_Recv"; class ReadyNodeManagerTest : public ::testing::Test { protected: ReadyNodeManagerTest() { NodeSetUp("Node1", kConv2D, kCPU0, 6000, &node1_); NodeSetUp("Node2", kConv2D, kCPU0, 5000, &node2_); NodeSetUp("Node3", kConv2D, kCPU0, 4000, &node3_); NodeSetUp("Node4", kConv2D, kCPU0, 3000, &node4_); NodeSetUp("Node5", kConv2D, kCPU0, 2000, &node5_); NodeSetUp("Node6", kConv2D, kCPU0, 1000, &node6_); } void NodeSetUp(const string& name, const string& op_name, const string& device_name, const uint64 time_ready, NodeDef* node) { node->set_name(name); node->set_op(op_name); node->set_device(device_name); node_states_[node] = NodeState(); node_states_[node].time_ready = time_ready; node_states_[node].device_name = device_name; } NodeDef node1_, node2_, node3_, node4_, node5_, node6_; std::unordered_map<const NodeDef*, NodeState> node_states_; }; TEST_F(ReadyNodeManagerTest, GetSingleNodeFIFOManager) { FIFOManager manager = FIFOManager(); manager.AddNode(&node1_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); } TEST_F(ReadyNodeManagerTest, RemoveSingleNodeFIFOManager) { FIFOManager manager = FIFOManager(); manager.AddNode(&node1_); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, GetAndRemoveMultipleFIFOManager) { FIFOManager manager = FIFOManager(); manager.AddNode(&node1_); manager.AddNode(&node2_); manager.AddNode(&node3_); manager.AddNode(&node4_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, AddAndRemoveMultipleFIFOManager) { FIFOManager manager = FIFOManager(); manager.AddNode(&node1_); manager.AddNode(&node2_); manager.AddNode(&node3_); manager.AddNode(&node4_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.AddNode(&node5_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.AddNode(&node6_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node5"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node6"); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, GetSingleNodeLIFOManager) { LIFOManager manager = LIFOManager(); manager.AddNode(&node1_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); } TEST_F(ReadyNodeManagerTest, RemoveSingleNodeLIFOManager) { LIFOManager manager = LIFOManager(); manager.AddNode(&node1_); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, GetAndRemoveMultipleLIFOManager) { LIFOManager manager = LIFOManager(); manager.AddNode(&node1_); manager.AddNode(&node2_); manager.AddNode(&node3_); manager.AddNode(&node4_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, AddAndRemoveMultipleLIFOManager) { LIFOManager manager = LIFOManager(); manager.AddNode(&node1_); manager.AddNode(&node2_); manager.AddNode(&node3_); manager.AddNode(&node4_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.AddNode(&node5_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node5"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.AddNode(&node6_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node6"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, MergeOrderInLIFOManager) { LIFOManager manager = LIFOManager(); node3_.set_op("Merge"); manager.AddNode(&node1_); manager.AddNode(&node2_); manager.AddNode(&node3_); manager.AddNode(&node4_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.RemoveCurrNode(); } TEST_F(ReadyNodeManagerTest, GetSingleNodeFirstReadyManager) { FirstReadyManager manager; TF_EXPECT_OK(manager.Init(&node_states_)); manager.AddNode(&node1_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); } TEST_F(ReadyNodeManagerTest, RemoveSingleNodeFirstReadyManager) { FirstReadyManager manager; TF_EXPECT_OK(manager.Init(&node_states_)); manager.AddNode(&node1_); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, GetAndRemoveMultipleFirstReadyManager) { FirstReadyManager manager; TF_EXPECT_OK(manager.Init(&node_states_)); manager.AddNode(&node2_); manager.AddNode(&node1_); manager.AddNode(&node4_); manager.AddNode(&node5_); manager.AddNode(&node3_); manager.AddNode(&node6_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node6"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node5"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, GetCurrNodeFirstReadyManager) { FirstReadyManager manager; TF_EXPECT_OK(manager.Init(&node_states_)); manager.AddNode(&node2_); manager.AddNode(&node1_); manager.AddNode(&node4_); manager.AddNode(&node5_); manager.AddNode(&node3_); manager.AddNode(&node6_); EXPECT_EQ("Node6", manager.GetCurrNode()->name()); NodeDef node7; NodeDef node8; NodeDef node9; NodeSetUp("Node7", kConv2D, kCPU0, 5, &node7); NodeSetUp("Node8", kConv2D, kCPU0, 4, &node8); NodeSetUp("Node9", kConv2D, kCPU0, 3, &node9); manager.AddNode(&node7); EXPECT_EQ(manager.GetCurrNode()->name(), "Node6"); manager.AddNode(&node8); EXPECT_EQ(manager.GetCurrNode()->name(), "Node6"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node8"); manager.AddNode(&node9); EXPECT_EQ(manager.GetCurrNode()->name(), "Node8"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node9"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node7"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node5"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, DeterminismInFirstReadyManager) { FirstReadyManager manager1; TF_EXPECT_OK(manager1.Init(&node_states_)); FirstReadyManager manager2; TF_EXPECT_OK(manager2.Init(&node_states_)); NodeDef node7; NodeDef node8; NodeDef node9; NodeDef node10; NodeDef node11; NodeDef node12; NodeSetUp("Node7", kConv2D, kCPU0, 1000, &node7); NodeSetUp("Node8", kConv2D, kCPU0, 1000, &node8); NodeSetUp("Node9", kConv2D, kCPU0, 1000, &node9); NodeSetUp("Node10", kConv2D, kCPU0, 1000, &node10); NodeSetUp("Node11", kConv2D, kCPU0, 1000, &node11); NodeSetUp("Node12", kConv2D, kCPU0, 1000, &node12); manager1.AddNode(&node7); manager1.AddNode(&node8); manager1.AddNode(&node9); manager1.AddNode(&node10); manager1.AddNode(&node11); manager1.AddNode(&node12); manager2.AddNode(&node8); manager2.AddNode(&node11); manager2.AddNode(&node9); manager2.AddNode(&node10); manager2.AddNode(&node7); manager2.AddNode(&node12); EXPECT_EQ(manager1.GetCurrNode()->name(), manager2.GetCurrNode()->name()); manager1.RemoveCurrNode(); manager2.RemoveCurrNode(); EXPECT_EQ(manager1.GetCurrNode()->name(), manager2.GetCurrNode()->name()); manager1.RemoveCurrNode(); manager2.RemoveCurrNode(); EXPECT_EQ(manager1.GetCurrNode()->name(), manager2.GetCurrNode()->name()); manager1.RemoveCurrNode(); manager2.RemoveCurrNode(); EXPECT_EQ(manager1.GetCurrNode()->name(), manager2.GetCurrNode()->name()); manager1.RemoveCurrNode(); manager2.RemoveCurrNode(); EXPECT_EQ(manager1.GetCurrNode()->name(), manager2.GetCurrNode()->name()); manager1.RemoveCurrNode(); manager2.RemoveCurrNode(); EXPECT_EQ(manager1.GetCurrNode()->name(), manager2.GetCurrNode()->name()); manager1.RemoveCurrNode(); manager2.RemoveCurrNode(); EXPECT_TRUE(manager1.Empty()); EXPECT_TRUE(manager2.Empty()); } TEST_F(ReadyNodeManagerTest, GetAndRemoveMultiplePriorityReadyManager) { PriorityReadyManager manager; TF_EXPECT_OK(manager.Init(&node_states_)); std::unordered_map<string, int> node_priority = { {"Node1", 1}, {"Node2", 2}, {"Node3", 2}, {"Node4", 4}, {"Node5", 5}}; TF_EXPECT_OK(manager.SetPriority(node_priority)); manager.AddNode(&node3_); manager.AddNode(&node1_); manager.AddNode(&node4_); manager.AddNode(&node5_); manager.AddNode(&node2_); manager.AddNode(&node6_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node6"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node5"); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, RemoveSingleNodeCompositeNodeManager) { CompositeNodeManager manager; TF_EXPECT_OK(manager.Init(&node_states_)); manager.AddNode(&node1_); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, GetAndRemoveMultipleCompositeNodeManager) { CompositeNodeManager manager; TF_EXPECT_OK(manager.Init(&node_states_)); manager.AddNode(&node1_); manager.AddNode(&node2_); manager.AddNode(&node3_); manager.AddNode(&node4_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.AddNode(&node5_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node5"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.AddNode(&node6_); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node6"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, MultiDeviceSendRecvCompositeNodeManager) { CompositeNodeManager manager; TF_EXPECT_OK(manager.Init(&node_states_)); NodeDef node7; NodeDef node8; NodeDef node9; NodeSetUp("Node7", kConv2D, kCPU1, 1001, &node7); NodeSetUp("Node8", kConv2D, kCPU1, 2001, &node8); NodeSetUp("Node9", kConv2D, kCPU1, 3001, &node9); NodeDef send1; NodeDef send2; NodeDef recv1; NodeDef recv2; NodeSetUp("Send1", kSend, kChannelFrom0To1, 2002, &send1); NodeSetUp("Send2", kSend, kChannelFrom1To0, 2005, &send2); NodeSetUp("Recv1", kRecv, kCPU0, 2003, &recv1); NodeSetUp("Recv2", kRecv, kCPU1, 2004, &recv2); manager.AddNode(&node1_); manager.AddNode(&node2_); manager.AddNode(&node3_); manager.AddNode(&node4_); manager.AddNode(&node5_); manager.AddNode(&node6_); manager.AddNode(&node7); manager.AddNode(&node8); manager.AddNode(&node9); manager.AddNode(&send1); manager.AddNode(&send2); manager.AddNode(&recv1); manager.AddNode(&recv2); EXPECT_EQ(manager.GetCurrNode()->name(), "Node6"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node5"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Send1"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Recv1"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Recv2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Send2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node4"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node9"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node8"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node7"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node3"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node2"); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node1"); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } TEST_F(ReadyNodeManagerTest, DeterminismInCompositeNodeManager) { CompositeNodeManager manager; TF_EXPECT_OK(manager.Init(&node_states_)); CompositeNodeManager manager2; TF_EXPECT_OK(manager2.Init(&node_states_)); NodeDef node7; NodeDef node8; NodeDef node9; NodeDef node10; NodeDef node11; NodeDef node12; NodeSetUp("Node7", kConv2D, kCPU0, 1000, &node7); NodeSetUp("Node8", kSend, kCPU0, 1000, &node8); NodeSetUp("Node9", kRecv, kCPU0, 1000, &node9); NodeSetUp("Node10", kConv2D, kCPU0, 999, &node10); NodeSetUp("Node11", kRecv, kCPU0, 999, &node11); NodeSetUp("Node12", kConv2D, kCPU1, 1000, &node12); manager.AddNode(&node7); manager.AddNode(&node8); manager.AddNode(&node9); EXPECT_EQ(manager.GetCurrNode()->name(), "Node8"); EXPECT_EQ(manager.GetCurrNode()->op(), kSend); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node9"); EXPECT_EQ(manager.GetCurrNode()->op(), kRecv); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node7"); EXPECT_EQ(manager.GetCurrNode()->op(), kConv2D); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); manager.AddNode(&node9); manager.AddNode(&node8); manager.AddNode(&node7); EXPECT_EQ(manager.GetCurrNode()->name(), "Node8"); EXPECT_EQ(manager.GetCurrNode()->op(), kSend); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node9"); EXPECT_EQ(manager.GetCurrNode()->op(), kRecv); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node7"); EXPECT_EQ(manager.GetCurrNode()->op(), kConv2D); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); manager.AddNode(&node8); manager.AddNode(&node10); EXPECT_EQ(manager.GetCurrNode()->name(), "Node10"); EXPECT_EQ(manager.GetCurrNode()->op(), kConv2D); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node8"); EXPECT_EQ(manager.GetCurrNode()->op(), kSend); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); manager.AddNode(&node11); manager.AddNode(&node8); EXPECT_EQ(manager.GetCurrNode()->name(), "Node11"); EXPECT_EQ(manager.GetCurrNode()->op(), kRecv); manager.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), "Node8"); EXPECT_EQ(manager.GetCurrNode()->op(), kSend); manager.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); manager.AddNode(&node7); manager.AddNode(&node12); manager2.AddNode(&node12); manager2.AddNode(&node7); EXPECT_EQ(manager.GetCurrNode()->name(), manager2.GetCurrNode()->name()); manager.RemoveCurrNode(); manager2.RemoveCurrNode(); EXPECT_EQ(manager.GetCurrNode()->name(), manager2.GetCurrNode()->name()); manager.RemoveCurrNode(); manager2.RemoveCurrNode(); EXPECT_TRUE(manager.Empty()); } class TestVirtualScheduler : public VirtualScheduler { public: TestVirtualScheduler(const bool use_static_shapes, const bool use_aggressive_shape_inference, ReadyNodeManager* ready_node_manager, Cluster* cluster) : VirtualScheduler( use_static_shapes, use_aggressive_shape_inference, cluster, ready_node_manager, std::make_unique<VirtualPlacer>(cluster->GetDevices())) { enable_mem_usage_tracking(); } FRIEND_TEST(VirtualSchedulerTest, MemoryUsage); FRIEND_TEST(VirtualSchedulerTest, ControlDependency); FRIEND_TEST(VirtualSchedulerTest, ComplexDependency); FRIEND_TEST(VirtualSchedulerTest, Variable); FRIEND_TEST(VirtualSchedulerTest, InterDeviceTransfer); }; class VirtualSchedulerTest : public ::testing::Test { protected: VirtualSchedulerTest() { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device = GetDummyCPUDevice(); devices[kCPU0] = cpu_device; devices[kCPU1] = cpu_device; cluster_ = std::make_unique<VirtualCluster>(devices); scheduler_ = std::make_unique<TestVirtualScheduler>( true, true, &first_ready_manager_, cluster_.get()); } DeviceProperties GetDummyCPUDevice() { DeviceProperties cpu_device; cpu_device.set_type("CPU"); cpu_device.set_frequency(4000); cpu_device.set_num_cores(2); cpu_device.set_bandwidth(2000000); return cpu_device; } void CreateGrapplerItemWithConv2Ds() { Scope s = Scope::NewRootScope().WithDevice(kCPU0); auto x = ops::RandomUniform( s.WithOpName("x"), {batch_size_, width_, height_, depth_in_}, DT_FLOAT); auto y = ops::RandomUniform( s.WithOpName("y"), {batch_size_, width_, height_, depth_in_}, DT_FLOAT); auto z = ops::RandomUniform( s.WithOpName("z"), {batch_size_, width_, height_, depth_in_}, DT_FLOAT); auto f = ops::RandomUniform( s.WithOpName("f"), {kernel_, kernel_, depth_in_, depth_out_}, DT_FLOAT); std::vector<int> strides = {1, 1, 1, 1}; auto c0 = ops::Conv2D(s.WithOpName("c0"), x, f, strides, "SAME"); auto c1 = ops::Conv2D(s.WithOpName("c1"), y, f, strides, "SAME"); auto c2 = ops::Conv2D(s.WithOpName("c2"), z, f, strides, "SAME"); grappler_item_ = std::make_unique<GrapplerItem>(); TF_CHECK_OK(s.ToGraphDef(&grappler_item_->graph)); grappler_item_->id = "test_conv2d_graph"; grappler_item_->fetch = {"c0", "c1"}; dependency_["c0"] = {"x", "f"}; dependency_["c1"] = {"y", "f"}; } void CreateGrapplerItemWithConv2DAndVariable() { Scope s = Scope::NewRootScope().WithDevice(kCPU0); auto x = ops::RandomUniform( s.WithOpName("x"), {batch_size_, width_, height_, depth_in_}, DT_FLOAT); auto f = ops::Variable(s.WithOpName("f"), {kernel_, kernel_, depth_in_, depth_out_}, DT_FLOAT); std::vector<int> strides = {1, 1, 1, 1}; auto y = ops::Conv2D(s.WithOpName("y"), x, f, strides, "SAME"); grappler_item_ = std::make_unique<GrapplerItem>(); TF_CHECK_OK(s.ToGraphDef(&grappler_item_->graph)); grappler_item_->id = "test_conv2d_var_graph"; grappler_item_->fetch = {"y"}; dependency_["y"] = {"x", "f"}; } void CreateGrapplerItemWithMatmulChain() { Scope s = Scope::NewRootScope().WithDevice(kCPU0); auto a = ops::RandomUniform(s.WithOpName("a"), {3200, 3200}, DT_FLOAT); auto b = ops::RandomUniform(s.WithOpName("b").WithControlDependencies(a), {3200, 3200}, DT_FLOAT); auto c = ops::RandomUniform(s.WithOpName("c").WithControlDependencies(b), {3200, 3200}, DT_FLOAT); auto d = ops::RandomUniform(s.WithOpName("d").WithControlDependencies(c), {3200, 3200}, DT_FLOAT); auto e = ops::RandomUniform(s.WithOpName("e").WithControlDependencies(d), {3200, 3200}, DT_FLOAT); auto ab = ops::MatMul(s.WithOpName("ab").WithControlDependencies(e), a, b); auto abc = ops::MatMul(s.WithOpName("abc"), ab, c); auto abcd = ops::MatMul(s.WithOpName("abcd"), abc, d); auto abcde = ops::MatMul(s.WithOpName("abcde"), abcd, e); grappler_item_ = std::make_unique<GrapplerItem>(); TF_CHECK_OK(s.ToGraphDef(&grappler_item_->graph)); grappler_item_->id = "test_matmul_sequence_graph"; grappler_item_->fetch = {"abcde"}; dependency_["ab"] = {"a", "b"}; dependency_["abc"] = {"ab", "c"}; dependency_["abcd"] = {"abc", "d"}; dependency_["abcde"] = {"abcd", "e"}; } void CreateGrapplerItemWithAddN() { Scope s = Scope::NewRootScope().WithDevice(kCPU0); auto x = ops::RandomUniform(s.WithOpName("x"), {10, 10, 10, 10}, DT_FLOAT); auto y = ops::RandomUniform(s.WithOpName("y"), {10, 10, 10, 10}, DT_FLOAT); auto z = ops::RandomUniform(s.WithOpName("z"), {10, 10, 10, 10}, DT_FLOAT); auto w = ops::RandomUniform(s.WithOpName("w"), {10, 10, 10, 10}, DT_FLOAT); OutputList input_tensors = {x, y, z, w}; auto add = ops::AddN(s.WithOpName("add"), input_tensors); auto out = ops::Identity(s.WithOpName("out"), add); grappler_item_ = std::make_unique<GrapplerItem>(); TF_CHECK_OK(s.ToGraphDef(&grappler_item_->graph)); grappler_item_->id = "test_addn_graph"; grappler_item_->fetch = {"out"}; dependency_["out"] = {"x", "y", "z", "w", "add"}; } void CreateGrapplerItemWithUnnecessaryPlaceholderNodes() { Scope s = Scope::NewRootScope().WithDevice(kCPU0); auto unnecessary = ops::Placeholder(s.WithOpName("unnecessary"), DT_FLOAT); auto x = ops::Placeholder(s.WithOpName("x"), DT_FLOAT); grappler_item_ = std::make_unique<GrapplerItem>(); TF_CHECK_OK(s.ToGraphDef(&grappler_item_->graph)); grappler_item_->id = "test_extra_placeholders"; grappler_item_->fetch = {"x"}; grappler_item_->feed = {{"x", Tensor()}, {"unnecessary", Tensor()}}; } void CreateGrapplerItemWithControlDependency() { Scope s = Scope::NewRootScope().WithDevice(kCPU0); std::vector<string> input_noop_names = {"x", "y", "z", "w", "u", "v", "t"}; std::vector<Operation> input_tensors; for (const auto& input : input_noop_names) { auto x = ops::NoOp(s.WithOpName(input)); input_tensors.push_back(x.operation); } auto out = ops::NoOp(s.WithControlDependencies(input_tensors).WithOpName("out")); grappler_item_ = std::make_unique<GrapplerItem>(); TF_CHECK_OK(s.ToGraphDef(&grappler_item_->graph)); grappler_item_->id = "test_control_dependency_graph"; grappler_item_->fetch = {"out"}; dependency_["out"] = input_noop_names; } void CreateGrapplerItemWithAddFromOneTensor() { Scope s = Scope::NewRootScope().WithDevice(kCPU0); auto x = tensorflow::ops::RandomUniform( s.WithOpName("x"), {batch_size_, width_, height_, depth_in_}, DT_FLOAT); auto y = tensorflow::ops::Add(s.WithOpName("y"), x, x); Output fetch = ops::Identity(s.WithOpName("fetch"), y); grappler_item_ = std::make_unique<GrapplerItem>(); TF_CHECK_OK(s.ToGraphDef(&grappler_item_->graph)); grappler_item_->id = "test_add_from_one_tensor"; grappler_item_->fetch = {"fetch"}; dependency_["fetch"] = {"y"}; dependency_["y"] = {"x"}; } void CreateGrapplerItemWithSwitchMergeInput() { Scope s = Scope::NewRootScope().WithDevice(kCPU0); auto x = ops::RandomUniform( s.WithOpName("x"), {batch_size_, width_, height_, depth_in_}, DT_FLOAT); auto pred = ops::Const(s.WithOpName("pred"), false, {}); auto sw = ops::Switch(s.WithOpName("switch"), x, pred); auto b = ops::RandomUniform( s.WithOpName("b"), {batch_size_, width_, height_, depth_in_}, DT_FLOAT); auto a = ops::Add(s.WithOpName("a"), sw.output_true, b); auto m = ops::Merge(s.WithOpName("m"), {sw.output_false, a.z}); auto z = ops::RandomUniform( s.WithOpName("z"), {batch_size_, width_, height_, depth_in_}, DT_FLOAT); auto y = ops::Add(s.WithOpName("y"), m.output, z); grappler_item_ = std::make_unique<GrapplerItem>(); TF_CHECK_OK(s.ToGraphDef(&grappler_item_->graph)); grappler_item_->id = "test_add_merge_switch"; grappler_item_->fetch = {"y"}; dependency_["y"] = {"m", "z"}; } void CreateGrapplerItemWithBatchNorm() { Scope s = Scope::NewRootScope().WithDevice(kCPU0); auto x = ops::RandomUniform( s.WithOpName("x"), {batch_size_, width_, height_, depth_in_}, DT_FLOAT); auto scale = ops::RandomUniform(s.WithOpName("scale"), {depth_in_}, DT_FLOAT); auto offset = ops::RandomUniform(s.WithOpName("offset"), {depth_in_}, DT_FLOAT); auto mean = ops::RandomUniform(s.WithOpName("mean"), {0}, DT_FLOAT); auto var = ops::RandomUniform(s.WithOpName("var"), {0}, DT_FLOAT); auto batch_norm = ops::FusedBatchNorm( s.WithOpName("bn"), x, scale, offset, mean, var, ops::FusedBatchNorm::IsTraining(true).Epsilon(0.1f)); auto y = batch_norm.y; auto batch_mean = batch_norm.batch_mean; auto batch_var = batch_norm.batch_variance; auto z1 = ops::Add(s.WithOpName("z1"), x, y); auto z2 = ops::Add(s.WithOpName("z2"), batch_var, batch_var); auto z3 = ops::Add(s.WithOpName("z3"), batch_var, batch_var); std::vector<Operation> input_tensors = { batch_mean.op(), z1.z.op(), z2.z.op(), z3.z.op(), }; auto z4 = ops::NoOp(s.WithControlDependencies(batch_var).WithOpName("z4")); grappler_item_ = std::make_unique<GrapplerItem>(); TF_CHECK_OK(s.ToGraphDef(&grappler_item_->graph)); grappler_item_->id = "test_complex_dependency_graph"; grappler_item_->fetch = {"z1", "z2", "z3", "z4"}; dependency_["bn"] = {"x", "scale", "offset", "mean", "var"}; dependency_["z1"] = {"x", "bn"}; dependency_["z2"] = {"bn"}; dependency_["z3"] = {"bn"}; dependency_["z4"] = {"bn"}; } void CreateGrapplerItemWithSendRecv() { const string gdef_ascii = R"EOF( node { name: "Const" op: "Const" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "_output_shapes" value { list { shape { dim { size: 128 } dim { size: 32 } }}} } attr { key: "shape" value { list { shape { dim { size: 128 } dim { size: 32 } }}} } attr { key: "value" value { tensor { dtype: DT_FLOAT tensor_shape { dim { size: 128 } dim { size: 32 } } float_val: 3.1415 } } } } node { name: "Send" op: "_Send" input: "Const" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "T" value { type: DT_FLOAT } } attr { key: "_output_shapes" value { list { shape { dim { size: 128 } dim { size: 32 } }}} } attr { key: "shape" value { list { shape { dim { size: 128 } dim { size: 32 } }}} } attr { key: "client_terminated" value { b: false } } attr { key: "recv_device" value { s: "/job:localhost/replica:0/task:0/device:CPU:0" } } attr { key: "send_device" value { s: "/job:localhost/replica:0/task:0/device:CPU:0" } } attr { key: "send_device_incarnation" value { i: 0 } } attr { key: "tensor_name" value { s: "test" } } } node { name: "Recv" op: "_Recv" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "client_terminated" value { b: false } } attr { key: "_output_shapes" value { list { shape { dim { size: 128 } dim { size: 32 } }}} } attr { key: "shape" value { list { shape { dim { size: 128 } dim { size: 32 } }}} } attr { key: "recv_device" value { s: "/job:localhost/replica:0/task:0/device:CPU:0" } } attr { key: "send_device" value { s: "/job:localhost/replica:0/task:0/device:CPU:0" } } attr { key: "send_device_incarnation" value { i: 0 } } attr { key: "tensor_name" value { s: "test" } } attr { key: "tensor_type" value { type: DT_FLOAT } } } library { } versions { producer: 24 } )EOF"; grappler_item_ = std::make_unique<GrapplerItem>(); CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &grappler_item_->graph)); grappler_item_->id = "test_graph"; grappler_item_->fetch = {"Recv"}; } void CreateGrapplerItemWithRecvWithoutSend() { const string gdef_ascii = R"EOF( node { name: "Recv" op: "_Recv" device: "/job:localhost/replica:0/task:0/device:CPU:0" attr { key: "client_terminated" value { b: false } } attr { key: "recv_device" value { s: "/job:localhost/replica:0/task:0/device:CPU:0" } } attr { key: "send_device" value { s: "/job:localhost/replica:0/task:0/device:CPU:0" } } attr { key: "send_device_incarnation" value { i: 0 } } attr { key: "tensor_name" value { s: "test" } } attr { key: "tensor_type" value { type: DT_FLOAT } } } library { } versions { producer: 24 } )EOF"; grappler_item_ = std::make_unique<GrapplerItem>(); CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &grappler_item_->graph)); grappler_item_->id = "test_graph"; grappler_item_->fetch = {"Recv"}; } void CreateGrapplerItemWithLoop() { const string gdef_ascii = R"EOF( node { name: "Const" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 0 } } } } node { name: "ones" op: "Const" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "value" value { tensor { dtype: DT_FLOAT tensor_shape { dim { size: 2 } dim { size: 2 } } float_val: 1.0 } } } } node { name: "while/Enter" op: "Enter" input: "Const" attr { key: "T" value { type: DT_INT32 } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 10 } } } node { name: "while/Enter_1" op: "Enter" input: "ones" attr { key: "T" value { type: DT_FLOAT } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 10 } } } node { name: "while/Merge" op: "Merge" input: "while/Enter" input: "while/NextIteration" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Merge_1" op: "Merge" input: "while/Enter_1" input: "while/NextIteration_1" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_FLOAT } } } node { name: "while/Less/y" op: "Const" input: "^while/Merge" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 10 } } } } node { name: "while/Less" op: "Less" input: "while/Merge" input: "while/Less/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/LoopCond" op: "LoopCond" input: "while/Less" } node { name: "while/Switch" op: "Switch" input: "while/Merge" input: "while/LoopCond" attr { key: "T" value { type: DT_INT32 } } attr { key: "_class" value { list { s: "loc:@while/Merge" } } } } node { name: "while/Switch_1" op: "Switch" input: "while/Merge_1" input: "while/LoopCond" attr { key: "T" value { type: DT_FLOAT } } attr { key: "_class" value { list { s: "loc:@while/Merge_1" } } } } node { name: "while/Identity" op: "Identity" input: "while/Switch:1" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Identity_1" op: "Identity" input: "while/Switch_1:1" attr { key: "T" value { type: DT_FLOAT } } } node { name: "while/add/y" op: "Const" input: "^while/Identity" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 1 } } } } node { name: "while/add" op: "Add" input: "while/Identity" input: "while/add/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/concat/axis" op: "Const" input: "^while/Identity" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 0 } } } } node { name: "while/concat" op: "ConcatV2" input: "while/Identity_1" input: "while/Identity_1" input: "while/concat/axis" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_FLOAT } } attr { key: "Tidx" value { type: DT_INT32 } } } node { name: "while/NextIteration" op: "NextIteration" input: "while/add" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/NextIteration_1" op: "NextIteration" input: "while/concat" attr { key: "T" value { type: DT_FLOAT } } } node { name: "while/Exit" op: "Exit" input: "while/Switch" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Exit_1" op: "Exit" input: "while/Switch_1" attr { key: "T" value { type: DT_FLOAT } } } versions { producer: 21 } )EOF"; grappler_item_ = std::make_unique<GrapplerItem>(); CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &grappler_item_->graph)); grappler_item_->id = "test_graph"; grappler_item_->fetch = {"while/Exit", "while/Exit_1"}; } void CreateGrapplerItemWithLoopAnnotated() { const string gdef_ascii = R"EOF( node { name: "Const" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 0 } } } attr { key: "_execution_count" value { i: 1 } } } node { name: "ones" op: "Const" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "value" value { tensor { dtype: DT_FLOAT tensor_shape { dim { size: 2 } dim { size: 2 } } float_val: 1.0 } } } attr { key: "_execution_count" value { i: 1 } } } node { name: "while/Enter" op: "Enter" input: "Const" attr { key: "T" value { type: DT_INT32 } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 10 } } attr { key: "_execution_count" value { i: 1 } } } node { name: "while/Enter_1" op: "Enter" input: "ones" attr { key: "T" value { type: DT_FLOAT } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 10 } } attr { key: "_execution_count" value { i: 1 } } } node { name: "while/Merge" op: "Merge" input: "while/Enter" input: "while/NextIteration" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_INT32 } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/Merge_1" op: "Merge" input: "while/Enter_1" input: "while/NextIteration_1" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_FLOAT } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/Less/y" op: "Const" input: "^while/Merge" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 10 } } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/Less" op: "Less" input: "while/Merge" input: "while/Less/y" attr { key: "T" value { type: DT_INT32 } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/LoopCond" op: "LoopCond" input: "while/Less" attr { key: "_execution_count" value { i: 10 } } } node { name: "while/Switch" op: "Switch" input: "while/Merge" input: "while/LoopCond" attr { key: "T" value { type: DT_INT32 } } attr { key: "_class" value { list { s: "loc:@while/Merge" } } } attr { key: "_execution_count" value { i: 11 } } attr { key: "_output_slot_vector" value { list { i: 1 i: 1 i: 1 i: 1 i: 1 i: 1 i: 1 i: 1 i: 1 i: 1 i: 0 } } } } node { name: "while/Switch_1" op: "Switch" input: "while/Merge_1" input: "while/LoopCond" attr { key: "T" value { type: DT_FLOAT } } attr { key: "_class" value { list { s: "loc:@while/Merge_1" } } } attr { key: "_execution_count" value { i: 11 } } attr { key: "_output_slot_vector" value { list { i: 1 i: 1 i: 1 i: 1 i: 1 i: 1 i: 1 i: 1 i: 1 i: 1 i: 0 } } } } node { name: "while/Identity" op: "Identity" input: "while/Switch:1" attr { key: "T" value { type: DT_INT32 } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/Identity_1" op: "Identity" input: "while/Switch_1:1" attr { key: "T" value { type: DT_FLOAT } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/add/y" op: "Const" input: "^while/Identity" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 1 } } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/add" op: "Add" input: "while/Identity" input: "while/add/y" attr { key: "T" value { type: DT_INT32 } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/concat/axis" op: "Const" input: "^while/Identity" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 0 } } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/concat" op: "ConcatV2" input: "while/Identity_1" input: "while/Identity_1" input: "while/concat/axis" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_FLOAT } } attr { key: "Tidx" value { type: DT_INT32 } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/NextIteration" op: "NextIteration" input: "while/add" attr { key: "T" value { type: DT_INT32 } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/NextIteration_1" op: "NextIteration" input: "while/concat" attr { key: "T" value { type: DT_FLOAT } } attr { key: "_execution_count" value { i: 10 } } } node { name: "while/Exit" op: "Exit" input: "while/Switch" attr { key: "T" value { type: DT_INT32 } } attr { key: "_execution_count" value { i: 1 } } } node { name: "while/Exit_1" op: "Exit" input: "while/Switch_1" attr { key: "T" value { type: DT_FLOAT } } attr { key: "_execution_count" value { i: 1 } } } versions { producer: 21 } )EOF"; grappler_item_.reset(new GrapplerItem); CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &grappler_item_->graph)); grappler_item_->id = "test_graph"; grappler_item_->fetch = {"while/Exit", "while/Exit_1"}; } void CreateGrapplerItemWithCondition() { const string gdef_ascii = R"EOF( node { name: "a" op: "Const" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "value" value { tensor { dtype: DT_FLOAT tensor_shape { } float_val: 2.0 } } } } node { name: "Less" op: "Const" attr { key: "dtype" value { type: DT_BOOL } } attr { key: "value" value { tensor { dtype: DT_BOOL tensor_shape { } tensor_content: "\001" } } } } node { name: "Switch" op: "Switch" input: "a" input: "Less" attr { key: "T" value { type: DT_FLOAT } } } node { name: "First" op: "Identity" input: "Switch" attr { key: "T" value { type: DT_FLOAT } } } node { name: "Second" op: "Identity" input: "Switch:1" attr { key: "T" value { type: DT_FLOAT } } } node { name: "Merge" op: "Merge" input: "First" input: "Second" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_FLOAT } } } versions { producer: 27 })EOF"; grappler_item_ = std::make_unique<GrapplerItem>(); CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &grappler_item_->graph)); grappler_item_->id = "test_graph"; grappler_item_->fetch = {"Merge"}; } void CreateGrapplerItemWithInterDeviceTransfers() { tensorflow::Scope s = tensorflow::Scope::NewRootScope().WithDevice(kCPU0); auto x = ops::RandomUniform( s.WithOpName("x"), {batch_size_, width_, height_, depth_in_}, DT_FLOAT); auto scale = ops::RandomUniform(s.WithOpName("scale"), {depth_in_}, DT_FLOAT); auto offset = ops::RandomUniform(s.WithOpName("offset"), {depth_in_}, DT_FLOAT); auto mean = ops::RandomUniform(s.WithOpName("mean"), {0}, DT_FLOAT); auto var = ops::RandomUniform(s.WithOpName("var"), {0}, DT_FLOAT); auto batch_norm = ops::FusedBatchNorm( s.WithOpName("bn"), x, scale, offset, mean, var, ops::FusedBatchNorm::IsTraining(true).Epsilon(0.1f)); auto y = batch_norm.y; auto batch_mean = batch_norm.batch_mean; auto batch_var = batch_norm.batch_variance; auto y1 = ops::Identity(s.WithOpName("y1").WithDevice(kCPU1), y); auto y2 = ops::Identity(s.WithOpName("y2").WithDevice(kCPU1), y); auto batch_mean1 = ops::Identity( s.WithOpName("batch_mean1").WithDevice(kCPU1), batch_mean); auto batch_var1 = ops::Identity(s.WithOpName("batch_var1").WithDevice(kCPU1), batch_var); auto control_dep = ops::NoOp(s.WithOpName("control_dep") .WithControlDependencies(y) .WithDevice(kCPU1)); grappler_item_ = std::make_unique<GrapplerItem>(); TF_CHECK_OK(s.ToGraphDef(&grappler_item_->graph)); grappler_item_->id = "test_conv2d_graph"; grappler_item_->fetch = {"y1", "y2", "batch_mean1", "batch_var1", "control_dep"}; dependency_["bn"] = {"x", "mean", "var"}; dependency_["y1"] = {"bn"}; dependency_["y2"] = {"bn"}; dependency_["batch_mean1"] = {"bn"}; dependency_["batch_var1"] = {"bn"}; dependency_["control_dep"] = {"bn"}; } void InitScheduler() { TF_ASSERT_OK(scheduler_->Init(grappler_item_.get())); } Costs SimplePredictCosts(const OpContext& op_context) const { Costs c; int64_t exec_cost = 0; if (op_context.op_info.op() == "MatMul") { exec_cost = 2000000000; } else if (op_context.op_info.op() == "RandomUniform") { exec_cost = 1000000000; } else { exec_cost = 1000; } c.execution_time = Costs::NanoSeconds(exec_cost); return c; } std::unordered_map<string, OpContext> RunScheduler( const string& target_node) { std::unordered_map<string, OpContext> ops_executed; bool more_nodes = true; do { OpContext op_context = scheduler_->GetCurrNode(); ops_executed[op_context.name] = op_context; std::cout << op_context.name << std::endl; Costs node_costs = SimplePredictCosts(op_context); auto it = dependency_.find(op_context.name); if (it != dependency_.end()) { for (const auto& preceding_node : it->second) { EXPECT_GT(ops_executed.count(preceding_node), 0); } } more_nodes = scheduler_->MarkCurrNodeExecuted(node_costs); if (op_context.name == target_node) { break; } } while (more_nodes); return ops_executed; } template <typename T> void ExpectVectorEq(const std::vector<T>& expected, const std::vector<T>& test_elements) { std::set<T> expected_set(expected.begin(), expected.end()); for (const auto& element : test_elements) { EXPECT_GT(expected_set.count(element), 0); } EXPECT_EQ(expected.size(), test_elements.size()); } void ValidateNodeDefs(const std::vector<string>& expected, const std::vector<const NodeDef*>& node_defs) { std::vector<string> node_names; std::transform(node_defs.begin(), node_defs.end(), std::back_inserter(node_names), [](const NodeDef* node) { return node->name(); }); ExpectVectorEq(expected, node_names); } template <typename T> void ExpectSetEq(const std::set<T>& expected, const std::set<T>& test_elements) { for (const auto& element : test_elements) { EXPECT_GT(expected.count(element), 0); } EXPECT_EQ(expected.size(), test_elements.size()); } template <typename T, typename U> void ExpectUnorderedMapEq(const std::unordered_map<T, U>& expected, const std::unordered_map<T, U>& test_map) { EXPECT_EQ(expected.size(), test_map.size()); for (const auto& key_val : expected) { EXPECT_GT(test_map.count(key_val.first), 0); EXPECT_EQ(test_map.at(key_val.first), key_val.second); } } void ValidateMemoryUsageSnapshot( const std::vector<string>& expected_names, const int port_num_expected, const std::unordered_set<std::pair<const NodeDef*, int>, DeviceState::NodePairHash>& mem_usage_snapshot) { std::set<std::pair<string, int>> nodes_at_peak_mem_usage; std::transform( mem_usage_snapshot.begin(), mem_usage_snapshot.end(), std::inserter(nodes_at_peak_mem_usage, nodes_at_peak_mem_usage.begin()), [](const std::pair<const NodeDef*, int>& node_port) { return std::make_pair(node_port.first->name(), node_port.second); }); std::set<std::pair<string, int>> expected; std::transform(expected_names.begin(), expected_names.end(), std::inserter(expected, expected.begin()), [port_num_expected](const string& name) { return std::make_pair(name, port_num_expected); }); ExpectSetEq(expected, nodes_at_peak_mem_usage); } void ValidateDependencyChain( const std::unordered_map<string, int64_t>& start_times, const std::vector<string>& nodes_in_dependency_order) { int64_t prev_node_time = -1; for (const auto& node : nodes_in_dependency_order) { int64_t curr_node_time = start_times.at(node); EXPECT_GE(curr_node_time, prev_node_time); prev_node_time = curr_node_time; } } std::unique_ptr<VirtualCluster> cluster_; std::unique_ptr<TestVirtualScheduler> scheduler_; FirstReadyManager first_ready_manager_; CompositeNodeManager composite_node_manager_; std::unique_ptr<GrapplerItem> grappler_item_; std::unordered_map<string, std::vector<string>> dependency_; const int batch_size_ = 4; const int width_ = 10; const int height_ = 10; const int depth_in_ = 8; const int kernel_ = 3; const int depth_out_ = 16; }; TEST_F(VirtualSchedulerTest, SummaryCostTest) { CreateGrapplerItemWithMatmulChain(); InitScheduler(); auto ops_executed = RunScheduler(""); Costs c = scheduler_->Summary(); EXPECT_EQ(13000005, c.execution_time.asMicroSeconds().count()); EXPECT_EQ(grappler_item_->graph.node_size(), c.num_ops_total); EXPECT_FALSE(c.inaccurate); EXPECT_EQ(0, c.num_ops_with_unknown_shapes); } TEST_F(VirtualSchedulerTest, SummaryCostStepStatsTest) { CreateGrapplerItemWithMatmulChain(); InitScheduler(); auto ops_executed = RunScheduler(""); RunMetadata metadata; Costs c = scheduler_->Summary(&metadata); StepStats stepstats = metadata.step_stats(); EXPECT_EQ(13000005, c.execution_time.asMicroSeconds().count()); EXPECT_EQ(grappler_item_->graph.node_size(), c.num_ops_total); EXPECT_FALSE(c.inaccurate); EXPECT_EQ(0, c.num_ops_with_unknown_shapes); EXPECT_EQ(1, stepstats.dev_stats().size()); std::map<string, std::pair<int64_t, int64_t>> start_end_times; for (const auto& device_step_stats : stepstats.dev_stats()) { for (const auto& stats : device_step_stats.node_stats()) { int64_t start = stats.all_start_micros(); int64_t end = start + stats.all_end_rel_micros(); start_end_times[stats.node_name()] = std::pair<int64_t, int64_t>(start, end); if (stats.timeline_label() == "MatMul" || stats.timeline_label() == "RandomUniform") { EXPECT_EQ(1, stats.output().size()); for (const auto& output : stats.output()) { EXPECT_EQ(DT_FLOAT, output.tensor_description().dtype()); EXPECT_EQ(2, output.tensor_description().shape().dim().size()); for (const auto& dim : output.tensor_description().shape().dim()) { EXPECT_EQ(3200, dim.size()); } } } } } int64_t cur_time = static_cast<int64_t>(5000005); int64_t increment = static_cast<int64_t>(2000000); auto op_names = {"ab", "abc", "abcd", "abcde"}; for (const auto& op_name : op_names) { int64_t actual_start = start_end_times[op_name].first; int64_t actual_end = start_end_times[op_name].second; int64_t expected_start = cur_time; int64_t expected_end = cur_time + increment; EXPECT_EQ(expected_start, actual_start); EXPECT_EQ(expected_end, actual_end); cur_time += increment; } } TEST_F(VirtualSchedulerTest, InitAndBasicScheduling) { CreateGrapplerItemWithConv2Ds(); InitScheduler(); auto ops_executed = RunScheduler(""); EXPECT_EQ(8, ops_executed.size()); EXPECT_GT(ops_executed.count("x"), 0); EXPECT_GT(ops_executed.count("y"), 0); EXPECT_GT(ops_executed.count("f"), 0); EXPECT_GT(ops_executed.count("c0"), 0); EXPECT_GT(ops_executed.count("c1"), 0); EXPECT_EQ(ops_executed.count("z"), 0); EXPECT_EQ(ops_executed.count("c2"), 0); EXPECT_EQ(1, ops_executed["x"].op_info.outputs_size()); EXPECT_EQ(1, ops_executed["y"].op_info.outputs_size()); EXPECT_EQ(1, ops_executed["f"].op_info.outputs_size()); EXPECT_EQ(2, ops_executed["c0"].op_info.inputs_size()); EXPECT_EQ(2, ops_executed["c1"].op_info.inputs_size()); } TEST_F(VirtualSchedulerTest, MemoryUsage) { CreateGrapplerItemWithAddN(); InitScheduler(); RunScheduler(""); const auto* device_states = scheduler_->GetDeviceStates(); const auto& cpu_state = device_states->at(kCPU0); int64_t one_input_node_size = 4 * 10 * 10 * 10 * 10; const std::vector<string> expected_names = {"x", "y", "z", "w", "add"}; EXPECT_EQ(expected_names.size() * one_input_node_size, cpu_state.max_memory_usage); ValidateMemoryUsageSnapshot(expected_names, 0 , cpu_state.mem_usage_snapshot_at_peak); ASSERT_EQ(cpu_state.temporary_memory_usage_trace.size(), 10); const std::pair<std::string, int64_t>& x_usage = cpu_state.temporary_memory_usage_trace.at(4); EXPECT_EQ(x_usage.first, "x"); EXPECT_EQ(x_usage.second, one_input_node_size); const std::pair<std::string, int64_t>& add_usage = cpu_state.temporary_memory_usage_trace.at(8); EXPECT_EQ(add_usage.first, "add"); EXPECT_EQ(add_usage.second, 5 * one_input_node_size); const std::pair<std::string, int64_t>& out_usage = cpu_state.temporary_memory_usage_trace.at(9); EXPECT_EQ(out_usage.first, "out"); EXPECT_EQ(out_usage.second, one_input_node_size); ExpectUnorderedMapEq( {std::make_pair("/job:localhost/replica:0/task:0/cpu:0", 64)}, scheduler_->GetPersistentMemoryUsage()); ExpectUnorderedMapEq( {std::make_pair("/job:localhost/replica:0/task:0/cpu:0", 200000)}, scheduler_->GetPeakMemoryUsage()); } TEST_F(VirtualSchedulerTest, MemoryUsageForStreamingOps) { CreateGrapplerItemWithAddN(); auto& graph = grappler_item_->graph; for (auto& node : *graph.mutable_node()) { if (node.name() == "out" || node.name() == "add") { node.set_device(kCPU1); } if (node.name() == "z" || node.name() == "w") (*node.mutable_attr())[kStreaming].mutable_list()->add_b(true); } InitScheduler(); auto ops_executed = RunScheduler(""); const auto* device_states = scheduler_->GetDeviceStates(); const auto& cpu_state_0 = device_states->at(kCPU0); const auto& cpu_state_1 = device_states->at(kCPU1); int64_t one_input_node_size = 4 * 10 * 10 * 10 * 10; const std::vector<string> cpu_0_expected_tensors = {"x", "y"}; const std::vector<string> cpu_1_expected_tensors = {"x", "y", "add"}; EXPECT_EQ(cpu_0_expected_tensors.size() * one_input_node_size, cpu_state_0.max_memory_usage); EXPECT_EQ(cpu_1_expected_tensors.size() * one_input_node_size, cpu_state_1.max_memory_usage); EXPECT_EQ(cpu_state_0.memory_usage, 0); EXPECT_EQ(cpu_state_1.memory_usage, 0); } TEST_F(VirtualSchedulerTest, MemoryUsageWithExecutionCount) { CreateGrapplerItemWithAddN(); auto& graph = grappler_item_->graph; for (auto& node : *graph.mutable_node()) { (*node.mutable_attr())[kExecutionCount].set_i(10000); } InitScheduler(); auto ops_executed = RunScheduler(""); const auto* device_states = scheduler_->GetDeviceStates(); const auto& cpu_state_0 = device_states->at(kCPU0); int64_t one_input_node_size = 4 * 10 * 10 * 10 * 10; const std::vector<string> expected_names = {"x", "y", "z", "w", "add"}; EXPECT_EQ(expected_names.size() * one_input_node_size, cpu_state_0.max_memory_usage); EXPECT_EQ(cpu_state_0.memory_usage, 0); Costs c = scheduler_->Summary(); EXPECT_EQ(64, c.persistent_memory); EXPECT_EQ(200000, c.temporary_memory); EXPECT_EQ(200064, c.max_memory); } TEST_F(VirtualSchedulerTest, UnnecessaryFeedNodes) { CreateGrapplerItemWithUnnecessaryPlaceholderNodes(); InitScheduler(); auto ops_executed = RunScheduler(""); ASSERT_EQ(1, ops_executed.size()); ASSERT_EQ(ops_executed.count("x"), 1); } TEST_F(VirtualSchedulerTest, ControlDependency) { CreateGrapplerItemWithControlDependency(); InitScheduler(); RunScheduler(""); const auto* device_states = scheduler_->GetDeviceStates(); const auto& cpu_state = device_states->at(kCPU0); int64_t one_input_node_size = 4; const std::vector<string> expected_names = {"x", "y", "z", "w", "u", "v", "t"}; EXPECT_EQ(expected_names.size() * one_input_node_size, cpu_state.max_memory_usage); ValidateMemoryUsageSnapshot(expected_names, -1 , cpu_state.mem_usage_snapshot_at_peak); ExpectUnorderedMapEq( {std::make_pair("/job:localhost/replica:0/task:0/cpu:0", 0)}, scheduler_->GetPersistentMemoryUsage()); ExpectUnorderedMapEq( {std::make_pair("/job:localhost/replica:0/task:0/cpu:0", 28)}, scheduler_->GetPeakMemoryUsage()); } TEST_F(VirtualSchedulerTest, ComplexDependency) { CreateGrapplerItemWithBatchNorm(); InitScheduler(); RunScheduler("bn"); const auto& device_states = scheduler_->GetDeviceStates(); const auto& cpu_state = device_states->at(kCPU0); const int x_size = batch_size_ * width_ * height_ * depth_in_; int64_t expected_size = 4 * (2 * x_size + depth_in_ + 1 ); EXPECT_EQ(expected_size, cpu_state.memory_usage); std::set<std::pair<string, int>> nodes_in_memory; std::transform( cpu_state.nodes_in_memory.begin(), cpu_state.nodes_in_memory.end(), std::inserter(nodes_in_memory, nodes_in_memory.begin()), [](const std::pair<const NodeDef*, int>& node_port) { return std::make_pair(node_port.first->name(), node_port.second); }); std::set<std::pair<string, int>> expected = { std::make_pair("bn", -1), std::make_pair("bn", 0), std::make_pair("bn", 2), std::make_pair("x", 0), }; ExpectSetEq(expected, nodes_in_memory); const auto* node_states = scheduler_->GetNodeStates(); const NodeState* bn_node = nullptr; const NodeState* x_node = nullptr; for (const auto& nodedef_node_state : *node_states) { const NodeDef* node = nodedef_node_state.first; const NodeState& node_state = nodedef_node_state.second; if (node->name() == "bn") { bn_node = &node_state; } if (node->name() == "x") { x_node = &node_state; } } CHECK_NOTNULL(bn_node); CHECK_NOTNULL(x_node); ValidateNodeDefs({"bn", "z1"}, x_node->outputs.at(0)); ValidateNodeDefs({"z4"}, bn_node->outputs.at(-1)); ValidateNodeDefs({"z1"}, bn_node->outputs.at(0)); ValidateNodeDefs({"z2", "z3", "z2", "z3"}, bn_node->outputs.at(2)); } TEST_F(VirtualSchedulerTest, Variable) { CreateGrapplerItemWithConv2DAndVariable(); InitScheduler(); RunScheduler(""); const auto* device_states = scheduler_->GetDeviceStates(); const auto& cpu_state = device_states->at(kCPU0); ValidateMemoryUsageSnapshot({"f", "Const/Const"}, 0, cpu_state.persistent_nodes); ValidateMemoryUsageSnapshot({"x"}, 0, cpu_state.mem_usage_snapshot_at_peak); ExpectUnorderedMapEq( {std::make_pair("/job:localhost/replica:0/task:0/cpu:0", 4624)}, scheduler_->GetPersistentMemoryUsage()); ExpectUnorderedMapEq( {std::make_pair("/job:localhost/replica:0/task:0/cpu:0", 12800)}, scheduler_->GetPeakMemoryUsage()); } TEST_F(VirtualSchedulerTest, WhileLoop) { CreateGrapplerItemWithLoop(); InitScheduler(); RunScheduler(""); RunMetadata metadata; scheduler_->Summary(&metadata); int num_next_iteration = 0; int num_next_iteration_1 = 0; int num_exit = 0; int num_exit_1 = 0; int64_t next_iter_start_micro; int64_t next_iter_1_start_micro; int64_t exit_start_micro; int64_t exit_1_start_micro; std::unordered_map<string, int64_t> start_times; for (const auto& device_step_stats : metadata.step_stats().dev_stats()) { for (const auto& stats : device_step_stats.node_stats()) { start_times[stats.node_name()] = stats.all_start_micros(); if (stats.node_name() == "while/NextIteration") { ++num_next_iteration; next_iter_start_micro = stats.all_start_micros(); } else if (stats.node_name() == "while/NextIteration_1") { ++num_next_iteration_1; next_iter_1_start_micro = stats.all_start_micros(); } else if (stats.node_name() == "while/Exit") { ++num_exit; exit_start_micro = stats.all_start_micros(); } else if (stats.node_name() == "while/Exit_1") { ++num_exit_1; exit_1_start_micro = stats.all_start_micros(); } } } EXPECT_EQ(1, num_next_iteration); EXPECT_EQ(1, num_next_iteration_1); EXPECT_EQ(1, num_exit); EXPECT_EQ(1, num_exit_1); EXPECT_NE(next_iter_start_micro, next_iter_1_start_micro); EXPECT_NE(exit_start_micro, exit_1_start_micro); ValidateDependencyChain( start_times, {"Const", "while/Enter", "while/Less/y", "while/Less", "while/LoopCond", "while/Switch", "while/Identity", "while/add/y", "while/add", "while/NextIteration"}); ValidateDependencyChain(start_times, {"ones", "while/Enter_1", "while/Switch_1", "while/Identity_1", "while/concat", "while/NextIteration_1"}); ValidateDependencyChain(start_times, {"while/Switch", "while/Exit"}); ValidateDependencyChain( start_times, {"while/Identity", "while/concat/axis", "while/concat"}); ValidateDependencyChain(start_times, {"while/Identity", "while/add"}); ValidateDependencyChain(start_times, {"while/Switch_1", "while/Exit_1"}); } TEST_F(VirtualSchedulerTest, AnnotatedWhileLoop) { { CreateGrapplerItemWithLoop(); InitScheduler(); RunScheduler(""); Costs c = scheduler_->Summary(); EXPECT_EQ(23, c.execution_time.asMicroSeconds().count()); EXPECT_EQ(grappler_item_->graph.node_size() + 2, c.num_ops_total); EXPECT_FALSE(c.inaccurate); EXPECT_EQ(0, c.num_ops_with_unknown_shapes); } { CreateGrapplerItemWithLoopAnnotated(); InitScheduler(); RunScheduler(""); Costs c = scheduler_->Summary(); EXPECT_EQ(178, c.execution_time.asMicroSeconds().count()); EXPECT_EQ(grappler_item_->graph.node_size() + 2, c.num_ops_total); EXPECT_FALSE(c.inaccurate); EXPECT_EQ(0, c.num_ops_with_unknown_shapes); } } TEST_F(VirtualSchedulerTest, Condition) { { CreateGrapplerItemWithCondition(); InitScheduler(); RunScheduler(""); RunMetadata metadata; Costs c = scheduler_->Summary(&metadata); int num_a = 0; int num_less = 0; int num_switch = 0; int num_first = 0; int num_second = 0; int num_merge = 0; for (const auto& device_step_stats : metadata.step_stats().dev_stats()) { for (const auto& stats : device_step_stats.node_stats()) { if (stats.node_name() == "a") { ++num_a; } else if (stats.node_name() == "Less") { ++num_less; } else if (stats.node_name() == "Switch") { ++num_switch; } else if (stats.node_name() == "First") { ++num_first; } else if (stats.node_name() == "Second") { ++num_second; } else if (stats.node_name() == "Merge") { ++num_merge; } } } EXPECT_EQ(1, num_a); EXPECT_EQ(1, num_less); EXPECT_EQ(1, num_switch); EXPECT_EQ(1, num_first); EXPECT_EQ(1, num_second); EXPECT_EQ(2, num_merge); EXPECT_EQ(7, c.execution_time.asMicroSeconds().count()); EXPECT_EQ(grappler_item_->graph.node_size() + 1, c.num_ops_total); EXPECT_FALSE(c.inaccurate); EXPECT_EQ(0, c.num_ops_with_unknown_shapes); } { CreateGrapplerItemWithCondition(); for (auto& node : *grappler_item_->graph.mutable_node()) { if (node.name() == "Switch") { AttrValue attr_output_info; (*attr_output_info.mutable_list()).add_i(0); AddNodeAttr(kOutputSlots, attr_output_info, &node); } } InitScheduler(); RunScheduler(""); RunMetadata metadata; Costs c = scheduler_->Summary(&metadata); int num_a = 0; int num_less = 0; int num_switch = 0; int num_first = 0; int num_second = 0; int num_merge = 0; for (const auto& device_step_stats : metadata.step_stats().dev_stats()) { for (const auto& stats : device_step_stats.node_stats()) { if (stats.node_name() == "a") { ++num_a; } else if (stats.node_name() == "Less") { ++num_less; } else if (stats.node_name() == "Switch") { ++num_switch; } else if (stats.node_name() == "First") { ++num_first; } else if (stats.node_name() == "Second") { ++num_second; } else if (stats.node_name() == "Merge") { ++num_merge; } } } EXPECT_EQ(1, num_a); EXPECT_EQ(1, num_less); EXPECT_EQ(1, num_switch); EXPECT_EQ(1, num_first); EXPECT_EQ(0, num_second); EXPECT_EQ(1, num_merge); EXPECT_EQ(5, c.execution_time.asMicroSeconds().count()); EXPECT_EQ(grappler_item_->graph.node_size() - 1, c.num_ops_total); EXPECT_FALSE(c.inaccurate); EXPECT_EQ(0, c.num_ops_with_unknown_shapes); } } TEST_F(VirtualSchedulerTest, InterDeviceTransfer) { CreateGrapplerItemWithInterDeviceTransfers(); InitScheduler(); auto ops_executed = RunScheduler(""); auto get_port_num = [](const string& name) -> int { if (absl::StrContains(name, "bn_0")) { return 0; } else if (absl::StrContains(name, "bn_1")) { return 1; } else if (absl::StrContains(name, "bn_2")) { return 2; } else if (absl::StrContains(name, "bn_minus1")) { return -1; } return -999; }; std::unordered_map<string, int> op_count; std::unordered_map<int, string> recv_op_names; std::unordered_map<int, string> send_op_names; for (const auto& x : ops_executed) { const auto& name = x.first; const auto& node_info = x.second; const auto& op = node_info.op_info.op(); if (op == kRecv) { recv_op_names[get_port_num(name)] = name; } else if (op == kSend) { send_op_names[get_port_num(name)] = name; } op_count[op]++; } EXPECT_EQ(op_count.at(kSend), op_count.at(kRecv)); EXPECT_EQ(op_count.at(kRecv), 3); EXPECT_EQ(op_count.at(kSend), 3); auto get_output_size = [this, ops_executed](const string& name) -> int64 { const auto& output_properties_ = ops_executed.at(name).op_info.outputs(); std::vector<OpInfo::TensorProperties> output_properties; for (const auto& output_property : output_properties_) { output_properties.push_back(output_property); } return CalculateOutputSize(output_properties, 0); }; int input_size = 4 * batch_size_ * width_ * height_ * depth_in_; EXPECT_EQ(get_output_size(recv_op_names[0]), input_size); EXPECT_EQ(get_output_size(send_op_names[0]), input_size); EXPECT_EQ(get_output_size(recv_op_names[1]), 4 * depth_in_); EXPECT_EQ(get_output_size(send_op_names[1]), 4 * depth_in_); EXPECT_EQ(get_output_size(recv_op_names[2]), 4 * depth_in_); EXPECT_EQ(get_output_size(send_op_names[2]), 4 * depth_in_); } TEST_F(VirtualSchedulerTest, GraphWithSendRecv) { CreateGrapplerItemWithSendRecv(); InitScheduler(); auto ops_executed = RunScheduler(""); EXPECT_GT(ops_executed.count("Const"), 0); EXPECT_GT(ops_executed.count("Send"), 0); EXPECT_GT(ops_executed.count("Recv"), 0); } TEST_F(VirtualSchedulerTest, GraphWithSendRecvDifferentDevice) { CreateGrapplerItemWithSendRecv(); auto& graph = grappler_item_->graph; const string recv_device = kCPU1; for (int i = 0; i < graph.node_size(); i++) { auto* node = graph.mutable_node(i); if (node->name() == "Recv") { node->set_device(recv_device); auto* attr = node->mutable_attr(); (*attr)["recv_device"].set_s(recv_device); } else if (node->name() == "Send") { auto* attr = node->mutable_attr(); (*attr)["recv_device"].set_s(recv_device); } } InitScheduler(); auto ops_executed = RunScheduler(""); EXPECT_GT(ops_executed.count("Const"), 0); EXPECT_GT(ops_executed.count("Send"), 0); EXPECT_GT(ops_executed.count("Send_Send_0_from_/job_localhost/replica_0/" "task_0/cpu_0_to_/job_localhost" "/replica_0/task_0/cpu_1"), 0); EXPECT_GT(ops_executed.count( "Recv_Send_0_on_/job_localhost/replica_0/task_0/cpu_1"), 0); EXPECT_GT(ops_executed.count("Recv"), 0); } TEST_F(VirtualSchedulerTest, GraphWihtOnlyRecv) { CreateGrapplerItemWithRecvWithoutSend(); InitScheduler(); auto ops_executed = RunScheduler(""); EXPECT_GT(ops_executed.count("Recv"), 0); } TEST_F(VirtualSchedulerTest, AddMergeSwitch) { scheduler_ = std::make_unique<TestVirtualScheduler>( true, true, &composite_node_manager_, cluster_.get()); CreateGrapplerItemWithSwitchMergeInput(); InitScheduler(); auto ops_executed = RunScheduler(""); EXPECT_GT(ops_executed.count("z"), 0); } TEST_F(VirtualSchedulerTest, AddFromOneTensor) { CreateGrapplerItemWithAddFromOneTensor(); InitScheduler(); auto ops_executed = RunScheduler(""); EXPECT_GT(ops_executed.count("y"), 0); EXPECT_GT(ops_executed.count("x"), 0); } TEST_F(VirtualSchedulerTest, TestNodeCostOutputTensorSize) { CreateGrapplerItemWithMatmulChain(); InitScheduler(); RunScheduler("ab"); int32_t persistent_memory_before = scheduler_->GetPersistentMemoryUsage().at(kCPU0); auto* device_states = scheduler_->GetDeviceStates(); int32_t memory_usage = device_states->at(kCPU0).memory_usage; Costs node_costs = Costs::ZeroCosts(false); const int32_t node_one_cost = 12345; const int32_t node_two_cost = 98765; const int32_t input_size = 4 * 3200 * 3200; node_costs.persistent_memory = node_one_cost; node_costs.temporary_memory = 0; node_costs.output_tensor_size_bytes = {{0, node_one_cost}}; node_costs.persistent_output_ports = {0}; scheduler_->MarkCurrNodeExecuted(node_costs); device_states = scheduler_->GetDeviceStates(); const auto& cpu_state_0 = device_states->at(kCPU0); memory_usage -= 2 * input_size; EXPECT_EQ(cpu_state_0.memory_usage, memory_usage); int64_t persistent_memory = node_one_cost + persistent_memory_before; EXPECT_EQ(scheduler_->GetPersistentMemoryUsage().at(kCPU0), persistent_memory); node_costs = Costs::ZeroCosts(false); node_costs.persistent_memory = 0; node_costs.temporary_memory = node_two_cost; node_costs.output_tensor_size_bytes = {{0, node_two_cost}}; scheduler_->MarkCurrNodeExecuted(node_costs); device_states = scheduler_->GetDeviceStates(); const auto& cpu_state_1 = device_states->at(kCPU0); memory_usage += node_two_cost - input_size; EXPECT_EQ(cpu_state_1.memory_usage, memory_usage); EXPECT_EQ(scheduler_->GetPersistentMemoryUsage().at(kCPU0), persistent_memory); bool more_nodes = true; do { OpContext op_context = scheduler_->GetCurrNode(); node_costs = SimplePredictCosts(op_context); more_nodes = scheduler_->MarkCurrNodeExecuted(node_costs); } while (more_nodes); RunMetadata metadata; Costs final_cost = scheduler_->Summary(&metadata); EXPECT_EQ(final_cost.persistent_memory, persistent_memory); StepStats stepstats = metadata.step_stats(); for (const auto& device_step_stats : stepstats.dev_stats()) { for (const auto& stats : device_step_stats.node_stats()) { const auto& allocation_description = stats.output().at(0).tensor_description().allocation_description(); if (stats.node_name() == "abc") { EXPECT_NE(allocation_description.allocated_bytes(), allocation_description.requested_bytes()); const auto& mem_stats = stats.memory_stats(); EXPECT_EQ(mem_stats.persistent_memory_size(), node_one_cost); } else if (stats.node_name() == "abcd") { EXPECT_NE(allocation_description.allocated_bytes(), allocation_description.requested_bytes()); } else { EXPECT_EQ(allocation_description.allocated_bytes(), allocation_description.requested_bytes()); } } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/virtual_scheduler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/virtual_scheduler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1e67b253-9a27-4432-91a1-3609c13e9dfd
