code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def output(self, pin, value): """Set the specified pin the provided high/low value. Value should be either HIGH/LOW or a boolean (true = high).""" if pin < 0 or pin > 15: raise ValueError('Pin must be between 0 and 15 (inclusive).') self._output_pin(pin, value) self.mpsse_write_gpio()
Set the specified pin the provided high/low value. Value should be either HIGH/LOW or a boolean (true = high).
Below is the the instruction that describes the task: ### Input: Set the specified pin the provided high/low value. Value should be either HIGH/LOW or a boolean (true = high). ### Response: def output(self, pin, value): """Set the specified pin the provided high/low value. Value should be either HIGH/LOW or a boolean (true = high).""" if pin < 0 or pin > 15: raise ValueError('Pin must be between 0 and 15 (inclusive).') self._output_pin(pin, value) self.mpsse_write_gpio()
def group_and_sort_statements(stmt_list, ev_totals=None): """Group statements by type and arguments, and sort by prevalence. Parameters ---------- stmt_list : list[Statement] A list of INDRA statements. ev_totals : dict{int: int} A dictionary, keyed by statement hash (shallow) with counts of total evidence as the values. Including this will allow statements to be better sorted. Returns ------- sorted_groups : list[tuple] A list of tuples containing a sort key, the statement type, and a list of statements, also sorted by evidence count, for that key and type. The sort key contains a count of statements with those argument, the arguments (normalized strings), the count of statements with those arguements and type, and then the statement type. """ def _count(stmt): if ev_totals is None: return len(stmt.evidence) else: return ev_totals[stmt.get_hash()] stmt_rows = defaultdict(list) stmt_counts = defaultdict(lambda: 0) arg_counts = defaultdict(lambda: 0) for key, s in _get_keyed_stmts(stmt_list): # Update the counts, and add key if needed. stmt_rows[key].append(s) # Keep track of the total evidence counts for this statement and the # arguments. stmt_counts[key] += _count(s) # Add up the counts for the arguments, pairwise for Complexes and # Conversions. This allows, for example, a complex between MEK, ERK, # and something else to lend weight to the interactions between MEK # and ERK. if key[0] == 'Conversion': subj = key[1] for obj in key[2] + key[3]: arg_counts[(subj, obj)] += _count(s) else: arg_counts[key[1:]] += _count(s) # Sort the rows by count and agent names. def process_rows(stmt_rows): for key, stmts in stmt_rows.items(): verb = key[0] inps = key[1:] sub_count = stmt_counts[key] arg_count = arg_counts[inps] if verb == 'Complex' and sub_count == arg_count and len(inps) <= 2: if all([len(set(ag.name for ag in s.agent_list())) > 2 for s in stmts]): continue new_key = (arg_count, inps, sub_count, verb) stmts = sorted(stmts, key=lambda s: _count(s) + 1/(1+len(s.agent_list())), reverse=True) yield new_key, verb, stmts sorted_groups = sorted(process_rows(stmt_rows), key=lambda tpl: tpl[0], reverse=True) return sorted_groups
Group statements by type and arguments, and sort by prevalence. Parameters ---------- stmt_list : list[Statement] A list of INDRA statements. ev_totals : dict{int: int} A dictionary, keyed by statement hash (shallow) with counts of total evidence as the values. Including this will allow statements to be better sorted. Returns ------- sorted_groups : list[tuple] A list of tuples containing a sort key, the statement type, and a list of statements, also sorted by evidence count, for that key and type. The sort key contains a count of statements with those argument, the arguments (normalized strings), the count of statements with those arguements and type, and then the statement type.
Below is the the instruction that describes the task: ### Input: Group statements by type and arguments, and sort by prevalence. Parameters ---------- stmt_list : list[Statement] A list of INDRA statements. ev_totals : dict{int: int} A dictionary, keyed by statement hash (shallow) with counts of total evidence as the values. Including this will allow statements to be better sorted. Returns ------- sorted_groups : list[tuple] A list of tuples containing a sort key, the statement type, and a list of statements, also sorted by evidence count, for that key and type. The sort key contains a count of statements with those argument, the arguments (normalized strings), the count of statements with those arguements and type, and then the statement type. ### Response: def group_and_sort_statements(stmt_list, ev_totals=None): """Group statements by type and arguments, and sort by prevalence. Parameters ---------- stmt_list : list[Statement] A list of INDRA statements. ev_totals : dict{int: int} A dictionary, keyed by statement hash (shallow) with counts of total evidence as the values. Including this will allow statements to be better sorted. Returns ------- sorted_groups : list[tuple] A list of tuples containing a sort key, the statement type, and a list of statements, also sorted by evidence count, for that key and type. The sort key contains a count of statements with those argument, the arguments (normalized strings), the count of statements with those arguements and type, and then the statement type. """ def _count(stmt): if ev_totals is None: return len(stmt.evidence) else: return ev_totals[stmt.get_hash()] stmt_rows = defaultdict(list) stmt_counts = defaultdict(lambda: 0) arg_counts = defaultdict(lambda: 0) for key, s in _get_keyed_stmts(stmt_list): # Update the counts, and add key if needed. stmt_rows[key].append(s) # Keep track of the total evidence counts for this statement and the # arguments. stmt_counts[key] += _count(s) # Add up the counts for the arguments, pairwise for Complexes and # Conversions. This allows, for example, a complex between MEK, ERK, # and something else to lend weight to the interactions between MEK # and ERK. if key[0] == 'Conversion': subj = key[1] for obj in key[2] + key[3]: arg_counts[(subj, obj)] += _count(s) else: arg_counts[key[1:]] += _count(s) # Sort the rows by count and agent names. def process_rows(stmt_rows): for key, stmts in stmt_rows.items(): verb = key[0] inps = key[1:] sub_count = stmt_counts[key] arg_count = arg_counts[inps] if verb == 'Complex' and sub_count == arg_count and len(inps) <= 2: if all([len(set(ag.name for ag in s.agent_list())) > 2 for s in stmts]): continue new_key = (arg_count, inps, sub_count, verb) stmts = sorted(stmts, key=lambda s: _count(s) + 1/(1+len(s.agent_list())), reverse=True) yield new_key, verb, stmts sorted_groups = sorted(process_rows(stmt_rows), key=lambda tpl: tpl[0], reverse=True) return sorted_groups
def great_circle_distance(self, other): """ Return the great-circle distance, in meters, from this geographic coordinates to the specified other point, i.e., the shortest distance over the earth’s surface, ‘as-the-crow-flies’ distance between the points, ignoring any natural elevations of the ground. Haversine formula:: R = earth’s radius (mean radius = 6,371km) Δlat = lat2 − lat1 Δlong = long2 − long1 a = sin²(Δlat / 2) + cos(lat1).cos(lat2).sin²(Δlong/2) c = 2.atan2(√a, √(1−a)) d = R.c @param other: a ``GeoPoint`` instance. @return: the great-circle distance, in meters, between this geographic coordinates to the specified other point. """ distance_latitude = math.radians(abs(self.latitude - other.latitude)) distance_longitude = math.radians(abs(self.longitude - other.longitude)) a = math.sin(distance_latitude / 2) * math.sin(distance_latitude / 2) \ + math.cos(math.radians(self.latitude)) \ * math.cos(math.radians(other.latitude)) \ * math.sin(distance_longitude / 2) \ * math.sin(distance_longitude / 2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) return GeoPoint.EARTH_RADIUS_METERS * c
Return the great-circle distance, in meters, from this geographic coordinates to the specified other point, i.e., the shortest distance over the earth’s surface, ‘as-the-crow-flies’ distance between the points, ignoring any natural elevations of the ground. Haversine formula:: R = earth’s radius (mean radius = 6,371km) Δlat = lat2 − lat1 Δlong = long2 − long1 a = sin²(Δlat / 2) + cos(lat1).cos(lat2).sin²(Δlong/2) c = 2.atan2(√a, √(1−a)) d = R.c @param other: a ``GeoPoint`` instance. @return: the great-circle distance, in meters, between this geographic coordinates to the specified other point.
