code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def add_media_description(self, media_description): """Adds a media_description. arg: media_description (displayText): the new media_description raise: InvalidArgument - ``media_description`` is invalid raise: NoAccess - ``Metadata.isReadOnly()`` is ``true`` raise: NullArgument - ``media_description`` is ``null`` *compliance: mandatory -- This method must be implemented.* """ if self.get_media_descriptions_metadata().is_read_only(): raise NoAccess() self.add_or_replace_value('mediaDescriptions', media_description)
Adds a media_description. arg: media_description (displayText): the new media_description raise: InvalidArgument - ``media_description`` is invalid raise: NoAccess - ``Metadata.isReadOnly()`` is ``true`` raise: NullArgument - ``media_description`` is ``null`` *compliance: mandatory -- This method must be implemented.*
Below is the the instruction that describes the task: ### Input: Adds a media_description. arg: media_description (displayText): the new media_description raise: InvalidArgument - ``media_description`` is invalid raise: NoAccess - ``Metadata.isReadOnly()`` is ``true`` raise: NullArgument - ``media_description`` is ``null`` *compliance: mandatory -- This method must be implemented.* ### Response: def add_media_description(self, media_description): """Adds a media_description. arg: media_description (displayText): the new media_description raise: InvalidArgument - ``media_description`` is invalid raise: NoAccess - ``Metadata.isReadOnly()`` is ``true`` raise: NullArgument - ``media_description`` is ``null`` *compliance: mandatory -- This method must be implemented.* """ if self.get_media_descriptions_metadata().is_read_only(): raise NoAccess() self.add_or_replace_value('mediaDescriptions', media_description)
def inferObjectsWithRandomMovements(self): """ Infer each object without any location input. """ for objectName, objectFeatures in self.objects.iteritems(): self.reset() inferred = False prevTouchSequence = None for _ in xrange(4): while True: touchSequence = list(objectFeatures) random.shuffle(touchSequence) if prevTouchSequence is not None: if touchSequence[0] == prevTouchSequence[-1]: continue break for i, feature in enumerate(touchSequence): locationOnObject = (feature["top"] + feature["height"]/2, feature["left"] + feature["width"]/2) self.move(objectName, locationOnObject) featureName = feature["name"] featureSDR = self.features[featureName] self.sense(featureSDR, learn=False) inferred = ( set(self.objectLayer.getActiveCells()) == set(self.objectRepresentations[objectName]) and set(self.inputLayer.getActiveCells()) == set(self.inputRepresentations[(objectName, locationOnObject, featureName)]) and set(self.getActiveLocationCells()) == set(self.locationRepresentations[(objectName, locationOnObject)])) if inferred: break prevTouchSequence = touchSequence if inferred: break
Infer each object without any location input.
Below is the the instruction that describes the task: ### Input: Infer each object without any location input. ### Response: def inferObjectsWithRandomMovements(self): """ Infer each object without any location input. """ for objectName, objectFeatures in self.objects.iteritems(): self.reset() inferred = False prevTouchSequence = None for _ in xrange(4): while True: touchSequence = list(objectFeatures) random.shuffle(touchSequence) if prevTouchSequence is not None: if touchSequence[0] == prevTouchSequence[-1]: continue break for i, feature in enumerate(touchSequence): locationOnObject = (feature["top"] + feature["height"]/2, feature["left"] + feature["width"]/2) self.move(objectName, locationOnObject) featureName = feature["name"] featureSDR = self.features[featureName] self.sense(featureSDR, learn=False) inferred = ( set(self.objectLayer.getActiveCells()) == set(self.objectRepresentations[objectName]) and set(self.inputLayer.getActiveCells()) == set(self.inputRepresentations[(objectName, locationOnObject, featureName)]) and set(self.getActiveLocationCells()) == set(self.locationRepresentations[(objectName, locationOnObject)])) if inferred: break prevTouchSequence = touchSequence if inferred: break
def _element_to_bson(key, value, check_keys, opts): """Encode a single key, value pair.""" if not isinstance(key, string_type): raise InvalidDocument("documents must have only string keys, " "key was %r" % (key,)) if check_keys: if key.startswith("$"): raise InvalidDocument("key %r must not start with '$'" % (key,)) if "." in key: raise InvalidDocument("key %r must not contain '.'" % (key,)) name = _make_name(key) return _name_value_to_bson(name, value, check_keys, opts)
Encode a single key, value pair.
Below is the the instruction that describes the task: ### Input: Encode a single key, value pair. ### Response: def _element_to_bson(key, value, check_keys, opts): """Encode a single key, value pair.""" if not isinstance(key, string_type): raise InvalidDocument("documents must have only string keys, " "key was %r" % (key,)) if check_keys: if key.startswith("$"): raise InvalidDocument("key %r must not start with '$'" % (key,)) if "." in key: raise InvalidDocument("key %r must not contain '.'" % (key,)) name = _make_name(key) return _name_value_to_bson(name, value, check_keys, opts)
def get_doc(self, objtxt): """Get object documentation dictionary""" if self._reading: return wait_loop = QEventLoop() self.sig_got_reply.connect(wait_loop.quit) self.silent_exec_method("get_ipython().kernel.get_doc('%s')" % objtxt) wait_loop.exec_() # Remove loop connection and loop self.sig_got_reply.disconnect(wait_loop.quit) wait_loop = None return self._kernel_reply
Get object documentation dictionary
Below is the the instruction that describes the task: ### Input: Get object documentation dictionary ### Response: def get_doc(self, objtxt): """Get object documentation dictionary""" if self._reading: return wait_loop = QEventLoop() self.sig_got_reply.connect(wait_loop.quit) self.silent_exec_method("get_ipython().kernel.get_doc('%s')" % objtxt) wait_loop.exec_() # Remove loop connection and loop self.sig_got_reply.disconnect(wait_loop.quit) wait_loop = None return self._kernel_reply
def mod_watch(name, **kwargs): ''' Install/reinstall a package based on a watch requisite .. note:: This state exists to support special handling of the ``watch`` :ref:`requisite <requisites>`. It should not be called directly. Parameters for this function should be set by the state being triggered. ''' sfun = kwargs.pop('sfun', None) mapfun = {'purged': purged, 'latest': latest, 'removed': removed, 'installed': installed} if sfun in mapfun: return mapfun[sfun](name, **kwargs) return {'name': name, 'changes': {}, 'comment': 'pkg.{0} does not work with the watch requisite'.format(sfun), 'result': False}
Install/reinstall a package based on a watch requisite .. note:: This state exists to support special handling of the ``watch`` :ref:`requisite <requisites>`. It should not be called directly. Parameters for this function should be set by the state being triggered.
Below is the the instruction that describes the task: ### Input: Install/reinstall a package based on a watch requisite .. note:: This state exists to support special handling of the ``watch`` :ref:`requisite <requisites>`. It should not be called directly. Parameters for this function should be set by the state being triggered. ### Response: def mod_watch(name, **kwargs): ''' Install/reinstall a package based on a watch requisite .. note:: This state exists to support special handling of the ``watch`` :ref:`requisite <requisites>`. It should not be called directly. Parameters for this function should be set by the state being triggered. ''' sfun = kwargs.pop('sfun', None) mapfun = {'purged': purged, 'latest': latest, 'removed': removed, 'installed': installed} if sfun in mapfun: return mapfun[sfun](name, **kwargs) return {'name': name, 'changes': {}, 'comment': 'pkg.{0} does not work with the watch requisite'.format(sfun), 'result': False}
def loadNetworkbyName(self, name, callback=None, errback=None): """ Load an existing Network by name into a high level Network object :param str name: Name of an existing Network """ import ns1.ipam network = ns1.ipam.Network(self.config, name=name) return network.load(callback=callback, errback=errback)
Load an existing Network by name into a high level Network object :param str name: Name of an existing Network
Below is the the instruction that describes the task: ### Input: Load an existing Network by name into a high level Network object :param str name: Name of an existing Network ### Response: def loadNetworkbyName(self, name, callback=None, errback=None): """ Load an existing Network by name into a high level Network object :param str name: Name of an existing Network """ import ns1.ipam network = ns1.ipam.Network(self.config, name=name) return network.load(callback=callback, errback=errback)
def _set_hw_state(self, v, load=False): """ Setter method for hw_state, mapped from YANG variable /hw_state (container) If this variable is read-only (config: false) in the source YANG file, then _set_hw_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_hw_state() directly. YANG Description: HW Route Info """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=hw_state.hw_state, is_container='container', presence=False, yang_name="hw-state", rest_name="hw-state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'sysdiag-hw', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-sysdiag-operational', defining_module='brocade-sysdiag-operational', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """hw_state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=hw_state.hw_state, is_container='container', presence=False, yang_name="hw-state", rest_name="hw-state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'sysdiag-hw', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-sysdiag-operational', defining_module='brocade-sysdiag-operational', yang_type='container', is_config=True)""", }) self.__hw_state = t if hasattr(self, '_set'): self._set()
Setter method for hw_state, mapped from YANG variable /hw_state (container) If this variable is read-only (config: false) in the source YANG file, then _set_hw_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_hw_state() directly. YANG Description: HW Route Info
Below is the the instruction that describes the task: ### Input: Setter method for hw_state, mapped from YANG variable /hw_state (container) If this variable is read-only (config: false) in the source YANG file, then _set_hw_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_hw_state() directly. YANG Description: HW Route Info ### Response: def _set_hw_state(self, v, load=False): """ Setter method for hw_state, mapped from YANG variable /hw_state (container) If this variable is read-only (config: false) in the source YANG file, then _set_hw_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_hw_state() directly. YANG Description: HW Route Info """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=hw_state.hw_state, is_container='container', presence=False, yang_name="hw-state", rest_name="hw-state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'sysdiag-hw', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-sysdiag-operational', defining_module='brocade-sysdiag-operational', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """hw_state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=hw_state.hw_state, is_container='container', presence=False, yang_name="hw-state", rest_name="hw-state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'sysdiag-hw', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-sysdiag-operational', defining_module='brocade-sysdiag-operational', yang_type='container', is_config=True)""", }) self.__hw_state = t if hasattr(self, '_set'): self._set()
def getPotential(self, columnIndex, potential): """ :param columnIndex: (int) column index to get potential for. :param potential: (list) will be overwritten with column potentials. Must match the number of inputs. """ assert(columnIndex < self._numColumns) potential[:] = self._potentialPools[columnIndex]
:param columnIndex: (int) column index to get potential for. :param potential: (list) will be overwritten with column potentials. Must match the number of inputs.
Below is the the instruction that describes the task: ### Input: :param columnIndex: (int) column index to get potential for. :param potential: (list) will be overwritten with column potentials. Must match the number of inputs. ### Response: def getPotential(self, columnIndex, potential): """ :param columnIndex: (int) column index to get potential for. :param potential: (list) will be overwritten with column potentials. Must match the number of inputs. """ assert(columnIndex < self._numColumns) potential[:] = self._potentialPools[columnIndex]
def name(self, new_name): """ Sets the name of this VPCS VM. :param new_name: name """ if self.script_file: content = self.startup_script content = content.replace(self._name, new_name) escaped_name = new_name.replace('\\', '') content = re.sub(r"^set pcname .+$", "set pcname " + escaped_name, content, flags=re.MULTILINE) self.startup_script = content super(VPCSVM, VPCSVM).name.__set__(self, new_name)
Sets the name of this VPCS VM. :param new_name: name
Below is the the instruction that describes the task: ### Input: Sets the name of this VPCS VM. :param new_name: name ### Response: def name(self, new_name): """ Sets the name of this VPCS VM. :param new_name: name """ if self.script_file: content = self.startup_script content = content.replace(self._name, new_name) escaped_name = new_name.replace('\\', '') content = re.sub(r"^set pcname .+$", "set pcname " + escaped_name, content, flags=re.MULTILINE) self.startup_script = content super(VPCSVM, VPCSVM).name.__set__(self, new_name)
def put(self, url, html, cache_info=None): """ Put response into cache :param url: Url to cache :type url: str | unicode :param html: HTML content of url :type html: str | unicode :param cache_info: Cache Info (default: None) :type cache_info: floscraper.models.CacheInfo :rtype: None """ key = hashlib.md5(url).hexdigest() try: self._cache_set(key, html) except: self.exception("Failed to write cache") return self.update(url, cache_info)
Put response into cache :param url: Url to cache :type url: str | unicode :param html: HTML content of url :type html: str | unicode :param cache_info: Cache Info (default: None) :type cache_info: floscraper.models.CacheInfo :rtype: None
Below is the the instruction that describes the task: ### Input: Put response into cache :param url: Url to cache :type url: str | unicode :param html: HTML content of url :type html: str | unicode :param cache_info: Cache Info (default: None) :type cache_info: floscraper.models.CacheInfo :rtype: None ### Response: def put(self, url, html, cache_info=None): """ Put response into cache :param url: Url to cache :type url: str | unicode :param html: HTML content of url :type html: str | unicode :param cache_info: Cache Info (default: None) :type cache_info: floscraper.models.CacheInfo :rtype: None """ key = hashlib.md5(url).hexdigest() try: self._cache_set(key, html) except: self.exception("Failed to write cache") return self.update(url, cache_info)
def simulate_leapfrog(config_func: Callable, accel_func: Callable, t0: date, t1: date, steps_per_day: int): """ Simulate the earth-sun system from t0 to t1 using Leapfrog Integration. INPUTS: config_func: function taking a date or date range and returning position and velocity of bodies accel_func: function taking positions of the bodies and returning their accelerations t0: start date of the simulation; a python date t1: end date of the simulation (exclusive); a python date dt: time step in days. num_bodies: the number of celestial bodies in the simulation """ # Length of the simulation (number of steps) N: int = (t1 - t0).days * steps_per_day # Get the initial conditions q0, v0 = config_func(t0) # Infer the number of dimensions from the shape of q0 dims: int = q0.shape[1] # The time step in seconds dt = float(day2sec) / float(steps_per_day) # Square of the time step dt2: float = dt * dt # Initialize arrays to store computed positions and velocities q: np.ndarray = np.zeros((N, dims)) v: np.ndarray = np.zeros((N, dims)) # Initialize the first row with the initial conditions from the JPL ephemerides q[0, :] = q0 v[0, :] = v0 # Initialize an array to store the acceleration at each time step a: np.ndarray = np.zeros((N, dims)) # First row of accelerations a[0, :] = accel_func(q[0]) # Perform leapfrog integration simulation # https://en.wikipedia.org/wiki/Leapfrog_integration print(f'Performing leapfrog integration with {N} steps...') for i in tqdm(range(N-1)): # Positions at the next time step q[i+1,:] = q[i,:] + v[i,:] * dt + 0.5 * a[i,:] * dt2 # Accelerations of each body in the system at the next time step a[i+1,:] = accel_func(q[i+1]) # Velocities of each body at the next time step v[i+1,:] = v[i,:] + 0.5 * (a[i,:] + a[i+1,:]) * dt return q, v
Simulate the earth-sun system from t0 to t1 using Leapfrog Integration. INPUTS: config_func: function taking a date or date range and returning position and velocity of bodies accel_func: function taking positions of the bodies and returning their accelerations t0: start date of the simulation; a python date t1: end date of the simulation (exclusive); a python date dt: time step in days. num_bodies: the number of celestial bodies in the simulation
Below is the the instruction that describes the task: ### Input: Simulate the earth-sun system from t0 to t1 using Leapfrog Integration. INPUTS: config_func: function taking a date or date range and returning position and velocity of bodies accel_func: function taking positions of the bodies and returning their accelerations t0: start date of the simulation; a python date t1: end date of the simulation (exclusive); a python date dt: time step in days. num_bodies: the number of celestial bodies in the simulation ### Response: def simulate_leapfrog(config_func: Callable, accel_func: Callable, t0: date, t1: date, steps_per_day: int): """ Simulate the earth-sun system from t0 to t1 using Leapfrog Integration. INPUTS: config_func: function taking a date or date range and returning position and velocity of bodies accel_func: function taking positions of the bodies and returning their accelerations t0: start date of the simulation; a python date t1: end date of the simulation (exclusive); a python date dt: time step in days. num_bodies: the number of celestial bodies in the simulation """ # Length of the simulation (number of steps) N: int = (t1 - t0).days * steps_per_day # Get the initial conditions q0, v0 = config_func(t0) # Infer the number of dimensions from the shape of q0 dims: int = q0.shape[1] # The time step in seconds dt = float(day2sec) / float(steps_per_day) # Square of the time step dt2: float = dt * dt # Initialize arrays to store computed positions and velocities q: np.ndarray = np.zeros((N, dims)) v: np.ndarray = np.zeros((N, dims)) # Initialize the first row with the initial conditions from the JPL ephemerides q[0, :] = q0 v[0, :] = v0 # Initialize an array to store the acceleration at each time step a: np.ndarray = np.zeros((N, dims)) # First row of accelerations a[0, :] = accel_func(q[0]) # Perform leapfrog integration simulation # https://en.wikipedia.org/wiki/Leapfrog_integration print(f'Performing leapfrog integration with {N} steps...') for i in tqdm(range(N-1)): # Positions at the next time step q[i+1,:] = q[i,:] + v[i,:] * dt + 0.5 * a[i,:] * dt2 # Accelerations of each body in the system at the next time step a[i+1,:] = accel_func(q[i+1]) # Velocities of each body at the next time step v[i+1,:] = v[i,:] + 0.5 * (a[i,:] + a[i+1,:]) * dt return q, v
def print_about(self): """Print an info message about the tool.""" filepath = os.path.join(self.suite_path, "bin", self.tool_name) print "Tool: %s" % self.tool_name print "Path: %s" % filepath print "Suite: %s" % self.suite_path msg = "%s (%r)" % (self.context.load_path, self.context_name) print "Context: %s" % msg variants = self.context.get_tool_variants(self.tool_name) if variants: if len(variants) > 1: self._print_conflicting(variants) else: variant = iter(variants).next() print "Package: %s" % variant.qualified_package_name return 0
Print an info message about the tool.
Below is the the instruction that describes the task: ### Input: Print an info message about the tool. ### Response: def print_about(self): """Print an info message about the tool.""" filepath = os.path.join(self.suite_path, "bin", self.tool_name) print "Tool: %s" % self.tool_name print "Path: %s" % filepath print "Suite: %s" % self.suite_path msg = "%s (%r)" % (self.context.load_path, self.context_name) print "Context: %s" % msg variants = self.context.get_tool_variants(self.tool_name) if variants: if len(variants) > 1: self._print_conflicting(variants) else: variant = iter(variants).next() print "Package: %s" % variant.qualified_package_name return 0
def search(query, team=None): """ Search for packages """ if team is None: team = _find_logged_in_team() if team is not None: session = _get_session(team) response = session.get("%s/api/search/" % get_registry_url(team), params=dict(q=query)) print("* Packages in team %s" % team) packages = response.json()['packages'] for pkg in packages: print(("%s:" % team) + ("%(owner)s/%(name)s" % pkg)) if len(packages) == 0: print("(No results)") print("* Packages in public cloud") public_session = _get_session(None) response = public_session.get("%s/api/search/" % get_registry_url(None), params=dict(q=query)) packages = response.json()['packages'] for pkg in packages: print("%(owner)s/%(name)s" % pkg) if len(packages) == 0: print("(No results)")
Search for packages
Below is the the instruction that describes the task: ### Input: Search for packages ### Response: def search(query, team=None): """ Search for packages """ if team is None: team = _find_logged_in_team() if team is not None: session = _get_session(team) response = session.get("%s/api/search/" % get_registry_url(team), params=dict(q=query)) print("* Packages in team %s" % team) packages = response.json()['packages'] for pkg in packages: print(("%s:" % team) + ("%(owner)s/%(name)s" % pkg)) if len(packages) == 0: print("(No results)") print("* Packages in public cloud") public_session = _get_session(None) response = public_session.get("%s/api/search/" % get_registry_url(None), params=dict(q=query)) packages = response.json()['packages'] for pkg in packages: print("%(owner)s/%(name)s" % pkg) if len(packages) == 0: print("(No results)")
def messages(self): """ Access the messages :returns: twilio.rest.messaging.v1.session.message.MessageList :rtype: twilio.rest.messaging.v1.session.message.MessageList """ if self._messages is None: self._messages = MessageList(self._version, session_sid=self._solution['sid'], ) return self._messages
Access the messages :returns: twilio.rest.messaging.v1.session.message.MessageList :rtype: twilio.rest.messaging.v1.session.message.MessageList
Below is the the instruction that describes the task: ### Input: Access the messages :returns: twilio.rest.messaging.v1.session.message.MessageList :rtype: twilio.rest.messaging.v1.session.message.MessageList ### Response: def messages(self): """ Access the messages :returns: twilio.rest.messaging.v1.session.message.MessageList :rtype: twilio.rest.messaging.v1.session.message.MessageList """ if self._messages is None: self._messages = MessageList(self._version, session_sid=self._solution['sid'], ) return self._messages
def dumps(number): """Dumps an integer into a base36 string. :param number: the 10-based integer. :returns: the base36 string. """ if not isinstance(number, integer_types): raise TypeError('number must be an integer') if number < 0: return '-' + dumps(-number) value = '' while number != 0: number, index = divmod(number, len(alphabet)) value = alphabet[index] + value return value or '0'
Dumps an integer into a base36 string. :param number: the 10-based integer. :returns: the base36 string.
Below is the the instruction that describes the task: ### Input: Dumps an integer into a base36 string. :param number: the 10-based integer. :returns: the base36 string. ### Response: def dumps(number): """Dumps an integer into a base36 string. :param number: the 10-based integer. :returns: the base36 string. """ if not isinstance(number, integer_types): raise TypeError('number must be an integer') if number < 0: return '-' + dumps(-number) value = '' while number != 0: number, index = divmod(number, len(alphabet)) value = alphabet[index] + value return value or '0'
def reset_stats(self): """ Returns: mean, max: two stats of the runners, to be added to backend """ scores = list(itertools.chain.from_iterable([v.total_scores for v in self._runners])) for v in self._runners: v.total_scores.clear() try: return np.mean(scores), np.max(scores) except Exception: logger.exception("Cannot compute total scores in EnvRunner.") return None, None
Returns: mean, max: two stats of the runners, to be added to backend
Below is the the instruction that describes the task: ### Input: Returns: mean, max: two stats of the runners, to be added to backend ### Response: def reset_stats(self): """ Returns: mean, max: two stats of the runners, to be added to backend """ scores = list(itertools.chain.from_iterable([v.total_scores for v in self._runners])) for v in self._runners: v.total_scores.clear() try: return np.mean(scores), np.max(scores) except Exception: logger.exception("Cannot compute total scores in EnvRunner.") return None, None
async def dump_variant(self, elem, elem_type=None, params=None, obj=None): """ Dumps variant type to the writer. Supports both wrapped and raw variant. :param elem: :param elem_type: :param params: :param obj: :return: """ fvalue = None if isinstance(elem, x.VariantType) or elem_type.WRAPS_VALUE: try: self.tracker.push_variant(elem.variant_elem_type) fvalue = { elem.variant_elem: await self._dump_field(getattr(elem, elem.variant_elem), elem.variant_elem_type, obj=obj) } self.tracker.pop() except Exception as e: raise helpers.ArchiveException(e, tracker=self.tracker) from e else: try: fdef = elem_type.find_fdef(elem_type.f_specs(), elem) self.tracker.push_variant(fdef[1]) fvalue = { fdef[0]: await self._dump_field(elem, fdef[1], obj=obj) } self.tracker.pop() except Exception as e: raise helpers.ArchiveException(e, tracker=self.tracker) from e return fvalue
Dumps variant type to the writer. Supports both wrapped and raw variant. :param elem: :param elem_type: :param params: :param obj: :return:
Below is the the instruction that describes the task: ### Input: Dumps variant type to the writer. Supports both wrapped and raw variant. :param elem: :param elem_type: :param params: :param obj: :return: ### Response: async def dump_variant(self, elem, elem_type=None, params=None, obj=None): """ Dumps variant type to the writer. Supports both wrapped and raw variant. :param elem: :param elem_type: :param params: :param obj: :return: """ fvalue = None if isinstance(elem, x.VariantType) or elem_type.WRAPS_VALUE: try: self.tracker.push_variant(elem.variant_elem_type) fvalue = { elem.variant_elem: await self._dump_field(getattr(elem, elem.variant_elem), elem.variant_elem_type, obj=obj) } self.tracker.pop() except Exception as e: raise helpers.ArchiveException(e, tracker=self.tracker) from e else: try: fdef = elem_type.find_fdef(elem_type.f_specs(), elem) self.tracker.push_variant(fdef[1]) fvalue = { fdef[0]: await self._dump_field(elem, fdef[1], obj=obj) } self.tracker.pop() except Exception as e: raise helpers.ArchiveException(e, tracker=self.tracker) from e return fvalue
def ParseFileObject(self, parser_mediator, file_object): """Parses a PLSRecall.dat file-like object. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. file_object (dfvfs.FileIO): a file-like object. Raises: UnableToParseFile: when the file cannot be parsed. """ file_offset = 0 file_size = file_object.get_size() record_map = self._GetDataTypeMap('pls_recall_record') while file_offset < file_size: try: pls_record, record_data_size = self._ReadStructureFromFileObject( file_object, file_offset, record_map) except (ValueError, errors.ParseError) as exception: if file_offset == 0: raise errors.UnableToParseFile('Unable to parse first record.') parser_mediator.ProduceExtractionWarning(( 'unable to parse record at offset: 0x{0:08x} with error: ' '{1!s}').format(file_offset, exception)) break if file_offset == 0 and not self._VerifyRecord(pls_record): raise errors.UnableToParseFile('Verification of first record failed.') event_data = PlsRecallEventData() event_data.database_name = pls_record.database_name.rstrip('\x00') event_data.sequence_number = pls_record.sequence_number event_data.offset = file_offset event_data.query = pls_record.query.rstrip('\x00') event_data.username = pls_record.username.rstrip('\x00') date_time = dfdatetime_delphi_date_time.DelphiDateTime( timestamp=pls_record.last_written_time) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_WRITTEN) parser_mediator.ProduceEventWithEventData(event, event_data) file_offset += record_data_size
Parses a PLSRecall.dat file-like object. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. file_object (dfvfs.FileIO): a file-like object. Raises: UnableToParseFile: when the file cannot be parsed.