cpp
tensorflow/tensorflow
graph_memory
tensorflow/core/grappler/costs/graph_memory.cc
tensorflow/core/grappler/costs/graph_memory_test.cc
#include "tensorflow/core/grappler/costs/graph_memory.h" #include <deque> #include "tensorflow/core/framework/allocation_description.pb.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_description.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { Status GraphMemory::InferStatically( const std::unordered_map<string, DeviceProperties>& devices) { VirtualCluster cluster(devices); TF_RETURN_IF_ERROR(cluster.Provision()); TF_RETURN_IF_ERROR(cluster.Initialize(item_)); RunMetadata metadata; Status s = cluster.Run(item_, &metadata); if (!s.ok() && s.code() != error::RESOURCE_EXHAUSTED) { return s; } InferFromTrace(metadata.step_stats()); return absl::OkStatus(); } Status GraphMemory::InferDynamically(Cluster* cluster) { if (!cluster->DetailedStatsEnabled()) { return errors::Unavailable("Detailed stats collection must be enabled"); } TF_RETURN_IF_ERROR(cluster->Initialize(item_)); RunMetadata metadata; TF_RETURN_IF_ERROR(cluster->Run(item_, &metadata)); InferFromTrace(metadata.step_stats()); return absl::OkStatus(); } int64_t GraphMemory::GetWorstCaseMemoryUsage() const { int64_t worst_case = -1; for (const auto& peak_usage : peak_usage_) { worst_case = std::max(worst_case, peak_usage.second.used_memory); } return worst_case; } void GraphMemory::InferMemUsageForNodes( const std::vector<const NodeDef*>& nodes, GraphProperties* properties, int64_t* worst_case_memory_usage, int64_t* best_case_memory_usage) const { *worst_case_memory_usage = 0; *best_case_memory_usage = 0; for (const auto& node : item_.graph.node()) { std::vector<OpInfo::TensorProperties> outputs = properties->GetOutputProperties(node.name()); int64_t node_memory_usage = InferMemUsageForNeighbors(outputs); *worst_case_memory_usage += node_memory_usage; std::vector<OpInfo::TensorProperties> inputs = properties->GetInputProperties(node.name()); node_memory_usage += InferMemUsageForNeighbors(inputs); *best_case_memory_usage = std::max(*best_case_memory_usage, node_memory_usage); } } int64_t GraphMemory::InferMemUsageForNeighbors( const std::vector<OpInfo::TensorProperties>& props) const { int64_t neighbors_memory_usage = 0; for (const auto& prop : props) { DataType dtype = prop.dtype(); int size = DataTypeSize(dtype); TensorShapeProto shape = prop.shape(); if (shape.unknown_rank()) { continue; } for (int i = 0; i < shape.dim_size(); ++i) { if (shape.dim(i).size() < 0) { shape.mutable_dim(i)->set_size(1); } } int num_elems = TensorShape(shape).num_elements(); neighbors_memory_usage += num_elems * size; } return neighbors_memory_usage; } static GraphMemory::LiveTensor* FindOrCreateLiveTensor( const string& node_name, int output_id, std::unordered_map<string, GraphMemory::LiveTensor*>* live_tensors, std::deque<GraphMemory::LiveTensor>* device_tensors) { string name = strings::StrCat(node_name, ":", output_id); GraphMemory::LiveTensor* live; auto it = live_tensors->find(name); if (it == live_tensors->end()) { GraphMemory::LiveTensor temp; temp.node = node_name; temp.output_id = output_id; temp.allocation_time = 0; temp.deallocation_time = 0; device_tensors->push_front(temp); live = &device_tensors->front(); (*live_tensors)[name] = live; } else { live = it->second; } return live; } namespace { struct Event { Event(int64_t _timestamp, bool _allocated, const GraphMemory::LiveTensor* _tensor) : timestamp(_timestamp), allocated(_allocated), tensor(_tensor) {} int64_t timestamp; bool allocated; const GraphMemory::LiveTensor* tensor; bool operator<(const Event& other) const { return timestamp < other.timestamp; } }; } void GraphMemory::InferFromTrace(const StepStats& timeline) { std::unordered_map<string, string> node_placement; for (const auto& dev_stats : timeline.dev_stats()) { for (const auto& node_stats : dev_stats.node_stats()) { node_placement[node_stats.node_name()] = dev_stats.device(); } } std::unordered_map<string, LiveTensor*> live_tensors; std::unordered_map<string, std::deque<LiveTensor>> live_tensors_per_device; std::unordered_map<string, const NodeDef*> node_map; for (const NodeDef& node : item_.graph.node()) { node_map[node.name()] = &node; } for (const auto& dev_stats : timeline.dev_stats()) { const string& device_name = dev_stats.device(); const bool is_gpu = (device_name.find("GPU:") || device_name.find("gpu:")); std::deque<LiveTensor>& device_tensors = live_tensors_per_device[dev_stats.device()]; for (const auto& node_stats : dev_stats.node_stats()) { for (int i = 0; i < node_stats.output_size(); ++i) { const auto& output = node_stats.output(i); LiveTensor* live = FindOrCreateLiveTensor( node_stats.node_name(), i, &live_tensors, &device_tensors); live->memory_used = output.tensor_description() .allocation_description() .allocated_bytes(); live->allocation_time = Costs::MicroSeconds(node_stats.all_start_micros()); live->deallocation_time = std::max<Costs::Duration>( live->deallocation_time, Costs::NanoSeconds(1) + Costs::MicroSeconds(node_stats.all_start_micros() + node_stats.op_end_rel_micros())); } auto it = node_map.find(node_stats.node_name()); if (it == node_map.end()) { continue; } const NodeDef* node = it->second; std::unordered_set<int> swapped_inputs; if (is_gpu) { auto it = node->attr().find("_swap_to_host"); if (it != node->attr().end()) { const AttrValue& val = it->second; for (int port_id : val.list().i()) { swapped_inputs.insert(port_id); } } } for (int i = 0; i < node->input_size(); ++i) { if (swapped_inputs.find(i) != swapped_inputs.end()) { continue; } const string& input = node->input(i); int position; string input_node = ParseNodeName(input, &position); if (position < 0) { continue; } LiveTensor* live = FindOrCreateLiveTensor( input_node, position, &live_tensors, &live_tensors_per_device[node_placement[input_node]]); live->deallocation_time = std::max<Costs::Duration>( live->deallocation_time, Costs::NanoSeconds(1) + Costs::MicroSeconds(node_stats.all_start_micros() + node_stats.op_end_rel_micros())); } } } for (const auto& live_per_device : live_tensors_per_device) { std::vector<Event> events; events.reserve(2 * live_per_device.second.size()); for (const auto& live : live_per_device.second) { events.emplace_back(static_cast<int64_t>(live.allocation_time.count()), true, &live); events.emplace_back(static_cast<int64_t>(live.deallocation_time.count()), false, &live); } std::stable_sort(events.begin(), events.end()); size_t peak = 0; std::unordered_set<const LiveTensor*> live_at_peak; size_t current = 0; std::unordered_set<const LiveTensor*> currently_live; int events_size = events.size(); for (int i = 0; i < events_size; ++i) { const auto& event = events[i]; if (event.allocated) { VLOG(1) << "At time " << event.timestamp << " allocated " << event.tensor->memory_used << " for tensor " << event.tensor->node << ":" << event.tensor->output_id; current += event.tensor->memory_used; currently_live.insert(event.tensor); } else { VLOG(1) << "At time " << event.timestamp << " deallocated " << event.tensor->memory_used << " for tensor " << event.tensor->node << ":" << event.tensor->output_id; current -= event.tensor->memory_used; currently_live.erase(event.tensor); } if (i + 1 == events_size || event.timestamp != events[i + 1].timestamp) { if (current > peak) { peak = current; live_at_peak = currently_live; } } } MemoryUsage& peak_mem_usage = peak_usage_[live_per_device.first]; peak_mem_usage.used_memory = peak; peak_mem_usage.live_tensors.clear(); peak_mem_usage.live_tensors.reserve(live_at_peak.size()); for (const auto& live : live_at_peak) { peak_mem_usage.live_tensors.push_back(*live); } } } } }
#include "tensorflow/core/grappler/costs/graph_memory.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class GraphMemoryTest : public ::testing::Test { protected: std::unordered_map<string, DeviceProperties> devices_; public: GraphMemoryTest() { devices_["/CPU:0"].set_type("CPU"); devices_["/CPU:0"].set_num_cores(1); devices_["/CPU:0"].set_frequency(1); devices_["/CPU:0"].set_bandwidth(1); devices_["/GPU:0"].set_type("GPU"); devices_["/GPU:0"].set_num_cores(1); devices_["/GPU:0"].set_frequency(1); devices_["/CPU:0"].set_bandwidth(1); (*devices_["/GPU:0"].mutable_environment())["architecture"] = "3"; } }; TEST_F(GraphMemoryTest, Basic) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, {"/CPU:0"}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); item.feed.clear(); GraphMemory memory(item); Status s = memory.InferStatically(devices_); TF_CHECK_OK(s); const GraphMemory::MemoryUsage& mem_usage = memory.GetPeakMemoryUsage("/CPU:0"); EXPECT_EQ(120, mem_usage.used_memory); std::set<string> tensors; for (const auto& t : mem_usage.live_tensors) { tensors.insert(strings::StrCat(t.node, ":", t.output_id)); } std::set<string> expected; expected.insert("Sign:0"); expected.insert("Sign_1:0"); expected.insert("x:0"); EXPECT_EQ(expected, tensors); } TEST_F(GraphMemoryTest, UnknownBatchSize) { TrivialTestGraphInputYielder fake_input(4, 1, -1, false, {"/CPU:0"}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); item.feed.clear(); GraphMemory memory(item); Status s = memory.InferStatically(devices_); TF_CHECK_OK(s); const GraphMemory::MemoryUsage& mem_usage = memory.GetPeakMemoryUsage("/CPU:0"); EXPECT_EQ(16, mem_usage.used_memory); std::set<string> tensors; for (const auto& t : mem_usage.live_tensors) { tensors.insert(strings::StrCat(t.node, ":", t.output_id)); } std::set<string> expected; expected.insert("Const/Const:0"); expected.insert("Sign:0"); expected.insert("x:0"); EXPECT_EQ(expected, tensors); } TEST_F(GraphMemoryTest, MultiDevice) { TrivialTestGraphInputYielder fake_input(4, 2, 1024 * 1024, false, {"/CPU:0", "/GPU:0"}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); item.feed.clear(); GraphMemory memory(item); Status s = memory.InferStatically(devices_); TF_CHECK_OK(s); const GraphMemory::MemoryUsage& cpu_mem = memory.GetPeakMemoryUsage("/CPU:0"); EXPECT_EQ(16777216, cpu_mem.used_memory); std::set<string> cpu_tensors; for (const auto& t : cpu_mem.live_tensors) { cpu_tensors.insert(strings::StrCat(t.node, ":", t.output_id)); } std::set<string> cpu_expected; cpu_expected.insert("Recv_Sign_1_0_on_/CPU_0:0"); cpu_expected.insert("Sign:0"); cpu_expected.insert("x:0"); cpu_expected.insert("AddN:0"); EXPECT_EQ(cpu_expected, cpu_tensors); const GraphMemory::MemoryUsage& gpu_mem = memory.GetPeakMemoryUsage("/GPU:0"); EXPECT_EQ(16777216, gpu_mem.used_memory); std::set<string> gpu_tensors; for (const auto& t : gpu_mem.live_tensors) { gpu_tensors.insert(strings::StrCat(t.node, ":", t.output_id)); } std::set<string> gpu_expected; gpu_expected.insert("Recv_AddN_0_on_/GPU_0:0"); gpu_expected.insert("Sign_1:0"); gpu_expected.insert("AddN_1:0"); gpu_expected.insert("AddN_3:0"); EXPECT_EQ(gpu_expected, gpu_tensors); } TEST_F(GraphMemoryTest, GpuSwapping) { TrivialTestGraphInputYielder fake_input(4, 2, 1024 * 1024, false, {"/GPU:0"}); GrapplerItem item; CHECK(fake_input.NextItem(&item)); item.feed.clear(); { GraphMemory memory(item); Status s = memory.InferStatically(devices_); TF_CHECK_OK(s); const GraphMemory::MemoryUsage& gpu_mem = memory.GetPeakMemoryUsage("/GPU:0"); EXPECT_EQ(20971520, gpu_mem.used_memory); std::set<string> gpu_tensors; for (const auto& t : gpu_mem.live_tensors) { gpu_tensors.insert(strings::StrCat(t.node, ":", t.output_id)); } std::set<string> gpu_expected; gpu_expected.insert("Sign:0"); gpu_expected.insert("Sign_1:0"); gpu_expected.insert("AddN:0"); gpu_expected.insert("AddN_1:0"); gpu_expected.insert("AddN_2:0"); EXPECT_EQ(gpu_expected, gpu_tensors); } { for (auto& node : *item.graph.mutable_node()) { if (node.name() == "AddN_1") { (*node.mutable_attr())["_swap_to_host"].mutable_list()->add_i(0); } } GraphMemory memory(item); Status s = memory.InferStatically(devices_); TF_CHECK_OK(s); const GraphMemory::MemoryUsage& new_gpu_mem = memory.GetPeakMemoryUsage("/GPU:0"); EXPECT_EQ(20971520, new_gpu_mem.used_memory); std::set<string> new_gpu_tensors; for (const auto& t : new_gpu_mem.live_tensors) { new_gpu_tensors.insert(strings::StrCat(t.node, ":", t.output_id)); } std::set<string> new_gpu_expected; new_gpu_expected.insert("AddN:0"); new_gpu_expected.insert("AddN_1:0"); new_gpu_expected.insert("AddN_2:0"); new_gpu_expected.insert("AddN_3:0"); new_gpu_expected.insert("AddN_4:0"); EXPECT_EQ(new_gpu_expected, new_gpu_tensors); } } TEST_F(GraphMemoryTest, CtrlDependencies) { Scope s = Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a").WithDevice("/CPU:0"), 10.0f, {3}); Output v = ops::Variable(s.WithOpName("v").WithDevice("/CPU:0"), {3}, DT_FLOAT); Output assign = ops::Assign(s.WithOpName("assign").WithDevice("/CPU:0"), v, a); ops::NoOp init( s.WithOpName("init").WithDevice("/CPU:0").WithControlDependencies( assign)); GrapplerItem item; item.fetch.push_back("init"); TF_CHECK_OK(s.ToGraphDef(&item.graph)); GraphMemory memory(item); Status status = memory.InferStatically(devices_); TF_CHECK_OK(status); const GraphMemory::MemoryUsage& mem = memory.GetPeakMemoryUsage("/CPU:0"); EXPECT_EQ(36, mem.used_memory); std::set<string> tensors; for (const auto& t : mem.live_tensors) { tensors.insert(strings::StrCat(t.node, ":", t.output_id)); } std::set<string> expected; expected.insert("a:0"); expected.insert("v:0"); expected.insert("assign:0"); EXPECT_EQ(expected, tensors); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/graph_memory.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/graph_memory_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7015e367-82f3-4d91-a11d-8439c8d9ae65
cpp
tensorflow/tensorflow
op_level_cost_estimator
tensorflow/core/grappler/costs/op_level_cost_estimator.cc
tensorflow/core/grappler/costs/op_level_cost_estimator_test.cc
#include "tensorflow/core/grappler/costs/op_level_cost_estimator.h" #include <algorithm> #include <cmath> #include <cstdint> #include <functional> #include <optional> #include <string> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "Eigen/Core" #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/costs/cost_estimator.h" #include "tensorflow/core/grappler/costs/op_context.h" #include "tensorflow/core/grappler/costs/op_performance_data.pb.h" #include "tensorflow/core/grappler/costs/utils.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/device_properties.pb.h" #include "tensorflow/core/util/overflow.h" #include "tensorflow/core/util/padding.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace grappler { constexpr int kOpsPerMac = 2; constexpr char kGuaranteeConst[] = "GuaranteeConst"; constexpr char kAddN[] = "AddN"; constexpr char kBitCast[] = "BitCast"; constexpr char kConcatV2[] = "ConcatV2"; constexpr char kConv2d[] = "Conv2D"; constexpr char kConv2dBackpropFilter[] = "Conv2DBackpropFilter"; constexpr char kConv2dBackpropInput[] = "Conv2DBackpropInput"; constexpr char kFusedConv2dBiasActivation[] = "FusedConv2DBiasActivation"; constexpr char kDataFormatVecPermute[] = "DataFormatVecPermute"; constexpr char kDepthToSpace[] = "DepthToSpace"; constexpr char kDepthwiseConv2dNative[] = "DepthwiseConv2dNative"; constexpr char kDepthwiseConv2dNativeBackpropFilter[] = "DepthwiseConv2dNativeBackpropFilter"; constexpr char kDepthwiseConv2dNativeBackpropInput[] = "DepthwiseConv2dNativeBackpropInput"; constexpr char kMatMul[] = "MatMul"; constexpr char kXlaEinsum[] = "XlaEinsum"; constexpr char kEinsum[] = "Einsum"; constexpr char kExpandDims[] = "ExpandDims"; constexpr char kFill[] = "Fill"; constexpr char kSparseMatMul[] = "SparseMatMul"; constexpr char kSparseTensorDenseMatMul[] = "SparseTensorDenseMatMul"; constexpr char kPlaceholder[] = "Placeholder"; constexpr char kIdentity[] = "Identity"; constexpr char kIdentityN[] = "IdentityN"; constexpr char kRefIdentity[] = "RefIdentity"; constexpr char kNoOp[] = "NoOp"; constexpr char kReshape[] = "Reshape"; constexpr char kSplit[] = "Split"; constexpr char kSqueeze[] = "Squeeze"; constexpr char kRecv[] = "_Recv"; constexpr char kSend[] = "_Send"; constexpr char kBatchMatMul[] = "BatchMatMul"; constexpr char kBatchMatMulV2[] = "BatchMatMulV2"; constexpr char kOneHot[] = "OneHot"; constexpr char kPack[] = "Pack"; constexpr char kRank[] = "Rank"; constexpr char kRange[] = "Range"; constexpr char kShape[] = "Shape"; constexpr char kShapeN[] = "ShapeN"; constexpr char kSize[] = "Size"; constexpr char kStopGradient[] = "StopGradient"; constexpr char kPreventGradient[] = "PreventGradient"; constexpr char kGather[] = "Gather"; constexpr char kGatherNd[] = "GatherNd"; constexpr char kGatherV2[] = "GatherV2"; constexpr char kScatterAdd[] = "ScatterAdd"; constexpr char kScatterDiv[] = "ScatterDiv"; constexpr char kScatterMax[] = "ScatterMax"; constexpr char kScatterMin[] = "ScatterMin"; constexpr char kScatterMul[] = "ScatterMul"; constexpr char kScatterSub[] = "ScatterSub"; constexpr char kScatterUpdate[] = "ScatterUpdate"; constexpr char kSlice[] = "Slice"; constexpr char kStridedSlice[] = "StridedSlice"; constexpr char kSpaceToDepth[] = "SpaceToDepth"; constexpr char kTranspose[] = "Transpose"; constexpr char kTile[] = "Tile"; constexpr char kMaxPool[] = "MaxPool"; constexpr char kMaxPoolGrad[] = "MaxPoolGrad"; constexpr char kAvgPool[] = "AvgPool"; constexpr char kAvgPoolGrad[] = "AvgPoolGrad"; constexpr char kFusedBatchNorm[] = "FusedBatchNorm"; constexpr char kFusedBatchNormGrad[] = "FusedBatchNormGrad"; constexpr char kQuantizedMatMul[] = "QuantizedMatMul"; constexpr char kQuantizedMatMulV2[] = "QuantizedMatMulV2"; constexpr char kUnpack[] = "Unpack"; constexpr char kSoftmax[] = "Softmax"; constexpr char kResizeBilinear[] = "ResizeBilinear"; constexpr char kCropAndResize[] = "CropAndResize"; constexpr char kSwitch[] = "Switch"; constexpr char kMerge[] = "Merge"; constexpr char kEnter[] = "Enter"; constexpr char kExit[] = "Exit"; constexpr char kNextIteration[] = "NextIteration"; constexpr char kConst[] = "Const"; constexpr char kVariable[] = "Variable"; constexpr char kVariableV2[] = "VariableV2"; constexpr char kAutoReloadVariable[] = "AutoReloadVariable"; constexpr char kVarHandleOp[] = "VarHandleOp"; constexpr char kVarHandlesOp[] = "_VarHandlesOp"; constexpr char kReadVariableOp[] = "ReadVariableOp"; constexpr char kReadVariablesOp[] = "_ReadVariablesOp"; constexpr char kAssignVariableOp[] = "AssignVariableOp"; constexpr char kAssignAddVariableOp[] = "AssignAddVariableOp"; constexpr char kAssignSubVariableOp[] = "AssignSubVariableOp"; static const Costs::Duration kMinComputeTime(1); static const int64_t kMinComputeOp = 1; namespace { std::string GetDataFormat(const OpInfo& op_info) { std::string data_format = "NHWC"; if (op_info.attr().find("data_format") != op_info.attr().end()) { data_format = op_info.attr().at("data_format").s(); } return data_format; } std::string GetFilterFormat(const OpInfo& op_info) { std::string filter_format = "HWIO"; if (op_info.attr().find("filter_format") != op_info.attr().end()) { filter_format = op_info.attr().at("filter_format").s(); } return filter_format; } Padding GetPadding(const OpInfo& op_info) { if (op_info.attr().find("padding") != op_info.attr().end() && op_info.attr().at("padding").s() == "VALID") { return Padding::VALID; } return Padding::SAME; } bool IsTraining(const OpInfo& op_info) { if (op_info.attr().find("is_training") != op_info.attr().end() && op_info.attr().at("is_training").b()) { return true; } return false; } std::vector<int64_t> GetStrides(const OpInfo& op_info) { if (op_info.attr().find("strides") != op_info.attr().end()) { const auto strides = op_info.attr().at("strides").list().i(); DCHECK(strides.size() == 4) << "Attr strides is not a length-4 vector: " << op_info.DebugString(); if (strides.size() != 4) return {1, 1, 1, 1}; return {strides[0], strides[1], strides[2], strides[3]}; } return {1, 1, 1, 1}; } std::vector<int64_t> GetKernelSize(const OpInfo& op_info) { if (op_info.attr().find("ksize") != op_info.attr().end()) { const auto ksize = op_info.attr().at("ksize").list().i(); DCHECK(ksize.size() == 4) << "Attr ksize is not a length-4 vector: " << op_info.DebugString(); if (ksize.size() != 4) return {1, 1, 1, 1}; return {ksize[0], ksize[1], ksize[2], ksize[3]}; } return {1, 1, 1, 1}; } int64_t GetOutputSize(const int64_t input, const int64_t filter, const int64_t stride, const Padding& padding) { if (padding == Padding::VALID) { return (input - filter + stride) / stride; } else { return (input + stride - 1) / stride; } } int64_t CwiseOutputElementCount(const OpInfo& op_info) { int max_rank = 1; for (const OpInfo::TensorProperties& input_properties : op_info.inputs()) { max_rank = std::max(max_rank, input_properties.shape().dim_size()); } TensorShapeProto output_shape; output_shape.mutable_dim()->Reserve(max_rank); for (int i = 0; i < max_rank; ++i) { output_shape.add_dim(); } for (const OpInfo::TensorProperties& input_properties : op_info.inputs()) { const TensorShapeProto& input_shape = input_properties.shape(); for (int i = input_shape.dim_size() - 1; i >= 0; --i) { int output_shape_dim_index = i + output_shape.dim_size() - input_shape.dim_size(); output_shape.mutable_dim(output_shape_dim_index) ->set_size(std::max(output_shape.dim(output_shape_dim_index).size(), input_shape.dim(i).size())); } } int64_t count = 1; for (int i = 0; i < output_shape.dim_size(); i++) { count *= output_shape.dim(i).size(); } return count; } bool CheckRepeatedDimensions(const absl::string_view dim_str) { int str_size = dim_str.size(); for (int idx = 0; idx < str_size - 1; idx++) { if (dim_str.find(dim_str[idx], idx + 1) != std::string::npos) { return true; } } return false; } bool IsEinsumCorrectlyFormed(const OpContext& einsum_context) { const auto& op_info = einsum_context.op_info; auto it = op_info.attr().find("equation"); if (it == op_info.attr().end()) return false; const absl::string_view equation = it->second.s(); std::vector<std::string> equation_split = absl::StrSplit(equation, "->"); if (equation_split.empty()) { LOG(WARNING) << "Einsum with malformed equation"; return false; } std::vector<absl::string_view> input_split = absl::StrSplit(equation_split[0], ','); if (op_info.inputs_size() != 2 || equation_split.size() != 2) { VLOG(1) << "Missing accurate estimator for op: " << op_info.op(); return false; } const auto& a_input = op_info.inputs(0); const auto& b_input = op_info.inputs(1); absl::string_view rhs_str = equation_split[1]; absl::string_view a_input_str = input_split[0]; absl::string_view b_input_str = input_split[1]; if (absl::StrContains(a_input_str, "...") || absl::StrContains(b_input_str, "...")) { VLOG(1) << "Missing accurate estimator for op: " << op_info.op() << ", ellipsis not supported"; return false; } constexpr int kMatrixRank = 2; bool a_input_shape_unknown = false; bool b_input_shape_unknown = false; std::vector<int64_t> a_input_shape = MaybeGetMinimumShape( a_input.shape(), std::max(kMatrixRank, a_input.shape().dim_size()), &a_input_shape_unknown); std::vector<int64_t> b_input_shape = MaybeGetMinimumShape( b_input.shape(), std::max(kMatrixRank, b_input.shape().dim_size()), &b_input_shape_unknown); if (a_input_str.size() != a_input_shape.size() || b_input_str.size() != b_input_shape.size()) { VLOG(1) << "Missing accurate estimator for op: " << op_info.op() << ", equation subscripts don't match tensor rank."; return false; } if (CheckRepeatedDimensions(a_input_str) || CheckRepeatedDimensions(b_input_str) || CheckRepeatedDimensions(rhs_str)) { VLOG(1) << "Missing accurate estimator for op: " << op_info.op() << ", Subscripts where axis appears more than once for a single " "input are not yet supported"; return false; } return true; } } std::vector<int64_t> MaybeGetMinimumShape( const TensorShapeProto& original_shape, int rank, bool* found_unknown_shapes) { std::vector<int64_t> minimal_shape(rank, 1L); if (original_shape.dim_size() == 0) { *found_unknown_shapes |= original_shape.unknown_rank(); return minimal_shape; } *found_unknown_shapes |= original_shape.dim_size() != rank; for (int i = 0; i < std::min(rank, original_shape.dim_size()); ++i) { if (original_shape.dim(i).size() < 0) { *found_unknown_shapes = true; } else { minimal_shape[i] = original_shape.dim(i).size(); } } *found_unknown_shapes |= original_shape.unknown_rank(); return minimal_shape; } OpLevelCostEstimator::OpLevelCostEstimator() { typedef absl::Status (OpLevelCostEstimator::*CostImpl)( const OpContext& op_context, NodeCosts*) const; auto wrap = [this](CostImpl impl) -> std::function<absl::Status(const OpContext&, NodeCosts*)> { return [this, impl](const OpContext& op_context, NodeCosts* node_costs) { return (this->*impl)(op_context, node_costs); }; }; device_cost_impl_.emplace(kConv2d, wrap(&OpLevelCostEstimator::PredictConv2D)); device_cost_impl_.emplace( kConv2dBackpropFilter, wrap(&OpLevelCostEstimator::PredictConv2DBackpropFilter)); device_cost_impl_.emplace( kConv2dBackpropInput, wrap(&OpLevelCostEstimator::PredictConv2DBackpropInput)); device_cost_impl_.emplace( kFusedConv2dBiasActivation, wrap(&OpLevelCostEstimator::PredictFusedConv2DBiasActivation)); device_cost_impl_.emplace(kDepthwiseConv2dNative, wrap(&OpLevelCostEstimator::PredictConv2D)); device_cost_impl_.emplace( kDepthwiseConv2dNativeBackpropFilter, wrap(&OpLevelCostEstimator::PredictConv2DBackpropFilter)); device_cost_impl_.emplace( kDepthwiseConv2dNativeBackpropInput, wrap(&OpLevelCostEstimator::PredictConv2DBackpropInput)); device_cost_impl_.emplace(kMatMul, wrap(&OpLevelCostEstimator::PredictMatMul)); device_cost_impl_.emplace(kSparseMatMul, wrap(&OpLevelCostEstimator::PredictMatMul)); device_cost_impl_.emplace( kSparseTensorDenseMatMul, wrap(&OpLevelCostEstimator::PredictSparseTensorDenseMatMul)); device_cost_impl_.emplace(kBatchMatMul, wrap(&OpLevelCostEstimator::PredictBatchMatMul)); device_cost_impl_.emplace(kBatchMatMulV2, wrap(&OpLevelCostEstimator::PredictBatchMatMul)); device_cost_impl_.emplace(kQuantizedMatMul, wrap(&OpLevelCostEstimator::PredictMatMul)); device_cost_impl_.emplace(kQuantizedMatMulV2, wrap(&OpLevelCostEstimator::PredictMatMul)); device_cost_impl_.emplace(kXlaEinsum, wrap(&OpLevelCostEstimator::PredictEinsum)); device_cost_impl_.emplace(kEinsum, wrap(&OpLevelCostEstimator::PredictEinsum)); device_cost_impl_.emplace(kNoOp, wrap(&OpLevelCostEstimator::PredictNoOp)); device_cost_impl_.emplace(kGuaranteeConst, wrap(&OpLevelCostEstimator::PredictNoOp)); device_cost_impl_.emplace(kGather, wrap(&OpLevelCostEstimator::PredictGatherOrSlice)); device_cost_impl_.emplace(kGatherNd, wrap(&OpLevelCostEstimator::PredictGatherOrSlice)); device_cost_impl_.emplace(kGatherV2, wrap(&OpLevelCostEstimator::PredictGatherOrSlice)); device_cost_impl_.emplace(kScatterAdd, wrap(&OpLevelCostEstimator::PredictScatter)); device_cost_impl_.emplace(kScatterDiv, wrap(&OpLevelCostEstimator::PredictScatter)); device_cost_impl_.emplace(kScatterMax, wrap(&OpLevelCostEstimator::PredictScatter)); device_cost_impl_.emplace(kScatterMin, wrap(&OpLevelCostEstimator::PredictScatter)); device_cost_impl_.emplace(kScatterMul, wrap(&OpLevelCostEstimator::PredictScatter)); device_cost_impl_.emplace(kScatterSub, wrap(&OpLevelCostEstimator::PredictScatter)); device_cost_impl_.emplace(kScatterUpdate, wrap(&OpLevelCostEstimator::PredictScatter)); device_cost_impl_.emplace(kSlice, wrap(&OpLevelCostEstimator::PredictGatherOrSlice)); device_cost_impl_.emplace(kStridedSlice, wrap(&OpLevelCostEstimator::PredictGatherOrSlice)); device_cost_impl_.emplace(kPlaceholder, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kIdentity, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kIdentityN, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kRefIdentity, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kStopGradient, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kPreventGradient, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kReshape, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kRecv, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kSend, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kSwitch, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kMerge, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kEnter, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kExit, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kNextIteration, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kBitCast, wrap(&OpLevelCostEstimator::PredictIdentity)); device_cost_impl_.emplace(kConcatV2, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kDataFormatVecPermute, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kDepthToSpace, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kExpandDims, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kFill, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kOneHot, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kPack, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kRange, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kSpaceToDepth, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kSplit, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kSqueeze, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kTranspose, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kTile, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kUnpack, wrap(&OpLevelCostEstimator::PredictPureMemoryOp)); device_cost_impl_.emplace(kRank, wrap(&OpLevelCostEstimator::PredictMetadata)); device_cost_impl_.emplace(kShape, wrap(&OpLevelCostEstimator::PredictMetadata)); device_cost_impl_.emplace(kShapeN, wrap(&OpLevelCostEstimator::PredictMetadata)); device_cost_impl_.emplace(kSize, wrap(&OpLevelCostEstimator::PredictMetadata)); device_cost_impl_.emplace(kMaxPool, wrap(&OpLevelCostEstimator::PredictMaxPool)); device_cost_impl_.emplace(kMaxPoolGrad, wrap(&OpLevelCostEstimator::PredictMaxPoolGrad)); device_cost_impl_.emplace(kAvgPool, wrap(&OpLevelCostEstimator::PredictAvgPool)); device_cost_impl_.emplace(kAvgPoolGrad, wrap(&OpLevelCostEstimator::PredictAvgPoolGrad)); device_cost_impl_.emplace(kFusedBatchNorm, wrap(&OpLevelCostEstimator::PredictFusedBatchNorm)); device_cost_impl_.emplace( kFusedBatchNormGrad, wrap(&OpLevelCostEstimator::PredictFusedBatchNormGrad)); device_cost_impl_.emplace(kSoftmax, wrap(&OpLevelCostEstimator::PredictSoftmax)); device_cost_impl_.emplace(kResizeBilinear, wrap(&OpLevelCostEstimator::PredictResizeBilinear)); device_cost_impl_.emplace(kCropAndResize, wrap(&OpLevelCostEstimator::PredictCropAndResize)); device_cost_impl_.emplace( kAssignVariableOp, wrap(&OpLevelCostEstimator::PredictAssignVariableOps)); device_cost_impl_.emplace( kAssignAddVariableOp, wrap(&OpLevelCostEstimator::PredictAssignVariableOps)); device_cost_impl_.emplace( kAssignSubVariableOp, wrap(&OpLevelCostEstimator::PredictAssignVariableOps)); device_cost_impl_.emplace(kAddN, wrap(&OpLevelCostEstimator::PredictNaryOp)); persistent_ops_ = { kConst, kVariable, kVariableV2, kAutoReloadVariable, kVarHandleOp, kReadVariableOp, kVarHandlesOp, kReadVariablesOp}; #define EIGEN_COST(X) Eigen::internal::functor_traits<Eigen::internal::X>::Cost const int quantize_v2_cost = EIGEN_COST(scalar_product_op<float>) + EIGEN_COST(scalar_max_op<float>) + EIGEN_COST(scalar_min_op<float>) + EIGEN_COST(scalar_round_op<float>); const int quantize_and_dequantize_v2_cost = quantize_v2_cost + EIGEN_COST(scalar_product_op<float>); elementwise_ops_.emplace("Acos", EIGEN_COST(scalar_acos_op<float>)); elementwise_ops_.emplace("All", EIGEN_COST(scalar_boolean_and_op<bool>)); elementwise_ops_.emplace("ArgMax", EIGEN_COST(scalar_max_op<float>)); elementwise_ops_.emplace("Asin", EIGEN_COST(scalar_asin_op<float>)); elementwise_ops_.emplace("Atan", EIGEN_COST(scalar_atan_op<float>)); elementwise_ops_.emplace("Atan2", EIGEN_COST(scalar_quotient_op<float>) + EIGEN_COST(scalar_atan_op<float>)); elementwise_ops_.emplace( "Cast", Eigen::internal::functor_traits< Eigen::internal::scalar_cast_op<float, int16>>::Cost); elementwise_ops_.emplace("Ceil", EIGEN_COST(scalar_ceil_op<float>)); elementwise_ops_.emplace("Cos", EIGEN_COST(scalar_cos_op<float>)); elementwise_ops_.emplace("Dequantize", EIGEN_COST(scalar_product_op<float>)); elementwise_ops_.emplace("Erf", 1); elementwise_ops_.emplace("Erfc", 1); elementwise_ops_.emplace("Exp", EIGEN_COST(scalar_exp_op<float>)); elementwise_ops_.emplace("Expm1", EIGEN_COST(scalar_expm1_op<float>)); elementwise_ops_.emplace("Floor", EIGEN_COST(scalar_floor_op<float>)); elementwise_ops_.emplace("Inv", EIGEN_COST(scalar_inverse_op<float>)); elementwise_ops_.emplace("InvGrad", 1); elementwise_ops_.emplace("Lgamma", 1); elementwise_ops_.emplace("Log", EIGEN_COST(scalar_log_op<float>)); elementwise_ops_.emplace("Log1p", EIGEN_COST(scalar_log1p_op<float>)); elementwise_ops_.emplace("Max", EIGEN_COST(scalar_max_op<float>)); elementwise_ops_.emplace("Min", EIGEN_COST(scalar_min_op<float>)); elementwise_ops_.emplace("Neg", EIGEN_COST(scalar_opposite_op<float>)); elementwise_ops_.emplace("Prod", EIGEN_COST(scalar_product_op<float>)); elementwise_ops_.emplace("QuantizeAndDequantizeV2", quantize_and_dequantize_v2_cost); elementwise_ops_.emplace("QuantizeAndDequantizeV4", quantize_and_dequantize_v2_cost); elementwise_ops_.emplace("QuantizedSigmoid", EIGEN_COST(scalar_logistic_op<float>)); elementwise_ops_.emplace("QuantizeV2", quantize_v2_cost); elementwise_ops_.emplace("Reciprocal", EIGEN_COST(scalar_inverse_op<float>)); elementwise_ops_.emplace("Relu", EIGEN_COST(scalar_max_op<float>)); elementwise_ops_.emplace("Relu6", EIGEN_COST(scalar_max_op<float>)); elementwise_ops_.emplace("Rint", 1); elementwise_ops_.emplace("Round", EIGEN_COST(scalar_round_op<float>)); elementwise_ops_.emplace("Rsqrt", EIGEN_COST(scalar_rsqrt_op<float>)); elementwise_ops_.emplace("Sigmoid", EIGEN_COST(scalar_logistic_op<float>)); elementwise_ops_.emplace("Sign", EIGEN_COST(scalar_sign_op<float>)); elementwise_ops_.emplace("Sin", EIGEN_COST(scalar_sin_op<float>)); elementwise_ops_.emplace("Sqrt", EIGEN_COST(scalar_sqrt_op<float>)); elementwise_ops_.emplace("Square", EIGEN_COST(scalar_square_op<float>)); elementwise_ops_.emplace("Sum", EIGEN_COST(scalar_sum_op<float>)); elementwise_ops_.emplace("Tan", EIGEN_COST(scalar_tan_op<float>)); elementwise_ops_.emplace("Tanh", EIGEN_COST(scalar_tanh_op<float>)); elementwise_ops_.emplace("TopKV2", EIGEN_COST(scalar_max_op<float>)); elementwise_ops_.emplace("Add", EIGEN_COST(scalar_sum_op<float>)); elementwise_ops_.emplace("AddV2", EIGEN_COST(scalar_sum_op<float>)); elementwise_ops_.emplace("ApproximateEqual", 1); elementwise_ops_.emplace("BiasAdd", EIGEN_COST(scalar_sum_op<float>)); elementwise_ops_.emplace("QuantizedBiasAdd", EIGEN_COST(scalar_sum_op<float>)); elementwise_ops_.emplace("Div", EIGEN_COST(scalar_quotient_op<float>)); elementwise_ops_.emplace("Equal", 1); elementwise_ops_.emplace("FloorDiv", EIGEN_COST(scalar_quotient_op<float>)); elementwise_ops_.emplace("FloorMod", EIGEN_COST(scalar_mod_op<float>)); elementwise_ops_.emplace("Greater", 1); elementwise_ops_.emplace("GreaterEqual", 1); elementwise_ops_.emplace("Less", 1); elementwise_ops_.emplace("LessEqual", 1); elementwise_ops_.emplace("LogicalAnd", EIGEN_COST(scalar_boolean_and_op<bool>)); elementwise_ops_.emplace("LogicalNot", 1); elementwise_ops_.emplace("LogicalOr", EIGEN_COST(scalar_boolean_or_op<bool>)); elementwise_ops_.emplace("Maximum", EIGEN_COST(scalar_max_op<float>)); elementwise_ops_.emplace("Minimum", EIGEN_COST(scalar_min_op<float>)); elementwise_ops_.emplace("Mod", EIGEN_COST(scalar_mod_op<float>)); elementwise_ops_.emplace("Mul", EIGEN_COST(scalar_product_op<float>)); elementwise_ops_.emplace("NotEqual", 1); elementwise_ops_.emplace("QuantizedAdd", EIGEN_COST(scalar_sum_op<float>)); elementwise_ops_.emplace("QuantizedMul", EIGEN_COST(scalar_product_op<float>)); elementwise_ops_.emplace("RealDiv", EIGEN_COST(scalar_quotient_op<float>)); elementwise_ops_.emplace("ReluGrad", EIGEN_COST(scalar_max_op<float>)); elementwise_ops_.emplace("Select", EIGEN_COST(scalar_boolean_or_op<bool>)); elementwise_ops_.emplace("SelectV2", EIGEN_COST(scalar_boolean_or_op<bool>)); elementwise_ops_.emplace("SquaredDifference", EIGEN_COST(scalar_square_op<float>) + EIGEN_COST(scalar_difference_op<float>)); elementwise_ops_.emplace("Sub", EIGEN_COST(scalar_difference_op<float>)); elementwise_ops_.emplace("TruncateDiv", EIGEN_COST(scalar_quotient_op<float>)); elementwise_ops_.emplace("TruncateMod", EIGEN_COST(scalar_mod_op<float>)); elementwise_ops_.emplace("Where", 1); #undef EIGEN_COST compute_memory_overlap_ = false; } Costs OpLevelCostEstimator::PredictCosts(const OpContext& op_context) const { Costs costs; NodeCosts node_costs; if (PredictNodeCosts(op_context, &node_costs).ok()) { if (node_costs.has_costs) { return node_costs.costs; } if (node_costs.minimum_cost_op) { costs.compute_time = kMinComputeTime; costs.execution_time = kMinComputeTime; costs.memory_time = 0; costs.intermediate_memory_time = 0; costs.intermediate_memory_read_time = 0; costs.intermediate_memory_write_time = 0; } else { costs = PredictOpCountBasedCost( node_costs.num_compute_ops, node_costs.num_total_read_bytes(), node_costs.num_total_write_bytes(), op_context.op_info); } VLOG(1) << "Operation " << op_context.op_info.op() << " takes " << costs.execution_time.count() << " ns."; costs.max_memory = node_costs.max_memory; costs.persistent_memory = node_costs.persistent_memory; costs.temporary_memory = node_costs.temporary_memory; costs.inaccurate = node_costs.inaccurate; costs.num_ops_with_unknown_shapes = node_costs.num_nodes_with_unknown_shapes; costs.num_ops_total = node_costs.num_nodes; return costs; } LOG(WARNING) << "Error in PredictCost() for the op: " << op_context.op_info.ShortDebugString(); costs = Costs::ZeroCosts(true); costs.num_ops_with_unknown_shapes = node_costs.num_nodes_with_unknown_shapes; return costs; } absl::Status OpLevelCostEstimator::PredictNodeCosts( const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; auto it = device_cost_impl_.find(op_info.op()); if (it != device_cost_impl_.end()) { std::function<absl::Status(const OpContext&, NodeCosts*)> estimator = it->second; return estimator(op_context, node_costs); } if (persistent_ops_.find(op_info.op()) != persistent_ops_.end()) { return PredictVariable(op_context, node_costs); } if (elementwise_ops_.find(op_info.op()) != elementwise_ops_.end()) { return PredictCwiseOp(op_context, node_costs); } VLOG(1) << "Missing accurate estimator for op: " << op_info.op(); node_costs->num_nodes_with_unknown_op_type = 1; return PredictCostOfAnUnknownOp(op_context, node_costs); } DeviceInfo OpLevelCostEstimator::GetDeviceInfo( const DeviceProperties& device) const { double gflops = -1; double gb_per_sec = -1; if (device.type() == "CPU") { gflops = device.num_cores() * device.frequency() * 1e-3; if (gb_per_sec < 0) { if (device.bandwidth() > 0) { gb_per_sec = device.bandwidth() / 1e6; } else { gb_per_sec = 32; } } } else if (device.type() == "GPU") { const auto& device_env = device.environment(); auto it = device_env.find("architecture"); if (it != device_env.end()) { const std::string architecture = device_env.at("architecture"); int cores_per_multiprocessor; if (architecture < "3") { cores_per_multiprocessor = 32; } else if (architecture < "4") { cores_per_multiprocessor = 192; } else if (architecture < "6") { cores_per_multiprocessor = 128; } else { cores_per_multiprocessor = 64; } gflops = device.num_cores() * device.frequency() * 1e-3 * cores_per_multiprocessor * kOpsPerMac; if (device.bandwidth() > 0) { gb_per_sec = device.bandwidth() / 1e6; } else { gb_per_sec = 100; } } else { gflops = 100; gb_per_sec = 12; } } else { LOG_EVERY_N(WARNING, 1000) << "Unknown device type: " << device.type() << ", assuming PCIe between CPU and GPU."; gflops = 1; gb_per_sec = 12; } VLOG(1) << "Device: " << device.type() << " gflops: " << gflops << " gb_per_sec: " << gb_per_sec; return DeviceInfo(gflops, gb_per_sec); } absl::Status OpLevelCostEstimator::PredictCwiseOp(const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; bool found_unknown_shapes = false; int64_t op_count = CalculateLargestInputCount(op_info, &found_unknown_shapes); if (op_info.outputs_size() > 0) { op_count = std::max( op_count, CalculateTensorElementCount(op_info.outputs(0), &found_unknown_shapes)); } if (op_info.inputs_size() >= 2) { op_count = std::max(op_count, CwiseOutputElementCount(op_info)); } int op_cost = 1; auto it = elementwise_ops_.find(op_info.op()); if (it != elementwise_ops_.end()) { op_cost = it->second; } else { return errors::InvalidArgument("Not a cwise op: ", op_info.op()); } return PredictDefaultNodeCosts(op_count * op_cost, op_context, &found_unknown_shapes, node_costs); } absl::Status OpLevelCostEstimator::PredictCostOfAnUnknownOp( const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; node_costs->inaccurate = true; return PredictDefaultNodeCosts(0, op_context, &found_unknown_shapes, node_costs); } Costs OpLevelCostEstimator::PredictOpCountBasedCost( double operations, const OpInfo& op_info) const { bool unknown_shapes = false; const double input_size = CalculateInputSize(op_info, &unknown_shapes); const double output_size = CalculateOutputSize(op_info, &unknown_shapes); Costs costs = PredictOpCountBasedCost(operations, input_size, output_size, op_info); costs.inaccurate = unknown_shapes; costs.num_ops_with_unknown_shapes = unknown_shapes; costs.max_memory = output_size; return costs; } Costs OpLevelCostEstimator::PredictOpCountBasedCost( double operations, double input_io_bytes, double output_io_bytes, const OpInfo& op_info) const { double total_io_bytes = input_io_bytes + output_io_bytes; const DeviceInfo device_info = GetDeviceInfo(op_info.device()); if (device_info.gigaops <= 0 || device_info.gb_per_sec <= 0 || device_info.intermediate_read_gb_per_sec <= 0 || device_info.intermediate_write_gb_per_sec <= 0) { VLOG(1) << "BAD DEVICE. Op:" << op_info.op() << " device type:" << op_info.device().type() << " device model:" << op_info.device().model(); } Costs::NanoSeconds compute_cost(std::ceil(operations / device_info.gigaops)); VLOG(1) << "Op:" << op_info.op() << " GOps:" << operations / 1e9 << " Compute Time (ns):" << compute_cost.count(); Costs::NanoSeconds memory_cost( std::ceil(total_io_bytes / device_info.gb_per_sec)); VLOG(1) << "Op:" << op_info.op() << " Size (KB):" << (total_io_bytes) / 1e3 << " Memory Time (ns):" << memory_cost.count(); double intermediate_read_time = (input_io_bytes > 0) ? std::ceil(input_io_bytes / device_info.intermediate_read_gb_per_sec) : 0; double intermediate_write_time = (output_io_bytes > 0) ? std::ceil(output_io_bytes / device_info.intermediate_write_gb_per_sec) : 0; Costs::NanoSeconds intermediate_memory_cost = compute_memory_overlap_ ? std::max(intermediate_read_time, intermediate_write_time) : (intermediate_read_time + intermediate_write_time); VLOG(1) << "Op:" << op_info.op() << " Size (KB):" << (total_io_bytes) / 1e3 << " Intermediate Memory Time (ns):" << intermediate_memory_cost.count(); Costs costs = Costs::ZeroCosts(); costs.compute_time = compute_cost; costs.memory_time = memory_cost; costs.intermediate_memory_time = intermediate_memory_cost; costs.intermediate_memory_read_time = Costs::NanoSeconds(intermediate_read_time); costs.intermediate_memory_write_time = Costs::NanoSeconds(intermediate_write_time); CombineCostsAndUpdateExecutionTime(compute_memory_overlap_, &costs); return costs; } int64_t OpLevelCostEstimator::CountConv2DOperations( const OpInfo& op_info, bool* found_unknown_shapes) { return CountConv2DOperations(op_info, nullptr, found_unknown_shapes); } OpLevelCostEstimator::ConvolutionDimensions OpLevelCostEstimator::ConvolutionDimensionsFromInputs( const TensorShapeProto& original_image_shape, const TensorShapeProto& original_filter_shape, const OpInfo& op_info, bool* found_unknown_shapes) { VLOG(2) << "op features: " << op_info.DebugString(); VLOG(2) << "Original image shape: " << original_image_shape.DebugString(); VLOG(2) << "Original filter shape: " << original_filter_shape.DebugString(); int x_index, y_index, major_channel_index, minor_channel_index = -1; const std::string& data_format = GetDataFormat(op_info); if (data_format == "NCHW") { major_channel_index = 1; y_index = 2; x_index = 3; } else if (data_format == "NCHW_VECT_C") { minor_channel_index = 1; y_index = 2; x_index = 3; major_channel_index = 4; } else { y_index = 1; x_index = 2; major_channel_index = 3; } const std::string& filter_format = GetFilterFormat(op_info); int filter_x_index, filter_y_index, in_major_channel_index, out_channel_index, in_minor_channel_index = -1; if (filter_format == "HWIO") { filter_y_index = 0; filter_x_index = 1; in_major_channel_index = 2; out_channel_index = 3; } else if (filter_format == "OIHW_VECT_I") { out_channel_index = 0; in_minor_channel_index = 1; filter_y_index = 2; filter_x_index = 3; in_major_channel_index = 4; } else { out_channel_index = 0; in_major_channel_index = 1; filter_y_index = 2; filter_x_index = 3; } std::vector<int64_t> image_shape = MaybeGetMinimumShape( original_image_shape, minor_channel_index >= 0 ? 5 : 4, found_unknown_shapes); std::vector<int64_t> filter_shape = MaybeGetMinimumShape( original_filter_shape, in_minor_channel_index >= 0 ? 