Below is the the instruction that describes the task: ### Input: Return the great-circle distance, in meters, from this geographic coordinates to the specified other point, i.e., the shortest distance over the earth’s surface, ‘as-the-crow-flies’ distance between the points, ignoring any natural elevations of the ground. Haversine formula:: R = earth’s radius (mean radius = 6,371km) Δlat = lat2 − lat1 Δlong = long2 − long1 a = sin²(Δlat / 2) + cos(lat1).cos(lat2).sin²(Δlong/2) c = 2.atan2(√a, √(1−a)) d = R.c @param other: a ``GeoPoint`` instance. @return: the great-circle distance, in meters, between this geographic coordinates to the specified other point. ### Response: def great_circle_distance(self, other): """ Return the great-circle distance, in meters, from this geographic coordinates to the specified other point, i.e., the shortest distance over the earth’s surface, ‘as-the-crow-flies’ distance between the points, ignoring any natural elevations of the ground. Haversine formula:: R = earth’s radius (mean radius = 6,371km) Δlat = lat2 − lat1 Δlong = long2 − long1 a = sin²(Δlat / 2) + cos(lat1).cos(lat2).sin²(Δlong/2) c = 2.atan2(√a, √(1−a)) d = R.c @param other: a ``GeoPoint`` instance. @return: the great-circle distance, in meters, between this geographic coordinates to the specified other point. """ distance_latitude = math.radians(abs(self.latitude - other.latitude)) distance_longitude = math.radians(abs(self.longitude - other.longitude)) a = math.sin(distance_latitude / 2) * math.sin(distance_latitude / 2) \ + math.cos(math.radians(self.latitude)) \ * math.cos(math.radians(other.latitude)) \ * math.sin(distance_longitude / 2) \ * math.sin(distance_longitude / 2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) return GeoPoint.EARTH_RADIUS_METERS * c
def get_eval_metrics(logits, labels, params): """Return dictionary of model evaluation metrics.""" metrics = { "accuracy": _convert_to_eval_metric(padded_accuracy)(logits, labels), "accuracy_top5": _convert_to_eval_metric(padded_accuracy_top5)( logits, labels), "accuracy_per_sequence": _convert_to_eval_metric( padded_sequence_accuracy)(logits, labels), "neg_log_perplexity": _convert_to_eval_metric(padded_neg_log_perplexity)( logits, labels, params.vocab_size), "approx_bleu_score": _convert_to_eval_metric(bleu_score)(logits, labels), "rouge_2_fscore": _convert_to_eval_metric(rouge_2_fscore)(logits, labels), "rouge_L_fscore": _convert_to_eval_metric(rouge_l_fscore)(logits, labels), } # Prefix each of the metric names with "metrics/". This allows the metric # graphs to display under the "metrics" category in TensorBoard. metrics = {"metrics/%s" % k: v for k, v in six.iteritems(metrics)} return metrics
Return dictionary of model evaluation metrics.
Below is the the instruction that describes the task: ### Input: Return dictionary of model evaluation metrics. ### Response: def get_eval_metrics(logits, labels, params): """Return dictionary of model evaluation metrics.""" metrics = { "accuracy": _convert_to_eval_metric(padded_accuracy)(logits, labels), "accuracy_top5": _convert_to_eval_metric(padded_accuracy_top5)( logits, labels), "accuracy_per_sequence": _convert_to_eval_metric( padded_sequence_accuracy)(logits, labels), "neg_log_perplexity": _convert_to_eval_metric(padded_neg_log_perplexity)( logits, labels, params.vocab_size), "approx_bleu_score": _convert_to_eval_metric(bleu_score)(logits, labels), "rouge_2_fscore": _convert_to_eval_metric(rouge_2_fscore)(logits, labels), "rouge_L_fscore": _convert_to_eval_metric(rouge_l_fscore)(logits, labels), } # Prefix each of the metric names with "metrics/". This allows the metric # graphs to display under the "metrics" category in TensorBoard. metrics = {"metrics/%s" % k: v for k, v in six.iteritems(metrics)} return metrics
def enbw(data): r"""Computes the equivalent noise bandwidth .. math:: ENBW = N \frac{\sum_{n=1}^{N} w_n^2}{\left(\sum_{n=1}^{N} w_n \right)^2} .. doctest:: >>> from spectrum import create_window, enbw >>> w = create_window(64, 'rectangular') >>> enbw(w) 1.0 The following table contains the ENBW values for some of the implemented windows in this module (with N=16384). They have been double checked against litterature (Source: [Harris]_, [Marple]_). If not present, it means that it has not been checked. =================== ============ ============= name ENBW litterature =================== ============ ============= rectangular 1. 1. triangle 1.3334 1.33 Hann 1.5001 1.5 Hamming 1.3629 1.36 blackman 1.7268 1.73 kaiser 1.7 blackmanharris,4 2.004 2. riesz 1.2000 1.2 riemann 1.32 1.3 parzen 1.917 1.92 tukey 0.25 1.102 1.1 bohman 1.7858 1.79 poisson 2 1.3130 1.3 hanningpoisson 0.5 1.609 1.61 cauchy 1.489 1.48 lanczos 1.3 =================== ============ ============= """ N = len(data) return N * np.sum(data**2) / np.sum(data)**2
r"""Computes the equivalent noise bandwidth .. math:: ENBW = N \frac{\sum_{n=1}^{N} w_n^2}{\left(\sum_{n=1}^{N} w_n \right)^2} .. doctest:: >>> from spectrum import create_window, enbw >>> w = create_window(64, 'rectangular') >>> enbw(w) 1.0 The following table contains the ENBW values for some of the implemented windows in this module (with N=16384). They have been double checked against litterature (Source: [Harris]_, [Marple]_). If not present, it means that it has not been checked. =================== ============ ============= name ENBW litterature =================== ============ ============= rectangular 1. 1. triangle 1.3334 1.33 Hann 1.5001 1.5 Hamming 1.3629 1.36 blackman 1.7268 1.73 kaiser 1.7 blackmanharris,4 2.004 2. riesz 1.2000 1.2 riemann 1.32 1.3 parzen 1.917 1.92 tukey 0.25 1.102 1.1 bohman 1.7858 1.79 poisson 2 1.3130 1.3 hanningpoisson 0.5 1.609 1.61 cauchy 1.489 1.48 lanczos 1.3 =================== ============ =============
Below is the the instruction that describes the task: ### Input: r"""Computes the equivalent noise bandwidth .. math:: ENBW = N \frac{\sum_{n=1}^{N} w_n^2}{\left(\sum_{n=1}^{N} w_n \right)^2} .. doctest:: >>> from spectrum import create_window, enbw >>> w = create_window(64, 'rectangular') >>> enbw(w) 1.0 The following table contains the ENBW values for some of the implemented windows in this module (with N=16384). They have been double checked against litterature (Source: [Harris]_, [Marple]_). If not present, it means that it has not been checked. =================== ============ ============= name ENBW litterature =================== ============ ============= rectangular 1. 1. triangle 1.3334 1.33 Hann 1.5001 1.5 Hamming 1.3629 1.36 blackman 1.7268 1.73 kaiser 1.7 blackmanharris,4 2.004 2. riesz 1.2000 1.2 riemann 1.32 1.3 parzen 1.917 1.92 tukey 0.25 1.102 1.1 bohman 1.7858 1.79 poisson 2 1.3130 1.3 hanningpoisson 0.5 1.609 1.61 cauchy 1.489 1.48 lanczos 1.3 =================== ============ ============= ### Response: def enbw(data): r"""Computes the equivalent noise bandwidth .. math:: ENBW = N \frac{\sum_{n=1}^{N} w_n^2}{\left(\sum_{n=1}^{N} w_n \right)^2} .. doctest:: >>> from spectrum import create_window, enbw >>> w = create_window(64, 'rectangular') >>> enbw(w) 1.0 The following table contains the ENBW values for some of the implemented windows in this module (with N=16384). They have been double checked against litterature (Source: [Harris]_, [Marple]_). If not present, it means that it has not been checked. =================== ============ ============= name ENBW litterature =================== ============ ============= rectangular 1. 1. triangle 1.3334 1.33 Hann 1.5001 1.5 Hamming 1.3629 1.36 blackman 1.7268 1.73 kaiser 1.7 blackmanharris,4 2.004 2. riesz 1.2000 1.2 riemann 1.32 1.3 parzen 1.917 1.92 tukey 0.25 1.102 1.1 bohman 1.7858 1.79 poisson 2 1.3130 1.3 hanningpoisson 0.5 1.609 1.61 cauchy 1.489 1.48 lanczos 1.3 =================== ============ ============= """ N = len(data) return N * np.sum(data**2) / np.sum(data)**2