Below is the the instruction that describes the task: ### Input: Parses a PLSRecall.dat file-like object. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. file_object (dfvfs.FileIO): a file-like object. Raises: UnableToParseFile: when the file cannot be parsed. ### Response: def ParseFileObject(self, parser_mediator, file_object): """Parses a PLSRecall.dat file-like object. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. file_object (dfvfs.FileIO): a file-like object. Raises: UnableToParseFile: when the file cannot be parsed. """ file_offset = 0 file_size = file_object.get_size() record_map = self._GetDataTypeMap('pls_recall_record') while file_offset < file_size: try: pls_record, record_data_size = self._ReadStructureFromFileObject( file_object, file_offset, record_map) except (ValueError, errors.ParseError) as exception: if file_offset == 0: raise errors.UnableToParseFile('Unable to parse first record.') parser_mediator.ProduceExtractionWarning(( 'unable to parse record at offset: 0x{0:08x} with error: ' '{1!s}').format(file_offset, exception)) break if file_offset == 0 and not self._VerifyRecord(pls_record): raise errors.UnableToParseFile('Verification of first record failed.') event_data = PlsRecallEventData() event_data.database_name = pls_record.database_name.rstrip('\x00') event_data.sequence_number = pls_record.sequence_number event_data.offset = file_offset event_data.query = pls_record.query.rstrip('\x00') event_data.username = pls_record.username.rstrip('\x00') date_time = dfdatetime_delphi_date_time.DelphiDateTime( timestamp=pls_record.last_written_time) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_WRITTEN) parser_mediator.ProduceEventWithEventData(event, event_data) file_offset += record_data_size
def filter_factory(global_conf, **local_conf): """Returns a WSGI filter app for use with paste.deploy.""" conf = global_conf.copy() conf.update(local_conf) def visible(app): return VisibleFilter(app, conf) return visible
Returns a WSGI filter app for use with paste.deploy.
Below is the the instruction that describes the task: ### Input: Returns a WSGI filter app for use with paste.deploy. ### Response: def filter_factory(global_conf, **local_conf): """Returns a WSGI filter app for use with paste.deploy.""" conf = global_conf.copy() conf.update(local_conf) def visible(app): return VisibleFilter(app, conf) return visible
async def echo_all(app, message): """Send and recieve a message from all running echo servers""" # Loop through all registered server addresses for address in app.kv.get_prefix('address.').values(): # Parse the host and port from the stored address host, port = address.decode().split(':') port = int(port) # Send the message to the echo server await tcp_echo_client(message, loop, host, port)
Send and recieve a message from all running echo servers
Below is the the instruction that describes the task: ### Input: Send and recieve a message from all running echo servers ### Response: async def echo_all(app, message): """Send and recieve a message from all running echo servers""" # Loop through all registered server addresses for address in app.kv.get_prefix('address.').values(): # Parse the host and port from the stored address host, port = address.decode().split(':') port = int(port) # Send the message to the echo server await tcp_echo_client(message, loop, host, port)
def label(self): """Provide access to the notification label. Returns: str: The notification label """ with self.selenium.context(self.selenium.CONTEXT_CHROME): return self.root.get_attribute("label")
Provide access to the notification label. Returns: str: The notification label
Below is the the instruction that describes the task: ### Input: Provide access to the notification label. Returns: str: The notification label ### Response: def label(self): """Provide access to the notification label. Returns: str: The notification label """ with self.selenium.context(self.selenium.CONTEXT_CHROME): return self.root.get_attribute("label")
def get_setup_version(reponame): """Use autover to get up to date version.""" # importing self into setup.py is unorthodox, but param has no # required dependencies outside of python from param.version import Version return Version.setup_version(os.path.dirname(__file__),reponame,archive_commit="$Format:%h$")
Use autover to get up to date version.
Below is the the instruction that describes the task: ### Input: Use autover to get up to date version. ### Response: def get_setup_version(reponame): """Use autover to get up to date version.""" # importing self into setup.py is unorthodox, but param has no # required dependencies outside of python from param.version import Version return Version.setup_version(os.path.dirname(__file__),reponame,archive_commit="$Format:%h$")
def gssa(model, maxit=100, tol=1e-8, initial_dr=None, verbose=False, n_sim=10000, deg=3, damp=0.1, seed=42): """ Sketch of algorithm: 0. Choose levels for the initial states and the simulation length (n_sim) 1. Obtain an initial decision rule -- here using first order perturbation 2. Draw a sequence of innovations epsilon 3. Iterate on the following steps: - Use the epsilons, initial states, and proposed decision rule to simulate model forward. Will leave us with time series of states and controls - Evaluate expectations using quadrature - Use direct response to get alternative proposal for controls - Regress updated controls on the simulated states to get proposal coefficients. New coefficients are convex combination of previous coefficients and proposal coefficients. Weights controlled by damp, where damp is the weight on the old coefficients. This should be fairly low to increase chances of convergence. - Check difference between the simulated series of controls and the direct response version of controls """ # verify input arguments if deg < 0 or deg > 5: raise ValueError("deg must be in [1, 5]") if damp < 0 or damp > 1: raise ValueError("damp must be in [0, 1]") t1 = time.time() # extract model functions and parameters g = model.__original_functions__['transition'] g_gu = model.__original_gufunctions__['transition'] h_gu = model.__original_gufunctions__['expectation'] d_gu = model.__original_gufunctions__['direct_response'] p = model.calibration['parameters'] n_s = len(model.symbols["states"]) n_x = len(model.symbols["controls"]) n_z = len(model.symbols["expectations"]) n_eps = len(model.symbols["shocks"]) s0 = model.calibration["states"] x0 = model.calibration["controls"] # construct initial decision rule if not supplied if initial_dr is None: drp = approximate_controls(model) else: drp = initial_dr # set up quadrature weights and nodes distrib = model.get_distribution() nodes, weights = distrib.discretize() # draw sequence of innovations np.random.seed(seed) distrib = model.get_distribution() sigma = distrib.sigma epsilon = np.random.multivariate_normal(np.zeros(n_eps), sigma, n_sim) # simulate initial decision rule and do initial regression for coefs init_sim = simulate(model, drp, horizon=n_sim, return_array=True, forcing_shocks=epsilon) s_sim = init_sim[:, 0, 0:n_s] x_sim = init_sim[:, 0, n_s:n_s + n_x] Phi_sim = complete_polynomial(s_sim.T, deg).T coefs = np.ascontiguousarray(lstsq(Phi_sim, x_sim)[0]) # NOTE: the ascontiguousarray above was needed for numba to compile the # `np.dot` in the simulation function in no python mode. Appearantly # the array returned from lstsq is not C-contiguous # allocate for simulated series of expectations and next period states z_sim = np.empty((n_sim, n_z)) S = np.empty_like(s_sim) X = np.empty_like(x_sim) H = np.empty_like(z_sim) new_x = np.empty_like(x_sim) # set initial states and controls s_sim[0, :] = s0 x_sim[0, :] = x0 Phi_t = np.empty(n_complete(n_s, deg)) # buffer array for simulation # create jitted function that will simulate states and controls, using # the epsilon shocks from above (define here as closure over all data # above). @jit(nopython=True) def simulate_states_controls(s, x, Phi_t, coefs): for t in range(1, n_sim): g(s[t - 1, :], x[t - 1, :], epsilon[t, :], p, s[t, :]) # fill Phi_t with new complete poly version of s[t, :] _complete_poly_impl_vec(s[t, :], deg, Phi_t) # do inner product to get new controls x[t, :] = Phi_t @coefs it = 0 err = 10.0 err_0 = 10 if verbose: headline = '|{0:^4} | {1:10} | {2:8} | {3:8} |' headline = headline.format('N', ' Error', 'Gain', 'Time') stars = '-' * len(headline) print(stars) print(headline) print(stars) # format string for within loop fmt_str = '|{0:4} | {1:10.3e} | {2:8.3f} | {3:8.3f} |' while err > tol and it <= maxit: t_start = time.time() # simulate with new coefficients simulate_states_controls(s_sim, x_sim, Phi_t, coefs) # update expectations of z # update_expectations(s_sim, x_sim, z_sim, Phi_sim) z_sim[:, :] = 0.0 for i in range(weights.shape[0]): e = nodes[i, :] # extract nodes # evaluate future states at each node (stores in S) g_gu(s_sim, x_sim, e, p, S) # evaluate future controls at each future state _complete_poly_impl(S.T, deg, Phi_sim.T) np.dot(Phi_sim, coefs, out=X) # compute expectation (stores in H) h_gu(S, X, p, H) z_sim += weights[i] * H # get controls on the simulated points from direct_resposne # (stores in new_x) d_gu(s_sim, z_sim, p, new_x) # update basis matrix and do regression of new_x on s_sim to get # updated coefficients _complete_poly_impl(s_sim.T, deg, Phi_sim.T) new_coefs = np.ascontiguousarray(lstsq(Phi_sim, new_x)[0]) # check whether they differ from the preceding guess err = (abs(new_x - x_sim).max()) # update the series of controls and coefficients x_sim[:, :] = new_x coefs = (1 - damp) * new_coefs + damp * coefs if verbose: # update error and print if `verbose` err_SA = err / err_0 err_0 = err t_finish = time.time() elapsed = t_finish - t_start if verbose: print(fmt_str.format(it, err, err_SA, elapsed)) it += 1 if it == maxit: warnings.warn(UserWarning("Maximum number of iterations reached")) # compute final fime and do final printout if `verbose` t2 = time.time() if verbose: print(stars) print('Elapsed: {} seconds.'.format(t2 - t1)) print(stars) cp = CompletePolynomial(deg, len(s0)) cp.fit_values(s_sim, x_sim) return cp
Sketch of algorithm: 0. Choose levels for the initial states and the simulation length (n_sim) 1. Obtain an initial decision rule -- here using first order perturbation 2. Draw a sequence of innovations epsilon 3. Iterate on the following steps: - Use the epsilons, initial states, and proposed decision rule to simulate model forward. Will leave us with time series of states and controls - Evaluate expectations using quadrature - Use direct response to get alternative proposal for controls - Regress updated controls on the simulated states to get proposal coefficients. New coefficients are convex combination of previous coefficients and proposal coefficients. Weights controlled by damp, where damp is the weight on the old coefficients. This should be fairly low to increase chances of convergence. - Check difference between the simulated series of controls and the direct response version of controls
Below is the the instruction that describes the task: ### Input: Sketch of algorithm: 0. Choose levels for the initial states and the simulation length (n_sim) 1. Obtain an initial decision rule -- here using first order perturbation 2. Draw a sequence of innovations epsilon 3. Iterate on the following steps: - Use the epsilons, initial states, and proposed decision rule to simulate model forward. Will leave us with time series of states and controls - Evaluate expectations using quadrature - Use direct response to get alternative proposal for controls - Regress updated controls on the simulated states to get proposal coefficients. New coefficients are convex combination of previous coefficients and proposal coefficients. Weights controlled by damp, where damp is the weight on the old coefficients. This should be fairly low to increase chances of convergence. - Check difference between the simulated series of controls and the direct response version of controls ### Response: def gssa(model, maxit=100, tol=1e-8, initial_dr=None, verbose=False, n_sim=10000, deg=3, damp=0.1, seed=42): """ Sketch of algorithm: 0. Choose levels for the initial states and the simulation length (n_sim) 1. Obtain an initial decision rule -- here using first order perturbation 2. Draw a sequence of innovations epsilon 3. Iterate on the following steps: - Use the epsilons, initial states, and proposed decision rule to simulate model forward. Will leave us with time series of states and controls - Evaluate expectations using quadrature - Use direct response to get alternative proposal for controls - Regress updated controls on the simulated states to get proposal coefficients. New coefficients are convex combination of previous coefficients and proposal coefficients. Weights controlled by damp, where damp is the weight on the old coefficients. This should be fairly low to increase chances of convergence. - Check difference between the simulated series of controls and the direct response version of controls """ # verify input arguments if deg < 0 or deg > 5: raise ValueError("deg must be in [1, 5]") if damp < 0 or damp > 1: raise ValueError("damp must be in [0, 1]") t1 = time.time() # extract model functions and parameters g = model.__original_functions__['transition'] g_gu = model.__original_gufunctions__['transition'] h_gu = model.__original_gufunctions__['expectation'] d_gu = model.__original_gufunctions__['direct_response'] p = model.calibration['parameters'] n_s = len(model.symbols["states"]) n_x = len(model.symbols["controls"]) n_z = len(model.symbols["expectations"]) n_eps = len(model.symbols["shocks"]) s0 = model.calibration["states"] x0 = model.calibration["controls"] # construct initial decision rule if not supplied if initial_dr is None: drp = approximate_controls(model) else: drp = initial_dr # set up quadrature weights and nodes distrib = model.get_distribution() nodes, weights = distrib.discretize() # draw sequence of innovations np.random.seed(seed) distrib = model.get_distribution() sigma = distrib.sigma epsilon = np.random.multivariate_normal(np.zeros(n_eps), sigma, n_sim) # simulate initial decision rule and do initial regression for coefs init_sim = simulate(model, drp, horizon=n_sim, return_array=True, forcing_shocks=epsilon) s_sim = init_sim[:, 0, 0:n_s] x_sim = init_sim[:, 0, n_s:n_s + n_x] Phi_sim = complete_polynomial(s_sim.T, deg).T coefs = np.ascontiguousarray(lstsq(Phi_sim, x_sim)[0]) # NOTE: the ascontiguousarray above was needed for numba to compile the # `np.dot` in the simulation function in no python mode. Appearantly # the array returned from lstsq is not C-contiguous # allocate for simulated series of expectations and next period states z_sim = np.empty((n_sim, n_z)) S = np.empty_like(s_sim) X = np.empty_like(x_sim) H = np.empty_like(z_sim) new_x = np.empty_like(x_sim) # set initial states and controls s_sim[0, :] = s0 x_sim[0, :] = x0 Phi_t = np.empty(n_complete(n_s, deg)) # buffer array for simulation # create jitted function that will simulate states and controls, using # the epsilon shocks from above (define here as closure over all data # above). @jit(nopython=True) def simulate_states_controls(s, x, Phi_t, coefs): for t in range(1, n_sim): g(s[t - 1, :], x[t - 1, :], epsilon[t, :], p, s[t, :]) # fill Phi_t with new complete poly version of s[t, :] _complete_poly_impl_vec(s[t, :], deg, Phi_t) # do inner product to get new controls x[t, :] = Phi_t @coefs it = 0 err = 10.0 err_0 = 10 if verbose: headline = '|{0:^4} | {1:10} | {2:8} | {3:8} |' headline = headline.format('N', ' Error', 'Gain', 'Time') stars = '-' * len(headline) print(stars) print(headline) print(stars) # format string for within loop fmt_str = '|{0:4} | {1:10.3e} | {2:8.3f} | {3:8.3f} |' while err > tol and it <= maxit: t_start = time.time() # simulate with new coefficients simulate_states_controls(s_sim, x_sim, Phi_t, coefs) # update expectations of z # update_expectations(s_sim, x_sim, z_sim, Phi_sim) z_sim[:, :] = 0.0 for i in range(weights.shape[0]): e = nodes[i, :] # extract nodes # evaluate future states at each node (stores in S) g_gu(s_sim, x_sim, e, p, S) # evaluate future controls at each future state _complete_poly_impl(S.T, deg, Phi_sim.T) np.dot(Phi_sim, coefs, out=X) # compute expectation (stores in H) h_gu(S, X, p, H) z_sim += weights[i] * H # get controls on the simulated points from direct_resposne # (stores in new_x) d_gu(s_sim, z_sim, p, new_x) # update basis matrix and do regression of new_x on s_sim to get # updated coefficients _complete_poly_impl(s_sim.T, deg, Phi_sim.T) new_coefs = np.ascontiguousarray(lstsq(Phi_sim, new_x)[0]) # check whether they differ from the preceding guess err = (abs(new_x - x_sim).max()) # update the series of controls and coefficients x_sim[:, :] = new_x coefs = (1 - damp) * new_coefs + damp * coefs if verbose: # update error and print if `verbose` err_SA = err / err_0 err_0 = err t_finish = time.time() elapsed = t_finish - t_start if verbose: print(fmt_str.format(it, err, err_SA, elapsed)) it += 1 if it == maxit: warnings.warn(UserWarning("Maximum number of iterations reached")) # compute final fime and do final printout if `verbose` t2 = time.time() if verbose: print(stars) print('Elapsed: {} seconds.'.format(t2 - t1)) print(stars) cp = CompletePolynomial(deg, len(s0)) cp.fit_values(s_sim, x_sim) return cp
def on_scenario_directory_radio_toggled(self, flag): """Autoconnect slot activated when scenario_directory_radio is checked. :param flag: Flag indicating whether the checkbox was toggled on or off. :type flag: bool """ if flag: self.output_directory.setText(self.source_directory.text()) self.output_directory_chooser.setEnabled(not flag)
Autoconnect slot activated when scenario_directory_radio is checked. :param flag: Flag indicating whether the checkbox was toggled on or off. :type flag: bool
Below is the the instruction that describes the task: ### Input: Autoconnect slot activated when scenario_directory_radio is checked. :param flag: Flag indicating whether the checkbox was toggled on or off. :type flag: bool ### Response: def on_scenario_directory_radio_toggled(self, flag): """Autoconnect slot activated when scenario_directory_radio is checked. :param flag: Flag indicating whether the checkbox was toggled on or off. :type flag: bool """ if flag: self.output_directory.setText(self.source_directory.text()) self.output_directory_chooser.setEnabled(not flag)
def __build_parser_for_fileobject_and_desiredtype(self, obj_on_filesystem: PersistedObject, object_typ: Type[T], logger: Logger = None) -> Parser: """ Builds from the registry, a parser to parse object obj_on_filesystem as an object of type object_type. To do that, it iterates through all registered parsers in the list in reverse order (last inserted first), and checks if they support the provided object format (single or multifile) and type. If several parsers match, it returns a cascadingparser that will try them in order. :param obj_on_filesystem: :param object_typ: :param logger: :return: """ # first remove any non-generic customization object_type = get_base_generic_type(object_typ) # find all matching parsers for this matching, no_type_match_but_ext_match, no_ext_match_but_type_match, no_match = \ self.find_all_matching_parsers(strict=self.is_strict, desired_type=object_type, required_ext=obj_on_filesystem.ext) matching_parsers = matching[0] + matching[1] + matching[2] if len(matching_parsers) == 0: # No match. Do we have a close match ? (correct type, but not correct extension ?) if len(no_ext_match_but_type_match) > 0: raise NoParserFoundForObjectExt.create(obj_on_filesystem, object_type, set([ext_ for ext_set in [p.supported_exts for p in no_ext_match_but_type_match] for ext_ in ext_set])) else: # no, no match at all raise NoParserFoundForObjectType.create(obj_on_filesystem, object_type, set([typ_ for typ_set in [p.supported_types for p in no_type_match_but_ext_match] for typ_ in typ_set])) elif len(matching_parsers) == 1: # return the match directly return matching_parsers[0] else: # return a cascade of all parsers, in reverse order (since last is our preferred one) # print('----- WARNING : Found several parsers able to parse this item. Combining them into a cascade.') return CascadingParser(list(reversed(matching_parsers)))
Builds from the registry, a parser to parse object obj_on_filesystem as an object of type object_type. To do that, it iterates through all registered parsers in the list in reverse order (last inserted first), and checks if they support the provided object format (single or multifile) and type. If several parsers match, it returns a cascadingparser that will try them in order. :param obj_on_filesystem: :param object_typ: :param logger: :return:
Below is the the instruction that describes the task: ### Input: Builds from the registry, a parser to parse object obj_on_filesystem as an object of type object_type. To do that, it iterates through all registered parsers in the list in reverse order (last inserted first), and checks if they support the provided object format (single or multifile) and type. If several parsers match, it returns a cascadingparser that will try them in order. :param obj_on_filesystem: :param object_typ: :param logger: :return: ### Response: def __build_parser_for_fileobject_and_desiredtype(self, obj_on_filesystem: PersistedObject, object_typ: Type[T], logger: Logger = None) -> Parser: """ Builds from the registry, a parser to parse object obj_on_filesystem as an object of type object_type. To do that, it iterates through all registered parsers in the list in reverse order (last inserted first), and checks if they support the provided object format (single or multifile) and type. If several parsers match, it returns a cascadingparser that will try them in order. :param obj_on_filesystem: :param object_typ: :param logger: :return: """ # first remove any non-generic customization object_type = get_base_generic_type(object_typ) # find all matching parsers for this matching, no_type_match_but_ext_match, no_ext_match_but_type_match, no_match = \ self.find_all_matching_parsers(strict=self.is_strict, desired_type=object_type, required_ext=obj_on_filesystem.ext) matching_parsers = matching[0] + matching[1] + matching[2] if len(matching_parsers) == 0: # No match. Do we have a close match ? (correct type, but not correct extension ?) if len(no_ext_match_but_type_match) > 0: raise NoParserFoundForObjectExt.create(obj_on_filesystem, object_type, set([ext_ for ext_set in [p.supported_exts for p in no_ext_match_but_type_match] for ext_ in ext_set])) else: # no, no match at all raise NoParserFoundForObjectType.create(obj_on_filesystem, object_type, set([typ_ for typ_set in [p.supported_types for p in no_type_match_but_ext_match] for typ_ in typ_set])) elif len(matching_parsers) == 1: # return the match directly return matching_parsers[0] else: # return a cascade of all parsers, in reverse order (since last is our preferred one) # print('----- WARNING : Found several parsers able to parse this item. Combining them into a cascade.') return CascadingParser(list(reversed(matching_parsers)))
def _t_of_e(self, a0=None, t_start=None, f0=None, ef=None, t_obs=5.0): """Rearranged versions of Peters equations This function calculates the semi-major axis and eccentricity over time. """ if ef is None: ef = np.ones_like(self.e0)*0.0000001 beta = 64.0/5.0*self.m1*self.m2*(self.m1+self.m2) e_vals = np.asarray([np.linspace(ef[i], self.e0[i], self.num_points) for i in range(len(self.e0))]) integrand = self._find_integrand(e_vals) integral = np.asarray([np.trapz(integrand[:, i:], x=e_vals[:, i:]) for i in range(e_vals.shape[1])]).T if a0 is None and f0 is None: a0 = (19./12.*t_start*beta*1/integral[:, 0])**(1./4.) * self._f_e(e_vals[:, -1]) elif a0 is None: a0 = ((self.m1 + self.m2)/self.f0**2)**(1./3.) c0 = self._c0_func(a0, self.e0) a_vals = c0[:, np.newaxis]*self._f_e(e_vals) delta_t = 12./19*c0[:, np.newaxis]**4/beta[:, np.newaxis]*integral return e_vals, a_vals, delta_t
Rearranged versions of Peters equations This function calculates the semi-major axis and eccentricity over time.
Below is the the instruction that describes the task: ### Input: Rearranged versions of Peters equations This function calculates the semi-major axis and eccentricity over time. ### Response: def _t_of_e(self, a0=None, t_start=None, f0=None, ef=None, t_obs=5.0): """Rearranged versions of Peters equations This function calculates the semi-major axis and eccentricity over time. """ if ef is None: ef = np.ones_like(self.e0)*0.0000001 beta = 64.0/5.0*self.m1*self.m2*(self.m1+self.m2) e_vals = np.asarray([np.linspace(ef[i], self.e0[i], self.num_points) for i in range(len(self.e0))]) integrand = self._find_integrand(e_vals) integral = np.asarray([np.trapz(integrand[:, i:], x=e_vals[:, i:]) for i in range(e_vals.shape[1])]).T if a0 is None and f0 is None: a0 = (19./12.*t_start*beta*1/integral[:, 0])**(1./4.) * self._f_e(e_vals[:, -1]) elif a0 is None: a0 = ((self.m1 + self.m2)/self.f0**2)**(1./3.) c0 = self._c0_func(a0, self.e0) a_vals = c0[:, np.newaxis]*self._f_e(e_vals) delta_t = 12./19*c0[:, np.newaxis]**4/beta[:, np.newaxis]*integral return e_vals, a_vals, delta_t
def set_outflow_BC(self, pores, mode='merge'): r""" Adds outflow boundary condition to the selected pores. Outflow condition simply means that the gradient of the solved quantity does not change, i.e. is 0. """ # Hijack the parse_mode function to verify mode/pores argument mode = self._parse_mode(mode, allowed=['merge', 'overwrite', 'remove'], single=True) pores = self._parse_indices(pores) # Calculating A[i,i] values to ensure the outflow condition network = self.project.network phase = self.project.phases()[self.settings['phase']] throats = network.find_neighbor_throats(pores=pores) C12 = network['throat.conns'][throats] P12 = phase[self.settings['pressure']][C12] gh = phase[self.settings['hydraulic_conductance']][throats] Q12 = -gh * np.diff(P12, axis=1).squeeze() Qp = np.zeros(self.Np) np.add.at(Qp, C12[:, 0], -Q12) np.add.at(Qp, C12[:, 1], Q12) # Store boundary values if ('pore.bc_outflow' not in self.keys()) or (mode == 'overwrite'): self['pore.bc_outflow'] = np.nan self['pore.bc_outflow'][pores] = Qp[pores]
r""" Adds outflow boundary condition to the selected pores. Outflow condition simply means that the gradient of the solved quantity does not change, i.e. is 0.