5 : 4, found_unknown_shapes); VLOG(2) << "Image shape: " << absl::StrJoin(image_shape, ", "); VLOG(2) << "Filter shape: " << absl::StrJoin(filter_shape, ", "); int64_t batch = image_shape[0]; int64_t ix = image_shape[x_index]; int64_t iy = image_shape[y_index]; int64_t iz = minor_channel_index >= 0 ? image_shape[minor_channel_index] * image_shape[major_channel_index] : image_shape[major_channel_index]; int64_t kx = filter_shape[filter_x_index]; int64_t ky = filter_shape[filter_y_index]; int64_t kz = in_minor_channel_index >= 0 ? filter_shape[in_major_channel_index] * filter_shape[in_minor_channel_index] : filter_shape[in_major_channel_index]; std::vector<int64_t> strides = GetStrides(op_info); const auto padding = GetPadding(op_info); int64_t sx = strides[x_index]; int64_t sy = strides[y_index]; int64_t ox = GetOutputSize(ix, kx, sx, padding); int64_t oy = GetOutputSize(iy, ky, sy, padding); int64_t oz = filter_shape[out_channel_index]; if (iz != 1 && kz != 1) { DCHECK_EQ(iz % kz, 0) << "Input channel " << iz << " is not a multiple of filter channel " << kz << "."; if (iz % kz) { *found_unknown_shapes = true; } } else { iz = kz = std::max<int64_t>(iz, kz); } OpLevelCostEstimator::ConvolutionDimensions conv_dims = { batch, ix, iy, iz, kx, ky, kz, oz, ox, oy, sx, sy, padding}; VLOG(1) << "Batch Size:" << batch; VLOG(1) << "Image Dims:" << ix << "," << iy; VLOG(1) << "Input Depth:" << iz; VLOG(1) << "Kernel Dims:" << kx << "," << ky; VLOG(1) << "Kernel Depth:" << kz; VLOG(1) << "Output Dims:" << ox << "," << oy; VLOG(1) << "Output Depth:" << oz; VLOG(1) << "Strides:" << sx << "," << sy; VLOG(1) << "Padding:" << (padding == Padding::VALID ? "VALID" : "SAME"); return conv_dims; } int64_t OpLevelCostEstimator::CountConv2DOperations( const OpInfo& op_info, ConvolutionDimensions* conv_info, bool* found_unknown_shapes) { DCHECK(op_info.op() == kConv2d || op_info.op() == kDepthwiseConv2dNative) << "Invalid Operation: not Conv2D nor DepthwiseConv2dNative"; if (op_info.inputs_size() < 2) { *found_unknown_shapes = true; return 0; } ConvolutionDimensions conv_dims = ConvolutionDimensionsFromInputs( op_info.inputs(0).shape(), op_info.inputs(1).shape(), op_info, found_unknown_shapes); int64_t ops = conv_dims.batch; ops *= conv_dims.ox * conv_dims.oy; ops *= conv_dims.kx * conv_dims.ky; if (op_info.op() == kConv2d) { ops *= conv_dims.kz * conv_dims.oz; } else { conv_dims.oz *= conv_dims.iz; ops *= conv_dims.oz; } ops *= kOpsPerMac; if (conv_info != nullptr) { *conv_info = conv_dims; } return ops; } int64_t OpLevelCostEstimator::CountMatMulOperations( const OpInfo& op_info, bool* found_unknown_shapes) { return CountMatMulOperations(op_info, nullptr, found_unknown_shapes); } int64_t OpLevelCostEstimator::CountMatMulOperations( const OpInfo& op_info, MatMulDimensions* mat_mul, bool* found_unknown_shapes) { bool transpose_a = false; if (auto it = op_info.attr().find("transpose_a"); it != op_info.attr().end()) { if (it->second.b()) transpose_a = true; } bool transpose_b = false; if (auto it = op_info.attr().find("transpose_b"); it != op_info.attr().end()) { if (it->second.b()) transpose_b = true; } return CountMatMulOperations(op_info, transpose_a, transpose_b, mat_mul, found_unknown_shapes); } int64_t OpLevelCostEstimator::CountMatMulOperations( const OpInfo& op_info, bool transpose_a, bool transpose_b, MatMulDimensions* mat_mul, bool* found_unknown_shapes) { double ops = 0; if (op_info.inputs_size() < 2) { LOG(ERROR) << "Need 2 inputs but got " << op_info.inputs_size(); *found_unknown_shapes = true; return 0; } auto& a_matrix = op_info.inputs(0); auto& b_matrix = op_info.inputs(1); VLOG(1) << "transpose_a:" << transpose_a; VLOG(1) << "transpose_b:" << transpose_b; std::vector<int64_t> a_matrix_shape = MaybeGetMinimumShape(a_matrix.shape(), 2, found_unknown_shapes); std::vector<int64_t> b_matrix_shape = MaybeGetMinimumShape(b_matrix.shape(), 2, found_unknown_shapes); double m_dim, n_dim, k_dim, k_dim_b = 0; if (transpose_a) { m_dim = a_matrix_shape[1]; k_dim = a_matrix_shape[0]; } else { m_dim = a_matrix_shape[0]; k_dim = a_matrix_shape[1]; } if (transpose_b) { k_dim_b = b_matrix_shape[1]; n_dim = b_matrix_shape[0]; } else { k_dim_b = b_matrix_shape[0]; n_dim = b_matrix_shape[1]; } VLOG(1) << "M, N, K: " << m_dim << "," << n_dim << "," << k_dim; if (k_dim_b != 1 && k_dim != 1 && k_dim_b != k_dim) { LOG(ERROR) << "Incompatible Matrix dimensions"; return ops; } else { k_dim = std::max(k_dim, k_dim_b); } ops = m_dim * n_dim * k_dim * 2; VLOG(1) << "Operations for Matmul: " << ops; if (mat_mul != nullptr) { mat_mul->m = m_dim; mat_mul->n = n_dim; mat_mul->k = k_dim; } return ops; } bool OpLevelCostEstimator::GenerateBatchMatmulContextFromEinsum( const OpContext& einsum_context, OpContext* batch_matmul_context, bool* found_unknown_shapes) const { if (batch_matmul_context == nullptr) { VLOG(1) << "Output context should not be a nullptr."; return false; } if (!IsEinsumCorrectlyFormed(einsum_context)) return false; const auto& op_info = einsum_context.op_info; std::vector<std::string> equation_split = absl::StrSplit(op_info.attr().find("equation")->second.s(), "->"); std::vector<absl::string_view> input_split = absl::StrSplit(equation_split[0], ','); const auto& a_input = op_info.inputs(0); const auto& b_input = op_info.inputs(1); absl::string_view rhs_str = equation_split[1]; absl::string_view a_input_str = input_split[0]; absl::string_view b_input_str = input_split[1]; constexpr int kMatrixRank = 2; bool a_input_shape_unknown = false; bool b_input_shape_unknown = false; std::vector<int64_t> a_input_shape = MaybeGetMinimumShape( a_input.shape(), std::max(kMatrixRank, a_input.shape().dim_size()), &a_input_shape_unknown); std::vector<int64_t> b_input_shape = MaybeGetMinimumShape( b_input.shape(), std::max(kMatrixRank, b_input.shape().dim_size()), &b_input_shape_unknown); *found_unknown_shapes = a_input_shape_unknown || b_input_shape_unknown || (a_input.shape().dim_size() < kMatrixRank) || (b_input.shape().dim_size() < kMatrixRank); OpInfo batch_matmul_op_info = op_info; batch_matmul_op_info.mutable_inputs()->Clear(); batch_matmul_op_info.set_op("BatchMatMul"); AttrValue transpose_attribute; transpose_attribute.set_b(false); (*batch_matmul_op_info.mutable_attr())["transpose_a"] = transpose_attribute; (*batch_matmul_op_info.mutable_attr())["transpose_b"] = transpose_attribute; OpInfo::TensorProperties* a_matrix = batch_matmul_op_info.add_inputs(); TensorShapeProto* a_matrix_shape = a_matrix->mutable_shape(); a_matrix->set_dtype(a_input.dtype()); OpInfo::TensorProperties* b_matrix = batch_matmul_op_info.add_inputs(); b_matrix->set_dtype(b_input.dtype()); TensorShapeProto* b_matrix_shape = b_matrix->mutable_shape(); TensorShapeProto_Dim m_dim; TensorShapeProto_Dim n_dim; TensorShapeProto_Dim k_dim; m_dim.set_size(1); n_dim.set_size(1); k_dim.set_size(1); for (int i_idx = 0, a_input_str_size = a_input_str.size(); i_idx < a_input_str_size; ++i_idx) { if (!absl::StrContains(b_input_str, a_input_str[i_idx])) { if (!absl::StrContains(rhs_str, a_input_str[i_idx])) { VLOG(1) << "Missing accurate estimator for op: " << op_info.op(); return false; } m_dim.set_size(m_dim.size() * a_input_shape[i_idx]); continue; } else if (!absl::StrContains(rhs_str, a_input_str[i_idx])) { k_dim.set_size(k_dim.size() * a_input_shape[i_idx]); continue; } a_matrix_shape->add_dim()->set_size(a_input_shape[i_idx]); b_matrix_shape->add_dim()->set_size(a_input_shape[i_idx]); } for (int i_idx = 0, b_input_str_size = b_input_str.size(); i_idx < b_input_str_size; ++i_idx) { if (!absl::StrContains(a_input_str, b_input_str[i_idx])) { if (!absl::StrContains(rhs_str, b_input_str[i_idx])) { VLOG(1) << "Missing accurate estimator for op: " << op_info.op(); return false; } n_dim.set_size(n_dim.size() * b_input_shape[i_idx]); } } *(a_matrix_shape->add_dim()) = m_dim; *(a_matrix_shape->add_dim()) = k_dim; *(b_matrix_shape->add_dim()) = k_dim; *(b_matrix_shape->add_dim()) = n_dim; *batch_matmul_context = einsum_context; batch_matmul_context->op_info = batch_matmul_op_info; return true; } int64_t OpLevelCostEstimator::CountBatchMatMulOperations( const OpInfo& op_info, bool* found_unknown_shapes) { return CountBatchMatMulOperations(op_info, nullptr, found_unknown_shapes); } int64_t OpLevelCostEstimator::CountBatchMatMulOperations( const OpInfo& op_info, BatchMatMulDimensions* batch_mat_mul, bool* found_unknown_shapes) { if (op_info.op() != kBatchMatMul && op_info.op() != kBatchMatMulV2) { LOG(ERROR) << "Invalid Operation: " << op_info.op(); *found_unknown_shapes = true; return 0; } if (op_info.inputs_size() != 2) { LOG(ERROR) << "Expected 2 inputs but got " << op_info.inputs_size(); *found_unknown_shapes = true; return 0; } double ops = 0; const auto& a_input = op_info.inputs(0); const auto& b_input = op_info.inputs(1); const int matrix_rank = 2; bool a_input_shape_unknown = false; bool b_input_shape_unknown = false; std::vector<int64_t> a_input_shape = MaybeGetMinimumShape( a_input.shape(), std::max(matrix_rank, a_input.shape().dim_size()), &a_input_shape_unknown); std::vector<int64_t> b_input_shape = MaybeGetMinimumShape( b_input.shape(), std::max(matrix_rank, b_input.shape().dim_size()), &b_input_shape_unknown); *found_unknown_shapes = a_input_shape_unknown || b_input_shape_unknown || (a_input.shape().dim_size() < matrix_rank) || (b_input.shape().dim_size() < matrix_rank); std::vector<int64_t>* bigger_rank_shape = &a_input_shape; std::vector<int64_t>* smaller_rank_shape = &b_input_shape; if (b_input_shape.size() > a_input_shape.size()) { bigger_rank_shape = &b_input_shape; smaller_rank_shape = &a_input_shape; } int num_matmuls = 1; for (int b_i = 0, s_i = smaller_rank_shape->size() - bigger_rank_shape->size(); b_i < bigger_rank_shape->size() - matrix_rank; ++b_i, ++s_i) { int b_dim = (*bigger_rank_shape)[b_i]; int s_dim = 1; if (s_i >= 0) { s_dim = (*smaller_rank_shape)[s_i]; } if (batch_mat_mul != nullptr) { batch_mat_mul->batch_dims.push_back(s_dim); } num_matmuls *= std::max(b_dim, s_dim); } OpInfo matmul_op_info; matmul_op_info.set_op("MatMul"); bool transpose_a = false; bool transpose_b = false; if (auto it = op_info.attr().find("adj_x"); it != op_info.attr().end()) { transpose_a = it->second.b(); } else if (auto it = op_info.attr().find("transpose_a"); it != op_info.attr().end()) { transpose_a = it->second.b(); } if (auto it = op_info.attr().find("adj_y"); it != op_info.attr().end()) { transpose_b = it->second.b(); } else if (auto it = op_info.attr().find("transpose_b"); it != op_info.attr().end()) { transpose_b = it->second.b(); } OpInfo::TensorProperties* a_matrix = matmul_op_info.add_inputs(); a_matrix->set_dtype(a_input.dtype()); TensorShapeProto* a_matrix_shape = a_matrix->mutable_shape(); for (int i = std::max<int>(0, a_input_shape.size() - matrix_rank); i < a_input_shape.size(); ++i) { a_matrix_shape->add_dim()->set_size(a_input_shape[i]); } OpInfo::TensorProperties* b_matrix = matmul_op_info.add_inputs(); b_matrix->set_dtype(b_input.dtype()); TensorShapeProto* b_matrix_shape = b_matrix->mutable_shape(); for (int i = std::max<int>(0, b_input_shape.size() - matrix_rank); i < b_input_shape.size(); ++i) { b_matrix_shape->add_dim()->set_size(b_input_shape[i]); } if (batch_mat_mul != nullptr) { batch_mat_mul->matmul_dims.m = (transpose_a) ? a_matrix_shape->dim(1).size() : a_matrix_shape->dim(0).size(); batch_mat_mul->matmul_dims.k = (transpose_a) ? a_matrix_shape->dim(0).size() : a_matrix_shape->dim(1).size(); batch_mat_mul->matmul_dims.n = (transpose_b) ? b_matrix_shape->dim(0).size() : b_matrix_shape->dim(1).size(); } ops += num_matmuls * CountMatMulOperations(matmul_op_info, transpose_a, transpose_b, nullptr, found_unknown_shapes); return ops; } bool GetTensorShapeProtoFromTensorProto(const TensorProto& tensor_proto, TensorShapeProto* tensor_shape_proto) { tensor_shape_proto->Clear(); Tensor tensor(tensor_proto.dtype()); if (!tensor.FromProto(tensor_proto)) { LOG(WARNING) << "GetTensorShapeProtoFromTensorProto() -- " << "failed to parse TensorProto: " << tensor_proto.DebugString(); return false; } if (tensor.dims() != 1) { LOG(WARNING) << "GetTensorShapeProtoFromTensorProto() -- " << "tensor is not 1D: " << tensor.dims(); return false; } TensorProto temp_tensor; tensor.AsProtoField(&temp_tensor); #define TENSOR_VALUES_TO_TENSOR_SHAPE_PROTO(type) \ do { \ for (const auto& value : temp_tensor.type##_val()) { \ tensor_shape_proto->add_dim()->set_size(value); \ } \ } while (0) if (tensor.dtype() == DT_INT32 || tensor.dtype() == DT_INT16 || tensor.dtype() == DT_INT8 || tensor.dtype() == DT_UINT8) { TENSOR_VALUES_TO_TENSOR_SHAPE_PROTO(int); } else if (tensor.dtype() == DT_INT64) { TENSOR_VALUES_TO_TENSOR_SHAPE_PROTO(int64); } else if (tensor.dtype() == DT_UINT32) { TENSOR_VALUES_TO_TENSOR_SHAPE_PROTO(uint32); } else if (tensor.dtype() == DT_UINT64) { TENSOR_VALUES_TO_TENSOR_SHAPE_PROTO(uint64); } else { LOG(WARNING) << "GetTensorShapeProtoFromTensorProto() -- " << "Unsupported dtype: " << tensor.dtype(); return false; } #undef TENSOR_VALUES_TO_TENSOR_SHAPE_PROTO return true; } int64_t OpLevelCostEstimator::CountConv2DBackpropInputOperations( const OpInfo& op_info, ConvolutionDimensions* returned_conv_dims, bool* found_unknown_shapes) { int64_t ops = 0; DCHECK(op_info.op() == kConv2dBackpropInput || op_info.op() == kDepthwiseConv2dNativeBackpropInput) << "Invalid Operation: not kConv2dBackpropInput nor" "kDepthwiseConv2dNativeBackpropInput"; if (op_info.inputs_size() < 2) { *found_unknown_shapes = true; return ops; } TensorShapeProto input_shape; bool shape_found = false; if (op_info.inputs(0).has_value()) { const TensorProto& value = op_info.inputs(0).value(); shape_found = GetTensorShapeProtoFromTensorProto(value, &input_shape); } if (!shape_found && op_info.outputs_size() == 1) { input_shape = op_info.outputs(0).shape(); shape_found = true; } if (!shape_found) { input_shape.Clear(); for (int i = 0; i < 4; ++i) { input_shape.add_dim()->set_size(1); } *found_unknown_shapes = true; } ConvolutionDimensions conv_dims = ConvolutionDimensionsFromInputs( input_shape, op_info.inputs(1).shape(), op_info, found_unknown_shapes); ops = conv_dims.batch; ops *= conv_dims.ox * conv_dims.oy; ops *= conv_dims.kx * conv_dims.ky; if (op_info.op() == kConv2dBackpropInput) { ops *= conv_dims.kz * conv_dims.oz; } else { conv_dims.oz *= conv_dims.iz; ops *= conv_dims.oz; } ops *= kOpsPerMac; VLOG(1) << "Operations for" << op_info.op() << " " << ops; if (returned_conv_dims != nullptr) { *returned_conv_dims = conv_dims; } return ops; } int64_t OpLevelCostEstimator::CountConv2DBackpropFilterOperations( const OpInfo& op_info, ConvolutionDimensions* returned_conv_dims, bool* found_unknown_shapes) { int64_t ops = 0; DCHECK(op_info.op() == kConv2dBackpropFilter || op_info.op() == kDepthwiseConv2dNativeBackpropFilter) << "Invalid Operation: not kConv2dBackpropFilter nor" "kDepthwiseConv2dNativeBackpropFilter"; TensorShapeProto filter_shape; bool shape_found = false; if (op_info.inputs_size() >= 2 && op_info.inputs(1).has_value()) { const TensorProto& value = op_info.inputs(1).value(); shape_found = GetTensorShapeProtoFromTensorProto(value, &filter_shape); } if (!shape_found && op_info.outputs_size() == 1) { filter_shape = op_info.outputs(0).shape(); shape_found = true; } if (!shape_found) { filter_shape.Clear(); for (int i = 0; i < 4; ++i) { filter_shape.add_dim()->set_size(1); } *found_unknown_shapes = true; } if (op_info.inputs_size() < 1) { *found_unknown_shapes = true; return ops; } ConvolutionDimensions conv_dims = ConvolutionDimensionsFromInputs( op_info.inputs(0).shape(), filter_shape, op_info, found_unknown_shapes); ops = conv_dims.batch; ops *= conv_dims.ox * conv_dims.oy; ops *= conv_dims.kx * conv_dims.ky; if (op_info.op() == kConv2dBackpropFilter) { ops *= conv_dims.kz * conv_dims.oz; } else { conv_dims.oz *= conv_dims.iz; ops *= conv_dims.oz; } ops *= kOpsPerMac; VLOG(1) << "Operations for" << op_info.op() << " " << ops; if (returned_conv_dims != nullptr) { *returned_conv_dims = conv_dims; } return ops; } int64_t OpLevelCostEstimator::CalculateTensorElementCount( const OpInfo::TensorProperties& tensor, bool* found_unknown_shapes) { VLOG(2) << " with " << DataTypeString(tensor.dtype()) << " tensor of shape " << tensor.shape().DebugString(); int64_t tensor_size = 1; int num_dims = std::max(1, tensor.shape().dim_size()); auto tensor_shape = MaybeGetMinimumShape(tensor.shape(), num_dims, found_unknown_shapes); for (int64_t dim : tensor_shape) { int64_t new_tensor_size = MultiplyWithoutOverflow(tensor_size, dim); if (new_tensor_size < 0) { VLOG(1) << "Overflow encountered when computing element count of a " "tensor, multiplying " << tensor_size << " with " << dim; return -1; } tensor_size = new_tensor_size; } return tensor_size; } int64_t OpLevelCostEstimator::CalculateTensorSize( const OpInfo::TensorProperties& tensor, bool* found_unknown_shapes) { int64_t count = CalculateTensorElementCount(tensor, found_unknown_shapes); int size = DataTypeSize(BaseType(tensor.dtype())); VLOG(2) << "Count: " << count << " DataTypeSize: " << size; int64_t tensor_size = MultiplyWithoutOverflow(count, size); if (tensor_size < 0) { VLOG(1) << "Overflow encountered when computing tensor size, multiplying " << count << " with " << size; return -1; } return tensor_size; } int64_t OpLevelCostEstimator::CalculateInputSize(const OpInfo& op_info, bool* found_unknown_shapes) { int64_t total_input_size = 0; for (auto& input : op_info.inputs()) { int64_t input_size = CalculateTensorSize(input, found_unknown_shapes); total_input_size += input_size; VLOG(1) << "Input Size: " << input_size << " Total Input Size:" << total_input_size; } return total_input_size; } std::vector<int64_t> OpLevelCostEstimator::CalculateInputTensorSize( const OpInfo& op_info, bool* found_unknown_shapes) { std::vector<int64_t> input_tensor_size; input_tensor_size.reserve(op_info.inputs().size()); for (auto& input : op_info.inputs()) { input_tensor_size.push_back( CalculateTensorSize(input, found_unknown_shapes)); } return input_tensor_size; } int64_t OpLevelCostEstimator::CalculateLargestInputCount( const OpInfo& op_info, bool* found_unknown_shapes) { int64_t largest_input_count = 0; for (auto& input : op_info.inputs()) { int64_t input_count = CalculateTensorElementCount(input, found_unknown_shapes); if (input_count > largest_input_count) { largest_input_count = input_count; } VLOG(1) << "Input Count: " << input_count << " Largest Input Count:" << largest_input_count; } return largest_input_count; } int64_t OpLevelCostEstimator::CalculateOutputSize(const OpInfo& op_info, bool* found_unknown_shapes) { int64_t total_output_size = 0; for (const auto& output : op_info.outputs()) { DataType dt = output.dtype(); const auto& original_output_shape = output.shape(); int64_t output_size = DataTypeSize(BaseType(dt)); int num_dims = std::max(1, original_output_shape.dim_size()); std::vector<int64_t> output_shape = MaybeGetMinimumShape( original_output_shape, num_dims, found_unknown_shapes); for (int64_t dim : output_shape) { int64_t new_output_size = MultiplyWithoutOverflow(output_size, dim); if (new_output_size < 0) { VLOG(1) << "Overflow encountered when estimating cost, multiplying " << output_size << " with " << dim; return -1; } output_size = new_output_size; } total_output_size += output_size; VLOG(1) << "Output Size: " << output_size << " Total Output Size:" << total_output_size; } return total_output_size; } std::vector<int64_t> OpLevelCostEstimator::CalculateOutputTensorSize( const OpInfo& op_info, bool* found_unknown_shapes) { std::vector<int64_t> output_tensor_size; output_tensor_size.reserve(op_info.outputs().size()); for (const auto& output : op_info.outputs()) { DataType dt = output.dtype(); const auto& original_output_shape = output.shape(); int64_t output_size = DataTypeSize(BaseType(dt)); int num_dims = std::max(1, original_output_shape.dim_size()); auto output_shape = MaybeGetMinimumShape(original_output_shape, num_dims, found_unknown_shapes); for (int64_t dim : output_shape) { int64_t new_output_size = MultiplyWithoutOverflow(output_size, dim); if (new_output_size < 0) { VLOG(1) << "Overflow encountered when estimating cost, multiplying " << output_size << " with " << dim; } output_size = new_output_size; } output_tensor_size.push_back(output_size); } return output_tensor_size; } absl::Status OpLevelCostEstimator::PredictDefaultNodeCosts( const int64_t num_compute_ops, const OpContext& op_context, bool* found_unknown_shapes, NodeCosts* node_costs) { const auto& op_info = op_context.op_info; node_costs->num_compute_ops = num_compute_ops; node_costs->num_input_bytes_accessed = CalculateInputTensorSize(op_info, found_unknown_shapes); node_costs->num_output_bytes_accessed = CalculateOutputTensorSize(op_info, found_unknown_shapes); node_costs->max_memory = node_costs->num_total_output_bytes(); if (*found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } bool HasZeroDim(const OpInfo& op_info) { for (int i = 0; i < op_info.inputs_size(); ++i) { const auto& input = op_info.inputs(i); for (int j = 0; j < input.shape().dim_size(); ++j) { const auto& dim = input.shape().dim(j); if (dim.size() == 0) { VLOG(1) << "Convolution config has zero dim " << op_info.ShortDebugString(); return true; } } } return false; } absl::Status OpLevelCostEstimator::PredictConv2D(const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; if (HasZeroDim(op_info)) { node_costs->num_nodes_with_unknown_shapes = 1; return errors::InvalidArgument("Conv2D op includes zero dimension: ", op_info.ShortDebugString()); } bool found_unknown_shapes = false; int64_t num_compute_ops = CountConv2DOperations(op_info, &found_unknown_shapes); return PredictDefaultNodeCosts(num_compute_ops, op_context, &found_unknown_shapes, node_costs); } absl::Status OpLevelCostEstimator::PredictConv2DBackpropInput( const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; if (HasZeroDim(op_info)) { node_costs->num_nodes_with_unknown_shapes = 1; return errors::InvalidArgument( "Conv2DBackpropInput op includes zero dimension", op_info.ShortDebugString()); } bool found_unknown_shapes = false; int64_t num_compute_ops = CountConv2DBackpropInputOperations( op_info, nullptr, &found_unknown_shapes); return PredictDefaultNodeCosts(num_compute_ops, op_context, &found_unknown_shapes, node_costs); } absl::Status OpLevelCostEstimator::PredictConv2DBackpropFilter( const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; if (HasZeroDim(op_info)) { node_costs->num_nodes_with_unknown_shapes = 1; return errors::InvalidArgument( "Conv2DBackpropFilter op includes zero dimension", op_info.ShortDebugString()); } bool found_unknown_shapes = false; int64_t num_compute_ops = CountConv2DBackpropFilterOperations( op_info, nullptr, &found_unknown_shapes); return PredictDefaultNodeCosts(num_compute_ops, op_context, &found_unknown_shapes, node_costs); } absl::Status OpLevelCostEstimator::PredictFusedConv2DBiasActivation( const OpContext& op_context, NodeCosts* node_costs) const { std::string data_format = GetDataFormat(op_context.op_info); if (data_format != "NCHW" && data_format != "NHWC" && data_format != "NCHW_VECT_C") { return errors::InvalidArgument( "Unsupported data format (", data_format, ") for op: ", op_context.op_info.ShortDebugString()); } std::string filter_format = GetFilterFormat(op_context.op_info); if (filter_format != "HWIO" && filter_format != "OIHW" && filter_format != "OIHW_VECT_I") { return errors::InvalidArgument( "Unsupported filter format (", filter_format, ") for op: ", op_context.op_info.ShortDebugString()); } auto& conv_input = op_context.op_info.inputs(0); auto& filter = op_context.op_info.inputs(1); auto& side_input = op_context.op_info.inputs(3); auto& conv_input_scale = op_context.op_info.inputs(4); auto& side_input_scale = op_context.op_info.inputs(5); bool found_unknown_shapes = false; auto dims = ConvolutionDimensionsFromInputs( conv_input.shape(), filter.shape(), op_context.op_info, &found_unknown_shapes); OpInfo::TensorProperties output; if (data_format == "NCHW" || data_format == "NCHW_VECT_C") { output = DescribeTensor(DT_FLOAT, {dims.batch, dims.oz, dims.oy, dims.ox}); } else if (data_format == "NHWC") { output = DescribeTensor(DT_FLOAT, {dims.batch, dims.oy, dims.ox, dims.oz}); } std::vector<OpContext> component_ops = { FusedChildContext(op_context, "Conv2D", output, {conv_input, filter}), FusedChildContext(op_context, "Mul", output, {output, conv_input_scale}), FusedChildContext( op_context, "BiasAdd", output, {output, output}), FusedChildContext(op_context, "Relu", output, {output})}; if (side_input.shape().dim_size() > 0) { component_ops.push_back(FusedChildContext(op_context, "Mul", side_input, {side_input, side_input_scale})); component_ops.push_back(FusedChildContext( op_context, "Add", output, {output, output})); } auto op_context_with_output = op_context; op_context_with_output.op_info.mutable_outputs()->Clear(); *op_context_with_output.op_info.mutable_outputs()->Add() = output; if (found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return PredictFusedOp(op_context_with_output, component_ops, node_costs); } absl::Status OpLevelCostEstimator::PredictMatMul(const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; bool found_unknown_shapes = false; int64_t num_compute_ops = CountMatMulOperations(op_info, &found_unknown_shapes); return PredictDefaultNodeCosts(num_compute_ops, op_context, &found_unknown_shapes, node_costs); } absl::Status OpLevelCostEstimator::PredictEinsum(const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; auto it = op_info.attr().find("equation"); if (it == op_info.attr().end()) { return errors::InvalidArgument("Einsum op doesn't have equation attr: ", op_info.ShortDebugString()); } OpContext batch_matmul_op_context; bool found_unknown_shapes = false; bool success = GenerateBatchMatmulContextFromEinsum( op_context, &batch_matmul_op_context, &found_unknown_shapes); if (found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } if (!success) { return PredictCostOfAnUnknownOp(op_context, node_costs); } return PredictNodeCosts(batch_matmul_op_context, node_costs); } absl::Status OpLevelCostEstimator::PredictSparseTensorDenseMatMul( const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; bool found_unknown_shapes = false; int64_t num_elems_in_a = CalculateTensorElementCount(op_info.inputs(1), &found_unknown_shapes); auto b_matrix = op_info.inputs(3); auto b_matrix_shape = MaybeGetMinimumShape(b_matrix.shape(), 2, &found_unknown_shapes); int64_t n_dim = b_matrix_shape[1]; const int64_t op_count = kOpsPerMac * num_elems_in_a * n_dim; int64_t a_indices_input_size = CalculateTensorSize(op_info.inputs(0), &found_unknown_shapes); int64_t a_values_input_size = CalculateTensorSize(op_info.inputs(1), &found_unknown_shapes); int64_t a_shape_input_size = CalculateTensorSize(op_info.inputs(2), &found_unknown_shapes); int64_t b_input_size = num_elems_in_a * n_dim * DataTypeSize(BaseType(b_matrix.dtype())); int64_t output_size = CalculateOutputSize(op_info, &found_unknown_shapes); node_costs->num_compute_ops = op_count; node_costs->num_input_bytes_accessed = {a_indices_input_size, a_values_input_size, a_shape_input_size, b_input_size}; node_costs->num_output_bytes_accessed = {output_size}; if (found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictNoOp(const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; VLOG(1) << "Op:" << op_info.op() << " Execution Time 0 (ns)"; return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictPureMemoryOp( const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; node_costs->num_nodes_with_pure_memory_op = 1; return PredictDefaultNodeCosts(0, op_context, &found_unknown_shapes, node_costs); } absl::Status OpLevelCostEstimator::PredictIdentity( const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; VLOG(1) << "Op:" << op_info.op() << " Minimum cost for Identity"; node_costs->minimum_cost_op = true; node_costs->num_compute_ops = kMinComputeOp; node_costs->num_input_bytes_accessed = {0}; node_costs->num_output_bytes_accessed = {0}; bool inaccurate = false; node_costs->max_memory = CalculateOutputSize(op_info, &inaccurate); if (inaccurate) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictVariable( const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; VLOG(1) << "Op:" << op_info.op() << " Minimum cost for Variable"; node_costs->minimum_cost_op = true; node_costs->num_compute_ops = kMinComputeOp; node_costs->num_input_bytes_accessed = {0}; node_costs->num_output_bytes_accessed = {0}; bool inaccurate = false; node_costs->persistent_memory = CalculateOutputSize(op_info, &inaccurate); if (inaccurate) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictBatchMatMul( const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; bool found_unknown_shapes = false; int64_t num_compute_ops = CountBatchMatMulOperations(op_info, &found_unknown_shapes); return PredictDefaultNodeCosts(num_compute_ops, op_context, &found_unknown_shapes, node_costs); } absl::Status OpLevelCostEstimator::PredictMetadata( const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; node_costs->minimum_cost_op = true; node_costs->num_compute_ops = kMinComputeOp; node_costs->num_input_bytes_accessed = {0}; node_costs->num_output_bytes_accessed = {0}; bool inaccurate = false; node_costs->max_memory = CalculateOutputSize(op_info, &inaccurate); if (inaccurate) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictGatherOrSlice( const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; const int inputs_needed = op_info.op() == "Slice" ? 3 : 2; if (op_info.outputs_size() == 0 || op_info.inputs_size() < inputs_needed) { return errors::InvalidArgument( op_info.op(), " Op doesn't have valid input / output: ", op_info.ShortDebugString()); } bool unknown_shapes = false; const int64_t op_count = CalculateTensorElementCount(op_info.outputs(0), &unknown_shapes); node_costs->num_compute_ops = op_count; const int64_t output_size = CalculateOutputSize(op_info, &unknown_shapes); node_costs->num_output_bytes_accessed = {output_size}; node_costs->num_input_bytes_accessed.reserve(op_info.inputs().size()); int64_t input_size = output_size; node_costs->num_input_bytes_accessed.push_back(input_size); int begin_input_index = 1; int end_input_index; if (op_info.op() == "Slice") { end_input_index = 3; } else if (op_info.op() == "StridedSlice") { end_input_index = 4; } else { end_input_index = 2; } for (int i = begin_input_index; i < end_input_index; ++i) { node_costs->num_input_bytes_accessed.push_back( CalculateTensorElementCount(op_info.inputs(i), &unknown_shapes)); } if (unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictScatter(const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; bool found_unknown_shapes = false; const int64_t num_indices = CalculateTensorElementCount(op_info.inputs(1), &found_unknown_shapes); int64_t num_elems_in_ref_per_index = 1; std::vector<int64_t> ref_tensor_shape = MaybeGetMinimumShape( op_info.inputs(0).shape(), op_info.inputs(0).shape().dim_size(), &found_unknown_shapes); for (int i = 1; i < ref_tensor_shape.size(); ++i) { num_elems_in_ref_per_index *= ref_tensor_shape[i]; } const int64_t op_count = num_indices * num_elems_in_ref_per_index; node_costs->num_compute_ops = op_count; int64_t ref_input_size = op_count * DataTypeSize(BaseType(op_info.inputs(0).dtype())); int64_t indices_input_size = CalculateTensorSize(op_info.inputs(1), &found_unknown_shapes); int64_t updates_input_size = CalculateTensorSize(op_info.inputs(2), &found_unknown_shapes); node_costs->num_input_bytes_accessed = {ref_input_size, indices_input_size, updates_input_size}; int64_t output_size = op_count * DataTypeSize(BaseType(op_info.outputs(0).dtype())); node_costs->num_output_bytes_accessed = {output_size}; if (found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictFusedOp( const OpContext& op_context, const std::vector<OpContext>& fused_op_contexts, NodeCosts* node_costs) const { bool found_unknown_shapes = false; absl::Status s = PredictDefaultNodeCosts(0, op_context, &found_unknown_shapes, node_costs); for (auto& fused_op : fused_op_contexts) { NodeCosts fused_node_costs; s.Update(PredictNodeCosts(fused_op, &fused_node_costs)); node_costs->num_compute_ops += fused_node_costs.num_compute_ops; node_costs->inaccurate |= fused_node_costs.inaccurate; node_costs->num_nodes_with_unknown_shapes |= fused_node_costs.num_nodes_with_unknown_shapes; node_costs->num_nodes_with_unknown_op_type |= fused_node_costs.num_nodes_with_unknown_op_type; node_costs->num_nodes_with_pure_memory_op |= fused_node_costs.num_nodes_with_pure_memory_op; } return absl::OkStatus(); } OpContext OpLevelCostEstimator::FusedChildContext( const OpContext& parent, const std::string& op_name, const OpInfo::TensorProperties& output, const std::vector<OpInfo::TensorProperties>& inputs) { OpContext new_context; new_context.name = op_name; new_context.device_name = parent.device_name; new_context.op_info = parent.op_info; new_context.op_info.set_op(op_name); new_context.op_info.mutable_inputs()->Clear(); for (const auto& input : inputs) { *new_context.op_info.mutable_inputs()->Add() = input; } new_context.op_info.mutable_outputs()->Clear(); *new_context.op_info.mutable_outputs()->Add() = output; return new_context; } OpInfo::TensorProperties OpLevelCostEstimator::DescribeTensor( DataType type, const std::vector<int64_t>& dims) { OpInfo::TensorProperties ret; ret.set_dtype(type); auto shape = ret.mutable_shape(); for (const int dim : dims) { shape->add_dim()->set_size(dim); } return ret; } absl::StatusOr<OpLevelCostEstimator::ConvolutionDimensions> OpLevelCostEstimator::OpDimensionsFromInputs( const TensorShapeProto& original_image_shape, const OpInfo& op_info, bool* found_unknown_shapes) { VLOG(2) << "op features: " << op_info.DebugString(); VLOG(2) << "Original image shape: " << original_image_shape.DebugString(); *found_unknown_shapes = false; auto image_shape = MaybeGetMinimumShape(original_image_shape, 4, found_unknown_shapes); VLOG(2) << "Image shape: " << absl::StrJoin(image_shape, ", "); int x_index, y_index, channel_index; const std::string& data_format = GetDataFormat(op_info); if (data_format == "NCHW") { channel_index = 1; y_index = 2; x_index = 3; } else { y_index = 1; x_index = 2; channel_index = 3; } int64_t batch = image_shape[0]; int64_t ix = image_shape[x_index]; int64_t iy = image_shape[y_index]; int64_t iz = image_shape[channel_index]; std::vector<int64_t> ksize = GetKernelSize(op_info); int64_t kx = ksize[x_index]; int64_t ky = ksize[y_index]; int64_t kz = iz; std::vector<int64_t> strides = GetStrides(op_info); int64_t sx = strides[x_index]; int64_t sy = strides[y_index]; if (sx == 0 || sy == 0) { return errors::InvalidArgument( "Stride must be > 0 for Height and Width, but got (", sy, ", ", sx, ")"); } const auto padding = GetPadding(op_info); int64_t ox = GetOutputSize(ix, kx, sx, padding); int64_t oy = GetOutputSize(iy, ky, sy, padding); int64_t oz = iz; OpLevelCostEstimator::ConvolutionDimensions conv_dims = { batch, ix, iy, iz, kx, ky, kz, oz, ox, oy, sx, sy, padding}; return conv_dims; } absl::Status OpLevelCostEstimator::PredictMaxPool(const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; const auto& op_info = op_context.op_info; TF_ASSIGN_OR_RETURN(ConvolutionDimensions dims, OpDimensionsFromInputs(op_info.inputs(0).shape(), op_info, &found_unknown_shapes)); int per_output_ops = dims.kx * dims.ky == 1 ? 1 : dims.kx * dims.ky - 1; int64_t ops = dims.batch * dims.ox * dims.oy * dims.oz * per_output_ops; node_costs->num_compute_ops = ops; int64_t input_size = 0; if (dims.ky >= dims.sy) { input_size = CalculateTensorSize(op_info.inputs(0), &found_unknown_shapes); } else { const auto data_size = DataTypeSize(BaseType(op_info.inputs(0).dtype())); input_size = data_size * dims.batch * dims.ix * dims.ky * dims.oy * dims.iz; } node_costs->num_input_bytes_accessed = {input_size}; const int64_t output_size = CalculateOutputSize(op_info, &found_unknown_shapes); node_costs->num_output_bytes_accessed = {output_size}; node_costs->max_memory = output_size; if (found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictMaxPoolGrad( const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; const auto& op_info = op_context.op_info; if (op_info.inputs_size() < 3) { return errors::InvalidArgument("MaxPoolGrad op has invalid inputs: ", op_info.ShortDebugString()); } TF_ASSIGN_OR_RETURN(ConvolutionDimensions dims, OpDimensionsFromInputs(op_info.inputs(0).shape(), op_info, &found_unknown_shapes)); int64_t ops = 0; if (dims.kx == 1 && dims.ky == 1) { ops = dims.batch * dims.ix * dims.iy * dims.iz; } else if (dims.kx <= dims.sx && dims.ky <= dims.sy) { ops = dims.batch * dims.iz * (dims.ox * dims.oy * (dims.kx * dims.ky - 1) + dims.ix * dims.iy); } else { ops = dims.batch * dims.iz * (dims.ox * dims.oy * (dims.kx * dims.ky - 1) + dims.ix * dims.iy * 2); } node_costs->num_compute_ops = ops; const int64_t input0_size = CalculateTensorSize(op_info.inputs(0), &found_unknown_shapes); const int64_t input2_size = CalculateTensorSize(op_info.inputs(2), &found_unknown_shapes); node_costs->num_input_bytes_accessed = {input0_size, 0, input2_size}; const int64_t output_size = CalculateTensorSize(op_info.inputs(0), &found_unknown_shapes); node_costs->num_output_bytes_accessed = {output_size}; node_costs->max_memory = output_size; if (found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictAssignVariableOps( const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; const auto& op_info = op_context.op_info; if (op_info.inputs_size() != 2) { return errors::InvalidArgument("AssignVariable op has invalid input: ", op_info.ShortDebugString()); } const int64_t ops = op_info.op() == kAssignVariableOp ? 0 : CalculateTensorElementCount(op_info.inputs(1), &found_unknown_shapes); node_costs->num_compute_ops = ops; const int64_t input_size = CalculateInputSize(op_info, &found_unknown_shapes); node_costs->num_input_bytes_accessed = {input_size}; node_costs->num_output_bytes_accessed = {0}; if (found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictAvgPool(const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; const auto& op_info = op_context.op_info; TF_ASSIGN_OR_RETURN(ConvolutionDimensions dims, OpDimensionsFromInputs(op_info.inputs(0).shape(), op_info, &found_unknown_shapes)); int64_t ops = dims.batch * dims.ox * dims.oy * dims.oz * dims.kx * dims.ky; node_costs->num_compute_ops = ops; int64_t input_size; if (dims.ky >= dims.sy) { input_size = CalculateTensorSize(op_info.inputs(0), &found_unknown_shapes); } else { const auto data_size = DataTypeSize(BaseType(op_info.inputs(0).dtype())); input_size = data_size * dims.batch * dims.ix * dims.ky * dims.oy * dims.iz; } node_costs->num_input_bytes_accessed = {input_size}; const int64_t output_size = CalculateOutputSize(op_info, &found_unknown_shapes); node_costs->num_output_bytes_accessed = {output_size}; node_costs->max_memory = output_size; if (found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictAvgPoolGrad( const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; const auto& op_info = op_context.op_info; bool shape_found = false; TensorShapeProto x_shape; if (op_info.inputs_size() >= 1 && op_info.inputs(0).has_value()) { const TensorProto& value = op_info.inputs(0).value(); shape_found = GetTensorShapeProtoFromTensorProto(value, &x_shape); } if (!shape_found && op_info.outputs_size() > 0) { x_shape = op_info.outputs(0).shape(); shape_found = true; } if (!shape_found) { x_shape.Clear(); for (int i = 0; i < 4; ++i) { x_shape.add_dim()->set_size(1); } found_unknown_shapes = true; } TF_ASSIGN_OR_RETURN( ConvolutionDimensions dims, OpDimensionsFromInputs(x_shape, op_info, &found_unknown_shapes)); int64_t ops = 0; if (dims.kx <= dims.sx && dims.ky <= dims.sy) { ops = dims.batch * dims.iz * (dims.ix * dims.iy + dims.ox * dims.oy); } else { ops = dims.batch * dims.iz * (dims.ix * dims.iy + dims.ox * dims.oy * (dims.kx * dims.ky + 1)); } auto s = PredictDefaultNodeCosts(ops, op_context, &found_unknown_shapes, node_costs); node_costs->max_memory = node_costs->num_total_output_bytes(); return s; } absl::Status OpLevelCostEstimator::PredictFusedBatchNorm( const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; const auto& op_info = op_context.op_info; TF_ASSIGN_OR_RETURN(ConvolutionDimensions dims, OpDimensionsFromInputs(op_info.inputs(0).shape(), op_info, &found_unknown_shapes)); const bool is_training = IsTraining(op_info); int64_t ops = 0; const auto rsqrt_cost = Eigen::internal::functor_traits< Eigen::internal::scalar_rsqrt_op<float>>::Cost; if (is_training) { ops = dims.iz * (dims.batch * dims.ix * dims.iy * 4 + 6 + rsqrt_cost); } else { ops = dims.batch * dims.ix * dims.iy * dims.iz * 2; } node_costs->num_compute_ops = ops; const int64_t size_nhwc = CalculateTensorSize(op_info.inputs(0), &found_unknown_shapes); const int64_t size_c = CalculateTensorSize(op_info.inputs(1), &found_unknown_shapes); if (is_training) { node_costs->num_input_bytes_accessed = {size_nhwc, size_c, size_c}; node_costs->num_output_bytes_accessed = {size_nhwc, size_c, size_c, size_c, size_c}; node_costs->internal_read_bytes = size_nhwc; } else { node_costs->num_input_bytes_accessed = {size_nhwc, size_c, size_c, size_c, size_c}; node_costs->num_output_bytes_accessed = {size_nhwc}; } node_costs->max_memory = node_costs->num_total_output_bytes(); if (found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictFusedBatchNormGrad( const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; const auto& op_info = op_context.op_info; TF_ASSIGN_OR_RETURN(ConvolutionDimensions dims, OpDimensionsFromInputs(op_info.inputs(1).shape(), op_info, &found_unknown_shapes)); int64_t ops = 0; const auto rsqrt_cost = Eigen::internal::functor_traits< Eigen::internal::scalar_rsqrt_op<float>>::Cost; ops = dims.iz * (dims.batch * dims.ix * dims.iy * 11 + 5 + rsqrt_cost); node_costs->num_compute_ops = ops; const int64_t size_nhwc = CalculateTensorSize(op_info.inputs(1), &found_unknown_shapes); const int64_t size_c = CalculateTensorSize(op_info.inputs(2), &found_unknown_shapes); node_costs->num_input_bytes_accessed = {size_nhwc, size_nhwc, size_c, size_c}; node_costs->num_output_bytes_accessed = {size_nhwc, size_c, size_c}; node_costs->internal_read_bytes = size_nhwc; node_costs->max_memory = node_costs->num_total_output_bytes(); if (found_unknown_shapes) { node_costs->inaccurate = true; node_costs->num_nodes_with_unknown_shapes = 1; } return absl::OkStatus(); } absl::Status OpLevelCostEstimator::PredictNaryOp(const OpContext& op_context, NodeCosts* node_costs) const { const auto& op_info = op_context.op_info; bool found_unknown_shapes = false; int64_t op_count = CalculateLargestInputCount(op_info, &found_unknown_shapes); if (op_info.outputs_size() > 0) { op_count = std::max( op_count, CalculateTensorElementCount(op_info.outputs(0), &found_unknown_shapes)); } if (op_info.inputs_size() >= 2) { op_count = std::max(op_count, CwiseOutputElementCount(op_info)); } op_count *= op_info.inputs_size() - 1; const auto sum_cost = Eigen::internal::functor_traits< Eigen::internal::scalar_sum_op<float>>::Cost; return PredictDefaultNodeCosts(op_count * sum_cost, op_context, &found_unknown_shapes, node_costs); } int64_t OpLevelCostEstimator::GetSoftmaxComputeOps( const OpContext& op_context) const { bool found_unknown_shapes = false; const int64_t logits_size = CalculateTensorElementCount( op_context.op_info.inputs(0), &found_unknown_shapes); TensorShapeProto logits_shape = op_context.op_info.inputs(0).shape(); #define EIGEN_COST(X) Eigen::internal::functor_traits<Eigen::internal::X>::Cost int64_t ops = (EIGEN_COST(scalar_exp_op<float>) + EIGEN_COST(scalar_sum_op<float>) + EIGEN_COST(scalar_product_op<float>)) * logits_size + EIGEN_COST(scalar_inverse_op<float>) * logits_shape.dim(0).size(); #undef EIGEN_COST return ops; } absl::Status OpLevelCostEstimator::PredictSoftmax(const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; TensorShapeProto logits_shape = op_context.op_info.inputs(0).shape(); if (logits_shape.unknown_rank() || logits_shape.dim_size() == 0) { return errors::InvalidArgument("Softmax op has invalid input: ", op_context.op_info.ShortDebugString()); } int64_t ops = GetSoftmaxComputeOps(op_context); return PredictDefaultNodeCosts(ops, op_context, &found_unknown_shapes, node_costs); } absl::Status OpLevelCostEstimator::PredictResizeBilinear( const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; if (op_context.op_info.outputs().empty() || op_context.op_info.inputs().empty()) { return errors::InvalidArgument( "ResizeBilinear op has invalid input / output ", op_context.op_info.ShortDebugString()); } const int64_t output_elements = CalculateTensorElementCount( op_context.op_info.outputs(0), &found_unknown_shapes); const auto half_pixel_centers = op_context.op_info.attr().find("half_pixel_centers"); bool use_half_pixel_centers = false; if (half_pixel_centers == op_context.op_info.attr().end()) { LOG(WARNING) << "half_pixel_centers attr not set for ResizeBilinear."; return PredictCostOfAnUnknownOp(op_context, node_costs); } else { use_half_pixel_centers = half_pixel_centers->second.b(); } int64_t ops = 0; #define EIGEN_COST(X) Eigen::internal::functor_traits<Eigen::internal::X>::Cost const auto sub_cost_float = EIGEN_COST(scalar_difference_op<float>); const auto sub_cost_int = EIGEN_COST(scalar_difference_op<int64_t>); const auto add_cost = EIGEN_COST(scalar_sum_op<float>); const auto mul_cost = EIGEN_COST(scalar_product_op<float>); const auto floor_cost = EIGEN_COST(scalar_floor_op<float>); const auto max_cost = EIGEN_COST(scalar_max_op<int64_t>); const auto min_cost = EIGEN_COST(scalar_min_op<int64_t>); const auto cast_to_int_cost = Eigen::internal::functor_traits< Eigen::internal::scalar_cast_op<float, int64_t>>::Cost; const auto cast_to_float_cost = Eigen::internal::functor_traits< Eigen::internal::scalar_cast_op<int64_t, float>>::Cost; const auto ceil_cost = EIGEN_COST(scalar_ceil_op<float>); #undef EIGEN_COST const std::vector<int64_t> output_shape = MaybeGetMinimumShape( op_context.op_info.outputs(0).shape(), 4, &found_unknown_shapes); const int64_t output_height = output_shape[1]; const int64_t output_width = output_shape[2]; int64_t interp_weight_cost = floor_cost + max_cost + min_cost + sub_cost_float + sub_cost_int + ceil_cost + cast_to_int_cost * 2; if (use_half_pixel_centers) { interp_weight_cost += add_cost + mul_cost + sub_cost_float + cast_to_float_cost; } else { interp_weight_cost += cast_to_float_cost + mul_cost; } ops += interp_weight_cost * (output_height + output_width); ops += (add_cost * 3 + sub_cost_float * 3 + mul_cost * 3) * output_elements; return PredictDefaultNodeCosts(ops, op_context, &found_unknown_shapes, node_costs); } absl::Status OpLevelCostEstimator::PredictCropAndResize( const OpContext& op_context, NodeCosts* node_costs) const { bool found_unknown_shapes = false; const auto method = op_context.op_info.attr().find("method"); std::optional<bool> use_bilinear_interp; if (method == op_context.op_info.attr().end() || method->second.s() == "bilinear") { use_bilinear_interp = true; } else if (method->second.s() == "nearest") { use_bilinear_interp = false; } if (!use_bilinear_interp.has_value() || op_context.op_info.outputs().empty()) { LOG(WARNING) << "method attr in CropAndResize invalid; expected bilinear " "or nearest."; return PredictCostOfAnUnknownOp(op_context, node_costs); } const int64_t num_boxes = op_context.op_info.inputs(1).shape().dim(0).size(); const std::vector<int64_t> crop_shape = MaybeGetMinimumShape( op_context.op_info.outputs(0).shape(), 4, &found_unknown_shapes); const int64_t crop_height = crop_shape[1]; const int64_t crop_width = crop_shape[2]; const int64_t output_elements = CalculateTensorElementCount( op_context.op_info.outputs(0), &found_unknown_shapes); #define EIGEN_COST(X) Eigen::internal::functor_traits<Eigen::internal::X>::Cost const auto sub_cost = EIGEN_COST(scalar_difference_op<float>); const auto add_cost = EIGEN_COST(scalar_sum_op<float>); const auto mul_cost = EIGEN_COST(scalar_product_op<float>); auto div_cost = EIGEN_COST(scalar_div_cost<float>); const auto floor_cost = EIGEN_COST(scalar_floor_op<float>); const auto ceil_cost = EIGEN_COST(scalar_ceil_op<float>); auto round_cost = EIGEN_COST(scalar_round_op<float>); const auto cast_to_float_cost = Eigen::internal::functor_traits< Eigen::internal::scalar_cast_op<int64_t, float>>::Cost; #undef EIGEN_COST int64_t crop_area = MultiplyWithoutOverflow(crop_height, crop_width); if (crop_area < 0) return errors::InvalidArgument("Cannot estimate cost, multiplying ", crop_height, " with ", crop_width, " would overflow"); int64_t crop_volume = MultiplyWithoutOverflow(crop_area, num_boxes); if (crop_volume < 0) return errors::InvalidArgument("Cannot estimate cost, multiplying ", crop_area, " with ", num_boxes, " would overflow"); int64_t crop_depth = MultiplyWithoutOverflow(crop_height, num_boxes); if (crop_depth < 0) return errors::InvalidArgument("Cannot estimate cost, multiplying ", crop_height, " with ", num_boxes, " would overflow"); int64_t ops = (sub_cost * 6 + mul_cost * 2 + div_cost * 2) * num_boxes; ops += (mul_cost * 2 + sub_cost + add_cost) * crop_depth; ops += (mul_cost * 2 + sub_cost + add_cost) * crop_volume; if (*use_bilinear_interp) { ops += (floor_cost + ceil_cost + sub_cost) * crop_depth; ops += (floor_cost + ceil_cost + sub_cost) * crop_volume; ops += (cast_to_float_cost * 4 + add_cost * 3 + sub_cost * 3 + mul_cost * 3) * output_elements; } else { ops += round_cost * 2 * crop_volume; ops += cast_to_float_cost * output_elements; } return PredictDefaultNodeCosts(ops, op_context, &found_unknown_shapes, node_costs); } } }
#include "tensorflow/core/grappler/costs/op_level_cost_estimator.h" #include <unordered_set> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/device_properties.pb.h" namespace tensorflow { namespace grappler { using ::testing::ElementsAreArray; namespace { class TestOpLevelCostEstimator : public OpLevelCostEstimator { public: TestOpLevelCostEstimator() { compute_memory_overlap_ = true; device_info_ = DeviceInfo(); } ~TestOpLevelCostEstimator() override {} void SetDeviceInfo(const DeviceInfo& device_info) { device_info_ = device_info; } void SetComputeMemoryOverlap(bool value) { compute_memory_overlap_ = value; } protected: DeviceInfo GetDeviceInfo(const DeviceProperties& device) const override { return device_info_; } DeviceInfo device_info_; }; void ExpectZeroCost(const Costs& cost) { EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(cost.compute_time, Costs::Duration::zero()); EXPECT_EQ(cost.execution_time, Costs::Duration::zero()); EXPECT_EQ(cost.memory_time, Costs::Duration::zero()); } void DescribeMatrix(int rows, int columns, OpInfo* op_info) { auto input = op_info->add_inputs(); auto shape = input->mutable_shape(); auto shape_rows = shape->add_dim(); shape_rows->set_size(rows); auto shape_columns = shape->add_dim(); shape_columns->set_size(columns); input->set_dtype(DT_FLOAT); } void SetCpuDevice(OpInfo* op_info) { auto device = op_info->mutable_device(); device->set_type("CPU"); device->set_num_cores(10); device->set_bandwidth(10000000); device->set_frequency(1000); } OpContext DescribeMatMul(int m, int n, int l, int k) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("MatMul"); DescribeMatrix(m, l, &op_context.op_info); DescribeMatrix(k, n, &op_context.op_info); return op_context; } void DescribeArbitraryRankInput(const std::vector<int>& dims, DataType dtype, OpInfo* op_info) { auto input = op_info->add_inputs(); input->set_dtype(dtype); auto shape = input->mutable_shape(); for (auto d : dims) { shape->add_dim()->set_size(d); } } void DescribeArbitraryRankOutput(const std::vector<int>& dims, DataType dtype, OpInfo* op_info) { auto output = op_info->add_outputs(); output->set_dtype(dtype); auto shape = output->mutable_shape(); for (auto d : dims) { shape->add_dim()->set_size(d); } } OpContext DescribeSparseTensorDenseMatMul(const int nnz_a, const std::vector<int>& dims_b, const std::vector<int>& dims_out) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("SparseTensorDenseMatMul"); DescribeArbitraryRankInput({nnz_a, 2}, DT_INT64, &op_context.op_info); DescribeArbitraryRankInput({nnz_a}, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankInput({2}, DT_INT64, &op_context.op_info); DescribeArbitraryRankInput(dims_b, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankOutput(dims_out, DT_FLOAT, &op_context.op_info); return op_context; } OpContext DescribeXlaEinsum(const std::vector<int>& dims_a, const std::vector<int>& dims_b, const string& equation) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("XlaEinsum"); AttrValue equation_attribute; equation_attribute.set_s(equation); (*op_context.op_info.mutable_attr())["equation"] = equation_attribute; if (!dims_a.empty()) DescribeArbitraryRankInput(dims_a, DT_FLOAT, &op_context.op_info); if (!dims_b.empty()) DescribeArbitraryRankInput(dims_b, DT_FLOAT, &op_context.op_info); return op_context; } OpContext DescribeEinsum(const std::vector<int>& dims_a, const std::vector<int>& dims_b, const string& equation) { OpContext op_context = DescribeXlaEinsum(dims_a, dims_b, equation); op_context.op_info.set_op("Einsum"); return op_context; } void DescribeDummyTensor(OpInfo::TensorProperties* tensor) { } void DescribeTensor1D(int dim0, OpInfo::TensorProperties* tensor) { auto shape = tensor->mutable_shape(); shape->add_dim()->set_size(dim0); tensor->set_dtype(DT_FLOAT); } void DescribeTensor4D(int dim0, int dim1, int dim2, int dim3, OpInfo::TensorProperties* tensor) { auto shape = tensor->mutable_shape(); shape->add_dim()->set_size(dim0); shape->add_dim()->set_size(dim1); shape->add_dim()->set_size(dim2); shape->add_dim()->set_size(dim3); tensor->set_dtype(DT_FLOAT); } void DescribeTensor5D(int dim0, int dim1, int dim2, int dim3, int dim4, OpInfo::TensorProperties* tensor) { auto shape = tensor->mutable_shape(); shape->add_dim()->set_size(dim0); shape->add_dim()->set_size(dim1); shape->add_dim()->set_size(dim2); shape->add_dim()->set_size(dim3); shape->add_dim()->set_size(dim4); tensor->set_dtype(DT_FLOAT); } OpContext DescribeConvolution(int batch, int ix, int iy, int iz1, int iz2, int kx, int ky, int oz) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("Conv2D"); DescribeTensor4D(batch, ix, iy, iz1, op_context.op_info.add_inputs()); DescribeTensor4D(kx, ky, iz2, oz, op_context.op_info.add_inputs()); return op_context; } OpContext DescribeDepthwiseConv2dNative(int batch, int ix, int iy, int iz1, int iz2, int kx, int ky, int cm) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("DepthwiseConv2dNative"); DescribeTensor4D(batch, ix, iy, iz1, op_context.op_info.add_inputs()); DescribeTensor4D(kx, ky, iz2, cm, op_context.op_info.add_inputs()); return op_context; } OpContext DescribeFusedConv2DBiasActivation(int batch, int ix, int iy, int iz1, int iz2, int kx, int ky, int ox, int oy, int oz, bool has_side_input, const string& data_format, const string& filter_format) { const int kVecWidth = 4; OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("FusedConv2DBiasActivation"); auto* attr_data_format = op_context.op_info.mutable_attr(); SetAttrValue(data_format, &(*attr_data_format)["data_format"]); auto* attr_filter_format = op_context.op_info.mutable_attr(); SetAttrValue(filter_format, &(*attr_filter_format)["filter_format"]); if (data_format == "NHWC") { DescribeTensor4D(batch, ix, iy, iz1, op_context.op_info.add_inputs()); } else if (data_format == "NCHW") { DescribeTensor4D(batch, iz1, ix, iy, op_context.op_info.add_inputs()); } else { EXPECT_EQ(data_format, "NCHW_VECT_C"); EXPECT_EQ(iz1 % kVecWidth, 0); DescribeTensor5D(batch, iz1 / kVecWidth, ix, iy, kVecWidth, op_context.op_info.add_inputs()); } if (filter_format == "HWIO") { DescribeTensor4D(kx, ky, iz2, oz, op_context.op_info.add_inputs()); } else if (filter_format == "OIHW") { DescribeTensor4D(oz, iz2, kx, ky, op_context.op_info.add_inputs()); } else { EXPECT_EQ(filter_format, "OIHW_VECT_I"); EXPECT_EQ(iz2 % kVecWidth, 0); DescribeTensor5D(oz, iz2 / kVecWidth, kx, ky, kVecWidth, op_context.op_info.add_inputs()); } DescribeTensor1D(oz, op_context.op_info.add_inputs()); auto side_input = op_context.op_info.add_inputs(); if (has_side_input) { if (data_format == "NHWC") { DescribeTensor4D(batch, ox, oy, oz, side_input); } else if (data_format == "NCHW") { DescribeTensor4D(batch, oz, ox, oy, side_input); } else { EXPECT_EQ(data_format, "NCHW_VECT_C"); EXPECT_EQ(oz % kVecWidth, 0); DescribeTensor5D(batch, oz / kVecWidth, ox, oy, kVecWidth, side_input); } } DescribeTensor1D(1, op_context.op_info.add_inputs()); DescribeTensor1D(1, op_context.op_info.add_inputs()); return op_context; } OpContext DescribeUnaryOp(const string& op, int size1) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op(op); DescribeTensor4D(size1, 1, 1, 1, op_context.op_info.add_inputs()); DescribeTensor4D(size1, 1, 1, 1, op_context.op_info.add_outputs()); return op_context; } OpContext DescribeBinaryOp(const string& op, int size1, int size2) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op(op); DescribeTensor4D(size1, 1, 1, 1, op_context.op_info.add_inputs()); DescribeTensor4D(2 * size1, size2, 1, 1, op_context.op_info.add_inputs()); DescribeTensor4D(2 * size1, size2, 1, 1, op_context.op_info.add_outputs()); return op_context; } OpContext DescribeBiasAdd(int size1, int size2) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("BiasAdd"); DescribeTensor4D(1, 1, size2, size1, op_context.op_info.add_inputs()); DescribeTensor1D(size1, op_context.op_info.add_inputs()); DescribeTensor4D(1, 1, size2, size1, op_context.op_info.add_outputs()); return op_context; } int GetOutputSize(const int x, const int k, const int s, const string& padding) { if (padding == "SAME") { return (x + s - 1) / s; } else { return (x - k + s) / s; } } std::vector<int> GetPoolingOutputSize(const std::vector<int>& input, const std::vector<int>& ksize, const std::vector<int>& strides, const string& data_format, const string& padding) { int h_index = 1; int w_index = 2; int c_index = 3; if (data_format == "NCHW") { h_index = 2; w_index = 3; c_index = 1; } int n = input[0]; int h = input[h_index]; int w = input[w_index]; int c = input[c_index]; int sx = strides[h_index]; int sy = strides[w_index]; int kx = ksize[h_index]; int ky = ksize[w_index]; int ho = GetOutputSize(h, kx, sx, padding); int wo = GetOutputSize(w, ky, sy, padding); std::vector<int> output; if (data_format == "NHWC") { output = {n, ho, wo, c}; } else { output = {n, c, ho, wo}; } return output; } void GetTensorProto(const DataType dtype, const std::vector<int64_t>& shape, const std::vector<int64_t> values, const bool tensor_content, TensorProto* tensor_proto) { tensor_proto->Clear(); TensorProto temp_tensor_proto; temp_tensor_proto.set_dtype(dtype); for (const auto& x : shape) { temp_tensor_proto.mutable_tensor_shape()->add_dim()->set_size(x); } for (const auto& x : values) { if (dtype == DT_INT64) { temp_tensor_proto.add_int64_val(x); } else if (dtype == DT_INT32 || dtype == DT_INT16 || dtype == DT_INT8 || dtype == DT_UINT8) { temp_tensor_proto.add_int_val(x); } else if (dtype == DT_UINT32) { temp_tensor_proto.add_uint32_val(x); } else if (dtype == DT_UINT64) { temp_tensor_proto.add_uint64_val(x); } else { CHECK(false) << "Unsupported dtype: " << dtype; } } Tensor tensor(dtype); CHECK(tensor.FromProto(temp_tensor_proto)); if (tensor_content) { tensor.AsProtoTensorContent(tensor_proto); } else { tensor.AsProtoField(tensor_proto); } } OpContext DescribePoolingOp(const string& op_name, const std::vector<int>& x, const std::vector<int>& ksize, const std::vector<int>& strides, const string& data_format, const string& padding) { OpContext op_context; auto& op_info = op_context.op_info; SetCpuDevice(&op_info); op_info.set_op(op_name); const std::vector<int> y = GetPoolingOutputSize(x, ksize, strides, data_format, padding); if (op_name == "AvgPool" || op_name == "MaxPool") { DescribeTensor4D(x[0], x[1], x[2], x[3], op_info.add_inputs()); DescribeTensor4D(y[0], y[1], y[2], y[3], op_info.add_outputs()); } else if (op_name == "AvgPoolGrad") { DescribeArbitraryRankInput({4}, DT_INT32, &op_info); auto* tensor_proto = op_info.mutable_inputs(0)->mutable_value(); GetTensorProto(DT_INT32, {4}, {x[0], x[1], x[2], x[3]}, false, tensor_proto); DescribeTensor4D(y[0], y[1], y[2], y[3], op_info.add_inputs()); DescribeTensor4D(x[0], x[1], x[2], x[3], op_info.add_outputs()); } else if (op_name == "MaxPoolGrad") { DescribeTensor4D(x[0], x[1], x[2], x[3], op_info.add_inputs()); DescribeTensor4D(y[0], y[1], y[2], y[3], op_info.add_inputs()); DescribeTensor4D(y[0], y[1], y[2], y[3], op_info.add_inputs()); DescribeTensor4D(x[0], x[1], x[2], x[3], op_info.add_outputs()); } auto* attr = op_info.mutable_attr(); SetAttrValue(data_format, &(*attr)["data_format"]); SetAttrValue(padding, &(*attr)["padding"]); SetAttrValue(strides, &(*attr)["strides"]); SetAttrValue(ksize, &(*attr)["ksize"]); return op_context; } OpContext DescribeFusedBatchNorm(const bool is_training, const bool is_grad, const std::vector<int>& x, const string& data_format) { OpContext op_context = DescribePoolingOp("MaxPool", x, {1, 1, 1, 1}, {1, 1, 1, 1}, data_format, "SAME"); auto& op_info = op_context.op_info; if (is_grad) { op_info.set_op("FusedBatchNormGrad"); } else { op_info.set_op("FusedBatchNorm"); } if (is_grad) { DescribeTensor4D(x[0], x[1], x[2], x[3], op_info.add_inputs()); } int num_1d_inputs = is_grad ? 