def spherical_histogram(data=None, radial_bins="numpy", theta_bins=16, phi_bins=16, transformed=False, *args, **kwargs): """Facade construction function for the SphericalHistogram. """ dropna = kwargs.pop("dropna", True) data = _prepare_data(data, transformed=transformed, klass=SphericalHistogram, dropna=dropna) if isinstance(theta_bins, int): theta_range = (0, np.pi) if "theta_range" in "kwargs": theta_range = kwargs["theta_range"] elif "range" in "kwargs": theta_range = kwargs["range"][1] theta_range = list(theta_range) + [theta_bins + 1] theta_bins = np.linspace(*theta_range) if isinstance(phi_bins, int): phi_range = (0, 2 * np.pi) if "phi_range" in "kwargs": phi_range = kwargs["phi_range"] elif "range" in "kwargs": phi_range = kwargs["range"][2] phi_range = list(phi_range) + [phi_bins + 1] phi_bins = np.linspace(*phi_range) bin_schemas = binnings.calculate_bins_nd(data, [radial_bins, theta_bins, phi_bins], *args, check_nan=not dropna, **kwargs) weights = kwargs.pop("weights", None) frequencies, errors2, missed = histogram_nd.calculate_frequencies(data, ndim=3, binnings=bin_schemas, weights=weights) return SphericalHistogram(binnings=bin_schemas, frequencies=frequencies, errors2=errors2, missed=missed)
Facade construction function for the SphericalHistogram.
Below is the the instruction that describes the task: ### Input: Facade construction function for the SphericalHistogram. ### Response: def spherical_histogram(data=None, radial_bins="numpy", theta_bins=16, phi_bins=16, transformed=False, *args, **kwargs): """Facade construction function for the SphericalHistogram. """ dropna = kwargs.pop("dropna", True) data = _prepare_data(data, transformed=transformed, klass=SphericalHistogram, dropna=dropna) if isinstance(theta_bins, int): theta_range = (0, np.pi) if "theta_range" in "kwargs": theta_range = kwargs["theta_range"] elif "range" in "kwargs": theta_range = kwargs["range"][1] theta_range = list(theta_range) + [theta_bins + 1] theta_bins = np.linspace(*theta_range) if isinstance(phi_bins, int): phi_range = (0, 2 * np.pi) if "phi_range" in "kwargs": phi_range = kwargs["phi_range"] elif "range" in "kwargs": phi_range = kwargs["range"][2] phi_range = list(phi_range) + [phi_bins + 1] phi_bins = np.linspace(*phi_range) bin_schemas = binnings.calculate_bins_nd(data, [radial_bins, theta_bins, phi_bins], *args, check_nan=not dropna, **kwargs) weights = kwargs.pop("weights", None) frequencies, errors2, missed = histogram_nd.calculate_frequencies(data, ndim=3, binnings=bin_schemas, weights=weights) return SphericalHistogram(binnings=bin_schemas, frequencies=frequencies, errors2=errors2, missed=missed)
def _convert_operator(self, node_name, op_name, attrs, inputs): """Convert from onnx operator to mxnet operator. The converter must specify conversions explicitly for incompatible name, and apply handlers to operator attributes. Parameters ---------- :param node_name : str name of the node to be translated. :param op_name : str Operator name, such as Convolution, FullyConnected :param attrs : dict Dict of operator attributes :param inputs: list list of inputs to the operator Returns ------- :return mxnet_sym Converted mxnet symbol """ if op_name in convert_map: op_name, new_attrs, inputs = convert_map[op_name](attrs, inputs, self) else: raise NotImplementedError("Operator {} not implemented.".format(op_name)) if isinstance(op_name, string_types): new_op = getattr(symbol, op_name, None) if not new_op: raise RuntimeError("Unable to map op_name {} to sym".format(op_name)) if node_name is None: mxnet_sym = new_op(*inputs, **new_attrs) else: mxnet_sym = new_op(name=node_name, *inputs, **new_attrs) return mxnet_sym return op_name
Convert from onnx operator to mxnet operator. The converter must specify conversions explicitly for incompatible name, and apply handlers to operator attributes. Parameters ---------- :param node_name : str name of the node to be translated. :param op_name : str Operator name, such as Convolution, FullyConnected :param attrs : dict Dict of operator attributes :param inputs: list list of inputs to the operator Returns ------- :return mxnet_sym Converted mxnet symbol
Below is the the instruction that describes the task: ### Input: Convert from onnx operator to mxnet operator. The converter must specify conversions explicitly for incompatible name, and apply handlers to operator attributes. Parameters ---------- :param node_name : str name of the node to be translated. :param op_name : str Operator name, such as Convolution, FullyConnected :param attrs : dict Dict of operator attributes :param inputs: list list of inputs to the operator Returns ------- :return mxnet_sym Converted mxnet symbol ### Response: def _convert_operator(self, node_name, op_name, attrs, inputs): """Convert from onnx operator to mxnet operator. The converter must specify conversions explicitly for incompatible name, and apply handlers to operator attributes. Parameters ---------- :param node_name : str name of the node to be translated. :param op_name : str Operator name, such as Convolution, FullyConnected :param attrs : dict Dict of operator attributes :param inputs: list list of inputs to the operator Returns ------- :return mxnet_sym Converted mxnet symbol """ if op_name in convert_map: op_name, new_attrs, inputs = convert_map[op_name](attrs, inputs, self) else: raise NotImplementedError("Operator {} not implemented.".format(op_name)) if isinstance(op_name, string_types): new_op = getattr(symbol, op_name, None) if not new_op: raise RuntimeError("Unable to map op_name {} to sym".format(op_name)) if node_name is None: mxnet_sym = new_op(*inputs, **new_attrs) else: mxnet_sym = new_op(name=node_name, *inputs, **new_attrs) return mxnet_sym return op_name
def default_software_reset_type(self, reset_type): """! @brief Modify the default software reset method. @param self @param reset_type Must be one of the software reset types: Target.ResetType.SW_SYSRESETREQ, Target.ResetType.SW_VECTRESET, or Target.ResetType.SW_EMULATED. """ assert isinstance(reset_type, Target.ResetType) assert reset_type in (Target.ResetType.SW_SYSRESETREQ, Target.ResetType.SW_VECTRESET, Target.ResetType.SW_EMULATED) self._default_software_reset_type = reset_type
! @brief Modify the default software reset method. @param self @param reset_type Must be one of the software reset types: Target.ResetType.SW_SYSRESETREQ, Target.ResetType.SW_VECTRESET, or Target.ResetType.SW_EMULATED.
