repo_name
stringlengths 1
52
| repo_creator
stringclasses 6
values | programming_language
stringclasses 4
values | code
stringlengths 0
9.68M
| num_lines
int64 1
234k
|
---|---|---|---|---|
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Algorithms.Other
{
/// <summary>
/// Almost all real complex decision-making task is described by more than one criterion.
/// Therefore, the methods of multicriteria optimization are important. For a wide range
/// of tasks multicriteria optimization, described by some axioms of "reasonable"
/// behavior in the process of choosing from a set of possible solutions X, each set of
/// selected solutions Sel X should be contained in a set optimal for Pareto.
/// </summary>
public class ParetoOptimization
{
/// <summary>
/// Performs decision optimizations by using Paretor's optimization algorithm.
/// </summary>
/// <param name="matrix">Contains a collection of the criterias sets.</param>
/// <returns>An optimized collection of the criterias sets.</returns>
public List<List<decimal>> Optimize(List<List<decimal>> matrix)
{
var optimizedMatrix = new List<List<decimal>>(matrix.Select(i => i));
int i = 0;
while (i < optimizedMatrix.Count)
{
for (int j = i + 1; j < optimizedMatrix.Count; j++)
{
decimal directParwiseDifference = GetMinimalPairwiseDifference(optimizedMatrix[i], optimizedMatrix[j]);
decimal indirectParwiseDifference = GetMinimalPairwiseDifference(optimizedMatrix[j], optimizedMatrix[i]);
/*
* in case all criteria of one set are larger that the criteria of another, this
* decision is not optimal and it has to be removed
*/
if (directParwiseDifference >= 0 || indirectParwiseDifference >= 0)
{
optimizedMatrix.RemoveAt(directParwiseDifference >= 0 ? j : i);
i--;
break;
}
}
i++;
}
return optimizedMatrix;
}
/// <summary>
/// Calculates the smallest difference between criteria of input decisions.
/// </summary>
/// <param name="arr1">Criterias of the first decision.</param>
/// <param name="arr2">Criterias of the second decision.</param>
/// <returns>Values that represent the smallest difference between criteria of input decisions.</returns>
private decimal GetMinimalPairwiseDifference(List<decimal> arr1, List<decimal> arr2)
{
decimal min = decimal.MaxValue;
if (arr1.Count == arr2.Count)
{
for (int i = 0; i < arr1.Count; i++)
{
decimal difference = arr1[i] - arr2[i];
if (min > difference)
{
min = difference;
}
}
}
return min;
}
}
}
| 76 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Numeric.GreatestCommonDivisor;
namespace Algorithms.Other
{
/// <summary>Implementation of the Pollard's rho algorithm.
/// Algorithm for integer factorization.
/// Wiki: https://en.wikipedia.org/wiki/Pollard's_rho_algorithm.
/// </summary>
public static class PollardsRhoFactorizing
{
public static int Calculate(int number)
{
var x = 2;
var y = 2;
var d = 1;
var p = number;
var i = 0;
var gcd = new BinaryGreatestCommonDivisorFinder();
while (d == 1)
{
x = Fun_g(x, p);
y = Fun_g(Fun_g(y, p), p);
d = gcd.FindGcd(Math.Abs(x - y), p);
i++;
}
return d;
}
private static int Fun_g(int x, int p)
{
return (x * x + 1) % p;
}
}
}
| 38 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Other
{
/// <summary>
/// The RGB color model is an additive color model in which red, green, and
/// blue light are added together in various ways to reproduce a broad array of
/// colors. The name of the model comes from the initials of the three additive
/// primary colors, red, green, and blue. Meanwhile, the HSV representation
/// models how colors appear under light. In it, colors are represented using
/// three components: hue, saturation and (brightness-)value. This class
/// provides methods for converting colors from one representation to the other.
/// (description adapted from https://en.wikipedia.org/wiki/RGB_color_model and
/// https://en.wikipedia.org/wiki/HSL_and_HSV).
/// </summary>
public static class RgbHsvConversion
{
/// <summary>
/// Conversion from the HSV-representation to the RGB-representation.
/// </summary>
/// <param name="hue">Hue of the color.</param>
/// <param name="saturation">Saturation of the color.</param>
/// <param name="value">Brightness-value of the color.</param>
/// <returns>The tuple of RGB-components.</returns>
public static (byte red, byte green, byte blue) HsvToRgb(
double hue,
double saturation,
double value)
{
if (hue < 0 || hue > 360)
{
throw new ArgumentOutOfRangeException(nameof(hue), $"{nameof(hue)} should be between 0 and 360");
}
if (saturation < 0 || saturation > 1)
{
throw new ArgumentOutOfRangeException(
nameof(saturation),
$"{nameof(saturation)} should be between 0 and 1");
}
if (value < 0 || value > 1)
{
throw new ArgumentOutOfRangeException(nameof(value), $"{nameof(value)} should be between 0 and 1");
}
var chroma = value * saturation;
var hueSection = hue / 60;
var secondLargestComponent = chroma * (1 - Math.Abs(hueSection % 2 - 1));
var matchValue = value - chroma;
return GetRgbBySection(hueSection, chroma, matchValue, secondLargestComponent);
}
/// <summary>
/// Conversion from the RGB-representation to the HSV-representation.
/// </summary>
/// <param name="red">Red-component of the color.</param>
/// <param name="green">Green-component of the color.</param>
/// <param name="blue">Blue-component of the color.</param>
/// <returns>The tuple of HSV-components.</returns>
public static (double hue, double saturation, double value) RgbToHsv(
byte red,
byte green,
byte blue)
{
var dRed = (double)red / 255;
var dGreen = (double)green / 255;
var dBlue = (double)blue / 255;
var value = Math.Max(Math.Max(dRed, dGreen), dBlue);
var chroma = value - Math.Min(Math.Min(dRed, dGreen), dBlue);
var saturation = value.Equals(0) ? 0 : chroma / value;
double hue;
if (chroma.Equals(0))
{
hue = 0;
}
else if (value.Equals(dRed))
{
hue = 60 * (0 + (dGreen - dBlue) / chroma);
}
else if (value.Equals(dGreen))
{
hue = 60 * (2 + (dBlue - dRed) / chroma);
}
else
{
hue = 60 * (4 + (dRed - dGreen) / chroma);
}
hue = (hue + 360) % 360;
return (hue, saturation, value);
}
private static (byte red, byte green, byte blue) GetRgbBySection(
double hueSection,
double chroma,
double matchValue,
double secondLargestComponent)
{
byte red;
byte green;
byte blue;
if (hueSection >= 0 && hueSection <= 1)
{
red = ConvertToByte(chroma + matchValue);
green = ConvertToByte(secondLargestComponent + matchValue);
blue = ConvertToByte(matchValue);
}
else if (hueSection > 1 && hueSection <= 2)
{
red = ConvertToByte(secondLargestComponent + matchValue);
green = ConvertToByte(chroma + matchValue);
blue = ConvertToByte(matchValue);
}
else if (hueSection > 2 && hueSection <= 3)
{
red = ConvertToByte(matchValue);
green = ConvertToByte(chroma + matchValue);
blue = ConvertToByte(secondLargestComponent + matchValue);
}
else if (hueSection > 3 && hueSection <= 4)
{
red = ConvertToByte(matchValue);
green = ConvertToByte(secondLargestComponent + matchValue);
blue = ConvertToByte(chroma + matchValue);
}
else if (hueSection > 4 && hueSection <= 5)
{
red = ConvertToByte(secondLargestComponent + matchValue);
green = ConvertToByte(matchValue);
blue = ConvertToByte(chroma + matchValue);
}
else
{
red = ConvertToByte(chroma + matchValue);
green = ConvertToByte(matchValue);
blue = ConvertToByte(secondLargestComponent + matchValue);
}
return (red, green, blue);
}
private static byte ConvertToByte(double input) => (byte)Math.Round(255 * input);
}
}
| 150 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using System.Runtime.CompilerServices;
namespace Algorithms.Other
{
/// <summary>
/// Implements the Sieve of Eratosthenes.
/// </summary>
public class SieveOfEratosthenes
{
private readonly bool[] primes;
/// <summary>
/// Initializes a new instance of the <see cref="SieveOfEratosthenes"/> class.
/// Uses the Sieve of Eratosthenes to precalculate the primes from 0 up to maximumNumberToCheck.
/// Requires enough memory to allocate maximumNumberToCheck bytes.
/// https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes .
/// </summary>
/// <param name="maximumNumberToCheck">long which specifies the largest number you wish to know if it is prime.</param>
public SieveOfEratosthenes(long maximumNumberToCheck)
{
primes = new bool[maximumNumberToCheck + 1];
// initialize primes array
Array.Fill(this.primes, true, 2, primes.Length - 2);
for(long i = 2; i * i <= maximumNumberToCheck; i++)
{
if (!primes[i])
{
continue;
}
for(long composite = i * i; composite <= maximumNumberToCheck; composite += i)
{
primes[composite] = false;
}
}
}
/// <summary>
/// Gets the maximumNumberToCheck the class was instantiated with.
/// </summary>
public long MaximumNumber => primes.Length - 1;
/// <summary>
/// Returns a boolean indicating whether the number is prime.
/// </summary>
/// <param name="numberToCheck">The number you desire to know if it is prime or not.</param>
/// <returns>A boolean indicating whether the number is prime or not.</returns>
public bool IsPrime(long numberToCheck) => primes[numberToCheck];
/// <summary>
/// Returns an IEnumerable of long primes in asending order.
/// </summary>
/// <returns>Primes in ascending order.</returns>
public IEnumerable<long> GetPrimes()
{
for(long i = 2; i < primes.Length; i++)
{
if (primes[i])
{
yield return i;
}
}
}
}
}
| 72 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Algorithms.Other
{
/// <summary>Implementation of Welford's variance algorithm.
/// </summary>
public class WelfordsVariance
{
/// <summary>
/// Mean accumulates the mean of the entire dataset,
/// m2 aggregates the squared distance from the mean,
/// count aggregates the number of samples seen so far.
/// </summary>
private int count;
public double Count => count;
private double mean;
public double Mean => count > 1 ? mean : double.NaN;
private double m2;
public double Variance => count > 1 ? m2 / count : double.NaN;
public double SampleVariance => count > 1 ? m2 / (count - 1) : double.NaN;
public WelfordsVariance()
{
count = 0;
mean = 0;
}
public WelfordsVariance(double[] values)
{
count = 0;
mean = 0;
AddRange(values);
}
public void AddValue(double newValue)
{
count++;
AddValueToDataset(newValue);
}
public void AddRange(double[] values)
{
var length = values.Length;
for (var i = 1; i <= length; i++)
{
count++;
AddValueToDataset(values[i - 1]);
}
}
private void AddValueToDataset(double newValue)
{
var delta1 = newValue - mean;
var newMean = mean + delta1 / count;
var delta2 = newValue - newMean;
m2 += delta1 * delta2;
mean = newMean;
}
}
}
| 73 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Linq;
namespace Algorithms.Problems.CoinChange
{
public static class DynamicCoinChangeSolver
{
/// <summary>
/// Generates an array of changes for current coin.
/// For instance, having coin C = 6 and array A = [1,3,4] it returns an array R = [2,3,5].
/// Because, 6 - 4 = 2, 6 - 3 = 3, 6 - 1 = 5.
/// </summary>
/// <param name="coin">The value of the coin to be exchanged.</param>
/// <param name="coins">An array of available coins.</param>
/// <returns>Array of changes of current coins by available coins.</returns>
public static int[] GenerateSingleCoinChanges(int coin, int[] coins)
{
ValidateCoin(coin);
ValidateCoinsArray(coins);
var coinsArrayCopy = new int[coins.Length];
Array.Copy(coins, coinsArrayCopy, coins.Length);
Array.Sort(coinsArrayCopy);
Array.Reverse(coinsArrayCopy);
var list = new List<int>();
foreach (var item in coinsArrayCopy)
{
if (item > coin)
{
continue;
}
var difference = coin - item;
list.Add(difference);
}
var result = list.ToArray();
return result;
}
/// <summary>
/// Given a positive integer N, such as coin.
/// Generates a change dictionary for all values [1,N].
/// Used in so-called backward induction in search of the minimum exchange.
/// </summary>
/// <param name="coin">The value of coin.</param>
/// <param name="coins">Array of available coins.</param>
/// <returns>Change dictionary for all values [1,N], where N is the coin.</returns>
public static Dictionary<int, int[]> GenerateChangesDictionary(int coin, int[] coins)
{
var dict = new Dictionary<int, int[]>();
var currentCoin = 1;
while (currentCoin <= coin)
{
var changeArray = GenerateSingleCoinChanges(currentCoin, coins);
dict[currentCoin] = changeArray;
currentCoin++;
}
return dict;
}
/// <summary>
/// Gets a next coin value, such that changes array contains the minimal change overall possible changes.
/// For example, having coin N = 6 and A = [1,3,4] coins array.
/// The minimum next coin for 6 will be 3, because changes of 3 by A = [1,3,4] contains 0, the minimal change.
/// </summary>
/// <param name="coin">Coin to be exchanged.</param>
/// <param name="exchanges">Dictionary of exchanges for [1, coin].</param>
/// <returns>Index of the next coin with minimal exchange.</returns>
public static int GetMinimalNextCoin(int coin, Dictionary<int, int[]> exchanges)
{
var nextCoin = int.MaxValue;
var minChange = int.MaxValue;
var coinChanges = exchanges[coin];
foreach (var change in coinChanges)
{
if (change == 0)
{
return 0;
}
var currentChange = exchanges[change];
var min = currentChange.Min();
var minIsLesser = min < minChange;
if (minIsLesser)
{
nextCoin = change;
minChange = min;
}
}
return nextCoin;
}
/// <summary>
/// Performs a coin change such that an amount of coins is minimal.
/// </summary>
/// <param name="coin">The value of coin to be exchanged.</param>
/// <param name="coins">An array of available coins.</param>
/// <returns>Array of exchanges.</returns>
public static int[] MakeCoinChangeDynamic(int coin, int[] coins)
{
var changesTable = GenerateChangesDictionary(coin, coins);
var list = new List<int>();
var currentCoin = coin;
var nextCoin = int.MaxValue;
while (nextCoin != 0)
{
nextCoin = GetMinimalNextCoin(currentCoin, changesTable);
var difference = currentCoin - nextCoin;
list.Add(difference);
currentCoin = nextCoin;
}
var result = list.ToArray();
return result;
}
private static void ValidateCoin(int coin)
{
if (coin <= 0)
{
throw new InvalidOperationException($"The coin cannot be lesser or equal to zero {nameof(coin)}.");
}
}
private static void ValidateCoinsArray(int[] coinsArray)
{
var coinsAsArray = coinsArray.ToArray();
if (coinsAsArray.Length == 0)
{
throw new InvalidOperationException($"Coins array cannot be empty {nameof(coinsAsArray)}.");
}
var coinsContainOne = coinsAsArray.Any(x => x == 1);
if (!coinsContainOne)
{
throw new InvalidOperationException($"Coins array must contain coin 1 {nameof(coinsAsArray)}.");
}
var containsNonPositive = coinsAsArray.Any(x => x <= 0);
if (containsNonPositive)
{
throw new InvalidOperationException(
$"{nameof(coinsAsArray)} cannot contain numbers less than or equal to zero");
}
var containsDuplicates = coinsAsArray.GroupBy(x => x).Any(g => g.Count() > 1);
if (containsDuplicates)
{
throw new InvalidOperationException($"Coins array cannot contain duplicates {nameof(coinsAsArray)}.");
}
}
}
}
| 175 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
namespace Algorithms.Problems.NQueens
{
public class BacktrackingNQueensSolver
{
/// <summary>
/// Solves N-Queen Problem given a n dimension chessboard and using backtracking with recursion algorithm.
