code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def _get_struct_fillstyle(self, shape_number): """Get the values for the FILLSTYLE record.""" obj = _make_object("FillStyle") obj.FillStyleType = style_type = unpack_ui8(self._src) if style_type == 0x00: if shape_number <= 2: obj.Color = self._get_struct_rgb() else: obj.Color = self._get_struct_rgba() if style_type in (0x10, 0x12, 0x13): obj.GradientMatrix = self._get_struct_matrix() if style_type in (0x10, 0x12): obj.Gradient = self._get_struct_gradient(shape_number) if style_type == 0x13: obj.Gradient = self._get_struct_focalgradient(shape_number) if style_type in (0x40, 0x41, 0x42, 0x43): obj.BitmapId = unpack_ui16(self._src) obj.BitmapMatrix = self._get_struct_matrix() return obj
Get the values for the FILLSTYLE record.
Below is the the instruction that describes the task: ### Input: Get the values for the FILLSTYLE record. ### Response: def _get_struct_fillstyle(self, shape_number): """Get the values for the FILLSTYLE record.""" obj = _make_object("FillStyle") obj.FillStyleType = style_type = unpack_ui8(self._src) if style_type == 0x00: if shape_number <= 2: obj.Color = self._get_struct_rgb() else: obj.Color = self._get_struct_rgba() if style_type in (0x10, 0x12, 0x13): obj.GradientMatrix = self._get_struct_matrix() if style_type in (0x10, 0x12): obj.Gradient = self._get_struct_gradient(shape_number) if style_type == 0x13: obj.Gradient = self._get_struct_focalgradient(shape_number) if style_type in (0x40, 0x41, 0x42, 0x43): obj.BitmapId = unpack_ui16(self._src) obj.BitmapMatrix = self._get_struct_matrix() return obj
def register_callback(self, callback): """ Register a new callback. Note: The callback will be executed in the AlarmTask context and for this reason it should not block, otherwise we can miss block changes. """ if not callable(callback): raise ValueError('callback is not a callable') self.callbacks.append(callback)
Register a new callback. Note: The callback will be executed in the AlarmTask context and for this reason it should not block, otherwise we can miss block changes.
Below is the the instruction that describes the task: ### Input: Register a new callback. Note: The callback will be executed in the AlarmTask context and for this reason it should not block, otherwise we can miss block changes. ### Response: def register_callback(self, callback): """ Register a new callback. Note: The callback will be executed in the AlarmTask context and for this reason it should not block, otherwise we can miss block changes. """ if not callable(callback): raise ValueError('callback is not a callable') self.callbacks.append(callback)
def compute_consistency_score(returns_test, preds): """ Compute Bayesian consistency score. Parameters ---------- returns_test : pd.Series Observed cumulative returns. preds : numpy.array Multiple (simulated) cumulative returns. Returns ------- Consistency score Score from 100 (returns_test perfectly on the median line of the Bayesian cone spanned by preds) to 0 (returns_test completely outside of Bayesian cone.) """ returns_test_cum = cum_returns(returns_test, starting_value=1.) cum_preds = np.cumprod(preds + 1, 1) q = [sp.stats.percentileofscore(cum_preds[:, i], returns_test_cum.iloc[i], kind='weak') for i in range(len(returns_test_cum))] # normalize to be from 100 (perfect median line) to 0 (completely outside # of cone) return 100 - np.abs(50 - np.mean(q)) / .5
Compute Bayesian consistency score. Parameters ---------- returns_test : pd.Series Observed cumulative returns. preds : numpy.array Multiple (simulated) cumulative returns. Returns ------- Consistency score Score from 100 (returns_test perfectly on the median line of the Bayesian cone spanned by preds) to 0 (returns_test completely outside of Bayesian cone.)
Below is the the instruction that describes the task: ### Input: Compute Bayesian consistency score. Parameters ---------- returns_test : pd.Series Observed cumulative returns. preds : numpy.array Multiple (simulated) cumulative returns. Returns ------- Consistency score Score from 100 (returns_test perfectly on the median line of the Bayesian cone spanned by preds) to 0 (returns_test completely outside of Bayesian cone.) ### Response: def compute_consistency_score(returns_test, preds): """ Compute Bayesian consistency score. Parameters ---------- returns_test : pd.Series Observed cumulative returns. preds : numpy.array Multiple (simulated) cumulative returns. Returns ------- Consistency score Score from 100 (returns_test perfectly on the median line of the Bayesian cone spanned by preds) to 0 (returns_test completely outside of Bayesian cone.) """ returns_test_cum = cum_returns(returns_test, starting_value=1.) cum_preds = np.cumprod(preds + 1, 1) q = [sp.stats.percentileofscore(cum_preds[:, i], returns_test_cum.iloc[i], kind='weak') for i in range(len(returns_test_cum))] # normalize to be from 100 (perfect median line) to 0 (completely outside # of cone) return 100 - np.abs(50 - np.mean(q)) / .5
def add_edge(self, edge): "Add edge to chart, and see if it extends or predicts another edge." start, end, lhs, found, expects = edge if edge not in self.chart[end]: self.chart[end].append(edge) if self.trace: print '%10s: added %s' % (caller(2), edge) if not expects: self.extender(edge) else: self.predictor(edge)
Add edge to chart, and see if it extends or predicts another edge.
Below is the the instruction that describes the task: ### Input: Add edge to chart, and see if it extends or predicts another edge. ### Response: def add_edge(self, edge): "Add edge to chart, and see if it extends or predicts another edge." start, end, lhs, found, expects = edge if edge not in self.chart[end]: self.chart[end].append(edge) if self.trace: print '%10s: added %s' % (caller(2), edge) if not expects: self.extender(edge) else: self.predictor(edge)
def _parse_fmt(fmt, color_key='colors', ls_key='linestyles', marker_key='marker'): '''Modified from matplotlib's _process_plot_format function.''' try: # Is fmt just a colorspec? color = mcolors.colorConverter.to_rgb(fmt) except ValueError: pass # No, not just a color. else: # Either a color or a numeric marker style if fmt not in mlines.lineMarkers: return {color_key:color} result = dict() # handle the multi char special cases and strip them from the string if fmt.find('--') >= 0: result[ls_key] = '--' fmt = fmt.replace('--', '') if fmt.find('-.') >= 0: result[ls_key] = '-.' fmt = fmt.replace('-.', '') if fmt.find(' ') >= 0: result[ls_key] = 'None' fmt = fmt.replace(' ', '') for c in list(fmt): if c in mlines.lineStyles: if ls_key in result: raise ValueError('Illegal format string; two linestyle symbols') result[ls_key] = c elif c in mlines.lineMarkers: if marker_key in result: raise ValueError('Illegal format string; two marker symbols') result[marker_key] = c elif c in mcolors.colorConverter.colors: if color_key in result: raise ValueError('Illegal format string; two color symbols') result[color_key] = c else: raise ValueError('Unrecognized character %c in format string' % c) return result
Modified from matplotlib's _process_plot_format function.
Below is the the instruction that describes the task: ### Input: Modified from matplotlib's _process_plot_format function. ### Response: def _parse_fmt(fmt, color_key='colors', ls_key='linestyles', marker_key='marker'): '''Modified from matplotlib's _process_plot_format function.''' try: # Is fmt just a colorspec? color = mcolors.colorConverter.to_rgb(fmt) except ValueError: pass # No, not just a color. else: # Either a color or a numeric marker style if fmt not in mlines.lineMarkers: return {color_key:color} result = dict() # handle the multi char special cases and strip them from the string if fmt.find('--') >= 0: result[ls_key] = '--' fmt = fmt.replace('--', '') if fmt.find('-.') >= 0: result[ls_key] = '-.' fmt = fmt.replace('-.', '') if fmt.find(' ') >= 0: result[ls_key] = 'None' fmt = fmt.replace(' ', '') for c in list(fmt): if c in mlines.lineStyles: if ls_key in result: raise ValueError('Illegal format string; two linestyle symbols') result[ls_key] = c elif c in mlines.lineMarkers: if marker_key in result: raise ValueError('Illegal format string; two marker symbols') result[marker_key] = c elif c in mcolors.colorConverter.colors: if color_key in result: raise ValueError('Illegal format string; two color symbols') result[color_key] = c else: raise ValueError('Unrecognized character %c in format string' % c) return result
def writes(nb, format, **kwargs): """Write a notebook to a string in a given format in the current nbformat version. This function always writes the notebook in the current nbformat version. Parameters ---------- nb : NotebookNode The notebook to write. format : (u'json', u'ipynb', u'py') The format to write the notebook in. Returns ------- s : unicode The notebook string. """ format = unicode(format) if format == u'json' or format == u'ipynb': return writes_json(nb, **kwargs) elif format == u'py': return writes_py(nb, **kwargs) else: raise NBFormatError('Unsupported format: %s' % format)
Write a notebook to a string in a given format in the current nbformat version. This function always writes the notebook in the current nbformat version. Parameters ---------- nb : NotebookNode The notebook to write. format : (u'json', u'ipynb', u'py') The format to write the notebook in. Returns ------- s : unicode The notebook string.
Below is the the instruction that describes the task: ### Input: Write a notebook to a string in a given format in the current nbformat version. This function always writes the notebook in the current nbformat version. Parameters ---------- nb : NotebookNode The notebook to write. format : (u'json', u'ipynb', u'py') The format to write the notebook in. Returns ------- s : unicode The notebook string. ### Response: def writes(nb, format, **kwargs): """Write a notebook to a string in a given format in the current nbformat version. This function always writes the notebook in the current nbformat version. Parameters ---------- nb : NotebookNode The notebook to write. format : (u'json', u'ipynb', u'py') The format to write the notebook in. Returns ------- s : unicode The notebook string. """ format = unicode(format) if format == u'json' or format == u'ipynb': return writes_json(nb, **kwargs) elif format == u'py': return writes_py(nb, **kwargs) else: raise NBFormatError('Unsupported format: %s' % format)
def migrate_v0_rules(self): ''' Remove any v0 (i.e. pre-010) rules from storage and replace them with v1 rules. Notes: v0 had two differences user was a username. Replaced with iden of user as 'iden' field. Also 'iden' was storage as binary. Now it is stored as hex string. ''' for iden, valu in self.core.slab.scanByFull(db=self.trigdb): ruledict = s_msgpack.un(valu) ver = ruledict.get('ver') if ver != 0: continue user = ruledict.pop('user') if user is None: logger.warning('Username missing in stored trigger rule %r', iden) continue # In v0, stored user was username, in >0 user is useriden user = self.core.auth.getUserByName(user).iden if user is None: logger.warning('Unrecognized username in stored trigger rule %r', iden) continue ruledict['ver'] = 1 ruledict['useriden'] = user newiden = s_common.ehex(iden) self.core.slab.pop(iden, db=self.trigdb) self.core.slab.put(newiden.encode(), s_msgpack.en(ruledict), db=self.trigdb)
Remove any v0 (i.e. pre-010) rules from storage and replace them with v1 rules. Notes: v0 had two differences user was a username. Replaced with iden of user as 'iden' field. Also 'iden' was storage as binary. Now it is stored as hex string.
Below is the the instruction that describes the task: ### Input: Remove any v0 (i.e. pre-010) rules from storage and replace them with v1 rules. Notes: v0 had two differences user was a username. Replaced with iden of user as 'iden' field. Also 'iden' was storage as binary. Now it is stored as hex string. ### Response: def migrate_v0_rules(self): ''' Remove any v0 (i.e. pre-010) rules from storage and replace them with v1 rules. Notes: v0 had two differences user was a username. Replaced with iden of user as 'iden' field. Also 'iden' was storage as binary. Now it is stored as hex string. ''' for iden, valu in self.core.slab.scanByFull(db=self.trigdb): ruledict = s_msgpack.un(valu) ver = ruledict.get('ver') if ver != 0: continue user = ruledict.pop('user') if user is None: logger.warning('Username missing in stored trigger rule %r', iden) continue # In v0, stored user was username, in >0 user is useriden user = self.core.auth.getUserByName(user).iden if user is None: logger.warning('Unrecognized username in stored trigger rule %r', iden) continue ruledict['ver'] = 1 ruledict['useriden'] = user newiden = s_common.ehex(iden) self.core.slab.pop(iden, db=self.trigdb) self.core.slab.put(newiden.encode(), s_msgpack.en(ruledict), db=self.trigdb)
def make_document(self, titlestring): """ This method may be used to create a new document for writing as xml to the OPS subdirectory of the ePub structure. """ #root = etree.XML('''<?xml version="1.0"?>\ #<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1//EN' 'http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd'>\ #<html xml:lang="en-US" xmlns="http://www.w3.org/1999/xhtml" xmlns:ops="http://www.idpf.org/2007/ops">\ #</html>''') root = etree.XML('''<?xml version="1.0"?>\ <!DOCTYPE html>\ <html xmlns="http://www.w3.org/1999/xhtml">\ </html>''') document = etree.ElementTree(root) html = document.getroot() head = etree.SubElement(html, 'head') etree.SubElement(html, 'body') title = etree.SubElement(head, 'title') title.text = titlestring #The href for the css stylesheet is a standin, can be overwritten etree.SubElement(head, 'link', {'href': 'css/default.css', 'rel': 'stylesheet', 'type': 'text/css'}) return document
This method may be used to create a new document for writing as xml to the OPS subdirectory of the ePub structure.
Below is the the instruction that describes the task: ### Input: This method may be used to create a new document for writing as xml to the OPS subdirectory of the ePub structure. ### Response: def make_document(self, titlestring): """ This method may be used to create a new document for writing as xml to the OPS subdirectory of the ePub structure. """ #root = etree.XML('''<?xml version="1.0"?>\ #<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1//EN' 'http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd'>\ #<html xml:lang="en-US" xmlns="http://www.w3.org/1999/xhtml" xmlns:ops="http://www.idpf.org/2007/ops">\ #</html>''') root = etree.XML('''<?xml version="1.0"?>\ <!DOCTYPE html>\ <html xmlns="http://www.w3.org/1999/xhtml">\ </html>''') document = etree.ElementTree(root) html = document.getroot() head = etree.SubElement(html, 'head') etree.SubElement(html, 'body') title = etree.SubElement(head, 'title') title.text = titlestring #The href for the css stylesheet is a standin, can be overwritten etree.SubElement(head, 'link', {'href': 'css/default.css', 'rel': 'stylesheet', 'type': 'text/css'}) return document
def delete(ctx, uri): """DELETE the specified URI Example: \b $ wva get files/userfs/WEB/python {'file_list': ['files/userfs/WEB/python/.ssh', 'files/userfs/WEB/python/README.md']} $ wva delete files/userfs/WEB/python/README.md '' $ wva get files/userfs/WEB/python {'file_list': ['files/userfs/WEB/python/.ssh']} """ http_client = get_wva(ctx).get_http_client() cli_pprint(http_client.delete(uri))
DELETE the specified URI Example: \b $ wva get files/userfs/WEB/python {'file_list': ['files/userfs/WEB/python/.ssh', 'files/userfs/WEB/python/README.md']} $ wva delete files/userfs/WEB/python/README.md '' $ wva get files/userfs/WEB/python {'file_list': ['files/userfs/WEB/python/.ssh']}
Below is the the instruction that describes the task: ### Input: DELETE the specified URI Example: \b $ wva get files/userfs/WEB/python {'file_list': ['files/userfs/WEB/python/.ssh', 'files/userfs/WEB/python/README.md']} $ wva delete files/userfs/WEB/python/README.md '' $ wva get files/userfs/WEB/python {'file_list': ['files/userfs/WEB/python/.ssh']} ### Response: def delete(ctx, uri): """DELETE the specified URI Example: \b $ wva get files/userfs/WEB/python {'file_list': ['files/userfs/WEB/python/.ssh', 'files/userfs/WEB/python/README.md']} $ wva delete files/userfs/WEB/python/README.md '' $ wva get files/userfs/WEB/python {'file_list': ['files/userfs/WEB/python/.ssh']} """ http_client = get_wva(ctx).get_http_client() cli_pprint(http_client.delete(uri))
def unsign(wheelfile): """ Remove RECORD.jws from a wheel by truncating the zip file. RECORD.jws must be at the end of the archive. The zip file must be an ordinary archive, with the compressed files and the directory in the same order, and without any non-zip content after the truncation point. """ import wheel.install vzf = wheel.install.VerifyingZipFile(wheelfile, "a") info = vzf.infolist() if not (len(info) and info[-1].filename.endswith('/RECORD.jws')): raise WheelError("RECORD.jws not found at end of archive.") vzf.pop() vzf.close()
Remove RECORD.jws from a wheel by truncating the zip file. RECORD.jws must be at the end of the archive. The zip file must be an ordinary archive, with the compressed files and the directory in the same order, and without any non-zip content after the truncation point.
Below is the the instruction that describes the task: ### Input: Remove RECORD.jws from a wheel by truncating the zip file. RECORD.jws must be at the end of the archive. The zip file must be an ordinary archive, with the compressed files and the directory in the same order, and without any non-zip content after the truncation point. ### Response: def unsign(wheelfile): """ Remove RECORD.jws from a wheel by truncating the zip file. RECORD.jws must be at the end of the archive. The zip file must be an ordinary archive, with the compressed files and the directory in the same order, and without any non-zip content after the truncation point. """ import wheel.install vzf = wheel.install.VerifyingZipFile(wheelfile, "a") info = vzf.infolist() if not (len(info) and info[-1].filename.endswith('/RECORD.jws')): raise WheelError("RECORD.jws not found at end of archive.") vzf.pop() vzf.close()
def serialize_data(data, compression=False, encryption=False, public_key=None): """Serializes normal Python datatypes into plaintext using json. You may also choose to enable compression and encryption when serializing data to send over the network. Enabling one or both of these options will incur additional overhead. Args: data (dict): The data to convert into plain text using json. compression (boolean): True or False value on whether or not to compress the serialized data. encryption (rsa.encryption): An encryption instance used to encrypt the message if encryption is desired. public_key (str): The public key to use to encrypt if encryption is enabled. Returns: The string message serialized using json. """ message = json.dumps(data) if compression: message = zlib.compress(message) message = binascii.b2a_base64(message) if encryption and public_key: message = encryption.encrypt(message, public_key) encoded_message = str.encode(message) return encoded_message
Serializes normal Python datatypes into plaintext using json. You may also choose to enable compression and encryption when serializing data to send over the network. Enabling one or both of these options will incur additional overhead. Args: data (dict): The data to convert into plain text using json. compression (boolean): True or False value on whether or not to compress the serialized data. encryption (rsa.encryption): An encryption instance used to encrypt the message if encryption is desired. public_key (str): The public key to use to encrypt if encryption is enabled. Returns: The string message serialized using json.
Below is the the instruction that describes the task: ### Input: Serializes normal Python datatypes into plaintext using json. You may also choose to enable compression and encryption when serializing data to send over the network. Enabling one or both of these options will incur additional overhead. Args: data (dict): The data to convert into plain text using json. compression (boolean): True or False value on whether or not to compress the serialized data. encryption (rsa.encryption): An encryption instance used to encrypt the message if encryption is desired. public_key (str): The public key to use to encrypt if encryption is enabled. Returns: The string message serialized using json. ### Response: def serialize_data(data, compression=False, encryption=False, public_key=None): """Serializes normal Python datatypes into plaintext using json. You may also choose to enable compression and encryption when serializing data to send over the network. Enabling one or both of these options will incur additional overhead. Args: data (dict): The data to convert into plain text using json. compression (boolean): True or False value on whether or not to compress the serialized data. encryption (rsa.encryption): An encryption instance used to encrypt the message if encryption is desired. public_key (str): The public key to use to encrypt if encryption is enabled. Returns: The string message serialized using json. """ message = json.dumps(data) if compression: message = zlib.compress(message) message = binascii.b2a_base64(message) if encryption and public_key: message = encryption.encrypt(message, public_key) encoded_message = str.encode(message) return encoded_message
def get_paths(folder, ignore_endswith=ignore_endswith): '''Return hologram file paths Parameters ---------- folder: str or pathlib.Path Path to search folder ignore_endswith: list List of filename ending strings indicating which files should be ignored. ''' folder = pathlib.Path(folder).resolve() files = folder.rglob("*") for ie in ignore_endswith: files = [ff for ff in files if not ff.name.endswith(ie)] return sorted(files)
Return hologram file paths Parameters ---------- folder: str or pathlib.Path Path to search folder ignore_endswith: list List of filename ending strings indicating which files should be ignored.
Below is the the instruction that describes the task: ### Input: Return hologram file paths Parameters ---------- folder: str or pathlib.Path Path to search folder ignore_endswith: list List of filename ending strings indicating which files should be ignored. ### Response: def get_paths(folder, ignore_endswith=ignore_endswith): '''Return hologram file paths Parameters ---------- folder: str or pathlib.Path Path to search folder ignore_endswith: list List of filename ending strings indicating which files should be ignored. ''' folder = pathlib.Path(folder).resolve() files = folder.rglob("*") for ie in ignore_endswith: files = [ff for ff in files if not ff.name.endswith(ie)] return sorted(files)
def diff_identifiers(a, b): """Return list of tuples where identifiers in datasets differ. Tuple structure: (identifier, present in a, present in b) :param a: first :class:`dtoolcore.DataSet` :param b: second :class:`dtoolcore.DataSet` :returns: list of tuples where identifiers in datasets differ """ a_ids = set(a.identifiers) b_ids = set(b.identifiers) difference = [] for i in a_ids.difference(b_ids): difference.append((i, True, False)) for i in b_ids.difference(a_ids): difference.append((i, False, True)) return difference
Return list of tuples where identifiers in datasets differ. Tuple structure: (identifier, present in a, present in b) :param a: first :class:`dtoolcore.DataSet` :param b: second :class:`dtoolcore.DataSet` :returns: list of tuples where identifiers in datasets differ
Below is the the instruction that describes the task: ### Input: Return list of tuples where identifiers in datasets differ. Tuple structure: (identifier, present in a, present in b) :param a: first :class:`dtoolcore.DataSet` :param b: second :class:`dtoolcore.DataSet` :returns: list of tuples where identifiers in datasets differ ### Response: def diff_identifiers(a, b): """Return list of tuples where identifiers in datasets differ. Tuple structure: (identifier, present in a, present in b) :param a: first :class:`dtoolcore.DataSet` :param b: second :class:`dtoolcore.DataSet` :returns: list of tuples where identifiers in datasets differ """ a_ids = set(a.identifiers) b_ids = set(b.identifiers) difference = [] for i in a_ids.difference(b_ids): difference.append((i, True, False)) for i in b_ids.difference(a_ids): difference.append((i, False, True)) return difference
def __create_grid(self): """! @brief Creates CLIQUE grid that consists of CLIQUE blocks for clustering process. """ data_sizes, min_corner, max_corner = self.__get_data_size_derscription() dimension = len(self.__data[0]) cell_sizes = [dimension_length / self.__amount_intervals for dimension_length in data_sizes] self.__cells = [clique_block() for _ in range(pow(self.__amount_intervals, dimension))] iterator = coordinate_iterator(dimension, self.__amount_intervals) point_availability = [True] * len(self.__data) self.__cell_map = {} for index_cell in range(len(self.__cells)): logical_location = iterator.get_coordinate() iterator.increment() self.__cells[index_cell].logical_location = logical_location[:] cur_max_corner, cur_min_corner = self.__get_spatial_location(logical_location, min_corner, max_corner, cell_sizes) self.__cells[index_cell].spatial_location = spatial_block(cur_max_corner, cur_min_corner) self.__cells[index_cell].capture_points(self.__data, point_availability) self.__cell_map[self.__location_to_key(logical_location)] = self.__cells[index_cell]
! @brief Creates CLIQUE grid that consists of CLIQUE blocks for clustering process.