Below is the the instruction that describes the task: ### Input: ! @brief Modify the default software reset method. @param self @param reset_type Must be one of the software reset types: Target.ResetType.SW_SYSRESETREQ, Target.ResetType.SW_VECTRESET, or Target.ResetType.SW_EMULATED. ### Response: def default_software_reset_type(self, reset_type): """! @brief Modify the default software reset method. @param self @param reset_type Must be one of the software reset types: Target.ResetType.SW_SYSRESETREQ, Target.ResetType.SW_VECTRESET, or Target.ResetType.SW_EMULATED. """ assert isinstance(reset_type, Target.ResetType) assert reset_type in (Target.ResetType.SW_SYSRESETREQ, Target.ResetType.SW_VECTRESET, Target.ResetType.SW_EMULATED) self._default_software_reset_type = reset_type
def get_choices_for(self, field): """ Get the choices for the given fields. Args: field (str): Name of field. Returns: List of tuples. [(name, value),...] """ choices = self._fields[field].choices if isinstance(choices, six.string_types): return [(d['value'], d['name']) for d in self._choices_manager.get_all(choices)] else: return choices
Get the choices for the given fields. Args: field (str): Name of field. Returns: List of tuples. [(name, value),...]
Below is the the instruction that describes the task: ### Input: Get the choices for the given fields. Args: field (str): Name of field. Returns: List of tuples. [(name, value),...] ### Response: def get_choices_for(self, field): """ Get the choices for the given fields. Args: field (str): Name of field. Returns: List of tuples. [(name, value),...] """ choices = self._fields[field].choices if isinstance(choices, six.string_types): return [(d['value'], d['name']) for d in self._choices_manager.get_all(choices)] else: return choices
def set_time(self, vfy_time): """ Set the time against which the certificates are verified. Normally the current time is used. .. note:: For example, you can determine if a certificate was valid at a given time. .. versionadded:: 17.0.0 :param datetime vfy_time: The verification time to set on this store. :return: ``None`` if the verification time was successfully set. """ param = _lib.X509_VERIFY_PARAM_new() param = _ffi.gc(param, _lib.X509_VERIFY_PARAM_free) _lib.X509_VERIFY_PARAM_set_time(param, int(vfy_time.strftime('%s'))) _openssl_assert(_lib.X509_STORE_set1_param(self._store, param) != 0)
Set the time against which the certificates are verified. Normally the current time is used. .. note:: For example, you can determine if a certificate was valid at a given time. .. versionadded:: 17.0.0 :param datetime vfy_time: The verification time to set on this store. :return: ``None`` if the verification time was successfully set.
Below is the the instruction that describes the task: ### Input: Set the time against which the certificates are verified. Normally the current time is used. .. note:: For example, you can determine if a certificate was valid at a given time. .. versionadded:: 17.0.0 :param datetime vfy_time: The verification time to set on this store. :return: ``None`` if the verification time was successfully set. ### Response: def set_time(self, vfy_time): """ Set the time against which the certificates are verified. Normally the current time is used. .. note:: For example, you can determine if a certificate was valid at a given time. .. versionadded:: 17.0.0 :param datetime vfy_time: The verification time to set on this store. :return: ``None`` if the verification time was successfully set. """ param = _lib.X509_VERIFY_PARAM_new() param = _ffi.gc(param, _lib.X509_VERIFY_PARAM_free) _lib.X509_VERIFY_PARAM_set_time(param, int(vfy_time.strftime('%s'))) _openssl_assert(_lib.X509_STORE_set1_param(self._store, param) != 0)
def default_username_algo(email): """Generate username for the Django user. :arg str/unicode email: the email address to use to generate a username :returns: str/unicode """ # bluntly stolen from django-browserid # store the username as a base64 encoded sha224 of the email address # this protects against data leakage because usernames are often # treated as public identifiers (so we can't use the email address). username = base64.urlsafe_b64encode( hashlib.sha1(force_bytes(email)).digest() ).rstrip(b'=') return smart_text(username)
Generate username for the Django user. :arg str/unicode email: the email address to use to generate a username :returns: str/unicode
Below is the the instruction that describes the task: ### Input: Generate username for the Django user. :arg str/unicode email: the email address to use to generate a username :returns: str/unicode ### Response: def default_username_algo(email): """Generate username for the Django user. :arg str/unicode email: the email address to use to generate a username :returns: str/unicode """ # bluntly stolen from django-browserid # store the username as a base64 encoded sha224 of the email address # this protects against data leakage because usernames are often # treated as public identifiers (so we can't use the email address). username = base64.urlsafe_b64encode( hashlib.sha1(force_bytes(email)).digest() ).rstrip(b'=') return smart_text(username)
def push_new_themes(catalog, portal_url, apikey): """Toma un catálogo y escribe los temas de la taxonomía que no están presentes. Args: catalog (DataJson): El catálogo de origen que contiene la taxonomía. portal_url (str): La URL del portal CKAN de destino. apikey (str): La apikey de un usuario con los permisos que le permitan crear o actualizar los temas. Returns: str: Los ids de los temas creados. """ ckan_portal = RemoteCKAN(portal_url, apikey=apikey) existing_themes = ckan_portal.call_action('group_list') new_themes = [theme['id'] for theme in catalog[ 'themeTaxonomy'] if theme['id'] not in existing_themes] pushed_names = [] for new_theme in new_themes: name = push_theme_to_ckan( catalog, portal_url, apikey, identifier=new_theme) pushed_names.append(name) return pushed_names
Toma un catálogo y escribe los temas de la taxonomía que no están presentes. Args: catalog (DataJson): El catálogo de origen que contiene la taxonomía. portal_url (str): La URL del portal CKAN de destino. apikey (str): La apikey de un usuario con los permisos que le permitan crear o actualizar los temas. Returns: str: Los ids de los temas creados.