Below is the the instruction that describes the task: ### Input: r""" Adds outflow boundary condition to the selected pores. Outflow condition simply means that the gradient of the solved quantity does not change, i.e. is 0. ### Response: def set_outflow_BC(self, pores, mode='merge'): r""" Adds outflow boundary condition to the selected pores. Outflow condition simply means that the gradient of the solved quantity does not change, i.e. is 0. """ # Hijack the parse_mode function to verify mode/pores argument mode = self._parse_mode(mode, allowed=['merge', 'overwrite', 'remove'], single=True) pores = self._parse_indices(pores) # Calculating A[i,i] values to ensure the outflow condition network = self.project.network phase = self.project.phases()[self.settings['phase']] throats = network.find_neighbor_throats(pores=pores) C12 = network['throat.conns'][throats] P12 = phase[self.settings['pressure']][C12] gh = phase[self.settings['hydraulic_conductance']][throats] Q12 = -gh * np.diff(P12, axis=1).squeeze() Qp = np.zeros(self.Np) np.add.at(Qp, C12[:, 0], -Q12) np.add.at(Qp, C12[:, 1], Q12) # Store boundary values if ('pore.bc_outflow' not in self.keys()) or (mode == 'overwrite'): self['pore.bc_outflow'] = np.nan self['pore.bc_outflow'][pores] = Qp[pores]
def dims(x): """Returns a list of dimension sizes, or `None` if `rank` is unknown. For more details, see `help(tf.TensorShape.dims)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. Returns: shape_as_list: list of sizes or `None` values representing each dimensions size if known. A size is `tf.Dimension` if input is a `tf.TensorShape` and an `int` otherwise. """ if isinstance(x, tf.TensorShape): return x.dims r = tf.TensorShape(x).dims return None if r is None else list(map(tf.compat.dimension_value, r))
Returns a list of dimension sizes, or `None` if `rank` is unknown. For more details, see `help(tf.TensorShape.dims)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. Returns: shape_as_list: list of sizes or `None` values representing each dimensions size if known. A size is `tf.Dimension` if input is a `tf.TensorShape` and an `int` otherwise.
Below is the the instruction that describes the task: ### Input: Returns a list of dimension sizes, or `None` if `rank` is unknown. For more details, see `help(tf.TensorShape.dims)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. Returns: shape_as_list: list of sizes or `None` values representing each dimensions size if known. A size is `tf.Dimension` if input is a `tf.TensorShape` and an `int` otherwise. ### Response: def dims(x): """Returns a list of dimension sizes, or `None` if `rank` is unknown. For more details, see `help(tf.TensorShape.dims)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. Returns: shape_as_list: list of sizes or `None` values representing each dimensions size if known. A size is `tf.Dimension` if input is a `tf.TensorShape` and an `int` otherwise. """ if isinstance(x, tf.TensorShape): return x.dims r = tf.TensorShape(x).dims return None if r is None else list(map(tf.compat.dimension_value, r))
def msgmerge(self, locale_file, po_string): """ Runs msgmerge on a locale_file and po_string """ cmd = "msgmerge -q %s -" % locale_file p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (msg, err) = p.communicate(input=po_string) if err: # dont raise exception, some stuff in stderr are just warmings logging.warning("%s \nfile: %s\npostring: %s" % (err, locale_file, po_string)) return msg
Runs msgmerge on a locale_file and po_string
Below is the the instruction that describes the task: ### Input: Runs msgmerge on a locale_file and po_string ### Response: def msgmerge(self, locale_file, po_string): """ Runs msgmerge on a locale_file and po_string """ cmd = "msgmerge -q %s -" % locale_file p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (msg, err) = p.communicate(input=po_string) if err: # dont raise exception, some stuff in stderr are just warmings logging.warning("%s \nfile: %s\npostring: %s" % (err, locale_file, po_string)) return msg
def build_board_checkers(): """ builds a checkers starting board Printing Grid 0 B 0 B 0 B 0 B B 0 B 0 B 0 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W 0 W 0 W 0 W W 0 W 0 W 0 W 0 """ grd = Grid(8,8, ["B","W"]) for c in range(4): grd.set_tile(0,(c*2) - 1, "B") grd.set_tile(1,(c*2) - 0, "B") grd.set_tile(6,(c*2) + 1, "W") grd.set_tile(7,(c*2) - 0, "W") print(grd) return grd
builds a checkers starting board Printing Grid 0 B 0 B 0 B 0 B B 0 B 0 B 0 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W 0 W 0 W 0 W W 0 W 0 W 0 W 0
Below is the the instruction that describes the task: ### Input: builds a checkers starting board Printing Grid 0 B 0 B 0 B 0 B B 0 B 0 B 0 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W 0 W 0 W 0 W W 0 W 0 W 0 W 0 ### Response: def build_board_checkers(): """ builds a checkers starting board Printing Grid 0 B 0 B 0 B 0 B B 0 B 0 B 0 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W 0 W 0 W 0 W W 0 W 0 W 0 W 0 """ grd = Grid(8,8, ["B","W"]) for c in range(4): grd.set_tile(0,(c*2) - 1, "B") grd.set_tile(1,(c*2) - 0, "B") grd.set_tile(6,(c*2) + 1, "W") grd.set_tile(7,(c*2) - 0, "W") print(grd) return grd
def merge_with(self, other): """Returns a `TensorShape` combining the information in `self` and `other`. The dimensions in `self` and `other` are merged elementwise, according to the rules defined for `Dimension.merge_with()`. Args: other: Another `TensorShape`. Returns: A `TensorShape` containing the combined information of `self` and `other`. Raises: ValueError: If `self` and `other` are not convertible. """ other = as_shape(other) if self._dims is None: return other else: try: self.assert_same_rank(other) new_dims = [] for i, dim in enumerate(self._dims): new_dims.append(dim.merge_with(other[i])) return TensorShape(new_dims) except ValueError: raise ValueError("Shapes %s and %s are not convertible" % (self, other))
Returns a `TensorShape` combining the information in `self` and `other`. The dimensions in `self` and `other` are merged elementwise, according to the rules defined for `Dimension.merge_with()`. Args: other: Another `TensorShape`. Returns: A `TensorShape` containing the combined information of `self` and `other`. Raises: ValueError: If `self` and `other` are not convertible.
Below is the the instruction that describes the task: ### Input: Returns a `TensorShape` combining the information in `self` and `other`. The dimensions in `self` and `other` are merged elementwise, according to the rules defined for `Dimension.merge_with()`. Args: other: Another `TensorShape`. Returns: A `TensorShape` containing the combined information of `self` and `other`. Raises: ValueError: If `self` and `other` are not convertible. ### Response: def merge_with(self, other): """Returns a `TensorShape` combining the information in `self` and `other`. The dimensions in `self` and `other` are merged elementwise, according to the rules defined for `Dimension.merge_with()`. Args: other: Another `TensorShape`. Returns: A `TensorShape` containing the combined information of `self` and `other`. Raises: ValueError: If `self` and `other` are not convertible. """ other = as_shape(other) if self._dims is None: return other else: try: self.assert_same_rank(other) new_dims = [] for i, dim in enumerate(self._dims): new_dims.append(dim.merge_with(other[i])) return TensorShape(new_dims) except ValueError: raise ValueError("Shapes %s and %s are not convertible" % (self, other))
def _post(url, headers={}, data=None, files=None): """Tries to POST data to an endpoint""" try: response = requests.post(url, headers=headers, data=data, files=files, verify=VERIFY_SSL) return _process_response(response) except requests.exceptions.RequestException as e: _log_and_raise_exception('Error connecting with foursquare API', e)
Tries to POST data to an endpoint
Below is the the instruction that describes the task: ### Input: Tries to POST data to an endpoint ### Response: def _post(url, headers={}, data=None, files=None): """Tries to POST data to an endpoint""" try: response = requests.post(url, headers=headers, data=data, files=files, verify=VERIFY_SSL) return _process_response(response) except requests.exceptions.RequestException as e: _log_and_raise_exception('Error connecting with foursquare API', e)
def is_entailed_by(self, other): """ Given two beliefstates, returns True iff the calling instance implies the other beliefstate, meaning it contains at least the same structure (for all structures) and all values (for all defined values). Inverse of `entails`. Note: this only compares the items in the DictCell, not `pos`, `environment_variables` or `deferred_effects`. """ for (s_key, s_val) in self: if s_key in other: if not hasattr(other[s_key], 'implies'): raise Exception("Cell for %s is missing implies()" % s_key) if not other[s_key].implies(s_val): return False else: return False return True
Given two beliefstates, returns True iff the calling instance implies the other beliefstate, meaning it contains at least the same structure (for all structures) and all values (for all defined values). Inverse of `entails`. Note: this only compares the items in the DictCell, not `pos`, `environment_variables` or `deferred_effects`.
Below is the the instruction that describes the task: ### Input: Given two beliefstates, returns True iff the calling instance implies the other beliefstate, meaning it contains at least the same structure (for all structures) and all values (for all defined values). Inverse of `entails`. Note: this only compares the items in the DictCell, not `pos`, `environment_variables` or `deferred_effects`. ### Response: def is_entailed_by(self, other): """ Given two beliefstates, returns True iff the calling instance implies the other beliefstate, meaning it contains at least the same structure (for all structures) and all values (for all defined values). Inverse of `entails`. Note: this only compares the items in the DictCell, not `pos`, `environment_variables` or `deferred_effects`. """ for (s_key, s_val) in self: if s_key in other: if not hasattr(other[s_key], 'implies'): raise Exception("Cell for %s is missing implies()" % s_key) if not other[s_key].implies(s_val): return False else: return False return True
def request(self, action, data={}, headers={}, method='GET'): """ Append the REST headers to every request """ headers = { "Authorization": "Bearer " + self.token, "Content-Type": "application/json", "X-Version": "1", "Accept": "application/json" } return Transport.request(self, action, data, headers, method)
Append the REST headers to every request
Below is the the instruction that describes the task: ### Input: Append the REST headers to every request ### Response: def request(self, action, data={}, headers={}, method='GET'): """ Append the REST headers to every request """ headers = { "Authorization": "Bearer " + self.token, "Content-Type": "application/json", "X-Version": "1", "Accept": "application/json" } return Transport.request(self, action, data, headers, method)
def process_inlines(parser, token): """ Searches through the provided content and applies inlines where ever they are found. Syntax:: {% process_inlines entry.body [in template_dir] [as varname] } Examples:: {% process_inlines entry.body %} {% process_inlines entry.body as body %} {% process_inlines entry.body in 'inlines/sidebar' %} {% process_inlines entry.body in 'inlines/sidebar' as body %} """ args = token.split_contents() if not len(args) in (2, 4, 6): raise template.TemplateSyntaxError("%r tag requires either 1, 3 or 5 arguments." % args[0]) var_name = args[1] ALLOWED_ARGS = ['as', 'in'] kwargs = { 'template_directory': None } if len(args) > 2: tuples = zip(*[args[2:][i::2] for i in range(2)]) for k,v in tuples: if not k in ALLOWED_ARGS: raise template.TemplateSyntaxError("%r tag options arguments must be one of %s." % (args[0], ', '.join(ALLOWED_ARGS))) if k == 'in': kwargs['template_directory'] = v if k == 'as': kwargs['asvar'] = v return InlinesNode(var_name, **kwargs)
Searches through the provided content and applies inlines where ever they are found. Syntax:: {% process_inlines entry.body [in template_dir] [as varname] } Examples:: {% process_inlines entry.body %} {% process_inlines entry.body as body %} {% process_inlines entry.body in 'inlines/sidebar' %} {% process_inlines entry.body in 'inlines/sidebar' as body %}
Below is the the instruction that describes the task: ### Input: Searches through the provided content and applies inlines where ever they are found. Syntax:: {% process_inlines entry.body [in template_dir] [as varname] } Examples:: {% process_inlines entry.body %} {% process_inlines entry.body as body %} {% process_inlines entry.body in 'inlines/sidebar' %} {% process_inlines entry.body in 'inlines/sidebar' as body %} ### Response: def process_inlines(parser, token): """ Searches through the provided content and applies inlines where ever they are found. Syntax:: {% process_inlines entry.body [in template_dir] [as varname] } Examples:: {% process_inlines entry.body %} {% process_inlines entry.body as body %} {% process_inlines entry.body in 'inlines/sidebar' %} {% process_inlines entry.body in 'inlines/sidebar' as body %} """ args = token.split_contents() if not len(args) in (2, 4, 6): raise template.TemplateSyntaxError("%r tag requires either 1, 3 or 5 arguments." % args[0]) var_name = args[1] ALLOWED_ARGS = ['as', 'in'] kwargs = { 'template_directory': None } if len(args) > 2: tuples = zip(*[args[2:][i::2] for i in range(2)]) for k,v in tuples: if not k in ALLOWED_ARGS: raise template.TemplateSyntaxError("%r tag options arguments must be one of %s." % (args[0], ', '.join(ALLOWED_ARGS))) if k == 'in': kwargs['template_directory'] = v if k == 'as': kwargs['asvar'] = v return InlinesNode(var_name, **kwargs)
def amount(self): """ Determine the sum of mole amounts of all the compounds. :returns: Amount. [kmol] """ return sum(self.get_compound_amount(c) for c in self.material.compounds)
Determine the sum of mole amounts of all the compounds. :returns: Amount. [kmol]
Below is the the instruction that describes the task: ### Input: Determine the sum of mole amounts of all the compounds. :returns: Amount. [kmol] ### Response: def amount(self): """ Determine the sum of mole amounts of all the compounds. :returns: Amount. [kmol] """ return sum(self.get_compound_amount(c) for c in self.material.compounds)
def overlay_gateway_sflow_sflow_vlan_action(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") overlay_gateway = ET.SubElement(config, "overlay-gateway", xmlns="urn:brocade.com:mgmt:brocade-tunnels") name_key = ET.SubElement(overlay_gateway, "name") name_key.text = kwargs.pop('name') sflow = ET.SubElement(overlay_gateway, "sflow") sflow_profile_name_key = ET.SubElement(sflow, "sflow-profile-name") sflow_profile_name_key.text = kwargs.pop('sflow_profile_name') sflow_vlan_action = ET.SubElement(sflow, "sflow-vlan-action") sflow_vlan_action.text = kwargs.pop('sflow_vlan_action') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
Below is the the instruction that describes the task: ### Input: Auto Generated Code ### Response: def overlay_gateway_sflow_sflow_vlan_action(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") overlay_gateway = ET.SubElement(config, "overlay-gateway", xmlns="urn:brocade.com:mgmt:brocade-tunnels") name_key = ET.SubElement(overlay_gateway, "name") name_key.text = kwargs.pop('name') sflow = ET.SubElement(overlay_gateway, "sflow") sflow_profile_name_key = ET.SubElement(sflow, "sflow-profile-name") sflow_profile_name_key.text = kwargs.pop('sflow_profile_name') sflow_vlan_action = ET.SubElement(sflow, "sflow-vlan-action") sflow_vlan_action.text = kwargs.pop('sflow_vlan_action') callback = kwargs.pop('callback', self._callback) return callback(config)
def main(): """Entry point for command line usage.""" import colorama import argparse import logging import sys import os parser = argparse.ArgumentParser(prog="gulpless", description="Simple build system.") parser.add_argument("-v", "--version", action="version", version="%(prog)s 0.7.6") parser.add_argument("-d", "--directory", action="store", default=os.getcwd(), help="Look for `build.py` in this folder (defaults to " "the current directory)") parser.add_argument("mode", action="store", choices=["build", "interactive"], default="interactive", metavar="mode", nargs="?", help="If `interactive` (the default), will wait for " "filesystem events and attempt to keep the input " "and output folders in sync. If `build`, it will " "attempt to build all updated files, then exit.") args = parser.parse_args() os.chdir(args.directory) sys.path.append(os.getcwd()) if os.environ.get("TERM") == "cygwin": # colorama doesn't play well with git bash del os.environ["TERM"] colorama.init() os.environ["TERM"] = "cygwin" else: colorama.init() try: old, sys.dont_write_bytecode = sys.dont_write_bytecode, True import build except ImportError: sys.exit("No `build.py` found in current folder.") finally: sys.dont_write_bytecode = old try: logging.basicConfig(level=build.LOGGING, format="%(message)s") except AttributeError: logging.basicConfig(level=logging.INFO, format="%(message)s") reactor = Reactor(build.SRC, build.DEST) for handler in build.HANDLERS: reactor.add_handler(handler) reactor.run(args.mode == "build")
Entry point for command line usage.
Below is the the instruction that describes the task: ### Input: Entry point for command line usage. ### Response: def main(): """Entry point for command line usage.""" import colorama import argparse import logging import sys import os parser = argparse.ArgumentParser(prog="gulpless", description="Simple build system.") parser.add_argument("-v", "--version", action="version", version="%(prog)s 0.7.6") parser.add_argument("-d", "--directory", action="store", default=os.getcwd(), help="Look for `build.py` in this folder (defaults to " "the current directory)") parser.add_argument("mode", action="store", choices=["build", "interactive"], default="interactive", metavar="mode", nargs="?", help="If `interactive` (the default), will wait for " "filesystem events and attempt to keep the input " "and output folders in sync. If `build`, it will " "attempt to build all updated files, then exit.") args = parser.parse_args() os.chdir(args.directory) sys.path.append(os.getcwd()) if os.environ.get("TERM") == "cygwin": # colorama doesn't play well with git bash del os.environ["TERM"] colorama.init() os.environ["TERM"] = "cygwin" else: colorama.init() try: old, sys.dont_write_bytecode = sys.dont_write_bytecode, True import build except ImportError: sys.exit("No `build.py` found in current folder.") finally: sys.dont_write_bytecode = old try: logging.basicConfig(level=build.LOGGING, format="%(message)s") except AttributeError: logging.basicConfig(level=logging.INFO, format="%(message)s") reactor = Reactor(build.SRC, build.DEST) for handler in build.HANDLERS: reactor.add_handler(handler) reactor.run(args.mode == "build")
def members(name, members_list, root=None): ''' Replaces members of the group with a provided list. CLI Example: salt '*' group.members foo 'user1,user2,user3,...' Replaces a membership list for a local group 'foo'. foo:x:1234:user1,user2,user3,... ''' cmd = 'chgrpmem -m = {0} {1}'.format(members_list, name) retcode = __salt__['cmd.retcode'](cmd, python_shell=False) return not retcode
Replaces members of the group with a provided list. CLI Example: salt '*' group.members foo 'user1,user2,user3,...' Replaces a membership list for a local group 'foo'. foo:x:1234:user1,user2,user3,...
Below is the the instruction that describes the task: ### Input: Replaces members of the group with a provided list. CLI Example: salt '*' group.members foo 'user1,user2,user3,...' Replaces a membership list for a local group 'foo'. foo:x:1234:user1,user2,user3,... ### Response: def members(name, members_list, root=None): ''' Replaces members of the group with a provided list. CLI Example: salt '*' group.members foo 'user1,user2,user3,...' Replaces a membership list for a local group 'foo'. foo:x:1234:user1,user2,user3,... ''' cmd = 'chgrpmem -m = {0} {1}'.format(members_list, name) retcode = __salt__['cmd.retcode'](cmd, python_shell=False) return not retcode
def to_dict(self, save_data=True): """ Convert the object into a json serializable dictionary. :param boolean save_data: if true, it adds the training data self.X and self.Y to the dictionary :return dict: json serializable dictionary containing the needed information to instantiate the object """ input_dict = super(SparseGP, self).to_dict(save_data) input_dict["class"] = "GPy.core.SparseGP" input_dict["Z"] = self.Z.tolist() return input_dict
Convert the object into a json serializable dictionary. :param boolean save_data: if true, it adds the training data self.X and self.Y to the dictionary :return dict: json serializable dictionary containing the needed information to instantiate the object
Below is the the instruction that describes the task: ### Input: Convert the object into a json serializable dictionary. :param boolean save_data: if true, it adds the training data self.X and self.Y to the dictionary :return dict: json serializable dictionary containing the needed information to instantiate the object ### Response: def to_dict(self, save_data=True): """ Convert the object into a json serializable dictionary. :param boolean save_data: if true, it adds the training data self.X and self.Y to the dictionary :return dict: json serializable dictionary containing the needed information to instantiate the object """ input_dict = super(SparseGP, self).to_dict(save_data) input_dict["class"] = "GPy.core.SparseGP" input_dict["Z"] = self.Z.tolist() return input_dict
def acl_show(self, msg, args): """Show current allow and deny blocks for the given acl.""" name = args[0] if len(args) > 0 else None if name is None: return "%s: The following ACLs are defined: %s" % (msg.user, ', '.join(self._acl.keys())) if name not in self._acl: return "Sorry, couldn't find an acl named '%s'" % name return '\n'.join([ "%s: ACL '%s' is defined as follows:" % (msg.user, name), "allow: %s" % ', '.join(self._acl[name]['allow']), "deny: %s" % ', '.join(self._acl[name]['deny']) ])
Show current allow and deny blocks for the given acl.
Below is the the instruction that describes the task: ### Input: Show current allow and deny blocks for the given acl. ### Response: def acl_show(self, msg, args): """Show current allow and deny blocks for the given acl.""" name = args[0] if len(args) > 0 else None if name is None: return "%s: The following ACLs are defined: %s" % (msg.user, ', '.join(self._acl.keys())) if name not in self._acl: return "Sorry, couldn't find an acl named '%s'" % name return '\n'.join([ "%s: ACL '%s' is defined as follows:" % (msg.user, name), "allow: %s" % ', '.join(self._acl[name]['allow']), "deny: %s" % ', '.join(self._acl[name]['deny']) ])
def extract_ipv4(roster_order, ipv4): ''' Extract the preferred IP address from the ipv4 grain ''' for ip_type in roster_order: for ip_ in ipv4: if ':' in ip_: continue if not salt.utils.validate.net.ipv4_addr(ip_): continue if ip_type == 'local' and ip_.startswith('127.'): return ip_ elif ip_type == 'private' and not salt.utils.cloud.is_public_ip(ip_): return ip_ elif ip_type == 'public' and salt.utils.cloud.is_public_ip(ip_): return ip_ return None
Extract the preferred IP address from the ipv4 grain
Below is the the instruction that describes the task: ### Input: Extract the preferred IP address from the ipv4 grain ### Response: def extract_ipv4(roster_order, ipv4): ''' Extract the preferred IP address from the ipv4 grain ''' for ip_type in roster_order: for ip_ in ipv4: if ':' in ip_: continue if not salt.utils.validate.net.ipv4_addr(ip_): continue if ip_type == 'local' and ip_.startswith('127.'): return ip_ elif ip_type == 'private' and not salt.utils.cloud.is_public_ip(ip_): return ip_ elif ip_type == 'public' and salt.utils.cloud.is_public_ip(ip_): return ip_ return None
def assign_tip_labels_and_colors(self): "assign tip labels based on user provided kwargs" # COLOR # tip color overrides tipstyle.fill if self.style.tip_labels_colors: #if self.style.tip_labels_style.fill: # self.style.tip_labels_style.fill = None if self.ttree._fixed_order: if isinstance(self.style.tip_labels_colors, (list, np.ndarray)): cols = np.array(self.style.tip_labels_colors) orde = cols[self.ttree._fixed_idx] self.style.tip_labels_colors = list(orde) # LABELS # False == hide tip labels if self.style.tip_labels is False: self.style.tip_labels_style["-toyplot-anchor-shift"] = "0px" self.tip_labels = ["" for i in self.ttree.get_tip_labels()] # LABELS # user entered something... else: # if user did not change label-offset then shift it here if not self.style.tip_labels_style["-toyplot-anchor-shift"]: self.style.tip_labels_style["-toyplot-anchor-shift"] = "15px" # if user entered list in get_tip_labels order reverse it for plot if isinstance(self.style.tip_labels, list): self.tip_labels = self.style.tip_labels # True assigns tip labels from tree else: if self.ttree._fixed_order: self.tip_labels = self.ttree._fixed_order else: self.tip_labels = self.ttree.get_tip_labels()
assign tip labels based on user provided kwargs
Below is the the instruction that describes the task: ### Input: assign tip labels based on user provided kwargs ### Response: def assign_tip_labels_and_colors(self): "assign tip labels based on user provided kwargs" # COLOR # tip color overrides tipstyle.fill if self.style.tip_labels_colors: #if self.style.tip_labels_style.fill: # self.style.tip_labels_style.fill = None if self.ttree._fixed_order: if isinstance(self.style.tip_labels_colors, (list, np.ndarray)): cols = np.array(self.style.tip_labels_colors) orde = cols[self.ttree._fixed_idx] self.style.tip_labels_colors = list(orde) # LABELS # False == hide tip labels if self.style.tip_labels is False: self.style.tip_labels_style["-toyplot-anchor-shift"] = "0px" self.tip_labels = ["" for i in self.ttree.get_tip_labels()] # LABELS # user entered something... else: # if user did not change label-offset then shift it here if not self.style.tip_labels_style["-toyplot-anchor-shift"]: self.style.tip_labels_style["-toyplot-anchor-shift"] = "15px" # if user entered list in get_tip_labels order reverse it for plot if isinstance(self.style.tip_labels, list): self.tip_labels = self.style.tip_labels # True assigns tip labels from tree else: if self.ttree._fixed_order: self.tip_labels = self.ttree._fixed_order else: self.tip_labels = self.ttree.get_tip_labels()
def setup_handlers(): ''' sets up the sentry handler ''' __grains__ = salt.loader.grains(__opts__) __salt__ = salt.loader.minion_mods(__opts__) if 'sentry_handler' not in __opts__: log.debug('No \'sentry_handler\' key was found in the configuration') return False options = {} dsn = get_config_value('dsn') if dsn is not None: try: # support raven ver 5.5.0 from raven.transport import TransportRegistry, default_transports from raven.utils.urlparse import urlparse transport_registry = TransportRegistry(default_transports) url = urlparse(dsn) if not transport_registry.supported_scheme(url.scheme): raise ValueError('Unsupported Sentry DSN scheme: {0}'.format(url.scheme)) except ValueError as exc: log.info( 'Raven failed to parse the configuration provided DSN: %s', exc ) if not dsn: for key in ('project', 'servers', 'public_key', 'secret_key'): config_value = get_config_value(key) if config_value is None and key not in options: log.debug( 'The required \'sentry_handler\' configuration key, ' '\'%s\', is not properly configured. Not configuring ' 'the sentry logging handler.', key ) return elif config_value is None: continue options[key] = config_value # site: An optional, arbitrary string to identify this client installation. options.update({ # site: An optional, arbitrary string to identify this client # installation 'site': get_config_value('site'), # name: This will override the server_name value for this installation. # Defaults to socket.gethostname() 'name': get_config_value('name'), # exclude_paths: Extending this allow you to ignore module prefixes # when sentry attempts to discover which function an error comes from 'exclude_paths': get_config_value('exclude_paths', ()), # include_paths: For example, in Django this defaults to your list of # INSTALLED_APPS, and is used for drilling down where an exception is # located 'include_paths': get_config_value('include_paths', ()), # list_max_length: The maximum number of items a list-like container # should store. 'list_max_length': get_config_value('list_max_length'), # string_max_length: The maximum characters of a string that should be # stored. 'string_max_length': get_config_value('string_max_length'), # auto_log_stacks: Should Raven automatically log frame stacks # (including locals) all calls as it would for exceptions. 'auto_log_stacks': get_config_value('auto_log_stacks'), # timeout: If supported, the timeout value for sending messages to # remote. 'timeout': get_config_value('timeout', 1), # processors: A list of processors to apply to events before sending # them to the Sentry server. Useful for sending additional global state # data or sanitizing data that you want to keep off of the server. 'processors': get_config_value('processors'), # dsn: Ensure the DSN is passed into the client 'dsn': dsn }) client = raven.Client(**options) context = get_config_value('context') context_dict = {} if context is not None: for tag in context: try: tag_value = __grains__[tag] except KeyError: log.debug('Sentry tag \'%s\' not found in grains.', tag) continue if tag_value: context_dict[tag] = tag_value if context_dict: client.context.merge({'tags': context_dict}) try: handler = SentryHandler(client) exclude_patterns = get_config_value('exclude_patterns', None) if exclude_patterns: filter_regexes = [re.compile(pattern) for pattern in exclude_patterns] class FilterExcludedMessages(object): @staticmethod def filter(record): m = record.getMessage() return not any(regex.search(m) for regex in filter_regexes) handler.addFilter(FilterExcludedMessages()) handler.setLevel(LOG_LEVELS[get_config_value('log_level', 'error')]) return handler except ValueError as exc: log.debug('Failed to setup the sentry logging handler', exc_info=True)
sets up the sentry handler
Below is the the instruction that describes the task: ### Input: sets up the sentry handler ### Response: def setup_handlers(): ''' sets up the sentry handler ''' __grains__ = salt.loader.grains(__opts__) __salt__ = salt.loader.minion_mods(__opts__) if 'sentry_handler' not in __opts__: log.debug('No \'sentry_handler\' key was found in the configuration') return False options = {} dsn = get_config_value('dsn') if dsn is not None: try: # support raven ver 5.5.0 from raven.transport import TransportRegistry, default_transports from raven.utils.urlparse import urlparse transport_registry = TransportRegistry(default_transports) url = urlparse(dsn) if not transport_registry.supported_scheme(url.scheme): raise ValueError('Unsupported Sentry DSN scheme: {0}'.format(url.scheme)) except ValueError as exc: log.info( 'Raven failed to parse the configuration provided DSN: %s', exc ) if not dsn: for key in ('project', 'servers', 'public_key', 'secret_key'): config_value = get_config_value(key) if config_value is None and key not in options: log.debug( 'The required \'sentry_handler\' configuration key, ' '\'%s\', is not properly configured. Not configuring ' 'the sentry logging handler.', key ) return elif config_value is None: continue options[key] = config_value # site: An optional, arbitrary string to identify this client installation. options.update({ # site: An optional, arbitrary string to identify this client # installation 'site': get_config_value('site'), # name: This will override the server_name value for this installation. # Defaults to socket.gethostname() 'name': get_config_value('name'), # exclude_paths: Extending this allow you to ignore module prefixes # when sentry attempts to discover which function an error comes from 'exclude_paths': get_config_value('exclude_paths', ()), # include_paths: For example, in Django this defaults to your list of # INSTALLED_APPS, and is used for drilling down where an exception is # located 'include_paths': get_config_value('include_paths', ()), # list_max_length: The maximum number of items a list-like container # should store. 'list_max_length': get_config_value('list_max_length'), # string_max_length: The maximum characters of a string that should be # stored. 'string_max_length': get_config_value('string_max_length'), # auto_log_stacks: Should Raven automatically log frame stacks # (including locals) all calls as it would for exceptions. 'auto_log_stacks': get_config_value('auto_log_stacks'), # timeout: If supported, the timeout value for sending messages to # remote. 'timeout': get_config_value('timeout', 1), # processors: A list of processors to apply to events before sending # them to the Sentry server. Useful for sending additional global state # data or sanitizing data that you want to keep off of the server. 'processors': get_config_value('processors'), # dsn: Ensure the DSN is passed into the client 'dsn': dsn }) client = raven.Client(**options) context = get_config_value('context') context_dict = {} if context is not None: for tag in context: try: tag_value = __grains__[tag] except KeyError: log.debug('Sentry tag \'%s\' not found in grains.', tag) continue if tag_value: context_dict[tag] = tag_value if context_dict: client.context.merge({'tags': context_dict}) try: handler = SentryHandler(client) exclude_patterns = get_config_value('exclude_patterns', None) if exclude_patterns: filter_regexes = [re.compile(pattern) for pattern in exclude_patterns] class FilterExcludedMessages(object): @staticmethod def filter(record): m = record.getMessage() return not any(regex.search(m) for regex in filter_regexes) handler.addFilter(FilterExcludedMessages()) handler.setLevel(LOG_LEVELS[get_config_value('log_level', 'error')]) return handler except ValueError as exc: log.debug('Failed to setup the sentry logging handler', exc_info=True)
def delete_contacts( self, ids: List[int] ): """Use this method to delete contacts from your Telegram address book. Args: ids (List of ``int``): A list of unique identifiers for the target users. Can be an ID (int), a username (string) or phone number (string). Returns: True on success. Raises: :class:`RPCError <pyrogram.RPCError>` in case of a Telegram RPC error. """ contacts = [] for i in ids: try: input_user = self.resolve_peer(i) except PeerIdInvalid: continue else: if isinstance(input_user, types.InputPeerUser): contacts.append(input_user) return self.send( functions.contacts.DeleteContacts( id=contacts ) )
Use this method to delete contacts from your Telegram address book. Args: ids (List of ``int``): A list of unique identifiers for the target users. Can be an ID (int), a username (string) or phone number (string). Returns: True on success. Raises: :class:`RPCError <pyrogram.RPCError>` in case of a Telegram RPC error.
Below is the the instruction that describes the task: ### Input: Use this method to delete contacts from your Telegram address book. Args: ids (List of ``int``): A list of unique identifiers for the target users. Can be an ID (int), a username (string) or phone number (string). Returns: True on success. Raises: :class:`RPCError <pyrogram.RPCError>` in case of a Telegram RPC error. ### Response: def delete_contacts( self, ids: List[int] ): """Use this method to delete contacts from your Telegram address book. Args: ids (List of ``int``): A list of unique identifiers for the target users. Can be an ID (int), a username (string) or phone number (string). Returns: True on success. Raises: :class:`RPCError <pyrogram.RPCError>` in case of a Telegram RPC error. """ contacts = [] for i in ids: try: input_user = self.resolve_peer(i) except PeerIdInvalid: continue else: if isinstance(input_user, types.InputPeerUser): contacts.append(input_user) return self.send( functions.contacts.DeleteContacts( id=contacts ) )
def detached_signature_for(plaintext_str, keys): """ Signs the given plaintext string and returns the detached signature. A detached signature in GPG speak is a separate blob of data containing a signature for the specified plaintext. :param bytes plaintext_str: bytestring to sign :param keys: list of one or more key to sign with. :type keys: list[gpg.gpgme._gpgme_key] :returns: A list of signature and the signed blob of data :rtype: tuple[list[gpg.results.NewSignature], str] """ ctx = gpg.core.Context(armor=True) ctx.signers = keys (sigblob, sign_result) = ctx.sign(plaintext_str, mode=gpg.constants.SIG_MODE_DETACH) return sign_result.signatures, sigblob
Signs the given plaintext string and returns the detached signature. A detached signature in GPG speak is a separate blob of data containing a signature for the specified plaintext. :param bytes plaintext_str: bytestring to sign :param keys: list of one or more key to sign with. :type keys: list[gpg.gpgme._gpgme_key] :returns: A list of signature and the signed blob of data :rtype: tuple[list[gpg.results.NewSignature], str]
Below is the the instruction that describes the task: ### Input: Signs the given plaintext string and returns the detached signature. A detached signature in GPG speak is a separate blob of data containing a signature for the specified plaintext. :param bytes plaintext_str: bytestring to sign :param keys: list of one or more key to sign with. :type keys: list[gpg.gpgme._gpgme_key] :returns: A list of signature and the signed blob of data :rtype: tuple[list[gpg.results.NewSignature], str] ### Response: def detached_signature_for(plaintext_str, keys): """ Signs the given plaintext string and returns the detached signature. A detached signature in GPG speak is a separate blob of data containing a signature for the specified plaintext. :param bytes plaintext_str: bytestring to sign :param keys: list of one or more key to sign with. :type keys: list[gpg.gpgme._gpgme_key] :returns: A list of signature and the signed blob of data :rtype: tuple[list[gpg.results.NewSignature], str] """ ctx = gpg.core.Context(armor=True) ctx.signers = keys (sigblob, sign_result) = ctx.sign(plaintext_str, mode=gpg.constants.SIG_MODE_DETACH) return sign_result.signatures, sigblob
def rename_variables(expression: Expression, renaming: Dict[str, str]) -> Expression: """Rename the variables in the expression according to the given dictionary. Args: expression: The expression in which the variables are renamed. renaming: The renaming dictionary. Maps old variable names to new ones. Variable names not occuring in the dictionary are left unchanged. Returns: The expression with renamed variables. """ if isinstance(expression, Operation): if hasattr(expression, 'variable_name'): variable_name = renaming.get(expression.variable_name, expression.variable_name) return create_operation_expression( expression, [rename_variables(o, renaming) for o in op_iter(expression)], variable_name=variable_name ) operands = [rename_variables(o, renaming) for o in op_iter(expression)] return create_operation_expression(expression, operands) elif isinstance(expression, Expression): expression = expression.__copy__() expression.variable_name = renaming.get(expression.variable_name, expression.variable_name) return expression
Rename the variables in the expression according to the given dictionary. Args: expression: The expression in which the variables are renamed. renaming: The renaming dictionary. Maps old variable names to new ones. Variable names not occuring in the dictionary are left unchanged. Returns: The expression with renamed variables.
Below is the the instruction that describes the task: ### Input: Rename the variables in the expression according to the given dictionary. Args: expression: The expression in which the variables are renamed. renaming: The renaming dictionary. Maps old variable names to new ones. Variable names not occuring in the dictionary are left unchanged. Returns: The expression with renamed variables. ### Response: def rename_variables(expression: Expression, renaming: Dict[str, str]) -> Expression: """Rename the variables in the expression according to the given dictionary. Args: expression: The expression in which the variables are renamed. renaming: The renaming dictionary. Maps old variable names to new ones. Variable names not occuring in the dictionary are left unchanged. Returns: The expression with renamed variables. """ if isinstance(expression, Operation): if hasattr(expression, 'variable_name'): variable_name = renaming.get(expression.variable_name, expression.variable_name) return create_operation_expression( expression, [rename_variables(o, renaming) for o in op_iter(expression)], variable_name=variable_name ) operands = [rename_variables(o, renaming) for o in op_iter(expression)] return create_operation_expression(expression, operands) elif isinstance(expression, Expression): expression = expression.__copy__() expression.variable_name = renaming.get(expression.variable_name, expression.variable_name) return expression
def unwrap(self): """ Unwraps an RSA public key into an RSAPublicKey object. Does not support DSA or EC public keys since they do not have an unwrapped form. :return: An RSAPublicKey object """ if self.algorithm == 'rsa': return self['public_key'].parsed key_type = self.algorithm.upper() a_an = 'an' if key_type == 'EC' else 'a' raise ValueError(unwrap( ''' Only RSA public keys may be unwrapped - this key is %s %s public key ''', a_an, key_type ))
Unwraps an RSA public key into an RSAPublicKey object. Does not support DSA or EC public keys since they do not have an unwrapped form. :return: An RSAPublicKey object
Below is the the instruction that describes the task: ### Input: Unwraps an RSA public key into an RSAPublicKey object. Does not support DSA or EC public keys since they do not have an unwrapped form. :return: An RSAPublicKey object ### Response: def unwrap(self): """ Unwraps an RSA public key into an RSAPublicKey object. Does not support DSA or EC public keys since they do not have an unwrapped form. :return: An RSAPublicKey object """ if self.algorithm == 'rsa': return self['public_key'].parsed key_type = self.algorithm.upper() a_an = 'an' if key_type == 'EC' else 'a' raise ValueError(unwrap( ''' Only RSA public keys may be unwrapped - this key is %s %s public key ''', a_an, key_type ))
def index_all(self): """ Index all records under :attr:`record_path`. """ self.logger.debug('Start indexing all records under: %s', self.record_path) with self.db.connection(): for json_path in sorted(self.find_record_files()): self.index_record(json_path)
Index all records under :attr:`record_path`.
Below is the the instruction that describes the task: ### Input: Index all records under :attr:`record_path`. ### Response: def index_all(self): """ Index all records under :attr:`record_path`. """ self.logger.debug('Start indexing all records under: %s', self.record_path) with self.db.connection(): for json_path in sorted(self.find_record_files()): self.index_record(json_path)
def decorate_class_method(func, classkey=None, skipmain=False): """ Will inject all decorated function as methods of classkey classkey is some identifying string, tuple, or object func can also be a tuple """ #import utool as ut global __CLASSTYPE_ATTRIBUTES__ assert classkey is not None, 'must specify classkey' #if not (skipmain and ut.get_caller_modname() == '__main__'): __CLASSTYPE_ATTRIBUTES__[classkey].append(func) return func
Will inject all decorated function as methods of classkey classkey is some identifying string, tuple, or object func can also be a tuple
Below is the the instruction that describes the task: ### Input: Will inject all decorated function as methods of classkey classkey is some identifying string, tuple, or object func can also be a tuple ### Response: def decorate_class_method(func, classkey=None, skipmain=False): """ Will inject all decorated function as methods of classkey classkey is some identifying string, tuple, or object func can also be a tuple """ #import utool as ut global __CLASSTYPE_ATTRIBUTES__ assert classkey is not None, 'must specify classkey' #if not (skipmain and ut.get_caller_modname() == '__main__'): __CLASSTYPE_ATTRIBUTES__[classkey].append(func) return func
def cli(): """ Command line interface """ ch = logging.StreamHandler() ch.setFormatter(logging.Formatter( '%(asctime)s.%(msecs)03d %(levelname)s: %(message)s', datefmt="%Y-%m-%d %H:%M:%S" )) logger.addHandler(ch) import argparse parser = argparse.ArgumentParser(description="Search 'network' for hosts with a \ response to 'path' that matches 'filter'") parser.add_argument('network', help='IP address with optional mask, e.g. 192.168.0.0/24') parser.add_argument('-p', '--path', help='URL path at host, e.g. index.html', default='') parser.add_argument('-f', '--filter', help='Regular expression pattern for filter', dest='pattern', default='') parser.add_argument('-l', '--log', help='Enable logging', action='store_true') args = parser.parse_args() print('Scanning, please wait ...') result = survey(**vars(args)) print('Found {} match{}{}{} on {}'.format(len(result), 'es' if len(result)!=1 else '', ' for ' if args.pattern else '', args.pattern, args.network)) for x in result: print(x.hostname)
Command line interface
Below is the the instruction that describes the task: ### Input: Command line interface ### Response: def cli(): """ Command line interface """ ch = logging.StreamHandler() ch.setFormatter(logging.Formatter( '%(asctime)s.%(msecs)03d %(levelname)s: %(message)s', datefmt="%Y-%m-%d %H:%M:%S" )) logger.addHandler(ch) import argparse parser = argparse.ArgumentParser(description="Search 'network' for hosts with a \ response to 'path' that matches 'filter'") parser.add_argument('network', help='IP address with optional mask, e.g. 192.168.0.0/24') parser.add_argument('-p', '--path', help='URL path at host, e.g. index.html', default='') parser.add_argument('-f', '--filter', help='Regular expression pattern for filter', dest='pattern', default='') parser.add_argument('-l', '--log', help='Enable logging', action='store_true') args = parser.parse_args() print('Scanning, please wait ...') result = survey(**vars(args)) print('Found {} match{}{}{} on {}'.format(len(result), 'es' if len(result)!=1 else '', ' for ' if args.pattern else '', args.pattern, args.network)) for x in result: print(x.hostname)
def p_element_list(self, p): """element_list : elision_opt assignment_expr | element_list COMMA elision_opt assignment_expr """ if len(p) == 3: p[0] = p[1] + [p[2]] else: p[1].extend(p[3]) p[1].append(p[4]) p[0] = p[1]
element_list : elision_opt assignment_expr | element_list COMMA elision_opt assignment_expr
Below is the the instruction that describes the task: ### Input: element_list : elision_opt assignment_expr | element_list COMMA elision_opt assignment_expr ### Response: def p_element_list(self, p): """element_list : elision_opt assignment_expr | element_list COMMA elision_opt assignment_expr """ if len(p) == 3: p[0] = p[1] + [p[2]] else: p[1].extend(p[3]) p[1].append(p[4]) p[0] = p[1]
def pagure_specific_project_tag_filter(config, message, tags=None, *args, **kw): """ Particular pagure project tags Adding this rule allows you to get notifications for one or more `pagure.io <https://pagure.io>`_ projects having the specified tags. Specify multiple tags by separating them with a comma ','. """ if not pagure_catchall(config, message): return False tags = tags.split(',') if tags else [] tags = [tag.strip() for tag in tags if tag and tag.strip()] project_tags = set() project_tags.update(message.get('project', {}).get('tags', [])) project_tags.update( message.get('pullrequest', {}).get('project', {}).get('tags', [])) project_tags.update( message.get('commit', {}).get('repo', {}).get('tags', [])) valid = len(project_tags.intersection(set(tags))) > 0 return valid
Particular pagure project tags Adding this rule allows you to get notifications for one or more `pagure.io <https://pagure.io>`_ projects having the specified tags. Specify multiple tags by separating them with a comma ','.
Below is the the instruction that describes the task: ### Input: Particular pagure project tags Adding this rule allows you to get notifications for one or more `pagure.io <https://pagure.io>`_ projects having the specified tags. Specify multiple tags by separating them with a comma ','. ### Response: def pagure_specific_project_tag_filter(config, message, tags=None, *args, **kw): """ Particular pagure project tags Adding this rule allows you to get notifications for one or more `pagure.io <https://pagure.io>`_ projects having the specified tags. Specify multiple tags by separating them with a comma ','. """ if not pagure_catchall(config, message): return False tags = tags.split(',') if tags else [] tags = [tag.strip() for tag in tags if tag and tag.strip()] project_tags = set() project_tags.update(message.get('project', {}).get('tags', [])) project_tags.update( message.get('pullrequest', {}).get('project', {}).get('tags', [])) project_tags.update( message.get('commit', {}).get('repo', {}).get('tags', [])) valid = len(project_tags.intersection(set(tags))) > 0 return valid
def createEncoder(): """Create the encoder instance for our test and return it.""" consumption_encoder = ScalarEncoder(21, 0.0, 100.0, n=50, name="consumption", clipInput=True) time_encoder = DateEncoder(timeOfDay=(21, 9.5), name="timestamp_timeOfDay") encoder = MultiEncoder() encoder.addEncoder("consumption", consumption_encoder) encoder.addEncoder("timestamp", time_encoder) return encoder
Create the encoder instance for our test and return it.
Below is the the instruction that describes the task: ### Input: Create the encoder instance for our test and return it. ### Response: def createEncoder(): """Create the encoder instance for our test and return it.""" consumption_encoder = ScalarEncoder(21, 0.0, 100.0, n=50, name="consumption", clipInput=True) time_encoder = DateEncoder(timeOfDay=(21, 9.5), name="timestamp_timeOfDay") encoder = MultiEncoder() encoder.addEncoder("consumption", consumption_encoder) encoder.addEncoder("timestamp", time_encoder) return encoder
def Create(path, password, generate_default_key=True): """ Create a new user wallet. Args: path (str): A path indicating where to create or open the wallet e.g. "/Wallets/mywallet". password (str): a 10 characters minimum password to secure the wallet with. Returns: UserWallet: a UserWallet instance. """ wallet = UserWallet(path=path, passwordKey=password, create=True) if generate_default_key: wallet.CreateKey() return wallet
Create a new user wallet. Args: path (str): A path indicating where to create or open the wallet e.g. "/Wallets/mywallet". password (str): a 10 characters minimum password to secure the wallet with. Returns: UserWallet: a UserWallet instance.
Below is the the instruction that describes the task: ### Input: Create a new user wallet. Args: path (str): A path indicating where to create or open the wallet e.g. "/Wallets/mywallet". password (str): a 10 characters minimum password to secure the wallet with. Returns: UserWallet: a UserWallet instance. ### Response: def Create(path, password, generate_default_key=True): """ Create a new user wallet. Args: path (str): A path indicating where to create or open the wallet e.g. "/Wallets/mywallet". password (str): a 10 characters minimum password to secure the wallet with. Returns: UserWallet: a UserWallet instance. """ wallet = UserWallet(path=path, passwordKey=password, create=True) if generate_default_key: wallet.CreateKey() return wallet
def to_dict(self): """ Convert the object into a json serializable dictionary. Note: It uses the private method _save_to_input_dict of the parent. :return dict: json serializable dictionary containing the needed information to instantiate the object """ input_dict = super(Add, self)._save_to_input_dict() input_dict["class"] = str("GPy.kern.Add") return input_dict
Convert the object into a json serializable dictionary. Note: It uses the private method _save_to_input_dict of the parent. :return dict: json serializable dictionary containing the needed information to instantiate the object
Below is the the instruction that describes the task: ### Input: Convert the object into a json serializable dictionary. Note: It uses the private method _save_to_input_dict of the parent. :return dict: json serializable dictionary containing the needed information to instantiate the object ### Response: def to_dict(self): """ Convert the object into a json serializable dictionary. Note: It uses the private method _save_to_input_dict of the parent. :return dict: json serializable dictionary containing the needed information to instantiate the object """ input_dict = super(Add, self)._save_to_input_dict() input_dict["class"] = str("GPy.kern.Add") return input_dict
def prune_old_authorization_codes(): """ Removes all unused and expired authorization codes from the database. """ from .compat import now from .models import AuthorizationCode AuthorizationCode.objects.with_expiration_before(now()).delete()
Removes all unused and expired authorization codes from the database.
Below is the the instruction that describes the task: ### Input: Removes all unused and expired authorization codes from the database. ### Response: def prune_old_authorization_codes(): """ Removes all unused and expired authorization codes from the database. """ from .compat import now from .models import AuthorizationCode AuthorizationCode.objects.with_expiration_before(now()).delete()
async def storm(self, text, opts=None): ''' Evaluate a storm query and yield result messages. Yields: ((str,dict)): Storm messages. ''' async for mesg in self.cell.streamstorm(text, opts, user=self.user): yield mesg
Evaluate a storm query and yield result messages. Yields: ((str,dict)): Storm messages.
Below is the the instruction that describes the task: ### Input: Evaluate a storm query and yield result messages. Yields: ((str,dict)): Storm messages. ### Response: async def storm(self, text, opts=None): ''' Evaluate a storm query and yield result messages. Yields: ((str,dict)): Storm messages. ''' async for mesg in self.cell.streamstorm(text, opts, user=self.user): yield mesg
def get_token_issuer(token): """ Issuer of a token is the identifier used to recover the secret Need to extract this from token to ensure we can proceed to the signature validation stage Does not check validity of the token :param token: signed JWT token :return issuer: iss field of the JWT token :raises TokenIssuerError: if iss field not present :raises TokenDecodeError: if token does not conform to JWT spec """ try: unverified = decode_token(token) if 'iss' not in unverified: raise TokenIssuerError return unverified.get('iss') except jwt.DecodeError: raise TokenDecodeError
Issuer of a token is the identifier used to recover the secret Need to extract this from token to ensure we can proceed to the signature validation stage Does not check validity of the token :param token: signed JWT token :return issuer: iss field of the JWT token :raises TokenIssuerError: if iss field not present :raises TokenDecodeError: if token does not conform to JWT spec
Below is the the instruction that describes the task: ### Input: Issuer of a token is the identifier used to recover the secret Need to extract this from token to ensure we can proceed to the signature validation stage Does not check validity of the token :param token: signed JWT token :return issuer: iss field of the JWT token :raises TokenIssuerError: if iss field not present :raises TokenDecodeError: if token does not conform to JWT spec ### Response: def get_token_issuer(token): """ Issuer of a token is the identifier used to recover the secret Need to extract this from token to ensure we can proceed to the signature validation stage Does not check validity of the token :param token: signed JWT token :return issuer: iss field of the JWT token :raises TokenIssuerError: if iss field not present :raises TokenDecodeError: if token does not conform to JWT spec """ try: unverified = decode_token(token) if 'iss' not in unverified: raise TokenIssuerError return unverified.get('iss') except jwt.DecodeError: raise TokenDecodeError
def get_verb_phrases(sentence_doc): """ Returns an object like, [(1), (5,6,7)] where this means 2 verb phrases. a single verb at index 1, another verb phrase 5,6,7. - Adverbs are not included. - Infinitive phrases (and verb phrases that are subsets of infinitive phrases) are not included """ pattern = r'<VERB>*<ADV>*<VERB>+' # r'<VERB>?<ADV>*<VERB>+' is suggested by textacy site verb_phrases = textacy.extract.pos_regex_matches(sentence_doc, pattern) result = [] # [(1), (5,6,7)] => 2 verb phrases. a single verb at index 1, another verb phrase 5,6,7 for vp in verb_phrases: word_numbers = [] # return the index of 'could have been happily eating' from 'She could have been happily eating chowder' first_word = vp.start x = first_word if len(vp) > 1: for verb_or_adverb in vp: # filter out adverbs if not verb_or_adverb.pos_ == 'ADV': word_numbers.append(x) x += 1 else: word_numbers.append(first_word) # filter out infinitive phrases if ( (word_numbers[0] - 1) < 0) or (sentence_doc[word_numbers[0] - 1].text.lower() != 'to'): result.append(word_numbers) return result
Returns an object like, [(1), (5,6,7)] where this means 2 verb phrases. a single verb at index 1, another verb phrase 5,6,7. - Adverbs are not included. - Infinitive phrases (and verb phrases that are subsets of infinitive phrases) are not included
Below is the the instruction that describes the task: ### Input: Returns an object like, [(1), (5,6,7)] where this means 2 verb phrases. a single verb at index 1, another verb phrase 5,6,7. - Adverbs are not included. - Infinitive phrases (and verb phrases that are subsets of infinitive phrases) are not included ### Response: def get_verb_phrases(sentence_doc): """ Returns an object like, [(1), (5,6,7)] where this means 2 verb phrases. a single verb at index 1, another verb phrase 5,6,7. - Adverbs are not included. - Infinitive phrases (and verb phrases that are subsets of infinitive phrases) are not included """ pattern = r'<VERB>*<ADV>*<VERB>+' # r'<VERB>?<ADV>*<VERB>+' is suggested by textacy site verb_phrases = textacy.extract.pos_regex_matches(sentence_doc, pattern) result = [] # [(1), (5,6,7)] => 2 verb phrases. a single verb at index 1, another verb phrase 5,6,7 for vp in verb_phrases: word_numbers = [] # return the index of 'could have been happily eating' from 'She could have been happily eating chowder' first_word = vp.start x = first_word if len(vp) > 1: for verb_or_adverb in vp: # filter out adverbs if not verb_or_adverb.pos_ == 'ADV': word_numbers.append(x) x += 1 else: word_numbers.append(first_word) # filter out infinitive phrases if ( (word_numbers[0] - 1) < 0) or (sentence_doc[word_numbers[0] - 1].text.lower() != 'to'): result.append(word_numbers) return result
def run(path, code=None, params=None, **meta): """pydocstyle code checking. :return list: List of errors. """ if 'ignore_decorators' in params: ignore_decorators = params['ignore_decorators'] else: ignore_decorators = None check_source_args = (code, path, ignore_decorators) if THIRD_ARG else (code, path) return [{ 'lnum': e.line, # Remove colon after error code ("D403: ..." => "D403 ..."). 'text': (e.message[0:4] + e.message[5:] if e.message[4] == ':' else e.message), 'type': 'D', 'number': e.code } for e in PyDocChecker().check_source(*check_source_args)]
pydocstyle code checking. :return list: List of errors.
Below is the the instruction that describes the task: ### Input: pydocstyle code checking. :return list: List of errors. ### Response: def run(path, code=None, params=None, **meta): """pydocstyle code checking. :return list: List of errors. """ if 'ignore_decorators' in params: ignore_decorators = params['ignore_decorators'] else: ignore_decorators = None check_source_args = (code, path, ignore_decorators) if THIRD_ARG else (code, path) return [{ 'lnum': e.line, # Remove colon after error code ("D403: ..." => "D403 ..."). 'text': (e.message[0:4] + e.message[5:] if e.message[4] == ':' else e.message), 'type': 'D', 'number': e.code } for e in PyDocChecker().check_source(*check_source_args)]
def hazards_for_layer(layer_geometry_key): """Get hazard categories form layer_geometry_key. :param layer_geometry_key: The geometry id :type layer_geometry_key: str :returns: List of hazard :rtype: list """ result = [] for hazard in hazard_all: if layer_geometry_key in hazard.get('allowed_geometries'): result.append(hazard) return sorted(result, key=lambda k: k['key'])
Get hazard categories form layer_geometry_key. :param layer_geometry_key: The geometry id :type layer_geometry_key: str :returns: List of hazard :rtype: list
Below is the the instruction that describes the task: ### Input: Get hazard categories form layer_geometry_key. :param layer_geometry_key: The geometry id :type layer_geometry_key: str :returns: List of hazard :rtype: list ### Response: def hazards_for_layer(layer_geometry_key): """Get hazard categories form layer_geometry_key. :param layer_geometry_key: The geometry id :type layer_geometry_key: str :returns: List of hazard :rtype: list """ result = [] for hazard in hazard_all: if layer_geometry_key in hazard.get('allowed_geometries'): result.append(hazard) return sorted(result, key=lambda k: k['key'])
def flo(string): '''Return the string given by param formatted with the callers locals.''' callers_locals = {} frame = inspect.currentframe() try: outerframe = frame.f_back callers_locals = outerframe.f_locals finally: del frame return string.format(**callers_locals)
Return the string given by param formatted with the callers locals.
Below is the the instruction that describes the task: ### Input: Return the string given by param formatted with the callers locals. ### Response: def flo(string): '''Return the string given by param formatted with the callers locals.''' callers_locals = {} frame = inspect.currentframe() try: outerframe = frame.f_back callers_locals = outerframe.f_locals finally: del frame return string.format(**callers_locals)
def clip_foreign(network): """ Delete all components and timelines located outside of Germany. Add transborder flows divided by country of origin as network.foreign_trade. Parameters ---------- network : :class:`pypsa.Network Overall container of PyPSA Returns ------- network : :class:`pypsa.Network Overall container of PyPSA """ # get foreign buses by country foreign_buses = network.buses[network.buses.country_code != 'DE'] network.buses = network.buses.drop( network.buses.loc[foreign_buses.index].index) # identify transborder lines (one bus foreign, one bus not) and the country # it is coming from """transborder_lines = pd.DataFrame(index=network.lines[ ((network.lines['bus0'].isin(network.buses.index) == False) & (network.lines['bus1'].isin(network.buses.index) == True)) | ((network.lines['bus0'].isin(network.buses.index) == True) & (network.lines['bus1'].isin(network.buses.index) == False))].index) transborder_lines['bus0'] = network.lines['bus0'] transborder_lines['bus1'] = network.lines['bus1'] transborder_lines['country'] = "" for i in range(0, len(transborder_lines)): if transborder_lines.iloc[i, 0] in foreign_buses.index: transborder_lines['country'][i] = foreign_buses[str( transborder_lines.iloc[i, 0])] else: transborder_lines['country'][i] = foreign_buses[str( transborder_lines.iloc[i, 1])] # identify amount of flows per line and group to get flow per country transborder_flows = network.lines_t.p0[transborder_lines.index] for i in transborder_flows.columns: if network.lines.loc[str(i)]['bus1'] in foreign_buses.index: transborder_flows.loc[:, str( i)] = transborder_flows.loc[:, str(i)]*-1 network.foreign_trade = transborder_flows.\ groupby(transborder_lines['country'], axis=1).sum()""" # drop foreign components network.lines = network.lines.drop(network.lines[ (network.lines['bus0'].isin(network.buses.index) == False) | (network.lines['bus1'].isin(network.buses.index) == False)].index) network.links = network.links.drop(network.links[ (network.links['bus0'].isin(network.buses.index) == False) | (network.links['bus1'].isin(network.buses.index) == False)].index) network.transformers = network.transformers.drop(network.transformers[ (network.transformers['bus0'].isin(network.buses.index) == False) | (network.transformers['bus1'].isin(network. buses.index) == False)].index) network.generators = network.generators.drop(network.generators[ (network.generators['bus'].isin(network.buses.index) == False)].index) network.loads = network.loads.drop(network.loads[ (network.loads['bus'].isin(network.buses.index) == False)].index) network.storage_units = network.storage_units.drop(network.storage_units[ (network.storage_units['bus'].isin(network. buses.index) == False)].index) components = ['loads', 'generators', 'lines', 'buses', 'transformers', 'links'] for g in components: # loads_t h = g + '_t' nw = getattr(network, h) # network.loads_t for i in nw.keys(): # network.loads_t.p cols = [j for j in getattr( nw, i).columns if j not in getattr(network, g).index] for k in cols: del getattr(nw, i)[k] return network
Delete all components and timelines located outside of Germany. Add transborder flows divided by country of origin as network.foreign_trade. Parameters ---------- network : :class:`pypsa.Network Overall container of PyPSA Returns ------- network : :class:`pypsa.Network Overall container of PyPSA
Below is the the instruction that describes the task: ### Input: Delete all components and timelines located outside of Germany. Add transborder flows divided by country of origin as network.foreign_trade. Parameters ---------- network : :class:`pypsa.Network Overall container of PyPSA Returns ------- network : :class:`pypsa.Network Overall container of PyPSA ### Response: def clip_foreign(network): """ Delete all components and timelines located outside of Germany. Add transborder flows divided by country of origin as network.foreign_trade. Parameters ---------- network : :class:`pypsa.Network Overall container of PyPSA Returns ------- network : :class:`pypsa.Network Overall container of PyPSA """ # get foreign buses by country foreign_buses = network.buses[network.buses.country_code != 'DE'] network.buses = network.buses.drop( network.buses.loc[foreign_buses.index].index) # identify transborder lines (one bus foreign, one bus not) and the country # it is coming from """transborder_lines = pd.DataFrame(index=network.lines[ ((network.lines['bus0'].isin(network.buses.index) == False) & (network.lines['bus1'].isin(network.buses.index) == True)) | ((network.lines['bus0'].isin(network.buses.index) == True) & (network.lines['bus1'].isin(network.buses.index) == False))].index) transborder_lines['bus0'] = network.lines['bus0'] transborder_lines['bus1'] = network.lines['bus1'] transborder_lines['country'] = "" for i in range(0, len(transborder_lines)): if transborder_lines.iloc[i, 0] in foreign_buses.index: transborder_lines['country'][i] = foreign_buses[str( transborder_lines.iloc[i, 0])] else: transborder_lines['country'][i] = foreign_buses[str( transborder_lines.iloc[i, 1])] # identify amount of flows per line and group to get flow per country transborder_flows = network.lines_t.p0[transborder_lines.index] for i in transborder_flows.columns: if network.lines.loc[str(i)]['bus1'] in foreign_buses.index: transborder_flows.loc[:, str( i)] = transborder_flows.loc[:, str(i)]*-1 network.foreign_trade = transborder_flows.\ groupby(transborder_lines['country'], axis=1).sum()""" # drop foreign components network.lines = network.lines.drop(network.lines[ (network.lines['bus0'].isin(network.buses.index) == False) | (network.lines['bus1'].isin(network.buses.index) == False)].index) network.links = network.links.drop(network.links[ (network.links['bus0'].isin(network.buses.index) == False) | (network.links['bus1'].isin(network.buses.index) == False)].index) network.transformers = network.transformers.drop(network.transformers[ (network.transformers['bus0'].isin(network.buses.index) == False) | (network.transformers['bus1'].isin(network. buses.index) == False)].index) network.generators = network.generators.drop(network.generators[ (network.generators['bus'].isin(network.buses.index) == False)].index) network.loads = network.loads.drop(network.loads[ (network.loads['bus'].isin(network.buses.index) == False)].index) network.storage_units = network.storage_units.drop(network.storage_units[ (network.storage_units['bus'].isin(network. buses.index) == False)].index) components = ['loads', 'generators', 'lines', 'buses', 'transformers', 'links'] for g in components: # loads_t h = g + '_t' nw = getattr(network, h) # network.loads_t for i in nw.keys(): # network.loads_t.p cols = [j for j in getattr( nw, i).columns if j not in getattr(network, g).index] for k in cols: del getattr(nw, i)[k] return network
def solve(succ, orien, i, direc): """Can a laser leaving mirror i in direction direc reach exit ? :param i: mirror index :param direc: direction leaving mirror i :param orient: orient[i]=orientation of mirror i :param succ: succ[i][direc]=succ mirror reached when leaving i in direction direc """ assert orien[i] is not None j = succ[i][direc] if j is None: # basic case return False if j == len(orien) - 1: return True if orien[j] is None: # try both orientations for x in [0, 1]: orien[j] = x if solve(succ, orien, j, reflex[direc][x]): return True orien[j] = None return False else: return solve(succ, orien, j, reflex[direc][orien[j]])
Can a laser leaving mirror i in direction direc reach exit ? :param i: mirror index :param direc: direction leaving mirror i :param orient: orient[i]=orientation of mirror i :param succ: succ[i][direc]=succ mirror reached when leaving i in direction direc
Below is the the instruction that describes the task: ### Input: Can a laser leaving mirror i in direction direc reach exit ? :param i: mirror index :param direc: direction leaving mirror i :param orient: orient[i]=orientation of mirror i :param succ: succ[i][direc]=succ mirror reached when leaving i in direction direc ### Response: def solve(succ, orien, i, direc): """Can a laser leaving mirror i in direction direc reach exit ? :param i: mirror index :param direc: direction leaving mirror i :param orient: orient[i]=orientation of mirror i :param succ: succ[i][direc]=succ mirror reached when leaving i in direction direc """ assert orien[i] is not None j = succ[i][direc] if j is None: # basic case return False if j == len(orien) - 1: return True if orien[j] is None: # try both orientations for x in [0, 1]: orien[j] = x if solve(succ, orien, j, reflex[direc][x]): return True orien[j] = None return False else: return solve(succ, orien, j, reflex[direc][orien[j]])
def generator_checker_py2(gen, gen_type, bound_Generic, bound_typevars, bound_typevars_readonly, follow_fwd_refs, _recursion_check): """Builds a typechecking wrapper around a Python 2 style generator object. """ initialized = False sn = None while True: a = gen.send(sn) if initialized or not a is None: if not gen_type.__args__[0] is Any and \ not _isinstance(a, gen_type.__args__[0], bound_Generic, bound_typevars, bound_typevars_readonly, follow_fwd_refs, _recursion_check): tpa = deep_type(a) msg = _make_generator_error_message(tpa, gen, gen_type.__args__[0], 'has incompatible yield type') _raise_typecheck_error(msg, True, a, tpa, gen_type.__args__[0]) # raise pytypes.ReturnTypeError(_make_generator_error_message(tpa, gen, # gen_type.__args__[0], 'has incompatible yield type')) initialized = True sn = yield a if not gen_type.__args__[1] is Any and \ not _isinstance(sn, gen_type.__args__[1], bound_Generic, bound_typevars, bound_typevars_readonly, follow_fwd_refs, _recursion_check): tpsn = deep_type(sn) msg = _make_generator_error_message(tpsn, gen, gen_type.__args__[1], 'has incompatible send type') _raise_typecheck_error(msg, False, sn, tpsn, gen_type.__args__[1])
Builds a typechecking wrapper around a Python 2 style generator object.
Below is the the instruction that describes the task: ### Input: Builds a typechecking wrapper around a Python 2 style generator object. ### Response: def generator_checker_py2(gen, gen_type, bound_Generic, bound_typevars, bound_typevars_readonly, follow_fwd_refs, _recursion_check): """Builds a typechecking wrapper around a Python 2 style generator object. """ initialized = False sn = None while True: a = gen.send(sn) if initialized or not a is None: if not gen_type.__args__[0] is Any and \ not _isinstance(a, gen_type.__args__[0], bound_Generic, bound_typevars, bound_typevars_readonly, follow_fwd_refs, _recursion_check): tpa = deep_type(a) msg = _make_generator_error_message(tpa, gen, gen_type.__args__[0], 'has incompatible yield type') _raise_typecheck_error(msg, True, a, tpa, gen_type.__args__[0]) # raise pytypes.ReturnTypeError(_make_generator_error_message(tpa, gen, # gen_type.__args__[0], 'has incompatible yield type')) initialized = True sn = yield a if not gen_type.__args__[1] is Any and \ not _isinstance(sn, gen_type.__args__[1], bound_Generic, bound_typevars, bound_typevars_readonly, follow_fwd_refs, _recursion_check): tpsn = deep_type(sn) msg = _make_generator_error_message(tpsn, gen, gen_type.__args__[1], 'has incompatible send type') _raise_typecheck_error(msg, False, sn, tpsn, gen_type.__args__[1])
def process_remote_sources(self): """Create synthetic targets with populated sources from remote_sources targets.""" unpacked_sources = self.context.products.get_data(UnpackedArchives) remote_sources_targets = self.context.targets(predicate=lambda t: isinstance(t, RemoteSources)) if not remote_sources_targets: return snapshot_specs = [] filespecs = [] unpack_dirs = [] for target in remote_sources_targets: unpacked_archive = unpacked_sources[target.sources_target] sources = unpacked_archive.found_files rel_unpack_dir = unpacked_archive.rel_unpack_dir self.context.log.debug('target: {}, rel_unpack_dir: {}, sources: {}' .format(target, rel_unpack_dir, sources)) sources_in_dir = tuple(os.path.join(rel_unpack_dir, source) for source in sources) snapshot_specs.append(PathGlobsAndRoot( PathGlobs(sources_in_dir), get_buildroot(), )) filespecs.append({'globs': sources_in_dir}) unpack_dirs.append(rel_unpack_dir) snapshots = self.context._scheduler.capture_snapshots(tuple(snapshot_specs)) for target, snapshot, filespec, rel_unpack_dir in \ zip(remote_sources_targets, snapshots, filespecs, unpack_dirs): synthetic_target = self.context.add_new_target( address=Address(os.path.relpath(self.workdir, get_buildroot()), target.id), target_type=target.destination_target_type, dependencies=target.dependencies, sources=EagerFilesetWithSpec(rel_unpack_dir, filespec, snapshot), derived_from=target, **target.destination_target_args ) self.context.log.debug('synthetic_target: {}'.format(synthetic_target)) for dependent in self.context.build_graph.dependents_of(target.address): self.context.build_graph.inject_dependency(dependent, synthetic_target.address)
Create synthetic targets with populated sources from remote_sources targets.
Below is the the instruction that describes the task: ### Input: Create synthetic targets with populated sources from remote_sources targets. ### Response: def process_remote_sources(self): """Create synthetic targets with populated sources from remote_sources targets.""" unpacked_sources = self.context.products.get_data(UnpackedArchives) remote_sources_targets = self.context.targets(predicate=lambda t: isinstance(t, RemoteSources)) if not remote_sources_targets: return snapshot_specs = [] filespecs = [] unpack_dirs = [] for target in remote_sources_targets: unpacked_archive = unpacked_sources[target.sources_target] sources = unpacked_archive.found_files rel_unpack_dir = unpacked_archive.rel_unpack_dir self.context.log.debug('target: {}, rel_unpack_dir: {}, sources: {}' .format(target, rel_unpack_dir, sources)) sources_in_dir = tuple(os.path.join(rel_unpack_dir, source) for source in sources) snapshot_specs.append(PathGlobsAndRoot( PathGlobs(sources_in_dir), get_buildroot(), )) filespecs.append({'globs': sources_in_dir}) unpack_dirs.append(rel_unpack_dir) snapshots = self.context._scheduler.capture_snapshots(tuple(snapshot_specs)) for target, snapshot, filespec, rel_unpack_dir in \ zip(remote_sources_targets, snapshots, filespecs, unpack_dirs): synthetic_target = self.context.add_new_target( address=Address(os.path.relpath(self.workdir, get_buildroot()), target.id), target_type=target.destination_target_type, dependencies=target.dependencies, sources=EagerFilesetWithSpec(rel_unpack_dir, filespec, snapshot), derived_from=target, **target.destination_target_args ) self.context.log.debug('synthetic_target: {}'.format(synthetic_target)) for dependent in self.context.build_graph.dependents_of(target.address): self.context.build_graph.inject_dependency(dependent, synthetic_target.address)
def add_volume_bricks(name, bricks): ''' Add brick(s) to an existing volume name Volume name bricks List of bricks to add to the volume CLI Example: .. code-block:: bash salt '*' glusterfs.add_volume_bricks <volume> <bricks> ''' volinfo = info() if name not in volinfo: log.error('Volume %s does not exist, cannot add bricks', name) return False new_bricks = [] cmd = 'volume add-brick {0}'.format(name) if isinstance(bricks, six.string_types): bricks = [bricks] volume_bricks = [x['path'] for x in volinfo[name]['bricks'].values()] for brick in bricks: if brick in volume_bricks: log.debug( 'Brick %s already in volume %s...excluding from command', brick, name) else: new_bricks.append(brick) if new_bricks: for brick in new_bricks: cmd += ' {0}'.format(brick) return _gluster(cmd) return True
Add brick(s) to an existing volume name Volume name bricks List of bricks to add to the volume CLI Example: .. code-block:: bash salt '*' glusterfs.add_volume_bricks <volume> <bricks>
Below is the the instruction that describes the task: ### Input: Add brick(s) to an existing volume name Volume name bricks List of bricks to add to the volume CLI Example: .. code-block:: bash salt '*' glusterfs.add_volume_bricks <volume> <bricks> ### Response: def add_volume_bricks(name, bricks): ''' Add brick(s) to an existing volume name Volume name bricks List of bricks to add to the volume CLI Example: .. code-block:: bash salt '*' glusterfs.add_volume_bricks <volume> <bricks> ''' volinfo = info() if name not in volinfo: log.error('Volume %s does not exist, cannot add bricks', name) return False new_bricks = [] cmd = 'volume add-brick {0}'.format(name) if isinstance(bricks, six.string_types): bricks = [bricks] volume_bricks = [x['path'] for x in volinfo[name]['bricks'].values()] for brick in bricks: if brick in volume_bricks: log.debug( 'Brick %s already in volume %s...excluding from command', brick, name) else: new_bricks.append(brick) if new_bricks: for brick in new_bricks: cmd += ' {0}'.format(brick) return _gluster(cmd) return True
def flat_list_to_polymer(atom_list, atom_group_s=4): """Takes a flat list of atomic coordinates and converts it to a `Polymer`. Parameters ---------- atom_list : [Atom] Flat list of coordinates. atom_group_s : int, optional Size of atom groups. Returns ------- polymer : Polypeptide `Polymer` object containing atom coords converted `Monomers`. Raises ------ ValueError Raised if `atom_group_s` != 4 or 5 """ atom_labels = ['N', 'CA', 'C', 'O', 'CB'] atom_elements = ['N', 'C', 'C', 'O', 'C'] atoms_coords = [atom_list[x:x + atom_group_s] for x in range(0, len(atom_list), atom_group_s)] atoms = [[Atom(x[0], x[1]) for x in zip(y, atom_elements)] for y in atoms_coords] if atom_group_s == 5: monomers = [Residue(OrderedDict(zip(atom_labels, x)), 'ALA') for x in atoms] elif atom_group_s == 4: monomers = [Residue(OrderedDict(zip(atom_labels, x)), 'GLY') for x in atoms] else: raise ValueError( 'Parameter atom_group_s must be 4 or 5 so atoms can be labeled correctly.') polymer = Polypeptide(monomers=monomers) return polymer
Takes a flat list of atomic coordinates and converts it to a `Polymer`. Parameters ---------- atom_list : [Atom] Flat list of coordinates. atom_group_s : int, optional Size of atom groups. Returns ------- polymer : Polypeptide `Polymer` object containing atom coords converted `Monomers`. Raises ------ ValueError Raised if `atom_group_s` != 4 or 5
Below is the the instruction that describes the task: ### Input: Takes a flat list of atomic coordinates and converts it to a `Polymer`. Parameters ---------- atom_list : [Atom] Flat list of coordinates. atom_group_s : int, optional Size of atom groups. Returns ------- polymer : Polypeptide `Polymer` object containing atom coords converted `Monomers`. Raises ------ ValueError Raised if `atom_group_s` != 4 or 5 ### Response: def flat_list_to_polymer(atom_list, atom_group_s=4): """Takes a flat list of atomic coordinates and converts it to a `Polymer`. Parameters ---------- atom_list : [Atom] Flat list of coordinates. atom_group_s : int, optional Size of atom groups. Returns ------- polymer : Polypeptide `Polymer` object containing atom coords converted `Monomers`. Raises ------ ValueError Raised if `atom_group_s` != 4 or 5 """ atom_labels = ['N', 'CA', 'C', 'O', 'CB'] atom_elements = ['N', 'C', 'C', 'O', 'C'] atoms_coords = [atom_list[x:x + atom_group_s] for x in range(0, len(atom_list), atom_group_s)] atoms = [[Atom(x[0], x[1]) for x in zip(y, atom_elements)] for y in atoms_coords] if atom_group_s == 5: monomers = [Residue(OrderedDict(zip(atom_labels, x)), 'ALA') for x in atoms] elif atom_group_s == 4: monomers = [Residue(OrderedDict(zip(atom_labels, x)), 'GLY') for x in atoms] else: raise ValueError( 'Parameter atom_group_s must be 4 or 5 so atoms can be labeled correctly.') polymer = Polypeptide(monomers=monomers) return polymer
def open_zarr(store, group=None, synchronizer=None, chunks='auto', decode_cf=True, mask_and_scale=True, decode_times=True, concat_characters=True, decode_coords=True, drop_variables=None, consolidated=False, overwrite_encoded_chunks=False, **kwargs): """Load and decode a dataset from a Zarr store. .. note:: Experimental The Zarr backend is new and experimental. Please report any unexpected behavior via github issues. The `store` object should be a valid store for a Zarr group. `store` variables must contain dimension metadata encoded in the `_ARRAY_DIMENSIONS` attribute. Parameters ---------- store : MutableMapping or str A MutableMapping where a Zarr Group has been stored or a path to a directory in file system where a Zarr DirectoryStore has been stored. synchronizer : object, optional Array synchronizer provided to zarr group : str, obtional Group path. (a.k.a. `path` in zarr terminology.) chunks : int or dict or tuple or {None, 'auto'}, optional Chunk sizes along each dimension, e.g., ``5`` or ``{'x': 5, 'y': 5}``. If `chunks='auto'`, dask chunks are created based on the variable's zarr chunks. If `chunks=None`, zarr array data will lazily convert to numpy arrays upon access. This accepts all the chunk specifications as Dask does. overwrite_encoded_chunks: bool, optional Whether to drop the zarr chunks encoded for each variable when a dataset is loaded with specified chunk sizes (default: False) decode_cf : bool, optional Whether to decode these variables, assuming they were saved according to CF conventions. mask_and_scale : bool, optional If True, replace array values equal to `_FillValue` with NA and scale values according to the formula `original_values * scale_factor + add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are taken from variable attributes (if they exist). If the `_FillValue` or `missing_value` attribute contains multiple values a warning will be issued and all array values matching one of the multiple values will be replaced by NA. decode_times : bool, optional If True, decode times encoded in the standard NetCDF datetime format into datetime objects. Otherwise, leave them encoded as numbers. concat_characters : bool, optional If True, concatenate along the last dimension of character arrays to form string arrays. Dimensions will only be concatenated over (and removed) if they have no corresponding variable and if they are only used as the last dimension of character arrays. decode_coords : bool, optional If True, decode the 'coordinates' attribute to identify coordinates in the resulting dataset. drop_variables : string or iterable, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. consolidated : bool, optional Whether to open the store using zarr's consolidated metadata capability. Only works for stores that have already been consolidated. Returns ------- dataset : Dataset The newly created dataset. See Also -------- open_dataset References ---------- http://zarr.readthedocs.io/ """ if 'auto_chunk' in kwargs: auto_chunk = kwargs.pop('auto_chunk') if auto_chunk: chunks = 'auto' # maintain backwards compatibility else: chunks = None warnings.warn("auto_chunk is deprecated. Use chunks='auto' instead.", FutureWarning, stacklevel=2) if kwargs: raise TypeError("open_zarr() got unexpected keyword arguments " + ",".join(kwargs.keys())) if not isinstance(chunks, (int, dict)): if chunks != 'auto' and chunks is not None: raise ValueError("chunks must be an int, dict, 'auto', or None. " "Instead found %s. " % chunks) if not decode_cf: mask_and_scale = False decode_times = False concat_characters = False decode_coords = False def maybe_decode_store(store, lock=False): ds = conventions.decode_cf( store, mask_and_scale=mask_and_scale, decode_times=decode_times, concat_characters=concat_characters, decode_coords=decode_coords, drop_variables=drop_variables) # TODO: this is where we would apply caching return ds # Zarr supports a wide range of access modes, but for now xarray either # reads or writes from a store, never both. For open_zarr, we only read mode = 'r' zarr_store = ZarrStore.open_group(store, mode=mode, synchronizer=synchronizer, group=group, consolidated=consolidated) ds = maybe_decode_store(zarr_store) # auto chunking needs to be here and not in ZarrStore because variable # chunks do not survive decode_cf # return trivial case if not chunks: return ds # adapted from Dataset.Chunk() if isinstance(chunks, int): chunks = dict.fromkeys(ds.dims, chunks) if isinstance(chunks, tuple) and len(chunks) == len(ds.dims): chunks = dict(zip(ds.dims, chunks)) def get_chunk(name, var, chunks): chunk_spec = dict(zip(var.dims, var.encoding.get('chunks'))) # Coordinate labels aren't chunked if var.ndim == 1 and var.dims[0] == name: return chunk_spec if chunks == 'auto': return chunk_spec for dim in var.dims: if dim in chunks: spec = chunks[dim] if isinstance(spec, int): spec = (spec,) if isinstance(spec, (tuple, list)) and chunk_spec[dim]: if any(s % chunk_spec[dim] for s in spec): warnings.warn("Specified Dask chunks %r would " "separate Zarr chunk shape %r for " "dimension %r. This significantly " "degrades performance. Consider " "rechunking after loading instead." % (chunks[dim], chunk_spec[dim], dim), stacklevel=2) chunk_spec[dim] = chunks[dim] return chunk_spec def maybe_chunk(name, var, chunks): from dask.base import tokenize chunk_spec = get_chunk(name, var, chunks) if (var.ndim > 0) and (chunk_spec is not None): # does this cause any data to be read? token2 = tokenize(name, var._data) name2 = 'zarr-%s' % token2 var = var.chunk(chunk_spec, name=name2, lock=None) if overwrite_encoded_chunks and var.chunks is not None: var.encoding['chunks'] = tuple(x[0] for x in var.chunks) return var else: return var variables = OrderedDict([(k, maybe_chunk(k, v, chunks)) for k, v in ds.variables.items()]) return ds._replace_vars_and_dims(variables)
Load and decode a dataset from a Zarr store. .. note:: Experimental The Zarr backend is new and experimental. Please report any unexpected behavior via github issues. The `store` object should be a valid store for a Zarr group. `store` variables must contain dimension metadata encoded in the `_ARRAY_DIMENSIONS` attribute. Parameters ---------- store : MutableMapping or str A MutableMapping where a Zarr Group has been stored or a path to a directory in file system where a Zarr DirectoryStore has been stored. synchronizer : object, optional Array synchronizer provided to zarr group : str, obtional Group path. (a.k.a. `path` in zarr terminology.) chunks : int or dict or tuple or {None, 'auto'}, optional Chunk sizes along each dimension, e.g., ``5`` or ``{'x': 5, 'y': 5}``. If `chunks='auto'`, dask chunks are created based on the variable's zarr chunks. If `chunks=None`, zarr array data will lazily convert to numpy arrays upon access. This accepts all the chunk specifications as Dask does. overwrite_encoded_chunks: bool, optional Whether to drop the zarr chunks encoded for each variable when a dataset is loaded with specified chunk sizes (default: False) decode_cf : bool, optional Whether to decode these variables, assuming they were saved according to CF conventions. mask_and_scale : bool, optional If True, replace array values equal to `_FillValue` with NA and scale values according to the formula `original_values * scale_factor + add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are taken from variable attributes (if they exist). If the `_FillValue` or `missing_value` attribute contains multiple values a warning will be issued and all array values matching one of the multiple values will be replaced by NA. decode_times : bool, optional If True, decode times encoded in the standard NetCDF datetime format into datetime objects. Otherwise, leave them encoded as numbers. concat_characters : bool, optional If True, concatenate along the last dimension of character arrays to form string arrays. Dimensions will only be concatenated over (and removed) if they have no corresponding variable and if they are only used as the last dimension of character arrays. decode_coords : bool, optional If True, decode the 'coordinates' attribute to identify coordinates in the resulting dataset. drop_variables : string or iterable, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. consolidated : bool, optional Whether to open the store using zarr's consolidated metadata capability. Only works for stores that have already been consolidated. Returns ------- dataset : Dataset The newly created dataset. See Also -------- open_dataset References ---------- http://zarr.readthedocs.io/
Below is the the instruction that describes the task: ### Input: Load and decode a dataset from a Zarr store. .. note:: Experimental The Zarr backend is new and experimental. Please report any unexpected behavior via github issues. The `store` object should be a valid store for a Zarr group. `store` variables must contain dimension metadata encoded in the `_ARRAY_DIMENSIONS` attribute. Parameters ---------- store : MutableMapping or str A MutableMapping where a Zarr Group has been stored or a path to a directory in file system where a Zarr DirectoryStore has been stored. synchronizer : object, optional Array synchronizer provided to zarr group : str, obtional Group path. (a.k.a. `path` in zarr terminology.) chunks : int or dict or tuple or {None, 'auto'}, optional Chunk sizes along each dimension, e.g., ``5`` or ``{'x': 5, 'y': 5}``. If `chunks='auto'`, dask chunks are created based on the variable's zarr chunks. If `chunks=None`, zarr array data will lazily convert to numpy arrays upon access. This accepts all the chunk specifications as Dask does. overwrite_encoded_chunks: bool, optional Whether to drop the zarr chunks encoded for each variable when a dataset is loaded with specified chunk sizes (default: False) decode_cf : bool, optional Whether to decode these variables, assuming they were saved according to CF conventions. mask_and_scale : bool, optional If True, replace array values equal to `_FillValue` with NA and scale values according to the formula `original_values * scale_factor + add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are taken from variable attributes (if they exist). If the `_FillValue` or `missing_value` attribute contains multiple values a warning will be issued and all array values matching one of the multiple values will be replaced by NA. decode_times : bool, optional If True, decode times encoded in the standard NetCDF datetime format into datetime objects. Otherwise, leave them encoded as numbers. concat_characters : bool, optional If True, concatenate along the last dimension of character arrays to form string arrays. Dimensions will only be concatenated over (and removed) if they have no corresponding variable and if they are only used as the last dimension of character arrays. decode_coords : bool, optional If True, decode the 'coordinates' attribute to identify coordinates in the resulting dataset. drop_variables : string or iterable, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. consolidated : bool, optional Whether to open the store using zarr's consolidated metadata capability. Only works for stores that have already been consolidated. Returns ------- dataset : Dataset The newly created dataset. See Also -------- open_dataset References ---------- http://zarr.readthedocs.io/ ### Response: def open_zarr(store, group=None, synchronizer=None, chunks='auto', decode_cf=True, mask_and_scale=True, decode_times=True, concat_characters=True, decode_coords=True, drop_variables=None, consolidated=False, overwrite_encoded_chunks=False, **kwargs): """Load and decode a dataset from a Zarr store. .. note:: Experimental The Zarr backend is new and experimental. Please report any unexpected behavior via github issues. The `store` object should be a valid store for a Zarr group. `store` variables must contain dimension metadata encoded in the `_ARRAY_DIMENSIONS` attribute. Parameters ---------- store : MutableMapping or str A MutableMapping where a Zarr Group has been stored or a path to a directory in file system where a Zarr DirectoryStore has been stored. synchronizer : object, optional Array synchronizer provided to zarr group : str, obtional Group path. (a.k.a. `path` in zarr terminology.) chunks : int or dict or tuple or {None, 'auto'}, optional Chunk sizes along each dimension, e.g., ``5`` or ``{'x': 5, 'y': 5}``. If `chunks='auto'`, dask chunks are created based on the variable's zarr chunks. If `chunks=None`, zarr array data will lazily convert to numpy arrays upon access. This accepts all the chunk specifications as Dask does. overwrite_encoded_chunks: bool, optional Whether to drop the zarr chunks encoded for each variable when a dataset is loaded with specified chunk sizes (default: False) decode_cf : bool, optional Whether to decode these variables, assuming they were saved according to CF conventions. mask_and_scale : bool, optional If True, replace array values equal to `_FillValue` with NA and scale values according to the formula `original_values * scale_factor + add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are taken from variable attributes (if they exist). If the `_FillValue` or `missing_value` attribute contains multiple values a warning will be issued and all array values matching one of the multiple values will be replaced by NA. decode_times : bool, optional If True, decode times encoded in the standard NetCDF datetime format into datetime objects. Otherwise, leave them encoded as numbers. concat_characters : bool, optional If True, concatenate along the last dimension of character arrays to form string arrays. Dimensions will only be concatenated over (and removed) if they have no corresponding variable and if they are only used as the last dimension of character arrays. decode_coords : bool, optional If True, decode the 'coordinates' attribute to identify coordinates in the resulting dataset. drop_variables : string or iterable, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. consolidated : bool, optional Whether to open the store using zarr's consolidated metadata capability. Only works for stores that have already been consolidated. Returns ------- dataset : Dataset The newly created dataset. See Also -------- open_dataset References ---------- http://zarr.readthedocs.io/ """ if 'auto_chunk' in kwargs: auto_chunk = kwargs.pop('auto_chunk') if auto_chunk: chunks = 'auto' # maintain backwards compatibility else: chunks = None warnings.warn("auto_chunk is deprecated. Use chunks='auto' instead.", FutureWarning, stacklevel=2) if kwargs: raise TypeError("open_zarr() got unexpected keyword arguments " + ",".join(kwargs.keys())) if not isinstance(chunks, (int, dict)): if chunks != 'auto' and chunks is not None: raise ValueError("chunks must be an int, dict, 'auto', or None. " "Instead found %s. " % chunks) if not decode_cf: mask_and_scale = False decode_times = False concat_characters = False decode_coords = False def maybe_decode_store(store, lock=False): ds = conventions.decode_cf( store, mask_and_scale=mask_and_scale, decode_times=decode_times, concat_characters=concat_characters, decode_coords=decode_coords, drop_variables=drop_variables) # TODO: this is where we would apply caching return ds # Zarr supports a wide range of access modes, but for now xarray either # reads or writes from a store, never both. For open_zarr, we only read mode = 'r' zarr_store = ZarrStore.open_group(store, mode=mode, synchronizer=synchronizer, group=group, consolidated=consolidated) ds = maybe_decode_store(zarr_store) # auto chunking needs to be here and not in ZarrStore because variable # chunks do not survive decode_cf # return trivial case if not chunks: return ds # adapted from Dataset.Chunk() if isinstance(chunks, int): chunks = dict.fromkeys(ds.dims, chunks) if isinstance(chunks, tuple) and len(chunks) == len(ds.dims): chunks = dict(zip(ds.dims, chunks)) def get_chunk(name, var, chunks): chunk_spec = dict(zip(var.dims, var.encoding.get('chunks'))) # Coordinate labels aren't chunked if var.ndim == 1 and var.dims[0] == name: return chunk_spec if chunks == 'auto': return chunk_spec for dim in var.dims: if dim in chunks: spec = chunks[dim] if isinstance(spec, int): spec = (spec,) if isinstance(spec, (tuple, list)) and chunk_spec[dim]: if any(s % chunk_spec[dim] for s in spec): warnings.warn("Specified Dask chunks %r would " "separate Zarr chunk shape %r for " "dimension %r. This significantly " "degrades performance. Consider " "rechunking after loading instead." % (chunks[dim], chunk_spec[dim], dim), stacklevel=2) chunk_spec[dim] = chunks[dim] return chunk_spec def maybe_chunk(name, var, chunks): from dask.base import tokenize chunk_spec = get_chunk(name, var, chunks) if (var.ndim > 0) and (chunk_spec is not None): # does this cause any data to be read? token2 = tokenize(name, var._data) name2 = 'zarr-%s' % token2 var = var.chunk(chunk_spec, name=name2, lock=None) if overwrite_encoded_chunks and var.chunks is not None: var.encoding['chunks'] = tuple(x[0] for x in var.chunks) return var else: return var variables = OrderedDict([(k, maybe_chunk(k, v, chunks)) for k, v in ds.variables.items()]) return ds._replace_vars_and_dims(variables)
def module_can_run_parallel(test_module: unittest.TestSuite) -> bool: """ Checks if a given module of tests can be run in parallel or not :param test_module: the module to run :return: True if the module can be run on parallel, False otherwise """ for test_class in test_module: # if the test is already failed, we just don't filter it # and let the test runner deal with it later. if hasattr(unittest.loader, '_FailedTest'): # import failure in python 3.4.5+ # noinspection PyProtectedMember if isinstance(test_class, unittest.loader._FailedTest): continue if not isinstance(test_class, collections.Iterable): # likely an import failure in python 3.4.4- # before python 3.4.5, test import failures were not serializable. # We are unable to be sure that this is a module import failure, but it very likely is # if this is the case, we'll just run this locally and see raise TestClassNotIterable() for test_case in test_class: return not getattr(sys.modules[test_case.__module__], "__no_parallel__", False)
Checks if a given module of tests can be run in parallel or not :param test_module: the module to run :return: True if the module can be run on parallel, False otherwise
Below is the the instruction that describes the task: ### Input: Checks if a given module of tests can be run in parallel or not :param test_module: the module to run :return: True if the module can be run on parallel, False otherwise ### Response: def module_can_run_parallel(test_module: unittest.TestSuite) -> bool: """ Checks if a given module of tests can be run in parallel or not :param test_module: the module to run :return: True if the module can be run on parallel, False otherwise """ for test_class in test_module: # if the test is already failed, we just don't filter it # and let the test runner deal with it later. if hasattr(unittest.loader, '_FailedTest'): # import failure in python 3.4.5+ # noinspection PyProtectedMember if isinstance(test_class, unittest.loader._FailedTest): continue if not isinstance(test_class, collections.Iterable): # likely an import failure in python 3.4.4- # before python 3.4.5, test import failures were not serializable. # We are unable to be sure that this is a module import failure, but it very likely is # if this is the case, we'll just run this locally and see raise TestClassNotIterable() for test_case in test_class: return not getattr(sys.modules[test_case.__module__], "__no_parallel__", False)
def _generate_struct(self, struct_type, extra_parameters=None, nameOverride=None): """ Emits a JSDoc @typedef for a struct. """ extra_parameters = extra_parameters if extra_parameters is not None else [] self._emit_jsdoc_header(struct_type.doc) self.emit( ' * @typedef {Object} %s' % ( nameOverride if nameOverride else fmt_type_name(struct_type) ) ) # Some structs can explicitly list their subtypes. These structs # have a .tag field that indicate which subtype they are. if struct_type.is_member_of_enumerated_subtypes_tree(): if struct_type.has_enumerated_subtypes(): # This struct is the parent to multiple subtypes. # Determine all of the possible values of the .tag # property. tag_values = [] for tags, _ in struct_type.get_all_subtypes_with_tags(): for tag in tags: tag_values.append('"%s"' % tag) jsdoc_tag_union = fmt_jsdoc_union(tag_values) txt = '@property {%s} .tag - Tag identifying the subtype variant.' % \ jsdoc_tag_union self.emit_wrapped_text(txt) else: # This struct is a particular subtype. Find the applicable # .tag value from the parent type, which may be an # arbitrary number of steps up the inheritance hierarchy. parent = struct_type.parent_type while not parent.has_enumerated_subtypes(): parent = parent.parent_type # parent now contains the closest parent type in the # inheritance hierarchy that has enumerated subtypes. # Determine which subtype this is. for subtype in parent.get_enumerated_subtypes(): if subtype.data_type == struct_type: txt = '@property {\'%s\'} [.tag] - Tag identifying ' \ 'this subtype variant. This field is only ' \ 'present when needed to discriminate ' \ 'between multiple possible subtypes.' % \ subtype.name self.emit_wrapped_text(txt) break for param_name, param_type, param_docstring in extra_parameters: param_docstring = ' - %s' % param_docstring if param_docstring else '' self.emit_wrapped_text( '@property {%s} %s%s' % ( param_type, param_name, param_docstring, ), prefix=' * ', ) # NOTE: JSDoc @typedef does not support inheritance. Using @class would be inappropriate, # since these are not nominal types backed by a constructor. Thus, we emit all_fields, # which includes fields on parent types. for field in struct_type.all_fields: field_doc = ' - ' + field.doc if field.doc else '' field_type, nullable, _ = unwrap(field.data_type) field_js_type = fmt_type(field_type) # Translate nullable types into optional properties. field_name = '[' + field.name + ']' if nullable else field.name self.emit_wrapped_text( '@property {%s} %s%s' % ( field_js_type, field_name, self.process_doc(field_doc, self._docf), ), prefix=' * ', ) self.emit(' */')
Emits a JSDoc @typedef for a struct.
Below is the the instruction that describes the task: ### Input: Emits a JSDoc @typedef for a struct. ### Response: def _generate_struct(self, struct_type, extra_parameters=None, nameOverride=None): """ Emits a JSDoc @typedef for a struct. """ extra_parameters = extra_parameters if extra_parameters is not None else [] self._emit_jsdoc_header(struct_type.doc) self.emit( ' * @typedef {Object} %s' % ( nameOverride if nameOverride else fmt_type_name(struct_type) ) ) # Some structs can explicitly list their subtypes. These structs # have a .tag field that indicate which subtype they are. if struct_type.is_member_of_enumerated_subtypes_tree(): if struct_type.has_enumerated_subtypes(): # This struct is the parent to multiple subtypes. # Determine all of the possible values of the .tag # property. tag_values = [] for tags, _ in struct_type.get_all_subtypes_with_tags(): for tag in tags: tag_values.append('"%s"' % tag) jsdoc_tag_union = fmt_jsdoc_union(tag_values) txt = '@property {%s} .tag - Tag identifying the subtype variant.' % \ jsdoc_tag_union self.emit_wrapped_text(txt) else: # This struct is a particular subtype. Find the applicable # .tag value from the parent type, which may be an # arbitrary number of steps up the inheritance hierarchy. parent = struct_type.parent_type while not parent.has_enumerated_subtypes(): parent = parent.parent_type # parent now contains the closest parent type in the # inheritance hierarchy that has enumerated subtypes. # Determine which subtype this is. for subtype in parent.get_enumerated_subtypes(): if subtype.data_type == struct_type: txt = '@property {\'%s\'} [.tag] - Tag identifying ' \ 'this subtype variant. This field is only ' \ 'present when needed to discriminate ' \ 'between multiple possible subtypes.' % \ subtype.name self.emit_wrapped_text(txt) break for param_name, param_type, param_docstring in extra_parameters: param_docstring = ' - %s' % param_docstring if param_docstring else '' self.emit_wrapped_text( '@property {%s} %s%s' % ( param_type, param_name, param_docstring, ), prefix=' * ', ) # NOTE: JSDoc @typedef does not support inheritance. Using @class would be inappropriate, # since these are not nominal types backed by a constructor. Thus, we emit all_fields, # which includes fields on parent types. for field in struct_type.all_fields: field_doc = ' - ' + field.doc if field.doc else '' field_type, nullable, _ = unwrap(field.data_type) field_js_type = fmt_type(field_type) # Translate nullable types into optional properties. field_name = '[' + field.name + ']' if nullable else field.name self.emit_wrapped_text( '@property {%s} %s%s' % ( field_js_type, field_name, self.process_doc(field_doc, self._docf), ), prefix=' * ', ) self.emit(' */')
def add_ms1_quant_from_top3_mzidtsv(proteins, psms, headerfields, protcol): """Collects PSMs with the highes precursor quant values, adds sum of the top 3 of these to a protein table""" if not protcol: protcol = mzidtsvdata.HEADER_MASTER_PROT top_ms1_psms = generate_top_psms(psms, protcol) for protein in proteins: prot_acc = protein[prottabledata.HEADER_PROTEIN] prec_area = calculate_protein_precursor_quant(top_ms1_psms, prot_acc) outprotein = {k: v for k, v in protein.items()} outprotein[headerfields['precursorquant'][ prottabledata.HEADER_AREA][None]] = str(prec_area) yield outprotein
Collects PSMs with the highes precursor quant values, adds sum of the top 3 of these to a protein table
Below is the the instruction that describes the task: ### Input: Collects PSMs with the highes precursor quant values, adds sum of the top 3 of these to a protein table ### Response: def add_ms1_quant_from_top3_mzidtsv(proteins, psms, headerfields, protcol): """Collects PSMs with the highes precursor quant values, adds sum of the top 3 of these to a protein table""" if not protcol: protcol = mzidtsvdata.HEADER_MASTER_PROT top_ms1_psms = generate_top_psms(psms, protcol) for protein in proteins: prot_acc = protein[prottabledata.HEADER_PROTEIN] prec_area = calculate_protein_precursor_quant(top_ms1_psms, prot_acc) outprotein = {k: v for k, v in protein.items()} outprotein[headerfields['precursorquant'][ prottabledata.HEADER_AREA][None]] = str(prec_area) yield outprotein
def print_status(self, repo): """Print status """ print(" {0}{1}{2}".format(repo, " " * (19 - len(repo)), self.st))
Print status
Below is the the instruction that describes the task: ### Input: Print status ### Response: def print_status(self, repo): """Print status """ print(" {0}{1}{2}".format(repo, " " * (19 - len(repo)), self.st))
def analyze(self, output_folder=".", auto_remove=False): """ :type auto_remove: boolean :param boolean auto_remove: auto remove previous files in analyze folder """ if auto_remove: try: shutil.rmtree(output_folder) except: pass try: mkdir(output_folder) except: pass tokens = [token for sublist in self.sentences for token in sublist] df = pd.DataFrame(tokens) log = u"" log += u"Sentences : {}\n".format(len(self.sentences)) n = df.shape[1] log += self._analyze_first_token(df, 0, output_folder) for i in range(1, n): log += self._analyze_field(df, i, output_folder) print(log) stat_file = join(output_folder, "stats.txt") write(stat_file, log)
:type auto_remove: boolean :param boolean auto_remove: auto remove previous files in analyze folder
Below is the the instruction that describes the task: ### Input: :type auto_remove: boolean :param boolean auto_remove: auto remove previous files in analyze folder ### Response: def analyze(self, output_folder=".", auto_remove=False): """ :type auto_remove: boolean :param boolean auto_remove: auto remove previous files in analyze folder """ if auto_remove: try: shutil.rmtree(output_folder) except: pass try: mkdir(output_folder) except: pass tokens = [token for sublist in self.sentences for token in sublist] df = pd.DataFrame(tokens) log = u"" log += u"Sentences : {}\n".format(len(self.sentences)) n = df.shape[1] log += self._analyze_first_token(df, 0, output_folder) for i in range(1, n): log += self._analyze_field(df, i, output_folder) print(log) stat_file = join(output_folder, "stats.txt") write(stat_file, log)
def enable_gtk3(self, app=None): """Enable event loop integration with Gtk3 (gir bindings). Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for Gtk3, which allows the Gtk3 to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookgtk3 import create_inputhook_gtk3 self.set_inputhook(create_inputhook_gtk3(self._stdin_file)) self._current_gui = GUI_GTK
Enable event loop integration with Gtk3 (gir bindings). Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for Gtk3, which allows the Gtk3 to integrate with terminal based applications like IPython.
Below is the the instruction that describes the task: ### Input: Enable event loop integration with Gtk3 (gir bindings). Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for Gtk3, which allows the Gtk3 to integrate with terminal based applications like IPython. ### Response: def enable_gtk3(self, app=None): """Enable event loop integration with Gtk3 (gir bindings). Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for Gtk3, which allows the Gtk3 to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookgtk3 import create_inputhook_gtk3 self.set_inputhook(create_inputhook_gtk3(self._stdin_file)) self._current_gui = GUI_GTK
def _clear(self, pipe=None): """Helper for clear operations. :param pipe: Redis pipe in case update is performed as a part of transaction. :type pipe: :class:`redis.client.StrictPipeline` or :class:`redis.client.StrictRedis` """ redis = self.redis if pipe is None else pipe redis.delete(self.key)
Helper for clear operations. :param pipe: Redis pipe in case update is performed as a part of transaction. :type pipe: :class:`redis.client.StrictPipeline` or :class:`redis.client.StrictRedis`
Below is the the instruction that describes the task: ### Input: Helper for clear operations. :param pipe: Redis pipe in case update is performed as a part of transaction. :type pipe: :class:`redis.client.StrictPipeline` or :class:`redis.client.StrictRedis` ### Response: def _clear(self, pipe=None): """Helper for clear operations. :param pipe: Redis pipe in case update is performed as a part of transaction. :type pipe: :class:`redis.client.StrictPipeline` or :class:`redis.client.StrictRedis` """ redis = self.redis if pipe is None else pipe redis.delete(self.key)
def send_command_ack(self, device_id, action): """Send command, wait for gateway to repond with acknowledgment.""" # serialize commands yield from self._ready_to_send.acquire() acknowledgement = None try: self._command_ack.clear() self.send_command(device_id, action) log.debug('waiting for acknowledgement') try: yield from asyncio.wait_for(self._command_ack.wait(), TIMEOUT.seconds, loop=self.loop) log.debug('packet acknowledged') except concurrent.futures._base.TimeoutError: acknowledgement = {'ok': False, 'message': 'timeout'} log.warning('acknowledge timeout') else: acknowledgement = self._last_ack.get('ok', False) finally: # allow next command self._ready_to_send.release() return acknowledgement
Send command, wait for gateway to repond with acknowledgment.
Below is the the instruction that describes the task: ### Input: Send command, wait for gateway to repond with acknowledgment. ### Response: def send_command_ack(self, device_id, action): """Send command, wait for gateway to repond with acknowledgment.""" # serialize commands yield from self._ready_to_send.acquire() acknowledgement = None try: self._command_ack.clear() self.send_command(device_id, action) log.debug('waiting for acknowledgement') try: yield from asyncio.wait_for(self._command_ack.wait(), TIMEOUT.seconds, loop=self.loop) log.debug('packet acknowledged') except concurrent.futures._base.TimeoutError: acknowledgement = {'ok': False, 'message': 'timeout'} log.warning('acknowledge timeout') else: acknowledgement = self._last_ack.get('ok', False) finally: # allow next command self._ready_to_send.release() return acknowledgement
def _stripe_object_to_refunds(cls, target_cls, data, charge): """ Retrieves Refunds for a charge :param target_cls: The target class to instantiate per invoice item. :type target_cls: ``Refund`` :param data: The data dictionary received from the Stripe API. :type data: dict :param charge: The charge object that refunds are for. :type invoice: ``djstripe.models.Refund`` :return: """ refunds = data.get("refunds") if not refunds: return [] refund_objs = [] for refund_data in refunds.get("data", []): item, _ = target_cls._get_or_create_from_stripe_object(refund_data, refetch=False) refund_objs.append(item) return refund_objs
Retrieves Refunds for a charge :param target_cls: The target class to instantiate per invoice item. :type target_cls: ``Refund`` :param data: The data dictionary received from the Stripe API. :type data: dict :param charge: The charge object that refunds are for. :type invoice: ``djstripe.models.Refund`` :return:
Below is the the instruction that describes the task: ### Input: Retrieves Refunds for a charge :param target_cls: The target class to instantiate per invoice item. :type target_cls: ``Refund`` :param data: The data dictionary received from the Stripe API. :type data: dict :param charge: The charge object that refunds are for. :type invoice: ``djstripe.models.Refund`` :return: ### Response: def _stripe_object_to_refunds(cls, target_cls, data, charge): """ Retrieves Refunds for a charge :param target_cls: The target class to instantiate per invoice item. :type target_cls: ``Refund`` :param data: The data dictionary received from the Stripe API. :type data: dict :param charge: The charge object that refunds are for. :type invoice: ``djstripe.models.Refund`` :return: """ refunds = data.get("refunds") if not refunds: return [] refund_objs = [] for refund_data in refunds.get("data", []): item, _ = target_cls._get_or_create_from_stripe_object(refund_data, refetch=False) refund_objs.append(item) return refund_objs
def is_valid_catalog(catalog, validator=None): """Valida que un archivo `data.json` cumpla con el schema definido. Chequea que el data.json tiene todos los campos obligatorios y que tanto los campos obligatorios como los opcionales siguen la estructura definida en el schema. Args: catalog (str o dict): Catálogo (dict, JSON o XLSX) a ser validado. Returns: bool: True si el data.json cumple con el schema, sino False. """ catalog = readers.read_catalog(catalog) if not validator: if hasattr(catalog, "validator"): validator = catalog.validator else: validator = create_validator() jsonschema_res = validator.is_valid(catalog) custom_errors = iter_custom_errors(catalog) return jsonschema_res and len(list(custom_errors)) == 0
Valida que un archivo `data.json` cumpla con el schema definido. Chequea que el data.json tiene todos los campos obligatorios y que tanto los campos obligatorios como los opcionales siguen la estructura definida en el schema. Args: catalog (str o dict): Catálogo (dict, JSON o XLSX) a ser validado. Returns: bool: True si el data.json cumple con el schema, sino False.
Below is the the instruction that describes the task: ### Input: Valida que un archivo `data.json` cumpla con el schema definido. Chequea que el data.json tiene todos los campos obligatorios y que tanto los campos obligatorios como los opcionales siguen la estructura definida en el schema. Args: catalog (str o dict): Catálogo (dict, JSON o XLSX) a ser validado. Returns: bool: True si el data.json cumple con el schema, sino False. ### Response: def is_valid_catalog(catalog, validator=None): """Valida que un archivo `data.json` cumpla con el schema definido. Chequea que el data.json tiene todos los campos obligatorios y que tanto los campos obligatorios como los opcionales siguen la estructura definida en el schema. Args: catalog (str o dict): Catálogo (dict, JSON o XLSX) a ser validado. Returns: bool: True si el data.json cumple con el schema, sino False. """ catalog = readers.read_catalog(catalog) if not validator: if hasattr(catalog, "validator"): validator = catalog.validator else: validator = create_validator() jsonschema_res = validator.is_valid(catalog) custom_errors = iter_custom_errors(catalog) return jsonschema_res and len(list(custom_errors)) == 0
def _write_wrapper(self, name): """Wrap write() to adapt return value for Python 2. Returns: Wrapper which is described below. """ io_attr = getattr(self._io, name) def write_wrapper(*args, **kwargs): """Wrap all write calls to the stream object.""" ret_value = io_attr(*args, **kwargs) if not IS_PY2: return ret_value return write_wrapper
Wrap write() to adapt return value for Python 2. Returns: Wrapper which is described below.
Below is the the instruction that describes the task: ### Input: Wrap write() to adapt return value for Python 2. Returns: Wrapper which is described below. ### Response: def _write_wrapper(self, name): """Wrap write() to adapt return value for Python 2. Returns: Wrapper which is described below. """ io_attr = getattr(self._io, name) def write_wrapper(*args, **kwargs): """Wrap all write calls to the stream object.""" ret_value = io_attr(*args, **kwargs) if not IS_PY2: return ret_value return write_wrapper
def advance_job_status(namespace: str, job: Job, duration: float, err: Optional[Exception]): """Advance the status of a job depending on its execution. This function is called after a job has been executed. It calculates its next status and calls the appropriate signals. """ duration = human_duration(duration) if not err: job.status = JobStatus.SUCCEEDED logger.info('Finished execution of %s in %s', job, duration) return if job.should_retry: job.status = JobStatus.NOT_SET job.retries += 1 if isinstance(err, RetryException) and err.at is not None: job.at = err.at else: job.at = (datetime.now(timezone.utc) + exponential_backoff(job.retries)) signals.job_schedule_retry.send(namespace, job=job, err=err) log_args = ( job.retries, job.max_retries + 1, job, duration, human_duration( (job.at - datetime.now(tz=timezone.utc)).total_seconds() ) ) if isinstance(err, RetryException): logger.info('Retry requested during execution %d/%d of %s ' 'after %s, retry in %s', *log_args) else: logger.warning('Error during execution %d/%d of %s after %s, ' 'retry in %s', *log_args) return job.status = JobStatus.FAILED signals.job_failed.send(namespace, job=job, err=err) logger.error( 'Error during execution %d/%d of %s after %s', job.max_retries + 1, job.max_retries + 1, job, duration, exc_info=err )
Advance the status of a job depending on its execution. This function is called after a job has been executed. It calculates its next status and calls the appropriate signals.
Below is the the instruction that describes the task: ### Input: Advance the status of a job depending on its execution. This function is called after a job has been executed. It calculates its next status and calls the appropriate signals. ### Response: def advance_job_status(namespace: str, job: Job, duration: float, err: Optional[Exception]): """Advance the status of a job depending on its execution. This function is called after a job has been executed. It calculates its next status and calls the appropriate signals. """ duration = human_duration(duration) if not err: job.status = JobStatus.SUCCEEDED logger.info('Finished execution of %s in %s', job, duration) return if job.should_retry: job.status = JobStatus.NOT_SET job.retries += 1 if isinstance(err, RetryException) and err.at is not None: job.at = err.at else: job.at = (datetime.now(timezone.utc) + exponential_backoff(job.retries)) signals.job_schedule_retry.send(namespace, job=job, err=err) log_args = ( job.retries, job.max_retries + 1, job, duration, human_duration( (job.at - datetime.now(tz=timezone.utc)).total_seconds() ) ) if isinstance(err, RetryException): logger.info('Retry requested during execution %d/%d of %s ' 'after %s, retry in %s', *log_args) else: logger.warning('Error during execution %d/%d of %s after %s, ' 'retry in %s', *log_args) return job.status = JobStatus.FAILED signals.job_failed.send(namespace, job=job, err=err) logger.error( 'Error during execution %d/%d of %s after %s', job.max_retries + 1, job.max_retries + 1, job, duration, exc_info=err )
def pipes(stream, *transformers): """Pipe several transformers end to end.""" for transformer in transformers: stream = stream.pipe(transformer) return stream
Pipe several transformers end to end.
Below is the the instruction that describes the task: ### Input: Pipe several transformers end to end. ### Response: def pipes(stream, *transformers): """Pipe several transformers end to end.""" for transformer in transformers: stream = stream.pipe(transformer) return stream
def delete(queue, items): ''' Delete an item or items from a queue ''' with _conn(commit=True) as cur: if isinstance(items, dict): cmd = str("""DELETE FROM {0} WHERE data = '{1}'""").format( # future lint: disable=blacklisted-function queue, salt.utils.json.dumps(items)) log.debug('SQL Query: %s', cmd) cur.execute(cmd) return True if isinstance(items, list): items = [(salt.utils.json.dumps(el),) for el in items] cmd = 'DELETE FROM {0} WHERE data = %s'.format(queue) log.debug('SQL Query: %s', cmd) cur.executemany(cmd, items) return True
Delete an item or items from a queue
Below is the the instruction that describes the task: ### Input: Delete an item or items from a queue ### Response: def delete(queue, items): ''' Delete an item or items from a queue ''' with _conn(commit=True) as cur: if isinstance(items, dict): cmd = str("""DELETE FROM {0} WHERE data = '{1}'""").format( # future lint: disable=blacklisted-function queue, salt.utils.json.dumps(items)) log.debug('SQL Query: %s', cmd) cur.execute(cmd) return True if isinstance(items, list): items = [(salt.utils.json.dumps(el),) for el in items] cmd = 'DELETE FROM {0} WHERE data = %s'.format(queue) log.debug('SQL Query: %s', cmd) cur.executemany(cmd, items) return True
def aggregate(self, aggregates=None, drilldowns=None, cuts=None, order=None, page=None, page_size=None, page_max=None): """Main aggregation function. This is used to compute a given set of aggregates, grouped by a given set of drilldown dimensions (i.e. dividers). The query can also be filtered and sorted. """ def prep(cuts, drilldowns=False, aggregates=False, columns=None): q = select(columns) bindings = [] cuts, q, bindings = Cuts(self).apply(q, bindings, cuts) attributes = None if drilldowns is not False: attributes, q, bindings = Drilldowns(self).apply( q, bindings, drilldowns ) if aggregates is not False: aggregates, q, bindings = Aggregates(self).apply( q, bindings, aggregates ) q = self.restrict_joins(q, bindings) return q, bindings, attributes, aggregates, cuts # Count count = count_results(self, prep(cuts, drilldowns=drilldowns, columns=[1])[0]) # Summary summary = first_result(self, prep(cuts, aggregates=aggregates)[0].limit(1)) # Results q, bindings, attributes, aggregates, cuts = \ prep(cuts, drilldowns=drilldowns, aggregates=aggregates) page, q = Pagination(self).apply(q, page, page_size, page_max) ordering, q, bindings = Ordering(self).apply(q, bindings, order) q = self.restrict_joins(q, bindings) cells = list(generate_results(self, q)) return { 'total_cell_count': count, 'cells': cells, 'summary': summary, 'cell': cuts, 'aggregates': aggregates, 'attributes': attributes, 'order': ordering, 'page': page['page'], 'page_size': page['page_size'] }
Main aggregation function. This is used to compute a given set of aggregates, grouped by a given set of drilldown dimensions (i.e. dividers). The query can also be filtered and sorted.
Below is the the instruction that describes the task: ### Input: Main aggregation function. This is used to compute a given set of aggregates, grouped by a given set of drilldown dimensions (i.e. dividers). The query can also be filtered and sorted. ### Response: def aggregate(self, aggregates=None, drilldowns=None, cuts=None, order=None, page=None, page_size=None, page_max=None): """Main aggregation function. This is used to compute a given set of aggregates, grouped by a given set of drilldown dimensions (i.e. dividers). The query can also be filtered and sorted. """ def prep(cuts, drilldowns=False, aggregates=False, columns=None): q = select(columns) bindings = [] cuts, q, bindings = Cuts(self).apply(q, bindings, cuts) attributes = None if drilldowns is not False: attributes, q, bindings = Drilldowns(self).apply( q, bindings, drilldowns ) if aggregates is not False: aggregates, q, bindings = Aggregates(self).apply( q, bindings, aggregates ) q = self.restrict_joins(q, bindings) return q, bindings, attributes, aggregates, cuts # Count count = count_results(self, prep(cuts, drilldowns=drilldowns, columns=[1])[0]) # Summary summary = first_result(self, prep(cuts, aggregates=aggregates)[0].limit(1)) # Results q, bindings, attributes, aggregates, cuts = \ prep(cuts, drilldowns=drilldowns, aggregates=aggregates) page, q = Pagination(self).apply(q, page, page_size, page_max) ordering, q, bindings = Ordering(self).apply(q, bindings, order) q = self.restrict_joins(q, bindings) cells = list(generate_results(self, q)) return { 'total_cell_count': count, 'cells': cells, 'summary': summary, 'cell': cuts, 'aggregates': aggregates, 'attributes': attributes, 'order': ordering, 'page': page['page'], 'page_size': page['page_size'] }
def add_size_info (self): """Get size of URL content from HTTP header.""" if self.headers and "Content-Length" in self.headers and \ "Transfer-Encoding" not in self.headers: # Note that content-encoding causes size differences since # the content data is always decoded. try: self.size = int(self.getheader("Content-Length")) except (ValueError, OverflowError): pass else: self.size = -1
Get size of URL content from HTTP header.
Below is the the instruction that describes the task: ### Input: Get size of URL content from HTTP header. ### Response: def add_size_info (self): """Get size of URL content from HTTP header.""" if self.headers and "Content-Length" in self.headers and \ "Transfer-Encoding" not in self.headers: # Note that content-encoding causes size differences since # the content data is always decoded. try: self.size = int(self.getheader("Content-Length")) except (ValueError, OverflowError): pass else: self.size = -1
def get_parameter_dict(self, include_frozen=False): """ Get an ordered dictionary of the parameters Args: include_frozen (Optional[bool]): Should the frozen parameters be included in the returned value? (default: ``False``) """ return OrderedDict(zip( self.get_parameter_names(include_frozen=include_frozen), self.get_parameter_vector(include_frozen=include_frozen), ))
Get an ordered dictionary of the parameters Args: include_frozen (Optional[bool]): Should the frozen parameters be included in the returned value? (default: ``False``)
Below is the the instruction that describes the task: ### Input: Get an ordered dictionary of the parameters Args: include_frozen (Optional[bool]): Should the frozen parameters be included in the returned value? (default: ``False``) ### Response: def get_parameter_dict(self, include_frozen=False): """ Get an ordered dictionary of the parameters Args: include_frozen (Optional[bool]): Should the frozen parameters be included in the returned value? (default: ``False``) """ return OrderedDict(zip( self.get_parameter_names(include_frozen=include_frozen), self.get_parameter_vector(include_frozen=include_frozen), ))
def _other_dpss_method(N, NW, Kmax): """Returns the Discrete Prolate Spheroidal Sequences of orders [0,Kmax-1] for a given frequency-spacing multiple NW and sequence length N. See dpss function that is the official version. This version is indepedant of the C code and relies on Scipy function. However, it is slower by a factor 3 Tridiagonal form of DPSS calculation from: """ # here we want to set up an optimization problem to find a sequence # whose energy is maximally concentrated within band [-W,W]. # Thus, the measure lambda(T,W) is the ratio between the energy within # that band, and the total energy. This leads to the eigen-system # (A - (l1)I)v = 0, where the eigenvector corresponding to the largest # eigenvalue is the sequence with maximally concentrated energy. The # collection of eigenvectors of this system are called Slepian sequences, # or discrete prolate spheroidal sequences (DPSS). Only the first K, # K = 2NW/dt orders of DPSS will exhibit good spectral concentration # [see http://en.wikipedia.org/wiki/Spectral_concentration_problem] # Here I set up an alternative symmetric tri-diagonal eigenvalue problem # such that # (B - (l2)I)v = 0, and v are our DPSS (but eigenvalues l2 != l1) # the main diagonal = ([N-1-2*t]/2)**2 cos(2PIW), t=[0,1,2,...,N-1] # and the first off-diangonal = t(N-t)/2, t=[1,2,...,N-1] # [see Percival and Walden, 1993] from scipy import linalg as la Kmax = int(Kmax) W = float(NW)/N ab = np.zeros((2,N), 'd') nidx = np.arange(N) ab[0,1:] = nidx[1:]*(N-nidx[1:])/2. ab[1] = ((N-1-2*nidx)/2.)**2 * np.cos(2*np.pi*W) # only calculate the highest Kmax-1 eigenvectors l,v = la.eig_banded(ab, select='i', select_range=(N-Kmax, N-1)) dpss = v.transpose()[::-1] # By convention (Percival and Walden, 1993 pg 379) # * symmetric tapers (k=0,2,4,...) should have a positive average. # * antisymmetric tapers should begin with a positive lobe fix_symmetric = (dpss[0::2].sum(axis=1) < 0) for i, f in enumerate(fix_symmetric): if f: dpss[2*i] *= -1 fix_skew = (dpss[1::2,1] < 0) for i, f in enumerate(fix_skew): if f: dpss[2*i+1] *= -1 # Now find the eigenvalues of the original # Use the autocovariance sequence technique from Percival and Walden, 1993 # pg 390 # XXX : why debias false? it's all messed up o.w., even with means # on the order of 1e-2 acvs = _autocov(dpss, debias=False) * N r = 4*W*np.sinc(2*W*nidx) r[0] = 2*W eigvals = np.dot(acvs, r) return dpss, eigvals
Returns the Discrete Prolate Spheroidal Sequences of orders [0,Kmax-1] for a given frequency-spacing multiple NW and sequence length N. See dpss function that is the official version. This version is indepedant of the C code and relies on Scipy function. However, it is slower by a factor 3 Tridiagonal form of DPSS calculation from:
Below is the the instruction that describes the task: ### Input: Returns the Discrete Prolate Spheroidal Sequences of orders [0,Kmax-1] for a given frequency-spacing multiple NW and sequence length N. See dpss function that is the official version. This version is indepedant of the C code and relies on Scipy function. However, it is slower by a factor 3 Tridiagonal form of DPSS calculation from: ### Response: def _other_dpss_method(N, NW, Kmax): """Returns the Discrete Prolate Spheroidal Sequences of orders [0,Kmax-1] for a given frequency-spacing multiple NW and sequence length N. See dpss function that is the official version. This version is indepedant of the C code and relies on Scipy function. However, it is slower by a factor 3 Tridiagonal form of DPSS calculation from: """ # here we want to set up an optimization problem to find a sequence # whose energy is maximally concentrated within band [-W,W]. # Thus, the measure lambda(T,W) is the ratio between the energy within # that band, and the total energy. This leads to the eigen-system # (A - (l1)I)v = 0, where the eigenvector corresponding to the largest # eigenvalue is the sequence with maximally concentrated energy. The # collection of eigenvectors of this system are called Slepian sequences, # or discrete prolate spheroidal sequences (DPSS). Only the first K, # K = 2NW/dt orders of DPSS will exhibit good spectral concentration # [see http://en.wikipedia.org/wiki/Spectral_concentration_problem] # Here I set up an alternative symmetric tri-diagonal eigenvalue problem # such that # (B - (l2)I)v = 0, and v are our DPSS (but eigenvalues l2 != l1) # the main diagonal = ([N-1-2*t]/2)**2 cos(2PIW), t=[0,1,2,...,N-1] # and the first off-diangonal = t(N-t)/2, t=[1,2,...,N-1] # [see Percival and Walden, 1993] from scipy import linalg as la Kmax = int(Kmax) W = float(NW)/N ab = np.zeros((2,N), 'd') nidx = np.arange(N) ab[0,1:] = nidx[1:]*(N-nidx[1:])/2. ab[1] = ((N-1-2*nidx)/2.)**2 * np.cos(2*np.pi*W) # only calculate the highest Kmax-1 eigenvectors l,v = la.eig_banded(ab, select='i', select_range=(N-Kmax, N-1)) dpss = v.transpose()[::-1] # By convention (Percival and Walden, 1993 pg 379) # * symmetric tapers (k=0,2,4,...) should have a positive average. # * antisymmetric tapers should begin with a positive lobe fix_symmetric = (dpss[0::2].sum(axis=1) < 0) for i, f in enumerate(fix_symmetric): if f: dpss[2*i] *= -1 fix_skew = (dpss[1::2,1] < 0) for i, f in enumerate(fix_skew): if f: dpss[2*i+1] *= -1 # Now find the eigenvalues of the original # Use the autocovariance sequence technique from Percival and Walden, 1993 # pg 390 # XXX : why debias false? it's all messed up o.w., even with means # on the order of 1e-2 acvs = _autocov(dpss, debias=False) * N r = 4*W*np.sinc(2*W*nidx) r[0] = 2*W eigvals = np.dot(acvs, r) return dpss, eigvals
def attach_http_service(cls, http_service: HTTPService): """ Attaches a service for hosting :param http_service: A HTTPService instance """ if cls._http_service is None: cls._http_service = http_service cls._set_bus(http_service) else: warnings.warn('HTTP service is already attached')
Attaches a service for hosting :param http_service: A HTTPService instance
Below is the the instruction that describes the task: ### Input: Attaches a service for hosting :param http_service: A HTTPService instance ### Response: def attach_http_service(cls, http_service: HTTPService): """ Attaches a service for hosting :param http_service: A HTTPService instance """ if cls._http_service is None: cls._http_service = http_service cls._set_bus(http_service) else: warnings.warn('HTTP service is already attached')
def open(self, url): """ Open a WSDL at the specified I{url}. First, the WSDL attempted to be retrieved from the I{object cache}. After unpickled from the cache, the I{options} attribute is restored. If not found, it is downloaded and instantiated using the I{fn} constructor and added to the cache for the next open(). @param url: A WSDL url. @type url: str. @return: The WSDL object. @rtype: I{Definitions} """ cache = self.cache() id = self.mangle(url, 'wsdl') d = cache.get(id) if d is None: d = self.fn(url, self.options) cache.put(id, d) else: d.options = self.options for imp in d.imports: imp.imported.options = self.options return d
Open a WSDL at the specified I{url}. First, the WSDL attempted to be retrieved from the I{object cache}. After unpickled from the cache, the I{options} attribute is restored. If not found, it is downloaded and instantiated using the I{fn} constructor and added to the cache for the next open(). @param url: A WSDL url. @type url: str. @return: The WSDL object. @rtype: I{Definitions}
Below is the the instruction that describes the task: ### Input: Open a WSDL at the specified I{url}. First, the WSDL attempted to be retrieved from the I{object cache}. After unpickled from the cache, the I{options} attribute is restored. If not found, it is downloaded and instantiated using the I{fn} constructor and added to the cache for the next open(). @param url: A WSDL url. @type url: str. @return: The WSDL object. @rtype: I{Definitions} ### Response: def open(self, url): """ Open a WSDL at the specified I{url}. First, the WSDL attempted to be retrieved from the I{object cache}. After unpickled from the cache, the I{options} attribute is restored. If not found, it is downloaded and instantiated using the I{fn} constructor and added to the cache for the next open(). @param url: A WSDL url. @type url: str. @return: The WSDL object. @rtype: I{Definitions} """ cache = self.cache() id = self.mangle(url, 'wsdl') d = cache.get(id) if d is None: d = self.fn(url, self.options) cache.put(id, d) else: d.options = self.options for imp in d.imports: imp.imported.options = self.options return d
def parse_sections(self, offset): """Fetch the PE file sections. The sections will be readily available in the "sections" attribute. Its attributes will contain all the section information plus "data" a buffer containing the section's data. The "Characteristics" member will be processed and attributes representing the section characteristics (with the 'IMAGE_SCN_' string trimmed from the constant's names) will be added to the section instance. Refer to the SectionStructure class for additional info. """ self.sections = [] for i in xrange(self.FILE_HEADER.NumberOfSections): section = SectionStructure( self.__IMAGE_SECTION_HEADER_format__, pe=self ) if not section: break section_offset = offset + section.sizeof() * i section.set_file_offset(section_offset) section.__unpack__(self.__data__[section_offset : section_offset + section.sizeof()]) self.__structures__.append(section) if section.SizeOfRawData > len(self.__data__): self.__warnings.append( ('Error parsing section %d. ' % i) + 'SizeOfRawData is larger than file.') if adjust_FileAlignment( section.PointerToRawData, self.OPTIONAL_HEADER.FileAlignment ) > len(self.__data__): self.__warnings.append( ('Error parsing section %d. ' % i) + 'PointerToRawData points beyond the end of the file.') if section.Misc_VirtualSize > 0x10000000: self.__warnings.append( ('Suspicious value found parsing section %d. ' % i) + 'VirtualSize is extremely large > 256MiB.') if adjust_SectionAlignment( section.VirtualAddress, self.OPTIONAL_HEADER.SectionAlignment, self.OPTIONAL_HEADER.FileAlignment ) > 0x10000000: self.__warnings.append( ('Suspicious value found parsing section %d. ' % i) + 'VirtualAddress is beyond 0x10000000.') # # Some packer used a non-aligned PointerToRawData in the sections, # which causes several common tools not to load the section data # properly as they blindly read from the indicated offset. # It seems that Windows will round the offset down to the largest # offset multiple of FileAlignment which is smaller than # PointerToRawData. The following code will do the same. # #alignment = self.OPTIONAL_HEADER.FileAlignment #self.update_section_data(section) if ( self.OPTIONAL_HEADER.FileAlignment != 0 and ( section.PointerToRawData % self.OPTIONAL_HEADER.FileAlignment) != 0): self.__warnings.append( ('Error parsing section %d. ' % i) + 'Suspicious value for FileAlignment in the Optional Header. ' + 'Normally the PointerToRawData entry of the sections\' structures ' + 'is a multiple of FileAlignment, this might imply the file ' + 'is trying to confuse tools which parse this incorrectly') section_flags = retrieve_flags(SECTION_CHARACTERISTICS, 'IMAGE_SCN_') # Set the section's flags according the the Characteristics member set_flags(section, section.Characteristics, section_flags) if ( section.__dict__.get('IMAGE_SCN_MEM_WRITE', False) and section.__dict__.get('IMAGE_SCN_MEM_EXECUTE', False) ): self.__warnings.append( ('Suspicious flags set for section %d. ' % i) + 'Both IMAGE_SCN_MEM_WRITE and IMAGE_SCN_MEM_EXECUTE are set. ' + 'This might indicate a packed executable.') self.sections.append(section) if self.FILE_HEADER.NumberOfSections > 0 and self.sections: return offset + self.sections[0].sizeof()*self.FILE_HEADER.NumberOfSections else: return offset
Fetch the PE file sections. The sections will be readily available in the "sections" attribute. Its attributes will contain all the section information plus "data" a buffer containing the section's data. The "Characteristics" member will be processed and attributes representing the section characteristics (with the 'IMAGE_SCN_' string trimmed from the constant's names) will be added to the section instance. Refer to the SectionStructure class for additional info.