3 : 4; for (int i = 0; i < num_1d_inputs; i++) { auto* tensor = op_info.add_inputs(); auto* shape = tensor->mutable_shape(); shape->add_dim()->set_size(x[3]); tensor->set_dtype(DT_FLOAT); } for (int i = 0; i < 4; i++) { auto* tensor = op_info.add_outputs(); auto* shape = tensor->mutable_shape(); shape->add_dim()->set_size(x[3]); tensor->set_dtype(DT_FLOAT); } auto* attr = op_context.op_info.mutable_attr(); attr->erase("ksize"); attr->erase("strides"); attr->erase("padding"); SetAttrValue(is_training, &(*attr)["is_training"]); return op_context; } } class OpLevelCostEstimatorTest : public ::testing::Test { protected: using BatchMatMulDimensions = OpLevelCostEstimator::BatchMatMulDimensions; Costs PredictCosts(const OpContext& op_context) const { return estimator_.PredictCosts(op_context); } int64_t CountMatMulOperations(const OpInfo& op_info, bool* found_unknown_shapes) const { return estimator_.CountMatMulOperations(op_info, found_unknown_shapes); } int64_t CountBatchMatMulOperations(const OpInfo& op_info, bool* found_unknown_shapes) const { return estimator_.CountBatchMatMulOperations(op_info, found_unknown_shapes); } int64_t CountBatchMatMulOperations(const OpInfo& op_info, BatchMatMulDimensions* batch_mat_mul, bool* found_unknown_shapes) const { return estimator_.CountBatchMatMulOperations(op_info, batch_mat_mul, found_unknown_shapes); } void SetComputeMemoryOverlap(bool value) { estimator_.compute_memory_overlap_ = value; } void ValidateOpDimensionsFromInputs(const int n, const int h, const int w, const int c, const int kx, const int ky, const int sx, const int sy, const string& data_format, const string& padding) { OpContext op_context; int ho; int wo; if (data_format == "NHWC") { op_context = DescribePoolingOp("MaxPool", {n, h, w, c}, {1, kx, ky, 1}, {1, sx, sy, 1}, "NHWC", padding); ho = op_context.op_info.outputs(0).shape().dim(1).size(); wo = op_context.op_info.outputs(0).shape().dim(2).size(); } else { op_context = DescribePoolingOp("MaxPool", {n, c, h, w}, {1, 1, kx, ky}, {1, 1, sx, sy}, "NCHW", padding); ho = op_context.op_info.outputs(0).shape().dim(2).size(); wo = op_context.op_info.outputs(0).shape().dim(3).size(); } bool found_unknown_shapes; TF_ASSERT_OK_AND_ASSIGN( auto dims, OpLevelCostEstimator::OpDimensionsFromInputs( op_context.op_info.inputs(0).shape(), op_context.op_info, &found_unknown_shapes)); Padding padding_enum; if (padding == "VALID") { padding_enum = Padding::VALID; } else { padding_enum = Padding::SAME; } EXPECT_EQ(n, dims.batch); EXPECT_EQ(h, dims.ix); EXPECT_EQ(w, dims.iy); EXPECT_EQ(c, dims.iz); EXPECT_EQ(kx, dims.kx); EXPECT_EQ(ky, dims.ky); EXPECT_EQ(sx, dims.sx); EXPECT_EQ(sy, dims.sy); EXPECT_EQ(ho, dims.ox); EXPECT_EQ(wo, dims.oy); EXPECT_EQ(c, dims.oz); EXPECT_EQ(padding_enum, dims.padding); } absl::StatusOr<OpLevelCostEstimator::ConvolutionDimensions> CallOpDimensionsFromInputs(const int n, const int h, const int w, const int c, const int kx, const int ky, const int sx, const int sy, const string& data_format, const string& padding) { OpContext op_context; const std::vector<int> x = {n, h, w, c}; const std::vector<int> ksize = {1, kx, ky, 1}; std::vector<int> strides; if (data_format == "NHWC") { strides = {1, sy, sx, 1}; } else { strides = {1, 1, sy, sx}; } auto& op_info = op_context.op_info; SetCpuDevice(&op_info); op_info.set_op("MaxPool"); DescribeTensor4D(x[0], x[1], x[2], x[3], op_info.add_inputs()); auto* attr = op_info.mutable_attr(); SetAttrValue(data_format, &(*attr)["data_format"]); SetAttrValue(padding, &(*attr)["padding"]); SetAttrValue(strides, &(*attr)["strides"]); SetAttrValue(ksize, &(*attr)["ksize"]); bool found_unknown_shapes; return OpLevelCostEstimator::OpDimensionsFromInputs( op_context.op_info.inputs(0).shape(), op_context.op_info, &found_unknown_shapes); } OpLevelCostEstimator estimator_; }; class OpLevelBatchMatMulCostEstimatorTest : public OpLevelCostEstimatorTest, public ::testing::WithParamInterface<const char*> { protected: OpContext DescribeBatchMatMul(const std::vector<int>& dims_a, const std::vector<int>& dims_b) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op(GetParam()); DescribeArbitraryRankInput(dims_a, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankInput(dims_b, DT_FLOAT, &op_context.op_info); return op_context; } int64_t CountBatchMatMulOperations(const OpInfo& op_info, bool* found_unknown_shapes) const { return OpLevelCostEstimatorTest::CountBatchMatMulOperations( op_info, found_unknown_shapes); } int64_t CountBatchMatMulDimProduct(const OpInfo& op_info, bool* found_unknown_shapes) const { BatchMatMulDimensions batch_mat_mul; batch_mat_mul.matmul_dims.n = 0; batch_mat_mul.matmul_dims.m = 0; batch_mat_mul.matmul_dims.k = 0; OpLevelCostEstimatorTest::CountBatchMatMulOperations( op_info, &batch_mat_mul, found_unknown_shapes); int dimension_product = 1; for (auto dim : batch_mat_mul.batch_dims) dimension_product *= dim; dimension_product *= batch_mat_mul.matmul_dims.n; dimension_product *= batch_mat_mul.matmul_dims.m; dimension_product *= batch_mat_mul.matmul_dims.k; return dimension_product; } }; TEST_F(OpLevelCostEstimatorTest, TestPersistentOpCosts) { OpContext op_context; SetCpuDevice(&op_context.op_info); std::unordered_set<string> persistent_ops = { "Const", "Variable", "VariableV2", "AutoReloadVariable", "VarHandleOp", "ReadVariableOp", }; for (const auto& op : persistent_ops) { op_context.op_info.set_op(op); auto cost = estimator_.PredictCosts(op_context); EXPECT_EQ(Costs::Duration(0), cost.memory_time); EXPECT_EQ(Costs::Duration(1), cost.compute_time); EXPECT_EQ(Costs::Duration(1), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } } TEST_F(OpLevelCostEstimatorTest, TestGatherCosts) { std::vector<std::string> gather_ops = {"Gather", "GatherNd", "GatherV2"}; for (const auto& op : gather_ops) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op(op); DescribeArbitraryRankInput({10000000, 10}, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankInput({16}, DT_INT64, &op_context.op_info); DescribeArbitraryRankOutput({16, 10}, DT_FLOAT, &op_context.op_info); auto cost = estimator_.PredictCosts(op_context); EXPECT_EQ(Costs::Duration(130), cost.memory_time); EXPECT_EQ(Costs::Duration(16), cost.compute_time); EXPECT_EQ(Costs::Duration(146), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } } TEST_F(OpLevelCostEstimatorTest, TestGatherCostsWithoutOutput) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("Gather"); DescribeArbitraryRankInput({10000000, 10}, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankInput({16}, DT_INT64, &op_context.op_info); auto cost = estimator_.PredictCosts(op_context); EXPECT_EQ(Costs::Duration(0), cost.memory_time); EXPECT_EQ(Costs::Duration(0), cost.compute_time); EXPECT_EQ(Costs::Duration(0), cost.execution_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, TestSliceCosts) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("Slice"); DescribeArbitraryRankInput({10000000, 10}, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankInput({2}, DT_INT64, &op_context.op_info); DescribeArbitraryRankInput({2}, DT_INT64, &op_context.op_info); DescribeArbitraryRankOutput({10, 10}, DT_FLOAT, &op_context.op_info); auto cost = estimator_.PredictCosts(op_context); EXPECT_EQ(Costs::Duration(81), cost.memory_time); EXPECT_EQ(Costs::Duration(10), cost.compute_time); EXPECT_EQ(Costs::Duration(91), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, TestStridedSliceCosts) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("StridedSlice"); DescribeArbitraryRankInput({10000000, 10}, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankInput({2}, DT_INT64, &op_context.op_info); DescribeArbitraryRankInput({2}, DT_INT64, &op_context.op_info); DescribeArbitraryRankInput({2}, DT_INT64, &op_context.op_info); DescribeArbitraryRankOutput({10, 10}, DT_FLOAT, &op_context.op_info); auto cost = estimator_.PredictCosts(op_context); EXPECT_EQ(Costs::Duration(81), cost.memory_time); EXPECT_EQ(Costs::Duration(10), cost.compute_time); EXPECT_EQ(Costs::Duration(91), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, TestScatterOps) { std::vector<string> scatter_ops = {"ScatterAdd", "ScatterDiv", "ScatterMax", "ScatterMin", "ScatterMul", "ScatterSub", "ScatterUpdate"}; for (const auto& op : scatter_ops) { { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op(op); DescribeArbitraryRankInput({10000000, 10}, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankInput({16}, DT_INT64, &op_context.op_info); DescribeArbitraryRankInput({16, 10}, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankOutput({10000000, 10}, DT_FLOAT, &op_context.op_info); auto cost = estimator_.PredictCosts(op_context); EXPECT_EQ(Costs::Duration(205), cost.memory_time); EXPECT_EQ(Costs::Duration(16), cost.compute_time); EXPECT_EQ(Costs::Duration(221), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op(op); DescribeArbitraryRankInput({10000000, 10}, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankInput({16}, DT_INT32, &op_context.op_info); DescribeArbitraryRankInput({}, DT_FLOAT, &op_context.op_info); DescribeArbitraryRankOutput({10000000, 10}, DT_FLOAT, &op_context.op_info); auto cost = estimator_.PredictCosts(op_context); EXPECT_EQ(Costs::Duration(135), cost.memory_time); EXPECT_EQ(Costs::Duration(16), cost.compute_time); EXPECT_EQ(Costs::Duration(151), cost.execution_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); } } } TEST_F(OpLevelCostEstimatorTest, BiasAddExecutionTime) { auto cost = PredictCosts(DescribeBiasAdd(1000, 10)); EXPECT_EQ(Costs::Duration(8400), cost.memory_time); EXPECT_EQ(Costs::Duration(1000), cost.compute_time); EXPECT_EQ(Costs::Duration(9400), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, Conv2DExecutionTime) { auto cost = PredictCosts(DescribeConvolution(16, 19, 19, 48, 48, 5, 5, 256)); EXPECT_EQ(Costs::Duration(233780), cost.memory_time); EXPECT_EQ(Costs::Duration(354877440), cost.compute_time); EXPECT_EQ(Costs::Duration(355111220), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, InvalidConv2DConfig) { const std::vector<std::string> conv_ops = { "Conv2D", "Conv2DBackpropFilter", "Conv2DBackpropInput", "DepthwiseConv2dNative", "DepthwiseConv2dNativeBackpropFilter", "DepthwiseConv2dNativeBackpropInput", }; const std::vector<int> valid_conv_config = {16, 19, 19, 48, 48, 5, 5, 256}; for (const auto& op : conv_ops) { for (int i = 0; i < valid_conv_config.size(); ++i) { std::vector<int> conv_config(valid_conv_config); conv_config[i] = 0; auto op_context = DescribeConvolution( conv_config[0], conv_config[1], conv_config[2], conv_config[3], conv_config[4], conv_config[5], conv_config[6], conv_config[7]); op_context.op_info.set_op(op); auto cost = PredictCosts(op_context); EXPECT_EQ(Costs::Duration(0), cost.memory_time); EXPECT_EQ(Costs::Duration(0), cost.compute_time); EXPECT_EQ(Costs::Duration(0), cost.execution_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); } } } TEST_F(OpLevelCostEstimatorTest, DepthwiseConv2dNativeExecutionTime) { auto cost = PredictCosts(DescribeDepthwiseConv2dNative(16, 19, 19, 48, 48, 5, 5, 3)); EXPECT_EQ(Costs::Duration(112340), cost.memory_time); EXPECT_EQ(Costs::Duration(4158720), cost.compute_time); EXPECT_EQ(Costs::Duration(4271060), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, DummyExecutionTime) { auto cost = PredictCosts(DescribeBinaryOp("Dummy", 1000, 1)); EXPECT_EQ(Costs::Duration(2000), cost.memory_time); EXPECT_EQ(Costs::Duration(0), cost.compute_time); EXPECT_EQ(Costs::Duration(2000), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, ExecutionTimeSumOrMax) { SetComputeMemoryOverlap(true); auto cost = PredictCosts(DescribeBinaryOp("Dummy", 1000, 1)); EXPECT_EQ(Costs::Duration(2000), cost.memory_time); EXPECT_EQ(Costs::Duration(0), cost.compute_time); EXPECT_EQ(Costs::Duration(2000), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); SetComputeMemoryOverlap(false); } TEST_F(OpLevelCostEstimatorTest, FusedConv2DBiasActivationNCHW_HWIO_NoSideInput) { auto cost = PredictCosts(DescribeFusedConv2DBiasActivation( 16, 19, 19, 48, 48, 5, 5, 19, 19, 256, false, "NCHW", "HWIO")); EXPECT_EQ(Costs::Duration(825345), cost.memory_time); EXPECT_EQ(Costs::Duration(355321037), cost.compute_time); EXPECT_EQ(Costs::Duration(356146382), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, FusedConv2DBiasActivationNCHW_HWIO) { auto cost = PredictCosts(DescribeFusedConv2DBiasActivation( 16, 19, 19, 48, 48, 5, 5, 19, 19, 256, true, "NCHW", "HWIO")); EXPECT_EQ(Costs::Duration(1416808), cost.memory_time); EXPECT_EQ(Costs::Duration(355616768), cost.compute_time); EXPECT_EQ(Costs::Duration(357033576), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, FusedConv2DBiasActivationNCHW_OIHW) { auto cost = PredictCosts(DescribeFusedConv2DBiasActivation( 16, 19, 19, 48, 48, 5, 5, 19, 19, 256, true, "NCHW", "OIHW")); EXPECT_EQ(Costs::Duration(1416808), cost.memory_time); EXPECT_EQ(Costs::Duration(355616768), cost.compute_time); EXPECT_EQ(Costs::Duration(357033576), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, FusedConv2DBiasActivationNHWC_HWIO) { auto cost = PredictCosts(DescribeFusedConv2DBiasActivation( 16, 19, 19, 48, 48, 5, 5, 19, 19, 256, true, "NHWC", "HWIO")); EXPECT_EQ(Costs::Duration(1416808), cost.memory_time); EXPECT_EQ(Costs::Duration(355616768), cost.compute_time); EXPECT_EQ(Costs::Duration(357033576), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, FusedConv2DBiasActivationNHWC_OIHW) { auto cost = PredictCosts(DescribeFusedConv2DBiasActivation( 16, 19, 19, 48, 48, 5, 5, 19, 19, 256, true, "NHWC", "OIHW")); EXPECT_EQ(Costs::Duration(1416808), cost.memory_time); EXPECT_EQ(Costs::Duration(355616768), cost.compute_time); EXPECT_EQ(Costs::Duration(357033576), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, FusedConv2DBiasActivationNCHW_VECT_C_OIHW) { auto cost = PredictCosts(DescribeFusedConv2DBiasActivation( 16, 19, 19, 48, 48, 5, 5, 19, 19, 256, true, "NCHW_VECT_C", "OIHW")); EXPECT_EQ(Costs::Duration(1416808), cost.memory_time); EXPECT_EQ(Costs::Duration(355616768), cost.compute_time); EXPECT_EQ(Costs::Duration(357033576), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, FusedConv2DBiasActivationNCHW_OIHW_VECT_I) { auto cost = PredictCosts(DescribeFusedConv2DBiasActivation( 16, 19, 19, 48, 48, 5, 5, 19, 19, 256, true, "NCHW", "OIHW_VECT_I")); EXPECT_EQ(Costs::Duration(1416808), cost.memory_time); EXPECT_EQ(Costs::Duration(355616768), cost.compute_time); EXPECT_EQ(Costs::Duration(357033576), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, FusedConv2DBiasActivationNCHW_VECT_C_OIHW_VECT_I) { auto cost = PredictCosts(DescribeFusedConv2DBiasActivation( 16, 19, 19, 48, 48, 5, 5, 19, 19, 256, true, "NCHW_VECT_C", "OIHW_VECT_I")); EXPECT_EQ(Costs::Duration(1416808), cost.memory_time); EXPECT_EQ(Costs::Duration(355616768), cost.compute_time); EXPECT_EQ(Costs::Duration(357033576), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, MulExecutionTime) { auto cost = PredictCosts(DescribeBinaryOp("Mul", 1000, 1)); EXPECT_EQ(Costs::Duration(2000), cost.memory_time); EXPECT_EQ(Costs::Duration(200), cost.compute_time); EXPECT_EQ(Costs::Duration(2200), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, MulBroadcastExecutionTime) { auto cost = PredictCosts(DescribeBinaryOp("Mul", 1000, 2)); EXPECT_EQ(Costs::Duration(3600), cost.memory_time); EXPECT_EQ(Costs::Duration(400), cost.compute_time); EXPECT_EQ(Costs::Duration(4000), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, ModExecutionTime) { auto cost = PredictCosts(DescribeBinaryOp("Mod", 1000, 1)); EXPECT_EQ(Costs::Duration(2000), cost.memory_time); EXPECT_EQ(Costs::Duration(1600), cost.compute_time); EXPECT_EQ(Costs::Duration(3600), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, SquaredDifferenceExecutionTime) { auto cost = PredictCosts(DescribeBinaryOp("SquaredDifference", 1000, 2)); EXPECT_EQ(cost.memory_time, Costs::Duration(3600)); EXPECT_EQ(cost.compute_time, Costs::Duration(800)); EXPECT_EQ(cost.execution_time, Costs::Duration(4400)); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, UnaryOpExecutionTime) { std::vector<std::pair<std::string, int>> unary_ops = { {"All", 1}, {"ArgMax", 1}, {"Cast", 1}, {"Max", 1}, {"Min", 1}, {"Prod", 1}, {"Relu", 1}, {"Relu6", 1}, {"Softmax", 40}, {"Sum", 1}, {"TopKV2", 1}}; const int kTensorSize = 1000; for (auto unary_op : unary_ops) { OpContext op_context = DescribeUnaryOp(unary_op.first, kTensorSize); const int kExpectedMemoryTime = 800; int expected_compute_time = std::ceil( unary_op.second * kTensorSize / estimator_.GetDeviceInfo(op_context.op_info.device()).gigaops); auto cost = PredictCosts(op_context); EXPECT_EQ(cost.memory_time, Costs::Duration(kExpectedMemoryTime)); EXPECT_EQ(cost.compute_time, Costs::Duration(expected_compute_time)) << unary_op.first; EXPECT_EQ(cost.execution_time, Costs::Duration(expected_compute_time + kExpectedMemoryTime)); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } } TEST_F(OpLevelCostEstimatorTest, BinaryOpExecutionTime) { std::vector<std::pair<std::string, int>> binary_ops = { {"Select", 1}, {"SelectV2", 1}, {"SquaredDifference", 2}, {"Where", 1}, }; const int kTensorSize1 = 1000; const int kTensorSize2 = 2; for (auto binary_op : binary_ops) { OpContext op_context = DescribeBinaryOp(binary_op.first, kTensorSize1, kTensorSize2); const int kExpectedMemoryTime = 3600; int expected_compute_time = std::ceil( binary_op.second * kTensorSize1 * kTensorSize2 * 2 / estimator_.GetDeviceInfo(op_context.op_info.device()).gigaops); auto cost = PredictCosts(op_context); EXPECT_EQ(Costs::Duration(kExpectedMemoryTime), cost.memory_time) << binary_op.first; EXPECT_EQ(Costs::Duration(expected_compute_time), cost.compute_time) << binary_op.first; EXPECT_EQ(Costs::Duration(expected_compute_time + kExpectedMemoryTime), cost.execution_time) << binary_op.first; EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } } TEST_F(OpLevelCostEstimatorTest, BroadcastAddExecutionTime) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("Add"); DescribeTensor1D(100, op_context.op_info.add_inputs()); DescribeTensor4D(1, 10, 1, 1, op_context.op_info.add_inputs()); auto cost = PredictCosts(op_context); EXPECT_EQ(Costs::Duration(44), cost.memory_time); EXPECT_EQ(Costs::Duration(100), cost.compute_time); EXPECT_EQ(Costs::Duration(144), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, UnknownOrPartialShape) { { auto cost = PredictCosts(DescribeMatMul(2, 4, 7, 7)); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeMatMul(-1, 4, 7, 7)); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeMatMul(2, 4, -1, 7)); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeConvolution(16, 19, 19, 48, 48, 5, 5, 256)); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeConvolution(16, -1, 19, 48, 48, 5, 5, 256)); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); } } TEST_P(OpLevelBatchMatMulCostEstimatorTest, TestBatchMatMul) { { auto cost = PredictCosts(DescribeBatchMatMul({}, {})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeBatchMatMul({2, 4}, {})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeBatchMatMul({2, 4}, {4, 2})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeBatchMatMul({1, 2, 4}, {1, 4, 2})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeBatchMatMul({2, 4}, {1, 3, 4, 2})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); } bool matmul_inaccurate = false; bool batch_matmul_inaccurate = false; EXPECT_EQ( CountMatMulOperations(DescribeMatMul(2, 2, 4, 4).op_info, &matmul_inaccurate), CountBatchMatMulOperations(DescribeBatchMatMul({2, 4}, {4, 2}).op_info, &batch_matmul_inaccurate)); EXPECT_EQ(matmul_inaccurate, batch_matmul_inaccurate); EXPECT_EQ(10 * CountMatMulOperations(DescribeMatMul(2, 2, 4, 4).op_info, &matmul_inaccurate), CountBatchMatMulOperations( DescribeBatchMatMul({10, 2, 4}, {-1, 10, 4, 2}).op_info, &batch_matmul_inaccurate)); EXPECT_NE(matmul_inaccurate, batch_matmul_inaccurate); EXPECT_EQ(20 * CountMatMulOperations(DescribeMatMul(2, 2, 4, 4).op_info, &matmul_inaccurate), CountBatchMatMulOperations( DescribeBatchMatMul({2, 10, 2, 4}, {-1, 10, 4, 2}).op_info, &batch_matmul_inaccurate)); EXPECT_NE(matmul_inaccurate, batch_matmul_inaccurate); int prod = CountBatchMatMulDimProduct( DescribeBatchMatMul({2, 4}, {1, 3, 4, 2}).op_info, &batch_matmul_inaccurate); EXPECT_EQ(prod, 16); EXPECT_FALSE(batch_matmul_inaccurate); OpContext bad_batch = DescribeBatchMatMul({2, 4}, {4, 2}); bad_batch.op_info.set_op("notBatchMatMul"); prod = CountBatchMatMulDimProduct(bad_batch.op_info, &batch_matmul_inaccurate); EXPECT_EQ(prod, 0); EXPECT_TRUE(batch_matmul_inaccurate); OpContext transpose_batch = DescribeBatchMatMul({2, 4, 3, 1}, {4, 2}); auto attr = transpose_batch.op_info.mutable_attr(); (*attr)["adj_x"].set_b(true); (*attr)["adj_y"].set_b(true); prod = CountBatchMatMulDimProduct(transpose_batch.op_info, &batch_matmul_inaccurate); EXPECT_EQ(prod, 12); } INSTANTIATE_TEST_SUITE_P(TestBatchMatMul, OpLevelBatchMatMulCostEstimatorTest, ::testing::Values("BatchMatMul", "BatchMatMulV2")); TEST_F(OpLevelCostEstimatorTest, SparseTensorDenseMatMul) { { auto cost = PredictCosts(DescribeSparseTensorDenseMatMul(-1, {1, 1}, {1, 1})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeSparseTensorDenseMatMul(1, {-1, 1}, {1, 1})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeSparseTensorDenseMatMul(1, {1, -1}, {1, -1})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts(DescribeSparseTensorDenseMatMul(1, {1, 1}, {-1, 1})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); } { auto cost = PredictCosts( DescribeSparseTensorDenseMatMul(10, {1000, 100}, {50, 100})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ(Costs::Duration(200), cost.compute_time); EXPECT_EQ(Costs::Duration(2422), cost.memory_time); } { auto cost = PredictCosts( DescribeSparseTensorDenseMatMul(10, {100000, 100}, {50, 100})); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ(Costs::Duration(200), cost.compute_time); EXPECT_EQ(Costs::Duration(2422), cost.memory_time); } } void ExpectTensorShape(const std::vector<int64_t>& expected, const TensorShapeProto& tensor_shape_proto) { TensorShape tensor_shape_expected(expected); TensorShape tensor_shape(tensor_shape_proto); EXPECT_EQ(tensor_shape_expected, tensor_shape); } TEST_F(OpLevelCostEstimatorTest, GetTensorShapeProtoFromTensorProto) { TensorProto tensor_proto; TensorShapeProto tensor_shape_proto; tensor_proto.mutable_tensor_shape()->add_dim()->set_size(255); EXPECT_FALSE( GetTensorShapeProtoFromTensorProto(tensor_proto, &tensor_shape_proto)); tensor_proto.Clear(); tensor_proto.mutable_tensor_shape()->add_dim()->set_size(1); tensor_proto.mutable_tensor_shape()->add_dim()->set_size(2); EXPECT_FALSE( GetTensorShapeProtoFromTensorProto(tensor_proto, &tensor_shape_proto)); GetTensorProto(DT_FLOAT, {}, {}, false, &tensor_proto); EXPECT_FALSE( GetTensorShapeProtoFromTensorProto(tensor_proto, &tensor_shape_proto)); { std::vector<int64_t> shape_expected = {10, 20, 30, 40}; GetTensorProto(DT_INT32, {4}, shape_expected, false, &tensor_proto); EXPECT_TRUE( GetTensorShapeProtoFromTensorProto(tensor_proto, &tensor_shape_proto)); ExpectTensorShape(shape_expected, tensor_shape_proto); } { std::vector<int64_t> shape_expected = {40, 20, 90, 40}; GetTensorProto(DT_INT64, {4}, shape_expected, false, &tensor_proto); EXPECT_TRUE( GetTensorShapeProtoFromTensorProto(tensor_proto, &tensor_shape_proto)); ExpectTensorShape(shape_expected, tensor_shape_proto); } { std::vector<int64_t> shape_expected = {10, 20, 30, 40}; GetTensorProto(DT_INT32, {4}, shape_expected, true, &tensor_proto); EXPECT_TRUE( GetTensorShapeProtoFromTensorProto(tensor_proto, &tensor_shape_proto)); ExpectTensorShape(shape_expected, tensor_shape_proto); } { std::vector<int64_t> shape_expected = {40, 20, 90, 40}; GetTensorProto(DT_INT64, {4}, shape_expected, true, &tensor_proto); EXPECT_TRUE( GetTensorShapeProtoFromTensorProto(tensor_proto, &tensor_shape_proto)); ExpectTensorShape(shape_expected, tensor_shape_proto); } } TEST_F(OpLevelCostEstimatorTest, OpDimensionsFromInputs) { std::vector<string> paddings = {"VALID", "SAME"}; std::vector<string> formats = {"NHWC", "NCHW"}; for (const auto& p : paddings) { for (const auto& f : formats) { ValidateOpDimensionsFromInputs(10, 20, 20, 100, 3, 3, 2, 2, f, p); ValidateOpDimensionsFromInputs(10, 20, 20, 100, 1, 1, 3, 3, f, p); ValidateOpDimensionsFromInputs(10, 200, 200, 100, 5, 5, 3, 3, f, p); ValidateOpDimensionsFromInputs(10, 14, 14, 3840, 3, 3, 2, 2, f, p); } } } TEST_F(OpLevelCostEstimatorTest, OpDimensionsFromInputsError) { std::vector<string> paddings = {"VALID", "SAME"}; std::vector<string> formats = {"NHWC", "NCHW"}; for (const auto& p : paddings) { for (const auto& f : formats) { ASSERT_THAT( CallOpDimensionsFromInputs(10, 14, 14, 3840, 3, 3, 0, 2, f, p), testing::StatusIs( error::INVALID_ARGUMENT, "Stride must be > 0 for Height and Width, but got (2, 0)")); ASSERT_THAT( CallOpDimensionsFromInputs(10, 14, 14, 3840, 3, 3, 2, 0, f, p), testing::StatusIs( error::INVALID_ARGUMENT, "Stride must be > 0 for Height and Width, but got (0, 2)")); } } } TEST_F(OpLevelCostEstimatorTest, PredictMaxPool) { auto predict_max_pool = [this](const int n, const int in, const int c, const int k, const int s, const string& padding) -> Costs { OpContext op_context = DescribePoolingOp( "MaxPool", {n, in, in, c}, {1, k, k, 1}, {1, s, s, 1}, "NHWC", padding); return estimator_.PredictCosts(op_context); }; { auto costs = predict_max_pool(10, 20, 384, 3, 2, "SAME"); EXPECT_EQ(Costs::Duration(1075200), costs.execution_time); EXPECT_EQ(Costs::Duration(307200), costs.compute_time); EXPECT_EQ(Costs::Duration(768000), costs.memory_time); EXPECT_EQ(costs.num_ops_total, 1); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(costs.num_ops_with_unknown_shapes, 0); EXPECT_EQ(costs.temporary_memory, 0); EXPECT_EQ(costs.persistent_memory, 0); } { auto costs = predict_max_pool(10, 20, 384, 1, 2, "SAME"); EXPECT_EQ(Costs::Duration(499200), costs.execution_time); EXPECT_EQ(Costs::Duration(38400), costs.compute_time); EXPECT_EQ(Costs::Duration(460800), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } { auto costs = predict_max_pool(10, 20, 384, 2, 3, "VALID"); EXPECT_EQ(Costs::Duration(561792), costs.execution_time); EXPECT_EQ(Costs::Duration(56448), costs.compute_time); EXPECT_EQ(Costs::Duration(505344), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } } TEST_F(OpLevelCostEstimatorTest, PredictMaxPoolGrad) { auto predict_max_pool_grad = [this](const int n, const int in, const int c, const int k, const int s, const string& padding) -> Costs { OpContext op_context = DescribePoolingOp("MaxPoolGrad", {n, in, in, c}, {1, k, k, 1}, {1, s, s, 1}, "NHWC", padding); return estimator_.PredictCosts(op_context); }; { auto costs = predict_max_pool_grad(10, 20, 384, 3, 2, "SAME"); EXPECT_EQ(Costs::Duration(1996800), costs.execution_time); EXPECT_EQ(Costs::Duration(614400), costs.compute_time); EXPECT_EQ(Costs::Duration(1382400), costs.memory_time); EXPECT_EQ(costs.num_ops_total, 1); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(costs.num_ops_with_unknown_shapes, 0); EXPECT_EQ(costs.temporary_memory, 0); EXPECT_EQ(costs.persistent_memory, 0); } { auto costs = predict_max_pool_grad(10, 20, 384, 1, 2, "SAME"); EXPECT_EQ(Costs::Duration(1536000), costs.execution_time); EXPECT_EQ(Costs::Duration(153600), costs.compute_time); EXPECT_EQ(Costs::Duration(1382400), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } { auto costs = predict_max_pool_grad(10, 20, 384, 2, 3, "VALID"); EXPECT_EQ(Costs::Duration(1514112), costs.execution_time); EXPECT_EQ(Costs::Duration(210048), costs.compute_time); EXPECT_EQ(Costs::Duration(1304064), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } } TEST_F(OpLevelCostEstimatorTest, PredictAvgPool) { auto predict_avg_pool = [this](const int n, const int in, const int c, const int k, const int s, const string& padding) -> Costs { OpContext op_context = DescribePoolingOp( "AvgPool", {n, in, in, c}, {1, k, k, 1}, {1, s, s, 1}, "NHWC", padding); return estimator_.PredictCosts(op_context); }; { auto costs = predict_avg_pool(10, 20, 384, 3, 2, "SAME"); EXPECT_EQ(Costs::Duration(1113600), costs.execution_time); EXPECT_EQ(Costs::Duration(345600), costs.compute_time); EXPECT_EQ(Costs::Duration(768000), costs.memory_time); EXPECT_EQ(costs.num_ops_total, 1); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(costs.num_ops_with_unknown_shapes, 0); EXPECT_EQ(costs.temporary_memory, 0); EXPECT_EQ(costs.persistent_memory, 0); } { auto costs = predict_avg_pool(10, 20, 384, 1, 2, "SAME"); EXPECT_EQ(Costs::Duration(499200), costs.execution_time); EXPECT_EQ(Costs::Duration(38400), costs.compute_time); EXPECT_EQ(Costs::Duration(460800), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } { auto costs = predict_avg_pool(10, 20, 384, 2, 3, "VALID"); EXPECT_EQ(Costs::Duration(580608), costs.execution_time); EXPECT_EQ(Costs::Duration(75264), costs.compute_time); EXPECT_EQ(Costs::Duration(505344), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } } TEST_F(OpLevelCostEstimatorTest, PredictAvgPoolGrad) { auto predict_avg_pool_grad = [this](const int n, const int in, const int c, const int k, const int s, const string& padding) -> Costs { OpContext op_context = DescribePoolingOp("AvgPoolGrad", {n, in, in, c}, {1, k, k, 1}, {1, s, s, 1}, "NHWC", padding); return estimator_.PredictCosts(op_context); }; { auto costs = predict_avg_pool_grad(10, 20, 384, 3, 2, "SAME"); EXPECT_EQ(Costs::Duration(1305602), costs.execution_time); EXPECT_EQ(Costs::Duration(537600), costs.compute_time); EXPECT_EQ(Costs::Duration(768002), costs.memory_time); EXPECT_EQ(costs.num_ops_total, 1); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(costs.num_ops_with_unknown_shapes, 0); EXPECT_EQ(costs.temporary_memory, 0); EXPECT_EQ(costs.persistent_memory, 0); } { auto costs = predict_avg_pool_grad(10, 20, 384, 1, 2, "SAME"); EXPECT_EQ(Costs::Duration(960002), costs.execution_time); EXPECT_EQ(Costs::Duration(192000), costs.compute_time); EXPECT_EQ(Costs::Duration(768002), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } { auto costs = predict_avg_pool_grad(10, 20, 384, 2, 3, "VALID"); EXPECT_EQ(Costs::Duration(862082), costs.execution_time); EXPECT_EQ(Costs::Duration(172416), costs.compute_time); EXPECT_EQ(Costs::Duration(689666), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } } TEST_F(OpLevelCostEstimatorTest, PredictFusedBatchNorm) { auto predict_fused_bn = [this](const int n, const int in, const int c, const bool is_training) -> Costs { OpContext op_context = DescribeFusedBatchNorm( is_training, false, {n, in, in, c}, "NHWC"); return estimator_.PredictCosts(op_context); }; { auto costs = predict_fused_bn(10, 20, 96, true); EXPECT_EQ(Costs::Duration(614737), costs.execution_time); EXPECT_EQ(Costs::Duration(153706), costs.compute_time); EXPECT_EQ(Costs::Duration(461031), costs.memory_time); EXPECT_EQ(costs.num_ops_total, 1); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(costs.num_ops_with_unknown_shapes, 0); EXPECT_EQ(costs.temporary_memory, 0); EXPECT_EQ(costs.persistent_memory, 0); } { auto costs = predict_fused_bn(10, 20, 32, true); EXPECT_EQ(Costs::Duration(204913), costs.execution_time); EXPECT_EQ(Costs::Duration(51236), costs.compute_time); EXPECT_EQ(Costs::Duration(153677), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } { auto costs = predict_fused_bn(10, 20, 96, false); EXPECT_EQ(Costs::Duration(384154), costs.execution_time); EXPECT_EQ(Costs::Duration(76800), costs.compute_time); EXPECT_EQ(Costs::Duration(307354), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } { auto costs = predict_fused_bn(10, 20, 32, false); EXPECT_EQ(Costs::Duration(128052), costs.execution_time); EXPECT_EQ(Costs::Duration(25600), costs.compute_time); EXPECT_EQ(Costs::Duration(102452), costs.memory_time); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(1, costs.num_ops_total); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } } TEST_F(OpLevelCostEstimatorTest, PredictFusedBatchNormGrad) { auto predict_fused_bn_grad = [this](const int n, const int in, const int c) -> Costs { OpContext op_context = DescribeFusedBatchNorm( false, true, {n, in, in, c}, "NHWC"); return estimator_.PredictCosts(op_context); }; { auto costs = predict_fused_bn_grad(10, 20, 96); EXPECT_EQ(Costs::Duration(1037050), costs.execution_time); EXPECT_EQ(Costs::Duration(422496), costs.compute_time); EXPECT_EQ(Costs::Duration(614554), costs.memory_time); EXPECT_EQ(costs.num_ops_total, 1); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(costs.num_ops_with_unknown_shapes, 0); EXPECT_EQ(costs.temporary_memory, 0); EXPECT_EQ(costs.persistent_memory, 0); } { auto costs = predict_fused_bn_grad(128, 7, 384); EXPECT_EQ(Costs::Duration(6503809), costs.execution_time); EXPECT_EQ(Costs::Duration(2649677), costs.compute_time); EXPECT_EQ(Costs::Duration(3854132), costs.memory_time); EXPECT_EQ(1, costs.num_ops_total); EXPECT_FALSE(costs.inaccurate); EXPECT_EQ(0, costs.num_ops_with_unknown_shapes); } } TEST_F(OpLevelCostEstimatorTest, MaybeGetMinimumShapeTest) { { TensorShapeProto x; x.set_unknown_rank(true); bool unknown_shapes = false; std::vector<int64_t> y = MaybeGetMinimumShape(x, 4, &unknown_shapes); EXPECT_TRUE(unknown_shapes); EXPECT_THAT(y, ElementsAreArray({1, 1, 1, 1})); } { TensorShapeProto x; x.set_unknown_rank(false); bool unknown_shapes = false; std::vector<int64_t> y = MaybeGetMinimumShape(x, 1, &unknown_shapes); EXPECT_FALSE(unknown_shapes); EXPECT_THAT(y, ElementsAreArray({1})); } { TensorShapeProto x; x.set_unknown_rank(false); bool unknown_shapes = false; std::vector<int64_t> y = MaybeGetMinimumShape(x, 2, &unknown_shapes); EXPECT_FALSE(unknown_shapes); EXPECT_THAT(y, ElementsAreArray({1, 1})); } { TensorShapeProto x; x.set_unknown_rank(false); x.add_dim()->set_size(10); x.add_dim()->set_size(20); bool unknown_shapes = false; std::vector<int64_t> y = MaybeGetMinimumShape(x, 2, &unknown_shapes); EXPECT_FALSE(unknown_shapes); EXPECT_THAT(y, ElementsAreArray({10, 20})); unknown_shapes = false; std::vector<int64_t> z = MaybeGetMinimumShape(x, 4, &unknown_shapes); EXPECT_TRUE(unknown_shapes); EXPECT_THAT(z, ElementsAreArray({10, 20, 1, 1})); } { TensorShapeProto x; x.set_unknown_rank(false); x.add_dim()->set_size(10); x.add_dim()->set_size(20); x.add_dim()->set_size(-1); x.add_dim()->set_size(20); bool unknown_shapes = false; std::vector<int64_t> y = MaybeGetMinimumShape(x, 4, &unknown_shapes); EXPECT_TRUE(unknown_shapes); EXPECT_THAT(y, ElementsAreArray({10, 20, 1, 20})); } { TensorShapeProto x; x.set_unknown_rank(false); x.add_dim()->set_size(10); x.add_dim()->set_size(20); x.add_dim()->set_size(30); x.add_dim()->set_size(20); bool unknown_shapes = false; std::vector<int64_t> y = MaybeGetMinimumShape(x, 2, &unknown_shapes); EXPECT_TRUE(unknown_shapes); EXPECT_THAT(y, ElementsAreArray({10, 20})); } } TEST_F(OpLevelCostEstimatorTest, IntermediateRdWrBandwidth) { TestOpLevelCostEstimator estimator; estimator.SetDeviceInfo(DeviceInfo(1, 1)); estimator.SetComputeMemoryOverlap(true); auto cost = estimator.PredictCosts( DescribeConvolution(16, 19, 19, 48, 48, 5, 5, 256)); EXPECT_EQ(Costs::Duration(3548774400), cost.execution_time); EXPECT_EQ(cost.execution_time, cost.compute_time); estimator.SetComputeMemoryOverlap(false); cost = estimator.PredictCosts( DescribeConvolution(16, 19, 19, 48, 48, 5, 5, 256)); EXPECT_EQ(Costs::Duration(3551112192), cost.execution_time); EXPECT_EQ(cost.execution_time, cost.compute_time + cost.memory_time + cost.intermediate_memory_time); estimator.SetDeviceInfo(DeviceInfo(99999, 1)); estimator.SetComputeMemoryOverlap(true); cost = estimator.PredictCosts( DescribeConvolution(16, 19, 19, 48, 48, 5, 5, 256)); EXPECT_EQ(Costs::Duration(2337792), cost.execution_time); EXPECT_EQ(cost.execution_time, cost.memory_time); estimator.SetComputeMemoryOverlap(false); cost = estimator.PredictCosts( DescribeConvolution(16, 19, 19, 48, 48, 5, 5, 256)); EXPECT_EQ(Costs::Duration(2373281), cost.execution_time); EXPECT_EQ(cost.execution_time, cost.compute_time + cost.memory_time + cost.intermediate_memory_time); estimator.SetDeviceInfo(DeviceInfo(99999, 9999, 1, 1)); estimator.SetComputeMemoryOverlap(true); cost = estimator.PredictCosts( DescribeConvolution(16, 19, 19, 48, 48, 5, 5, 256)); EXPECT_EQ(Costs::Duration(2337792), cost.execution_time); EXPECT_EQ(cost.execution_time, cost.intermediate_memory_time); estimator.SetComputeMemoryOverlap(false); cost = estimator.PredictCosts( DescribeConvolution(16, 19, 19, 48, 48, 5, 5, 256)); EXPECT_EQ(Costs::Duration(2373515), cost.execution_time); EXPECT_EQ(cost.execution_time, cost.compute_time + cost.memory_time + cost.intermediate_memory_time); } TEST_F(OpLevelCostEstimatorTest, Einsum) { { auto cost = PredictCosts(DescribeEinsum({100, 50}, {100, 50}, "ik,jk->ij")); EXPECT_EQ(Costs::Duration(104000), cost.execution_time); EXPECT_EQ(Costs::Duration(100 * 50 * 100 * 2 / (1000 * 10 * 1e-3)), cost.compute_time); EXPECT_EQ(Costs::Duration(4000), cost.memory_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); EXPECT_EQ(PredictCosts(DescribeEinsum({100, 50}, {100, 50}, "ik,jk->ij")) .execution_time, PredictCosts(DescribeXlaEinsum({100, 50}, {100, 50}, "ik,jk->ij")) .execution_time); } { auto cost = PredictCosts( DescribeEinsum({25, 100, 50}, {100, 50, 25}, "Bik,jkB->Bij")); EXPECT_EQ(Costs::Duration(25 * 104000), cost.execution_time); EXPECT_EQ(Costs::Duration(25 * 100 * 50 * 100 * 2 / (1000 * 10 * 1e-3)), cost.compute_time); EXPECT_EQ(Costs::Duration(25 * 4000), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ(PredictCosts( DescribeEinsum({25, 100, 50}, {100, 50, 25}, "Bik,jkB->Bij")) .execution_time, PredictCosts(DescribeXlaEinsum({25, 100, 50}, {100, 50, 25}, "Bik,jkB->Bij")) .execution_time); } { auto cost = PredictCosts(DescribeEinsum( {25, 16, 100, 50}, {16, 100, 50, 25}, "BNik,NjkB->BNij")); EXPECT_EQ(Costs::Duration(16 * 25 * 104000), cost.execution_time); EXPECT_EQ( Costs::Duration(16 * 25 * 100 * 50 * 100 * 2 / (1000 * 10 * 1e-3)), cost.compute_time); EXPECT_EQ(Costs::Duration(16 * 25 * 4000), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ( PredictCosts(DescribeEinsum({25, 16, 100, 50}, {16, 100, 50, 25}, "BNik,NjkB->BNij")) .execution_time, PredictCosts(DescribeXlaEinsum({25, 16, 100, 50}, {16, 100, 50, 25}, "BNik,NjkB->BNij")) .execution_time); } { auto cost = PredictCosts(DescribeEinsum({25, 100, 50}, {100, 50}, "Aik,jk->Aij")); EXPECT_EQ(Costs::Duration(2552000), cost.execution_time); EXPECT_EQ(Costs::Duration(25 * 100 * 50 * 100 * 2 / (1000 * 10 * 1e-3)), cost.compute_time); EXPECT_EQ(Costs::Duration(52000), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ( PredictCosts(DescribeEinsum({25, 100, 50}, {100, 50}, "Aik,jk->Aij")) .execution_time, PredictCosts(DescribeXlaEinsum({25, 100, 50}, {100, 50}, "Aik,jk->Aij")) .execution_time); } { auto cost = PredictCosts(DescribeEinsum({100, 50}, {25, 100, 50}, "ik,Bjk->ijB")); EXPECT_EQ(Costs::Duration(2552000), cost.execution_time); EXPECT_EQ(Costs::Duration(25 * 100 * 50 * 100 * 2 / (1000 * 10 * 1e-3)), cost.compute_time); EXPECT_EQ(Costs::Duration(52000), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ( PredictCosts(DescribeEinsum({100, 50}, {25, 100, 50}, "ik,Bjk->ijB")) .execution_time, PredictCosts(DescribeXlaEinsum({100, 50}, {25, 100, 50}, "ik,Bjk->ijB")) .execution_time); } { auto cost = PredictCosts( DescribeEinsum({100, 50, 25}, {100, 50, 25}, "ikl,jkl->ij")); EXPECT_EQ(Costs::Duration(2600000), cost.execution_time); EXPECT_EQ(Costs::Duration(100 * 50 * 25 * 100 * 2 / (1000 * 10 * 1e-3)), cost.compute_time); EXPECT_EQ(Costs::Duration(100000), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ(PredictCosts( DescribeEinsum({100, 50, 25}, {100, 50, 25}, "ikl,jkl->ij")) .execution_time, PredictCosts(DescribeXlaEinsum({100, 50, 25}, {100, 50, 25}, "ikl,jkl->ij")) .execution_time); } { auto cost = PredictCosts(DescribeEinsum({100, 50}, {}, "ij->ji")); EXPECT_EQ(Costs::Duration(2000), cost.execution_time); EXPECT_EQ(Costs::Duration(0), cost.compute_time); EXPECT_EQ(Costs::Duration(2000), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ( PredictCosts(DescribeEinsum({100, 50}, {}, "ij->ji")).execution_time, PredictCosts(DescribeXlaEinsum({100, 50}, {}, "ij->ji")) .execution_time); } { auto cost = PredictCosts(DescribeEinsum({100, 50, 25}, {50, 100}, "ik,kl->il")); EXPECT_EQ(Costs::Duration(52000), cost.execution_time); EXPECT_EQ(Costs::Duration(0), cost.compute_time); EXPECT_EQ(Costs::Duration(52000), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ( PredictCosts(DescribeEinsum({100, 50, 25}, {50, 100}, "ik,kl->il")) .execution_time, PredictCosts(DescribeXlaEinsum({100, 50, 25}, {50, 100}, "ik,kl->il")) .execution_time); cost = PredictCosts(DescribeEinsum({100, 50}, {50, 100, 25}, "ik,kl->il")); EXPECT_EQ(Costs::Duration(52000), cost.execution_time); EXPECT_EQ(Costs::Duration(0), cost.compute_time); EXPECT_EQ(Costs::Duration(52000), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ( PredictCosts(DescribeEinsum({100, 50}, {50, 100, 25}, "ik,kl->il")) .execution_time, PredictCosts(DescribeXlaEinsum({100, 50}, {50, 100, 25}, "ik,kl->il")) .execution_time); } { auto cost = PredictCosts(DescribeEinsum( {100, 50, 25, 16}, {50, 100, 32, 12}, "ik...,kl...->il...")); EXPECT_EQ(Costs::Duration(1568000), cost.execution_time); EXPECT_EQ(Costs::Duration(0), cost.compute_time); EXPECT_EQ(Costs::Duration(1568000), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ( PredictCosts(DescribeEinsum({100, 50, 25, 16}, {50, 100, 32, 12}, "ik...,kl...->il...")) .execution_time, PredictCosts(DescribeXlaEinsum({100, 50, 25, 16}, {50, 100, 32, 12}, "ik...,kl...->il...")) .execution_time); } { auto cost = PredictCosts(DescribeEinsum({100, 100, 50}, {50, 100}, "iik,kl->il")); EXPECT_EQ(Costs::Duration(202000), cost.execution_time); EXPECT_EQ(Costs::Duration(0), cost.compute_time); EXPECT_EQ(Costs::Duration(202000), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(0, cost.num_ops_with_unknown_shapes); EXPECT_EQ( PredictCosts(DescribeEinsum({100, 100, 50}, {50, 100}, "iik,kl->il")) .execution_time, PredictCosts(DescribeXlaEinsum({100, 100, 50}, {50, 100}, "iik,kl->il")) .execution_time); } { auto cost = PredictCosts(DescribeEinsum({-1, 50}, {100, 50}, "ik,jk->ij")); EXPECT_EQ(Costs::Duration(3020), cost.execution_time); EXPECT_EQ(Costs::Duration(1 * 50 * 100 * 2 / (1000 * 10 * 1e-3)), cost.compute_time); EXPECT_EQ(Costs::Duration(2020), cost.memory_time); EXPECT_EQ(1, cost.num_ops_total); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(1, cost.num_ops_with_unknown_shapes); EXPECT_EQ(PredictCosts(DescribeEinsum({-1, 50}, {100, 50}, "ik,jk->ij")) .execution_time, PredictCosts(DescribeXlaEinsum({-1, 50}, {100, 50}, "ik,jk->ij")) .execution_time); } } TEST_F(OpLevelCostEstimatorTest, PredictResourceVariableOps) { TestOpLevelCostEstimator estimator; estimator.SetDeviceInfo(DeviceInfo(1, 1)); { OpContext op_context; op_context.op_info.set_op("AssignVariableOp"); DescribeDummyTensor(op_context.op_info.add_inputs()); DescribeTensor1D(100, op_context.op_info.add_inputs()); auto cost = estimator.PredictCosts(op_context); EXPECT_EQ(Costs::Duration(400), cost.memory_time); EXPECT_EQ(Costs::Duration(0), cost.compute_time); EXPECT_EQ(Costs::Duration(400), cost.execution_time); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } { OpContext op_context; op_context.op_info.set_op("AssignSubVariableOp"); DescribeDummyTensor(op_context.op_info.add_inputs()); DescribeTensor1D(100, op_context.op_info.add_inputs()); auto cost = estimator.PredictCosts(op_context); EXPECT_EQ(Costs::Duration(400), cost.memory_time); EXPECT_EQ(Costs::Duration(100), cost.compute_time); EXPECT_EQ(Costs::Duration(400), cost.execution_time); EXPECT_FALSE(cost.inaccurate); } } TEST_F(OpLevelCostEstimatorTest, AddNExecutionTime) { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("AddN"); DescribeTensor4D(1, 10, 10, 10, op_context.op_info.add_inputs()); DescribeTensor4D(1, 10, 10, 10, op_context.op_info.add_inputs()); DescribeTensor4D(1, 10, 10, 10, op_context.op_info.add_inputs()); auto cost = PredictCosts(op_context); EXPECT_EQ(Costs::Duration(1200), cost.memory_time); EXPECT_EQ(Costs::Duration(200), cost.compute_time); EXPECT_EQ(Costs::Duration(1400), cost.execution_time); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } TEST_F(OpLevelCostEstimatorTest, IdentityOpExecutionTime) { std::vector<std::string> identity_ops = { "_Recv", "_Send", "BitCast", "Identity", "Enter", "Exit", "IdentityN", "Merge", "NextIteration", "Placeholder", "PreventGradient", "RefIdentity", "Reshape", "StopGradient", "Switch"}; const int kTensorSize = 1000; for (auto identity_op : identity_ops) { OpContext op_context = DescribeUnaryOp(identity_op, kTensorSize); const int kExpectedMemoryTime = 0; const int kExpectedComputeTime = 1; auto cost = PredictCosts(op_context); EXPECT_EQ(Costs::Duration(kExpectedMemoryTime), cost.memory_time); EXPECT_EQ(Costs::Duration(kExpectedComputeTime), cost.compute_time); EXPECT_EQ(Costs::Duration(kExpectedComputeTime + kExpectedMemoryTime), cost.execution_time); EXPECT_EQ(cost.max_memory, kTensorSize * 4); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } } TEST_F(OpLevelCostEstimatorTest, PureMemoryOpExecutionTime) { std::vector<std::string> reshape_ops = { "ConcatV2", "DataFormatVecPermute", "DepthToSpace", "ExpandDims", "Fill", "OneHot", "Pack", "Range", "SpaceToDepth", "Split", "Squeeze", "Transpose", "Tile", "Unpack"}; const int kTensorSize = 1000; for (auto reshape_op : reshape_ops) { OpContext op_context = DescribeUnaryOp(reshape_op, kTensorSize); const int kExpectedMemoryTime = 800; const int kExpectedComputeTime = 0; auto cost = PredictCosts(op_context); EXPECT_EQ(Costs::Duration(kExpectedMemoryTime), cost.memory_time); EXPECT_EQ(Costs::Duration(kExpectedComputeTime), cost.compute_time); EXPECT_EQ(Costs::Duration(kExpectedComputeTime + kExpectedMemoryTime), cost.execution_time); EXPECT_EQ(cost.max_memory, kTensorSize * 4); EXPECT_EQ(cost.num_ops_total, 1); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); } } TEST_F(OpLevelCostEstimatorTest, ResizeBilinearExecutionTime) { const int kImageDim = 255; const int kChannelSize = 10; const int kComputeLerpCost = 9; { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("ResizeBilinear"); DescribeTensor4D(1, kImageDim, kImageDim, kChannelSize, op_context.op_info.add_inputs()); auto cost = PredictCosts(op_context); ExpectZeroCost(cost); op_context.op_info.clear_inputs(); DescribeTensor4D(0, 0, 0, 0, op_context.op_info.add_outputs()); cost = PredictCosts(op_context); ExpectZeroCost(cost); } { OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("ResizeBilinear"); DescribeTensor4D(1, kImageDim, kImageDim, kChannelSize, op_context.op_info.add_inputs()); const int kExpectedMemoryTime = kImageDim * kImageDim * 4; DescribeTensor4D(0, 0, 0, 0, op_context.op_info.add_outputs()); auto cost = PredictCosts(op_context); EXPECT_EQ(cost.compute_time, Costs::Duration(0)); EXPECT_EQ(cost.memory_time, Costs::Duration(kExpectedMemoryTime)); EXPECT_EQ(cost.execution_time, Costs::Duration(kExpectedMemoryTime)); EXPECT_TRUE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); EXPECT_EQ(cost.temporary_memory, 0); EXPECT_EQ(cost.persistent_memory, 0); AttrValue half_pixel_centers; half_pixel_centers.set_b(false); (*op_context.op_info.mutable_attr())["half_pixel_centers"] = half_pixel_centers; cost = PredictCosts(op_context); EXPECT_EQ(cost.compute_time, Costs::Duration(0)); EXPECT_EQ(cost.memory_time, Costs::Duration(kExpectedMemoryTime)); EXPECT_EQ(cost.execution_time, Costs::Duration(kExpectedMemoryTime)); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); } const int kOutputImageDim = 100; OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("ResizeBilinear"); DescribeTensor4D(1, kImageDim, kImageDim, kChannelSize, op_context.op_info.add_inputs()); DescribeTensor4D(1, kOutputImageDim, kOutputImageDim, kChannelSize, op_context.op_info.add_outputs()); const int kExpectedMemoryTime = (kImageDim * kImageDim + kOutputImageDim * kOutputImageDim) * 4; { AttrValue half_pixel_centers; half_pixel_centers.set_b(false); (*op_context.op_info.mutable_attr())["half_pixel_centers"] = half_pixel_centers; const int kInterpWeightCost = 10; const int num_ops = kInterpWeightCost * (kOutputImageDim * 2) + kComputeLerpCost * (kOutputImageDim * kOutputImageDim * kChannelSize); const int expected_compute_time = std::ceil( num_ops / estimator_.GetDeviceInfo(op_context.op_info.device()).gigaops); const auto cost = PredictCosts(op_context); EXPECT_EQ(cost.compute_time, Costs::Duration(expected_compute_time)); EXPECT_EQ(cost.memory_time, Costs::Duration(kExpectedMemoryTime)); EXPECT_EQ(cost.execution_time, Costs::Duration(kExpectedMemoryTime + expected_compute_time)); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); } { AttrValue half_pixel_centers; half_pixel_centers.set_b(true); (*op_context.op_info.mutable_attr())["half_pixel_centers"] = half_pixel_centers; const int kInterpWeightCost = 12; const int num_ops = kInterpWeightCost * (kOutputImageDim * 2) + kComputeLerpCost * (kOutputImageDim * kOutputImageDim * kChannelSize); const int expected_compute_time = std::ceil( num_ops / estimator_.GetDeviceInfo(op_context.op_info.device()).gigaops); const auto cost = PredictCosts(op_context); EXPECT_EQ(cost.compute_time, Costs::Duration(expected_compute_time)); EXPECT_EQ(cost.memory_time, Costs::Duration(kExpectedMemoryTime)); EXPECT_EQ(cost.execution_time, Costs::Duration(kExpectedMemoryTime + expected_compute_time)); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); } { op_context.op_info.clear_outputs(); constexpr int64_t kLargeOutputImageDim = 40000; DescribeTensor4D(1, kLargeOutputImageDim, kLargeOutputImageDim, kChannelSize, op_context.op_info.add_outputs()); const int64_t kInterpWeightCost = 12; AttrValue half_pixel_centers; half_pixel_centers.set_b(true); (*op_context.op_info.mutable_attr())["half_pixel_centers"] = half_pixel_centers; const int64_t num_ops = kInterpWeightCost * (kLargeOutputImageDim * 2) + kComputeLerpCost * (kLargeOutputImageDim * kLargeOutputImageDim * kChannelSize); const int64_t expected_compute_time = std::ceil( num_ops / estimator_.GetDeviceInfo(op_context.op_info.device()).gigaops); const int64_t expected_memory_time = (kImageDim * kImageDim + kLargeOutputImageDim * kLargeOutputImageDim) * 4; const auto cost = PredictCosts(op_context); EXPECT_EQ(cost.compute_time, Costs::Duration(expected_compute_time)); EXPECT_EQ(cost.memory_time, Costs::Duration(expected_memory_time)); EXPECT_EQ(cost.execution_time, Costs::Duration(expected_memory_time + expected_compute_time)); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); } } TEST_F(OpLevelCostEstimatorTest, CropAndResizeExecutionTime) { const int kImageDim = 255; const int kChannelSize = 10; const int kOutputImageDim = 100; const int kNumBoxes = 10; const int kOutputElements = kNumBoxes * kOutputImageDim * kOutputImageDim * kChannelSize; OpContext op_context; SetCpuDevice(&op_context.op_info); op_context.op_info.set_op("CropAndResize"); DescribeTensor4D(1, kImageDim, kImageDim, kChannelSize, op_context.op_info.add_inputs()); DescribeArbitraryRankInput({kNumBoxes, 4}, DT_INT64, &op_context.op_info); DescribeTensor4D(kNumBoxes, kOutputImageDim, kOutputImageDim, kChannelSize, op_context.op_info.add_outputs()); const int kExpectedMemoryTime = (kImageDim * kImageDim * 4 + kNumBoxes * 4 * 8 / 10 + kNumBoxes * kOutputImageDim * kOutputImageDim * 4); { AttrValue method; method.set_s("bilinear"); (*op_context.op_info.mutable_attr())["method"] = method; int num_ops = 28 * kNumBoxes + 4 * kNumBoxes * kOutputImageDim + 4 * kNumBoxes * kOutputImageDim * kOutputImageDim + 3 * kNumBoxes * kOutputImageDim + 3 * kNumBoxes * kOutputImageDim * kOutputImageDim + 13 * kOutputElements; const int expected_compute_time = std::ceil( num_ops / estimator_.GetDeviceInfo(op_context.op_info.device()).gigaops); const auto cost = PredictCosts(op_context); EXPECT_EQ(cost.compute_time, Costs::Duration(expected_compute_time)); EXPECT_EQ(cost.memory_time, Costs::Duration(kExpectedMemoryTime)); EXPECT_EQ(cost.execution_time, Costs::Duration(kExpectedMemoryTime + expected_compute_time)); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); } { AttrValue method; method.set_s("nearest"); (*op_context.op_info.mutable_attr())["method"] = method; int num_ops = 28 * kNumBoxes + 4 * kNumBoxes * kOutputImageDim + 4 * kNumBoxes * kOutputImageDim * kOutputImageDim + 2 * kNumBoxes * kOutputImageDim * kOutputImageDim + kOutputElements; const int expected_compute_time = std::ceil( num_ops / estimator_.GetDeviceInfo(op_context.op_info.device()).gigaops); const auto cost = PredictCosts(op_context); EXPECT_EQ(cost.compute_time, Costs::Duration(expected_compute_time)); EXPECT_EQ(cost.memory_time, Costs::Duration(kExpectedMemoryTime)); EXPECT_EQ(cost.execution_time, Costs::Duration(kExpectedMemoryTime + expected_compute_time)); EXPECT_FALSE(cost.inaccurate); EXPECT_EQ(cost.num_ops_with_unknown_shapes, 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/op_level_cost_estimator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/op_level_cost_estimator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9ec7452e-20d4-4980-94de-c634b44a3126