/// If we find a dead-end within or current solution we go back and try another position for queen.
/// </summary>
/// <param name="n">Number of rows.</param>
/// <returns>All solutions.</returns>
public IEnumerable<bool[,]> BacktrackSolve(int n)
{
if (n < 0)
{
throw new ArgumentException(nameof(n));
}
return BacktrackSolve(new bool[n, n], 0);
}
private static IEnumerable<bool[,]> BacktrackSolve(bool[,] board, int col)
{
var solutions = col < board.GetLength(0) - 1
? HandleIntermediateColumn(board, col)
: HandleLastColumn(board);
return solutions;
}
private static IEnumerable<bool[,]> HandleIntermediateColumn(bool[,] board, int col)
{
// To start placing queens on possible spaces within the board.
for (var i = 0; i < board.GetLength(0); i++)
{
if (CanPlace(board, i, col))
{
board[i, col] = true;
foreach (var solution in BacktrackSolve(board, col + 1))
{
yield return solution;
}
board[i, col] = false;
}
}
}
private static IEnumerable<bool[,]> HandleLastColumn(bool[,] board)
{
var n = board.GetLength(0);
for (var i = 0; i < n; i++)
{
if (CanPlace(board, i, n - 1))
{
board[i, n - 1] = true;
yield return (bool[,])board.Clone();
board[i, n - 1] = false;
}
}
}
/// <summary>
/// Checks whether current queen can be placed in current position,
/// outside attacking range of another queen.
/// </summary>
/// <param name="board">Source board.</param>
/// <param name="row">Row coordinate.</param>
/// <param name="col">Col coordinate.</param>
/// <returns>true if queen can be placed in given chessboard coordinates; false otherwise.</returns>
private static bool CanPlace(bool[,] board, int row, int col)
{
// To check whether there are any queens on current row.
for (var i = 0; i < col; i++)
{
if (board[row, i])
{
return false;
}
}
// To check diagonal attack top-left range.
for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--)
{
if (board[i, j])
{
return false;
}
}
// To check diagonal attack bottom-left range.
for (int i = row + 1, j = col - 1; j >= 0 && i < board.GetLength(0); i++, j--)
{
if (board[i, j])
{
return false;
}
}
// Return true if it can use position.
return true;
}
}
}
| 109 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Problems.StableMarriage
{
public class Accepter
{
public Proposer? EngagedTo { get; set; }
public List<Proposer> PreferenceOrder { get; set; } = new();
public bool PrefersOverCurrent(Proposer newProposer) =>
EngagedTo is null ||
PreferenceOrder.IndexOf(newProposer) < PreferenceOrder.IndexOf(EngagedTo);
}
}
| 16 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Linq;
namespace Algorithms.Problems.StableMarriage
{
public static class GaleShapley
{
/// <summary>
/// Finds a stable matching between two equal sets of elements (fills EngagedTo properties).
/// time complexity: O(n^2), where n - array size.
/// Guarantees:
/// - Everyone is matched
/// - Matches are stable (there is no better accepter, for any given proposer, which would accept a new match).
/// Presented and proven by David Gale and Lloyd Shapley in 1962.
/// </summary>
public static void Match(Proposer[] proposers, Accepter[] accepters)
{
if (proposers.Length != accepters.Length)
{
throw new ArgumentException("Collections must have equal count");
}
while (proposers.Any(m => !IsEngaged(m)))
{
DoSingleMatchingRound(proposers.Where(m => !IsEngaged(m)));
}
}
private static bool IsEngaged(Proposer proposer) => proposer.EngagedTo is not null;
private static void DoSingleMatchingRound(IEnumerable<Proposer> proposers)
{
foreach (var newProposer in proposers)
{
var accepter = newProposer.PreferenceOrder.First!.Value;
if (accepter.EngagedTo is null)
{
Engage(newProposer, accepter);
}
else
{
if (accepter.PrefersOverCurrent(newProposer))
{
Free(accepter.EngagedTo);
Engage(newProposer, accepter);
}
}
newProposer.PreferenceOrder.RemoveFirst();
}
}
private static void Free(Proposer proposer)
{
proposer.EngagedTo = null;
}
private static void Engage(Proposer proposer, Accepter accepter)
{
proposer.EngagedTo = accepter;
accepter.EngagedTo = proposer;
}
}
}
| 67 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Problems.StableMarriage
{
public class Proposer
{
public Accepter? EngagedTo { get; set; }
public LinkedList<Accepter> PreferenceOrder { get; set; } = new();
}
}
| 12 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Search
{
/// <summary>
/// Binary Searcher checks an array for element specified by checking
/// if element is greater or less than the half being checked.
/// time complexity: O(log(n)),
/// space complexity: O(1).
/// Note: Array must be sorted beforehand.
/// </summary>
/// <typeparam name="T">Type of element stored inside array. 2.</typeparam>
public class BinarySearcher<T> where T : IComparable<T>
{
/// <summary>
/// Finds index of an array by using binary search.
/// </summary>
/// <param name="sortedData">Sorted array to search in.</param>
/// <param name="item">Item to search for.</param>
/// <returns>Index of item that equals to item searched for or -1 if none found.</returns>
public int FindIndex(T[] sortedData, T item)
{
var leftIndex = 0;
var rightIndex = sortedData.Length - 1;
while (leftIndex <= rightIndex)
{
var middleIndex = leftIndex + (rightIndex - leftIndex) / 2;
if (item.CompareTo(sortedData[middleIndex]) > 0)
{
leftIndex = middleIndex + 1;
continue;
}
if (item.CompareTo(sortedData[middleIndex]) < 0)
{
rightIndex = middleIndex - 1;
continue;
}
return middleIndex;
}
return -1;
}
}
}
| 49 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Linq;
namespace Algorithms.Search
{
/// <summary>
/// A Boyer-Moore majority finder algorithm implementation.
/// </summary>
/// <typeparam name="T">Type of element stored inside array.</typeparam>
public static class BoyerMoore<T> where T : IComparable
{
public static T? FindMajority(IEnumerable<T> input)
{
var candidate = FindMajorityCandidate(input, input.Count());
if (VerifyMajority(input, input.Count(), candidate))
{
return candidate;
}
return default(T?);
}
// Find majority candidate
private static T FindMajorityCandidate(IEnumerable<T> input, int length)
{
int count = 1;
T candidate = input.First();
foreach (var element in input.Skip(1))
{
if (candidate.Equals(element))
{
count++;
}
else
{
count--;
}
if (count == 0)
{
candidate = element;
count = 1;
}
}
return candidate;
}
// Verify that candidate is indeed the majority
private static bool VerifyMajority(IEnumerable<T> input, int size, T candidate)
{
return input.Count(x => x.Equals(candidate)) > size / 2;
}
}
}
| 59 |
C-Sharp | TheAlgorithms | C# | using System;
using Utilities.Exceptions;
namespace Algorithms.Search
{
/// <summary>
/// The idea: you could combine the advantages from both binary-search and interpolation search algorithm.
/// Time complexity:
/// worst case: Item couldn't be found: O(log n),
/// average case: O(log log n),
/// best case: O(1).
/// Note: This algorithm is recursive and the array has to be sorted beforehand.
/// </summary>
public class FastSearcher
{
/// <summary>
/// Finds index of first item in array that satisfies specified term
/// throws ItemNotFoundException if the item couldn't be found.
/// </summary>
/// <param name="array">Span of sorted numbers which will be used to find the item.</param>
/// <param name="item">Term to check against.</param>
/// <returns>Index of first item that satisfies term.</returns>
/// <exception cref="ItemNotFoundException"> Gets thrown when the given item couldn't be found in the array.</exception>
public int FindIndex(Span<int> array, int item)
{
if (array.Length == 0)
{
throw new ItemNotFoundException();
}
if (item < array[0] || item > array[^1])
{
throw new ItemNotFoundException();
}
if (array[0] == array[^1])
{
return item == array[0] ? 0 : throw new ItemNotFoundException();
}
var (left, right) = ComputeIndices(array, item);
var (from, to) = SelectSegment(array, left, right, item);
return from + FindIndex(array.Slice(from, to - from + 1), item);
}
private (int left, int right) ComputeIndices(Span<int> array, int item)
{
var indexBinary = array.Length / 2;
int[] section =
{
array.Length - 1,
item - array[0],
array[^1] - array[0],
};
var indexInterpolation = section[0] * section[1] / section[2];
// Left is min and right is max of the indices
return indexInterpolation > indexBinary
? (indexBinary, indexInterpolation)
: (indexInterpolation, indexBinary);
}
private (int from, int to) SelectSegment(Span<int> array, int left, int right, int item)
{
if (item < array[left])
{
return (0, left - 1);
}
if (item < array[right])
{
return (left, right - 1);
}
return (right, array.Length - 1);
}
}
}
| 81 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Search
{
/// <summary>
/// Class that implements Fibonacci search algorithm.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class FibonacciSearcher<T> where T : IComparable<T>
{
/// <summary>
/// Finds the index of the item searched for in the array.
/// Time complexity:
/// worst-case: O(log n),
/// average-case: O(log n),
/// best-case: O(1).
/// </summary>
/// <param name="array">Sorted array to be searched in. Cannot be null.</param>
/// <param name="item">Item to be searched for. Cannot be null.</param>
/// <returns>If an item is found, return index. If the array is empty or an item is not found, return -1.</returns>
/// <exception cref="ArgumentNullException">Gets thrown when the given array or item is null.</exception>
public int FindIndex(T[] array, T item)
{
if (array is null)
{
throw new ArgumentNullException("array");
}
if (item is null)
{
throw new ArgumentNullException("item");
}
var arrayLength = array.Length;
if (arrayLength > 0)
{
// find the smallest Fibonacci number that equals or is greater than the array length
var fibonacciNumberBeyondPrevious = 0;
var fibonacciNumPrevious = 1;
var fibonacciNum = fibonacciNumPrevious;
while (fibonacciNum <= arrayLength)
{
fibonacciNumberBeyondPrevious = fibonacciNumPrevious;
fibonacciNumPrevious = fibonacciNum;
fibonacciNum = fibonacciNumberBeyondPrevious + fibonacciNumPrevious;
}
// offset to drop the left part of the array
var offset = -1;
while (fibonacciNum > 1)
{
var index = Math.Min(offset + fibonacciNumberBeyondPrevious, arrayLength - 1);
switch (item.CompareTo(array[index]))
{
// reject approximately 1/3 of the existing array in front
// by moving Fibonacci numbers
case > 0:
fibonacciNum = fibonacciNumPrevious;
fibonacciNumPrevious = fibonacciNumberBeyondPrevious;
fibonacciNumberBeyondPrevious = fibonacciNum - fibonacciNumPrevious;
offset = index;
break;
// reject approximately 2/3 of the existing array behind
// by moving Fibonacci numbers
case < 0:
fibonacciNum = fibonacciNumberBeyondPrevious;
fibonacciNumPrevious = fibonacciNumPrevious - fibonacciNumberBeyondPrevious;
fibonacciNumberBeyondPrevious = fibonacciNum - fibonacciNumPrevious;
break;
default:
return index;
}
}
// check the last element
if (fibonacciNumPrevious == 1 && item.Equals(array[^1]))
{
return arrayLength - 1;
}
}
return -1;
}
}
}
| 91 |
C-Sharp | TheAlgorithms | C# | namespace Algorithms.Search
{
/// <summary>
/// Class that implements interpolation search algorithm.
/// </summary>
public static class InterpolationSearch
{
/// <summary>
/// Finds the index of the item searched for in the array.
/// Algorithm performance:
/// worst-case: O(n),
/// average-case: O(log(log(n))),
/// best-case: O(1).
/// </summary>
/// <param name="sortedArray">Array with sorted elements to be searched in. Cannot be null.</param>
/// <param name="val">Value to be searched for. Cannot be null.</param>
/// <returns>If an item is found, return index, else return -1.</returns>
public static int FindIndex(int[] sortedArray, int val)
{
var start = 0;
var end = sortedArray.Length - 1;
while (start <= end && val >= sortedArray[start] && val <= sortedArray[end])
{
var denominator = (sortedArray[end] - sortedArray[start]) * (val - sortedArray[start]);
if (denominator == 0)
{
denominator = 1;
}
var pos = start + (end - start) / denominator;
if (sortedArray[pos] == val)
{
return pos;
}
if (sortedArray[pos] < val)
{
start = pos + 1;
}
else
{
end = pos - 1;
}
}
return -1;
}
}
}
| 53 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Search
{
/// <summary>
/// Jump Search checks fewer elements by jumping ahead by fixed steps.
/// The optimal steps to jump is √n, where n refers to the number of elements in the array.
/// Time Complexity: O(√n)
/// Note: The array has to be sorted beforehand.
/// </summary>
/// <typeparam name="T">Type of the array element.</typeparam>
public class JumpSearcher<T> where T : IComparable<T>
{
/// <summary>
/// Find the index of the item searched for in the array.
/// </summary>
/// <param name="sortedArray">Sorted array to be search in. Cannot be null.</param>
/// <param name="searchItem">Item to be search for. Cannot be null.</param>
/// <returns>If item is found, return index. If array is empty or item not found, return -1.</returns>
public int FindIndex(T[] sortedArray, T searchItem)
{
if (sortedArray is null)
{
throw new ArgumentNullException("sortedArray");
}
if (searchItem is null)
{
throw new ArgumentNullException("searchItem");
}
int jumpStep = (int)Math.Floor(Math.Sqrt(sortedArray.Length));
int currentIndex = 0;
int nextIndex = jumpStep;
if (sortedArray.Length != 0)
{
while (sortedArray[nextIndex - 1].CompareTo(searchItem) < 0)
{
currentIndex = nextIndex;
nextIndex += jumpStep;
if (nextIndex >= sortedArray.Length)
{
nextIndex = sortedArray.Length - 1;
break;
}
}
for (int i = currentIndex; i <= nextIndex; i++)
{
if (sortedArray[i].CompareTo(searchItem) == 0)
{
return i;
}
}
}
return -1;
}
}
}
| 63 |
C-Sharp | TheAlgorithms | C# | using System;
using Utilities.Exceptions;
namespace Algorithms.Search
{
/// <summary>
/// Class that implements linear search algorithm.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class LinearSearcher<T>
{
/// <summary>
/// Finds first item in array that satisfies specified term
/// Time complexity: O(n)
/// Space complexity: O(1).