Below is the the instruction that describes the task: ### Input: Toma un catálogo y escribe los temas de la taxonomía que no están presentes. Args: catalog (DataJson): El catálogo de origen que contiene la taxonomía. portal_url (str): La URL del portal CKAN de destino. apikey (str): La apikey de un usuario con los permisos que le permitan crear o actualizar los temas. Returns: str: Los ids de los temas creados. ### Response: def push_new_themes(catalog, portal_url, apikey): """Toma un catálogo y escribe los temas de la taxonomía que no están presentes. Args: catalog (DataJson): El catálogo de origen que contiene la taxonomía. portal_url (str): La URL del portal CKAN de destino. apikey (str): La apikey de un usuario con los permisos que le permitan crear o actualizar los temas. Returns: str: Los ids de los temas creados. """ ckan_portal = RemoteCKAN(portal_url, apikey=apikey) existing_themes = ckan_portal.call_action('group_list') new_themes = [theme['id'] for theme in catalog[ 'themeTaxonomy'] if theme['id'] not in existing_themes] pushed_names = [] for new_theme in new_themes: name = push_theme_to_ckan( catalog, portal_url, apikey, identifier=new_theme) pushed_names.append(name) return pushed_names
def vecs_to_datmesh(x, y): """ Converts input arguments x and y to a 2d meshgrid, suitable for calling Means, Covariances and Realizations. """ x, y = meshgrid(x, y) out = zeros(x.shape + (2,), dtype=float) out[:, :, 0] = x out[:, :, 1] = y return out
Converts input arguments x and y to a 2d meshgrid, suitable for calling Means, Covariances and Realizations.
Below is the the instruction that describes the task: ### Input: Converts input arguments x and y to a 2d meshgrid, suitable for calling Means, Covariances and Realizations. ### Response: def vecs_to_datmesh(x, y): """ Converts input arguments x and y to a 2d meshgrid, suitable for calling Means, Covariances and Realizations. """ x, y = meshgrid(x, y) out = zeros(x.shape + (2,), dtype=float) out[:, :, 0] = x out[:, :, 1] = y return out
def get_nonoauth_parameters(self): """Get any non-OAuth parameters.""" return dict([(k, v) for k, v in self.items() if not k.startswith('oauth_')])
Get any non-OAuth parameters.
Below is the the instruction that describes the task: ### Input: Get any non-OAuth parameters. ### Response: def get_nonoauth_parameters(self): """Get any non-OAuth parameters.""" return dict([(k, v) for k, v in self.items() if not k.startswith('oauth_')])
def _row_to_str(self, row): # type: (List[str]) -> str """Converts a list of strings to a correctly spaced and formatted row string. e.g. ['some', 'foo', 'bar'] --> '| some | foo | bar |' :param row: list :return: str """ _row_text = '' for col, width in self.col_widths.items(): _row_text += self.COLUMN_SEP l_pad, r_pad = self._split_int(width - len(row[col])) _row_text += '{0}{1}{2}'.format(' ' * (l_pad + self.PADDING), row[col], ' ' * (r_pad + self.PADDING)) _row_text += self.COLUMN_SEP + '\n' return _row_text
Converts a list of strings to a correctly spaced and formatted row string. e.g. ['some', 'foo', 'bar'] --> '| some | foo | bar |' :param row: list :return: str
Below is the the instruction that describes the task: ### Input: Converts a list of strings to a correctly spaced and formatted row string. e.g. ['some', 'foo', 'bar'] --> '| some | foo | bar |' :param row: list :return: str ### Response: def _row_to_str(self, row): # type: (List[str]) -> str """Converts a list of strings to a correctly spaced and formatted row string. e.g. ['some', 'foo', 'bar'] --> '| some | foo | bar |' :param row: list :return: str """ _row_text = '' for col, width in self.col_widths.items(): _row_text += self.COLUMN_SEP l_pad, r_pad = self._split_int(width - len(row[col])) _row_text += '{0}{1}{2}'.format(' ' * (l_pad + self.PADDING), row[col], ' ' * (r_pad + self.PADDING)) _row_text += self.COLUMN_SEP + '\n' return _row_text
def qos(self, prefetch_size=0, prefetch_count=0, is_global=False): ''' Set QoS on this channel. ''' args = Writer() args.write_long(prefetch_size).\ write_short(prefetch_count).\ write_bit(is_global) self.send_frame(MethodFrame(self.channel_id, 60, 10, args)) self.channel.add_synchronous_cb(self._recv_qos_ok)
Set QoS on this channel.
Below is the the instruction that describes the task: ### Input: Set QoS on this channel. ### Response: def qos(self, prefetch_size=0, prefetch_count=0, is_global=False): ''' Set QoS on this channel. ''' args = Writer() args.write_long(prefetch_size).\ write_short(prefetch_count).\ write_bit(is_global) self.send_frame(MethodFrame(self.channel_id, 60, 10, args)) self.channel.add_synchronous_cb(self._recv_qos_ok)
def kw_changelist_view(self, request: HttpRequest, extra_context=None, **kw): """ Changelist view which allow key-value arguments. :param request: HttpRequest :param extra_context: Extra context dict :param kw: Key-value dict :return: See changelist_view() """ return self.changelist_view(request, extra_context)
Changelist view which allow key-value arguments. :param request: HttpRequest :param extra_context: Extra context dict :param kw: Key-value dict :return: See changelist_view()
Below is the the instruction that describes the task: ### Input: Changelist view which allow key-value arguments. :param request: HttpRequest :param extra_context: Extra context dict :param kw: Key-value dict :return: See changelist_view() ### Response: def kw_changelist_view(self, request: HttpRequest, extra_context=None, **kw): """ Changelist view which allow key-value arguments. :param request: HttpRequest :param extra_context: Extra context dict :param kw: Key-value dict :return: See changelist_view() """ return self.changelist_view(request, extra_context)
def setCurrentProfile(self, prof): """ Sets the current profile for this toolbar to the inputed profile. :param prof | <projexui.widgets.xviewwidget.XViewProfile> || <str> """ if prof is None: self.clearActive() return # loop through the profiles looking for a match profile = None blocked = self.signalsBlocked() self.blockSignals(True) for act in self._profileGroup.actions(): if prof in (act.profile(), act.profile().name()): act.setChecked(True) profile = act.profile() else: act.setChecked(False) self.blockSignals(blocked) # update the current profile if profile == self._currentProfile and not self._viewWidget.isEmpty(): return self._currentProfile = profile if self._viewWidget and profile and not blocked: self._viewWidget.restoreProfile(profile) if not blocked: self.loadProfileFinished.emit(profile) self.currentProfileChanged.emit(profile)
Sets the current profile for this toolbar to the inputed profile. :param prof | <projexui.widgets.xviewwidget.XViewProfile> || <str>
Below is the the instruction that describes the task: ### Input: Sets the current profile for this toolbar to the inputed profile. :param prof | <projexui.widgets.xviewwidget.XViewProfile> || <str> ### Response: def setCurrentProfile(self, prof): """ Sets the current profile for this toolbar to the inputed profile. :param prof | <projexui.widgets.xviewwidget.XViewProfile> || <str> """ if prof is None: self.clearActive() return # loop through the profiles looking for a match profile = None blocked = self.signalsBlocked() self.blockSignals(True) for act in self._profileGroup.actions(): if prof in (act.profile(), act.profile().name()): act.setChecked(True) profile = act.profile() else: act.setChecked(False) self.blockSignals(blocked) # update the current profile if profile == self._currentProfile and not self._viewWidget.isEmpty(): return self._currentProfile = profile if self._viewWidget and profile and not blocked: self._viewWidget.restoreProfile(profile) if not blocked: self.loadProfileFinished.emit(profile) self.currentProfileChanged.emit(profile)