cpp
tensorflow/tensorflow
graph_properties
tensorflow/core/grappler/costs/graph_properties.cc
tensorflow/core/grappler/costs/graph_properties_test.cc
#include "tensorflow/core/grappler/costs/graph_properties.h" #include "absl/hash/hash.h" #include "absl/types/optional.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/grappler/costs/utils.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/evaluation_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/functions.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/gtl/flatset.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { namespace grappler { namespace { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeAndType; using shape_inference::ShapeHandle; using TensorVector = absl::InlinedVector<TensorValue, 4UL>; const int64_t kUnknownDimFromConst = INT64_MAX; const int kThresholdToSkipConstTensorInstantiation = 128; template <typename Handle> struct HashHandle { std::size_t operator()(const Handle& h) const { return absl::HashOf(h.Handle()); } }; template <typename Handle> struct CompareHandle { bool operator()(const Handle& h1, const Handle& h2) const { return h1.SameHandle(h2); } }; template <typename Handle> struct HandleToObject {}; template <> struct HandleToObject<ShapeHandle> { typedef ShapeHandle Object; static ShapeHandle Unknown() { return ShapeHandle(); } }; template <> struct HandleToObject<DimensionHandle> { typedef int64_t Object; static int64_t Unknown() { return -1; } }; template <typename Handle> struct Processor {}; template <> struct Processor<ShapeHandle> { void ExtractValue(ShapeHandle h, ShapeHandle* result) { *result = h; } Status Merge(ShapeHandle h1, ShapeHandle h2, ShapeHandle* result) { if (InferenceContext::RankKnown(*result)) { return absl::OkStatus(); } if (InferenceContext::RankKnown(h1)) { *result = h1; } else { *result = h2; } return absl::OkStatus(); } }; template <> struct Processor<DimensionHandle> { void ExtractValue(DimensionHandle d, int64_t* result) { if (!InferenceContext::ValueKnown(d)) { *result = -counter; counter++; } else { int64_t val = InferenceContext::Value(d); if (val >= 0) { *result = val; } else { *result = -counter; counter++; } } } Status Merge(DimensionHandle d1, DimensionHandle d2, int64_t* result) { const int64_t dim1 = InferenceContext::Value(d1); const int64_t dim2 = InferenceContext::Value(d2); if (dim1 >= 0 && dim2 >= 0) { CHECK_EQ(dim1, dim2); return RefineDim(dim1, result); } else if (dim1 >= 0 && dim2 < 0) { return RefineDim(dim1, result); } else if (dim1 < 0 && dim2 >= 0) { return RefineDim(dim2, result); } else if (dim1 < -1) { return RefineDim(dim1, result); } else if (dim2 < -1) { return RefineDim(dim2, result); } else { CHECK_EQ(dim1, dim2); CHECK_EQ(-1, dim1); return RefineDim(-1, result); } return absl::OkStatus(); } private: Status RefineDim(int64_t dim, int64_t* result) { if (*result >= 0) { if (!(*result == dim || dim < 0)) { return errors::InvalidArgument("Inconsistent dimensions detected"); } } else if (dim >= 0) { *result = dim; } else if (dim < *result) { *result = dim; } return absl::OkStatus(); } int64_t counter = 2; }; template <typename Handle> class DisjointSet { public: DisjointSet() {} ~DisjointSet() { for (auto rep : nodes_) { delete rep.second; } } Status Merge(Handle x, Handle y); const typename HandleToObject<Handle>::Object GetMergedValue(Handle value); private: struct Rep { Rep* parent; int rank; typename HandleToObject<Handle>::Object value; }; Rep* Find(Handle value); private: Processor<Handle> processor_; absl::flat_hash_map<Handle, Rep*, HashHandle<Handle>, CompareHandle<Handle>> nodes_; }; template <typename Handle> const typename HandleToObject<Handle>::Object DisjointSet<Handle>::GetMergedValue(Handle value) { Rep* rep = Find(value); if (!rep) { return HandleToObject<Handle>::Unknown(); } return rep->value; } template <typename Handle> Status DisjointSet<Handle>::Merge(Handle x, Handle y) { Rep* x_root = Find(x); Rep* y_root = Find(y); if (x_root == y_root) { return absl::OkStatus(); } if (x_root->rank < y_root->rank) { TF_RETURN_IF_ERROR(processor_.Merge(y, x, &y_root->value)); x_root->parent = y_root; } else if (x_root->rank > y_root->rank) { TF_RETURN_IF_ERROR(processor_.Merge(x, y, &x_root->value)); y_root->parent = x_root; } else { TF_RETURN_IF_ERROR(processor_.Merge(x, y, &x_root->value)); y_root->parent = x_root; x_root->rank = x_root->rank + 1; } return absl::OkStatus(); } template <typename Handle> typename DisjointSet<Handle>::Rep* DisjointSet<Handle>::Find(Handle value) { auto it = nodes_.find(value); if (it == nodes_.end()) { Rep* node = new Rep; node->parent = node; node->rank = 0; processor_.ExtractValue(value, &node->value); nodes_[value] = node; return node; } Rep* node = it->second; Rep* root = node->parent; while (root != root->parent) { root = root->parent; } while (node->parent != root) { Rep* next = node->parent; node->parent = root; node = next; } return root; } bool IsEnqueue(const NodeDef& n) { return (n.op().find("Enqueue") != string::npos && n.op().find("EnqueueMany") == string::npos); } bool IsDequeue(const NodeDef& n) { return (n.op().find("Dequeue") != string::npos && n.op().find("DequeueMany") == string::npos); } bool HasAnyUnknownDimensions(const TensorShapeProto& proto) { if (proto.unknown_rank()) { return true; } for (const auto& dim : proto.dim()) { if (dim.size() < 0) { return true; } } return false; } void VerboseLogUnknownDimensionSources( const GraphDef& graph, const absl::flat_hash_map<string, std::vector<OpInfo::TensorProperties>>& input_properties_map, const absl::flat_hash_map<string, std::vector<OpInfo::TensorProperties>>& output_properties_map) { if (!VLOG_IS_ON(2)) { return; } VLOG(2) << "Nodes with known inputs, but with unknown output dimensions:"; std::map<string, int> op_to_count; for (const NodeDef& node : graph.node()) { const auto& input_properties = input_properties_map.at(node.name()); const auto& output_properties = output_properties_map.at(node.name()); bool has_unknown_inputs = false; for (const auto& input_prop : input_properties) { if (HasAnyUnknownDimensions(input_prop.shape())) { has_unknown_inputs = true; break; } } if (has_unknown_inputs) { continue; } for (const auto& output_prop : output_properties) { if (HasAnyUnknownDimensions(output_prop.shape())) { string inputs = "input_shapes=["; for (const auto& input_prop : input_properties) { inputs += PartialTensorShape::DebugString(input_prop.shape()); } inputs += "]"; string outputs = "output_shapes=["; for (const auto& output_prop : output_properties) { outputs += PartialTensorShape::DebugString(output_prop.shape()); } outputs += "]"; VLOG(2) << "Node: " << node.name() << ", Op: " << node.op() << ", " << inputs << ", " << outputs; op_to_count[node.op()]++; break; } } } VLOG(2) << "Op types with known inputs, but with unknown output dimensions " << "(format: <op_type> (<count>)):"; for (const auto& p : op_to_count) { VLOG(2) << p.first << " (" << p.second << ")"; } } std::vector<ShapeHandle> ReplaceUnknownDimFromConstWithUnknownDim( InferenceContext* ic, const std::vector<ShapeHandle>& shapes) { std::vector<ShapeHandle> converted_shapes(shapes.size()); for (int i = 0, shapes_size = shapes.size(); i < shapes_size; i++) { const auto& shape = shapes[i]; if (!ic->RankKnown(shape)) { converted_shapes[i] = shape; continue; } bool just_copy = true; std::vector<DimensionHandle> dims; for (int32_t i = 0; i < ic->Rank(shape); ++i) { DimensionHandle dim = ic->Dim(shape, i); if (ic->ValueKnown(dim) && ic->Value(dim) == kUnknownDimFromConst) { just_copy = false; dims.push_back(ic->UnknownDim()); } else { dims.push_back(dim); } } if (just_copy) { converted_shapes[i] = shape; continue; } converted_shapes[i] = ic->MakeShape(dims); } return converted_shapes; } TensorProto MakeTensorProtoFromShape(InferenceContext* ic, const ShapeHandle& shape, const ShapeHandle& tensor_as_shape, const DataType& dtype) { TensorProto tensor_proto; tensor_proto.set_dtype(dtype); auto* shape_proto = tensor_proto.mutable_tensor_shape(); if (ic->Rank(shape) == 1) { shape_proto->add_dim()->set_size(ic->Rank(tensor_as_shape)); } for (int i = 0; i < ic->Rank(tensor_as_shape); i++) { int64_t value = ic->Value(ic->Dim(tensor_as_shape, i)); if (dtype == DT_INT32) { tensor_proto.add_int_val(value); } else { tensor_proto.add_int64_val(value); } } return tensor_proto; } NodeDef MakeConstNodeDefFromTensorProto(InferenceContext* ic, const TensorProto& tensor_proto, const DataType& dtype) { NodeDef const_node; const_node.set_name("const_from_shape"); const_node.set_op("Const"); auto* attr = const_node.mutable_attr(); (*attr)["dtype"].set_type(dtype); auto* tensor = (*attr)["value"].mutable_tensor(); *tensor = tensor_proto; return const_node; } NodeDef MakeConstNodeDefFromShape(InferenceContext* ic, const ShapeHandle& shape, const ShapeHandle& tensor_as_shape, const DataType& dtype) { return MakeConstNodeDefFromTensorProto( ic, MakeTensorProtoFromShape(ic, shape, tensor_as_shape, dtype), dtype); } bool IsNumericType(const DataType dtype) { static const gtl::FlatSet<DataType>* const kRealNumberTypes = CHECK_NOTNULL((new gtl::FlatSet<DataType>{ DT_BFLOAT16, DT_HALF, DT_FLOAT, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64, DT_QINT8, DT_QUINT8, DT_QINT16, DT_QUINT16, DT_QINT32, DT_BOOL, })); return kRealNumberTypes->find(dtype) != kRealNumberTypes->end(); } uint64 NumElementsFromTensorProto(const TensorProto& tensor_proto) { if (!tensor_proto.has_tensor_shape()) { return -1; } const auto& tensor_shape_proto = tensor_proto.tensor_shape(); if (tensor_shape_proto.unknown_rank()) { return -1; } int64_t num_elements = 1; for (const auto& dim : tensor_shape_proto.dim()) { num_elements *= dim.size(); } return num_elements; } } bool IsShapeFullyDefinedIntegerVectorOrScalar( InferenceContext* ic, const ShapeHandle& shape, const ShapeHandle& tensor_as_shape, const DataType& dtype) { if (!ic->FullyDefined(shape) || ic->Rank(shape) > 1 || !ic->FullyDefined(tensor_as_shape) || (dtype != DT_INT32 && dtype != DT_INT64)) { return false; } for (int32_t i = 0; i < ic->Rank(tensor_as_shape); ++i) { DimensionHandle dim = ic->Dim(tensor_as_shape, i); if (ic->Value(dim) == kUnknownDimFromConst) { LOG(WARNING) << "IsShapeFullyDefinedIntegerVectorOrScalar(): " << "tensor_as_shape input includes kUnknownDimFromConst -- " << ic->DebugString(tensor_as_shape); return false; } } return true; } class TopoQueue { public: explicit TopoQueue(const std::vector<const NodeDef*>& topo_order) : topo_order_(TopoOrder(topo_order)) {} void push(const NodeDef* n) { queue_.emplace(n, topo_order_.at(n)); } const NodeDef* pop() { CHECK(!empty()); auto it = queue_.begin(); const NodeDef* n = it->first; queue_.erase(it); return n; } bool empty() const { return queue_.empty(); } std::size_t size() const { return queue_.size(); } private: using NodeAndId = std::pair<const NodeDef*, int>; struct OrderByIdAscending { bool operator()(const NodeAndId& lhs, const NodeAndId& rhs) const { return lhs.second < rhs.second; } }; const absl::flat_hash_map<const NodeDef*, int> TopoOrder( const std::vector<const NodeDef*>& topo_order) const { absl::flat_hash_map<const NodeDef*, int> map; map.reserve(topo_order.size()); for (int i = 0, topo_order_size = topo_order.size(); i < topo_order_size; ++i) { map.emplace(topo_order[i], i); } return map; } const absl::flat_hash_map<const NodeDef*, int> topo_order_; std::set<NodeAndId, OrderByIdAscending> queue_; }; bool IsAllowListedOpTypeForEvaluateNode(const string& op_type) { static const gtl::FlatSet<string>* const kOpTpeAllowlist = CHECK_NOTNULL((new gtl::FlatSet<string>{ "Floor", "Round", "Sqrt", "Square", "Sign", "Add", "AddV2", "Div", "FloorDiv", "FloorMod", "Greater", "GreaterEqual", "Less", "LessEqual", "LogicalAnd", "LogicalNot", "LogicalOr", "Maximum", "Minimum", "Mod", "Mul", "NotEqual", "QuantizedAdd", "QuantizedMul", "SquareDifference", "Sub", "TruncateDiv", "TruncateMod", "RealDiv", "AddN", "StridedSlice", "OnesLike", "ZerosLike", "Concat", "ConcatV2", "Split", "Range", "Fill", "Cast", "Prod", "Unpack", "GatherV2", "Pack", "ExpandDims", })); return kOpTpeAllowlist->find(op_type) != kOpTpeAllowlist->end(); } static void NormalizeShapeForOutput(TensorShapeProto* shape) { for (int i = 0; i < shape->dim_size(); i++) { if (shape->dim(i).size() < -1) { VLOG(2) << "Normalizing dimension: " << i << " from " << shape->dim(i).size() << " to -1"; shape->mutable_dim(i)->set_size(-1); } } } class SymbolicShapeRefiner { public: explicit SymbolicShapeRefiner( const GraphView& graph, const absl::flat_hash_map<string, absl::flat_hash_set<int>>& fed_ports, const bool aggressive_shape_inference) : graph_(graph), function_library_(OpRegistry::Global(), graph.graph()->library()), fed_ports_(fed_ports), aggressive_shape_inference_(aggressive_shape_inference) { graph_def_version_ = graph.graph()->versions().producer(); node_to_context_.reserve(graph.graph()->node_size()); } const GraphView& graph() const { return graph_; } struct NodeContext { const OpRegistrationData* op_data; DataTypeVector input_types; DataTypeVector output_types; std::unique_ptr<InferenceContext> inference_context; std::vector<const TensorProto*> input_tensor_protos; std::vector<const TensorProto*> output_tensor_protos; std::vector<ShapeHandle> input_tensors_as_shapes_to_propagate; std::vector<ShapeHandle> output_tensors_as_shapes; bool shape_incompatible = false; std::string StringifyShapeHandle(ShapeHandle s) { auto* ic = inference_context.get(); if (ic->RankKnown(s)) { std::vector<std::string> vals; for (int i = 0; i < ic->Rank(s); i++) { DimensionHandle d = ic->Dim(s, i); if (ic->ValueKnown(d) && ic->Value(d) == kUnknownDimFromConst) { vals.push_back("?(Const)"); } else { vals.push_back(ic->DebugString(d)); } } return strings::StrCat("[", absl::StrJoin(vals, ","), "]"); } else { return "?"; } } std::string DebugString(const NodeDef& node) { std::string output; auto* ic = inference_context.get(); absl::StrAppend( &output, node.name(), " [", node.op(), "] has ", ic->num_inputs(), (ic->num_inputs() > 1 ? " inputs and " : " input and "), ic->num_outputs(), (ic->num_outputs() > 1 ? " outputs" : " output")); if (op_data->is_function_op) { absl::StrAppend(&output, " (function op)"); } absl::StrAppend(&output, ": \n"); for (int i = 0; i < ic->num_inputs(); i++) { absl::StrAppend(&output, " input [", i, "] ", node.input(i), " -- type: ", DataTypeString(input_types.at(i)), ", shape: ", ic->DebugString(ic->input(i)), ", tensor: "); Tensor t1; int input_tensor_protos_size = input_tensor_protos.size(); if (input_tensor_protos_size > i && input_tensor_protos.at(i) != nullptr && t1.FromProto(*input_tensor_protos.at(i))) { absl::StrAppend(&output, t1.DebugString(), ", tensor_as_shape: "); } else { absl::StrAppend(&output, " null, tensor_as_shape: "); } int input_tensors_as_shapes_to_propagate_size = input_tensors_as_shapes_to_propagate.size(); if (input_tensors_as_shapes_to_propagate_size > i) { absl::StrAppend( &output, StringifyShapeHandle(input_tensors_as_shapes_to_propagate.at(i)), "\n"); } else { absl::StrAppend(&output, " null\n"); } } for (int i = 0; i < ic->num_outputs(); i++) { absl::StrAppend(&output, " output [", i, "] -- type: ", DataTypeString(output_types.at(i)), ", shape: ", ic->DebugString(ic->output(i)), ", tensor: "); Tensor t2; int output_tensor_protos_size = output_tensor_protos.size(); if (output_tensor_protos_size > i && output_tensor_protos.at(i) != nullptr && t2.FromProto(*output_tensor_protos.at(i))) { absl::StrAppend(&output, t2.DebugString(), ", tensor_as_shape: "); } else { absl::StrAppend(&output, " null, tensor_as_shape: "); } int output_tensors_as_shapes_size = output_tensors_as_shapes.size(); if (output_tensors_as_shapes_size > i) { absl::StrAppend(&output, StringifyShapeHandle(output_tensors_as_shapes.at(i)), "\n"); } else { absl::StrAppend(&output, " null\n"); } } return output; } }; NodeContext* GetNodeContext(const NodeDef* node) { auto it = node_to_context_.find(node); if (it == node_to_context_.end()) { return nullptr; } return &it->second; } InferenceContext* GetContext(const NodeDef* node) { auto it = node_to_context_.find(node); if (it == node_to_context_.end()) { return nullptr; } return it->second.inference_context.get(); } Status UpdateFunction(const NodeDef* function_node) { NameAttrList function; TF_RETURN_IF_ERROR(NameAndAttrsFromFunctionCall(*function_node, &function)); auto it = fun_to_grappler_function_item_.find(function.name()); if (it == fun_to_grappler_function_item_.end()) { return errors::InvalidArgument( function.name(), " was not previously added to SymbolicShapeRefiner."); } const absl::optional<GrapplerFunctionItem>& maybe_grappler_function_item = it->second; if (!maybe_grappler_function_item.has_value()) { VLOG(3) << "Skip failed to instantiate function call: function_name=" << function.name(); auto* ctx = GetNodeContext(function_node); auto* ic = ctx->inference_context.get(); for (int i = 0; i < ic->num_outputs(); ++i) { TF_RETURN_IF_ERROR(SetUnknownShape(function_node, i)); } return absl::OkStatus(); } GrapplerFunctionItem grappler_function_item = *maybe_grappler_function_item; MutableGraphView gv(&grappler_function_item.graph); for (int i = 0, end = grappler_function_item.inputs().size(); i < end; ++i) { auto& fun_input = grappler_function_item.input(i); NodeDef* fun_node = gv.GetNode(fun_input.node_name); const TensorId input_tensor = ParseTensorName(function_node->input(i)); if (IsControlInput(input_tensor)) { return errors::FailedPrecondition( "Function inputs should not contain control nodes."); } const NodeDef* input_node = graph_.GetNode(input_tensor.node()); if (input_node == nullptr) { return errors::FailedPrecondition(input_tensor.node(), " was not found in the graph."); } InferenceContext* input_ic = GetContext(input_node); if (input_ic == nullptr) { return errors::FailedPrecondition( "Inference context has not been created for ", input_tensor.node()); } int output_port_num = input_tensor.index(); TensorShapeProto proto; const auto handle = input_ic->output(output_port_num); input_ic->ShapeHandleToProto(handle, &proto); NormalizeShapeForOutput(&proto); AttrValue output_attr; output_attr.mutable_list()->add_shape()->Swap(&proto); (*fun_node->mutable_attr())["_output_shapes"] = output_attr; if (fun_input.data_type == DT_RESOURCE) { auto* shapes_and_types = input_ic->output_handle_shapes_and_types(output_port_num); if (shapes_and_types != nullptr && !shapes_and_types->empty()) { AttrValue dtype_attr; AttrValue shape_attr; for (const auto& shape_and_type : *shapes_and_types) { const auto& dtype = shape_and_type.dtype; const auto& shape_handle = shape_and_type.shape; dtype_attr.mutable_list()->add_type(dtype); input_ic->ShapeHandleToProto( shape_handle, shape_attr.mutable_list()->add_shape()); } (*fun_node->mutable_attr())["_handle_dtypes"] = dtype_attr; (*fun_node->mutable_attr())["_handle_shapes"] = shape_attr; } else { VLOG(2) << "A function node (" << function_node->name() << ") has input with DT_RESOURCE, but the input node does not " << "have shapes_and_types information: \n" << "function_node: " << function_node->ShortDebugString() << "\n" << "function input: " << i << ", input node's output: " << output_port_num << "\n" << "input node: " << input_node->ShortDebugString(); } } } absl::flat_hash_map<std::string, NodeDef*> output_nodes; for (const auto& output_arg : grappler_function_item.outputs()) { output_nodes[output_arg.node_name] = gv.GetNode(output_arg.node_name); } auto* ctx = GetNodeContext(function_node); auto* ic = ctx->inference_context.get(); for (int i = grappler_function_item.inputs().size() - 1; i >= 0; --i) { const string& input = function_node->input(i); const string node_name = NodeName(input); const NodeDef* input_node = graph_.GetNode(node_name); if (IsConstant(*input_node)) { TF_CHECK_OK( ReplaceInputWithConst(*input_node, i, &grappler_function_item)); } else if (static_cast<int>(ctx->input_tensor_protos.size()) > i && ctx->input_tensor_protos[i] != nullptr) { NodeDef const_input_node = MakeConstNodeDefFromTensorProto( ic, *ctx->input_tensor_protos[i], ctx->input_types[i]); TF_CHECK_OK(ReplaceInputWithConst(const_input_node, i, &grappler_function_item)); } else if (static_cast<int>(ic->input_tensors_as_shapes().size()) > i && IsShapeFullyDefinedIntegerVectorOrScalar( ic, ic->input(i), ic->input_tensors_as_shapes()[i], ctx->input_types[i])) { NodeDef const_input_node = MakeConstNodeDefFromShape( ic, ic->input(i), ic->input_tensors_as_shapes()[i], ctx->input_types[i]); TF_CHECK_OK(ReplaceInputWithConst(const_input_node, i, &grappler_function_item)); } } for (const auto& output_arg : grappler_function_item.outputs()) { NodeDef* output_node = output_nodes[output_arg.node_name]; DCHECK_EQ(output_node->op(), "_Retval"); output_node->set_op("Identity"); output_node->mutable_attr()->erase("index"); } GraphProperties gp(grappler_function_item); TF_RETURN_IF_ERROR(gp.InferStatically( true, aggressive_shape_inference_, true)); int output = 0; ctx->output_tensors_as_shapes.resize(grappler_function_item.output_size()); ctx->output_tensor_protos.resize(grappler_function_item.output_size(), nullptr); for (auto const& out_arg : grappler_function_item.outputs()) { TensorId out_tensor = ParseTensorName(out_arg.node_name); if (output_nodes.count(out_tensor.node()) <= 0) { return errors::FailedPrecondition( "Unable to find return function_node ", out_tensor.node(), " for ", function_node->name()); } const NodeDef* retnode = output_nodes[out_tensor.node()]; auto output_properties = gp.GetOutputProperties(retnode->name()); int output_properties_size = output_properties.size(); if (out_tensor.index() >= output_properties_size) { return errors::InvalidArgument( out_tensor.ToString(), " has invalid position ", out_tensor.index(), " (output_properties.size() = ", output_properties.size(), ")."); } auto& outprop = output_properties[out_tensor.index()]; TensorShapeProto shape = outprop.shape(); NormalizeShapeForOutput(&shape); ShapeHandle out; TF_RETURN_IF_ERROR(ic->MakeShapeFromShapeProto(shape, &out)); ic->set_output(output, out); if (outprop.has_value()) { MaybeTensorProtoToShape(ic, outprop.value(), &ctx->output_tensors_as_shapes[output]); const_tensors_to_propagate_.push_back(outprop.value()); ctx->output_tensor_protos[output] = &const_tensors_to_propagate_.back(); } output++; } return absl::OkStatus(); } Status UpdateNode(const NodeDef* node, bool* refined) { NodeContext* ctx = GetNodeContext(node); if (ctx == nullptr) { TF_RETURN_IF_ERROR(AddNode(node)); ctx = CHECK_NOTNULL(GetNodeContext(node)); *refined = true; } InferenceContext* ic = ctx->inference_context.get(); ctx->input_tensors_as_shapes_to_propagate.resize(ic->num_inputs()); ctx->input_tensor_protos.resize(ic->num_inputs(), nullptr); for (int dst_input = 0; dst_input < ic->num_inputs(); ++dst_input) { const GraphView::InputPort port(node, dst_input); const GraphView::OutputPort fanin = graph_.GetRegularFanin(port); int src_output = fanin.port_id; const NodeDef* src = fanin.node; NodeContext* src_ctx = GetNodeContext(src); if (src_ctx == nullptr) { return errors::FailedPrecondition( "Input ", dst_input, " for '", node->name(), "' was not previously added to SymbolicShapeRefiner."); } InferenceContext* src_ic = src_ctx->inference_context.get(); if (src_output >= src_ic->num_outputs()) { return errors::OutOfRange("src_output = ", src_output, ", but num_outputs is only ", src_ic->num_outputs()); } if (static_cast<int>(src_ctx->output_tensors_as_shapes.size()) > src_output) { ctx->input_tensors_as_shapes_to_propagate[dst_input] = src_ctx->output_tensors_as_shapes[src_output]; } if (static_cast<int>(src_ctx->output_tensor_protos.size()) > src_output) { const auto* tensor_proto = src_ctx->output_tensor_protos[src_output]; if (tensor_proto != nullptr) { ctx->input_tensor_protos[dst_input] = tensor_proto; } } if (!*refined && !ic->input(dst_input).SameHandle(src_ic->output(src_output))) { *refined = true; } ic->SetInput(dst_input, src_ic->output(src_output)); if (!*refined && ic->requested_input_tensor_as_partial_shape(dst_input)) { *refined = true; } if (ctx->input_types[dst_input] == DT_RESOURCE) { auto* outputs = src_ic->output_handle_shapes_and_types(src_output); if (!outputs) continue; auto* inputs = ic->input_handle_shapes_and_types(dst_input); if (!inputs || !EquivalentShapesAndTypes(*outputs, *inputs)) *refined = true; ic->set_input_handle_shapes_and_types(dst_input, *outputs); } } *refined |= ic->num_inputs() == 0; if (!*refined) { return absl::OkStatus(); } ic->set_input_tensors_as_shapes(ReplaceUnknownDimFromConstWithUnknownDim( ic, ctx->input_tensors_as_shapes_to_propagate)); if (ctx->op_data && ctx->op_data->is_function_op) { if (aggressive_shape_inference_) { auto s = UpdateOutputShapesUsingAnnotatedInformation(*node, ctx); if (s.ok() && AllOutputShapesKnown(ctx)) { return absl::OkStatus(); } } auto s = UpdateFunction(node); if (s.ok()) { return absl::OkStatus(); } else { VLOG(1) << "UpdateFunction failed for " << node->op() << ". Defaulting to ShapeUnknown.\n" << s.ToString(); } } std::vector<Tensor> const_values(ic->num_inputs()); std::vector<const Tensor*> input_tensors(ic->num_inputs(), nullptr); for (int dst_input = 0; dst_input < ic->num_inputs(); ++dst_input) { const TensorProto* tensor_proto = ctx->input_tensor_protos[dst_input]; if (tensor_proto != nullptr && NumElementsFromTensorProto(*tensor_proto) <= kThresholdToSkipConstTensorInstantiation && const_values[dst_input].FromProto(*tensor_proto)) { input_tensors[dst_input] = &const_values[dst_input]; } } ic->set_input_tensors(input_tensors); return InferShapes(*node, ctx); } Status SetUnknownShape(const NodeDef* node, int output_port) { shape_inference::ShapeHandle shape = GetUnknownOutputShape(node, output_port); InferenceContext* ctx = GetContext(node); if (ctx == nullptr) { return errors::InvalidArgument("SetUnknownShape: Missing context"); } if (output_port < 0 || output_port >= ctx->num_outputs()) { return errors::InvalidArgument( "SetUnknownShape: output_port must be in [0, ", ctx->num_outputs(), ") but was ", output_port); } ctx->set_output(output_port, shape); return absl::OkStatus(); } struct ShapeId { const NodeDef* node; int port_id; friend bool operator==(const ShapeId& lhs, const ShapeId& rhs) { return lhs.node == rhs.node && lhs.port_id == rhs.port_id; } template <typename H> friend H AbslHashValue(H h, const ShapeId& s) { return H::combine(std::move(h), s.node, s.port_id); } }; struct DimId { const NodeDef* node; int port_id; int dim_index; friend bool operator==(const DimId& lhs, const DimId& rhs) { return lhs.node == rhs.node && lhs.port_id == rhs.port_id && lhs.dim_index == rhs.dim_index; } template <typename H> friend H AbslHashValue(H h, const DimId& d) { return H::combine(std::move(h), d.node, d.port_id, d.dim_index); } }; ShapeHandle OutputAsUnion(const NodeDef* node, int port_index, ShapeHandle shape1, ShapeHandle shape2) { if (shape1.SameHandle(shape2)) { return shape1; } InferenceContext* ctx = GetContext(node); ShapeHandle relaxed = shape1; const int rank = ctx->Rank(shape1); if (!ctx->RankKnown(shape2) || ctx->Rank(shape2) != rank) { relaxed = GetUnknownOutputShape(node, port_index); } else { for (int d = 0; d < rank; ++d) { if (!ctx->Dim(shape1, d).SameHandle(ctx->Dim(shape2, d))) { int64_t val1 = ctx->Value(ctx->Dim(shape1, d)); int64_t val2 = ctx->Value(ctx->Dim(shape2, d)); if (val1 != val2 || (val1 < 0 && val2 < 0)) { DimensionHandle new_dim = GetUnknownOutputDim(node, port_index, d); TF_CHECK_OK(ctx->ReplaceDim(relaxed, d, new_dim, &relaxed)); } } } } return relaxed; } bool EquivalentShapes(ShapeHandle s1, ShapeHandle s2) const { if (s1.SameHandle(s2)) { return true; } if (InferenceContext::Rank(s1) != InferenceContext::Rank(s2)) { return false; } if (!InferenceContext::RankKnown(s1) && !InferenceContext::RankKnown(s2)) { return true; } const int rank = InferenceContext::Rank(s1); for (int i = 0; i < rank; ++i) { if (!InferenceContext::DimKnownRank(s1, i).SameHandle( InferenceContext::DimKnownRank(s2, i))) { int64_t val1 = InferenceContext::Value(InferenceContext::DimKnownRank(s1, i)); int64_t val2 = InferenceContext::Value(InferenceContext::DimKnownRank(s2, i)); if (val1 >= 0 && val2 >= 0 && val1 == val2) { continue; } return false; } } return true; } bool CompatibleShapes(ShapeHandle inferred_shape, ShapeHandle annotated_shape) const { if (inferred_shape.SameHandle(annotated_shape)) { return true; } if (!InferenceContext::RankKnown(inferred_shape)) { return true; } if (InferenceContext::Rank(inferred_shape) != InferenceContext::Rank(annotated_shape)) { return false; } const int rank = InferenceContext::Rank(inferred_shape); for (int i = 0; i < rank; ++i) { if (!InferenceContext::DimKnownRank(inferred_shape, i) .SameHandle( InferenceContext::DimKnownRank(annotated_shape, i))) { int64_t val1 = InferenceContext::Value( InferenceContext::DimKnownRank(inferred_shape, i)); int64_t val2 = InferenceContext::Value( InferenceContext::DimKnownRank(annotated_shape, i)); if (val1 >= 0 && val1 != val2) { return false; } } } return true; } bool SameShapes(ShapeHandle inferred_shape, ShapeHandle annotated_shape) const { if (inferred_shape.SameHandle(annotated_shape)) { return true; } if (InferenceContext::Rank(inferred_shape) != InferenceContext::Rank(annotated_shape)) { return false; } const int rank = InferenceContext::Rank(inferred_shape); for (int i = 0; i < rank; ++i) { int64_t val1 = InferenceContext::Value( InferenceContext::DimKnownRank(inferred_shape, i)); int64_t val2 = InferenceContext::Value( InferenceContext::DimKnownRank(annotated_shape, i)); if (val1 != val2) { return false; } } return true; } bool EquivalentShapesAndTypes(const std::vector<ShapeAndType>& st1, const std::vector<ShapeAndType>& st2) const { if (st1.size() != st2.size()) { return false; } for (int i = 0, st1_size = st1.size(); i < st1_size; ++i) { const ShapeAndType& s1 = st1[i]; const ShapeAndType& s2 = st2[i]; if (s1.dtype != s2.dtype) { return false; } if (!EquivalentShapes(s1.shape, s2.shape)) { return false; } } return true; } Status AddFunction(const NodeDef* function_node, const std::string& function_name) { auto it = fun_to_grappler_function_item_.find(function_name); if (it != fun_to_grappler_function_item_.end()) { return absl::OkStatus(); } const FunctionDef* function_def = CHECK_NOTNULL(function_library_.Find(function_name)); GrapplerFunctionItem grappler_function_item; Status function_instantiated = MakeGrapplerFunctionItem(*function_def, function_library_, graph_def_version_, &grappler_function_item); if (!function_instantiated.ok()) { VLOG(3) << "Failed to instantiate a function. Error: " << function_instantiated.message(); fun_to_grappler_function_item_[function_def->signature().name()] = absl::nullopt; return absl::OkStatus(); } if (static_cast<int>(grappler_function_item.inputs().size()) > function_node->input_size()) { return errors::FailedPrecondition( "Function input size should be smaller than node input size."); } for (int i = grappler_function_item.inputs().size(), end = function_node->input_size(); i < end; ++i) { const string& input = function_node->input(i); if (!IsControlInput(input)) { return errors::FailedPrecondition( "Found regular input (", input, ") instead of control nodes for node ", function_node->name()); } } fun_to_grappler_function_item_[function_def->signature().name()] = grappler_function_item; return absl::OkStatus(); } Status AddNode(const NodeDef* node) { NodeContext& node_ctx = node_to_context_[node]; NameAttrList function; TF_RETURN_IF_ERROR(NameAndAttrsFromFunctionCall(*node, &function)); TF_RETURN_IF_ERROR( function_library_.LookUp(function.name(), &node_ctx.op_data)); if (node_ctx.op_data->is_function_op) { TF_RETURN_IF_ERROR(AddFunction(node, function.name())); } TF_RETURN_IF_ERROR(InOutTypesForNode(*node, node_ctx.op_data->op_def, &node_ctx.input_types, &node_ctx.output_types)); const int num_inputs = node_ctx.input_types.size(); std::vector<ShapeHandle> input_shapes(num_inputs); std::vector<std::unique_ptr<std::vector<ShapeAndType>>> input_handle_shapes_and_types(num_inputs); std::vector<const Tensor*> input_tensors(num_inputs, nullptr); std::vector<ShapeHandle> input_tensors_as_shapes; node_ctx.inference_context.reset(new InferenceContext( graph_def_version_, *node, node_ctx.op_data->op_def, input_shapes, input_tensors, input_tensors_as_shapes, std::move(input_handle_shapes_and_types))); const Status s = node_ctx.inference_context->construction_status(); if (!s.ok()) { node_ctx.inference_context.reset(nullptr); } return s; } private: ShapeHandle GetUnknownOutputShape(const NodeDef* node, int index) { ShapeId id{node, index}; auto it = unknown_shapes_.find(id); if (it != unknown_shapes_.end()) { return it->second; } InferenceContext* c = GetContext(node); ShapeHandle shp = c->UnknownShape(); unknown_shapes_[id] = shp; return shp; } DimensionHandle GetUnknownOutputDim(const NodeDef* node, int index, int dim_id) { DimId id{node, index, dim_id}; auto it = unknown_dims_.find(id); if (it != unknown_dims_.end()) { return it->second; } InferenceContext* c = GetContext(node); DimensionHandle dim = c->UnknownDim(); unknown_dims_[id] = dim; return dim; } bool AllOutputValuesKnown(NodeContext* c) { InferenceContext* ic = c->inference_context.get(); int c_output_tensors_as_shapes_size = c->output_tensors_as_shapes.size(); int c_output_tensor_protos_size = c->output_tensor_protos.size(); if (c_output_tensors_as_shapes_size < ic->num_outputs() && c_output_tensor_protos_size < ic->num_outputs()) { return false; } else { for (int i = 0; i < ic->num_outputs(); i++) { if (c_output_tensor_protos_size > i && c->output_tensor_protos[i] != nullptr) { continue; } if (c_output_tensors_as_shapes_size > i && ic->FullyDefined(c->output_tensors_as_shapes[i])) { bool no_unknown_dim_from_const = true; for (int32_t j = 0; j < ic->Rank(c->output_tensors_as_shapes[i]); ++j) { const auto dim = ic->Dim(c->output_tensors_as_shapes[i], j); if (ic->ValueKnown(dim) && ic->Value(dim) == kUnknownDimFromConst) { no_unknown_dim_from_const = false; break; } } if (no_unknown_dim_from_const) { continue; } } return false; } } return true; } bool AllOutputShapesKnown(NodeContext* c) { InferenceContext* ic = c->inference_context.get(); for (int i = 0; i < ic->num_outputs(); i++) { if (!ic->FullyDefined(ic->output(i))) { return false; } } return true; } bool AllInputValuesKnown(NodeContext* c) { InferenceContext* ic = c->inference_context.get(); for (int i = 0; i < ic->num_inputs(); i++) { const Tensor* tensor = ic->input_tensor(i); const ShapeHandle& input_tensors_as_shape = ic->input_tensors_as_shapes()[i]; if (tensor == nullptr && !ic->FullyDefined(input_tensors_as_shape)) { return false; } } return true; } bool ShouldUpdateOutputShapesAndValues(NodeContext* c, int64_t max_size) { InferenceContext* ic = c->inference_context.get(); if (!IsAllowListedOpTypeForEvaluateNode(c->op_data->op_def.name())) { return false; } for (const auto& input_type : c->input_types) { if (!IsNumericType(input_type)) { return false; } } for (const auto& output_type : c->output_types) { if (!IsNumericType(output_type)) { return false; } } for (int i = 0; i < ic->num_inputs(); i++) { const Tensor* tensor = ic->input_tensor(i); const ShapeHandle& input_shape_handle = ic->input(i); if (tensor != nullptr) { if (tensor->NumElements() > max_size) { return false; } } else if (ic->Value(ic->NumElements(input_shape_handle)) > max_size) { return false; } } for (int i = 0; i < ic->num_outputs(); i++) { const ShapeHandle& shape_handle = ic->output(i); if (!ic->FullyDefined(shape_handle) || ic->Value(ic->NumElements(shape_handle)) > max_size) { return false; } } return true; } void CreateInputTensors(NodeContext* c, std::vector<Tensor>* input_tensor_vector, TensorVector* inputs) { InferenceContext* ic = c->inference_context.get(); for (int i = 0; i < ic->num_inputs(); i++) { if (ic->input_tensor(i)) { input_tensor_vector->at(i) = *ic->input_tensor(i); inputs->emplace_back(&input_tensor_vector->at(i)); } else { const ShapeHandle& shape_handle = ic->input_tensors_as_shapes()[i]; const DataType& data_type = c->input_types[i]; int32_t rank = ic->Rank(shape_handle); if (rank < 1) { input_tensor_vector->at(i) = Tensor(data_type, {}); } else { input_tensor_vector->at(i) = Tensor(data_type, {rank}); } auto* tensor = &input_tensor_vector->at(i); if (data_type == DT_INT32) { auto flat = tensor->flat<int32>(); for (int j = 0; j < rank; j++) { int32_t dim = ic->Value(ic->Dim(shape_handle, j)); flat(j) = dim; } } else { auto flat = tensor->flat<int64_t>(); for (int j = 0; j < rank; j++) { int64_t dim = ic->Value(ic->Dim(shape_handle, j)); flat(j) = dim; } } inputs->emplace_back(tensor); } } } Status UpdateOutputShapesAndValues(const NodeDef& node, NodeContext* c) { InferenceContext* ic = c->inference_context.get(); TensorVector inputs; std::vector<Tensor> input_tensor_vector(ic->num_inputs()); CreateInputTensors(c, &input_tensor_vector, &inputs); TensorVector outputs; auto outputs_cleanup = gtl::MakeCleanup([&outputs] { for (const auto& output : outputs) { if (output.tensor) { delete output.tensor; } } }); TF_RETURN_IF_ERROR(EvaluateNode(node, inputs, nullptr, &resource_mgr_, &outputs)); c->output_tensors_as_shapes.resize(outputs.size()); c->output_tensor_protos.resize(outputs.size(), nullptr); for (int k = 0, outputs_size = outputs.size(); k < outputs_size; k++) { const auto& t = outputs[k]; ShapeHandle output_shape; TF_RETURN_IF_ERROR( ic->MakeShapeFromTensorShape(t->shape(), &output_shape)); if (ic->FullyDefined(ic->output(k)) && !EquivalentShapes(ic->output(k), output_shape)) { LOG(WARNING) << "UpdateOutputShapesAndValues() -- node: " << node.name() << ", inferred output shape " << "doesn't match for k=" << k << ": " << "ic->output(k): " << ic->DebugString(ic->output(k)) << ", output_shape: " << ic->DebugString(output_shape) << " -- " << node.DebugString(); } ic->set_output(k, output_shape); MaybeTensorValueToShape(ic, *t.tensor, &c->output_tensors_as_shapes[k]); TensorProto tensor_proto; t->AsProtoTensorContent(&tensor_proto); const_tensors_to_propagate_.push_back(tensor_proto); c->output_tensor_protos[k] = &const_tensors_to_propagate_.back(); } return absl::OkStatus(); } Status UpdateOutputShapesUsingAnnotatedInformation(const NodeDef& node, NodeContext* c) const { const auto& attr = node.attr(); if (attr.count(kOutputSame) == 0 || !attr.at(kOutputSame).b() || attr.count(kOutputShapes) == 0) return absl::OkStatus(); InferenceContext* ic = c->inference_context.get(); int output_size = attr.at(kOutputShapes).list().shape_size(); for (int i = 0; i < ic->num_outputs(); i++) { int shape_index = IsSwitch(node) ? 0 : i; if (shape_index >= output_size) { LOG(WARNING) << "UpdateOutputShapesUsingAnnotatedInformation() -- node: " << node.name() << ", inferred output shape size " << ic->num_outputs() << ", annotated output shape size " << output_size; break; } const TensorShapeProto& shape = attr.at(kOutputShapes).list().shape(shape_index); if (shape.dim().empty()) continue; ShapeHandle output_shape; TF_RETURN_IF_ERROR(ic->MakeShapeFromShapeProto(shape, &output_shape)); if ((ic->FullyDefined(ic->output(i)) && !SameShapes(ic->output(i), output_shape)) || (!ic->FullyDefined(ic->output(i)) && !CompatibleShapes(ic->output(i), output_shape))) { LOG(WARNING) << "UpdateOutputShapesUsingAnnotatedInformation() -- node: " << node.name() << ", inferred output shape " << "doesn't match for i=" << i << ": " << "ic->output(k): " << ic->DebugString(ic->output(i)) << ", annotated output shape: " << ic->DebugString(output_shape) << " -- " << node.DebugString(); c->shape_incompatible = true; } if (!ic->FullyDefined(ic->output(i)) && CompatibleShapes(ic->output(i), output_shape)) { VLOG(3) << "UpdateOutputShapesUsingAnnotatedInformation() -- node: " << node.name() << ", inferred output shape " << i << ": " << "ic->output(i): " << ic->DebugString(ic->output(i)) << ", annotated output shape: " << ic->DebugString(output_shape) << " -- " << node.ShortDebugString(); ic->set_output(i, output_shape); } } return absl::OkStatus(); } Status MaybeUpdateNodeContextOutput(const NodeDef& node, const bool is_fed, NodeContext* c) { InferenceContext* ic = c->inference_context.get(); if (!is_fed) { if (IsConstant(node)) { const TensorProto& tensor_proto = node.attr().at("value").tensor(); c->output_tensor_protos.resize(1); c->output_tensor_protos[0] = &tensor_proto; c->output_tensors_as_shapes.resize(1); MaybeTensorProtoToShape(ic, tensor_proto, &c->output_tensors_as_shapes[0]); } else if (IsRank(node)) { if (ic->RankKnown(ic->input(0))) { int32_t rank = ic->Rank(ic->input(0)); const_tensors_to_propagate_.push_back( MakeIntegerScalarTensorProto(DT_INT32, rank)); c->output_tensor_protos.resize(1); c->output_tensor_protos[0] = &const_tensors_to_propagate_.back(); } } else if (IsSize(node)) { DimensionHandle size = ic->NumElements(ic->input(0)); if (ic->ValueKnown(size)) { int64_t sz = ic->Value(size); bool valid = false; if (node.attr().at("out_type").type() == DT_INT32) { if (sz < std::numeric_limits<int32>::max()) { const_tensors_to_propagate_.push_back( MakeIntegerScalarTensorProto(DT_INT32, sz)); valid = true; } } else { const_tensors_to_propagate_.push_back( MakeIntegerScalarTensorProto(DT_INT64, sz)); valid = true; } if (valid) { c->output_tensor_protos.resize(1); c->output_tensor_protos[0] = &const_tensors_to_propagate_.back(); } } } else if (IsShape(node)) { c->output_tensors_as_shapes.resize(1); c->output_tensors_as_shapes[0] = c->inference_context->input(0); } else if (IsShapeN(node)) { c->output_tensors_as_shapes.resize(c->inference_context->num_inputs()); for (int i = 0; i < c->inference_context->num_inputs(); ++i) { c->output_tensors_as_shapes[i] = c->inference_context->input(i); } } else if (node.op() == "ConcatV2") { bool valid = true; ShapeHandle result; for (int i = 0; i < ic->num_inputs() - 1; ++i) { ShapeHandle input = c->input_tensors_as_shapes_to_propagate[i]; if (!ic->RankKnown(input)) { valid = false; break; } else if (i == 0) { result = input; } else { TF_RETURN_IF_ERROR(ic->Concatenate(result, input, &result)); } } if (valid) { c->output_tensors_as_shapes.resize(1); c->output_tensors_as_shapes[0] = result; } } else if (IsPack(node)) { std::vector<DimensionHandle> dims; bool valid = true; for (int i = 0; i < ic->num_inputs(); ++i) { const Tensor* t = ic->input_tensor(i); if (t) { if (t->dims() != 0 || (t->dtype() != DT_INT32 && t->dtype() != DT_INT64)) { valid = false; break; } int64_t size = t->dtype() == DT_INT32 ? t->scalar<int32>()() : t->scalar<int64_t>()(); dims.push_back(size < 0 ? ic->MakeDim(kUnknownDimFromConst) : ic->MakeDim(size)); } else { const ShapeHandle& shape_handle = c->input_tensors_as_shapes_to_propagate[i]; if (ic->RankKnown(shape_handle) && ic->Rank(shape_handle) >= 1 && ic->ValueKnown(ic->Dim(shape_handle, 0))) { dims.push_back(ic->Dim(shape_handle, 0)); } else { dims.push_back(ic->MakeDim(kUnknownDimFromConst)); } } } if (valid) { c->output_tensors_as_shapes.resize(1); c->output_tensors_as_shapes[0] = ic->MakeShape(dims); } } else if (IsIdentity(node) || IsIdentityNSingleInput(node)) { c->output_tensors_as_shapes.resize(1); c->output_tensors_as_shapes[0] = c->input_tensors_as_shapes_to_propagate[0]; if (c->input_tensor_protos[0] != nullptr) { c->output_tensor_protos.resize(1); c->output_tensor_protos[0] = c->input_tensor_protos[0]; } } else if (IsSlice(node)) { ShapeHandle input = c->input_tensors_as_shapes_to_propagate[0]; bool valid = ic->RankKnown(input); const Tensor* slice_offset = ic->input_tensor(1); valid &= slice_offset != nullptr && slice_offset->NumElements() == 1; const Tensor* slice_size = ic->input_tensor(2); valid &= slice_size != nullptr && slice_size->NumElements() == 1; if (valid) { int64_t start = slice_offset->dtype() == DT_INT32 ? slice_offset->flat<int32>()(0) : slice_offset->flat<int64_t>()(0); int64_t size = (slice_size->dtype() == DT_INT32 ? slice_size->flat<int32>()(0) : slice_size->flat<int64_t>()(0)); ShapeHandle result; if (size == -1) { TF_RETURN_IF_ERROR(ic->Subshape(input, start, &result)); } else { int64_t end = start + size; TF_RETURN_IF_ERROR(ic->Subshape(input, start, end, &result)); } c->output_tensors_as_shapes.resize(1); c->output_tensors_as_shapes[0] = result; } } else if (IsStridedSlice(node)) { ShapeHandle input = c->input_tensors_as_shapes_to_propagate[0]; bool valid = ic->RankKnown(input); const Tensor* slice_begin = ic->input_tensor(1); valid &= slice_begin != nullptr && slice_begin->NumElements() == 1; const Tensor* slice_end = ic->input_tensor(2); valid &= slice_end != nullptr && slice_end->NumElements() == 1; const Tensor* slice_stride = ic->input_tensor(3); valid &= slice_stride != nullptr && slice_stride->NumElements() == 1; if (node.attr().count("ellipsis_mask") > 0 && node.attr().at("ellipsis_mask").i() != 0) { valid = false; } if (node.attr().count("new_axis_mask") > 0 && node.attr().at("new_axis_mask").i() != 0) { valid = false; } if (node.attr().count("shrink_axis_mask") > 0 && node.attr().at("shrink_axis_mask").i() != 0) { valid = false; } int begin_mask = 0; if (node.attr().count("begin_mask") > 0) { begin_mask = node.attr().at("begin_mask").i(); } int end_mask = 0; if (node.attr().count("end_mask") > 0) { end_mask = node.attr().at("end_mask").i(); } if (begin_mask < 0 || begin_mask > 1 || end_mask < 0 || end_mask > 1) { valid = false; } if (valid) { int64_t begin = 0; if (begin_mask == 0) { begin = slice_begin->dtype() == DT_INT32 ? slice_begin->flat<int32>()(0) : slice_begin->flat<int64_t>()(0); } int64_t end = std::numeric_limits<int64_t>::max(); if (end_mask == 0) { end = (slice_end->dtype() == DT_INT32 ? slice_end->flat<int32>()(0) : slice_end->flat<int64_t>()(0)); } int64_t stride = slice_stride->dtype() == DT_INT32 ? slice_stride->flat<int32>()(0) : slice_stride->flat<int64_t>()(0); ShapeHandle result; TF_RETURN_IF_ERROR(ic->Subshape(input, begin, end, stride, &result)); c->output_tensors_as_shapes.resize(1); c->output_tensors_as_shapes[0] = result; } } } if (aggressive_shape_inference_) { UpdateOutputShapesUsingAnnotatedInformation(node, c).IgnoreError(); const int max_element_size = 17; if (AllOutputValuesKnown(c) || !AllInputValuesKnown(c) || !ShouldUpdateOutputShapesAndValues(c, max_element_size)) { return absl::OkStatus(); } UpdateOutputShapesAndValues(node, c).IgnoreError(); } return absl::OkStatus(); } Status InferShapes(const NodeDef& node, NodeContext* c) { if (!c->op_data || c->op_data->shape_inference_fn == nullptr || !c->inference_context->Run(c->op_data->shape_inference_fn).ok()) { TF_RETURN_IF_ERROR( c->inference_context->Run(shape_inference::UnknownShape)); } Status status = absl::OkStatus(); auto it = fed_ports_.find(node.name()); const bool is_fed = it != fed_ports_.end(); if (is_fed) { for (const int output_port : it->second) { status.Update(SetUnknownShape(&node, output_port)); } } status.Update(MaybeUpdateNodeContextOutput(node, is_fed, c)); return status; } private: bool IsIntegerVector(const Tensor& tensor) { if (tensor.dims() == 1 && (tensor.dtype() == DT_INT32 || tensor.dtype() == DT_INT64)) { return true; } return false; } bool IsIntegerScalar(const Tensor& tensor) { if (tensor.dims() == 0 && (tensor.dtype() == DT_INT32 || tensor.dtype() == DT_INT64) && tensor.NumElements() == 1) { return true; } return false; } TensorProto MakeIntegerScalarTensorProto(const DataType dtype, const int64_t val) { TensorProto tensor_proto; tensor_proto.set_dtype(dtype); tensor_proto.mutable_tensor_shape(); if (dtype == DT_INT32) { tensor_proto.add_int_val(val); } else if (dtype == DT_INT64) { tensor_proto.add_int64_val(val); } return tensor_proto; } bool MaybeTensorProtoToShape(InferenceContext* ic, const TensorProto& tensor_proto, ShapeHandle* tensors_as_shapes) { if (tensor_proto.dtype() != DT_INT32 && tensor_proto.dtype() != DT_INT64) { return false; } if (NumElementsFromTensorProto(tensor_proto) > kThresholdToSkipConstTensorInstantiation) { return false; } if (tensor_proto.tensor_shape().unknown_rank() || tensor_proto.tensor_shape().dim_size() > 1) { return false; } Tensor tensor; if (!tensor.FromProto(tensor_proto)) { return false; } return MaybeTensorValueToShape(ic, tensor, tensors_as_shapes); } bool MaybeTensorValueToShape(InferenceContext* ic, const Tensor& tensor, ShapeHandle* tensors_as_shapes) { if (IsIntegerVector(tensor)) { bool has_values_smaller_than_minus_1 = false; std::vector<DimensionHandle> dims; for (int i = 0; i < tensor.NumElements(); i++) { int64_t value = tensor.dtype() == DT_INT32 ? tensor.flat<int32>()(i) : tensor.flat<int64_t>()(i); has_values_smaller_than_minus_1 |= (value < -1); dims.push_back(value < 0 ? ic->MakeDim(kUnknownDimFromConst) : ic->MakeDim(value)); } if (!has_values_smaller_than_minus_1) { *tensors_as_shapes = ic->MakeShape(dims); return true; } } else if (IsIntegerScalar(tensor)) { int64_t value = tensor.dtype() == DT_INT32 ? tensor.flat<int32>()(0) : tensor.flat<int64_t>()(0); if (value == -1) { *tensors_as_shapes = ic->UnknownShape(); return true; } else if (value >= 0) { *tensors_as_shapes = ic->MakeShape({ic->MakeDim(value)}); return true; } } return false; } const GraphView& graph_; int graph_def_version_; absl::flat_hash_map<const NodeDef*, NodeContext> node_to_context_; absl::flat_hash_map<ShapeId, ShapeHandle> unknown_shapes_; absl::flat_hash_map<DimId, DimensionHandle> unknown_dims_; absl::flat_hash_map<string, absl::optional<GrapplerFunctionItem>> fun_to_grappler_function_item_; FunctionLibraryDefinition function_library_; const absl::flat_hash_map<string, absl::flat_hash_set<int>>& fed_ports_; std::deque<TensorProto> const_tensors_to_propagate_; bool aggressive_shape_inference_; ResourceMgr resource_mgr_; }; class SymbolicShapeManager { public: SymbolicShapeManager() {} Status Merge(ShapeHandle s1, ShapeHandle s2) { if (!s1.IsSet() || !s2.IsSet()) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(shapes_.Merge(s1, s2)); if (InferenceContext::Rank(s1) > 0 && InferenceContext::Rank(s2) > 0) { CHECK_EQ(InferenceContext::Rank(s1), InferenceContext::Rank(s2)); for (int i = 0; i < InferenceContext::Rank(s1); ++i) { TF_RETURN_IF_ERROR(dims_.Merge(InferenceContext::DimKnownRank(s1, i), InferenceContext::DimKnownRank(s2, i))); } } return absl::OkStatus(); } Status Merge(DimensionHandle d1, DimensionHandle d2) { if (!d1.IsSet() || !d2.IsSet()) { return absl::OkStatus(); } return dims_.Merge(d1, d2); } void AsTensorProperties(const ShapeHandle& shape, const DataType& type, OpInfo::TensorProperties* properties) { properties->set_dtype(type); ShapeHandle actual_shape = shapes_.GetMergedValue(shape); if (!InferenceContext::RankKnown(actual_shape)) { properties->mutable_shape()->set_unknown_rank(true); } else { for (int j = 0; j < InferenceContext::Rank(actual_shape); ++j) { shape_inference::DimensionHandle dim = InferenceContext::DimKnownRank(actual_shape, j); int64_t d = dims_.GetMergedValue(dim); properties->mutable_shape()->add_dim()->set_size(d); } } } ShapeHandle GetMergedShape(InferenceContext* ic, ShapeHandle s) { const auto& actual_shape = shapes_.GetMergedValue(s); if (!InferenceContext::RankKnown(actual_shape)) { return ic->UnknownShape(); } else { std::vector<DimensionHandle> dims; for (int j = 0; j < InferenceContext::Rank(actual_shape); ++j) { shape_inference::DimensionHandle dim = InferenceContext::DimKnownRank(actual_shape, j); int64_t d = dims_.GetMergedValue(dim); if (d < -1) { d = -1; } dims.push_back(ic->MakeDim(d)); } return ic->MakeShape(dims); } } private: DisjointSet<shape_inference::ShapeHandle> shapes_; DisjointSet<shape_inference::DimensionHandle> dims_; }; Status ValidateSymbolicShapeManager(const GraphDef& graph_def, SymbolicShapeRefiner* refiner, SymbolicShapeManager* shape_manager) { if (!VLOG_IS_ON(1)) { return absl::OkStatus(); } VLOG(1) << "Checking any conflicts in shapes and dimensions ..."; int64_t num_incompatible_shapes = 0; for (const NodeDef& node : graph_def.node()) { auto ctx = refiner->GetNodeContext(&node); if (!ctx) { continue; } auto* ic = ctx->inference_context.get(); for (int i = 0; i < ic->num_inputs(); ++i) { const auto& shape = ic->input(i); const auto& merged_shape = shape_manager->GetMergedShape(ic, shape); if (!refiner->CompatibleShapes(shape, merged_shape)) { num_incompatible_shapes++; VLOG(1) << "**** Incompatible shape from SymbolicShapeManager " << "for node " << node.name() << " input (" << i << ") " << ic->DebugString(shape) << " vs. merged: " << ic->DebugString(merged_shape); } } for (int i = 0; i < ic->num_outputs(); ++i) { const auto& shape = ic->output(i); const auto& merged_shape = shape_manager->GetMergedShape(ic, shape); if (!refiner->CompatibleShapes(shape, merged_shape)) { num_incompatible_shapes++; VLOG(1) << "**** Incompatible shape from SymbolicShapeManager " << "for node " << node.name() << " output (" << i << ") " << ic->DebugString(shape) << " vs. merged: " << ic->DebugString(merged_shape); } } } if (num_incompatible_shapes > 0) { VLOG(1) << "**** WARNING: " << num_incompatible_shapes << " incompatible shapes from SymbolicShapeManager."; } else { VLOG(1) << "**** No incompatible shape found from SymbolicShapeManager."; } return absl::OkStatus(); } Status VerboseShapeInferenceLogging(const GraphDef& graph_def, SymbolicShapeRefiner* refiner, SymbolicShapeManager* shape_manager) { absl::flat_hash_set<std::string> node_names_for_logging = {}; if (!VLOG_IS_ON(3) || node_names_for_logging.empty()) { return absl::OkStatus(); } auto should_log = [&node_names_for_logging](std::string node_name) { return node_names_for_logging.find(node_name) != node_names_for_logging.end(); }; for (const NodeDef& node : graph_def.node()) { if (!should_log(node.name())) { continue; } auto ctx = refiner->GetNodeContext(&node); if (!ctx) { continue; } auto* ic = ctx->inference_context.get(); VLOG(3) << "Shape inference for node : " << node.name(); VLOG(3) << ctx->DebugString(node); std::string merged_shapes = "Merged shapes from SymbolicShapManager:\n"; for (int i = 0; i < ic->num_inputs(); ++i) { absl::StrAppend( &merged_shapes, " input[", i, "] -- ", ic->DebugString(shape_manager->GetMergedShape(ic, ic->input(i))), "\n"); } for (int i = 0; i < ic->num_outputs(); ++i) { absl::StrAppend( &merged_shapes, " output[", i, "] -- ", ic->DebugString(shape_manager->GetMergedShape(ic, ic->output(i))), "\n"); } VLOG(3) << merged_shapes; VLOG(3) << "--------------------------------"; VLOG(3) << ""; } return absl::OkStatus(); } Status GraphProperties::RelaxEnqueueShapesAndMergeTypes( SymbolicShapeRefiner* shape_refiner, const NodeDef* qnode, const std::vector<ShapeAndType>& shapes_and_types, std::vector<ShapeAndType>* queue_shapes_and_types) { if (shapes_and_types.size() != queue_shapes_and_types->size()) { return errors::InvalidArgument( "Enqueue nodes mixed number of tensors: ", shapes_and_types.size(), " vs ", queue_shapes_and_types->size()); } for (size_t i = 0; i < shapes_and_types.size(); ++i) { const ShapeAndType& a = shapes_and_types[i]; ShapeAndType& b = (*queue_shapes_and_types)[i]; if (a.dtype != b.dtype) { return errors::InvalidArgument("Enqueue nodes mixed dtypes for tensor ", i, ": ", DataTypeString(a.dtype), " vs ", DataTypeString(b.dtype)); } b.shape = shape_refiner->OutputAsUnion(qnode, i, a.shape, b.shape); } return absl::OkStatus(); } Status GraphProperties::UpdateMerge(SymbolicShapeRefiner* shape_refiner, const NodeDef* node, bool* new_shapes) const { InferenceContext* ic = shape_refiner->GetContext(node); if (!ic) { TF_RETURN_IF_ERROR(shape_refiner->AddNode(node)); ic = CHECK_NOTNULL(shape_refiner->GetContext(node)); *new_shapes = true; ShapeHandle out1 = ic->Scalar(); if (ic->num_outputs() >= 2) ic->set_output(1, out1); } ShapeHandle out; const std::vector<ShapeAndType>* out_handle = nullptr; bool out_initialized = false; for (const GraphView::Edge fanin : shape_refiner->graph().GetFaninEdges( *node, false)) { InferenceContext* src_ic = shape_refiner->GetContext(fanin.src.node); if (!src_ic) { continue; } ShapeHandle input = src_ic->output(fanin.src.port_id); ic->SetInput(fanin.dst.port_id, input); auto* input_handle = src_ic->output_handle_shapes_and_types(fanin.src.port_id); if (input_handle) ic->set_input_handle_shapes_and_types(fanin.dst.port_id, *input_handle); if (!out_initialized) { out_initialized = true; out = input; out_handle = input_handle; } else { out = shape_refiner->OutputAsUnion(node, 0, input, out); } } if (*new_shapes || !shape_refiner->EquivalentShapes(out, ic->output(0))) { ic->set_output(0, out); if (out_handle) ic->set_output_handle_shapes_and_types(0, *out_handle); *new_shapes = true; } return absl::OkStatus(); } Status GraphProperties::UpdateEnter(SymbolicShapeRefiner* shape_refiner, const NodeDef* node, bool* new_shapes) { InferenceContext* ic = shape_refiner->GetContext(node); if (!ic) { TF_RETURN_IF_ERROR(shape_refiner->UpdateNode(node, new_shapes)); ic = shape_refiner->GetContext(node); } GraphView::InputPort port(node, 0); GraphView::OutputPort fanin = shape_refiner->graph().GetRegularFanin(port); InferenceContext* src_ic = shape_refiner->GetContext(fanin.node); ShapeHandle input = src_ic->output(fanin.port_id); if (!ic->output(0).SameHandle(input)) { ic->SetInput(0, input); ic->set_output(0, input); *new_shapes = true; } auto* outputs = src_ic->output_handle_shapes_and_types(fanin.port_id); if (outputs) { ic->set_input_handle_shapes_and_types(0, *outputs); ic->set_output_handle_shapes_and_types(0, *outputs); *new_shapes = true; } return absl::OkStatus(); } Status GraphProperties::UpdateShapes( SymbolicShapeRefiner* shape_refiner, const absl::flat_hash_map<const NodeDef*, const NodeDef*>& resource_handles, const NodeDef* n, bool* new_shapes) const { if (IsEnter(*n)) { TF_RETURN_IF_ERROR(UpdateEnter(shape_refiner, n, new_shapes)); } else if (IsMerge(*n)) { TF_RETURN_IF_ERROR(UpdateMerge(shape_refiner, n, new_shapes)); } else if (IsEnqueue(*n)) { TF_RETURN_IF_ERROR( UpdateEnqueue(n, resource_handles, shape_refiner, new_shapes)); } else if (IsQueue(*n)) { TF_RETURN_IF_ERROR(UpdateQueue(n, shape_refiner, new_shapes)); } else { TF_RETURN_IF_ERROR(shape_refiner->UpdateNode(n, new_shapes)); } return absl::OkStatus(); } Status GraphProperties::PropagateShapes( SymbolicShapeRefiner* shape_refiner, TopoQueue* new_shapes, const absl::flat_hash_map<const NodeDef*, const NodeDef*>& resource_handles, int num_loops) const { VLOG(1) << "Propagating " << new_shapes->size() << " new shapes through " << num_loops << " loops and " << resource_handles.size() << " resources" << std::endl; const int64_t max_loop_length = item_.graph.node_size(); const int64_t max_rank = 4; const int64_t max_loop_iterations = max_rank * max_loop_length * std::max<int64_t>(1, num_loops * num_loops); const int64_t num_queues = resource_handles.size(); const int64_t max_resource_iterations = num_queues * num_queues * max_rank; int64_t num_resource_iterations = 0; do { int64_t num_loop_iterations = 0; while (!new_shapes->empty() && num_loop_iterations++ < max_loop_iterations) { const NodeDef* n = new_shapes->pop(); bool updated = false; TF_RETURN_IF_ERROR( UpdateShapes(shape_refiner, resource_handles, n, &updated)); if (updated) { for (const auto& fanout : shape_refiner->graph().GetFanouts( *n, false)) { new_shapes->push(fanout.node); } if (IsEnqueue(*n)) { auto it = resource_handles.find(n); if (it != resource_handles.end()) { new_shapes->push(it->second); } } } } } while (!new_shapes->empty() && num_resource_iterations++ < max_resource_iterations); if (!new_shapes->empty()) { return errors::Internal("Shape inference failed to converge"); } return absl::OkStatus(); } Status GraphProperties::UpdateQueue(const NodeDef* queue_node, SymbolicShapeRefiner* shape_refiner, bool* new_shapes) { auto* ctx = shape_refiner->GetNodeContext(queue_node); if (!ctx) { TF_RETURN_IF_ERROR(shape_refiner->AddNode(queue_node)); ctx = CHECK_NOTNULL(shape_refiner->GetNodeContext(queue_node)); } auto* ic = ctx->inference_context.get(); auto* outputs = ic->output_handle_shapes_and_types(0); if (outputs) { return shape_refiner->UpdateNode(queue_node, new_shapes); } if (queue_node->attr().count("shapes") <= 0 || queue_node->attr().count("component_types") <= 0 || queue_node->attr().at("shapes").list().shape_size() != queue_node->attr().at("component_types").list().type_size()) { return shape_refiner->UpdateNode(queue_node, new_shapes); } const auto& shapes = queue_node->attr().at("shapes").list().shape(); const auto& types = queue_node->attr().at("component_types").list().type(); std::vector<ShapeAndType> shapes_and_types; for (int i = 0; i < types.size(); i++) { const auto& shape = shapes[i]; ShapeHandle shape_handle; TF_RETURN_IF_ERROR( ic->MakeShapeFromPartialTensorShape(shape, &shape_handle)); DataType data_type = queue_node->attr().at("component_types").list().type(i); ShapeAndType shape_and_type(shape_handle, data_type); shapes_and_types.push_back(shape_and_type); } ic->set_output_handle_shapes_and_types(0, shapes_and_types); *new_shapes = true; bool dummy_new_shapes = false; return shape_refiner->UpdateNode(queue_node, &dummy_new_shapes); } Status GraphProperties::UpdateEnqueue( const NodeDef* enqueue_node, const absl::flat_hash_map<const NodeDef*, const NodeDef*>& resource_handles, SymbolicShapeRefiner* shape_refiner, bool* new_shapes) { auto ctx = shape_refiner->GetNodeContext(enqueue_node); if (!ctx) { TF_RETURN_IF_ERROR(shape_refiner->AddNode(enqueue_node)); ctx = CHECK_NOTNULL(shape_refiner->GetNodeContext(enqueue_node)); } auto it = resource_handles.find(enqueue_node); if (it == resource_handles.end()) { return absl::OkStatus(); } const NodeDef* qnode = it->second; auto qctx = shape_refiner->GetContext(qnode); if (!qctx) { return absl::OkStatus(); } auto* queue_handle_data = qctx->output_handle_shapes_and_types(0); std::vector<ShapeAndType> shapes_and_types; for (int i = 1, end = ctx->input_types.size(); i < end; ++i) { GraphView::InputPort inp(enqueue_node, i); GraphView::OutputPort fanin = shape_refiner->graph().GetRegularFanin(inp); InferenceContext* in = shape_refiner->GetContext(fanin.node); ShapeHandle input = in->output(fanin.port_id); ctx->inference_context->SetInput(i, input); shapes_and_types.push_back({input, ctx->input_types[i]}); } if (queue_handle_data == nullptr) { qctx->set_output_handle_shapes_and_types(0, shapes_and_types); *new_shapes = true; } else { TF_RETURN_IF_ERROR(RelaxEnqueueShapesAndMergeTypes( shape_refiner, qnode, *queue_handle_data, &shapes_and_types)); *new_shapes |= !shape_refiner->EquivalentShapesAndTypes(*queue_handle_data, shapes_and_types); qctx->set_output_handle_shapes_and_types(0, shapes_and_types); } return absl::OkStatus(); } Status GraphProperties::InferStatically(bool assume_valid_feeds, bool aggressive_shape_inference, bool include_input_tensor_values, bool include_output_tensor_values) { FunctionLibraryDefinition function_library(OpRegistry::Global(), item_.graph.library()); absl::flat_hash_map<string, absl::flat_hash_set<int>> fed_ports; if (!assume_valid_feeds) { for (const auto& feed : item_.feed) { SafeTensorId tensor_id = ParseTensorName(feed.first); fed_ports[tensor_id.node()].insert(tensor_id.index()); } } GraphView graph_view(&item_.graph); absl::flat_hash_map<const NodeDef*, std::pair<absl::flat_hash_set<const NodeDef*>, absl::flat_hash_set<const NodeDef*>>> resources; absl::flat_hash_set<const NodeDef*> merge_nodes; absl::flat_hash_set<const NodeDef*> fed_nodes; absl::flat_hash_set<const NodeDef*> primary_inputs; int num_loops = 0; for (const NodeDef& node : item_.graph.node()) { if (IsQueue(node)) { for (const GraphView::InputPort& fanout : graph_view.GetFanouts(node, false)) { if (IsEnter(*fanout.node)) { const NodeDef& enter = *fanout.node; for (const GraphView::InputPort& fanout : graph_view.GetFanouts(enter, false)) { if (IsEnqueue(*fanout.node)) { resources[&node].first.insert(fanout.node); } else if (IsDequeue(*fanout.node)) { resources[&node].second.insert(fanout.node); } } } else { if (IsEnqueue(*fanout.node)) { resources[&node].first.insert(fanout.node); } else if (IsDequeue(*fanout.node)) { resources[&node].second.insert(fanout.node); } } } } if (!HasRegularInputs(node)) { primary_inputs.insert(&node); } else if (IsMerge(node)) { merge_nodes.insert(&node); } else if (IsNextIteration(node)) { ++num_loops; } if (fed_ports.find(node.name()) != fed_ports.end()) { fed_nodes.insert(&node); } } absl::flat_hash_map<const NodeDef*, const NodeDef*> resource_handles; std::vector<TopologicalDependency> extra_deps; for (const auto& resource : resources) { for (const NodeDef* src : resource.second.first) { resource_handles[src] = resource.first; for (const NodeDef* dst : resource.second.second) { extra_deps.emplace_back(src, dst); } } } std::vector<const NodeDef*> topo_order; Status s = ComputeTopologicalOrder(item_.graph, extra_deps, &topo_order); if (!s.ok()) { if (extra_deps.empty()) { return s; } else { TF_RETURN_IF_ERROR(ComputeTopologicalOrder(item_.graph, &topo_order)); } } auto refiner = std::make_unique<SymbolicShapeRefiner>( graph_view, fed_ports, aggressive_shape_inference); TopoQueue new_shapes(topo_order); for (const NodeDef* node : primary_inputs) { new_shapes.push(node); } for (const NodeDef* node : fed_nodes) { new_shapes.push(node); } TF_RETURN_IF_ERROR( PropagateShapes(refiner.get(), &new_shapes, resource_handles, num_loops)); std::unique_ptr<SymbolicShapeManager> shape_manager = std::make_unique<SymbolicShapeManager>(); bool found_error = false; for (const NodeDef& node : item_.graph.node()) { auto node_ctx = refiner->GetContext(&node); if (!node_ctx) { continue; } if (fed_ports.find(node.name()) != fed_ports.end()) { VLOG(2) << "Skipping feed node shape: " << node.name(); continue; } for (const auto& merged_shapes : node_ctx->MergedShapes()) { if (!shape_manager->Merge(merged_shapes.first, merged_shapes.second) .ok()) { found_error = true; break; } } for (const auto& merged_dims : node_ctx->MergedDims()) { if (!shape_manager->Merge(merged_dims.first, merged_dims.second).ok()) { found_error = true; break; } } if (found_error) { shape_manager = std::make_unique<SymbolicShapeManager>(); break; } } TF_RETURN_IF_ERROR(ValidateSymbolicShapeManager(item_.graph, refiner.get(), shape_manager.get())); for (const NodeDef& node : item_.graph.node()) { VLOG(4) << "Filling in graph properties for node: " << node.name(); auto ctx = refiner->GetNodeContext(&node); if (!ctx) { continue; } auto* ic = ctx->inference_context.get(); { auto& input_properties = input_properties_[node.name()]; CHECK_EQ(input_properties.size(), 0); input_properties.resize(ic->num_inputs()); GraphView::InputPort input(&node, -1); for (int i = 0; i < ic->num_inputs(); ++i) { shape_manager->AsTensorProperties(ic->input(i), ctx->input_types[i], &input_properties[i]); input.port_id = i; GraphView::OutputPort fanin = graph_view.GetRegularFanin(input); if (include_input_tensor_values) { if (IsConstant(*fanin.node)) { const TensorProto& raw_val = fanin.node->attr().at("value").tensor(); *input_properties[i].mutable_value() = raw_val; } else if (static_cast<int>(ctx->input_tensor_protos.size()) > i && ctx->input_tensor_protos[i] != nullptr) { *input_properties[i].mutable_value() = *ctx->input_tensor_protos[i]; } else if (static_cast<int>(ic->input_tensors_as_shapes().size()) > i && IsShapeFullyDefinedIntegerVectorOrScalar( ic, ic->input(i), ic->input_tensors_as_shapes()[i], ctx->input_types[i])) { *input_properties[i].mutable_value() = MakeTensorProtoFromShape( ic, ic->input(i), ic->input_tensors_as_shapes()[i], ctx->input_types[i]); } } } } { auto& output_properties = output_properties_[node.name()]; CHECK_EQ(output_properties.size(), 0); output_properties.resize(ic->num_outputs()); for (int i = 0; i < ic->num_outputs(); ++i) { shape_manager->AsTensorProperties(ic->output(i), ctx->output_types[i], &output_properties[i]); auto converted_output_tensors_as_shapes = ReplaceUnknownDimFromConstWithUnknownDim( ic, ctx->output_tensors_as_shapes); if (include_output_tensor_values) { if (IsConstant(node)) { const TensorProto& raw_val = node.attr().at("value").tensor(); *output_properties[i].mutable_value() = raw_val; } else if (static_cast<int>(ctx->output_tensor_protos.size()) > i && ctx->output_tensor_protos[i] != nullptr) { *output_properties[i].mutable_value() = *ctx->output_tensor_protos[i]; } else if (static_cast<int>( converted_output_tensors_as_shapes.size()) > i && IsShapeFullyDefinedIntegerVectorOrScalar( ic, ic->output(i), converted_output_tensors_as_shapes[i], ctx->output_types[i])) { *output_properties[i].mutable_value() = MakeTensorProtoFromShape( ic, ic->output(i), converted_output_tensors_as_shapes[i], ctx->output_types[i]); } } } } if (aggressive_shape_inference && ctx->shape_incompatible) incompatible_shape_nodes_.insert(node.name()); } if (aggressive_shape_inference && !incompatible_shape_nodes_.empty()) LOG(WARNING) << incompatible_shape_nodes_.size() << " nodes have incompatible output shapes."; VerboseLogUnknownDimensionSources(item_.graph, input_properties_, output_properties_); TF_RETURN_IF_ERROR(VerboseShapeInferenceLogging(item_.graph, refiner.get(), shape_manager.get())); return absl::OkStatus(); } Status GraphProperties::InferDynamically(Cluster* cluster) { TF_RETURN_IF_ERROR(cluster->Initialize(item_)); RunMetadata metadata; TF_RETURN_IF_ERROR( cluster->Run(item_.graph, item_.feed, item_.fetch, &metadata)); return InferFromCostGraph(metadata.cost_graph()); } Status GraphProperties::AnnotateOutputShapes(GraphDef* output_graph_def) const { *output_graph_def = item_.graph; for (int i = 0; i < output_graph_def->node_size(); i++) { auto node = output_graph_def->mutable_node(i); AttrValue attr_output_shape; auto tensor_properties = GetOutputProperties(node->name()); for (const auto& tensor_property : tensor_properties) { TensorShapeProto* proto = attr_output_shape.mutable_list()->add_shape(); *proto = tensor_property.shape(); NormalizeShapeForOutput(proto); } (*node->mutable_attr())["_output_shapes"] = std::move(attr_output_shape); } return absl::OkStatus(); } Status GraphProperties::InferFromCostGraph(const CostGraphDef& cost_graph) { if (cost_graph.node_size() == 0) { LOG(WARNING) << "cost_graph is empty: nothing can be inferred!"; } std::unordered_map<string, const CostGraphDef::Node*> name_to_cost; std::unordered_map<string, const NodeDef*> name_to_node; for (auto& node : cost_graph.node()) { name_to_cost[node.name()] = &node; std::vector<OpInfo::TensorProperties> output_properties; for (const auto& out : node.output_info()) { OpInfo::TensorProperties properties; properties.set_dtype(out.dtype()); *properties.mutable_shape() = out.shape(); output_properties.push_back(properties); } output_properties_[node.name()] = output_properties; } for (const auto& node : item_.graph.node()) { auto it = name_to_cost.find(node.name()); if (it == name_to_cost.end()) { continue; } std::vector<OpInfo::TensorProperties> inputs = FindInputFeatures(node, name_to_cost, name_to_node); input_properties_[node.name()] = inputs; } return absl::OkStatus(); } bool GraphProperties::HasInputProperties(const string& node_name) const { return input_properties_.find(node_name) != input_properties_.end(); } bool GraphProperties::HasOutputProperties(const string& node_name) const { return output_properties_.find(node_name) != output_properties_.end(); } const std::vector<OpInfo::TensorProperties>& GraphProperties::GetInputProperties(const string& node_name) const { auto it = input_properties_.find(node_name); if (it != input_properties_.end()) { return it->second; } return missing_properties_; } const std::vector<OpInfo::TensorProperties>& GraphProperties::GetOutputProperties(const string& node_name) const { auto it = output_properties_.find(node_name); if (it != output_properties_.end()) { return it->second; } return missing_properties_; } void GraphProperties::ClearInputProperties(const string& node_name) { input_properties_.erase(node_name); } void GraphProperties::ClearOutputProperties(const string& node_name) { output_properties_.erase(node_name); } } }
#include "tensorflow/core/grappler/costs/graph_properties.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/grappler/clusters/single_machine.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/grappler/inputs/utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #ifdef INTEL_MKL #include "tensorflow/core/graph/mkl_graph_util.h" #endif namespace tensorflow { namespace grappler { namespace { using shape_inference::InferenceContext; using shape_inference::ShapeAndType; using shape_inference::ShapeHandle; const char kTestDataPath[] = "core/grappler/costs/graph_properties_testdata"; REGISTER_OP("TestOpWithNoInferenceFn") .Input("x: float") .Output("y: float") .Doc(R"doc( Test op with no Inference Function registered. x: input y: output )doc"); class GraphPropertiesTest : public ::testing::Test { public: void SetUp() override { cluster_.reset(new SingleMachine(5 * 60, 3, 0)); TF_ASSERT_OK(cluster_->Provision()); auto f = FunctionDefHelper::Create( "MyFillFunc", {"shape: int32", "value: float"}, {"out: float"}, {}, { {{"a"}, "Fill", {"shape", "value"}, {{"T", DataType::DT_FLOAT}, {"index_type", DataType::DT_INT32}}}, }, {{"out", "a:output:0"}}); function_lib_.add_function()->Swap(&f); } void TearDown() override { TF_ASSERT_OK(cluster_->Shutdown()); cluster_.reset(); } protected: string PropToString(const OpInfo::TensorProperties& p) { string s = strings::StrCat(DataTypeString(p.dtype()), ": "); if (p.shape().unknown_rank()) { strings::StrAppend(&s, "?"); } else { strings::StrAppend(&s, "["); for (int i = 0; i < p.shape().dim_size(); ++i) { strings::StrAppend(&s, i == 0 ? "" : ",", std::max<int64_t>(p.shape().dim(i).size(), -1)); } strings::StrAppend(&s, "]"); } return s; } void ExpectTensorValues(const std::vector<int64_t>& expected, const TensorProto& tensor_proto_to_compare) { Tensor tensor; ASSERT_TRUE(tensor.FromProto(tensor_proto_to_compare)); EXPECT_EQ(expected.size(), tensor.NumElements()); ASSERT_TRUE(tensor.dtype() == DT_INT32 || tensor.dtype() == DT_INT64); if (tensor.dtype() == DT_INT32) { for (int i = 0; i < tensor.NumElements(); i++) { EXPECT_EQ(expected[i], tensor.flat<int32>()(i)); } } else { for (int i = 0; i < tensor.NumElements(); i++) { EXPECT_EQ(expected[i], tensor.flat<int64_t>()(i)); } } } void ExpectFloatTensorValues(const std::vector<float>& expected, const TensorProto& tensor_proto_to_compare) { Tensor tensor; ASSERT_TRUE(tensor.FromProto(tensor_proto_to_compare)); EXPECT_EQ(expected.size(), tensor.NumElements()); ASSERT_EQ(tensor.dtype(), DT_FLOAT); for (int i = 0; i < tensor.NumElements(); i++) { EXPECT_EQ(expected[i], tensor.flat<float>()(i)); } } std::unique_ptr<SingleMachine> cluster_; FunctionDefLibrary function_lib_; }; TEST_F(GraphPropertiesTest, StaticProperties) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster_->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); GraphProperties properties(item); Status s = properties.InferStatically(true); TF_ASSERT_OK(s); for (const auto& node : item.graph.node()) { if (node.op() == "RandomStandardNormal") { EXPECT_EQ(1, properties.GetInputProperties(node.name()).size()); const auto props = properties.GetOutputProperties(node.name()); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_FALSE(prop.shape().unknown_rank()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ(10, prop.shape().dim(0).size()); EXPECT_EQ(1, prop.shape().dim(1).size()); } else if (node.op() == "AddN") { const auto in_props = properties.GetInputProperties(node.name()); EXPECT_EQ(1, in_props.size()); const OpInfo::TensorProperties& in_prop = in_props[0]; EXPECT_EQ(DT_FLOAT, in_prop.dtype()); EXPECT_FALSE(in_prop.shape().unknown_rank()); EXPECT_EQ(2, in_prop.shape().dim_size()); EXPECT_EQ(10, in_prop.shape().dim(0).size()); EXPECT_EQ(1, in_prop.shape().dim(1).size()); const auto out_props = properties.GetOutputProperties(node.name()); EXPECT_EQ(1, out_props.size()); EXPECT_EQ(in_prop.dtype(), out_props[0].dtype()); EXPECT_EQ(in_prop.shape().DebugString(), out_props[0].shape().DebugString()); } } } TEST_F(GraphPropertiesTest, ClearProperties) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster_->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); GraphProperties properties(item); Status s = properties.InferStatically(true); TF_ASSERT_OK(s); for (const auto& node : item.graph.node()) { if (node.op() == "RandomStandardNormal") { EXPECT_EQ(1, properties.GetInputProperties(node.name()).size()); const auto props = properties.GetOutputProperties(node.name()); properties.ClearOutputProperties(node.name()); const auto cleared_props = properties.GetOutputProperties(node.name()); EXPECT_TRUE(cleared_props.empty()); } else if (node.op() == "AddN") { const auto in_props = properties.GetInputProperties(node.name()); EXPECT_EQ(1, in_props.size()); properties.ClearInputProperties(node.name()); const auto cleared_props = properties.GetInputProperties(node.name()); EXPECT_TRUE(cleared_props.empty()); } } } TEST_F(GraphPropertiesTest, Clear) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster_->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); GraphProperties properties(item); Status s = properties.InferStatically(true); TF_ASSERT_OK(s); EXPECT_TRUE(properties.has_properties()); properties.Clear(); EXPECT_FALSE(properties.has_properties()); } TEST_F(GraphPropertiesTest, DynamicProperties) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster_->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); GraphProperties properties(item); TF_ASSERT_OK(cluster_->Initialize(item)); Status s = properties.InferDynamically(cluster_.get()); TF_ASSERT_OK(s); for (const auto& node : item.graph.node()) { if (node.op() == "RandomStandardNormal") { EXPECT_EQ(0, properties.GetInputProperties(node.name()).size()); } else if (node.op() == "AddN") { if (node.name() == "AddN") { const auto props = properties.GetInputProperties(node.name()); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_INVALID, prop.dtype()); EXPECT_TRUE(prop.shape().unknown_rank()); } else { const auto props = properties.GetInputProperties(node.name()); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_FALSE(prop.shape().unknown_rank()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ(10, prop.shape().dim(0).size()); EXPECT_EQ(1, prop.shape().dim(1).size()); const auto out_props = properties.GetOutputProperties(node.name()); EXPECT_EQ(1, out_props.size()); string prop_str; ::tensorflow::protobuf::TextFormat::PrintToString(prop, &prop_str); string out_prop_str; ::tensorflow::protobuf::TextFormat::PrintToString(out_props[0], &out_prop_str); EXPECT_EQ(prop_str, out_prop_str); } } } } REGISTER_OP("DetectInputValueInShapeInferenceOp") .Input("a: T") .Output("o: T") .Attr("T: {numbertype, bool}") .SetShapeFn([](shape_inference::InferenceContext* c) { if (c->input_tensor(0)) { c->set_output(0, c->Matrix(10, 10)); return absl::OkStatus(); } return shape_inference::UnknownShape(c); }); class ConstTensorSkipTestCase { public: ConstTensorSkipTestCase(const DataType data_type, const std::vector<int64_t> shape, const double value, const bool expected) : data_type_(data_type), shape_(shape), value_(value), expected_(expected) {} void RunTestAndValidate() const { LOG(INFO) << "Run Const tensor skip test: " << "data_type: " << data_type_ << ", shape: {" << absl::StrJoin(shape_, ",") << "}, value: " << value_ << ", expected: " << expected_; GrapplerItem item; const absl::Span<const int64_t> shape_array_slice(shape_); Tensor const_tensor_value(data_type_, TensorShape(shape_array_slice)); switch (data_type_) { case DT_INT32: test::FillIota<int32>(&const_tensor_value, static_cast<int32>(value_)); break; case DT_INT64: test::FillIota<int64_t>(&const_tensor_value, static_cast<int64_t>(value_)); break; case DT_FLOAT: test::FillIota<float>(&const_tensor_value, static_cast<float>(value_)); break; case DT_DOUBLE: test::FillIota<double>(&const_tensor_value, static_cast<double>(value_)); break; case DT_BFLOAT16: test::FillIota<Eigen::bfloat16>(&const_tensor_value, static_cast<Eigen::bfloat16>(value_)); break; default: CHECK(false) << "Unsupported data type (" << data_type_ << ") in this test."; break; } TF_ASSERT_OK(NodeDefBuilder("const", "Const") .Attr("dtype", data_type_) .Attr("value", const_tensor_value) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("const_identity", "Identity") .Attr("dtype", data_type_) .Input("const", 0, data_type_) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("detect", "DetectInputValueInShapeInferenceOp") .Attr("T", data_type_) .Input("const_identity", 0, data_type_) .Finalize(item.graph.add_node())); item.fetch.push_back("const"); item.fetch.push_back("const_identity"); item.fetch.push_back("detect"); GraphProperties graph_properties(item); TF_ASSERT_OK(graph_properties.InferStatically(false)); const auto& const_output = graph_properties.GetOutputProperties("const"); EXPECT_EQ(1, const_output.size()); const OpInfo::TensorProperties& const_output0 = const_output[0]; const auto& const_identity_input = graph_properties.GetInputProperties("const_identity"); EXPECT_EQ(1, const_identity_input.size()); const OpInfo::TensorProperties& const_identity_input0 = const_identity_input[0]; const auto& const_identity_output = graph_properties.GetOutputProperties("const_identity"); EXPECT_EQ(1, const_identity_output.size()); const OpInfo::TensorProperties& const_identity_output0 = const_identity_output[0]; EXPECT_TRUE(const_output0.has_value()); EXPECT_TRUE(const_identity_input0.has_value()); EXPECT_TRUE(const_identity_output0.has_value()); const auto& detect_input = graph_properties.GetInputProperties("detect"); EXPECT_EQ(1, detect_input.size()); const OpInfo::TensorProperties& detect_input0 = detect_input[0]; const auto& detect_output = graph_properties.GetOutputProperties("detect"); EXPECT_EQ(1, detect_output.size()); const OpInfo::TensorProperties& detect_output0 = detect_output[0]; EXPECT_TRUE(const_output0.has_value()); EXPECT_TRUE(const_identity_input0.has_value()); EXPECT_TRUE(const_identity_output0.has_value()); EXPECT_TRUE(detect_input0.has_value()); if (expected_) { EXPECT_EQ(detect_output0.shape().dim_size(), 2); EXPECT_EQ(detect_output0.shape().dim(0).size(), 10); EXPECT_EQ(detect_output0.shape().dim(1).size(), 10); } else { EXPECT_TRUE(detect_output0.shape().unknown_rank()); } } private: DataType data_type_; std::vector<int64_t> shape_; double value_; bool expected_; }; TEST_F(GraphPropertiesTest, SkipInstantiatingConstTensor) { std::vector<ConstTensorSkipTestCase> test_cases = { {DT_INT32, {16, 8}, 1, true}, {DT_INT32, {1, 129}, 2, false}, {DT_INT64, {8, 8}, 3, true}, {DT_INT64, {128, 2}, 0, false}, {DT_FLOAT, {16, 8}, 1.0, true}, {DT_FLOAT, {16, 8}, 1.3, true}, {DT_FLOAT, {1, 129}, 0.7, false}, {DT_DOUBLE, {16, 8}, 1.0, true}, {DT_DOUBLE, {16, 8}, 1.3, true}, {DT_DOUBLE, {1, 129}, 0.7, false}, {DT_BFLOAT16, {16, 8}, 1.0, true}, {DT_BFLOAT16, {16, 8}, 1.3, true}, {DT_BFLOAT16, {1, 129}, 0.7, false}, }; for (const auto& test_case : test_cases) { test_case.RunTestAndValidate(); } } TEST_F(GraphPropertiesTest, Variables) { GrapplerItem item; TF_ASSERT_OK(NodeDefBuilder("Var", "Variable") .Attr("dtype", DT_FLOAT) .Attr("shape", TensorShape({3, 7})) .Finalize(item.graph.add_node())); item.fetch.push_back("Var"); Tensor initial_val(DT_FLOAT, TensorShape({3, 7})); test::FillIota<float>(&initial_val, 0); TF_ASSERT_OK(NodeDefBuilder("InitialVal", "Const") .Attr("dtype", DT_FLOAT) .Attr("value", initial_val) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("InitVar", "Assign") .Input("Var", 0, DT_FLOAT_REF) .Input("InitialVal", 0, DT_FLOAT) .Finalize(item.graph.add_node())); item.init_ops.push_back("InitVar"); { GraphProperties static_properties(item); TF_ASSERT_OK(static_properties.InferStatically(false)); const auto props = static_properties.GetOutputProperties("Var"); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT_REF, prop.dtype()); EXPECT_FALSE(prop.shape().unknown_rank()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ(3, prop.shape().dim(0).size()); EXPECT_EQ(7, prop.shape().dim(1).size()); } { TF_ASSERT_OK(cluster_->Initialize(item)); GraphProperties dynamic_properties(item); TF_ASSERT_OK(dynamic_properties.InferDynamically(cluster_.get())); const auto props = dynamic_properties.GetOutputProperties("Var"); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT_REF, prop.dtype()); EXPECT_FALSE(prop.shape().unknown_rank()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ(3, prop.shape().dim(0).size()); EXPECT_EQ(7, prop.shape().dim(1).size()); } } TEST_F(GraphPropertiesTest, ReadVariableOpAfterEnter) { GrapplerItem item; TF_ASSERT_OK(NodeDefBuilder("Var", "VarHandleOp") .Attr("dtype", DT_FLOAT) .Attr("shape", TensorShape({3, 7})) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("Enter", "Enter") .Attr("T", DT_RESOURCE) .Attr("frame_name", "while_context") .Attr("is_constant", true) .Attr("parallel_iterations", 10) .Input("Var", 0, DT_RESOURCE) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("ReadVariableOpAfterEnter", "ReadVariableOp") .Attr("dtype", DT_FLOAT) .Input("Enter", 0, DT_RESOURCE) .Finalize(item.graph.add_node())); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto props = properties.GetOutputProperties("ReadVariableOpAfterEnter"); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_FALSE(prop.shape().unknown_rank()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ(3, prop.shape().dim(0).size()); EXPECT_EQ(7, prop.shape().dim(1).size()); } TEST_F(GraphPropertiesTest, VarHandles) { GrapplerItem item; TF_ASSERT_OK(NodeDefBuilder("Var", "VarHandleOp") .Attr("dtype", DT_FLOAT) .Attr("shape", TensorShape({3, 7})) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("VarRead", "ReadVariableOp") .Attr("dtype", DT_FLOAT) .Input("Var", 0, DT_RESOURCE) .Finalize(item.graph.add_node())); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto props = properties.GetOutputProperties("VarRead"); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_FALSE(prop.shape().unknown_rank()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ(3, prop.shape().dim(0).size()); EXPECT_EQ(7, prop.shape().dim(1).size()); } TEST_F(GraphPropertiesTest, WhileLoopWithVarHandleOpInput) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "while_loop_var_handle_op.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); std::vector<string> resource_nodes{ "loop_var", "while/Enter", "while/Merge", "while/Switch", "while/Identity", "while/NextIteration", "while/Exit"}; for (const string& node : resource_nodes) { const auto props = properties.GetOutputProperties(node); EXPECT_GE(props.size(), 1); EXPECT_EQ("resource: []", PropToString(props[0])); } const auto props = properties.GetOutputProperties("while/ReadVariableOp"); EXPECT_EQ(1, props.size()); EXPECT_EQ("int32: []", PropToString(props[0])); } TEST_F(GraphPropertiesTest, QueueWithOnlyDequeue_NoShapeAttr) { tensorflow::Scope root = tensorflow::Scope::NewRootScope(); auto q1 = ops::FIFOQueue(root.WithOpName("Queue1"), {DataType::DT_FLOAT}); auto dequeue1 = ops::QueueDequeue(root.WithOpName("Dequeue1"), q1, {DataType::DT_FLOAT}); GrapplerItem item; TF_ASSERT_OK(root.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto props1 = properties.GetOutputProperties("Dequeue1"); ASSERT_EQ(1, props1.size()); EXPECT_EQ("float: ?", PropToString(props1[0])); } TEST_F(GraphPropertiesTest, QueueWithOnlyDequeue_ShapeAttr) { tensorflow::Scope root = tensorflow::Scope::NewRootScope(); auto q1 = ops::FIFOQueue(root.WithOpName("Queue1"), {DataType::DT_FLOAT}, ops::FIFOQueue::Attrs().Shapes({{3, 7, 1}})); auto dequeue1 = ops::QueueDequeue(root.WithOpName("Dequeue1"), q1, {DataType::DT_FLOAT}); GrapplerItem item; TF_ASSERT_OK(root.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto props1 = properties.GetOutputProperties("Dequeue1"); ASSERT_EQ(1, props1.size()); EXPECT_EQ("float: [3,7,1]", PropToString(props1[0])); } TEST_F(GraphPropertiesTest, QueueWithOnlyDequeue_PartialShapeAttr) { tensorflow::Scope root = tensorflow::Scope::NewRootScope(); auto q1 = ops::FIFOQueue(root.WithOpName("Queue1"), {DataType::DT_FLOAT}, ops::FIFOQueue::Attrs().Shapes({{3, 7, -1}})); auto dequeue1 = ops::QueueDequeue(root.WithOpName("Dequeue1"), q1, {DataType::DT_FLOAT}); GrapplerItem item; TF_ASSERT_OK(root.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto props1 = properties.GetOutputProperties("Dequeue1"); ASSERT_EQ(1, props1.size()); EXPECT_EQ("float: [3,7,-1]", PropToString(props1[0])); } TEST_F(GraphPropertiesTest, Queues) { tensorflow::Scope root = tensorflow::Scope::NewRootScope(); auto q1 = ops::FIFOQueue(root.WithOpName("Queue1"), {DataType::DT_FLOAT}); Output rnd = ops::RandomNormal(root.WithOpName("rnd"), {3, 7}, DataType::DT_FLOAT); Output square1 = ops::Square(root.WithOpName("Square1"), rnd); auto enqueue1 = ops::QueueEnqueue(root.WithOpName("Enqueue1"), q1, {square1}); auto dequeue1 = ops::QueueDequeue(root.WithOpName("Dequeue1"), q1, {DataType::DT_FLOAT}); auto q2 = ops::RandomShuffleQueue(root.WithOpName("Queue2"), {DataType::DT_FLOAT}); Output square2 = ops::Square(root.WithOpName("Square2"), dequeue1[0]); auto enqueue2 = ops::QueueEnqueue(root.WithOpName("Enqueue2"), q2, {square2}); auto dequeue2 = ops::QueueDequeue(root.WithOpName("Dequeue2"), q2, {DataType::DT_FLOAT}); auto q4 = ops::RandomShuffleQueue(root.WithOpName("Queue4"), {DataType::DT_FLOAT}); auto enqueue4 = ops::QueueEnqueue(root.WithOpName("Enqueue4"), q4, {square2}); auto enqueue4_2 = ops::QueueEnqueue(root.WithOpName("Enqueue4_2"), q4, {dequeue2[0]}); auto dequeue4 = ops::QueueDequeue(root.WithOpName("Dequeue4"), q4, {DataType::DT_FLOAT}); auto q5 = ops::RandomShuffleQueue( root.WithOpName("Queue5"), {DataType::DT_FLOAT, DataType::DT_DOUBLE, DataType::DT_FLOAT}); Output rnd2 = ops::RandomNormal(root.WithOpName("rnd2"), {10}, DataType::DT_DOUBLE); Output rnd3 = ops::RandomNormal(root.WithOpName("rnd3"), {1, 2, 3}, DataType::DT_FLOAT); auto enqueue5 = ops::QueueEnqueue(root.WithOpName("Enqueue5"), q5, {rnd, rnd2, rnd3}); auto dequeue5 = ops::QueueDequeue( root.WithOpName("Dequeue5"), q5, {DataType::DT_FLOAT, DataType::DT_DOUBLE, DataType::DT_FLOAT}); GrapplerItem item; TF_ASSERT_OK(root.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto props1 = properties.GetOutputProperties("Dequeue1"); ASSERT_EQ(1, props1.size()); EXPECT_EQ("float: [3,7]", PropToString(props1[0])); const auto props2 = properties.GetOutputProperties("Dequeue2"); ASSERT_EQ(1, props2.size()); EXPECT_EQ("float: [3,7]", PropToString(props2[0])); const auto props4 = properties.GetOutputProperties("Dequeue4"); ASSERT_EQ(1, props4.size()); EXPECT_EQ("float: [3,7]", PropToString(props4[0])); const auto props5 = properties.GetOutputProperties("Dequeue5"); ASSERT_EQ(3, props5.size()); EXPECT_EQ("float: [3,7]", PropToString(props5[0])); EXPECT_EQ("double: [10]", PropToString(props5[1])); EXPECT_EQ("float: [1,2,3]", PropToString(props5[2])); } TEST_F(GraphPropertiesTest, MergeWithoutLoops) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "merge_without_loops.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); std::vector<string> nodes{"cond/Merge", "cond/concat", "cond/concat_1"}; std::vector<string> expected_outputs{"float: [-1,-1,1]", "float: [2,1,1]", "float: [1,2,1]"}; for (int i = 0; i < nodes.size(); i++) { const auto props = properties.GetOutputProperties(nodes[i]); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ(expected_outputs[i], PropToString(prop)); } const auto props = properties.GetInputProperties("Less"); EXPECT_EQ(2, props.size()); for (int i = 0; i < props.size(); ++i) { EXPECT_EQ(DT_INT32, props[i].dtype()); EXPECT_TRUE(props[i].has_value()); EXPECT_EQ("int32: []", PropToString(props[i])); } } TEST_F(GraphPropertiesTest, WhileLoop) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "while_loop.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); std::vector<string> nodes{"while/Merge_1", "while/NextIteration_1", "while/Exit_1"}; for (const string& node : nodes) { const auto props = properties.GetOutputProperties(node); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ("float: [-1,2]", PropToString(prop)); } auto shape_in = properties.GetOutputProperties("ones").at(0).shape(); auto shape_out = properties.GetOutputProperties("while/Exit_1").at(0).shape(); EXPECT_GE(-2, shape_in.dim(0).size()); EXPECT_GE(-2, shape_out.dim(0).size()); EXPECT_NE(shape_in.dim(0).size(), shape_out.dim(0).size()); } TEST_F(GraphPropertiesTest, NestedLoop) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "nested_loop.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); std::vector<string> outer_nodes{"while/Merge_1", "while/NextIteration_1", "while/Exit_1"}; std::vector<string> inner_nodes{"while/while/Merge_1", "while/while/NextIteration_1", "while/while/Exit_1"}; for (const string& node : outer_nodes) { const auto props = properties.GetOutputProperties(node); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ("float: [-1,1,1]", PropToString(prop)); } for (const string& node : inner_nodes) { const auto props = properties.GetOutputProperties(node); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ("float: [-1,1,-1]", PropToString(prop)); } } TEST_F(GraphPropertiesTest, LoopsAndQueues) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "loops_and_queues.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); std::vector<string> outer_nodes{"while/Merge_1", "while/NextIteration_1", "while/Exit_1"}; std::vector<string> inner_nodes{"while/while/Merge_1", "while/while/NextIteration_1", "while/while/Exit_1"}; for (const string& node : outer_nodes) { const auto props = properties.GetOutputProperties(node); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ("float: [1,1,-1]", PropToString(prop)); } for (const string& node : inner_nodes) { const auto props = properties.GetOutputProperties(node); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ("float: [-1,1,-1]", PropToString(prop)); } } TEST_F(GraphPropertiesTest, LoopsAndResourceVars) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "loops_and_resource_vars.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); std::vector<string> outer_nodes{"while/Merge_1", "while/NextIteration_1", "while/Exit_1"}; std::vector<string> inner_nodes{"while/while/Merge_1", "while/while/NextIteration_1", "while/while/Exit_1"}; for (const string& node : outer_nodes) { const auto props = properties.GetOutputProperties(node); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_INT32, prop.dtype()); EXPECT_EQ("int32: []", PropToString(prop)); } for (const string& node : inner_nodes) { const auto props = properties.GetOutputProperties(node); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_INT32, prop.dtype()); EXPECT_EQ("int32: []", PropToString(prop)); } } TEST_F(GraphPropertiesTest, QueuesAndLoops) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "queues_and_loops.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); std::vector<string> nodes{"while/Merge_1", "while/NextIteration_1", "while/Exit_1"}; for (const string& node : nodes) { const auto props = properties.GetOutputProperties(node); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ("float: [-1,2]", PropToString(prop)); } const auto props = properties.GetOutputProperties("concat"); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ("float: [-1,4]", PropToString(prop)); } TEST_F(GraphPropertiesTest, InferRestoreOpShape) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output var = ops::Variable(s.WithOpName("var"), TensorShape({128, 256}), DataType::DT_FLOAT); Output filename = ops::Const(s.WithOpName("filename"), string("model"), TensorShape()); Output tensor_name = ops::Const(s.WithOpName("tensorname"), string("a"), TensorShape()); Output restore = ops::Restore(s.WithOpName("restore"), filename, tensor_name, DataType::DT_FLOAT); Output init_restore = ops::Assign(s.WithOpName("init_restore"), var, restore); Output shape_and_slice = ops::Const(s.WithOpName("shape_and_slice"), string("256 256 0,128:-"), TensorShape()); Output restore_slice = ops::RestoreSlice(s.WithOpName("restore_slice"), filename, tensor_name, shape_and_slice, DataType::DT_FLOAT); Output init_restore_slice = ops::Assign(s.WithOpName("init_restore_slice"), var, restore_slice); Output restore_v2 = ops::RestoreSlice(s.WithOpName("restore_v2"), filename, tensor_name, shape_and_slice, DataType::DT_FLOAT); Output init_restore_v2 = ops::Assign(s.WithOpName("init_restore_v2"), var, restore_v2); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("init_restore"); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto restore_props = properties.GetOutputProperties("restore"); const OpInfo::TensorProperties& restore_prop = restore_props[0]; EXPECT_EQ(DT_FLOAT, restore_prop.dtype()); EXPECT_EQ("float: [128,256]", PropToString(restore_prop)); const auto restore_slice_props = properties.GetOutputProperties("restore_slice"); const OpInfo::TensorProperties& restore_slice_prop = restore_slice_props[0]; EXPECT_EQ(DT_FLOAT, restore_slice_prop.dtype()); EXPECT_EQ("float: [128,256]", PropToString(restore_slice_prop)); const auto restorev2_props = properties.GetOutputProperties("restore_v2"); const OpInfo::TensorProperties& restorev2_prop = restorev2_props[0]; EXPECT_EQ(DT_FLOAT, restorev2_prop.dtype()); EXPECT_EQ("float: [128,256]", PropToString(restorev2_prop)); const auto input_props = properties.GetInputProperties("init_restore"); ASSERT_EQ(2, input_props.size()); const OpInfo::TensorProperties& input_prop = input_props[1]; EXPECT_EQ(DT_FLOAT, input_prop.dtype()); EXPECT_EQ("float: [128,256]", PropToString(input_prop)); } TEST_F(GraphPropertiesTest, InferRestoreOpShape_WithTwoNodesShareSameOutput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output var = ops::Variable(s.WithOpName("var"), PartialTensorShape(), DataType::DT_FLOAT); Output var2 = ops::Variable(s.WithOpName("var2"), TensorShape({128, 256}), DataType::DT_FLOAT); Output filename = ops::Const(s.WithOpName("filename"), string("model"), TensorShape()); Output tensor_name = ops::Const(s.WithOpName("tensorname"), string("a"), TensorShape()); Output restore = ops::Restore(s.WithOpName("restore"), filename, tensor_name, DataType::DT_FLOAT); Output init = ops::Assign(s.WithOpName("init"), var, restore); Output init2 = ops::Assign(s.WithOpName("init2"), var2, restore); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); item.fetch.push_back("init"); item.fetch.push_back("init2"); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto props = properties.GetOutputProperties("restore"); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ("float: [128,256]", PropToString(prop)); } TEST_F(GraphPropertiesTest, TensorAsShapesPropagation) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), {5, 7}, {2}); Output a1 = ops::Identity(s.WithOpName("a1"), a); Output b = ops::Const(s.WithOpName("b"), 99, {}); Output b1 = ops::Identity(s.WithOpName("b1"), b); Output c = ops::Const(s.WithOpName("c"), 1, {4, 4, 4}); Output c1 = ops::Identity(s.WithOpName("c1"), c); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); EXPECT_EQ("int32: [2]", PropToString(properties.GetOutputProperties("a")[0])); EXPECT_EQ("int32: [2]", PropToString(properties.GetOutputProperties("a1")[0])); EXPECT_EQ("int32: []", PropToString(properties.GetOutputProperties("b")[0])); EXPECT_EQ("int32: []", PropToString(properties.GetOutputProperties("b1")[0])); EXPECT_EQ("int32: [4,4,4]", PropToString(properties.GetOutputProperties("c")[0])); EXPECT_EQ("int32: [4,4,4]", PropToString(properties.GetOutputProperties("c1")[0])); EXPECT_TRUE(properties.GetOutputProperties("a")[0].has_value()); EXPECT_TRUE(properties.GetInputProperties("a1")[0].has_value()); EXPECT_TRUE(properties.GetOutputProperties("a1")[0].has_value()); EXPECT_TRUE(properties.GetOutputProperties("b")[0].has_value()); EXPECT_TRUE(properties.GetInputProperties("b1")[0].has_value()); EXPECT_TRUE(properties.GetOutputProperties("b1")[0].has_value()); EXPECT_TRUE(properties.GetOutputProperties("c")[0].has_value()); EXPECT_TRUE(properties.GetInputProperties("c1")[0].has_value()); EXPECT_TRUE(properties.GetOutputProperties("c1")[0].has_value()); ExpectTensorValues({5, 7}, properties.GetOutputProperties("a")[0].value()); ExpectTensorValues({5, 7}, properties.GetInputProperties("a1")[0].value()); ExpectTensorValues({5, 7}, properties.GetOutputProperties("a1")[0].value()); ExpectTensorValues({99}, properties.GetOutputProperties("b")[0].value()); ExpectTensorValues({99}, properties.GetInputProperties("b1")[0].value()); ExpectTensorValues({99}, properties.GetOutputProperties("b1")[0].value()); std::vector<int64_t> c_values; for (int i = 0; i < 4 * 4 * 4; i++) { c_values.push_back(1); } ExpectTensorValues({c_values}, properties.GetOutputProperties("c")[0].value()); ExpectTensorValues({c_values}, properties.GetInputProperties("c1")[0].value()); ExpectTensorValues({c_values}, properties.GetOutputProperties("c1")[0].value()); } TEST_F(GraphPropertiesTest, IdentityPassingShape) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 5, {2}); Output b = ops::Identity(s.WithOpName("b"), a); Output c = ops::Const(s.WithOpName("const"), 0.1f, {}); Output d = ops::Fill(s.WithOpName("fill"), b, c); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("fill"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [5,5]", PropToString(out_prop0)); } TEST_F(GraphPropertiesTest, SkippingValueInferenceForLargeTensors) { { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 4, {2}); Output b = ops::Const(s.WithOpName("const"), 7, {}); Output c = ops::Fill(s.WithOpName("fill"), a, b); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, true, true)); const auto out_props = properties.GetOutputProperties("fill"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("int32: [4,4]", PropToString(out_prop0)); EXPECT_TRUE(out_prop0.has_value()); } { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1000, {4}); Output b = ops::Const(s.WithOpName("const"), 7, {}); Output c = ops::Fill(s.WithOpName("fill"), a, b); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, true, true)); const auto out_props = properties.GetOutputProperties("fill"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("int32: [1000,1000,1000,1000]", PropToString(out_prop0)); EXPECT_FALSE(out_prop0.has_value()); } } TEST_F(GraphPropertiesTest, PackWithConstInput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1, {}); Output b = ops::Const(s.WithOpName("b"), 2, {}); Output c = ops::Const(s.WithOpName("c"), 3, {}); Output d = ops::Const(s.WithOpName("d"), 4, {}); Output e = ops::Stack(s.WithOpName("pack"), {a, b, c, d}); Output f = ops::Const(s.WithOpName("const"), 0.1f, {}); Output g = ops::Fill(s.WithOpName("fill"), e, f); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("fill"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [1,2,3,4]", PropToString(out_prop0)); } TEST_F(GraphPropertiesTest, RankOp) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output c = ops::Const(s.WithOpName("Const"), 1, {4, 4, 4}); Output r = ops::Rank(s.WithOpName("Rank"), c); Output i = ops::Identity(s.WithOpName("Identity"), r); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto rank_props = properties.GetOutputProperties("Rank"); const OpInfo::TensorProperties rank_prop0 = rank_props[0]; EXPECT_EQ("int32: []", PropToString(rank_prop0)); EXPECT_TRUE(rank_prop0.has_value()); ExpectTensorValues({3}, rank_prop0.value()); const auto identity_props = properties.GetOutputProperties("Identity"); const OpInfo::TensorProperties identity_props0 = identity_props[0]; EXPECT_EQ("int32: []", PropToString(identity_props0)); EXPECT_TRUE(identity_props0.has_value()); ExpectTensorValues({3}, identity_props0.value()); } TEST_F(GraphPropertiesTest, SizeOp) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output c = ops::Const(s.WithOpName("Const"), 1, {1, 2, 3, 4}); Output r = ops::Size(s.WithOpName("Size"), c); Output i = ops::Identity(s.WithOpName("Identity"), r); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto size_props = properties.GetOutputProperties("Size"); const OpInfo::TensorProperties size_props0 = size_props[0]; EXPECT_EQ("int32: []", PropToString(size_props0)); EXPECT_TRUE(size_props0.has_value()); ExpectTensorValues({24}, size_props0.value()); const auto identity_props = properties.GetOutputProperties("Identity"); const OpInfo::TensorProperties identity_props0 = identity_props[0]; EXPECT_EQ("int32: []", PropToString(identity_props0)); EXPECT_TRUE(identity_props0.has_value()); ExpectTensorValues({24}, identity_props0.value()); } TEST_F(GraphPropertiesTest, PackWithConstMinus1AndReshapes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output shape0 = ops::Const(s.WithOpName("shape0"), 4, {}); Output shape1 = ops::Const(s.WithOpName("shape1"), -1, {}); Output pack = ops::Stack(s.WithOpName("pack"), {shape0, shape1}); Output x0_ = ops::Placeholder(s.WithOpName("x0_"), DataType::DT_FLOAT); Output x1_ = ops::Placeholder(s.WithOpName("x1_"), DataType::DT_FLOAT); Output x0 = ops::Reshape(s.WithOpName("x0"), x0_, pack); Output x1 = ops::Reshape(s.WithOpName("x1"), x1_, pack); Output s0 = ops::Const(s.WithOpName("s0"), true, {4, 16}); Output s1 = ops::Placeholder(s.WithOpName("s1"), DataType::DT_BOOL); Output y0 = ops::Placeholder(s.WithOpName("y0"), DataType::DT_FLOAT); Output y1 = ops::Placeholder(s.WithOpName("y1"), DataType::DT_FLOAT); Output z0 = ops::SelectV2(s.WithOpName("z0"), s0, x0, y0); Output z1 = ops::SelectV2(s.WithOpName("z1"), s1, x1, y1); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); for (int i = 0; i < item.graph.node_size(); ++i) { auto* node = item.graph.mutable_node(i); if (node->op() == "SelectV2") { node->set_op("Select"); } } GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); for (const auto& node_name : {"x0", "y0", "z0"}) { const auto out_props = properties.GetOutputProperties(node_name); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [4,16]", PropToString(out_prop0)); } { const auto out_props = properties.GetOutputProperties("s0"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("bool: [4,16]", PropToString(out_prop0)); } for (const auto& node_name : {"x1", "y1", "z1"}) { const auto out_props = properties.GetOutputProperties(node_name); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [4,-1]", PropToString(out_prop0)); } { const auto out_props = properties.GetOutputProperties("s1"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("bool: ?", PropToString(out_prop0)); } } TEST_F(GraphPropertiesTest, PackWithIdentityInput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a0 = ops::Const(s.WithOpName("a0"), 1, {}); Output b0 = ops::Const(s.WithOpName("b0"), 2, {}); Output c0 = ops::Const(s.WithOpName("c0"), 3, {}); Output d0 = ops::Const(s.WithOpName("d0"), 4, {}); Output a = ops::Identity(s.WithOpName("a"), a0); Output b = ops::Identity(s.WithOpName("b"), b0); Output c = ops::Identity(s.WithOpName("c"), c0); Output d = ops::Identity(s.WithOpName("d"), d0); Output e = ops::Stack(s.WithOpName("pack"), {a, b, c, d}); Output f = ops::Const(s.WithOpName("const"), 0.1f, {}); Output g = ops::Fill(s.WithOpName("fill"), e, f); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("fill"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [1,2,3,4]", PropToString(out_prop0)); } TEST_F(GraphPropertiesTest, FunctionWithDtResourceInput) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "function_with_dt_resource_input.