/// </summary>
/// <param name="data">Array to search in.</param>
/// <param name="term">Term to check against.</param>
/// <returns>First item that satisfies term.</returns>
public T Find(T[] data, Func<T, bool> term)
{
for (var i = 0; i < data.Length; i++)
{
if (term(data[i]))
{
return data[i];
}
}
throw new ItemNotFoundException();
}
/// <summary>
/// Finds index of first item in array that satisfies specified term
/// Time complexity: O(n)
/// Space complexity: O(1).
/// </summary>
/// <param name="data">Array to search in.</param>
/// <param name="term">Term to check against.</param>
/// <returns>Index of first item that satisfies term or -1 if none found.</returns>
public int FindIndex(T[] data, Func<T, bool> term)
{
for (var i = 0; i < data.Length; i++)
{
if (term(data[i]))
{
return i;
}
}
return -1;
}
}
}
| 55 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
namespace Algorithms.Search
{
/// <summary>
/// RecursiveBinarySearcher.
/// </summary>
/// <typeparam name="T">Type of searcher target.</typeparam>
public class RecursiveBinarySearcher<T> where T : IComparable<T>
{
/// <summary>
/// Finds index of item in collection that equals to item searched for,
/// time complexity: O(log(n)),
/// space complexity: O(1),
/// where n - collection size.
/// </summary>
/// <param name="collection">Sorted collection to search in.</param>
/// <param name="item">Item to search for.</param>
/// <exception cref="ArgumentNullException">Thrown if input collection is null.</exception>
/// <returns>Index of item that equals to item searched for or -1 if none found.</returns>
public int FindIndex(IList<T>? collection, T item)
{
if (collection is null)
{
throw new ArgumentNullException(nameof(collection));
}
var leftIndex = 0;
var rightIndex = collection.Count - 1;
return FindIndex(collection, item, leftIndex, rightIndex);
}
/// <summary>
/// Finds index of item in array that equals to item searched for,
/// time complexity: O(log(n)),
/// space complexity: O(1),
/// where n - array size.
/// </summary>
/// <param name="collection">Sorted array to search in.</param>
/// <param name="item">Item to search for.</param>
/// <param name="leftIndex">Minimum search range.</param>
/// <param name="rightIndex">Maximum search range.</param>
/// <returns>Index of item that equals to item searched for or -1 if none found.</returns>
private int FindIndex(IList<T> collection, T item, int leftIndex, int rightIndex)
{
if (leftIndex > rightIndex)
{
return -1;
}
var middleIndex = leftIndex + (rightIndex - leftIndex) / 2;
var result = item.CompareTo(collection[middleIndex]);
return result switch
{
var r when r == 0 => middleIndex,
var r when r > 0 => FindIndex(collection, item, middleIndex + 1, rightIndex),
var r when r < 0 => FindIndex(collection, item, leftIndex, middleIndex - 1),
_ => -1,
};
}
}
}
| 66 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Search.AStar
{
/// <summary>
/// Contains the code for A* Pathfinding.
/// </summary>
public static class AStar
{
/// <summary>
/// Resets the Nodes in the list.
/// </summary>
/// <param name="nodes">Resets the nodes to be used again.</param>
public static void ResetNodes(List<Node> nodes)
{
foreach (var node in nodes)
{
node.CurrentCost = 0;
node.EstimatedCost = 0;
node.Parent = null;
node.State = NodeState.Unconsidered;
}
}
/// <summary>
/// Generates the Path from an (solved) node graph, before it gets reset.
/// </summary>
/// <param name="target">The node where we want to go.</param>
/// <returns>The Path to the target node.</returns>
public static List<Node> GeneratePath(Node target)
{
var ret = new List<Node>();
var current = target;
while (!(current is null))
{
ret.Add(current);
current = current.Parent;
}
ret.Reverse();
return ret;
}
/// <summary>
/// Computes the path from => to.
/// </summary>
/// <param name="from">Start node.</param>
/// <param name="to">end node.</param>
/// <returns>Path from start to end.</returns>
public static List<Node> Compute(Node from, Node to)
{
var done = new List<Node>();
// A priority queue that will sort our nodes based on the total cost estimate
var open = new PriorityQueue<Node>();
foreach (var node in from.ConnectedNodes)
{
// Add connecting nodes if traversable
if (node.Traversable)
{
// Calculate the Costs
node.CurrentCost = from.CurrentCost + from.DistanceTo(node) * node.TraversalCostMultiplier;
node.EstimatedCost = from.CurrentCost + node.DistanceTo(to);
// Enqueue
open.Enqueue(node);
}
}
while (true)
{
// End Condition( Path not found )
if (open.Count == 0)
{
ResetNodes(done);
ResetNodes(open.GetData());
return new List<Node>();
}
// Selecting next Element from queue
var current = open.Dequeue();
// Add it to the done list
done.Add(current);
current.State = NodeState.Closed;
// EndCondition( Path was found )
if (current == to)
{
var ret = GeneratePath(to); // Create the Path
// Reset all Nodes that were used.
ResetNodes(done);
ResetNodes(open.GetData());
return ret;
}
AddOrUpdateConnected(current, to, open);
}
}
private static void AddOrUpdateConnected(Node current, Node to, PriorityQueue<Node> queue)
{
foreach (var connected in current.ConnectedNodes)
{
if (!connected.Traversable ||
connected.State == NodeState.Closed)
{
continue; // Do ignore already checked and not traversable nodes.
}
// Adds a previously not "seen" node into the Queue
if (connected.State == NodeState.Unconsidered)
{
connected.Parent = current;
connected.CurrentCost =
current.CurrentCost + current.DistanceTo(connected) * connected.TraversalCostMultiplier;
connected.EstimatedCost = connected.CurrentCost + connected.DistanceTo(to);
connected.State = NodeState.Open;
queue.Enqueue(connected);
}
else if (current != connected)
{
// Updating the cost of the node if the current way is cheaper than the previous
var newCCost = current.CurrentCost + current.DistanceTo(connected);
var newTCost = newCCost + current.EstimatedCost;
if (newTCost < connected.TotalCost)
{
connected.Parent = current;
connected.CurrentCost = newCCost;
}
}
else
{
// Codacy made me do it.
throw new PathfindingException(
"Detected the same node twice. Confusion how this could ever happen");
}
}
}
}
}
| 144 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Search.AStar
{
/// <summary>
/// Contains Positional and other information about a single node.
/// </summary>
public class Node : IComparable<Node>, IEquatable<Node>
{
public Node(VecN position, bool traversable, double traverseMultiplier)
{
Traversable = traversable;
Position = position;
TraversalCostMultiplier = traverseMultiplier;
}
/// <summary>
/// Gets the Total cost of the Node.
/// The Current Costs + the estimated costs.
/// </summary>
public double TotalCost => EstimatedCost + CurrentCost;
/// <summary>
/// Gets or sets the Distance between this node and the target node.
/// </summary>
public double EstimatedCost { get; set; }
/// <summary>
/// Gets a value indicating whether how costly it is to traverse over this node.
/// </summary>
public double TraversalCostMultiplier { get; }
/// <summary>
/// Gets or sets a value indicating whether to go from the start node to this node.
/// </summary>
public double CurrentCost { get; set; }
/// <summary>
/// Gets or sets the state of the Node
/// Can be Unconsidered(Default), Open and Closed.
/// </summary>
public NodeState State { get; set; }
/// <summary>
/// Gets a value indicating whether the node is traversable.
/// </summary>
public bool Traversable { get; }
/// <summary>
/// Gets or sets a list of all connected nodes.
/// </summary>
public Node[] ConnectedNodes { get; set; } = new Node[0];
/// <summary>
/// Gets or sets he "previous" node that was processed before this node.
/// </summary>
public Node? Parent { get; set; }
/// <summary>
/// Gets the positional information of the node.
/// </summary>
public VecN Position { get; }
/// <summary>
/// Compares the Nodes based on their total costs.
/// Total Costs: A* Pathfinding.
/// Current: Djikstra Pathfinding.
/// Estimated: Greedy Pathfinding.
/// </summary>
/// <param name="other">The other node.</param>
/// <returns>A comparison between the costs.</returns>
public int CompareTo(Node? other) => TotalCost.CompareTo(other?.TotalCost ?? 0);
public bool Equals(Node? other) => CompareTo(other) == 0;
public static bool operator ==(Node left, Node right) => left?.Equals(right) != false;
public static bool operator >(Node left, Node right) => left.CompareTo(right) > 0;
public static bool operator <(Node left, Node right) => left.CompareTo(right) < 0;
public static bool operator !=(Node left, Node right) => !(left == right);
public static bool operator <=(Node left, Node right) => left.CompareTo(right) <= 0;
public static bool operator >=(Node left, Node right) => left.CompareTo(right) >= 0;
public override bool Equals(object? obj) => obj is Node other && Equals(other);
public override int GetHashCode() =>
Position.GetHashCode()
+ Traversable.GetHashCode()
+ TraversalCostMultiplier.GetHashCode();
/// <summary>
/// Returns the distance to the other node.
/// </summary>
/// <param name="other">The other node.</param>
/// <returns>Distance between this and other.</returns>
public double DistanceTo(Node other) => Math.Sqrt(Position.SqrDistance(other.Position));
}
}
| 103 |
C-Sharp | TheAlgorithms | C# | namespace Algorithms.Search.AStar
{
/// <summary>
/// The states the nodes can have.
/// </summary>
public enum NodeState
{
/// <summary>
/// TODO.
/// </summary>
Unconsidered = 0,
/// <summary>
/// TODO.
/// </summary>
Open = 1,
/// <summary>
/// TODO.
/// </summary>
Closed = 2,
}
}
| 24 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Search.AStar
{
/// <summary>
/// A pathfinding exception is thrown when the Pathfinder encounters a critical error and can not continue.
/// </summary>
public class PathfindingException : Exception
{
public PathfindingException(string message)
: base(message)
{
}
}
}
| 16 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
// todo: extract to data structures
namespace Algorithms.Search.AStar
{
/// <summary>
/// Generic Priority Queue.
/// List based.
/// </summary>
/// <typeparam name="T">
/// The type that will be stored.
/// Has to be IComparable of T.
/// </typeparam>
public class PriorityQueue<T>
where T : IComparable<T>
{
private readonly bool isDescending;
// The underlying structure.
private readonly List<T> list;
public PriorityQueue(bool isDescending = false)
{
this.isDescending = isDescending;
list = new List<T>();
}
/// <summary>
/// Initializes a new instance of the <see cref="PriorityQueue{T}" /> class.
/// </summary>
/// <param name="capacity">Initial capacity.</param>
/// <param name="isDescending">Should Reverse Sort order? Default: false.</param>
public PriorityQueue(int capacity, bool isDescending = false)
{
list = new List<T>(capacity);
this.isDescending = isDescending;
}
/// <summary>
/// Initializes a new instance of the <see cref="PriorityQueue{T}" /> class.
/// </summary>
/// <param name="collection">Internal data.</param>
/// <param name="isDescending">Should Reverse Sort order? Default: false.</param>
public PriorityQueue(IEnumerable<T> collection, bool isDescending = false)
: this()
{
this.isDescending = isDescending;
foreach (var item in collection)
{
Enqueue(item);
}
}
/// <summary>
/// Gets Number of enqueued items.
/// </summary>
public int Count => list.Count;
/// <summary>
/// Enqueues an item into the Queue.
/// </summary>
/// <param name="x">The item to Enqueue.</param>
public void Enqueue(T x)
{
list.Add(x);
var i = Count - 1; // Position of x
while (i > 0)
{
var p = (i - 1) / 2; // Start at half of i
if ((isDescending ? -1 : 1) * list[p].CompareTo(x) <= 0)
{
break;
}
list[i] = list[p]; // Put P to position of i
i = p; // I = (I-1)/2
}
if (Count > 0)
{
list[i] = x; // If while loop way executed at least once(X got replaced by some p), add it to the list
}
}
/// <summary>
/// Dequeues the item at the end of the queue.
/// </summary>
/// <returns>The dequeued item.</returns>
public T Dequeue()
{
var target = Peek(); // Get first in list
var root = list[Count - 1]; // Hold last of the list
list.RemoveAt(Count - 1); // But remove it from the list
var i = 0;
while (i * 2 + 1 < Count)
{
var a = i * 2 + 1; // Every second entry starting by 1
var b = i * 2 + 2; // Every second entries neighbour
var c = b < Count && (isDescending ? -1 : 1) * list[b].CompareTo(list[a]) < 0
? b
: a; // Whether B(B is in range && B is smaller than A) or A
if ((isDescending ? -1 : 1) * list[c].CompareTo(root) >= 0)
{
break;
}
list[i] = list[c];
i = c;
}
if (Count > 0)
{
list[i] = root;
}
return target;
}
/// <summary>
/// Returns the next element in the queue without dequeuing.
/// </summary>
/// <returns>The next element of the queue.</returns>
public T Peek()
{
if (Count == 0)
{
throw new InvalidOperationException("Queue is empty.");
}
return list[0];
}
/// <summary>
/// Clears the Queue.
/// </summary>
public void Clear() => list.Clear();
/// <summary>
/// Returns the Internal Data.
/// </summary>
/// <returns>The internal data structure.</returns>
public List<T> GetData() => list;
}
}
| 149 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Search.AStar
{
/// <summary>
/// Vector Struct with N Dimensions.
/// </summary>
public struct VecN : IEquatable<VecN>
{
private readonly double[] data;
/// <summary>
/// Initializes a new instance of the <see cref="VecN" /> struct.
/// </summary>
/// <param name="vals">Vector components as array.</param>
public VecN(params double[] vals) => data = vals;
/// <summary>
/// Gets the dimension count of this vector.
/// </summary>
public int N => data.Length;
/// <summary>
/// Returns the Length squared.
/// </summary>
/// <returns>The squared length of the vector.</returns>
public double SqrLength()
{
double ret = 0;
for (var i = 0; i < data.Length; i++)
{
ret += data[i] * data[i];
}
return ret;
}
/// <summary>
/// Returns the Length of the vector.
/// </summary>
/// <returns>Length of the Vector.</returns>
public double Length() => Math.Sqrt(SqrLength());
/// <summary>
/// Returns the Distance between this and other.
/// </summary>
/// <param name="other">Other vector.</param>
/// <returns>The distance between this and other.</returns>
public double Distance(VecN other)
{
var delta = Subtract(other);
return delta.Length();
}
/// <summary>
/// Returns the squared Distance between this and other.
/// </summary>
/// <param name="other">Other vector.</param>
/// <returns>The squared distance between this and other.</returns>
public double SqrDistance(VecN other)
{
var delta = Subtract(other);
return delta.SqrLength();
}
/// <summary>
/// Substracts other from this vector.
/// </summary>
/// <param name="other">Other vector.</param>
/// <returns>The new vector.</returns>
public VecN Subtract(VecN other)
{
var dd = new double[Math.Max(data.Length, other.data.Length)];
for (var i = 0; i < dd.Length; i++)
{
double val = 0;
if (data.Length > i)
{
val = data[i];
}
if (other.data.Length > i)
{
val -= other.data[i];
}
dd[i] = val;
}
return new VecN(dd);
}
/// <summary>
/// Is used to compare Vectors with each other.
/// </summary>
/// <param name="other">The vector to be compared.</param>
/// <returns>A value indicating if other has the same values as this.</returns>
public bool Equals(VecN other)
{
if (other.N != N)
{
return false;
}
for (var i = 0; i < other.data.Length; i++)
{
if (Math.Abs(data[i] - other.data[i]) > 0.000001)
{
return false;
}
}
return true;
}
}
}
| 117 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// The all ones sequence.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000012.
/// </para>
/// </summary>
public class AllOnesSequence : ISequence
{
/// <summary>
/// Gets all ones sequence.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
while (true)
{
yield return 1;
}
}
}
}
| 30 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// The all threes sequence.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A010701.
/// </para>
/// </summary>
public class AllThreesSequence : ISequence
{
public IEnumerable<BigInteger> Sequence
{
get
{
while (true)
{
yield return 3;
}
}
}
}
| 27 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// The all twos sequence.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A007395.
/// </para>
/// </summary>
public class AllTwosSequence : ISequence
{
public IEnumerable<BigInteger> Sequence
{
get
{
while (true)
{
yield return 2;
}
}
}
}
| 27 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of binary prime constant
/// (Characteristic function of primes: 1 if n is prime, else 0).
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Prime_constant.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A010051.
/// </para>
/// </summary>
public class BinaryPrimeConstantSequence : ISequence
{
/// <summary>
/// Gets sequence of binary prime constant.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
ISequence primes = new PrimesSequence();
var n = new BigInteger(0);
foreach (var p in primes.Sequence)
{
for (n++; n < p; n++)
{
yield return 0;
}
yield return 1;
}
}
}
}
}
| 43 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of binomial coefficients.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Binomial_coefficient.
/// </para>
/// <para>
/// OEIS: http://oeis.org/A007318.
/// </para>
/// </summary>
public class BinomialSequence : ISequence
{
/// <summary>
/// Gets sequence of binomial coefficients.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var i = 0;
while (true)
{
var row = GenerateRow(i);
foreach (var coefficient in row)
{
yield return coefficient;
}
i++;
}
}
}
private static BigInteger BinomialCoefficient(long n, long k)
{
if (k == 0 || k == n)
{
return new BigInteger(1);
}
if (n < 0)
{
return new BigInteger(0);
}
return BinomialCoefficient(n - 1, k) + BinomialCoefficient(n - 1, k - 1);
}
private static IEnumerable<BigInteger> GenerateRow(long n)
{
long k = 0;
while (k <= n)
{
yield return BinomialCoefficient(n, k);
k++;
}
}
}
}
| 68 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// Cake numbers: maximal number of pieces resulting from n planar cuts through a cube
/// (or cake): C(n+1,3) + n + 1.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000125.
/// </para>
/// </summary>
public class CakeNumbersSequence : ISequence
{
public IEnumerable<BigInteger> Sequence
{
get
{
var n = new BigInteger(0);
while (true)
{
var next = (BigInteger.Pow(n, 3) + 5 * n + 6) / 6;
n++;
yield return next;
}
}
}
}
| 31 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Catalan numbers: C[n+1] = (2*(2*n+1)*C[n])/(n+2).
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Catalan_number.
/// </para>
/// <para>
/// OEIS:http://oeis.org/A000108.
/// </para>
/// </summary>
public class CatalanSequence : ISequence
{
/// <summary>
/// Gets sequence of Catalan numbers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
// initialize the first element (1) and define it's enumerator (0)
var catalan = new BigInteger(1);
var n = 0;
while (true)
{
yield return catalan;
catalan = (2 * (2 * n + 1) * catalan) / (n + 2);
n++;
}
}
}
}
}
| 39 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces
/// formed when slicing a pancake with n cuts.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000124.
/// </para>
/// </summary>
public class CentralPolygonalNumbersSequence : ISequence
{
public IEnumerable<BigInteger> Sequence
{
get
{
var n = new BigInteger(0);
while (true)
{
var next = n * (n + 1) / 2 + 1;
n++;
yield return next;
}
}
}
}
| 31 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of cube numbers.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Cube_(algebra).
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000578.
/// </para>
/// </summary>
public class CubesSequence : ISequence
{
/// <summary>
/// Gets sequence of cube numbers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var n = BigInteger.Zero;
while (true)
{
yield return n * n * n;
n++;
}
}
}
}
}
| 37 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of the number of divisors of n, starting with 1.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000005.
/// </para>
/// </summary>
public class DivisorsCountSequence : ISequence
{
/// <summary>
/// Gets sequence of number of divisors for n, starting at 1.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return BigInteger.One;
for (var n = new BigInteger(2); ; n++)
{
var count = 2;
for (var k = 2; k < n; k++)
{
BigInteger.DivRem(n, k, out var remainder);
if (remainder == 0)
{
count++;
}
}
yield return count;
}
}
}
}
}
| 42 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of Euclid numbers: 1 + product of the first n primes.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Euclid_number.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A006862.
/// </para>
/// </summary>
public class EuclidNumbersSequence : ISequence
{
/// <summary>
/// Gets sequence of Euclid numbers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var primorialNumbers = new PrimorialNumbersSequence().Sequence;
foreach (var n in primorialNumbers)
{
yield return n + 1;
}
}
}
}
}
| 36 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of Euler totient function phi(n).
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Euler%27s_totient_function.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000010.
/// </para>
/// </summary>
public class EulerTotientSequence : ISequence
{
/// <summary>
/// <para>
/// Gets sequence of Euler totient function phi(n).
/// </para>
/// <para>
/// 'n' is copied from value of the loop of i that's being enumerated over.
/// 1) Initialize result as n
/// 2) Consider every number 'factor' (where 'factor' is a prime divisor of n).
/// If factor divides n, then do following
/// a) Subtract all multiples of factor from 1 to n [all multiples of factor
/// will have gcd more than 1 (at least factor) with n]
/// b) Update n by repeatedly dividing it by factor.
/// 3) If the reduced n is more than 1, then remove all multiples
/// of n from result.
/// </para>
/// <para>
/// Base code was from https://www.geeksforgeeks.org/eulers-totient-function/.
/// </para>
/// <para>
/// Implementation avoiding floating point operations was used for base
/// and replacement of loop going from 1 to sqrt(n) was replaced with
/// List of prime factors.
/// </para>
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return BigInteger.One;
for (BigInteger i = 2; ; i++)
{
var n = i;
var result = n;
var factors = PrimeFactors(i);
foreach (var factor in factors)
{
while (n % factor == 0)
{
n /= factor;
}
result -= result / factor;
}
if (n > 1)
{
result -= result / n;
}
yield return result;
}
}
}
/// <summary>
/// <para>
/// Uses the prime sequence to find all prime factors of the
/// number we're looking at.
/// </para>
/// <para>
/// The prime sequence is examined until its value squared is
/// less than or equal to target, and checked to make sure it
/// evenly divides the target. If it evenly divides, it's added
/// to the result which is returned as a List.
/// </para>
/// </summary>
/// <param name="target">Number that is being factored.</param>
/// <returns>List of prime factors of target.</returns>
private static IEnumerable<BigInteger> PrimeFactors(BigInteger target)
{
return new PrimesSequence()
.Sequence.TakeWhile(prime => prime * prime <= target)
.Where(prime => target % prime == 0)
.ToList();
}
}
}
| 99 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of factorial numbers.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Factorial.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000142.
/// </para>
/// </summary>
public class FactorialSequence : ISequence
{
/// <summary>
/// Gets sequence of factorial numbers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var n = 0;
var factorial = new BigInteger(1);
while (true)
{
yield return factorial;
n++;
factorial *= n;
}
}
}
}
}
| 38 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of Fermat numbers: a(n) = 2^(2^n) + 1.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Fermat_number.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000215.
/// </para>
/// </summary>
public class FermatNumbersSequence : ISequence
{
/// <summary>
/// Gets sequence of Fermat numbers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var n = new BigInteger(2);
while (true)
{
yield return n + 1;
n *= n;
}
}
}
}
}
| 37 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of Fermat primes: primes of the form 2^(2^k) + 1, for some k >= 0.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Fermat_number.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A019434.
/// </para>
/// </summary>
public class FermatPrimesSequence : ISequence
{
/// <summary>
/// Gets sequence of Fermat primes.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var fermatNumbers = new FermatNumbersSequence().Sequence.Take(5);
foreach (var n in fermatNumbers)
{
yield return n;
}
}
}
}
}
| 37 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Fibonacci sequence.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Fibonacci_number.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000045.
/// </para>
/// </summary>
public class FibonacciSequence : ISequence
{
/// <summary>
/// Gets Fibonacci sequence.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return 0;
yield return 1;
BigInteger previous = 0;
BigInteger current = 1;
while (true)
{
var next = previous + current;
previous = current;
current = next;
yield return next;
}
}
}
}
}
| 41 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Golomb's sequence. a(n) is the number of times n occurs in the sequence, starting with a(1) = 1.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Golomb_sequence.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A001462.
/// </para>
/// </summary>
public class GolombsSequence : ISequence
{
/// <summary>
/// Gets Golomb's sequence.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return 1;
yield return 2;
yield return 2;
var queue = new Queue<BigInteger>();
queue.Enqueue(2);
for (var i = 3; ; i++)
{
var repetitions = queue.Dequeue();
for (var j = 0; j < repetitions; j++)
{
queue.Enqueue(i);
yield return i;
}
}
}
}
}
}
| 47 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// Common interface for all integer sequences.
/// </summary>
public interface ISequence
{
/// <summary>
/// Gets sequence as enumerable.
/// </summary>
IEnumerable<BigInteger> Sequence { get; }
}
}
| 17 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Kolakoski sequence; n-th element is the length of the n-th run in the sequence itself.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Kolakoski_sequence.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000002.
/// </para>
/// </summary>
public class KolakoskiSequence : ISequence
{
/// <summary>
/// Gets Kolakoski sequence.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return 1;
yield return 2;
yield return 2;
var queue = new Queue<int>();
queue.Enqueue(2);
var nextElement = 1;
while (true)
{
var nextRun = queue.Dequeue();
for (var i = 0; i < nextRun; i++)
{
queue.Enqueue(nextElement);
yield return nextElement;
}
nextElement = 1 + nextElement % 2;
}
}
}
}
}
| 48 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Kolakoski sequence; n-th element is the length of the n-th run in the sequence itself.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Kolakoski_sequence.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000002.
/// </para>
/// </summary>
public class KolakoskiSequence2 : ISequence
{
/// <summary>
/// Gets Kolakoski sequence.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return 1;
yield return 2;
yield return 2;
var inner = new KolakoskiSequence2().Sequence.Skip(2);
var nextElement = 1;
foreach (var runLength in inner)
{
yield return nextElement;
if (runLength > 1)
{
yield return nextElement;
}
nextElement = 1 + nextElement % 2;
}
}
}
}
}
| 47 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of Kummer numbers (also called Euclid numbers of the second kind):
/// -1 + product of first n consecutive primes.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Euclid_number.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A057588.
/// </para>
/// </summary>
public class KummerNumbersSequence : ISequence
{
/// <summary>
/// Gets sequence of Kummer numbers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var primorialNumbers = new PrimorialNumbersSequence().Sequence.Skip(1);
foreach (var n in primorialNumbers)
{
yield return n - 1;
}
}
}
}
}
| 38 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of Lucas number values.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Lucas_number.
/// </para>
/// <para>
/// OEIS: http://oeis.org/A000032.
/// </para>
/// </summary>
public class LucasNumbersBeginningAt2Sequence : ISequence
{
/// <summary>
/// <para>
/// Gets Lucas number sequence.
/// </para>
/// <para>
/// Lucas numbers follow the same type of operation that the Fibonacci (A000045)
/// sequence performs with starting values of 2, 1 versus 0,1. As Fibonacci does,
/// the ratio between two consecutive Lucas numbers converges to phi.
/// </para>
/// <para>
/// This implementation is similar to A000204, but starts with the index of 0, thus having the
/// initial values being (2,1) instead of starting at index 1 with initial values of (1,3).
/// </para>
/// <para>
/// A simple relationship to Fibonacci can be shown with L(n) = F(n-1) + F(n+1), n>= 1.
///
/// n | L(n) | F(n-1) | F(n+1)
/// --|-------|--------+--------+
/// 0 | 2 | | |
/// 1 | 1 | 0 | 1 |
/// 2 | 3 | 1 | 2 |
/// 3 | 4 | 1 | 3 |
/// 4 | 7 | 2 | 5 |
/// 5 | 11 | 3 | 8 |
/// --|-------|--------+--------+.
/// </para>
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return 2;
yield return 1;
BigInteger previous = 2;
BigInteger current = 1;
while (true)
{
var next = previous + current;
previous = current;
current = next;
yield return next;
}
}
}
}
}
| 66 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Number of ways of making change for n cents using coins of 1, 2, 5, 10 cents.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000008.
/// </para>
/// </summary>
public class MakeChangeSequence : ISequence
{
/// <summary>
/// <para>
/// Gets sequence of number of ways of making change for n cents
/// using coins of 1, 2, 5, 10 cents.
/// </para>
/// <para>
/// Uses formula from OEIS page by Michael Somos
/// along with first 17 values to prevent index issues.
/// </para>
/// <para>
/// Formula:
/// a(n) = a(n-2) +a(n-5) - a(n-7) + a(n-10) - a(n-12) - a(n-15) + a(n-17) + 1.
/// </para>
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var seed = new List<BigInteger>
{
1, 1, 2, 2, 3, 4, 5, 6, 7, 8,
11, 12, 15, 16, 19, 22, 25,
};
foreach (var value in seed)
{
yield return value;
}
for(var index = 17; ; index++)
{
BigInteger newValue = seed[index - 2] + seed[index - 5] - seed[index - 7]
+ seed[index - 10] - seed[index - 12] - seed[index - 15]
+ seed[index - 17] + 1;
seed.Add(newValue);
yield return newValue;
}
}
}
}
}
| 58 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// Sequence of number of triangles in triangular matchstick arrangement of side n for n>=0.
/// </para>
/// <para>
/// M. E. Larsen, The eternal triangle – a history of a counting problem, College Math. J., 20 (1989), 370-392.
/// https://web.math.ku.dk/~mel/mel.pdf.
/// </para>
/// <para>
/// OEIS: http://oeis.org/A002717.
/// </para>
/// </summary>
public class MatchstickTriangleSequence : ISequence
{
/// <summary>
/// <para>
/// Gets number of triangles contained in an triangular arrangement of matchsticks of side length n.
/// </para>
/// <para>
/// This also counts the subset of smaller triangles contained within the arrangement.
/// </para>
/// <para>
/// Based on the PDF referenced above, the sequence is derived from step 8, using the resulting equation
/// of f(n) = (n(n+2)(2n+1) -(delta)(n)) / 8. Using BigInteger values, we can effectively remove
/// (delta)(n) from the previous by using integer division instead.
/// </para>
/// <para>
/// Examples follow.
/// <pre>
/// .
/// / \ This contains 1 triangle of size 1.
/// .---.
///
/// .
/// / \ This contains 4 triangles of size 1.
/// .---. This contains 1 triangle of size 2.
/// / \ / \ This contains 5 triangles total.
/// .---.---.
///
/// .
/// / \ This contains 9 triangles of size 1.
/// .---. This contains 3 triangles of size 2.
/// / \ / \ This contains 1 triangles of size 3.
/// .---.---.
/// / \ / \ / \ This contains 13 triangles total.
/// .---.---.---.
/// </pre>
/// </para>
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var index = BigInteger.Zero;
var eight = new BigInteger(8);
while (true)
{
var temp = index * (index + 2) * (index * 2 + 1);
var result = BigInteger.Divide(temp, eight);
yield return result;
index++;
}
}
}
}
| 72 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of natural numbers.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Natural_number.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000027.
/// </para>
/// </summary>
public class NaturalSequence : ISequence
{
/// <summary>
/// Gets sequence of natural numbers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var n = new BigInteger(1);
while (true)
{
yield return n++;
}
}
}
}
}
| 35 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of negative integers.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Negative_number.
/// </para>
/// <para>
/// OEIS: http://oeis.org/A001478.
/// </para>
/// </summary>
public class NegativeIntegersSequence : ISequence
{
/// <summary>
/// Gets sequence of negative integers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var n = new BigInteger(-1);
while (true)
{
yield return n--;
}
}
}
}
}
| 36 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of number of truth tables generated by Boolean expressions of n variables
/// (Double exponentials of 2: a(n) = 2^(2^n)).
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Truth_table.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A001146.
/// </para>
/// </summary>
public class NumberOfBooleanFunctionsSequence : ISequence
{
/// <summary>
/// Gets sequence of number Of Boolean functions.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var n = new BigInteger(2);
while (true)
{
yield return n;
n *= n;
}
}
}
}
}
| 38 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Number of primes with n digits
/// (The number of primes between 10^(n-1) and 10^n).
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Prime-counting_function.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A006879.
/// </para>
/// </summary>
public class NumberOfPrimesByNumberOfDigitsSequence : ISequence
{
/// <summary>
/// Gets sequence of number of primes.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
ISequence primes = new PrimesSequence();
var powerOf10 = new BigInteger(1);
var counter = new BigInteger(0);
foreach (var p in primes.Sequence)
{
if (p > powerOf10)
{
yield return counter;
counter = 0;
powerOf10 *= 10;
}
counter++;
}
}
}
}
}
| 46 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of number of primes less than 10^n (with at most n digits).
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Prime-counting_function.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A006880.
/// </para>
/// </summary>
public class NumberOfPrimesByPowersOf10Sequence : ISequence
{
/// <summary>
/// Gets sequence of numbers of primes.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
ISequence primes = new PrimesSequence();
var powerOf10 = new BigInteger(1);
var counter = new BigInteger(0);
foreach (var p in primes.Sequence)
{
if (p > powerOf10)
{
yield return counter;
powerOf10 *= 10;
}
counter++;
}
}
}
}
}
| 44 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// 1's-counting sequence: number of 1's in binary expression of n.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000120.
/// </para>
/// </summary>
public class OnesCountingSequence : ISequence
{
/// <summary>
/// <para>
/// Gets the generated sequence of the 1's contained in the binary representation of n.
/// </para>
/// <para>
/// The sequence is generated as follows.
/// 1. The initial 0 value is provided.
/// 2. A recursively generated sequence is iterated, starting with a length of 1 (i.e., 2^0),
/// followed by increasing 2^x length values.
/// 3. Each sequence starts with the value 1, and a targeted value of depths that it will recurse
/// for the specific iteration.
/// 4. If the call depth to the recursive function is met, it returns the value argument received.
/// 5. If the call depth has not been met, it recurses to create 2 sequences, one starting with the
/// value argument, and the following with the value argument + 1.
/// 6. Using ':' as a visual separator for each sequence, this results in the following sequences
/// that are returned sequentially after the initial 0.
/// 1 : 1, 2 : 1, 2, 2, 3 : 1, 2, 2, 3, 2, 3, 3, 4.
/// </para>
/// <remarks>
/// <para>
/// This one comes from thinking over information contained within the COMMENTS section of the OEIS page.
/// </para>
/// <para>
/// Using the comments provided by Benoit Cloitre, Robert G. Wilson v, and Daniel Forgues, the above
/// algorithm was coded.
/// </para>
/// </remarks>
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return 0;
var depth = 0;
while (true)
{
foreach (var count in GenerateFractalCount(BigInteger.One, depth))
{
yield return count;
}
depth++;
}
}
}
/// <summary>
/// <para>
/// Recursive function to generate sequences.
/// </para>
/// </summary>
/// <param name="i">The value that will start off the current IEnumerable sequence.</param>
/// <param name="depth">The remaining depth of recursion. Value of 0 is the stop condition.</param>
/// <returns>An IEnumerable sequence of BigInteger values that can be iterated over.</returns>
private static IEnumerable<BigInteger> GenerateFractalCount(BigInteger i, int depth)
{
// Terminal condition
if (depth == 0)
{
yield return i;
yield break;
}
foreach (var firstHalf in GenerateFractalCount(i, depth - 1))
{
yield return firstHalf;
}
foreach (var secondHalf in GenerateFractalCount(i + 1, depth - 1))
{
yield return secondHalf;
}
}
}
| 90 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of powers of 10: a(n) = 10^n.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Power_of_10.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A011557.
/// </para>
/// </summary>
public class PowersOf10Sequence : ISequence
{
/// <summary>
/// Gets sequence of powers of 10.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var n = new BigInteger(1);
while (true)
{
yield return n;
n *= 10;
}
}
}
}
}
| 37 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of powers of 2: a(n) = 2^n.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Power_of_two.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000079.
/// </para>
/// </summary>
public class PowersOf2Sequence : ISequence
{
/// <summary>
/// Gets sequence of powers of 2.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var n = new BigInteger(1);
while (true)
{
yield return n;
n *= 2;
}
}
}
}
}
| 37 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of number of primes less than or equal to n (PrimePi(n)).
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Prime-counting_function.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000720.
/// </para>
/// </summary>
public class PrimePiSequence : ISequence
{
/// <summary>
/// Gets sequence of number of primes.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
ISequence primes = new PrimesSequence();
var n = new BigInteger(0);
var counter = new BigInteger(0);
foreach (var p in primes.Sequence)
{
for (n++; n < p; n++)
{
yield return counter;
}
yield return ++counter;
}
}
}
}
}
| 43 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of prime numbers.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Prime_number.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000040.
/// </para>
/// </summary>
public class PrimesSequence : ISequence
{
/// <summary>
/// Gets sequence of prime numbers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return 2;
var primes = new List<BigInteger>
{
2,
};
var n = new BigInteger(3);
while (true)
{
if (primes.All(p => n % p != 0))
{
yield return n;
primes.Add(n);
}
n += 2;
}
}
}
}
}
| 48 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of primorial numbers: product of first n primes.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Primorial.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A002110.
/// </para>
/// </summary>
public class PrimorialNumbersSequence : ISequence
{
/// <summary>
/// Gets sequence of primorial numbers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var primes = new PrimesSequence().Sequence;
var n = new BigInteger(1);
foreach (var p in primes)
{
yield return n;
n *= p;
}
}
}
}
}
| 38 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Recaman's sequence. a(0) = 0; for n > 0, a(n) = a(n-1) - n if nonnegative and not already in the sequence, otherwise a(n) = a(n-1) + n.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Recam%C3%A1n%27s_sequence.
/// </para>
/// <para>
/// OEIS: http://oeis.org/A005132.
/// </para>
/// </summary>
public class RecamansSequence : ISequence
{
/// <summary>
/// Gets Recaman's sequence.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return 0;
var elements = new HashSet<BigInteger> { 0 };
var previous = 0;
var i = 1;
while (true)
{
var current = previous - i;
if (current < 0 || elements.Contains(current))
{
current = previous + i;
}
yield return current;
previous = current;
elements.Add(current);
i++;
}
}
}
}
}
| 48 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Sequence of square numbers.
/// </para>
/// <para>
/// Wikipedia: https://wikipedia.org/wiki/Square_number.
/// </para>
/// <para>
/// OEIS: http://oeis.org/A000290.
/// </para>
/// </summary>
public class SquaresSequence : ISequence
{
/// <summary>
/// Gets sequence of square numbers.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var n = new BigInteger(0);
while (true)
{
yield return n * n;
n++;
}
}
}
}
}
| 37 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// Sequence of tetrahedral (triangular pyramids) counts for n >= 0.
/// </para>
/// <para>
/// OEIS: http://oeis.org/A000292.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Tetrahedral_number.
/// </para>
/// </summary>
public class TetrahedralSequence : ISequence
{
/// <summary>
/// <para>
/// Gets the value of packing spheres in a regular tetrahedron
/// with increasing by 1 triangular numbers under each layer.
/// </para>
/// <para>
/// It can be reviewed by starting at the 4th row of Pascal's Triangle
/// following the diagonal values going into the triangle.
/// </para>
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var index = BigInteger.Zero;
var six = new BigInteger(6);
while (true)
{
yield return BigInteger.Divide(index * (index + 1) * (index + 2), six);
index++;
}
}
}
}
| 43 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000288.
/// </para>
/// </summary>
public class TetranacciNumbersSequence : ISequence
{
public IEnumerable<BigInteger> Sequence
{
get
{
var buffer = Enumerable.Repeat(BigInteger.One, 4).ToArray();
while (true)
{
yield return buffer[0];
var next = buffer[0] + buffer[1] + buffer[2] + buffer[3];
buffer[0] = buffer[1];
buffer[1] = buffer[2];
buffer[2] = buffer[3];
buffer[3] = next;
}
}
}
}
| 34 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Number of halving and tripling steps to reach 1 in the '3n+1' problem.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Collatz_conjecture.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A006577.
/// </para>
/// </summary>
public class ThreeNPlusOneStepsSequence : ISequence
{
/// <summary>
/// Gets sequence of number of halving and tripling steps to reach 1 in the '3n+1' problem.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
BigInteger startingValue = 1;
while (true)
{
BigInteger counter = 0;
BigInteger currentValue = startingValue;
while (currentValue != 1)
{
if (currentValue.IsEven)
{
currentValue /= 2;
}
else
{
currentValue = 3 * currentValue + 1;
}
counter++;
}
yield return counter;
startingValue++;
}
}
}
}
}
| 54 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=a(2)=1.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000213.
/// </para>
/// </summary>
public class TribonacciNumbersSequence : ISequence
{
public IEnumerable<BigInteger> Sequence
{
get
{
var buffer = Enumerable.Repeat(BigInteger.One, 4).ToArray();
while (true)
{
yield return buffer[0];
var next = buffer[0] + buffer[1] + buffer[2];
buffer[0] = buffer[1];
buffer[1] = buffer[2];
buffer[2] = next;
}
}
}
}
| 33 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// Van Eck's sequence. For n >= 1, if there exists an m < n such that a(m) = a(n), take the largest such m and set a(n+1) = n-m; otherwise a(n+1) = 0. Start with a(1)=0.
/// </para>
/// <para>
/// OEIS: http://oeis.org/A181391.
/// </para>
/// </summary>
public class VanEcksSequence : ISequence
{
/// <summary>
/// Gets Van Eck's sequence.
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
yield return 0;
var dictionary = new Dictionary<BigInteger, BigInteger>();
BigInteger previous = 0;
BigInteger currentIndex = 2; // 1-based index
while (true)
{
BigInteger element = 0;
if (dictionary.TryGetValue(previous, out var previousIndex))
{
element = currentIndex - previousIndex;
}
yield return element;
dictionary[previous] = currentIndex;
previous = element;
currentIndex++;
}
}
}
}
}
| 45 |
C-Sharp | TheAlgorithms | C# | using System.Collections;
using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences
{
/// <summary>
/// <para>
/// The zero sequence.
/// </para>
/// <para>
/// OEIS: https://oeis.org/A000004.
/// </para>
/// </summary>
public class ZeroSequence : ISequence
{
public IEnumerable<BigInteger> Sequence
{
get
{
while (true)
{
yield return 0;
}
}
}
}
}
| 29 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Shufflers
{
/// <summary>
/// Fisher-Yates shuffle is a simple shuffling algorithm,
/// which is usually used to shuffle a deck of cards.
/// </summary>
/// <typeparam name="T">Type array input.</typeparam>
public class FisherYatesShuffler<T> : IShuffler<T>
{
/// <summary>
/// Shuffles input array using Fisher-Yates algorithm.
/// The algorithm starts shuffling from the last element
/// and swap elements one by one. We use random index to
/// choose element we use in swap operation.
/// </summary>
/// <param name="array">Array to shuffle.</param>
/// <param name="seed">Random generator seed. Used to repeat the shuffle.</param>
public void Shuffle(T[] array, int? seed = null)
{
var random = seed is null ? new Random() : new Random(seed.Value);
for (var i = array.Length - 1; i > 0; i--)
{
var j = random.Next(0, i + 1);
(array[i], array[j]) = (array[j], array[i]);
}
}
}
}
| 33 |
C-Sharp | TheAlgorithms | C# | namespace Algorithms.Shufflers
{
/// <summary>
/// Shuffles array.
/// </summary>
/// <typeparam name="T">Type of array item.</typeparam>
public interface IShuffler<in T>
{
/// <summary>
/// Shuffles array.
/// </summary>
/// <param name="array">Array to Shuffle.</param>
void Shuffle(T[] array, int? seed = null);
}
}
| 16 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// TODO.
/// </summary>
/// <typeparam name="T">TODO. 2.</typeparam>
public class BinaryInsertionSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts array using specified comparer,
/// variant of insertion sort where binary search is used to find place for next element
/// internal, in-place, unstable,
/// time complexity: O(n^2),
/// space complexity: O(1),
/// where n - array length.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
for (var i = 1; i < array.Length; i++)
{
var target = array[i];
var moveIndex = i - 1;
var targetInsertLocation = BinarySearch(array, 0, moveIndex, target, comparer);
Array.Copy(array, targetInsertLocation, array, targetInsertLocation + 1, i - targetInsertLocation);
array[targetInsertLocation] = target;
}
}
/// <summary>Implementation of Binary Search using an iterative approach.</summary>
/// <param name="array">
/// An array of values sorted in ascending order between the index values left and right to search
/// through.
/// </param>
/// <param name="from">Left index to search from (inclusive).</param>
/// <param name="to">Right index to search to (inclusive).</param>
/// <param name="target">The value to find placefor in the provided array.</param>
/// <param name="comparer">TODO.</param>
/// <returns>The index where to insert target value.</returns>
private static int BinarySearch(T[] array, int from, int to, T target, IComparer<T> comparer)
{
var left = from;
var right = to;
while (right > left)
{
var middle = (left + right) / 2;
var comparisonResult = comparer.Compare(target, array[middle]);
if (comparisonResult == 0)
{
return middle + 1;
}
if (comparisonResult > 0)
{
left = middle + 1;
}
else
{
right = middle - 1;
}
}
return comparer.Compare(target, array[left]) < 0 ? left : left + 1;
}
}
}
| 73 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Class that implements bogo sort algorithm.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class BogoSorter<T> : IComparisonSorter<T>
{
private readonly Random random = new();
/// <summary>
/// TODO.
/// </summary>
/// <param name="array">TODO. 2.</param>
/// <param name="comparer">TODO. 3.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
while (!IsSorted(array, comparer))
{
Shuffle(array);
}
}
private bool IsSorted(T[] array, IComparer<T> comparer)
{
for (var i = 0; i < array.Length - 1; i++)
{
if (comparer.Compare(array[i], array[i + 1]) > 0)
{
return false;
}
}
return true;
}
private void Shuffle(T[] array)
{
var taken = new bool[array.Length];
var newArray = new T[array.Length];
for (var i = 0; i < array.Length; i++)
{
int nextPos;
do
{
nextPos = random.Next(0, int.MaxValue) % array.Length;
}
while (taken[nextPos]);
taken[nextPos] = true;
newArray[nextPos] = array[i];
}
for (var i = 0; i < array.Length; i++)
{
array[i] = newArray[i];
}
}
}
}
| 64 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Class that implements bubble sort algorithm.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class BubbleSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts array using specified comparer,
/// internal, in-place, stable,
/// time complexity: O(n^2),
/// space complexity: O(1),
/// where n - array length.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
for (var i = 0; i < array.Length - 1; i++)
{
var wasChanged = false;
for (var j = 0; j < array.Length - i - 1; j++)
{
if (comparer.Compare(array[j], array[j + 1]) > 0)
{
var temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;
wasChanged = true;
}
}
if (!wasChanged)
{
break;
}
}
}
}
}
| 44 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Cocktail Sort is a variation of Bubble sort, where Cocktail
/// Sort traverses through a given array in both directions alternatively.
/// </summary>
/// <typeparam name="T">Array input type.</typeparam>
public class CocktailSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts array using Cocktail sort algorithm.
/// </summary>
/// <param name="array">Input array.</param>
/// <param name="comparer">Type of comparer for array elements.</param>
public void Sort(T[] array, IComparer<T> comparer) => CocktailSort(array, comparer);
private static void CocktailSort(IList<T> array, IComparer<T> comparer)
{
var swapped = true;
var startIndex = 0;
var endIndex = array.Count - 1;
while (swapped)
{
for (var i = startIndex; i < endIndex; i++)
{
if (comparer.Compare(array[i], array[i + 1]) != 1)
{
continue;
}
var highValue = array[i];
array[i] = array[i + 1];
array[i + 1] = highValue;
}
endIndex--;
swapped = false;
for (var i = endIndex; i > startIndex; i--)
{
if (comparer.Compare(array[i], array[i - 1]) != -1)
{
continue;
}
var highValue = array[i];
array[i] = array[i - 1];
array[i - 1] = highValue;
swapped = true;
}
startIndex++;
}
}
}
}
| 62 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Comb sort is a relatively simple sorting algorithm that improves on bubble sort.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class CombSorter<T> : IComparisonSorter<T>
{
public CombSorter(double shrinkFactor = 1.3) => ShrinkFactor = shrinkFactor;
private double ShrinkFactor { get; }
/// <summary>
/// Sorts array using specified comparer,
/// internal, in-place, unstable,
/// worst case performance: O(n^2),
/// best case performance: O(n log(n)),
/// average performance: O(n^2 / 2^p),
/// space complexity: O(1),
/// where n - array length and p - number of increments.
/// See <a href="https://en.wikipedia.org/wiki/Comb_sort">here</a> for more info.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
var gap = array.Length;
var sorted = false;
while (!sorted)
{
gap = (int)Math.Floor(gap / ShrinkFactor);
if (gap <= 1)
{
gap = 1;
sorted = true;
}
for (var i = 0; i < array.Length - gap; i++)
{
if (comparer.Compare(array[i], array[i + gap]) > 0)
{
(array[i], array[i + gap]) = (array[i + gap], array[i]);
sorted = false;
}
}
}
}
}
}
| 53 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Cycle sort is an in-place, unstable sorting algorithm,
/// a comparison sort that is theoretically optimal in terms of the total
/// number of writes to the original array.
/// It is based on the idea that the permutation to be sorted can be factored
/// into cycles, which can individually be rotated to give a sorted result.
/// </summary>
/// <typeparam name="T">Type array input.</typeparam>
public class CycleSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts input array using Cycle sort.
/// </summary>
/// <param name="array">Input array.</param>
/// <param name="comparer">Integer comparer.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
for (var i = 0; i < array.Length - 1; i++)
{
MoveCycle(array, i, comparer);
}
}
private static void MoveCycle(T[] array, int startingIndex, IComparer<T> comparer)
{
var item = array[startingIndex];
var pos = startingIndex + CountSmallerElements(array, startingIndex + 1, item, comparer);
if (pos == startingIndex)
{
return;
}
pos = SkipSameElements(array, pos, item, comparer);
var temp = array[pos];
array[pos] = item;
item = temp;
while (pos != startingIndex)
{
pos = startingIndex + CountSmallerElements(array, startingIndex + 1, item, comparer);
pos = SkipSameElements(array, pos, item, comparer);
temp = array[pos];
array[pos] = item;
item = temp;
}
}
private static int SkipSameElements(T[] array, int nextIndex, T item, IComparer<T> comparer)
{
while (comparer.Compare(array[nextIndex], item) == 0)
{
nextIndex++;
}
return nextIndex;
}
private static int CountSmallerElements(T[] array, int startingIndex, T element, IComparer<T> comparer)
{
var smallerElements = 0;
for (var i = startingIndex; i < array.Length; i++)
{
if (comparer.Compare(array[i], element) < 0)
{
smallerElements++;
}
}
return smallerElements;
}
}
}
| 80 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Class that implements exchange sort algorithm.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class ExchangeSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts array using specified comparer,
/// internal, in-place, stable,
/// time complexity: O(n^2),
/// space complexity: O(1),
/// where n - array length.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
for (var i = 0; i < array.Length - 1; i++)
{
for (var j = i + 1; j < array.Length; j++)
{
if (comparer.Compare(array[i], array[j]) > 0)
{
(array[j], array[i]) = (array[i], array[j]);
}
}
}
}
}
}
| 35 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Heap sort is a comparison based sorting technique
/// based on Binary Heap data structure.
/// </summary>
/// <typeparam name="T">Input array type.</typeparam>
public class HeapSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts input array using heap sort algorithm.
/// </summary>
/// <param name="array">Input array.</param>
/// <param name="comparer">Comparer type for elements.</param>
public void Sort(T[] array, IComparer<T> comparer) => HeapSort(array, comparer);
private static void HeapSort(IList<T> data, IComparer<T> comparer)
{
var heapSize = data.Count;
for (var p = (heapSize - 1) / 2; p >= 0; p--)
{
MakeHeap(data, heapSize, p, comparer);
}
for (var i = data.Count - 1; i > 0; i--)
{
var temp = data[i];
data[i] = data[0];
data[0] = temp;
heapSize--;
MakeHeap(data, heapSize, 0, comparer);
}
}
private static void MakeHeap(IList<T> input, int heapSize, int index, IComparer<T> comparer)
{
var rIndex = index;
while (true)
{
var left = (rIndex + 1) * 2 - 1;
var right = (rIndex + 1) * 2;
var largest = left < heapSize && comparer.Compare(input[left], input[rIndex]) == 1 ? left : rIndex;
// finds the index of the largest
if (right < heapSize && comparer.Compare(input[right], input[largest]) == 1)
{
largest = right;
}
if (largest == rIndex)
{
return;
}
// process of reheaping / swapping
var temp = input[rIndex];
input[rIndex] = input[largest];
input[largest] = temp;
rIndex = largest;
}
}
}
}
| 69 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Sorts array in ascending order using comparison sort.
/// </summary>
/// <typeparam name="T">Type of array item.</typeparam>
public interface IComparisonSorter<T>
{
/// <summary>
/// Sorts array in ascending order.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Comparer to compare items of <paramref name="array" />.</param>
void Sort(T[] array, IComparer<T> comparer);
}
}
| 19 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Class that implements insertion sort algorithm.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class InsertionSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts array using specified comparer,
/// internal, in-place, stable,
/// time complexity: O(n^2),
/// space complexity: O(1),
/// where n - array length.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
for (var i = 1; i < array.Length; i++)
{
for (var j = i; j > 0 && comparer.Compare(array[j], array[j - 1]) < 0; j--)
{
var temp = array[j - 1];
array[j - 1] = array[j];
array[j] = temp;
}
}
}
}
}
| 34 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Sorts arrays using quicksort (selecting median of three as a pivot).
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public sealed class MedianOfThreeQuickSorter<T> : QuickSorter<T>
{
protected override T SelectPivot(T[] array, IComparer<T> comparer, int left, int right)
{
var leftPoint = array[left];
var middlePoint = array[left + (right - left) / 2];
var rightPoint = array[right];
return FindMedian(comparer, leftPoint, middlePoint, rightPoint);
}
private static T FindMedian(IComparer<T> comparer, T a, T b, T c)
{
if (comparer.Compare(a, b) <= 0)
{
// a <= b <= c
if (comparer.Compare(b, c) <= 0)
{
return b;
}
// a <= c < b
if (comparer.Compare(a, c) <= 0)
{
return c;
}
// c < a <= b
return a;
}
// a > b >= c
if (comparer.Compare(b, c) >= 0)
{
return b;
}
// a >= c > b
if (comparer.Compare(a, c) >= 0)
{
return c;
}
// c > a > b
return a;
}
}
}
| 57 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Divide and Conquer algorithm, which splits
/// array in two halves, calls itself for the two
/// halves and then merges the two sorted halves.
/// </summary>
/// <typeparam name="T">Type of array elements.</typeparam>
public class MergeSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts array using merge sort algorithm,
/// originally designed as external sorting algorithm,
/// internal, stable,
/// time complexity: O(n log(n)),
/// space complexity: O(n),
/// where n - array length.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Comparer to compare elements of <paramref name="array" />.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
if (array.Length <= 1)
{
return;
}
var (left, right) = Split(array);
Sort(left, comparer);
Sort(right, comparer);
Merge(array, left, right, comparer);
}
private static void Merge(T[] array, T[] left, T[] right, IComparer<T> comparer)
{
var mainIndex = 0;
var leftIndex = 0;
var rightIndex = 0;
while (leftIndex < left.Length && rightIndex < right.Length)
{
var compResult = comparer.Compare(left[leftIndex], right[rightIndex]);
array[mainIndex++] = compResult <= 0 ? left[leftIndex++] : right[rightIndex++];
}
while (leftIndex < left.Length)
{
array[mainIndex++] = left[leftIndex++];
}
while (rightIndex < right.Length)
{
array[mainIndex++] = right[rightIndex++];
}
}
private static (T[] left, T[] right) Split(T[] array)
{
var mid = array.Length / 2;
return (array.Take(mid).ToArray(), array.Skip(mid).ToArray());
}
}
}
| 67 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Sorts arrays using quicksort (selecting middle point as a pivot).
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public sealed class MiddlePointQuickSorter<T> : QuickSorter<T>
{
protected override T SelectPivot(T[] array, IComparer<T> comparer, int left, int right) =>
array[left + (right - left) / 2];
}
}
| 15 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Class that implements pancake sort algorithm.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class PancakeSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts array using specified comparer,
/// internal, in-place, stable,
/// time complexity: O(n^2),
/// space complexity: O(1),
/// where n - array length.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
var n = array.Length;
// Start from the complete array and one by one
// reduce current size by one
for (var currSize = n; currSize > 1; --currSize)
{
// Find index of the maximum element in
// array[0..curr_size-1]
var mi = FindMax(array, currSize, comparer);
// Move the maximum element to end of current array
// if it's not already at the end
if (mi != currSize - 1)
{
// To move to the end, first move maximum
// number to beginning
Flip(array, mi);
// Now move the maximum number to end by
// reversing current array
Flip(array, currSize - 1);
}
}
}
// Reverses array[0..i]
private void Flip(T[] array, int i)
{
T temp;
var start = 0;
while (start < i)
{
temp = array[start];
array[start] = array[i];
array[i] = temp;
start++;
i--;
}
}
// Returns index of the maximum element
// in array[0..n-1]
private int FindMax(T[] array, int n, IComparer<T> comparer)
{
var mi = 0;
for (var i = 0; i < n; i++)
{
if (comparer.Compare(array[i], array[mi]) == 1)
{
mi = i;
}
}
return mi;
}
}
}
| 79 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Sorts arrays using quicksort.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public abstract class QuickSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts array using Hoare partition scheme,
/// internal, in-place,
/// time complexity average: O(n log(n)),
/// time complexity worst: O(n^2),
/// space complexity: O(log(n)),
/// where n - array length.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer) => Sort(array, comparer, 0, array.Length - 1);
protected abstract T SelectPivot(T[] array, IComparer<T> comparer, int left, int right);
private void Sort(T[] array, IComparer<T> comparer, int left, int right)
{
if (left >= right)
{
return;
}
var p = Partition(array, comparer, left, right);
Sort(array, comparer, left, p);
Sort(array, comparer, p + 1, right);
}
private int Partition(T[] array, IComparer<T> comparer, int left, int right)
{
var pivot = SelectPivot(array, comparer, left, right);
var nleft = left;
var nright = right;
while (true)
{
while (comparer.Compare(array[nleft], pivot) < 0)
{
nleft++;
}
while (comparer.Compare(array[nright], pivot) > 0)
{
nright--;
}
if (nleft >= nright)
{
return nright;
}
var t = array[nleft];
array[nleft] = array[nright];
array[nright] = t;
nleft++;
nright--;
}
}
}
}
| 69 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Sorts arrays using quicksort (selecting random point as a pivot).
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public sealed class RandomPivotQuickSorter<T> : QuickSorter<T>
{
private readonly Random random = new();
protected override T SelectPivot(T[] array, IComparer<T> comparer, int left, int right) =>
array[random.Next(left, right + 1)];
}
}
| 18 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Class that implements selection sort algorithm.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class SelectionSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts array using specified comparer,
/// internal, in-place, stable,
/// time complexity: O(n^2),
/// space complexity: O(1),
/// where n - array length.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
for (var i = 0; i < array.Length - 1; i++)
{
var jmin = i;
for (var j = i + 1; j < array.Length; j++)
{
if (comparer.Compare(array[jmin], array[j]) > 0)
{
jmin = j;
}
}
var t = array[i];
array[i] = array[jmin];
array[jmin] = t;
}
}
}
}
| 40 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// TODO.
/// </summary>
/// <typeparam name="T">TODO. 2.</typeparam>
public class ShellSorter<T> : IComparisonSorter<T>
{
/// <summary>
/// Sorts array using specified comparer,
/// based on bubble sort,
/// internal, in-place, unstable,
/// worst-case time complexity: O(n^2),
/// space complexity: O(1),
/// where n - array length.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
for (var step = array.Length / 2; step > 0; step /= 2)
{
for (var i = 0; i < step; i++)
{
GappedBubbleSort(array, comparer, i, step);
}
}
}
private static void GappedBubbleSort(T[] array, IComparer<T> comparer, int start, int step)
{
for (var j = start; j < array.Length - step; j += step)
{
var wasChanged = false;
for (var k = start; k < array.Length - j - step; k += step)
{
if (comparer.Compare(array[k], array[k + step]) > 0)
{
var temp = array[k];
array[k] = array[k + step];
array[k + step] = temp;
wasChanged = true;
}
}
if (!wasChanged)
{
break;
}
}
}
}
}
| 56 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
namespace Algorithms.Sorters.Comparison
{
/// <summary>
/// Timsort is a hybrid stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data.
/// It was originally implemented by Tim Peters in 2002 for use in the Python programming language.
///
/// This class is based on a Java interpretation of Tim Peter's original work.
/// Java class is viewable here:
/// http://cr.openjdk.java.net/~martin/webrevs/openjdk7/timsort/raw_files/new/src/share/classes/java/util/TimSort.java
///
/// Tim Peters's list sort for Python, is described in detail here:
/// http://svn.python.org/projects/python/trunk/Objects/listsort.txt
///
/// Tim's C code may be found here: http://svn.python.org/projects/python/trunk/Objects/listobject.c
///
/// The underlying techniques are described in this paper (and may have even earlier origins):
/// "Optimistic Sorting and Information Theoretic Complexity"
/// Peter McIlroy
/// SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
/// pp 467-474, Austin, Texas, 25-27 January 1993.
/// </summary>
/// <typeparam name="T">Type of array element.</typeparam>
public class TimSorter<T> : IComparisonSorter<T>
{
private readonly int minMerge;
private readonly int initMinGallop;
private readonly int[] runBase;
private readonly int[] runLengths;
private int minGallop;
private int stackSize;
private IComparer<T> comparer = default!;
/// <summary>
/// Private class for handling gallop merges, allows for tracking array indexes and wins.
/// </summary>
/// <typeparam name="Tc">Type of array element.</typeparam>
private class TimChunk<Tc>
{
public Tc[] Array { get; set; } = default!;
public int Index { get; set; }
public int Remaining { get; set; }
public int Wins { get; set; }
}
public TimSorter(int minMerge = 32, int minGallop = 7)
{
initMinGallop = minGallop;
this.minMerge = minMerge;
runBase = new int[85];
runLengths = new int[85];
stackSize = 0;
this.minGallop = minGallop;
}
/// <summary>
/// Sorts array using specified comparer
/// worst case performance: O(n log(n)),
/// best case performance: O(n),
/// See <a href="https://en.wikipedia.org/wiki/Timsort">here</a> for more info.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="comparer">Compares elements.</param>
public void Sort(T[] array, IComparer<T> comparer)
{
this.comparer = comparer;
var start = 0;
var remaining = array.Length;
if (remaining < minMerge)
{
if (remaining < 2)
{
// Arrays of size 0 or 1 are always sorted.
return;
}
// Don't need to merge, just binary sort
BinarySort(array, start, remaining, start);
return;
}
var minRun = MinRunLength(remaining, minMerge);
do
{
// Identify next run
var runLen = CountRunAndMakeAscending(array, start);
// If the run is too short extend to Min(MIN_RUN, remaining)
if (runLen < minRun)
{
var force = Math.Min(minRun, remaining);
BinarySort(array, start, start + force, start + runLen);
runLen = force;
}
runBase[stackSize] = start;
runLengths[stackSize] = runLen;
stackSize++;
MergeCollapse(array);
start += runLen;
remaining -= runLen;
}
while (remaining != 0);
MergeForceCollapse(array);
}
/// <summary>
/// Returns the minimum acceptable run length for an array of the specified
/// length.Natural runs shorter than this will be extended.
///
/// Computation is:
/// If total less than minRun, return n (it's too small to bother with fancy stuff).
/// Else if total is an exact power of 2, return minRun/2.
/// Else return an int k, where <![CDATA[minRun/2 <= k <= minRun]]>, such that total/k
/// is close to, but strictly less than, an exact power of 2.
/// </summary>
/// <param name="total">Total length remaining to sort.</param>
/// <returns>Minimum run length to be merged.</returns>
private static int MinRunLength(int total, int minRun)
{
var r = 0;
while (total >= minRun)
{
r |= total & 1;
total >>= 1;
}
return total + r;
}
/// <summary>
/// Reverse the specified range of the specified array.
/// </summary>
/// <param name="array">the array in which a range is to be reversed.</param>
/// <param name="start">the index of the first element in the range to be reversed.</param>
/// <param name="end">the index after the last element in the range to be reversed.</param>
private static void ReverseRange(T[] array, int start, int end)
{
end--;
while (start < end)
{
var t = array[start];
array[start++] = array[end];
array[end--] = t;
}
}
/// <summary>
/// Left shift a value, preventing a roll over to negative numbers.
/// </summary>
/// <param name="shiftable">int value to left shift.</param>
/// <returns>Left shifted value, bound to 2,147,483,647.</returns>
private static int BoundLeftShift(int shiftable) => (shiftable << 1) < 0
? (shiftable << 1) + 1
: int.MaxValue;
/// <summary>
/// Check the chunks before getting in to a merge to make sure there's something to actually do.
/// </summary>
/// <param name="left">TimChunk of the left hand side.</param>
/// <param name="right">TimChunk of the right hand side.</param>
/// <param name="dest">The current target point for the remaining values.</param>
/// <returns>If a merge is required.</returns>
private static bool NeedsMerge(TimChunk<T> left, TimChunk<T> right, ref int dest)
{
right.Array[dest++] = right.Array[right.Index++];
if (--right.Remaining == 0)
{
Array.Copy(left.Array, left.Index, right.Array, dest, left.Remaining);
return false;
}
if (left.Remaining == 1)
{
Array.Copy(right.Array, right.Index, right.Array, dest, right.Remaining);
right.Array[dest + right.Remaining] = left.Array[left.Index];
return false;
}
return true;
}
/// <summary>
/// Moves over the last parts of the chunks.
/// </summary>
/// <param name="left">TimChunk of the left hand side.</param>
/// <param name="right">TimChunk of the right hand side.</param>
/// <param name="dest">The current target point for the remaining values.</param>
private static void FinalizeMerge(TimChunk<T> left, TimChunk<T> right, int dest)
{
if (left.Remaining == 1)
{
Array.Copy(right.Array, right.Index, right.Array, dest, right.Remaining);
right.Array[dest + right.Remaining] = left.Array[left.Index];
}
else if (left.Remaining == 0)
{
throw new ArgumentException("Comparison method violates its general contract!");
}
else
{
Array.Copy(left.Array, left.Index, right.Array, dest, left.Remaining);
}
}
/// <summary>
/// Returns the length of the run beginning at the specified position in
/// the specified array and reverses the run if it is descending (ensuring
/// that the run will always be ascending when the method returns).
///
/// A run is the longest ascending sequence with:
///
/// <![CDATA[a[lo] <= a[lo + 1] <= a[lo + 2] <= ...]]>
///
/// or the longest descending sequence with:
///
/// <![CDATA[a[lo] > a[lo + 1] > a[lo + 2] > ...]]>
///
/// For its intended use in a stable mergesort, the strictness of the
/// definition of "descending" is needed so that the call can safely
/// reverse a descending sequence without violating stability.
/// </summary>
/// <param name="array">the array in which a run is to be counted and possibly reversed.</param>
/// <param name="start">index of the first element in the run.</param>
/// <returns>the length of the run beginning at the specified position in the specified array.</returns>
private int CountRunAndMakeAscending(T[] array, int start)
{
var runHi = start + 1;
if (runHi == array.Length)
{
return 1;
}
// Find end of run, and reverse range if descending
if (comparer.Compare(array[runHi++], array[start]) < 0)
{ // Descending
while (runHi < array.Length && comparer.Compare(array[runHi], array[runHi - 1]) < 0)
{
runHi++;
}
ReverseRange(array, start, runHi);
}
else
{ // Ascending
while (runHi < array.Length && comparer.Compare(array[runHi], array[runHi - 1]) >= 0)
{
runHi++;
}
}
return runHi - start;
}
/// <summary>
/// Find the position in the array that a key should fit to the left of where it currently sits.
/// </summary>
/// <param name="array">Array to search.</param>
/// <param name="key">Key to place in the array.</param>
/// <param name="i">Base index for the key.</param>
/// <param name="len">Length of the chunk to run through.</param>
/// <param name="hint">Initial starting position to start from.</param>
/// <returns>Offset for the key's location.</returns>
private int GallopLeft(T[] array, T key, int i, int len, int hint)
{
var (offset, lastOfs) = comparer.Compare(key, array[i + hint]) > 0
? RightRun(array, key, i, len, hint, 0)
: LeftRun(array, key, i, hint, 1);
return FinalOffset(array, key, i, offset, lastOfs, 1);
}
/// <summary>
/// Find the position in the array that a key should fit to the right of where it currently sits.
/// </summary>
/// <param name="array">Array to search.</param>
/// <param name="key">Key to place in the array.</param>
/// <param name="i">Base index for the key.</param>
/// <param name="len">Length of the chunk to run through.</param>
/// <param name="hint">Initial starting position to start from.</param>
/// <returns>Offset for the key's location.</returns>
private int GallopRight(T[] array, T key, int i, int len, int hint)
{
var (offset, lastOfs) = comparer.Compare(key, array[i + hint]) < 0
? LeftRun(array, key, i, hint, 0)
: RightRun(array, key, i, len, hint, -1);
return FinalOffset(array, key, i, offset, lastOfs, 0);
}
private (int offset, int lastOfs) LeftRun(T[] array, T key, int i, int hint, int lt)
{
var maxOfs = hint + 1;
var (offset, tmp) = (1, 0);
while (offset < maxOfs && comparer.Compare(key, array[i + hint - offset]) < lt)
{
tmp = offset;
offset = BoundLeftShift(offset);
}
if (offset > maxOfs)
{
offset = maxOfs;
}
var lastOfs = hint - offset;
offset = hint - tmp;
return (offset, lastOfs);
}
private (int offset, int lastOfs) RightRun(T[] array, T key, int i, int len, int hint, int gt)
{
var (offset, lastOfs) = (1, 0);
var maxOfs = len - hint;
while (offset < maxOfs && comparer.Compare(key, array[i + hint + offset]) > gt)
{
lastOfs = offset;
offset = BoundLeftShift(offset);
}
if (offset > maxOfs)
{
offset = maxOfs;
}
offset += hint;
lastOfs += hint;
return (offset, lastOfs);
}
private int FinalOffset(T[] array, T key, int i, int offset, int lastOfs, int lt)
{
lastOfs++;
while (lastOfs < offset)
{
var m = lastOfs + (int)((uint)(offset - lastOfs) >> 1);
if (comparer.Compare(key, array[i + m]) < lt)
{
offset = m;
}
else
{
lastOfs = m + 1;
}
}
return offset;
}
/// <summary>
/// Sorts the specified portion of the specified array using a binary
/// insertion sort. It requires O(n log n) compares, but O(n^2) data movement.
/// </summary>
/// <param name="array">Array to sort.</param>
/// <param name="start">The index of the first element in the range to be sorted.</param>
/// <param name="end">The index after the last element in the range to be sorted.</param>
/// <param name="first">The index of the first element in the range that is not already known to be sorted, must be between start and end.</param>
private void BinarySort(T[] array, int start, int end, int first)
{
if (first >= end || first <= start)
{
first = start + 1;
}
for (; first < end; first++)
{
var target = array[first];
var targetInsertLocation = BinarySearch(array, start, first - 1, target);
Array.Copy(array, targetInsertLocation, array, targetInsertLocation + 1, first - targetInsertLocation);
array[targetInsertLocation] = target;
}
}
private int BinarySearch(T[] array, int left, int right, T target)
{
while (left < right)
{
var mid = (left + right) >> 1;
if (comparer.Compare(target, array[mid]) < 0)
{
right = mid;
}
else
{
left = mid + 1;
}
}
return comparer.Compare(target, array[left]) < 0
? left
: left + 1;
}
private void MergeCollapse(T[] array)
{
while (stackSize > 1)
{
var n = stackSize - 2;
if (n > 0 && runLengths[n - 1] <= runLengths[n] + runLengths[n + 1])
{
if (runLengths[n - 1] < runLengths[n + 1])
{
n--;
}
MergeAt(array, n);
}
else if (runLengths[n] <= runLengths[n + 1])
{
MergeAt(array, n);
}
else
{
break;
}
}
}
private void MergeForceCollapse(T[] array)
{
while (stackSize > 1)
{
var n = stackSize - 2;
if (n > 0 && runLengths[n - 1] < runLengths[n + 1])
{
n--;
}
MergeAt(array, n);
}
}
private void MergeAt(T[] array, int index)
{
var baseA = runBase[index];
var lenA = runLengths[index];
var baseB = runBase[index + 1];
var lenB = runLengths[index + 1];
runLengths[index] = lenA + lenB;
if (index == stackSize - 3)
{
runBase[index + 1] = runBase[index + 2];
runLengths[index + 1] = runLengths[index + 2];
}
stackSize--;
var k = GallopRight(array, array[baseB], baseA, lenA, 0);
baseA += k;
lenA -= k;
if (lenA <= 0)
{
return;
}
lenB = GallopLeft(array, array[baseA + lenA - 1], baseB, lenB, lenB - 1);
if (lenB <= 0)
{
return;
}
Merge(array, baseA, lenA, baseB, lenB);
}
private void Merge(T[] array, int baseA, int lenA, int baseB, int lenB)
{
var endA = baseA + lenA;
var dest = baseA;
TimChunk<T> left = new()
{
Array = array[baseA..endA],
Remaining = lenA,
};
TimChunk<T> right = new()
{
Array = array,
Index = baseB,
Remaining = lenB,
};
// Move first element of the right chunk and deal with degenerate cases.
if (!TimSorter<T>.NeedsMerge(left, right, ref dest))
{
// One of the chunks had 0-1 items in it, so no need to merge anything.
return;
}
var gallop = minGallop;
while (RunMerge(left, right, ref dest, ref gallop))
{
// Penalize for leaving gallop mode
gallop = gallop > 0
? gallop + 2
: 2;
}
minGallop = gallop >= 1
? gallop
: 1;
FinalizeMerge(left, right, dest);
}
private bool RunMerge(TimChunk<T> left, TimChunk<T> right, ref int dest, ref int gallop)
{
// Reset the number of times in row a run wins.
left.Wins = 0;
right.Wins = 0;
// Run a stable merge sort until (if ever) one run starts winning consistently.
if (StableMerge(left, right, ref dest, gallop))
{
// Stable merge sort completed with no viable gallops, time to exit.
return false;
}
// One run is winning so consistently that galloping may be a huge win.