def clear_annotation_data(self): """Clear annotation data. Parameters ---------- Returns ------- None """ self.genes = set() self.annotations = [] self.term_annotations = {} self.gene_annotations = {}
Clear annotation data. Parameters ---------- Returns ------- None
Below is the the instruction that describes the task: ### Input: Clear annotation data. Parameters ---------- Returns ------- None ### Response: def clear_annotation_data(self): """Clear annotation data. Parameters ---------- Returns ------- None """ self.genes = set() self.annotations = [] self.term_annotations = {} self.gene_annotations = {}
def fast_maxwell_boltzmann(mass, file_name=None, return_code=False): r"""Return a function that returns values of a Maxwell-Boltzmann distribution. >>> from fast import Atom >>> mass = Atom("Rb", 87).mass >>> f = fast_maxwell_boltzmann(mass) >>> print f(0, 273.15+20) 0.00238221482739 >>> import numpy as np >>> v = np.linspace(-600, 600, 101) >>> dist = f(v, 273.15+20) >>> dv = v[1]-v[0] >>> print sum(dist)*dv 0.999704711134 """ # We get the mass of the atom. code = "" code = "def maxwell_boltzmann(v, T):\n" code += ' r"""A fast calculation of the' code += ' Maxwell-Boltzmann distribution."""\n' code += " if hasattr(v, 'shape'):\n" code += " d = 1\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " f = f * np.exp(-m*v**2/2/k_B_num/T)\n" code += " return f\n" code += " elif hasattr(v, '__len__'):\n" code += " d = len(v)\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " vsquare = sum([v[i]**2 for i in range(d)])\n" code += " f = f * np.exp(-m*vsquare/2/k_B_num/T)\n" code += " return f\n" code += " else:\n" code += " d = 1\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " f = f * np.exp(-m*v**2/2/k_B_num/T)\n" code += " return f\n" # We write the code to file if provided, and execute it. if file_name is not None: f = file(file_name+".py", "w") f.write(code) f.close() maxwell_boltzmann = code if not return_code: exec maxwell_boltzmann return maxwell_boltzmann
r"""Return a function that returns values of a Maxwell-Boltzmann distribution. >>> from fast import Atom >>> mass = Atom("Rb", 87).mass >>> f = fast_maxwell_boltzmann(mass) >>> print f(0, 273.15+20) 0.00238221482739 >>> import numpy as np >>> v = np.linspace(-600, 600, 101) >>> dist = f(v, 273.15+20) >>> dv = v[1]-v[0] >>> print sum(dist)*dv 0.999704711134
Below is the the instruction that describes the task: ### Input: r"""Return a function that returns values of a Maxwell-Boltzmann distribution. >>> from fast import Atom >>> mass = Atom("Rb", 87).mass >>> f = fast_maxwell_boltzmann(mass) >>> print f(0, 273.15+20) 0.00238221482739 >>> import numpy as np >>> v = np.linspace(-600, 600, 101) >>> dist = f(v, 273.15+20) >>> dv = v[1]-v[0] >>> print sum(dist)*dv 0.999704711134 ### Response: def fast_maxwell_boltzmann(mass, file_name=None, return_code=False): r"""Return a function that returns values of a Maxwell-Boltzmann distribution. >>> from fast import Atom >>> mass = Atom("Rb", 87).mass >>> f = fast_maxwell_boltzmann(mass) >>> print f(0, 273.15+20) 0.00238221482739 >>> import numpy as np >>> v = np.linspace(-600, 600, 101) >>> dist = f(v, 273.15+20) >>> dv = v[1]-v[0] >>> print sum(dist)*dv 0.999704711134 """ # We get the mass of the atom. code = "" code = "def maxwell_boltzmann(v, T):\n" code += ' r"""A fast calculation of the' code += ' Maxwell-Boltzmann distribution."""\n' code += " if hasattr(v, 'shape'):\n" code += " d = 1\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " f = f * np.exp(-m*v**2/2/k_B_num/T)\n" code += " return f\n" code += " elif hasattr(v, '__len__'):\n" code += " d = len(v)\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " vsquare = sum([v[i]**2 for i in range(d)])\n" code += " f = f * np.exp(-m*vsquare/2/k_B_num/T)\n" code += " return f\n" code += " else:\n" code += " d = 1\n" code += " m = %s\n" % mass code += " f = np.sqrt(m/2/np.pi/k_B_num/T)**d\n" code += " f = f * np.exp(-m*v**2/2/k_B_num/T)\n" code += " return f\n" # We write the code to file if provided, and execute it. if file_name is not None: f = file(file_name+".py", "w") f.write(code) f.close() maxwell_boltzmann = code if not return_code: exec maxwell_boltzmann return maxwell_boltzmann
def deserialize(self, xml_input, *args, **kwargs): """ Convert XML to dict object """ return xmltodict.parse(xml_input, *args, **kwargs)
Convert XML to dict object
Below is the the instruction that describes the task: ### Input: Convert XML to dict object ### Response: def deserialize(self, xml_input, *args, **kwargs): """ Convert XML to dict object """ return xmltodict.parse(xml_input, *args, **kwargs)
def cmd_join(self, connection, sender, target, payload): """ Asks the bot to join a channel """ if payload: connection.join(payload) else: raise ValueError("No channel given")
Asks the bot to join a channel
Below is the the instruction that describes the task: ### Input: Asks the bot to join a channel ### Response: def cmd_join(self, connection, sender, target, payload): """ Asks the bot to join a channel """ if payload: connection.join(payload) else: raise ValueError("No channel given")
def sqliteRowsToDicts(sqliteRows): """ Unpacks sqlite rows as returned by fetchall into an array of simple dicts. :param sqliteRows: array of rows returned from fetchall DB call :return: array of dicts, keyed by the column names. """ return map(lambda r: dict(zip(r.keys(), r)), sqliteRows)
Unpacks sqlite rows as returned by fetchall into an array of simple dicts. :param sqliteRows: array of rows returned from fetchall DB call :return: array of dicts, keyed by the column names.
Below is the the instruction that describes the task: ### Input: Unpacks sqlite rows as returned by fetchall into an array of simple dicts. :param sqliteRows: array of rows returned from fetchall DB call :return: array of dicts, keyed by the column names. ### Response: def sqliteRowsToDicts(sqliteRows): """ Unpacks sqlite rows as returned by fetchall into an array of simple dicts. :param sqliteRows: array of rows returned from fetchall DB call :return: array of dicts, keyed by the column names. """ return map(lambda r: dict(zip(r.keys(), r)), sqliteRows)
def make_strain_from_inj_object(self, inj, delta_t, detector_name, distance_scale=1): """Make a h(t) strain time-series from an injection object as read from an hdf file. Parameters ----------- inj : injection object The injection object to turn into a strain h(t). delta_t : float Sample rate to make injection at. detector_name : string Name of the detector used for projecting injections. distance_scale: float, optional Factor to scale the distance of an injection with. The default (=1) is no scaling. Returns -------- signal : float h(t) corresponding to the injection. """ detector = Detector(detector_name) # compute the waveform time series hp, hc = ringdown_td_approximants[inj['approximant']]( inj, delta_t=delta_t, **self.extra_args) hp._epoch += inj['tc'] hc._epoch += inj['tc'] if distance_scale != 1: hp /= distance_scale hc /= distance_scale # compute the detector response and add it to the strain signal = detector.project_wave(hp, hc, inj['ra'], inj['dec'], inj['polarization']) return signal
Make a h(t) strain time-series from an injection object as read from an hdf file. Parameters ----------- inj : injection object The injection object to turn into a strain h(t). delta_t : float Sample rate to make injection at. detector_name : string Name of the detector used for projecting injections. distance_scale: float, optional Factor to scale the distance of an injection with. The default (=1) is no scaling. Returns -------- signal : float h(t) corresponding to the injection.