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("FunctionWithDtResourceInput"); EXPECT_EQ(out_props.size(), 2); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [1,3]", PropToString(out_prop0)); const OpInfo::TensorProperties out_prop1 = out_props[1]; EXPECT_EQ("float: [1,3]", PropToString(out_prop1)); } { for (int i = 0; i < item.graph.node_size(); i++) { auto* node = item.graph.mutable_node(i); if (node->name() == "y") { node->mutable_attr()->erase("_handle_dtypes"); node->mutable_attr()->erase("_handle_shapes"); break; } } GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("FunctionWithDtResourceInput"); EXPECT_EQ(out_props.size(), 2); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: ?", PropToString(out_prop0)); const OpInfo::TensorProperties out_prop1 = out_props[1]; EXPECT_EQ("float: [1,3]", PropToString(out_prop1)); } } TEST_F(GraphPropertiesTest, FunctionWithConstInput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TF_ASSERT_OK(s.graph()->AddFunctionLibrary(function_lib_)); Output shape = ops::Const(s.WithOpName("shape"), {1, 2, 3, 4}); Output value = ops::Const(s.WithOpName("value"), 0.1f, {}); auto builder = tensorflow::NodeBuilder("MyFillFunc", "MyFillFunc", s.graph()->op_registry()); tensorflow::Node* func_op; auto _shape = tensorflow::ops::AsNodeOut(s, shape); auto _value = tensorflow::ops::AsNodeOut(s, value); TF_ASSERT_OK( builder.Input(_shape).Input(_value).Finalize(s.graph(), &func_op)); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("MyFillFunc"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [1,2,3,4]", PropToString(out_prop0)); } TEST_F(GraphPropertiesTest, FunctionWithIdentityOfConstInput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TF_ASSERT_OK(s.graph()->AddFunctionLibrary(function_lib_)); Output shape_ = ops::Const(s.WithOpName("shape_"), {1, 2, 3, 4}); Output shape = ops::Identity(s.WithOpName("shape"), shape_); Output value = ops::Const(s.WithOpName("value"), 0.1f, {}); auto builder = tensorflow::NodeBuilder("MyFillFunc", "MyFillFunc", s.graph()->op_registry()); tensorflow::Node* func_op; auto _shape = tensorflow::ops::AsNodeOut(s, shape); auto _value = tensorflow::ops::AsNodeOut(s, value); TF_ASSERT_OK( builder.Input(_shape).Input(_value).Finalize(s.graph(), &func_op)); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("MyFillFunc"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [1,2,3,4]", PropToString(out_prop0)); } TEST_F(GraphPropertiesTest, FunctionReturnTensorValue) { FunctionDefLibrary library; *library.add_function() = FunctionDefHelper::Create( "MyFunc", {"x: int32"}, {"out: int32"}, {}, {{{"a"}, "Identity", {"x"}, {{"T", DataType::DT_INT32}}}}, {{"out", "a:output:0"}}); tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TF_ASSERT_OK(s.graph()->AddFunctionLibrary(library)); Output shape = ops::Const(s.WithOpName("shape"), {5, 7}, {2}); auto _shape = tensorflow::ops::AsNodeOut(s, shape); auto builder = tensorflow::NodeBuilder("MyFunc", "MyFunc", s.graph()->op_registry()); tensorflow::Node* func_op; TF_ASSERT_OK(builder.Input(_shape).Finalize(s.graph(), &func_op)); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(true)); const auto out_props = properties.GetOutputProperties("MyFunc"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("int32: [2]", PropToString(out_prop0)); EXPECT_TRUE(out_prop0.has_value()); ExpectTensorValues({5, 7}, out_prop0.value()); ExpectTensorValues({5, 7}, properties.GetInputProperties("MyFunc")[0].value()); } TEST_F(GraphPropertiesTest, ArithmeticFunctionReturnTensorValue) { FunctionDefLibrary library; *library.add_function() = FunctionDefHelper::Create( "MyFunc", {"x: int32", "y: int32"}, {"out: int32"}, {}, {{{"a"}, "Add", {"x", "y"}, {{"T", DataType::DT_INT32}}}}, {{"out", "a:z:0"}}); tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TF_ASSERT_OK(s.graph()->AddFunctionLibrary(library)); Output shape = ops::Const(s.WithOpName("shape"), {5, 7}, {2}); auto _shape = tensorflow::ops::AsNodeOut(s, shape); auto builder = tensorflow::NodeBuilder("MyFunc", "MyFunc", s.graph()->op_registry()); tensorflow::Node* func_op; TF_ASSERT_OK( builder.Input(_shape).Input(_shape).Finalize(s.graph(), &func_op)); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( true, false, true)); const auto out_props = properties.GetOutputProperties("MyFunc"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("int32: [2]", PropToString(out_prop0)); EXPECT_FALSE(out_prop0.has_value()); } { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( true, true, true)); const auto out_props = properties.GetOutputProperties("MyFunc"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("int32: [2]", PropToString(out_prop0)); EXPECT_TRUE(out_prop0.has_value()); ExpectTensorValues({10, 14}, out_prop0.value()); ExpectTensorValues({5, 7}, properties.GetInputProperties("MyFunc")[0].value()); ExpectTensorValues({5, 7}, properties.GetInputProperties("MyFunc")[1].value()); } } TEST_F(GraphPropertiesTest, ArithmeticFunctionReturnTensorValueFloat) { FunctionDefLibrary library; *library.add_function() = FunctionDefHelper::Create( "MyFunc", {"x: float", "y: float"}, {"out: float"}, {}, {{{"a"}, "Add", {"x", "y"}, {{"T", DataType::DT_FLOAT}}}}, {{"out", "a:z:0"}}); tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TF_ASSERT_OK(s.graph()->AddFunctionLibrary(library)); Output x1 = ops::Const(s.WithOpName("x1"), {5.0f, 7.0f}, {2}); Output x2 = ops::Identity(s.WithOpName("x1"), x1); auto _x1 = tensorflow::ops::AsNodeOut(s, x1); auto _x2 = tensorflow::ops::AsNodeOut(s, x2); auto builder = tensorflow::NodeBuilder("MyFunc", "MyFunc", s.graph()->op_registry()); tensorflow::Node* func_op; TF_ASSERT_OK(builder.Input(_x1).Input(_x2).Finalize(s.graph(), &func_op)); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( true, false, true)); const auto out_props = properties.GetOutputProperties("MyFunc"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [2]", PropToString(out_prop0)); EXPECT_FALSE(out_prop0.has_value()); } { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( true, true, true)); const auto out_props = properties.GetOutputProperties("MyFunc"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [2]", PropToString(out_prop0)); EXPECT_TRUE(out_prop0.has_value()); ExpectFloatTensorValues({10.0, 14.0}, out_prop0.value()); ExpectFloatTensorValues({5.0, 7.0}, properties.GetInputProperties("MyFunc")[0].value()); ExpectFloatTensorValues({5.0, 7.0}, properties.GetInputProperties("MyFunc")[1].value()); } } TEST_F(GraphPropertiesTest, FunctionWithScalarInput) { FunctionDefLibrary library; *library.add_function() = FunctionDefHelper::Create( "MyFunc", {"x: float"}, {"out: float"}, {}, {{{"a"}, "Identity", {"x"}, {{"T", DataType::DT_FLOAT}}}}, {{"out", "a:output:0"}}); tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TF_ASSERT_OK(s.graph()->AddFunctionLibrary(library)); Output placeholder = ops::Placeholder(s.WithOpName("Placeholder"), DataType::DT_FLOAT, ops::Placeholder::Shape(TensorShape({}))); Output identity = ops::Identity(s.WithOpName("Identity"), placeholder); auto _identity = tensorflow::ops::AsNodeOut(s, identity); auto builder = tensorflow::NodeBuilder("MyFunc", "MyFunc", s.graph()->op_registry()); tensorflow::Node* func_op; TF_ASSERT_OK(builder.Input(_identity).Finalize(s.graph(), &func_op)); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); EXPECT_GT(item.graph.versions().producer(), 21); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(true)); const auto out_props = properties.GetOutputProperties("MyFunc"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ(DT_FLOAT, out_prop0.dtype()); EXPECT_FALSE(out_prop0.shape().unknown_rank()); } TEST_F(GraphPropertiesTest, SimpleFunctionStaticShapeInference) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "simple_function.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("MyAdd_55e046a8"); const OpInfo::TensorProperties& out_prop = out_props[0]; EXPECT_EQ(DT_FLOAT, out_prop.dtype()); EXPECT_FALSE(out_prop.shape().unknown_rank()); EXPECT_EQ(2, out_prop.shape().dim_size()); EXPECT_EQ(1, out_prop.shape().dim(0).size()); EXPECT_EQ(2, out_prop.shape().dim(1).size()); const auto in_props = properties.GetInputProperties("MyAdd_55e046a8"); EXPECT_EQ(2, in_props.size()); const OpInfo::TensorProperties& in_prop = in_props[0]; EXPECT_EQ("float: [1,2]", PropToString(in_prop)); const OpInfo::TensorProperties& in_prop1 = in_props[1]; EXPECT_EQ("float: [1,2]", PropToString(in_prop1)); } TEST_F(GraphPropertiesTest, LargeFunctionStaticShapeInference) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "large_function_graph.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("y0"); EXPECT_EQ(2, out_props.size()); const OpInfo::TensorProperties& out_prop0 = out_props[0]; EXPECT_EQ("float: [128,112,112,64]", PropToString(out_prop0)); const OpInfo::TensorProperties& out_prop1 = out_props[1]; EXPECT_EQ("float: [128,112,112,24]", PropToString(out_prop1)); const auto in_props = properties.GetInputProperties("y0"); EXPECT_EQ(4, in_props.size()); const OpInfo::TensorProperties& in_prop0 = in_props[0]; EXPECT_EQ("float: [64]", PropToString(in_prop0)); const OpInfo::TensorProperties& in_prop1 = in_props[1]; EXPECT_EQ("float: [1,1,24,64]", PropToString(in_prop1)); const OpInfo::TensorProperties& in_prop2 = in_props[2]; EXPECT_EQ("float: [128,224,224,3]", PropToString(in_prop2)); const OpInfo::TensorProperties& in_prop3 = in_props[3]; EXPECT_EQ("float: [7,7,3,8]", PropToString(in_prop3)); } TEST_F(GraphPropertiesTest, LargeFunctionWithMultipleOutputs) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "function_functional_while.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("MyFunc_AenMyWWx1Us"); EXPECT_EQ(2, out_props.size()); const OpInfo::TensorProperties& out_prop0 = out_props[0]; EXPECT_EQ(DT_INT32, out_prop0.dtype()); EXPECT_FALSE(out_prop0.shape().unknown_rank()); const OpInfo::TensorProperties& out_prop1 = out_props[1]; EXPECT_EQ(DT_FLOAT, out_prop1.dtype()); EXPECT_FALSE(out_prop1.shape().unknown_rank()); } TEST_F(GraphPropertiesTest, FunctionWithErrorStaticShapeInference) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "function_error.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("MyAdd_yabA4wXEdM4"); EXPECT_EQ(1, out_props.size()); const OpInfo::TensorProperties& out_prop = out_props[0]; EXPECT_EQ(DT_FLOAT, out_prop.dtype()); EXPECT_TRUE(out_prop.shape().unknown_rank()); const auto in_props = properties.GetInputProperties("MyAdd_yabA4wXEdM4"); EXPECT_EQ(2, in_props.size()); const OpInfo::TensorProperties& in_prop = in_props[0]; EXPECT_EQ("float: [1,2]", PropToString(in_prop)); const OpInfo::TensorProperties& in_prop1 = in_props[1]; EXPECT_EQ("float: [1,2]", PropToString(in_prop1)); } TEST_F(GraphPropertiesTest, FunctionSwitchStaticShapeInference) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "function_switch.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("MyAdd_MPaeanipb7o"); const OpInfo::TensorProperties& out_prop = out_props[0]; EXPECT_EQ(DT_FLOAT, out_prop.dtype()); EXPECT_EQ("float: [1,2]", PropToString(out_prop)); const auto in_props = properties.GetInputProperties("MyAdd_MPaeanipb7o"); EXPECT_EQ(2, in_props.size()); const OpInfo::TensorProperties& in_prop = in_props[0]; EXPECT_EQ("float: [1,2]", PropToString(in_prop)); const OpInfo::TensorProperties& in_prop1 = in_props[1]; EXPECT_EQ("float: [1,2]", PropToString(in_prop1)); } TEST_F(GraphPropertiesTest, FunctionSwitch2StaticShapeInference) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "function_switch_2.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("MyAdd_MPaeanipb7o"); const OpInfo::TensorProperties& out_prop = out_props[0]; EXPECT_EQ("float: [1,2]", PropToString(out_prop)); const auto in_props = properties.GetInputProperties("MyAdd_MPaeanipb7o"); EXPECT_EQ(2, in_props.size()); const OpInfo::TensorProperties& in_prop = in_props[0]; EXPECT_EQ("float: [1,2]", PropToString(in_prop)); const OpInfo::TensorProperties& in_prop1 = in_props[1]; EXPECT_EQ("float: [1,2]", PropToString(in_prop1)); } TEST_F(GraphPropertiesTest, FunctionSwitchShapesStaticShapeInference) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "function_switch_shapes.pbtxt"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto out_props = properties.GetOutputProperties("MyAdd_lEKAAnIwI5I"); const OpInfo::TensorProperties& out_prop = out_props[0]; EXPECT_EQ("float: [1,2]", PropToString(out_prop)); const auto in_props = properties.GetInputProperties("MyAdd_lEKAAnIwI5I"); EXPECT_EQ(2, in_props.size()); const OpInfo::TensorProperties& in_prop = in_props[0]; EXPECT_EQ("float: [1,2]", PropToString(in_prop)); const OpInfo::TensorProperties& in_prop1 = in_props[1]; EXPECT_EQ("float: [1,3]", PropToString(in_prop1)); } TEST_F(GraphPropertiesTest, SymbolicShapes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Placeholder(s.WithOpName("a"), DT_FLOAT, ops::Placeholder::Shape(PartialTensorShape({-1, -1}))); Output b = ops::Placeholder(s.WithOpName("b"), DT_FLOAT, ops::Placeholder::Shape(PartialTensorShape({-1}))); Output c = ops::Identity(s.WithOpName("c"), a); Output d = ops::Identity(s.WithOpName("d"), b); Output e = ops::Add(s.WithOpName("e"), c, d); Output f = ops::Add(s.WithOpName("f"), a, c); Output zero = ops::Const(s.WithOpName("zero"), 0.0f, {}); Output g = ops::Shape(s.WithOpName("g"), c); Output h = ops::Fill(s.WithOpName("h"), g, zero); Output zero_idx = ops::Const(s.WithOpName("zero_idx"), {0}, {1}); Output j = ops::Sum(s.WithOpName("j"), a, zero_idx); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto shape_a = properties.GetOutputProperties("a").at(0).shape(); const auto shape_c = properties.GetOutputProperties("c").at(0).shape(); EXPECT_EQ(2, shape_a.dim_size()); EXPECT_EQ(shape_a.dim_size(), shape_c.dim_size()); EXPECT_GE(-2, shape_a.dim(0).size()); EXPECT_EQ(shape_a.dim(0).size(), shape_c.dim(0).size()); EXPECT_GE(-2, shape_a.dim(1).size()); EXPECT_EQ(shape_a.dim(1).size(), shape_c.dim(1).size()); PartialTensorShape shape(shape_a); EXPECT_FALSE(shape.IsFullyDefined()); EXPECT_FALSE(shape.unknown_rank()); const auto shape_b = properties.GetOutputProperties("b").at(0).shape(); const auto shape_d = properties.GetOutputProperties("d").at(0).shape(); EXPECT_EQ(1, shape_b.dim_size()); EXPECT_EQ(shape_b.dim_size(), shape_d.dim_size()); EXPECT_GE(-2, shape_b.dim(0).size()); EXPECT_NE(shape_a.dim(0).size(), shape_b.dim(0).size()); EXPECT_EQ(shape_b.dim(0).size(), shape_d.dim(0).size()); const auto shape_e = properties.GetOutputProperties("e").at(0).shape(); ASSERT_EQ(2, shape_e.dim_size()); EXPECT_EQ(shape_e.dim(0).size(), shape_c.dim(0).size()); EXPECT_NE(shape_e.dim(1).size(), shape_c.dim(1).size()); EXPECT_NE(shape_e.dim(0).size(), shape_d.dim(0).size()); const auto shape_f = properties.GetOutputProperties("f").at(0).shape(); ASSERT_EQ(2, shape_f.dim_size()); EXPECT_EQ(shape_f.dim(0).size(), shape_a.dim(0).size()); EXPECT_EQ(shape_f.dim(1).size(), shape_a.dim(1).size()); const auto shape_h = properties.GetOutputProperties("h").at(0).shape(); ASSERT_EQ(2, shape_f.dim_size()); EXPECT_EQ(shape_h.dim(0).size(), shape_c.dim(0).size()); EXPECT_EQ(shape_h.dim(1).size(), shape_c.dim(1).size()); const auto shape_j = properties.GetOutputProperties("j").at(0).shape(); ASSERT_EQ(1, shape_j.dim_size()); EXPECT_EQ(shape_j.dim(0).size(), shape_a.dim(1).size()); } TEST_F(GraphPropertiesTest, DoNotValidateColocationConstraints) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 1.0f, {1}); Output b = ops::Const(s.WithOpName("b"), 2.0f, {1}); Output c = ops::Const(s.WithOpName("c").ColocateWith(a), 3.0f, {1}); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphDef optimized_graph; for (const auto& node : item.graph.node()) { if (node.name() != "a") { *optimized_graph.add_node() = node; } } item.graph.Swap(&optimized_graph); GraphProperties properties(item); TF_EXPECT_OK(properties.InferStatically(false)); } TEST_F(GraphPropertiesTest, ShapeTracking) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Placeholder(s.WithOpName("a"), DT_FLOAT, ops::Placeholder::Shape(PartialTensorShape({-1, -1}))); Output b = ops::Placeholder(s.WithOpName("b"), DT_FLOAT, ops::Placeholder::Shape(PartialTensorShape({-1}))); Output zero = ops::Const(s.WithOpName("zero"), 0.0f, {}); auto shp = ops::ShapeN(s.WithOpName("shapes"), {a, b}); Output o1 = ops::Fill(s.WithOpName("o1"), shp[0], zero); Output o2 = ops::Fill(s.WithOpName("o2"), shp[1], zero); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto shape_a = properties.GetOutputProperties("a").at(0).shape(); const auto shape_b = properties.GetOutputProperties("b").at(0).shape(); const auto shape_o1 = properties.GetOutputProperties("o1").at(0).shape(); const auto shape_o2 = properties.GetOutputProperties("o2").at(0).shape(); EXPECT_EQ(shape_a.DebugString(), shape_o1.DebugString()); EXPECT_EQ(shape_b.DebugString(), shape_o2.DebugString()); } TEST_F(GraphPropertiesTest, FedNodes) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster_->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); { GraphProperties properties(item); Status s = properties.InferStatically(false); TF_ASSERT_OK(s); for (const auto& node : item.graph.node()) { if (node.op() == "Const") { continue; } const auto in_props = properties.GetInputProperties(node.name()); EXPECT_EQ(1, in_props.size()); const OpInfo::TensorProperties& in_prop = in_props[0]; const auto out_props = properties.GetOutputProperties(node.name()); EXPECT_EQ(1, out_props.size()); const OpInfo::TensorProperties& out_prop = out_props[0]; if (node.name() == "x") { EXPECT_FALSE(in_prop.shape().unknown_rank()); EXPECT_EQ(1, in_prop.shape().dim_size()); EXPECT_EQ(2, in_prop.shape().dim(0).size()); EXPECT_TRUE(out_prop.shape().unknown_rank()); } else if (node.op() == "Square" || node.op() == "AddN") { EXPECT_TRUE(in_prop.shape().unknown_rank()); EXPECT_TRUE(out_prop.shape().unknown_rank()); } } } { GraphProperties properties(item); Status s = properties.InferStatically(true); TF_ASSERT_OK(s); for (const auto& node : item.graph.node()) { if (node.op() == "Square" || node.op() == "AddN") { const auto in_props = properties.GetInputProperties(node.name()); EXPECT_EQ(1, in_props.size()); const OpInfo::TensorProperties& in_prop = in_props[0]; EXPECT_EQ(DT_FLOAT, in_prop.dtype()); EXPECT_FALSE(in_prop.shape().unknown_rank()); EXPECT_EQ(2, in_prop.shape().dim_size()); const auto out_props = properties.GetOutputProperties(node.name()); EXPECT_EQ(1, out_props.size()); const OpInfo::TensorProperties& out_prop = out_props[0]; EXPECT_EQ(in_prop.dtype(), out_prop.dtype()); EXPECT_EQ(in_prop.shape().DebugString(), out_prop.shape().DebugString()); } } } } TEST_F(GraphPropertiesTest, Performance) { GrapplerItem item; string filename = io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPath, "large_graph.pbtxt.html"); TF_ASSERT_OK(ReadGraphDefFromFile(filename, &item.graph)); TF_ASSERT_OK(AddDefaultAttrsToGraphDef( &item.graph, FunctionLibraryDefinition(OpRegistry::Global(), item.graph.library()), 0, true)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); } TEST_F(GraphPropertiesTest, StridedSlicesOfShapes) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Placeholder(s.WithOpName("a"), DT_FLOAT, ops::Placeholder::Shape(PartialTensorShape({-1, -1}))); auto shp = ops::Shape(s.WithOpName("shape"), {a}); Output index1 = ops::Const(s.WithOpName("index1"), 0, {1}); Output index2 = ops::Const(s.WithOpName("index2"), 1, {1}); Output index3 = ops::Const(s.WithOpName("index3"), 2, {1}); Output b = ops::StridedSlice(s.WithOpName("b"), shp, index1, index2, index2); Output c = ops::StridedSlice(s.WithOpName("c"), shp, index2, index3, index2); Output zero = ops::Const(s.WithOpName("zero"), 0.0f, {}); Output o1 = ops::Fill(s.WithOpName("o1"), b, zero); Output o2 = ops::Fill(s.WithOpName("o2"), c, zero); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(false)); const auto shape_a = properties.GetOutputProperties("a").at(0).shape(); const auto shape_o1 = properties.GetOutputProperties("o1").at(0).shape(); const auto shape_o2 = properties.GetOutputProperties("o2").at(0).shape(); EXPECT_EQ(2, shape_a.dim_size()); EXPECT_EQ(1, shape_o1.dim_size()); EXPECT_EQ(1, shape_o2.dim_size()); EXPECT_EQ(shape_a.dim(0).size(), shape_o1.dim(0).size()); EXPECT_EQ(shape_a.dim(1).size(), shape_o2.dim(0).size()); } TEST_F(GraphPropertiesTest, StridedSliceOfShapeWithShrinkAxisMask) { tensorflow::Scope scope = tensorflow::Scope::NewRootScope(); Output placeholder = ops::Placeholder(scope.WithOpName("input_placeholder"), DT_FLOAT, ops::Placeholder::Shape(TensorShape({5, 480, 40, 1}))); auto input_shape = ops::Shape(scope.WithOpName("input_shape"), placeholder); Output begin = ops::Const(scope.WithOpName("begin"), {0}, {1}); Output end = ops::Const(scope.WithOpName("end"), {3}, {1}); Output stride = ops::Const(scope.WithOpName("stride"), {1}, {1}); Output slice = ops::StridedSlice(scope.WithOpName("slice"), input_shape, begin, end, stride, ops::StridedSlice::ShrinkAxisMask(1)); GrapplerItem item; TF_ASSERT_OK(scope.ToGraphDef(&item.graph)); { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, false, true)); EXPECT_FALSE(properties.GetOutputProperties("slice").at(0).has_value()); } { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, true, true)); EXPECT_TRUE(properties.GetOutputProperties("slice").at(0).has_value()); const auto slice_value = properties.GetOutputProperties("slice").at(0).value(); ExpectTensorValues({5}, slice_value); } } TEST_F(GraphPropertiesTest, ValuePropagationThroughArithmeticOps) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), {5, 7}, {2}); Output b = ops::Const(s.WithOpName("b"), {8, 8}, {2}); Output c = ops::Const(s.WithOpName("c"), {2, 2}, {2}); Output a1 = ops::OnesLike(s.WithOpName("a1"), a); Output a_plus_one = ops::Add(s.WithOpName("a_plus_one"), a, a1); Output a_plus_a = ops::Add(s.WithOpName("a_plus_a"), a, a); Output b_plus_2a = ops::Add(s.WithOpName("b_plus_2a"), b, a_plus_a); Output c_plus_b_plus_2a = ops::Add(s.WithOpName("c_plus_b_plus_2a"), c, b_plus_2a); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, true, true)); const auto& a_plus_one_prop = properties.GetOutputProperties("a_plus_one")[0]; EXPECT_EQ("int32: [2]", PropToString(a_plus_one_prop)); EXPECT_TRUE(a_plus_one_prop.has_value()); ExpectTensorValues({6, 8}, a_plus_one_prop.value()); const auto& a_plus_a_prop = properties.GetOutputProperties("a_plus_a")[0]; EXPECT_EQ("int32: [2]", PropToString(a_plus_a_prop)); EXPECT_TRUE(a_plus_a_prop.has_value()); ExpectTensorValues({10, 14}, a_plus_a_prop.value()); const auto& b_plus_2a_prop = properties.GetOutputProperties("b_plus_2a")[0]; EXPECT_EQ("int32: [2]", PropToString(b_plus_2a_prop)); EXPECT_TRUE(b_plus_2a_prop.has_value()); ExpectTensorValues({18, 22}, b_plus_2a_prop.value()); const auto& c_plus_b_plus_2a_prop = properties.GetOutputProperties("c_plus_b_plus_2a")[0]; EXPECT_EQ("int32: [2]", PropToString(c_plus_b_plus_2a_prop)); EXPECT_TRUE(c_plus_b_plus_2a_prop.has_value()); ExpectTensorValues({20, 24}, c_plus_b_plus_2a_prop.value()); } TEST_F(GraphPropertiesTest, ShapeAnnotation) { GrapplerItem item; TF_ASSERT_OK(NodeDefBuilder("Input", "Placeholder") .Attr("dtype", DT_FLOAT) .Attr("shape", PartialTensorShape({-1, -1})) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("Identity", "Identity") .Attr("dtype", DT_FLOAT) .Attr("_same_output_for_iterations", true) .Attr("_output_shape_vector", {TensorShape({5, 7})}) .Input("Input", 0, DT_FLOAT) .Finalize(item.graph.add_node())); { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, false, true)); const auto props = properties.GetOutputProperties("Identity"); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ("float: [-1,-1]", PropToString(prop)); } { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, true, true)); const auto props = properties.GetOutputProperties("Identity"); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ("float: [5,7]", PropToString(prop)); } } TEST_F(GraphPropertiesTest, ShapeAnnotationWithCompatibleShapes) { GrapplerItem item; TF_ASSERT_OK(NodeDefBuilder("Input", "Placeholder") .Attr("dtype", DT_FLOAT) .Attr("shape", PartialTensorShape({-1, 100})) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("Identity", "Identity") .Attr("dtype", DT_FLOAT) .Attr("_same_output_for_iterations", true) .Attr("_output_shape_vector", {TensorShape({10, 100})}) .Input("Input", 0, DT_FLOAT) .Finalize(item.graph.add_node())); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, true, true)); const auto props = properties.GetOutputProperties("Identity"); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ("float: [10,100]", PropToString(prop)); } TEST_F(GraphPropertiesTest, ShapeAnnotationWithIncompatibleShapes) { GrapplerItem item; TF_ASSERT_OK(NodeDefBuilder("Input", "Placeholder") .Attr("dtype", DT_FLOAT) .Attr("shape", PartialTensorShape({-1, 100})) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("Identity", "Identity") .Attr("dtype", DT_FLOAT) .Attr("_same_output_for_iterations", true) .Attr("_output_shape_vector", {TensorShape({10, 10})}) .Input("Input", 0, DT_FLOAT) .Finalize(item.graph.add_node())); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, true, true)); const auto props = properties.GetOutputProperties("Identity"); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ("float: [-1,100]", PropToString(prop)); } TEST_F(GraphPropertiesTest, ShapeAnnotationWithoutInferenceFn) { GrapplerItem item; TF_ASSERT_OK(NodeDefBuilder("Input", "Placeholder") .Attr("dtype", DT_FLOAT) .Attr("shape", PartialTensorShape({-1, -1})) .Finalize(item.graph.add_node())); TF_ASSERT_OK( NodeDefBuilder("TestOpWithNoInferenceFn", "TestOpWithNoInferenceFn") .Attr("_same_output_for_iterations", true) .Attr("_output_shape_vector", {TensorShape({10, 100})}) .Input("Input", 0, DT_FLOAT) .Finalize(item.graph.add_node())); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, true, true)); const auto props = properties.GetOutputProperties("TestOpWithNoInferenceFn"); EXPECT_EQ(1, props.size()); const OpInfo::TensorProperties& prop = props[0]; EXPECT_EQ(DT_FLOAT, prop.dtype()); EXPECT_EQ(2, prop.shape().dim_size()); EXPECT_EQ("float: [10,100]", PropToString(prop)); } TEST_F(GraphPropertiesTest, PartitionedCallOp) { Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary library; FunctionDef called_func = FunctionDefHelper::Create( "identity_function", {"arg0: int32"}, {"ret0: int32"}, {}, {{{"Identity"}, "Identity", {"arg0"}, {{"T", DT_INT32}}}}, {{"ret0", "Identity:output:0"}}); *library.add_function() = called_func; TF_ASSERT_OK(root.graph()->AddFunctionLibrary(library)); Output in = ops::Const(root, {3, 1, 2, 0}); NameAttrList b_name_attr; b_name_attr.set_name("identity_function"); ops::PartitionedCall call(root.WithOpName("identity_call"), {in}, {DT_INT32}, b_name_attr); GrapplerItem item; TF_ASSERT_OK(root.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( true, false, true)); EXPECT_EQ("int32: [4]", PropToString(properties.GetOutputProperties("identity_call")[0])); } TEST_F(GraphPropertiesTest, NonTrivialInputPartitionedCallOp) { auto f = FunctionDefHelper::Create( "FunctionWhichAdds", {"arg0: int32", "arg1: int32"}, {"ret0: int32"}, {}, {{{"a"}, "Add", {"arg0", "arg1"}, {{"T", DT_INT32}}}}, {{"ret0", "a:z:0"}}); FunctionDefLibrary function_lib; function_lib.add_function()->Swap(&f); tensorflow::Scope root = tensorflow::Scope::NewRootScope(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(function_lib)); PartialTensorShape input_shape({2, 2, -1}); Output in1 = ops::Placeholder(root, DT_INT32, ops::Placeholder::Shape(input_shape)); Output in2 = ops::Placeholder(root, DT_INT32, ops::Placeholder::Shape(input_shape)); NameAttrList b_name_attr; b_name_attr.set_name("FunctionWhichAdds"); ops::PartitionedCall call(root.WithOpName("add_call"), {in1, in2}, {DT_INT32}, b_name_attr); GrapplerItem item; TF_ASSERT_OK(root.ToGraphDef(&item.graph)); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( true, false, true)); EXPECT_EQ("int32: [2,2,-1]", PropToString(properties.GetOutputProperties("add_call")[0])); } TEST_F(GraphPropertiesTest, ShapeAnnotatedFunctionOp) { auto f = FunctionDefHelper::Create( "FuncShapeCannotBeInferred", {}, {"output: float"}, {}, { {{"p"}, "Placeholder", {}, {{"dtype", DataType::DT_FLOAT}}}, }, {{"output", "p:output:0"}}); FunctionDefLibrary function_lib; function_lib.add_function()->Swap(&f); tensorflow::Scope s = tensorflow::Scope::NewRootScope(); TF_ASSERT_OK(s.graph()->AddFunctionLibrary(function_lib)); tensorflow::Node* func_op; TensorShapeProto output_shape; output_shape.set_unknown_rank(false); output_shape.add_dim()->set_size(1); output_shape.add_dim()->set_size(2); output_shape.add_dim()->set_size(3); output_shape.add_dim()->set_size(4); TF_ASSERT_OK(tensorflow::NodeBuilder("f", "FuncShapeCannotBeInferred", s.graph()->op_registry()) .Attr("_execution_count", 1) .Attr("_same_output_for_iterations", true) .Attr("_output_dtype_vector", {DataType::DT_FLOAT}) .Attr("_output_shape_vector", {output_shape}) .Finalize(s.graph(), &func_op)); GrapplerItem item; TF_ASSERT_OK(s.ToGraphDef(&item.graph)); { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, false, false)); const auto out_props = properties.GetOutputProperties("f"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: ?", PropToString(out_prop0)); } { GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically( false, true, true)); const auto out_props = properties.GetOutputProperties("f"); const OpInfo::TensorProperties out_prop0 = out_props[0]; EXPECT_EQ("float: [1,2,3,4]", PropToString(out_prop0)); } } TEST_F(GraphPropertiesTest, SymbolicShapeInferenceWithReshapeOpsSharingShapeVector) { GrapplerItem item; TF_ASSERT_OK(NodeDefBuilder("data", "Placeholder") .Attr("dtype", DT_FLOAT) .Attr("shape", TensorShape({10, 10, 10, 10})) .Finalize(item.graph.add_node())); Tensor num_segments(DT_INT32, TensorShape({})); test::FillIota<int>(&num_segments, 3); TF_ASSERT_OK(NodeDefBuilder("num_segments", "Const") .Attr("dtype", DT_INT32) .Attr("value", num_segments) .Finalize(item.graph.add_node())); Tensor minus_one(DT_INT32, TensorShape({1})); test::FillIota<int>(&minus_one, -1); TF_ASSERT_OK(NodeDefBuilder("minus_one", "Const") .Attr("dtype", DT_INT32) .Attr("value", minus_one) .Finalize(item.graph.add_node())); Tensor plus_ten(DT_INT32, TensorShape({1})); test::FillIota<int>(&plus_ten, 10); TF_ASSERT_OK(NodeDefBuilder("plus_ten", "Const") .Attr("dtype", DT_INT32) .Attr("value", plus_ten) .Finalize(item.graph.add_node())); Tensor axis(DT_INT32, TensorShape({})); test::FillIota<int>(&axis, -1); TF_ASSERT_OK(NodeDefBuilder("axis", "Const") .Attr("dtype", DT_INT32) .Attr("value", axis) .Finalize(item.graph.add_node())); std::vector<NodeDefBuilder::NodeOut> inputs(2); inputs[0] = NodeDefBuilder::NodeOut{"minus_one", 0, DT_INT32}; inputs[1] = NodeDefBuilder::NodeOut{"plus_ten", 0, DT_INT32}; TF_ASSERT_OK(NodeDefBuilder("concat", "ConcatV2") .Input(inputs) .Input("axis", 0, DT_INT32) .Attr("N", 2) .Attr("T", DT_INT32) .Attr("Tidx", DT_INT32) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("segment_ids_", "Placeholder") .Attr("dtype", DT_FLOAT) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("segment_ids_shape_before_reshape", "Shape") .Input("segment_ids_", 0, DT_FLOAT) .Attr("T", DT_FLOAT) .Attr("out_type", DT_INT32) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("segment_ids", "Reshape") .Input("segment_ids_", 0, DT_FLOAT) .Input("concat", 0, DT_INT32) .Attr("T", DT_FLOAT) .Attr("Tshape", DT_INT32) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("y", "UnsortedSegmentSum") .Input("data", 0, DT_FLOAT) .Input("segment_ids", 0, DT_INT32) .Input("num_segments", 0, DT_INT32) .Attr("T", DT_FLOAT) .Attr("Tindices", DT_INT32) .Attr("Tnumsegments", DT_INT32) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("x1", "Placeholder") .Attr("dtype", DT_FLOAT) .Finalize(item.graph.add_node())); TF_ASSERT_OK(NodeDefBuilder("y1", "Reshape") .Input("x1", 0, DT_FLOAT) .Input("concat", 0, DT_INT32) .Attr("T", DT_FLOAT) .Attr("Tshape", DT_INT32) .Finalize(item.graph.add_node())); GraphProperties properties(item); TF_ASSERT_OK(properties.InferStatically(true)); const auto& y1_output_properties = properties.GetOutputProperties("y1"); EXPECT_EQ(y1_output_properties.size(), 1); EXPECT_EQ(y1_output_properties[0].shape().dim_size(), 2); EXPECT_LT(y1_output_properties[0].shape().dim(0).size(), 0); EXPECT_EQ(y1_output_properties[0].shape().dim(1).size(), 10); } TEST(HelperFunctions, IsShapeFullyDefinedIntegerVectorOrScalar) { NodeDef node_def; OpRegistrationData op_reg_data; OpDefBuilder b("dummy"); CHECK(b.Finalize(&op_reg_data).ok()); std::vector<std::unique_ptr<std::vector<ShapeAndType>>> input_handle_shapes_and_types; InferenceContext ic(0, node_def, op_reg_data.op_def, {}, {}, {}, std::move(input_handle_shapes_and_types)); ShapeHandle fully_defined_vector = ic.MakeShape( {ic.MakeDim(4), ic.MakeDim(5), ic.MakeDim(6), ic.MakeDim(7)}); ShapeHandle vector_with_unknown = ic.MakeShape( {ic.MakeDim(4), ic.MakeDim(5), ic.UnknownDim(), ic.MakeDim(7)}); ShapeHandle vector_with_unknown_from_const = ic.MakeShape( {ic.MakeDim(4), ic.MakeDim(INT64_MAX), ic.MakeDim(6), ic.MakeDim(7)}); ShapeHandle rank_1_vector = ic.MakeShape({ic.MakeDim(4)}); EXPECT_TRUE(IsShapeFullyDefinedIntegerVectorOrScalar( &ic, rank_1_vector, fully_defined_vector, DT_INT32)); EXPECT_TRUE(IsShapeFullyDefinedIntegerVectorOrScalar( &ic, rank_1_vector, fully_defined_vector, DT_INT64)); EXPECT_FALSE(IsShapeFullyDefinedIntegerVectorOrScalar( &ic, rank_1_vector, fully_defined_vector, DT_FLOAT)); EXPECT_FALSE(IsShapeFullyDefinedIntegerVectorOrScalar( &ic, rank_1_vector, vector_with_unknown, DT_INT32)); EXPECT_FALSE(IsShapeFullyDefinedIntegerVectorOrScalar( &ic, rank_1_vector, vector_with_unknown_from_const, DT_INT32)); EXPECT_FALSE(IsShapeFullyDefinedIntegerVectorOrScalar( &ic, rank_1_vector, ic.UnknownShape(), DT_INT32)); EXPECT_FALSE(IsShapeFullyDefinedIntegerVectorOrScalar( &ic, ic.UnknownShape(), fully_defined_vector, DT_INT32)); EXPECT_FALSE(IsShapeFullyDefinedIntegerVectorOrScalar( &ic, fully_defined_vector, vector_with_unknown_from_const, DT_INT32)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/graph_properties.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/graph_properties_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
19318bbc-47c6-4b3c-a78a-c14e89b2b652
cpp
tensorflow/tensorflow
virtual_placer
tensorflow/core/grappler/costs/virtual_placer.cc
tensorflow/core/grappler/costs/virtual_placer_test.cc
#include "tensorflow/core/grappler/costs/virtual_placer.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/devices.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace grappler { VirtualPlacer::VirtualPlacer( const std::unordered_map<string, DeviceProperties>& devices) : devices_(devices), default_job_name_lowercase_("localhost") { lfqn_map_.reserve(devices_.size()); for (const auto& kv : devices_) { const auto lfqn = to_lfqn_or_empty(kv.first); if (lfqn.empty()) { LOG(ERROR) << "VirtualPlacer couldn't parse device name from cluster: " << kv.first; } else { lfqn_map_[lfqn] = kv.first; } } if (devices_.empty()) { default_device_name_ = "UNKNOWN"; DeviceProperties& prop = devices_["UNKNOWN"]; prop.set_type("UNKNOWN"); } else if (devices_.size() == 1) { default_device_name_ = devices_.begin()->first; } else { std::map<int, string> cpu_devices; std::map<int, string> gpu_devices; for (const auto& kv : lfqn_map_) { const auto& lfqn = kv.first; const auto& cluster_device_name = kv.second; DeviceNameUtils::ParsedName parsed_name; bool parsed = DeviceNameUtils::ParseFullName(lfqn, &parsed_name); if (parsed) { const auto type = absl::AsciiStrToLower(parsed_name.type); if (type == "gpu") { gpu_devices[parsed_name.id] = cluster_device_name; } else if (type == "cpu") { cpu_devices[parsed_name.id] = cluster_device_name; } } } if (!gpu_devices.empty()) { default_device_name_ = gpu_devices.begin()->second; } else if (!cpu_devices.empty()) { default_device_name_ = cpu_devices.begin()->second; } else { default_device_name_ = devices_.begin()->first; } } VLOG(3) << "default device name: " << default_device_name_; std::unordered_set<string> job_names_from_cluster; for (const auto& device : lfqn_map_) { const auto& lfqn = device.first; DeviceNameUtils::ParsedName parsed_name; bool parsed = DeviceNameUtils::ParseFullName(lfqn, &parsed_name); if (parsed && !parsed_name.job.empty()) { job_names_from_cluster.insert(parsed_name.job); if (job_names_from_cluster.size() > 1) { break; } } } if (job_names_from_cluster.size() == 1) { auto it = job_names_from_cluster.begin(); default_job_name_lowercase_ = *it; } VLOG(3) << "default job name: " << default_job_name_lowercase_; } const DeviceProperties& VirtualPlacer::get_device(const NodeDef& node) const { string device = get_canonical_device_name(node); VLOG(3) << "node.name=" << node.name() << " node.device=" << node.device() << " is placed on: " << device; auto it = devices_.find(device); DCHECK(it != devices_.end()); return it->second; } string VirtualPlacer::get_canonical_device_name(const NodeDef& node) const { if (node.device().empty()) { return default_device_name_; } const auto lfqn = to_lfqn_or_empty(node.device()); if (lfqn.empty()) { return default_device_name_; } const auto it = lfqn_map_.find(lfqn); if (it != lfqn_map_.end()) { return it->second; } return default_device_name_; } string VirtualPlacer::to_lfqn_or_empty(const string& device_name) const { DeviceNameUtils::ParsedName parsed_name; const auto lowercase_name = absl::AsciiStrToLower(device_name); bool parsed = DeviceNameUtils::ParseFullName(lowercase_name, &parsed_name); if (!parsed) { parsed = DeviceNameUtils::ParseLocalName(lowercase_name, &parsed_name); parsed_name.job = "localhost"; } if (!parsed) { if (lowercase_name == "gpu" || lowercase_name == "cpu") { parsed_name.job = "localhost"; parsed_name.type = lowercase_name; parsed = true; } } if (!parsed) { return {}; } if (parsed_name.job.empty()) { parsed_name.job = default_job_name_lowercase_; } parsed_name.type = absl::AsciiStrToLower(parsed_name.type); string lfqn = strings::StrCat( "/job:", parsed_name.job, "/replica:", parsed_name.replica, "/task:", parsed_name.task, "/device:", parsed_name.type, ":", parsed_name.id); return lfqn; } } }
#include "tensorflow/core/grappler/costs/virtual_placer.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/device_properties.pb.h" namespace tensorflow { namespace grappler { TEST(VirtualPlacerTest, LocalDevices) { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); devices["/job:localhost/replica:0/task:0/cpu:0"] = cpu_device; DeviceProperties gpu_device; gpu_device.set_type("GPU"); devices["/job:localhost/replica:0/task:0/device:GPU:0"] = gpu_device; VirtualCluster cluster(devices); VirtualPlacer placer(devices); NodeDef node; node.set_op("Conv2D"); EXPECT_EQ("GPU", placer.get_device(node).type()); EXPECT_EQ("/job:localhost/replica:0/task:0/device:GPU:0", placer.get_canonical_device_name(node)); node.set_device("CPU"); EXPECT_EQ("CPU", placer.get_device(node).type()); EXPECT_EQ("/job:localhost/replica:0/task:0/cpu:0", placer.get_canonical_device_name(node)); node.set_device("GPU:0"); EXPECT_EQ("GPU", placer.get_device(node).type()); EXPECT_EQ("/job:localhost/replica:0/task:0/device:GPU:0", placer.get_canonical_device_name(node)); } TEST(VirtualPlacerTest, ShortNames) { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); devices["/CPU:0"] = cpu_device; DeviceProperties gpu_device; gpu_device.set_type("GPU"); devices["/GPU:0"] = gpu_device; VirtualCluster cluster(devices); VirtualPlacer placer(devices); NodeDef node; node.set_op("Conv2D"); EXPECT_EQ("GPU", placer.get_device(node).type()); EXPECT_EQ("/GPU:0", placer.get_canonical_device_name(node)); node.set_device("CPU"); EXPECT_EQ("CPU", placer.get_device(node).type()); EXPECT_EQ("/CPU:0", placer.get_canonical_device_name(node)); node.set_device("GPU:0"); EXPECT_EQ("GPU", placer.get_device(node).type()); EXPECT_EQ("/GPU:0", placer.get_canonical_device_name(node)); } TEST(VirtualPlacerTest, PlacementOnNonDefaultDevice) { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); devices["/job:localhost/replica:0/task:0/cpu:0"] = cpu_device; DeviceProperties tpu_device; tpu_device.set_type("TPU"); devices["/job:localhost/replica:0/task:0/device:TPU:0"] = tpu_device; VirtualCluster cluster(devices); VirtualPlacer placer(devices); NodeDef node; node.set_op("Conv2D"); EXPECT_EQ("CPU", placer.get_device(node).type()); EXPECT_EQ("/job:localhost/replica:0/task:0/cpu:0", placer.get_canonical_device_name(node)); node.set_device("/device:TPU:0"); EXPECT_EQ("TPU", placer.get_device(node).type()); EXPECT_EQ("/job:localhost/replica:0/task:0/device:TPU:0", placer.get_canonical_device_name(node)); } TEST(VirtualPlacerTest, EmptyJobName) { for (const string& job_name : {"localhost", "worker", "worker_train"}) { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); devices[strings::StrCat("/job:", job_name, "/replica:0/task:0/cpu:0")] = cpu_device; DeviceProperties gpu_device; gpu_device.set_type("GPU"); devices[strings::StrCat("/job:", job_name, "/replica:0/task:0/device:GPU:0")] = gpu_device; VirtualCluster cluster(devices); VirtualPlacer placer(devices); NodeDef node; node.set_op("Conv2D"); node.set_device("/device:CPU:0"); EXPECT_EQ(strings::StrCat("/job:", job_name, "/replica:0/task:0/cpu:0"), placer.get_canonical_device_name(node)); node.set_device("/device:GPU:0"); EXPECT_EQ( strings::StrCat("/job:", job_name, "/replica:0/task:0/device:GPU:0"), placer.get_canonical_device_name(node)); } std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); devices["/job:localhost/replica:0/task:0/cpu:0"] = cpu_device; devices["/job:ps/replica:0/task:0/cpu:0"] = cpu_device; devices["/job:worker/replica:0/task:0/cpu:0"] = cpu_device; VirtualCluster cluster(devices); VirtualPlacer placer(devices); NodeDef node; node.set_op("Conv2D"); node.set_device("/device:CPU:0"); EXPECT_EQ("/job:localhost/replica:0/task:0/cpu:0", placer.get_canonical_device_name(node)); } string GetDefaultDeviceName( const std::unordered_map<string, DeviceProperties>& devices) { VirtualCluster cluster(devices); VirtualPlacer placer(devices); NodeDef node; node.set_op("Conv2D"); return placer.get_canonical_device_name(node); } TEST(VirtualPlacerTest, DefaultDevice) { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); devices["/job:worker/replica:0/task:0/cpu:0"] = cpu_device; EXPECT_EQ("/job:worker/replica:0/task:0/cpu:0", GetDefaultDeviceName(devices)); DeviceProperties gpu_device; gpu_device.set_type("GPU"); for (int i = 0; i < 8; i++) { devices[strings::StrCat("/job:worker/replica:0/task:0/gpu:", i)] = gpu_device; EXPECT_EQ("/job:worker/replica:0/task:0/gpu:0", GetDefaultDeviceName(devices)); } } TEST(VirtualPlacerTest, MultiReplica) { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); DeviceProperties gpu_device; gpu_device.set_type("GPU"); for (int i = 0; i < 8; i++) { devices[strings::StrCat("/job:worker/replica:", i, "/task:0/cpu:0")] = cpu_device; for (int j = 0; j < 8; j++) { devices[strings::StrCat("/job:worker/replica:", i, "/task:0/gpu:", j)] = gpu_device; } } std::unique_ptr<VirtualCluster> cluster(new VirtualCluster(devices)); std::unique_ptr<VirtualPlacer> placer(new VirtualPlacer(devices)); auto get_device_name = [&placer](const string& device) -> string { NodeDef node; node.set_op("Conv2D"); node.set_device(device); return placer->get_canonical_device_name(node); }; EXPECT_EQ("/job:worker/replica:0/task:0/cpu:0", get_device_name("/replica:0/cpu:0")); EXPECT_EQ("/job:worker/replica:2/task:0/cpu:0", get_device_name("/replica:2/cpu:0")); EXPECT_EQ("/job:worker/replica:7/task:0/cpu:0", get_device_name("/replica:7/cpu:0")); EXPECT_EQ("/job:worker/replica:3/task:0/gpu:0", get_device_name("/replica:3/gpu:0")); EXPECT_EQ("/job:worker/replica:5/task:0/gpu:3", get_device_name("/replica:5/gpu:3")); EXPECT_EQ("/job:worker/replica:4/task:0/gpu:7", get_device_name("/replica:4/gpu:7")); for (int i = 0; i < 4; i++) { devices[strings::StrCat("/job:ps/replica:", i, "/task:0/cpu:0")] = cpu_device; } cluster.reset(new VirtualCluster(devices)); placer.reset(new VirtualPlacer(cluster->GetDevices())); EXPECT_EQ("/job:worker/replica:0/task:0/cpu:0", get_device_name("/job:worker/replica:0/cpu:0")); EXPECT_EQ("/job:worker/replica:7/task:0/gpu:3", get_device_name("/job:worker/replica:7/gpu:3")); EXPECT_EQ("/job:ps/replica:0/task:0/cpu:0", get_device_name("/job:ps/replica:0/cpu:0")); EXPECT_EQ("/job:ps/replica:1/task:0/cpu:0", get_device_name("/job:ps/replica:1/cpu:0")); EXPECT_EQ("/job:ps/replica:2/task:0/cpu:0", get_device_name("/job:ps/replica:2/cpu:0")); EXPECT_EQ("/job:ps/replica:3/task:0/cpu:0", get_device_name("/job:ps/replica:3/cpu:0")); } TEST(VirtualPlacerTest, FallBackUnknown) { std::unordered_map<string, DeviceProperties> devices; VirtualCluster cluster(devices); VirtualPlacer placer(devices); NodeDef node; node.set_op("Conv2D"); EXPECT_EQ("UNKNOWN", placer.get_device(node).type()); EXPECT_EQ("UNKNOWN", placer.get_canonical_device_name(node)); } TEST(VirtualPlacerTest, FallBackCPU) { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); devices["/job:my_job/replica:0/task:0/cpu:0"] = cpu_device; VirtualCluster cluster(devices); VirtualPlacer placer(devices); NodeDef node; node.set_op("Conv2D"); EXPECT_EQ("CPU", placer.get_device(node).type()); EXPECT_EQ("/job:my_job/replica:0/task:0/cpu:0", placer.get_canonical_device_name(node)); } TEST(VirtualPlacerTest, RemoteDevices) { std::unordered_map<string, DeviceProperties> devices; DeviceProperties cpu_device; cpu_device.set_type("CPU"); devices["/job:my_job/replica:0/task:0/cpu:0"] = cpu_device; DeviceProperties gpu_device; gpu_device.set_type("GPU"); devices["/job:my_job/replica:0/task:0/device:GPU:0"] = gpu_device; VirtualCluster cluster(devices); VirtualPlacer placer(devices); NodeDef node; node.set_op("Conv2D"); EXPECT_EQ("GPU", placer.get_device(node).type()); EXPECT_EQ("/job:my_job/replica:0/task:0/device:GPU:0", placer.get_canonical_device_name(node)); node.set_device("/job:my_job/replica:0/task:0/cpu:0"); EXPECT_EQ("CPU", placer.get_device(node).type()); EXPECT_EQ("/job:my_job/replica:0/task:0/cpu:0", placer.get_canonical_device_name(node)); node.set_device("/job:my_job/replica:0/task:0/device:GPU:0"); EXPECT_EQ("GPU", placer.get_device(node).type()); EXPECT_EQ("/job:my_job/replica:0/task:0/device:GPU:0", placer.get_canonical_device_name(node)); node.set_device("CPU"); EXPECT_EQ("GPU", placer.get_device(node).type()); EXPECT_EQ("/job:my_job/replica:0/task:0/device:GPU:0", placer.get_canonical_device_name(node)); node.set_device("GPU:0"); EXPECT_EQ("GPU", placer.get_device(node).type()); EXPECT_EQ("/job:my_job/replica:0/task:0/device:GPU:0", placer.get_canonical_device_name(node)); node.set_device("/job:my_job/replica:0/task:0"); EXPECT_EQ("GPU", placer.get_device(node).type()); EXPECT_EQ("/job:my_job/replica:0/task:0/device:GPU:0", placer.get_canonical_device_name(node)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/virtual_placer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/virtual_placer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
66a6130e-df50-475d-9fcc-fa07e2cdd66e
cpp
tensorflow/tensorflow
robust_stats
tensorflow/core/grappler/costs/robust_stats.cc
tensorflow/core/grappler/costs/robust_stats_test.cc
#include "tensorflow/core/grappler/costs/robust_stats.h" #include <algorithm> #include <cmath> #include <utility> namespace tensorflow { namespace grappler { static double SortedMedian(const std::vector<double> &values) { const int n = values.size(); if (n == 0) return 0.0; if (n & 1) { return values[n / 2]; } else { return (values[n / 2] + values[n / 2 - 1]) / 2.0; } } static double Median(std::vector<double> &&values) { const size_t n = values.size(); if (n == 0) return 0; const auto middle = values.begin() + (n / 2); std::nth_element(values.begin(), middle, values.end()); if (n & 1) { return *middle; } const auto lower_middle = std::max_element(values.begin(), middle); if (*lower_middle <= 0 && *middle >= 0) { return (*lower_middle + *middle) / 2; } return *lower_middle + (*middle - *lower_middle) / 2; } static std::pair<double, double> ScaledMedianAbsoluteDeviation( const std::vector<double> &sorted_values) { double median = SortedMedian(sorted_values); std::vector<double> deviations; deviations.reserve(sorted_values.size()); for (double d : sorted_values) { deviations.push_back(std::abs(d - median)); } double mad = Median(std::move(deviations)) * 1.4826; return std::pair<double, double>(median, mad); } RobustStats::RobustStats(const std::vector<double> &values) : RobustStats(std::vector<double>(values)) {} RobustStats::RobustStats(std::vector<double> &&values) { std::sort(values.begin(), values.end()); lo_ = values[0]; hi_ = values.back(); HuberMAD(values); } double UpdateHuberMean(const std::vector<double> &sorted_values, double mean, double margin) { int num_within = 0; double sum = 0.0; for (double d : sorted_values) { if (d < mean - margin) { sum -= margin; } else if (d > mean + margin) { sum += margin; } else { sum += d; ++num_within; } } if (num_within > 0) { return sum / num_within; } else { return mean; } } void RobustStats::HuberMAD(const std::vector<double> &sorted_values) { const std::pair<double, double> median_mad = ScaledMedianAbsoluteDeviation(sorted_values); mean_ = median_mad.first; stddev_ = median_mad.second; const double c = 1.5; const double margin = c * stddev_; if (margin > 0.0) { for (int k = 0; k < 10; ++k) { double old_mean = mean_; mean_ = UpdateHuberMean(sorted_values, mean_, margin); if (mean_ == old_mean) break; } } } } }
#include "tensorflow/core/grappler/costs/robust_stats.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class RobustStatsTest : public ::testing::Test { public: void SetUp() override { for (double d = 1.0; d <= 5.0; d += 1.0) { values1_.push_back(5.0 - d); values1_.push_back(5.0 + d); values2_.push_back(25.0 - 2 * d); values2_.push_back(25.0 + 2 * d); values3_.push_back(-3.0 - d); values3_.push_back(-3.0 + d); } values1_.push_back(5.0); values3_.push_back(197.0); values3_.push_back(-203.0); } std::vector<double> values1_; std::vector<double> values2_; std::vector<double> values3_; }; TEST_F(RobustStatsTest, Simple) { RobustStats s1(values1_); EXPECT_EQ(5.0, s1.mean()); EXPECT_EQ(0.0, s1.lo()); EXPECT_EQ(10.0, s1.hi()); RobustStats s2(values2_); EXPECT_EQ(25.0, s2.mean()); EXPECT_EQ(15.0, s2.lo()); EXPECT_EQ(35.0, s2.hi()); RobustStats s3(values3_); EXPECT_EQ(-3.0, s3.mean()); EXPECT_EQ(-203.0, s3.lo()); EXPECT_EQ(197.0, s3.hi()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/robust_stats.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/costs/robust_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c2d5cdab-c5af-4a62-b278-95f45b56ecde
cpp
tensorflow/tensorflow
sig_node
tensorflow/core/grappler/graph_analyzer/sig_node.cc
tensorflow/core/grappler/graph_analyzer/sig_node_test.cc
