repo_name
stringlengths
1
52
repo_creator
stringclasses
6 values
programming_language
stringclasses
4 values
code
stringlengths
0
9.68M
num_lines
int64
1
234k
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class BinaryPrimeConstantSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new BinaryPrimeConstantSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 0, 1, 1, 0, 1, 0, 1, 0, 0, 0 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class BinomialSequenceTests { [Test] public void First4RowsCorrect() { var sequence = new BinomialSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 1, 1, 1, 1, 2, 1, 1, 3, 3, 1 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences; public class CakeNumbersSequenceTests { [Test] public void First46ElementsCorrect() { var sequence = new CakeNumbersSequence().Sequence.Take(46); sequence.SequenceEqual(new BigInteger[] { 1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, 378, 470, 576, 697, 834, 988, 1160, 1351, 1562, 1794, 2048, 2325, 2626, 2952, 3304, 3683, 4090, 4526, 4992, 5489, 6018, 6580, 7176, 7807, 8474, 9178, 9920, 10701, 11522, 12384, 13288, 14235, 15226 }) .Should().BeTrue(); } }
26
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class CatalanSequenceTest { [Test] public void First30ItemsCorrect() { var sequence = new CatalanSequence().Sequence.Take(30); sequence.SequenceEqual(new BigInteger[] { 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368}) .Should().BeTrue(); } } }
23
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences; public class CentralPolygonalNumbersSequenceTests { [Test] public void First53ElementsCorrect() { var sequence = new CentralPolygonalNumbersSequence().Sequence.Take(53); sequence.SequenceEqual(new BigInteger[] { 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379, }) .Should().BeTrue(); } }
24
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class CubesSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new CubesSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 0, 1, 8, 27, 64, 125, 216, 343, 512, 729 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class DivisorsCountSequenceTests { [Test] public void First10ElementsCorrect() { // These values are taken from https://oeis.org/A000005 for comparison. var oeisSource = new BigInteger[] { 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 8, }; var sequence = new DivisorsCountSequence().Sequence.Take(oeisSource.Length); sequence.SequenceEqual(oeisSource).Should().BeTrue(); } } }
32
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class EuclidNumbersSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new EuclidNumbersSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 2, 3, 7, 31, 211, 2311, 30031, 510511, 9699691, 223092871 }) .Should().BeTrue(); } } }
21
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class EulerTotientSequenceTests { [Test] public void FirstElementsCorrect() { // Let's be thorough. 500 phi values! // Initial test of 69 number from table at https://oeis.org/A000010/list and passed test. // Extended out to 500 values from https://primefan.tripod.com/Phi500.html and passed initial 69 // along with remaining values. var check = new BigInteger[] { 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44, 24, 70, 24, 72, 36, 40, 36, 60, 24, 78, 32, 54, 40, 82, 24, 64, 42, 56, 40, 88, 24, 72, 44, 60, 46, 72, 32, 96, 42, 60, 40, 100, 32, 102, 48, 48, 52, 106, 36, 108, 40, 72, 48, 112, 36, 88, 56, 72, 58, 96, 32, 110, 60, 80, 60, 100, 36, 126, 64, 84, 48, 130, 40, 108, 66, 72, 64, 136, 44, 138, 48, 92, 70, 120, 48, 112, 72, 84, 72, 148, 40, 150, 72, 96, 60, 120, 48, 156, 78, 104, 64, 132, 54, 162, 80, 80, 82, 166, 48, 156, 64, 108, 84, 172, 56, 120, 80, 116, 88, 178, 48, 180, 72, 120, 88, 144, 60, 160, 92, 108, 72, 190, 64, 192, 96, 96, 84, 196, 60, 198, 80, 132, 100, 168, 64, 160, 102, 132, 96, 180, 48, 210, 104, 140, 106, 168, 72, 180, 108, 144, 80, 192, 72, 222, 96, 120, 112, 226, 72, 228, 88, 120, 112, 232, 72, 184, 116, 156, 96, 238, 64, 240, 110, 162, 120, 168, 80, 216, 120, 164, 100, 250, 72, 220, 126, 128, 128, 256, 84, 216, 96, 168, 130, 262, 80, 208, 108, 176, 132, 268, 72, 270, 128, 144, 136, 200, 88, 276, 138, 180, 96, 280, 92, 282, 140, 144, 120, 240, 96, 272, 112, 192, 144, 292, 84, 232, 144, 180, 148, 264, 80, 252, 150, 200, 144, 240, 96, 306, 120, 204, 120, 310, 96, 312, 156, 144, 156, 316, 104, 280, 128, 212, 132, 288, 108, 240, 162, 216, 160, 276, 80, 330, 164, 216, 166, 264, 96, 336, 156, 224, 128, 300, 108, 294, 168, 176, 172, 346, 112, 348, 120, 216, 160, 352, 116, 280, 176, 192, 178, 358, 96, 342, 180, 220, 144, 288, 120, 366, 176, 240, 144, 312, 120, 372, 160, 200, 184, 336, 108, 378, 144, 252, 190, 382, 128, 240, 192, 252, 192, 388, 96, 352, 168, 260, 196, 312, 120, 396, 198, 216, 160, 400, 132, 360, 200, 216, 168, 360, 128, 408, 160, 272, 204, 348, 132, 328, 192, 276, 180, 418, 96, 420, 210, 276, 208, 320, 140, 360, 212, 240, 168, 430, 144, 432, 180, 224, 216, 396, 144, 438, 160, 252, 192, 442, 144, 352, 222, 296, 192, 448, 120, 400, 224, 300, 226, 288, 144, 456, 228, 288, 176, 460, 120, 462, 224, 240, 232, 466, 144, 396, 184, 312, 232, 420, 156, 360, 192, 312, 238, 478, 128, 432, 240, 264, 220, 384, 162, 486, 240, 324, 168, 490, 160, 448, 216, 240, 240, 420, 164, 498, 200, }; var sequence = new EulerTotientSequence().Sequence.Take(check.Length); sequence.SequenceEqual(check).Should().BeTrue(); } } }
52
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class FactorialSequenceTest { [Test] public void First10ItemsCorrect() { var sequence = new FactorialSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class FermatNumbersSequenceTests { [Test] public void First5ElementsCorrect() { var sequence = new FermatNumbersSequence().Sequence.Take(5); sequence.SequenceEqual(new BigInteger[] { 3, 5, 17, 257, 65537 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class FermatPrimesSequenceTests { [Test] public void All5ElementsCorrect() { var sequence = new FermatPrimesSequence().Sequence.Take(5); sequence.SequenceEqual(new BigInteger[] { 3, 5, 17, 257, 65537 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class FibonacciSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new FibonacciSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class GolombsSequenceTests { [Test] public void First50ElementsCorrect() { // Taken from https://oeis.org/A001462 var expected = new BigInteger[] { 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13}; var sequence = new GolombsSequence().Sequence.Take(50); sequence.SequenceEqual(expected).Should().BeTrue(); } } }
28
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class KolakoskiSequenceTests { [Test] public void First100ElementsCorrect() { // Taken from https://oeis.org/A000002 var expected = new BigInteger[] { 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, }; var sequence = new KolakoskiSequence().Sequence.Take(100); var sequence2 = new KolakoskiSequence2().Sequence.Take(100); sequence.Should().Equal(expected); sequence2.Should().Equal(expected); } } }
37
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class KummerNumbersSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new KummerNumbersSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 1, 5, 29, 209, 2309, 30029, 510509, 9699689, 223092869, 6469693229 }) .Should().BeTrue(); } } }
21
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences; public class LucasNumbersBeginningAt2SequenceTests { [Test] public void FirstElementsCorrect() { // Initial test of 38 values from http://oeis.org/A000032/list which passed. // Testing 200 Lucas numbers, with values from https://r-knott.surrey.ac.uk/Fibonacci/lucas200.html and // compared to initial 38, which passed. // Assigning numeric values to BigInteger types performed by string parsing dues to length of value. var bigNumbers = new[] { "2", "1", "3", "4", "7", "11", "18", "29", "47", "76", "123", "199", "322", "521", "843", "1364", "2207", "3571", "5778", "9349", "15127", "24476", "39603", "64079", "103682", "167761", "271443", "439204", "710647", "1149851", "1860498", "3010349", "4870847", "7881196", "12752043", "20633239", "33385282", "54018521", "87403803", "141422324", "228826127", "370248451", "599074578", "969323029", "1568397607", "2537720636", "4106118243", "6643838879", "10749957122", "17393796001", "28143753123", "45537549124", "73681302247", "119218851371", "192900153618", "312119004989", "505019158607", "817138163596", "1322157322203", "2139295485799", "3461452808002", "5600748293801", "9062201101803", "14662949395604", "23725150497407", "38388099893011", "62113250390418", "100501350283429", "162614600673847", "263115950957276", "425730551631123", "688846502588399", "1114577054219522", "1803423556807921", "2918000611027443", "4721424167835364", "7639424778862807", "12360848946698171", "20000273725560978", "32361122672259149", "52361396397820127", "84722519070079276", "137083915467899403", "221806434537978679", "358890350005878082", "580696784543856761", "939587134549734843", "1520283919093591604", "2459871053643326447", "3980154972736918051", "6440026026380244498", "10420180999117162549", "16860207025497407047", "27280388024614569596", "44140595050111976643", "71420983074726546239", "115561578124838522882", "186982561199565069121", "302544139324403592003", "489526700523968661124", "792070839848372253127", "1281597540372340914251", "2073668380220713167378", "3355265920593054081629", "5428934300813767249007", "8784200221406821330636", "14213134522220588579643", "22997334743627409910279", "37210469265847998489922", "60207804009475408400201", "97418273275323406890123", "157626077284798815290324", "255044350560122222180447", "412670427844921037470771", "667714778405043259651218", "1080385206249964297121989", "1748099984655007556773207", "2828485190904971853895196", "4576585175559979410668403", "7405070366464951264563599", "11981655542024930675232002", "19386725908489881939795601", "31368381450514812615027603", "50755107359004694554823204", "82123488809519507169850807", "132878596168524201724674011", "215002084978043708894524818" , "347880681146567910619198829", "562882766124611619513723647", "910763447271179530132922476", "1473646213395791149646646123", "2384409660666970679779568599", "3858055874062761829426214722", "6242465534729732509205783321", "10100521408792494338631998043", "16342986943522226847837781364", "26443508352314721186469779407", "42786495295836948034307560771", "69230003648151669220777340178", "112016498943988617255084900949", "181246502592140286475862241127", "293263001536128903730947142076", "474509504128269190206809383203", "767772505664398093937756525279", "1242282009792667284144565908482", "2010054515457065378082322433761", "3252336525249732662226888342243", "5262391040706798040309210776004", "8514727565956530702536099118247", "13777118606663328742845309894251", "22291846172619859445381409012498", "36068964779283188188226718906749", "58360810951903047633608127919247", "94429775731186235821834846825996", "152790586683089283455442974745243", "247220362414275519277277821571239", "400010949097364802732720796316482", "647231311511640322009998617887721", "1047242260609005124742719414204203", "1694473572120645446752718032091924", "2741715832729650571495437446296127", "4436189404850296018248155478388051", "7177905237579946589743592924684178", "11614094642430242607991748403072229", "18791999880010189197735341327756407", "30406094522440431805727089730828636", "49198094402450621003462431058585043", "79604188924891052809189520789413679", "128802283327341673812651951847998722", "208406472252232726621841472637412401", "337208755579574400434493424485411123", "545615227831807127056334897122823524", "882823983411381527490828321608234647", "1428439211243188654547163218731058171", "2311263194654570182037991540339292818", "3739702405897758836585154759070350989", "6050965600552329018623146299409643807", "9790668006450087855208301058479994796", "15841633607002416873831447357889638603", "25632301613452504729039748416369633399", "41473935220454921602871195774259272002", "67106236833907426331910944190628905401", "108580172054362347934782139964888177403", "175686408888269774266693084155517082804", "284266580942632122201475224120405260207", "459952989830901896468168308275922343011", "744219570773534018669643532396327603218", "1204172560604435915137811840672249946229", "1948392131377969933807455373068577549447", "3152564691982405848945267213740827495676", "5100956823360375782752722586809405045123", "8253521515342781631697989800550232540799", "13354478338703157414450712387359637585922", "21607999854045939046148702187909870126721", "34962478192749096460599414575269507712643", "56570478046795035506748116763179377839364", "91532956239544131967347531338448885552007", "148103434286339167474095648101628263391371", "239636390525883299441443179440077148943378", "387739824812222466915538827541705412334749", "627376215338105766356982006981782561278127", }; var check = bigNumbers.Select(BigInteger.Parse).ToArray(); var sequence = new LucasNumbersBeginningAt2Sequence().Sequence.Take(check.Length); sequence.SequenceEqual(check).Should().BeTrue(); } }
110
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class MakeChangeSequenceTests { [Test] public void First100ElementsCorrect() { // Values from https://oeis.org/A000008/b000008.txt var test = new BigInteger[] { 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 64, 70, 76, 82, 88, 98, 104, 114, 120, 130, 140, 150, 160, 170, 180, 195, 205, 220, 230, 245, 260, 275, 290, 305, 320, 341, 356, 377, 392, 413, 434, 455, 476, 497, 518, 546, 567, 595, 616, 644, 672, 700, 728, 756, 784, 820, 848, 884, 912, 948, 984, 1020, 1056, 1092, 1128, 1173, 1209, 1254, 1290, 1335, 1380, 1425, 1470, 1515, 1560, 1615, 1660, 1715, 1760, 1815, 1870, 1925, 1980, 2035, 2090, }; var sequence = new MakeChangeSequence().Sequence.Take(test.Length); sequence.SequenceEqual(test).Should().BeTrue(); } } }
34
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences; [TestFixture] public static class MatchstickTriangleSequenceTests { private static BigInteger[] TestList = { 0, 1, 5, 13, 27, 48, 78, 118, 170, 235, 315, 411, 525, 658, 812, 988, 1188, 1413, 1665, 1945, 2255, 2596, 2970, 3378, 3822, 4303, 4823, 5383, 5985, 6630, 7320, 8056, 8840, 9673, 10557, 11493, 12483, 13528, 14630, 15790, 17010, 18291, 19635, 21043, 22517, }; /// <summary> /// This test uses the list values provided from http://oeis.org/A002717/list. /// </summary> [Test] public static void TestOeisList() { var sequence = new MatchstickTriangleSequence().Sequence.Take(TestList.Length); sequence.SequenceEqual(TestList).Should().BeTrue(); } }
29
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class NaturalSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new NaturalSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class NegativeIntegersSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new NegativeIntegersSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { -1, -2, -3, -4, -5, -6, -7, -8, -9, -10 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class NumberOfBooleanFunctionsSequenceTests { [Test] public void First5ElementsCorrect() { var sequence = new NumberOfBooleanFunctionsSequence().Sequence.Take(5); sequence.SequenceEqual(new BigInteger[] { 2, 4, 16, 256, 65536 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class NumberOfPrimesByNumberOfDigitsSequenceTests { [Test] public void First5ElementsCorrect() { var sequence = new NumberOfPrimesByNumberOfDigitsSequence().Sequence.Take(5); sequence.SequenceEqual(new BigInteger[] { 0, 4, 21, 143, 1061 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class NumberOfPrimesByPowersOf10SequenceTests { [Test] public void First5ElementsCorrect() { var sequence = new NumberOfPrimesByPowersOf10Sequence().Sequence.Take(5); sequence.SequenceEqual(new BigInteger[] { 0, 4, 25, 168, 1229 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Collections.Generic; using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences; [TestFixture] public class OnesCountingSequenceTest { /// <summary> /// <para> /// Values taken from http://oeis.org/A000120/b000120.txt. /// </para> /// <para> /// While the file contains 10,000 values, this only tests 1000. /// </para> /// </summary> private readonly BigInteger[] oeisValues = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 5, 6, 6, 7, 6, 7, 7, 8, }; /// <summary> /// <para> /// Performs number of ones in the binary representation of a BigInteger. /// </para> /// <para> /// This is used as a check to compare the provided values from OEIS. /// </para> /// </summary> /// <param name="i">BigInteger value to count 1s in</param> /// <returns>Number of 1s in binary representation of number.</returns> private int CountOnes(BigInteger i) { var temp = i; BigInteger remainder = 0; var result = 0; while (temp != BigInteger.Zero) { temp = BigInteger.DivRem(temp, 2, out remainder); result += remainder.IsOne ? 1 : 0; } return result; } [Test] public void Count1000() { // Compare generated sequence against provided data var sequence = new OnesCountingSequence().Sequence.Take(oeisValues.Length); sequence.SequenceEqual(oeisValues).Should().BeTrue(); } [Test] public void CompareAgainstCalculated() { // Calculate 1s in binary value the old fashioned way. var calculated = new List<BigInteger>(); for (var i = 0; i < oeisValues.Length; i++) { calculated.Add(CountOnes(new BigInteger(i))); } calculated.SequenceEqual(oeisValues).Should().BeTrue(); } }
109
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class PowersOf10SequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new PowersOf10Sequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 }) .Should().BeTrue(); } } }
21
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class PowersOf2SequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new PowersOf2Sequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class PrimePiSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new PrimePiSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 0, 1, 2, 2, 3, 3, 4, 4, 4, 4 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class PrimesSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new PrimesSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class PrimorialNumbersSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new PrimorialNumbersSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870 }) .Should().BeTrue(); } } }
21
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class RecamansSequenceTests { [Test] public void First50ElementsCorrect() { // Taken from http://oeis.org/A005132 var expected = new BigInteger[] { 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, 42, 63, 41, 18, 42, 17, 43, 16, 44, 15, 45, 14, 46, 79, 113, 78, 114, 77, 39, 78, 38, 79, 37, 80, 36, 81, 35, 82, 34, 83, }; var sequence = new RecamansSequence().Sequence.Take(50); sequence.Should().Equal(expected); } } }
30
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class SquaresSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new SquaresSequence().Sequence.Take(10); sequence.SequenceEqual(new BigInteger[] { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 }) .Should().BeTrue(); } } }
20
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences; [TestFixture] public class TetrahedralSequenceTests { private static readonly BigInteger[] TestList = { 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960, 5456, 5984, 6545, 7140, 7770, 8436, 9139, 9880, 10660, 11480, 12341, 13244, 14190, 15180, }; /// <summary> /// This test uses the list values provided from http://oeis.org/A000292/list. /// </summary> [Test] public void TestOeisList() { var sequence = new TetrahedralSequence().Sequence.Take(TestList.Length); sequence.SequenceEqual(TestList).Should().BeTrue(); } }
31
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences; public class TetranacciNumbersSequenceTests { [Test] public void First35ElementsCorrect() { var sequence = new TetranacciNumbersSequence().Sequence.Take(35); sequence.SequenceEqual(new BigInteger[] { 1, 1, 1, 1, 4, 7, 13, 25, 49, 94, 181, 349, 673, 1297, 2500, 4819, 9289, 17905, 34513, 66526, 128233, 247177, 476449, 918385, 1770244, 3412255, 6577333, 12678217, 24438049, 47105854, 90799453, 175021573, 337364929, 650291809, 1253477764, }) .Should().BeTrue(); } }
24
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class ThreeNPlusOneStepsSequenceTests { [Test] public void First50ElementsCorrect() { var sequence = new ThreeNPlusOneStepsSequence().Sequence.Take(50); var first50 = new BigInteger[] { 0, 1, 7, 2, 5, 8, 16, 3, 19, 6, 14, 9, 9, 17, 17, 4, 12, 20, 20, 7, 7, 15, 15, 10, 23, 10, 111, 18, 18, 18, 106, 5, 26, 13, 13, 21, 21, 21, 34, 8, 109, 8, 29, 16, 16, 16, 104, 11, 24, 24 }; sequence.SequenceEqual(first50).Should().BeTrue(); } } }
23
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences; public class TribonacciNumbersSequenceTests { [Test] public void First37ElementsCorrect() { var sequence = new TribonacciNumbersSequence().Sequence.Take(37); sequence.SequenceEqual(new BigInteger[] { 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201, 2209, 4063, 7473, 13745, 25281, 46499, 85525, 157305, 289329, 532159, 978793, 1800281, 3311233, 6090307, 11201821, 20603361, 37895489, 69700671, 128199521, 235795681, 433695873, 797691075, 1467182629, }) .Should().BeTrue(); } }
24
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class VanEcksSequenceTests { [Test] public void First50ElementsCorrect() { // Taken from http://oeis.org/A181391 var expected = new BigInteger[] { 0, 0, 1, 0, 2, 0, 2, 2, 1, 6, 0, 5, 0, 2, 6, 5, 4, 0, 5, 3, 0, 3, 2, 9, 0, 4, 9, 3, 6, 14, 0, 6, 3, 5, 15, 0, 5, 3, 5, 2, 17, 0, 6, 11, 0, 3, 8, 0, 3, 3, }; var sequence = new VanEcksSequence().Sequence.Take(50); sequence.Should().Equal(expected); } } }
30
C-Sharp
TheAlgorithms
C#