Below is the the instruction that describes the task: ### Input: Make a h(t) strain time-series from an injection object as read from an hdf file. Parameters ----------- inj : injection object The injection object to turn into a strain h(t). delta_t : float Sample rate to make injection at. detector_name : string Name of the detector used for projecting injections. distance_scale: float, optional Factor to scale the distance of an injection with. The default (=1) is no scaling. Returns -------- signal : float h(t) corresponding to the injection. ### Response: def make_strain_from_inj_object(self, inj, delta_t, detector_name, distance_scale=1): """Make a h(t) strain time-series from an injection object as read from an hdf file. Parameters ----------- inj : injection object The injection object to turn into a strain h(t). delta_t : float Sample rate to make injection at. detector_name : string Name of the detector used for projecting injections. distance_scale: float, optional Factor to scale the distance of an injection with. The default (=1) is no scaling. Returns -------- signal : float h(t) corresponding to the injection. """ detector = Detector(detector_name) # compute the waveform time series hp, hc = ringdown_td_approximants[inj['approximant']]( inj, delta_t=delta_t, **self.extra_args) hp._epoch += inj['tc'] hc._epoch += inj['tc'] if distance_scale != 1: hp /= distance_scale hc /= distance_scale # compute the detector response and add it to the strain signal = detector.project_wave(hp, hc, inj['ra'], inj['dec'], inj['polarization']) return signal
def acoustic_similarity_directories(directories, analysis_function, distance_function, stop_check=None, call_back=None, multiprocessing=True): """ Analyze many directories. Parameters ---------- directories : list of str List of fully specified paths to the directories to be analyzed """ files = [] if call_back is not None: call_back('Mapping directories...') call_back(0, len(directories)) cur = 0 for d in directories: if not os.path.isdir(d): continue if stop_check is not None and stop_check(): return if call_back is not None: cur += 1 if cur % 3 == 0: call_back(cur) files += [os.path.join(d, x) for x in os.listdir(d) if x.lower().endswith('.wav')] if len(files) == 0: raise (ConchError("The directories specified do not contain any wav files")) if call_back is not None: call_back('Mapping directories...') call_back(0, len(files) * len(files)) cur = 0 path_mapping = list() for x in files: for y in files: if stop_check is not None and stop_check(): return if call_back is not None: cur += 1 if cur % 20 == 0: call_back(cur) if not x.lower().endswith('.wav'): continue if not y.lower().endswith('.wav'): continue if x == y: continue path_mapping.append((x, y)) result = acoustic_similarity_mapping(path_mapping, analysis_function, distance_function, stop_check, call_back, multiprocessing) return result
Analyze many directories. Parameters ---------- directories : list of str List of fully specified paths to the directories to be analyzed
Below is the the instruction that describes the task: ### Input: Analyze many directories. Parameters ---------- directories : list of str List of fully specified paths to the directories to be analyzed ### Response: def acoustic_similarity_directories(directories, analysis_function, distance_function, stop_check=None, call_back=None, multiprocessing=True): """ Analyze many directories. Parameters ---------- directories : list of str List of fully specified paths to the directories to be analyzed """ files = [] if call_back is not None: call_back('Mapping directories...') call_back(0, len(directories)) cur = 0 for d in directories: if not os.path.isdir(d): continue if stop_check is not None and stop_check(): return if call_back is not None: cur += 1 if cur % 3 == 0: call_back(cur) files += [os.path.join(d, x) for x in os.listdir(d) if x.lower().endswith('.wav')] if len(files) == 0: raise (ConchError("The directories specified do not contain any wav files")) if call_back is not None: call_back('Mapping directories...') call_back(0, len(files) * len(files)) cur = 0 path_mapping = list() for x in files: for y in files: if stop_check is not None and stop_check(): return if call_back is not None: cur += 1 if cur % 20 == 0: call_back(cur) if not x.lower().endswith('.wav'): continue if not y.lower().endswith('.wav'): continue if x == y: continue path_mapping.append((x, y)) result = acoustic_similarity_mapping(path_mapping, analysis_function, distance_function, stop_check, call_back, multiprocessing) return result
def clear(self): """ convinience function to empty this fastrun container """ self.prop_dt_map = dict() self.prop_data = dict() self.rev_lookup = defaultdict(set)
convinience function to empty this fastrun container
Below is the the instruction that describes the task: ### Input: convinience function to empty this fastrun container ### Response: def clear(self): """ convinience function to empty this fastrun container """ self.prop_dt_map = dict() self.prop_data = dict() self.rev_lookup = defaultdict(set)
def flush_all(self, conn): """Its effect is to invalidate all existing items immediately""" command = b'flush_all\r\n' response = yield from self._execute_simple_command( conn, command) if const.OK != response: raise ClientException('Memcached flush_all failed', response)
Its effect is to invalidate all existing items immediately
Below is the the instruction that describes the task: ### Input: Its effect is to invalidate all existing items immediately ### Response: def flush_all(self, conn): """Its effect is to invalidate all existing items immediately""" command = b'flush_all\r\n' response = yield from self._execute_simple_command( conn, command) if const.OK != response: raise ClientException('Memcached flush_all failed', response)
def spearmanr(x, y): """ Michiel de Hoon's library (available in BioPython or standalone as PyCluster) returns Spearman rsb which does include a tie correction. >>> x = [5.05, 6.75, 3.21, 2.66] >>> y = [1.65, 26.5, -5.93, 7.96] >>> z = [1.65, 2.64, 2.64, 6.95] >>> round(spearmanr(x, y), 4) 0.4 >>> round(spearmanr(x, z), 4) -0.6325 """ from scipy import stats if not x or not y: return 0 corr, pvalue = stats.spearmanr(x, y) return corr
Michiel de Hoon's library (available in BioPython or standalone as PyCluster) returns Spearman rsb which does include a tie correction. >>> x = [5.05, 6.75, 3.21, 2.66] >>> y = [1.65, 26.5, -5.93, 7.96] >>> z = [1.65, 2.64, 2.64, 6.95] >>> round(spearmanr(x, y), 4) 0.4 >>> round(spearmanr(x, z), 4) -0.6325
Below is the the instruction that describes the task: ### Input: Michiel de Hoon's library (available in BioPython or standalone as PyCluster) returns Spearman rsb which does include a tie correction. >>> x = [5.05, 6.75, 3.21, 2.66] >>> y = [1.65, 26.5, -5.93, 7.96] >>> z = [1.65, 2.64, 2.64, 6.95] >>> round(spearmanr(x, y), 4) 0.4 >>> round(spearmanr(x, z), 4) -0.6325 ### Response: def spearmanr(x, y): """ Michiel de Hoon's library (available in BioPython or standalone as PyCluster) returns Spearman rsb which does include a tie correction. >>> x = [5.05, 6.75, 3.21, 2.66] >>> y = [1.65, 26.5, -5.93, 7.96] >>> z = [1.65, 2.64, 2.64, 6.95] >>> round(spearmanr(x, y), 4) 0.4 >>> round(spearmanr(x, z), 4) -0.6325 """ from scipy import stats if not x or not y: return 0 corr, pvalue = stats.spearmanr(x, y) return corr
def get_profiles(self): """Returns set of profile names referenced in this Feature :returns: set of profile names """ out = set(x.profile for x in self.requires if x.profile) out.update(x.profile for x in self.removes if x.profile) return out
Returns set of profile names referenced in this Feature :returns: set of profile names
Below is the the instruction that describes the task: ### Input: Returns set of profile names referenced in this Feature :returns: set of profile names ### Response: def get_profiles(self): """Returns set of profile names referenced in this Feature :returns: set of profile names """ out = set(x.profile for x in self.requires if x.profile) out.update(x.profile for x in self.removes if x.profile) return out
def group_dashboard(request, group_slug): """Dashboard for managing a TenantGroup.""" groups = get_user_groups(request.user) group = get_object_or_404(groups, slug=group_slug) tenants = get_user_tenants(request.user, group) can_edit_group = request.user.has_perm('multitenancy.change_tenantgroup', group) count = len(tenants) if count == 1: # Redirect to the detail page for this tenant return redirect(tenants[0]) context = { 'group': group, 'tenants': tenants, 'count': count, 'can_edit_group': can_edit_group, } return render(request, 'multitenancy/group-detail.html', context)
Dashboard for managing a TenantGroup.