Below is the the instruction that describes the task: ### Input: Fetch the PE file sections. The sections will be readily available in the "sections" attribute. Its attributes will contain all the section information plus "data" a buffer containing the section's data. The "Characteristics" member will be processed and attributes representing the section characteristics (with the 'IMAGE_SCN_' string trimmed from the constant's names) will be added to the section instance. Refer to the SectionStructure class for additional info. ### Response: def parse_sections(self, offset): """Fetch the PE file sections. The sections will be readily available in the "sections" attribute. Its attributes will contain all the section information plus "data" a buffer containing the section's data. The "Characteristics" member will be processed and attributes representing the section characteristics (with the 'IMAGE_SCN_' string trimmed from the constant's names) will be added to the section instance. Refer to the SectionStructure class for additional info. """ self.sections = [] for i in xrange(self.FILE_HEADER.NumberOfSections): section = SectionStructure( self.__IMAGE_SECTION_HEADER_format__, pe=self ) if not section: break section_offset = offset + section.sizeof() * i section.set_file_offset(section_offset) section.__unpack__(self.__data__[section_offset : section_offset + section.sizeof()]) self.__structures__.append(section) if section.SizeOfRawData > len(self.__data__): self.__warnings.append( ('Error parsing section %d. ' % i) + 'SizeOfRawData is larger than file.') if adjust_FileAlignment( section.PointerToRawData, self.OPTIONAL_HEADER.FileAlignment ) > len(self.__data__): self.__warnings.append( ('Error parsing section %d. ' % i) + 'PointerToRawData points beyond the end of the file.') if section.Misc_VirtualSize > 0x10000000: self.__warnings.append( ('Suspicious value found parsing section %d. ' % i) + 'VirtualSize is extremely large > 256MiB.') if adjust_SectionAlignment( section.VirtualAddress, self.OPTIONAL_HEADER.SectionAlignment, self.OPTIONAL_HEADER.FileAlignment ) > 0x10000000: self.__warnings.append( ('Suspicious value found parsing section %d. ' % i) + 'VirtualAddress is beyond 0x10000000.') # # Some packer used a non-aligned PointerToRawData in the sections, # which causes several common tools not to load the section data # properly as they blindly read from the indicated offset. # It seems that Windows will round the offset down to the largest # offset multiple of FileAlignment which is smaller than # PointerToRawData. The following code will do the same. # #alignment = self.OPTIONAL_HEADER.FileAlignment #self.update_section_data(section) if ( self.OPTIONAL_HEADER.FileAlignment != 0 and ( section.PointerToRawData % self.OPTIONAL_HEADER.FileAlignment) != 0): self.__warnings.append( ('Error parsing section %d. ' % i) + 'Suspicious value for FileAlignment in the Optional Header. ' + 'Normally the PointerToRawData entry of the sections\' structures ' + 'is a multiple of FileAlignment, this might imply the file ' + 'is trying to confuse tools which parse this incorrectly') section_flags = retrieve_flags(SECTION_CHARACTERISTICS, 'IMAGE_SCN_') # Set the section's flags according the the Characteristics member set_flags(section, section.Characteristics, section_flags) if ( section.__dict__.get('IMAGE_SCN_MEM_WRITE', False) and section.__dict__.get('IMAGE_SCN_MEM_EXECUTE', False) ): self.__warnings.append( ('Suspicious flags set for section %d. ' % i) + 'Both IMAGE_SCN_MEM_WRITE and IMAGE_SCN_MEM_EXECUTE are set. ' + 'This might indicate a packed executable.') self.sections.append(section) if self.FILE_HEADER.NumberOfSections > 0 and self.sections: return offset + self.sections[0].sizeof()*self.FILE_HEADER.NumberOfSections else: return offset
def visit(self, visitor, predicate=None, **kw): """ Apply a function to matching nodes in the (sub)tree rooted at self. :param visitor: A callable accepting a Node object as single argument.. :param predicate: A callable accepting a Node object as single argument and \ returning a boolean signaling whether Node matches; if `None` all nodes match. :param kw: Addtional keyword arguments are passed through to self.walk. """ predicate = predicate or bool for n in self.walk(**kw): if predicate(n): visitor(n)
Apply a function to matching nodes in the (sub)tree rooted at self. :param visitor: A callable accepting a Node object as single argument.. :param predicate: A callable accepting a Node object as single argument and \ returning a boolean signaling whether Node matches; if `None` all nodes match. :param kw: Addtional keyword arguments are passed through to self.walk.
Below is the the instruction that describes the task: ### Input: Apply a function to matching nodes in the (sub)tree rooted at self. :param visitor: A callable accepting a Node object as single argument.. :param predicate: A callable accepting a Node object as single argument and \ returning a boolean signaling whether Node matches; if `None` all nodes match. :param kw: Addtional keyword arguments are passed through to self.walk. ### Response: def visit(self, visitor, predicate=None, **kw): """ Apply a function to matching nodes in the (sub)tree rooted at self. :param visitor: A callable accepting a Node object as single argument.. :param predicate: A callable accepting a Node object as single argument and \ returning a boolean signaling whether Node matches; if `None` all nodes match. :param kw: Addtional keyword arguments are passed through to self.walk. """ predicate = predicate or bool for n in self.walk(**kw): if predicate(n): visitor(n)
def sample_categorical(prob, rng): """Sample from independent categorical distributions Each batch is an independent categorical distribution. Parameters ---------- prob : numpy.ndarray Probability of the categorical distribution. Shape --> (batch_num, category_num) rng : numpy.random.RandomState Returns ------- ret : numpy.ndarray Sampling result. Shape --> (batch_num,) """ ret = numpy.empty(prob.shape[0], dtype=numpy.float32) for ind in range(prob.shape[0]): ret[ind] = numpy.searchsorted(numpy.cumsum(prob[ind]), rng.rand()).clip(min=0.0, max=prob.shape[ 1] - 0.5) return ret
Sample from independent categorical distributions Each batch is an independent categorical distribution. Parameters ---------- prob : numpy.ndarray Probability of the categorical distribution. Shape --> (batch_num, category_num) rng : numpy.random.RandomState Returns ------- ret : numpy.ndarray Sampling result. Shape --> (batch_num,)
Below is the the instruction that describes the task: ### Input: Sample from independent categorical distributions Each batch is an independent categorical distribution. Parameters ---------- prob : numpy.ndarray Probability of the categorical distribution. Shape --> (batch_num, category_num) rng : numpy.random.RandomState Returns ------- ret : numpy.ndarray Sampling result. Shape --> (batch_num,) ### Response: def sample_categorical(prob, rng): """Sample from independent categorical distributions Each batch is an independent categorical distribution. Parameters ---------- prob : numpy.ndarray Probability of the categorical distribution. Shape --> (batch_num, category_num) rng : numpy.random.RandomState Returns ------- ret : numpy.ndarray Sampling result. Shape --> (batch_num,) """ ret = numpy.empty(prob.shape[0], dtype=numpy.float32) for ind in range(prob.shape[0]): ret[ind] = numpy.searchsorted(numpy.cumsum(prob[ind]), rng.rand()).clip(min=0.0, max=prob.shape[ 1] - 0.5) return ret
def get_module_verbosity_flags(*labels): """ checks for standard flags for enableing module specific verbosity """ verbose_prefix_list = ['--verbose-', '--verb', '--verb-'] veryverbose_prefix_list = ['--veryverbose-', '--veryverb', '--veryverb-'] verbose_flags = tuple( [prefix + lbl for prefix, lbl in itertools.product(verbose_prefix_list, labels)]) veryverbose_flags = tuple( [prefix + lbl for prefix, lbl in itertools.product(veryverbose_prefix_list, labels)]) veryverbose_module = get_argflag(veryverbose_flags) or VERYVERBOSE verbose_module = (get_argflag(verbose_flags) or veryverbose_module or VERBOSE) if veryverbose_module: verbose_module = 2 return verbose_module, veryverbose_module
checks for standard flags for enableing module specific verbosity
Below is the the instruction that describes the task: ### Input: checks for standard flags for enableing module specific verbosity ### Response: def get_module_verbosity_flags(*labels): """ checks for standard flags for enableing module specific verbosity """ verbose_prefix_list = ['--verbose-', '--verb', '--verb-'] veryverbose_prefix_list = ['--veryverbose-', '--veryverb', '--veryverb-'] verbose_flags = tuple( [prefix + lbl for prefix, lbl in itertools.product(verbose_prefix_list, labels)]) veryverbose_flags = tuple( [prefix + lbl for prefix, lbl in itertools.product(veryverbose_prefix_list, labels)]) veryverbose_module = get_argflag(veryverbose_flags) or VERYVERBOSE verbose_module = (get_argflag(verbose_flags) or veryverbose_module or VERBOSE) if veryverbose_module: verbose_module = 2 return verbose_module, veryverbose_module
def from_export(cls, endpoint): # type: (ExportEndpoint) -> EndpointDescription """ Converts an ExportEndpoint bean to an EndpointDescription :param endpoint: An ExportEndpoint bean :return: An EndpointDescription bean """ assert isinstance(endpoint, ExportEndpoint) # Service properties properties = endpoint.get_properties() # Set import keys properties[pelix.remote.PROP_ENDPOINT_ID] = endpoint.uid properties[pelix.remote.PROP_IMPORTED_CONFIGS] = endpoint.configurations properties[ pelix.remote.PROP_EXPORTED_INTERFACES ] = endpoint.specifications # Remove export keys for key in ( pelix.remote.PROP_EXPORTED_CONFIGS, pelix.remote.PROP_EXPORTED_INTERFACES, pelix.remote.PROP_EXPORTED_INTENTS, pelix.remote.PROP_EXPORTED_INTENTS_EXTRA, ): try: del properties[key] except KeyError: pass # Other information properties[pelix.remote.PROP_ENDPOINT_NAME] = endpoint.name properties[ pelix.remote.PROP_ENDPOINT_FRAMEWORK_UUID ] = endpoint.framework return EndpointDescription(None, properties)
Converts an ExportEndpoint bean to an EndpointDescription :param endpoint: An ExportEndpoint bean :return: An EndpointDescription bean
Below is the the instruction that describes the task: ### Input: Converts an ExportEndpoint bean to an EndpointDescription :param endpoint: An ExportEndpoint bean :return: An EndpointDescription bean ### Response: def from_export(cls, endpoint): # type: (ExportEndpoint) -> EndpointDescription """ Converts an ExportEndpoint bean to an EndpointDescription :param endpoint: An ExportEndpoint bean :return: An EndpointDescription bean """ assert isinstance(endpoint, ExportEndpoint) # Service properties properties = endpoint.get_properties() # Set import keys properties[pelix.remote.PROP_ENDPOINT_ID] = endpoint.uid properties[pelix.remote.PROP_IMPORTED_CONFIGS] = endpoint.configurations properties[ pelix.remote.PROP_EXPORTED_INTERFACES ] = endpoint.specifications # Remove export keys for key in ( pelix.remote.PROP_EXPORTED_CONFIGS, pelix.remote.PROP_EXPORTED_INTERFACES, pelix.remote.PROP_EXPORTED_INTENTS, pelix.remote.PROP_EXPORTED_INTENTS_EXTRA, ): try: del properties[key] except KeyError: pass # Other information properties[pelix.remote.PROP_ENDPOINT_NAME] = endpoint.name properties[ pelix.remote.PROP_ENDPOINT_FRAMEWORK_UUID ] = endpoint.framework return EndpointDescription(None, properties)
def addHydrogens(molecule, usedPyroles=None): """(molecule) -> add implicit hydrogens to a molecule. If the atom has specified valences and the atom must be charged then a Valence Error is raised""" for atom in molecule.atoms: # if the atom has an explicit hcount, we can't set the # hcount if atom.has_explicit_hcount: atom.hcount = atom.explicit_hcount continue if atom.valences: for valence in atom.valences: hcount = max(0, int(valence - atom.sumBondOrders() + atom.charge)) if hcount >= 0: break else: if usedPyroles and not usedPyroles.has_key(atom.handle): #print atom.symbol, atom.valences, atom.hcount, atom.charge,\ # atom.sumBondOrders() #print [x.bondtype for x in atom.bonds] #print molecule.cansmiles() raise PinkyError("Valence error in atom %s"%molecule.atoms.index(atom)) pass #hcount = int(hcount) atom.hcount = hcount return molecule
(molecule) -> add implicit hydrogens to a molecule. If the atom has specified valences and the atom must be charged then a Valence Error is raised
Below is the the instruction that describes the task: ### Input: (molecule) -> add implicit hydrogens to a molecule. If the atom has specified valences and the atom must be charged then a Valence Error is raised ### Response: def addHydrogens(molecule, usedPyroles=None): """(molecule) -> add implicit hydrogens to a molecule. If the atom has specified valences and the atom must be charged then a Valence Error is raised""" for atom in molecule.atoms: # if the atom has an explicit hcount, we can't set the # hcount if atom.has_explicit_hcount: atom.hcount = atom.explicit_hcount continue if atom.valences: for valence in atom.valences: hcount = max(0, int(valence - atom.sumBondOrders() + atom.charge)) if hcount >= 0: break else: if usedPyroles and not usedPyroles.has_key(atom.handle): #print atom.symbol, atom.valences, atom.hcount, atom.charge,\ # atom.sumBondOrders() #print [x.bondtype for x in atom.bonds] #print molecule.cansmiles() raise PinkyError("Valence error in atom %s"%molecule.atoms.index(atom)) pass #hcount = int(hcount) atom.hcount = hcount return molecule
def _set_load_interval(self, v, load=False): """ Setter method for load_interval, mapped from YANG variable /mpls_config/router/mpls/mpls_cmds_holder/policy/load_interval (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_load_interval is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_load_interval() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'30..300']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(300), is_leaf=True, yang_name="load-interval", rest_name="load-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Polling interval for MPLS LSP traffic statistics', u'hidden': u'full', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls', defining_module='brocade-mpls', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """load_interval must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'30..300']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(300), is_leaf=True, yang_name="load-interval", rest_name="load-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Polling interval for MPLS LSP traffic statistics', u'hidden': u'full', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls', defining_module='brocade-mpls', yang_type='uint32', is_config=True)""", }) self.__load_interval = t if hasattr(self, '_set'): self._set()
Setter method for load_interval, mapped from YANG variable /mpls_config/router/mpls/mpls_cmds_holder/policy/load_interval (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_load_interval is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_load_interval() directly.
Below is the the instruction that describes the task: ### Input: Setter method for load_interval, mapped from YANG variable /mpls_config/router/mpls/mpls_cmds_holder/policy/load_interval (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_load_interval is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_load_interval() directly. ### Response: def _set_load_interval(self, v, load=False): """ Setter method for load_interval, mapped from YANG variable /mpls_config/router/mpls/mpls_cmds_holder/policy/load_interval (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_load_interval is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_load_interval() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'30..300']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(300), is_leaf=True, yang_name="load-interval", rest_name="load-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Polling interval for MPLS LSP traffic statistics', u'hidden': u'full', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls', defining_module='brocade-mpls', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """load_interval must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'30..300']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(300), is_leaf=True, yang_name="load-interval", rest_name="load-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'Polling interval for MPLS LSP traffic statistics', u'hidden': u'full', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls', defining_module='brocade-mpls', yang_type='uint32', is_config=True)""", }) self.__load_interval = t if hasattr(self, '_set'): self._set()
def cd_to(path, mkdir=False): """make a generator like cd, but use it for function Usage:: >>> @cd_to("/") ... def say_where(): ... print(os.getcwd()) ... >>> say_where() / """ def cd_to_decorator(func): @functools.wraps(func) def _cd_and_exec(*args, **kwargs): with cd(path, mkdir): return func(*args, **kwargs) return _cd_and_exec return cd_to_decorator
make a generator like cd, but use it for function Usage:: >>> @cd_to("/") ... def say_where(): ... print(os.getcwd()) ... >>> say_where() /
Below is the the instruction that describes the task: ### Input: make a generator like cd, but use it for function Usage:: >>> @cd_to("/") ... def say_where(): ... print(os.getcwd()) ... >>> say_where() / ### Response: def cd_to(path, mkdir=False): """make a generator like cd, but use it for function Usage:: >>> @cd_to("/") ... def say_where(): ... print(os.getcwd()) ... >>> say_where() / """ def cd_to_decorator(func): @functools.wraps(func) def _cd_and_exec(*args, **kwargs): with cd(path, mkdir): return func(*args, **kwargs) return _cd_and_exec return cd_to_decorator
def sparql_query(self, query, flush=None, limit=None): """ Run a Sparql query. :param query: sparql query string :rtype: list of dictionary """ return self.find_statements(query, language='sparql', type='tuples', flush=flush, limit=limit)
Run a Sparql query. :param query: sparql query string :rtype: list of dictionary
Below is the the instruction that describes the task: ### Input: Run a Sparql query. :param query: sparql query string :rtype: list of dictionary ### Response: def sparql_query(self, query, flush=None, limit=None): """ Run a Sparql query. :param query: sparql query string :rtype: list of dictionary """ return self.find_statements(query, language='sparql', type='tuples', flush=flush, limit=limit)
def _preprocess(self, struct1, struct2, niggli=True): """ Rescales, finds the reduced structures (primitive and niggli), and finds fu, the supercell size to make struct1 comparable to s2 """ struct1 = struct1.copy() struct2 = struct2.copy() if niggli: struct1 = struct1.get_reduced_structure(reduction_algo="niggli") struct2 = struct2.get_reduced_structure(reduction_algo="niggli") # primitive cell transformation if self._primitive_cell: struct1 = struct1.get_primitive_structure() struct2 = struct2.get_primitive_structure() if self._supercell: fu, s1_supercell = self._get_supercell_size(struct1, struct2) else: fu, s1_supercell = 1, True mult = fu if s1_supercell else 1/fu # rescale lattice to same volume if self._scale: ratio = (struct2.volume / (struct1.volume * mult)) ** (1 / 6) nl1 = Lattice(struct1.lattice.matrix * ratio) struct1.lattice = nl1 nl2 = Lattice(struct2.lattice.matrix / ratio) struct2.lattice = nl2 return struct1, struct2, fu, s1_supercell
Rescales, finds the reduced structures (primitive and niggli), and finds fu, the supercell size to make struct1 comparable to s2
Below is the the instruction that describes the task: ### Input: Rescales, finds the reduced structures (primitive and niggli), and finds fu, the supercell size to make struct1 comparable to s2 ### Response: def _preprocess(self, struct1, struct2, niggli=True): """ Rescales, finds the reduced structures (primitive and niggli), and finds fu, the supercell size to make struct1 comparable to s2 """ struct1 = struct1.copy() struct2 = struct2.copy() if niggli: struct1 = struct1.get_reduced_structure(reduction_algo="niggli") struct2 = struct2.get_reduced_structure(reduction_algo="niggli") # primitive cell transformation if self._primitive_cell: struct1 = struct1.get_primitive_structure() struct2 = struct2.get_primitive_structure() if self._supercell: fu, s1_supercell = self._get_supercell_size(struct1, struct2) else: fu, s1_supercell = 1, True mult = fu if s1_supercell else 1/fu # rescale lattice to same volume if self._scale: ratio = (struct2.volume / (struct1.volume * mult)) ** (1 / 6) nl1 = Lattice(struct1.lattice.matrix * ratio) struct1.lattice = nl1 nl2 = Lattice(struct2.lattice.matrix / ratio) struct2.lattice = nl2 return struct1, struct2, fu, s1_supercell