using System.Linq; using System.Numerics; using Algorithms.Sequences; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Sequences { public class ZeroSequenceTests { [Test] public void First10ElementsCorrect() { var sequence = new ZeroSequence().Sequence.Take(10); sequence.SequenceEqual(Enumerable.Repeat(BigInteger.Zero, 10)) .Should().BeTrue(); } } }
21
C-Sharp
TheAlgorithms
C#
using Algorithms.Shufflers; using Algorithms.Tests.Helpers; using FluentAssertions; using NUnit.Framework; using System; namespace Algorithms.Tests.Shufflers { public static class FisherYatesShufflerTests { [Test] public static void ArrayShuffled_NewArrayHasSameSize( [Random(10, 1000, 100, Distinct = true)] int n) { // Arrange var shuffler = new FisherYatesShuffler<int>(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act shuffler.Shuffle(testArray); // Assert testArray.Length.Should().Be(correctArray.Length); } [Test] public static void ArrayShuffled_NewArrayHasSameValues( [Random(0, 100, 10, Distinct = true)] int n) { // Arrange var shuffler = new FisherYatesShuffler<int>(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act shuffler.Shuffle(testArray); // Assert testArray.Should().BeEquivalentTo(correctArray); } [Test] public static void ArrayShuffled_SameShuffle( [Random(0, 1000, 2, Distinct = true)] int n, [Random(1000, 10000, 5, Distinct = true)] int seed) { // Arrange var shuffler = new FisherYatesShuffler<int>(); var (array1, array2) = RandomHelper.GetArrays(n); // Act shuffler.Shuffle(array1, seed); shuffler.Shuffle(array2, seed); // Assert array1.Should().BeEquivalentTo(array2, options => options.WithStrictOrdering()); } [Test] public static void ArrayShuffled_DifferentSeedDifferentShuffle( [Random(10, 100, 2, Distinct = true)] int n, [Random(1000, 10000, 5, Distinct = true)] int seed) { // Arrange var shuffler = new FisherYatesShuffler<int>(); var (array1, array2) = RandomHelper.GetArrays(n); // Act shuffler.Shuffle(array1, seed); shuffler.Shuffle(array2, seed + 13); // It seems the actual version of FluentAssertion has no options in NotBeEquivalentTo. // With default options, it does not check for order, but for the same elements in the collection. // So until the library is updated check that not all the items have the same order. int hits = 0; for (int i = 0; i < n; i++) { if (array1[i] == array2[i]) { hits++; } } hits.Should().BeLessThan(array2.Length); } } }
88
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class BinaryInsertionSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new BinaryInsertionSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class BogoSorterTests { [Test] public static void ArraySorted([Random(0, 10, 10, Distinct = true)] int n) { // Arrange var sorter = new BogoSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
27
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class BubbleSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new BubbleSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class CocktailSorterTests { [Test] public static void SortsArray( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new CocktailSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray); // Assert Assert.AreEqual(correctArray, testArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class CombSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new CombSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } [Test] public static void ArraySorted_WithCustomShrinkFactor( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new CombSorter<int>(1.5); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
47
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class CycleSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new CycleSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray); // Assert Assert.AreEqual(correctArray, testArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class ExchangeSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new ExchangeSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class HeapSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new HeapSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray); // Assert Assert.AreEqual(correctArray, testArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class InsertionSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new InsertionSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class MedianOfThreeQuickSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new MedianOfThreeQuickSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { /// <summary> /// Class for testing merge sorter algorithm. /// </summary> public static class MergeSorterTests { [Test] public static void TestOnMergeSorter( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new MergeSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray); // Assert Assert.AreEqual(correctArray, testArray); } } }
32
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class MiddlePointQuickSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new MiddlePointQuickSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class PancakeSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new PancakeSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class RandomPivotQuickSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new RandomPivotQuickSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class SelectionSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new SelectionSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class ShellSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new ShellSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
29
C-Sharp
TheAlgorithms
C#
using System; using System.Linq; using Algorithms.Sorters.Comparison; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Comparison { public static class TimSorterTests { private static readonly IntComparer IntComparer = new(); [Test] public static void ArraySorted( [Random(0, 10_000, 2000)] int n) { // Arrange var sorter = new TimSorter<int>(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray, IntComparer); Array.Sort(correctArray, IntComparer); // Assert Assert.AreEqual(testArray, correctArray); } [Test] public static void TinyArray() { // Arrange var sorter = new TimSorter<int>(); var tinyArray = new[] { 1 }; var correctArray = new[] { 1 }; // Act sorter.Sort(tinyArray, IntComparer); // Assert Assert.AreEqual(tinyArray, correctArray); } [Test] public static void SmallChunks() { // Arrange var sorter = new TimSorter<int>(); var (correctArray, testArray) = RandomHelper.GetArrays(800); Array.Sort(correctArray, IntComparer); Array.Sort(testArray, IntComparer); var max = testArray.Max(); var min = testArray.Min(); correctArray[0] = max; correctArray[800-1] = min; testArray[0] = max; testArray[800 - 1] = min; // Act sorter.Sort(testArray, IntComparer); Array.Sort(correctArray, IntComparer); // Assert Assert.AreEqual(testArray, correctArray); } } }
70
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.External; using Algorithms.Sorters.External.Storages; using Algorithms.Tests.Helpers; using NUnit.Framework; using NUnit.Framework.Internal; namespace Algorithms.Tests.Sorters.External { public static class ExternalMergeSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new ExternalMergeSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); var main = new IntInMemoryStorage(testArray); var temp = new IntInMemoryStorage(new int[testArray.Length]); // Act sorter.Sort(main, temp, intComparer); Array.Sort(correctArray, intComparer); // Assert Assert.AreEqual(testArray, correctArray); } [Test] public static void ArraySorted_OnDisk( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new ExternalMergeSorter<int>(); var intComparer = new IntComparer(); var (correctArray, testArray) = RandomHelper.GetArrays(n); var randomizer = Randomizer.CreateRandomizer(); var main = new IntFileStorage($"sorted_{randomizer.GetString(100)}", n); var temp = new IntFileStorage($"temp_{randomizer.GetString(100)}", n); var writer = main.GetWriter(); for (var i = 0; i < n; i++) { writer.Write(correctArray[i]); } writer.Dispose(); // Act sorter.Sort(main, temp, intComparer); Array.Sort(correctArray, intComparer); // Assert var reader = main.GetReader(); for (var i = 0; i < n; i++) { testArray[i] = reader.Read(); } Assert.AreEqual(testArray, correctArray); } } }
68
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Integer; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Integer { public static class BucketSorterTests { [Test] public static void ArraySorted( [Random(0, 1000, 1000, Distinct = true)] int n) { // Arrange var sorter = new BucketSorter(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray); Array.Sort(correctArray); // Assert Assert.AreEqual(correctArray, testArray); } } }
28
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Integer; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Integer { public static class CountingSorterTests { [Test] public static void SortsNonEmptyArray( [Random(1, 10000, 100, Distinct = true)] int n) { // Arrange var sorter = new CountingSorter(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray); Array.Sort(correctArray); // Assert Assert.AreEqual(correctArray, testArray); } [Test] public static void SortsEmptyArray() { var sorter = new CountingSorter(); sorter.Sort(Array.Empty<int>()); } } }
35
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.Integer; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.Integer { public static class RadixSorterTests { [Test] public static void SortsArray( [Random(0, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new RadixSorter(); var (correctArray, testArray) = RandomHelper.GetArrays(n); // Act sorter.Sort(testArray); Array.Sort(correctArray); // Assert Assert.AreEqual(correctArray, testArray); } } }
28
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Sorters.String; using Algorithms.Tests.Helpers; using NUnit.Framework; namespace Algorithms.Tests.Sorters.String { /// <summary> /// Class for testing MSD radix sorter algorithm. /// </summary> public static class MsdRadixStringSorterTests { [Test] public static void ArraySorted( [Random(2, 1000, 100, Distinct = true)] int n) { // Arrange var sorter = new MsdRadixStringSorter(); var (correctArray, testArray) = RandomHelper.GetStringArrays(n, 100, false); // Act sorter.Sort(testArray); Array.Sort(correctArray); // Assert Assert.AreEqual(correctArray, testArray); } } }
31
C-Sharp
TheAlgorithms
C#
using Algorithms.Strings; using NUnit.Framework; namespace Algorithms.Tests.Strings { public class BoyerMooreTests { [TestCase("HelloImATestcaseAndIWillPass", "Testcase", 8)] [TestCase("HelloImATestcaseAndImCaseSensitive", "TestCase", -1)] [TestCase("Hello Im a testcase and I work with whitespaces", "testcase", 11)] [TestCase("Hello Im a testcase and I work with numbers like 1 2 3 4", "testcase", 11)] public void FindFirstOccurrence_IndexCheck(string t, string p, int expectedIndex) { var resultIndex = BoyerMoore.FindFirstOccurrence(t, p); Assert.AreEqual(resultIndex, expectedIndex); } } }
19
C-Sharp
TheAlgorithms
C#
using System; using Algorithms.Strings; using NUnit.Framework; namespace Algorithms.Tests.Strings { public static class GeneralStringAlgorithmsTests { [Test] [TestCase("Griffith", 'f', 2)] [TestCase("Randomwoooord", 'o', 4)] [TestCase("Control", 'C', 1)] public static void MaxCountCharIsObtained(string text, char expectedSymbol, int expectedCount) { // Arrange // Act var (symbol, count) = GeneralStringAlgorithms.FindLongestConsecutiveCharacters(text); // Assert Assert.AreEqual(expectedSymbol, symbol); Assert.AreEqual(expectedCount, count); } } }
25
C-Sharp
TheAlgorithms
C#
using Algorithms.Strings; using NUnit.Framework; using System; namespace Algorithms.Tests.Strings { public class HammingDistanceTests { [Test] [TestCase("equal", "equal", 0)] [TestCase("dog", "dig", 1)] [TestCase("12345", "abcde", 5)] public void Calculate_ReturnsCorrectHammingDistance(string s1, string s2, int expectedDistance) { var result = HammingDistance.Calculate(s1, s2); Assert.AreEqual(expectedDistance, result); } [Test] public void Calculate_ThrowsArgumentExceptionWhenStringLengthsDiffer() { Assert.Throws<ArgumentException>(() => HammingDistance.Calculate("123", "12345")); } } }
26
C-Sharp
TheAlgorithms
C#
using Algorithms.Strings; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Strings { public class JaroSimilarityTests { [Test] [TestCase("equal", "equal", 1)] [TestCase("abc", "123", 0)] [TestCase("FAREMVIEL", "FARMVILLE", 0.88d)] [TestCase("CRATE", "TRACE", 0.73d)] [TestCase("CRATE11111", "CRTAE11111", 0.96d)] [TestCase("a", "a", 1)] [TestCase("", "", 1)] public void Calculate_ReturnsCorrectJaroSimilarity(string s1, string s2, double expected) { JaroSimilarity.Calculate(s1, s2).Should().BeApproximately(expected, 0.01); } } }
23
C-Sharp
TheAlgorithms
C#
using Algorithms.Strings; using FluentAssertions; using NUnit.Framework; namespace Algorithms.Tests.Strings { public class JaroWinklerDistanceTests { [Test] [TestCase("equal", "equal", 0)] [TestCase("abc", "123", 1)] [TestCase("Winkler", "Welfare", 0.33)] [TestCase("faremviel", "farmville", 0.08)] [TestCase("", "", 0)] public void Calculate_ReturnsCorrectJaroWinklerDistance(string s1, string s2, double expected) { JaroWinklerDistance.Calculate(s1, s2).Should().BeApproximately(expected, 0.01); } } }
21
C-Sharp
TheAlgorithms
C#
using Algorithms.Strings; using NUnit.Framework; namespace Algorithms.Tests.Strings { public static class KnuthMorrisPrattSearcherTests { [Test] public static void FindIndexes_ItemsPresent_PassExpected() { // Arrange var searcher = new KnuthMorrisPrattSearcher(); var str = "ABABAcdeABA"; var pat = "ABA"; // Act var expectedItem = new[] { 0, 2, 8 }; var actualItem = searcher.FindIndexes(str, pat); // Assert CollectionAssert.AreEqual(expectedItem, actualItem); } [Test] public static void FindIndexes_ItemsMissing_NoIndexesReturned() { // Arrange var searcher = new KnuthMorrisPrattSearcher(); var str = "ABABA"; var pat = "ABB"; // Act & Assert var indexes = searcher.FindIndexes(str, pat); // Assert Assert.IsEmpty(indexes); } [Test] public static void LongestPrefixSuffixArray_PrefixSuffixOfLength1_PassExpected() { // Arrange var searcher = new KnuthMorrisPrattSearcher(); var s = "ABA"; // Act var expectedItem = new[] { 0, 0, 1 }; var actualItem = searcher.FindLongestPrefixSuffixValues(s); // Assert CollectionAssert.AreEqual(expectedItem, actualItem); } [Test] public static void LongestPrefixSuffixArray_PrefixSuffixOfLength5_PassExpected() { // Arrange var searcher = new KnuthMorrisPrattSearcher(); var s = "AABAACAABAA"; // Act var expectedItem = new[] { 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 5 }; var actualItem = searcher.FindLongestPrefixSuffixValues(s); // Assert CollectionAssert.AreEqual(expectedItem, actualItem); } [Test] public static void LongestPrefixSuffixArray_PrefixSuffixOfLength0_PassExpected() { // Arrange var searcher = new KnuthMorrisPrattSearcher(); var s = "AB"; // Act var expectedItem = new[] { 0, 0 }; var actualItem = searcher.FindLongestPrefixSuffixValues(s); // Assert CollectionAssert.AreEqual(expectedItem, actualItem); } } }
85
C-Sharp
TheAlgorithms
C#
using Algorithms.Strings; using NUnit.Framework; namespace Algorithms.Tests.Strings { public class LevenshteinDistanceTests { [Test] [TestCase("kitten", "sitting", 3)] [TestCase("bob", "bond", 2)] [TestCase("algorithm", "logarithm", 3)] [TestCase("star", "", 4)] [TestCase("", "star", 4)] [TestCase("abcde", "12345", 5)] public void Calculate_ReturnsCorrectLevenshteinDistance(string source, string destination, int expectedDistance) { var result = LevenshteinDistance.Calculate(source, destination); Assert.AreEqual(expectedDistance, result); } } }
22
C-Sharp
TheAlgorithms
C#
using System.Linq; using Algorithms.Strings; using NUnit.Framework; namespace Algorithms.Tests.Strings { public static class NaiveStringSearchTests { [Test] public static void ThreeMatchesFound_PassExpected() { // Arrange var pattern = "ABB"; var content = "ABBBAAABBAABBBBAB"; // Act var expectedOccurrences = new[] { 0, 6, 10 }; var actualOccurrences = NaiveStringSearch.NaiveSearch(content, pattern); var sequencesAreEqual = expectedOccurrences.SequenceEqual(actualOccurrences); // Assert Assert.IsTrue(sequencesAreEqual); } [Test] public static void OneMatchFound_PassExpected() { // Arrange var pattern = "BAAB"; var content = "ABBBAAABBAABBBBAB"; // Act var expectedOccurrences = new[] { 8 }; var actualOccurrences = NaiveStringSearch.NaiveSearch(content, pattern); var sequencesAreEqual = expectedOccurrences.SequenceEqual(actualOccurrences); // Assert Assert.IsTrue(sequencesAreEqual); } [Test] public static void NoMatchFound_PassExpected() { // Arrange var pattern = "XYZ"; var content = "ABBBAAABBAABBBBAB"; // Act var expectedOccurrences = new int[0]; var actualOccurrences = NaiveStringSearch.NaiveSearch(content, pattern); var sequencesAreEqual = expectedOccurrences.SequenceEqual(actualOccurrences); // Assert Assert.IsTrue(sequencesAreEqual); } } }
58
C-Sharp
TheAlgorithms
C#
using Algorithms.Strings; using NUnit.Framework; namespace Algorithms.Tests.Strings { public static class PalindromeTests { [Test] [TestCase("Anna")] [TestCase("A Santa at Nasa")] public static void TextIsPalindrome_TrueExpected(string text) { // Arrange // Act var isPalindrome = Palindrome.IsStringPalindrome(text); // Assert Assert.True(isPalindrome); } [Test] [TestCase("hallo")] [TestCase("Once upon a time")] public static void TextNotPalindrome_FalseExpected(string text) { // Arrange // Act var isPalindrome = Palindrome.IsStringPalindrome(text); // Assert Assert.False(isPalindrome); } } }
35
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; using System.Linq; using System.Numerics; using Algorithms.Numeric; using Algorithms.Strings; using NUnit.Framework; namespace Algorithms.Tests.Strings { public class PermutationTests { [TestCase("")] [TestCase("A")] [TestCase("abcd")] [TestCase("aabcd")] [TestCase("aabbbcd")] [TestCase("aabbccccd")] public void Test_GetEveryUniquePermutation(string word) { var permutations = Permutation.GetEveryUniquePermutation(word); // We need to make sure that // 1. We have the right number of permutations // 2. Every string in permutations List is a permutation of word // 3. There are no repetitions // Start 1. // The number of unique permutations is // n!/(A1! * A2! * ... An!) // where n is the length of word and Ai is the number of occurrences if ith char in the string var charOccurrence = new Dictionary<char, int>(); foreach (var c in word) { if (charOccurrence.ContainsKey(c)) { charOccurrence[c] += 1; } else { charOccurrence[c] = 1; } } // now we know the values of A1, A2, ..., An // evaluate the above formula var expectedNumberOfAnagrams = Factorial.Calculate(word.Length); expectedNumberOfAnagrams = charOccurrence.Aggregate(expectedNumberOfAnagrams, (current, keyValuePair) => { return current / Factorial.Calculate(keyValuePair.Value); }); Assert.AreEqual(expectedNumberOfAnagrams, new BigInteger(permutations.Count)); // End 1. // Start 2 // string A is a permutation of string B if and only if sorted(A) == sorted(b) var wordSorted = SortString(word); foreach (var permutation in permutations) { Assert.AreEqual(wordSorted, SortString(permutation)); } // End 2 // Start 3 Assert.AreEqual(permutations.Count, new HashSet<string>(permutations).Count); // End 3 } private static string SortString(string word) { var asArray = word.ToArray(); Array.Sort(asArray); return new string(asArray); } } }
76
C-Sharp
TheAlgorithms
C#
using System.Collections.Generic; using Algorithms.Strings; using NUnit.Framework; namespace Algorithms.Tests.Strings { public class RabinKarpTest { [TestCase("HelloImATestcaseAndIWillPass", "Testcase", new[] { 8 })] [TestCase("HelloImATestcaseAndImCaseSensitive", "TestCase", new int[] { })] [TestCase("Hello Im a testcase and you can use whitespaces", "testcase", new[] { 11 })] [TestCase("Hello Im a testcase and you can use numbers like 1, 2, 3, etcetera", "etcetera", new[] { 58 })] [TestCase("HelloImATestcaseAndIHaveTwoOccurrencesOfTestcase", "Testcase", new[] { 8, 40 })] public void FindAllOccurrences_IndexCheck(string t, string p, int[] expectedIndices) { List<int> result = RabinKarp.FindAllOccurrences(t, p); Assert.AreEqual(result, new List<int>(expectedIndices)); } } }
21
C-Sharp
TheAlgorithms
C#
using Algorithms.Strings; using NUnit.Framework; namespace Algorithms.Tests.Strings { public class ZblockSubstringSearchTest { [TestCase("abc", "abcdef", 1)] [TestCase("xxx", "abxxxcdexxxf", 2)] [TestCase("aa", "waapaaxcdaalaabb", 4)] [TestCase("ABC", "ABAAABCDBBABCDDEBCABC", 3)] [TestCase("xxx", "abcdefghij", 0)] [TestCase("aab", "caabxaaaz", 1)] [TestCase("abc", "xababaxbabcdabx", 1)] [TestCase("GEEK", "GEEKS FOR GEEKS", 2)] [TestCase("ground", "Hello, playground!", 1)] public void Test(string pattern, string text, int expectedOccurences) { var occurencesFound = ZblockSubstringSearch.FindSubstring(pattern, text); Assert.AreEqual(expectedOccurences, occurencesFound); } } }
24
C-Sharp
TheAlgorithms
C#