#include "tensorflow/core/grappler/graph_analyzer/sig_node.h" #include <algorithm> #include "absl/strings/str_format.h" namespace tensorflow { namespace grappler { namespace graph_analyzer { static constexpr bool debug = false; SigNode::SigNode(const NodeDef* node) : node_(node) {} void SigNode::CopyLinks(const GenNode& from, const TranslationMap& map) { hash_to_link_.clear(); hashed_peers_.clear(); std::map<LinkTag, Link> link_map; CopyLinksPass1(from, map, &link_map); CopyLinksPass2(&link_map); } void SigNode::CopyLinksPass1(const GenNode& from, const TranslationMap& map, std::map<LinkTag, Link>* link_map) { LinkTag::Hasher link_hasher; for (const auto& entry : from.links()) { for (const auto& target : entry.second) { auto nodeit = map.find(target.node); if (nodeit == map.end()) { continue; } LinkTag tag(entry.first, target.port); size_t hval = link_hasher(tag); Link& map_entry = (*link_map)[tag]; if (map_entry.peers.empty()) { map_entry.tag = tag; map_entry.unique_hash = hval; } map_entry.peers.push_back(nodeit->second); } } } void SigNode::CopyLinksPass2(std::map<LinkTag, Link>* link_map) { for (auto& entry : *link_map) { Link* hl_entry_ptr = &hash_to_link_[entry.second.unique_hash]; while (!hl_entry_ptr->peers.empty()) { CombineHash(1, &entry.second.unique_hash); hl_entry_ptr = &hash_to_link_[entry.second.unique_hash]; } for (const auto& peer : entry.second.peers) { hashed_peers_.emplace_back(HashedPeer(entry.second.unique_hash, peer)); } hl_entry_ptr->tag = entry.second.tag; hl_entry_ptr->unique_hash = entry.second.unique_hash; hl_entry_ptr->peers.swap(entry.second.peers); } } void SigNode::ComputeTopoHash0() { topo_hash_.clear(); last_hashed_nodes_ = next_hashed_nodes_ = node_mask_; size_t hval = std::hash<string>()(opcode()); for (const auto& entry : hashed_peers_) { CombineHash(entry.link_hash, &hval); } topo_hash_.push_back(hval); } void SigNode::ComputeTopoHash(int distance) { next_hashed_nodes_ = last_hashed_nodes_; if (debug) { LOG(INFO) << "DEBUG node " << name() << " mask=" << std::hex << next_hashed_nodes_; } if (hash_is_final_) { return; } const int64_t topo_hash_size = topo_hash_.size(); CHECK(topo_hash_size == distance); int prev = distance - 1; size_t hval = topo_hash_[0]; if (!hashed_peers_.empty()) { size_t last_link_hash = hashed_peers_[0].link_hash; size_t comm_hash = 0; for (const auto& entry : hashed_peers_) { if (entry.link_hash != last_link_hash) { CombineHash(last_link_hash, &hval); CombineHash(comm_hash, &hval); comm_hash = 0; last_link_hash = entry.link_hash; } CombineHashCommutative(entry.peer->GetTopoHash(prev), &comm_hash); next_hashed_nodes_ |= entry.peer->last_hashed_nodes_; if (debug) { LOG(INFO) << "DEBUG node " << name() << " += " << entry.peer->name() << " mask=" << std::hex << next_hashed_nodes_; } } CombineHash(last_link_hash, &hval); CombineHash(comm_hash, &hval); } topo_hash_.push_back(hval); } size_t SigNode::GetTopoHash(int distance) const { CHECK(!topo_hash_.empty()); const int64_t topo_hash_size = topo_hash_.size(); if (distance >= topo_hash_size) { CHECK(hash_is_final_); return topo_hash_.back(); } else { return topo_hash_[distance]; } } bool SigNode::operator==(const SigNode& other) const { if (opcode() != other.opcode()) { return false; } if (unique_rank_ != other.unique_rank_) { return false; } if (hashed_peers_.size() != other.hashed_peers_.size()) { return false; } for (auto it1 = hashed_peers_.begin(), it2 = other.hashed_peers_.begin(); it1 != hashed_peers_.end(); ++it1, ++it2) { if (it1->link_hash != it2->link_hash) { return false; } if (it1->peer->unique_rank_ != it2->peer->unique_rank_) { return false; } } return true; } constexpr int Signature::kMaxGraphSize; string Signature::ToString() const { string result; for (size_t n = 0; n < nodes.size(); ++n) { result += absl::StrFormat("%d:%s", n, nodes[n]->opcode()); for (const auto& entry : nodes[n]->hashed_peers_) { const auto& link = nodes[n]->hash_to_link_[entry.link_hash]; if (link.tag.local.IsInbound()) { result += absl::StrFormat("[%s:%s:%d]", string(link.tag.local), string(link.tag.remote), entry.peer->unique_rank_); } } result.push_back(','); } return result; } Status Signature::Compute() { if (map.size() > kMaxGraphSize) { return Status( absl::StatusCode::kInvalidArgument, absl::StrFormat( "A graph of %d nodes is too big for signature computation, " "the maximal supported node count is %d.", map.size(), kMaxGraphSize)); } size_t next_node_id = 0; sig_short = 0; sig_full.resize(0); PrepareNodes(); FindUniqueHashes(&next_node_id); while (next_node_id < map.size()) { ComputeOneRound(next_node_id); FindUniqueHashes(&next_node_id); } OrderLinks(); return absl::OkStatus(); } void Signature::PrepareNodes() { nodes.resize(0); int64_t mask = 1; for (const auto& entry : map) { SigNode* node = entry.second.get(); node->last_hashed_nodes_ = node->node_mask_ = mask; mask <<= 1; node->unique_rank_ = ~0; node->hash_is_final_ = false; node->ComputeTopoHash0(); if (node->GetHighTopoHash() <= map.size()) { node->ReHighTopoHash(); } nodes.emplace_back(node); } } void Signature::FindUniqueHashes(size_t* next_node_id_p) { std::stable_sort(nodes.begin() + *next_node_id_p, nodes.end(), SigNode::NodeOrderLess()); bool found_unique = false; for (size_t n = *next_node_id_p; n < nodes.size(); ++n) { size_t cur_hash = nodes[n]->GetHighTopoHash(); if (n + 1 < nodes.size() && nodes[n + 1]->GetHighTopoHash() == cur_hash) { for (++n; n + 1 < nodes.size() && nodes[n + 1]->GetHighTopoHash() == cur_hash; ++n) { } if (found_unique || n != nodes.size() - 1) { continue; } } found_unique = true; size_t id = (*next_node_id_p)++; nodes[n]->unique_rank_ = id; size_t last_hash = nodes[n]->GetHighTopoHash(); CombineHash(last_hash, &sig_short); sig_full.push_back(last_hash); nodes[n]->topo_hash_.resize(1); nodes[n]->topo_hash_[0] = id + 1; nodes[n]->hash_is_final_ = true; nodes[n]->last_hashed_nodes_ = nodes[n]->node_mask_; if (n != id) { std::swap(nodes[id], nodes[n]); } } } void Signature::ComputeOneRound(size_t next_node_id) { int debug_i = 0; for (auto it = nodes.begin() + next_node_id; it != nodes.end(); ++it) { auto node = *it; node->topo_hash_.resize(1); node->last_hashed_nodes_ = node->node_mask_; node->hash_is_final_ = false; if (debug) { LOG(INFO) << "DEBUG distance=" << 0 << " node " << debug_i++ << " " << node->name() << " mask=" << std::hex << node->last_hashed_nodes_; } } bool stop = false; for (int distance = 1; !stop; ++distance) { for (auto it = nodes.begin() + next_node_id; it != nodes.end(); ++it) { auto node = *it; if (node->hash_is_final_) { continue; } node->ComputeTopoHash(distance); if (node->GetHighTopoHash() <= nodes.size()) { node->ReHighTopoHash(); } } stop = true; debug_i = 0; for (auto it = nodes.begin() + next_node_id; it != nodes.end(); ++it) { auto node = *it; if (debug) { LOG(INFO) << "DEBUG distance=" << distance << " node " << debug_i++ << " " << node->name() << " oldmask=" << std::hex << node->last_hashed_nodes_ << " mask=" << std::hex << node->next_hashed_nodes_; } if (node->last_hashed_nodes_ == node->next_hashed_nodes_) { node->hash_is_final_ = true; } else { node->last_hashed_nodes_ = node->next_hashed_nodes_; stop = false; } } } } void Signature::OrderLinks() { for (const auto& node : nodes) { if (node->hashed_peers_.empty()) { continue; } size_t cur_link_hash = node->hashed_peers_[0].link_hash + 1; int first_idx = -1; int idx; for (idx = 0; idx < static_cast<int64_t>(node->hashed_peers_.size()); ++idx) { auto& entry = node->hashed_peers_[idx]; if (entry.link_hash == cur_link_hash) { continue; } if (idx - first_idx > 1) { std::sort(node->hashed_peers_.begin() + first_idx, node->hashed_peers_.begin() + idx, SigNode::HashedPeer::LessByRank()); } cur_link_hash = entry.link_hash; first_idx = idx; } if (idx - first_idx > 1) { std::sort(node->hashed_peers_.begin() + first_idx, node->hashed_peers_.begin() + idx, SigNode::HashedPeer::LessByRank()); } } } bool Signature::operator==(const Signature& other) const { if (sig_short != other.sig_short) { return false; } if (sig_full.size() != other.sig_full.size()) { return false; } for (auto it1 = sig_full.begin(), it2 = other.sig_full.begin(); it1 != sig_full.end(); ++it1, ++it2) { if (*it1 != *it2) { return false; } } if (nodes.size() != other.nodes.size()) { return false; } for (auto it1 = nodes.begin(), it2 = other.nodes.begin(); it1 != nodes.end(); ++it1, ++it2) { if (**it1 != **it2) { return false; } } return true; } } } }
#include "tensorflow/core/grappler/graph_analyzer/sig_node.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "absl/strings/str_format.h" #include "tensorflow/core/grappler/graph_analyzer/subgraph.h" #include "tensorflow/core/grappler/graph_analyzer/test_tools.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace graph_analyzer { namespace test { using ::testing::ElementsAre; using ::testing::Eq; using ::testing::Gt; using ::testing::Ne; using ::testing::SizeIs; TEST(SigNodeLinkTag, Compare) { SigNode::LinkTag a(GenNode::Port(false, 1), GenNode::Port(false, 2)); SigNode::LinkTag b(GenNode::Port(false, 1), GenNode::Port(false, 2)); SigNode::LinkTag c(GenNode::Port(false, 2), GenNode::Port(false, 1)); SigNode::LinkTag d(GenNode::Port(false, 1), GenNode::Port(false, 3)); SigNode::LinkTag e(GenNode::Port(false, 2), GenNode::Port(false, 2)); EXPECT_TRUE(a == b); EXPECT_FALSE(a == c); EXPECT_FALSE(a == e); EXPECT_FALSE(a < b); EXPECT_FALSE(b < a); EXPECT_TRUE(a < c); EXPECT_FALSE(c < a); EXPECT_TRUE(a < d); EXPECT_FALSE(d < a); } class SigBaseTest : public ::testing::Test, protected TestGraphs { protected: void BuildSigMap(const GraphDef& graph) { gen_map_.clear(); sig_.map.clear(); CHECK(GenNode::BuildGraphInMap(graph, &gen_map_).ok()); Subgraph::Identity id; for (const auto& entry : gen_map_) { id.insert(entry.second.get()); } Subgraph sg(id); sg.ExtractForSignature(&sig_.map); } static void CopyLinksPass2( std::map<SigNode::LinkTag, SigNode::Link>* link_map, SigNode* node) { node->CopyLinksPass2(link_map); } static void ComputeTopoHash0(SigNode* node) { node->ComputeTopoHash0(); } static void ComputeTopoHash(int distance, SigNode* node) { node->ComputeTopoHash(distance); } static size_t GetTopoHash(int distance, SigNode* node) { return node->GetTopoHash(distance); } static size_t GetHighTopoHash(SigNode* node) { return node->GetHighTopoHash(); } static void ReHighTopoHash(SigNode* node) { node->ReHighTopoHash(); } static SigNode::HashedPeerVector& RefHashedPeers(SigNode* node) { return node->hashed_peers_; } static size_t& RefUniqueRank(SigNode* node) { return node->unique_rank_; } static bool& RefHashIsFinal(SigNode* node) { return node->hash_is_final_; } static std::vector<size_t>& RefTopoHash(SigNode* node) { return node->topo_hash_; } static uint64_t& RefNodeMask(SigNode* node) { return node->node_mask_; } static uint64_t& RefLastHashedNodes(SigNode* node) { return node->last_hashed_nodes_; } static uint64_t& RefNextHashedNodes(SigNode* node) { return node->next_hashed_nodes_; } static void PrepareNodes(Signature* signature) { signature->PrepareNodes(); } static void FindUniqueHashes(size_t* next_node_id_p, Signature* signature) { signature->FindUniqueHashes(next_node_id_p); } static void ComputeOneRound(size_t next_node_id, Signature* signature) { signature->ComputeOneRound(next_node_id); } static void OrderLinks(Signature* signature) { signature->OrderLinks(); } GenNodeMap gen_map_; Signature sig_; }; class SigNodeTest : public SigBaseTest {}; TEST_F(SigNodeTest, DuplicateHash) { NodeDef node1 = MakeNodeConst("node1"); NodeDef node2 = MakeNodeConst("node2"); NodeDef node3 = MakeNodeShapeN("node3", "node1", "node2"); SigNode sn1(&node1); SigNode sn2(&node2); SigNode sn3(&node3); constexpr size_t kSameHash = 999; SigNode::Link link1; link1.tag = SigNode::LinkTag(GenNode::Port(true, 0), GenNode::Port(false, 0)); link1.unique_hash = kSameHash; link1.peers.emplace_back(&sn1); SigNode::Link link2; link2.tag = SigNode::LinkTag(GenNode::Port(true, 1), GenNode::Port(false, 0)); link2.unique_hash = kSameHash; link2.peers.emplace_back(&sn2); SigNode::Link link3; link3.tag = SigNode::LinkTag(GenNode::Port(true, 2), GenNode::Port(false, 0)); link3.unique_hash = kSameHash; link3.peers.emplace_back(&sn3); std::map<SigNode::LinkTag, SigNode::Link> link_map; link_map[link1.tag] = link1; link_map[link2.tag] = link2; link_map[link3.tag] = link3; CopyLinksPass2(&link_map, &sn3); auto& hl = sn3.hash_to_link(); EXPECT_THAT(hl, SizeIs(3)); std::map<SigNode::LinkTag, SigNode::Link> rehashed; auto hlit = hl.begin(); ASSERT_THAT(hlit, Ne(hl.end())); EXPECT_THAT(hlit->second.unique_hash, Eq(hlit->first)); rehashed[hlit->second.tag] = hlit->second; ++hlit; ASSERT_THAT(hlit, Ne(hl.end())); EXPECT_THAT(hlit->second.unique_hash, Eq(hlit->first)); rehashed[hlit->second.tag] = hlit->second; ++hlit; ASSERT_THAT(hlit, Ne(hl.end())); EXPECT_THAT(hlit->second.unique_hash, Eq(hlit->first)); rehashed[hlit->second.tag] = hlit->second; ASSERT_THAT(rehashed, SizeIs(3)); auto rhit = rehashed.begin(); ASSERT_THAT(rhit, Ne(rehashed.end())); EXPECT_TRUE(rhit->second.tag == link1.tag); EXPECT_THAT(rhit->second.unique_hash, Eq(kSameHash)); EXPECT_THAT(rhit->second.peers, ElementsAre(&sn1)); ++rhit; ASSERT_THAT(rhit, Ne(rehashed.end())); EXPECT_TRUE(rhit->second.tag == link2.tag); EXPECT_THAT(rhit->second.unique_hash, Ne(kSameHash)); size_t hash2 = rhit->second.unique_hash; EXPECT_THAT(rhit->second.peers, ElementsAre(&sn2)); ++rhit; ASSERT_THAT(rhit, Ne(rehashed.end())); EXPECT_TRUE(rhit->second.tag == link3.tag); EXPECT_THAT(rhit->second.unique_hash, Ne(kSameHash)); EXPECT_THAT(rhit->second.unique_hash, Ne(hash2)); size_t hash3 = rhit->second.unique_hash; EXPECT_THAT(rhit->second.peers, ElementsAre(&sn3)); auto& peers = sn3.hashed_peers(); EXPECT_THAT(peers, SizeIs(3)); auto peerit = peers.begin(); ASSERT_THAT(peerit, Ne(peers.end())); EXPECT_THAT(peerit->link_hash, Eq(kSameHash)); EXPECT_THAT(peerit->peer, Eq(&sn1)); ++peerit; ASSERT_THAT(peerit, Ne(peers.end())); EXPECT_THAT(peerit->link_hash, Eq(hash2)); EXPECT_THAT(peerit->peer, Eq(&sn2)); ++peerit; ASSERT_THAT(peerit, Ne(peers.end())); EXPECT_THAT(peerit->link_hash, Eq(hash3)); EXPECT_THAT(peerit->peer, Eq(&sn3)); } TEST_F(SigNodeTest, GetTopoHash) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); RefTopoHash(&sn1).emplace_back(123); RefTopoHash(&sn1).emplace_back(456); EXPECT_THAT(GetTopoHash(0, &sn1), Eq(123)); EXPECT_THAT(GetTopoHash(1, &sn1), Eq(456)); RefHashIsFinal(&sn1) = true; EXPECT_THAT(GetTopoHash(0, &sn1), Eq(123)); EXPECT_THAT(GetTopoHash(1, &sn1), Eq(456)); EXPECT_THAT(GetTopoHash(2, &sn1), Eq(456)); EXPECT_THAT(GetHighTopoHash(&sn1), Eq(456)); } TEST_F(SigNodeTest, ReTopoHash) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); RefTopoHash(&sn1).emplace_back(123); RefTopoHash(&sn1).emplace_back(456); EXPECT_THAT(GetTopoHash(0, &sn1), Eq(123)); EXPECT_THAT(GetTopoHash(1, &sn1), Eq(456)); ReHighTopoHash(&sn1); size_t expected_hash = 456; CombineHash(1, &expected_hash); EXPECT_THAT(GetTopoHash(0, &sn1), Eq(123)); EXPECT_THAT(GetTopoHash(1, &sn1), Eq(expected_hash)); } TEST_F(SigNodeTest, ComputeTopoHash0) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); RefUniqueRank(&sn1) = 10; RefNodeMask(&sn1) = 0x02; RefTopoHash(&sn1).emplace_back(123); RefTopoHash(&sn1).emplace_back(456); RefLastHashedNodes(&sn1) = 0xFF; RefNextHashedNodes(&sn1) = 0xFF; RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(1, nullptr)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(1, nullptr)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(2, nullptr)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(3, nullptr)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(3, nullptr)); ComputeTopoHash0(&sn1); EXPECT_THAT(RefLastHashedNodes(&sn1), Eq(0x02)); EXPECT_THAT(RefNextHashedNodes(&sn1), Eq(0x02)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(1)); size_t exp_hval = std::hash<string>()(sn1.opcode()); CombineHash(1, &exp_hval); CombineHash(1, &exp_hval); CombineHash(2, &exp_hval); CombineHash(3, &exp_hval); CombineHash(3, &exp_hval); EXPECT_THAT(GetTopoHash(0, &sn1), Eq(exp_hval)); } TEST_F(SigNodeTest, ComputeTopoHashNotFinal) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); NodeDef node3 = MakeNodeConst("node3"); SigNode sn3(&node3); RefUniqueRank(&sn1) = 0; RefNodeMask(&sn1) = 0x01; RefUniqueRank(&sn2) = 0; RefNodeMask(&sn2) = 0x02; RefUniqueRank(&sn3) = 0; RefNodeMask(&sn3) = 0x04; RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(10, &sn2)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(10, &sn3)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(20, &sn2)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(30, &sn3)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(30, &sn2)); RefTopoHash(&sn1).emplace_back(123); RefTopoHash(&sn1).emplace_back(321); RefTopoHash(&sn2).emplace_back(456); RefTopoHash(&sn2).emplace_back(654); RefTopoHash(&sn3).emplace_back(789); RefTopoHash(&sn3).emplace_back(987); RefLastHashedNodes(&sn1) = 0x8; RefLastHashedNodes(&sn2) = 0x10; RefLastHashedNodes(&sn3) = 0x20; RefNextHashedNodes(&sn1) = 0x100; ComputeTopoHash(2, &sn1); EXPECT_THAT(RefLastHashedNodes(&sn1), Eq(0x8)); EXPECT_THAT(RefNextHashedNodes(&sn1), Eq(0x38)); size_t exp_hash = 123; size_t comm_hash; comm_hash = 0; CombineHashCommutative(654, &comm_hash); CombineHashCommutative(987, &comm_hash); CombineHash(10, &exp_hash); CombineHash(comm_hash, &exp_hash); comm_hash = 0; CombineHashCommutative(654, &comm_hash); CombineHash(20, &exp_hash); CombineHash(comm_hash, &exp_hash); comm_hash = 0; CombineHashCommutative(654, &comm_hash); CombineHashCommutative(987, &comm_hash); CombineHash(30, &exp_hash); CombineHash(comm_hash, &exp_hash); EXPECT_THAT(GetTopoHash(2, &sn1), Eq(exp_hash)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(3)); } TEST_F(SigNodeTest, ComputeTopoHashFinal) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); NodeDef node3 = MakeNodeConst("node3"); SigNode sn3(&node3); RefUniqueRank(&sn1) = 0; RefNodeMask(&sn1) = 0x01; RefUniqueRank(&sn2) = 0; RefNodeMask(&sn2) = 0x02; RefUniqueRank(&sn3) = 0; RefNodeMask(&sn3) = 0x04; RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(10, &sn2)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(10, &sn3)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(20, &sn2)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(30, &sn3)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(30, &sn2)); RefTopoHash(&sn1).emplace_back(123); RefTopoHash(&sn1).emplace_back(321); RefTopoHash(&sn2).emplace_back(456); RefTopoHash(&sn2).emplace_back(654); RefTopoHash(&sn3).emplace_back(789); RefTopoHash(&sn3).emplace_back(987); RefLastHashedNodes(&sn1) = 0x8; RefLastHashedNodes(&sn2) = 0x10; RefLastHashedNodes(&sn3) = 0x20; RefNextHashedNodes(&sn1) = 0x100; RefHashIsFinal(&sn1) = true; ComputeTopoHash(2, &sn1); EXPECT_THAT(RefLastHashedNodes(&sn1), Eq(0x8)); EXPECT_THAT(RefNextHashedNodes(&sn1), Eq(0x8)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(2)); EXPECT_THAT(GetTopoHash(2, &sn1), Eq(321)); } TEST_F(SigNodeTest, EqualsOpcode) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); EXPECT_TRUE(sn1 == sn2); EXPECT_FALSE(sn1 != sn2); node2.set_op("Mul"); EXPECT_TRUE(sn1 != sn2); EXPECT_FALSE(sn1 == sn2); } TEST_F(SigNodeTest, EqualsRank) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); EXPECT_TRUE(sn1 == sn2); EXPECT_FALSE(sn1 != sn2); RefUniqueRank(&sn1) = 1; RefUniqueRank(&sn2) = 2; EXPECT_TRUE(sn1 != sn2); EXPECT_FALSE(sn1 == sn2); } TEST_F(SigNodeTest, EqualsLinkSize) { GraphDef graph1; (*graph1.add_node()) = MakeNodeConst("node1"); (*graph1.add_node()) = MakeNodeMul("node2", "node1", "node1"); GenNodeMap gen_map1; ASSERT_THAT(GenNode::BuildGraphInMap(graph1, &gen_map1), Eq(absl::OkStatus())); Subgraph::Identity id1; id1.insert(gen_map1["node1"].get()); id1.insert(gen_map1["node2"].get()); Subgraph sg1(id1); SigNodeMap sig_map1; sg1.ExtractForSignature(&sig_map1); GraphDef graph2; (*graph2.add_node()) = MakeNodeConst("node1"); auto node22 = graph2.add_node(); *node22 = MakeNodeMul("node2", "node1", "node1"); node22->add_input("node2"); GenNodeMap gen_map2; ASSERT_THAT(GenNode::BuildGraphInMap(graph2, &gen_map2), Eq(absl::OkStatus())); Subgraph::Identity id2; id2.insert(gen_map2["node1"].get()); id2.insert(gen_map2["node2"].get()); Subgraph sg2(id2); SigNodeMap sig_map2; sg2.ExtractForSignature(&sig_map2); EXPECT_TRUE(*sig_map1["node1"] == *sig_map2["node1"]); EXPECT_FALSE(*sig_map1["node2"] == *sig_map2["node2"]); EXPECT_FALSE(*sig_map2["node2"] == *sig_map1["node2"]); } TEST_F(SigNodeTest, EqualsLinks) { GraphDef graph1; (*graph1.add_node()) = MakeNodeConst("node1"); (*graph1.add_node()) = MakeNodeMul("node2", "node1", "node1"); GenNodeMap gen_map1; ASSERT_THAT(GenNode::BuildGraphInMap(graph1, &gen_map1), Eq(absl::OkStatus())); Subgraph::Identity id1; id1.insert(gen_map1["node1"].get()); id1.insert(gen_map1["node2"].get()); Subgraph sg1(id1); SigNodeMap sig_map1; sg1.ExtractForSignature(&sig_map1); GenNodeMap gen_map2; ASSERT_THAT(GenNode::BuildGraphInMap(graph1, &gen_map2), Eq(absl::OkStatus())); Subgraph::Identity id2; id2.insert(gen_map2["node1"].get()); id2.insert(gen_map2["node2"].get()); Subgraph sg2(id2); SigNodeMap sig_map2; sg2.ExtractForSignature(&sig_map2); EXPECT_TRUE(*sig_map1["node1"] == *sig_map2["node1"]); EXPECT_TRUE(*sig_map1["node2"] == *sig_map2["node2"]); SigNode* sn2 = sig_map2["node2"].get(); ++RefHashedPeers(sn2)[0].link_hash; EXPECT_FALSE(*sig_map1["node2"] == *sig_map2["node2"]); --RefHashedPeers(sn2)[0].link_hash; EXPECT_TRUE(*sig_map1["node2"] == *sig_map2["node2"]); ++RefUniqueRank(sig_map2["node1"].get()); EXPECT_FALSE(*sig_map1["node2"] == *sig_map2["node2"]); } class SignatureTest : public SigBaseTest { protected: static void InitPermutation(size_t size, std::vector<size_t>* plain_permutation, std::vector<size_t>* countdown) { plain_permutation->clear(); countdown->clear(); for (size_t i = 0; i < size; ++i) { plain_permutation->emplace_back(i); countdown->emplace_back(size - 1 - i); } } static void BuildPermutation(const std::vector<size_t>& plain_permutation, const std::vector<size_t>& countdown, std::vector<size_t>* result) { *result = plain_permutation; for (int i = 0; i < result->size(); ++i) { std::swap((*result)[i], (*result)[i + countdown[i]]); } } static bool CountDown(std::vector<size_t>* countdown) { int pos; for (pos = countdown->size() - 2; pos >= 0; --pos) { if ((*countdown)[pos] > 0) { --(*countdown)[pos]; break; } (*countdown)[pos] = (countdown->size() - 1 - pos); } return pos >= 0; } void TestGraphEveryWay(const GraphDef& graph) { size_t graph_size = graph.node_size(); gen_map_.clear(); sig_.map.clear(); Status result = GenNode::BuildGraphInMap(graph, &gen_map_); ASSERT_THAT(result, Eq(absl::OkStatus())); Subgraph::Identity id; for (const auto& entry : gen_map_) { id.insert(entry.second.get()); } Subgraph sg(id); sg.ExtractForSignature(&sig_.map); std::vector<size_t> plain_permutation; std::vector<size_t> countdown; InitPermutation(graph_size, &plain_permutation, &countdown); std::set<string> signatures; std::vector<size_t> permutation; do { BuildPermutation(plain_permutation, countdown, &permutation); constexpr bool kDebugPermutation = false; if (kDebugPermutation) { string p; for (int i = 0; i < permutation.size(); ++i) { p.push_back('0' + permutation[i]); } LOG(INFO) << "Permutation: " << p; } std::vector<std::unique_ptr<SigNode>> hold(graph_size); int idx; sig_.nodes.clear(); idx = 0; if (kDebugPermutation) { LOG(INFO) << " nodes before permutation:"; } for (auto& entry : sig_.map) { if (kDebugPermutation) { LOG(INFO) << " " << entry.second.get(); } hold[idx++] = std::move(entry.second); } idx = 0; if (kDebugPermutation) { LOG(INFO) << " nodes after permutation:"; } for (auto& entry : sig_.map) { entry.second = std::move(hold[permutation[idx++]]); if (kDebugPermutation) { LOG(INFO) << " " << entry.second.get(); } sig_.nodes.emplace_back(entry.second.get()); RefUniqueRank(entry.second.get()) = idx; } OrderLinks(&sig_); ASSERT_THAT(sig_.Compute(), Eq(absl::OkStatus())); signatures.insert(sig_.ToString()); EXPECT_THAT(sig_.sig_full, SizeIs(graph_size)); size_t hval = 0; for (size_t ih : sig_.sig_full) { EXPECT_THAT(ih, Gt(graph_size)); CombineHash(ih, &hval); } EXPECT_THAT(sig_.sig_short, Eq(hval)); idx = 0; for (auto& entry : sig_.map) { hold[permutation[idx++]] = std::move(entry.second); } idx = 0; if (kDebugPermutation) { LOG(INFO) << " nodes after un-permutation:"; } for (auto& entry : sig_.map) { entry.second = std::move(hold[idx++]); if (kDebugPermutation) { LOG(INFO) << " " << entry.second.get(); } } } while (CountDown(&countdown)); for (const auto& s : signatures) { LOG(INFO) << "Signature: " << s; } EXPECT_THAT(signatures, SizeIs(1)); } }; TEST_F(SignatureTest, PrepareNodes) { NodeDef node1 = MakeNodeConst("node1"); sig_.map["node1"] = std::make_unique<SigNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); sig_.map["node2"] = std::make_unique<SigNode>(&node2); NodeDef node3 = MakeNodeConst("node3"); sig_.map["node3"] = std::make_unique<SigNode>(&node3); PrepareNodes(&sig_); ASSERT_THAT(sig_.nodes, SizeIs(3)); int idx = 0; for (const auto& entry : sig_.map) { EXPECT_THAT(RefNodeMask(entry.second.get()), Eq(1 << idx)) << " at index " << idx; EXPECT_THAT(RefUniqueRank(entry.second.get()), Eq(static_cast<size_t>(~0))) << " at index " << idx; EXPECT_THAT(RefHashIsFinal(entry.second.get()), false) << " at index " << idx; EXPECT_THAT(RefTopoHash(entry.second.get()), SizeIs(1)) << " at index " << idx; ++idx; } } TEST_F(SignatureTest, FindUniqueHashesAllDifferent) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); NodeDef node3 = MakeNodeConst("node3"); SigNode sn3(&node3); NodeDef node4 = MakeNodeConst("node4"); SigNode sn4(&node4); RefTopoHash(&sn1).emplace_back(100); RefTopoHash(&sn1).emplace_back(900); RefTopoHash(&sn2).emplace_back(200); RefTopoHash(&sn2).emplace_back(800); RefTopoHash(&sn3).emplace_back(300); RefTopoHash(&sn3).emplace_back(700); RefTopoHash(&sn4).emplace_back(400); RefTopoHash(&sn4).emplace_back(600); sig_.nodes.emplace_back(&sn1); sig_.nodes.emplace_back(&sn2); sig_.nodes.emplace_back(&sn3); sig_.nodes.emplace_back(&sn4); size_t next = 1; FindUniqueHashes(&next, &sig_); EXPECT_THAT(next, Eq(4)); EXPECT_THAT(sig_.nodes[0], Eq(&sn1)); EXPECT_THAT(sig_.nodes[1], Eq(&sn4)); EXPECT_THAT(sig_.nodes[2], Eq(&sn3)); EXPECT_THAT(sig_.nodes[3], Eq(&sn2)); EXPECT_THAT(RefHashIsFinal(&sn1), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn2), Eq(true)); EXPECT_THAT(RefHashIsFinal(&sn3), Eq(true)); EXPECT_THAT(RefHashIsFinal(&sn4), Eq(true)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(2)); ASSERT_THAT(RefTopoHash(&sn2), SizeIs(1)); ASSERT_THAT(RefTopoHash(&sn3), SizeIs(1)); ASSERT_THAT(RefTopoHash(&sn4), SizeIs(1)); EXPECT_THAT(RefTopoHash(&sn2)[0], Eq(4)); EXPECT_THAT(RefTopoHash(&sn3)[0], Eq(3)); EXPECT_THAT(RefTopoHash(&sn4)[0], Eq(2)); EXPECT_THAT(sig_.sig_full, ElementsAre(600, 700, 800)); size_t exp_short_hash = 0; CombineHash(600, &exp_short_hash); CombineHash(700, &exp_short_hash); CombineHash(800, &exp_short_hash); EXPECT_THAT(sig_.sig_short, Eq(exp_short_hash)); } TEST_F(SignatureTest, FindUniqueHashesDuplicatesExceptOne) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); NodeDef node3 = MakeNodeConst("node3"); SigNode sn3(&node3); NodeDef node4 = MakeNodeConst("node4"); SigNode sn4(&node4); NodeDef node5 = MakeNodeConst("node5"); SigNode sn5(&node5); RefTopoHash(&sn1).emplace_back(100); RefTopoHash(&sn1).emplace_back(600); RefTopoHash(&sn2).emplace_back(200); RefTopoHash(&sn2).emplace_back(600); RefTopoHash(&sn3).emplace_back(300); RefTopoHash(&sn3).emplace_back(700); RefTopoHash(&sn4).emplace_back(400); RefTopoHash(&sn4).emplace_back(800); RefTopoHash(&sn5).emplace_back(500); RefTopoHash(&sn5).emplace_back(800); sig_.nodes.emplace_back(&sn1); sig_.nodes.emplace_back(&sn2); sig_.nodes.emplace_back(&sn3); sig_.nodes.emplace_back(&sn4); sig_.nodes.emplace_back(&sn5); size_t next = 0; FindUniqueHashes(&next, &sig_); EXPECT_THAT(next, Eq(1)); EXPECT_THAT(sig_.nodes[0], Eq(&sn3)); EXPECT_THAT(sig_.nodes[1], Eq(&sn2)); EXPECT_THAT(sig_.nodes[2], Eq(&sn1)); EXPECT_THAT(sig_.nodes[3], Eq(&sn4)); EXPECT_THAT(sig_.nodes[4], Eq(&sn5)); EXPECT_THAT(RefHashIsFinal(&sn1), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn2), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn3), Eq(true)); EXPECT_THAT(RefHashIsFinal(&sn4), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn5), Eq(false)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn2), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn3), SizeIs(1)); EXPECT_THAT(RefTopoHash(&sn4), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn5), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn3)[0], Eq(1)); } TEST_F(SignatureTest, FindUniqueHashesDuplicates) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); NodeDef node3 = MakeNodeConst("node3"); SigNode sn3(&node3); NodeDef node4 = MakeNodeConst("node4"); SigNode sn4(&node4); NodeDef node5 = MakeNodeConst("node5"); SigNode sn5(&node5); RefTopoHash(&sn1).emplace_back(100); RefTopoHash(&sn1).emplace_back(600); RefTopoHash(&sn2).emplace_back(200); RefTopoHash(&sn2).emplace_back(600); RefTopoHash(&sn3).emplace_back(300); RefTopoHash(&sn3).emplace_back(700); RefTopoHash(&sn4).emplace_back(400); RefTopoHash(&sn4).emplace_back(700); RefTopoHash(&sn5).emplace_back(500); RefTopoHash(&sn5).emplace_back(700); sig_.nodes.emplace_back(&sn1); sig_.nodes.emplace_back(&sn2); sig_.nodes.emplace_back(&sn3); sig_.nodes.emplace_back(&sn4); sig_.nodes.emplace_back(&sn5); size_t next = 0; FindUniqueHashes(&next, &sig_); EXPECT_THAT(next, Eq(1)); EXPECT_THAT(sig_.nodes[0], Eq(&sn5)); EXPECT_THAT(sig_.nodes[1], Eq(&sn2)); EXPECT_THAT(sig_.nodes[2], Eq(&sn3)); EXPECT_THAT(sig_.nodes[3], Eq(&sn4)); EXPECT_THAT(sig_.nodes[4], Eq(&sn1)); EXPECT_THAT(RefHashIsFinal(&sn1), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn2), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn3), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn4), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn5), Eq(true)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn2), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn3), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn4), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn5), SizeIs(1)); EXPECT_THAT(RefTopoHash(&sn5)[0], Eq(1)); } TEST_F(SignatureTest, ComputeOneRoundCircular) { BuildSigMap(graph_circular_onedir_); PrepareNodes(&sig_); ASSERT_THAT(sig_.nodes, SizeIs(5)); ComputeOneRound(0, &sig_); size_t hval = GetHighTopoHash(sig_.nodes[0]); for (int i = 0; i < 5; ++i) { EXPECT_THAT(GetHighTopoHash(sig_.nodes[i]), Eq(hval)) << " at index " << i; EXPECT_THAT(RefHashIsFinal(sig_.nodes[i]), Eq(true)) << " at index " << i; EXPECT_THAT(RefLastHashedNodes(sig_.nodes[i]), Eq(0x1F)) << " at index " << i; EXPECT_THAT(RefNextHashedNodes(sig_.nodes[i]), Eq(0x1F)) << " at index " << i; EXPECT_THAT(RefTopoHash(sig_.nodes[i]), SizeIs(4)) << " at index " << i; } } TEST_F(SignatureTest, ComputeOneRoundLinear) { BuildSigMap(graph_linear_); PrepareNodes(&sig_); ASSERT_THAT(sig_.nodes, SizeIs(5)); ComputeOneRound(0, &sig_); std::vector<size_t> hash_size; for (int i = 0; i < 5; ++i) { EXPECT_THAT(RefHashIsFinal(sig_.nodes[i]), Eq(true)) << " at index " << i; EXPECT_THAT(RefLastHashedNodes(sig_.nodes[i]), Eq(0x1F)) << " at index " << i; EXPECT_THAT(RefNextHashedNodes(sig_.nodes[i]), Eq(0x1F)) << " at index " << i; hash_size.emplace_back(RefTopoHash(sig_.nodes[i]).size()); } std::sort(hash_size.begin(), hash_size.end()); EXPECT_THAT(hash_size, ElementsAre(4, 5, 5, 6, 6)); } TEST_F(SignatureTest, ComputeOneRoundSplitLinear) { BuildSigMap(graph_linear_); PrepareNodes(&sig_); ASSERT_THAT(sig_.nodes, SizeIs(5)); std::swap(sig_.nodes[0], sig_.nodes[2]); ASSERT_THAT(RefNodeMask(sig_.nodes[0]), Eq(0x04)); ASSERT_THAT(RefLastHashedNodes(sig_.nodes[0]), Eq(0x04)); ASSERT_THAT(RefNextHashedNodes(sig_.nodes[0]), Eq(0x04)); RefHashIsFinal(sig_.nodes[0]) = true; ComputeOneRound(1, &sig_); EXPECT_THAT(RefLastHashedNodes(sig_.nodes[0]), Eq(0x04)); EXPECT_THAT(RefNextHashedNodes(sig_.nodes[0]), Eq(0x04)); std::vector<size_t> hash_size; for (int i = 1; i < 5; ++i) { EXPECT_THAT(RefHashIsFinal(sig_.nodes[i]), Eq(true)) << " at index " << i; hash_size.emplace_back(RefTopoHash(sig_.nodes[i]).size()); } std::sort(hash_size.begin(), hash_size.end()); EXPECT_THAT(hash_size, ElementsAre(3, 3, 4, 4)); EXPECT_THAT(RefLastHashedNodes(sig_.nodes[1]), Eq(0x07)); EXPECT_THAT(RefNextHashedNodes(sig_.nodes[1]), Eq(0x07)); EXPECT_THAT(RefLastHashedNodes(sig_.nodes[2]), Eq(0x07)); EXPECT_THAT(RefNextHashedNodes(sig_.nodes[2]), Eq(0x07)); EXPECT_THAT(RefLastHashedNodes(sig_.nodes[3]), Eq(0x1C)); EXPECT_THAT(RefNextHashedNodes(sig_.nodes[3]), Eq(0x1C)); EXPECT_THAT(RefLastHashedNodes(sig_.nodes[4]), Eq(0x1C)); EXPECT_THAT(RefNextHashedNodes(sig_.nodes[4]), Eq(0x1C)); } TEST_F(SignatureTest, OrderLinks) { gen_map_.clear(); sig_.map.clear(); Status result = GenNode::BuildGraphInMap(graph_for_link_order_, &gen_map_); ASSERT_THAT(result, Eq(absl::OkStatus())); Subgraph::Identity id; for (const auto& entry : gen_map_) { id.insert(entry.second.get()); } Subgraph sg(id); sg.ExtractForSignature(&sig_.map); for (auto it = sig_.map.rbegin(); it != sig_.map.rend(); ++it) { auto& entry = *it; RefUniqueRank(entry.second.get()) = sig_.nodes.size(); sig_.nodes.emplace_back(entry.second.get()); } string before = sig_.ToString(); EXPECT_THAT(before, Eq( "0:Mul[i0:o0:5][i0:o0:4][i0:o1:4][i0:o2:3][i0:o2:2][i0:o3:2]," "1:Mul[i0:o0:5][i0:o0:4][i0:o0:3][i0:o0:2]," "2:Const," "3:Const," "4:Const," "5:Const," )); OrderLinks(&sig_); string after = sig_.ToString(); EXPECT_THAT(after, Eq( "0:Mul[i0:o0:4][i0:o0:5][i0:o1:4][i0:o2:2][i0:o2:3][i0:o3:2]," "1:Mul[i0:o0:2][i0:o0:3][i0:o0:4][i0:o0:5]," "2:Const," "3:Const," "4:Const," "5:Const," )); } TEST_F(SignatureTest, GraphTooBig) { GraphDef graph; for (int i = 0; i <= Signature::kMaxGraphSize; ++i) { (*graph.add_node()) = MakeNodeConst(absl::StrFormat("node%d", i)); } ASSERT_THAT(GenNode::BuildGraphInMap(graph, &gen_map_), Eq(absl::OkStatus())); Subgraph::Identity id; for (const auto& entry : gen_map_) { id.insert(entry.second.get()); } Subgraph sg(id); sg.ExtractForSignature(&sig_.map); ASSERT_THAT(sig_.Compute(), Eq(Status(absl::StatusCode::kInvalidArgument, "A graph of 65 nodes is too big for signature " "computation, the maximal supported node count is " "64."))); } TEST_F(SignatureTest, ToString) { BuildSigMap(graph_circular_onedir_); PrepareNodes(&sig_); ASSERT_THAT(sig_.nodes, SizeIs(5)); for (int i = 0; i < 5; ++i) { RefUniqueRank(sig_.nodes[i]) = i; RefHashIsFinal(sig_.nodes[i]) = true; } string result = sig_.ToString(); ASSERT_THAT(result, Eq( "0:Mul[i0:o0:4][i0:o0:4]," "1:Mul[i0:o0:0][i0:o0:0]," "2:Mul[i0:o0:1][i0:o0:1]," "3:Mul[i0:o0:2][i0:o0:2]," "4:Mul[i0:o0:3][i0:o0:3]," )); } TEST_F(SignatureTest, Permutation) { std::vector<size_t> plain_permutation; std::vector<size_t> countdown; InitPermutation(5, &plain_permutation, &countdown); std::set<string> results; std::vector<size_t> permutation; do { BuildPermutation(plain_permutation, countdown, &permutation); EXPECT_THAT(permutation, SizeIs(5)); string p; for (int i = 0; i < permutation.size(); ++i) { p.push_back('0' + permutation[i]); } LOG(INFO) << "Permutation: " << p; results.insert(p); } while (CountDown(&countdown)); EXPECT_THAT(results, SizeIs(5 * 4 * 3 * 2 * 1)); } TEST_F(SignatureTest, ComputeCircularOneDir) { TestGraphEveryWay(graph_circular_onedir_); } TEST_F(SignatureTest, ComputeCircularBiDir) { TestGraphEveryWay(graph_circular_bidir_); } TEST_F(SignatureTest, ComputeLinear) { TestGraphEveryWay(graph_linear_); } TEST_F(SignatureTest, ComputeMultiInput) { TestGraphEveryWay(graph_multi_input_); } TEST_F(SignatureTest, ComputeAllOrNone) { TestGraphEveryWay(graph_all_or_none_); } TEST_F(SignatureTest, ComputeCross) { TestGraphEveryWay(graph_small_cross_); } TEST_F(SignatureTest, Equals) { GenNodeMap gen_map1; ASSERT_THAT(GenNode::BuildGraphInMap(graph_circular_bidir_, &gen_map1), Eq(absl::OkStatus())); Subgraph::Identity id1; id1.insert(gen_map1["node1"].get()); id1.insert(gen_map1["node2"].get()); Subgraph sg1(id1); Signature sig1; sg1.ExtractForSignature(&sig1.map); ASSERT_THAT(sig1.Compute(), Eq(absl::OkStatus())); GenNodeMap gen_map2; ASSERT_THAT(GenNode::BuildGraphInMap(graph_circular_bidir_, &gen_map2), Eq(absl::OkStatus())); Subgraph::Identity id2; id2.insert(gen_map2["node1"].get()); id2.insert(gen_map2["node2"].get()); Subgraph sg2(id2); Signature sig2; sg2.ExtractForSignature(&sig2.map); ASSERT_THAT(sig2.Compute(), Eq(absl::OkStatus())); EXPECT_TRUE(sig1 == sig2); ++sig2.sig_short; EXPECT_FALSE(sig1 == sig2); --sig2.sig_short; EXPECT_TRUE(sig1 == sig2); ++sig2.sig_full[0]; EXPECT_FALSE(sig1 == sig2); --sig2.sig_full[0]; EXPECT_TRUE(sig1 == sig2); std::swap(sig2.nodes[0], sig2.nodes[1]); EXPECT_FALSE(sig1 == sig2); std::swap(sig2.nodes[0], sig2.nodes[1]); EXPECT_TRUE(sig1 == sig2); sig2.nodes.emplace_back(sig2.nodes[0]); EXPECT_FALSE(sig1 == sig2); EXPECT_FALSE(sig2 == sig1); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_analyzer/sig_node.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_analyzer/sig_node_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
21b1cf8f-e548-408a-b9f8-3c49c1a4d992
cpp
tensorflow/tensorflow
graph_analyzer
tensorflow/core/grappler/graph_analyzer/graph_analyzer.cc
tensorflow/core/grappler/graph_analyzer/graph_analyzer_test.cc
#include <deque> #include <iostream> #include "absl/memory/memory.h" #include "absl/strings/str_format.h" #include "tensorflow/core/grappler/graph_analyzer/gen_node.h" #include "tensorflow/core/grappler/graph_analyzer/graph_analyzer.h" #include "tensorflow/core/grappler/graph_analyzer/sig_node.h" namespace tensorflow { namespace grappler { namespace graph_analyzer { GraphAnalyzer::GraphAnalyzer(const GraphDef& graph, int subgraph_size) : graph_(graph), subgraph_size_(subgraph_size) {} GraphAnalyzer::~GraphAnalyzer() {} Status GraphAnalyzer::Run() { if (subgraph_size_ > Signature::kMaxGraphSize) { return Status(absl::StatusCode::kInvalidArgument, absl::StrFormat("Subgraphs of %d nodes are not supported, " "the maximal supported node count is %d.", subgraph_size_, Signature::kMaxGraphSize)); } Status st = BuildMap(); if (!st.ok()) { return st; } FindSubgraphs(); DropInvalidSubgraphs(); st = CollateResult(); if (!st.ok()) { return st; } return absl::OkStatus(); } Status GraphAnalyzer::BuildMap() { nodes_.clear(); return GenNode::BuildGraphInMap(graph_, &nodes_); } void GraphAnalyzer::FindSubgraphs() { result_.clear(); if (subgraph_size_ < 1) { return; } partial_.clear(); todo_.clear(); const Subgraph::Identity empty_parent; for (const auto& node : nodes_) { if (subgraph_size_ == 1) { result_.ExtendParent(empty_parent, node.second.get()); } else { todo_.push_back(partial_.ExtendParent(empty_parent, node.second.get())); } } while (!todo_.empty()) { ExtendSubgraph(todo_.front()); todo_.pop_front(); } partial_.clear(); } void GraphAnalyzer::ExtendSubgraph(Subgraph* parent) { const int next_parent_id = parent->id().size() + 1; bool will_complete = (next_parent_id == subgraph_size_); SubgraphPtrSet& sg_set = will_complete ? result_ : partial_; const GenNode* last_all_or_none_node = nullptr; for (SubgraphIterator sit(parent); !sit.AtEnd(); sit.Next()) { const GenNode* node = sit.GetNode(); GenNode::Port port = sit.GetPort(); const GenNode::LinkTarget& neighbor = sit.GetNeighbor(); if (node->AllInputsOrNone() && port.IsInbound() && !port.IsControl()) { if (node != last_all_or_none_node) { ExtendSubgraphAllOrNone(parent, node); last_all_or_none_node = node; } sit.SkipPort(); } else if (neighbor.node->AllInputsOrNone() && !port.IsInbound() && !port.IsControl()) { if (parent->id().find(neighbor.node) == parent->id().end()) { ExtendSubgraphAllOrNone(parent, neighbor.node); } } else if (node->IsMultiInput(port)) { ExtendSubgraphPortAllOrNone(parent, node, port); sit.SkipPort(); } else if (neighbor.node->IsMultiInput(neighbor.port)) { if (parent->id().find(neighbor.node) != parent->id().end()) { continue; } ExtendSubgraphPortAllOrNone(parent, neighbor.node, neighbor.port); } else { Subgraph* sg = sg_set.ExtendParent(parent->id(), neighbor.node); if (!will_complete && sg != nullptr) { todo_.push_back(sg); } } } } void GraphAnalyzer::ExtendSubgraphAllOrNone(Subgraph* parent, const GenNode* node) { Subgraph::Identity id = parent->id(); id.insert(node); auto range_end = node->links().end(); for (auto nbit = node->links().begin(); nbit != range_end; ++nbit) { auto port = nbit->first; if (!port.IsInbound() || port.IsControl()) { continue; } for (const auto& link : nbit->second) { id.insert(link.node); const int id_size = id.size(); if (id_size > subgraph_size_) { return; } } } AddExtendedSubgraph(parent, id); } void GraphAnalyzer::ExtendSubgraphPortAllOrNone(Subgraph* parent, const GenNode* node, GenNode::Port port) { auto nbit = node->links().find(port); if (nbit == node->links().end()) { return; } Subgraph::Identity id = parent->id(); id.insert(node); for (const auto& link : nbit->second) { id.insert(link.node); const int id_size = id.size(); if (id_size > subgraph_size_) { return; } } AddExtendedSubgraph(parent, id); } void GraphAnalyzer::AddExtendedSubgraph(Subgraph* parent, const Subgraph::Identity& id) { if (id.size() == parent->id().size()) { return; } auto sg = std::make_unique<Subgraph>(id); SubgraphPtrSet& spec_sg_set = (id.size() == subgraph_size_) ? result_ : partial_; if (spec_sg_set.find(sg) != spec_sg_set.end()) { return; } const int id_size = id.size(); if (id_size != subgraph_size_) { todo_.push_back(sg.get()); } spec_sg_set.insert(std::move(sg)); } void GraphAnalyzer::DropInvalidSubgraphs() { auto resit = result_.begin(); while (resit != result_.end()) { if (HasInvalidMultiInputs(resit->get())) { auto delit = resit; ++resit; result_.erase(delit); } else { ++resit; } } } bool GraphAnalyzer::HasInvalidMultiInputs(Subgraph* sg) { for (auto const& node : sg->id()) { if (!node->AllInputsOrNone()) { continue; } bool anyIn = false; bool anyOut = false; auto range_end = node->links().end(); for (auto nbit = node->links().begin(); nbit != range_end; ++nbit) { auto port = nbit->first; if (!port.IsInbound() || port.IsControl()) { continue; } for (const auto& link : nbit->second) { if (sg->id().find(link.node) == sg->id().end()) { anyOut = true; } else { anyIn = true; } } } if (anyIn && anyOut) { return true; } } for (SubgraphIterator sit(sg); !sit.AtEnd(); sit.Next()) { if (sit.GetNode()->IsMultiInput(sit.GetPort())) { bool anyIn = false; bool anyOut = false; do { GenNode* peer = sit.GetNeighbor().node; if (sg->id().find(peer) == sg->id().end()) { anyOut = true; } else { anyIn = true; } } while (sit.NextIfSamePort()); if (anyIn && anyOut) { return true; } } } return false; } Status GraphAnalyzer::CollateResult() { ordered_collation_.clear(); collation_map_.clear(); for (const auto& it : result_) { auto sig = std::make_unique<Signature>(); it->ExtractForSignature(&sig->map); Status status = sig->Compute(); if (!status.ok()) { return status; } auto& coll_entry = collation_map_[sig.get()]; if (coll_entry.sig == nullptr) { coll_entry.sig = std::move(sig); } ++coll_entry.count; } for (auto& entry : collation_map_) { ordered_collation_.insert(&entry.second); } result_.clear(); return absl::OkStatus(); } std::vector<string> GraphAnalyzer::DumpRawSubgraphs() { std::vector<string> result; for (const auto& it : result_) { result.emplace_back(it->Dump()); } return result; } std::vector<string> GraphAnalyzer::DumpSubgraphs() { std::vector<string> result; for (auto ptr : ordered_collation_) { result.emplace_back( absl::StrFormat("%d %s", ptr->count, ptr->sig->ToString())); } return result; } Status GraphAnalyzer::OutputSubgraphs() { size_t total = 0; for (auto ptr : ordered_collation_) { std::cout << ptr->count << ' ' << ptr->sig->ToString() << '\n'; total += ptr->count; } std::cout << "Total: " << total << '\n'; if (std::cout.fail()) { return Status(absl::StatusCode::kDataLoss, "Failed to write to stdout"); } else { return absl::OkStatus(); } } } } }
#include "tensorflow/core/grappler/graph_analyzer/graph_analyzer.h" #include <algorithm> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "tensorflow/core/grappler/graph_analyzer/test_tools.h" namespace tensorflow { namespace grappler { namespace graph_analyzer { namespace test { using ::testing::ElementsAre; using ::testing::Eq; using ::testing::Ne; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; class GraphAnalyzerTest : public ::testing::Test, protected TestGraphs { protected: Status BuildMap() { return gran_->BuildMap(); } void FindSubgraphs() { gran_->FindSubgraphs(); } void DropInvalidSubgraphs() { gran_->DropInvalidSubgraphs(); } Status CollateResult() { return gran_->CollateResult(); } void ExtendSubgraph(Subgraph* parent) { gran_->ExtendSubgraph(parent); } void ExtendSubgraphPortAllOrNone(Subgraph* parent, GenNode* node, GenNode::Port port) { gran_->ExtendSubgraphPortAllOrNone(parent, node, port); } void ExtendSubgraphAllOrNone(Subgraph* parent, GenNode* node) { gran_->ExtendSubgraphAllOrNone(parent, node); } std::vector<string> DumpRawSubgraphs() { return gran_->DumpRawSubgraphs(); } std::vector<string> DumpPartials() { std::vector<string> result; for (const auto& it : gran_->partial_) { result.emplace_back(it->Dump()); } return result; } const GenNodeMap& GetNodes() { return gran_->nodes_; } GenNode* GetNode(const string& name) { return gran_->nodes_.at(name).get(); } SubgraphPtrSet& GetResult() { return gran_->result_; } SubgraphPtrSet& GetPartial() { return gran_->partial_; } std::deque<Subgraph*>& GetTodo() { return gran_->todo_; } std::unique_ptr<GraphAnalyzer> gran_; }; TEST_F(GraphAnalyzerTest, BuildMap) { gran_ = std::make_unique<GraphAnalyzer>(graph_3n_self_control_, 1); Status st = BuildMap(); EXPECT_THAT(st, Eq(absl::OkStatus())); auto& map = GetNodes(); EXPECT_THAT(map.find("node1"), Ne(map.end())); EXPECT_THAT(map.find("node2"), Ne(map.end())); EXPECT_THAT(map.find("node3"), Ne(map.end())); } TEST_F(GraphAnalyzerTest, BuildMapError) { (*graph_3n_self_control_.add_node()) = MakeNodeConst("node1"); gran_ = std::make_unique<GraphAnalyzer>(graph_3n_self_control_, 1); Status st = BuildMap(); ASSERT_THAT(st, Eq(Status(absl::StatusCode::kInvalidArgument, "Duplicate node name 'node1'."))); } TEST_F(GraphAnalyzerTest, FindSubgraphs0) { gran_ = std::make_unique<GraphAnalyzer>(graph_3n_self_control_, 0); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); FindSubgraphs(); auto& subgraphs = GetResult(); EXPECT_THAT(subgraphs, SizeIs(0)); EXPECT_THAT(DumpRawSubgraphs(), ElementsAre()); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, FindSubgraphs1) { gran_ = std::make_unique<GraphAnalyzer>(graph_3n_self_control_, 1); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); FindSubgraphs(); auto& subgraphs = GetResult(); EXPECT_THAT(subgraphs, SizeIs(3)); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: BroadcastGradientArgs(node3)", "1: Const(node1)", "1: Sub(node2)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, FindSubgraphsTooLarge) { gran_ = std::make_unique<GraphAnalyzer>(graph_3n_self_control_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); FindSubgraphs(); EXPECT_THAT(DumpRawSubgraphs(), ElementsAre()); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, MultiInputSuccessBackwardsBaseIn) { gran_ = std::make_unique<GraphAnalyzer>(graph_multi_input_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("add2")})); ExtendSubgraphPortAllOrNone(root.get(), GetNode("add2"), GenNode::Port(true, 0)); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: AddN(add2), Const(const2_1), Const(const2_2), Const(const2_3)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, MultiInputSuccessBackwardsBaseOut) { gran_ = std::make_unique<GraphAnalyzer>(graph_multi_input_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto parent = std::make_unique<Subgraph>(Subgraph::Identity()); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("add2")})); ExtendSubgraphPortAllOrNone(parent.get(), GetNode("add2"), GenNode::Port(true, 0)); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: AddN(add2), Const(const2_1), Const(const2_2), Const(const2_3)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, MultiInputSuccessBackwardsIncomplete) { gran_ = std::make_unique<GraphAnalyzer>(graph_multi_input_, 5); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("add2")})); ExtendSubgraphPortAllOrNone(root.get(), GetNode("add2"), GenNode::Port(true, 0)); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre()); EXPECT_THAT(DumpPartials(), UnorderedElementsAre( "1: AddN(add2), Const(const2_1), Const(const2_2), Const(const2_3)" )); EXPECT_THAT(GetTodo(), SizeIs(1)); } TEST_F(GraphAnalyzerTest, MultiInputTooLargeBackwards) { gran_ = std::make_unique<GraphAnalyzer>(graph_multi_input_, 3); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("add2")})); ExtendSubgraphPortAllOrNone(root.get(), GetNode("add2"), GenNode::Port(true, 0)); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre()); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, MultiInputNothingAddedBackwards) { gran_ = std::make_unique<GraphAnalyzer>(graph_multi_input_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>( Subgraph::Identity({GetNode("add2"), GetNode("const2_1"), GetNode("const2_2"), GetNode("const2_3")})); ExtendSubgraphPortAllOrNone(root.get(), GetNode("add2"), GenNode::Port(true, 0)); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre()); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, MultiInputSuccessForwardsBaseOut) { gran_ = std::make_unique<GraphAnalyzer>(graph_multi_input_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("const2_1")})); ExtendSubgraphPortAllOrNone(root.get(), GetNode("add2"), GenNode::Port(true, 0)); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: AddN(add2), Const(const2_1), Const(const2_2), Const(const2_3)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, MultiInputSuccessBackwardsFull) { gran_ = std::make_unique<GraphAnalyzer>(graph_multi_input_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("add2")})); ExtendSubgraph(root.get()); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: AddN(add2), Const(const2_1), Const(const2_2), Const(const2_3)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre( "1: AddN(add2), Sub(sub)" )); EXPECT_THAT(GetTodo(), SizeIs(1)); } TEST_F(GraphAnalyzerTest, MultiInputSuccessForwardsFull) { gran_ = std::make_unique<GraphAnalyzer>(graph_multi_input_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("const2_1")})); ExtendSubgraph(root.get()); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: AddN(add2), Const(const2_1), Const(const2_2), Const(const2_3)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, DropInvalidSubgraphsMulti) { gran_ = std::make_unique<GraphAnalyzer>(graph_multi_input_, 3); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); GetResult().insert(std::make_unique<Subgraph>(Subgraph::Identity({ GetNode("const1_1"), GetNode("const1_2"), GetNode("add1"), }))); GetResult().insert(std::make_unique<Subgraph>(Subgraph::Identity({ GetNode("add1"), GetNode("add2"), GetNode("sub"), }))); GetResult().insert(std::make_unique<Subgraph>(Subgraph::Identity({ GetNode("const1_1"), GetNode("add1"), GetNode("sub"), }))); GetResult().insert(std::make_unique<Subgraph>(Subgraph::Identity({ GetNode("add2"), GetNode("const2_1"), GetNode("const2_2"), }))); DropInvalidSubgraphs(); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: AddN(add1), AddN(add2), Sub(sub)", "1: AddN(add1), Const(const1_1), Const(const1_2)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, AllOrNoneInputSuccessBackwards) { gran_ = std::make_unique<GraphAnalyzer>(graph_all_or_none_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("pass2")})); ExtendSubgraphAllOrNone(root.get(), GetNode("pass2")); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: Const(const2_1), Const(const2_2), Const(const2_3), IdentityN(pass2)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, AllOrNoneInputSuccessBackwardsNoControl) { gran_ = std::make_unique<GraphAnalyzer>(graph_all_or_none_, 5); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("pass1")})); ExtendSubgraphAllOrNone(root.get(), GetNode("pass1")); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre()); EXPECT_THAT(DumpPartials(), UnorderedElementsAre( "1: Const(const1_1), Const(const1_2), IdentityN(pass1)" )); EXPECT_THAT(GetTodo(), SizeIs(1)); } TEST_F(GraphAnalyzerTest, AllOrNoneInputSeparateControl) { gran_ = std::make_unique<GraphAnalyzer>(graph_all_or_none_, 5); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("pass1")})); ExtendSubgraphPortAllOrNone(root.get(), GetNode("pass1"), GenNode::Port(true, -1)); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre()); EXPECT_THAT(DumpPartials(), UnorderedElementsAre( "1: Const(const2_1), Const(const2_2), Const(const2_3), IdentityN(pass1)" )); EXPECT_THAT(GetTodo(), SizeIs(1)); } TEST_F(GraphAnalyzerTest, AllOrNoneInputTooLargeBackwards) { gran_ = std::make_unique<GraphAnalyzer>(graph_all_or_none_, 3); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("pass2")})); ExtendSubgraphAllOrNone(root.get(), GetNode("pass2")); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre()); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, AllOrNoneInputNothingAddedBackwards) { gran_ = std::make_unique<GraphAnalyzer>(graph_all_or_none_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>( Subgraph::Identity({GetNode("pass2"), GetNode("const2_1"), GetNode("const2_2"), GetNode("const2_3")})); ExtendSubgraphAllOrNone(root.get(), GetNode("pass2")); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre()); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, AllOrNoneInputSuccessForwardsBaseOut) { gran_ = std::make_unique<GraphAnalyzer>(graph_all_or_none_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("const2_1")})); ExtendSubgraphAllOrNone(root.get(), GetNode("pass2")); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: Const(const2_1), Const(const2_2), Const(const2_3), IdentityN(pass2)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, AllOrNoneInputSuccessBackwardsFull) { gran_ = std::make_unique<GraphAnalyzer>(graph_all_or_none_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("pass2")})); ExtendSubgraph(root.get()); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: Const(const2_1), Const(const2_2), Const(const2_3), IdentityN(pass2)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre( "1: IdentityN(pass2), Sub(sub)" )); EXPECT_THAT(GetTodo(), SizeIs(1)); } TEST_F(GraphAnalyzerTest, AllOrNoneInputSuccessForwardsFull) { gran_ = std::make_unique<GraphAnalyzer>(graph_all_or_none_, 4); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); auto root = std::make_unique<Subgraph>(Subgraph::Identity({GetNode("const2_1")})); ExtendSubgraph(root.get()); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: Const(const2_1), Const(const2_2), Const(const2_3), IdentityN(pass2)", "1: Const(const2_1), Const(const2_2), Const(const2_3), IdentityN(pass1)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } TEST_F(GraphAnalyzerTest, DropInvalidSubgraphsAllOrNone) { gran_ = std::make_unique<GraphAnalyzer>(graph_all_or_none_, 3); Status st = BuildMap(); ASSERT_THAT(st, Eq(absl::OkStatus())); GetResult().insert(std::make_unique<Subgraph>(Subgraph::Identity({ GetNode("const1_1"), GetNode("const1_2"), GetNode("pass1"), }))); GetResult().insert(std::make_unique<Subgraph>(Subgraph::Identity({ GetNode("pass1"), GetNode("pass2"), GetNode("sub"), }))); GetResult().insert(std::make_unique<Subgraph>(Subgraph::Identity({ GetNode("const1_1"), GetNode("pass1"), GetNode("sub"), }))); GetResult().insert(std::make_unique<Subgraph>(Subgraph::Identity({ GetNode("pass2"), GetNode("const2_1"), GetNode("const2_2"), }))); DropInvalidSubgraphs(); EXPECT_THAT(DumpRawSubgraphs(), UnorderedElementsAre( "1: IdentityN(pass1), IdentityN(pass2), Sub(sub)", "1: Const(const1_1), Const(const1_2), IdentityN(pass1)" )); EXPECT_THAT(DumpPartials(), UnorderedElementsAre()); EXPECT_THAT(GetTodo(), SizeIs(0)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_analyzer/graph_analyzer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_analyzer/graph_analyzer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea