repo_name
stringlengths 1
52
| repo_creator
stringclasses 6
values | programming_language
stringclasses 4
values | code
stringlengths 0
9.68M
| num_lines
int64 1
234k
|
---|---|---|---|---|
C-Sharp | TheAlgorithms | C# | namespace Algorithms.Sorters.String
{
/// <summary>
/// Radix sort is a non-comparative sorting algorithm. It avoids comparison by creating
/// and distributing elements into buckets according to their radix.
/// Radix sorts can be implemented to start at either the most significant digit (MSD)
/// or least significant digit (LSD).
/// MSD radix sorts are most suitable for sorting array of strings with variable length
/// in lexicographical order.
/// </summary>
public class MsdRadixStringSorter : IStringSorter
{
/// <summary>
/// Sort array of strings using MSD radix sort algorithm.
/// </summary>
/// <param name="array">Array to sort.</param>
public void Sort(string[] array) => Sort(array, 0, array.Length - 1, 0, new string[array.Length]);
private static void Sort(string[] array, int l, int r, int d, string[] temp)
{
if (l >= r)
{
return;
}
const int k = 256;
var count = new int[k + 2];
for (var i = l; i <= r; i++)
{
var j = Key(array[i]);
count[j + 2]++;
}
for (var i = 1; i < count.Length; i++)
{
count[i] += count[i - 1];
}
for (var i = l; i <= r; i++)
{
var j = Key(array[i]);
temp[count[j + 1]++] = array[i];
}
for (var i = l; i <= r; i++)
{
array[i] = temp[i - l];
}
for (var i = 0; i < k; i++)
{
Sort(array, l + count[i], l + count[i + 1] - 1, d + 1, temp);
}
int Key(string s) => d >= s.Length ? -1 : s[d];
}
}
}
| 60 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Strings
{
/// <summary>
/// The idea: You compare the pattern with the text from right to left.
/// If the text symbol that is compared with the rightmost pattern symbol
/// does not occur in the pattern at all, then the pattern can be shifted
/// by m positions behind this text symbol.
/// Complexity:
/// Time: Preprocessing: O(m²)
/// Comparison: O(mn)
/// Space: O(m + a)
/// where m - pattern length
/// n - text length
/// a - alphabet length.
/// Source: https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/bmen.htm
/// https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm.
/// </summary>
public static class BoyerMoore
{
/// <summary>
/// Finds the index of the first occurrence of the pattern <c>p</c> in <c>t</c>.
/// </summary>
/// <param name="t">Input text.</param>
/// <param name="p">Search pattern.</param>
/// <returns>Index of the pattern in text or -1 if the pattern was not found.</returns>
public static int FindFirstOccurrence(string t, string p)
{
// Pattern length
var m = p.Length;
// Text length
var n = t.Length;
// For each symbol of the alphabet, the position of its rightmost occurrence in the pattern,
// or -1 if the symbol does not occur in the pattern.
int[] badChar = BadCharacterRule(p, m);
// Each entry goodSuffix[i] contains the shift distance of the pattern
// if a mismatch at position i – 1 occurs, i.e. if the suffix of the pattern starting at position i has matched.
int[] goodSuffix = GoodSuffixRule(p, m);
// Index in text
var i = 0;
// Index in pattern
int j;
while (i <= n - m)
{
// Starting at end of pattern
j = m - 1;
// While matching
while (j >= 0 && p[j] == t[i + j])
{
j--;
}
// Pattern found
if (j < 0)
{
return i;
}
// Pattern is shifted by the maximum of the values
// given by the good-suffix and the bad-character heuristics
i += Math.Max(goodSuffix[j + 1], j - badChar[t[i + j]]);
}
// Pattern not found
return -1;
}
/// <summary>
/// Finds out the position of its rightmost occurrence in the pattern for each symbol of the alphabet,
/// or -1 if the symbol does not occur in the pattern.
/// </summary>
/// <param name="p">Search pattern.</param>
/// <param name="m">Length of the pattern.</param>
/// <returns>Array of the named postition for each symbol of the alphabet.</returns>
private static int[] BadCharacterRule(string p, int m)
{
// For each character (note that there are more than 256 characters)
int[] badChar = new int[256];
Array.Fill(badChar, -1);
// Iterate from left to right over the pattern
for (var j = 0; j < m; j++)
{
badChar[p[j]] = j;
}
return badChar;
}
/// <summary>
/// Finds out the shift distance of the pattern if a mismatch at position i – 1 occurs
/// for each character of the pattern, i.e. if the suffix of the pattern starting at position i has matched.
/// </summary>
/// <param name="p">Search pattern.</param>
/// <param name="m">Length of the pattern.</param>
/// <returns>Array of the named shift distance for each character of the pattern.</returns>
private static int[] GoodSuffixRule(string p, int m)
{
// CASE 1
// The matching suffix occurs somewhere else in the pattern
// --> matching suffix is a border of a suffix of the pattern
// f[i] contains starting position of the widest border of the suffix of the pattern beginning at position i
int[] f = new int[p.Length + 1];
// Suffix of p[m] has no border --> f[m] = m+1
f[m] = m + 1;
// Corresponding shift distance
int[] s = new int[p.Length + 1];
// Start of suffix including border of the pattern
// (hint: https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/kmpen.htm#section2)
var i = m;
// Start of suffix of the pattern
var j = m + 1;
while (i > 0)
{
// checking if a shorter border that is already known can be extended to the left by the same symbol
while (j <= m && p[i - 1] != p[j - 1])
{
if (s[j] == 0)
{
s[j] = j - i;
}
j = f[j];
}
--i;
--j;
f[i] = j;
}
// CASE 2
// Only a part of the matching suffix occurs at the beginning of the pattern
// (filling remaining entries)
j = f[0];
for (i = 0; i <= m; i++)
{
// Starting postition of the greates border
if (s[i] == 0)
{
s[i] = j;
}
// From position i = j, it switches to the next narrower border f[j]
if (i == j)
{
j = f[j];
}
}
return s;
}
}
}
| 168 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Strings
{
/// <summary>
/// Implements simple algorithms on strings.
/// </summary>
public static class GeneralStringAlgorithms
{
/// <summary>
/// Finds character that creates longest consecutive substring with single character.
/// </summary>
/// <param name="input">String to find in.</param>
/// <returns>Tuple containing char and number of times it appeared in a row.</returns>
public static Tuple<char, int> FindLongestConsecutiveCharacters(string input)
{
var maxChar = input[0];
var max = 1;
var current = 1;
for (var i = 1; i < input.Length; i++)
{
if (input[i] == input[i - 1])
{
current++;
if (current > max)
{
max = current;
maxChar = input[i];
}
}
else
{
current = 1;
}
}
return new Tuple<char, int>(maxChar, max);
}
}
}
| 43 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Strings
{
/// <summary>
/// <para>
/// Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different.
/// Time complexity is O(n) where n is the length of the string.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Hamming_distance.
/// </para>
/// </summary>
public static class HammingDistance
{
/// <summary>
/// Calculates Hamming distance between two strings of equal length.
/// </summary>
/// <param name="s1">First string.</param>
/// <param name="s2">Second string.</param>
/// <returns>Levenshtein distance between source and target strings.</returns>
public static int Calculate(string s1, string s2)
{
if(s1.Length != s2.Length)
{
throw new ArgumentException("Strings must be equal length.");
}
var distance = 0;
for (var i = 0; i < s1.Length; i++)
{
distance += s1[i] != s2[i] ? 1 : 0;
}
return distance;
}
}
}
| 39 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Strings
{
/// <summary>
/// <para>
/// Jaro Similarity measures how similar two strings are.
/// Result is between 0 and 1 where 0 represnts that there is no similarity between strings and 1 represents equal strings.
/// Time complexity is O(a*b) where a is the length of the first string and b is the length of the second string.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance#Jaro_similarity.
/// </para>
/// </summary>
public static class JaroSimilarity
{
/// <summary>
/// Calculates Jaro Similarity between two strings.
/// </summary>
/// <param name="s1">First string.</param>
/// <param name="s2">Second string.</param>
public static double Calculate(string s1, string s2)
{
if (s1 == s2)
{
return 1;
}
var longerString = s1.Length > s2.Length ? s1 : s2;
var shorterString = s1.Length < s2.Length ? s1 : s2;
// will look for matching characters in this range
var matchingCharacterRange = Math.Max((longerString.Length / 2) - 1, 0);
var matches = 0d;
// true if i-th index of s1 was matched in s2
var s1MatchedIndeces = new bool[s1.Length];
// true if i-th index of s2 was matched in s1
var s2MatchedIndeces = new bool[s2.Length];
for (var i = 0; i < longerString.Length; i++)
{
var startIndex = Math.Max(i - matchingCharacterRange, 0);
var endIndex = Math.Min(i + matchingCharacterRange, shorterString.Length - 1);
for (var j = startIndex; j <= endIndex; j++)
{
if (s1[i] == s2[j] && !s2MatchedIndeces[j])
{
matches++;
s1MatchedIndeces[i] = true;
s2MatchedIndeces[j] = true;
break;
}
}
}
if (matches == 0)
{
return 0;
}
var transpositions = CalculateTranspositions(s1, s2, s1MatchedIndeces, s2MatchedIndeces);
return ((matches / s1.Length) + (matches / s2.Length) + ((matches - transpositions) / matches)) / 3;
}
/// <summary>
/// Calculates number of matched characters that are not in the right order.
/// </summary>
private static int CalculateTranspositions(string s1, string s2, bool[] s1MatchedIndeces, bool[] s2MatchedIndeces)
{
var transpositions = 0;
var s2Index = 0;
for (var s1Index = 0; s1Index < s1.Length; s1Index++)
{
if (s1MatchedIndeces[s1Index])
{
while (!s2MatchedIndeces[s2Index])
{
s2Index++;
}
if (s1[s1Index] != s2[s2Index])
{
transpositions++;
}
s2Index++;
}
}
transpositions /= 2;
return transpositions;
}
}
}
| 98 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Linq;
namespace Algorithms.Strings
{
/// <summary>
/// <para>
/// Jaro–Winkler distance is a string metric measuring an edit distance between two sequences.
/// The score is normalized such that 1 means an exact match and 0 means there is no similarity.
/// Time complexity is O(a*b) where a is the length of the first string and b is the length of the second string.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance.
/// </para>
/// </summary>
public static class JaroWinklerDistance
{
/// <summary>
/// Calculates Jaro–Winkler distance.
/// </summary>
/// <param name="s1">First string.</param>
/// <param name="s2">Second string.</param>
/// <param name="scalingFactor">Scaling factor for how much the score is adjusted upwards for having common prefixes. Default is 0.1.</param>
/// <returns>Distance between two strings.</returns>
public static double Calculate(string s1, string s2, double scalingFactor = 0.1)
{
var jaroSimilarity = JaroSimilarity.Calculate(s1, s2);
var commonPrefixLength = s1.Zip(s2).Take(4).TakeWhile(x => x.First == x.Second).Count();
var jaroWinklerSimilarity = jaroSimilarity + commonPrefixLength * scalingFactor * (1 - jaroSimilarity);
return 1 - jaroWinklerSimilarity;
}
}
}
| 35 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Strings
{
public class KnuthMorrisPrattSearcher
{
/// <summary>
/// An implementation of Knuth–Morris–Pratt Algorithm.
/// Worst case time complexity: O(n + k)
/// where n - text length, k - pattern length.
/// </summary>
/// <param name="str">The string to look in.</param>
/// <param name="pat">The pattern to look for.</param>
/// <returns>
/// The zero-based positions of all occurrences of <paramref name="pat" /> in <paramref name="str" />.
/// </returns>
public IEnumerable<int> FindIndexes(string str, string pat)
{
var lps = FindLongestPrefixSuffixValues(pat);
for (int i = 0, j = 0; i < str.Length;)
{
if (pat[j] == str[i])
{
j++;
i++;
}
if (j == pat.Length)
{
yield return i - j;
j = lps[j - 1];
continue;
}
if (i < str.Length && pat[j] != str[i])
{
if (j != 0)
{
j = lps[j - 1];
}
else
{
i += 1;
}
}
}
}
/// <summary>
/// Return the longest prefix suffix values for pattern.
/// </summary>
/// <param name="pat">pattern to seek.</param>
/// <returns>The longest prefix suffix values for <paramref name="pat" />.</returns>
public int[] FindLongestPrefixSuffixValues(string pat)
{
var lps = new int[pat.Length];
for (int i = 1, len = 0; i < pat.Length;)
{
if (pat[i] == pat[len])
{
len++;
lps[i] = len;
i++;
continue;
}
if (len != 0)
{
len = lps[len - 1];
}
else
{
lps[i] = 0;
i++;
}
}
return lps;
}
}
}
| 83 |
C-Sharp | TheAlgorithms | C# | using System;
namespace Algorithms.Strings
{
/// <summary>
/// <para>
/// Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
/// </para>
/// <para>
/// Wikipedia: https://en.wikipedia.org/wiki/Levenshtein_distance.
/// </para>
/// </summary>
public static class LevenshteinDistance
{
/// <summary>
/// Calculates Levenshtein distance.
/// Time and space complexity is O(ab) where a and b are the lengths of the source and target strings.
/// </summary>
/// <param name="source">Source string.</param>
/// <param name="target">Target string.</param>
/// <returns>Levenshtein distance between source and target strings.</returns>
public static int Calculate(string source, string target)
{
var distances = new int[source.Length + 1, target.Length + 1];
for(var i = 0; i <= source.Length; i++)
{
distances[i, 0] = i;
}
for (var i = 0; i <= target.Length; i++)
{
distances[0, i] = i;
}
for (var i = 1; i <= source.Length; i++)
{
for (var j = 1; j <= target.Length; j++)
{
var substitionCost = source[i - 1] == target[j - 1] ? 0 : 1;
distances[i, j] = Math.Min(distances[i - 1, j] + 1, Math.Min(distances[i, j - 1] + 1, distances[i - 1, j - 1] + substitionCost));
}
}
return distances[source.Length, target.Length];
}
}
}
| 49 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
// Implements the traditional naive string matching algorithm in C# for TheAlgorithms/C-Sharp.
namespace Algorithms.Strings
{
/// <summary>
/// Implements the traditional naive string matching algorithm in C#.
/// </summary>
public static class NaiveStringSearch
{
/// <summary>
/// NaiveSearch(Content, Pattern) will return an array containing each index of Content in which Pattern appears.
/// Cost: O(n*m).
/// </summary>
/// <param name="content">The text body across which to search for a given pattern.</param>
/// <param name="pattern">The pattern against which to check the given text body.</param>
/// <returns>Array containing each index of Content in which Pattern appears.</returns>
public static int[] NaiveSearch(string content, string pattern)
{
var m = pattern.Length;
var n = content.Length;
List<int> indices = new();
for (var e = 0; e <= n - m; e++)
{
int j;
for (j = 0; j < m; j++)
{
if (content[e + j] != pattern[j])
{
break;
}
}
if (j == m)
{
indices.Add(e);
}
}
return indices.ToArray();
}
}
}
| 44 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Text.RegularExpressions;
namespace Algorithms.Strings
{
/// <summary>
/// Palindrome a series of characters or a string that when reversed,
/// equals the original string.
/// </summary>
public static class Palindrome
{
/// <summary>
/// Function to check if a string is a palindrome.
/// </summary>
/// <param name="word">String being checked.</param>
public static bool IsStringPalindrome(string word) =>
TypifyString(word).Equals(TypifyString(ReverseString(word)));
/// <summary>
/// Typify string to lower and remove white spaces.
/// </summary>
/// <param name="word">String to remove spaces.</param>
/// <returns>Returns original string without spaces.</returns>
private static string TypifyString(string word) =>
Regex.Replace(word.ToLowerInvariant(), @"\s+", string.Empty);
/// <summary>
/// Helper function that returns a reversed string inputed.
/// </summary>
/// <param name="s">String to be reversed.</param>
/// <returns>Returns s reversed.</returns>
private static string ReverseString(string s)
{
var arr = s.ToCharArray();
Array.Reverse(arr);
return new string(arr);
}
}
}
| 40 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
namespace Algorithms.Strings
{
public static class Permutation
{
/// <summary>
/// Returns every anagram of a given word.
/// </summary>
/// <returns>List of anagrams.</returns>
public static List<string> GetEveryUniquePermutation(string word)
{
if (word.Length < 2)
{
return new List<string>
{
word,
};
}
var result = new HashSet<string>();
for (var i = 0; i < word.Length; i++)
{
var temp = GetEveryUniquePermutation(word.Remove(i, 1));
result.UnionWith(temp.Select(subPerm => word[i] + subPerm));
}
return result.ToList();
}
}
}
| 35 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
namespace Algorithms.Strings
{
/// <summary>
/// The idea: You calculate the hash for the pattern <c>p</c> and the hash values for all the prefixes of the text
/// <c>t</c>.
/// Now, you can compare a substring in constant time using the calculated hashes.
/// time complexity: O(p + t),
/// space complexity: O(t),
/// where t - text length
/// p - pattern length.
/// </summary>
public static class RabinKarp
{
/// <summary>
/// Finds the index of all occurrences of the pattern <c>p</c> int <c>t</c>.
/// </summary>
/// <returns>List of starting indices of the pattern in the text.</returns>
public static List<int> FindAllOccurrences(string text, string pattern)
{
// Prime number
const ulong p = 65537;
// Modulo coefficient
const ulong m = (ulong)1e9 + 7;
// p_pow[i] = P^i mod M
ulong[] pPow = new ulong[Math.Max(pattern.Length, text.Length)];
pPow[0] = 1;
for (var i = 1; i < pPow.Length; i++)
{
pPow[i] = pPow[i - 1] * p % m;
}
// hash_t[i] is the sum of the previous hash values of the letters (t[0], t[1], ..., t[i-1]) and the hash value of t[i] itself (mod M).
// The hash value of a letter t[i] is equal to the product of t[i] and p_pow[i] (mod M).
ulong[] hashT = new ulong[text.Length + 1];
for (var i = 0; i < text.Length; i++)
{
hashT[i + 1] = (hashT[i] + text[i] * pPow[i]) % m;
}
// hash_s is equal to sum of the hash values of the pattern (mod M).
ulong hashS = 0;
for (var i = 0; i < pattern.Length; i++)
{
hashS = (hashS + pattern[i] * pPow[i]) % m;
}
// In the next step you iterate over the text with the pattern.
List<int> occurrences = new();
for (var i = 0; i + pattern.Length - 1 < text.Length; i++)
{
// In each step you calculate the hash value of the substring to be tested.
// By storing the hash values of the letters as a prefixes you can do this in constant time.
var currentHash = (hashT[i + pattern.Length] + m - hashT[i]) % m;
// Now you can compare the hash value of the substring with the product of the hash value of the pattern and p_pow[i].
if (currentHash == hashS * pPow[i] % m)
{
// If the hash values are identical, do a double-check in case a hash collision occurs.
var j = 0;
while (j < pattern.Length && text[i + j] == pattern[j])
{
++j;
}
if (j == pattern.Length)
{
// If the hash values are identical and the double-check passes, a substring was found that matches the pattern.
// In this case you add the index i to the list of occurences.
occurrences.Add(i);
}
}
}
return occurrences;
}
}
}
| 83 |
C-Sharp | TheAlgorithms | C# | namespace Algorithms.Strings
{
/// <summary>Implementation Z-block substring search.
/// </summary>
public static class ZblockSubstringSearch
{
/// <summary>
/// This algorithm finds all occurrences of a pattern in a text in linear time - O(m+n).
/// </summary>
public static int FindSubstring(string pattern, string text)
{
var concatStr = $"{pattern}${text}";
var patternLength = pattern.Length;
var n = concatStr.Length;
var zArray = new int[n];
var left = 0;
var right = 0;
for(var i = 1; i < n; i++)
{
if(i > right)
{
left = i;
right = ComputeNewRightValue(concatStr, n, left, i);
zArray[i] = right - left;
right--;
}
else
{
var k = i - left;
if (zArray[k] < (right - i + 1))
{
zArray[i] = zArray[k];
}
else
{
left = i;
right = ComputeNewRightValue(concatStr, n, left, right);
zArray[i] = right - left;
right--;
}
}
}
var found = 0;
foreach(var z_value in zArray)
{
if(z_value == patternLength)
{
found++;
}
}
return found;
}
private static int ComputeNewRightValue(string concatStr, int n, int left, int right)
{
while (right < n && concatStr[right - left].Equals(concatStr[right]))
{
right++;
}
return right;
}
}
}
| 70 |
C-Sharp | TheAlgorithms | C# | using NUnit.Framework;
[assembly: Parallelizable(ParallelScope.Children)]
| 4 |
C-Sharp | TheAlgorithms | C# | using Algorithms.DataCompression;
using NUnit.Framework;
using NUnit.Framework.Internal;
namespace Algorithms.Tests.Compressors
{
public class BurrowsWheelerTransformTests
{
[Test]
[TestCase("banana", "nnbaaa", 3)]
[TestCase("SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES", "TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT", 29)]
[TestCase("", "", 0)]
public void Encode(string input, string expectedString, int expectedIndex)
{
var bwt = new BurrowsWheelerTransform();
var (encoded, index) = bwt.Encode(input);
Assert.AreEqual(expectedString, encoded);
Assert.AreEqual(expectedIndex, index);
}
[Test]
[TestCase("nnbaaa", 3, "banana")]
[TestCase("TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT", 29, "SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES")]
[TestCase("", 0, "")]
public void Decode(string encoded, int index, string expected)
{
var bwt = new BurrowsWheelerTransform();
var result = bwt.Decode(encoded, index);
Assert.AreEqual(expected, result);
}
[Test]
[Repeat(100)]
public void RandomEncodeDecode()
{
var bwt = new BurrowsWheelerTransform();
var random = new Randomizer();
var inputString = random.GetString();
var (encoded, index) = bwt.Encode(inputString);
var result = bwt.Decode(encoded, index);
Assert.AreEqual(inputString, result);
}
}
}
| 51 |
C-Sharp | TheAlgorithms | C# | using Algorithms.DataCompression;
using Algorithms.Sorters.Comparison;
using FluentAssertions;
using NUnit.Framework;
using NUnit.Framework.Internal;
namespace Algorithms.Tests.Compressors
{
public static class HuffmanCompressorTests
{
[Test]
[TestCase("This is a string", "101010110111011101110111100011111010010010010011000")]
[TestCase("Hello", "1101110010")]
[TestCase("dddddddddd", "1111111111")]
[TestCase("a", "1")]
[TestCase("", "")]
public static void CompressingPhrase(string uncompressedText, string expectedCompressedText)
{
//Arrange
var sorter = new BubbleSorter<HuffmanCompressor.ListNode>();
var translator = new Translator();
var huffman = new HuffmanCompressor(sorter, translator);
//Act
var (compressedText, decompressionKeys) = huffman.Compress(uncompressedText);
var decompressedText = translator.Translate(compressedText, decompressionKeys);
//Assert
Assert.AreEqual(expectedCompressedText, compressedText);
Assert.AreEqual(uncompressedText, decompressedText);
}
[Test]
public static void DecompressedTextTheSameAsOriginal(
[Random(0, 1000, 100, Distinct = true)]
int length)
{
//Arrange
var sorter = new BubbleSorter<HuffmanCompressor.ListNode>();
var translator = new Translator();
var huffman = new HuffmanCompressor(sorter, translator);
var text = Randomizer.CreateRandomizer().GetString(length);
//Act
var (compressedText, decompressionKeys) = huffman.Compress(text);
var decompressedText = translator.Translate(compressedText, decompressionKeys);
//Assert
Assert.AreEqual(text, decompressedText);
}
[Test]
public static void ListNodeComparer_NullIsUnordered()
{
var comparer = new HuffmanCompressor.ListNodeComparer();
var node = new HuffmanCompressor.ListNode('a', 0.1);
comparer.Compare(node, null).Should().Be(0);
comparer.Compare(null, node).Should().Be(0);
comparer.Compare(null, null).Should().Be(0);
}
}
}
| 64 |
C-Sharp | TheAlgorithms | C# | using Algorithms.DataCompression;
using Algorithms.Knapsack;
using NUnit.Framework;
using NUnit.Framework.Internal;
namespace Algorithms.Tests.Compressors
{
public static class ShannonFanoCompressorTests
{
[Test]
[TestCase("dddddddddd", "1111111111")]
[TestCase("a", "1")]
[TestCase("", "")]
public static void CompressingPhrase(string uncompressedText, string expectedCompressedText)
{
//Arrange
var solver = new NaiveKnapsackSolver<(char, double)>();
var translator = new Translator();
var shannonFanoCompressor = new ShannonFanoCompressor(solver, translator);
//Act
var (compressedText, decompressionKeys) = shannonFanoCompressor.Compress(uncompressedText);
var decompressedText = translator.Translate(compressedText, decompressionKeys);
//Assert
Assert.AreEqual(expectedCompressedText, compressedText);
Assert.AreEqual(uncompressedText, decompressedText);
}
[Test]
public static void DecompressedTextTheSameAsOriginal([Random(0, 1000, 100)] int length)
{
//Arrange
var solver = new NaiveKnapsackSolver<(char, double)>();
var translator = new Translator();
var shannonFanoCompressor = new ShannonFanoCompressor(solver, translator);
var text = Randomizer.CreateRandomizer().GetString(length);
//Act
var (compressedText, decompressionKeys) = shannonFanoCompressor.Compress(text);
var decompressedText = translator.Translate(compressedText, decompressionKeys);
//Assert
Assert.AreEqual(text, decompressedText);
}
}
}
| 48 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using Algorithms.DataCompression;
using NUnit.Framework;
namespace Algorithms.Tests.Compressors
{
public static class TranslatorTests
{
[Test]
public static void TranslateCorrectly()
{
// Arrange
var translator = new Translator();
var dict = new Dictionary<string, string>
{
{ "Hey", "Good day" },
{ " ", " " },
{ "man", "sir" },
{ "!", "." },
};
// Act
var translatedText = translator.Translate("Hey man!", dict);
// Assert
Assert.AreEqual("Good day sir.", translatedText);
}
}
}
| 30 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Encoders;
using NUnit.Framework;
using NUnit.Framework.Internal;
namespace Algorithms.Tests.Encoders
{
public static class CaesarEncoderTests
{
[Test]
public static void DecodedStringIsTheSame([Random(100)] int key)
{
// Arrange
var encoder = new CaesarEncoder();
var random = new Randomizer();
var message = random.GetString();
// Act
var encoded = encoder.Encode(message, key);
var decoded = encoder.Decode(encoded, key);
// Assert
Assert.AreEqual(message, decoded);
}
}
}
| 26 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Encoders;
using NUnit.Framework;
using NUnit.Framework.Internal;
using System;
namespace Algorithms.Tests.Encoders
{
public static class FeistelCipherTests
{
[Test]
public static void DecodedStringIsTheSame([Random(100)] uint key)
{
// Arrange
var encoder = new FeistelCipher();
var random = new Randomizer();
int lenOfString = random.Next(1000);
string message = random.GetString(lenOfString);
// Act
var encoded = encoder.Encode(message, key);
var decoded = encoder.Decode(encoded, key);
// Assert
Assert.AreEqual(message, decoded);
}
[Test]
[TestCase("00001111", (uint)0x12345678)]
[TestCase("00001111222233334444555566667", (uint)0x12345678)]
[TestCase("000011112222333344445555666677", (uint)0x12345678)]
[TestCase("0000111122223333444455556666777", (uint)0x12345678)]
// The plain text will be padded to fill the size of block (16 bytes), so the encoded message should be aligned with the rule
// (text.Length % 16 == 0)
public static void TestEncodedMessageSize(string testCase, uint key)
{
// Arrange
var encoder = new FeistelCipher();
// Assert
Assert.Throws<ArgumentException>(() => encoder.Decode(testCase, key));
}
}
}
| 46 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Encoders;
using NUnit.Framework;
using NUnit.Framework.Internal;
namespace Algorithms.Tests.Encoders
{
public static class HillEnconderTests
{
[Test]
[Repeat(100)]
public static void DecodedStringIsTheSame()
{
// Arrange
var encoder = new HillEncoder();
var random = new Randomizer();
var message = random.GetString();
var key = new double[,] { { 0, 4, 5 }, { 9, 2, -1 }, { 3, 17, 7 } };
// Act
var encodedText = encoder.Encode(message, key);
var decodeText = encoder.Decode(encodedText, key);
// Assert
Assert.AreEqual(message, decodeText);
}
}
}
| 29 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
using Algorithms.Encoders;
using NUnit.Framework;
namespace Algorithms.Tests.Encoders
{
public class NysiisEncoderTests
{
private static readonly string[] Names =
{
"Jay", "John", "Jane", "Zayne", "Guerra", "Iga", "Cowan", "Louisa", "Arnie", "Olsen", "Corban", "Nava",
"Cynthia Malone", "Amiee MacKee", "MacGyver", "Yasmin Edge",
};
private static readonly string[] Expected =
{
"JY", "JAN", "JAN", "ZAYN", "GAR", "IG", "CAN", "LAS", "ARNY", "OLSAN", "CARBAN", "NAV", "CYNTANALAN",
"ANANACY", "MCGYVAR", "YASNANADG",
};
private static IEnumerable<string[]> TestData => Names.Zip(Expected, (l, r) => new[] { l, r });
[TestCaseSource(nameof(TestData))]
public void AttemptNysiis(string source, string expected)
{
var enc = new NysiisEncoder();
var nysiis = enc.Encode(source);
Assert.AreEqual(expected, nysiis);
}
}
}
| 33 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
using System.Linq;
using Algorithms.Encoders;
using NUnit.Framework;
namespace Algorithms.Tests.Encoders
{
public static class SoundexEncoderTest
{
private static readonly string[] Names =
{
"Robert", "Rupert", "Rubin", "Ashcraft", "Ashcroft", "Tymczak", "Pfister", "Honeyman",
};
private static readonly string[] Expected = { "R163", "R163", "R150", "A261", "A261", "T522", "P236", "H555" };
private static IEnumerable<string[]> TestData => Names.Zip(Expected, (l, r) => new[] { l, r });
[TestCaseSource(nameof(TestData))]
public static void AttemptSoundex(string source, string encoded)
{
SoundexEncoder enc = new();
var nysiis = enc.Encode(source);
Assert.AreEqual(nysiis, encoded);
}
}
}
| 28 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Encoders;
using NUnit.Framework;
using NUnit.Framework.Internal;
namespace Algorithms.Tests.Encoders
{
public static class VigenereEncoderTests
{
[Test]
[Repeat(100)]
public static void DecodedStringIsTheSame()
{
// Arrange
var random = new Randomizer();
var encoder = new VigenereEncoder();
var message = random.GetString();
var key = random.GetString(random.Next(1, 1000));
// Act
var encoded = encoder.Encode(message, key);
var decoded = encoder.Decode(encoded, key);
// Assert
Assert.AreEqual(message, decoded);
}
[Test]
public static void Encode_KeyIsTooShort_KeyIsAppended()
{
// Arrange
var encoder = new VigenereEncoder();
var message = new string('a', 2);
var key = new string('a', 1);
// Act
var encoded = encoder.Encode(message, key);
var decoded = encoder.Decode(encoded, key);
// Assert
Assert.AreEqual(message, decoded);
}
[Test]
public static void EmptyKeyThrowsException()
{
var random = new Randomizer();
var encoder = new VigenereEncoder();
var message = random.GetString();
var key = string.Empty;
_ = Assert.Throws<ArgumentOutOfRangeException>(() => encoder.Encode(message, key));
_ = Assert.Throws<ArgumentOutOfRangeException>(() => encoder.Decode(message, key));
}
}
}
| 57 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Graph;
using DataStructures.Graph;
using NUnit.Framework;
using System.Collections.Generic;
namespace Algorithms.Tests.Graph
{
public class BreadthFirstSearchTests
{
[Test]
public void VisitAll_ShouldCountNumberOfVisitedVertix_ResultShouldBeTheSameAsNumberOfVerticesInGraph()
{
//Arrange
var graph = new DirectedWeightedGraph<int>(10);
var vertex1 = graph.AddVertex(1);
var vertex2 = graph.AddVertex(20);
var vertex3 = graph.AddVertex(40);
var vertex4 = graph.AddVertex(40);
graph.AddEdge(vertex1, vertex2, 1);
graph.AddEdge(vertex2, vertex3, 1);
graph.AddEdge(vertex2, vertex4, 1);
graph.AddEdge(vertex4, vertex1, 1);
var dfsSearcher = new BreadthFirstSearch<int>();
long countOfVisitedVertices = 0;
//Act
dfsSearcher.VisitAll(graph, vertex1, _ => countOfVisitedVertices++);
//Assert
Assert.AreEqual(countOfVisitedVertices, graph.Count);
}
[Test]
public void VisitAll_ShouldCountNumberOfVisitedVerices_TwoSeparatedGraphInOne()
{
//Arrange
var graph = new DirectedWeightedGraph<int>(10);
var vertex1 = graph.AddVertex(1);
var vertex2 = graph.AddVertex(20);
var vertex3 = graph.AddVertex(40);
var vertex4 = graph.AddVertex(40);
var vertex5 = graph.AddVertex(40);
var vertex6 = graph.AddVertex(40);
graph.AddEdge(vertex1, vertex2, 1);
graph.AddEdge(vertex2, vertex3, 1);
graph.AddEdge(vertex4, vertex5, 1);
graph.AddEdge(vertex5, vertex6, 1);
var dfsSearcher = new BreadthFirstSearch<int>();
long countOfVisitedVerticesPerFirstGraph = 0;
long countOfVisitedVerticesPerSecondGraph = 0;
//Act
dfsSearcher.VisitAll(graph, vertex1, _ => countOfVisitedVerticesPerFirstGraph++);
dfsSearcher.VisitAll(graph, vertex4, _ => countOfVisitedVerticesPerSecondGraph++);
//Assert
Assert.AreEqual(countOfVisitedVerticesPerFirstGraph, 3);
Assert.AreEqual(countOfVisitedVerticesPerSecondGraph, 3);
}
[Test]
public void VisitAll_ReturnTheSuqenceOfVertices_ShouldBeTheSameAsExpected()
{
//Arrange
var graph = new DirectedWeightedGraph<int>(10);
var vertex1 = graph.AddVertex(1);
var vertex2 = graph.AddVertex(20);
var vertex3 = graph.AddVertex(40);
var vertex4 = graph.AddVertex(40);
var vertex5 = graph.AddVertex(40);
graph.AddEdge(vertex1, vertex2, 1);
graph.AddEdge(vertex1, vertex5, 1);
graph.AddEdge(vertex2, vertex3, 1);
graph.AddEdge(vertex2, vertex5, 1);
graph.AddEdge(vertex2, vertex4, 1);
var dfsSearcher = new BreadthFirstSearch<int>();
var expectedSequenceOfVisitedVertices = new List<Vertex<int>>
{
vertex1,
vertex2,
vertex5,
vertex3,
vertex4,
};
var sequenceOfVisitedVertices = new List<Vertex<int>>();
//Act
dfsSearcher.VisitAll(graph, vertex1, vertex => sequenceOfVisitedVertices.Add(vertex));
//Assert
CollectionAssert.AreEqual(expectedSequenceOfVisitedVertices, sequenceOfVisitedVertices);
}
}
}
| 133 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Graph;
using NUnit.Framework;
using DataStructures.BinarySearchTree;
using System;
namespace Algorithms.Tests.Graph
{
public static class BreadthFirstTreeTraversalTests
{
[Test]
public static void CorrectLevelOrderTraversal()
{
// Arrange
int[] correctPath = { 7, 4, 13, 2, 5, 11, 15, 14, 16 };
int[] insertionOrder = { 7, 13, 11, 15, 14, 4, 5, 16, 2 };
BinarySearchTree<int> testTree = new BinarySearchTree<int>();
foreach (int data in insertionOrder)
{
testTree.Add(data);
}
// Act
int[] levelOrder = BreadthFirstTreeTraversal<int>.LevelOrderTraversal(testTree);
// Assert
Assert.AreEqual(levelOrder, correctPath);
}
[Test]
public static void EmptyArrayForNullRoot()
{
// Arrange
BinarySearchTree<int> testTree = new BinarySearchTree<int>();
// Act
int[] levelOrder = BreadthFirstTreeTraversal<int>.LevelOrderTraversal(testTree);
// Assert
Assert.IsEmpty(levelOrder);
}
[Test]
[TestCase(new [] {7, 9, 5})]
[TestCase(new [] { 7, 13, 11, 15, 14, 4, 5, 16, 2 })]
public static void IncorrectLevelOrderTraversal(int[] insertion)
{
// Arrange
BinarySearchTree<int> testTree = new BinarySearchTree<int>();
foreach (int data in insertion)
{
testTree.Add(data);
}
// Act
int[] levelOrder = BreadthFirstTreeTraversal<int>.LevelOrderTraversal(testTree);
// Assert
Assert.AreNotEqual(levelOrder, insertion);
}
[Test]
public static void DeepestNodeInTree()
{
// Arrange
BinarySearchTree<int> testTree = new BinarySearchTree<int>();
int[] insertion = { 7, 13, 11, 15, 4, 5, 12, 2, 9 };
foreach (int data in insertion)
{
testTree.Add(data);
}
// Act
int deepest = BreadthFirstTreeTraversal<int>.DeepestNode(testTree);
// Assert
Assert.AreEqual(12, deepest);
}
[Test]
public static void DeepestNodeOfEmptyTree()
{
// Arrange
BinarySearchTree<int?> testTree = new BinarySearchTree<int?>();
// Act
int? deepest = BreadthFirstTreeTraversal<int?>.DeepestNode(testTree);
// Assert
Assert.IsNull(deepest);
}
}
}
| 94 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Graph;
using DataStructures.Graph;
using NUnit.Framework;
using System.Collections.Generic;
namespace Algorithms.Tests.Graph
{
public class DepthFirstSearchTests
{
[Test]
public void VisitAll_ShouldCountNumberOfVisitedVertix_ResultShouldBeTheSameAsNumberOfVerticesInGraph()
{
//Arrange
var graph = new DirectedWeightedGraph<int>(10);
var vertex1 = graph.AddVertex(1);
var vertex2 = graph.AddVertex(20);
var vertex3 = graph.AddVertex(40);
var vertex4 = graph.AddVertex(40);
graph.AddEdge(vertex1, vertex2, 1);
graph.AddEdge(vertex2, vertex3, 1);
graph.AddEdge(vertex2, vertex4, 1);
graph.AddEdge(vertex4, vertex1, 1);
var dfsSearcher = new DepthFirstSearch<int>();
long countOfVisitedVertices = 0;
//Act
dfsSearcher.VisitAll(graph, vertex1, _ => countOfVisitedVertices++);
//Assert
Assert.AreEqual(countOfVisitedVertices, graph.Count);
}
[Test]
public void VisitAll_ShouldCountNumberOfVisitedVertices_TwoSeparatedGraphInOne()
{
//Arrange
var graph = new DirectedWeightedGraph<int>(10);
var vertex1 = graph.AddVertex(1);
var vertex2 = graph.AddVertex(20);
var vertex3 = graph.AddVertex(40);
var vertex4 = graph.AddVertex(40);
var vertex5 = graph.AddVertex(40);
var vertex6 = graph.AddVertex(40);
graph.AddEdge(vertex1, vertex2, 1);
graph.AddEdge(vertex2, vertex3, 1);
graph.AddEdge(vertex4, vertex5, 1);
graph.AddEdge(vertex5, vertex6, 1);
var dfsSearcher = new DepthFirstSearch<int>();
long countOfVisitedVerticesPerFirstGraph = 0;
long countOfVisitedVerticesPerSecondGraph = 0;
//Act
dfsSearcher.VisitAll(graph, vertex1, _ => countOfVisitedVerticesPerFirstGraph++);
dfsSearcher.VisitAll(graph, vertex4, _ => countOfVisitedVerticesPerSecondGraph++);
//Assert
Assert.AreEqual(countOfVisitedVerticesPerFirstGraph, 3);
Assert.AreEqual(countOfVisitedVerticesPerSecondGraph, 3);
}
[Test]
public void VisitAll_ReturnTheSuqenceOfVertices_ShouldBeTheSameAsExpected()
{
//Arrange
var graph = new DirectedWeightedGraph<int>(10);
var vertex1 = graph.AddVertex(1);
var vertex2 = graph.AddVertex(20);
var vertex3 = graph.AddVertex(40);
var vertex4 = graph.AddVertex(40);
var vertex5 = graph.AddVertex(40);
graph.AddEdge(vertex1, vertex2, 1);
graph.AddEdge(vertex2, vertex3, 1);
graph.AddEdge(vertex2, vertex4, 1);
graph.AddEdge(vertex3, vertex5, 1);
var dfsSearcher = new DepthFirstSearch<int>();
var expectedSequenceOfVisitedVertices = new List<Vertex<int>>
{
vertex1,
vertex2,
vertex3,
vertex5,
vertex4,
};
var sequenceOfVisitedVertices = new List<Vertex<int>>();
//Act
dfsSearcher.VisitAll(graph, vertex1, vertex => sequenceOfVisitedVertices.Add(vertex));
//Assert
CollectionAssert.AreEqual(expectedSequenceOfVisitedVertices, sequenceOfVisitedVertices);
}
}
}
| 131 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Graph;
using DataStructures.Graph;
using NUnit.Framework;
using FluentAssertions;
namespace Algorithms.Tests.Graph
{
public class FloydWarshallTests
{
[Test]
public void CorrectMatrixTest()
{
var graph = new DirectedWeightedGraph<int>(10);
var vertex1 = graph.AddVertex(1);
var vertex2 = graph.AddVertex(2);
var vertex3 = graph.AddVertex(3);
var vertex4 = graph.AddVertex(4);
var vertex5 = graph.AddVertex(5);
graph.AddEdge(vertex1, vertex2, 3);
graph.AddEdge(vertex1, vertex5, -4);
graph.AddEdge(vertex1, vertex3, 8);
graph.AddEdge(vertex2, vertex5, 7);
graph.AddEdge(vertex2, vertex4, 1);
graph.AddEdge(vertex3, vertex2, 4);
graph.AddEdge(vertex4, vertex3, -5);
graph.AddEdge(vertex4, vertex1, 2);
graph.AddEdge(vertex5, vertex4, 6);
var actualDistances = new double[,]
{
{ 0, 1, -3, 2, -4 },
{ 3, 0, -4, 1, -1 },
{ 7, 4, 0, 5, 3 },
{ 2, -1, -5, 0, -2 },
{ 8, 5, 1, 6, 0 },
};
var floydWarshaller = new FloydWarshall<int>();
floydWarshaller.Run(graph).Should().Equal(actualDistances);
}
}
}
| 58 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Graph;
using DataStructures.Graph;
using NUnit.Framework;
using FluentAssertions;
using System.Collections.Generic;
using System.Linq;
namespace Algorithms.Tests.Graph
{
public class KosarajuTests
{
[Test]
public void GetRepresentativesTest()
{
// Create a graph with some SCC.