// Original Author: Christian Bender // Class: BitArray // // implements IComparable, ICloneable, IEnumerator, IEnumerable // // This class implements a bit-array and provides some // useful functions/operations to deal with this type of // data structure. You see a overview about the functionality, below. // // // Overview // // Constructor (N : int) // The constructor receives a length (N) of the to create bit-field. // // Constructor (sequence : string) // setups the array with the input sequence. // assumes: the sequence may only be allowed contains onese or zeros. // // Constructor (bits : bool[] ) // setups the bit-field with the input array. // // Compile(sequence : string) // compiles a string sequence of 0's and 1's in the inner structure. // assumes: the sequence may only be allowed contains onese or zeros. // // Compile (number : int) // compiles a positive integer number in the inner data structure. // // Compile (number : long) // compiles a positive long integer number in the inner data structure. // // ToString () // returns a string representation of the inner structure. // The returned string is a sequence of 0's and 1's. // // Length : int // Is a property that returns the length of the bit-field. // // Indexer : bool // indexer for selecting the individual bits of the bit array. // // NumberOfOneBits() : int // returns the number of One-bits. // // NumberOfZeroBits() : int // returns the number of Zero-Bits. // // EvenParity() : bool // returns true if parity is even, otherwise false. // // OddParity() : bool // returns true if parity is odd, otherwise false. // // ToInt64() : long // returns a long integer representation of the bit-array. // assumes: the bit-array length must been smaller or equal to 64 bit. // // ToInt32() : int // returns a integer representation of the bit-array. // assumes: the bit-array length must been smaller or equal to 32 bit. // // ResetField() : void // sets all bits on false. // // SetAll(flag : bool) : void // sets all bits on the value of the flag. // // GetHashCode() : int // returns hash-code (ToInt32()) // // Equals (other : Object) : bool // returns true if there inputs are equal otherwise false. // assumes: the input bit-arrays must have same length. // // CompareTo (other : Object) : int (interface IComparable) // output: 0 - if the bit-arrays a equal. // -1 - if this bit-array is smaller. // 1 - if this bit-array is greater. // assumes: bit-array lentgh must been smaller or equal to 64 bit // // Clone () : object // returns a copy of this bit-array // // Current : object // returns the current selected bit. // // MoveNext() : bool // purpose: increases the position of the enumerator // returns true if 'position' successful increased otherwise false. // // Reset() : void // resets the position of the enumerator. // // GetEnumerator() : IEnumerator // returns a enumerator for this BitArray-object. // // Operations: // // &amp; bitwise AND // | bitwise OR // ~ bitwise NOT // >> bitwise shift right // >> bitwise shift left // ^ bitwise XOR // // Each operation (above) returns a new BitArray-object. // // == equal operator. : bool // returns true if there inputs are equal otherwise false. // assumes: the input bit-arrays must have same length. // // != not-equal operator : bool // returns true if there inputs aren't equal otherwise false. // assumes: the input bit-arrays must have same length. using System; using System.Collections; using System.Collections.Generic; using System.Linq; using System.Text; namespace DataStructures { /// <summary> /// This class implements a bit-array and provides some /// useful functions/operations to deal with this type of /// data structure. /// </summary> public sealed class BitArray : ICloneable, IEnumerator<bool>, IEnumerable<bool> { private readonly bool[] field; // the actual bit-field private int position = -1; // position for enumerator /// <summary> /// Initializes a new instance of the <see cref="BitArray" /> class. /// setups the array with false-values. /// </summary> /// <param name="n">length of the array.</param> public BitArray(int n) { if (n < 1) { field = new bool[0]; } field = new bool[n]; } /// <summary> /// Initializes a new instance of the <see cref="BitArray" /> class. /// Setups the array with the input sequence. /// purpose: Setups the array with the input sequence. /// assumes: sequence must been greater or equal to 1. /// the sequence may only contain ones or zeros. /// </summary> /// <param name="sequence">A string sequence of 0's and 1's.</param> public BitArray(string sequence) { // precondition I if (sequence.Length <= 0) { throw new ArgumentException("Sequence must been greater than or equal to 1"); } // precondition II ThrowIfSequenceIsInvalid(sequence); field = new bool[sequence.Length]; Compile(sequence); } /// <summary> /// Initializes a new instance of the <see cref="BitArray" /> class. /// Setups the bit-array with the input array. /// </summary> /// <param name="bits">A boolean array of bits.</param> public BitArray(bool[] bits) => field = bits; /// <summary> /// Gets the length of the current bit array. /// </summary> private int Length => field.Length; /// <summary> /// Gets element given an offset. /// </summary> /// <param name="offset">Position.</param> /// <returns>Element on array.</returns> public bool this[int offset] { get => field[offset]; private set => field[offset] = value; } /// <summary> /// Returns a copy of the current bit-array. /// </summary> /// <returns>Bit-array clone.</returns> public object Clone() { var theClone = new BitArray(Length); for (var i = 0; i < Length; i++) { theClone[i] = field[i]; } return theClone; } /// <summary> /// Gets a enumerator for this BitArray-Object. /// </summary> /// <returns>Returns a enumerator for this BitArray-Object.</returns> public IEnumerator<bool> GetEnumerator() => this; /// <summary> /// Gets a enumerator for this BitArray-Object. /// </summary> /// <returns>Returns a enumerator for this BitArray-Object.</returns> IEnumerator IEnumerable.GetEnumerator() => this; /// <summary> /// Gets a value indicating whether the current bit of the array is set. /// </summary> public bool Current => field[position]; /// <summary> /// Gets a value indicating whether the current bit of the array is set. /// </summary> object IEnumerator.Current => field[position]; /// <summary> /// MoveNext (for interface IEnumerator). /// </summary> /// <returns>Returns True if 'position' successful increased; False otherwise.</returns> public bool MoveNext() { if (position + 1 >= field.Length) { return false; } position++; return true; } /// <summary> /// Resets the position of the enumerator. /// Reset (for interface IEnumerator). /// </summary> public void Reset() => position = -1; /// <summary> /// Disposes object, nothing to dispose here though. /// </summary> public void Dispose() { // Done } /// <summary> /// Returns a bit-array that represents the bit by bit AND (&amp;). /// Assumes arrays have the same length. /// </summary> /// <param name="one">First bit-array.</param> /// <param name="two">Second bit-array.</param> /// <returns>bit-array.</returns> public static BitArray operator &(BitArray one, BitArray two) { var sequence1 = one.ToString(); var sequence2 = two.ToString(); var result = new StringBuilder(); var tmp = new StringBuilder(); // for scaling of same length. if (one.Length != two.Length) { int difference; if (one.Length > two.Length) { // one is greater difference = one.Length - two.Length; // fills up with 0's for (var i = 0; i < difference; i++) { tmp.Append('0'); } tmp.Append(two); sequence2 = tmp.ToString(); } else { // two is greater difference = two.Length - one.Length; // fills up with 0's for (var i = 0; i < difference; i++) { tmp.Append('0'); } tmp.Append(one); sequence1 = tmp.ToString(); } } // end scaling var len = one.Length > two.Length ? one.Length : two.Length; var ans = new BitArray(len); for (var i = 0; i < one.Length; i++) { result.Append(sequence1[i].Equals('1') && sequence2[i].Equals('1') ? '1' : '0'); } ans.Compile(result.ToString().Trim()); return ans; } /// <summary> /// Returns a bit-array that represents the bit by bit OR. /// Assumes arrays have the same length. /// </summary> /// <param name="one">First bit-array.</param> /// <param name="two">Second bit-array.</param> /// <returns>bit-array that represents the bit by bit OR.</returns> public static BitArray operator |(BitArray one, BitArray two) { var sequence1 = one.ToString(); var sequence2 = two.ToString(); var result = string.Empty; var tmp = string.Empty; // for scaling of same length. if (one.Length != two.Length) { int difference; if (one.Length > two.Length) { // one is greater difference = one.Length - two.Length; // fills up with 0's for (var i = 0; i < difference; i++) { tmp += '0'; } tmp += two.ToString(); sequence2 = tmp; } else { // two is greater difference = two.Length - one.Length; // fills up with 0's for (var i = 0; i < difference; i++) { tmp += '0'; } tmp += one.ToString(); sequence1 = tmp; } } // end scaling var len = one.Length > two.Length ? one.Length : two.Length; var ans = new BitArray(len); for (var i = 0; i < len; i++) { result += sequence1[i].Equals('0') && sequence2[i].Equals('0') ? '0' : '1'; } result = result.Trim(); ans.Compile(result); return ans; } /// <summary> /// Returns a bit-array that represents the operator ~ (NOT). /// Assumes arrays have the same length. /// </summary> /// <param name="one">Bit-array.</param> /// <returns>bitwise not.</returns> public static BitArray operator ~(BitArray one) { var ans = new BitArray(one.Length); var sequence = one.ToString(); var result = string.Empty; foreach (var ch in sequence) { if (ch == '1') { result += '0'; } else { result += '1'; } } result = result.Trim(); ans.Compile(result); return ans; } /// <summary> /// Returns a bit-array that represents bitwise shift left (&gt;&gt;). /// Assumes arrays have the same length. /// </summary> /// <param name="other">Bit-array.</param> /// <param name="n">Number of bits.</param> /// <returns>Bitwise shifted BitArray.</returns> public static BitArray operator <<(BitArray other, int n) { var ans = new BitArray(other.Length + n); // actual shifting process for (var i = 0; i < other.Length; i++) { ans[i] = other[i]; } return ans; } /// <summary> /// Returns a bit-array that represents the bit by bit XOR. /// Assumes arrays have the same length. /// </summary> /// <param name="one">First bit-array.</param> /// <param name="two">Second bit-array.</param> /// <returns>bit-array.</returns> public static BitArray operator ^(BitArray one, BitArray two) { var sequence1 = one.ToString(); var sequence2 = two.ToString(); var tmp = string.Empty; // for scaling of same length. if (one.Length != two.Length) { int difference; if (one.Length > two.Length) { // one is greater difference = one.Length - two.Length; // fills up with 0's for (var i = 0; i < difference; i++) { tmp += '0'; } tmp += two.ToString(); sequence2 = tmp; } else { // two is greater difference = two.Length - one.Length; // fills up with 0's for (var i = 0; i < difference; i++) { tmp += '0'; } tmp += one.ToString(); sequence1 = tmp; } } // end scaling var len = one.Length > two.Length ? one.Length : two.Length; var ans = new BitArray(len); var sb = new StringBuilder(); for (var i = 0; i < len; i++) { _ = sb.Append(sequence1[i] == sequence2[i] ? '0' : '1'); } var result = sb.ToString().Trim(); ans.Compile(result); return ans; } /// <summary> /// Returns a bit-array that represents bitwise shift right (>>). /// Assumes arrays have the same length. /// </summary> /// <param name="other">Bit-array.</param> /// <param name="n">Number of bits.</param> /// <returns>Bitwise shifted BitArray.</returns> public static BitArray operator >>(BitArray other, int n) { var ans = new BitArray(other.Length - n); // actual shifting process. for (var i = 0; i < other.Length - n; i++) { ans[i] = other[i]; } return ans; } /// <summary> /// Checks if both arrays are == (equal). /// The input assumes arrays have the same length. /// </summary> /// <param name="one">First bit-array.</param> /// <param name="two">Second bit-array.</param> /// <returns>Returns True if there inputs are equal; False otherwise.</returns> public static bool operator ==(BitArray one, BitArray two) { if (ReferenceEquals(one, two)) { return true; } if (one.Length != two.Length) { return false; } var status = true; for (var i = 0; i < one.Length; i++) { if (one[i] != two[i]) { status = false; break; } } return status; } /// <summary> /// Checks if both arrays are != (not-equal). /// The input assumes arrays have the same length. /// </summary> /// <param name="one">First bit-array.</param> /// <param name="two">Second bit-array.</param> /// <returns>Returns True if there inputs aren't equal; False otherwise.</returns> public static bool operator !=(BitArray one, BitArray two) => !(one == two); /// <summary> /// Compiles the binary sequence into the inner data structure. /// The sequence must have the same length, as the bit-array. /// The sequence may only be allowed contains ones or zeros. /// </summary> /// <param name="sequence">A string sequence of 0's and 1's.</param> public void Compile(string sequence) { // precondition I if (sequence.Length > field.Length) { throw new ArgumentException($"{nameof(sequence)} must be not longer than the bit array length"); } // precondition II ThrowIfSequenceIsInvalid(sequence); // for appropriate scaling var tmp = string.Empty; if (sequence.Length < field.Length) { var difference = field.Length - sequence.Length; for (var i = 0; i < difference; i++) { tmp += '0'; } tmp += sequence; sequence = tmp; } // actual compile procedure. for (var i = 0; i < sequence.Length; i++) { field[i] = sequence[i] == '1'; } } /// <summary> /// Compiles integer number into the inner data structure. /// Assumes: the number must have the same bit length. /// </summary> /// <param name="number">A positive integer number.</param> public void Compile(int number) { var tmp = string.Empty; // precondition I if (number <= 0) { throw new ArgumentException($"{nameof(number)} must be positive"); } // converts to binary representation var binaryNumber = Convert.ToString(number, 2); // precondition II if (binaryNumber.Length > field.Length) { throw new ArgumentException("Provided number is too big"); } // for appropriate scaling if (binaryNumber.Length < field.Length) { var difference = field.Length - binaryNumber.Length; for (var i = 0; i < difference; i++) { tmp += '0'; } tmp += binaryNumber; binaryNumber = tmp; } // actual compile procedure. for (var i = 0; i < binaryNumber.Length; i++) { field[i] = binaryNumber[i] == '1'; } } /// <summary> /// Compiles integer number into the inner data structure. /// The number must have the same bit length. /// </summary> /// <param name="number">A positive long integer number.</param> public void Compile(long number) { var tmp = string.Empty; // precondition I if (number <= 0) { throw new ArgumentException($"{nameof(number)} must be positive"); } // converts to binary representation var binaryNumber = Convert.ToString(number, 2); // precondition II if (binaryNumber.Length > field.Length) { throw new ArgumentException("Provided number is too big"); } // for appropriate scaling if (binaryNumber.Length < field.Length) { var difference = field.Length - binaryNumber.Length; for (var i = 0; i < difference; i++) { tmp += '0'; } tmp += binaryNumber; binaryNumber = tmp; } // actual compile procedure. for (var i = 0; i < binaryNumber.Length; i++) { field[i] = binaryNumber[i] == '1'; } } /// <summary> /// Is the opposit of the Compile(...) method. /// </summary> /// <returns>Returns a string representation of the inner data structure.</returns> public override string ToString() { // creates return-string return field.Aggregate(string.Empty, (current, t) => current + (t ? "1" : "0")); } /// <summary> /// Gets the number of one-bits in the field. /// </summary> /// <returns>quantity of bits in current bit-array.</returns> public int NumberOfOneBits() { // counting one-bits. return field.Count(bit => bit); } /// <summary> /// Gets the number of zero-bits in the field. /// </summary> /// <returns>quantity of bits.</returns> public int NumberOfZeroBits() { // counting zero-bits return field.Count(bit => !bit); } /// <summary> /// To check for even parity. /// </summary> /// <returns>Returns True if parity is even; False otherwise.</returns> public bool EvenParity() => NumberOfOneBits() % 2 == 0; /// <summary> /// To check for odd parity. /// </summary> /// <returns>Returns True if parity is odd; False otherwise.</returns> public bool OddParity() => NumberOfOneBits() % 2 != 0; /// <summary> /// Returns a long integer representation of the bit-array. /// Assumes the bit-array length must been smaller or equal to 64 bit. /// </summary> /// <returns>Long integer array.</returns> public long ToInt64() { // Precondition if (field.Length > 64) { throw new InvalidOperationException("Value is too big to fit into Int64"); } var sequence = ToString(); return Convert.ToInt64(sequence, 2); } /// <summary> /// Returns a long integer representation of the bit-array. /// Assumes the bit-array length must been smaller or equal to 32 bit. /// </summary> /// <returns>integer array.</returns> public int ToInt32() { // Precondition if (field.Length > 32) { throw new InvalidOperationException("Value is too big to fit into Int32"); } var sequence = ToString(); return Convert.ToInt32(sequence, 2); } /// <summary> /// Sets all bits on false. /// </summary> public void ResetField() { for (var i = 0; i < field.Length; i++) { field[i] = false; } } /// <summary> /// Sets all bits on the value of the flag. /// </summary> /// <param name="flag">Bollean flag (false-true).</param> public void SetAll(bool flag) { for (var i = 0; i < field.Length; i++) { field[i] = flag; } } /// <summary> /// Checks if bit-array are equal. /// Assumes the input bit-arrays must have same length. /// </summary> /// <param name="obj">Bit-array object.</param> /// <returns>Returns true if there inputs are equal otherwise false.</returns> public override bool Equals(object? obj) { if (obj is null) { return false; } var otherBitArray = (BitArray)obj; if (Length != otherBitArray.Length) { return false; } for (var i = 0; i < Length; i++) { if (field[i] != otherBitArray[i]) { return false; } } return true; } /// <summary> /// Gets has-code of bit-array. /// Assumes bit-array length must been smaller or equal to 32. /// </summary> /// <returns>hash-code for this BitArray instance.</returns> public override int GetHashCode() => ToInt32(); private static void ThrowIfSequenceIsInvalid(string sequence) { if (!Match(sequence)) { throw new ArgumentException("The sequence may only contain ones or zeros"); } } /// <summary> /// Utility method foir checking a given sequence contains only zeros and ones. /// This method will used in Constructor (sequence : string) and Compile(sequence : string). /// </summary> /// <param name="sequence">String sequence.</param> /// <returns>returns True if sequence contains only zeros and ones; False otherwise.</returns> private static bool Match(string sequence) => sequence.All(ch => ch == '0' || ch == '1'); } }
843
C-Sharp
TheAlgorithms
C#
using System.Collections.Generic; using System.Linq; namespace DataStructures { /// <summary> /// Inverted index is the simplest form of document indexing, /// allowing performing boolean queries on text data. /// /// This realization is just simplified for better understanding the process of indexing /// and working on straightforward string inputs. /// </summary> public class InvertedIndex { private readonly Dictionary<string, List<string>> invertedIndex = new(); /// <summary> /// Build inverted index with source name and source content. /// </summary> /// <param name="sourceName">Name of the source.</param> /// <param name="sourceContent">Content of the source.</param> public void AddToIndex(string sourceName, string sourceContent) { var context = sourceContent.Split(' ').Distinct(); foreach (var word in context) { if (!invertedIndex.ContainsKey(word)) { invertedIndex.Add(word, new List<string> { sourceName }); } else { invertedIndex[word].Add(sourceName); } } } /// <summary> /// Returns the source names contains ALL terms inside at same time. /// </summary> /// <param name="terms">List of terms.</param> /// <returns>Source names.</returns> public IEnumerable<string> And(IEnumerable<string> terms) { var entries = terms .Select(term => invertedIndex .Where(x => x.Key.Equals(term)) .SelectMany(x => x.Value)) .ToList(); var intersection = entries .Skip(1) .Aggregate(new HashSet<string>(entries.First()), (hashSet, enumerable) => { hashSet.IntersectWith(enumerable); return hashSet; }); return intersection; } /// <summary> /// Returns the source names contains AT LEAST ONE from terms inside. /// </summary> /// <param name="terms">List of terms.</param> /// <returns>Source names.</returns> public IEnumerable<string> Or(IEnumerable<string> terms) { var sources = new List<string>(); foreach (var term in terms) { var source = invertedIndex .Where(x => x.Key.Equals(term)) .SelectMany(x => x.Value); sources.AddRange(source); } return sources.Distinct(); } } }
83
C-Sharp
TheAlgorithms
C#
using System.Collections; using System.Collections.Generic; namespace DataStructures { /// <summary> /// Implementation of SortedList using binary search. /// </summary> /// <typeparam name="T">Generic Type.</typeparam> public class SortedList<T> : IEnumerable<T> { private readonly IComparer<T> comparer; private readonly List<T> memory; /// <summary> /// Initializes a new instance of the <see cref="SortedList{T}" /> class. Uses a Comparer.Default for type T. /// </summary> public SortedList() : this(Comparer<T>.Default) { } /// <summary> /// Gets the number of elements containing in <see cref="SortedList{T}" />. /// </summary> public int Count => memory.Count; /// <summary> /// Initializes a new instance of the <see cref="SortedList{T}" /> class. /// </summary> /// <param name="comparer">Comparer user for binary search.</param> public SortedList(IComparer<T> comparer) { memory = new List<T>(); this.comparer = comparer; } /// <summary> /// Adds new item to <see cref="SortedList{T}" /> instance, maintaining the order. /// </summary> /// <param name="item">An element to insert.</param> public void Add(T item) { var index = IndexFor(item, out _); memory.Insert(index, item); } /// <summary> /// Gets an element of <see cref="SortedList{T}" /> at specified index. /// </summary> /// <param name="i">Index.</param> public T this[int i] => memory[i]; /// <summary> /// Removes all elements from <see cref="SortedList{T}" />. /// </summary> public void Clear() => memory.Clear(); /// <summary> /// Indicates whether a <see cref="SortedList{T}" /> contains a certain element. /// </summary> /// <param name="item">An element to search.</param> /// <returns>true - <see cref="SortedList{T}" /> contains an element, otherwise - false.</returns> public bool Contains(T item) { _ = IndexFor(item, out var found); return found; } /// <summary> /// Removes a certain element from <see cref="SortedList{T}" />. /// </summary> /// <param name="item">An element to remove.</param> /// <returns>true - element is found and removed, otherwise false.</returns> public bool TryRemove(T item) { var index = IndexFor(item, out var found); if (found) { memory.RemoveAt(index); } return found; } /// <summary> /// Returns an enumerator that iterates through the <see cref="SortedList{T}" />. /// </summary> /// <returns>A Enumerator for the <see cref="SortedList{T}" />.</returns> public IEnumerator<T> GetEnumerator() => memory.GetEnumerator(); /// <inheritdoc cref="IEnumerable.GetEnumerator"/> IEnumerator IEnumerable.GetEnumerator() => GetEnumerator(); /// <summary> /// Binary search algorithm for finding element index in <see cref="SortedList{T}" />. /// </summary> /// <param name="item">Element.</param> /// <param name="found">Indicates whether the equal value was found in <see cref="SortedList{T}" />.</param> /// <returns>Index for the Element.</returns> private int IndexFor(T item, out bool found) { var left = 0; var right = memory.Count; while (right - left > 0) { var mid = (left + right) / 2; switch (comparer.Compare(item, memory[mid])) { case > 0: left = mid + 1; break; case < 0: right = mid; break; default: found = true; return mid; } } found = false; return left; } } }