Below is the the instruction that describes the task: ### Input: ! @brief Creates CLIQUE grid that consists of CLIQUE blocks for clustering process. ### Response: def __create_grid(self): """! @brief Creates CLIQUE grid that consists of CLIQUE blocks for clustering process. """ data_sizes, min_corner, max_corner = self.__get_data_size_derscription() dimension = len(self.__data[0]) cell_sizes = [dimension_length / self.__amount_intervals for dimension_length in data_sizes] self.__cells = [clique_block() for _ in range(pow(self.__amount_intervals, dimension))] iterator = coordinate_iterator(dimension, self.__amount_intervals) point_availability = [True] * len(self.__data) self.__cell_map = {} for index_cell in range(len(self.__cells)): logical_location = iterator.get_coordinate() iterator.increment() self.__cells[index_cell].logical_location = logical_location[:] cur_max_corner, cur_min_corner = self.__get_spatial_location(logical_location, min_corner, max_corner, cell_sizes) self.__cells[index_cell].spatial_location = spatial_block(cur_max_corner, cur_min_corner) self.__cells[index_cell].capture_points(self.__data, point_availability) self.__cell_map[self.__location_to_key(logical_location)] = self.__cells[index_cell]
def hex_to_xy(self, h): """Converts hexadecimal colors represented as a String to approximate CIE 1931 x and y coordinates. """ rgb = self.color.hex_to_rgb(h) return self.rgb_to_xy(rgb[0], rgb[1], rgb[2])
Converts hexadecimal colors represented as a String to approximate CIE 1931 x and y coordinates.
Below is the the instruction that describes the task: ### Input: Converts hexadecimal colors represented as a String to approximate CIE 1931 x and y coordinates. ### Response: def hex_to_xy(self, h): """Converts hexadecimal colors represented as a String to approximate CIE 1931 x and y coordinates. """ rgb = self.color.hex_to_rgb(h) return self.rgb_to_xy(rgb[0], rgb[1], rgb[2])
def get_backend(): """Get backend.""" backend = getattr(settings, 'SIMDITOR_IMAGE_BACKEND', None) if backend == 'pillow': from simditor.image import pillow_backend as backend else: from simditor.image import dummy_backend as backend return backend
Get backend.
Below is the the instruction that describes the task: ### Input: Get backend. ### Response: def get_backend(): """Get backend.""" backend = getattr(settings, 'SIMDITOR_IMAGE_BACKEND', None) if backend == 'pillow': from simditor.image import pillow_backend as backend else: from simditor.image import dummy_backend as backend return backend
def get(msg_or_dict, key, default=_SENTINEL): """Retrieve a key's value from a protobuf Message or dictionary. Args: mdg_or_dict (Union[~google.protobuf.message.Message, Mapping]): the object. key (str): The key to retrieve from the object. default (Any): If the key is not present on the object, and a default is set, returns that default instead. A type-appropriate falsy default is generally recommended, as protobuf messages almost always have default values for unset values and it is not always possible to tell the difference between a falsy value and an unset one. If no default is set then :class:`KeyError` will be raised if the key is not present in the object. Returns: Any: The return value from the underlying Message or dict. Raises: KeyError: If the key is not found. Note that, for unset values, messages and dictionaries may not have consistent behavior. TypeError: If ``msg_or_dict`` is not a Message or Mapping. """ # We may need to get a nested key. Resolve this. key, subkey = _resolve_subkeys(key) # Attempt to get the value from the two types of objects we know about. # If we get something else, complain. if isinstance(msg_or_dict, message.Message): answer = getattr(msg_or_dict, key, default) elif isinstance(msg_or_dict, collections_abc.Mapping): answer = msg_or_dict.get(key, default) else: raise TypeError( "get() expected a dict or protobuf message, got {!r}.".format( type(msg_or_dict) ) ) # If the object we got back is our sentinel, raise KeyError; this is # a "not found" case. if answer is _SENTINEL: raise KeyError(key) # If a subkey exists, call this method recursively against the answer. if subkey is not None and answer is not default: return get(answer, subkey, default=default) return answer
Retrieve a key's value from a protobuf Message or dictionary. Args: mdg_or_dict (Union[~google.protobuf.message.Message, Mapping]): the object. key (str): The key to retrieve from the object. default (Any): If the key is not present on the object, and a default is set, returns that default instead. A type-appropriate falsy default is generally recommended, as protobuf messages almost always have default values for unset values and it is not always possible to tell the difference between a falsy value and an unset one. If no default is set then :class:`KeyError` will be raised if the key is not present in the object. Returns: Any: The return value from the underlying Message or dict. Raises: KeyError: If the key is not found. Note that, for unset values, messages and dictionaries may not have consistent behavior. TypeError: If ``msg_or_dict`` is not a Message or Mapping.
Below is the the instruction that describes the task: ### Input: Retrieve a key's value from a protobuf Message or dictionary. Args: mdg_or_dict (Union[~google.protobuf.message.Message, Mapping]): the object. key (str): The key to retrieve from the object. default (Any): If the key is not present on the object, and a default is set, returns that default instead. A type-appropriate falsy default is generally recommended, as protobuf messages almost always have default values for unset values and it is not always possible to tell the difference between a falsy value and an unset one. If no default is set then :class:`KeyError` will be raised if the key is not present in the object. Returns: Any: The return value from the underlying Message or dict. Raises: KeyError: If the key is not found. Note that, for unset values, messages and dictionaries may not have consistent behavior. TypeError: If ``msg_or_dict`` is not a Message or Mapping. ### Response: def get(msg_or_dict, key, default=_SENTINEL): """Retrieve a key's value from a protobuf Message or dictionary. Args: mdg_or_dict (Union[~google.protobuf.message.Message, Mapping]): the object. key (str): The key to retrieve from the object. default (Any): If the key is not present on the object, and a default is set, returns that default instead. A type-appropriate falsy default is generally recommended, as protobuf messages almost always have default values for unset values and it is not always possible to tell the difference between a falsy value and an unset one. If no default is set then :class:`KeyError` will be raised if the key is not present in the object. Returns: Any: The return value from the underlying Message or dict. Raises: KeyError: If the key is not found. Note that, for unset values, messages and dictionaries may not have consistent behavior. TypeError: If ``msg_or_dict`` is not a Message or Mapping. """ # We may need to get a nested key. Resolve this. key, subkey = _resolve_subkeys(key) # Attempt to get the value from the two types of objects we know about. # If we get something else, complain. if isinstance(msg_or_dict, message.Message): answer = getattr(msg_or_dict, key, default) elif isinstance(msg_or_dict, collections_abc.Mapping): answer = msg_or_dict.get(key, default) else: raise TypeError( "get() expected a dict or protobuf message, got {!r}.".format( type(msg_or_dict) ) ) # If the object we got back is our sentinel, raise KeyError; this is # a "not found" case. if answer is _SENTINEL: raise KeyError(key) # If a subkey exists, call this method recursively against the answer. if subkey is not None and answer is not default: return get(answer, subkey, default=default) return answer
def declareLegacyItem(typeName, schemaVersion, attributes, dummyBases=()): """ Generate a dummy subclass of Item that will have the given attributes, and the base Item methods, but no methods of its own. This is for use with upgrading. @param typeName: a string, the Axiom TypeName to have attributes for. @param schemaVersion: an int, the (old) version of the schema this is a proxy for. @param attributes: a dict mapping {columnName: attr instance} describing the schema of C{typeName} at C{schemaVersion}. @param dummyBases: a sequence of 4-tuples of (baseTypeName, baseSchemaVersion, baseAttributes, baseBases) representing the dummy bases of this legacy class. """ if (typeName, schemaVersion) in _legacyTypes: return _legacyTypes[typeName, schemaVersion] if dummyBases: realBases = [declareLegacyItem(*A) for A in dummyBases] else: realBases = (Item,) attributes = attributes.copy() attributes['__module__'] = 'item_dummy' attributes['__legacy__'] = True attributes['typeName'] = typeName attributes['schemaVersion'] = schemaVersion result = type(str('DummyItem<%s,%d>' % (typeName, schemaVersion)), realBases, attributes) assert result is not None, 'wtf, %r' % (type,) _legacyTypes[(typeName, schemaVersion)] = result return result
Generate a dummy subclass of Item that will have the given attributes, and the base Item methods, but no methods of its own. This is for use with upgrading. @param typeName: a string, the Axiom TypeName to have attributes for. @param schemaVersion: an int, the (old) version of the schema this is a proxy for. @param attributes: a dict mapping {columnName: attr instance} describing the schema of C{typeName} at C{schemaVersion}. @param dummyBases: a sequence of 4-tuples of (baseTypeName, baseSchemaVersion, baseAttributes, baseBases) representing the dummy bases of this legacy class.
Below is the the instruction that describes the task: ### Input: Generate a dummy subclass of Item that will have the given attributes, and the base Item methods, but no methods of its own. This is for use with upgrading. @param typeName: a string, the Axiom TypeName to have attributes for. @param schemaVersion: an int, the (old) version of the schema this is a proxy for. @param attributes: a dict mapping {columnName: attr instance} describing the schema of C{typeName} at C{schemaVersion}. @param dummyBases: a sequence of 4-tuples of (baseTypeName, baseSchemaVersion, baseAttributes, baseBases) representing the dummy bases of this legacy class. ### Response: def declareLegacyItem(typeName, schemaVersion, attributes, dummyBases=()): """ Generate a dummy subclass of Item that will have the given attributes, and the base Item methods, but no methods of its own. This is for use with upgrading. @param typeName: a string, the Axiom TypeName to have attributes for. @param schemaVersion: an int, the (old) version of the schema this is a proxy for. @param attributes: a dict mapping {columnName: attr instance} describing the schema of C{typeName} at C{schemaVersion}. @param dummyBases: a sequence of 4-tuples of (baseTypeName, baseSchemaVersion, baseAttributes, baseBases) representing the dummy bases of this legacy class. """ if (typeName, schemaVersion) in _legacyTypes: return _legacyTypes[typeName, schemaVersion] if dummyBases: realBases = [declareLegacyItem(*A) for A in dummyBases] else: realBases = (Item,) attributes = attributes.copy() attributes['__module__'] = 'item_dummy' attributes['__legacy__'] = True attributes['typeName'] = typeName attributes['schemaVersion'] = schemaVersion result = type(str('DummyItem<%s,%d>' % (typeName, schemaVersion)), realBases, attributes) assert result is not None, 'wtf, %r' % (type,) _legacyTypes[(typeName, schemaVersion)] = result return result
def set_coeffs(self, values, ls, ms): """ Set spherical harmonic coefficients in-place to specified values. Usage ----- x.set_coeffs(values, ls, ms) Parameters ---------- values : float (list) The value(s) of the spherical harmonic coefficient(s). ls : int (list) The degree(s) of the coefficient(s) that should be set. ms : int (list) The order(s) of the coefficient(s) that should be set. Positive and negative values correspond to the cosine and sine components, respectively. Examples -------- x.set_coeffs(10., 1, 1) # x.coeffs[0, 1, 1] = 10. x.set_coeffs(5., 1, -1) # x.coeffs[1, 1, 1] = 5. x.set_coeffs([1., 2], [1, 2], [0, -2]) # x.coeffs[0, 1, 0] = 1. # x.coeffs[1, 2, 2] = 2. """ # Ensure that the type is correct values = _np.array(values) ls = _np.array(ls) ms = _np.array(ms) mneg_mask = (ms < 0).astype(_np.int) self.coeffs[mneg_mask, ls, _np.abs(ms)] = values
Set spherical harmonic coefficients in-place to specified values. Usage ----- x.set_coeffs(values, ls, ms) Parameters ---------- values : float (list) The value(s) of the spherical harmonic coefficient(s). ls : int (list) The degree(s) of the coefficient(s) that should be set. ms : int (list) The order(s) of the coefficient(s) that should be set. Positive and negative values correspond to the cosine and sine components, respectively. Examples -------- x.set_coeffs(10., 1, 1) # x.coeffs[0, 1, 1] = 10. x.set_coeffs(5., 1, -1) # x.coeffs[1, 1, 1] = 5. x.set_coeffs([1., 2], [1, 2], [0, -2]) # x.coeffs[0, 1, 0] = 1. # x.coeffs[1, 2, 2] = 2.
Below is the the instruction that describes the task: ### Input: Set spherical harmonic coefficients in-place to specified values. Usage ----- x.set_coeffs(values, ls, ms) Parameters ---------- values : float (list) The value(s) of the spherical harmonic coefficient(s). ls : int (list) The degree(s) of the coefficient(s) that should be set. ms : int (list) The order(s) of the coefficient(s) that should be set. Positive and negative values correspond to the cosine and sine components, respectively. Examples -------- x.set_coeffs(10., 1, 1) # x.coeffs[0, 1, 1] = 10. x.set_coeffs(5., 1, -1) # x.coeffs[1, 1, 1] = 5. x.set_coeffs([1., 2], [1, 2], [0, -2]) # x.coeffs[0, 1, 0] = 1. # x.coeffs[1, 2, 2] = 2. ### Response: def set_coeffs(self, values, ls, ms): """ Set spherical harmonic coefficients in-place to specified values. Usage ----- x.set_coeffs(values, ls, ms) Parameters ---------- values : float (list) The value(s) of the spherical harmonic coefficient(s). ls : int (list) The degree(s) of the coefficient(s) that should be set. ms : int (list) The order(s) of the coefficient(s) that should be set. Positive and negative values correspond to the cosine and sine components, respectively. Examples -------- x.set_coeffs(10., 1, 1) # x.coeffs[0, 1, 1] = 10. x.set_coeffs(5., 1, -1) # x.coeffs[1, 1, 1] = 5. x.set_coeffs([1., 2], [1, 2], [0, -2]) # x.coeffs[0, 1, 0] = 1. # x.coeffs[1, 2, 2] = 2. """ # Ensure that the type is correct values = _np.array(values) ls = _np.array(ls) ms = _np.array(ms) mneg_mask = (ms < 0).astype(_np.int) self.coeffs[mneg_mask, ls, _np.abs(ms)] = values
def iterate(self, iterable, element_timeout=None): """ Iterate over an iterable. The iterator is executed in the host thread. The threads dynamically grab the elements. The iterator elements must hence be picklable to be transferred through the queue. If there is only one thread, no special operations are performed. Otherwise, effectively n-1 threads are used to process the iterable elements, and the host thread is used to provide them. You can specify a timeout for the clients to adhere. """ self._assert_active() with self._queuelock: # Get this loop id. self._thread_loop_ids[self._thread_num] += 1 loop_id = self._thread_loop_ids[self._thread_num] # Iterate. return _IterableQueueIterator( self._iter_queue, loop_id, self, iterable, element_timeout )
Iterate over an iterable. The iterator is executed in the host thread. The threads dynamically grab the elements. The iterator elements must hence be picklable to be transferred through the queue. If there is only one thread, no special operations are performed. Otherwise, effectively n-1 threads are used to process the iterable elements, and the host thread is used to provide them. You can specify a timeout for the clients to adhere.
Below is the the instruction that describes the task: ### Input: Iterate over an iterable. The iterator is executed in the host thread. The threads dynamically grab the elements. The iterator elements must hence be picklable to be transferred through the queue. If there is only one thread, no special operations are performed. Otherwise, effectively n-1 threads are used to process the iterable elements, and the host thread is used to provide them. You can specify a timeout for the clients to adhere. ### Response: def iterate(self, iterable, element_timeout=None): """ Iterate over an iterable. The iterator is executed in the host thread. The threads dynamically grab the elements. The iterator elements must hence be picklable to be transferred through the queue. If there is only one thread, no special operations are performed. Otherwise, effectively n-1 threads are used to process the iterable elements, and the host thread is used to provide them. You can specify a timeout for the clients to adhere. """ self._assert_active() with self._queuelock: # Get this loop id. self._thread_loop_ids[self._thread_num] += 1 loop_id = self._thread_loop_ids[self._thread_num] # Iterate. return _IterableQueueIterator( self._iter_queue, loop_id, self, iterable, element_timeout )
def remove_network(self, action, n_name, **kwargs): """ Removes a network. :param action: Action configuration. :type action: dockermap.map.runner.ActionConfig :param n_name: Network name or id. :type n_name: unicode | str :param kwargs: Additional keyword arguments. :type kwargs: dict """ c_kwargs = self.get_network_remove_kwargs(action, n_name, **kwargs) res = action.client.remove_network(**c_kwargs) del self._policy.network_names[action.client_name][n_name] return res
Removes a network. :param action: Action configuration. :type action: dockermap.map.runner.ActionConfig :param n_name: Network name or id. :type n_name: unicode | str :param kwargs: Additional keyword arguments. :type kwargs: dict
Below is the the instruction that describes the task: ### Input: Removes a network. :param action: Action configuration. :type action: dockermap.map.runner.ActionConfig :param n_name: Network name or id. :type n_name: unicode | str :param kwargs: Additional keyword arguments. :type kwargs: dict ### Response: def remove_network(self, action, n_name, **kwargs): """ Removes a network. :param action: Action configuration. :type action: dockermap.map.runner.ActionConfig :param n_name: Network name or id. :type n_name: unicode | str :param kwargs: Additional keyword arguments. :type kwargs: dict """ c_kwargs = self.get_network_remove_kwargs(action, n_name, **kwargs) res = action.client.remove_network(**c_kwargs) del self._policy.network_names[action.client_name][n_name] return res
def get_partition_hash(self): """ Returns partition hash calculated for serialized object. Partition hash is used to determine partition of a Data and is calculated using * PartitioningStrategy during serialization. * If partition hash is not set then hash_code() is used. :return: partition hash """ if self.has_partition_hash(): return unpack_from(FMT_BE_INT, self._buffer, PARTITION_HASH_OFFSET)[0] return self.hash_code()
Returns partition hash calculated for serialized object. Partition hash is used to determine partition of a Data and is calculated using * PartitioningStrategy during serialization. * If partition hash is not set then hash_code() is used. :return: partition hash
Below is the the instruction that describes the task: ### Input: Returns partition hash calculated for serialized object. Partition hash is used to determine partition of a Data and is calculated using * PartitioningStrategy during serialization. * If partition hash is not set then hash_code() is used. :return: partition hash ### Response: def get_partition_hash(self): """ Returns partition hash calculated for serialized object. Partition hash is used to determine partition of a Data and is calculated using * PartitioningStrategy during serialization. * If partition hash is not set then hash_code() is used. :return: partition hash """ if self.has_partition_hash(): return unpack_from(FMT_BE_INT, self._buffer, PARTITION_HASH_OFFSET)[0] return self.hash_code()
def traverse_setter(obj, attribute, value): """ Traverses the object and sets the supplied attribute on the object. Supports Dimensioned and DimensionedPlot types. """ obj.traverse(lambda x: setattr(x, attribute, value))
Traverses the object and sets the supplied attribute on the object. Supports Dimensioned and DimensionedPlot types.
Below is the the instruction that describes the task: ### Input: Traverses the object and sets the supplied attribute on the object. Supports Dimensioned and DimensionedPlot types. ### Response: def traverse_setter(obj, attribute, value): """ Traverses the object and sets the supplied attribute on the object. Supports Dimensioned and DimensionedPlot types. """ obj.traverse(lambda x: setattr(x, attribute, value))
def restart_agent(self, agent_id, **kwargs): '''tells the host agent running in this agency to restart the agent.''' host_medium = self.get_medium('host_agent') agent = host_medium.get_agent() d = host_medium.get_document(agent_id) # This is done like this on purpose, we want to ensure that document # exists before passing it to the agent (even though he would handle # this himself). d.addCallback( lambda desc: agent.start_agent(desc.doc_id, **kwargs)) return d
tells the host agent running in this agency to restart the agent.
Below is the the instruction that describes the task: ### Input: tells the host agent running in this agency to restart the agent. ### Response: def restart_agent(self, agent_id, **kwargs): '''tells the host agent running in this agency to restart the agent.''' host_medium = self.get_medium('host_agent') agent = host_medium.get_agent() d = host_medium.get_document(agent_id) # This is done like this on purpose, we want to ensure that document # exists before passing it to the agent (even though he would handle # this himself). d.addCallback( lambda desc: agent.start_agent(desc.doc_id, **kwargs)) return d
def cut_psf(psf_data, psf_size): """ cut the psf properly :param psf_data: image of PSF :param psf_size: size of psf :return: re-sized and re-normalized PSF """ kernel = image_util.cut_edges(psf_data, psf_size) kernel = kernel_norm(kernel) return kernel
cut the psf properly :param psf_data: image of PSF :param psf_size: size of psf :return: re-sized and re-normalized PSF
Below is the the instruction that describes the task: ### Input: cut the psf properly :param psf_data: image of PSF :param psf_size: size of psf :return: re-sized and re-normalized PSF ### Response: def cut_psf(psf_data, psf_size): """ cut the psf properly :param psf_data: image of PSF :param psf_size: size of psf :return: re-sized and re-normalized PSF """ kernel = image_util.cut_edges(psf_data, psf_size) kernel = kernel_norm(kernel) return kernel
def get_rows(self): """ Returns the name of the rows of the extension""" possible_dataframes = ['F', 'FY', 'M', 'S', 'D_cba', 'D_pba', 'D_imp', 'D_exp', 'D_cba_reg', 'D_pba_reg', 'D_imp_reg', 'D_exp_reg', 'D_cba_cap', 'D_pba_cap', 'D_imp_cap', 'D_exp_cap', ] for df in possible_dataframes: if (df in self.__dict__) and (getattr(self, df) is not None): return getattr(self, df).index.get_values() else: logging.warn("No attributes available to get row names") return None
Returns the name of the rows of the extension
Below is the the instruction that describes the task: ### Input: Returns the name of the rows of the extension ### Response: def get_rows(self): """ Returns the name of the rows of the extension""" possible_dataframes = ['F', 'FY', 'M', 'S', 'D_cba', 'D_pba', 'D_imp', 'D_exp', 'D_cba_reg', 'D_pba_reg', 'D_imp_reg', 'D_exp_reg', 'D_cba_cap', 'D_pba_cap', 'D_imp_cap', 'D_exp_cap', ] for df in possible_dataframes: if (df in self.__dict__) and (getattr(self, df) is not None): return getattr(self, df).index.get_values() else: logging.warn("No attributes available to get row names") return None
def headers(self): """ Returns a list of the last HTTP response headers. Header keys are normalized to capitalized form, as in `User-Agent`. """ headers = self.conn.issue_command("Headers") res = [] for header in headers.split("\r"): key, value = header.split(": ", 1) for line in value.split("\n"): res.append((_normalize_header(key), line)) return res
Returns a list of the last HTTP response headers. Header keys are normalized to capitalized form, as in `User-Agent`.