var graph = new DirectedWeightedGraph<int>(10);
var vertex1 = graph.AddVertex(1);
var vertex2 = graph.AddVertex(2);
var vertex3 = graph.AddVertex(3);
var vertex4 = graph.AddVertex(4);
var vertex5 = graph.AddVertex(5);
var vertex6 = graph.AddVertex(6);
var vertex7 = graph.AddVertex(7);
graph.AddEdge(vertex1, vertex2, 1);
graph.AddEdge(vertex2, vertex3, 1);
graph.AddEdge(vertex3, vertex1, 1);
graph.AddEdge(vertex3, vertex2, 1);
graph.AddEdge(vertex2, vertex4, 1);
graph.AddEdge(vertex4, vertex5, 1);
graph.AddEdge(vertex5, vertex4, 1);
graph.AddEdge(vertex5, vertex6, 1);
// Run the agorithm and obtain the representative vertex of the SCC to which each vertex belongs.
Dictionary<Vertex<int>,Vertex<int>> result = Kosaraju<int>.GetRepresentatives(graph);
// Check every Vertex belongs to a SCC
result.Should().ContainKey(vertex1);
result.Should().ContainKey(vertex2);
result.Should().ContainKey(vertex3);
result.Should().ContainKey(vertex4);
result.Should().ContainKey(vertex5);
result.Should().ContainKey(vertex6);
result.Should().ContainKey(vertex7);
// There should be 4 SCC: {1,2,3}, {4,5}, {6} and {7}
// Vertices 1, 2 and 3 are a SCC
result[vertex1].Should().Be(result[vertex2]).And.Be(result[vertex3]);
// Vertices 4 and 5 are another SCC
result[vertex4].Should().Be(result[vertex5]);
// And the should have a different representative vertex
result[vertex1].Should().NotBe(result[vertex4]);
// Vertices 6 and 7 are their own SCC
result[vertex6].Should().Be(vertex6);
result[vertex7].Should().Be(vertex7);
}
[Test]
public void GetSccTest()
{
// Create a graph with some SCC.
var graph = new DirectedWeightedGraph<int>(10);
var vertex1 = graph.AddVertex(1);
var vertex2 = graph.AddVertex(2);
var vertex3 = graph.AddVertex(3);
var vertex4 = graph.AddVertex(4);
var vertex5 = graph.AddVertex(5);
var vertex6 = graph.AddVertex(6);
var vertex7 = graph.AddVertex(7);
graph.AddEdge(vertex1, vertex2, 1);
graph.AddEdge(vertex2, vertex3, 1);
graph.AddEdge(vertex3, vertex1, 1);
graph.AddEdge(vertex3, vertex2, 1);
graph.AddEdge(vertex2, vertex4, 1);
graph.AddEdge(vertex4, vertex5, 1);
graph.AddEdge(vertex5, vertex4, 1);
graph.AddEdge(vertex5, vertex6, 1);
// Run the algorithm and get SCC as lists of vertices.
var scc = Kosaraju<int>.GetScc(graph);
// There should be 4 SCC: {1,2,3}, {4,5}, {6} and {7}
scc.Should().HaveCount(4);
// Vertices 1, 2 and 3 are a SCC
scc.First(c => c.Contains(vertex1)).Should().Contain(vertex2).And.Contain(vertex3);
// Vertices 4 and 5 are another SCC
scc.First(c => c.Contains(vertex4)).Should().Contain(vertex5);
// Vertices 6 and 7 are their own SCC
scc.First(c => c.Contains(vertex6)).Should().HaveCount(1);
scc.First(c => c.Contains(vertex7)).Should().HaveCount(1);
}
}
}
| 104 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Graph.Dijkstra;
using DataStructures.Graph;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Graph.Dijkstra
{
[TestFixture]
public class DijkstraTests
{
[Test]
public void DijkstraTest1_Success()
{
// here test case is from https://www.youtube.com/watch?v=pVfj6mxhdMw
var graph = new DirectedWeightedGraph<char>(5);
var a = graph.AddVertex('A');
var b = graph.AddVertex('B');
var c = graph.AddVertex('C');
var d = graph.AddVertex('D');
var e = graph.AddVertex('E');
graph.AddEdge(a, b, 6);
graph.AddEdge(b, a, 6);
graph.AddEdge(a, d, 1);
graph.AddEdge(d, a, 1);
graph.AddEdge(d, e, 1);
graph.AddEdge(e, d, 1);
graph.AddEdge(d, b, 2);
graph.AddEdge(b, d, 2);
graph.AddEdge(e, b, 2);
graph.AddEdge(b, e, 2);
graph.AddEdge(e, c, 5);
graph.AddEdge(c, e, 5);
graph.AddEdge(c, b, 5);
graph.AddEdge(b, c, 5);
var shortestPathList = DijkstraAlgorithm.GenerateShortestPath(graph, a);
shortestPathList.Length.Should().Be(5);
shortestPathList[0].Vertex.Should().Be(a);
shortestPathList[0].Distance.Should().Be(0);
shortestPathList[0].PreviousVertex.Should().Be(a);
shortestPathList[0].ToString().Should()
.Be($"Vertex: {a} - Distance: {0} - Previous: {a}");
shortestPathList[1].Vertex.Should().Be(b);
shortestPathList[1].Distance.Should().Be(3);
shortestPathList[1].PreviousVertex.Should().Be(d);
shortestPathList[1].ToString().Should()
.Be($"Vertex: {b} - Distance: {3} - Previous: {d}");
shortestPathList[2].Vertex.Should().Be(c);
shortestPathList[2].Distance.Should().Be(7);
shortestPathList[2].PreviousVertex.Should().Be(e);
shortestPathList[2].ToString().Should()
.Be($"Vertex: {c} - Distance: {7} - Previous: {e}");
shortestPathList[3].Vertex.Should().Be(d);
shortestPathList[3].Distance.Should().Be(1);
shortestPathList[3].PreviousVertex.Should().Be(a);
shortestPathList[3].ToString().Should()
.Be($"Vertex: {d} - Distance: {1} - Previous: {a}");
shortestPathList[4].Vertex.Should().Be(e);
shortestPathList[4].Distance.Should().Be(2);
shortestPathList[4].PreviousVertex.Should().Be(d);
shortestPathList[4].ToString().Should()
.Be($"Vertex: {e} - Distance: {2} - Previous: {d}");
}
[Test]
public void DijkstraTest2_Success()
{
var graph = new DirectedWeightedGraph<char>(5);
var a = graph.AddVertex('A');
var b = graph.AddVertex('B');
var c = graph.AddVertex('C');
graph.AddEdge(a, b, 1);
graph.AddEdge(b, a, 1);
graph.AddEdge(b, c, 1);
graph.AddEdge(c, b, 1);
graph.AddEdge(a, c, 3);
graph.AddEdge(c, a, 3);
var shortestPathList = DijkstraAlgorithm.GenerateShortestPath(graph, a);
shortestPathList.Length.Should().Be(3);
shortestPathList[0].Vertex.Should().Be(a);
shortestPathList[0].Distance.Should().Be(0);
shortestPathList[0].PreviousVertex.Should().Be(a);
shortestPathList[0].ToString().Should()
.Be($"Vertex: {a} - Distance: {0} - Previous: {a}");
shortestPathList[1].Vertex.Should().Be(b);
shortestPathList[1].Distance.Should().Be(1);
shortestPathList[1].PreviousVertex.Should().Be(a);
shortestPathList[1].ToString().Should()
.Be($"Vertex: {b} - Distance: {1} - Previous: {a}");
shortestPathList[2].Vertex.Should().Be(c);
shortestPathList[2].Distance.Should().Be(2);
shortestPathList[2].PreviousVertex.Should().Be(b);
shortestPathList[2].ToString().Should()
.Be($"Vertex: {c} - Distance: {2} - Previous: {b}");
}
[Test]
public void DijkstraTest3_Success()
{
var graph = new DirectedWeightedGraph<char>(5);
var a = graph.AddVertex('A');
var b = graph.AddVertex('B');
var c = graph.AddVertex('C');
graph.AddEdge(a, b, 1);
graph.AddEdge(b, a, 1);
graph.AddEdge(a, c, 3);
graph.AddEdge(c, a, 3);
var shortestPathList = DijkstraAlgorithm.GenerateShortestPath(graph, a);
shortestPathList.Length.Should().Be(3);
shortestPathList[0].Vertex.Should().Be(a);
shortestPathList[0].Distance.Should().Be(0);
shortestPathList[0].PreviousVertex.Should().Be(a);
shortestPathList[0].ToString().Should()
.Be($"Vertex: {a} - Distance: {0} - Previous: {a}");
shortestPathList[1].Vertex.Should().Be(b);
shortestPathList[1].Distance.Should().Be(1);
shortestPathList[1].PreviousVertex.Should().Be(a);
shortestPathList[1].ToString().Should()
.Be($"Vertex: {b} - Distance: {1} - Previous: {a}");
shortestPathList[2].Vertex.Should().Be(c);
shortestPathList[2].Distance.Should().Be(3);
shortestPathList[2].PreviousVertex.Should().Be(a);
shortestPathList[2].ToString().Should()
.Be($"Vertex: {c} - Distance: {3} - Previous: {a}");
}
[Test]
public void DijkstraTest4_Success()
{
var graph = new DirectedWeightedGraph<char>(5);
var a = graph.AddVertex('A');
var b = graph.AddVertex('B');
var c = graph.AddVertex('C');
var d = graph.AddVertex('D');
graph.AddEdge(a, b, 1);
graph.AddEdge(b, a, 1);
graph.AddEdge(a, c, 3);
graph.AddEdge(c, a, 3);
graph.AddEdge(c, d, 5);
graph.AddEdge(d, c, 5);
var shortestPathList = DijkstraAlgorithm.GenerateShortestPath(graph, a);
shortestPathList.Length.Should().Be(4);
shortestPathList[0].Vertex.Should().Be(a);
shortestPathList[0].Distance.Should().Be(0);
shortestPathList[0].PreviousVertex.Should().Be(a);
shortestPathList[0].ToString().Should()
.Be($"Vertex: {a} - Distance: {0} - Previous: {a}");
shortestPathList[1].Vertex.Should().Be(b);
shortestPathList[1].Distance.Should().Be(1);
shortestPathList[1].PreviousVertex.Should().Be(a);
shortestPathList[1].ToString().Should()
.Be($"Vertex: {b} - Distance: {1} - Previous: {a}");
shortestPathList[2].Vertex.Should().Be(c);
shortestPathList[2].Distance.Should().Be(3);
shortestPathList[2].PreviousVertex.Should().Be(a);
shortestPathList[2].ToString().Should()
.Be($"Vertex: {c} - Distance: {3} - Previous: {a}");
// Vertex D won't be visited in this dijkstra implementation which is valid only for cyclic graphs,
// since it is necessary to backtrack all unvisited vertices and place them
// to the priority queue, which is not implemented yet in this repository.
// If algo goes to the next vertex with minimal distance and this vertex is leaf -- algorithm stops.
shortestPathList[3].Vertex.Should().Be(d);
shortestPathList[3].Distance.Should().Be(double.MaxValue);
shortestPathList[3].PreviousVertex.Should().BeNull();
shortestPathList[3].ToString().Should()
.Be($"Vertex: {d} - Distance: {double.MaxValue} - Previous: {null}");
}
[Test]
public void DijkstraMethodTest_ShouldThrow_GraphIsNull()
{
var graph = new DirectedWeightedGraph<char>(5);
var a = graph.AddVertex('A');
Func<DistanceModel<char>[]> action = () => DijkstraAlgorithm.GenerateShortestPath(null!, a);
action.Should().Throw<ArgumentNullException>()
.WithMessage($"Value cannot be null. (Parameter '{nameof(graph)}')");
}
[Test]
public void DijkstraMethodTest_ShouldThrow_VertexDoesntBelongToGraph()
{
var graph = new DirectedWeightedGraph<char>(5);
var startVertex = graph.AddVertex('A');
Func<DistanceModel<char>[]> action = () => DijkstraAlgorithm.GenerateShortestPath(
new DirectedWeightedGraph<char>(5), startVertex);
action.Should().Throw<ArgumentNullException>()
.WithMessage($"Value cannot be null. (Parameter '{nameof(graph)}')");
}
}
}
| 230 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Graph.MinimumSpanningTree;
using FluentAssertions;
using NUnit.Framework;
using System;
using System.Collections.Generic;
using System.Linq;
namespace Algorithms.Tests.Graph.MinimumSpanningTree
{
internal class KruskalTests
{
[Test]
public void ValidateGraph_adjWrongSize_ThrowsException()
{
// Wrong number of columns
var adj = new[,]
{
{ 0, 3, 4, float.PositiveInfinity },
{ 3, 0, 5, 6 },
{ 4, 5, 0, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, 0 },
{ float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity },
};
Assert.Throws<ArgumentException>(() => Kruskal.Solve(adj), "adj must be square!");
// Wrong number of rows
adj = new[,]
{
{ 0, 3, 4, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 0, 5, 6, 2 },
{ 4, 5, 0, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, 0, float.PositiveInfinity },
};
Assert.Throws<ArgumentException>(() => Kruskal.Solve(adj), "adj must be square!");
}
[Test]
public void ValidateGraph_adjDirectedGraph_ThrowsException()
{
// Nodes 1 and 2 have a directed edge
var adj = new[,]
{
{ 0, float.PositiveInfinity, 4, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 0, 5, 6, 2 },
{ 4, 5, 0, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, 0, float.PositiveInfinity },
{ float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity, 0 },
};
Assert.Throws<ArgumentException>(() => Kruskal.Solve(adj), "adj must be symmetric!");
}
[Test]
public void Solve_adjGraph1_CorrectAnswer()
{
/* Graph
* (1)
* / \
* 3 2
* / \
* (0)--2--(2)
*/
var adj = new float[,]
{
{ 0, 3, 2 },
{ 3, 0, 2 },
{ 2, 2, 0 },
};
/* Expected MST
* (1)
* \
* 2
* \
* (0)--2--(2)
*/
var expected = new[,]
{
{ float.PositiveInfinity, float.PositiveInfinity, 2 },
{ float.PositiveInfinity, float.PositiveInfinity, 2 },
{ 2, 2, float.PositiveInfinity },
};
Kruskal.Solve(adj).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
[Test]
public void Solve_adjGraph2_CorrectAnswer()
{
/* Graph
* (0) (4)
* |\ /
* | 3 2
* | \ /
* 4 (1)
* | / \
* | 5 6
* |/ \
* (2) (3)
*/
var adj = new[,]
{
{ 0, 3, 4, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 0, 5, 6, 2 },
{ 4, 5, 0, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, 0, float.PositiveInfinity },
{ float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity, 0 },
};
/* Expected MST
* (0) (4)
* |\ /
* | 3 2
* | \ /
* 4 (1)
* | \
* | 6
* | \
* (2) (3)
*/
var expected = new[,]
{
{ float.PositiveInfinity, 3, 4, float.PositiveInfinity, float.PositiveInfinity },
{ 3, float.PositiveInfinity, float.PositiveInfinity, 6, 2 },
{ 4, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
};
Kruskal.Solve(adj).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
[Test]
public void Solve_adjGraph3_CorrectAnswer()
{
/* Graph
* (0)--3--(2) (4)--2--(5)
* \ / \ /
* 4 1 4 6
* \ / \ /
* (1)--2--(3)
*/
var adj = new[,]
{
{ 0, 4, 3, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ 4, 0, 1, 2, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 1, 0, 4, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 2, 4, 0, 6, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, 0, 2 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 2, 0 },
};
/* Graph
* (0)--3--(2) (4)--2--(5)
* / /
* 1 6
* / /
* (1)--2--(3)
*/
var expected = new[,]
{
{ float.PositiveInfinity, float.PositiveInfinity, 3, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, 1, 2, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 1, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity, 6, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, float.PositiveInfinity, 2 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 2, float.PositiveInfinity },
};
Kruskal.Solve(adj).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
[Test]
public void Solve_adjGraph4_CorrectAnswer()
{
/* Graph
* (0)--7--(1)--8--(2)
* \ / \ /
* 5 9 7 5
* \ / \ /
* (3)--15-(4)
* \ / \
* 6 8 9
* \ / \
* (5)--11-(6)
*/
var adj = new[,]
{
{ 0, 7, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ 7, 0, 8, 9, 7, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 8, 0, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity },
{ 5, 9, float.PositiveInfinity, 0, 15, 6, float.PositiveInfinity },
{ float.PositiveInfinity, 7, 5, 15, 0, 8, 9 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, 8, 0, 11 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 9, 11, 0 },
};
/* Expected MST
* (0)--7--(1) (2)
* \ \ /
* 5 7 5
* \ \ /
* (3) (4)
* \ \
* 6 9
* \ \
* (5) (6)
*/
var expected = new[,]
{
{ float.PositiveInfinity, 7, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ 7, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 7, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity },
{ 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, float.PositiveInfinity },
{ float.PositiveInfinity, 7, 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 9 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 9, float.PositiveInfinity, float.PositiveInfinity },
};
Kruskal.Solve(adj).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
[Test]
public void Solve_adjGraph5_CorrectAnswer()
{
/* Graph
* (0)--8--(1)--15-(2)
* |\ / __/|\
* | 4 5 __25 13 12
* | \ /__/ | \
* 10 (3)----14---(4) (5)
* | / \ _/| /
* | 9 6 __16 18 30
* |/ \ / |/
* (6)--18-(7)--20-(8)
*/
var adj = new[,]
{
{ 0, 8, float.PositiveInfinity, 4, float.PositiveInfinity, float.PositiveInfinity, 10, float.PositiveInfinity, float.PositiveInfinity },
{ 8, 0, 15, 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 15, 0, 25, 13, 12, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ 4, 5, 25, 0, 14, float.PositiveInfinity, 9, 6, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, 13, 14, 0, float.PositiveInfinity, float.PositiveInfinity, 16, 18 },
{ float.PositiveInfinity, float.PositiveInfinity, 12, float.PositiveInfinity, float.PositiveInfinity, 0, float.PositiveInfinity, float.PositiveInfinity, 30 },
{ 10, float.PositiveInfinity, float.PositiveInfinity, 9, float.PositiveInfinity, float.PositiveInfinity, 0, 18, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, 16, float.PositiveInfinity, 18, 0, 20 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 18, 30, float.PositiveInfinity, 20, 0 },
};
/* Expected MST
* (0) (1) (2)
* \ / |\
* 4 5 13 12
* \ / | \
* (3)----14---(4) (5)
* / \ |
* 9 6 18
* / \ |
* (6) (7) (8)
*/
var expected = new[,]
{
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
4,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
5,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
13,
12,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
4,
5,
float.PositiveInfinity,
float.PositiveInfinity,
14,
float.PositiveInfinity,
9,
6,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
13,
14,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
18,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
12,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
9,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
6,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
18,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
};
Kruskal.Solve(adj).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
[Test]
public void Solve_adjGraph6_CorrectAnswer()
{
/* Graph
* (0)--7--(1) (2)
* \ / /|
* 5 9 5 |
* \ / / |
* (3) (4) 2
* / \ |
* 8 9 |
* / \|
* (5)--11-(6)
*/
var adj = new[,]
{
{ 0, 7, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ 7, 0, float.PositiveInfinity, 9, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, 0, float.PositiveInfinity, 5, float.PositiveInfinity, 2 },
{ 5, 9, float.PositiveInfinity, 0, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, 5, float.PositiveInfinity, 0, 8, 9 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 8, 0, 11 },
{ float.PositiveInfinity, float.PositiveInfinity, 2, float.PositiveInfinity, 9, 11, 0 },
};
/* Expected MST
* (0)--7--(1) (2)
* \ /|
* 5 5 |
* \ / |
* (3) (4) 2
* / |
* 8 |
* / |
* (5) (6)
*/
var expected = new[,]
{
{ float.PositiveInfinity, 7, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ 7, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 5, float.PositiveInfinity, 2 },
{ 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity, 8, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 8, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
};
Kruskal.Solve(adj).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
[Test]
public void ValidateGraph_ListDirectedGraph_ThrowsException()
{
var adj = new[]
{
new Dictionary<int, float>{ { 2, 4 } },
new Dictionary<int, float>{ { 0, 3 }, { 2, 5 }, { 3, 6 }, { 4, 2 } },
new Dictionary<int, float>{ { 0, 4 }, { 1, 5 } },
new Dictionary<int, float>{ { 1, 6 } },
new Dictionary<int, float>{ { 1, 2 } },
};
Assert.Throws<ArgumentException>(() => Kruskal.Solve(adj), "Graph must be undirected!");
}
[Test]
public void Solve_ListGraph1_CorrectAnswer()
{
/* Graph
* (1)
* / \
* 3 2
* / \
* (0)--2--(2)
*/
var adj = new[]
{
new Dictionary<int, float>{ { 1, 3 }, { 2, 2 } },
new Dictionary<int, float>{ { 0, 3 }, { 2, 2 } },
new Dictionary<int, float>{ { 0, 2 }, { 1, 2 } },
};
/* Expected MST
* (1)
* \
* 2
* \
* (0)--2--(2)
*/
var expected = new[]
{
new Dictionary<int, float>{ { 2, 2 } },
new Dictionary<int, float>{ { 2, 2 } },
new Dictionary<int, float>{ { 0, 2 }, { 1, 2 } },
};
var res = Kruskal.Solve(adj);
for (var i = 0; i < adj.Length; i++)
{
res[i].OrderBy(edge => edge.Key).SequenceEqual(expected[i]).Should().BeTrue();
}
}
[Test]
public void Solve_ListGraph2_CorrectAnswer()
{
/* Graph
* (0) (4)
* |\ /
* | 3 2
* | \ /
* 4 (1)
* | / \
* | 5 6
* |/ \
* (2) (3)
*/
var adj = new[]
{
new Dictionary<int, float>{ { 1, 3 }, { 2, 4 } },
new Dictionary<int, float>{ { 0, 3 }, { 2, 5 }, { 3, 6 }, { 4, 2 } },
new Dictionary<int, float>{ { 0, 4 }, { 1, 5 } },
new Dictionary<int, float>{ { 1, 6 } },
new Dictionary<int, float>{ { 1, 2 } },
};
/* Expected MST
* (0) (4)
* |\ /
* | 3 2
* | \ /
* 4 (1)
* | \
* | 6
* | \
* (2) (3)
*/
var expected = new[]
{
new Dictionary<int, float>{ { 1, 3 }, { 2, 4 } },
new Dictionary<int, float>{ { 0, 3 }, { 3, 6 }, { 4, 2 } },
new Dictionary<int, float>{ { 0, 4 } },
new Dictionary<int, float>{ { 1, 6 } },
new Dictionary<int, float>{ { 1, 2 } },
};
var res = Kruskal.Solve(adj);
for (var i = 0; i < adj.Length; i++)
{
res[i].OrderBy(edge => edge.Key).SequenceEqual(expected[i]).Should().BeTrue();
}
}
[Test]
public void Solve_ListGraph3_CorrectAnswer()
{
/* Graph
* (0)--3--(2) (4)--2--(5)
* \ / \ /
* 4 1 4 6
* \ / \ /
* (1)--2--(3)
*/
var adj = new[]
{
new Dictionary<int, float>{ { 1, 4 }, { 2, 3 } },
new Dictionary<int, float>{ { 0, 4 }, { 2, 1 }, { 3, 2 } },
new Dictionary<int, float>{ { 0, 3 }, { 1, 1 }, { 3, 4 } },
new Dictionary<int, float>{ { 1, 2 }, { 2, 4 }, { 4, 6 } },
new Dictionary<int, float>{ { 3, 6 }, { 5, 2 } },
new Dictionary<int, float>{ { 4, 2 } },
};
/* Graph
* (0)--3--(2) (4)--2--(5)
* / /
* 1 6
* / /
* (1)--2--(3)
*/
var expected = new[]
{
new Dictionary<int, float>{ { 2, 3 } },
new Dictionary<int, float>{ { 2, 1 }, { 3, 2 } },
new Dictionary<int, float>{ { 0, 3 }, { 1, 1 } },
new Dictionary<int, float>{ { 1, 2 }, { 4, 6 } },
new Dictionary<int, float>{ { 3, 6 }, { 5, 2 } },
new Dictionary<int, float>{ { 4, 2 } },
};
var res = Kruskal.Solve(adj);
for (var i = 0; i < adj.Length; i++)
{
res[i].OrderBy(edge => edge.Key).SequenceEqual(expected[i]).Should().BeTrue();
}
}
[Test]
public void Solve_ListGraph4_CorrectAnswer()
{
/* Graph
* (0)--7--(1)--8--(2)
* \ / \ /
* 5 9 7 5
* \ / \ /
* (3)--15-(4)
* \ / \
* 6 8 9
* \ / \
* (5)--11-(6)
*/
var adj = new[]
{
new Dictionary<int, float>{ { 1, 7 }, { 3, 5 } },
new Dictionary<int, float>{ { 0, 7 }, { 2, 8 }, { 3, 9 }, { 4, 7 } },
new Dictionary<int, float>{ { 1, 8 }, { 4, 5 } },
new Dictionary<int, float>{ { 0, 5 }, { 1, 9 }, { 4, 15 }, { 5, 6 } },
new Dictionary<int, float>{ { 1, 7 }, { 2, 5 }, { 3, 15 }, { 5, 8 }, { 6, 9 } },
new Dictionary<int, float>{ { 3, 6 }, { 4, 8 }, { 6, 11 } },
new Dictionary<int, float>{ { 4, 9 }, { 5, 11 } },
};
/* Expected MST
* (0)--7--(1) (2)
* \ \ /
* 5 7 5
* \ \ /
* (3) (4)
* \ \
* 6 9
* \ \
* (5) (6)
*/
var expected = new[]
{
new Dictionary<int, float>{ { 1, 7 }, { 3, 5 } },
new Dictionary<int, float>{ { 0, 7 }, { 4, 7 } },
new Dictionary<int, float>{ { 4, 5 } },
new Dictionary<int, float>{ { 0, 5 }, { 5, 6 } },
new Dictionary<int, float>{ { 1, 7 }, { 2, 5 }, { 6, 9 } },
new Dictionary<int, float>{ { 3, 6 } },
new Dictionary<int, float>{ { 4, 9 } },
};
var res = Kruskal.Solve(adj);
for (var i = 0; i < adj.Length; i++)
{
res[i].OrderBy(edge => edge.Key).SequenceEqual(expected[i]).Should().BeTrue();
}
}
[Test]
public void Solve_ListGraph5_CorrectAnswer()
{
/* Graph
* (0)--8--(1)--15-(2)
* |\ / __/|\
* | 4 5 __25 13 12
* | \ /__/ | \
* 10 (3)----14---(4) (5)
* | / \ _/| /
* | 9 6 __16 18 30
* |/ \ / |/
* (6)--18-(7)--20-(8)
*/
var adj = new[]
{
new Dictionary<int, float>{ { 1, 8 }, { 3, 4 }, { 6, 10 } },
new Dictionary<int, float>{ { 0, 8 }, { 2, 15 }, { 3, 5 } },
new Dictionary<int, float>{ { 1, 15 }, { 3, 25 }, { 4, 13 }, { 5, 12 } },
new Dictionary<int, float>{ { 0, 4 }, { 1, 5 }, { 2, 25 }, { 4, 14 }, { 6, 9 }, { 7, 6 } },
new Dictionary<int, float>{ { 2, 13 }, { 3, 14 }, { 7, 16 }, { 8, 18 } },
new Dictionary<int, float>{ { 2, 12 }, { 8, 30 } },
new Dictionary<int, float>{ { 0, 10 }, { 3, 9 }, { 7, 18 } },
new Dictionary<int, float>{ { 3, 6 }, { 4, 16 }, { 6, 18 }, { 8, 20 } },
new Dictionary<int, float>{ { 4, 18 }, { 5, 30 }, { 7, 20 } },
};
/* Expected MST
* (0) (1) (2)
* \ / |\
* 4 5 13 12
* \ / | \
* (3)----14---(4) (5)
* / \ |
* 9 6 18
* / \ |
* (6) (7) (8)
*/
var expected = new[]
{
new Dictionary<int, float>{ { 3, 4 } },
new Dictionary<int, float>{ { 3, 5 } },
new Dictionary<int, float>{ { 4, 13 }, { 5, 12 } },
new Dictionary<int, float>{ { 0, 4 }, { 1, 5 }, { 4, 14 }, { 6, 9 }, { 7, 6 } },
new Dictionary<int, float>{ { 2, 13 }, { 3, 14 }, { 8, 18 } },
new Dictionary<int, float>{ { 2, 12 } },
new Dictionary<int, float>{ { 3, 9 } },
new Dictionary<int, float>{ { 3, 6 } },
new Dictionary<int, float>{ { 4, 18 } },
};
var res = Kruskal.Solve(adj);
for (var i = 0; i < adj.Length; i++)
{
res[i].OrderBy(edge => edge.Key).SequenceEqual(expected[i]).Should().BeTrue();
}
}
[Test]
public void Solve_ListGraph6_CorrectAnswer()
{
/* Graph
* (0)--7--(1) (2)
* \ / /|
* 5 9 5 |
* \ / / |
* (3) (4) 2
* / \ |
* 8 9 |
* / \|
* (5)--11-(6)
*/
var adj = new[]
{
new Dictionary<int, float>{ { 1, 7 }, { 3, 5 } },
new Dictionary<int, float>{ { 0, 7 }, { 3, 9 } },
new Dictionary<int, float>{ { 4, 5 }, { 6, 2 } },
new Dictionary<int, float>{ { 0, 5 }, { 1, 9 } },
new Dictionary<int, float>{ { 2, 5 }, { 5, 8 }, { 6, 9 } },
new Dictionary<int, float>{ { 4, 8 }, { 6, 11 } },
new Dictionary<int, float>{ { 2, 2 }, { 4, 9 }, { 5, 11 } },
};
/* Expected MST
* (0)--7--(1) (2)
* \ /|
* 5 5 |
* \ / |
* (3) (4) 2
* / |
* 8 |
* / |
* (5) (6)
*/
var expected = new[]
{
new Dictionary<int, float>{ { 1, 7 }, { 3, 5 } },
new Dictionary<int, float>{ { 0, 7 } },
new Dictionary<int, float>{ { 4, 5 }, { 6, 2 } },
new Dictionary<int, float>{ { 0, 5 } },
new Dictionary<int, float>{ { 2, 5 }, { 5, 8 } },
new Dictionary<int, float>{ { 4, 8 } },
new Dictionary<int, float>{ { 2, 2 } },
};
var res = Kruskal.Solve(adj);
for (var i = 0; i < adj.Length; i++)
{
res[i].OrderBy(edge => edge.Key).SequenceEqual(expected[i]).Should().BeTrue();
}
}
}
}
| 729 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Graph.MinimumSpanningTree;
using FluentAssertions;
using NUnit.Framework;
using System;
using System.Linq;
namespace Algorithms.Tests.Graph.MinimumSpanningTree
{
internal class PrimTests
{
[Test]
public void ValidateMatrix_WrongSize_ThrowsException()
{
// Wrong number of columns
var matrix = new[,]
{
{ 0, 3, 4, float.PositiveInfinity },
{ 3, 0, 5, 6 },
{ 4, 5, 0, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, 0 },
{ float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity },
};
Assert.Throws<ArgumentException>(() => PrimMatrix.Solve(matrix, 0));
// Wrong number of rows
matrix = new[,]
{
{ 0, 3, 4, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 0, 5, 6, 2 },
{ 4, 5, 0, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, 0, float.PositiveInfinity },
};
Assert.Throws<ArgumentException>(() => PrimMatrix.Solve(matrix, 0));
}
[Test]
public void ValidateMatrix_UnconnectedGraph_ThrowsException()
{
// Last node does not connect to any other nodes
var matrix = new[,]
{
{ 0, 3, 4, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 0, 5, 6, 2 },
{ 4, 5, 0, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, 0, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 0 },
};
Assert.Throws<ArgumentException>(() => PrimMatrix.Solve(matrix, 0));
}
[Test]
public void ValidateMatrix_DirectedGraph_ThrowsException()
{
// Nodes 1 and 2 have a directed edge
var matrix = new[,]
{
{ 0, float.PositiveInfinity, 4, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 0, 5, 6, 2 },
{ 4, 5, 0, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, 0, float.PositiveInfinity },
{ float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity, 0 },
};
Assert.Throws<ArgumentException>(() => PrimMatrix.Solve(matrix, 0));
}
[Test]
public void SolveMatrix_Graph1_CorrectAnswer()
{
/* Graph
* (1)
* / \
* 3 2
* / \
* (0)--2--(2)
*/
var matrix = new float[,]
{
{ 0, 3, 2 },
{ 3, 0, 2 },
{ 2, 2, 0 },
};
/* Expected MST
* (1)
* \
* 2
* \
* (0)--2--(2)
*/
var expected = new[,]
{
{ float.PositiveInfinity, float.PositiveInfinity, 2 },
{ float.PositiveInfinity, float.PositiveInfinity, 2 },
{ 2, 2, float.PositiveInfinity },
};
for (var i = 0; i < matrix.GetLength(0); i++)
{
PrimMatrix.Solve(matrix, i).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
}
[Test]
public void SolveMatrix_Graph2_CorrectAnswer()
{
/* Graph
* (0) (4)
* |\ /
* | 3 2
* | \ /
* 4 (1)
* | / \
* | 5 6
* |/ \
* (2) (3)
*/
var matrix = new[,]
{
{ 0, 3, 4, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 0, 5, 6, 2 },
{ 4, 5, 0, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, 0, float.PositiveInfinity },
{ float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity, 0 },
};
/* Expected MST
* (0) (4)
* |\ /
* | 3 2
* | \ /
* 4 (1)
* | \
* | 6
* | \
* (2) (3)
*/
var expected = new[,]
{
{ float.PositiveInfinity, 3, 4, float.PositiveInfinity, float.PositiveInfinity },
{ 3, float.PositiveInfinity, float.PositiveInfinity, 6, 2 },
{ 4, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 6, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
};
for (var i = 0; i < matrix.GetLength(0); i++)
{
PrimMatrix.Solve(matrix, i).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
}
[Test]
public void SolveMatrix_Graph3_CorrectAnswer()
{
/* Graph
* (0)--3--(2) (4)--2--(5)
* \ / \ /
* 4 1 4 6
* \ / \ /
* (1)--2--(3)
*/
var matrix = new[,]
{
{ 0, 4, 3, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ 4, 0, 1, 2, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 1, 0, 4, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 2, 4, 0, 6, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, 0, 2 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 2, 0 },
};
/* Graph
* (0)--3--(2) (4)--2--(5)
* / /
* 1 6
* / /
* (1)--2--(3)
*/
var expected = new[,]
{
{ float.PositiveInfinity, float.PositiveInfinity, 3, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, 1, 2, float.PositiveInfinity, float.PositiveInfinity },
{ 3, 1, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 2, float.PositiveInfinity, float.PositiveInfinity, 6, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, float.PositiveInfinity, 2 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 2, float.PositiveInfinity },
};
for (var i = 0; i < matrix.GetLength(0); i++)
{
PrimMatrix.Solve(matrix, i).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
}
[Test]
public void SolveMatrix_Graph4_CorrectAnswer()
{
/* Graph
* (0)--7--(1)--8--(2)
* \ / \ /
* 5 9 7 5
* \ / \ /
* (3)--15-(4)
* \ / \
* 6 8 9
* \ / \
* (5)--11-(6)
*/
var matrix = new[,]
{
{ 0, 7, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ 7, 0, 8, 9, 7, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 8, 0, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity },
{ 5, 9, float.PositiveInfinity, 0, 15, 6, float.PositiveInfinity },
{ float.PositiveInfinity, 7, 5, 15, 0, 8, 9 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, 8, 0, 11 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 9, 11, 0 },
};
/* Expected MST
* (0)--7--(1) (2)
* \ \ /
* 5 7 5
* \ \ /
* (3) (4)
* \ \
* 6 9
* \ \
* (5) (6)
*/
var expected = new[,]
{
{ float.PositiveInfinity, 7, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ 7, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 7, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 5, float.PositiveInfinity, float.PositiveInfinity },
{ 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, float.PositiveInfinity },
{ float.PositiveInfinity, 7, 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 9 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 9, float.PositiveInfinity, float.PositiveInfinity },
};
for (var i = 0; i < matrix.GetLength(0); i++)
{
PrimMatrix.Solve(matrix, i).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
}
[Test]
public void SolveMatrix_Graph5_CorrectAnswer()
{
/* Graph
* (0)--8--(1)--15-(2)
* |\ / __/|\
* | 4 5 __25 13 12
* | \ /__/ | \
* 10 (3)----14---(4) (5)
* | / \ _/| /
* | 9 6 __16 18 30
* |/ \ / |/
* (6)--18-(7)--20-(8)
*/
var matrix = new[,]
{
{ 0, 8, float.PositiveInfinity, 4, float.PositiveInfinity, float.PositiveInfinity, 10, float.PositiveInfinity, float.PositiveInfinity },
{ 8, 0, 15, 5, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ float.PositiveInfinity, 15, 0, 25, 13, 12, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity },
{ 4, 5, 25, 0, 14, float.PositiveInfinity, 9, 6, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, 13, 14, 0, float.PositiveInfinity, float.PositiveInfinity, 16, 18 },
{ float.PositiveInfinity, float.PositiveInfinity, 12, float.PositiveInfinity, float.PositiveInfinity, 0, float.PositiveInfinity, float.PositiveInfinity, 30 },
{ 10, float.PositiveInfinity, float.PositiveInfinity, 9, float.PositiveInfinity, float.PositiveInfinity, 0, 18, float.PositiveInfinity },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 6, 16, float.PositiveInfinity, 18, 0, 20 },
{ float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity, 18, 30, float.PositiveInfinity, 20, 0 },
};
/* Expected MST
* (0) (1) (2)
* \ / |\
* 4 5 13 12
* \ / | \
* (3)----14---(4) (5)
* / \ |
* 9 6 18
* / \ |
* (6) (7) (8)
*/
var expected = new[,]
{
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
4,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
5,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
13,
12,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
4,
5,
float.PositiveInfinity,
float.PositiveInfinity,
14,
float.PositiveInfinity,
9,
6,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
13,
14,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
18,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
12,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
9,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
6,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
{
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
18,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
float.PositiveInfinity,
},
};
for (var i = 0; i < matrix.GetLength(0); i++)
{
PrimMatrix.Solve(matrix, i).Cast<float>().SequenceEqual(expected.Cast<float>()).Should().BeTrue();
}
}
}
}
| 396 |
C-Sharp | TheAlgorithms | C# | using System.Collections.Generic;
namespace Algorithms.Tests.Helpers
{
internal class IntComparer : IComparer<int>
{
public int Compare(int x, int y) => x.CompareTo(y);
}
}
| 10 |
C-Sharp | TheAlgorithms | C# | using NUnit.Framework;
namespace Algorithms.Tests.Helpers
{
internal static class RandomHelper
{
public static (int[] correctArray, int[] testArray) GetArrays(int n)
{
var testArr = new int[n];
var correctArray = new int[n];
for (var i = 0; i < n; i++)
{
var t = TestContext.CurrentContext.Random.Next(1_000_000);
testArr[i] = t;
correctArray[i] = t;
}
return (correctArray, testArr);
}
public static (string[] correctArray, string[] testArray) GetStringArrays(
int n,
int maxLength,
bool equalLength)
{
var testArr = new string[n];
var correctArray = new string[n];
var length = TestContext.CurrentContext.Random.Next(2, maxLength);
for (var i = 0; i < n; i++)
{
if (!equalLength)
{
length = TestContext.CurrentContext.Random.Next(2, maxLength);
}
var chars = new char[length];
for (var j = 0; j < length; j++)
{
chars[j] = (char)TestContext.CurrentContext.Random.Next(97, 123);
}
var t = new string(chars);
testArr[i] = t;
correctArray[i] = t;
}
return (correctArray, testArr);
}
}
}
| 53 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Knapsack;
using NUnit.Framework;
using FluentAssertions;
namespace Algorithms.Tests.Knapsack
{
public static class BranchAndBoundKnapsackSolverTests
{
[Test]
public static void BranchAndBoundTest_Example1_Success()
{
// Arrange
var items = new[] {'A', 'B', 'C', 'D'};
var values = new[] {18, 20, 14, 18};
var weights = new[] {2, 4, 6, 9};
var capacity = 15;
Func<char, int> weightSelector = x => weights[Array.IndexOf(items, x)];
Func<char, double> valueSelector = x => values[Array.IndexOf(items, x)];
// Act
var solver = new BranchAndBoundKnapsackSolver<char>();
var actualResult = solver.Solve(items, capacity, weightSelector, valueSelector);
// Assert
actualResult.Should().BeEquivalentTo('A', 'B', 'D');
}
[Test]
public static void BranchAndBoundTest_Example2_Success()
{
// Arrange
var items = new[] {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'};
var values = new[] { 505, 352, 458, 220, 354, 414, 498, 545, 473, 543 };
var weights = new[] {23, 26, 20, 18, 32, 27, 29, 26, 30, 27};
var capacity = 67;
Func<char, int> weightSelector = x => weights[Array.IndexOf(items, x)];
Func<char, double> valueSelector = x => values[Array.IndexOf(items, x)];
// Act
var solver = new BranchAndBoundKnapsackSolver<char>();
var actualResult = solver.Solve(items, capacity, weightSelector, valueSelector);
// Assert
actualResult.Should().BeEquivalentTo('H', 'D', 'A');
}
[Test]
public static void BranchAndBoundTest_CapacityIsZero_NothingTaken()
{
// Arrange
var items = new[] {'A', 'B', 'C', 'D'};
var values = new[] {18, 20, 14, 18};
var weights = new[] {2, 4, 6, 9};
var capacity = 0;
Func<char, int> weightSelector = x => weights[Array.IndexOf(items, x)];
Func<char, double> valueSelector = x => values[Array.IndexOf(items, x)];
// Act
var solver = new BranchAndBoundKnapsackSolver<char>();
var actualResult = solver.Solve(items, capacity, weightSelector, valueSelector);
// Assert
actualResult.Should().BeEmpty();
}
[Test]
public static void BranchAndBoundTest_PlentyCapacity_EverythingIsTaken()
{
// Arrange
var items = new[] {'A', 'B', 'C', 'D'};
var values = new[] {18, 20, 14, 18};
var weights = new[] {2, 4, 6, 9};
var capacity = 1000;
Func<char, int> weightSelector = x => weights[Array.IndexOf(items, x)];
Func<char, double> valueSelector = x => values[Array.IndexOf(items, x)];
// Act
var solver = new BranchAndBoundKnapsackSolver<char>();
var actualResult = solver.Solve(items, capacity, weightSelector, valueSelector);
// Assert
actualResult.Should().BeEquivalentTo(items);
}
[Test]
public static void BranchAndBoundTest_NoItems_NothingTaken()
{
// Arrange
var items = Array.Empty<char>();
var values = Array.Empty<int>();
var weights = Array.Empty<int>();
var capacity = 15;
Func<char, int> weightSelector = x => weights[Array.IndexOf(items, x)];
Func<char, double> valueSelector = x => values[Array.IndexOf(items, x)];
// Act
var solver = new BranchAndBoundKnapsackSolver<char>();
var actualResult = solver.Solve(items, capacity, weightSelector, valueSelector);
// Assert
actualResult.Should().BeEmpty();
}
}
}
| 116 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Linq;
using Algorithms.Knapsack;
using NUnit.Framework;
namespace Algorithms.Tests.Knapsack
{
public static class DynamicProgrammingKnapsackSolverTests
{
[Test]
public static void SmallSampleOfChar()
{
//Arrange
var items = new[] { 'A', 'B', 'C' };
var val = new[] { 50, 100, 130 };
var wt = new[] { 10, 20, 40 };
var capacity = 50;
Func<char, int> weightSelector = x => wt[Array.IndexOf(items, x)];
Func<char, double> valueSelector = x => val[Array.IndexOf(items, x)];
var expected = new[] { 'A', 'C' };
//Act
var solver = new DynamicProgrammingKnapsackSolver<char>();
var actual = solver.Solve(items, capacity, weightSelector, valueSelector);
//Assert
Assert.AreEqual(expected.OrderBy(x => x), actual.OrderBy(x => x));
}
[Test]
public static void FSU_P01()
{
// Data from https://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html
//Arrange
var items = new[] { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J' };
var val = new[] { 92, 57, 49, 68, 60, 43, 67, 84, 87, 72 };
var wt = new[] { 23, 31, 29, 44, 53, 38, 63, 85, 89, 82 };
var capacity = 165;
Func<char, int> weightSelector = x => wt[Array.IndexOf(items, x)];
Func<char, double> valueSelector = x => val[Array.IndexOf(items, x)];
var expected = new[] { 'A', 'B', 'C', 'D', 'F' };
//Act
var solver = new DynamicProgrammingKnapsackSolver<char>();
var actual = solver.Solve(items, capacity, weightSelector, valueSelector);
//Assert
Assert.AreEqual(expected.OrderBy(x => x), actual.OrderBy(x => x));
}
[Test]
public static void FSU_P07_WithNonIntegralValues()
{
// Shows how to handle weights with 1 significant digit right of the decimal
// Data from https://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html
//Arrange
var val = new[] { 135, 139, 149, 150, 156, 163, 173, 184, 192, 201, 210, 214, 221, 229, 240 };
var wt = new[] { 7.0, 7.3, 7.7, 8.0, 8.2, 8.7, 9.0, 9.4, 9.8, 10.6, 11.0, 11.3, 11.5, 11.8, 12.0 };
var items = Enumerable.Range(1, val.Count()).ToArray();
var capacity = 75;
Func<int, int> weightSelector = x => (int)(wt[Array.IndexOf(items, x)] * 10);
Func<int, double> valueSelector = x => val[Array.IndexOf(items, x)];
var expected = new[] { 1, 3, 5, 7, 8, 9, 14, 15 };
//Act
var solver = new DynamicProgrammingKnapsackSolver<int>();
var actual = solver.Solve(items, capacity * 10, weightSelector, valueSelector);
//Assert
Assert.AreEqual(expected.OrderBy(x => x), actual.OrderBy(x => x));
}
[Test]
public static void TakesHalf(
[Random(0, 1000, 100, Distinct = true)]
int length)
{
//Arrange
var solver = new DynamicProgrammingKnapsackSolver<int>();
var items = Enumerable.Repeat(42, 2 * length).ToArray();
var expectedResult = Enumerable.Repeat(42, length);
//Act
var result = solver.Solve(items, length, _ => 1, _ => 1);
//Assert
Assert.AreEqual(expectedResult, result);
}
}
}
| 105 |
C-Sharp | TheAlgorithms | C# | using System.Linq;
using Algorithms.Knapsack;
using NUnit.Framework;
namespace Algorithms.Tests.Knapsack
{
public static class NaiveKnapsackSolverTests
{
[Test]
public static void TakesHalf(
[Random(0, 1000, 100, Distinct = true)]
int length)
{
//Arrange
var solver = new NaiveKnapsackSolver<int>();
var items = Enumerable.Repeat(42, 2 * length).ToArray();
var expectedResult = Enumerable.Repeat(42, length);
//Act
var result = solver.Solve(items, length, _ => 1, _ => 1);
//Assert
Assert.AreEqual(expectedResult, result);
}
}
}
| 27 |
C-Sharp | TheAlgorithms | C# | using NUnit.Framework;
using Algorithms.LinearAlgebra.Distances;
using FluentAssertions;
using System;
namespace Algorithms.Tests.LinearAlgebra.Distances
{
public static class EuclideanTests
{
/// <summary>
/// Test the result given by Euclidean distance function.
/// </summary>
/// <param name="point1">Origin point.</param>
/// <param name="point2">Target point.</param>
/// <param name="expectedResult">Expected result.</param>
[Test]
[TestCase(new[] { 1.5 }, new[] { -1.0 }, 2.5)]
[TestCase(new[] { 7.0, 4.0, 3.0 }, new[] { 17.0, 6.0, 2.0 }, 10.247)]
public static void DistanceTest(double[] point1, double[] point2, double expectedResult)
{
Euclidean.Distance(point1, point2).Should().BeApproximately(expectedResult, 0.01);
}
/// <summary>
/// Throws ArgumentException if two different dimension arrays are given.
/// </summary>
/// <param name="point1">First point of N dimensions.</param>
/// <param name="point2">Second point of M dimensions, M != N.</param>
[Test]
[TestCase(new[] { 7.0, 4.5 }, new[] { -3.0 })]
[TestCase(new[] { 12.0 }, new[] { 1.5, 7.0, 3.2 })]
public static void DistanceThrowsArgumentExceptionOnDifferentPointDimensions(double[] point1, double[] point2)
{
Action action = () => Euclidean.Distance(point1, point2);
action.Should().Throw<ArgumentException>();
}
}
}
| 39 |
C-Sharp | TheAlgorithms | C# | using NUnit.Framework;
using Algorithms.LinearAlgebra.Distances;
using FluentAssertions;
using System;
namespace Algorithms.Tests.LinearAlgebra.Distances
{
public class ManhattanTests
{
/// <summary>
/// Test the result given by Manhattan distance function.
/// </summary>
/// <param name="point1">Origin point.</param>
/// <param name="point2">Target point.</param>
/// <param name="expectedDistance">Expected result.</param>
[Test]
[TestCase(new[] { 1.5 }, new[] { -1.0 }, 2.5)]
[TestCase(new[] { 2.0, 3.0 }, new[] { -1.0, 5.0 }, 5)]
[TestCase(new[] { 1.0, 2.0, 3.0 }, new[] { 1.0, 2.0, 3.0 }, 0)]
[TestCase(new[] { 1.0, 2.0, 3.0, 4.0 }, new[] { 1.75, 2.25, -3.0, 0.5 }, 10.5)]
public void DistanceTest(double[] point1, double[] point2, double expectedDistance)
{
Manhattan.Distance(point1, point2).Should().BeApproximately(expectedDistance, 0.01);
}
/// <summary>
/// Test that it throws ArgumentException if two different dimension arrays are given.
/// </summary>
/// <param name="point1">First point of N dimensions.</param>
/// <param name="point2">Second point of M dimensions, M != N.</param>
[Test]
[TestCase(new[] { 2.0, 3.0 }, new[] { -1.0 })]
[TestCase(new[] { 1.0 }, new[] { 1.0, 2.0, 3.0 })]
public void DistanceThrowsArgumentExceptionOnDifferentPointDimensions(double[] point1, double[] point2)
{
Action action = () => Manhattan.Distance(point1, point2);
action.Should().Throw<ArgumentException>();
}
}
}
| 41 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.LinearAlgebra.Eigenvalue;
using FluentAssertions;
using NUnit.Framework;
using Utilities.Extensions;
namespace Algorithms.Tests.LinearAlgebra.Eigenvalue
{
public class PowerIterationTests
{
private static readonly object[] DominantVectorTestCases =
{
new object[]
{
3.0,
new[] { 0.7071039, 0.70710966 },
new[,] { { 2.0, 1.0 }, { 1.0, 2.0 } },
},
new object[]
{
4.235889,
new[] { 0.91287093, 0.40824829 },
new[,] { { 2.0, 5.0 }, { 1.0, 2.0 } },
},
};
private readonly double epsilon = Math.Pow(10, -5);
[Test]
public void Dominant_ShouldThrowArgumentException_WhenSourceMatrixIsNotSquareShaped()
{
// Arrange
var source = new double[,] { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }, { 0, 0, 0 } };
// Act
Action action = () => PowerIteration.Dominant(source, StartVector(source.GetLength(0)), epsilon);
// Assert
action.Should().Throw<ArgumentException>().WithMessage("The source matrix is not square-shaped.");
}
[Test]
public void Dominant_ShouldThrowArgumentException_WhenStartVectorIsNotSameSizeAsMatrix()
{
// Arrange
var source = new double[,] { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
var startVector = new double[] { 1, 0, 0, 0 };
// Act
Action action = () => PowerIteration.Dominant(source, startVector, epsilon);
// Assert
action.Should().Throw<ArgumentException>()
.WithMessage("The length of the start vector doesn't equal the size of the source matrix.");
}
[TestCaseSource(nameof(DominantVectorTestCases))]
public void Dominant_ShouldCalculateDominantEigenvalueAndEigenvector(
double eigenvalue,
double[] eigenvector,
double[,] source)
{
// Act
var (actualEigVal, actualEigVec) =
PowerIteration.Dominant(source, StartVector(source.GetLength(0)), epsilon);
// Assert
actualEigVal.Should().BeApproximately(eigenvalue, epsilon);
actualEigVec.Magnitude().Should().BeApproximately(eigenvector.Magnitude(), epsilon);
}
private double[] StartVector(int length) => new Random(111111).NextVector(length);
}
}
| 75 |
C-Sharp | TheAlgorithms | C# | using Algorithms.ModularArithmetic;
using NUnit.Framework;
using System;
using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Tests.ModularArithmetic
{
public static class ChineseRemainderTheoremTest
{
[Test]
public static void TestCompute1()
{
var expected = 43L;
// Act
var x = ChineseRemainderTheorem.Compute(new List<long> { 1L, 1L, 3L, 1L }, new List<long> { 2L, 3L, 5L, 7L });
// Assert
Assert.AreEqual(expected, x);
}
[Test]
public static void TestCompute2()
{
var expected = 100L;
// Act
var x = ChineseRemainderTheorem.Compute(new List<long> { 0L, 0L, 2L, 1L, 1L }, new List<long> { 2L, 5L, 7L, 9L, 11L });
// Assert
Assert.AreEqual(expected, x);
}
[Test]
public static void TestCompute3()
{
var expected = 13L;
// Act
var x = ChineseRemainderTheorem.Compute(new List<long> { 1L, 4L, 13L }, new List<long> { 4L, 9L, 25L });
// Assert
Assert.AreEqual(expected, x);
}
[Test]
public static void TestCompute_RequirementsNotMet_ArgumentLengthDifferent()
{
// Act
void Act() => ChineseRemainderTheorem.Compute(new List<long>(), new List<long> { 5L });
// Assert
_ = Assert.Throws<ArgumentException>(Act);
}
[Test]
public static void TestCompute_RequirementsNotMet_NTooSmall()
{
foreach (var n in new List<long> { long.MinValue, -1L, 0L, 1L })
{
// Act
void Act() => ChineseRemainderTheorem.Compute(new List<long> { 1L }, new List<long> { n });
// Assert
_ = Assert.Throws<ArgumentException>(Act);
}
}
[Test]
public static void TestCompute_RequirementsNotMet_ATooSmall()
{
foreach (var a in new List<long> { long.MinValue, -2L, -1L })
{
// Act
void Act() => ChineseRemainderTheorem.Compute(new List<long> { a }, new List<long> { 3L });
// Assert
_ = Assert.Throws<ArgumentException>(Act);
}
}
[Test]
public static void TestCompute_RequirementsNotMet_NNotCoprime()
{
foreach (var n in new List<long> { 3L, 9L, 15L, 27L })
{
// Act
void Act() => ChineseRemainderTheorem.Compute(new List<long> { 1L, 1L, 1L, 1L, 1L }, new List<long> { 2L, 3L, 5L, 7L, n });
// Assert
_ = Assert.Throws<ArgumentException>(Act);
}
}
[Test]
public static void TestCompute_BigInteger_1()
{
var expected = new BigInteger(43);
// Act
var x = ChineseRemainderTheorem.Compute(
new List<BigInteger> { BigInteger.One, BigInteger.One, new BigInteger(3), BigInteger.One },
new List<BigInteger> { new BigInteger(2), new BigInteger(3), new BigInteger(5), new BigInteger(7) }
);
// Assert
Assert.AreEqual(expected, x);
}
[Test]
public static void TestCompute_BigInteger_2()
{
var expected = new BigInteger(100);
// Act
var x = ChineseRemainderTheorem.Compute(
new List<BigInteger> { BigInteger.Zero, BigInteger.Zero, new BigInteger(2), BigInteger.One, BigInteger.One },
new List<BigInteger> { new BigInteger(2), new BigInteger(5), new BigInteger(7), new BigInteger(9), new BigInteger(11) }
);
// Assert
Assert.AreEqual(expected, x);
}
[Test]
public static void TestCompute_BigInteger_3()
{
var expected = new BigInteger(13);
// Act
var x = ChineseRemainderTheorem.Compute(
new List<BigInteger> { BigInteger.One, new BigInteger(4), new BigInteger(13) },
new List<BigInteger> { new BigInteger(4), new BigInteger(9), new BigInteger(25) }
);
// Assert
Assert.AreEqual(expected, x);
}
[Test]
public static void TestCompute_BigInteger_RequirementsNotMet_ArgumentLengthDifferent()
{
// Act
void Act() => ChineseRemainderTheorem.Compute(new List<BigInteger>(), new List<BigInteger> { new BigInteger(5) });
// Assert
_ = Assert.Throws<ArgumentException>(Act);
}
[Test]
public static void TestCompute_BigInteger_RequirementsNotMet_NTooSmall()
{
foreach (var n in new List<BigInteger> { new BigInteger(long.MinValue), BigInteger.MinusOne, BigInteger.Zero, BigInteger.One })
{
// Act
void Act() => ChineseRemainderTheorem.Compute(new List<BigInteger> { BigInteger.One }, new List<BigInteger> { n });
// Assert
_ = Assert.Throws<ArgumentException>(Act);
}
}
[Test]
public static void TestCompute_BigInteger_RequirementsNotMet_ATooSmall()
{
foreach (var a in new List<BigInteger> { new BigInteger(long.MinValue), new BigInteger(-2), BigInteger.MinusOne })
{
// Act
void Act() => ChineseRemainderTheorem.Compute(new List<BigInteger> { a }, new List<BigInteger> { new BigInteger(3) });
// Assert
_ = Assert.Throws<ArgumentException>(Act);
}
}
[Test]
public static void TestCompute_BigInteger_RequirementsNotMet_NNotCoprime()
{
foreach (var n in new List<BigInteger> { new BigInteger(3), new BigInteger(9), new BigInteger(15), new BigInteger(27) })
{
// Act
void Act() => ChineseRemainderTheorem.Compute(
new List<BigInteger> { BigInteger.One, BigInteger.One, BigInteger.One, BigInteger.One, BigInteger.One },
new List<BigInteger> { new BigInteger(2), new BigInteger(3), new BigInteger(5), new BigInteger(7), n }
);
// Assert
_ = Assert.Throws<ArgumentException>(Act);
}
}
}
}
| 194 |
C-Sharp | TheAlgorithms | C# | using Algorithms.ModularArithmetic;
using NUnit.Framework;
using System.Numerics;
namespace Algorithms.Tests.ModularArithmetic
{
public static class ExtendedEuclideanAlgorithmTest
{
[Test]
[TestCase(240, 46, 2, -9, 47)]
[TestCase(46, 240, 2, 47, -9)]
[TestCase(2, 3, 1, -1, 1)]
[TestCase(1, 1, 1, 0, 1)]
[TestCase(13, 17, 1, 4, -3)]
[TestCase(0, 17, 17, 0, 1)]
[TestCase(17, 0, 17, 1, 0)]
[TestCase(17, 17, 17, 0, 1)]
[TestCase(2 * 17, 17, 17, 0, 1)]
[TestCase(0, 0, 0, 1, 0)]
[TestCase(2 * 13 * 17, 4 * 9 * 13, 2 * 13, -1, 1)]
public static void TestCompute(long a, long b, long expectedGCD, long expectedBezoutOfA, long expectedBezoutOfB)
{
// Act
var eeaResult = ExtendedEuclideanAlgorithm.Compute(a, b);
// Assert
Assert.AreEqual(expectedGCD, eeaResult.gcd);
Assert.AreEqual(expectedBezoutOfA, eeaResult.bezoutA);
Assert.AreEqual(expectedBezoutOfB, eeaResult.bezoutB);
}
[Test]
[TestCase(240, 46, 2, -9, 47)]
[TestCase(46, 240, 2, 47, -9)]
[TestCase(2, 3, 1, -1, 1)]
[TestCase(1, 1, 1, 0, 1)]
[TestCase(13, 17, 1, 4, -3)]
[TestCase(0, 17, 17, 0, 1)]
[TestCase(17, 0, 17, 1, 0)]
[TestCase(17, 17, 17, 0, 1)]
[TestCase(2 * 17, 17, 17, 0, 1)]
[TestCase(0, 0, 0, 1, 0)]
[TestCase(2 * 13 * 17, 4 * 9 * 13, 2 * 13, -1, 1)]
public static void TestCompute_BigInteger(long a, long b, long expectedGCD, long expectedBezoutOfA, long expectedBezoutOfB)
{
// Act
var eeaResult = ExtendedEuclideanAlgorithm.Compute(new BigInteger(a), new BigInteger(b));
// Assert
Assert.AreEqual(new BigInteger(expectedGCD), eeaResult.gcd);
Assert.AreEqual(new BigInteger(expectedBezoutOfA), eeaResult.bezoutA);
Assert.AreEqual(new BigInteger(expectedBezoutOfB), eeaResult.bezoutB);
}
}
}
| 56 |
C-Sharp | TheAlgorithms | C# | using Algorithms.ModularArithmetic;
using NUnit.Framework;
using System;
using System.Numerics;
namespace Algorithms.Tests.ModularArithmetic
{
public static class ModularMultiplicativeInverseTest
{
[Test]
[TestCase(2, 3, 2)]
[TestCase(1, 1, 0)]
[TestCase(13, 17, 4)]
public static void TestCompute(long a, long n, long expected)
{
// Act
var inverse = ModularMultiplicativeInverse.Compute(a, n);
// Assert
Assert.AreEqual(expected, inverse);
}
[Test]
[TestCase(46, 240)]
[TestCase(0, 17)]
[TestCase(17, 0)]
[TestCase(17, 17)]
[TestCase(0, 0)]
[TestCase(2 * 13 * 17, 4 * 9 * 13)]
public static void TestCompute_Irrevertible(long a, long n)
{
// Act
void Act() => ModularMultiplicativeInverse.Compute(a, n);
// Assert
_ = Assert.Throws<ArithmeticException>(Act);
}
[Test]
[TestCase(2, 3, 2)]
[TestCase(1, 1, 0)]
[TestCase(13, 17, 4)]
public static void TestCompute_BigInteger(long a, long n, long expected)
{
// Act
var inverse = ModularMultiplicativeInverse.Compute(new BigInteger(a), new BigInteger(n));
// Assert
Assert.AreEqual(new BigInteger(expected), inverse);
}
[Test]
[TestCase(46, 240)]
[TestCase(0, 17)]
[TestCase(17, 0)]
[TestCase(17, 17)]
[TestCase(0, 0)]
[TestCase(2 * 13 * 17, 4 * 9 * 13)]
public static void TestCompute_BigInteger_Irrevertible(long a, long n)
{
// Act
void Act() => ModularMultiplicativeInverse.Compute(new BigInteger(a), new BigInteger(n));
// Assert
_ = Assert.Throws<ArithmeticException>(Act);
}
}
}
| 69 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Numeric;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric
{
public static class AliquotSumCalculatorTests
{
[Test]
[TestCase(1, 0)]
[TestCase(3, 1)]
[TestCase(25, 6)]
[TestCase(99, 57)]
public static void CalculateSum_SumIsCorrect(int number, int expectedSum)
{
// Arrange
// Act
var result = AliquotSumCalculator.CalculateAliquotSum(number);
// Assert
result.Should().Be(expectedSum);
}
[Test]
[TestCase(-2)]
public static void CalculateSum_NegativeInput_ExceptionIsThrown(int number)
{
// Arrange
Action act = () => AliquotSumCalculator.CalculateAliquotSum(number);
// Assert
act.Should().Throw<ArgumentException>();
}
}
}
| 38 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric;
using NUnit.Framework;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Algorithms.Tests.Numeric
{
public static class AmicableNumbersTest
{
[Test]
[TestCase(220, 284)]
[TestCase(1184, 1210)]
[TestCase(2620, 2924)]
[TestCase(5020, 5564)]
public static void AmicableNumbersChecker_Test(int x, int y)
{
// Arrange
// Act
var result = AmicableNumbersChecker.AreAmicableNumbers(x, y);
// Assert
Assert.IsTrue(result);
}
}
}
| 30 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric;
using NUnit.Framework;
using System;
using System.Collections.Generic;
namespace Algorithms.Tests.Numeric
{
public class AutomorphicNumberTests
{
[TestCase(1)]
[TestCase(5)]
[TestCase(6)]
[TestCase(25)]
[TestCase(76)]
[TestCase(376)]
[TestCase(625)]
[TestCase(9376)]
[TestCase(90625)]
[TestCase(109376)]
public void TestAutomorphicNumbers(int number)
{
Assert.That(AutomorphicNumber.IsAutomorphic(number), Is.True);
}
[TestCase(2)]
[TestCase(3)]
[TestCase(7)]
[TestCase(18)]
[TestCase(79)]
[TestCase(356)]
[TestCase(623)]
[TestCase(9876)]
[TestCase(90635)]
[TestCase(119376)]
[TestCase(891625)]
[TestCase(2990625)]
[TestCase(7209376)]
[TestCase(12891625)]
[TestCase(87129396)]
public void TestNonAutomorphicNumbers(int number)
{
Assert.That(AutomorphicNumber.IsAutomorphic(number), Is.False);
}
[TestCase(0)]
[TestCase(-1)]
public void TestInvalidAutomorphicNumbers(int number)
{
Assert.Throws(Is.TypeOf<ArgumentException>()
.And.Message.EqualTo($"An automorphic number must always be positive."),
delegate
{
AutomorphicNumber.IsAutomorphic(number);
});
}
[TestCase(1, 100)]
public void TestAutomorphicNumberSequence(int lower, int upper)
{
List<long> automorphicList = new() { 1, 5, 6, 25, 76 };
Assert.That(AutomorphicNumber.GetAutomorphicNumbers(lower, upper), Is.EqualTo(automorphicList));
}
[TestCase(8, 12)]
public void TestNoAutomorphicNumberInTheSequence(int lower, int upper)
{
List<long> automorphicList = new();
Assert.That(AutomorphicNumber.GetAutomorphicNumbers(lower, upper), Is.EqualTo(automorphicList));
}
[TestCase(25,25)]
public void TestAutomorphicNumberSequenceSameBounds(int lower, int upper)
{
List<long> automorphicList = new() { 25 };
Assert.That(AutomorphicNumber.GetAutomorphicNumbers(lower, upper), Is.EqualTo(automorphicList));
}
[TestCase(-1,1)]
[TestCase(0, 1)]
public void TestAutomorphicNumberSequenceInvalidLowerBound(int lower, int upper)
{
Assert.Throws(Is.TypeOf<ArgumentException>()
.And.Message.EqualTo($"Lower bound must be greater than 0."),
delegate
{
AutomorphicNumber.GetAutomorphicNumbers(lower, upper);
});
}
[TestCase(1, -1)]
[TestCase(10, -1)]
public void TestAutomorphicNumberSequenceInvalidUpperBound(int lower, int upper)
{
Assert.Throws(Is.TypeOf<ArgumentException>()
.And.Message.EqualTo($"Upper bound must be greater than 0."),
delegate
{
AutomorphicNumber.GetAutomorphicNumbers(lower, upper);
});
}
[TestCase(25, 2)]
public void TestAutomorphicNumberSequenceReversedBounds(int lower, int upper)
{
Assert.Throws(Is.TypeOf<ArgumentException>()
.And.Message.EqualTo($"The lower bound must be less than or equal to the upper bound."),
delegate
{
AutomorphicNumber.GetAutomorphicNumbers(lower, upper);
});
}
}
}
| 115 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Numerics;
using Algorithms.Numeric;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric
{
public static class BinomialCoefficientTests
{
[TestCase(4, 2, 6)]
[TestCase(7, 3, 35)]
public static void CalculateFromPairs(int n, int k, int expected)
{
// Arrange
// Act
var result = BinomialCoefficient.Calculate(new BigInteger(n), new BigInteger(k));
// Assert
Assert.AreEqual(new BigInteger(expected), result);
}
[Test]
[TestCase(3, 7)]
public static void TeoremCalculateThrowsException(int n, int k)
{
// Arrange
// Act
// Assert
_ = Assert.Throws<ArgumentException>(() => BinomialCoefficient.Calculate(new BigInteger(n), new BigInteger(k)));
}
}
}
| 36 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using Algorithms.Numeric;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric
{
public static class EulerMethodTest
{
[Test]
public static void TestLinearEquation()
{
Func<double, double, double> exampleEquation = (x, _) => x;
List<double[]> points = EulerMethod.EulerFull(0, 4, 0.001, 0, exampleEquation);
var yEnd = points[^1][1];
yEnd.Should().BeApproximately(8, 0.01);
}
[Test]
public static void TestExampleWikipedia()
{
// example from https://en.wikipedia.org/wiki/Euler_method
Func<double, double, double> exampleEquation = (_, y) => y;
List<double[]> points = EulerMethod.EulerFull(0, 4, 0.0125, 1, exampleEquation);
var yEnd = points[^1][1];
yEnd.Should().BeApproximately(53.26, 0.01);
}
[Test]
public static void TestExampleGeeksForGeeks()
{
// example from https://www.geeksforgeeks.org/euler-method-solving-differential-equation/
// Euler method: y_n+1 = y_n + stepSize * f(x_n, y_n)
// differential equation: f(x, y) = x + y + x * y
// initial conditions: x_0 = 0; y_0 = 1; stepSize = 0.025
// solution:
// y_1 = 1 + 0.025 * (0 + 1 + 0 * 1) = 1.025
// y_2 = 1.025 + 0.025 * (0.025 + 1.025 + 0.025 * 1.025) = 1.051890625
Func<double, double, double> exampleEquation = (x, y) => x + y + x * y;
List<double[]> points = EulerMethod.EulerFull(0, 0.05, 0.025, 1, exampleEquation);
var y1 = points[1][1];
var y2 = points[2][1];
Assert.AreEqual(y1, 1.025);
Assert.AreEqual(y2, 1.051890625);
}
[Test]
public static void StepsizeIsZeroOrNegative_ThrowsArgumentOutOfRangeException()
{
Func<double, double, double> exampleEquation = (x, _) => x;
Assert.Throws<ArgumentOutOfRangeException>(() => EulerMethod.EulerFull(0, 4, 0, 0, exampleEquation));
}
[Test]
public static void StartIsLargerThanEnd_ThrowsArgumentOutOfRangeException()
{
Func<double, double, double> exampleEquation = (x, _) => x;
Assert.Throws<ArgumentOutOfRangeException>(() => EulerMethod.EulerFull(0, -4, 0.1, 0, exampleEquation));
}
}
}
| 63 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Numerics;
using Algorithms.Numeric;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric
{
public static class FactorialTests
{
[TestCase(0, "1")]
[TestCase(1, "1")]
[TestCase(4, "24")]
[TestCase(10, "3628800")]
[TestCase(18, "6402373705728000")]
public static void GetsFactorial(int input, string expected)
{
// Arrange
BigInteger expectedBigInt = BigInteger.Parse(expected);
// Act
var result = Factorial.Calculate(input);
// Assert
Assert.AreEqual(expectedBigInt, result);
}
[TestCase(-5)]
[TestCase(-10)]
public static void GetsFactorialExceptionForNegativeNumbers(int num)
{
// Arrange
// Act
void Act() => Factorial.Calculate(num);
// Assert
_ = Assert.Throws<ArgumentException>(Act);
}
}
}
| 41 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Numeric;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric
{
/// <summary>
/// Class for testing Gauss-Jordan Elimination Algorithm.
/// </summary>
public static class GaussJordanEliminationTests
{
[Test]
public static void NonSquaredMatrixThrowsException()
{
// Arrange
var solver = new GaussJordanElimination();
var input = new double[,] { { 2, -1, 5 }, { 0, 2, 1 }, { 3, 17, 7 } };
// Act
void Act() => solver.Solve(input);
// Assert
_ = Assert.Throws<ArgumentException>(Act);
}
[Test]
public static void UnableToSolveSingularMatrix()
{
// Arrange
var solver = new GaussJordanElimination();
var input = new double[,] { { 0, 0, 0 }, { 0, 0, 0 } };
// Act
var result = solver.Solve(input);
// Assert
Assert.IsFalse(result);
}
}
}
| 41 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Numeric;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric;
public class JosephusProblemTest
{
[TestCase(10, 0)]
[TestCase(10, -1)]
public void JosephusProblemInvalidStepSize(long groupSize, long step)
{
Assert.Throws(Is.TypeOf<ArgumentException>()
.And.Message.EqualTo("The step cannot be smaller than 1"),
delegate { JosephusProblem.FindWinner(groupSize, step); });
}
[TestCase(10, 12)]
public void JosephusProblemStepSizeGreaterThanGroup(long groupSize, long step)
{
Assert.Throws(Is.TypeOf<ArgumentException>()
.And.Message.EqualTo("The step cannot be greater than the size of the group"),
delegate { JosephusProblem.FindWinner(groupSize, step); });
}
[TestCase(10, 2, 5)]
[TestCase(10, 8, 1)]
[TestCase(254, 18, 92)]
[TestCase(3948, 614, 2160)]
[TestCase(86521, 65903, 29473)]
public void JosephusProblemWinnerCalculation(long groupSize, long step, long position)
{
Assert.That(JosephusProblem.FindWinner(groupSize, step), Is.EqualTo(position));
}
}
| 38 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric;
using NUnit.Framework;
using System;
namespace Algorithms.Tests.Numeric
{
public static class KeithNumberTest
{
[Test]
[TestCase(14)]
[TestCase(47)]
[TestCase(197)]
[TestCase(7909)]
public static void KeithNumberWork(int number)
{
// Act
var result = KeithNumberChecker.IsKeithNumber(number);
// Assert
Assert.IsTrue(result);
}
[Test]
[TestCase(-2)]
public static void KeithNumberShouldThrowEx(int number)
{
// Arrange
// Assert
Assert.Throws<ArgumentException>(() => KeithNumberChecker.IsKeithNumber(number));
}
}
}
| 34 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric
{
public class KrishnamurthyNumberCheckerTests
{
[TestCase(1)]
[TestCase(2)]
[TestCase(145)]
[TestCase(40585)]
public void KrishnamurthyNumberCheckerKnownNumbers(int number)
{
var result = KrishnamurthyNumberChecker.IsKMurthyNumber(number);
Assert.IsTrue(result);
}
[TestCase(3)]
[TestCase(4)]
[TestCase(239847)]
[TestCase(12374)]
public void KrishnamurthyNumberCheckerNotKMNumber(int number)
{
var result = KrishnamurthyNumberChecker.IsKMurthyNumber(number);
Assert.IsFalse(result);
}
[TestCase(0)]
[TestCase(-1)]
public void KrishnamurthyNumberCheckerNotPositiveNumber(int number)
{
var result = KrishnamurthyNumberChecker.IsKMurthyNumber(number);
Assert.IsFalse(result);
}
}
}
| 37 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Numerics;
using Algorithms.Numeric;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric
{
public static class MillerRabinPrimalityTest
{
[TestCase("7", ExpectedResult = true)] // true
[TestCase("47", ExpectedResult = true)] // true
[TestCase("247894109041876714378152933343208766493", ExpectedResult = true)] // true
[TestCase("247894109041876714378152933343208766493", 1, ExpectedResult = true)] // true
[TestCase("315757551269487563269454472438030700351", ExpectedResult = true)] // true
[TestCase("2476099", 12445, ExpectedResult = false)] // false 19^5
// false 247894109041876714378152933343208766493*315757551269487563269454472438030700351
[TestCase("78274436845194327170519855212507883195883737501141260366253362532531612139043", ExpectedResult = false)]
[Retry(3)]
public static bool MillerRabinPrimalityWork(string testcase, int? seed = null)
{
// Arrange
BigInteger number = BigInteger.Parse(testcase);
// Recommended number of checks' rounds = Log2(number) as BigInteger has no Log2 function we need to convert Log10
BigInteger rounds = (BigInteger)(BigInteger.Log10(number) / BigInteger.Log10(2));
// Act
var result = MillerRabinPrimalityChecker.IsProbablyPrimeNumber(number, rounds, seed);
// Assert
return result;
}
[TestCase("-2")]
[TestCase("0")]
[TestCase("3")]
// By the algorithm definition the number which is checked should be more than 3
public static void MillerRabinPrimalityShouldThrowEx(string testcase)
{
// Arrange
BigInteger number = BigInteger.Parse(testcase);
BigInteger rounds = 1;
// Assert
Assert.Throws<ArgumentException>(() => MillerRabinPrimalityChecker.IsProbablyPrimeNumber(number, rounds));
}
}
}
| 48 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric;
using System;
using NUnit.Framework;
using FluentAssertions;
namespace Algorithms.Tests.Numeric
{
public class ModularExponentiationTest
{
[Test]
[TestCase(3, 6, 11, 3)]
[TestCase(5, 3, 13, 8)]
[TestCase(2, 7, 17, 9)]
[TestCase(7, 4, 16, 1)]
[TestCase(7, 2, 11, 5)]
[TestCase(4, 13, 497, 445)]
[TestCase(13, 3, 1, 0)]
public void ModularExponentiationCorrect(int b, int e, int m, int expectedRes)
{
var modularExponentiation = new ModularExponentiation();
var actualRes = modularExponentiation.ModularPow(b, e, m);
actualRes.Should().Be(expectedRes);
}
[TestCase(17, 7, -3)]
[TestCase(11, 3, -5)]
[TestCase(14, 3, 0)]
public void ModularExponentiationNegativeMod(int b, int e, int m)
{
var modularExponentiation = new ModularExponentiation();
Action res = () => modularExponentiation.ModularPow(b, e, m);
res.Should().Throw<ArgumentException>()
.WithMessage(String.Format("{0} is not a positive integer", m));
}
}
}
| 37 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric
{
public static class NarcissisticNumberTest
{
[Test]
[TestCase(2, ExpectedResult = true)]
[TestCase(3, ExpectedResult = true)]
[TestCase(28, ExpectedResult = false)]
[TestCase(153, ExpectedResult = true)]
[TestCase(170, ExpectedResult = false)]
[TestCase(371, ExpectedResult = true)]
public static bool NarcissisticNumberWork(int number)
{
// Arrange
// Act
var result = NarcissisticNumberChecker.IsNarcissistic(number);
// Assert
return result;
}
}
}
| 27 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Numerics;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric;
public class NewtonSquareRootTests
{
private static readonly object[] CalculateSquareRootInput =
{
new object[] {BigInteger.One, BigInteger.One},
new object[] {new BigInteger(221295376), new BigInteger(14876)},
new object[] {new BigInteger(2530995481), new BigInteger(50309)},
new object[] {new BigInteger(3144293476), new BigInteger(56074)},
new object[] {new BigInteger(3844992064), new BigInteger(62008)},
new object[] {new BigInteger(5301150481), new BigInteger(72809)},
new object[] {new BigInteger(5551442064), new BigInteger(74508)},
new object[] {new BigInteger(6980435401), new BigInteger(83549)},
new object[] {new BigInteger(8036226025), new BigInteger(89645)},
};
[TestCaseSource(nameof(CalculateSquareRootInput))]
public void CalculateSquareRootTest(BigInteger number, BigInteger result)
{
Assert.That(NewtonSquareRoot.Calculate(number), Is.EqualTo(result));
}
[Test]
public void CalculateSquareRootOfZero()
{
Assert.That(NewtonSquareRoot.Calculate(0), Is.EqualTo(BigInteger.Zero));
}
[Test]
public void CalculateSquareRootNegativeNumber()
{
Assert.Throws(Is.TypeOf<ArgumentException>()
.And.Message.EqualTo("Cannot calculate the square root of a negative number."),
delegate
{
NewtonSquareRoot.Calculate(BigInteger.MinusOne);
});
}
}
| 45 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Numeric;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric
{
public static class PerfectNumberTests
{
[Test]
[TestCase(6)]
[TestCase(28)]
[TestCase(496)]
[TestCase(8128)]
public static void PerfectNumberWork(int number)
{
// Arrange
// Act
var result = PerfectNumberChecker.IsPerfectNumber(number);
// Assert
Assert.IsTrue(result);
}
[Test]
[TestCase(-2)]
public static void PerfectNumberShouldThrowEx(int number)
{
// Arrange
// Assert
Assert.Throws<ArgumentException>(() => PerfectNumberChecker.IsPerfectNumber(number));
}
}
}
| 36 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric
{
public static class PerfectSquareTests
{
[Test]
[TestCase(-4, ExpectedResult = false)]
[TestCase(4, ExpectedResult = true)]
[TestCase(9, ExpectedResult = true)]
[TestCase(10, ExpectedResult = false)]
[TestCase(16, ExpectedResult = true)]
[TestCase(70, ExpectedResult = false)]
[TestCase(81, ExpectedResult = true)]
public static bool IsPerfectSquare_ResultIsCorrect(int number)
{
// Arrange
// Act
var result = PerfectSquareChecker.IsPerfectSquare(number);
// Assert
return result;
}
}
}
| 28 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric;
using FluentAssertions;
using NUnit.Framework;
using System;
using System.Collections.Generic;
namespace Algorithms.Tests.Numeric
{
public static class RungeKuttaTest
{
[Test]
public static void TestLinearEquation()
{
Func<double, double, double> exampleEquation = (x, _) => x;
List<double[]> points = RungeKuttaMethod.ClassicRungeKuttaMethod(0, 4, 0.001, 0, exampleEquation);
var yEnd = points[^1][1];
yEnd.Should().BeApproximately(8, 0.01);
}
[Test]
public static void TestExampleFunciton()
{
Func<double, double, double> exampleEquation = (_, y) => y;
List<double[]> points = RungeKuttaMethod.ClassicRungeKuttaMethod(0, 4, 0.0125, 1, exampleEquation);
var yEnd = points[^1][1];
yEnd.Should().BeApproximately(54.598, 0.0005);
}
[Test]
public static void StepsizeIsZeroOrNegative_ThrowsArgumentOutOfRangeException()
{
Func<double, double, double> exampleEquation = (x, _) => x;
Assert.Throws<ArgumentOutOfRangeException>(() => RungeKuttaMethod.ClassicRungeKuttaMethod(0, 4, 0, 0, exampleEquation));
}
[Test]
public static void StartIsLargerThanEnd_ThrowsArgumentOutOfRangeException()
{
Func<double, double, double> exampleEquation = (x, _) => x;
Assert.Throws<ArgumentOutOfRangeException>(() => RungeKuttaMethod.ClassicRungeKuttaMethod(0, -4, 0.1, 0, exampleEquation));
}
}
}
| 44 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Linq;
using Algorithms.Numeric.Decomposition;
using NUnit.Framework;
using Utilities.Extensions;
namespace Algorithms.Tests.Numeric.Decomposition
{
public class LuTests
{
private readonly double epsilon = Math.Pow(10, -6);
[Test]
public void DecomposeIdentityMatrix()
{
// Arrange
var identityMatrix = new double[,] { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
var expectedLower = new double[,] { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
var expectedUpper = new double[,] { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
// Act
(double[,] lower, double[,] upper) = Lu.Decompose(identityMatrix);
// Assert
Assert.AreEqual(expectedLower, lower);
Assert.AreEqual(expectedUpper, upper);
Assert.AreEqual(lower.Multiply(upper), identityMatrix);
}
[Test]
public void DecomposeMatrix_Case3X3()
{
// Arrange
var source = new double[,] { { 2, 1, 4 }, { 7, 1, 1 }, { 4, 2, 9 } };
var expectedLower = new[,] { { 1, 0, 0 }, { 3.5, 1, 0 }, { 2, 0, 1 } };
var expectedUpper = new[,] { { 2, 1, 4 }, { 0, -2.5, -13 }, { 0, 0, 1 } };
// Act
(double[,] lower, double[,] upper) = Lu.Decompose(source);
// Assert
Assert.AreEqual(expectedLower, lower);
Assert.AreEqual(expectedUpper, upper);
Assert.AreEqual(lower.Multiply(upper), source);
}
[Test]
public void DecomposeMatrix_Case4X4()
{
// Arrange
var source = new[,] { { 1, 2, 4.5, 7 }, { 3, 8, 0.5, 2 }, { 2, 6, 4, 1.5 }, { 4, 14, 2, 10.5 } };
var expectedLower = new[,] { { 1, 0, 0, 0 }, { 3, 1, 0, 0 }, { 2, 1, 1, 0 }, { 4, 3, 2.875, 1 } };
var expectedUpper = new[,] { { 1, 2, 4.5, 7 }, { 0, 2, -13, -19 }, { 0, 0, 8, 6.5 }, { 0, 0, 0, 20.8125 } };
// Act
(double[,] lower, double[,] upper) = Lu.Decompose(source);
// Assert
Assert.AreEqual(expectedLower, lower);
Assert.AreEqual(expectedUpper, upper);
Assert.AreEqual(lower.Multiply(upper), source);
}
[Test]
public void FailOnDecomposeNonSquareMatrix()
{
// Arrange
var nonSquareMatrix = new double[,] { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }, { 0, 0, 0 } };
// Act
void Act(double[,] source) => Lu.Decompose(source);
// Assert
Assert.Throws<ArgumentException>(() => Act(nonSquareMatrix));
}
[Test]
public void EliminateIdentityEquation()
{
// Arrange
var identityMatrix = new double[,] { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
var coefficients = new double[] { 1, 2, 3 };
// Act
var solution = Lu.Eliminate(identityMatrix, coefficients);
// Assert
Assert.AreEqual(coefficients, solution);
}
[Test]
public void EliminateEquation_Case3X3()
{
// Arrange
var source = new double[,] { { 2, 1, -1 }, { -3, -1, 2 }, { -2, 1, 2 } };
var coefficients = new double[] { 8, -11, -3 };
var expectedSolution = new double[] { 2, 3, -1 };
// Act
var solution = Lu.Eliminate(source, coefficients);
// Assert
Assert.IsTrue(VectorMembersAreEqual(expectedSolution, solution));
}
[Test]
public void EliminateEquation_Case4X4()
{
// Arrange
var source = new[,]
{
{ 1.0, 2.0, -3.0, -1.0 },
{ 0.0, -3.0, 2.0, 6.0 },
{ 0.0, 5.0, -6.0, -2.0 },
{ 0.0, -1.0, 8.0, 1.0 },
};
var coefficients = new[] { 0.0, -8.0, 0.0, -8.0 };
var expectedSolution = new[] { -1.0, -2.0, -1.0, -2.0 };
// Act
var solution = Lu.Eliminate(source, coefficients);
// Assert
Assert.IsTrue(VectorMembersAreEqual(expectedSolution, solution));
}
[Test]
public void FailOnEliminateEquationWithNonSquareMatrix()
{
// Arrange
var nonSquareMatrix = new double[,] { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }, { 0, 0, 0 } };
var coefficients = new double[] { 1, 2, 3, 4 };
// Act
void Act(double[,] source, double[] c) => Lu.Eliminate(source, c);
// Assert
Assert.Throws<ArgumentException>(() => Act(nonSquareMatrix, coefficients));
}
private bool VectorMembersAreEqual(double[] expected, double[] actual) =>
expected
.Zip(actual, (e, a) => new { Expected = e, Actual = a })
.All(pair => Math.Abs(pair.Expected - pair.Actual) < epsilon);
}
}
| 147 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Numeric.Series;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric.Decomposition
{
public class MaclaurinTests
{
[TestCase(0.01, 3, 0.01)]
[TestCase(1, 7, 0.001)]
[TestCase(-1.2, 7, 0.001)]
public void Exp_TermsForm_ValidCases(double point, int terms, double expectedError)
{
// Arrange
var expected = Math.Exp(point);
// Act
var actual = Maclaurin.Exp(point, terms);
// Assert
Assert.IsTrue(Math.Abs(expected - actual) < expectedError);
}
[Test]
public void Exp_TermsForm_InvalidCase() =>
Assert.Throws<ArgumentOutOfRangeException>(() => Maclaurin.Exp(0, -1));
[TestCase(0, 1, 0.001)]
[TestCase(1, 7, 0.001)]
[TestCase(1.57, 7, 0.001)]
[TestCase(3.14, 7, 0.001)]
public void Sin_TermsForm_ValidCases(double point, int terms, double expectedError)
{
// Arrange
var expected = Math.Sin(point);
// Act
var actual = Maclaurin.Sin(point, terms);
// Assert
Assert.IsTrue(Math.Abs(expected - actual) < expectedError);
}
[Test]
public void Sin_TermsForm_InvalidCase() =>
Assert.Throws<ArgumentOutOfRangeException>(() => Maclaurin.Sin(0, -1));
[TestCase(0, 1, 0.001)]
[TestCase(1, 7, 0.001)]
[TestCase(1.57, 7, 0.001)]
[TestCase(3.14, 7, 0.001)]
public void Cos_TermsForm_ValidCases(double point, int terms, double expectedError)
{
// Arrange
var expected = Math.Cos(point);
// Act
var actual = Maclaurin.Cos(point, terms);
// Assert
Assert.IsTrue(Math.Abs(expected - actual) < expectedError);
}
[Test]
public void Cos_TermsForm_InvalidCase() =>
Assert.Throws<ArgumentOutOfRangeException>(() => Maclaurin.Cos(0, -1));
[TestCase(0.1, 0.001)]
[TestCase(0.1, 0.00001)]
[TestCase(2.1, 0.001)]
[TestCase(-1.2, 0.001)]
public void Exp_ErrorForm_ValidCases(double point, double error)
{
// Arrange
var expected = Math.Exp(point);
// Act
var actual = Maclaurin.Exp(point, error);
// Assert
Assert.IsTrue(Math.Abs(expected - actual) < error);
}
[TestCase(0.0)]
[TestCase(1.0)]
public void Exp_ErrorForm_InvalidCases(double error) =>
Assert.Throws<ArgumentException>(() => Maclaurin.Exp(0.0, error));
[TestCase(0, 0.001)]
[TestCase(1, 0.00001)]
[TestCase(1.57, 0.0001)]
[TestCase(3.14, 0.0001)]
public void Sin_ErrorForm_ValidCases(double point, double error)
{
// Arrange
var expected = Math.Sin(point);
// Act
var actual = Maclaurin.Sin(point, error);
// Assert
Assert.IsTrue(Math.Abs(expected - actual) < error);
}
[TestCase(0.0)]
[TestCase(1.0)]
public void Sin_ErrorForm_InvalidCases(double error) =>
Assert.Throws<ArgumentException>(() => Maclaurin.Sin(0.0, error));
[TestCase(0, 0.001)]
[TestCase(1, 0.00001)]
[TestCase(1.57, 0.0001)]
[TestCase(3.14, 0.0001)]
public void Cos_ErrorForm_ValidCases(double point, double error)
{
// Arrange
var expected = Math.Cos(point);
// Act
var actual = Maclaurin.Cos(point, error);
// Assert
Assert.IsTrue(Math.Abs(expected - actual) < error);
}
[TestCase(0.0)]
[TestCase(1.0)]
public void Cos_ErrorForm_InvalidCases(double error) =>
Assert.Throws<ArgumentException>(() => Maclaurin.Cos(0.0, error));
}
}
| 132 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Numeric.Decomposition;
using FluentAssertions;
using NUnit.Framework;
using Utilities.Extensions;
using M = Utilities.Extensions.MatrixExtensions;
using V = Utilities.Extensions.VectorExtensions;
namespace Algorithms.Tests.Numeric.Decomposition
{
public class SvdTests
{
[Test]
public void RandomUnitVector()
{
var epsilon = 0.0001;
// unit vector should have length 1
ThinSvd.RandomUnitVector(10).Magnitude().Should().BeApproximately(1, epsilon);
// unit vector with single element should be [-1] or [+1]
Math.Abs(ThinSvd.RandomUnitVector(1)[0]).Should().BeApproximately(1, epsilon);
// two randomly generated unit vectors should not be equal
ThinSvd.RandomUnitVector(10).Should().NotBeEquivalentTo(ThinSvd.RandomUnitVector(10));
}
[Test]
public void Svd_Decompose()
{
CheckSvd(new double[,] { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } });
CheckSvd(new double[,] { { 1, 2, 3 }, { 4, 5, 6 } });
CheckSvd(new double[,] { { 1, 0, 0, 0, 2 }, { 0, 3, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, { 0, 2, 0, 0, 0 } });
}
[Test]
public void Svd_Random([Random(3, 10, 5)] int m, [Random(3, 10, 5)] int n)
{
double[,] matrix = GenerateRandomMatrix(m, n);
CheckSvd(matrix);
}
private void AssertMatrixEqual(double[,] matrix1, double[,] matrix2, double epsilon)
{
matrix1.GetLength(0).Should().Be(matrix2.GetLength(0));
matrix1.GetLength(1).Should().Be(matrix2.GetLength(1));
for (var i = 0; i < matrix1.GetLength(0); i++)
{
for (var j = 0; j < matrix1.GetLength(1); j++)
{
Assert.AreEqual(matrix1[i, j], matrix2[i, j], epsilon, $"At index ({i}, {j})");
}
}
}
private double[,] GenerateRandomMatrix(int m, int n)
{
double[,] result = new double[m, n];
Random random = new();
for (var i = 0; i < m; i++)
{
for (var j = 0; j < n; j++)
{
result[i, j] = random.NextDouble() - 0.5;
}
}
return result;
}
private void CheckSvd(double[,] testMatrix)
{
var epsilon = 1E-6;
double[,] u;
double[,] v;
double[] s;
(u, s, v) = ThinSvd.Decompose(testMatrix, 1e-6 * epsilon, 1000);
for (var i = 1; i < s.Length; i++)
{
// singular values should be arranged from greatest to smallest
// but there are rounding errors
(s[i] - s[i - 1]).Should().BeLessThan(1);
}
for (var i = 0; i < u.GetLength(1); i++)
{
double[] extracted = new double[u.GetLength(0)];
// extract a column of u
for (var j = 0; j < extracted.Length; j++)
{
extracted[j] = u[j, i];
}
if (s[i] > epsilon)
{
// if the singular value is non-zero, then the basis vector in u should be a unit vector
extracted.Magnitude().Should().BeApproximately(1, epsilon);
}
else
{
// if the singular value is zero, then the basis vector in u should be zeroed out
extracted.Magnitude().Should().BeApproximately(0, epsilon);
}
}
for (var i = 0; i < v.GetLength(1); i++)
{
double[] extracted = new double[v.GetLength(0)];
// extract column of v
for (var j = 0; j < extracted.Length; j++)
{
extracted[j] = v[j, i];
}
if (s[i] > epsilon)
{
// if the singular value is non-zero, then the basis vector in v should be a unit vector
Assert.AreEqual(1, extracted.Magnitude(), epsilon);
}
else
{
// if the singular value is zero, then the basis vector in v should be zeroed out
Assert.AreEqual(0, extracted.Magnitude(), epsilon);
}
}
// convert singular values to a diagonal matrix
double[,] expanded = new double[s.Length, s.Length];
for (var i = 0; i < s.Length; i++)
{
expanded[i, i] = s[i];
}
// matrix = U * S * V^t, definition of Singular Vector Decomposition
AssertMatrixEqual(testMatrix, u.Multiply(expanded).Multiply(v.Transpose()), epsilon);
AssertMatrixEqual(testMatrix, u.Multiply(expanded.Multiply(v.Transpose())), epsilon);
}
}
}
| 139 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric.Factorization;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric.Factorization
{
public static class TrialDivisionFactorizerTests
{
[Test]
[TestCase(2)]
[TestCase(3)]
[TestCase(29)]
[TestCase(31)]
public static void PrimeNumberFactorizationFails(int p)
{
// Arrange
var factorizer = new TrialDivisionFactorizer();
// Act
var success = factorizer.TryFactor(p, out _);
// Assert
Assert.IsFalse(success);
}
[Test]
[TestCase(4, 2)]
[TestCase(6, 2)]
[TestCase(8, 2)]
[TestCase(9, 3)]
[TestCase(15, 3)]
[TestCase(35, 5)]
[TestCase(49, 7)]
[TestCase(77, 7)]
public static void PrimeNumberFactorizationSucceeds(int n, int expected)
{
// Arrange
var factorizer = new TrialDivisionFactorizer();
// Act
var success = factorizer.TryFactor(n, out var factor);
// Assert
Assert.IsTrue(success);
Assert.AreEqual(expected, factor);
}
}
}
| 48 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric.GreatestCommonDivisor;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric.GreatestCommonDivisor
{
public static class BinaryGreatestCommonDivisorFinderTests
{
[Test]
[TestCase(2, 3, 1)]
[TestCase(1, 1, 1)]
[TestCase(13, 17, 1)]
[TestCase(0, 17, 17)]
[TestCase(17, 0, 17)]
[TestCase(17, 17, 17)]
[TestCase(2 * 17, 17, 17)]
[TestCase(0, 0, 0)]
[TestCase(2 * 13 * 17, 4 * 9 * 13, 2 * 13)]
public static void GreatestCommonDivisorCorrect(int a, int b, int expectedGcd)
{
// Arrange
var gcdFinder = new BinaryGreatestCommonDivisorFinder();
// Act
var actualGcd = gcdFinder.FindGcd(a, b);
// Assert
Assert.AreEqual(expectedGcd, actualGcd);
}
}
}
| 31 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Numeric.GreatestCommonDivisor;
using NUnit.Framework;
namespace Algorithms.Tests.Numeric.GreatestCommonDivisor
{
public static class EuclideanGreatestCommonDivisorFinderTests
{
[Test]
[TestCase(2, 3, 1)]
[TestCase(1, 1, 1)]
[TestCase(13, 17, 1)]
[TestCase(0, 17, 17)]
[TestCase(17, 0, 17)]
[TestCase(17, 17, 17)]
[TestCase(2 * 17, 17, 17)]
[TestCase(0, 0, int.MaxValue)]
[TestCase(2 * 13 * 17, 4 * 9 * 13, 2 * 13)]
public static void GreatestCommonDivisorCorrect(int a, int b, int expectedGcd)
{
// Arrange
var gcdFinder = new EuclideanGreatestCommonDivisorFinder();
// Act
var actualGcd = gcdFinder.FindGcd(a, b);
// Assert
Assert.AreEqual(expectedGcd, actualGcd);
}
}
}
| 31 |
C-Sharp | TheAlgorithms | C# | using NUnit.Framework;
using Utilities.Extensions;
namespace Algorithms.Tests.Numeric.PseudoInverse
{
public static class PseudoInverseTests
{
[Test]
public static void SquaredMatrixInverseWorks()
{
// Arrange
var inMat = new double[,] { { 2, 4, 6 }, { 2, 0, 2 }, { 6, 8, 14 } };
var inMatCopy = new double[,] { { 2, 4, 6 }, { 2, 0, 2 }, { 6, 8, 14 } };
// Act
// using AA+A = A
var result = Algorithms.Numeric.Pseudoinverse.PseudoInverse.PInv(inMat);
var aainva = inMatCopy.Multiply(result).Multiply(inMatCopy);
var rounded = aainva.RoundToNextInt();
var isequal = rounded.IsEqual(inMatCopy);
// Assert
Assert.IsTrue(isequal);
}
[Test]
public static void NonSquaredMatrixPseudoInverseMatrixWorks()
{
// Arrange
var inMat = new double[,] { { 1, 2, 3, 4 }, { 0, 1, 4, 7 }, { 5, 6, 0, 1 } };
var inMatCopy = new double[,] { { 1, 2, 3, 4 }, { 0, 1, 4, 7 }, { 5, 6, 0, 1 } };
// Act
// using (A+)+ = A
var result = Algorithms.Numeric.Pseudoinverse.PseudoInverse.PInv(inMat);
var result2 = Algorithms.Numeric.Pseudoinverse.PseudoInverse.PInv(result);
var rounded = result2.RoundToNextInt();
var isequal = rounded.IsEqual(inMatCopy);
// Assert
Assert.IsTrue(isequal);
}
}
}
| 46 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Other;
using NUnit.Framework;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Algorithms.Tests.Other
{
public static class DecisionsConvolutionsTest
{
[Test]
public static void Verify_Linear_Convolution()
{
// Arrange
var matrix = new List<List<decimal>>
{
new List<decimal> { 7, 6, 5, 8, 5, 6 },
new List<decimal> { 4, 8, 4, 4, 5, 3 },
new List<decimal> { 3, 8, 1, 4, 5, 2 },
new List<decimal> { 5, 6, 3, 6, 4, 5 },
new List<decimal> { 1, 4, 8, 6, 3, 6 },
new List<decimal> { 5, 1, 8, 6, 5, 1 },
new List<decimal> { 6, 8, 3, 6, 3, 5 }
};
var expectedMatrix = new List<decimal> { 7, 6, 5, 8, 5, 6 };
var priorities = new List<decimal> { 1, 1, 1, 1, 0.545m, 0.583m };
// Act
var optimizedMatrix = DecisionsConvolutions.Linear(matrix, priorities);
// Assert
Assert.AreEqual(optimizedMatrix, expectedMatrix);
}
[Test]
public static void Verify_MaxMin_Convolution()
{
// Arrange
var matrix = new List<List<decimal>>
{
new List<decimal> { 7, 6, 5, 8, 5, 6 },
new List<decimal> { 4, 8, 4, 4, 5, 3 },
new List<decimal> { 3, 8, 1, 4, 5, 2 },
new List<decimal> { 5, 6, 3, 6, 4, 5 },
new List<decimal> { 1, 4, 8, 6, 3, 6 },
new List<decimal> { 5, 1, 8, 6, 5, 1 },
new List<decimal> { 6, 8, 3, 6, 3, 5 }
};
var expectedMatrix = new List<decimal> { 7, 6, 5, 8, 5, 6 };
var priorities = new List<decimal> { 1, 1, 1, 1, 0.545m, 0.583m };
// Act
var optimizedMatrix = DecisionsConvolutions.MaxMin(matrix, priorities);
// Assert
Assert.AreEqual(optimizedMatrix, expectedMatrix);
}
}
}
| 66 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Other;
using NUnit.Framework;
using NUnit.Framework.Internal;
namespace Algorithms.Tests.Other
{
public static class FermatPrimeCheckerTests
{
[Test]
[TestCase(5, true)]
[TestCase(2633, true)]
[TestCase(9439, true)]
[TestCase(1, false)]
[TestCase(8, false)]
public static void IsProbablePrime(int inputNum, bool expected)
{
// Arrange
var random = new Randomizer();
var times = random.Next(1, 1000);
// Act
var result = FermatPrimeChecker.IsPrime(inputNum, times);
// Assert
Assert.AreEqual(expected, result);
}
}
}
| 29 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Drawing;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
public static class Tests
{
private static readonly Color Black = Color.FromArgb(255, 0, 0, 0);
private static readonly Color Green = Color.FromArgb(255, 0, 255, 0);
private static readonly Color Violet = Color.FromArgb(255, 255, 0, 255);
private static readonly Color White = Color.FromArgb(255, 255, 255, 255);
private static readonly Color Orange = Color.FromArgb(255, 255, 128, 0);
[Test]
public static void BreadthFirstSearch_ThrowsArgumentOutOfRangeException()
{
Action act = () => Algorithms.Other.FloodFill.BreadthFirstSearch(GenerateTestBitmap(), (10, 10), Black, White);
act.Should().Throw<ArgumentOutOfRangeException>();
}
[Test]
public static void DepthFirstSearch_ThrowsArgumentOutOfRangeException()
{
Action act = () => Algorithms.Other.FloodFill.DepthFirstSearch(GenerateTestBitmap(), (-1, -1), Black, White);
act.Should().Throw<ArgumentOutOfRangeException>();
}
[Test]
public static void BreadthFirstSearch_Test1()
{
TestAlgorithm(Algorithms.Other.FloodFill.BreadthFirstSearch, (1, 1), Green, Orange, (1, 1), Orange);
}
[Test]
public static void BreadthFirstSearch_Test2()
{
TestAlgorithm(Algorithms.Other.FloodFill.BreadthFirstSearch, (1, 1), Green, Orange, (0, 1), Violet);
}
[Test]
public static void BreadthFirstSearch_Test3()
{
TestAlgorithm(Algorithms.Other.FloodFill.BreadthFirstSearch, (1, 1), Green, Orange, (6, 4), White);
}
[Test]
public static void DepthFirstSearch_Test1()
{
TestAlgorithm(Algorithms.Other.FloodFill.DepthFirstSearch, (1, 1), Green, Orange, (1, 1), Orange);
}
[Test]
public static void DepthFirstSearch_Test2()
{
TestAlgorithm(Algorithms.Other.FloodFill.DepthFirstSearch, (1, 1), Green, Orange, (0, 1), Violet);
}
[Test]
public static void DepthFirstSearch_Test3()
{
TestAlgorithm(Algorithms.Other.FloodFill.DepthFirstSearch, (1, 1), Green, Orange, (6, 4), White);
}
private static Bitmap GenerateTestBitmap()
{
Color[,] layout =
{
{Violet, Violet, Green, Green, Black, Green, Green},
{Violet, Green, Green, Black, Green, Green, Green},
{Green, Green, Green, Black, Green, Green, Green},
{Black, Black, Green, Black, White, White, Green},
{Violet, Violet, Black, Violet, Violet, White, White},
{Green, Green, Green, Violet, Violet, Violet, Violet},
{Violet, Violet, Violet, Violet, Violet, Violet, Violet},
};
Bitmap bitmap = new(7, 7);
for (int x = 0; x < layout.GetLength(0); x++)
{
for (int y = 0; y < layout.GetLength(1); y++)
{
bitmap.SetPixel(x, y, layout[y, x]);
}
}
return bitmap;
}
private static void TestAlgorithm(
Action<Bitmap, ValueTuple<int, int>, Color, Color> algorithm,
ValueTuple<int, int> fillLocation,
Color targetColor,
Color replacementColor,
ValueTuple<int, int> testLocation,
Color expectedColor)
{
Bitmap bitmap = GenerateTestBitmap();
algorithm(bitmap, fillLocation, targetColor, replacementColor);
Color actualColor = bitmap.GetPixel(testLocation.Item1, testLocation.Item2);
actualColor.Should().Be(expectedColor);
}
}
}
| 106 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Other;
using NUnit.Framework;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Algorithms.Tests.Other
{
public static class GaussOptimizationTest
{
[Test]
public static void Verify_Gauss_Optimization_Positive()
{
// Arrange
var gaussOptimization = new GaussOptimization();
// Declaration of the constants that are used in the function
var coefficients = new List<double> { 0.3, 0.6, 2.6, 0.3, 0.2, 1.4 };
// Description of the function
var func = (double x1, double x2) =>
{
if (x1 > 1 || x1 < 0 || x2 > 1 || x2 < 0)
{
return 0;
}
return coefficients[0] + coefficients[1] * x1 + coefficients[2] * x2 + coefficients[3] * x1 * x2 +
coefficients[4] * x1 * x1 + coefficients[5] * x2 * x2;
};
// The parameter that identifies how much step size will be decreased each iteration
double n = 2.4;
// Default values of x1 and x2. These values will be used for the calculation of the next
// coordinates by Gauss optimization method
double x1 = 0.5;
double x2 = 0.5;
// Default optimization step
double step = 0.5;
// This value is used to control the accuracy of the optimization. In case if the error is less
// than eps, optimization will be stopped
double eps = Math.Pow(0.1, 10);
// Act
(x1, x2) = gaussOptimization.Optimize(func, n, step, eps, x1, x2);
// Assert
Assert.AreEqual(x1, 1, 0.3);
Assert.AreEqual(x2, 1, 0.3);
}
[Test]
public static void Verify_Gauss_Optimization_Negative()
{
// Arrange
var gaussOptimization = new GaussOptimization();
// Declaration of the constants that are used in the function
var coefficients = new List<double> { -0.3, -0.6, -2.6, -0.3, -0.2, -1.4 };
// Description of the function
var func = (double x1, double x2) =>
{
if (x1 > 0 || x1 < -1 || x2 > 0 || x2 < -1)
{
return 0;
}
return coefficients[0] + coefficients[1] * x1 + coefficients[2] * x2 + coefficients[3] * x1 * x2 +
coefficients[4] * x1 * x1 + coefficients[5] * x2 * x2;
};
// The parameter that identifies how much step size will be decreased each iteration
double n = 2.4;
// Default values of x1 and x2. These values will be used for the calculation of the next
// coordinates by Gauss optimization method
double x1 = -0.5;
double x2 = -0.5;
// Default optimization step
double step = 0.5;
// This value is used to control the accuracy of the optimization. In case if the error is less
// than eps, optimization will be stopped
double eps = Math.Pow(0.1, 10);
// Act
(x1, x2) = gaussOptimization.Optimize(func, n, step, eps, x1, x2);
// Assert
Assert.AreEqual(x1, -1, 0.3);
Assert.AreEqual(x2, -1, 0.3);
}
}
}
| 102 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Other;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
public static class GeoLocationTests
{
[Test]
[TestCase(53.430488d, -2.96129d, 53.430488d, -2.96129d, 0d)]
[TestCase(53.430971d, -2.959806d, 53.430242d, -2.960830d, 105d)]
public static void CalculateDistanceFromLatLngTest(
double lat1,
double lng1,
double lat2,
double lng2,
double expectedValue)
{
var result = GeoLocation.CalculateDistanceFromLatLng(lat1, lng1, lat2, lng2);
var actualValue = Convert.ToDouble(result);
// Assert
Assert.AreEqual(expectedValue, actualValue, 1d); // Accept if distance diff is +/-1 meters.
}
}
}
| 27 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Other;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
public static class Int2BinaryTests
{
[Test]
[TestCase((ushort)0, "0000000000000000")]
[TestCase((ushort)0b1, "0000000000000001")]
[TestCase((ushort)0b0001010100111000, "0001010100111000")]
[TestCase((ushort)0b1110111100110010, "1110111100110010")]
[TestCase((ushort)(ushort.MaxValue - 1), "1111111111111110")]
[TestCase(ushort.MaxValue, "1111111111111111")]
public static void GetsBinary(ushort input, string expected)
{
// Arrange
// Act
var result = Int2Binary.Int2Bin(input);
// Assert
Assert.AreEqual(expected, result);
}
[Test]
[TestCase((uint)0, "00000000000000000000000000000000")]
[TestCase((uint)0b1, "00000000000000000000000000000001")]
[TestCase((uint)0b0001010100111000, "00000000000000000001010100111000")]
[TestCase((uint)0b1110111100110010, "00000000000000001110111100110010")]
[TestCase(0b10101100001110101110111100110010, "10101100001110101110111100110010")]
[TestCase(uint.MaxValue - 1, "11111111111111111111111111111110")]
[TestCase(uint.MaxValue, "11111111111111111111111111111111")]
public static void GetsBinary(uint input, string expected)
{
// Arrange
// Act
var result = Int2Binary.Int2Bin(input);
// Assert
Assert.AreEqual(expected, result);
}
[Test]
[TestCase((ulong)0, "0000000000000000000000000000000000000000000000000000000000000000")]
[TestCase((ulong)0b1, "0000000000000000000000000000000000000000000000000000000000000001")]
[TestCase((ulong)0b0001010100111000, "0000000000000000000000000000000000000000000000000001010100111000")]
[TestCase((ulong)0b1110111100110010, "0000000000000000000000000000000000000000000000001110111100110010")]
[TestCase((ulong)0b10101100001110101110111100110010,
"0000000000000000000000000000000010101100001110101110111100110010")]
[TestCase(0b1000101110100101000011010101110101010101110101001010000011111000,
"1000101110100101000011010101110101010101110101001010000011111000")]
[TestCase(ulong.MaxValue - 1, "1111111111111111111111111111111111111111111111111111111111111110")]
[TestCase(ulong.MaxValue, "1111111111111111111111111111111111111111111111111111111111111111")]
public static void GetsBinary(ulong input, string expected)
{
// Arrange
// Act
var result = Int2Binary.Int2Bin(input);
// Assert
Assert.AreEqual(expected, result);
}
}
}
| 69 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Globalization;
using Algorithms.Other;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
/// <summary>
/// A class for testing the Meeus's Julian Easter algorithm.
/// </summary>
public static class JulianEasterTest
{
private static readonly JulianCalendar Calendar = new();
[TestCaseSource(nameof(CalculateCases))]
public static void CalculateTest(int year, DateTime expected)
{
var result = JulianEaster.Calculate(year);
Assert.AreEqual(expected, result);
}
private static readonly object[] CalculateCases =
{
new object[] { 1800, new DateTime(1800, 04, 08, Calendar) },
new object[] { 1950, new DateTime(1950, 03, 27, Calendar) },
new object[] { 1991, new DateTime(1991, 03, 25, Calendar) },
new object[] { 2000, new DateTime(2000, 04, 17, Calendar) },
new object[] { 2199, new DateTime(2199, 04, 07, Calendar) }
};
}
}
| 33 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Drawing;
using System.Numerics;
using Algorithms.Other;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
public static class KochSnowflakeTest
{
[Test]
public static void TestIterateMethod()
{
List<Vector2> vectors = new() { new Vector2(0, 0), new Vector2(1, 0) };
List<Vector2> result = KochSnowflake.Iterate(vectors, 1);
result[0].Should().Be(new Vector2(0, 0));
result[1].Should().Be(new Vector2((float)1 / 3, 0));
/* Should().BeApproximately() is not defined for Vector2 or float
so the x-y-components have to be tested separately and the y-component needs to be cast to double */
result[2].X.Should().Be(0.5f);
((double)result[2].Y).Should().BeApproximately(Math.Sin(Math.PI / 3) / 3, 0.0001);
result[3].Should().Be(new Vector2((float)2 / 3, 0));
result[4].Should().Be(new Vector2(1, 0));
}
[Test]
public static void BitmapWidthIsZeroOrNegative_ThrowsArgumentOutOfRangeException()
{
Assert.Throws<ArgumentOutOfRangeException>(() => KochSnowflake.GetKochSnowflake(-200));
}
[Test]
public static void TestKochSnowflakeExample()
{
var bitmapWidth = 600;
var offsetX = bitmapWidth / 10f;
var offsetY = bitmapWidth / 3.7f;
Bitmap bitmap = KochSnowflake.GetKochSnowflake();
bitmap.GetPixel(0, 0)
.Should()
.Be(Color.FromArgb(255, 255, 255, 255), "because the background should be white");
bitmap.GetPixel((int)offsetX, (int)offsetY)
.Should()
.Be(Color.FromArgb(255, 0, 0, 0), "because the snowflake is drawn in black and this is the position of the first vector");
}
}
}
| 53 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Other;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
/// <summary>
/// A class for testing the Luhn algorithm.
/// </summary>
public class LuhnTests
{
[Test]
[TestCase("89014103211118510720")] // ICCID
[TestCase("071052120")] // Social Security Code
[TestCase("449125546588769")] // IMEI
[TestCase("4417123456789113")] // Bank card
public void ValidateTrue(string number)
{
// Arrange
bool validate;
// Act
validate = Luhn.Validate(number);
// Assert
Assert.True(validate);
}
[Test]
[TestCase("89012104211118510720")] // ICCID
[TestCase("021053120")] // Social Security Code
[TestCase("449145545588969")] // IMEI
[TestCase("4437113456749113")] // Bank card
public void ValidateFalse(string number)
{
// Arrange
bool validate;
// Act
validate = Luhn.Validate(number);
// Assert
Assert.False(validate);
}
[Test]
[TestCase("x9012104211118510720")] // ICCID
[TestCase("0210x3120")] // Social Security Code
[TestCase("44914554558896x")] // IMEI
[TestCase("4437113456x49113")] // Bank card
public void GetLostNum(string number)
{
// Arrange
int lostNum;
bool validate;
// Act
lostNum = Luhn.GetLostNum(number);
validate = Luhn.Validate(number.Replace("x", lostNum.ToString()));
// Assert
Assert.True(validate);
}
}
}
| 65 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Drawing;
using Algorithms.Other;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
public static class MandelbrotTest
{
[Test]
public static void BitmapWidthIsZeroOrNegative_ThrowsArgumentOutOfRangeException()
{
Assert.Throws<ArgumentOutOfRangeException>(() => Mandelbrot.GetBitmap(-200));
}
[Test]
public static void BitmapHeightIsZeroOrNegative_ThrowsArgumentOutOfRangeException()
{
Assert.Throws<ArgumentOutOfRangeException>(() => Mandelbrot.GetBitmap(bitmapHeight: 0));
}
[Test]
public static void MaxStepIsZeroOrNegative_ThrowsArgumentOutOfRangeException()
{
Assert.Throws<ArgumentOutOfRangeException>(() => Mandelbrot.GetBitmap(maxStep: -1));
}
[Test]
public static void TestBlackAndWhite()
{
Bitmap bitmap = Mandelbrot.GetBitmap(useDistanceColorCoding: false);
// Pixel outside the Mandelbrot set should be white.
Assert.AreEqual(bitmap.GetPixel(0, 0), Color.FromArgb(255, 255, 255, 255));
// Pixel inside the Mandelbrot set should be black.
Assert.AreEqual(bitmap.GetPixel(400, 300), Color.FromArgb(255, 0, 0, 0));
}
[Test]
public static void TestColorCoded()
{
Bitmap bitmap = Mandelbrot.GetBitmap(useDistanceColorCoding: true);
// Pixel distant to the Mandelbrot set should be red.
Assert.AreEqual(bitmap.GetPixel(0, 0), Color.FromArgb(255, 255, 0, 0));
// Pixel inside the Mandelbrot set should be black.
Assert.AreEqual(bitmap.GetPixel(400, 300), Color.FromArgb(255, 0, 0, 0));
}
}
}
| 51 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Other;
using NUnit.Framework;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Algorithms.Tests.Other
{
public static class ParetoOptimizationTests
{
[Test]
public static void Verify_Pareto_Optimization()
{
// Arrange
var paretoOptimization = new ParetoOptimization();
var matrix = new List<List<decimal>>
{
new List<decimal> { 7, 6, 5, 8, 5, 6 },
new List<decimal> { 4, 8, 4, 4, 5, 3 },
new List<decimal> { 3, 8, 1, 4, 5, 2 },
new List<decimal> { 5, 6, 3, 6, 4, 5 },
new List<decimal> { 1, 4, 8, 6, 3, 6 },
new List<decimal> { 5, 1, 8, 6, 5, 1 },
new List<decimal> { 6, 8, 3, 6, 3, 5 }
};
var expectedMatrix = new List<List<decimal>>
{
new List<decimal> { 7, 6, 5, 8, 5, 6 },
new List<decimal> { 4, 8, 4, 4, 5, 3 },
new List<decimal> { 1, 4, 8, 6, 3, 6 },
new List<decimal> { 5, 1, 8, 6, 5, 1 },
new List<decimal> { 6, 8, 3, 6, 3, 5 }
};
// Act
var optimizedMatrix = paretoOptimization.Optimize(matrix);
// Assert
Assert.AreEqual(optimizedMatrix, expectedMatrix);
}
}
}
| 47 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Other;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
public class PollardsRhoFactorizingTests
{
[TestCase(8051, 97)]
[TestCase(105, 21)]
[TestCase(253, 11)]
[TestCase(10403, 101)]
[TestCase(187, 11)]
public void SimpleTest(int number, int expectedResult)
{
var result = PollardsRhoFactorizing.Calculate(number);
Assert.AreEqual(expectedResult, result);
}
}
}
| 20 |
C-Sharp | TheAlgorithms | C# | using System;
using Algorithms.Other;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
public static class RgbHsvConversionTest
{
[Test]
public static void HueOutOfRange_ThrowsArgumentOutOfRangeException()
{
Action act = () => RgbHsvConversion.HsvToRgb(400, 0, 0);
act.Should().Throw<ArgumentOutOfRangeException>();
}
[Test]
public static void SaturationOutOfRange_ThrowsArgumentOutOfRangeException()
{
Action act = () => RgbHsvConversion.HsvToRgb(0, 2, 0);
act.Should().Throw<ArgumentOutOfRangeException>();
}
[Test]
public static void ValueOutOfRange_ThrowsArgumentOutOfRangeException()
{
Action act = () => RgbHsvConversion.HsvToRgb(0, 0, 2);
act.Should().Throw<ArgumentOutOfRangeException>();
}
// expected RGB-values taken from https://www.rapidtables.com/convert/color/hsv-to-rgb.html
[Test]
[TestCase(0, 0, 0, 0, 0, 0)]
[TestCase(0, 0, 1, 255, 255, 255)]
[TestCase(0, 1, 1, 255, 0, 0)]
[TestCase(60, 1, 1, 255, 255, 0)]
[TestCase(120, 1, 1, 0, 255, 0)]
[TestCase(240, 1, 1, 0, 0, 255)]
[TestCase(300, 1, 1, 255, 0, 255)]
[TestCase(180, 0.5, 0.5, 64, 128, 128)]
[TestCase(234, 0.14, 0.88, 193, 196, 224)]
[TestCase(330, 0.75, 0.5, 128, 32, 80)]
public static void TestRgbOutput(
double hue,
double saturation,
double value,
byte expectedRed,
byte exptectedGreen,
byte exptectedBlue)
{
var rgb = RgbHsvConversion.HsvToRgb(hue, saturation, value);
rgb.Item1.Should().Be(expectedRed);
rgb.Item2.Should().Be(exptectedGreen);
rgb.Item3.Should().Be(exptectedBlue);
}
// Parameters of test-cases for TestRGBOutput reversed
[Test]
[TestCase(0, 0, 0, 0, 0, 0)]
[TestCase(255, 255, 255, 0, 0, 1)]
[TestCase(255, 0, 0, 0, 1, 1)]
[TestCase(255, 255, 0, 60, 1, 1)]
[TestCase(0, 255, 0, 120, 1, 1)]
[TestCase(0, 0, 255, 240, 1, 1)]
[TestCase(255, 0, 255, 300, 1, 1)]
[TestCase(64, 128, 128, 180, 0.5, 0.5)]
[TestCase(193, 196, 224, 234, 0.14, 0.88)]
[TestCase(128, 32, 80, 330, 0.75, 0.5)]
public static void TestHsvOutput(
byte red,
byte green,
byte blue,
double expectedHue,
double expectedSaturation,
double expectedValue)
{
var hsv = RgbHsvConversion.RgbToHsv(red, green, blue);
// approximate-assertions needed because of small deviations due to converting between byte-values and double-values.
hsv.Item1.Should().BeApproximately(expectedHue, 0.2);
hsv.Item2.Should().BeApproximately(expectedSaturation, 0.002);
hsv.Item3.Should().BeApproximately(expectedValue, 0.002);
}
}
}
| 86 |
C-Sharp | TheAlgorithms | C# | using System.Numerics;
using Algorithms.Other;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
public static class SieveOfEratosthenesTests
{
private static readonly long[] First10000PrimeNumbers =
{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,
107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223,
227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347,
349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607,
613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743,
751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883,
887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031,
1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153,
1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289,
1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433,
1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553,
1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669,
1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823,
1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979,
1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099,
2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251,
2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381,
2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539,
2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683,
2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797,
2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953,
2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109,
3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259,
3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407,
3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547,
3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691,
3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847,
3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001,
4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133,
4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273,
4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451,
4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603,
4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759,
4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933,
4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059,
5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231,
5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407,
5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527,
5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689,
5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843,
5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011,
6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163,
6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311,
6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469,
6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653,
6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793,
6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959,
6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109,
7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283,
7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481,
7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591,
7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753,
7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927,
7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101,
8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269,
8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431,
8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623,
8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747,
8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923,
8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067,
9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239,
9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403,
9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539,
9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721,
9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859,
9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, 10039, 10061,
10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169,
10177, 10181, 10193, 10211, 10223, 10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303,
10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457,
10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607,
10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733,
10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889,
10891, 10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057,
11059, 11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173,
11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, 11321,
11329, 11351, 11353, 11369, 11383, 11393, 11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483,
11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621, 11633,
11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777, 11779, 11783, 11789, 11801,
11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927,
11933, 11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049,
12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197, 12203,
12211, 12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343,
12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, 12479,
12487, 12491, 12497, 12503, 12511, 12517, 12527, 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589,
12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713, 12721,
12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829, 12841, 12853, 12889, 12893,
12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, 12973, 12979, 12983, 13001, 13003,
13007, 13009, 13033, 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, 13121, 13127, 13147, 13151,
13159, 13163, 13171, 13177, 13183, 13187, 13217, 13219, 13229, 13241, 13249, 13259, 13267, 13291, 13297,
13309, 13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, 13441, 13451,
13457, 13463, 13469, 13477, 13487, 13499, 13513, 13523, 13537, 13553, 13567, 13577, 13591, 13597, 13613,
13619, 13627, 13633, 13649, 13669, 13679, 13681, 13687, 13691, 13693, 13697, 13709, 13711, 13721, 13723,
13729, 13751, 13757, 13759, 13763, 13781, 13789, 13799, 13807, 13829, 13831, 13841, 13859, 13873, 13877,
13879, 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, 13963, 13967, 13997, 13999, 14009, 14011,
14029, 14033, 14051, 14057, 14071, 14081, 14083, 14087, 14107, 14143, 14149, 14153, 14159, 14173, 14177,
14197, 14207, 14221, 14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, 14327, 14341, 14347, 14369,
14387, 14389, 14401, 14407, 14411, 14419, 14423, 14431, 14437, 14447, 14449, 14461, 14479, 14489, 14503,
14519, 14533, 14537, 14543, 14549, 14551, 14557, 14561, 14563, 14591, 14593, 14621, 14627, 14629, 14633,
14639, 14653, 14657, 14669, 14683, 14699, 14713, 14717, 14723, 14731, 14737, 14741, 14747, 14753, 14759,
14767, 14771, 14779, 14783, 14797, 14813, 14821, 14827, 14831, 14843, 14851, 14867, 14869, 14879, 14887,
14891, 14897, 14923, 14929, 14939, 14947, 14951, 14957, 14969, 14983, 15013, 15017, 15031, 15053, 15061,
15073, 15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, 15139, 15149, 15161, 15173, 15187, 15193,
15199, 15217, 15227, 15233, 15241, 15259, 15263, 15269, 15271, 15277, 15287, 15289, 15299, 15307, 15313,
15319, 15329, 15331, 15349, 15359, 15361, 15373, 15377, 15383, 15391, 15401, 15413, 15427, 15439, 15443,
15451, 15461, 15467, 15473, 15493, 15497, 15511, 15527, 15541, 15551, 15559, 15569, 15581, 15583, 15601,
15607, 15619, 15629, 15641, 15643, 15647, 15649, 15661, 15667, 15671, 15679, 15683, 15727, 15731, 15733,
15737, 15739, 15749, 15761, 15767, 15773, 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859, 15877,
15881, 15887, 15889, 15901, 15907, 15913, 15919, 15923, 15937, 15959, 15971, 15973, 15991, 16001, 16007,
16033, 16057, 16061, 16063, 16067, 16069, 16073, 16087, 16091, 16097, 16103, 16111, 16127, 16139, 16141,
16183, 16187, 16189, 16193, 16217, 16223, 16229, 16231, 16249, 16253, 16267, 16273, 16301, 16319, 16333,
16339, 16349, 16361, 16363, 16369, 16381, 16411, 16417, 16421, 16427, 16433, 16447, 16451, 16453, 16477,
16481, 16487, 16493, 16519, 16529, 16547, 16553, 16561, 16567, 16573, 16603, 16607, 16619, 16631, 16633,
16649, 16651, 16657, 16661, 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747, 16759, 16763, 16787,
16811, 16823, 16829, 16831, 16843, 16871, 16879, 16883, 16889, 16901, 16903, 16921, 16927, 16931, 16937,
16943, 16963, 16979, 16981, 16987, 16993, 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, 17077,
17093, 17099, 17107, 17117, 17123, 17137, 17159, 17167, 17183, 17189, 17191, 17203, 17207, 17209, 17231,
17239, 17257, 17291, 17293, 17299, 17317, 17321, 17327, 17333, 17341, 17351, 17359, 17377, 17383, 17387,
17389, 17393, 17401, 17417, 17419, 17431, 17443, 17449, 17467, 17471, 17477, 17483, 17489, 17491, 17497,
17509, 17519, 17539, 17551, 17569, 17573, 17579, 17581, 17597, 17599, 17609, 17623, 17627, 17657, 17659,
17669, 17681, 17683, 17707, 17713, 17729, 17737, 17747, 17749, 17761, 17783, 17789, 17791, 17807, 17827,
17837, 17839, 17851, 17863, 17881, 17891, 17903, 17909, 17911, 17921, 17923, 17929, 17939, 17957, 17959,
17971, 17977, 17981, 17987, 17989, 18013, 18041, 18043, 18047, 18049, 18059, 18061, 18077, 18089, 18097,
18119, 18121, 18127, 18131, 18133, 18143, 18149, 18169, 18181, 18191, 18199, 18211, 18217, 18223, 18229,
18233, 18251, 18253, 18257, 18269, 18287, 18289, 18301, 18307, 18311, 18313, 18329, 18341, 18353, 18367,
18371, 18379, 18397, 18401, 18413, 18427, 18433, 18439, 18443, 18451, 18457, 18461, 18481, 18493, 18503,
18517, 18521, 18523, 18539, 18541, 18553, 18583, 18587, 18593, 18617, 18637, 18661, 18671, 18679, 18691,
18701, 18713, 18719, 18731, 18743, 18749, 18757, 18773, 18787, 18793, 18797, 18803, 18839, 18859, 18869,
18899, 18911, 18913, 18917, 18919, 18947, 18959, 18973, 18979, 19001, 19009, 19013, 19031, 19037, 19051,
19069, 19073, 19079, 19081, 19087, 19121, 19139, 19141, 19157, 19163, 19181, 19183, 19207, 19211, 19213,
19219, 19231, 19237, 19249, 19259, 19267, 19273, 19289, 19301, 19309, 19319, 19333, 19373, 19379, 19381,
19387, 19391, 19403, 19417, 19421, 19423, 19427, 19429, 19433, 19441, 19447, 19457, 19463, 19469, 19471,
19477, 19483, 19489, 19501, 19507, 19531, 19541, 19543, 19553, 19559, 19571, 19577, 19583, 19597, 19603,
19609, 19661, 19681, 19687, 19697, 19699, 19709, 19717, 19727, 19739, 19751, 19753, 19759, 19763, 19777,
19793, 19801, 19813, 19819, 19841, 19843, 19853, 19861, 19867, 19889, 19891, 19913, 19919, 19927, 19937,
19949, 19961, 19963, 19973, 19979, 19991, 19993, 19997, 20011, 20021, 20023, 20029, 20047, 20051, 20063,
20071, 20089, 20101, 20107, 20113, 20117, 20123, 20129, 20143, 20147, 20149, 20161, 20173, 20177, 20183,
20201, 20219, 20231, 20233, 20249, 20261, 20269, 20287, 20297, 20323, 20327, 20333, 20341, 20347, 20353,
20357, 20359, 20369, 20389, 20393, 20399, 20407, 20411, 20431, 20441, 20443, 20477, 20479, 20483, 20507,
20509, 20521, 20533, 20543, 20549, 20551, 20563, 20593, 20599, 20611, 20627, 20639, 20641, 20663, 20681,
20693, 20707, 20717, 20719, 20731, 20743, 20747, 20749, 20753, 20759, 20771, 20773, 20789, 20807, 20809,
20849, 20857, 20873, 20879, 20887, 20897, 20899, 20903, 20921, 20929, 20939, 20947, 20959, 20963, 20981,
20983, 21001, 21011, 21013, 21017, 21019, 21023, 21031, 21059, 21061, 21067, 21089, 21101, 21107, 21121,
21139, 21143, 21149, 21157, 21163, 21169, 21179, 21187, 21191, 21193, 21211, 21221, 21227, 21247, 21269,
21277, 21283, 21313, 21317, 21319, 21323, 21341, 21347, 21377, 21379, 21383, 21391, 21397, 21401, 21407,
21419, 21433, 21467, 21481, 21487, 21491, 21493, 21499, 21503, 21517, 21521, 21523, 21529, 21557, 21559,
21563, 21569, 21577, 21587, 21589, 21599, 21601, 21611, 21613, 21617, 21647, 21649, 21661, 21673, 21683,
21701, 21713, 21727, 21737, 21739, 21751, 21757, 21767, 21773, 21787, 21799, 21803, 21817, 21821, 21839,
21841, 21851, 21859, 21863, 21871, 21881, 21893, 21911, 21929, 21937, 21943, 21961, 21977, 21991, 21997,
22003, 22013, 22027, 22031, 22037, 22039, 22051, 22063, 22067, 22073, 22079, 22091, 22093, 22109, 22111,
22123, 22129, 22133, 22147, 22153, 22157, 22159, 22171, 22189, 22193, 22229, 22247, 22259, 22271, 22273,
22277, 22279, 22283, 22291, 22303, 22307, 22343, 22349, 22367, 22369, 22381, 22391, 22397, 22409, 22433,
22441, 22447, 22453, 22469, 22481, 22483, 22501, 22511, 22531, 22541, 22543, 22549, 22567, 22571, 22573,
22613, 22619, 22621, 22637, 22639, 22643, 22651, 22669, 22679, 22691, 22697, 22699, 22709, 22717, 22721,
22727, 22739, 22741, 22751, 22769, 22777, 22783, 22787, 22807, 22811, 22817, 22853, 22859, 22861, 22871,
22877, 22901, 22907, 22921, 22937, 22943, 22961, 22963, 22973, 22993, 23003, 23011, 23017, 23021, 23027,
23029, 23039, 23041, 23053, 23057, 23059, 23063, 23071, 23081, 23087, 23099, 23117, 23131, 23143, 23159,
23167, 23173, 23189, 23197, 23201, 23203, 23209, 23227, 23251, 23269, 23279, 23291, 23293, 23297, 23311,
23321, 23327, 23333, 23339, 23357, 23369, 23371, 23399, 23417, 23431, 23447, 23459, 23473, 23497, 23509,
23531, 23537, 23539, 23549, 23557, 23561, 23563, 23567, 23581, 23593, 23599, 23603, 23609, 23623, 23627,
23629, 23633, 23663, 23669, 23671, 23677, 23687, 23689, 23719, 23741, 23743, 23747, 23753, 23761, 23767,
23773, 23789, 23801, 23813, 23819, 23827, 23831, 23833, 23857, 23869, 23873, 23879, 23887, 23893, 23899,
23909, 23911, 23917, 23929, 23957, 23971, 23977, 23981, 23993, 24001, 24007, 24019, 24023, 24029, 24043,
24049, 24061, 24071, 24077, 24083, 24091, 24097, 24103, 24107, 24109, 24113, 24121, 24133, 24137, 24151,
24169, 24179, 24181, 24197, 24203, 24223, 24229, 24239, 24247, 24251, 24281, 24317, 24329, 24337, 24359,
24371, 24373, 24379, 24391, 24407, 24413, 24419, 24421, 24439, 24443, 24469, 24473, 24481, 24499, 24509,
24517, 24527, 24533, 24547, 24551, 24571, 24593, 24611, 24623, 24631, 24659, 24671, 24677, 24683, 24691,
24697, 24709, 24733, 24749, 24763, 24767, 24781, 24793, 24799, 24809, 24821, 24841, 24847, 24851, 24859,
24877, 24889, 24907, 24917, 24919, 24923, 24943, 24953, 24967, 24971, 24977, 24979, 24989, 25013, 25031,
25033, 25037, 25057, 25073, 25087, 25097, 25111, 25117, 25121, 25127, 25147, 25153, 25163, 25169, 25171,
25183, 25189, 25219, 25229, 25237, 25243, 25247, 25253, 25261, 25301, 25303, 25307, 25309, 25321, 25339,
25343, 25349, 25357, 25367, 25373, 25391, 25409, 25411, 25423, 25439, 25447, 25453, 25457, 25463, 25469,
25471, 25523, 25537, 25541, 25561, 25577, 25579, 25583, 25589, 25601, 25603, 25609, 25621, 25633, 25639,
25643, 25657, 25667, 25673, 25679, 25693, 25703, 25717, 25733, 25741, 25747, 25759, 25763, 25771, 25793,
25799, 25801, 25819, 25841, 25847, 25849, 25867, 25873, 25889, 25903, 25913, 25919, 25931, 25933, 25939,
25943, 25951, 25969, 25981, 25997, 25999, 26003, 26017, 26021, 26029, 26041, 26053, 26083, 26099, 26107,
26111, 26113, 26119, 26141, 26153, 26161, 26171, 26177, 26183, 26189, 26203, 26209, 26227, 26237, 26249,
26251, 26261, 26263, 26267, 26293, 26297, 26309, 26317, 26321, 26339, 26347, 26357, 26371, 26387, 26393,
26399, 26407, 26417, 26423, 26431, 26437, 26449, 26459, 26479, 26489, 26497, 26501, 26513, 26539, 26557,
26561, 26573, 26591, 26597, 26627, 26633, 26641, 26647, 26669, 26681, 26683, 26687, 26693, 26699, 26701,
26711, 26713, 26717, 26723, 26729, 26731, 26737, 26759, 26777, 26783, 26801, 26813, 26821, 26833, 26839,
26849, 26861, 26863, 26879, 26881, 26891, 26893, 26903, 26921, 26927, 26947, 26951, 26953, 26959, 26981,
26987, 26993, 27011, 27017, 27031, 27043, 27059, 27061, 27067, 27073, 27077, 27091, 27103, 27107, 27109,
27127, 27143, 27179, 27191, 27197, 27211, 27239, 27241, 27253, 27259, 27271, 27277, 27281, 27283, 27299,
27329, 27337, 27361, 27367, 27397, 27407, 27409, 27427, 27431, 27437, 27449, 27457, 27479, 27481, 27487,
27509, 27527, 27529, 27539, 27541, 27551, 27581, 27583, 27611, 27617, 27631, 27647, 27653, 27673, 27689,
27691, 27697, 27701, 27733, 27737, 27739, 27743, 27749, 27751, 27763, 27767, 27773, 27779, 27791, 27793,
27799, 27803, 27809, 27817, 27823, 27827, 27847, 27851, 27883, 27893, 27901, 27917, 27919, 27941, 27943,
27947, 27953, 27961, 27967, 27983, 27997, 28001, 28019, 28027, 28031, 28051, 28057, 28069, 28081, 28087,
28097, 28099, 28109, 28111, 28123, 28151, 28163, 28181, 28183, 28201, 28211, 28219, 28229, 28277, 28279,
28283, 28289, 28297, 28307, 28309, 28319, 28349, 28351, 28387, 28393, 28403, 28409, 28411, 28429, 28433,
28439, 28447, 28463, 28477, 28493, 28499, 28513, 28517, 28537, 28541, 28547, 28549, 28559, 28571, 28573,
28579, 28591, 28597, 28603, 28607, 28619, 28621, 28627, 28631, 28643, 28649, 28657, 28661, 28663, 28669,
28687, 28697, 28703, 28711, 28723, 28729, 28751, 28753, 28759, 28771, 28789, 28793, 28807, 28813, 28817,
28837, 28843, 28859, 28867, 28871, 28879, 28901, 28909, 28921, 28927, 28933, 28949, 28961, 28979, 29009,
29017, 29021, 29023, 29027, 29033, 29059, 29063, 29077, 29101, 29123, 29129, 29131, 29137, 29147, 29153,
29167, 29173, 29179, 29191, 29201, 29207, 29209, 29221, 29231, 29243, 29251, 29269, 29287, 29297, 29303,
29311, 29327, 29333, 29339, 29347, 29363, 29383, 29387, 29389, 29399, 29401, 29411, 29423, 29429, 29437,
29443, 29453, 29473, 29483, 29501, 29527, 29531, 29537, 29567, 29569, 29573, 29581, 29587, 29599, 29611,
29629, 29633, 29641, 29663, 29669, 29671, 29683, 29717, 29723, 29741, 29753, 29759, 29761, 29789, 29803,
29819, 29833, 29837, 29851, 29863, 29867, 29873, 29879, 29881, 29917, 29921, 29927, 29947, 29959, 29983,
29989, 30011, 30013, 30029, 30047, 30059, 30071, 30089, 30091, 30097, 30103, 30109, 30113, 30119, 30133,
30137, 30139, 30161, 30169, 30181, 30187, 30197, 30203, 30211, 30223, 30241, 30253, 30259, 30269, 30271,
30293, 30307, 30313, 30319, 30323, 30341, 30347, 30367, 30389, 30391, 30403, 30427, 30431, 30449, 30467,
30469, 30491, 30493, 30497, 30509, 30517, 30529, 30539, 30553, 30557, 30559, 30577, 30593, 30631, 30637,
30643, 30649, 30661, 30671, 30677, 30689, 30697, 30703, 30707, 30713, 30727, 30757, 30763, 30773, 30781,
30803, 30809, 30817, 30829, 30839, 30841, 30851, 30853, 30859, 30869, 30871, 30881, 30893, 30911, 30931,
30937, 30941, 30949, 30971, 30977, 30983, 31013, 31019, 31033, 31039, 31051, 31063, 31069, 31079, 31081,
31091, 31121, 31123, 31139, 31147, 31151, 31153, 31159, 31177, 31181, 31183, 31189, 31193, 31219, 31223,
31231, 31237, 31247, 31249, 31253, 31259, 31267, 31271, 31277, 31307, 31319, 31321, 31327, 31333, 31337,
31357, 31379, 31387, 31391, 31393, 31397, 31469, 31477, 31481, 31489, 31511, 31513, 31517, 31531, 31541,
31543, 31547, 31567, 31573, 31583, 31601, 31607, 31627, 31643, 31649, 31657, 31663, 31667, 31687, 31699,
31721, 31723, 31727, 31729, 31741, 31751, 31769, 31771, 31793, 31799, 31817, 31847, 31849, 31859, 31873,
31883, 31891, 31907, 31957, 31963, 31973, 31981, 31991, 32003, 32009, 32027, 32029, 32051, 32057, 32059,
32063, 32069, 32077, 32083, 32089, 32099, 32117, 32119, 32141, 32143, 32159, 32173, 32183, 32189, 32191,
32203, 32213, 32233, 32237, 32251, 32257, 32261, 32297, 32299, 32303, 32309, 32321, 32323, 32327, 32341,
32353, 32359, 32363, 32369, 32371, 32377, 32381, 32401, 32411, 32413, 32423, 32429, 32441, 32443, 32467,
32479, 32491, 32497, 32503, 32507, 32531, 32533, 32537, 32561, 32563, 32569, 32573, 32579, 32587, 32603,
32609, 32611, 32621, 32633, 32647, 32653, 32687, 32693, 32707, 32713, 32717, 32719, 32749, 32771, 32779,
32783, 32789, 32797, 32801, 32803, 32831, 32833, 32839, 32843, 32869, 32887, 32909, 32911, 32917, 32933,
32939, 32941, 32957, 32969, 32971, 32983, 32987, 32993, 32999, 33013, 33023, 33029, 33037, 33049, 33053,
33071, 33073, 33083, 33091, 33107, 33113, 33119, 33149, 33151, 33161, 33179, 33181, 33191, 33199, 33203,
33211, 33223, 33247, 33287, 33289, 33301, 33311, 33317, 33329, 33331, 33343, 33347, 33349, 33353, 33359,
33377, 33391, 33403, 33409, 33413, 33427, 33457, 33461, 33469, 33479, 33487, 33493, 33503, 33521, 33529,
33533, 33547, 33563, 33569, 33577, 33581, 33587, 33589, 33599, 33601, 33613, 33617, 33619, 33623, 33629,
33637, 33641, 33647, 33679, 33703, 33713, 33721, 33739, 33749, 33751, 33757, 33767, 33769, 33773, 33791,
33797, 33809, 33811, 33827, 33829, 33851, 33857, 33863, 33871, 33889, 33893, 33911, 33923, 33931, 33937,
33941, 33961, 33967, 33997, 34019, 34031, 34033, 34039, 34057, 34061, 34123, 34127, 34129, 34141, 34147,
34157, 34159, 34171, 34183, 34211, 34213, 34217, 34231, 34253, 34259, 34261, 34267, 34273, 34283, 34297,
34301, 34303, 34313, 34319, 34327, 34337, 34351, 34361, 34367, 34369, 34381, 34403, 34421, 34429, 34439,
34457, 34469, 34471, 34483, 34487, 34499, 34501, 34511, 34513, 34519, 34537, 34543, 34549, 34583, 34589,
34591, 34603, 34607, 34613, 34631, 34649, 34651, 34667, 34673, 34679, 34687, 34693, 34703, 34721, 34729,
34739, 34747, 34757, 34759, 34763, 34781, 34807, 34819, 34841, 34843, 34847, 34849, 34871, 34877, 34883,
34897, 34913, 34919, 34939, 34949, 34961, 34963, 34981, 35023, 35027, 35051, 35053, 35059, 35069, 35081,
35083, 35089, 35099, 35107, 35111, 35117, 35129, 35141, 35149, 35153, 35159, 35171, 35201, 35221, 35227,
35251, 35257, 35267, 35279, 35281, 35291, 35311, 35317, 35323, 35327, 35339, 35353, 35363, 35381, 35393,
35401, 35407, 35419, 35423, 35437, 35447, 35449, 35461, 35491, 35507, 35509, 35521, 35527, 35531, 35533,
35537, 35543, 35569, 35573, 35591, 35593, 35597, 35603, 35617, 35671, 35677, 35729, 35731, 35747, 35753,
35759, 35771, 35797, 35801, 35803, 35809, 35831, 35837, 35839, 35851, 35863, 35869, 35879, 35897, 35899,
35911, 35923, 35933, 35951, 35963, 35969, 35977, 35983, 35993, 35999, 36007, 36011, 36013, 36017, 36037,
36061, 36067, 36073, 36083, 36097, 36107, 36109, 36131, 36137, 36151, 36161, 36187, 36191, 36209, 36217,
36229, 36241, 36251, 36263, 36269, 36277, 36293, 36299, 36307, 36313, 36319, 36341, 36343, 36353, 36373,
36383, 36389, 36433, 36451, 36457, 36467, 36469, 36473, 36479, 36493, 36497, 36523, 36527, 36529, 36541,
36551, 36559, 36563, 36571, 36583, 36587, 36599, 36607, 36629, 36637, 36643, 36653, 36671, 36677, 36683,
36691, 36697, 36709, 36713, 36721, 36739, 36749, 36761, 36767, 36779, 36781, 36787, 36791, 36793, 36809,
36821, 36833, 36847, 36857, 36871, 36877, 36887, 36899, 36901, 36913, 36919, 36923, 36929, 36931, 36943,
36947, 36973, 36979, 36997, 37003, 37013, 37019, 37021, 37039, 37049, 37057, 37061, 37087, 37097, 37117,
37123, 37139, 37159, 37171, 37181, 37189, 37199, 37201, 37217, 37223, 37243, 37253, 37273, 37277, 37307,
37309, 37313, 37321, 37337, 37339, 37357, 37361, 37363, 37369, 37379, 37397, 37409, 37423, 37441, 37447,
37463, 37483, 37489, 37493, 37501, 37507, 37511, 37517, 37529, 37537, 37547, 37549, 37561, 37567, 37571,
37573, 37579, 37589, 37591, 37607, 37619, 37633, 37643, 37649, 37657, 37663, 37691, 37693, 37699, 37717,
37747, 37781, 37783, 37799, 37811, 37813, 37831, 37847, 37853, 37861, 37871, 37879, 37889, 37897, 37907,
37951, 37957, 37963, 37967, 37987, 37991, 37993, 37997, 38011, 38039, 38047, 38053, 38069, 38083, 38113,
38119, 38149, 38153, 38167, 38177, 38183, 38189, 38197, 38201, 38219, 38231, 38237, 38239, 38261, 38273,
38281, 38287, 38299, 38303, 38317, 38321, 38327, 38329, 38333, 38351, 38371, 38377, 38393, 38431, 38447,
38449, 38453, 38459, 38461, 38501, 38543, 38557, 38561, 38567, 38569, 38593, 38603, 38609, 38611, 38629,
38639, 38651, 38653, 38669, 38671, 38677, 38693, 38699, 38707, 38711, 38713, 38723, 38729, 38737, 38747,
38749, 38767, 38783, 38791, 38803, 38821, 38833, 38839, 38851, 38861, 38867, 38873, 38891, 38903, 38917,
38921, 38923, 38933, 38953, 38959, 38971, 38977, 38993, 39019, 39023, 39041, 39043, 39047, 39079, 39089,
39097, 39103, 39107, 39113, 39119, 39133, 39139, 39157, 39161, 39163, 39181, 39191, 39199, 39209, 39217,
39227, 39229, 39233, 39239, 39241, 39251, 39293, 39301, 39313, 39317, 39323, 39341, 39343, 39359, 39367,
39371, 39373, 39383, 39397, 39409, 39419, 39439, 39443, 39451, 39461, 39499, 39503, 39509, 39511, 39521,
39541, 39551, 39563, 39569, 39581, 39607, 39619, 39623, 39631, 39659, 39667, 39671, 39679, 39703, 39709,
39719, 39727, 39733, 39749, 39761, 39769, 39779, 39791, 39799, 39821, 39827, 39829, 39839, 39841, 39847,
39857, 39863, 39869, 39877, 39883, 39887, 39901, 39929, 39937, 39953, 39971, 39979, 39983, 39989, 40009,
40013, 40031, 40037, 40039, 40063, 40087, 40093, 40099, 40111, 40123, 40127, 40129, 40151, 40153, 40163,
40169, 40177, 40189, 40193, 40213, 40231, 40237, 40241, 40253, 40277, 40283, 40289, 40343, 40351, 40357,
40361, 40387, 40423, 40427, 40429, 40433, 40459, 40471, 40483, 40487, 40493, 40499, 40507, 40519, 40529,
40531, 40543, 40559, 40577, 40583, 40591, 40597, 40609, 40627, 40637, 40639, 40693, 40697, 40699, 40709,
40739, 40751, 40759, 40763, 40771, 40787, 40801, 40813, 40819, 40823, 40829, 40841, 40847, 40849, 40853,
40867, 40879, 40883, 40897, 40903, 40927, 40933, 40939, 40949, 40961, 40973, 40993, 41011, 41017, 41023,
41039, 41047, 41051, 41057, 41077, 41081, 41113, 41117, 41131, 41141, 41143, 41149, 41161, 41177, 41179,
41183, 41189, 41201, 41203, 41213, 41221, 41227, 41231, 41233, 41243, 41257, 41263, 41269, 41281, 41299,
41333, 41341, 41351, 41357, 41381, 41387, 41389, 41399, 41411, 41413, 41443, 41453, 41467, 41479, 41491,
41507, 41513, 41519, 41521, 41539, 41543, 41549, 41579, 41593, 41597, 41603, 41609, 41611, 41617, 41621,
41627, 41641, 41647, 41651, 41659, 41669, 41681, 41687, 41719, 41729, 41737, 41759, 41761, 41771, 41777,
41801, 41809, 41813, 41843, 41849, 41851, 41863, 41879, 41887, 41893, 41897, 41903, 41911, 41927, 41941,
41947, 41953, 41957, 41959, 41969, 41981, 41983, 41999, 42013, 42017, 42019, 42023, 42043, 42061, 42071,
42073, 42083, 42089, 42101, 42131, 42139, 42157, 42169, 42179, 42181, 42187, 42193, 42197, 42209, 42221,
42223, 42227, 42239, 42257, 42281, 42283, 42293, 42299, 42307, 42323, 42331, 42337, 42349, 42359, 42373,
42379, 42391, 42397, 42403, 42407, 42409, 42433, 42437, 42443, 42451, 42457, 42461, 42463, 42467, 42473,
42487, 42491, 42499, 42509, 42533, 42557, 42569, 42571, 42577, 42589, 42611, 42641, 42643, 42649, 42667,
42677, 42683, 42689, 42697, 42701, 42703, 42709, 42719, 42727, 42737, 42743, 42751, 42767, 42773, 42787,
42793, 42797, 42821, 42829, 42839, 42841, 42853, 42859, 42863, 42899, 42901, 42923, 42929, 42937, 42943,
42953, 42961, 42967, 42979, 42989, 43003, 43013, 43019, 43037, 43049, 43051, 43063, 43067, 43093, 43103,
43117, 43133, 43151, 43159, 43177, 43189, 43201, 43207, 43223, 43237, 43261, 43271, 43283, 43291, 43313,
43319, 43321, 43331, 43391, 43397, 43399, 43403, 43411, 43427, 43441, 43451, 43457, 43481, 43487, 43499,
43517, 43541, 43543, 43573, 43577, 43579, 43591, 43597, 43607, 43609, 43613, 43627, 43633, 43649, 43651,
43661, 43669, 43691, 43711, 43717, 43721, 43753, 43759, 43777, 43781, 43783, 43787, 43789, 43793, 43801,
43853, 43867, 43889, 43891, 43913, 43933, 43943, 43951, 43961, 43963, 43969, 43973, 43987, 43991, 43997,
44017, 44021, 44027, 44029, 44041, 44053, 44059, 44071, 44087, 44089, 44101, 44111, 44119, 44123, 44129,
44131, 44159, 44171, 44179, 44189, 44201, 44203, 44207, 44221, 44249, 44257, 44263, 44267, 44269, 44273,
44279, 44281, 44293, 44351, 44357, 44371, 44381, 44383, 44389, 44417, 44449, 44453, 44483, 44491, 44497,
44501, 44507, 44519, 44531, 44533, 44537, 44543, 44549, 44563, 44579, 44587, 44617, 44621, 44623, 44633,
44641, 44647, 44651, 44657, 44683, 44687, 44699, 44701, 44711, 44729, 44741, 44753, 44771, 44773, 44777,
44789, 44797, 44809, 44819, 44839, 44843, 44851, 44867, 44879, 44887, 44893, 44909, 44917, 44927, 44939,
44953, 44959, 44963, 44971, 44983, 44987, 45007, 45013, 45053, 45061, 45077, 45083, 45119, 45121, 45127,
45131, 45137, 45139, 45161, 45179, 45181, 45191, 45197, 45233, 45247, 45259, 45263, 45281, 45289, 45293,
45307, 45317, 45319, 45329, 45337, 45341, 45343, 45361, 45377, 45389, 45403, 45413, 45427, 45433, 45439,
45481, 45491, 45497, 45503, 45523, 45533, 45541, 45553, 45557, 45569, 45587, 45589, 45599, 45613, 45631,
45641, 45659, 45667, 45673, 45677, 45691, 45697, 45707, 45737, 45751, 45757, 45763, 45767, 45779, 45817,
45821, 45823, 45827, 45833, 45841, 45853, 45863, 45869, 45887, 45893, 45943, 45949, 45953, 45959, 45971,
45979, 45989, 46021, 46027, 46049, 46051, 46061, 46073, 46091, 46093, 46099, 46103, 46133, 46141, 46147,
46153, 46171, 46181, 46183, 46187, 46199, 46219, 46229, 46237, 46261, 46271, 46273, 46279, 46301, 46307,
46309, 46327, 46337, 46349, 46351, 46381, 46399, 46411, 46439, 46441, 46447, 46451, 46457, 46471, 46477,
46489, 46499, 46507, 46511, 46523, 46549, 46559, 46567, 46573, 46589, 46591, 46601, 46619, 46633, 46639,
46643, 46649, 46663, 46679, 46681, 46687, 46691, 46703, 46723, 46727, 46747, 46751, 46757, 46769, 46771,
46807, 46811, 46817, 46819, 46829, 46831, 46853, 46861, 46867, 46877, 46889, 46901, 46919, 46933, 46957,
46993, 46997, 47017, 47041, 47051, 47057, 47059, 47087, 47093, 47111, 47119, 47123, 47129, 47137, 47143,
47147, 47149, 47161, 47189, 47207, 47221, 47237, 47251, 47269, 47279, 47287, 47293, 47297, 47303, 47309,
47317, 47339, 47351, 47353, 47363, 47381, 47387, 47389, 47407, 47417, 47419, 47431, 47441, 47459, 47491,
47497, 47501, 47507, 47513, 47521, 47527, 47533, 47543, 47563, 47569, 47581, 47591, 47599, 47609, 47623,
47629, 47639, 47653, 47657, 47659, 47681, 47699, 47701, 47711, 47713, 47717, 47737, 47741, 47743, 47777,
47779, 47791, 47797, 47807, 47809, 47819, 47837, 47843, 47857, 47869, 47881, 47903, 47911, 47917, 47933,
47939, 47947, 47951, 47963, 47969, 47977, 47981, 48017, 48023, 48029, 48049, 48073, 48079, 48091, 48109,
48119, 48121, 48131, 48157, 48163, 48179, 48187, 48193, 48197, 48221, 48239, 48247, 48259, 48271, 48281,
48299, 48311, 48313, 48337, 48341, 48353, 48371, 48383, 48397, 48407, 48409, 48413, 48437, 48449, 48463,
48473, 48479, 48481, 48487, 48491, 48497, 48523, 48527, 48533, 48539, 48541, 48563, 48571, 48589, 48593,
48611, 48619, 48623, 48647, 48649, 48661, 48673, 48677, 48679, 48731, 48733, 48751, 48757, 48761, 48767,
48779, 48781, 48787, 48799, 48809, 48817, 48821, 48823, 48847, 48857, 48859, 48869, 48871, 48883, 48889,
48907, 48947, 48953, 48973, 48989, 48991, 49003, 49009, 49019, 49031, 49033, 49037, 49043, 49057, 49069,
49081, 49103, 49109, 49117, 49121, 49123, 49139, 49157, 49169, 49171, 49177, 49193, 49199, 49201, 49207,
49211, 49223, 49253, 49261, 49277, 49279, 49297, 49307, 49331, 49333, 49339, 49363, 49367, 49369, 49391,
49393, 49409, 49411, 49417, 49429, 49433, 49451, 49459, 49463, 49477, 49481, 49499, 49523, 49529, 49531,
49537, 49547, 49549, 49559, 49597, 49603, 49613, 49627, 49633, 49639, 49663, 49667, 49669, 49681, 49697,
49711, 49727, 49739, 49741, 49747, 49757, 49783, 49787, 49789, 49801, 49807, 49811, 49823, 49831, 49843,
49853, 49871, 49877, 49891, 49919, 49921, 49927, 49937, 49939, 49943, 49957, 49991, 49993, 49999, 50021,
50023, 50033, 50047, 50051, 50053, 50069, 50077, 50087, 50093, 50101, 50111, 50119, 50123, 50129, 50131,
50147, 50153, 50159, 50177, 50207, 50221, 50227, 50231, 50261, 50263, 50273, 50287, 50291, 50311, 50321,
50329, 50333, 50341, 50359, 50363, 50377, 50383, 50387, 50411, 50417, 50423, 50441, 50459, 50461, 50497,
50503, 50513, 50527, 50539, 50543, 50549, 50551, 50581, 50587, 50591, 50593, 50599, 50627, 50647, 50651,
50671, 50683, 50707, 50723, 50741, 50753, 50767, 50773, 50777, 50789, 50821, 50833, 50839, 50849, 50857,
50867, 50873, 50891, 50893, 50909, 50923, 50929, 50951, 50957, 50969, 50971, 50989, 50993, 51001, 51031,
51043, 51047, 51059, 51061, 51071, 51109, 51131, 51133, 51137, 51151, 51157, 51169, 51193, 51197, 51199,
51203, 51217, 51229, 51239, 51241, 51257, 51263, 51283, 51287, 51307, 51329, 51341, 51343, 51347, 51349,
51361, 51383, 51407, 51413, 51419, 51421, 51427, 51431, 51437, 51439, 51449, 51461, 51473, 51479, 51481,
51487, 51503, 51511, 51517, 51521, 51539, 51551, 51563, 51577, 51581, 51593, 51599, 51607, 51613, 51631,
51637, 51647, 51659, 51673, 51679, 51683, 51691, 51713, 51719, 51721, 51749, 51767, 51769, 51787, 51797,
51803, 51817, 51827, 51829, 51839, 51853, 51859, 51869, 51871, 51893, 51899, 51907, 51913, 51929, 51941,
51949, 51971, 51973, 51977, 51991, 52009, 52021, 52027, 52051, 52057, 52067, 52069, 52081, 52103, 52121,
52127, 52147, 52153, 52163, 52177, 52181, 52183, 52189, 52201, 52223, 52237, 52249, 52253, 52259, 52267,
52289, 52291, 52301, 52313, 52321, 52361, 52363, 52369, 52379, 52387, 52391, 52433, 52453, 52457, 52489,
52501, 52511, 52517, 52529, 52541, 52543, 52553, 52561, 52567, 52571, 52579, 52583, 52609, 52627, 52631,
52639, 52667, 52673, 52691, 52697, 52709, 52711, 52721, 52727, 52733, 52747, 52757, 52769, 52783, 52807,
52813, 52817, 52837, 52859, 52861, 52879, 52883, 52889, 52901, 52903, 52919, 52937, 52951, 52957, 52963,
52967, 52973, 52981, 52999, 53003, 53017, 53047, 53051, 53069, 53077, 53087, 53089, 53093, 53101, 53113,
53117, 53129, 53147, 53149, 53161, 53171, 53173, 53189, 53197, 53201, 53231, 53233, 53239, 53267, 53269,
53279, 53281, 53299, 53309, 53323, 53327, 53353, 53359, 53377, 53381, 53401, 53407, 53411, 53419, 53437,
53441, 53453, 53479, 53503, 53507, 53527, 53549, 53551, 53569, 53591, 53593, 53597, 53609, 53611, 53617,
53623, 53629, 53633, 53639, 53653, 53657, 53681, 53693, 53699, 53717, 53719, 53731, 53759, 53773, 53777,
53783, 53791, 53813, 53819, 53831, 53849, 53857, 53861, 53881, 53887, 53891, 53897, 53899, 53917, 53923,
53927, 53939, 53951, 53959, 53987, 53993, 54001, 54011, 54013, 54037, 54049, 54059, 54083, 54091, 54101,
54121, 54133, 54139, 54151, 54163, 54167, 54181, 54193, 54217, 54251, 54269, 54277, 54287, 54293, 54311,
54319, 54323, 54331, 54347, 54361, 54367, 54371, 54377, 54401, 54403, 54409, 54413, 54419, 54421, 54437,
54443, 54449, 54469, 54493, 54497, 54499, 54503, 54517, 54521, 54539, 54541, 54547, 54559, 54563, 54577,
54581, 54583, 54601, 54617, 54623, 54629, 54631, 54647, 54667, 54673, 54679, 54709, 54713, 54721, 54727,
54751, 54767, 54773, 54779, 54787, 54799, 54829, 54833, 54851, 54869, 54877, 54881, 54907, 54917, 54919,
54941, 54949, 54959, 54973, 54979, 54983, 55001, 55009, 55021, 55049, 55051, 55057, 55061, 55073, 55079,
55103, 55109, 55117, 55127, 55147, 55163, 55171, 55201, 55207, 55213, 55217, 55219, 55229, 55243, 55249,
55259, 55291, 55313, 55331, 55333, 55337, 55339, 55343, 55351, 55373, 55381, 55399, 55411, 55439, 55441,
55457, 55469, 55487, 55501, 55511, 55529, 55541, 55547, 55579, 55589, 55603, 55609, 55619, 55621, 55631,
55633, 55639, 55661, 55663, 55667, 55673, 55681, 55691, 55697, 55711, 55717, 55721, 55733, 55763, 55787,
55793, 55799, 55807, 55813, 55817, 55819, 55823, 55829, 55837, 55843, 55849, 55871, 55889, 55897, 55901,
55903, 55921, 55927, 55931, 55933, 55949, 55967, 55987, 55997, 56003, 56009, 56039, 56041, 56053, 56081,
56087, 56093, 56099, 56101, 56113, 56123, 56131, 56149, 56167, 56171, 56179, 56197, 56207, 56209, 56237,
56239, 56249, 56263, 56267, 56269, 56299, 56311, 56333, 56359, 56369, 56377, 56383, 56393, 56401, 56417,
56431, 56437, 56443, 56453, 56467, 56473, 56477, 56479, 56489, 56501, 56503, 56509, 56519, 56527, 56531,
56533, 56543, 56569, 56591, 56597, 56599, 56611, 56629, 56633, 56659, 56663, 56671, 56681, 56687, 56701,
56711, 56713, 56731, 56737, 56747, 56767, 56773, 56779, 56783, 56807, 56809, 56813, 56821, 56827, 56843,
56857, 56873, 56891, 56893, 56897, 56909, 56911, 56921, 56923, 56929, 56941, 56951, 56957, 56963, 56983,
56989, 56993, 56999, 57037, 57041, 57047, 57059, 57073, 57077, 57089, 57097, 57107, 57119, 57131, 57139,
57143, 57149, 57163, 57173, 57179, 57191, 57193, 57203, 57221, 57223, 57241, 57251, 57259, 57269, 57271,
57283, 57287, 57301, 57329, 57331, 57347, 57349, 57367, 57373, 57383, 57389, 57397, 57413, 57427, 57457,
57467, 57487, 57493, 57503, 57527, 57529, 57557, 57559, 57571, 57587, 57593, 57601, 57637, 57641, 57649,
57653, 57667, 57679, 57689, 57697, 57709, 57713, 57719, 57727, 57731, 57737, 57751, 57773, 57781, 57787,
57791, 57793, 57803, 57809, 57829, 57839, 57847, 57853, 57859, 57881, 57899, 57901, 57917, 57923, 57943,
57947, 57973, 57977, 57991, 58013, 58027, 58031, 58043, 58049, 58057, 58061, 58067, 58073, 58099, 58109,
58111, 58129, 58147, 58151, 58153, 58169, 58171, 58189, 58193, 58199, 58207, 58211, 58217, 58229, 58231,
58237, 58243, 58271, 58309, 58313, 58321, 58337, 58363, 58367, 58369, 58379, 58391, 58393, 58403, 58411,
58417, 58427, 58439, 58441, 58451, 58453, 58477, 58481, 58511, 58537, 58543, 58549, 58567, 58573, 58579,
58601, 58603, 58613, 58631, 58657, 58661, 58679, 58687, 58693, 58699, 58711, 58727, 58733, 58741, 58757,
58763, 58771, 58787, 58789, 58831, 58889, 58897, 58901, 58907, 58909, 58913, 58921, 58937, 58943, 58963,
58967, 58979, 58991, 58997, 59009, 59011, 59021, 59023, 59029, 59051, 59053, 59063, 59069, 59077, 59083,
59093, 59107, 59113, 59119, 59123, 59141, 59149, 59159, 59167, 59183, 59197, 59207, 59209, 59219, 59221,
59233, 59239, 59243, 59263, 59273, 59281, 59333, 59341, 59351, 59357, 59359, 59369, 59377, 59387, 59393,
59399, 59407, 59417, 59419, 59441, 59443, 59447, 59453, 59467, 59471, 59473, 59497, 59509, 59513, 59539,
59557, 59561, 59567, 59581, 59611, 59617, 59621, 59627, 59629, 59651, 59659, 59663, 59669, 59671, 59693,
59699, 59707, 59723, 59729, 59743, 59747, 59753, 59771, 59779, 59791, 59797, 59809, 59833, 59863, 59879,
59887, 59921, 59929, 59951, 59957, 59971, 59981, 59999, 60013, 60017, 60029, 60037, 60041, 60077, 60083,
60089, 60091, 60101, 60103, 60107, 60127, 60133, 60139, 60149, 60161, 60167, 60169, 60209, 60217, 60223,
60251, 60257, 60259, 60271, 60289, 60293, 60317, 60331, 60337, 60343, 60353, 60373, 60383, 60397, 60413,
60427, 60443, 60449, 60457, 60493, 60497, 60509, 60521, 60527, 60539, 60589, 60601, 60607, 60611, 60617,
60623, 60631, 60637, 60647, 60649, 60659, 60661, 60679, 60689, 60703, 60719, 60727, 60733, 60737, 60757,
60761, 60763, 60773, 60779, 60793, 60811, 60821, 60859, 60869, 60887, 60889, 60899, 60901, 60913, 60917,
60919, 60923, 60937, 60943, 60953, 60961, 61001, 61007, 61027, 61031, 61043, 61051, 61057, 61091, 61099,
61121, 61129, 61141, 61151, 61153, 61169, 61211, 61223, 61231, 61253, 61261, 61283, 61291, 61297, 61331,
61333, 61339, 61343, 61357, 61363, 61379, 61381, 61403, 61409, 61417, 61441, 61463, 61469, 61471, 61483,
61487, 61493, 61507, 61511, 61519, 61543, 61547, 61553, 61559, 61561, 61583, 61603, 61609, 61613, 61627,
61631, 61637, 61643, 61651, 61657, 61667, 61673, 61681, 61687, 61703, 61717, 61723, 61729, 61751, 61757,
61781, 61813, 61819, 61837, 61843, 61861, 61871, 61879, 61909, 61927, 61933, 61949, 61961, 61967, 61979,
61981, 61987, 61991, 62003, 62011, 62017, 62039, 62047, 62053, 62057, 62071, 62081, 62099, 62119, 62129,
62131, 62137, 62141, 62143, 62171, 62189, 62191, 62201, 62207, 62213, 62219, 62233, 62273, 62297, 62299,
62303, 62311, 62323, 62327, 62347, 62351, 62383, 62401, 62417, 62423, 62459, 62467, 62473, 62477, 62483,
62497, 62501, 62507, 62533, 62539, 62549, 62563, 62581, 62591, 62597, 62603, 62617, 62627, 62633, 62639,
62653, 62659, 62683, 62687, 62701, 62723, 62731, 62743, 62753, 62761, 62773, 62791, 62801, 62819, 62827,
62851, 62861, 62869, 62873, 62897, 62903, 62921, 62927, 62929, 62939, 62969, 62971, 62981, 62983, 62987,
62989, 63029, 63031, 63059, 63067, 63073, 63079, 63097, 63103, 63113, 63127, 63131, 63149, 63179, 63197,
63199, 63211, 63241, 63247, 63277, 63281, 63299, 63311, 63313, 63317, 63331, 63337, 63347, 63353, 63361,
63367, 63377, 63389, 63391, 63397, 63409, 63419, 63421, 63439, 63443, 63463, 63467, 63473, 63487, 63493,
63499, 63521, 63527, 63533, 63541, 63559, 63577, 63587, 63589, 63599, 63601, 63607, 63611, 63617, 63629,
63647, 63649, 63659, 63667, 63671, 63689, 63691, 63697, 63703, 63709, 63719, 63727, 63737, 63743, 63761,
63773, 63781, 63793, 63799, 63803, 63809, 63823, 63839, 63841, 63853, 63857, 63863, 63901, 63907, 63913,
63929, 63949, 63977, 63997, 64007, 64013, 64019, 64033, 64037, 64063, 64067, 64081, 64091, 64109, 64123,
64151, 64153, 64157, 64171, 64187, 64189, 64217, 64223, 64231, 64237, 64271, 64279, 64283, 64301, 64303,
64319, 64327, 64333, 64373, 64381, 64399, 64403, 64433, 64439, 64451, 64453, 64483, 64489, 64499, 64513,
64553, 64567, 64577, 64579, 64591, 64601, 64609, 64613, 64621, 64627, 64633, 64661, 64663, 64667, 64679,
64693, 64709, 64717, 64747, 64763, 64781, 64783, 64793, 64811, 64817, 64849, 64853, 64871, 64877, 64879,
64891, 64901, 64919, 64921, 64927, 64937, 64951, 64969, 64997, 65003, 65011, 65027, 65029, 65033, 65053,
65063, 65071, 65089, 65099, 65101, 65111, 65119, 65123, 65129, 65141, 65147, 65167, 65171, 65173, 65179,
65183, 65203, 65213, 65239, 65257, 65267, 65269, 65287, 65293, 65309, 65323, 65327, 65353, 65357, 65371,
65381, 65393, 65407, 65413, 65419, 65423, 65437, 65447, 65449, 65479, 65497, 65519, 65521, 65537, 65539,
65543, 65551, 65557, 65563, 65579, 65581, 65587, 65599, 65609, 65617, 65629, 65633, 65647, 65651, 65657,
65677, 65687, 65699, 65701, 65707, 65713, 65717, 65719, 65729, 65731, 65761, 65777, 65789, 65809, 65827,
65831, 65837, 65839, 65843, 65851, 65867, 65881, 65899, 65921, 65927, 65929, 65951, 65957, 65963, 65981,
65983, 65993, 66029, 66037, 66041, 66047, 66067, 66071, 66083, 66089, 66103, 66107, 66109, 66137, 66161,
66169, 66173, 66179, 66191, 66221, 66239, 66271, 66293, 66301, 66337, 66343, 66347, 66359, 66361, 66373,
66377, 66383, 66403, 66413, 66431, 66449, 66457, 66463, 66467, 66491, 66499, 66509, 66523, 66529, 66533,
66541, 66553, 66569, 66571, 66587, 66593, 66601, 66617, 66629, 66643, 66653, 66683, 66697, 66701, 66713,
66721, 66733, 66739, 66749, 66751, 66763, 66791, 66797, 66809, 66821, 66841, 66851, 66853, 66863, 66877,
66883, 66889, 66919, 66923, 66931, 66943, 66947, 66949, 66959, 66973, 66977, 67003, 67021, 67033, 67043,
67049, 67057, 67061, 67073, 67079, 67103, 67121, 67129, 67139, 67141, 67153, 67157, 67169, 67181, 67187,
67189, 67211, 67213, 67217, 67219, 67231, 67247, 67261, 67271, 67273, 67289, 67307, 67339, 67343, 67349,
67369, 67391, 67399, 67409, 67411, 67421, 67427, 67429, 67433, 67447, 67453, 67477, 67481, 67489, 67493,
67499, 67511, 67523, 67531, 67537, 67547, 67559, 67567, 67577, 67579, 67589, 67601, 67607, 67619, 67631,
67651, 67679, 67699, 67709, 67723, 67733, 67741, 67751, 67757, 67759, 67763, 67777, 67783, 67789, 67801,
67807, 67819, 67829, 67843, 67853, 67867, 67883, 67891, 67901, 67927, 67931, 67933, 67939, 67943, 67957,
67961, 67967, 67979, 67987, 67993, 68023, 68041, 68053, 68059, 68071, 68087, 68099, 68111, 68113, 68141,
68147, 68161, 68171, 68207, 68209, 68213, 68219, 68227, 68239, 68261, 68279, 68281, 68311, 68329, 68351,
68371, 68389, 68399, 68437, 68443, 68447, 68449, 68473, 68477, 68483, 68489, 68491, 68501, 68507, 68521,
68531, 68539, 68543, 68567, 68581, 68597, 68611, 68633, 68639, 68659, 68669, 68683, 68687, 68699, 68711,
68713, 68729, 68737, 68743, 68749, 68767, 68771, 68777, 68791, 68813, 68819, 68821, 68863, 68879, 68881,
68891, 68897, 68899, 68903, 68909, 68917, 68927, 68947, 68963, 68993, 69001, 69011, 69019, 69029, 69031,
69061, 69067, 69073, 69109, 69119, 69127, 69143, 69149, 69151, 69163, 69191, 69193, 69197, 69203, 69221,
69233, 69239, 69247, 69257, 69259, 69263, 69313, 69317, 69337, 69341, 69371, 69379, 69383, 69389, 69401,
69403, 69427, 69431, 69439, 69457, 69463, 69467, 69473, 69481, 69491, 69493, 69497, 69499, 69539, 69557,
69593, 69623, 69653, 69661, 69677, 69691, 69697, 69709, 69737, 69739, 69761, 69763, 69767, 69779, 69809,
69821, 69827, 69829, 69833, 69847, 69857, 69859, 69877, 69899, 69911, 69929, 69931, 69941, 69959, 69991,
69997, 70001, 70003, 70009, 70019, 70039, 70051, 70061, 70067, 70079, 70099, 70111, 70117, 70121, 70123,
70139, 70141, 70157, 70163, 70177, 70181, 70183, 70199, 70201, 70207, 70223, 70229, 70237, 70241, 70249,
70271, 70289, 70297, 70309, 70313, 70321, 70327, 70351, 70373, 70379, 70381, 70393, 70423, 70429, 70439,
70451, 70457, 70459, 70481, 70487, 70489, 70501, 70507, 70529, 70537, 70549, 70571, 70573, 70583, 70589,
70607, 70619, 70621, 70627, 70639, 70657, 70663, 70667, 70687, 70709, 70717, 70729, 70753, 70769, 70783,
70793, 70823, 70841, 70843, 70849, 70853, 70867, 70877, 70879, 70891, 70901, 70913, 70919, 70921, 70937,
70949, 70951, 70957, 70969, 70979, 70981, 70991, 70997, 70999, 71011, 71023, 71039, 71059, 71069, 71081,
71089, 71119, 71129, 71143, 71147, 71153, 71161, 71167, 71171, 71191, 71209, 71233, 71237, 71249, 71257,
71261, 71263, 71287, 71293, 71317, 71327, 71329, 71333, 71339, 71341, 71347, 71353, 71359, 71363, 71387,
71389, 71399, 71411, 71413, 71419, 71429, 71437, 71443, 71453, 71471, 71473, 71479, 71483, 71503, 71527,
71537, 71549, 71551, 71563, 71569, 71593, 71597, 71633, 71647, 71663, 71671, 71693, 71699, 71707, 71711,
71713, 71719, 71741, 71761, 71777, 71789, 71807, 71809, 71821, 71837, 71843, 71849, 71861, 71867, 71879,
71881, 71887, 71899, 71909, 71917, 71933, 71941, 71947, 71963, 71971, 71983, 71987, 71993, 71999, 72019,
72031, 72043, 72047, 72053, 72073, 72077, 72089, 72091, 72101, 72103, 72109, 72139, 72161, 72167, 72169,
72173, 72211, 72221, 72223, 72227, 72229, 72251, 72253, 72269, 72271, 72277, 72287, 72307, 72313, 72337,
72341, 72353, 72367, 72379, 72383, 72421, 72431, 72461, 72467, 72469, 72481, 72493, 72497, 72503, 72533,
72547, 72551, 72559, 72577, 72613, 72617, 72623, 72643, 72647, 72649, 72661, 72671, 72673, 72679, 72689,
72701, 72707, 72719, 72727, 72733, 72739, 72763, 72767, 72797, 72817, 72823, 72859, 72869, 72871, 72883,
72889, 72893, 72901, 72907, 72911, 72923, 72931, 72937, 72949, 72953, 72959, 72973, 72977, 72997, 73009,
73013, 73019, 73037, 73039, 73043, 73061, 73063, 73079, 73091, 73121, 73127, 73133, 73141, 73181, 73189,
73237, 73243, 73259, 73277, 73291, 73303, 73309, 73327, 73331, 73351, 73361, 73363, 73369, 73379, 73387,
73417, 73421, 73433, 73453, 73459, 73471, 73477, 73483, 73517, 73523, 73529, 73547, 73553, 73561, 73571,
73583, 73589, 73597, 73607, 73609, 73613, 73637, 73643, 73651, 73673, 73679, 73681, 73693, 73699, 73709,
73721, 73727, 73751, 73757, 73771, 73783, 73819, 73823, 73847, 73849, 73859, 73867, 73877, 73883, 73897,
73907, 73939, 73943, 73951, 73961, 73973, 73999, 74017, 74021, 74027, 74047, 74051, 74071, 74077, 74093,
74099, 74101, 74131, 74143, 74149, 74159, 74161, 74167, 74177, 74189, 74197, 74201, 74203, 74209, 74219,
74231, 74257, 74279, 74287, 74293, 74297, 74311, 74317, 74323, 74353, 74357, 74363, 74377, 74381, 74383,
74411, 74413, 74419, 74441, 74449, 74453, 74471, 74489, 74507, 74509, 74521, 74527, 74531, 74551, 74561,
74567, 74573, 74587, 74597, 74609, 74611, 74623, 74653, 74687, 74699, 74707, 74713, 74717, 74719, 74729,
74731, 74747, 74759, 74761, 74771, 74779, 74797, 74821, 74827, 74831, 74843, 74857, 74861, 74869, 74873,
74887, 74891, 74897, 74903, 74923, 74929, 74933, 74941, 74959, 75011, 75013, 75017, 75029, 75037, 75041,
75079, 75083, 75109, 75133, 75149, 75161, 75167, 75169, 75181, 75193, 75209, 75211, 75217, 75223, 75227,
75239, 75253, 75269, 75277, 75289, 75307, 75323, 75329, 75337, 75347, 75353, 75367, 75377, 75389, 75391,
75401, 75403, 75407, 75431, 75437, 75479, 75503, 75511, 75521, 75527, 75533, 75539, 75541, 75553, 75557,
75571, 75577, 75583, 75611, 75617, 75619, 75629, 75641, 75653, 75659, 75679, 75683, 75689, 75703, 75707,
75709, 75721, 75731, 75743, 75767, 75773, 75781, 75787, 75793, 75797, 75821, 75833, 75853, 75869, 75883,
75913, 75931, 75937, 75941, 75967, 75979, 75983, 75989, 75991, 75997, 76001, 76003, 76031, 76039, 76079,
76081, 76091, 76099, 76103, 76123, 76129, 76147, 76157, 76159, 76163, 76207, 76213, 76231, 76243, 76249,
76253, 76259, 76261, 76283, 76289, 76303, 76333, 76343, 76367, 76369, 76379, 76387, 76403, 76421, 76423,
76441, 76463, 76471, 76481, 76487, 76493, 76507, 76511, 76519, 76537, 76541, 76543, 76561, 76579, 76597,
76603, 76607, 76631, 76649, 76651, 76667, 76673, 76679, 76697, 76717, 76733, 76753, 76757, 76771, 76777,
76781, 76801, 76819, 76829, 76831, 76837, 76847, 76871, 76873, 76883, 76907, 76913, 76919, 76943, 76949,
76961, 76963, 76991, 77003, 77017, 77023, 77029, 77041, 77047, 77069, 77081, 77093, 77101, 77137, 77141,
77153, 77167, 77171, 77191, 77201, 77213, 77237, 77239, 77243, 77249, 77261, 77263, 77267, 77269, 77279,
77291, 77317, 77323, 77339, 77347, 77351, 77359, 77369, 77377, 77383, 77417, 77419, 77431, 77447, 77471,
77477, 77479, 77489, 77491, 77509, 77513, 77521, 77527, 77543, 77549, 77551, 77557, 77563, 77569, 77573,
77587, 77591, 77611, 77617, 77621, 77641, 77647, 77659, 77681, 77687, 77689, 77699, 77711, 77713, 77719,
77723, 77731, 77743, 77747, 77761, 77773, 77783, 77797, 77801, 77813, 77839, 77849, 77863, 77867, 77893,
77899, 77929, 77933, 77951, 77969, 77977, 77983, 77999, 78007, 78017, 78031, 78041, 78049, 78059, 78079,
78101, 78121, 78137, 78139, 78157, 78163, 78167, 78173, 78179, 78191, 78193, 78203, 78229, 78233, 78241,
78259, 78277, 78283, 78301, 78307, 78311, 78317, 78341, 78347, 78367, 78401, 78427, 78437, 78439, 78467,
78479, 78487, 78497, 78509, 78511, 78517, 78539, 78541, 78553, 78569, 78571, 78577, 78583, 78593, 78607,
78623, 78643, 78649, 78653, 78691, 78697, 78707, 78713, 78721, 78737, 78779, 78781, 78787, 78791, 78797,
78803, 78809, 78823, 78839, 78853, 78857, 78877, 78887, 78889, 78893, 78901, 78919, 78929, 78941, 78977,
78979, 78989, 79031, 79039, 79043, 79063, 79087, 79103, 79111, 79133, 79139, 79147, 79151, 79153, 79159,
79181, 79187, 79193, 79201, 79229, 79231, 79241, 79259, 79273, 79279, 79283, 79301, 79309, 79319, 79333,
79337, 79349, 79357, 79367, 79379, 79393, 79397, 79399, 79411, 79423, 79427, 79433, 79451, 79481, 79493,
79531, 79537, 79549, 79559, 79561, 79579, 79589, 79601, 79609, 79613, 79621, 79627, 79631, 79633, 79657,
79669, 79687, 79691, 79693, 79697, 79699, 79757, 79769, 79777, 79801, 79811, 79813, 79817, 79823, 79829,
79841, 79843, 79847, 79861, 79867, 79873, 79889, 79901, 79903, 79907, 79939, 79943, 79967, 79973, 79979,
79987, 79997, 79999, 80021, 80039, 80051, 80071, 80077, 80107, 80111, 80141, 80147, 80149, 80153, 80167,
80173, 80177, 80191, 80207, 80209, 80221, 80231, 80233, 80239, 80251, 80263, 80273, 80279, 80287, 80309,
80317, 80329, 80341, 80347, 80363, 80369, 80387, 80407, 80429, 80447, 80449, 80471, 80473, 80489, 80491,
80513, 80527, 80537, 80557, 80567, 80599, 80603, 80611, 80621, 80627, 80629, 80651, 80657, 80669, 80671,
80677, 80681, 80683, 80687, 80701, 80713, 80737, 80747, 80749, 80761, 80777, 80779, 80783, 80789, 80803,
80809, 80819, 80831, 80833, 80849, 80863, 80897, 80909, 80911, 80917, 80923, 80929, 80933, 80953, 80963,
80989, 81001, 81013, 81017, 81019, 81023, 81031, 81041, 81043, 81047, 81049, 81071, 81077, 81083, 81097,
81101, 81119, 81131, 81157, 81163, 81173, 81181, 81197, 81199, 81203, 81223, 81233, 81239, 81281, 81283,
81293, 81299, 81307, 81331, 81343, 81349, 81353, 81359, 81371, 81373, 81401, 81409, 81421, 81439, 81457,
81463, 81509, 81517, 81527, 81533, 81547, 81551, 81553, 81559, 81563, 81569, 81611, 81619, 81629, 81637,
81647, 81649, 81667, 81671, 81677, 81689, 81701, 81703, 81707, 81727, 81737, 81749, 81761, 81769, 81773,
81799, 81817, 81839, 81847, 81853, 81869, 81883, 81899, 81901, 81919, 81929, 81931, 81937, 81943, 81953,
81967, 81971, 81973, 82003, 82007, 82009, 82013, 82021, 82031, 82037, 82039, 82051, 82067, 82073, 82129,
82139, 82141, 82153, 82163, 82171, 82183, 82189, 82193, 82207, 82217, 82219, 82223, 82231, 82237, 82241,
82261, 82267, 82279, 82301, 82307, 82339, 82349, 82351, 82361, 82373, 82387, 82393, 82421, 82457, 82463,
82469, 82471, 82483, 82487, 82493, 82499, 82507, 82529, 82531, 82549, 82559, 82561, 82567, 82571, 82591,
82601, 82609, 82613, 82619, 82633, 82651, 82657, 82699, 82721, 82723, 82727, 82729, 82757, 82759, 82763,
82781, 82787, 82793, 82799, 82811, 82813, 82837, 82847, 82883, 82889, 82891, 82903, 82913, 82939, 82963,
82981, 82997, 83003, 83009, 83023, 83047, 83059, 83063, 83071, 83077, 83089, 83093, 83101, 83117, 83137,
83177, 83203, 83207, 83219, 83221, 83227, 83231, 83233, 83243, 83257, 83267, 83269, 83273, 83299, 83311,
83339, 83341, 83357, 83383, 83389, 83399, 83401, 83407, 83417, 83423, 83431, 83437, 83443, 83449, 83459,
83471, 83477, 83497, 83537, 83557, 83561, 83563, 83579, 83591, 83597, 83609, 83617, 83621, 83639, 83641,
83653, 83663, 83689, 83701, 83717, 83719, 83737, 83761, 83773, 83777, 83791, 83813, 83833, 83843, 83857,
83869, 83873, 83891, 83903, 83911, 83921, 83933, 83939, 83969, 83983, 83987, 84011, 84017, 84047, 84053,
84059, 84061, 84067, 84089, 84121, 84127, 84131, 84137, 84143, 84163, 84179, 84181, 84191, 84199, 84211,
84221, 84223, 84229, 84239, 84247, 84263, 84299, 84307, 84313, 84317, 84319, 84347, 84349, 84377, 84389,
84391, 84401, 84407, 84421, 84431, 84437, 84443, 84449, 84457, 84463, 84467, 84481, 84499, 84503, 84509,
84521, 84523, 84533, 84551, 84559, 84589, 84629, 84631, 84649, 84653, 84659, 84673, 84691, 84697, 84701,
84713, 84719, 84731, 84737, 84751, 84761, 84787, 84793, 84809, 84811, 84827, 84857, 84859, 84869, 84871,
84913, 84919, 84947, 84961, 84967, 84977, 84979, 84991, 85009, 85021, 85027, 85037, 85049, 85061, 85081,
85087, 85091, 85093, 85103, 85109, 85121, 85133, 85147, 85159, 85193, 85199, 85201, 85213, 85223, 85229,
85237, 85243, 85247, 85259, 85297, 85303, 85313, 85331, 85333, 85361, 85363, 85369, 85381, 85411, 85427,
85429, 85439, 85447, 85451, 85453, 85469, 85487, 85513, 85517, 85523, 85531, 85549, 85571, 85577, 85597,
85601, 85607, 85619, 85621, 85627, 85639, 85643, 85661, 85667, 85669, 85691, 85703, 85711, 85717, 85733,
85751, 85781, 85793, 85817, 85819, 85829, 85831, 85837, 85843, 85847, 85853, 85889, 85903, 85909, 85931,
85933, 85991, 85999, 86011, 86017, 86027, 86029, 86069, 86077, 86083, 86111, 86113, 86117, 86131, 86137,
86143, 86161, 86171, 86179, 86183, 86197, 86201, 86209, 86239, 86243, 86249, 86257, 86263, 86269, 86287,
86291, 86293, 86297, 86311, 86323, 86341, 86351, 86353, 86357, 86369, 86371, 86381, 86389, 86399, 86413,
86423, 86441, 86453, 86461, 86467, 86477, 86491, 86501, 86509, 86531, 86533, 86539, 86561, 86573, 86579,
86587, 86599, 86627, 86629, 86677, 86689, 86693, 86711, 86719, 86729, 86743, 86753, 86767, 86771, 86783,
86813, 86837, 86843, 86851, 86857, 86861, 86869, 86923, 86927, 86929, 86939, 86951, 86959, 86969, 86981,
86993, 87011, 87013, 87037, 87041, 87049, 87071, 87083, 87103, 87107, 87119, 87121, 87133, 87149, 87151,
87179, 87181, 87187, 87211, 87221, 87223, 87251, 87253, 87257, 87277, 87281, 87293, 87299, 87313, 87317,
87323, 87337, 87359, 87383, 87403, 87407, 87421, 87427, 87433, 87443, 87473, 87481, 87491, 87509, 87511,
87517, 87523, 87539, 87541, 87547, 87553, 87557, 87559, 87583, 87587, 87589, 87613, 87623, 87629, 87631,
87641, 87643, 87649, 87671, 87679, 87683, 87691, 87697, 87701, 87719, 87721, 87739, 87743, 87751, 87767,
87793, 87797, 87803, 87811, 87833, 87853, 87869, 87877, 87881, 87887, 87911, 87917, 87931, 87943, 87959,
87961, 87973, 87977, 87991, 88001, 88003, 88007, 88019, 88037, 88069, 88079, 88093, 88117, 88129, 88169,
88177, 88211, 88223, 88237, 88241, 88259, 88261, 88289, 88301, 88321, 88327, 88337, 88339, 88379, 88397,
88411, 88423, 88427, 88463, 88469, 88471, 88493, 88499, 88513, 88523, 88547, 88589, 88591, 88607, 88609,
88643, 88651, 88657, 88661, 88663, 88667, 88681, 88721, 88729, 88741, 88747, 88771, 88789, 88793, 88799,
88801, 88807, 88811, 88813, 88817, 88819, 88843, 88853, 88861, 88867, 88873, 88883, 88897, 88903, 88919,
88937, 88951, 88969, 88993, 88997, 89003, 89009, 89017, 89021, 89041, 89051, 89057, 89069, 89071, 89083,
89087, 89101, 89107, 89113, 89119, 89123, 89137, 89153, 89189, 89203, 89209, 89213, 89227, 89231, 89237,
89261, 89269, 89273, 89293, 89303, 89317, 89329, 89363, 89371, 89381, 89387, 89393, 89399, 89413, 89417,
89431, 89443, 89449, 89459, 89477, 89491, 89501, 89513, 89519, 89521, 89527, 89533, 89561, 89563, 89567,
89591, 89597, 89599, 89603, 89611, 89627, 89633, 89653, 89657, 89659, 89669, 89671, 89681, 89689, 89753,
89759, 89767, 89779, 89783, 89797, 89809, 89819, 89821, 89833, 89839, 89849, 89867, 89891, 89897, 89899,
89909, 89917, 89923, 89939, 89959, 89963, 89977, 89983, 89989, 90001, 90007, 90011, 90017, 90019, 90023,
90031, 90053, 90059, 90067, 90071, 90073, 90089, 90107, 90121, 90127, 90149, 90163, 90173, 90187, 90191,
90197, 90199, 90203, 90217, 90227, 90239, 90247, 90263, 90271, 90281, 90289, 90313, 90353, 90359, 90371,
90373, 90379, 90397, 90401, 90403, 90407, 90437, 90439, 90469, 90473, 90481, 90499, 90511, 90523, 90527,
90529, 90533, 90547, 90583, 90599, 90617, 90619, 90631, 90641, 90647, 90659, 90677, 90679, 90697, 90703,
90709, 90731, 90749, 90787, 90793, 90803, 90821, 90823, 90833, 90841, 90847, 90863, 90887, 90901, 90907,
90911, 90917, 90931, 90947, 90971, 90977, 90989, 90997, 91009, 91019, 91033, 91079, 91081, 91097, 91099,
91121, 91127, 91129, 91139, 91141, 91151, 91153, 91159, 91163, 91183, 91193, 91199, 91229, 91237, 91243,
91249, 91253, 91283, 91291, 91297, 91303, 91309, 91331, 91367, 91369, 91373, 91381, 91387, 91393, 91397,
91411, 91423, 91433, 91453, 91457, 91459, 91463, 91493, 91499, 91513, 91529, 91541, 91571, 91573, 91577,
91583, 91591, 91621, 91631, 91639, 91673, 91691, 91703, 91711, 91733, 91753, 91757, 91771, 91781, 91801,
91807, 91811, 91813, 91823, 91837, 91841, 91867, 91873, 91909, 91921, 91939, 91943, 91951, 91957, 91961,
91967, 91969, 91997, 92003, 92009, 92033, 92041, 92051, 92077, 92083, 92107, 92111, 92119, 92143, 92153,
92173, 92177, 92179, 92189, 92203, 92219, 92221, 92227, 92233, 92237, 92243, 92251, 92269, 92297, 92311,
92317, 92333, 92347, 92353, 92357, 92363, 92369, 92377, 92381, 92383, 92387, 92399, 92401, 92413, 92419,
92431, 92459, 92461, 92467, 92479, 92489, 92503, 92507, 92551, 92557, 92567, 92569, 92581, 92593, 92623,
92627, 92639, 92641, 92647, 92657, 92669, 92671, 92681, 92683, 92693, 92699, 92707, 92717, 92723, 92737,
92753, 92761, 92767, 92779, 92789, 92791, 92801, 92809, 92821, 92831, 92849, 92857, 92861, 92863, 92867,
92893, 92899, 92921, 92927, 92941, 92951, 92957, 92959, 92987, 92993, 93001, 93047, 93053, 93059, 93077,
93083, 93089, 93097, 93103, 93113, 93131, 93133, 93139, 93151, 93169, 93179, 93187, 93199, 93229, 93239,
93241, 93251, 93253, 93257, 93263, 93281, 93283, 93287, 93307, 93319, 93323, 93329, 93337, 93371, 93377,
93383, 93407, 93419, 93427, 93463, 93479, 93481, 93487, 93491, 93493, 93497, 93503, 93523, 93529, 93553,
93557, 93559, 93563, 93581, 93601, 93607, 93629, 93637, 93683, 93701, 93703, 93719, 93739, 93761, 93763,
93787, 93809, 93811, 93827, 93851, 93871, 93887, 93889, 93893, 93901, 93911, 93913, 93923, 93937, 93941,
93949, 93967, 93971, 93979, 93983, 93997, 94007, 94009, 94033, 94049, 94057, 94063, 94079, 94099, 94109,
94111, 94117, 94121, 94151, 94153, 94169, 94201, 94207, 94219, 94229, 94253, 94261, 94273, 94291, 94307,
94309, 94321, 94327, 94331, 94343, 94349, 94351, 94379, 94397, 94399, 94421, 94427, 94433, 94439, 94441,
94447, 94463, 94477, 94483, 94513, 94529, 94531, 94541, 94543, 94547, 94559, 94561, 94573, 94583, 94597,
94603, 94613, 94621, 94649, 94651, 94687, 94693, 94709, 94723, 94727, 94747, 94771, 94777, 94781, 94789,
94793, 94811, 94819, 94823, 94837, 94841, 94847, 94849, 94873, 94889, 94903, 94907, 94933, 94949, 94951,
94961, 94993, 94999, 95003, 95009, 95021, 95027, 95063, 95071, 95083, 95087, 95089, 95093, 95101, 95107,
95111, 95131, 95143, 95153, 95177, 95189, 95191, 95203, 95213, 95219, 95231, 95233, 95239, 95257, 95261,
95267, 95273, 95279, 95287, 95311, 95317, 95327, 95339, 95369, 95383, 95393, 95401, 95413, 95419, 95429,
95441, 95443, 95461, 95467, 95471, 95479, 95483, 95507, 95527, 95531, 95539, 95549, 95561, 95569, 95581,
95597, 95603, 95617, 95621, 95629, 95633, 95651, 95701, 95707, 95713, 95717, 95723, 95731, 95737, 95747,
95773, 95783, 95789, 95791, 95801, 95803, 95813, 95819, 95857, 95869, 95873, 95881, 95891, 95911, 95917,
95923, 95929, 95947, 95957, 95959, 95971, 95987, 95989, 96001, 96013, 96017, 96043, 96053, 96059, 96079,
96097, 96137, 96149, 96157, 96167, 96179, 96181, 96199, 96211, 96221, 96223, 96233, 96259, 96263, 96269,
96281, 96289, 96293, 96323, 96329, 96331, 96337, 96353, 96377, 96401, 96419, 96431, 96443, 96451, 96457,
96461, 96469, 96479, 96487, 96493, 96497, 96517, 96527, 96553, 96557, 96581, 96587, 96589, 96601, 96643,
96661, 96667, 96671, 96697, 96703, 96731, 96737, 96739, 96749, 96757, 96763, 96769, 96779, 96787, 96797,
96799, 96821, 96823, 96827, 96847, 96851, 96857, 96893, 96907, 96911, 96931, 96953, 96959, 96973, 96979,
96989, 96997, 97001, 97003, 97007, 97021, 97039, 97073, 97081, 97103, 97117, 97127, 97151, 97157, 97159,
97169, 97171, 97177, 97187, 97213, 97231, 97241, 97259, 97283, 97301, 97303, 97327, 97367, 97369, 97373,
97379, 97381, 97387, 97397, 97423, 97429, 97441, 97453, 97459, 97463, 97499, 97501, 97511, 97523, 97547,
97549, 97553, 97561, 97571, 97577, 97579, 97583, 97607, 97609, 97613, 97649, 97651, 97673, 97687, 97711,
97729, 97771, 97777, 97787, 97789, 97813, 97829, 97841, 97843, 97847, 97849, 97859, 97861, 97871, 97879,
97883, 97919, 97927, 97931, 97943, 97961, 97967, 97973, 97987, 98009, 98011, 98017, 98041, 98047, 98057,
98081, 98101, 98123, 98129, 98143, 98179, 98207, 98213, 98221, 98227, 98251, 98257, 98269, 98297, 98299,
98317, 98321, 98323, 98327, 98347, 98369, 98377, 98387, 98389, 98407, 98411, 98419, 98429, 98443, 98453,
98459, 98467, 98473, 98479, 98491, 98507, 98519, 98533, 98543, 98561, 98563, 98573, 98597, 98621, 98627,
98639, 98641, 98663, 98669, 98689, 98711, 98713, 98717, 98729, 98731, 98737, 98773, 98779, 98801, 98807,
98809, 98837, 98849, 98867, 98869, 98873, 98887, 98893, 98897, 98899, 98909, 98911, 98927, 98929, 98939,
98947, 98953, 98963, 98981, 98993, 98999, 99013, 99017, 99023, 99041, 99053, 99079, 99083, 99089, 99103,
99109, 99119, 99131, 99133, 99137, 99139, 99149, 99173, 99181, 99191, 99223, 99233, 99241, 99251, 99257,
99259, 99277, 99289, 99317, 99347, 99349, 99367, 99371, 99377, 99391, 99397, 99401, 99409, 99431, 99439,
99469, 99487, 99497, 99523, 99527, 99529, 99551, 99559, 99563, 99571, 99577, 99581, 99607, 99611, 99623,
99643, 99661, 99667, 99679, 99689, 99707, 99709, 99713, 99719, 99721, 99733, 99761, 99767, 99787, 99793,
99809, 99817, 99823, 99829, 99833, 99839, 99859, 99871, 99877, 99881, 99901, 99907, 99923, 99929, 99961,
99971, 99989, 99991, 100003, 100019, 100043, 100049, 100057, 100069, 100103, 100109, 100129, 100151, 100153,
100169, 100183, 100189, 100193, 100207, 100213, 100237, 100267, 100271, 100279, 100291, 100297, 100313,
100333, 100343, 100357, 100361, 100363, 100379, 100391, 100393, 100403, 100411, 100417, 100447, 100459,
100469, 100483, 100493, 100501, 100511, 100517, 100519, 100523, 100537, 100547, 100549, 100559, 100591,
100609, 100613, 100621, 100649, 100669, 100673, 100693, 100699, 100703, 100733, 100741, 100747, 100769,
100787, 100799, 100801, 100811, 100823, 100829, 100847, 100853, 100907, 100913, 100927, 100931, 100937,
100943, 100957, 100981, 100987, 100999, 101009, 101021, 101027, 101051, 101063, 101081, 101089, 101107,
101111, 101113, 101117, 101119, 101141, 101149, 101159, 101161, 101173, 101183, 101197, 101203, 101207,
101209, 101221, 101267, 101273, 101279, 101281, 101287, 101293, 101323, 101333, 101341, 101347, 101359,
101363, 101377, 101383, 101399, 101411, 101419, 101429, 101449, 101467, 101477, 101483, 101489, 101501,
101503, 101513, 101527, 101531, 101533, 101537, 101561, 101573, 101581, 101599, 101603, 101611, 101627,
101641, 101653, 101663, 101681, 101693, 101701, 101719, 101723, 101737, 101741, 101747, 101749, 101771,
101789, 101797, 101807, 101833, 101837, 101839, 101863, 101869, 101873, 101879, 101891, 101917, 101921,
101929, 101939, 101957, 101963, 101977, 101987, 101999, 102001, 102013, 102019, 102023, 102031, 102043,
102059, 102061, 102071, 102077, 102079, 102101, 102103, 102107, 102121, 102139, 102149, 102161, 102181,
102191, 102197, 102199, 102203, 102217, 102229, 102233, 102241, 102251, 102253, 102259, 102293, 102299,
102301, 102317, 102329, 102337, 102359, 102367, 102397, 102407, 102409, 102433, 102437, 102451, 102461,
102481, 102497, 102499, 102503, 102523, 102533, 102539, 102547, 102551, 102559, 102563, 102587, 102593,
102607, 102611, 102643, 102647, 102653, 102667, 102673, 102677, 102679, 102701, 102761, 102763, 102769,
102793, 102797, 102811, 102829, 102841, 102859, 102871, 102877, 102881, 102911, 102913, 102929, 102931,
102953, 102967, 102983, 103001, 103007, 103043, 103049, 103067, 103069, 103079, 103087, 103091, 103093,
103099, 103123, 103141, 103171, 103177, 103183, 103217, 103231, 103237, 103289, 103291, 103307, 103319,
103333, 103349, 103357, 103387, 103391, 103393, 103399, 103409, 103421, 103423, 103451, 103457, 103471,
103483, 103511, 103529, 103549, 103553, 103561, 103567, 103573, 103577, 103583, 103591, 103613, 103619,
103643, 103651, 103657, 103669, 103681, 103687, 103699, 103703, 103723, 103769, 103787, 103801, 103811,
103813, 103837, 103841, 103843, 103867, 103889, 103903, 103913, 103919, 103951, 103963, 103967, 103969,
103979, 103981, 103991, 103993, 103997, 104003, 104009, 104021, 104033, 104047, 104053, 104059, 104087,
104089, 104107, 104113, 104119, 104123, 104147, 104149, 104161, 104173, 104179, 104183, 104207, 104231,
104233, 104239, 104243, 104281, 104287, 104297, 104309, 104311, 104323, 104327, 104347, 104369, 104381,
104383, 104393, 104399, 104417, 104459, 104471, 104473, 104479, 104491, 104513, 104527, 104537, 104543,
104549, 104551, 104561, 104579, 104593, 104597, 104623, 104639, 104651, 104659, 104677, 104681, 104683,
104693, 104701, 104707, 104711, 104717, 104723, 104729,
};
[Test]
public static void First10_000PrimesCorrect() =>
Assert.AreEqual(First10000PrimeNumbers, new SieveOfEratosthenes(104729).GetPrimes());
[Test]
public static void TestMaxNumber() => Assert.AreEqual(new SieveOfEratosthenes(69).MaximumNumber, 69);
[TestCase(13, true)]
[TestCase(10, false)]
public static void TestIsPrime(int input, bool expected)
{
Assert.AreEqual(new SieveOfEratosthenes(100).IsPrime(input), expected);
}
}
}
| 685 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Other;
using NUnit.Framework;
namespace Algorithms.Tests.Other
{
public class WelfordsVarianceTest
{
[Test]
public void WelfordVariance_Example1()
{
var welfordsVariance = new WelfordsVariance();
welfordsVariance.AddValue(4);
welfordsVariance.AddValue(7);
welfordsVariance.AddValue(13);
welfordsVariance.AddValue(16);
Assert.AreEqual(4, welfordsVariance.Count);
Assert.AreEqual(10, welfordsVariance.Mean, 0.0000001);
Assert.AreEqual(22.5, welfordsVariance.Variance, 0.0000001);
Assert.AreEqual(30, welfordsVariance.SampleVariance, 0.0000001);
}
[Test]
public void WelfordVariance_Example2()
{
var stats = new WelfordsVariance();
stats.AddValue(100000004);
stats.AddValue(100000007);
stats.AddValue(100000013);
stats.AddValue(100000016);
Assert.AreEqual(4, stats.Count);
Assert.AreEqual(100000010, stats.Mean, 0.0000001);
Assert.AreEqual(22.5, stats.Variance, 0.0000001);
Assert.AreEqual(30, stats.SampleVariance, 0.0000001);
}
[Test]
public void WelfordVariance_Example3()
{
var stats = new WelfordsVariance();
stats.AddValue(1000000004);
stats.AddValue(1000000007);
stats.AddValue(1000000013);
stats.AddValue(1000000016);
Assert.AreEqual(4, stats.Count);
Assert.AreEqual(1000000010, stats.Mean, 0.0000001);
Assert.AreEqual(22.5, stats.Variance, 0.0000001);
Assert.AreEqual(30, stats.SampleVariance, 0.0000001);
}
[Test]
public void WelfordVariance_Example4()
{
var stats = new WelfordsVariance();
stats.AddValue(6);
stats.AddValue(2);
stats.AddValue(3);
stats.AddValue(1);
Assert.AreEqual(4, stats.Count);
Assert.AreEqual(3, stats.Mean, 0.0000001);
Assert.AreEqual(3.5, stats.Variance, 0.0000001);
Assert.AreEqual(4.6666667, stats.SampleVariance, 0.0000001);
}
[Test]
public void WelfordVariance_Example5()
{
var stats = new WelfordsVariance(new double[] { 2, 2, 5, 7 });
Assert.AreEqual(4, stats.Count);
Assert.AreEqual(4, stats.Mean, 0.0000001);
Assert.AreEqual(4.5, stats.Variance, 0.0000001);
Assert.AreEqual(6, stats.SampleVariance, 0.0000001);
}
[Test]
public void WelfordVariance_Example6()
{
var stats = new WelfordsVariance();
stats.AddRange(new double[] { 2, 4, 4, 4, 5, 5, 7, 9 });
Assert.AreEqual(8, stats.Count);
Assert.AreEqual(5, stats.Mean, 0.0000001);
Assert.AreEqual(4, stats.Variance, 0.0000001);
Assert.AreEqual(4.5714286, stats.SampleVariance, 0.0000001);
}
[Test]
public void WelfordVariance_Example7()
{
var stats = new WelfordsVariance();
stats.AddRange(new double[] { 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4 });
Assert.AreEqual(20, stats.Count);
Assert.AreEqual(7, stats.Mean, 0.0000001);
Assert.AreEqual(8.9, stats.Variance, 0.0000001);
Assert.AreEqual(9.3684211, stats.SampleVariance, 0.0000001);
}
[Test]
public void WelfordVariance_Example8()
{
var stats = new WelfordsVariance();
stats.AddRange(new [] { 51.3, 55.6, 49.9, 52.0 });
Assert.AreEqual(4, stats.Count);
Assert.AreEqual(52.2, stats.Mean, 0.0000001);
Assert.AreEqual(4.4250000, stats.Variance, 0.0000001);
Assert.AreEqual(5.9000000, stats.SampleVariance, 0.0000001);
}
[Test]
public void WelfordVariance_Example9()
{
var stats = new WelfordsVariance();
stats.AddRange(new double[] { -5, -3, -1, 1, 3 });
Assert.AreEqual(5, stats.Count);
Assert.AreEqual(-1, stats.Mean, 0.0000001);
Assert.AreEqual(8, stats.Variance, 0.0000001);
Assert.AreEqual(10, stats.SampleVariance, 0.0000001);
}
[Test]
public void WelfordVariance_Example10()
{
var stats = new WelfordsVariance();
stats.AddRange(new double[] { -1, 0, 1 });
Assert.AreEqual(3, stats.Count);
Assert.AreEqual(0, stats.Mean, 0.0000001);
Assert.AreEqual(0.6666667, stats.Variance, 0.0000001);
Assert.AreEqual(1, stats.SampleVariance, 0.0000001);
}
[Test]
public void WelfordVariance_NoValue()
{
var stats = new WelfordsVariance();
Assert.AreEqual(0, stats.Count);
Assert.AreEqual(double.NaN, stats.Mean);
Assert.AreEqual(double.NaN, stats.Variance);
Assert.AreEqual(double.NaN, stats.SampleVariance);
}
[Test]
public void WelfordVariance_OneValue()
{
var stats = new WelfordsVariance();
stats.AddValue(1);
Assert.AreEqual(1, stats.Count);
Assert.AreEqual(double.NaN, stats.Mean);
Assert.AreEqual(double.NaN, stats.Variance);
Assert.AreEqual(double.NaN, stats.SampleVariance);
}
[Test]
public void WelfordVariance_TwoValues()
{
var stats = new WelfordsVariance();
stats.AddValue(1);
stats.AddValue(2);
Assert.AreEqual(2, stats.Count);
Assert.AreEqual(1.5, stats.Mean, 0.0000001);
Assert.AreEqual(0.25, stats.Variance, 0.0000001);
Assert.AreEqual(0.5, stats.SampleVariance, 0.0000001);
}
}
}
| 164 |
C-Sharp | TheAlgorithms | C# | using System.Linq;
using Algorithms.Problems.CoinChange;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Problems.CoinChange.Dynamic
{
[TestFixture]
public class GenerateChangesDictionaryTests
{
[Test]
public void GenerateChangesDictionaryTest_Success()
{
const int coin = 6;
var coins = new[] { 1, 3, 4 };
var changeDictionary = DynamicCoinChangeSolver.GenerateChangesDictionary(coin, coins);
changeDictionary[1].SequenceEqual(new[] { 0 }).Should().BeTrue();
changeDictionary[2].SequenceEqual(new[] { 1 }).Should().BeTrue();
changeDictionary[3].SequenceEqual(new[] { 0, 2 }).Should().BeTrue();
changeDictionary[4].SequenceEqual(new[] { 0, 1, 3 }).Should().BeTrue();
changeDictionary[5].SequenceEqual(new[] { 1, 2, 4 }).Should().BeTrue();
changeDictionary[6].SequenceEqual(new[] { 2, 3, 5 }).Should().BeTrue();
}
}
}
| 27 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Linq;
using Algorithms.Problems.CoinChange;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Problems.CoinChange.Dynamic
{
[TestFixture]
public class GenerateSingleCoinChangesTests
{
[Test]
public void GenerateSingleCoinChangesTests_Success()
{
DynamicCoinChangeSolver
.GenerateSingleCoinChanges(6, new[] { 1, 2, 3 })
.SequenceEqual(new[] { 3, 4, 5 })
.Should().BeTrue();
DynamicCoinChangeSolver
.GenerateSingleCoinChanges(10, new[] { 1, 2, 3, 7, 12, 15, 14 })
.SequenceEqual(new[] { 3, 7, 8, 9 })
.Should().BeTrue();
DynamicCoinChangeSolver
.GenerateSingleCoinChanges(1, new[] { 1, 2, 3, 7, 12, 15, 14 })
.SequenceEqual(new[] { 0 })
.Should().BeTrue();
DynamicCoinChangeSolver
.GenerateSingleCoinChanges(2, new[] { 1, 2, 3, 7, 12, 15, 14 })
.SequenceEqual(new[] { 0, 1 })
.Should().BeTrue();
}
[Test]
public void GenerateSingleCoinChangesTests_ShouldThrow_CoinCannotBeLesserOrEqualZero()
{
const int coin = 0;
var arr = new[] { 1, 2, 3 };
Func<int[]> act = () => DynamicCoinChangeSolver.GenerateSingleCoinChanges(coin, arr);
act.Should().Throw<InvalidOperationException>()
.WithMessage($"The coin cannot be lesser or equal to zero {nameof(coin)}.");
}
[Test]
public void GenerateSingleCoinChangesTests_ShouldThrow_CoinsArrayCannotBeEmpty()
{
const int coin = 10;
var coinsAsArray = Array.Empty<int>();
Func<int[]> act = () => DynamicCoinChangeSolver.GenerateSingleCoinChanges(coin, coinsAsArray);
act.Should().Throw<InvalidOperationException>()
.WithMessage($"Coins array cannot be empty {nameof(coinsAsArray)}.");
}
[Test]
public void GenerateSingleCoinChangesTests_ShouldThrow_CoinsArrayMustContainOne()
{
const int coin = 10;
var coinsAsArray = new[] { 2, 3, 4 };
Func<int[]> act = () => DynamicCoinChangeSolver.GenerateSingleCoinChanges(coin, coinsAsArray);
act.Should().Throw<InvalidOperationException>()
.WithMessage($"Coins array must contain coin 1 {nameof(coinsAsArray)}.");
}
[Test]
public void GenerateSingleCoinChangesTests_ShouldThrow_CoinsArrayCannotContainNegativeValues()
{
const int coin = 10;
var coinsAsArray = new[] { 1, 2, -3, 4 };
Func<int[]> act = () => DynamicCoinChangeSolver.GenerateSingleCoinChanges(coin, coinsAsArray);
act.Should().Throw<InvalidOperationException>()
.WithMessage($"{nameof(coinsAsArray)} cannot contain numbers less than or equal to zero");
}
[Test]
public void GenerateSingleCoinChangesTests_ShouldThrow_CoinsArrayCannotContainDuplicates()
{
const int coin = 10;
var coinsAsArray = new[] { 1, 2, 3, 3, 4 };
Func<int[]> act = () => DynamicCoinChangeSolver.GenerateSingleCoinChanges(coin, coinsAsArray);
act.Should().Throw<InvalidOperationException>()
.WithMessage($"Coins array cannot contain duplicates {nameof(coinsAsArray)}.");
}
}
}
| 97 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Problems.CoinChange;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Problems.CoinChange.Dynamic
{
public class GetMinimalNextCoinTests
{
[Test]
public void GetMinimalNextCoinTest_Success()
{
const int coin = 6;
var coins = new[] { 1, 3, 4 };
var exchangeDict = DynamicCoinChangeSolver.GenerateChangesDictionary(coin, coins);
var nextCoin = DynamicCoinChangeSolver.GetMinimalNextCoin(6, exchangeDict);
nextCoin.Should().Be(3);
}
}
}
| 21 |
C-Sharp | TheAlgorithms | C# | using System.Linq;
using Algorithms.Problems.CoinChange;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Problems.CoinChange.Dynamic
{
[TestFixture]
public class MakeCoinChangeDynamicTests
{
[Test]
public void MakeCoinChangeDynamicTest_Success()
{
DynamicCoinChangeSolver
.MakeCoinChangeDynamic(6, new[] { 1, 3, 4 })
.SequenceEqual(new[] { 3, 3 })
.Should().BeTrue();
DynamicCoinChangeSolver
.MakeCoinChangeDynamic(8, new[] { 1, 3, 4 })
.SequenceEqual(new[] { 4, 4 })
.Should().BeTrue();
DynamicCoinChangeSolver
.MakeCoinChangeDynamic(25, new[] { 1, 3, 4, 12, 13, 14 })
.SequenceEqual(new[] { 13, 12 })
.Should().BeTrue();
DynamicCoinChangeSolver
.MakeCoinChangeDynamic(26, new[] { 1, 3, 4, 12, 13, 14 })
.SequenceEqual(new[] { 14, 12 })
.Should().BeTrue();
}
}
}
| 36 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Linq;
using Algorithms.Problems.NQueens;
using FluentAssertions;
using NUnit.Framework;
namespace Algorithms.Tests.Problems.NQueens
{
public static class BacktrackingNQueensSolverTests
{
[TestCase(0, 0)]
[TestCase(1, 1)]
[TestCase(2, 0)]
[TestCase(3, 0)]
[TestCase(4, 2)]
[TestCase(5, 10)]
[TestCase(6, 4)]
[TestCase(7, 40)]
[TestCase(8, 92)]
[TestCase(8, 92)]
[TestCase(9, 352)]
[TestCase(10, 724)]
[TestCase(11, 2680)]
public static void SolvesCorrectly(int n, int expectedNumberOfSolutions)
{
// Arrange
// Act
var result = new BacktrackingNQueensSolver().BacktrackSolve(n).ToList();
// Assert
result.Should().HaveCount(expectedNumberOfSolutions);
foreach (var solution in result)
{
ValidateOneQueenPerRow(solution);
ValidateOneQueenPerColumn(solution);
ValidateOneQueenPerTopLeftBottomRightDiagonalLine(solution);
ValidateOneQueenPerBottomLeftTopRightDiagonalLine(solution);
}
}
[Test]
public static void NCannotBeNegative()
{
var n = -1;
Action act = () => new BacktrackingNQueensSolver().BacktrackSolve(n);
act.Should().Throw<ArgumentException>();
}
private static void ValidateOneQueenPerRow(bool[,] solution)
{
for (var i = 0; i < solution.GetLength(1); i++)
{
var foundQueen = false;
for (var j = 0; j < solution.GetLength(0); j++)
{
foundQueen = ValidateCell(foundQueen, solution[j, i]);
}
}
}
private static void ValidateOneQueenPerColumn(bool[,] solution)
{
for (var i = 0; i < solution.GetLength(0); i++)
{
var foundQueen = false;
for (var j = 0; j < solution.GetLength(1); j++)
{
foundQueen = ValidateCell(foundQueen, solution[i, j]);
}
}
}
private static void ValidateOneQueenPerTopLeftBottomRightDiagonalLine(bool[,] solution)
{
for (var i = 0; i < solution.GetLength(0); i++)
{
var foundQueen = false;
for (var j = 0; i + j < solution.GetLength(1); j++)
{
foundQueen = ValidateCell(foundQueen, solution[i + j, i]);
}
}
for (var i = 0; i < solution.GetLength(1); i++)
{
var foundQueen = false;
for (var j = 0; i + j < solution.GetLength(0); j++)
{
foundQueen = ValidateCell(foundQueen, solution[j, i + j]);
}
}
}
private static void ValidateOneQueenPerBottomLeftTopRightDiagonalLine(bool[,] solution)
{
for (var i = 0; i < solution.GetLength(0); i++)
{
var foundQueen = false;
for (var j = 0; i - j >= 0; j++)
{
foundQueen = ValidateCell(foundQueen, solution[i - j, i]);
}
}
for (var i = 0; i < solution.GetLength(1); i++)
{
var foundQueen = false;
for (var j = 0; i - j >= 0 && solution.GetLength(0) - j > 0; j++)
{
foundQueen = ValidateCell(foundQueen, solution[solution.GetLength(0) - j - 1, i - j]);
}
}
}
private static bool ValidateCell(bool foundQueen, bool currentCell)
{
if (foundQueen)
{
currentCell.Should().BeFalse();
}
return foundQueen || currentCell;
}
}
}
| 128 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Linq;
using Algorithms.Problems.StableMarriage;
using NUnit.Framework;
namespace Algorithms.Tests.Problems.StableMarriage
{
/// <summary>
/// The stable marriage problem (also stable matching problem or SMP)
/// is the problem of finding a stable matching between two equally sized sets of elements given an ordering of
/// preferences for each element.
/// </summary>
public static class GaleShapleyTests
{
/// <summary>
/// Checks that all parties are engaged and stable.
/// </summary>
[Test]
public static void MatchingIsSuccessful()
{
var random = new Random(7);
var proposers = Enumerable.Range(1, 10).Select(_ => new Proposer()).ToArray();
var acceptors = Enumerable.Range(1, 10).Select(_ => new Accepter()).ToArray();
foreach (var proposer in proposers)
{
proposer.PreferenceOrder = new LinkedList<Accepter>(acceptors.OrderBy(_ => random.Next()));
}
foreach (var acceptor in acceptors)
{
acceptor.PreferenceOrder = proposers.OrderBy(_ => random.Next()).ToList();
}
GaleShapley.Match(proposers, acceptors);
Assert.IsTrue(acceptors.All(x => x.EngagedTo is not null));
Assert.IsTrue(proposers.All(x => x.EngagedTo is not null));
Assert.IsTrue(AreMatchesStable(proposers, acceptors));
}
private static bool AreMatchesStable(Proposer[] proposers, Accepter[] accepters) =>
proposers.All(p =>
p.EngagedTo is not null
&& Score(p, p.EngagedTo) <= accepters
.Where(a => a.PrefersOverCurrent(p))
.Min(a => Score(p, a)));
private static int Score(Proposer proposer, Accepter accepter) =>
proposer.PreferenceOrder.ToList().IndexOf(accepter);
}
}
| 54 |
C-Sharp | TheAlgorithms | C# | using System.Linq;
using Algorithms.Search;
using NUnit.Framework;
using NUnit.Framework.Internal;
namespace Algorithms.Tests.Search
{
public static class BinarySearcherTests
{
[Test]
public static void FindIndex_ItemPresent_IndexCorrect([Random(1, 1000, 100)] int n)
{
// Arrange
var searcher = new BinarySearcher<int>();
var random = Randomizer.CreateRandomizer();
var arrayToSearch = Enumerable.Range(0, n).Select(_ => random.Next(0, 1000)).OrderBy(x => x).ToArray();
var selectedIndex = random.Next(0, n);
// Act
var actualIndex = searcher.FindIndex(arrayToSearch, arrayToSearch[selectedIndex]);
// Assert
Assert.AreEqual(arrayToSearch[selectedIndex], arrayToSearch[actualIndex]);
}
[Test]
public static void FindIndex_ItemMissing_MinusOneReturned(
[Random(0, 1000, 10)] int n,
[Random(-100, 1100, 10)] int missingItem)
{
// Arrange
var searcher = new BinarySearcher<int>();
var random = Randomizer.CreateRandomizer();
var arrayToSearch = Enumerable.Range(0, n)
.Select(_ => random.Next(0, 1000))
.Where(x => x != missingItem)
.OrderBy(x => x).ToArray();
// Act
var actualIndex = searcher.FindIndex(arrayToSearch, missingItem);
// Assert
Assert.AreEqual(-1, actualIndex);
}
[Test]
public static void FindIndex_ArrayEmpty_MinusOneReturned([Random(100)] int itemToSearch)
{
// Arrange
var searcher = new BinarySearcher<int>();
var arrayToSearch = new int[0];
// Act
var actualIndex = searcher.FindIndex(arrayToSearch, itemToSearch);
// Assert
Assert.AreEqual(-1, actualIndex);
}
}
}
| 61 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Search;
using System;
using System.Collections.Generic;
using System.Linq;
using NUnit.Framework;
using NUnit.Framework.Internal;
namespace Algorithms.Tests.Search
{
public class BoyerMoore_Tests
{
[Test]
public void BoyerMoore_Majority_Finder_Test()
{
var elementCount = 1000;
var rnd = new Random();
var randomNumbers = new List<int>();
while (randomNumbers.Count < elementCount / 2)
{
randomNumbers.Add(rnd.Next(0, elementCount));
}
var majorityElement = rnd.Next(0, elementCount);
randomNumbers.AddRange(Enumerable.Repeat(majorityElement, elementCount / 2 + 1));
randomNumbers = randomNumbers.OrderBy(x => rnd.Next()).ToList();
var expected = majorityElement;
var actual = BoyerMoore<int>.FindMajority(randomNumbers);
Assert.AreEqual(actual, expected);
}
}
}
| 37 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Search;
using NUnit.Framework;
using Utilities.Exceptions;
namespace Algorithms.Tests.Search
{
public static class FastSearcherTests
{
[Test]
public static void FindIndex_ItemPresent_IndexCorrect()
{
var searcher = new FastSearcher();
var arr = Helper.GetSortedArray(1000);
var present = Helper.GetItemIn(arr);
var index = searcher.FindIndex(arr, present);
Assert.AreEqual(present, arr[index]);
}
[TestCase(new[] { 1, 2 }, 1)]
[TestCase(new[] { 1, 2 }, 2)]
[TestCase(new[] { 1, 2, 3, 3, 3 }, 2)]
public static void FindIndex_ItemPresentInSpecificCase_IndexCorrect(int[] arr, int present)
{
var searcher = new FastSearcher();
var index = searcher.FindIndex(arr, present);
Assert.AreEqual(present, arr[index]);
}
[Test]
public static void FindIndex_ItemMissing_ItemNotFoundExceptionThrown()
{
var searcher = new FastSearcher();
var arr = Helper.GetSortedArray(1000);
var missing = Helper.GetItemNotIn(arr);
_ = Assert.Throws<ItemNotFoundException>(() => searcher.FindIndex(arr, missing));
}
[TestCase(new int[0], 2)]
public static void FindIndex_ItemMissingInSpecificCase_ItemNotFoundExceptionThrown(int[] arr, int missing)
{
var searcher = new FastSearcher();
_ = Assert.Throws<ItemNotFoundException>(() => searcher.FindIndex(arr, missing));
}
[Test]
public static void FindIndex_ItemSmallerThanAllMissing_ItemNotFoundExceptionThrown()
{
var searcher = new FastSearcher();
var arr = Helper.GetSortedArray(1000);
var missing = Helper.GetItemSmallerThanAllIn(arr);
_ = Assert.Throws<ItemNotFoundException>(() => searcher.FindIndex(arr, missing));
}
[Test]
public static void FindIndex_ItemBiggerThanAllMissing_ItemNotFoundExceptionThrown()
{
var searcher = new FastSearcher();
var arr = Helper.GetSortedArray(1000);
var missing = Helper.GetItemBiggerThanAllIn(arr);
_ = Assert.Throws<ItemNotFoundException>(() => searcher.FindIndex(arr, missing));
}
[Test]
public static void FindIndex_ArrayOfDuplicatesItemPresent_IndexCorrect()
{
var searcher = new FastSearcher();
var arr = new int[1000];
var present = 0;
var index = searcher.FindIndex(arr, present);
Assert.AreEqual(0, arr[index]);
}
[Test]
public static void FindIndex_ArrayOfDuplicatesItemMissing_ItemNotFoundExceptionThrown()
{
var searcher = new FastSearcher();
var arr = new int[1000];
var missing = 1;
_ = Assert.Throws<ItemNotFoundException>(() => searcher.FindIndex(arr, missing));
}
}
}
| 83 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Search;
using FluentAssertions;
using NUnit.Framework;
using System;
namespace Algorithms.Tests.Search
{
public static class FibonacciSearcherTests
{
[Test]
public static void FindIndex_ItemPresent_IndexCorrect([Random(1, 1000, 10)] int n)
{
// Arranges
var searcher = new FibonacciSearcher<int>();
var arrayToSearch = Helper.GetSortedArray(n);
var present = Helper.GetItemIn(arrayToSearch);
// Act
var actualIndex = searcher.FindIndex(arrayToSearch, present);
// Assert
arrayToSearch[actualIndex].Should().Be(present);
}
[Test]
public static void FindIndex_ItemMissing_MinusOneReturned([Random(1, 1000, 10)] int n)
{
// Arranges
var searcher = new FibonacciSearcher<int>();
var arrayToSearch = Helper.GetSortedArray(n);
var present = Helper.GetItemNotIn(arrayToSearch);
var expectedIndex = -1;
// Act
var actualIndex = searcher.FindIndex(arrayToSearch, present);
// Assert
actualIndex.Should().Be(expectedIndex);
}
[Test]
public static void FindIndex_ArrayEmpty_MinusOneReturned([Random(1, 1000, 10)] int missingItem)
{
// Arrange
var searcher = new FibonacciSearcher<int>();
var sortedArray = Array.Empty<int>();
var expectedIndex = -1;
// Act
var actualIndex = searcher.FindIndex(sortedArray, missingItem);
// Assert
actualIndex.Should().Be(expectedIndex);
}
[TestCase(null, "a")]
[TestCase(new[] { "a", "b", "c" }, null)]
[TestCase(null, null)]
public static void FindIndex_ArrayNull_ItemNull_ArgumentNullExceptionThrown(string[] sortedArray, string searchItem)
{
// Arranges
var searcher = new FibonacciSearcher<string>();
// Act
Action action = () => searcher.FindIndex(sortedArray, searchItem);
// Assert
action.Should().Throw<ArgumentNullException>();
}
}
}
| 72 |
C-Sharp | TheAlgorithms | C# | using System.Linq;
using NUnit.Framework;
namespace Algorithms.Tests.Search
{
public static class Helper
{
public static int[] GetSortedArray(int length) =>
Enumerable.Range(0, length)
.Select(_ => TestContext.CurrentContext.Random.Next(1_000_000))
.OrderBy(x => x)
.ToArray();
public static int GetItemIn(int[] arr) => arr[TestContext.CurrentContext.Random.Next(arr.Length)];
public static int GetItemNotIn(int[] arr)
{
int item;
do
{
item = TestContext.CurrentContext.Random.Next(arr.Min(), arr.Max() + 1);
}
while (arr.Contains(item));
return item;
}
public static int GetItemSmallerThanAllIn(int[] arr) => arr.Min() - 1;
public static int GetItemBiggerThanAllIn(int[] arr) => arr.Max() + 1;
}
}
| 33 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Search;
using NUnit.Framework.Internal;
using NUnit.Framework;
using System;
using System.Linq;
namespace Algorithms.Tests.Search
{
public static class InterpolationSearchTests
{
[Test]
public static void FindIndex_ItemPresent_IndexCorrect([Random(1, 1000, 100)] int n)
{
// Arrange
var random = Randomizer.CreateRandomizer();
var arrayToSearch = Enumerable.Range(0, n).Select(_ => random.Next(0, 1000)).OrderBy(x => x).ToArray();
var selectedIndex = random.Next(0, n);
// Act
var actualIndex = InterpolationSearch.FindIndex(arrayToSearch, arrayToSearch[selectedIndex]);
// Assert
Assert.AreEqual(arrayToSearch[selectedIndex], arrayToSearch[actualIndex]);
}
[Test]
public static void FindIndex_ItemMissing_MinusOneReturned(
[Random(0, 1000, 10)] int n,
[Random(-100, 1100, 10)] int missingItem)
{
// Arrange
var random = Randomizer.CreateRandomizer();
var arrayToSearch = Enumerable.Range(0, n)
.Select(_ => random.Next(0, 1000))
.Where(x => x != missingItem)
.OrderBy(x => x).ToArray();
// Act
var actualIndex = InterpolationSearch.FindIndex(arrayToSearch, missingItem);
// Assert
Assert.AreEqual(-1, actualIndex);
}
[Test]
public static void FindIndex_ArrayEmpty_MinusOneReturned([Random(100)] int itemToSearch)
{
// Arrange
var arrayToSearch = new int[0];
// Act
var actualIndex = InterpolationSearch.FindIndex(arrayToSearch, itemToSearch);
// Assert
Assert.AreEqual(-1, actualIndex);
}
}
}
| 59 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Search;
using NUnit.Framework;
using System;
using System.Linq;
using FluentAssertions;
namespace Algorithms.Tests.Search
{
public class JumpSearcherTests
{
[Test]
public void FindIndex_ItemPresent_ItemCorrect([Random(1, 1000, 100)] int n)
{
// Arrange
var searcher = new JumpSearcher<int>();
var sortedArray = Enumerable.Range(0, n).Select(_ => TestContext.CurrentContext.Random.Next(1_000_000)).OrderBy(x => x).ToArray();
var expectedIndex = TestContext.CurrentContext.Random.Next(sortedArray.Length);
// Act
var actualIndex = searcher.FindIndex(sortedArray, sortedArray[expectedIndex]);
// Assert
sortedArray[actualIndex].Should().Be(sortedArray[expectedIndex]);
}
[Test]
public void FindIndex_ItemMissing_MinusOneReturned([Random(1, 1000, 10)] int n, [Random(-100, 1100, 10)] int missingItem)
{
// Arrange
var searcher = new JumpSearcher<int>();
var sortedArray = Enumerable.Range(0, n).Select(_ => TestContext.CurrentContext.Random.Next(1_000_000)).Where(x => x != missingItem).OrderBy(x => x).ToArray();
var expectedIndex = -1;
// Act
var actualIndex = searcher.FindIndex(sortedArray, missingItem);
// Assert
Assert.AreEqual(expectedIndex, actualIndex);
}
[Test]
public void FindIndex_ArrayEmpty_MinusOneReturned([Random(-100, 1100, 10)] int missingItem)
{
// Arrange
var searcher = new JumpSearcher<int>();
var sortedArray = Array.Empty<int>();
var expectedIndex = -1;
// Act
var actualIndex = searcher.FindIndex(sortedArray, missingItem);
// Assert
Assert.AreEqual(expectedIndex, actualIndex);
}
[TestCase(null, "abc")]
[TestCase(new[] { "abc", "def", "ghi" }, null)]
[TestCase(null, null)]
public void FindIndex_ArrayNull_ItemNull_ArgumentNullExceptionThrown(string[] sortedArray, string searchItem)
{
// Arrange
var searcher = new JumpSearcher<string>();
// Act, Assert
_ = Assert.Throws<ArgumentNullException>(() => searcher.FindIndex(sortedArray, searchItem));
}
}
}
| 69 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Linq;
using Algorithms.Search;
using NUnit.Framework;
using NUnit.Framework.Internal;
using Utilities.Exceptions;
namespace Algorithms.Tests.Search
{
public static class LinearSearcherTests
{
[Test]
public static void Find_ItemPresent_ItemCorrect([Random(0, 1_000_000, 100)] int n)
{
// Arrange
var searcher = new LinearSearcher<int>();
var random = Randomizer.CreateRandomizer();
var arrayToSearch = Enumerable.Range(0, n).Select(_ => random.Next(0, 1000)).ToArray();
// Act
var expectedItem = Array.Find(arrayToSearch, x => x == arrayToSearch[n / 2]);
var actualItem = searcher.Find(arrayToSearch, x => x == arrayToSearch[n / 2]);
// Assert
Assert.AreEqual(expectedItem, actualItem);
}
[Test]
public static void FindIndex_ItemPresent_IndexCorrect([Random(0, 1_000_000, 100)] int n)
{
// Arrange
var searcher = new LinearSearcher<int>();
var random = Randomizer.CreateRandomizer();
var arrayToSearch = Enumerable.Range(0, n).Select(_ => random.Next(0, 1000)).ToArray();
// Act
var expectedIndex = Array.FindIndex(arrayToSearch, x => x == arrayToSearch[n / 2]);
var actualIndex = searcher.FindIndex(arrayToSearch, x => x == arrayToSearch[n / 2]);
// Assert
Assert.AreEqual(expectedIndex, actualIndex);
}
[Test]
public static void Find_ItemMissing_ItemNotFoundExceptionThrown([Random(0, 1_000_000, 100)] int n)
{
// Arrange
var searcher = new LinearSearcher<int>();
var random = Randomizer.CreateRandomizer();
var arrayToSearch = Enumerable.Range(0, n).Select(_ => random.Next(0, 1000)).ToArray();
// Act
// Assert
_ = Assert.Throws<ItemNotFoundException>(() => searcher.Find(arrayToSearch, _ => false));
}
[Test]
public static void FindIndex_ItemMissing_MinusOneReturned([Random(0, 1_000_000, 100)] int n)
{
// Arrange
var searcher = new LinearSearcher<int>();
var random = Randomizer.CreateRandomizer();
var arrayToSearch = Enumerable.Range(0, n).Select(_ => random.Next(0, 1000)).ToArray();
// Act
var actualIndex = searcher.FindIndex(arrayToSearch, _ => false);
// Assert
Assert.AreEqual(-1, actualIndex);
}
}
}
| 73 |
C-Sharp | TheAlgorithms | C# | using System;
using System.Collections.Generic;
using System.Linq;
using Algorithms.Search;
using FluentAssertions;
using NUnit.Framework;
using NUnit.Framework.Internal;
namespace Algorithms.Tests.Search
{
public static class RecursiveBinarySearcherTests
{
[Test]
public static void FindIndex_ItemPresent_IndexCorrect([Random(1, 1000, 100)] int n)
{
// Arrange
var subject = new RecursiveBinarySearcher<int>();
var randomizer = Randomizer.CreateRandomizer();
var selectedIndex = randomizer.Next(0, n);
var collection = Enumerable.Range(0, n).Select(_ => randomizer.Next(0, 1000)).OrderBy(x => x).ToList();
// Act
var actualIndex = subject.FindIndex(collection, collection[selectedIndex]);
// Assert
Assert.AreEqual(collection[selectedIndex], collection[actualIndex]);
}
[Test]
public static void FindIndex_ItemMissing_MinusOneReturned(
[Random(0, 1000, 10)] int n,
[Random(-100, 1100, 10)] int missingItem)
{
// Arrange
var subject = new RecursiveBinarySearcher<int>();
var random = Randomizer.CreateRandomizer();
var collection = Enumerable.Range(0, n)
.Select(_ => random.Next(0, 1000))
.Where(x => x != missingItem)
.OrderBy(x => x).ToList();
// Act
var actualIndex = subject.FindIndex(collection, missingItem);
// Assert
Assert.AreEqual(-1, actualIndex);
}
[Test]
public static void FindIndex_ArrayEmpty_MinusOneReturned([Random(100)] int itemToSearch)
{
// Arrange
var subject = new RecursiveBinarySearcher<int>();
var collection = new int[0];
// Act
var actualIndex = subject.FindIndex(collection, itemToSearch);
// Assert
Assert.AreEqual(-1, actualIndex);
}
[Test]
public static void FindIndex_NullCollection_Throws()
{
// Arrange
var subject = new RecursiveBinarySearcher<int>();
var collection = (IList<int>?)null;
// Act
Action act = () => subject.FindIndex(collection, 42);
// Assert
act.Should().Throw<ArgumentNullException>();
}
}
}
| 78 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Sequences;
using FluentAssertions;
using NUnit.Framework;
using System;
using System.Linq;
using System.Numerics;
namespace Algorithms.Tests.Sequences;
public class AllOnesSequenceTests
{
[Test]
public void First10ElementsCorrect()
{
var sequence = new AllOnesSequence().Sequence.Take(10);
sequence.SequenceEqual(new BigInteger[] { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 })
.Should().BeTrue();
}
}
| 19 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Sequences;
using FluentAssertions;
using NUnit.Framework;
using System;
using System.Linq;
using System.Numerics;
namespace Algorithms.Tests.Sequences;
public class AllThreesSequenceTests
{
[Test]
public void First10ElementsCorrect()
{
var sequence = new AllThreesSequence().Sequence.Take(10);
sequence.SequenceEqual(new BigInteger[] { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 })
.Should().BeTrue();
}
}
| 19 |
C-Sharp | TheAlgorithms | C# | using Algorithms.Sequences;
using FluentAssertions;
using NUnit.Framework;
using System;
using System.Linq;
using System.Numerics;
namespace Algorithms.Tests.Sequences;
public class AllTwosSequenceTests
{
[Test]
public void First10ElementsCorrect()
{
var sequence = new AllTwosSequence().Sequence.Take(10);
sequence.SequenceEqual(new BigInteger[] { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 })
.Should().BeTrue();
}
}
| 19 |
Subsets and Splits