133
C-Sharp
TheAlgorithms
C#
/* Author: Lorenzo Lotti Name: Timeline (DataStructures.Timeline<TValue>) Type: Data structure (class) Description: A collection of dates/times and values sorted by dates/times easy to query. Usage: this data structure can be used to represent an ordered series of dates or times with which to associate values. An example is a chronology of events: 306: Constantine is the new emperor, 312: Battle of the Milvian Bridge, 313: Edict of Milan, 330: Constantine move the capital to Constantinople. */ using System; using System.Collections; using System.Collections.Generic; using System.Linq; namespace DataStructures { /// <summary> /// A collection of <see cref="DateTime" /> and <see cref="TValue" /> /// sorted by <see cref="DateTime" /> field. /// </summary> /// <typeparam name="TValue">Value associated with a <see cref="DateTime" />.</typeparam> public class Timeline<TValue> : ICollection<(DateTime Time, TValue Value)>, IEquatable<Timeline<TValue>> { /// <summary> /// Inner collection storing the timeline events as key-tuples. /// </summary> private readonly List<(DateTime Time, TValue Value)> timeline = new(); /// <summary> /// Initializes a new instance of the <see cref="Timeline{TValue}"/> class. /// </summary> public Timeline() { } /// <summary> /// Initializes a new instance of the <see cref="Timeline{TValue}"/> class populated with an initial event. /// </summary> /// <param name="time">The time at which the given event occurred.</param> /// <param name="value">The event's content.</param> public Timeline(DateTime time, TValue value) => timeline = new List<(DateTime, TValue)> { (time, value), }; /// <summary> /// Initializes a new instance of the <see cref="Timeline{TValue}"/> class containing the provided events /// ordered chronologically. /// </summary> /// <param name="timeline">The timeline to represent.</param> public Timeline(params (DateTime, TValue)[] timeline) => this.timeline = timeline .OrderBy(pair => pair.Item1) .ToList(); /// <summary> /// Gets he number of unique times within this timeline. /// </summary> public int TimesCount => GetAllTimes().Length; /// <summary> /// Gets all events that has occurred in this timeline. /// </summary> public int ValuesCount => GetAllValues().Length; /// <summary> /// Get all values associated with <paramref name="time" />. /// </summary> /// <param name="time">Time to get values for.</param> /// <returns>Values associated with <paramref name="time" />.</returns> public TValue[] this[DateTime time] { get => GetValuesByTime(time); set { var overridenEvents = timeline.Where(@event => @event.Time == time).ToList(); foreach (var @event in overridenEvents) { timeline.Remove(@event); } foreach (var v in value) { Add(time, v); } } } /// <inheritdoc /> bool ICollection<(DateTime Time, TValue Value)>.IsReadOnly => false; /// <summary> /// Gets the count of pairs. /// </summary> public int Count => timeline.Count; /// <summary> /// Clear the timeline, removing all events. /// </summary> public void Clear() => timeline.Clear(); /// <summary> /// Copy a value to an array. /// </summary> /// <param name="array">Destination array.</param> /// <param name="arrayIndex">The start index.</param> public void CopyTo((DateTime, TValue)[] array, int arrayIndex) => timeline.CopyTo(array, arrayIndex); /// <summary> /// Add an event at a given time. /// </summary> /// <param name="item">The tuple containing the event date and value.</param> void ICollection<(DateTime Time, TValue Value)>.Add((DateTime Time, TValue Value) item) => Add(item.Time, item.Value); /// <summary> /// Check whether or not a event exists at a specific date in the timeline. /// </summary> /// <param name="item">The tuple containing the event date and value.</param> /// <returns>True if this event exists at the given date, false otherwise.</returns> bool ICollection<(DateTime Time, TValue Value)>.Contains((DateTime Time, TValue Value) item) => Contains(item.Time, item.Value); /// <summary> /// Remove an event at a specific date. /// </summary> /// <param name="item">The tuple containing the event date and value.</param> /// <returns>True if the event was removed, false otherwise.</returns> bool ICollection<(DateTime Time, TValue Value)>.Remove((DateTime Time, TValue Value) item) => Remove(item.Time, item.Value); /// <inheritdoc /> IEnumerator IEnumerable.GetEnumerator() => timeline.GetEnumerator(); /// <inheritdoc /> IEnumerator<(DateTime Time, TValue Value)> IEnumerable<(DateTime Time, TValue Value)>.GetEnumerator() => timeline.GetEnumerator(); /// <inheritdoc /> public bool Equals(Timeline<TValue>? other) => other is not null && this == other; /// <summary> /// Checks whether or not two <see cref="Timeline{TValue}"/> are equals. /// </summary> /// <param name="left">The first timeline.</param> /// <param name="right">The other timeline to be checked against the <paramref name="left"/> one.</param> /// <returns>True if both timelines are similar, false otherwise.</returns> public static bool operator ==(Timeline<TValue> left, Timeline<TValue> right) { var leftArray = left.ToArray(); var rightArray = right.ToArray(); if (left.Count != rightArray.Length) { return false; } for (var i = 0; i < leftArray.Length; i++) { if (leftArray[i].Time != rightArray[i].Time && !leftArray[i].Value!.Equals(rightArray[i].Value)) { return false; } } return true; } /// <summary> /// Checks whether or not two <see cref="Timeline{TValue}"/> are not equals. /// </summary> /// <param name="left">The first timeline.</param> /// <param name="right">The other timeline to be checked against the <paramref name="left"/> one.</param> /// <returns>False if both timelines are similar, true otherwise.</returns> public static bool operator !=(Timeline<TValue> left, Timeline<TValue> right) => !(left == right); /// <summary> /// Get all <see cref="DateTime" /> of the timeline. /// </summary> public DateTime[] GetAllTimes() => timeline.Select(t => t.Time) .Distinct() .ToArray(); /// <summary> /// Get <see cref="DateTime" /> values of the timeline that have this <paramref name="value" />. /// </summary> public DateTime[] GetTimesByValue(TValue value) => timeline.Where(pair => pair.Value!.Equals(value)) .Select(pair => pair.Time) .ToArray(); /// <summary> /// Get all <see cref="DateTime" /> before <paramref name="time" />. /// </summary> public DateTime[] GetTimesBefore(DateTime time) => GetAllTimes() .Where(t => t < time) .OrderBy(t => t) .ToArray(); /// <summary> /// Get all <see cref="DateTime" /> after <paramref name="time" />. /// </summary> public DateTime[] GetTimesAfter(DateTime time) => GetAllTimes() .Where(t => t > time) .OrderBy(t => t) .ToArray(); /// <summary> /// Get all <see cref="TValue" /> of the timeline. /// </summary> public TValue[] GetAllValues() => timeline.Select(pair => pair.Value) .ToArray(); /// <summary> /// Get all <see cref="TValue" /> associated with <paramref name="time" />. /// </summary> public TValue[] GetValuesByTime(DateTime time) => timeline.Where(pair => pair.Time == time) .Select(pair => pair.Value) .ToArray(); /// <summary> /// Get all <see cref="TValue" /> before <paramref name="time" />. /// </summary> public Timeline<TValue> GetValuesBefore(DateTime time) => new(this.Where(pair => pair.Time < time).ToArray()); /// <summary> /// Get all <see cref="TValue" /> before <paramref name="time" />. /// </summary> public Timeline<TValue> GetValuesAfter(DateTime time) => new(this.Where(pair => pair.Time > time).ToArray()); /// <summary> /// Gets all values that happened at specified millisecond. /// </summary> /// <param name="millisecond">Value to look for.</param> /// <returns>Array of values.</returns> public Timeline<TValue> GetValuesByMillisecond(int millisecond) => new(timeline.Where(pair => pair.Time.Millisecond == millisecond).ToArray()); /// <summary> /// Gets all values that happened at specified second. /// </summary> /// <param name="second">Value to look for.</param> /// <returns>Array of values.</returns> public Timeline<TValue> GetValuesBySecond(int second) => new(timeline.Where(pair => pair.Time.Second == second).ToArray()); /// <summary> /// Gets all values that happened at specified minute. /// </summary> /// <param name="minute">Value to look for.</param> /// <returns>Array of values.</returns> public Timeline<TValue> GetValuesByMinute(int minute) => new(timeline.Where(pair => pair.Time.Minute == minute).ToArray()); /// <summary> /// Gets all values that happened at specified hour. /// </summary> /// <param name="hour">Value to look for.</param> /// <returns>Array of values.</returns> public Timeline<TValue> GetValuesByHour(int hour) => new(timeline.Where(pair => pair.Time.Hour == hour).ToArray()); /// <summary> /// Gets all values that happened at specified day. /// </summary> /// <param name="day">Value to look for.</param> /// <returns>Array of values.</returns> public Timeline<TValue> GetValuesByDay(int day) => new(timeline.Where(pair => pair.Time.Day == day).ToArray()); /// <summary> /// Gets all values that happened at specified time of the day. /// </summary> /// <param name="timeOfDay">Value to look for.</param> /// <returns>Array of values.</returns> public Timeline<TValue> GetValuesByTimeOfDay(TimeSpan timeOfDay) => new(timeline.Where(pair => pair.Time.TimeOfDay == timeOfDay).ToArray()); /// <summary> /// Gets all values that happened at specified day of the week. /// </summary> /// <param name="dayOfWeek">Value to look for.</param> /// <returns>Array of values.</returns> public Timeline<TValue> GetValuesByDayOfWeek(DayOfWeek dayOfWeek) => new(timeline.Where(pair => pair.Time.DayOfWeek == dayOfWeek).ToArray()); /// <summary> /// Gets all values that happened at specified day of the year. /// </summary> /// <param name="dayOfYear">Value to look for.</param> /// <returns>Array of values.</returns> public Timeline<TValue> GetValuesByDayOfYear(int dayOfYear) => new(timeline.Where(pair => pair.Time.DayOfYear == dayOfYear).ToArray()); /// <summary> /// Gets all values that happened at specified month. /// </summary> /// <param name="month">Value to look for.</param> /// <returns>Array of values.</returns> public Timeline<TValue> GetValuesByMonth(int month) => new(timeline.Where(pair => pair.Time.Month == month).ToArray()); /// <summary> /// Gets all values that happened at specified year. /// </summary> /// <param name="year">Value to look for.</param> /// <returns>Array of values.</returns> public Timeline<TValue> GetValuesByYear(int year) => new(timeline.Where(pair => pair.Time.Year == year).ToArray()); /// <summary> /// Add an event at a given <paramref name="time"/>. /// </summary> /// <param name="time">The date at which the event occurred.</param> /// <param name="value">The event value.</param> public void Add(DateTime time, TValue value) { timeline.Add((time, value)); } /// <summary> /// Add a set of <see cref="DateTime" /> and <see cref="TValue" /> to the timeline. /// </summary> public void Add(params (DateTime, TValue)[] timeline) { this.timeline.AddRange(timeline); } /// <summary> /// Append an existing timeline to this one. /// </summary> public void Add(Timeline<TValue> timeline) => Add(timeline.ToArray()); /// <summary> /// Add a <paramref name="value" /> associated with <see cref="DateTime.Now" /> to the timeline. /// </summary> public void AddNow(params TValue[] value) { var now = DateTime.Now; foreach (var v in value) { Add(now, v); } } /// <summary> /// Check whether or not a event exists at a specific date in the timeline. /// </summary> /// <param name="time">The date at which the event occurred.</param> /// <param name="value">The event value.</param> /// <returns>True if this event exists at the given date, false otherwise.</returns> public bool Contains(DateTime time, TValue value) => timeline.Contains((time, value)); /// <summary> /// Check if timeline contains this set of value pairs. /// </summary> /// <param name="timeline">The events to checks.</param> /// <returns>True if any of the events has occurred in the timeline.</returns> public bool Contains(params (DateTime, TValue)[] timeline) => timeline.Any(@event => Contains(@event.Item1, @event.Item2)); /// <summary> /// Check if timeline contains any of the event of the provided <paramref name="timeline"/>. /// </summary> /// <param name="timeline">The events to checks.</param> /// <returns>True if any of the events has occurred in the timeline.</returns> public bool Contains(Timeline<TValue> timeline) => Contains(timeline.ToArray()); /// <summary> /// Check if timeline contains any of the time of the provided <paramref name="times"/>. /// </summary> /// <param name="times">The times to checks.</param> /// <returns>True if any of the times is stored in the timeline.</returns> public bool ContainsTime(params DateTime[] times) { var storedTimes = GetAllTimes(); return times.Any(value => storedTimes.Contains(value)); } /// <summary> /// Check if timeline contains any of the event of the provided <paramref name="values"/>. /// </summary> /// <param name="values">The events to checks.</param> /// <returns>True if any of the events has occurred in the timeline.</returns> public bool ContainsValue(params TValue[] values) { var storedValues = GetAllValues(); return values.Any(value => storedValues.Contains(value)); } /// <summary> /// Remove an event at a specific date. /// </summary> /// <param name="time">The date at which the event occurred.</param> /// <param name="value">The event value.</param> /// <returns>True if the event was removed, false otherwise.</returns> public bool Remove(DateTime time, TValue value) => timeline.Remove((time, value)); /// <summary> /// Remove a set of value pairs from the timeline. /// </summary> /// <param name="timeline">An collection of all events to remove.</param> /// <returns>Returns true if the operation completed successfully.</returns> public bool Remove(params (DateTime, TValue)[] timeline) { var result = false; foreach (var (time, value) in timeline) { result |= this.timeline.Remove((time, value)); } return result; } /// <summary> /// Remove an existing timeline from this timeline. /// </summary> /// <param name="timeline">An collection of all events to remove.</param> /// <returns>Returns true if the operation completed successfully.</returns> public bool Remove(Timeline<TValue> timeline) => Remove(timeline.ToArray()); /// <summary> /// Remove a value pair from the timeline if the time is equal to <paramref name="times" />. /// </summary> /// <returns>Returns true if the operation completed successfully.</returns> public bool RemoveTimes(params DateTime[] times) { var isTimeContainedInTheTimeline = times.Any(time => GetAllTimes().Contains(time)); if (!isTimeContainedInTheTimeline) { return false; } var eventsToRemove = times.SelectMany(time => timeline.Where(@event => @event.Time == time)) .ToList(); foreach (var @event in eventsToRemove) { timeline.Remove(@event); } return true; } /// <summary> /// Remove a value pair from the timeline if the value is equal to <paramref name="values" />. /// </summary> /// <returns>Returns true if the operation completed successfully.</returns> public bool RemoveValues(params TValue[] values) { var isValueContainedInTheTimeline = values.Any(v => GetAllValues().Contains(v)); if (!isValueContainedInTheTimeline) { return false; } var eventsToRemove = values.SelectMany(value => timeline.Where(@event => EqualityComparer<TValue>.Default.Equals(@event.Value, value))) .ToList(); foreach (var @event in eventsToRemove) { timeline.Remove(@event); } return true; } /// <summary> /// Convert the timeline to an array. /// </summary> /// <returns> /// The timeline as an array of tuples of (<see cref="DateTime"/>, <typeparamref name="TValue"/>). /// </returns> public (DateTime Time, TValue Value)[] ToArray() => timeline.ToArray(); /// <summary> /// Convert the timeline to a list. /// </summary> /// <returns> /// The timeline as a list of tuples of (<see cref="DateTime"/>, <typeparamref name="TValue"/>). /// </returns> public IList<(DateTime Time, TValue Value)> ToList() => timeline; /// <summary> /// Convert the timeline to a dictionary. /// </summary> /// <returns> /// The timeline as an dictionary of <typeparamref name="TValue"/> by <see cref="DateTime"/>. /// </returns> public IDictionary<DateTime, TValue> ToDictionary() => timeline.ToDictionary(@event => @event.Time, @event => @event.Value); /// <inheritdoc /> public override bool Equals(object? obj) => obj is Timeline<TValue> otherTimeline && this == otherTimeline; /// <inheritdoc /> public override int GetHashCode() => timeline.GetHashCode(); } }
537
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; namespace DataStructures.AATree { /// <summary> /// A simple self-balancing binary search tree. /// </summary> /// <remarks> /// AA Trees are a form of self-balancing binary search tree named after their inventor /// Arne Anderson. AA Trees are designed to be simple to understand and implement. /// This is accomplished by limiting how nodes can be added to the tree. /// This simplifies rebalancing operations. /// More information: https://en.wikipedia.org/wiki/AA_tree . /// </remarks> /// <typeparam name="TKey">The type of key for the AA tree.</typeparam> public class AaTree<TKey> { /// <summary> /// The comparer function to use to compare the keys. /// </summary> private readonly Comparer<TKey> comparer; /// <summary> /// Initializes a new instance of the <see cref="AaTree{TKey}" /> class. /// </summary> public AaTree() : this(Comparer<TKey>.Default) { } /// <summary> /// Initializes a new instance of the <see cref="AaTree{TKey}" /> class with a custom comparer. /// </summary> /// <param name="customComparer">The custom comparer to use to compare keys.</param> public AaTree(Comparer<TKey> customComparer) => comparer = customComparer; /// <summary> /// Gets the root of the tree. /// </summary> public AaTreeNode<TKey>? Root { get; private set; } /// <summary> /// Gets the number of elements in the tree. /// </summary> public int Count { get; private set; } /// <summary> /// Add a single element to the tree. /// </summary> /// <param name="key">The element to add to the tree.</param> public void Add(TKey key) { Root = Add(key, Root); Count++; } /// <summary> /// Add multiple elements to the tree. /// </summary> /// <param name="keys">The elements to add to the tree.</param> public void AddRange(IEnumerable<TKey> keys) { foreach (var key in keys) { Root = Add(key, Root); Count++; } } /// <summary> /// Remove a single element from the tree. /// </summary> /// <param name="key">Element to remove.</param> public void Remove(TKey key) { if (!Contains(key, Root)) { throw new InvalidOperationException($"{nameof(key)} is not in the tree"); } Root = Remove(key, Root); Count--; } /// <summary> /// Checks if the specified element is in the tree. /// </summary> /// <param name="key">The element to look for.</param> /// <returns>true if the element is in the tree, false otherwise.</returns> public bool Contains(TKey key) => Contains(key, Root); /// <summary> /// Gets the largest element in the tree. (ie. the element in the right most node). /// </summary> /// <returns>The largest element in the tree according to the stored comparer.</returns> /// <exception cref="InvalidOperationException">Thrown if the tree is empty.</exception> public TKey GetMax() { if (Root is null) { throw new InvalidOperationException("Tree is empty!"); } return GetMax(Root).Key; } /// <summary> /// Gets the smallest element in the tree. (ie. the element in the left most node). /// </summary> /// <returns>The smallest element in the tree according to the stored comparer.</returns> /// <throws>InvalidOperationException if the tree is empty.</throws> public TKey GetMin() { if (Root is null) { throw new InvalidOperationException("Tree is empty!"); } return GetMin(Root).Key; } /// <summary> /// Gets all the elements in the tree in in-order order. /// </summary> /// <returns>Sequence of elements in in-order order.</returns> public IEnumerable<TKey> GetKeysInOrder() { var result = new List<TKey>(); InOrderWalk(Root); return result; void InOrderWalk(AaTreeNode<TKey>? node) { if (node is null) { return; } InOrderWalk(node.Left); result.Add(node.Key); InOrderWalk(node.Right); } } /// <summary> /// Gets all the elements in the tree in pre-order order. /// </summary> /// <returns>Sequence of elements in pre-order order.</returns> public IEnumerable<TKey> GetKeysPreOrder() { var result = new List<TKey>(); PreOrderWalk(Root); return result; void PreOrderWalk(AaTreeNode<TKey>? node) { if (node is null) { return; } result.Add(node.Key); PreOrderWalk(node.Left); PreOrderWalk(node.Right); } } /// <summary> /// Gets all the elements in the tree in post-order order. /// </summary> /// <returns>Sequence of elements in post-order order.