// So try that, and continue galloping until (if ever) neither run appears to be winning consistently anymore.
do
{
if (GallopMerge(left, right, ref dest))
{
// Galloped all the way to the end, merge is complete.
return false;
}
// We had a bit of a run, so make it easier to get started again.
gallop--;
}
while (left.Wins >= initMinGallop || right.Wins >= initMinGallop);
return true;
}
private bool StableMerge(TimChunk<T> left, TimChunk<T> right, ref int dest, int gallop)
{
do
{
if (comparer.Compare(right.Array[right.Index], left.Array[left.Index]) < 0)
{
right.Array[dest++] = right.Array[right.Index++];
right.Wins++;
left.Wins = 0;
if (--right.Remaining == 0)
{
return true;
}
}
else
{
right.Array[dest++] = left.Array[left.Index++];
left.Wins++;
right.Wins = 0;
if (--left.Remaining == 1)
{
return true;
}
}
}
while ((left.Wins | right.Wins) < gallop);
return false;
}
private bool GallopMerge(TimChunk<T> left, TimChunk<T> right, ref int dest)
{
left.Wins = GallopRight(left.Array, right.Array[right.Index], left.Index, left.Remaining, 0);
if (left.Wins != 0)
{
Array.Copy(left.Array, left.Index, right.Array, dest, left.Wins);
dest += left.Wins;
left.Index += left.Wins;
left.Remaining -= left.Wins;
if (left.Remaining <= 1)
{
return true;
}
}
right.Array[dest++] = right.Array[right.Index++];
if (--right.Remaining == 0)
{
return true;
}
right.Wins = GallopLeft(right.Array, left.Array[left.Index], right.Index, right.Remaining, 0);
if (right.Wins != 0)
{
Array.Copy(right.Array, right.Index, right.Array, dest, right.Wins);
dest += right.Wins;
right.Index += right.Wins;
right.Remaining -= right.Wins;
if (right.Remaining == 0)
{
return true;
}
}
right.Array[dest++] = left.Array[left.Index++];
if (--left.Remaining == 1)
{
return true;
}
return false;
}
}
}
| 635 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
namespace Algorithms.Sorters.External
{
public class ExternalMergeSorter<T> : IExternalSorter<T>
{
public void Sort(
ISequentialStorage<T> mainMemory,
ISequentialStorage<T> temporaryMemory,
IComparer<T> comparer)
{
var originalSource = mainMemory;
var source = mainMemory;
var temp = temporaryMemory;
var totalLength = mainMemory.Length;
for (var stripLength = 1L; stripLength < totalLength; stripLength *= 2)
{
using var left = source.GetReader();
using var right = source.GetReader();
using var output = temp.GetWriter();
for (var i = 0L; i < stripLength; i++)
{
right.Read();
}
Merge(left, right, output, stripLength, Math.Min(stripLength, totalLength - stripLength), comparer);
var step = 2 * stripLength;
long rightStripStart;
for (rightStripStart = stripLength + step; rightStripStart < mainMemory.Length; rightStripStart += step)
{
for (var i = 0L; i < stripLength; i++)
{
left.Read();
right.Read();
}
Merge(
left,
right,
output,
stripLength,
Math.Min(stripLength, totalLength - rightStripStart),
comparer);
}
for (var i = 0L; i < totalLength + stripLength - rightStripStart; i++)
{
output.Write(right.Read());
}
(source, temp) = (temp, source);
}
if (source == originalSource)
{
return;
}
using var sorted = source.GetReader();
using var dest = originalSource.GetWriter();
for (var i = 0; i < totalLength; i++)
{
dest.Write(sorted.Read());
}
}
private static void Merge(
ISequentialStorageReader<T> left,
ISequentialStorageReader<T> right,
ISequentialStorageWriter<T> output,
long leftLength,
long rightLength,
IComparer<T> comparer)
{
var leftIndex = 0L;
var rightIndex = 0L;
var l = left.Read();
var r = right.Read();
while (true)
{
if (comparer.Compare(l, r) < 0)
{
output.Write(l);
leftIndex++;
if (leftIndex == leftLength)
{
break;
}
l = left.Read();
}
else
{
output.Write(r);
rightIndex++;
if (rightIndex == rightLength)
{
break;
}
r = right.Read();
}
}
if (leftIndex < leftLength)
{
output.Write(l);
Copy(left, output, leftLength - leftIndex - 1);
}
if (rightIndex < rightLength)
{
output.Write(r);
Copy(right, output, rightLength - rightIndex - 1);
}
}
private static void Copy(ISequentialStorageReader<T> from, ISequentialStorageWriter<T> to, long count)
{
for (var i = 0; i < count; i++)
{
to.Write(from.Read());
}
}
}
}
| 130 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Sorters.External
{
public interface IExternalSorter<T>
{
/// <summary>
/// Sorts elements in sequential storage in ascending order.
/// </summary>
/// <param name="mainMemory">Memory that contains array to sort and will contain the result.</param>
/// <param name="temporaryMemory">Temporary memory for working purposes.</param>
void Sort(ISequentialStorage<T> mainMemory, ISequentialStorage<T> temporaryMemory, IComparer<T> comparer);
}
}
| 15 |
C-Sharp | TheAlgorithms | C# | namespace Algorithms.Sorters.External
{
public interface ISequentialStorage<T>
{
public int Length { get; }
ISequentialStorageReader<T> GetReader();
ISequentialStorageWriter<T> GetWriter();
}
}
| 12 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Sorters.External
{
public interface ISequentialStorageReader<out T> : IDisposable
{
T Read();
}
}
| 10 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Sorters.External
{
public interface ISequentialStorageWriter<in T> : IDisposable
{
void Write(T value);
}
}
| 10 |
C-Sharp | TheAlgorithms | C# | using System.IO;
namespace Algorithms.Sorters.External.Storages
{
public class IntFileStorage : ISequentialStorage<int>
{
private readonly string filename;
public IntFileStorage(string filename, int length)
{
Length = length;
this.filename = filename;
}
public int Length { get; }
public ISequentialStorageReader<int> GetReader() => new FileReader(filename);
public ISequentialStorageWriter<int> GetWriter() => new FileWriter(filename);
private class FileReader : ISequentialStorageReader<int>
{
private readonly BinaryReader reader;
public FileReader(string filename) => reader = new BinaryReader(File.OpenRead(filename));
public void Dispose() => reader.Dispose();
public int Read() => reader.ReadInt32();
}
private class FileWriter : ISequentialStorageWriter<int>
{
private readonly BinaryWriter writer;
public FileWriter(string filename) => writer = new BinaryWriter(File.OpenWrite(filename));
public void Write(int value) => writer.Write(value);
public void Dispose() => writer.Dispose();
}
}
}
| 44 |
C-Sharp | TheAlgorithms | C# | namespace Algorithms.Sorters.External.Storages
{
public class IntInMemoryStorage : ISequentialStorage<int>
{
private readonly int[] storage;
public IntInMemoryStorage(int[] array) => storage = array;
public int Length => storage.Length;
public ISequentialStorageReader<int> GetReader() => new InMemoryReader(storage);
public ISequentialStorageWriter<int> GetWriter() => new InMemoryWriter(storage);
private class InMemoryReader : ISequentialStorageReader<int>
{
private readonly int[] storage;
private int offset;
public InMemoryReader(int[] storage) => this.storage = storage;
public void Dispose()
{
// Nothing to dispose here
}
public int Read() => storage[offset++];
}
private class InMemoryWriter : ISequentialStorageWriter<int>
{
private readonly int[] storage;
private int offset;
public InMemoryWriter(int[] storage) => this.storage = storage;
public void Write(int value) => storage[offset++] = value;
public void Dispose()
{
// Nothing to dispose here
}
}
}
}
| 46 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Linq;
namespace Algorithms.Sorters.Integer
{
/// <summary>
/// Class that implements bucket sort algorithm.
/// </summary>
public class BucketSorter : IIntegerSorter
{
private const int NumOfDigitsInBase10 = 10;
/// <summary>
/// Sorts array elements using BucketSort Algorithm.
/// </summary>
/// <param name="array">Array to sort.</param>
public void Sort(int[] array)
{
if (array.Length <= 1)
{
return;
}
// store maximum number of digits in numbers to sort
var totalDigits = NumberOfDigits(array);
// bucket array where numbers will be placed
var buckets = new int[NumOfDigitsInBase10, array.Length + 1];
// go through all digit places and sort each number
// according to digit place value
for (var pass = 1; pass <= totalDigits; pass++)
{
DistributeElements(array, buckets, pass); // distribution pass
CollectElements(array, buckets); // gathering pass
if (pass != totalDigits)
{
EmptyBucket(buckets); // set size of buckets to 0
}
}
}
/// <summary>
/// Determines the number of digits in the largest number.
/// </summary>
/// <param name="array">Input array.</param>
/// <returns>Number of digits.</returns>
private static int NumberOfDigits(IEnumerable<int> array) => (int)Math.Floor(Math.Log10(array.Max()) + 1);
/// <summary>
/// To distribute elements into buckets based on specified digit.
/// </summary>
/// <param name="data">Input array.</param>
/// <param name="buckets">Array of buckets.</param>
/// <param name="digit">Digit.</param>
private static void DistributeElements(IEnumerable<int> data, int[,] buckets, int digit)
{
// determine the divisor used to get specific digit
var divisor = (int)Math.Pow(10, digit);
foreach (var element in data)
{
// bucketNumber example for hundreds digit:
// ( 1234 % 1000 ) / 100 --> 2
var bucketNumber = NumOfDigitsInBase10 * (element % divisor) / divisor;
// retrieve value in pail[ bucketNumber , 0 ] to
// determine the location in row to store element
var elementNumber = ++buckets[bucketNumber, 0]; // location in bucket to place element
buckets[bucketNumber, elementNumber] = element;
}
}
/// <summary>
/// Return elements to original array.
/// </summary>
/// <param name="data">Input array.</param>
/// <param name="buckets">Array of buckets.</param>
private static void CollectElements(IList<int> data, int[,] buckets)
{
var subscript = 0; // initialize location in data
// loop over buckets
for (var i = 0; i < NumOfDigitsInBase10; i++)
{
// loop over elements in each bucket
for (var j = 1; j <= buckets[i, 0]; j++)
{
data[subscript++] = buckets[i, j]; // add element to array
}
}
}
/// <summary>
/// Sets size of all buckets to zero.
/// </summary>
/// <param name="buckets">Array of buckets.</param>
private static void EmptyBucket(int[,] buckets)
{
for (var i = 0; i < NumOfDigitsInBase10; i++)
{
buckets[i, 0] = 0; // set size of bucket to 0
}
}
}
}
| 109 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Linq;
namespace Algorithms.Sorters.Integer
{
/// <summary>
/// Counting sort is an algorithm for sorting a collection of objects according to keys that are small integers; that
/// is, it is an integer sorting algorithm. It operates by counting the number of objects that have each distinct key
/// value, and using arithmetic on those counts to determine the positions of each key value in the output sequence.
/// Its running time is linear in the number of items and the difference between the maximum and minimum key values, so
/// it is only suitable for direct use in situations where the variation in keys is not significantly greater than the
/// number of items. However, it is often used as a subroutine in another sorting algorithm, radix sort, that can
/// handle larger keys more efficiently.
/// </summary>
public class CountingSorter : IIntegerSorter
{
/// <summary>
/// <para>
/// Sorts input array using counting sort algorithm.
/// </para>
/// <para>
/// Time complexity: O(n+k), where k is the range of the non-negative key values.
/// </para>
/// <para>
/// Space complexity: O(n+k), where k is the range of the non-negative key values.
/// </para>
/// </summary>
/// <param name="array">Input array.</param>
public void Sort(int[] array)
{
if (array.Length == 0)
{
return;
}
var max = array.Max();
var min = array.Min();
var count = new int[max - min + 1];
var output = new int[array.Length];
for (var i = 0; i < array.Length; i++)
{
count[array[i] - min]++;
}
for (var i = 1; i < count.Length; i++)
{
count[i] += count[i - 1];
}
for (var i = array.Length - 1; i >= 0; i--)
{
output[count[array[i] - min] - 1] = array[i];
count[array[i] - min]--;
}
Array.Copy(output, array, array.Length);
}
}
}
| 60 |
C-Sharp | TheAlgorithms | C# | namespace Algorithms.Sorters.Integer
{
/// <summary>
/// Sorts array of integers without comparing them.
/// </summary>
public interface IIntegerSorter
{
/// <summary>
/// Sorts array in ascending order.
/// </summary>
/// <param name="array">Array to sort.</param>
void Sort(int[] array);
}
}
| 15 |
C-Sharp | TheAlgorithms | C# | namespace Algorithms.Sorters.Integer
{
/// <summary>
/// Radix sort is a non-comparative integer sorting algorithm that sorts data with integer keys by grouping keys by the
/// individual
/// digits which share the same significant position and value. A positional notation is required, but because integers
/// can represent
/// strings of characters (e.g., names or dates) and specially formatted floating point numbers, radix sort is not
/// limited to integers.
/// </summary>
public class RadixSorter : IIntegerSorter
{
/// <summary>
/// Sorts array in ascending order.
/// </summary>
/// <param name="array">Array to sort.</param>
public void Sort(int[] array)
{
var bits = 4;
var b = new int[array.Length];
var rshift = 0;
for (var mask = ~(-1 << bits); mask != 0; mask <<= bits, rshift += bits)
{
var cntarray = new int[1 << bits];
foreach (var t in array)
{
var key = (t & mask) >> rshift;
++cntarray[key];
}
for (var i = 1; i < cntarray.Length; ++i)
{
cntarray[i] += cntarray[i - 1];
}
for (var p = array.Length - 1; p >= 0; --p)
{
var key = (array[p] & mask) >> rshift;
--cntarray[key];
b[cntarray[key]] = array[p];
}
var temp = b;
b = array;
array = temp;
}
}
}
}
| 50 |
C-Sharp | TheAlgorithms | C# | namespace Algorithms.Sorters.String
{
/// <summary>
/// Sorts array of strings without comparing them.
/// </summary>
public interface IStringSorter
{
/// <summary>
/// Sorts array in ascending order.
/// </summary>
/// <param name="array">Array to sort.</param>
void Sort(string[] array);
}
}
| 15 |
Subsets and Splits