Below is the the instruction that describes the task: ### Input: Returns a list of the last HTTP response headers. Header keys are normalized to capitalized form, as in `User-Agent`. ### Response: def headers(self): """ Returns a list of the last HTTP response headers. Header keys are normalized to capitalized form, as in `User-Agent`. """ headers = self.conn.issue_command("Headers") res = [] for header in headers.split("\r"): key, value = header.split(": ", 1) for line in value.split("\n"): res.append((_normalize_header(key), line)) return res
def noise_plot(signal, noise, normalise=False, **kwargs): """ Plot signal and noise fourier transforms and the difference. :type signal: `obspy.core.stream.Stream` :param signal: Stream of "signal" window :type noise: `obspy.core.stream.Stream` :param noise: Stream of the "noise" window. :type normalise: bool :param normalise: Whether to normalise the data before plotting or not. :return: `matplotlib.pyplot.Figure` """ import matplotlib.pyplot as plt # Work out how many traces we can plot n_traces = 0 for tr in signal: try: noise.select(id=tr.id)[0] except IndexError: # pragma: no cover continue n_traces += 1 fig, axes = plt.subplots(n_traces, 2, sharex=True) if len(signal) > 1: axes = axes.ravel() i = 0 lines = [] labels = [] for tr in signal: try: noise_tr = noise.select(id=tr.id)[0] except IndexError: # pragma: no cover continue ax1 = axes[i] ax2 = axes[i + 1] fft_len = fftpack.next_fast_len( max(noise_tr.stats.npts, tr.stats.npts)) if not normalise: signal_fft = fftpack.rfft(tr.data, fft_len) noise_fft = fftpack.rfft(noise_tr.data, fft_len) else: signal_fft = fftpack.rfft(tr.data / max(tr.data), fft_len) noise_fft = fftpack.rfft( noise_tr.data / max(noise_tr.data), fft_len) frequencies = np.linspace(0, 1 / (2 * tr.stats.delta), fft_len // 2) noise_line, = ax1.semilogy( frequencies, 2.0 / fft_len * np.abs(noise_fft[0: fft_len // 2]), 'k', label="noise") signal_line, = ax1.semilogy( frequencies, 2.0 / fft_len * np.abs(signal_fft[0: fft_len // 2]), 'r', label="signal") if "signal" not in labels: labels.append("signal") lines.append(signal_line) if "noise" not in labels: labels.append("noise") lines.append(noise_line) ax1.set_ylabel(tr.id, rotation=0, horizontalalignment='right') ax2.plot( frequencies, (2.0 / fft_len * np.abs(signal_fft[0: fft_len // 2])) - (2.0 / fft_len * np.abs(noise_fft[0: fft_len // 2])), 'k') ax2.yaxis.tick_right() ax2.set_ylim(bottom=0) i += 2 axes[-1].set_xlabel("Frequency (Hz)") axes[-2].set_xlabel("Frequency (Hz)") axes[0].set_title("Spectra") axes[1].set_title("Signal - noise") plt.figlegend(lines, labels, 'upper left') plt.tight_layout() plt.subplots_adjust(hspace=0) fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover return fig
Plot signal and noise fourier transforms and the difference. :type signal: `obspy.core.stream.Stream` :param signal: Stream of "signal" window :type noise: `obspy.core.stream.Stream` :param noise: Stream of the "noise" window. :type normalise: bool :param normalise: Whether to normalise the data before plotting or not. :return: `matplotlib.pyplot.Figure`
Below is the the instruction that describes the task: ### Input: Plot signal and noise fourier transforms and the difference. :type signal: `obspy.core.stream.Stream` :param signal: Stream of "signal" window :type noise: `obspy.core.stream.Stream` :param noise: Stream of the "noise" window. :type normalise: bool :param normalise: Whether to normalise the data before plotting or not. :return: `matplotlib.pyplot.Figure` ### Response: def noise_plot(signal, noise, normalise=False, **kwargs): """ Plot signal and noise fourier transforms and the difference. :type signal: `obspy.core.stream.Stream` :param signal: Stream of "signal" window :type noise: `obspy.core.stream.Stream` :param noise: Stream of the "noise" window. :type normalise: bool :param normalise: Whether to normalise the data before plotting or not. :return: `matplotlib.pyplot.Figure` """ import matplotlib.pyplot as plt # Work out how many traces we can plot n_traces = 0 for tr in signal: try: noise.select(id=tr.id)[0] except IndexError: # pragma: no cover continue n_traces += 1 fig, axes = plt.subplots(n_traces, 2, sharex=True) if len(signal) > 1: axes = axes.ravel() i = 0 lines = [] labels = [] for tr in signal: try: noise_tr = noise.select(id=tr.id)[0] except IndexError: # pragma: no cover continue ax1 = axes[i] ax2 = axes[i + 1] fft_len = fftpack.next_fast_len( max(noise_tr.stats.npts, tr.stats.npts)) if not normalise: signal_fft = fftpack.rfft(tr.data, fft_len) noise_fft = fftpack.rfft(noise_tr.data, fft_len) else: signal_fft = fftpack.rfft(tr.data / max(tr.data), fft_len) noise_fft = fftpack.rfft( noise_tr.data / max(noise_tr.data), fft_len) frequencies = np.linspace(0, 1 / (2 * tr.stats.delta), fft_len // 2) noise_line, = ax1.semilogy( frequencies, 2.0 / fft_len * np.abs(noise_fft[0: fft_len // 2]), 'k', label="noise") signal_line, = ax1.semilogy( frequencies, 2.0 / fft_len * np.abs(signal_fft[0: fft_len // 2]), 'r', label="signal") if "signal" not in labels: labels.append("signal") lines.append(signal_line) if "noise" not in labels: labels.append("noise") lines.append(noise_line) ax1.set_ylabel(tr.id, rotation=0, horizontalalignment='right') ax2.plot( frequencies, (2.0 / fft_len * np.abs(signal_fft[0: fft_len // 2])) - (2.0 / fft_len * np.abs(noise_fft[0: fft_len // 2])), 'k') ax2.yaxis.tick_right() ax2.set_ylim(bottom=0) i += 2 axes[-1].set_xlabel("Frequency (Hz)") axes[-2].set_xlabel("Frequency (Hz)") axes[0].set_title("Spectra") axes[1].set_title("Signal - noise") plt.figlegend(lines, labels, 'upper left') plt.tight_layout() plt.subplots_adjust(hspace=0) fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover return fig
def getAnalogActionData(self, action, unActionDataSize, ulRestrictToDevice): """ Reads the state of an analog action given its handle. This will return VRInputError_WrongType if the type of action is something other than analog """ fn = self.function_table.getAnalogActionData pActionData = InputAnalogActionData_t() result = fn(action, byref(pActionData), unActionDataSize, ulRestrictToDevice) return result, pActionData
Reads the state of an analog action given its handle. This will return VRInputError_WrongType if the type of action is something other than analog
Below is the the instruction that describes the task: ### Input: Reads the state of an analog action given its handle. This will return VRInputError_WrongType if the type of action is something other than analog ### Response: def getAnalogActionData(self, action, unActionDataSize, ulRestrictToDevice): """ Reads the state of an analog action given its handle. This will return VRInputError_WrongType if the type of action is something other than analog """ fn = self.function_table.getAnalogActionData pActionData = InputAnalogActionData_t() result = fn(action, byref(pActionData), unActionDataSize, ulRestrictToDevice) return result, pActionData
def traverse(obj, target:str, default=nodefault, executable:bool=False, separator:str='.', protect:bool=True): """Traverse down an object, using getattr or getitem. If ``executable`` is ``True`` any executable function encountered will be, with no arguments. Traversal will continue on the result of that call. You can change the separator as desired, i.e. to a '/'. By default attributes (but not array elements) prefixed with an underscore are taboo. They will not resolve, raising a LookupError. Certain allowances are made: if a 'path segment' is numerical, it's treated as an array index. If attribute lookup fails, it will re-try on that object using array notation and continue from there. This makes lookup very flexible. """ # TODO: Support numerical slicing, i.e. ``1:4``, or even just ``:-1`` and things. assert check_argument_types() value = obj remainder = target if not target: return obj while separator: name, separator, remainder = remainder.partition(separator) numeric = name.lstrip('-').isdigit() try: if numeric or (protect and name.startswith('_')): raise AttributeError() value = getattr(value, name) if executable and callable(value): value = value() except AttributeError: try: value = value[int(name) if numeric else name] except (KeyError, TypeError): if default is nodefault: raise LookupError("Could not resolve '" + target + "' on: " + repr(obj)) return default return value
Traverse down an object, using getattr or getitem. If ``executable`` is ``True`` any executable function encountered will be, with no arguments. Traversal will continue on the result of that call. You can change the separator as desired, i.e. to a '/'. By default attributes (but not array elements) prefixed with an underscore are taboo. They will not resolve, raising a LookupError. Certain allowances are made: if a 'path segment' is numerical, it's treated as an array index. If attribute lookup fails, it will re-try on that object using array notation and continue from there. This makes lookup very flexible.
Below is the the instruction that describes the task: ### Input: Traverse down an object, using getattr or getitem. If ``executable`` is ``True`` any executable function encountered will be, with no arguments. Traversal will continue on the result of that call. You can change the separator as desired, i.e. to a '/'. By default attributes (but not array elements) prefixed with an underscore are taboo. They will not resolve, raising a LookupError. Certain allowances are made: if a 'path segment' is numerical, it's treated as an array index. If attribute lookup fails, it will re-try on that object using array notation and continue from there. This makes lookup very flexible. ### Response: def traverse(obj, target:str, default=nodefault, executable:bool=False, separator:str='.', protect:bool=True): """Traverse down an object, using getattr or getitem. If ``executable`` is ``True`` any executable function encountered will be, with no arguments. Traversal will continue on the result of that call. You can change the separator as desired, i.e. to a '/'. By default attributes (but not array elements) prefixed with an underscore are taboo. They will not resolve, raising a LookupError. Certain allowances are made: if a 'path segment' is numerical, it's treated as an array index. If attribute lookup fails, it will re-try on that object using array notation and continue from there. This makes lookup very flexible. """ # TODO: Support numerical slicing, i.e. ``1:4``, or even just ``:-1`` and things. assert check_argument_types() value = obj remainder = target if not target: return obj while separator: name, separator, remainder = remainder.partition(separator) numeric = name.lstrip('-').isdigit() try: if numeric or (protect and name.startswith('_')): raise AttributeError() value = getattr(value, name) if executable and callable(value): value = value() except AttributeError: try: value = value[int(name) if numeric else name] except (KeyError, TypeError): if default is nodefault: raise LookupError("Could not resolve '" + target + "' on: " + repr(obj)) return default return value
def _set_dst_vtep_ip(self, v, load=False): """ Setter method for dst_vtep_ip, mapped from YANG variable /overlay/access_list/type/vxlan/standard/seq/dst_vtep_ip (inet:ipv4-address) If this variable is read-only (config: false) in the source YANG file, then _set_dst_vtep_ip is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_dst_vtep_ip() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), is_leaf=True, yang_name="dst-vtep-ip", rest_name="dst-vtep-ip-host", parent=self, choice=(u'choice-dst-vtep-ip', u'case-dst-vtep-ip'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'dst vtep ip address: A.B.C.D', u'alt-name': u'dst-vtep-ip-host', u'cli-incomplete-command': None, u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vxlan-visibility', defining_module='brocade-vxlan-visibility', yang_type='inet:ipv4-address', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """dst_vtep_ip must be of a type compatible with inet:ipv4-address""", 'defined-type': "inet:ipv4-address", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), is_leaf=True, yang_name="dst-vtep-ip", rest_name="dst-vtep-ip-host", parent=self, choice=(u'choice-dst-vtep-ip', u'case-dst-vtep-ip'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'dst vtep ip address: A.B.C.D', u'alt-name': u'dst-vtep-ip-host', u'cli-incomplete-command': None, u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vxlan-visibility', defining_module='brocade-vxlan-visibility', yang_type='inet:ipv4-address', is_config=True)""", }) self.__dst_vtep_ip = t if hasattr(self, '_set'): self._set()
Setter method for dst_vtep_ip, mapped from YANG variable /overlay/access_list/type/vxlan/standard/seq/dst_vtep_ip (inet:ipv4-address) If this variable is read-only (config: false) in the source YANG file, then _set_dst_vtep_ip is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_dst_vtep_ip() directly.
Below is the the instruction that describes the task: ### Input: Setter method for dst_vtep_ip, mapped from YANG variable /overlay/access_list/type/vxlan/standard/seq/dst_vtep_ip (inet:ipv4-address) If this variable is read-only (config: false) in the source YANG file, then _set_dst_vtep_ip is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_dst_vtep_ip() directly. ### Response: def _set_dst_vtep_ip(self, v, load=False): """ Setter method for dst_vtep_ip, mapped from YANG variable /overlay/access_list/type/vxlan/standard/seq/dst_vtep_ip (inet:ipv4-address) If this variable is read-only (config: false) in the source YANG file, then _set_dst_vtep_ip is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_dst_vtep_ip() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), is_leaf=True, yang_name="dst-vtep-ip", rest_name="dst-vtep-ip-host", parent=self, choice=(u'choice-dst-vtep-ip', u'case-dst-vtep-ip'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'dst vtep ip address: A.B.C.D', u'alt-name': u'dst-vtep-ip-host', u'cli-incomplete-command': None, u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vxlan-visibility', defining_module='brocade-vxlan-visibility', yang_type='inet:ipv4-address', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """dst_vtep_ip must be of a type compatible with inet:ipv4-address""", 'defined-type': "inet:ipv4-address", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), is_leaf=True, yang_name="dst-vtep-ip", rest_name="dst-vtep-ip-host", parent=self, choice=(u'choice-dst-vtep-ip', u'case-dst-vtep-ip'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'dst vtep ip address: A.B.C.D', u'alt-name': u'dst-vtep-ip-host', u'cli-incomplete-command': None, u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-vxlan-visibility', defining_module='brocade-vxlan-visibility', yang_type='inet:ipv4-address', is_config=True)""", }) self.__dst_vtep_ip = t if hasattr(self, '_set'): self._set()
def fix_e502(self, result): """Remove extraneous escape of newline.""" (line_index, _, target) = get_index_offset_contents(result, self.source) self.source[line_index] = target.rstrip('\n\r \t\\') + '\n'
Remove extraneous escape of newline.
Below is the the instruction that describes the task: ### Input: Remove extraneous escape of newline. ### Response: def fix_e502(self, result): """Remove extraneous escape of newline.""" (line_index, _, target) = get_index_offset_contents(result, self.source) self.source[line_index] = target.rstrip('\n\r \t\\') + '\n'
def find_revision_number(self, revision=None): """Find the local revision number of the given revision.""" # Make sure the local repository exists. self.create() # Try to find the revision number of the specified revision. revision = self.expand_branch_name(revision) output = self.context.capture('git', 'rev-list', revision, '--count') if not (output and output.isdigit()): msg = "Failed to find local revision number! ('git rev-list --count' gave unexpected output)" raise ValueError(msg) return int(output)
Find the local revision number of the given revision.
Below is the the instruction that describes the task: ### Input: Find the local revision number of the given revision. ### Response: def find_revision_number(self, revision=None): """Find the local revision number of the given revision.""" # Make sure the local repository exists. self.create() # Try to find the revision number of the specified revision. revision = self.expand_branch_name(revision) output = self.context.capture('git', 'rev-list', revision, '--count') if not (output and output.isdigit()): msg = "Failed to find local revision number! ('git rev-list --count' gave unexpected output)" raise ValueError(msg) return int(output)
def task(self, _fn=None, queue=None, hard_timeout=None, unique=None, lock=None, lock_key=None, retry=None, retry_on=None, retry_method=None, schedule=None, batch=False, max_queue_size=None): """ Function decorator that defines the behavior of the function when it is used as a task. To use the default behavior, tasks don't need to be decorated. See README.rst for an explanation of the options. """ def _delay(func): def _delay_inner(*args, **kwargs): return self.delay(func, args=args, kwargs=kwargs) return _delay_inner # Periodic tasks are unique. if schedule is not None: unique = True def _wrap(func): if hard_timeout is not None: func._task_hard_timeout = hard_timeout if queue is not None: func._task_queue = queue if unique is not None: func._task_unique = unique if lock is not None: func._task_lock = lock if lock_key is not None: func._task_lock_key = lock_key if retry is not None: func._task_retry = retry if retry_on is not None: func._task_retry_on = retry_on if retry_method is not None: func._task_retry_method = retry_method if batch is not None: func._task_batch = batch if schedule is not None: func._task_schedule = schedule if max_queue_size is not None: func._task_max_queue_size = max_queue_size func.delay = _delay(func) if schedule is not None: serialized_func = serialize_func_name(func) assert serialized_func not in self.periodic_task_funcs, \ "attempted duplicate registration of periodic task" self.periodic_task_funcs[serialized_func] = func return func return _wrap if _fn is None else _wrap(_fn)
Function decorator that defines the behavior of the function when it is used as a task. To use the default behavior, tasks don't need to be decorated. See README.rst for an explanation of the options.
Below is the the instruction that describes the task: ### Input: Function decorator that defines the behavior of the function when it is used as a task. To use the default behavior, tasks don't need to be decorated. See README.rst for an explanation of the options. ### Response: def task(self, _fn=None, queue=None, hard_timeout=None, unique=None, lock=None, lock_key=None, retry=None, retry_on=None, retry_method=None, schedule=None, batch=False, max_queue_size=None): """ Function decorator that defines the behavior of the function when it is used as a task. To use the default behavior, tasks don't need to be decorated. See README.rst for an explanation of the options. """ def _delay(func): def _delay_inner(*args, **kwargs): return self.delay(func, args=args, kwargs=kwargs) return _delay_inner # Periodic tasks are unique. if schedule is not None: unique = True def _wrap(func): if hard_timeout is not None: func._task_hard_timeout = hard_timeout if queue is not None: func._task_queue = queue if unique is not None: func._task_unique = unique if lock is not None: func._task_lock = lock if lock_key is not None: func._task_lock_key = lock_key if retry is not None: func._task_retry = retry if retry_on is not None: func._task_retry_on = retry_on if retry_method is not None: func._task_retry_method = retry_method if batch is not None: func._task_batch = batch if schedule is not None: func._task_schedule = schedule if max_queue_size is not None: func._task_max_queue_size = max_queue_size func.delay = _delay(func) if schedule is not None: serialized_func = serialize_func_name(func) assert serialized_func not in self.periodic_task_funcs, \ "attempted duplicate registration of periodic task" self.periodic_task_funcs[serialized_func] = func return func return _wrap if _fn is None else _wrap(_fn)
def expire(self, time=None): """Remove expired items from the cache.""" if time is None: time = self.__timer() root = self.__root curr = root.next links = self.__links cache_delitem = Cache.__delitem__ while curr is not root and curr.expire < time: cache_delitem(self, curr.key) del links[curr.key] next = curr.next curr.unlink() curr = next
Remove expired items from the cache.
Below is the the instruction that describes the task: ### Input: Remove expired items from the cache. ### Response: def expire(self, time=None): """Remove expired items from the cache.""" if time is None: time = self.__timer() root = self.__root curr = root.next links = self.__links cache_delitem = Cache.__delitem__ while curr is not root and curr.expire < time: cache_delitem(self, curr.key) del links[curr.key] next = curr.next curr.unlink() curr = next
def load_yaml(path): # type: (str) -> OrderedDict """Load YAML file into an ordered dictionary Args: path (str): Path to YAML file Returns: OrderedDict: Ordered dictionary containing loaded YAML file """ with open(path, 'rt') as f: yamldict = yaml.load(f.read(), Loader=yamlloader.ordereddict.CSafeLoader) if not yamldict: raise (LoadError('YAML file: %s is empty!' % path)) return yamldict
Load YAML file into an ordered dictionary Args: path (str): Path to YAML file Returns: OrderedDict: Ordered dictionary containing loaded YAML file
Below is the the instruction that describes the task: ### Input: Load YAML file into an ordered dictionary Args: path (str): Path to YAML file Returns: OrderedDict: Ordered dictionary containing loaded YAML file ### Response: def load_yaml(path): # type: (str) -> OrderedDict """Load YAML file into an ordered dictionary Args: path (str): Path to YAML file Returns: OrderedDict: Ordered dictionary containing loaded YAML file """ with open(path, 'rt') as f: yamldict = yaml.load(f.read(), Loader=yamlloader.ordereddict.CSafeLoader) if not yamldict: raise (LoadError('YAML file: %s is empty!' % path)) return yamldict
def update_privilege(self, obj, target): '''Get privileges from metadata of the source in s3, and apply them to target''' if 'privilege' in obj['Metadata']: os.chmod(target, int(obj['Metadata']['privilege'], 8))
Get privileges from metadata of the source in s3, and apply them to target
Below is the the instruction that describes the task: ### Input: Get privileges from metadata of the source in s3, and apply them to target ### Response: def update_privilege(self, obj, target): '''Get privileges from metadata of the source in s3, and apply them to target''' if 'privilege' in obj['Metadata']: os.chmod(target, int(obj['Metadata']['privilege'], 8))
def find_children(self, tag=None, namespace=None): """Searches child nodes for objects with the desired tag/namespace. Returns a list of extension elements within this object whose tag and/or namespace match those passed in. To find all children in a particular namespace, specify the namespace but not the tag name. If you specify only the tag, the result list may contain extension elements in multiple namespaces. :param tag: str (optional) The desired tag :param namespace: str (optional) The desired namespace :return: A list of elements whose tag and/or namespace match the parameters values """ results = [] if tag and namespace: for element in self.children: if element.tag == tag and element.namespace == namespace: results.append(element) elif tag and not namespace: for element in self.children: if element.tag == tag: results.append(element) elif namespace and not tag: for element in self.children: if element.namespace == namespace: results.append(element) else: for element in self.children: results.append(element) return results
Searches child nodes for objects with the desired tag/namespace. Returns a list of extension elements within this object whose tag and/or namespace match those passed in. To find all children in a particular namespace, specify the namespace but not the tag name. If you specify only the tag, the result list may contain extension elements in multiple namespaces. :param tag: str (optional) The desired tag :param namespace: str (optional) The desired namespace :return: A list of elements whose tag and/or namespace match the parameters values
Below is the the instruction that describes the task: ### Input: Searches child nodes for objects with the desired tag/namespace. Returns a list of extension elements within this object whose tag and/or namespace match those passed in. To find all children in a particular namespace, specify the namespace but not the tag name. If you specify only the tag, the result list may contain extension elements in multiple namespaces. :param tag: str (optional) The desired tag :param namespace: str (optional) The desired namespace :return: A list of elements whose tag and/or namespace match the parameters values ### Response: def find_children(self, tag=None, namespace=None): """Searches child nodes for objects with the desired tag/namespace. Returns a list of extension elements within this object whose tag and/or namespace match those passed in. To find all children in a particular namespace, specify the namespace but not the tag name. If you specify only the tag, the result list may contain extension elements in multiple namespaces. :param tag: str (optional) The desired tag :param namespace: str (optional) The desired namespace :return: A list of elements whose tag and/or namespace match the parameters values """ results = [] if tag and namespace: for element in self.children: if element.tag == tag and element.namespace == namespace: results.append(element) elif tag and not namespace: for element in self.children: if element.tag == tag: results.append(element) elif namespace and not tag: for element in self.children: if element.namespace == namespace: results.append(element) else: for element in self.children: results.append(element) return results
def samaccountname(self, base_dn, distinguished_name): """Retrieve the sAMAccountName for a specific DistinguishedName :param str base_dn: The base DN to search within :param list distinguished_name: The base DN to search within :param list attributes: Object attributes to populate, defaults to all :return: A populated ADUser object :rtype: ADUser """ mappings = self.samaccountnames(base_dn, [distinguished_name]) try: # Usually we will find a match, but perhaps not always return mappings[distinguished_name] except KeyError: logging.info("%s - unable to retrieve object from AD by DistinguishedName", distinguished_name)
Retrieve the sAMAccountName for a specific DistinguishedName :param str base_dn: The base DN to search within :param list distinguished_name: The base DN to search within :param list attributes: Object attributes to populate, defaults to all :return: A populated ADUser object :rtype: ADUser
Below is the the instruction that describes the task: ### Input: Retrieve the sAMAccountName for a specific DistinguishedName :param str base_dn: The base DN to search within :param list distinguished_name: The base DN to search within :param list attributes: Object attributes to populate, defaults to all :return: A populated ADUser object :rtype: ADUser ### Response: def samaccountname(self, base_dn, distinguished_name): """Retrieve the sAMAccountName for a specific DistinguishedName :param str base_dn: The base DN to search within :param list distinguished_name: The base DN to search within :param list attributes: Object attributes to populate, defaults to all :return: A populated ADUser object :rtype: ADUser """ mappings = self.samaccountnames(base_dn, [distinguished_name]) try: # Usually we will find a match, but perhaps not always return mappings[distinguished_name] except KeyError: logging.info("%s - unable to retrieve object from AD by DistinguishedName", distinguished_name)
def avail_locations(call=None): ''' List all available locations ''' if call == 'action': raise SaltCloudSystemExit( 'The avail_locations function must be called with ' '-f or --function, or with the --list-locations option' ) ret = {} conn = get_conn(service='SoftLayer_Product_Package') locations = conn.getLocations(id=50) for location in locations: ret[location['id']] = { 'id': location['id'], 'name': location['name'], 'location': location['longName'], } available = conn.getAvailableLocations(id=50) for location in available: if location.get('isAvailable', 0) is 0: continue ret[location['locationId']]['available'] = True return ret
List all available locations
Below is the the instruction that describes the task: ### Input: List all available locations ### Response: def avail_locations(call=None): ''' List all available locations ''' if call == 'action': raise SaltCloudSystemExit( 'The avail_locations function must be called with ' '-f or --function, or with the --list-locations option' ) ret = {} conn = get_conn(service='SoftLayer_Product_Package') locations = conn.getLocations(id=50) for location in locations: ret[location['id']] = { 'id': location['id'], 'name': location['name'], 'location': location['longName'], } available = conn.getAvailableLocations(id=50) for location in available: if location.get('isAvailable', 0) is 0: continue ret[location['locationId']]['available'] = True return ret
def validate_file(parser, arg): """Validates that `arg` is a valid file.""" if not os.path.isfile(arg): parser.error("%s is not a file." % arg) return arg
Validates that `arg` is a valid file.
Below is the the instruction that describes the task: ### Input: Validates that `arg` is a valid file. ### Response: def validate_file(parser, arg): """Validates that `arg` is a valid file.""" if not os.path.isfile(arg): parser.error("%s is not a file." % arg) return arg
def ids_sharing_same_pgn(id_x, pgn_x, id_y, pgn_y): # type: (typing.Sequence[canmatrix.ArbitrationId], typing.Sequence[int], typing.Sequence[canmatrix.ArbitrationId], typing.Sequence[int]) -> typing.Iterable[typing.Tuple[canmatrix.ArbitrationId, canmatrix.ArbitrationId]] """Yield arbitration ids which has the same pgn.""" for id_a, pgn_a in zip(id_x, pgn_x): for id_b, pgn_b in zip(id_y, pgn_y): if pgn_a == pgn_b: yield (id_a, id_b)
Yield arbitration ids which has the same pgn.
Below is the the instruction that describes the task: ### Input: Yield arbitration ids which has the same pgn. ### Response: def ids_sharing_same_pgn(id_x, pgn_x, id_y, pgn_y): # type: (typing.Sequence[canmatrix.ArbitrationId], typing.Sequence[int], typing.Sequence[canmatrix.ArbitrationId], typing.Sequence[int]) -> typing.Iterable[typing.Tuple[canmatrix.ArbitrationId, canmatrix.ArbitrationId]] """Yield arbitration ids which has the same pgn.""" for id_a, pgn_a in zip(id_x, pgn_x): for id_b, pgn_b in zip(id_y, pgn_y): if pgn_a == pgn_b: yield (id_a, id_b)
def set_wheel_mode(self, ids): """ Sets the specified motors to wheel mode. """ self.set_control_mode(dict(zip(ids, itertools.repeat('wheel'))))
Sets the specified motors to wheel mode.
Below is the the instruction that describes the task: ### Input: Sets the specified motors to wheel mode. ### Response: def set_wheel_mode(self, ids): """ Sets the specified motors to wheel mode. """ self.set_control_mode(dict(zip(ids, itertools.repeat('wheel'))))
def server_bind(self): """Override of TCPServer.server_bind() that tracks bind-time assigned random ports.""" TCPServer.server_bind(self) _, self.server_port = self.socket.getsockname()[:2]
Override of TCPServer.server_bind() that tracks bind-time assigned random ports.
Below is the the instruction that describes the task: ### Input: Override of TCPServer.server_bind() that tracks bind-time assigned random ports. ### Response: def server_bind(self): """Override of TCPServer.server_bind() that tracks bind-time assigned random ports.""" TCPServer.server_bind(self) _, self.server_port = self.socket.getsockname()[:2]
def find_repo_by_path(i): """ Input: { path - path to repo } Output: { return - return code = 0, if successful 16, if repo not found (may be warning) > 0, if error (error) - error text if return > 0 repo_uoa - repo UOA repo_uid - repo UID repo_alias - repo alias } """ p=i['path'] if p!='': p=os.path.normpath(p) found=False if p==work['dir_default_repo']: uoa=cfg['repo_name_default'] uid=cfg['repo_uid_default'] alias=uoa found=True elif p==work['dir_local_repo']: uoa=cfg['repo_name_local'] uid=cfg['repo_uid_local'] alias=uoa found=True else: r=reload_repo_cache({}) # Ignore errors if r['return']>0: return r for q in cache_repo_info: qq=cache_repo_info[q] if p==qq['dict'].get('path',''): uoa=qq['data_uoa'] uid=qq['data_uid'] alias=uid if not is_uid(uoa): alias=uoa found=True break if not found: return {'return':16, 'error': 'repository not found in this path'} return {'return':0, 'repo_uoa': uoa, 'repo_uid': uid, 'repo_alias':alias}
Input: { path - path to repo } Output: { return - return code = 0, if successful 16, if repo not found (may be warning) > 0, if error (error) - error text if return > 0 repo_uoa - repo UOA repo_uid - repo UID repo_alias - repo alias }
Below is the the instruction that describes the task: ### Input: Input: { path - path to repo } Output: { return - return code = 0, if successful 16, if repo not found (may be warning) > 0, if error (error) - error text if return > 0 repo_uoa - repo UOA repo_uid - repo UID repo_alias - repo alias } ### Response: def find_repo_by_path(i): """ Input: { path - path to repo } Output: { return - return code = 0, if successful 16, if repo not found (may be warning) > 0, if error (error) - error text if return > 0 repo_uoa - repo UOA repo_uid - repo UID repo_alias - repo alias } """ p=i['path'] if p!='': p=os.path.normpath(p) found=False if p==work['dir_default_repo']: uoa=cfg['repo_name_default'] uid=cfg['repo_uid_default'] alias=uoa found=True elif p==work['dir_local_repo']: uoa=cfg['repo_name_local'] uid=cfg['repo_uid_local'] alias=uoa found=True else: r=reload_repo_cache({}) # Ignore errors if r['return']>0: return r for q in cache_repo_info: qq=cache_repo_info[q] if p==qq['dict'].get('path',''): uoa=qq['data_uoa'] uid=qq['data_uid'] alias=uid if not is_uid(uoa): alias=uoa found=True break if not found: return {'return':16, 'error': 'repository not found in this path'} return {'return':0, 'repo_uoa': uoa, 'repo_uid': uid, 'repo_alias':alias}
def tokenize_annotated(doc, annotation): """Tokenize a document and add an annotation attribute to each token """ tokens = tokenize(doc, include_hrefs=False) for tok in tokens: tok.annotation = annotation return tokens
Tokenize a document and add an annotation attribute to each token
Below is the the instruction that describes the task: ### Input: Tokenize a document and add an annotation attribute to each token ### Response: def tokenize_annotated(doc, annotation): """Tokenize a document and add an annotation attribute to each token """ tokens = tokenize(doc, include_hrefs=False) for tok in tokens: tok.annotation = annotation return tokens
def create_cfg_segment(filename, filecontent, description, auth, url): """ Takes a str into var filecontent which represents the entire content of a configuration segment, or partial configuration file. Takes a str into var description which represents the description of the configuration segment :param filename: str containing the name of the configuration segment. :param filecontent: str containing the entire contents of the configuration segment :param description: str contrianing the description of the configuration segment :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: If successful, Boolena of type True :rtype: Boolean >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.icc import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> filecontent = 'sample file content' >>> create_new_file = create_cfg_segment('CW7SNMP.cfg', filecontent, 'My New Template', auth.creds, auth.url) >>> template_id = get_template_id('CW7SNMP.cfg', auth.creds, auth.url) >>> assert type(template_id) is str >>> """ payload = {"confFileName": filename, "confFileType": "2", "cfgFileParent": "-1", "confFileDesc": description, "content": filecontent} f_url = url + "/imcrs/icc/confFile" response = requests.post(f_url, data=(json.dumps(payload)), auth=auth, headers=HEADERS) try: if response.status_code == 201: print("Template successfully created") return response.status_code elif response.status_code is not 201: return response.status_code except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " create_cfg_segment: An Error has occured"
Takes a str into var filecontent which represents the entire content of a configuration segment, or partial configuration file. Takes a str into var description which represents the description of the configuration segment :param filename: str containing the name of the configuration segment. :param filecontent: str containing the entire contents of the configuration segment :param description: str contrianing the description of the configuration segment :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: If successful, Boolena of type True :rtype: Boolean >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.icc import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> filecontent = 'sample file content' >>> create_new_file = create_cfg_segment('CW7SNMP.cfg', filecontent, 'My New Template', auth.creds, auth.url) >>> template_id = get_template_id('CW7SNMP.cfg', auth.creds, auth.url) >>> assert type(template_id) is str >>>
Below is the the instruction that describes the task: ### Input: Takes a str into var filecontent which represents the entire content of a configuration segment, or partial configuration file. Takes a str into var description which represents the description of the configuration segment :param filename: str containing the name of the configuration segment. :param filecontent: str containing the entire contents of the configuration segment :param description: str contrianing the description of the configuration segment :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: If successful, Boolena of type True :rtype: Boolean >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.icc import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> filecontent = 'sample file content' >>> create_new_file = create_cfg_segment('CW7SNMP.cfg', filecontent, 'My New Template', auth.creds, auth.url) >>> template_id = get_template_id('CW7SNMP.cfg', auth.creds, auth.url) >>> assert type(template_id) is str >>> ### Response: def create_cfg_segment(filename, filecontent, description, auth, url): """ Takes a str into var filecontent which represents the entire content of a configuration segment, or partial configuration file. Takes a str into var description which represents the description of the configuration segment :param filename: str containing the name of the configuration segment. :param filecontent: str containing the entire contents of the configuration segment :param description: str contrianing the description of the configuration segment :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: If successful, Boolena of type True :rtype: Boolean >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.icc import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> filecontent = 'sample file content' >>> create_new_file = create_cfg_segment('CW7SNMP.cfg', filecontent, 'My New Template', auth.creds, auth.url) >>> template_id = get_template_id('CW7SNMP.cfg', auth.creds, auth.url) >>> assert type(template_id) is str >>> """ payload = {"confFileName": filename, "confFileType": "2", "cfgFileParent": "-1", "confFileDesc": description, "content": filecontent} f_url = url + "/imcrs/icc/confFile" response = requests.post(f_url, data=(json.dumps(payload)), auth=auth, headers=HEADERS) try: if response.status_code == 201: print("Template successfully created") return response.status_code elif response.status_code is not 201: return response.status_code except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " create_cfg_segment: An Error has occured"
def create_new_label_by_content_id(self, content_id, label_names, callback=None): """ Adds a list of labels to the specified content. :param content_id (string): A string containing the id of the labels content container. :param label_names (list): A list of labels (strings) to apply to the content. :param callback: OPTIONAL: The callback to execute on the resulting data, before the method returns. Default: None (no callback, raw data returned). :return: The JSON data returned from the content/{id}/label endpoint, or the results of the callback. Will raise requests.HTTPError on bad input, potentially. """ assert isinstance(label_names, list) assert all(isinstance(ln, dict) and set(ln.keys()) == {"prefix", "name"} for ln in label_names) return self._service_post_request("rest/api/content/{id}/label".format(id=content_id), data=json.dumps(label_names), headers={"Content-Type": "application/json"}, callback=callback)
Adds a list of labels to the specified content. :param content_id (string): A string containing the id of the labels content container. :param label_names (list): A list of labels (strings) to apply to the content. :param callback: OPTIONAL: The callback to execute on the resulting data, before the method returns. Default: None (no callback, raw data returned). :return: The JSON data returned from the content/{id}/label endpoint, or the results of the callback. Will raise requests.HTTPError on bad input, potentially.
Below is the the instruction that describes the task: ### Input: Adds a list of labels to the specified content. :param content_id (string): A string containing the id of the labels content container. :param label_names (list): A list of labels (strings) to apply to the content. :param callback: OPTIONAL: The callback to execute on the resulting data, before the method returns. Default: None (no callback, raw data returned). :return: The JSON data returned from the content/{id}/label endpoint, or the results of the callback. Will raise requests.HTTPError on bad input, potentially. ### Response: def create_new_label_by_content_id(self, content_id, label_names, callback=None): """ Adds a list of labels to the specified content. :param content_id (string): A string containing the id of the labels content container. :param label_names (list): A list of labels (strings) to apply to the content. :param callback: OPTIONAL: The callback to execute on the resulting data, before the method returns. Default: None (no callback, raw data returned). :return: The JSON data returned from the content/{id}/label endpoint, or the results of the callback. Will raise requests.HTTPError on bad input, potentially. """ assert isinstance(label_names, list) assert all(isinstance(ln, dict) and set(ln.keys()) == {"prefix", "name"} for ln in label_names) return self._service_post_request("rest/api/content/{id}/label".format(id=content_id), data=json.dumps(label_names), headers={"Content-Type": "application/json"}, callback=callback)
def urlToIds(url): """ Resolve a ``join.skype.com`` URL and returns various identifiers for the group conversation. Args: url (str): public join URL, or identifier from it Returns: dict: related conversation's identifiers -- keys: ``id``, ``long``, ``blob`` """ urlId = url.split("/")[-1] convUrl = "https://join.skype.com/api/v2/conversation/" json = SkypeConnection.externalCall("POST", convUrl, json={"shortId": urlId, "type": "wl"}).json() return {"id": json.get("Resource"), "long": json.get("Id"), "blob": json.get("ChatBlob")}
Resolve a ``join.skype.com`` URL and returns various identifiers for the group conversation. Args: url (str): public join URL, or identifier from it Returns: dict: related conversation's identifiers -- keys: ``id``, ``long``, ``blob``
Below is the the instruction that describes the task: ### Input: Resolve a ``join.skype.com`` URL and returns various identifiers for the group conversation. Args: url (str): public join URL, or identifier from it Returns: dict: related conversation's identifiers -- keys: ``id``, ``long``, ``blob`` ### Response: def urlToIds(url): """ Resolve a ``join.skype.com`` URL and returns various identifiers for the group conversation. Args: url (str): public join URL, or identifier from it Returns: dict: related conversation's identifiers -- keys: ``id``, ``long``, ``blob`` """ urlId = url.split("/")[-1] convUrl = "https://join.skype.com/api/v2/conversation/" json = SkypeConnection.externalCall("POST", convUrl, json={"shortId": urlId, "type": "wl"}).json() return {"id": json.get("Resource"), "long": json.get("Id"), "blob": json.get("ChatBlob")}
def copyCurrentLayout(self, sourceViewSUID, targetViewSUID, body, verbose=None): """ Copy one network view layout onto another, setting the node location and view scale to match. This makes visually comparing networks simple. :param sourceViewSUID: Source network view SUID (or "current") :param targetViewSUID: Target network view SUID (or "current") :param body: Clone the specified network view layout onto another network view -- Not required, can be None :param verbose: print more :returns: 200: successful operation; 404: Network View does not exist """ response=api(url=self.___url+'apply/layouts/copycat/'+str(sourceViewSUID)+'/'+str(targetViewSUID)+'', method="PUT", body=body, verbose=verbose) return response
Copy one network view layout onto another, setting the node location and view scale to match. This makes visually comparing networks simple. :param sourceViewSUID: Source network view SUID (or "current") :param targetViewSUID: Target network view SUID (or "current") :param body: Clone the specified network view layout onto another network view -- Not required, can be None :param verbose: print more :returns: 200: successful operation; 404: Network View does not exist
Below is the the instruction that describes the task: ### Input: Copy one network view layout onto another, setting the node location and view scale to match. This makes visually comparing networks simple. :param sourceViewSUID: Source network view SUID (or "current") :param targetViewSUID: Target network view SUID (or "current") :param body: Clone the specified network view layout onto another network view -- Not required, can be None :param verbose: print more :returns: 200: successful operation; 404: Network View does not exist ### Response: def copyCurrentLayout(self, sourceViewSUID, targetViewSUID, body, verbose=None): """ Copy one network view layout onto another, setting the node location and view scale to match. This makes visually comparing networks simple. :param sourceViewSUID: Source network view SUID (or "current") :param targetViewSUID: Target network view SUID (or "current") :param body: Clone the specified network view layout onto another network view -- Not required, can be None :param verbose: print more :returns: 200: successful operation; 404: Network View does not exist """ response=api(url=self.___url+'apply/layouts/copycat/'+str(sourceViewSUID)+'/'+str(targetViewSUID)+'', method="PUT", body=body, verbose=verbose) return response
def log_error(msg, logger="TaskLogger"): """Log an ERROR message Convenience function to log a message to the default Logger Parameters ---------- msg : str Message to be logged logger : str, optional (default: "TaskLogger") Unique name of the logger to retrieve Returns ------- logger : TaskLogger """ tasklogger = get_tasklogger(logger) tasklogger.error(msg) return tasklogger
Log an ERROR message Convenience function to log a message to the default Logger Parameters ---------- msg : str Message to be logged logger : str, optional (default: "TaskLogger") Unique name of the logger to retrieve Returns ------- logger : TaskLogger
Below is the the instruction that describes the task: ### Input: Log an ERROR message Convenience function to log a message to the default Logger Parameters ---------- msg : str Message to be logged logger : str, optional (default: "TaskLogger") Unique name of the logger to retrieve Returns ------- logger : TaskLogger ### Response: def log_error(msg, logger="TaskLogger"): """Log an ERROR message Convenience function to log a message to the default Logger Parameters ---------- msg : str Message to be logged logger : str, optional (default: "TaskLogger") Unique name of the logger to retrieve Returns ------- logger : TaskLogger """ tasklogger = get_tasklogger(logger) tasklogger.error(msg) return tasklogger
def remove_duplicates(vector_tuple): """ Remove duplicates rows from N equally-sized arrays """ array = np.column_stack(vector_tuple) a = np.ascontiguousarray(array) unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1])) b = unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1])) return list(b.T)
Remove duplicates rows from N equally-sized arrays
Below is the the instruction that describes the task: ### Input: Remove duplicates rows from N equally-sized arrays ### Response: def remove_duplicates(vector_tuple): """ Remove duplicates rows from N equally-sized arrays """ array = np.column_stack(vector_tuple) a = np.ascontiguousarray(array) unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1])) b = unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1])) return list(b.T)
def update_storage_policy(policy, policy_dict, service_instance=None): ''' Updates a storage policy. Supported capability types: scalar, set, range. policy Name of the policy to update. policy_dict Dictionary containing the changes to apply to the policy. (example in salt.states.pbm) service_instance Service instance (vim.ServiceInstance) of the vCenter. Default is None. .. code-block:: bash salt '*' vsphere.update_storage_policy policy='policy name' policy_dict="$policy_dict" ''' log.trace('updating storage policy, dict = %s', policy_dict) profile_manager = salt.utils.pbm.get_profile_manager(service_instance) policies = salt.utils.pbm.get_storage_policies(profile_manager, [policy]) if not policies: raise VMwareObjectRetrievalError('Policy \'{0}\' was not found' ''.format(policy)) policy_ref = policies[0] policy_update_spec = pbm.profile.CapabilityBasedProfileUpdateSpec() log.trace('Setting policy values in policy_update_spec') for prop in ['description', 'constraints']: setattr(policy_update_spec, prop, getattr(policy_ref, prop)) _apply_policy_config(policy_update_spec, policy_dict) salt.utils.pbm.update_storage_policy(profile_manager, policy_ref, policy_update_spec) return {'update_storage_policy': True}
Updates a storage policy. Supported capability types: scalar, set, range. policy Name of the policy to update. policy_dict Dictionary containing the changes to apply to the policy. (example in salt.states.pbm) service_instance Service instance (vim.ServiceInstance) of the vCenter. Default is None. .. code-block:: bash salt '*' vsphere.update_storage_policy policy='policy name' policy_dict="$policy_dict"
Below is the the instruction that describes the task: ### Input: Updates a storage policy. Supported capability types: scalar, set, range. policy Name of the policy to update. policy_dict Dictionary containing the changes to apply to the policy. (example in salt.states.pbm) service_instance Service instance (vim.ServiceInstance) of the vCenter. Default is None. .. code-block:: bash salt '*' vsphere.update_storage_policy policy='policy name' policy_dict="$policy_dict" ### Response: def update_storage_policy(policy, policy_dict, service_instance=None): ''' Updates a storage policy. Supported capability types: scalar, set, range. policy Name of the policy to update. policy_dict Dictionary containing the changes to apply to the policy. (example in salt.states.pbm) service_instance Service instance (vim.ServiceInstance) of the vCenter. Default is None. .. code-block:: bash salt '*' vsphere.update_storage_policy policy='policy name' policy_dict="$policy_dict" ''' log.trace('updating storage policy, dict = %s', policy_dict) profile_manager = salt.utils.pbm.get_profile_manager(service_instance) policies = salt.utils.pbm.get_storage_policies(profile_manager, [policy]) if not policies: raise VMwareObjectRetrievalError('Policy \'{0}\' was not found' ''.format(policy)) policy_ref = policies[0] policy_update_spec = pbm.profile.CapabilityBasedProfileUpdateSpec() log.trace('Setting policy values in policy_update_spec') for prop in ['description', 'constraints']: setattr(policy_update_spec, prop, getattr(policy_ref, prop)) _apply_policy_config(policy_update_spec, policy_dict) salt.utils.pbm.update_storage_policy(profile_manager, policy_ref, policy_update_spec) return {'update_storage_policy': True}
def _hash(self, obj, parent, parents_ids=EMPTY_FROZENSET): """The main diff method""" try: result = self[obj] except (TypeError, KeyError): pass else: return result result = not_hashed if self._skip_this(obj, parent): return elif obj is None: result = 'NONE' elif isinstance(obj, strings): result = prepare_string_for_hashing( obj, ignore_string_type_changes=self.ignore_string_type_changes, ignore_string_case=self.ignore_string_case) elif isinstance(obj, numbers): result = self._prep_number(obj) elif isinstance(obj, MutableMapping): result = self._prep_dict(obj=obj, parent=parent, parents_ids=parents_ids) elif isinstance(obj, tuple): result = self._prep_tuple(obj=obj, parent=parent, parents_ids=parents_ids) elif isinstance(obj, Iterable): result = self._prep_iterable(obj=obj, parent=parent, parents_ids=parents_ids) else: result = self._prep_obj(obj=obj, parent=parent, parents_ids=parents_ids) if result is not_hashed: # pragma: no cover self[UNPROCESSED].append(obj) elif result is unprocessed: pass elif self.apply_hash: if isinstance(obj, strings): result_cleaned = result else: result_cleaned = prepare_string_for_hashing( result, ignore_string_type_changes=self.ignore_string_type_changes, ignore_string_case=self.ignore_string_case) result = self.hasher(result_cleaned) # It is important to keep the hash of all objects. # The hashes will be later used for comparing the objects. try: self[obj] = result except TypeError: obj_id = get_id(obj) self[obj_id] = result return result
The main diff method
Below is the the instruction that describes the task: ### Input: The main diff method ### Response: def _hash(self, obj, parent, parents_ids=EMPTY_FROZENSET): """The main diff method""" try: result = self[obj] except (TypeError, KeyError): pass else: return result result = not_hashed if self._skip_this(obj, parent): return elif obj is None: result = 'NONE' elif isinstance(obj, strings): result = prepare_string_for_hashing( obj, ignore_string_type_changes=self.ignore_string_type_changes, ignore_string_case=self.ignore_string_case) elif isinstance(obj, numbers): result = self._prep_number(obj) elif isinstance(obj, MutableMapping): result = self._prep_dict(obj=obj, parent=parent, parents_ids=parents_ids) elif isinstance(obj, tuple): result = self._prep_tuple(obj=obj, parent=parent, parents_ids=parents_ids) elif isinstance(obj, Iterable): result = self._prep_iterable(obj=obj, parent=parent, parents_ids=parents_ids) else: result = self._prep_obj(obj=obj, parent=parent, parents_ids=parents_ids) if result is not_hashed: # pragma: no cover self[UNPROCESSED].append(obj) elif result is unprocessed: pass elif self.apply_hash: if isinstance(obj, strings): result_cleaned = result else: result_cleaned = prepare_string_for_hashing( result, ignore_string_type_changes=self.ignore_string_type_changes, ignore_string_case=self.ignore_string_case) result = self.hasher(result_cleaned) # It is important to keep the hash of all objects. # The hashes will be later used for comparing the objects. try: self[obj] = result except TypeError: obj_id = get_id(obj) self[obj_id] = result return result
def _format_firewall_stdout(cmd_ret): ''' Helper function to format the stdout from the get_firewall_status function. cmd_ret The return dictionary that comes from a cmd.run_all call. ''' ret_dict = {'success': True, 'rulesets': {}} for line in cmd_ret['stdout'].splitlines(): if line.startswith('Name'): continue if line.startswith('---'): continue ruleset_status = line.split() ret_dict['rulesets'][ruleset_status[0]] = bool(ruleset_status[1]) return ret_dict
Helper function to format the stdout from the get_firewall_status function. cmd_ret The return dictionary that comes from a cmd.run_all call.
Below is the the instruction that describes the task: ### Input: Helper function to format the stdout from the get_firewall_status function. cmd_ret The return dictionary that comes from a cmd.run_all call. ### Response: def _format_firewall_stdout(cmd_ret): ''' Helper function to format the stdout from the get_firewall_status function. cmd_ret The return dictionary that comes from a cmd.run_all call. ''' ret_dict = {'success': True, 'rulesets': {}} for line in cmd_ret['stdout'].splitlines(): if line.startswith('Name'): continue if line.startswith('---'): continue ruleset_status = line.split() ret_dict['rulesets'][ruleset_status[0]] = bool(ruleset_status[1]) return ret_dict
def _array_setitem_with_key_seq(self, array_name, index, key_seq, value): """ Sets a the array value in the TOML file located by the given key sequence. Example: self._array_setitem(array_name, index, ('key1', 'key2', 'key3'), 'text_value') is equivalent to doing self.array(array_name)[index]['key1']['key2']['key3'] = 'text_value' """ table = self.array(array_name)[index] key_so_far = tuple() for key in key_seq[:-1]: key_so_far += (key,) new_table = self._array_make_sure_table_exists(array_name, index, key_so_far) if new_table is not None: table = new_table else: table = table[key] table[key_seq[-1]] = value
Sets a the array value in the TOML file located by the given key sequence. Example: self._array_setitem(array_name, index, ('key1', 'key2', 'key3'), 'text_value') is equivalent to doing self.array(array_name)[index]['key1']['key2']['key3'] = 'text_value'
Below is the the instruction that describes the task: ### Input: Sets a the array value in the TOML file located by the given key sequence. Example: self._array_setitem(array_name, index, ('key1', 'key2', 'key3'), 'text_value') is equivalent to doing self.array(array_name)[index]['key1']['key2']['key3'] = 'text_value' ### Response: def _array_setitem_with_key_seq(self, array_name, index, key_seq, value): """ Sets a the array value in the TOML file located by the given key sequence. Example: self._array_setitem(array_name, index, ('key1', 'key2', 'key3'), 'text_value') is equivalent to doing self.array(array_name)[index]['key1']['key2']['key3'] = 'text_value' """ table = self.array(array_name)[index] key_so_far = tuple() for key in key_seq[:-1]: key_so_far += (key,) new_table = self._array_make_sure_table_exists(array_name, index, key_so_far) if new_table is not None: table = new_table else: table = table[key] table[key_seq[-1]] = value
def get_turicreate_object_type(url): ''' Given url where a Turi Create object is persisted, return the Turi Create object type: 'model', 'graph', 'sframe', or 'sarray' ''' from .._connect import main as _glconnect ret = _glconnect.get_unity().get_turicreate_object_type(_make_internal_url(url)) # to be consistent, we use sgraph instead of graph here if ret == 'graph': ret = 'sgraph' return ret
Given url where a Turi Create object is persisted, return the Turi Create object type: 'model', 'graph', 'sframe', or 'sarray'
Below is the the instruction that describes the task: ### Input: Given url where a Turi Create object is persisted, return the Turi Create object type: 'model', 'graph', 'sframe', or 'sarray' ### Response: def get_turicreate_object_type(url): ''' Given url where a Turi Create object is persisted, return the Turi Create object type: 'model', 'graph', 'sframe', or 'sarray' ''' from .._connect import main as _glconnect ret = _glconnect.get_unity().get_turicreate_object_type(_make_internal_url(url)) # to be consistent, we use sgraph instead of graph here if ret == 'graph': ret = 'sgraph' return ret
def unapply_patch(self, patch_name, force=False): """ Unapply patches up to patch_name. patch_name will end up as top patch """ self._check(force) patches = self.db.patches_after(Patch(patch_name)) for patch in reversed(patches): self._unapply_patch(patch) self.db.save() self.unapplied(self.db.top_patch())
Unapply patches up to patch_name. patch_name will end up as top patch
Below is the the instruction that describes the task: ### Input: Unapply patches up to patch_name. patch_name will end up as top patch ### Response: def unapply_patch(self, patch_name, force=False): """ Unapply patches up to patch_name. patch_name will end up as top patch """ self._check(force) patches = self.db.patches_after(Patch(patch_name)) for patch in reversed(patches): self._unapply_patch(patch) self.db.save() self.unapplied(self.db.top_patch())
def compile_mako_files(self, app_config): '''Compiles the Mako templates within the apps of this system''' # go through the files in the templates, scripts, and styles directories for subdir_name in self.SEARCH_DIRS: subdir = subdir_name.format( app_path=app_config.path, app_name=app_config.name, ) def recurse_path(path): self.message('searching for Mako templates in {}'.format(path), 1) if os.path.exists(path): for filename in os.listdir(path): filepath = os.path.join(path, filename) _, ext = os.path.splitext(filename) if filename.startswith('__'): # __dmpcache__, __pycache__ continue elif os.path.isdir(filepath): recurse_path(filepath) elif ext.lower() in ( '.htm', '.html', '.mako' ): # create the template object, which creates the compiled .py file self.message('compiling {}'.format(filepath), 2) try: get_template_for_path(filepath) except TemplateSyntaxError: if not self.options.get('ignore_template_errors'): raise recurse_path(subdir)
Compiles the Mako templates within the apps of this system
Below is the the instruction that describes the task: ### Input: Compiles the Mako templates within the apps of this system ### Response: def compile_mako_files(self, app_config): '''Compiles the Mako templates within the apps of this system''' # go through the files in the templates, scripts, and styles directories for subdir_name in self.SEARCH_DIRS: subdir = subdir_name.format( app_path=app_config.path, app_name=app_config.name, ) def recurse_path(path): self.message('searching for Mako templates in {}'.format(path), 1) if os.path.exists(path): for filename in os.listdir(path): filepath = os.path.join(path, filename) _, ext = os.path.splitext(filename) if filename.startswith('__'): # __dmpcache__, __pycache__ continue elif os.path.isdir(filepath): recurse_path(filepath) elif ext.lower() in ( '.htm', '.html', '.mako' ): # create the template object, which creates the compiled .py file self.message('compiling {}'.format(filepath), 2) try: get_template_for_path(filepath) except TemplateSyntaxError: if not self.options.get('ignore_template_errors'): raise recurse_path(subdir)
def orientation(self, value): '''setter of orientation property.''' for values in self.__orientation: if value in values: # can not set upside-down until api level 18. self.server.jsonrpc.setOrientation(values[1]) break else: raise ValueError("Invalid orientation.")
setter of orientation property.
Below is the the instruction that describes the task: ### Input: setter of orientation property. ### Response: def orientation(self, value): '''setter of orientation property.''' for values in self.__orientation: if value in values: # can not set upside-down until api level 18. self.server.jsonrpc.setOrientation(values[1]) break else: raise ValueError("Invalid orientation.")
def drawcircle(self, x, y, r = 10, colour = None, label = None): """ Draws a circle centered on (x, y) with radius r. All these are in the coordinates of your initial image ! You give these x and y in the usual ds9 pixels, (0,0) is bottom left. I will convert this into the right PIL coordiates. """ self.checkforpilimage() colour = self.defaultcolour(colour) self.changecolourmode(colour) self.makedraw() (pilx, pily) = self.pilcoords((x,y)) pilr = self.pilscale(r) self.draw.ellipse([(pilx-pilr+1, pily-pilr+1), (pilx+pilr+1, pily+pilr+1)], outline = colour) if label != None: # The we write it : self.loadlabelfont() textwidth = self.draw.textsize(label, font = self.labelfont)[0] self.draw.text((pilx - float(textwidth)/2.0 + 2, pily + pilr + 4), label, fill = colour, font = self.labelfont)
Draws a circle centered on (x, y) with radius r. All these are in the coordinates of your initial image ! You give these x and y in the usual ds9 pixels, (0,0) is bottom left. I will convert this into the right PIL coordiates.
Below is the the instruction that describes the task: ### Input: Draws a circle centered on (x, y) with radius r. All these are in the coordinates of your initial image ! You give these x and y in the usual ds9 pixels, (0,0) is bottom left. I will convert this into the right PIL coordiates. ### Response: def drawcircle(self, x, y, r = 10, colour = None, label = None): """ Draws a circle centered on (x, y) with radius r. All these are in the coordinates of your initial image ! You give these x and y in the usual ds9 pixels, (0,0) is bottom left. I will convert this into the right PIL coordiates. """ self.checkforpilimage() colour = self.defaultcolour(colour) self.changecolourmode(colour) self.makedraw() (pilx, pily) = self.pilcoords((x,y)) pilr = self.pilscale(r) self.draw.ellipse([(pilx-pilr+1, pily-pilr+1), (pilx+pilr+1, pily+pilr+1)], outline = colour) if label != None: # The we write it : self.loadlabelfont() textwidth = self.draw.textsize(label, font = self.labelfont)[0] self.draw.text((pilx - float(textwidth)/2.0 + 2, pily + pilr + 4), label, fill = colour, font = self.labelfont)
def get_context(self, data, accepted_media_type, renderer_context): """ Returns the context used to render. """ view = renderer_context['view'] request = renderer_context['request'] response = renderer_context['response'] renderer = self.get_default_renderer(view) raw_data_post_form = self.get_raw_data_form(data, view, 'POST', request) raw_data_put_form = self.get_raw_data_form(data, view, 'PUT', request) raw_data_patch_form = self.get_raw_data_form(data, view, 'PATCH', request) raw_data_put_or_patch_form = raw_data_put_form or raw_data_patch_form response_headers = OrderedDict(sorted(response.items())) renderer_content_type = '' if renderer: renderer_content_type = '%s' % renderer.media_type if renderer.charset: renderer_content_type += ' ;%s' % renderer.charset response_headers['Content-Type'] = renderer_content_type if getattr(view, 'paginator', None) and view.paginator.display_page_controls: paginator = view.paginator else: paginator = None context = { 'content': self.get_content(renderer, data, accepted_media_type, renderer_context), 'view': view, 'request': request, 'response': response, 'description': self.get_description(view, response.status_code), 'name': self.get_name(view), 'version': VERSION, 'paginator': paginator, 'breadcrumblist': self.get_breadcrumbs(request), 'allowed_methods': view.allowed_methods, 'available_formats': [renderer_cls.format for renderer_cls in view.renderer_classes], 'response_headers': response_headers, 'put_form': self.get_rendered_html_form(data, view, 'PUT', request), 'post_form': self.get_rendered_html_form(data, view, 'POST', request), 'delete_form': self.get_rendered_html_form(data, view, 'DELETE', request), 'options_form': self.get_rendered_html_form(data, view, 'OPTIONS', request), 'filter_form': self.get_filter_form(data, view, request), 'raw_data_put_form': raw_data_put_form, 'raw_data_post_form': raw_data_post_form, 'raw_data_patch_form': raw_data_patch_form, 'raw_data_put_or_patch_form': raw_data_put_or_patch_form, 'display_edit_forms': bool(response.status_code != 403), 'api_settings': api_settings } return context
Returns the context used to render.
Below is the the instruction that describes the task: ### Input: Returns the context used to render. ### Response: def get_context(self, data, accepted_media_type, renderer_context): """ Returns the context used to render. """ view = renderer_context['view'] request = renderer_context['request'] response = renderer_context['response'] renderer = self.get_default_renderer(view) raw_data_post_form = self.get_raw_data_form(data, view, 'POST', request) raw_data_put_form = self.get_raw_data_form(data, view, 'PUT', request) raw_data_patch_form = self.get_raw_data_form(data, view, 'PATCH', request) raw_data_put_or_patch_form = raw_data_put_form or raw_data_patch_form response_headers = OrderedDict(sorted(response.items())) renderer_content_type = '' if renderer: renderer_content_type = '%s' % renderer.media_type if renderer.charset: renderer_content_type += ' ;%s' % renderer.charset response_headers['Content-Type'] = renderer_content_type if getattr(view, 'paginator', None) and view.paginator.display_page_controls: paginator = view.paginator else: paginator = None context = { 'content': self.get_content(renderer, data, accepted_media_type, renderer_context), 'view': view, 'request': request, 'response': response, 'description': self.get_description(view, response.status_code), 'name': self.get_name(view), 'version': VERSION, 'paginator': paginator, 'breadcrumblist': self.get_breadcrumbs(request), 'allowed_methods': view.allowed_methods, 'available_formats': [renderer_cls.format for renderer_cls in view.renderer_classes], 'response_headers': response_headers, 'put_form': self.get_rendered_html_form(data, view, 'PUT', request), 'post_form': self.get_rendered_html_form(data, view, 'POST', request), 'delete_form': self.get_rendered_html_form(data, view, 'DELETE', request), 'options_form': self.get_rendered_html_form(data, view, 'OPTIONS', request), 'filter_form': self.get_filter_form(data, view, request), 'raw_data_put_form': raw_data_put_form, 'raw_data_post_form': raw_data_post_form, 'raw_data_patch_form': raw_data_patch_form, 'raw_data_put_or_patch_form': raw_data_put_or_patch_form, 'display_edit_forms': bool(response.status_code != 403), 'api_settings': api_settings } return context
def lookups(self): """ Access the Lookups Twilio Domain :returns: Lookups Twilio Domain :rtype: twilio.rest.lookups.Lookups """ if self._lookups is None: from twilio.rest.lookups import Lookups self._lookups = Lookups(self) return self._lookups
Access the Lookups Twilio Domain :returns: Lookups Twilio Domain :rtype: twilio.rest.lookups.Lookups
Below is the the instruction that describes the task: ### Input: Access the Lookups Twilio Domain :returns: Lookups Twilio Domain :rtype: twilio.rest.lookups.Lookups ### Response: def lookups(self): """ Access the Lookups Twilio Domain :returns: Lookups Twilio Domain :rtype: twilio.rest.lookups.Lookups """ if self._lookups is None: from twilio.rest.lookups import Lookups self._lookups = Lookups(self) return self._lookups
def register_validator(flag_name, checker, message='Flag validation failed', flag_values=_flagvalues.FLAGS): """Adds a constraint, which will be enforced during program execution. The constraint is validated when flags are initially parsed, and after each change of the corresponding flag's value. Args: flag_name: str, name of the flag to be checked. checker: callable, a function to validate the flag. input - A single positional argument: The value of the corresponding flag (string, boolean, etc. This value will be passed to checker by the library). output - bool, True if validator constraint is satisfied. If constraint is not satisfied, it should either return False or raise flags.ValidationError(desired_error_message). message: str, error text to be shown to the user if checker returns False. If checker raises flags.ValidationError, message from the raised error will be shown. flag_values: flags.FlagValues, optional FlagValues instance to validate against. Raises: AttributeError: Raised when flag_name is not registered as a valid flag name. """ v = SingleFlagValidator(flag_name, checker, message) _add_validator(flag_values, v)
Adds a constraint, which will be enforced during program execution. The constraint is validated when flags are initially parsed, and after each change of the corresponding flag's value. Args: flag_name: str, name of the flag to be checked. checker: callable, a function to validate the flag. input - A single positional argument: The value of the corresponding flag (string, boolean, etc. This value will be passed to checker by the library). output - bool, True if validator constraint is satisfied. If constraint is not satisfied, it should either return False or raise flags.ValidationError(desired_error_message). message: str, error text to be shown to the user if checker returns False. If checker raises flags.ValidationError, message from the raised error will be shown. flag_values: flags.FlagValues, optional FlagValues instance to validate against. Raises: AttributeError: Raised when flag_name is not registered as a valid flag name.
Below is the the instruction that describes the task: ### Input: Adds a constraint, which will be enforced during program execution. The constraint is validated when flags are initially parsed, and after each change of the corresponding flag's value. Args: flag_name: str, name of the flag to be checked. checker: callable, a function to validate the flag. input - A single positional argument: The value of the corresponding flag (string, boolean, etc. This value will be passed to checker by the library). output - bool, True if validator constraint is satisfied. If constraint is not satisfied, it should either return False or raise flags.ValidationError(desired_error_message). message: str, error text to be shown to the user if checker returns False. If checker raises flags.ValidationError, message from the raised error will be shown. flag_values: flags.FlagValues, optional FlagValues instance to validate against. Raises: AttributeError: Raised when flag_name is not registered as a valid flag name. ### Response: def register_validator(flag_name, checker, message='Flag validation failed', flag_values=_flagvalues.FLAGS): """Adds a constraint, which will be enforced during program execution. The constraint is validated when flags are initially parsed, and after each change of the corresponding flag's value. Args: flag_name: str, name of the flag to be checked. checker: callable, a function to validate the flag. input - A single positional argument: The value of the corresponding flag (string, boolean, etc. This value will be passed to checker by the library). output - bool, True if validator constraint is satisfied. If constraint is not satisfied, it should either return False or raise flags.ValidationError(desired_error_message). message: str, error text to be shown to the user if checker returns False. If checker raises flags.ValidationError, message from the raised error will be shown. flag_values: flags.FlagValues, optional FlagValues instance to validate against. Raises: AttributeError: Raised when flag_name is not registered as a valid flag name. """ v = SingleFlagValidator(flag_name, checker, message) _add_validator(flag_values, v)
def calcDistMatchArr(matchArr, tKey, mKey): """Calculate the euclidean distance of all array positions in "matchArr". :param matchArr: a dictionary of ``numpy.arrays`` containing at least two entries that are treated as cartesian coordinates. :param tKey: #TODO: docstring :param mKey: #TODO: docstring :returns: #TODO: docstring {'eucDist': numpy.array([eucDistance, eucDistance, ...]), 'posPairs': numpy.array([[pos1, pos2], [pos1, pos2], ...]) } """ #Calculate all sorted list of all eucledian feature distances matchArrSize = listvalues(matchArr)[0].size distInfo = {'posPairs': list(), 'eucDist': list()} _matrix = numpy.swapaxes(numpy.array([matchArr[tKey], matchArr[mKey]]), 0, 1) for pos1 in range(matchArrSize-1): for pos2 in range(pos1+1, matchArrSize): distInfo['posPairs'].append((pos1, pos2)) distInfo['posPairs'] = numpy.array(distInfo['posPairs']) distInfo['eucDist'] = scipy.spatial.distance.pdist(_matrix) distSort = numpy.argsort(distInfo['eucDist']) for key in list(viewkeys(distInfo)): distInfo[key] = distInfo[key][distSort] return distInfo
Calculate the euclidean distance of all array positions in "matchArr". :param matchArr: a dictionary of ``numpy.arrays`` containing at least two entries that are treated as cartesian coordinates. :param tKey: #TODO: docstring :param mKey: #TODO: docstring :returns: #TODO: docstring {'eucDist': numpy.array([eucDistance, eucDistance, ...]), 'posPairs': numpy.array([[pos1, pos2], [pos1, pos2], ...]) }
Below is the the instruction that describes the task: ### Input: Calculate the euclidean distance of all array positions in "matchArr". :param matchArr: a dictionary of ``numpy.arrays`` containing at least two entries that are treated as cartesian coordinates. :param tKey: #TODO: docstring :param mKey: #TODO: docstring :returns: #TODO: docstring {'eucDist': numpy.array([eucDistance, eucDistance, ...]), 'posPairs': numpy.array([[pos1, pos2], [pos1, pos2], ...]) } ### Response: def calcDistMatchArr(matchArr, tKey, mKey): """Calculate the euclidean distance of all array positions in "matchArr". :param matchArr: a dictionary of ``numpy.arrays`` containing at least two entries that are treated as cartesian coordinates. :param tKey: #TODO: docstring :param mKey: #TODO: docstring :returns: #TODO: docstring {'eucDist': numpy.array([eucDistance, eucDistance, ...]), 'posPairs': numpy.array([[pos1, pos2], [pos1, pos2], ...]) } """ #Calculate all sorted list of all eucledian feature distances matchArrSize = listvalues(matchArr)[0].size distInfo = {'posPairs': list(), 'eucDist': list()} _matrix = numpy.swapaxes(numpy.array([matchArr[tKey], matchArr[mKey]]), 0, 1) for pos1 in range(matchArrSize-1): for pos2 in range(pos1+1, matchArrSize): distInfo['posPairs'].append((pos1, pos2)) distInfo['posPairs'] = numpy.array(distInfo['posPairs']) distInfo['eucDist'] = scipy.spatial.distance.pdist(_matrix) distSort = numpy.argsort(distInfo['eucDist']) for key in list(viewkeys(distInfo)): distInfo[key] = distInfo[key][distSort] return distInfo
def scale_dataset(self, dsid, variable, info): """Scale the data set, applying the attributes from the netCDF file""" variable = remove_empties(variable) scale = variable.attrs.get('scale_factor', np.array(1)) offset = variable.attrs.get('add_offset', np.array(0)) if np.issubdtype((scale + offset).dtype, np.floating) or np.issubdtype(variable.dtype, np.floating): if '_FillValue' in variable.attrs: variable = variable.where( variable != variable.attrs['_FillValue']) variable.attrs['_FillValue'] = np.nan if 'valid_range' in variable.attrs: variable = variable.where( variable <= variable.attrs['valid_range'][1]) variable = variable.where( variable >= variable.attrs['valid_range'][0]) if 'valid_max' in variable.attrs: variable = variable.where( variable <= variable.attrs['valid_max']) if 'valid_min' in variable.attrs: variable = variable.where( variable >= variable.attrs['valid_min']) attrs = variable.attrs variable = variable * scale + offset variable.attrs = attrs variable.attrs.update({'platform_name': self.platform_name, 'sensor': self.sensor}) variable.attrs.setdefault('units', '1') ancillary_names = variable.attrs.get('ancillary_variables', '') try: variable.attrs['ancillary_variables'] = ancillary_names.split() except AttributeError: pass if 'palette_meanings' in variable.attrs: variable.attrs['palette_meanings'] = [int(val) for val in variable.attrs['palette_meanings'].split()] if variable.attrs['palette_meanings'][0] == 1: variable.attrs['palette_meanings'] = [0] + variable.attrs['palette_meanings'] variable = xr.DataArray(da.vstack((np.array(variable.attrs['fill_value_color']), variable.data)), coords=variable.coords, dims=variable.dims, attrs=variable.attrs) val, idx = np.unique(variable.attrs['palette_meanings'], return_index=True) variable.attrs['palette_meanings'] = val variable = variable[idx] if 'standard_name' in info: variable.attrs.setdefault('standard_name', info['standard_name']) if self.sw_version == 'NWC/PPS version v2014' and dsid.name == 'ctth_alti': # pps 2014 valid range and palette don't match variable.attrs['valid_range'] = (0., 9000.) if self.sw_version == 'NWC/PPS version v2014' and dsid.name == 'ctth_alti_pal': # pps 2014 palette has the nodata color (black) first variable = variable[1:, :] return variable
Scale the data set, applying the attributes from the netCDF file
Below is the the instruction that describes the task: ### Input: Scale the data set, applying the attributes from the netCDF file ### Response: def scale_dataset(self, dsid, variable, info): """Scale the data set, applying the attributes from the netCDF file""" variable = remove_empties(variable) scale = variable.attrs.get('scale_factor', np.array(1)) offset = variable.attrs.get('add_offset', np.array(0)) if np.issubdtype((scale + offset).dtype, np.floating) or np.issubdtype(variable.dtype, np.floating): if '_FillValue' in variable.attrs: variable = variable.where( variable != variable.attrs['_FillValue']) variable.attrs['_FillValue'] = np.nan if 'valid_range' in variable.attrs: variable = variable.where( variable <= variable.attrs['valid_range'][1]) variable = variable.where( variable >= variable.attrs['valid_range'][0]) if 'valid_max' in variable.attrs: variable = variable.where( variable <= variable.attrs['valid_max']) if 'valid_min' in variable.attrs: variable = variable.where( variable >= variable.attrs['valid_min']) attrs = variable.attrs variable = variable * scale + offset variable.attrs = attrs variable.attrs.update({'platform_name': self.platform_name, 'sensor': self.sensor}) variable.attrs.setdefault('units', '1') ancillary_names = variable.attrs.get('ancillary_variables', '') try: variable.attrs['ancillary_variables'] = ancillary_names.split() except AttributeError: pass if 'palette_meanings' in variable.attrs: variable.attrs['palette_meanings'] = [int(val) for val in variable.attrs['palette_meanings'].split()] if variable.attrs['palette_meanings'][0] == 1: variable.attrs['palette_meanings'] = [0] + variable.attrs['palette_meanings'] variable = xr.DataArray(da.vstack((np.array(variable.attrs['fill_value_color']), variable.data)), coords=variable.coords, dims=variable.dims, attrs=variable.attrs) val, idx = np.unique(variable.attrs['palette_meanings'], return_index=True) variable.attrs['palette_meanings'] = val variable = variable[idx] if 'standard_name' in info: variable.attrs.setdefault('standard_name', info['standard_name']) if self.sw_version == 'NWC/PPS version v2014' and dsid.name == 'ctth_alti': # pps 2014 valid range and palette don't match variable.attrs['valid_range'] = (0., 9000.) if self.sw_version == 'NWC/PPS version v2014' and dsid.name == 'ctth_alti_pal': # pps 2014 palette has the nodata color (black) first variable = variable[1:, :] return variable
def afterglow(self, src=None, event=None, dst=None, **kargs): """Experimental clone attempt of http://sourceforge.net/projects/afterglow each datum is reduced as src -> event -> dst and the data are graphed. by default we have IP.src -> IP.dport -> IP.dst""" if src is None: src = lambda x: x['IP'].src if event is None: event = lambda x: x['IP'].dport if dst is None: dst = lambda x: x['IP'].dst sl = {} el = {} dl = {} for i in self.res: try: s, e, d = src(i), event(i), dst(i) if s in sl: n, lst = sl[s] n += 1 if e not in lst: lst.append(e) sl[s] = (n, lst) else: sl[s] = (1, [e]) if e in el: n, lst = el[e] n += 1 if d not in lst: lst.append(d) el[e] = (n, lst) else: el[e] = (1, [d]) dl[d] = dl.get(d, 0) + 1 except Exception: continue import math def normalize(n): return 2 + math.log(n) / 4.0 def minmax(x): m, M = reduce(lambda a, b: (min(a[0], b[0]), max(a[1], b[1])), ((a, a) for a in x)) if m == M: m = 0 if M == 0: M = 1 return m, M mins, maxs = minmax(x for x, _ in six.itervalues(sl)) mine, maxe = minmax(x for x, _ in six.itervalues(el)) mind, maxd = minmax(six.itervalues(dl)) gr = 'digraph "afterglow" {\n\tedge [len=2.5];\n' gr += "# src nodes\n" for s in sl: n, _ = sl[s] n = 1 + float(n - mins) / (maxs - mins) gr += '"src.%s" [label = "%s", shape=box, fillcolor="#FF0000", style=filled, fixedsize=1, height=%.2f,width=%.2f];\n' % (repr(s), repr(s), n, n) # noqa: E501 gr += "# event nodes\n" for e in el: n, _ = el[e] n = n = 1 + float(n - mine) / (maxe - mine) gr += '"evt.%s" [label = "%s", shape=circle, fillcolor="#00FFFF", style=filled, fixedsize=1, height=%.2f, width=%.2f];\n' % (repr(e), repr(e), n, n) # noqa: E501 for d in dl: n = dl[d] n = n = 1 + float(n - mind) / (maxd - mind) gr += '"dst.%s" [label = "%s", shape=triangle, fillcolor="#0000ff", style=filled, fixedsize=1, height=%.2f, width=%.2f];\n' % (repr(d), repr(d), n, n) # noqa: E501 gr += "###\n" for s in sl: n, lst = sl[s] for e in lst: gr += ' "src.%s" -> "evt.%s";\n' % (repr(s), repr(e)) for e in el: n, lst = el[e] for d in lst: gr += ' "evt.%s" -> "dst.%s";\n' % (repr(e), repr(d)) gr += "}" return do_graph(gr, **kargs)
Experimental clone attempt of http://sourceforge.net/projects/afterglow each datum is reduced as src -> event -> dst and the data are graphed. by default we have IP.src -> IP.dport -> IP.dst
Below is the the instruction that describes the task: ### Input: Experimental clone attempt of http://sourceforge.net/projects/afterglow each datum is reduced as src -> event -> dst and the data are graphed. by default we have IP.src -> IP.dport -> IP.dst ### Response: def afterglow(self, src=None, event=None, dst=None, **kargs): """Experimental clone attempt of http://sourceforge.net/projects/afterglow each datum is reduced as src -> event -> dst and the data are graphed. by default we have IP.src -> IP.dport -> IP.dst""" if src is None: src = lambda x: x['IP'].src if event is None: event = lambda x: x['IP'].dport if dst is None: dst = lambda x: x['IP'].dst sl = {} el = {} dl = {} for i in self.res: try: s, e, d = src(i), event(i), dst(i) if s in sl: n, lst = sl[s] n += 1 if e not in lst: lst.append(e) sl[s] = (n, lst) else: sl[s] = (1, [e]) if e in el: n, lst = el[e] n += 1 if d not in lst: lst.append(d) el[e] = (n, lst) else: el[e] = (1, [d]) dl[d] = dl.get(d, 0) + 1 except Exception: continue import math def normalize(n): return 2 + math.log(n) / 4.0 def minmax(x): m, M = reduce(lambda a, b: (min(a[0], b[0]), max(a[1], b[1])), ((a, a) for a in x)) if m == M: m = 0 if M == 0: M = 1 return m, M mins, maxs = minmax(x for x, _ in six.itervalues(sl)) mine, maxe = minmax(x for x, _ in six.itervalues(el)) mind, maxd = minmax(six.itervalues(dl)) gr = 'digraph "afterglow" {\n\tedge [len=2.5];\n' gr += "# src nodes\n" for s in sl: n, _ = sl[s] n = 1 + float(n - mins) / (maxs - mins) gr += '"src.%s" [label = "%s", shape=box, fillcolor="#FF0000", style=filled, fixedsize=1, height=%.2f,width=%.2f];\n' % (repr(s), repr(s), n, n) # noqa: E501 gr += "# event nodes\n" for e in el: n, _ = el[e] n = n = 1 + float(n - mine) / (maxe - mine) gr += '"evt.%s" [label = "%s", shape=circle, fillcolor="#00FFFF", style=filled, fixedsize=1, height=%.2f, width=%.2f];\n' % (repr(e), repr(e), n, n) # noqa: E501 for d in dl: n = dl[d] n = n = 1 + float(n - mind) / (maxd - mind) gr += '"dst.%s" [label = "%s", shape=triangle, fillcolor="#0000ff", style=filled, fixedsize=1, height=%.2f, width=%.2f];\n' % (repr(d), repr(d), n, n) # noqa: E501 gr += "###\n" for s in sl: n, lst = sl[s] for e in lst: gr += ' "src.%s" -> "evt.%s";\n' % (repr(s), repr(e)) for e in el: n, lst = el[e] for d in lst: gr += ' "evt.%s" -> "dst.%s";\n' % (repr(e), repr(d)) gr += "}" return do_graph(gr, **kargs)
def displayhook(value): """ Runs all of the registered display hook methods with the given value. Look at the sys.displayhook documentation for more information. :param value | <variant> """ global _displayhooks new_hooks = [] for hook_ref in _displayhooks: hook = hook_ref() if hook: hook(value) new_hooks.append(hook_ref) _displayhooks = new_hooks sys.__displayhook__(value)
Runs all of the registered display hook methods with the given value. Look at the sys.displayhook documentation for more information. :param value | <variant>
Below is the the instruction that describes the task: ### Input: Runs all of the registered display hook methods with the given value. Look at the sys.displayhook documentation for more information. :param value | <variant> ### Response: def displayhook(value): """ Runs all of the registered display hook methods with the given value. Look at the sys.displayhook documentation for more information. :param value | <variant> """ global _displayhooks new_hooks = [] for hook_ref in _displayhooks: hook = hook_ref() if hook: hook(value) new_hooks.append(hook_ref) _displayhooks = new_hooks sys.__displayhook__(value)
def get_joystick_buttons(joy): """ Returns the state of all buttons of the specified joystick. Wrapper for: const unsigned char* glfwGetJoystickButtons(int joy, int* count); """ count_value = ctypes.c_int(0) count = ctypes.pointer(count_value) result = _glfw.glfwGetJoystickButtons(joy, count) return result, count_value.value
Returns the state of all buttons of the specified joystick. Wrapper for: const unsigned char* glfwGetJoystickButtons(int joy, int* count);
Below is the the instruction that describes the task: ### Input: Returns the state of all buttons of the specified joystick. Wrapper for: const unsigned char* glfwGetJoystickButtons(int joy, int* count); ### Response: def get_joystick_buttons(joy): """ Returns the state of all buttons of the specified joystick. Wrapper for: const unsigned char* glfwGetJoystickButtons(int joy, int* count); """ count_value = ctypes.c_int(0) count = ctypes.pointer(count_value) result = _glfw.glfwGetJoystickButtons(joy, count) return result, count_value.value
def _get_start_revision(self, graph, benchmark, entry_name): """ Compute the first revision allowed by asv.conf.json. Revisions correspond to linearized commit history and the regression detection runs on this order --- the starting commit thus corresponds to a specific starting revision. """ start_revision = min(six.itervalues(self.revisions)) if graph.params.get('branch'): branch_suffix = '@' + graph.params.get('branch') else: branch_suffix = '' for regex, start_commit in six.iteritems(self.conf.regressions_first_commits): if re.match(regex, entry_name + branch_suffix): if start_commit is None: # Disable regression detection completely return None if self.conf.branches == [None]: key = (start_commit, None) else: key = (start_commit, graph.params.get('branch')) if key not in self._start_revisions: spec = self.repo.get_new_range_spec(*key) start_hash = self.repo.get_hash_from_name(start_commit) for commit in [start_hash] + self.repo.get_hashes_from_range(spec): rev = self.revisions.get(commit) if rev is not None: self._start_revisions[key] = rev break else: # Commit not found in the branch --- warn and ignore. log.warning(("Commit {0} specified in `regressions_first_commits` " "not found in branch").format(start_commit)) self._start_revisions[key] = -1 start_revision = max(start_revision, self._start_revisions[key] + 1) return start_revision
Compute the first revision allowed by asv.conf.json. Revisions correspond to linearized commit history and the regression detection runs on this order --- the starting commit thus corresponds to a specific starting revision.
Below is the the instruction that describes the task: ### Input: Compute the first revision allowed by asv.conf.json. Revisions correspond to linearized commit history and the regression detection runs on this order --- the starting commit thus corresponds to a specific starting revision. ### Response: def _get_start_revision(self, graph, benchmark, entry_name): """ Compute the first revision allowed by asv.conf.json. Revisions correspond to linearized commit history and the regression detection runs on this order --- the starting commit thus corresponds to a specific starting revision. """ start_revision = min(six.itervalues(self.revisions)) if graph.params.get('branch'): branch_suffix = '@' + graph.params.get('branch') else: branch_suffix = '' for regex, start_commit in six.iteritems(self.conf.regressions_first_commits): if re.match(regex, entry_name + branch_suffix): if start_commit is None: # Disable regression detection completely return None if self.conf.branches == [None]: key = (start_commit, None) else: key = (start_commit, graph.params.get('branch')) if key not in self._start_revisions: spec = self.repo.get_new_range_spec(*key) start_hash = self.repo.get_hash_from_name(start_commit) for commit in [start_hash] + self.repo.get_hashes_from_range(spec): rev = self.revisions.get(commit) if rev is not None: self._start_revisions[key] = rev break else: # Commit not found in the branch --- warn and ignore. log.warning(("Commit {0} specified in `regressions_first_commits` " "not found in branch").format(start_commit)) self._start_revisions[key] = -1 start_revision = max(start_revision, self._start_revisions[key] + 1) return start_revision
def unescape_LDAP(ldap_string): # type: (str) -> str # pylint: disable=C0103 """ Unespaces an LDAP string :param ldap_string: The string to unescape :return: The unprotected string """ if ldap_string is None: return None if ESCAPE_CHARACTER not in ldap_string: # No need to loop return ldap_string escaped = False result = "" for character in ldap_string: if not escaped and character == ESCAPE_CHARACTER: # Escape character found escaped = True else: # Copy the character escaped = False result += character return result
Unespaces an LDAP string :param ldap_string: The string to unescape :return: The unprotected string
Below is the the instruction that describes the task: ### Input: Unespaces an LDAP string :param ldap_string: The string to unescape :return: The unprotected string ### Response: def unescape_LDAP(ldap_string): # type: (str) -> str # pylint: disable=C0103 """ Unespaces an LDAP string :param ldap_string: The string to unescape :return: The unprotected string """ if ldap_string is None: return None if ESCAPE_CHARACTER not in ldap_string: # No need to loop return ldap_string escaped = False result = "" for character in ldap_string: if not escaped and character == ESCAPE_CHARACTER: # Escape character found escaped = True else: # Copy the character escaped = False result += character return result
def datetime(self, to_timezone=None, naive=False): """Returns a timezone-aware datetime... Defaulting to UTC (as it should). Keyword Arguments: to_timezone {str} -- timezone to convert to (default: None/UTC) naive {bool} -- if True, the tzinfo is simply dropped (default: False) """ if to_timezone: dt = self.datetime().astimezone(pytz.timezone(to_timezone)) else: dt = Datetime.utcfromtimestamp(self._epoch) dt.replace(tzinfo=self._tz) # Strip the timezone info if requested to do so. if naive: return dt.replace(tzinfo=None) else: if dt.tzinfo is None: dt = dt.replace(tzinfo=self._tz) return dt
Returns a timezone-aware datetime... Defaulting to UTC (as it should). Keyword Arguments: to_timezone {str} -- timezone to convert to (default: None/UTC) naive {bool} -- if True, the tzinfo is simply dropped (default: False)
Below is the the instruction that describes the task: ### Input: Returns a timezone-aware datetime... Defaulting to UTC (as it should). Keyword Arguments: to_timezone {str} -- timezone to convert to (default: None/UTC) naive {bool} -- if True, the tzinfo is simply dropped (default: False) ### Response: def datetime(self, to_timezone=None, naive=False): """Returns a timezone-aware datetime... Defaulting to UTC (as it should). Keyword Arguments: to_timezone {str} -- timezone to convert to (default: None/UTC) naive {bool} -- if True, the tzinfo is simply dropped (default: False) """ if to_timezone: dt = self.datetime().astimezone(pytz.timezone(to_timezone)) else: dt = Datetime.utcfromtimestamp(self._epoch) dt.replace(tzinfo=self._tz) # Strip the timezone info if requested to do so. if naive: return dt.replace(tzinfo=None) else: if dt.tzinfo is None: dt = dt.replace(tzinfo=self._tz) return dt
def get_country_by_name(self, country_name) -> 'Country': """ Gets a country in this coalition by its name Args: country_name: country name Returns: Country """ VALID_STR.validate(country_name, 'get_country_by_name', exc=ValueError) if country_name not in self._countries_by_name.keys(): for country in self.countries: if country.country_name == country_name: return country raise ValueError(country_name) else: return self._countries_by_name[country_name]
Gets a country in this coalition by its name Args: country_name: country name Returns: Country
Below is the the instruction that describes the task: ### Input: Gets a country in this coalition by its name Args: country_name: country name Returns: Country ### Response: def get_country_by_name(self, country_name) -> 'Country': """ Gets a country in this coalition by its name Args: country_name: country name Returns: Country """ VALID_STR.validate(country_name, 'get_country_by_name', exc=ValueError) if country_name not in self._countries_by_name.keys(): for country in self.countries: if country.country_name == country_name: return country raise ValueError(country_name) else: return self._countries_by_name[country_name]
def get_server_networks(self, network, public=False, private=False, key=None): """ Creates the dict of network UUIDs required by Cloud Servers when creating a new server with isolated networks. By default, the UUID values are returned with the key of "net-id", which is what novaclient expects. Other tools may require different values, such as 'uuid'. If that is the case, pass the desired key as the 'key' parameter. By default only this network is included. If you wish to create a server that has either the public (internet) or private (ServiceNet) networks, you have to pass those parameters in with values of True. """ return _get_server_networks(network, public=public, private=private, key=key)
Creates the dict of network UUIDs required by Cloud Servers when creating a new server with isolated networks. By default, the UUID values are returned with the key of "net-id", which is what novaclient expects. Other tools may require different values, such as 'uuid'. If that is the case, pass the desired key as the 'key' parameter. By default only this network is included. If you wish to create a server that has either the public (internet) or private (ServiceNet) networks, you have to pass those parameters in with values of True.
Below is the the instruction that describes the task: ### Input: Creates the dict of network UUIDs required by Cloud Servers when creating a new server with isolated networks. By default, the UUID values are returned with the key of "net-id", which is what novaclient expects. Other tools may require different values, such as 'uuid'. If that is the case, pass the desired key as the 'key' parameter. By default only this network is included. If you wish to create a server that has either the public (internet) or private (ServiceNet) networks, you have to pass those parameters in with values of True. ### Response: def get_server_networks(self, network, public=False, private=False, key=None): """ Creates the dict of network UUIDs required by Cloud Servers when creating a new server with isolated networks. By default, the UUID values are returned with the key of "net-id", which is what novaclient expects. Other tools may require different values, such as 'uuid'. If that is the case, pass the desired key as the 'key' parameter. By default only this network is included. If you wish to create a server that has either the public (internet) or private (ServiceNet) networks, you have to pass those parameters in with values of True. """ return _get_server_networks(network, public=public, private=private, key=key)
def headerData(self, section, orientation, role): """Get the information to put in the header.""" if role == Qt.TextAlignmentRole: if orientation == Qt.Horizontal: return Qt.AlignCenter | Qt.AlignBottom else: return Qt.AlignRight | Qt.AlignVCenter if role != Qt.DisplayRole and role != Qt.ToolTipRole: return None if self.axis == 1 and self._shape[1] <= 1: return None orient_axis = 0 if orientation == Qt.Horizontal else 1 if self.model.header_shape[orient_axis] > 1: header = section else: header = self.model.header(self.axis, section) # Don't perform any conversion on strings # because it leads to differences between # the data present in the dataframe and # what is shown by Spyder if not is_type_text_string(header): header = to_text_string(header) return header
Get the information to put in the header.
Below is the the instruction that describes the task: ### Input: Get the information to put in the header. ### Response: def headerData(self, section, orientation, role): """Get the information to put in the header.""" if role == Qt.TextAlignmentRole: if orientation == Qt.Horizontal: return Qt.AlignCenter | Qt.AlignBottom else: return Qt.AlignRight | Qt.AlignVCenter if role != Qt.DisplayRole and role != Qt.ToolTipRole: return None if self.axis == 1 and self._shape[1] <= 1: return None orient_axis = 0 if orientation == Qt.Horizontal else 1 if self.model.header_shape[orient_axis] > 1: header = section else: header = self.model.header(self.axis, section) # Don't perform any conversion on strings # because it leads to differences between # the data present in the dataframe and # what is shown by Spyder if not is_type_text_string(header): header = to_text_string(header) return header
def distL2(x1,y1,x2,y2): """Compute the L2-norm (Euclidean) distance between two points. The distance is rounded to the closest integer, for compatibility with the TSPLIB convention. The two points are located on coordinates (x1,y1) and (x2,y2), sent as parameters""" xdiff = x2 - x1 ydiff = y2 - y1 return int(math.sqrt(xdiff*xdiff + ydiff*ydiff) + .5)
Compute the L2-norm (Euclidean) distance between two points. The distance is rounded to the closest integer, for compatibility with the TSPLIB convention. The two points are located on coordinates (x1,y1) and (x2,y2), sent as parameters
Below is the the instruction that describes the task: ### Input: Compute the L2-norm (Euclidean) distance between two points. The distance is rounded to the closest integer, for compatibility with the TSPLIB convention. The two points are located on coordinates (x1,y1) and (x2,y2), sent as parameters ### Response: def distL2(x1,y1,x2,y2): """Compute the L2-norm (Euclidean) distance between two points. The distance is rounded to the closest integer, for compatibility with the TSPLIB convention. The two points are located on coordinates (x1,y1) and (x2,y2), sent as parameters""" xdiff = x2 - x1 ydiff = y2 - y1 return int(math.sqrt(xdiff*xdiff + ydiff*ydiff) + .5)
def str_display_width(s): ''' from elist.utils import * str_display_width('a') str_display_width('去') ''' s= str(s) width = 0 len = s.__len__() for i in range(0,len): sublen = s[i].encode().__len__() sublen = int(sublen/2 + 1/2) width = width + sublen return(width)
from elist.utils import * str_display_width('a') str_display_width('去')
Below is the the instruction that describes the task: ### Input: from elist.utils import * str_display_width('a') str_display_width('去') ### Response: def str_display_width(s): ''' from elist.utils import * str_display_width('a') str_display_width('去') ''' s= str(s) width = 0 len = s.__len__() for i in range(0,len): sublen = s[i].encode().__len__() sublen = int(sublen/2 + 1/2) width = width + sublen return(width)
def command_x(self, x, to=None): """ Sends a character to the currently active element with Command pressed. This method takes care of pressing and releasing Command. """ if to is None: ActionChains(self.driver) \ .send_keys([Keys.COMMAND, x, Keys.COMMAND]) \ .perform() else: self.send_keys(to, [Keys.COMMAND, x, Keys.COMMAND])
Sends a character to the currently active element with Command pressed. This method takes care of pressing and releasing Command.
Below is the the instruction that describes the task: ### Input: Sends a character to the currently active element with Command pressed. This method takes care of pressing and releasing Command. ### Response: def command_x(self, x, to=None): """ Sends a character to the currently active element with Command pressed. This method takes care of pressing and releasing Command. """ if to is None: ActionChains(self.driver) \ .send_keys([Keys.COMMAND, x, Keys.COMMAND]) \ .perform() else: self.send_keys(to, [Keys.COMMAND, x, Keys.COMMAND])
def get_concurrency(self): """Check account concurrency limits.""" method = 'GET' endpoint = '/rest/v1.1/users/{}/concurrency'.format( self.client.sauce_username) return self.client.request(method, endpoint)
Check account concurrency limits.
Below is the the instruction that describes the task: ### Input: Check account concurrency limits. ### Response: def get_concurrency(self): """Check account concurrency limits.""" method = 'GET' endpoint = '/rest/v1.1/users/{}/concurrency'.format( self.client.sauce_username) return self.client.request(method, endpoint)
def parent_images(self): """ :return: list of parent images -- one image per each stage's FROM instruction """ parents = [] for instr in self.structure: if instr['instruction'] != 'FROM': continue image, _ = image_from(instr['value']) if image is not None: parents.append(image) return parents
:return: list of parent images -- one image per each stage's FROM instruction
Below is the the instruction that describes the task: ### Input: :return: list of parent images -- one image per each stage's FROM instruction ### Response: def parent_images(self): """ :return: list of parent images -- one image per each stage's FROM instruction """ parents = [] for instr in self.structure: if instr['instruction'] != 'FROM': continue image, _ = image_from(instr['value']) if image is not None: parents.append(image) return parents
def constructRows(self, items): """ Build row objects that are serializable using Athena for sending to the client. @param items: an iterable of objects compatible with my columns' C{extractValue} methods. @return: a list of dictionaries, where each dictionary has a string key for each column name in my list of columns. """ rows = [] for item in items: row = dict((colname, col.extractValue(self, item)) for (colname, col) in self.columns.iteritems()) link = self.linkToItem(item) if link is not None: row[u'__id__'] = link rows.append(row) return rows
Build row objects that are serializable using Athena for sending to the client. @param items: an iterable of objects compatible with my columns' C{extractValue} methods. @return: a list of dictionaries, where each dictionary has a string key for each column name in my list of columns.
Below is the the instruction that describes the task: ### Input: Build row objects that are serializable using Athena for sending to the client. @param items: an iterable of objects compatible with my columns' C{extractValue} methods. @return: a list of dictionaries, where each dictionary has a string key for each column name in my list of columns. ### Response: def constructRows(self, items): """ Build row objects that are serializable using Athena for sending to the client. @param items: an iterable of objects compatible with my columns' C{extractValue} methods. @return: a list of dictionaries, where each dictionary has a string key for each column name in my list of columns. """ rows = [] for item in items: row = dict((colname, col.extractValue(self, item)) for (colname, col) in self.columns.iteritems()) link = self.linkToItem(item) if link is not None: row[u'__id__'] = link rows.append(row) return rows
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4, start_index=0): """Gets a bunch of sinusoids of different frequencies. Each channel of the input Tensor is incremented by a sinusoid of a different frequency and phase. This allows attention to learn to use absolute and relative positions. Timing signals should be added to some precursors of both the query and the memory inputs to attention. The use of relative position is possible because sin(x+y) and cos(x+y) can be expressed in terms of y, sin(x) and cos(x). In particular, we use a geometric sequence of timescales starting with min_timescale and ending with max_timescale. The number of different timescales is equal to channels / 2. For each timescale, we generate the two sinusoidal signals sin(timestep/timescale) and cos(timestep/timescale). All of these sinusoids are concatenated in the channels dimension. Args: length: scalar, length of timing signal sequence. channels: scalar, size of timing embeddings to create. The number of different timescales is equal to channels / 2. min_timescale: a float max_timescale: a float start_index: index of first position Returns: a Tensor of timing signals [1, length, channels] """ position = tf.to_float(tf.range(length) + start_index) num_timescales = channels // 2 log_timescale_increment = ( math.log(float(max_timescale) / float(min_timescale)) / tf.maximum(tf.to_float(num_timescales) - 1, 1)) inv_timescales = min_timescale * tf.exp( tf.to_float(tf.range(num_timescales)) * -log_timescale_increment) scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0) signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]]) signal = tf.reshape(signal, [1, length, channels]) return signal
Gets a bunch of sinusoids of different frequencies. Each channel of the input Tensor is incremented by a sinusoid of a different frequency and phase. This allows attention to learn to use absolute and relative positions. Timing signals should be added to some precursors of both the query and the memory inputs to attention. The use of relative position is possible because sin(x+y) and cos(x+y) can be expressed in terms of y, sin(x) and cos(x). In particular, we use a geometric sequence of timescales starting with min_timescale and ending with max_timescale. The number of different timescales is equal to channels / 2. For each timescale, we generate the two sinusoidal signals sin(timestep/timescale) and cos(timestep/timescale). All of these sinusoids are concatenated in the channels dimension. Args: length: scalar, length of timing signal sequence. channels: scalar, size of timing embeddings to create. The number of different timescales is equal to channels / 2. min_timescale: a float max_timescale: a float start_index: index of first position Returns: a Tensor of timing signals [1, length, channels]
Below is the the instruction that describes the task: ### Input: Gets a bunch of sinusoids of different frequencies. Each channel of the input Tensor is incremented by a sinusoid of a different frequency and phase. This allows attention to learn to use absolute and relative positions. Timing signals should be added to some precursors of both the query and the memory inputs to attention. The use of relative position is possible because sin(x+y) and cos(x+y) can be expressed in terms of y, sin(x) and cos(x). In particular, we use a geometric sequence of timescales starting with min_timescale and ending with max_timescale. The number of different timescales is equal to channels / 2. For each timescale, we generate the two sinusoidal signals sin(timestep/timescale) and cos(timestep/timescale). All of these sinusoids are concatenated in the channels dimension. Args: length: scalar, length of timing signal sequence. channels: scalar, size of timing embeddings to create. The number of different timescales is equal to channels / 2. min_timescale: a float max_timescale: a float start_index: index of first position Returns: a Tensor of timing signals [1, length, channels] ### Response: def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4, start_index=0): """Gets a bunch of sinusoids of different frequencies. Each channel of the input Tensor is incremented by a sinusoid of a different frequency and phase. This allows attention to learn to use absolute and relative positions. Timing signals should be added to some precursors of both the query and the memory inputs to attention. The use of relative position is possible because sin(x+y) and cos(x+y) can be expressed in terms of y, sin(x) and cos(x). In particular, we use a geometric sequence of timescales starting with min_timescale and ending with max_timescale. The number of different timescales is equal to channels / 2. For each timescale, we generate the two sinusoidal signals sin(timestep/timescale) and cos(timestep/timescale). All of these sinusoids are concatenated in the channels dimension. Args: length: scalar, length of timing signal sequence. channels: scalar, size of timing embeddings to create. The number of different timescales is equal to channels / 2. min_timescale: a float max_timescale: a float start_index: index of first position Returns: a Tensor of timing signals [1, length, channels] """ position = tf.to_float(tf.range(length) + start_index) num_timescales = channels // 2 log_timescale_increment = ( math.log(float(max_timescale) / float(min_timescale)) / tf.maximum(tf.to_float(num_timescales) - 1, 1)) inv_timescales = min_timescale * tf.exp( tf.to_float(tf.range(num_timescales)) * -log_timescale_increment) scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0) signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]]) signal = tf.reshape(signal, [1, length, channels]) return signal
def normalizeGlyphNote(value): """ Normalizes Glyph Note. * **value** must be a :ref:`type-string`. * Returned value is an unencoded ``unicode`` string """ if not isinstance(value, basestring): raise TypeError("Note must be a string, not %s." % type(value).__name__) return unicode(value)
Normalizes Glyph Note. * **value** must be a :ref:`type-string`. * Returned value is an unencoded ``unicode`` string
Below is the the instruction that describes the task: ### Input: Normalizes Glyph Note. * **value** must be a :ref:`type-string`. * Returned value is an unencoded ``unicode`` string ### Response: def normalizeGlyphNote(value): """ Normalizes Glyph Note. * **value** must be a :ref:`type-string`. * Returned value is an unencoded ``unicode`` string """ if not isinstance(value, basestring): raise TypeError("Note must be a string, not %s." % type(value).__name__) return unicode(value)
def crack_secret_exponent_from_k(generator, signed_value, sig, k): """ Given a signature of a signed_value and a known k, return the secret exponent. """ r, s = sig return ((s * k - signed_value) * generator.inverse(r)) % generator.order()
Given a signature of a signed_value and a known k, return the secret exponent.
Below is the the instruction that describes the task: ### Input: Given a signature of a signed_value and a known k, return the secret exponent. ### Response: def crack_secret_exponent_from_k(generator, signed_value, sig, k): """ Given a signature of a signed_value and a known k, return the secret exponent. """ r, s = sig return ((s * k - signed_value) * generator.inverse(r)) % generator.order()
def back_slash_to_front_converter(string): """ Replacing all \ in the str to / :param string: single string to modify :type string: str """ try: if not string or not isinstance(string, str): return string return string.replace('\\', '/') except Exception: return string
Replacing all \ in the str to / :param string: single string to modify :type string: str
Below is the the instruction that describes the task: ### Input: Replacing all \ in the str to / :param string: single string to modify :type string: str ### Response: def back_slash_to_front_converter(string): """ Replacing all \ in the str to / :param string: single string to modify :type string: str """ try: if not string or not isinstance(string, str): return string return string.replace('\\', '/') except Exception: return string
def urlize(text, trim_url_limit=None, nofollow=False): """Converts any URLs in text into clickable links. Works on http://, https:// and www. links. Links can have trailing punctuation (periods, commas, close-parens) and leading punctuation (opening parens) and it'll still do the right thing. If trim_url_limit is not None, the URLs in link text will be limited to trim_url_limit characters. If nofollow is True, the URLs in link text will get a rel="nofollow" attribute. """ trim_url = lambda x, limit=trim_url_limit: limit is not None \ and (x[:limit] + (len(x) >=limit and '...' or '')) or x words = _word_split_re.split(unicode(escape(text))) nofollow_attr = nofollow and ' rel="nofollow"' or '' for i, word in enumerate(words): match = _punctuation_re.match(word) if match: lead, middle, trail = match.groups() if middle.startswith('www.') or ( '@' not in middle and not middle.startswith('http://') and len(middle) > 0 and middle[0] in _letters + _digits and ( middle.endswith('.org') or middle.endswith('.net') or middle.endswith('.com') )): middle = '<a href="http://%s"%s>%s</a>' % (middle, nofollow_attr, trim_url(middle)) if middle.startswith('http://') or \ middle.startswith('https://'): middle = '<a href="%s"%s>%s</a>' % (middle, nofollow_attr, trim_url(middle)) if '@' in middle and not middle.startswith('www.') and \ not ':' in middle and _simple_email_re.match(middle): middle = '<a href="mailto:%s">%s</a>' % (middle, middle) if lead + middle + trail != word: words[i] = lead + middle + trail return u''.join(words)
Converts any URLs in text into clickable links. Works on http://, https:// and www. links. Links can have trailing punctuation (periods, commas, close-parens) and leading punctuation (opening parens) and it'll still do the right thing. If trim_url_limit is not None, the URLs in link text will be limited to trim_url_limit characters. If nofollow is True, the URLs in link text will get a rel="nofollow" attribute.
Below is the the instruction that describes the task: ### Input: Converts any URLs in text into clickable links. Works on http://, https:// and www. links. Links can have trailing punctuation (periods, commas, close-parens) and leading punctuation (opening parens) and it'll still do the right thing. If trim_url_limit is not None, the URLs in link text will be limited to trim_url_limit characters. If nofollow is True, the URLs in link text will get a rel="nofollow" attribute. ### Response: def urlize(text, trim_url_limit=None, nofollow=False): """Converts any URLs in text into clickable links. Works on http://, https:// and www. links. Links can have trailing punctuation (periods, commas, close-parens) and leading punctuation (opening parens) and it'll still do the right thing. If trim_url_limit is not None, the URLs in link text will be limited to trim_url_limit characters. If nofollow is True, the URLs in link text will get a rel="nofollow" attribute. """ trim_url = lambda x, limit=trim_url_limit: limit is not None \ and (x[:limit] + (len(x) >=limit and '...' or '')) or x words = _word_split_re.split(unicode(escape(text))) nofollow_attr = nofollow and ' rel="nofollow"' or '' for i, word in enumerate(words): match = _punctuation_re.match(word) if match: lead, middle, trail = match.groups() if middle.startswith('www.') or ( '@' not in middle and not middle.startswith('http://') and len(middle) > 0 and middle[0] in _letters + _digits and ( middle.endswith('.org') or middle.endswith('.net') or middle.endswith('.com') )): middle = '<a href="http://%s"%s>%s</a>' % (middle, nofollow_attr, trim_url(middle)) if middle.startswith('http://') or \ middle.startswith('https://'): middle = '<a href="%s"%s>%s</a>' % (middle, nofollow_attr, trim_url(middle)) if '@' in middle and not middle.startswith('www.') and \ not ':' in middle and _simple_email_re.match(middle): middle = '<a href="mailto:%s">%s</a>' % (middle, middle) if lead + middle + trail != word: words[i] = lead + middle + trail return u''.join(words)
def relabel(label_list, projections): """ Relabel an entire :py:class:`~audiomate.annotations.LabelList` using user-defined projections. Labels can be renamed, removed or overlapping labels can be flattened to a single label per segment. Each entry in the dictionary of projections represents a single projection that maps a combination of labels (key) to a single new label (value). The combination of labels to be mapped is a tuple of naturally sorted labels that apply to one or more segments simultaneously. By defining a special wildcard projection using `('**',)` is is not required to specify a projection for every single combination of labels. This method raises a :py:class:`~audiomate.corpus.utils.labellist.UnmappedLabelsException` if a projection for one or more combinations of labels is not defined. Args: label_list (audiomate.annotations.LabelList): The label list to relabel projections (dict): A dictionary that maps tuples of label combinations to string labels. Returns: audiomate.annotations.LabelList: New label list with remapped labels Raises: UnmappedLabelsException: If a projection for one or more combinations of labels is not defined. Example: >>> projections = { ... ('a',): 'a', ... ('b',): 'b', ... ('c',): 'c', ... ('a', 'b',): 'a_b', ... ('a', 'b', 'c',): 'a_b_c', ... ('**',): 'b_c', ... } >>> label_list = annotations.LabelList(labels=[ ... annotations.Label('a', 3.2, 4.5), ... annotations.Label('b', 4.0, 4.9), ... annotations.Label('c', 4.2, 5.1) ... ]) >>> ll = relabel(label_list, projections) >>> [l.value for l in ll] ['a', 'a_b', 'a_b_c', 'b_c', 'c'] """ unmapped_combinations = find_missing_projections(label_list, projections) if len(unmapped_combinations) > 0: raise UnmappedLabelsException('Unmapped combinations: {}'.format(unmapped_combinations)) new_labels = [] for labeled_segment in label_list.ranges(): combination = tuple(sorted([label.value for label in labeled_segment[2]])) label_mapping = projections[combination] if combination in projections else projections[WILDCARD_COMBINATION] if label_mapping == '': continue new_labels.append(annotations.Label(label_mapping, labeled_segment[0], labeled_segment[1])) return annotations.LabelList(idx=label_list.idx, labels=new_labels)
Relabel an entire :py:class:`~audiomate.annotations.LabelList` using user-defined projections. Labels can be renamed, removed or overlapping labels can be flattened to a single label per segment. Each entry in the dictionary of projections represents a single projection that maps a combination of labels (key) to a single new label (value). The combination of labels to be mapped is a tuple of naturally sorted labels that apply to one or more segments simultaneously. By defining a special wildcard projection using `('**',)` is is not required to specify a projection for every single combination of labels. This method raises a :py:class:`~audiomate.corpus.utils.labellist.UnmappedLabelsException` if a projection for one or more combinations of labels is not defined. Args: label_list (audiomate.annotations.LabelList): The label list to relabel projections (dict): A dictionary that maps tuples of label combinations to string labels. Returns: audiomate.annotations.LabelList: New label list with remapped labels Raises: UnmappedLabelsException: If a projection for one or more combinations of labels is not defined. Example: >>> projections = { ... ('a',): 'a', ... ('b',): 'b', ... ('c',): 'c', ... ('a', 'b',): 'a_b', ... ('a', 'b', 'c',): 'a_b_c', ... ('**',): 'b_c', ... } >>> label_list = annotations.LabelList(labels=[ ... annotations.Label('a', 3.2, 4.5), ... annotations.Label('b', 4.0, 4.9), ... annotations.Label('c', 4.2, 5.1) ... ]) >>> ll = relabel(label_list, projections) >>> [l.value for l in ll] ['a', 'a_b', 'a_b_c', 'b_c', 'c']
Below is the the instruction that describes the task: ### Input: Relabel an entire :py:class:`~audiomate.annotations.LabelList` using user-defined projections. Labels can be renamed, removed or overlapping labels can be flattened to a single label per segment. Each entry in the dictionary of projections represents a single projection that maps a combination of labels (key) to a single new label (value). The combination of labels to be mapped is a tuple of naturally sorted labels that apply to one or more segments simultaneously. By defining a special wildcard projection using `('**',)` is is not required to specify a projection for every single combination of labels. This method raises a :py:class:`~audiomate.corpus.utils.labellist.UnmappedLabelsException` if a projection for one or more combinations of labels is not defined. Args: label_list (audiomate.annotations.LabelList): The label list to relabel projections (dict): A dictionary that maps tuples of label combinations to string labels. Returns: audiomate.annotations.LabelList: New label list with remapped labels Raises: UnmappedLabelsException: If a projection for one or more combinations of labels is not defined. Example: >>> projections = { ... ('a',): 'a', ... ('b',): 'b', ... ('c',): 'c', ... ('a', 'b',): 'a_b', ... ('a', 'b', 'c',): 'a_b_c', ... ('**',): 'b_c', ... } >>> label_list = annotations.LabelList(labels=[ ... annotations.Label('a', 3.2, 4.5), ... annotations.Label('b', 4.0, 4.9), ... annotations.Label('c', 4.2, 5.1) ... ]) >>> ll = relabel(label_list, projections) >>> [l.value for l in ll] ['a', 'a_b', 'a_b_c', 'b_c', 'c'] ### Response: def relabel(label_list, projections): """ Relabel an entire :py:class:`~audiomate.annotations.LabelList` using user-defined projections. Labels can be renamed, removed or overlapping labels can be flattened to a single label per segment. Each entry in the dictionary of projections represents a single projection that maps a combination of labels (key) to a single new label (value). The combination of labels to be mapped is a tuple of naturally sorted labels that apply to one or more segments simultaneously. By defining a special wildcard projection using `('**',)` is is not required to specify a projection for every single combination of labels. This method raises a :py:class:`~audiomate.corpus.utils.labellist.UnmappedLabelsException` if a projection for one or more combinations of labels is not defined. Args: label_list (audiomate.annotations.LabelList): The label list to relabel projections (dict): A dictionary that maps tuples of label combinations to string labels. Returns: audiomate.annotations.LabelList: New label list with remapped labels Raises: UnmappedLabelsException: If a projection for one or more combinations of labels is not defined. Example: >>> projections = { ... ('a',): 'a', ... ('b',): 'b', ... ('c',): 'c', ... ('a', 'b',): 'a_b', ... ('a', 'b', 'c',): 'a_b_c', ... ('**',): 'b_c', ... } >>> label_list = annotations.LabelList(labels=[ ... annotations.Label('a', 3.2, 4.5), ... annotations.Label('b', 4.0, 4.9), ... annotations.Label('c', 4.2, 5.1) ... ]) >>> ll = relabel(label_list, projections) >>> [l.value for l in ll] ['a', 'a_b', 'a_b_c', 'b_c', 'c'] """ unmapped_combinations = find_missing_projections(label_list, projections) if len(unmapped_combinations) > 0: raise UnmappedLabelsException('Unmapped combinations: {}'.format(unmapped_combinations)) new_labels = [] for labeled_segment in label_list.ranges(): combination = tuple(sorted([label.value for label in labeled_segment[2]])) label_mapping = projections[combination] if combination in projections else projections[WILDCARD_COMBINATION] if label_mapping == '': continue new_labels.append(annotations.Label(label_mapping, labeled_segment[0], labeled_segment[1])) return annotations.LabelList(idx=label_list.idx, labels=new_labels)
def _find_server(account, servername=None): """ Find and return a PlexServer object. """ servers = servers = [s for s in account.resources() if 'server' in s.provides] # If servername specified find and return it if servername is not None: for server in servers: if server.name == servername: return server.connect() raise SystemExit('Unknown server name: %s' % servername) # If servername not specified; allow user to choose return utils.choose('Choose a Server', servers, 'name').connect()
Find and return a PlexServer object.
Below is the the instruction that describes the task: ### Input: Find and return a PlexServer object. ### Response: def _find_server(account, servername=None): """ Find and return a PlexServer object. """ servers = servers = [s for s in account.resources() if 'server' in s.provides] # If servername specified find and return it if servername is not None: for server in servers: if server.name == servername: return server.connect() raise SystemExit('Unknown server name: %s' % servername) # If servername not specified; allow user to choose return utils.choose('Choose a Server', servers, 'name').connect()
def upload(self, remote_path, local_path, progress=None): """Uploads resource to remote path on WebDAV server. In case resource is directory it will upload all nested files and directories. More information you can find by link http://webdav.org/specs/rfc4918.html#METHOD_PUT :param remote_path: the path for uploading resources on WebDAV server. Can be file and directory. :param local_path: the path to local resource for uploading. :param progress: Progress function. Not supported now. """ if os.path.isdir(local_path): self.upload_directory(local_path=local_path, remote_path=remote_path, progress=progress) else: self.upload_file(local_path=local_path, remote_path=remote_path)
Uploads resource to remote path on WebDAV server. In case resource is directory it will upload all nested files and directories. More information you can find by link http://webdav.org/specs/rfc4918.html#METHOD_PUT :param remote_path: the path for uploading resources on WebDAV server. Can be file and directory. :param local_path: the path to local resource for uploading. :param progress: Progress function. Not supported now.