</returns> public IEnumerable<TKey> GetKeysPostOrder() { var result = new List<TKey>(); PostOrderWalk(Root); return result; void PostOrderWalk(AaTreeNode<TKey>? node) { if (node is null) { return; } PostOrderWalk(node.Left); PostOrderWalk(node.Right); result.Add(node.Key); } } /// <summary> /// Recursive function to add an element to the tree. /// </summary> /// <param name="key">The element to add.</param> /// <param name="node">The node to search for a empty spot.</param> /// <returns>The node with the added element.</returns> /// <exception cref="ArgumentException">Thrown if key is already in the tree.</exception> private AaTreeNode<TKey> Add(TKey key, AaTreeNode<TKey>? node) { if (node is null) { return new AaTreeNode<TKey>(key, 1); } if (comparer.Compare(key, node.Key) < 0) { node.Left = Add(key, node.Left); } else if (comparer.Compare(key, node.Key) > 0) { node.Right = Add(key, node.Right); } else { throw new ArgumentException($"Key \"{key}\" already in tree!", nameof(key)); } return Split(Skew(node)) !; } /// <summary> /// Recursive function to remove an element from the tree. /// </summary> /// <param name="key">The element to remove.</param> /// <param name="node">The node to search from.</param> /// <returns>The node with the specified element removed.</returns> private AaTreeNode<TKey>? Remove(TKey key, AaTreeNode<TKey>? node) { if (node is null) { return null; } if (comparer.Compare(key, node.Key) < 0) { node.Left = Remove(key, node.Left); } else if (comparer.Compare(key, node.Key) > 0) { node.Right = Remove(key, node.Right); } else { if (node.Left is null && node.Right is null) { return null; } if (node.Left is null) { var successor = GetMin(node.Right!); node.Right = Remove(successor.Key, node.Right); node.Key = successor.Key; } else { var predecessor = GetMax(node.Left); node.Left = Remove(predecessor.Key, node.Left); node.Key = predecessor.Key; } } node = DecreaseLevel(node); node = Skew(node); node!.Right = Skew(node.Right); if (node.Right is not null) { node.Right.Right = Skew(node.Right.Right); } node = Split(node); node!.Right = Split(node.Right); return node; } /// <summary> /// Recursive function to check if the element exists in the tree. /// </summary> /// <param name="key">The element to check for.</param> /// <param name="node">The node to search from.</param> /// <returns>true if the element exists in the tree, false otherwise.</returns> private bool Contains(TKey key, AaTreeNode<TKey>? node) => node is { } && comparer.Compare(key, node.Key) is { } v && v switch { { } when v > 0 => Contains(key, node.Right), { } when v < 0 => Contains(key, node.Left), _ => true, }; /// <summary> /// Recursive to find the maximum/right-most element. /// </summary> /// <param name="node">The node to traverse from.</param> /// <returns>The node with the maximum/right-most element.</returns> private AaTreeNode<TKey> GetMax(AaTreeNode<TKey> node) { while (true) { if (node.Right is null) { return node; } node = node.Right; } } /// <summary> /// Recursive to find the minimum/left-most element. /// </summary> /// <param name="node">The node to traverse from.</param> /// <returns>The node with the minimum/left-most element.</returns> private AaTreeNode<TKey> GetMin(AaTreeNode<TKey> node) { while (true) { if (node.Left is null) { return node; } node = node.Left; } } /// <summary> /// Remove right-horizontal links and replaces them with left-horizontal links. /// Accomplishes this by performing a right rotation. /// </summary> /// <param name="node">The node to rebalance from.</param> /// <returns>The rebalanced node.</returns> private AaTreeNode<TKey>? Skew(AaTreeNode<TKey>? node) { if (node?.Left is null || node.Left.Level != node.Level) { return node; } var left = node.Left; node.Left = left.Right; left.Right = node; return left; } /// <summary> /// Reduces the number of right-horizontal links. /// Accomplishes this by performing a left rotation, and incrementing level. /// </summary> /// <param name="node">The node to rebalance from.</param> /// <returns>The rebalanced node.</returns> private AaTreeNode<TKey>? Split(AaTreeNode<TKey>? node) { if (node?.Right?.Right is null || node.Level != node.Right.Right.Level) { return node; } var right = node.Right; node.Right = right.Left; right.Left = node; right.Level++; return right; } /// <summary> /// Decreases the level of node if necessary. /// </summary> /// <param name="node">The node to decrease level from.</param> /// <returns>The node with modified level.</returns> private AaTreeNode<TKey> DecreaseLevel(AaTreeNode<TKey> node) { var newLevel = Math.Min(GetLevel(node.Left), GetLevel(node.Right)) + 1; if (newLevel >= node.Level) { return node; } node.Level = newLevel; if (node.Right is { } && newLevel < node.Right.Level) { node.Right.Level = newLevel; } return node; static int GetLevel(AaTreeNode<TKey>? x) => x?.Level ?? 0; } } }
394
C-Sharp
TheAlgorithms
C#
namespace DataStructures.AATree { /// <summary> /// Generic node class for AATree. /// </summary> /// <typeparam name="TKey">Type of key for node.</typeparam> public class AaTreeNode<TKey> { /// <summary> /// Initializes a new instance of the <see cref="AaTreeNode{TKey}" /> class. /// </summary> /// <param name="key">The initial key of this node.</param> /// <param name="level">The level of this node. See <see cref="AaTree{TKey}" /> for more details.</param> public AaTreeNode(TKey key, int level) { Key = key; Level = level; } /// <summary> /// Gets or Sets key for this node. /// </summary> public TKey Key { get; set; } /// <summary> /// Gets or Sets level for this node. /// </summary> public int Level { get; set; } /// <summary> /// Gets or sets the left subtree of this node. /// </summary> public AaTreeNode<TKey>? Left { get; set; } /// <summary> /// Gets or sets the right subtree of this node. /// </summary> public AaTreeNode<TKey>? Right { get; set; } } }
41
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; namespace DataStructures.AVLTree { /// <summary> /// A simple self-balancing binary tree. /// </summary> /// <remarks> /// An AVL tree is a self-balancing binary search tree (BST) named after /// its inventors: Adelson, Velsky, and Landis. It is the first self- /// balancing BST invented. The primary property of an AVL tree is that /// the height of both child subtrees for any node only differ by one. /// Due to the balanced nature of the tree, its time complexities for /// insertion, deletion, and search all have a worst-case time /// complexity of O(log n). Which is an improvement over the worst-case /// O(n) for a regular BST. /// See https://en.wikipedia.org/wiki/AVL_tree for more information. /// Visualizer: https://visualgo.net/en/bst. /// </remarks> /// <typeparam name="TKey">Type of key for the tree.</typeparam> public class AvlTree<TKey> { /// <summary> /// Gets the number of nodes in the tree. /// </summary> public int Count { get; private set; } /// <summary> /// Comparer to use when comparing key values. /// </summary> private readonly Comparer<TKey> comparer; /// <summary> /// Reference to the root node. /// </summary> private AvlTreeNode<TKey>? root; /// <summary> /// Initializes a new instance of the <see cref="AvlTree{TKey}"/> /// class. /// </summary> public AvlTree() { comparer = Comparer<TKey>.Default; } /// <summary> /// Initializes a new instance of the <see cref="AvlTree{TKey}"/> /// class using the specified comparer. /// </summary> /// <param name="customComparer"> /// Comparer to use when comparing keys. /// </param> public AvlTree(Comparer<TKey> customComparer) { comparer = customComparer; } /// <summary> /// Add a single node to the tree. /// </summary> /// <param name="key">Key value to add.</param> public void Add(TKey key) { if (root is null) { root = new AvlTreeNode<TKey>(key); } else { root = Add(root, key); } Count++; } /// <summary> /// Add multiple nodes to the tree. /// </summary> /// <param name="keys">Key values to add.</param> public void AddRange(IEnumerable<TKey> keys) { foreach (var key in keys) { Add(key); } } /// <summary> /// Remove a node from the tree. /// </summary> /// <param name="key">Key value to remove.</param> public void Remove(TKey key) { root = Remove(root, key); Count--; } /// <summary> /// Check if given node is in the tree. /// </summary> /// <param name="key">Key value to search for.</param> /// <returns>Whether or not the node is in the tree.</returns> public bool Contains(TKey key) { var node = root; while (node is not null) { var compareResult = comparer.Compare(key, node.Key); if (compareResult < 0) { node = node.Left; } else if (compareResult > 0) { node = node.Right; } else { return true; } } return false; } /// <summary> /// Get the minimum value in the tree. /// </summary> /// <returns>Minimum value in tree.</returns> public TKey GetMin() { if (root is null) { throw new InvalidOperationException("AVL tree is empty."); } return GetMin(root).Key; } /// <summary> /// Get the maximum value in the tree. /// </summary> /// <returns>Maximum value in tree.</returns> public TKey GetMax() { if (root is null) { throw new InvalidOperationException("AVL tree is empty."); } return GetMax(root).Key; } /// <summary> /// Get keys in order from smallest to largest as defined by the /// comparer. /// </summary> /// <returns>Keys in tree in order from smallest to largest.</returns> public IEnumerable<TKey> GetKeysInOrder() { List<TKey> result = new(); InOrderWalk(root); return result; void InOrderWalk(AvlTreeNode<TKey>? node) { if (node is null) { return; } InOrderWalk(node.Left); result.Add(node.Key); InOrderWalk(node.Right); } } /// <summary> /// Get keys in the pre-order order. /// </summary> /// <returns>Keys in pre-order order.</returns> public IEnumerable<TKey> GetKeysPreOrder() { var result = new List<TKey>(); PreOrderWalk(root); return result; void PreOrderWalk(AvlTreeNode<TKey>? node) { if (node is null) { return; } result.Add(node.Key); PreOrderWalk(node.Left); PreOrderWalk(node.Right); } } /// <summary> /// Get keys in the post-order order. /// </summary> /// <returns>Keys in the post-order order.</returns> public IEnumerable<TKey> GetKeysPostOrder() { var result = new List<TKey>(); PostOrderWalk(root); return result; void PostOrderWalk(AvlTreeNode<TKey>? node) { if (node is null) { return; } PostOrderWalk(node.Left); PostOrderWalk(node.Right); result.Add(node.Key); } } /// <summary> /// Helper function to rebalance the tree so that all nodes have a /// balance factor in the range [-1, 1]. /// </summary> /// <param name="node">Node to rebalance.</param> /// <returns>New node that has been rebalanced.</returns> private static AvlTreeNode<TKey> Rebalance(AvlTreeNode<TKey> node) { if (node.BalanceFactor > 1) { if (node.Right!.BalanceFactor == -1) { node.Right = RotateRight(node.Right); } return RotateLeft(node); } if (node.BalanceFactor < -1) { if (node.Left!.BalanceFactor == 1) { node.Left = RotateLeft(node.Left); } return RotateRight(node); } return node; } /// <summary> /// Perform a left (counter-clockwise) rotation. /// </summary> /// <param name="node">Node to rotate about.</param> /// <returns>New node with rotation applied.</returns> private static AvlTreeNode<TKey> RotateLeft(AvlTreeNode<TKey> node) { var temp1 = node; var temp2 = node.Right!.Left; node = node.Right; node.Left = temp1; node.Left.Right = temp2; node.Left.UpdateBalanceFactor(); node.UpdateBalanceFactor(); return node; } /// <summary> /// Perform a right (clockwise) rotation. /// </summary> /// <param name="node">Node to rotate about.</param> /// <returns>New node with rotation applied.</returns> private static AvlTreeNode<TKey> RotateRight(AvlTreeNode<TKey> node) { var temp1 = node; var temp2 = node.Left!.Right; node = node.Left; node.Right = temp1; node.Right.Left = temp2; node.Right.UpdateBalanceFactor(); node.UpdateBalanceFactor(); return node; } /// <summary> /// Helper function to get node instance with minimum key value /// in the specified subtree. /// </summary> /// <param name="node">Node specifying root of subtree.</param> /// <returns>Minimum value in node's subtree.</returns> private static AvlTreeNode<TKey> GetMin(AvlTreeNode<TKey> node) { while (node.Left is not null) { node = node.Left; } return node; } /// <summary> /// Helper function to get node instance with maximum key value /// in the specified subtree. /// </summary> /// <param name="node">Node specifying root of subtree.</param> /// <returns>Maximum value in node's subtree.</returns> private static AvlTreeNode<TKey> GetMax(AvlTreeNode<TKey> node) { while (node.Right is not null) { node = node.Right; } return node; } /// <summary> /// Recursively function to add a node to the tree. /// </summary> /// <param name="node">Node to check for null leaf.</param> /// <param name="key">Key value to add.</param> /// <returns>New node with key inserted.</returns> private AvlTreeNode<TKey> Add(AvlTreeNode<TKey> node, TKey key) { // Regular binary search tree insertion var compareResult = comparer.Compare(key, node.Key); if (compareResult < 0) { if (node.Left is null) { var newNode = new AvlTreeNode<TKey>(key); node.Left = newNode; } else { node.Left = Add(node.Left, key); } } else if (compareResult > 0) { if (node.Right is null) { var newNode = new AvlTreeNode<TKey>(key); node.Right = newNode; } else { node.Right = Add(node.Right, key); } } else { throw new ArgumentException( $"Key \"{key}\" already exists in AVL tree."); } // Check all of the new node's ancestors for inbalance and perform // necessary rotations node.UpdateBalanceFactor(); return Rebalance(node); } /// <summary> /// Recursive function to remove node from tree. /// </summary> /// <param name="node">Node to check for key.</param> /// <param name="key">Key value to remove.</param> /// <returns>New node with key removed.</returns> private AvlTreeNode<TKey>? Remove(AvlTreeNode<TKey>? node, TKey key) { if (node == null) { throw new KeyNotFoundException( $"Key \"{key}\" is not in the AVL tree."); } // Normal binary search tree removal var compareResult = comparer.Compare(key, node.Key); if (compareResult < 0) { node.Left = Remove(node.Left, key); } else if (compareResult > 0) { node.Right = Remove(node.Right, key); } else { if (node.Left is null && node.Right is null) { return null; } if (node.Left is null) { var successor = GetMin(node.Right!); node.Right = Remove(node.Right!, successor.Key); node.Key = successor.Key; } else { var predecessor = GetMax(node.Left!); node.Left = Remove(node.Left!, predecessor.Key); node.Key = predecessor.Key; } } // Check all of the removed node's ancestors for rebalance and // perform necessary rotations. node.UpdateBalanceFactor(); return Rebalance(node); } } }
427
C-Sharp
TheAlgorithms
C#
using System; namespace DataStructures.AVLTree { /// <summary> /// Generic class to represent nodes in an <see cref="AvlTree{TKey}"/> /// instance. /// </summary> /// <typeparam name="TKey">The type of key for the node.</typeparam> internal class AvlTreeNode<TKey> { /// <summary> /// Gets or sets key value of node. /// </summary> public TKey Key { get; set; } /// <summary> /// Gets the balance factor of the node. /// </summary> public int BalanceFactor { get; private set; } /// <summary> /// Gets or sets the left child of the node. /// </summary> public AvlTreeNode<TKey>? Left { get; set; } /// <summary> /// Gets or sets the right child of the node. /// </summary> public AvlTreeNode<TKey>? Right { get; set; } /// <summary> /// Gets or sets the height of the node. /// </summary> private int Height { get; set; } /// <summary> /// Initializes a new instance of the /// <see cref="AvlTreeNode{TKey}"/> class. /// </summary> /// <param name="key">Key value for node.</param> public AvlTreeNode(TKey key) { Key = key; } /// <summary> /// Update the node's height and balance factor. /// </summary> public void UpdateBalanceFactor() { if (Left is null && Right is null) { Height = 0; BalanceFactor = 0; } else if (Left is null) { Height = Right!.Height + 1; BalanceFactor = Height; } else if (Right is null) { Height = Left!.Height + 1; BalanceFactor = -Height; } else { Height = Math.Max(Left.Height, Right.Height) + 1; BalanceFactor = Right.Height - Left.Height; } } } }
75
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; namespace DataStructures.BinarySearchTree { /// <summary> /// An ordered tree with efficient insertion, removal, and lookup. /// </summary> /// <remarks> /// A Binary Search Tree (BST) is a tree that satisfies the following properties: /// <list type="bullet"> /// <item>All nodes in the tree contain two children, usually called Left and Right.</item> /// <item>All nodes in the Left subtree contain keys that are less than the node's key.</item> /// <item>All nodes in the Right subtree contain keys that are greater than the node's key.</item> /// </list> /// A BST will have an average complexity of O(log n) for insertion, removal, and lookup operations. /// </remarks> /// <typeparam name="TKey">Type of key for the BST. Keys must implement IComparable.</typeparam> public class BinarySearchTree<TKey> { /// <summary> /// Comparer to use when comparing node elements/keys. /// </summary> private readonly Comparer<TKey> comparer; /// <summary> /// Gets the root of the BST. /// </summary> public BinarySearchTreeNode<TKey>? Root { get; private set; } public BinarySearchTree() { Root = null; Count = 0; comparer = Comparer<TKey>.Default; } public BinarySearchTree(Comparer<TKey> customComparer) { Root = null; Count = 0; comparer = customComparer; } /// <summary> /// Gets the number nodes currently in the BST. /// </summary> public int Count { get; private set; } /// <summary> /// Insert a key into the BST. /// </summary> /// <param name="key">The key to insert.</param> /// <exception cref="ArgumentException"> /// Thrown if key is already in BST. /// </exception> public void Add(TKey key) { if (Root is null) { Root = new BinarySearchTreeNode<TKey>(key); } else { Add(Root, key); } Count++; } /// <summary> /// Insert multiple keys into the BST. /// Keys are inserted in the order they appear in the sequence. /// </summary> /// <param name="keys">Sequence of keys to insert.</param> public void AddRange(IEnumerable<TKey> keys) { foreach (var key in keys) { Add(key); } } /// <summary> /// Find a node with the specified key. /// </summary> /// <param name="key">The key to search for.</param> /// <returns>The node with the specified key if it exists, otherwise a default value is returned.</returns> public BinarySearchTreeNode<TKey>? Search(TKey key) => Search(Root, key); /// <summary> /// Checks if the specified key is in the BST. /// </summary> /// <param name="key">The key to search for.</param> /// <returns>true if the key is in the BST, false otherwise.</returns> public bool Contains(TKey key) => Search(Root, key) is not null; /// <summary> /// Removes a node with a key that matches <paramref name="key" />. /// </summary> /// <param name="key">The key to search for.</param> /// <returns>true if the removal was successful, false otherwise.</returns> public bool Remove(TKey key) { if (Root is null) { return false; } var result = Remove(Root, Root, key); if (result) { Count--; } return result; } /// <summary> /// Returns a node with the smallest key. /// </summary> /// <returns>The node if possible, a default value otherwise.</returns> public BinarySearchTreeNode<TKey>? GetMin() { if (Root is null) { return default; } return GetMin(Root); } /// <summary> /// Returns a node with the largest key. /// </summary> /// <returns>The node if possible, a default value otherwise.</returns> public BinarySearchTreeNode<TKey>? GetMax() { if (Root is null) { return default; } return GetMax(Root); } /// <summary> /// Returns all the keys in the BST, sorted In-Order. /// </summary> /// <returns>A list of keys in the BST.</returns> public ICollection<TKey> GetKeysInOrder() => GetKeysInOrder(Root); /// <summary> /// Returns all the keys in the BST, sorted Pre-Order. /// </summary> /// <returns>A list of keys in the BST.</returns> public ICollection<TKey> GetKeysPreOrder() => GetKeysPreOrder(Root); /// <summary> /// Returns all the keys in the BST, sorted Post-Order. /// </summary> /// <returns>A list of keys in the BST.</returns> public ICollection<TKey> GetKeysPostOrder() => GetKeysPostOrder(Root); /// <summary> /// Recursive method to add a key to the BST. /// </summary> /// <param name="node">Node to search from.</param> /// <param name="key">Key to add.</param> /// <exception cref="ArgumentException"> /// Thrown if key is already in the BST. /// </exception> private void Add(BinarySearchTreeNode<TKey> node, TKey key) { var compareResult = comparer.Compare(node.Key, key); if (compareResult > 0) { if (node.Left is not null) { Add(node.Left, key); } else { var newNode = new BinarySearchTreeNode<TKey>(key); node.Left = newNode; } } else if (compareResult < 0) { if (node.Right is not null) { Add(node.Right, key); } else { var newNode = new BinarySearchTreeNode<TKey>(key); node.Right = newNode; } } // Key is already in tree. else { throw new ArgumentException($"Key \"{key}\" already exists in tree!"); } } /// <summary> /// Removes a node with the specified key from the BST. /// </summary> /// <param name="parent">The parent node of <paramref name="node" />.</param> /// <param name="node">The node to check/search from.</param> /// <param name="key">The key to remove.</param> /// <returns>true if the operation was successful, false otherwise.</returns> /// <remarks> /// Removing a node from the BST can be split into three cases: /// <br></br> /// 0. The node to be removed has no children. In this case, the node can just be removed from the tree. /// <br></br> /// 1. The node to be removed has one child. In this case, the node's child is moved to the node's parent, /// then the node is removed from the tree. /// <br></br> /// 2. The node to be removed has two children. In this case, we must find a suitable node among the children /// subtrees to replace the node. This can be done with either the in-order predecessor or the in-order successor. /// The in-order predecessor is the largest node in Left subtree, or the largest node that is still smaller then the /// current node. The in-order successor is the smallest node in the Right subtree, or the smallest node that is /// still larger than the current node. Either way, once this suitable node is found, remove it from the tree (it /// should be either a case 1 or 2 node) and replace the node to be removed with this suitable node. /// <br></br> /// More information: https://en.wikipedia.org/wiki/Binary_search_tree#Deletion . /// </remarks> private bool Remove(BinarySearchTreeNode<TKey>? parent, BinarySearchTreeNode<TKey>? node, TKey key) { if (node is null || parent is null) { return false; } var compareResult = comparer.Compare(node.Key, key); if (compareResult > 0) { return Remove(node, node.Left, key); } if (compareResult < 0) { return Remove(node, node.Right, key); } BinarySearchTreeNode<TKey>? replacementNode; // Case 0: Node has no children. // Case 1: Node has one child. if (node.Left is null || node.Right is null) { replacementNode = node.Left ?? node.Right; } // Case 2: Node has two children. (This implementation uses the in-order predecessor to replace node.) else { var predecessorNode = GetMax(node.Left); Remove(Root, Root, predecessorNode.Key); replacementNode = new BinarySearchTreeNode<TKey>(predecessorNode.Key) { Left = node.Left, Right = node.Right, }; } // Replace the relevant node with a replacement found in the previous stages. // Special case for replacing the root node. if (node == Root) { Root = replacementNode; } else if (parent.Left == node) { parent.Left = replacementNode; } else { parent.Right = replacementNode; } return true; } /// <summary> /// Recursive method to get node with largest key. /// </summary> /// <param name="node">Node to search from.</param> /// <returns>Node with largest value.</returns> private BinarySearchTreeNode<TKey> GetMax(BinarySearchTreeNode<TKey> node) { if (node.Right is null) { return node; } return GetMax(node.Right); } /// <summary> /// Recursive method to get node with smallest key. /// </summary> /// <param name="node">Node to search from.</param> /// <returns>Node with smallest value.</returns> private BinarySearchTreeNode<TKey> GetMin(BinarySearchTreeNode<TKey> node) { if (node.Left is null) { return node; } return GetMin(node.Left); } /// <summary> /// Recursive method to get a list with the keys sorted in in-order order. /// </summary> /// <param name="node">Node to traverse from.</param> /// <returns>List of keys in in-order order.</returns> private IList<TKey> GetKeysInOrder(BinarySearchTreeNode<TKey>? node) { if (node is null) { return new List<TKey>(); } var result = new List<TKey>(); result.AddRange(GetKeysInOrder(node.Left)); result.Add(node.Key); result.AddRange(GetKeysInOrder(node.Right)); return result; } /// <summary> /// Recursive method to get a list with the keys sorted in pre-order order. /// </summary> /// <param name="node">Node to traverse from.</param> /// <returns>List of keys in pre-order order.</returns> private IList<TKey> GetKeysPreOrder(BinarySearchTreeNode<TKey>? node) { if (node is null) { return new List<TKey>(); } var result = new List<TKey>(); result.Add(node.Key); result.AddRange(GetKeysPreOrder(node.Left)); result.AddRange(GetKeysPreOrder(node.Right)); return result; } /// <summary> /// Recursive method to get a list with the keys sorted in post-order order. /// </summary> /// <param name="node">Node to traverse from.</param> /// <returns>List of keys in post-order order.</returns> private IList<TKey> GetKeysPostOrder(BinarySearchTreeNode<TKey>? node) { if (node is null) { return new List<TKey>(); } var result = new List<TKey>(); result.AddRange(GetKeysPostOrder(node.Left)); result.AddRange(GetKeysPostOrder(node.Right)); result.Add(node.Key); return result; } /// <summary> /// Recursive method to find a node with a matching key. /// </summary> /// <param name="node">Node to search from.</param> /// <param name="key">Key to find.</param> /// <returns>The node with the specified if it exists, a default value otherwise.</returns> private BinarySearchTreeNode<TKey>? Search(BinarySearchTreeNode<TKey>? node, TKey key) { if (node is null) { return default; } var compareResult = comparer.Compare(node.Key, key); if (compareResult > 0) { return Search(node.Left, key); } if (compareResult < 0) { return Search(node.Right, key); } return node; } } }
405
C-Sharp
TheAlgorithms
C#
namespace DataStructures.BinarySearchTree { /// <summary> /// Generic node class for BinarySearchTree. /// Keys for each node are immutable. /// </summary> /// <typeparam name="TKey">Type of key for the node. Keys must implement IComparable.</typeparam> public class BinarySearchTreeNode<TKey> { /// <summary> /// Initializes a new instance of the <see cref="BinarySearchTreeNode{TKey}" /> class. /// </summary> /// <param name="key">The key of this node.</param> public BinarySearchTreeNode(TKey key) => Key = key; /// <summary> /// Gets the key for this node. /// </summary> public TKey Key { get; } /// <summary> /// Gets or sets the reference to a child node that precedes/comes before this node. /// </summary> public BinarySearchTreeNode<TKey>? Left { get; set; } /// <summary> /// Gets or sets the reference to a child node that follows/comes after this node. /// </summary> public BinarySearchTreeNode<TKey>? Right { get; set; } } }
32
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; namespace DataStructures.Cache { /// <summary> /// Least Frequently Used (LFU) cache implementation. /// </summary> /// <typeparam name="TKey">The type of the key (must be not null).</typeparam> /// <typeparam name="TValue">The type of the value.</typeparam> /// <remarks> /// Cache keeps up to <c>capacity</c> items. When new item is added and cache is full, /// one of the least frequently used item is removed (e.g. it keeps N items that were the most /// frequently requested using <c>Get()</c> or <c>Put()</c> methods). /// When there are multiple items with the same frequency, the least recently used item is removed. /// /// Cache is built on top of two data structures: /// - <c>Dictionary</c>. Allows items to be looked up by key in O(1) time. Another dictionary /// is used to store the frequency of each key. /// - <c>LinkedList</c> - Allows items with the same frequency to be ordered by the last /// usage in O(1) time. /// /// Useful links: /// https://en.wikipedia.org/wiki/Cache_replacement_policies /// https://www.enjoyalgorithms.com/blog/least-frequently-used-cache /// https://www.educative.io/answers/what-is-least-frequently-used-cache-replace-policy /// https://leetcode.com/problems/lfu-cache/ . /// </remarks> public class LfuCache<TKey, TValue> where TKey : notnull { private class CachedItem { public TKey Key { get; set; } = default!; public TValue? Value { get; set; } public int Frequency { get; set; } } private const int DefaultCapacity = 100; private readonly int capacity; // Note that <c>Dictionary</c> stores <c>LinkedListNode</c> as it allows // removing the node from the <c>LinkedList</c> in O(1) time. private readonly Dictionary<TKey, LinkedListNode<CachedItem>> cache = new(); // Map frequency (number of times the item was requested or updated) // to the LRU linked list. private readonly Dictionary<int, LinkedList<CachedItem>> frequencies = new(); // Track the minimum frequency with non-empty linked list in <c>frequencies</c>. // When the last item with the minFrequency is promoted (after being requested or updated), // the <c>minFrequency</c> is increased. // When a new item is added, the <c>minFrequency</c> is set to 1. private int minFrequency = -1; /// <summary> /// Initializes a new instance of the <see cref="LfuCache{TKey, TValue}"/> class. /// </summary> /// <param name="capacity">The max number of items the cache can store.</param> public LfuCache(int capacity = DefaultCapacity) { this.capacity = capacity; } public bool Contains(TKey key) => cache.ContainsKey(key); /// <summary> /// Gets the cached item by key. /// </summary> /// <param name="key">The key of cached item.</param> /// <returns>The cached item or <c>default</c> if item is not found.</returns> /// <remarks> Time complexity: O(1). </remarks> public TValue? Get(TKey key) { if (!cache.ContainsKey(key)) { return default; } var node = cache[key]; UpdateFrequency(node, isNew: false); return node.Value.Value; } /// <summary> /// Adds or updates the value in the cache. /// </summary> /// <param name="key">The key of item to cache.</param> /// <param name="value">The value to cache.</param> /// <remarks> /// Time complexity: O(1). /// If the value is already cached, it is updated and the item is moved /// to the end of the LRU list. /// If the cache is full, one of the least frequently used items is removed. /// </remarks> public void Put(TKey key, TValue value) { if (cache.ContainsKey(key)) { var existingNode = cache[key]; existingNode.Value.Value = value; UpdateFrequency(existingNode, isNew: false); return; } if (cache.Count >= capacity) { EvictOneItem(); } var item = new CachedItem { Key = key, Value = value }; var newNode = new LinkedListNode<CachedItem>(item); UpdateFrequency(newNode, isNew: true); cache.Add(key, newNode); } private void UpdateFrequency(LinkedListNode<CachedItem> node, bool isNew) { var item = node.Value; if (isNew) { item.Frequency = 1; minFrequency = 1; } else { // Remove the existing node from the LRU list with its previous frequency. var lruList = frequencies[item.Frequency]; lruList.Remove(node); if (lruList.Count == 0 && minFrequency == item.Frequency) { minFrequency++; } item.Frequency++; } // Insert item to the end of the LRU list that corresponds to its new frequency. if (!frequencies.ContainsKey(item.Frequency)) { frequencies[item.Frequency] = new LinkedList<CachedItem>(); } frequencies[item.Frequency].AddLast(node); } private void EvictOneItem() { var lruList = frequencies[minFrequency]; var itemToRemove = lruList.First!.Value; lruList.RemoveFirst(); cache.Remove(itemToRemove.Key); } } }
159
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; namespace DataStructures.Cache { /// <summary> /// Least Recently Used (LRU) cache implementation. /// </summary> /// <typeparam name="TKey">The type of the key (must be not null).</typeparam> /// <typeparam name="TValue">The type of the value.</typeparam> /// <remarks> /// Cache keeps up to <c>capacity</c> items. When new item is added and cache is full, /// the least recently used item is removed (e.g. it keeps N items that were recently requested /// using <c>Get()</c> or <c>Put()</c> methods). /// /// Cache is built on top of two data structures: /// - <c>Dictionary</c> - allows items to be looked up by key in O(1) time. /// - <c>LinkedList</c> - allows items to be ordered by last usage time in O(1) time. /// /// Useful links: /// https://en.wikipedia.org/wiki/Cache_replacement_policies /// https://www.educative.io/m/implement-least-recently-used-cache /// https://leetcode.com/problems/lru-cache/ /// /// In order to make the most recently used (MRU) cache, when the cache is full, /// just remove the last node from the linked list in the method <c>Put</c> /// (replace <c>RemoveFirst</c> with <c>RemoveLast</c>). /// </remarks> public class LruCache<TKey, TValue> where TKey : notnull { private class CachedItem { public TKey Key { get; set; } = default!; public TValue? Value { get; set; } } private const int DefaultCapacity = 100; private readonly int capacity; // Note that <c>Dictionary</c> stores <c>LinkedListNode</c> as it allows // removing the node from the <c>LinkedList</c> in O(1) time. private readonly Dictionary<TKey, LinkedListNode<CachedItem>> cache = new(); private readonly LinkedList<CachedItem> lruList = new(); /// <summary> /// Initializes a new instance of the <see cref="LruCache{TKey, TValue}"/> class. /// </summary> /// <param name="capacity">The max number of items the cache can store.</param> public LruCache(int capacity = DefaultCapacity) { this.capacity = capacity; } public bool Contains(TKey key) => cache.ContainsKey(key); /// <summary> /// Gets the cached item by key. /// </summary> /// <param name="key">The key of cached item.</param> /// <returns>The cached item or <c>default</c> if item is not found.</returns> /// <remarks> Time complexity: O(1). </remarks> public TValue? Get(TKey key) { if (!cache.ContainsKey(key)) { return default; } var node = cache[key]; lruList.Remove(node); lruList.AddLast(node); return node.Value.Value; } /// <summary> /// Adds or updates the value in the cache. /// </summary> /// <param name="key">The key of item to cache.</param> /// <param name="value">The value to cache.</param> /// <remarks> /// Time complexity: O(1). /// If the value is already cached, it is updated and the item is moved /// to the end of the LRU list. /// If the cache is full, the least recently used item is removed. /// </remarks> public void Put(TKey key, TValue value) { if (cache.ContainsKey(key)) { var existingNode = cache[key]; existingNode.Value.Value = value; lruList.Remove(existingNode); lruList.AddLast(existingNode); return; } if (cache.Count >= capacity) { var first = lruList.First!; lruList.RemoveFirst(); cache.Remove(first.Value.Key); } var item = new CachedItem { Key = key, Value = value }; var newNode = lruList.AddLast(item); cache.Add(key, newNode); } } }
113
C-Sharp
TheAlgorithms
C#
using System.Collections; namespace DataStructures.DisjointSet { /// <summary> /// Implementation of Disjoint Set with Union By Rank and Path Compression heuristics. /// </summary> /// <typeparam name="T"> generic type for implementation.</typeparam> public class DisjointSet<T> { /// <summary> /// make a new set and return its representative. /// </summary> /// <param name="x">element to add in to the DS.</param> /// <returns>representative of x.</returns> public Node<T> MakeSet(T x) => new(x); /// <summary> /// find the representative of a certain node. /// </summary> /// <param name="node">node to find representative.</param> /// <returns>representative of x.</returns> public Node<T> FindSet(Node<T> node) { if (node != node.Parent) { node.Parent = FindSet(node.Parent); } return node.Parent; } /// <summary> /// merge two sets. /// </summary> /// <param name="x">first set member.</param> /// <param name="y">second set member.</param> public void UnionSet(Node<T> x, Node<T> y) { Node<T> nx = FindSet(x); Node<T> ny = FindSet(y); if (nx == ny) { return; } if (nx.Rank > ny.Rank) { ny.Parent = nx; } else if (ny.Rank > nx.Rank) { nx.Parent = ny; } else { nx.Parent = ny; ny.Rank++; } } } }
63
C-Sharp
TheAlgorithms
C#
namespace DataStructures.DisjointSet { /// <summary> /// node class to be used by disjoint set to represent nodes in Disjoint Set forest. /// </summary> /// <typeparam name="T">generic type for data to be stored.</typeparam> public class Node<T> { public int Rank { get; set; } public Node<T> Parent { get; set; } public T Data { get; set; } public Node(T data) { Data = data; Parent = this; } } }
22
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; namespace DataStructures.Graph { /// <summary> /// Implementation of the directed weighted graph via adjacency matrix. /// </summary> /// <typeparam name="T">Generic Type.</typeparam> public class DirectedWeightedGraph<T> : IDirectedWeightedGraph<T> { /// <summary> /// Capacity of the graph, indicates the maximum amount of vertices. /// </summary> private readonly int capacity; /// <summary> /// Adjacency matrix which reflects the edges between vertices and their weight. /// Zero value indicates no edge between two vertices. /// </summary> private readonly double[,] adjacencyMatrix; /// <summary> /// Initializes a new instance of the <see cref="DirectedWeightedGraph{T}"/> class. /// </summary> /// <param name="capacity">Capacity of the graph, indicates the maximum amount of vertices.</param> public DirectedWeightedGraph(int capacity) { ThrowIfNegativeCapacity(capacity); this.capacity = capacity; Vertices = new Vertex<T>[capacity]; adjacencyMatrix = new double[capacity, capacity]; Count = 0; } /// <summary> /// Gets list of vertices of the graph. /// </summary> public Vertex<T>?[] Vertices { get; private set; } /// <summary> /// Gets current amount of vertices in the graph. /// </summary> public int Count { get; private set; } /// <summary> /// Adds new vertex to the graph. /// </summary> /// <param name="data">Data of the vertex.</param> /// <returns>Reference to created vertex.</returns> public Vertex<T> AddVertex(T data) { ThrowIfOverflow(); var vertex = new Vertex<T>(data, Count, this); Vertices[Count] = vertex; Count++; return vertex; } /// <summary> /// Creates an edge between two vertices of the graph. /// </summary> /// <param name="startVertex">Vertex, edge starts at.</param> /// <param name="endVertex">Vertex, edge ends at.</param> /// <param name="weight">Double weight of an edge.</param> public void AddEdge(Vertex<T> startVertex, Vertex<T> endVertex, double weight) { ThrowIfVertexNotInGraph(startVertex); ThrowIfVertexNotInGraph(endVertex); ThrowIfWeightZero(weight); var currentEdgeWeight = adjacencyMatrix[startVertex.Index, endVertex.Index]; ThrowIfEdgeExists(currentEdgeWeight); adjacencyMatrix[startVertex.Index, endVertex.Index] = weight; } /// <summary> /// Removes vertex from the graph. /// </summary> /// <param name="vertex">Vertex to be removed.</param> public void RemoveVertex(Vertex<T> vertex) { ThrowIfVertexNotInGraph(vertex); Vertices[vertex.Index] = null; vertex.SetGraphNull(); for (var i = 0; i < Count; i++) { adjacencyMatrix[i, vertex.Index] = 0; adjacencyMatrix[vertex.Index, i] = 0; } Count--; } /// <summary> /// Removes edge between two vertices. /// </summary> /// <param name="startVertex">Vertex, edge starts at.</param> /// <param name="endVertex">Vertex, edge ends at.</param> public void RemoveEdge(Vertex<T> startVertex, Vertex<T> endVertex) { ThrowIfVertexNotInGraph(startVertex); ThrowIfVertexNotInGraph(endVertex); adjacencyMatrix[startVertex.Index, endVertex.Index] = 0; } /// <summary> /// Gets a neighbors of particular vertex. /// </summary> /// <param name="vertex">Vertex, method gets list of neighbors for.</param> /// <returns>Collection of the neighbors of particular vertex.</returns> public IEnumerable<Vertex<T>?> GetNeighbors(Vertex<T> vertex) { ThrowIfVertexNotInGraph(vertex); for (var i = 0; i < Count; i++) { if (adjacencyMatrix[vertex.Index, i] != 0) { yield return Vertices[i]; } } } /// <summary> /// Returns true, if there is an edge between two vertices. /// </summary> /// <param name="startVertex">Vertex, edge starts at.</param> /// <param name="endVertex">Vertex, edge ends at.</param> /// <returns>True if edge exists, otherwise false.</returns> public bool AreAdjacent(Vertex<T> startVertex, Vertex<T> endVertex) { ThrowIfVertexNotInGraph(startVertex); ThrowIfVertexNotInGraph(endVertex); return adjacencyMatrix[startVertex.Index, endVertex.Index] != 0; } /// <summary> /// Return the distance between two vertices in the graph. /// </summary> /// <param name="startVertex">first vertex in edge.</param> /// <param name="endVertex">secnod vertex in edge.</param> /// <returns>distance between the two.</returns> public double AdjacentDistance(Vertex<T> startVertex, Vertex<T> endVertex) { if (AreAdjacent(startVertex, endVertex)) { return adjacencyMatrix[startVertex.Index, endVertex.Index]; } return 0; } private static void ThrowIfNegativeCapacity(int capacity) { if (capacity < 0) { throw new InvalidOperationException("Graph capacity should always be a non-negative integer."); } } private static void ThrowIfWeightZero(double weight) { if (weight.Equals(0.0d)) { throw new InvalidOperationException("Edge weight cannot be zero."); } } private static void ThrowIfEdgeExists(double currentEdgeWeight) { if (!currentEdgeWeight.Equals(0.0d)) { throw new InvalidOperationException($"Vertex already exists: {currentEdgeWeight}"); } } private void ThrowIfOverflow() { if (Count == capacity) { throw new InvalidOperationException("Graph overflow."); } } private void ThrowIfVertexNotInGraph(Vertex<T> vertex) { if (vertex.Graph != this) { throw new InvalidOperationException($"Vertex does not belong to graph: {vertex}."); } } } }
202
C-Sharp
TheAlgorithms
C#
using System.Collections.Generic; namespace DataStructures.Graph { public interface IDirectedWeightedGraph<T> { int Count { get; } Vertex<T>?[] Vertices { get; } void AddEdge(Vertex<T> startVertex, Vertex<T> endVertex, double weight); Vertex<T> AddVertex(T data); bool AreAdjacent(Vertex<T> startVertex, Vertex<T> endVertex); double AdjacentDistance(Vertex<T> startVertex, Vertex<T> endVertex); IEnumerable<Vertex<T>?> GetNeighbors(Vertex<T> vertex); void RemoveEdge(Vertex<T> startVertex, Vertex<T> endVertex); void RemoveVertex(Vertex<T> vertex); } }
26
C-Sharp
TheAlgorithms
C#
namespace DataStructures.Graph { /// <summary> /// Implementation of graph vertex. /// </summary> /// <typeparam name="T">Generic Type.</typeparam> public class Vertex<T> { /// <summary> /// Gets vertex data. /// </summary> public T Data { get; } /// <summary> /// Gets an index of the vertex in graph adjacency matrix. /// </summary> public int Index { get; } /// <summary> /// Gets reference to the graph this vertex belongs to. /// </summary> public DirectedWeightedGraph<T>? Graph { get; private set; } /// <summary> /// Initializes a new instance of the <see cref="Vertex{T}"/> class. /// </summary> /// <param name="data">Vertex data. Generic type.</param> /// <param name="index">Index of the vertex in graph adjacency matrix.</param> /// <param name="graph">Graph this vertex belongs to.</param> public Vertex(T data, int index, DirectedWeightedGraph<T>? graph) { Data = data; Index = index; Graph = graph; } /// <summary> /// Initializes a new instance of the <see cref="Vertex{T}"/> class. /// </summary> /// <param name="data">Vertex data. Generic type.</param> /// <param name="index">Index of the vertex in graph adjacency matrix.</param> public Vertex(T data, int index) { Data = data; Index = index; } /// <summary> /// Sets graph reference to the null. This method called when vertex removed from the graph. /// </summary> public void SetGraphNull() => Graph = null; /// <summary> /// Override of base ToString method. Prints vertex data and index in graph adjacency matrix. /// </summary> /// <returns>String which contains vertex data and index in graph adjacency matrix..</returns> public override string ToString() => $"Vertex Data: {Data}, Index: {Index}"; } }
60
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; namespace DataStructures.Heap { /// <summary> /// A generic implementation of a binary heap. /// </summary> /// <remarks> /// A binary heap is a complete binary tree that satisfies the heap property; /// that is every node in the tree compares greater/less than or equal to its left and right /// child nodes. Note that this is different from a binary search tree, where every node /// must be the largest/smallest node of all of its children. /// Although binary heaps are not very efficient, they are (probably) the simpliest heaps /// to understand and implement. /// More information: https://en.wikipedia.org/wiki/Binary_heap . /// </remarks> /// <typeparam name="T">Type of elements in binary heap.</typeparam> public class BinaryHeap<T> { /// <summary> /// Comparer to use when comparing elements. /// </summary> private readonly Comparer<T> comparer; /// <summary> /// List to hold the elements of the heap. /// </summary> private readonly List<T> data; /// <summary> /// Initializes a new instance of the <see cref="BinaryHeap{T}" /> class. /// </summary> public BinaryHeap() { data = new List<T>(); comparer = Comparer<T>.Default; } /// <summary> /// Initializes a new instance of the <see cref="BinaryHeap{T}" /> class with a custom comparision function. /// </summary> /// <param name="customComparer">The custom comparing function to use to compare elements.</param> public BinaryHeap(Comparer<T> customComparer) { data = new List<T>(); comparer = customComparer; } /// <summary> /// Gets the number of elements in the heap. /// </summary> public int Count => data.Count; /// <summary> /// Add an element to the binary heap. /// </summary> /// <remarks> /// Adding to the heap is done by append the element to the end of the backing list, /// and pushing the added element up until the heap property is restored. /// </remarks> /// <param name="element">The element to add to the heap.</param> /// <exception cref="ArgumentException">Thrown if element is already in heap.</exception> public void Push(T element) { data.Add(element); HeapifyUp(data.Count - 1); } /// <summary> /// Remove the top/root of the binary heap (ie: the largest/smallest element). /// </summary> /// <remarks> /// Removing from the heap is done by swapping the top/root with the last element in /// the backing list, removing the last element, and pushing the new root down /// until the heap property is restored. /// </remarks> /// <returns>The top/root of the heap.</returns> /// <exception cref="InvalidOperationException">Thrown if heap is empty.</exception> public T Pop() { if (Count == 0) { throw new InvalidOperationException("Heap is empty!"); } var elem = data[0]; data[0] = data[^1]; data.RemoveAt(data.Count - 1); HeapifyDown(0); return elem; } /// <summary> /// Return the top/root of the heap without removing it. /// </summary> /// <returns>The top/root of the heap.</returns> /// <exception cref="InvalidOperationException">Thrown if heap is empty.</exception> public T Peek() { if (Count == 0) { throw new InvalidOperationException("Heap is empty!"); } return data[0]; } /// <summary> /// Returns element if it compares larger to the top/root of the heap, else /// inserts element into the heap and returns the top/root of the heap. /// </summary> /// <param name="element">The element to check/insert.</param> /// <returns>element if element compares larger than top/root of heap, top/root of heap otherwise.</returns> public T PushPop(T element) { if (Count == 0) { return element; } if (comparer.Compare(element, data[0]) < 0) { var tmp = data[0]; data[0] = element; HeapifyDown(0); return tmp; } return element; } /// <summary> /// Check if element is in the heap. /// </summary> /// <param name="element">The element to check for.</param> /// <returns>true if element is in the heap, false otherwise.</returns> public bool Contains(T element) => data.Contains(element); /// <summary> /// Remove an element from the heap. /// </summary> /// <remarks> /// In removing an element from anywhere in the heap, we only need to push down or up /// the replacement value depending on how the removed value compares to its /// replacement value. /// </remarks> /// <param name="element">The element to remove from the heap.</param> /// <exception cref="ArgumentException">Thrown if element is not in heap.</exception> public void Remove(T element) { var idx = data.IndexOf(element); if (idx == -1) { throw new ArgumentException($"{element} not in heap!"); } Swap(idx, data.Count - 1); var tmp = data[^1]; data.RemoveAt(data.Count - 1); if (idx < data.Count) { if (comparer.Compare(tmp, data[idx]) > 0) { HeapifyDown(idx); } else { HeapifyUp(idx); } } } /// <summary> /// Swap the elements in the heap array at the given indices. /// </summary> /// <param name="idx1">First index.</param> /// <param name="idx2">Second index.</param> private void Swap(int idx1, int idx2) { var tmp = data[idx1]; data[idx1] = data[idx2]; data[idx2] = tmp; } /// <summary> /// Recursive function to restore heap properties. /// </summary> /// <remarks> /// Restores heap property by swapping the element at <paramref name="elemIdx" /> /// with its parent if the element compares greater than its parent. /// </remarks> /// <param name="elemIdx">The element to check with its parent.</param> private void HeapifyUp(int elemIdx) { var parent = (elemIdx - 1) / 2; if (parent >= 0 && comparer.Compare(data[elemIdx], data[parent]) > 0) { Swap(elemIdx, parent); HeapifyUp(parent); } } /// <summary> /// Recursive function to restore heap properties. /// </summary> /// <remarks> /// Restores heap property by swapping the element at <paramref name="elemIdx" /> /// with the larger of its children. /// </remarks> /// <param name="elemIdx">The element to check with its children.</param> private void HeapifyDown(int elemIdx) { var left = 2 * elemIdx + 1; var right = 2 * elemIdx + 2; var leftLargerThanElem = left < Count && comparer.Compare(data[elemIdx], data[left]) < 0; var rightLargerThanElem = right < Count && comparer.Compare(data[elemIdx], data[right]) < 0; var leftLargerThanRight = left < Count && right < Count && comparer.Compare(data[left], data[right]) > 0; if (leftLargerThanElem && leftLargerThanRight) { Swap(elemIdx, left); HeapifyDown(left); } else if (rightLargerThanElem && !leftLargerThanRight) { Swap(elemIdx, right); HeapifyDown(right); } } } }
238
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; using System.Linq; namespace DataStructures.Heap { /// <summary> /// This class implements min-max heap. /// It provides functionality of both min-heap and max-heap with the same time complexity. /// Therefore it provides constant time retrieval and logarithmic time removal /// of both the minimum and maximum elements in it. /// </summary> /// <typeparam name="T">Generic type.</typeparam> public class MinMaxHeap<T> { private readonly List<T> heap; /// <summary> /// Initializes a new instance of the <see cref="MinMaxHeap{T}" /> class that contains /// elements copied from a specified enumerable collection and that uses a specified comparer. /// </summary> /// <param name="collection">The enumerable collection to be copied.</param> /// <param name="comparer">The default comparer to use for comparing objects.</param> public MinMaxHeap(IEnumerable<T>? collection = null, IComparer<T>? comparer = null) { Comparer = comparer ?? Comparer<T>.Default; collection ??= Enumerable.Empty<T>(); heap = collection.ToList(); for (var i = Count / 2 - 1; i >= 0; --i) { PushDown(i); } } /// <summary> /// Gets the <see cref="IComparer{T}" />. object that is used to order the values in the <see cref="MinMaxHeap{T}" />. /// </summary> public IComparer<T> Comparer { get; } /// <summary> /// Gets the number of elements in the <see cref="MinMaxHeap{T}" />. /// </summary> public int Count => heap.Count; /// <summary> /// Adds an element to the heap. /// </summary> /// <param name="item">The element to add to the heap.</param> public void Add(T item) { heap.Add(item); PushUp(Count - 1); } /// <summary> /// Removes the maximum node from the heap and returns its value. /// </summary> /// <exception cref="InvalidOperationException">Thrown if heap is empty.</exception> /// <returns>Value of the removed maximum node.</returns> public T ExtractMax() { if (Count == 0) { throw new InvalidOperationException("Heap is empty"); } var max = GetMax(); RemoveNode(GetMaxNodeIndex()); return max; } /// <summary> /// Removes the minimum node from the heap and returns its value. /// </summary> /// <exception cref="InvalidOperationException">Thrown if heap is empty.</exception> /// <returns>Value of the removed minimum node.</returns> public T ExtractMin() { if (Count == 0) { throw new InvalidOperationException("Heap is empty"); } var min = GetMin(); RemoveNode(0); return min; } /// <summary> /// Gets the maximum value in the heap, as defined by the comparer. /// </summary> /// <exception cref="InvalidOperationException">Thrown if heap is empty.</exception> /// <returns>The maximum value in the heap.</returns> public T GetMax() { if (Count == 0) { throw new InvalidOperationException("Heap is empty"); } return heap[GetMaxNodeIndex()]; } /// <summary> /// Gets the minimum value in the heap, as defined by the comparer. /// </summary> /// <exception cref="InvalidOperationException">Thrown if heap is empty.</exception> /// <returns>The minimum value in the heap.</returns> public T GetMin() { if (Count == 0) { throw new InvalidOperationException("Heap is empty"); } return heap[0]; } /// <summary> /// Finds maximum value among children and grandchildren of the specified node. /// </summary> /// <param name="index">Index of the node in the Heap array.</param> /// <returns>Index of the maximum descendant.</returns> private int IndexOfMaxChildOrGrandchild(int index) { var descendants = new[] { 2 * index + 1, 2 * index + 2, 4 * index + 3, 4 * index + 4, 4 * index + 5, 4 * index + 6, }; var resIndex = descendants[0]; foreach (var descendant in descendants) { if (descendant >= Count) { break; } if (Comparer.Compare(heap[descendant], heap[resIndex]) > 0) { resIndex = descendant; } } return resIndex; } /// <summary> /// Finds minumum value among children and grandchildren of the specified node. /// </summary> /// <param name="index">Index of the node in the Heap array.</param> /// <returns>Index of the minimum descendant.</returns> private int IndexOfMinChildOrGrandchild(int index) { var descendants = new[] { 2 * index + 1, 2 * index + 2, 4 * index + 3, 4 * index + 4, 4 * index + 5, 4 * index + 6 }; var resIndex = descendants[0]; foreach (var descendant in descendants) { if (descendant >= Count) { break; } if (Comparer.Compare(heap[descendant], heap[resIndex]) < 0) { resIndex = descendant; } } return resIndex; } private int GetMaxNodeIndex() { return Count switch { 0 => throw new InvalidOperationException("Heap is empty"), 1 => 0, 2 => 1, _ => Comparer.Compare(heap[1], heap[2]) > 0 ? 1 : 2, }; } private bool HasChild(int index) => index * 2 + 1 < Count; private bool IsGrandchild(int node, int grandchild) => grandchild > 2 && Grandparent(grandchild) == node; /// <summary> /// Checks if node at index belongs to Min or Max level of the heap. /// Root node belongs to Min level, its children - Max level, /// its grandchildren - Min level, and so on. /// </summary> /// <param name="index">Index to check.</param> /// <returns>true if index is at Min level; false if it is at Max Level.</returns> private bool IsMinLevelIndex(int index) { // For all Min levels, value (index + 1) has the leftmost bit set to '1' at even position. const uint minLevelsBits = 0x55555555; const uint maxLevelsBits = 0xAAAAAAAA; return ((index + 1) & minLevelsBits) > ((index + 1) & maxLevelsBits); } private int Parent(int index) => (index - 1) / 2; private int Grandparent(int index) => ((index - 1) / 2 - 1) / 2; /// <summary> /// Assuming that children sub-trees are valid heaps, pushes node to lower levels /// to make heap valid. /// </summary> /// <param name="index">Node index.</param> private void PushDown(int index) { if (IsMinLevelIndex(index)) { PushDownMin(index); } else { PushDownMax(index); } } private void PushDownMax(int index) { if (!HasChild(index)) { return; } var maxIndex = IndexOfMaxChildOrGrandchild(index); // If smaller element are put at min level (as result of swaping), it doesn't affect sub-tree validity. // If smaller element are put at max level, PushDownMax() should be called for that node. if (IsGrandchild(index, maxIndex)) { if (Comparer.Compare(heap[maxIndex], heap[index]) > 0) { SwapNodes(maxIndex, index); if (Comparer.Compare(heap[maxIndex], heap[Parent(maxIndex)]) < 0) { SwapNodes(maxIndex, Parent(maxIndex)); } PushDownMax(maxIndex); } } else { if (Comparer.Compare(heap[maxIndex], heap[index]) > 0) { SwapNodes(maxIndex, index); } } } private void PushDownMin(int index) { if (!HasChild(index)) { return; } var minIndex = IndexOfMinChildOrGrandchild(index); // If bigger element are put at max level (as result of swaping), it doesn't affect sub-tree validity. // If bigger element are put at min level, PushDownMin() should be called for that node. if (IsGrandchild(index, minIndex)) { if (Comparer.Compare(heap[minIndex], heap[index]) < 0) { SwapNodes(minIndex, index); if (Comparer.Compare(heap[minIndex], heap[Parent(minIndex)]) > 0) { SwapNodes(minIndex, Parent(minIndex)); } PushDownMin(minIndex); } } else { if (Comparer.Compare(heap[minIndex], heap[index]) < 0) { SwapNodes(minIndex, index); } } } /// <summary> /// Having a new node in the heap, swaps this node with its ancestors to make heap valid. /// For node at min level. If new node is less than its parent, then it is surely less then /// all other nodes on max levels on path to the root of the heap. So node are pushed up, by /// swaping with its grandparent, until they are ordered correctly. /// For node at max level algorithm is analogical. /// </summary> /// <param name="index">Index of the new node.</param> private void PushUp(int index) { if (index == 0) { return; } var parent = Parent(index); if (IsMinLevelIndex(index)) { if (Comparer.Compare(heap[index], heap[parent]) > 0) { SwapNodes(index, parent); PushUpMax(parent); } else { PushUpMin(index); } } else { if (Comparer.Compare(heap[index], heap[parent]) < 0) { SwapNodes(index, parent); PushUpMin(parent); } else { PushUpMax(index); } } } private void PushUpMax(int index) { if (index > 2) { var grandparent = Grandparent(index); if (Comparer.Compare(heap[index], heap[grandparent]) > 0) { SwapNodes(index, grandparent); PushUpMax(grandparent); } } } private void PushUpMin(int index) { if (index > 2) { var grandparent = Grandparent(index); if (Comparer.Compare(heap[index], heap[grandparent]) < 0) { SwapNodes(index, grandparent); PushUpMin(grandparent); } } } private void RemoveNode(int index) { SwapNodes(index, Count - 1); heap.RemoveAt(Count - 1); if (Count != 0) { PushDown(index); } } private void SwapNodes(int i, int j) { var temp = heap[i]; heap[i] = heap[j]; heap[j] = temp; } } }
382
C-Sharp
TheAlgorithms
C#
using System; namespace DataStructures.Heap.FibonacciHeap { /// <summary> /// These FHeapNodes are the bulk of the data structure. The have pointers to /// their parent, a left and right sibling, and to a child. A node and its /// siblings comprise a circularly doubly linked list. /// </summary> /// <typeparam name="T">A type that can be compared.</typeparam> public class FHeapNode<T> where T : IComparable { /// <summary> /// Initializes a new instance of the <see cref="FHeapNode{T}" /> class. /// </summary> /// <param name="key">An item in the Fibonacci heap.</param> public FHeapNode(T key) { Key = key; // Since even a single node must form a circularly doubly linked list, // initialize it as such Left = Right = this; Parent = Child = null; } /// <summary> /// Gets or sets the data of this node. /// </summary> public T Key { get; set; } /// <summary> /// Gets or sets a reference to the parent. /// </summary> public FHeapNode<T>? Parent { get; set; } /// <summary> /// Gets or sets a reference to the left sibling. /// </summary> public FHeapNode<T> Left { get; set; } /// <summary> /// Gets or sets a reference to the right sibling. /// </summary> public FHeapNode<T> Right { get; set; } /// <summary> /// Gets or sets a reference to one of the children, there may be more that /// are siblings the this child, however this structure only maintains a /// reference to one of them. /// </summary> public FHeapNode<T>? Child { get; set; } /// <summary> /// Gets or sets a value indicating whether this node has been marked, /// used in some operations. /// </summary> public bool Mark { get; set; } /// <summary> /// Gets or sets the number of nodes in the child linked list. /// </summary> public int Degree { get; set; } public void SetSiblings(FHeapNode<T> left, FHeapNode<T> right) { Left = left; Right = right; } /// <summary> /// A helper function to add a node to the right of this one in the current /// circularly doubly linked list. /// </summary> /// <param name="node">A node to go in the linked list.</param> public void AddRight(FHeapNode<T> node) { Right.Left = node; node.Right = Right; node.Left = this; Right = node; } /// <summary> /// Similar to AddRight, but adds the node as a sibling to the child node. /// </summary> /// <param name="node">A node to add to the child list of this node.</param> public void AddChild(FHeapNode<T> node) { Degree++; if (Child == null) { Child = node; Child.Parent = this; Child.Left = Child.Right = Child; return; } Child.AddRight(node); } /// <summary> /// Remove this item from the linked list it's in. /// </summary> public void Remove() { Left.Right = Right; Right.Left = Left; } /// <summary> /// Combine the linked list that <c>otherList</c> sits inside, with the /// linked list this is in. Do this by cutting the link between this node, /// and the node to the right of this, and inserting the contents of the /// otherList in between. /// </summary> /// <param name="otherList"> /// A node from another list whose elements we want /// to concatenate to this list. /// </param> public void ConcatenateRight(FHeapNode<T> otherList) { Right.Left = otherList.Left; otherList.Left.Right = Right; Right = otherList; otherList.Left = this; } } }
133
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; using System.Linq; namespace DataStructures.Heap.FibonacciHeap { /// <summary> /// A generic implementation of a Fibonacci heap. /// </summary> /// <remarks> /// <para> /// A Fibonacci heap is similar to a standard binary heap /// <see cref="DataStructures.Heap.BinaryHeap{T}" />, however it uses concepts /// of amortized analysis to provide theoretical speedups on common operations like /// insert, union, and decrease-key while maintaining the same speed on all other /// operations. /// </para> /// <para> /// In practice, Fibonacci heaps are more complicated than binary heaps and require /// a large input problems before the benifits of the theoretical speed up /// begin to show. /// </para> /// <para> /// References: /// [1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, /// and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd. ed.). /// The MIT Press. /// </para> /// </remarks> /// <typeparam name="T">Type of elements in binary heap.</typeparam> public class FibonacciHeap<T> where T : IComparable { /// <summary> /// Gets or sets the count of the number of nodes in the Fibonacci heap. /// </summary> public int Count { get; set; } /// <summary> /// Gets or sets a reference to the MinItem. The MinItem and all of its siblings /// comprise the root list, a list of trees that satisfy the heap property and /// are joined in a circularly doubly linked list. /// </summary> private FHeapNode<T>? MinItem { get; set; } /// <summary> /// Add item <c>x</c> to this Fibonacci heap. /// </summary> /// <remarks> /// To add an item to a Fibonacci heap, we simply add it to the "root list", /// a circularly doubly linked list where our minimum item sits. Since adding /// items to a linked list takes O(1) time, the overall time to perform this /// operation is O(1). /// </remarks> /// <param name="x">An item to push onto the heap.</param> /// <returns> /// A reference to the item as it is in the heap. This is used for /// operations like decresing key. /// </returns> public FHeapNode<T> Push(T x) { Count++; var newItem = new FHeapNode<T>(x); if (MinItem == null) { MinItem = newItem; } else { MinItem.AddRight(newItem); if (newItem.Key.CompareTo(MinItem.Key) < 0) { MinItem = newItem; } } return newItem; } /// <summary> /// Combines all the elements of two fibonacci heaps. /// </summary> /// <remarks> /// To union two Fibonacci heaps is a single fibonacci heap is a single heap /// that contains all the elements of both heaps. This can be done in O(1) time /// by concatenating the root lists together. /// For more details on how two circularly linked lists are concatenated, see /// <see cref="FHeapNode{T}.ConcatenateRight" /> /// Finally, check to see which of <c>this.MinItem</c> and <c>other.MinItem</c> /// is smaller, and set <c>this.MinItem</c> accordingly /// This operation destroys <c>other</c>. /// </remarks> /// <param name="other"> /// Another heap whose elements we wish to add to this heap. /// The other heap will be destroyed as a result. /// </param> public void Union(FibonacciHeap<T> other) { // If there are no items in the other heap, then there is nothing to do. if (other.MinItem == null) { return; } // If this heap is empty, simply set it equal to the other heap if (MinItem == null) { // Set this heap to the other one MinItem = other.MinItem; Count = other.Count; // Destroy the other heap other.MinItem = null; other.Count = 0; return; } Count += other.Count; // <see cref="DataStructures.FibonacciHeap{T}.FHeapNode.ConcatenateRight(DataStructures.FibonacciHeap{T}.FHeapNode)"/> MinItem.ConcatenateRight(other.MinItem); // Set the MinItem to the smaller of the two MinItems if (other.MinItem.Key.CompareTo(MinItem.Key) < 0) { MinItem = other.MinItem; } other.MinItem = null; other.Count = 0; } /// <summary> /// Return the MinItem and remove it from the heap. /// </summary> /// <remarks> /// This function (with all of its helper functions) is the most complicated /// part of the Fibonacci Heap. However, it can be broken down into a few steps. /// <list type="number"> /// <item> /// Add the children of MinItem to the root list. Either one of these children, /// or another of the items in the root list is a candidate to become the new /// MinItem. /// </item> /// <item> /// Remove the MinItem from the root list and appoint a new MinItem temporarily. /// </item> /// <item> /// <see cref="Consolidate" /> what's left /// of the heap. /// </item> /// </list> /// </remarks> /// <returns>The minimum item from the heap.