Below is the the instruction that describes the task: ### Input: Uploads resource to remote path on WebDAV server. In case resource is directory it will upload all nested files and directories. More information you can find by link http://webdav.org/specs/rfc4918.html#METHOD_PUT :param remote_path: the path for uploading resources on WebDAV server. Can be file and directory. :param local_path: the path to local resource for uploading. :param progress: Progress function. Not supported now. ### Response: def upload(self, remote_path, local_path, progress=None): """Uploads resource to remote path on WebDAV server. In case resource is directory it will upload all nested files and directories. More information you can find by link http://webdav.org/specs/rfc4918.html#METHOD_PUT :param remote_path: the path for uploading resources on WebDAV server. Can be file and directory. :param local_path: the path to local resource for uploading. :param progress: Progress function. Not supported now. """ if os.path.isdir(local_path): self.upload_directory(local_path=local_path, remote_path=remote_path, progress=progress) else: self.upload_file(local_path=local_path, remote_path=remote_path)
def iter_contributor_statistics(self, number=-1, etag=None): """Iterate over the contributors list. See also: http://developer.github.com/v3/repos/statistics/ :param int number: (optional), number of weeks to return. Default -1 will return all of the weeks. :param str etag: (optional), ETag from a previous request to the same endpoint :returns: generator of :class:`ContributorStats <github3.repos.stats.ContributorStats>` .. note:: All statistics methods may return a 202. On those occasions, you will not receive any objects. You should store your iterator and check the new ``last_status`` attribute. If it is a 202 you should wait before re-requesting. .. versionadded:: 0.7 """ url = self._build_url('stats', 'contributors', base_url=self._api) return self._iter(int(number), url, ContributorStats, etag=etag)
Iterate over the contributors list. See also: http://developer.github.com/v3/repos/statistics/ :param int number: (optional), number of weeks to return. Default -1 will return all of the weeks. :param str etag: (optional), ETag from a previous request to the same endpoint :returns: generator of :class:`ContributorStats <github3.repos.stats.ContributorStats>` .. note:: All statistics methods may return a 202. On those occasions, you will not receive any objects. You should store your iterator and check the new ``last_status`` attribute. If it is a 202 you should wait before re-requesting. .. versionadded:: 0.7
Below is the the instruction that describes the task: ### Input: Iterate over the contributors list. See also: http://developer.github.com/v3/repos/statistics/ :param int number: (optional), number of weeks to return. Default -1 will return all of the weeks. :param str etag: (optional), ETag from a previous request to the same endpoint :returns: generator of :class:`ContributorStats <github3.repos.stats.ContributorStats>` .. note:: All statistics methods may return a 202. On those occasions, you will not receive any objects. You should store your iterator and check the new ``last_status`` attribute. If it is a 202 you should wait before re-requesting. .. versionadded:: 0.7 ### Response: def iter_contributor_statistics(self, number=-1, etag=None): """Iterate over the contributors list. See also: http://developer.github.com/v3/repos/statistics/ :param int number: (optional), number of weeks to return. Default -1 will return all of the weeks. :param str etag: (optional), ETag from a previous request to the same endpoint :returns: generator of :class:`ContributorStats <github3.repos.stats.ContributorStats>` .. note:: All statistics methods may return a 202. On those occasions, you will not receive any objects. You should store your iterator and check the new ``last_status`` attribute. If it is a 202 you should wait before re-requesting. .. versionadded:: 0.7 """ url = self._build_url('stats', 'contributors', base_url=self._api) return self._iter(int(number), url, ContributorStats, etag=etag)
def _getH2singleTrait(self, K, verbose=None): """ Internal function for parameter initialization estimate variance components and fixed effect using a linear mixed model with an intercept and 2 random effects (one is noise) Args: K: covariance matrix of the non-noise random effect term """ verbose = dlimix.getVerbose(verbose) # Fit single trait model varg = sp.zeros(self.P) varn = sp.zeros(self.P) fixed = sp.zeros((1,self.P)) for p in range(self.P): y = self.Y[:,p:p+1] # check if some sull value I = sp.isnan(y[:,0]) if I.sum()>0: y = y[~I,:] _K = K[~I,:][:,~I] else: _K = copy.copy(K) lmm = dlimix.CLMM() lmm.setK(_K) lmm.setSNPs(sp.ones((y.shape[0],1))) lmm.setPheno(y) lmm.setCovs(sp.zeros((y.shape[0],1))) lmm.setVarcompApprox0(-20, 20, 1000) lmm.process() delta = sp.exp(lmm.getLdelta0()[0,0]) Vtot = sp.exp(lmm.getLSigma()[0,0]) varg[p] = Vtot varn[p] = delta*Vtot fixed[:,p] = lmm.getBetaSNP() if verbose: print(p) sth = {} sth['varg'] = varg sth['varn'] = varn sth['fixed'] = fixed return sth
Internal function for parameter initialization estimate variance components and fixed effect using a linear mixed model with an intercept and 2 random effects (one is noise) Args: K: covariance matrix of the non-noise random effect term
Below is the the instruction that describes the task: ### Input: Internal function for parameter initialization estimate variance components and fixed effect using a linear mixed model with an intercept and 2 random effects (one is noise) Args: K: covariance matrix of the non-noise random effect term ### Response: def _getH2singleTrait(self, K, verbose=None): """ Internal function for parameter initialization estimate variance components and fixed effect using a linear mixed model with an intercept and 2 random effects (one is noise) Args: K: covariance matrix of the non-noise random effect term """ verbose = dlimix.getVerbose(verbose) # Fit single trait model varg = sp.zeros(self.P) varn = sp.zeros(self.P) fixed = sp.zeros((1,self.P)) for p in range(self.P): y = self.Y[:,p:p+1] # check if some sull value I = sp.isnan(y[:,0]) if I.sum()>0: y = y[~I,:] _K = K[~I,:][:,~I] else: _K = copy.copy(K) lmm = dlimix.CLMM() lmm.setK(_K) lmm.setSNPs(sp.ones((y.shape[0],1))) lmm.setPheno(y) lmm.setCovs(sp.zeros((y.shape[0],1))) lmm.setVarcompApprox0(-20, 20, 1000) lmm.process() delta = sp.exp(lmm.getLdelta0()[0,0]) Vtot = sp.exp(lmm.getLSigma()[0,0]) varg[p] = Vtot varn[p] = delta*Vtot fixed[:,p] = lmm.getBetaSNP() if verbose: print(p) sth = {} sth['varg'] = varg sth['varn'] = varn sth['fixed'] = fixed return sth
def transform(self, blocks, y=None): """ Computes the content to tag ratio per block, smooths the values, then predicts content (1) or not-content (0) using a fit k-means cluster model. Args: blocks (List[Block]): as output by :class:`Blockifier.blockify` y (None): This isn't used, it's only here for API consistency. Returns: :class:`np.ndarray`: 2D array of shape (len(feature_mat), 1), where values are either 0 or 1, corresponding to the kmeans prediction of content (1) or not-content (0). """ preds = (self.kmeans.predict(make_weninger_features(blocks)) > 0).astype(int) return np.reshape(preds, (-1, 1))
Computes the content to tag ratio per block, smooths the values, then predicts content (1) or not-content (0) using a fit k-means cluster model. Args: blocks (List[Block]): as output by :class:`Blockifier.blockify` y (None): This isn't used, it's only here for API consistency. Returns: :class:`np.ndarray`: 2D array of shape (len(feature_mat), 1), where values are either 0 or 1, corresponding to the kmeans prediction of content (1) or not-content (0).
Below is the the instruction that describes the task: ### Input: Computes the content to tag ratio per block, smooths the values, then predicts content (1) or not-content (0) using a fit k-means cluster model. Args: blocks (List[Block]): as output by :class:`Blockifier.blockify` y (None): This isn't used, it's only here for API consistency. Returns: :class:`np.ndarray`: 2D array of shape (len(feature_mat), 1), where values are either 0 or 1, corresponding to the kmeans prediction of content (1) or not-content (0). ### Response: def transform(self, blocks, y=None): """ Computes the content to tag ratio per block, smooths the values, then predicts content (1) or not-content (0) using a fit k-means cluster model. Args: blocks (List[Block]): as output by :class:`Blockifier.blockify` y (None): This isn't used, it's only here for API consistency. Returns: :class:`np.ndarray`: 2D array of shape (len(feature_mat), 1), where values are either 0 or 1, corresponding to the kmeans prediction of content (1) or not-content (0). """ preds = (self.kmeans.predict(make_weninger_features(blocks)) > 0).astype(int) return np.reshape(preds, (-1, 1))
def job_exists(name=None): ''' Check whether the job exists in configured Jenkins jobs. :param name: The name of the job is check if it exists. :return: True if job exists, False if job does not exist. CLI Example: .. code-block:: bash salt '*' jenkins.job_exists jobname ''' if not name: raise SaltInvocationError('Required parameter \'name\' is missing') server = _connect() if server.job_exists(name): return True else: return False
Check whether the job exists in configured Jenkins jobs. :param name: The name of the job is check if it exists. :return: True if job exists, False if job does not exist. CLI Example: .. code-block:: bash salt '*' jenkins.job_exists jobname
Below is the the instruction that describes the task: ### Input: Check whether the job exists in configured Jenkins jobs. :param name: The name of the job is check if it exists. :return: True if job exists, False if job does not exist. CLI Example: .. code-block:: bash salt '*' jenkins.job_exists jobname ### Response: def job_exists(name=None): ''' Check whether the job exists in configured Jenkins jobs. :param name: The name of the job is check if it exists. :return: True if job exists, False if job does not exist. CLI Example: .. code-block:: bash salt '*' jenkins.job_exists jobname ''' if not name: raise SaltInvocationError('Required parameter \'name\' is missing') server = _connect() if server.job_exists(name): return True else: return False
def load_bytes(self, bytes_data, key, bucket_name=None, replace=False, encrypt=False): """ Loads bytes to S3 This is provided as a convenience to drop a string in S3. It uses the boto infrastructure to ship a file to s3. :param bytes_data: bytes to set as content for the key. :type bytes_data: bytes :param key: S3 key that will point to the file :type key: str :param bucket_name: Name of the bucket in which to store the file :type bucket_name: str :param replace: A flag to decide whether or not to overwrite the key if it already exists :type replace: bool :param encrypt: If True, the file will be encrypted on the server-side by S3 and will be stored in an encrypted form while at rest in S3. :type encrypt: bool """ if not bucket_name: (bucket_name, key) = self.parse_s3_url(key) if not replace and self.check_for_key(key, bucket_name): raise ValueError("The key {key} already exists.".format(key=key)) extra_args = {} if encrypt: extra_args['ServerSideEncryption'] = "AES256" filelike_buffer = BytesIO(bytes_data) client = self.get_conn() client.upload_fileobj(filelike_buffer, bucket_name, key, ExtraArgs=extra_args)
Loads bytes to S3 This is provided as a convenience to drop a string in S3. It uses the boto infrastructure to ship a file to s3. :param bytes_data: bytes to set as content for the key. :type bytes_data: bytes :param key: S3 key that will point to the file :type key: str :param bucket_name: Name of the bucket in which to store the file :type bucket_name: str :param replace: A flag to decide whether or not to overwrite the key if it already exists :type replace: bool :param encrypt: If True, the file will be encrypted on the server-side by S3 and will be stored in an encrypted form while at rest in S3. :type encrypt: bool
Below is the the instruction that describes the task: ### Input: Loads bytes to S3 This is provided as a convenience to drop a string in S3. It uses the boto infrastructure to ship a file to s3. :param bytes_data: bytes to set as content for the key. :type bytes_data: bytes :param key: S3 key that will point to the file :type key: str :param bucket_name: Name of the bucket in which to store the file :type bucket_name: str :param replace: A flag to decide whether or not to overwrite the key if it already exists :type replace: bool :param encrypt: If True, the file will be encrypted on the server-side by S3 and will be stored in an encrypted form while at rest in S3. :type encrypt: bool ### Response: def load_bytes(self, bytes_data, key, bucket_name=None, replace=False, encrypt=False): """ Loads bytes to S3 This is provided as a convenience to drop a string in S3. It uses the boto infrastructure to ship a file to s3. :param bytes_data: bytes to set as content for the key. :type bytes_data: bytes :param key: S3 key that will point to the file :type key: str :param bucket_name: Name of the bucket in which to store the file :type bucket_name: str :param replace: A flag to decide whether or not to overwrite the key if it already exists :type replace: bool :param encrypt: If True, the file will be encrypted on the server-side by S3 and will be stored in an encrypted form while at rest in S3. :type encrypt: bool """ if not bucket_name: (bucket_name, key) = self.parse_s3_url(key) if not replace and self.check_for_key(key, bucket_name): raise ValueError("The key {key} already exists.".format(key=key)) extra_args = {} if encrypt: extra_args['ServerSideEncryption'] = "AES256" filelike_buffer = BytesIO(bytes_data) client = self.get_conn() client.upload_fileobj(filelike_buffer, bucket_name, key, ExtraArgs=extra_args)
async def connect(url, *, apikey=None, insecure=False): """Connect to a remote MAAS instance with `apikey`. Returns a new :class:`Profile` which has NOT been saved. To connect AND save a new profile:: profile = connect(url, apikey=apikey) profile = profile.replace(name="mad-hatter") with profiles.ProfileStore.open() as config: config.save(profile) # Optionally, set it as the default. config.default = profile.name """ url = api_url(url) url = urlparse(url) if url.username is not None: raise ConnectError( "Cannot provide user-name explicitly in URL (%r) when connecting; " "use login instead." % url.username) if url.password is not None: raise ConnectError( "Cannot provide password explicitly in URL (%r) when connecting; " "use login instead." % url.username) if apikey is None: credentials = None # Anonymous access. else: credentials = Credentials.parse(apikey) description = await fetch_api_description(url, insecure) # Return a new (unsaved) profile. return Profile( name=url.netloc, url=url.geturl(), credentials=credentials, description=description)
Connect to a remote MAAS instance with `apikey`. Returns a new :class:`Profile` which has NOT been saved. To connect AND save a new profile:: profile = connect(url, apikey=apikey) profile = profile.replace(name="mad-hatter") with profiles.ProfileStore.open() as config: config.save(profile) # Optionally, set it as the default. config.default = profile.name
Below is the the instruction that describes the task: ### Input: Connect to a remote MAAS instance with `apikey`. Returns a new :class:`Profile` which has NOT been saved. To connect AND save a new profile:: profile = connect(url, apikey=apikey) profile = profile.replace(name="mad-hatter") with profiles.ProfileStore.open() as config: config.save(profile) # Optionally, set it as the default. config.default = profile.name ### Response: async def connect(url, *, apikey=None, insecure=False): """Connect to a remote MAAS instance with `apikey`. Returns a new :class:`Profile` which has NOT been saved. To connect AND save a new profile:: profile = connect(url, apikey=apikey) profile = profile.replace(name="mad-hatter") with profiles.ProfileStore.open() as config: config.save(profile) # Optionally, set it as the default. config.default = profile.name """ url = api_url(url) url = urlparse(url) if url.username is not None: raise ConnectError( "Cannot provide user-name explicitly in URL (%r) when connecting; " "use login instead." % url.username) if url.password is not None: raise ConnectError( "Cannot provide password explicitly in URL (%r) when connecting; " "use login instead." % url.username) if apikey is None: credentials = None # Anonymous access. else: credentials = Credentials.parse(apikey) description = await fetch_api_description(url, insecure) # Return a new (unsaved) profile. return Profile( name=url.netloc, url=url.geturl(), credentials=credentials, description=description)
def _sensoryComputeInferenceMode(self, anchorInput): """ Infer the location from sensory input. Activate any cells with enough active synapses to this sensory input. Deactivate all other cells. @param anchorInput (numpy array) A sensory input. This will often come from a feature-location pair layer. """ if len(anchorInput) == 0: return overlaps = self.connections.computeActivity(anchorInput, self.connectedPermanence) activeSegments = np.where(overlaps >= self.activationThreshold)[0] sensorySupportedCells = np.unique( self.connections.mapSegmentsToCells(activeSegments)) self.bumpPhases = self.cellPhases[:,sensorySupportedCells] self._computeActiveCells() self.activeSegments = activeSegments self.sensoryAssociatedCells = sensorySupportedCells
Infer the location from sensory input. Activate any cells with enough active synapses to this sensory input. Deactivate all other cells. @param anchorInput (numpy array) A sensory input. This will often come from a feature-location pair layer.
Below is the the instruction that describes the task: ### Input: Infer the location from sensory input. Activate any cells with enough active synapses to this sensory input. Deactivate all other cells. @param anchorInput (numpy array) A sensory input. This will often come from a feature-location pair layer. ### Response: def _sensoryComputeInferenceMode(self, anchorInput): """ Infer the location from sensory input. Activate any cells with enough active synapses to this sensory input. Deactivate all other cells. @param anchorInput (numpy array) A sensory input. This will often come from a feature-location pair layer. """ if len(anchorInput) == 0: return overlaps = self.connections.computeActivity(anchorInput, self.connectedPermanence) activeSegments = np.where(overlaps >= self.activationThreshold)[0] sensorySupportedCells = np.unique( self.connections.mapSegmentsToCells(activeSegments)) self.bumpPhases = self.cellPhases[:,sensorySupportedCells] self._computeActiveCells() self.activeSegments = activeSegments self.sensoryAssociatedCells = sensorySupportedCells
def __expand_cluster(self, index_point): """! @brief Expands cluster from specified point in the input data space. @param[in] index_point (list): Index of a point from the data. @return (list) Return tuple of list of indexes that belong to the same cluster and list of points that are marked as noise: (cluster, noise), or None if nothing has been expanded. """ cluster = None self.__visited[index_point] = True neighbors = self.__neighbor_searcher(index_point) if len(neighbors) >= self.__neighbors: cluster = [index_point] self.__belong[index_point] = True for i in neighbors: if self.__visited[i] is False: self.__visited[i] = True next_neighbors = self.__neighbor_searcher(i) if len(next_neighbors) >= self.__neighbors: neighbors += [k for k in next_neighbors if ( (k in neighbors) == False) and k != index_point] if self.__belong[i] is False: cluster.append(i) self.__belong[i] = True return cluster
! @brief Expands cluster from specified point in the input data space. @param[in] index_point (list): Index of a point from the data. @return (list) Return tuple of list of indexes that belong to the same cluster and list of points that are marked as noise: (cluster, noise), or None if nothing has been expanded.
Below is the the instruction that describes the task: ### Input: ! @brief Expands cluster from specified point in the input data space. @param[in] index_point (list): Index of a point from the data. @return (list) Return tuple of list of indexes that belong to the same cluster and list of points that are marked as noise: (cluster, noise), or None if nothing has been expanded. ### Response: def __expand_cluster(self, index_point): """! @brief Expands cluster from specified point in the input data space. @param[in] index_point (list): Index of a point from the data. @return (list) Return tuple of list of indexes that belong to the same cluster and list of points that are marked as noise: (cluster, noise), or None if nothing has been expanded. """ cluster = None self.__visited[index_point] = True neighbors = self.__neighbor_searcher(index_point) if len(neighbors) >= self.__neighbors: cluster = [index_point] self.__belong[index_point] = True for i in neighbors: if self.__visited[i] is False: self.__visited[i] = True next_neighbors = self.__neighbor_searcher(i) if len(next_neighbors) >= self.__neighbors: neighbors += [k for k in next_neighbors if ( (k in neighbors) == False) and k != index_point] if self.__belong[i] is False: cluster.append(i) self.__belong[i] = True return cluster
def create_table(self, name, schema): """ Create a new table. If the table already exists, nothing happens. Example: >>> db.create_table("foo", (("id", "integer primary key"), ("value", "text"))) Arguments: name (str): The name of the table to create. schema (sequence of tuples): A list of (name, type) tuples representing each of the columns. """ columns = [" ".join(column) for column in schema] self.execute("CREATE TABLE IF NOT EXISTS {name} ({columns})" .format(name=name, columns=",".join(columns)))
Create a new table. If the table already exists, nothing happens. Example: >>> db.create_table("foo", (("id", "integer primary key"), ("value", "text"))) Arguments: name (str): The name of the table to create. schema (sequence of tuples): A list of (name, type) tuples representing each of the columns.
Below is the the instruction that describes the task: ### Input: Create a new table. If the table already exists, nothing happens. Example: >>> db.create_table("foo", (("id", "integer primary key"), ("value", "text"))) Arguments: name (str): The name of the table to create. schema (sequence of tuples): A list of (name, type) tuples representing each of the columns. ### Response: def create_table(self, name, schema): """ Create a new table. If the table already exists, nothing happens. Example: >>> db.create_table("foo", (("id", "integer primary key"), ("value", "text"))) Arguments: name (str): The name of the table to create. schema (sequence of tuples): A list of (name, type) tuples representing each of the columns. """ columns = [" ".join(column) for column in schema] self.execute("CREATE TABLE IF NOT EXISTS {name} ({columns})" .format(name=name, columns=",".join(columns)))
def update_association(self, association): """Add the GO parents of a gene's associated GO IDs to the gene's association.""" bad_goids = set() # Loop through all sets of GO IDs for all genes for goids in association.values(): parents = set() # Iterate thru each GO ID in the current gene's association for goid in goids: try: parents.update(self[goid].get_all_parents()) except: bad_goids.add(goid.strip()) # Add the GO parents of all GO IDs in the current gene's association goids.update(parents) if bad_goids: sys.stdout.write("{N} GO IDs in assc. are not found in the GO-DAG: {GOs}\n".format( N=len(bad_goids), GOs=" ".join(bad_goids)))
Add the GO parents of a gene's associated GO IDs to the gene's association.
Below is the the instruction that describes the task: ### Input: Add the GO parents of a gene's associated GO IDs to the gene's association. ### Response: def update_association(self, association): """Add the GO parents of a gene's associated GO IDs to the gene's association.""" bad_goids = set() # Loop through all sets of GO IDs for all genes for goids in association.values(): parents = set() # Iterate thru each GO ID in the current gene's association for goid in goids: try: parents.update(self[goid].get_all_parents()) except: bad_goids.add(goid.strip()) # Add the GO parents of all GO IDs in the current gene's association goids.update(parents) if bad_goids: sys.stdout.write("{N} GO IDs in assc. are not found in the GO-DAG: {GOs}\n".format( N=len(bad_goids), GOs=" ".join(bad_goids)))
def parse_query(self, query_string): """ Given a `query_string`, will attempt to return a xapian.Query Required arguments: ``query_string`` -- A query string to parse Returns a xapian.Query """ if query_string == '*': return xapian.Query('') # Match everything elif query_string == '': return xapian.Query() # Match nothing qp = xapian.QueryParser() qp.set_database(self._database()) qp.set_stemmer(xapian.Stem(self.language)) qp.set_stemming_strategy(self.stemming_strategy) qp.set_default_op(XAPIAN_OPTS[DEFAULT_OPERATOR]) qp.add_boolean_prefix(DJANGO_CT, TERM_PREFIXES[DJANGO_CT]) for field_dict in self.schema: # since 'django_ct' has a boolean_prefix, # we ignore it here. if field_dict['field_name'] == DJANGO_CT: continue qp.add_prefix( field_dict['field_name'], TERM_PREFIXES['field'] + field_dict['field_name'].upper() ) vrp = XHValueRangeProcessor(self) qp.add_valuerangeprocessor(vrp) return qp.parse_query(query_string, self.flags)
Given a `query_string`, will attempt to return a xapian.Query Required arguments: ``query_string`` -- A query string to parse Returns a xapian.Query
Below is the the instruction that describes the task: ### Input: Given a `query_string`, will attempt to return a xapian.Query Required arguments: ``query_string`` -- A query string to parse Returns a xapian.Query ### Response: def parse_query(self, query_string): """ Given a `query_string`, will attempt to return a xapian.Query Required arguments: ``query_string`` -- A query string to parse Returns a xapian.Query """ if query_string == '*': return xapian.Query('') # Match everything elif query_string == '': return xapian.Query() # Match nothing qp = xapian.QueryParser() qp.set_database(self._database()) qp.set_stemmer(xapian.Stem(self.language)) qp.set_stemming_strategy(self.stemming_strategy) qp.set_default_op(XAPIAN_OPTS[DEFAULT_OPERATOR]) qp.add_boolean_prefix(DJANGO_CT, TERM_PREFIXES[DJANGO_CT]) for field_dict in self.schema: # since 'django_ct' has a boolean_prefix, # we ignore it here. if field_dict['field_name'] == DJANGO_CT: continue qp.add_prefix( field_dict['field_name'], TERM_PREFIXES['field'] + field_dict['field_name'].upper() ) vrp = XHValueRangeProcessor(self) qp.add_valuerangeprocessor(vrp) return qp.parse_query(query_string, self.flags)