</returns> public T Pop() { FHeapNode<T>? z = null; if (MinItem == null) { throw new InvalidOperationException("Heap is empty!"); } z = MinItem; // Since z is leaving the heap, add its children to the root list if (z.Child != null) { foreach (var x in SiblingIterator(z.Child)) { x.Parent = null; } // This effectively adds each child x to the root list z.ConcatenateRight(z.Child); } if (Count == 1) { MinItem = null; Count = 0; return z.Key; } // Temporarily reassign MinItem to an arbitrary item in the root // list MinItem = MinItem.Right; // Remove the old MinItem from the root list altogether z.Remove(); // Consolidate the heap Consolidate(); Count -= 1; return z.Key; } /// <summary> /// A method to see what's on top of the heap without changing its structure. /// </summary> /// <returns> /// Returns the top element without popping it from the structure of /// the heap. /// </returns> public T Peek() { if (MinItem == null) { throw new InvalidOperationException("The heap is empty"); } return MinItem.Key; } /// <summary> /// Reduce the key of x to be k. /// </summary> /// <remarks> /// k must be less than x.Key, increasing the key of an item is not supported. /// </remarks> /// <param name="x">The item you want to reduce in value.</param> /// <param name="k">The new value for the item.</param> public void DecreaseKey(FHeapNode<T> x, T k) { if (MinItem == null) { throw new ArgumentException($"{nameof(x)} is not from the heap"); } if (x.Key == null) { throw new ArgumentException("x has no value"); } if (k.CompareTo(x.Key) > 0) { throw new InvalidOperationException("Value cannot be increased"); } x.Key = k; var y = x.Parent; if (y != null && x.Key.CompareTo(y.Key) < 0) { Cut(x, y); CascadingCut(y); } if (x.Key.CompareTo(MinItem.Key) < 0) { MinItem = x; } } /// <summary> /// Remove x from the child list of y. /// </summary> /// <param name="x">A child of y we just decreased the value of.</param> /// <param name="y">The now former parent of x.</param> protected void Cut(FHeapNode<T> x, FHeapNode<T> y) { if (MinItem == null) { throw new InvalidOperationException("Heap malformed"); } if (y.Degree == 1) { y.Child = null; MinItem.AddRight(x); } else if (y.Degree > 1) { x.Remove(); } else { throw new InvalidOperationException("Heap malformed"); } y.Degree--; x.Mark = false; x.Parent = null; } /// <summary> /// Rebalances the heap after the decrease operation takes place. /// </summary> /// <param name="y">An item that may no longer obey the heap property.</param> protected void CascadingCut(FHeapNode<T> y) { var z = y.Parent; if (z != null) { if (!y.Mark) { y.Mark = true; } else { Cut(y, z); CascadingCut(z); } } } /// <summary> /// <para> /// Consolidate is analogous to Heapify in <see cref="DataStructures.Heap.BinaryHeap{T}" />. /// </para> /// <para> /// First, an array <c>A</c> [0...D(H.n)] is created where H.n is the number /// of items in this heap, and D(x) is the max degree any node can have in a /// Fibonacci heap with x nodes. /// </para> /// <para> /// For each node <c>x</c> in the root list, try to add it to <c>A[d]</c> where /// d is the degree of <c>x</c>. /// If there is already a node in <c>A[d]</c>, call it <c>y</c>, and make /// <c>y</c> a child of <c>x</c>. (Swap <c>x</c> and <c>y</c> beforehand if /// <c>x</c> is greater than <c>y</c>). Now that <c>x</c> has one more child, /// remove if from <c>A[d]</c> and add it to <c>A[d+1]</c> to reflect that its /// degree is one more. Loop this behavior until we find an empty spot to put /// <c>x</c>. /// </para> /// <para> /// With <c>A</c> all filled, empty the root list of the heap. And add each item /// from <c>A</c> into the root list, one by one, making sure to keep track of /// which is smallest. /// </para> /// </summary> protected void Consolidate() { if (MinItem == null) { return; } // There's a fact in Intro to Algorithms: // "the max degree of any node in an n-node fibonacci heap is O(lg(n)). // In particular, we shall show that D(n) <= floor(log_phi(n)) where phi is // the golden ratio, defined in equation 3.24 as phi = (1 + sqrt(5))/2" // // For a proof, see [1] var maxDegree = 1 + (int)Math.Log(Count, (1 + Math.Sqrt(5)) / 2); // Create slots for every possible node degree of x var a = new FHeapNode<T>?[maxDegree]; var siblings = SiblingIterator(MinItem).ToList(); foreach (var w in siblings) { var x = w; var d = x.Degree; var y = a[d]; // While A[d] is not empty, we can't blindly put x here while (y != null) { if (x.Key.CompareTo(y.Key) > 0) { // Exchange x and y var temp = x; x = y; y = temp; } // Make y a child of x FibHeapLink(y, x); // Empty out this spot since x now has a higher degree a[d] = null; // Add 1 to x's degree before going back into the loop d++; y = a[d]; } // Now that there's an empty spot for x, place it there a[d] = x; } ReconstructHeap(a); } /// <summary> /// Reconstructs the heap based on the array of node degrees created by the consolidate step. /// </summary> /// <param name="a">An array of FHeapNodes where a[i] represents a node of degree i.</param> private void ReconstructHeap(FHeapNode<T>?[] a) { // Once all items are in A, empty out the root list MinItem = null; for (var i = 0; i < a.Length; i++) { var r = a[i]; if (r == null) { continue; } if (MinItem == null) { // If the root list is completely empty, make this the new // MinItem MinItem = r; // Make a new root list with just this item. Make sure to make // it its own list. MinItem.SetSiblings(MinItem, MinItem); MinItem.Parent = null; } else { // Add A[i] to the root list MinItem.AddRight(r); // If this item is smaller, make it the new min item if (MinItem.Key.CompareTo(r.Key) > 0) { MinItem = a[i]; } } } } /// <summary> /// Make y a child of x. /// </summary> /// <param name="y">A node to become the child of x.</param> /// <param name="x">A node to become the parent of y.</param> private void FibHeapLink(FHeapNode<T> y, FHeapNode<T> x) { y.Remove(); x.AddChild(y); y.Mark = false; } /// <summary> /// A helper function to iterate through all the siblings of this node in the /// circularly doubly linked list. /// </summary> /// <param name="node">A node we want the siblings of.</param> /// <returns>An iterator over all of the siblings.</returns> private IEnumerable<FHeapNode<T>> SiblingIterator(FHeapNode<T> node) { var currentNode = node; yield return currentNode; currentNode = node.Right; while (currentNode != node) { yield return currentNode; currentNode = currentNode.Right; } } } }
464
C-Sharp
TheAlgorithms
C#
using System; using System.Collections; using System.Collections.Generic; using System.Linq; namespace DataStructures.Heap.PairingHeap { /// <summary> /// A pairing minMax heap implementation. /// </summary> /// <typeparam name="T">Base type.</typeparam> public class PairingHeap<T> : IEnumerable<T> where T : IComparable { private readonly Sorting sorting; private readonly IComparer<T> comparer; private readonly Dictionary<T, List<PairingHeapNode<T>>> mapping = new(); private PairingHeapNode<T> root = null!; public int Count { get; private set; } public PairingHeap(Sorting sortDirection = Sorting.Ascending) { sorting = sortDirection; comparer = new PairingNodeComparer<T>(sortDirection, Comparer<T>.Default); } /// <summary> /// Insert a new Node [O(1)]. /// </summary> public void Insert(T newItem) { var newNode = new PairingHeapNode<T>(newItem); root = RebuildHeap(root, newNode); Map(newItem, newNode); Count++; } /// <summary> /// Get the element from heap [O(log(n))]. /// </summary> public T Extract() { var minMax = root; RemoveMapping(minMax.Value, minMax); RebuildHeap(root.ChildrenHead); Count--; return minMax.Value; } /// <summary> /// Update heap key [O(log(n))]. /// </summary> public void UpdateKey(T currentValue, T newValue) { if(!mapping.ContainsKey(currentValue)) { throw new ArgumentException("Current value is not present in this heap."); } var node = mapping[currentValue]?.Where(x => x.Value.Equals(currentValue)).FirstOrDefault(); if (comparer.Compare(newValue, node!.Value) > 0) { throw new ArgumentException($"New value is not {(sorting != Sorting.Descending ? "less" : "greater")} than old value."); } UpdateNodeValue(currentValue, newValue, node); if (node == root) { return; } DeleteChild(node); root = RebuildHeap(root, node); } IEnumerator IEnumerable.GetEnumerator() { return GetEnumerator(); } public IEnumerator<T> GetEnumerator() { return mapping.SelectMany(x => x.Value).Select(x => x.Value).GetEnumerator(); } /// <summary> /// Rebuild heap on action [O(log(n))]. /// </summary> private void RebuildHeap(PairingHeapNode<T> headNode) { if (headNode == null) { return; } var passOneResult = new List<PairingHeapNode<T>>(); var current = headNode; if (current.Next == null) { headNode.Next = null!; headNode.Previous = null!; passOneResult.Add(headNode); } else { while (true) { if (current == null) { break; } if (current.Next != null) { var next = current.Next; var nextNext = next.Next; passOneResult.Add(RebuildHeap(current, next)); current = nextNext; } else { var lastInserted = passOneResult[^1]; passOneResult[^1] = RebuildHeap(lastInserted, current); break; } } } var passTwoResult = passOneResult[^1]; if (passOneResult.Count == 1) { root = passTwoResult; return; } for (var i = passOneResult.Count - 2; i >= 0; i--) { current = passOneResult[i]; passTwoResult = RebuildHeap(passTwoResult, current); } root = passTwoResult; } private PairingHeapNode<T> RebuildHeap(PairingHeapNode<T> node1, PairingHeapNode<T> node2) { if (node2 != null) { node2.Previous = null!; node2.Next = null!; } if (node1 == null) { return node2!; } node1.Previous = null!; node1.Next = null!; if (node2 != null && comparer.Compare(node1.Value, node2.Value) <= 0) { AddChild(ref node1, node2); return node1; } AddChild(ref node2!, node1); return node2; } private void AddChild(ref PairingHeapNode<T> parent, PairingHeapNode<T> child) { if (parent.ChildrenHead == null) { parent.ChildrenHead = child; child.Previous = parent; return; } var head = parent.ChildrenHead; child.Previous = head; child.Next = head.Next; if (head.Next != null) { head.Next.Previous = child; } head.Next = child; } private void DeleteChild(PairingHeapNode<T> node) { if (node.IsHeadChild) { var parent = node.Previous; if (node.Next != null) { node.Next.Previous = parent; } parent.ChildrenHead = node.Next!; } else { node.Previous.Next = node.Next; if (node.Next != null) { node.Next.Previous = node.Previous; } } } private void Map(T newItem, PairingHeapNode<T> newNode) { if (mapping.ContainsKey(newItem)) { mapping[newItem].Add(newNode); } else { mapping[newItem] = new List<PairingHeapNode<T>>(new[] { newNode }); } } private void UpdateNodeValue(T currentValue, T newValue, PairingHeapNode<T> node) { RemoveMapping(currentValue, node); node.Value = newValue; Map(newValue, node); } private void RemoveMapping(T currentValue, PairingHeapNode<T> node) { mapping[currentValue].Remove(node); if (mapping[currentValue].Count == 0) { mapping.Remove(currentValue); } } } }
256
C-Sharp
TheAlgorithms
C#
using System; namespace DataStructures.Heap.PairingHeap { /// <summary> /// Node represented the value and connections. /// </summary> /// <typeparam name="T">Type, supported comparing.</typeparam> public class PairingHeapNode<T> { public PairingHeapNode(T value) { Value = value; } public T Value { get; set; } public PairingHeapNode<T> ChildrenHead { get; set; } = null!; public bool IsHeadChild => Previous != null && Previous.ChildrenHead == this; public PairingHeapNode<T> Previous { get; set; } = null!; public PairingHeapNode<T> Next { get; set; } = null!; } }
27
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; namespace DataStructures.Heap.PairingHeap { /// <summary> /// Node comparer. /// </summary> /// <typeparam name="T">Node type.</typeparam> public class PairingNodeComparer<T> : IComparer<T> where T : IComparable { private readonly bool isMax; private readonly IComparer<T> nodeComparer; public PairingNodeComparer(Sorting sortDirection, IComparer<T> comparer) { isMax = sortDirection == Sorting.Descending; nodeComparer = comparer; } public int Compare(T? x, T? y) { return !isMax ? CompareNodes(x, y) : CompareNodes(y, x); } private int CompareNodes(T? one, T? second) { return nodeComparer.Compare(one, second); } } }
34
C-Sharp
TheAlgorithms
C#
namespace DataStructures.Heap.PairingHeap { public enum Sorting { /// <summary> /// Ascending order. /// </summary> Ascending = 0, /// <summary> /// Descending order. /// </summary> Descending = 1, } }
16
C-Sharp
TheAlgorithms
C#
using System; using System.Collections.Generic; using Utilities.Exceptions; namespace DataStructures.LinkedList.DoublyLinkedList { /// <summary> /// Similar to a Singly Linked List but each node contains a refenrence to the previous node in the list. /// <see cref="System.Collections.Generic.LinkedList{T}" /> is a doubly linked list. /// Compared to singly linked lists it can be traversed forwards and backwards. /// Adding a node to a doubly linked list is simpler because ever node contains a reference to the previous node. /// </summary> /// <typeparam name="T">Generic type.</typeparam> public class DoublyLinkedList<T> { /// <summary> /// Initializes a new instance of the <see cref="DoublyLinkedList{T}" /> class. /// </summary> /// <param name="data"> Data of the original head of the list.</param> public DoublyLinkedList(T data) { Head = new DoublyLinkedListNode<T>(data); Tail = Head; Count = 1; } /// <summary> /// Initializes a new instance of the <see cref="DoublyLinkedList{T}" /> class from an enumerable. /// </summary> /// <param name="data"> Enumerable of data to be stored in the list.</param> public DoublyLinkedList(IEnumerable<T> data) { foreach (var d in data) { Add(d); } } /// <summary> /// Gets the amount of nodes in the list. /// </summary> public int Count { get; private set; } /// <summary> /// Gets or sets the first node of the list. /// </summary> private DoublyLinkedListNode<T>? Head { get; set; } /// <summary> /// Gets or sets the last node of the list. /// </summary> private DoublyLinkedListNode<T>? Tail { get; set; } /// <summary> /// Replaces the Head of the list with the new value. /// </summary> /// <param name="data"> Value for the new Head of the list.</param> /// <returns>The new Head node.</returns> public DoublyLinkedListNode<T> AddHead(T data) { var node = new DoublyLinkedListNode<T>(data); if (Head is null) { Head = node; Tail = node; Count = 1; return node; } Head.Previous = node; node.Next = Head; Head = node; Count++; return node; } /// <summary> /// Adds a new value at the end of the list. /// </summary> /// <param name="data"> New value to be added to the list.</param> /// <returns>The new node created based on the new value.</returns> public DoublyLinkedListNode<T> Add(T data) { if (Head is null) { return AddHead(data); } var node = new DoublyLinkedListNode<T>(data); Tail!.Next = node; node.Previous = Tail; Tail = node; Count++; return node; } /// <summary> /// Adds a new value after an existing node. /// </summary> /// <param name="data"> New value to be added to the list.</param> /// <param name="existingNode"> An existing node in the list.</param> /// <returns>The new node created based on the new value.</returns> public DoublyLinkedListNode<T> AddAfter(T data, DoublyLinkedListNode<T> existingNode) { if (existingNode == Tail) { return Add(data); } var node = new DoublyLinkedListNode<T>(data); node.Next = existingNode.Next; node.Previous = existingNode; existingNode.Next = node; if (node.Next is not null) { node.Next.Previous = node; } Count++; return node; } /// <summary> /// Gets an enumerable based on the data in the list. /// </summary> /// <returns>The data in the list in an IEnumerable. It can used to create a list or an array with LINQ.</returns> public IEnumerable<T> GetData() { var current = Head; while (current is not null) { yield return current.Data; current = current.Next; } } /// <summary> /// Gets an enumerable based on the data in the list reversed. /// </summary> /// <returns>The data in the list in an IEnumerable. It can used to create a list or an array with LINQ.</returns> public IEnumerable<T> GetDataReversed() { var current = Tail; while (current is not null) { yield return current.Data; current = current.Previous; } } /// <summary> /// Reverses the list. Because of how doubly linked list are structured this is not a complex action. /// </summary> public void Reverse() { var current = Head; DoublyLinkedListNode<T>? temp = null; while (current is not null) { temp = current.Previous; current.Previous = current.Next; current.Next = temp; current = current.Previous; } Tail = Head; // temp can be null on empty list if (temp is not null) { Head = temp.Previous; } } /// <summary> /// Looks for a node in the list that contains the value of the parameter. /// </summary> /// <param name="data"> Value to be looked for in a node.</param> /// <returns>The node in the list the has the paramater as a value or null if not found.</returns> public DoublyLinkedListNode<T> Find(T data) { var current = Head; while (current is not null) { if (current.Data is null && data is null || current.Data is not null && current.Data.Equals(data)) { return current; } current = current.Next; } throw new ItemNotFoundException(); } /// <summary> /// Looks for a node in the list that contains the value of the parameter. /// </summary> /// <param name="position"> Position in the list.</param> /// <returns>The node in the list the has the paramater as a value or null if not found.</returns> /// <exception cref="ArgumentOutOfRangeException">Thrown when position is negative or out range of the list.</exception> public DoublyLinkedListNode<T> GetAt(int position) { if (position < 0 || position >= Count) { throw new ArgumentOutOfRangeException($"Max count is {Count}"); } var current = Head; for (var i = 0; i < position; i++) { current = current!.Next; } return current ?? throw new ArgumentOutOfRangeException($"{nameof(position)} must be an index in the list"); } /// <summary> /// Removes the Head and replaces it with the second node in the list. /// </summary> public void RemoveHead() { if (Head is null) { throw new InvalidOperationException(); } Head = Head.Next; if (Head is null) { Tail = null; Count = 0; return; } Head.Previous = null; Count--; } /// <summary> /// Removes the last node in the list. /// </summary> public void Remove() { if (Tail is null) { throw new InvalidOperationException("Cannot prune empty list"); } Tail = Tail.Previous; if (Tail is null) { Head = null; Count = 0; return; } Tail.Next = null; Count--; } /// <summary> /// Removes specific node. /// </summary> /// <param name="node"> Node to be removed.</param> public void RemoveNode(DoublyLinkedListNode<T> node) { if (node == Head) { RemoveHead(); return; } if (node == Tail) { Remove(); return; } if (node.Previous is null || node.Next is null) { throw new ArgumentException( $"{nameof(node)} cannot have Previous or Next null if it's an internal node"); } node.Previous.Next = node.Next; node.Next.Previous = node.Previous; Count--; } /// <summary> /// Removes a node that contains the data from the parameter. /// </summary> /// <param name="data"> Data to be removed form the list.</param> public void Remove(T data) { var node = Find(data); RemoveNode(node); } /// <summary> /// Looks for the index of the node with the parameter as data. /// </summary> /// <param name="data"> Data to look for.</param> /// <returns>Returns the index of the node if it is found or -1 if the node is not found.</returns> public int IndexOf(T data) { var current = Head; var index = 0; while (current is not null) { if (current.Data is null && data is null || current.Data is not null && current.Data.Equals(data)) { return index; } index++; current = current.Next; } return -1; } /// <summary> /// List contains a node that has the parameter as data. /// </summary> /// <param name="data"> Node to be removed.</param> /// <returns>True if the node is found. False if it isn't.</returns> public bool Contains(T data) => IndexOf(data) != -1; } }
335
C-Sharp
TheAlgorithms
C#
namespace DataStructures.LinkedList.DoublyLinkedList { /// <summary> /// Generic node class for Doubly Linked List. /// </summary> /// <typeparam name="T">Generic type.</typeparam> public class DoublyLinkedListNode<T> { /// <summary> /// Initializes a new instance of the <see cref="DoublyLinkedListNode{T}" /> class. /// </summary> /// <param name="data">Data to be stored in this node.</param> public DoublyLinkedListNode(T data) => Data = data; /// <summary> /// Gets the data stored on this node. /// </summary> public T Data { get; } /// <summary> /// Gets or sets the reference to the next node in the Doubly Linked List. /// </summary> public DoublyLinkedListNode<T>? Next { get; set; } /// <summary> /// Gets or sets the reference to the previous node in the Doubly Linked List. /// </summary> public DoublyLinkedListNode<T>? Previous { get; set; } } }
31