Below is the the instruction that describes the task: ### Input: Dashboard for managing a TenantGroup. ### Response: def group_dashboard(request, group_slug): """Dashboard for managing a TenantGroup.""" groups = get_user_groups(request.user) group = get_object_or_404(groups, slug=group_slug) tenants = get_user_tenants(request.user, group) can_edit_group = request.user.has_perm('multitenancy.change_tenantgroup', group) count = len(tenants) if count == 1: # Redirect to the detail page for this tenant return redirect(tenants[0]) context = { 'group': group, 'tenants': tenants, 'count': count, 'can_edit_group': can_edit_group, } return render(request, 'multitenancy/group-detail.html', context)
def broadcast(self, event): """Broadcasts an event either to all users or clients, depending on event flag""" try: if event.broadcasttype == "users": if len(self._users) > 0: self.log("Broadcasting to all users:", event.content, lvl=network) for useruuid in self._users.keys(): self.fireEvent( send(useruuid, event.content, sendtype="user")) # else: # self.log("Not broadcasting, no users connected.", # lvl=debug) elif event.broadcasttype == "clients": if len(self._clients) > 0: self.log("Broadcasting to all clients: ", event.content, lvl=network) for client in self._clients.values(): self.fireEvent(write(client.sock, event.content), "wsserver") # else: # self.log("Not broadcasting, no clients # connected.", # lvl=debug) elif event.broadcasttype == "socks": if len(self._sockets) > 0: self.log("Emergency?! Broadcasting to all sockets: ", event.content) for sock in self._sockets: self.fireEvent(write(sock, event.content), "wsserver") # else: # self.log("Not broadcasting, no sockets # connected.", # lvl=debug) except Exception as e: self.log("Error during broadcast: ", e, type(e), lvl=critical)
Broadcasts an event either to all users or clients, depending on event flag
Below is the the instruction that describes the task: ### Input: Broadcasts an event either to all users or clients, depending on event flag ### Response: def broadcast(self, event): """Broadcasts an event either to all users or clients, depending on event flag""" try: if event.broadcasttype == "users": if len(self._users) > 0: self.log("Broadcasting to all users:", event.content, lvl=network) for useruuid in self._users.keys(): self.fireEvent( send(useruuid, event.content, sendtype="user")) # else: # self.log("Not broadcasting, no users connected.", # lvl=debug) elif event.broadcasttype == "clients": if len(self._clients) > 0: self.log("Broadcasting to all clients: ", event.content, lvl=network) for client in self._clients.values(): self.fireEvent(write(client.sock, event.content), "wsserver") # else: # self.log("Not broadcasting, no clients # connected.", # lvl=debug) elif event.broadcasttype == "socks": if len(self._sockets) > 0: self.log("Emergency?! Broadcasting to all sockets: ", event.content) for sock in self._sockets: self.fireEvent(write(sock, event.content), "wsserver") # else: # self.log("Not broadcasting, no sockets # connected.", # lvl=debug) except Exception as e: self.log("Error during broadcast: ", e, type(e), lvl=critical)
def BTC(cpu, dest, src): """ Bit test and complement. Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and complements the selected bit in the bit string. :param cpu: current CPU. :param dest: bit base operand. :param src: bit offset operand. """ if dest.type == 'register': value = dest.read() pos = src.read() % dest.size cpu.CF = value & (1 << pos) == 1 << pos dest.write(value ^ (1 << pos)) elif dest.type == 'memory': addr, pos = cpu._getMemoryBit(dest, src) base, size, ty = cpu.get_descriptor(cpu.DS) addr += base value = cpu.read_int(addr, 8) cpu.CF = value & (1 << pos) == 1 << pos value = value ^ (1 << pos) cpu.write_int(addr, value, 8) else: raise NotImplementedError(f"Unknown operand for BTC: {dest.type}")
Bit test and complement. Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and complements the selected bit in the bit string. :param cpu: current CPU. :param dest: bit base operand. :param src: bit offset operand.
Below is the the instruction that describes the task: ### Input: Bit test and complement. Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and complements the selected bit in the bit string. :param cpu: current CPU. :param dest: bit base operand. :param src: bit offset operand. ### Response: def BTC(cpu, dest, src): """ Bit test and complement. Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and complements the selected bit in the bit string. :param cpu: current CPU. :param dest: bit base operand. :param src: bit offset operand. """ if dest.type == 'register': value = dest.read() pos = src.read() % dest.size cpu.CF = value & (1 << pos) == 1 << pos dest.write(value ^ (1 << pos)) elif dest.type == 'memory': addr, pos = cpu._getMemoryBit(dest, src) base, size, ty = cpu.get_descriptor(cpu.DS) addr += base value = cpu.read_int(addr, 8) cpu.CF = value & (1 << pos) == 1 << pos value = value ^ (1 << pos) cpu.write_int(addr, value, 8) else: raise NotImplementedError(f"Unknown operand for BTC: {dest.type}")
def get(self, date=datetime.date.today(), country=None): """ Get the CPI value for a specific time. Defaults to today. This uses the closest method internally but sets limit to one day. """ if not country: country = self.country if country == "all": raise ValueError("You need to specify a country") if not isinstance(date, str) and not isinstance(date, int): date = date.year cpi = self.data.get(country.upper(), {}).get(str(date)) if not cpi: raise ValueError("Missing CPI data for {} for {}".format( country, date)) return CPIResult(date=date, value=cpi)
Get the CPI value for a specific time. Defaults to today. This uses the closest method internally but sets limit to one day.
Below is the the instruction that describes the task: ### Input: Get the CPI value for a specific time. Defaults to today. This uses the closest method internally but sets limit to one day. ### Response: def get(self, date=datetime.date.today(), country=None): """ Get the CPI value for a specific time. Defaults to today. This uses the closest method internally but sets limit to one day. """ if not country: country = self.country if country == "all": raise ValueError("You need to specify a country") if not isinstance(date, str) and not isinstance(date, int): date = date.year cpi = self.data.get(country.upper(), {}).get(str(date)) if not cpi: raise ValueError("Missing CPI data for {} for {}".format( country, date)) return CPIResult(date=date, value=cpi)
def check(f): """ Wraps the function with a decorator that runs all of the pre/post conditions. """ if hasattr(f, 'wrapped_fn'): return f else: @wraps(f) def decorated(*args, **kwargs): return check_conditions(f, args, kwargs) decorated.wrapped_fn = f return decorated
Wraps the function with a decorator that runs all of the pre/post conditions.
Below is the the instruction that describes the task: ### Input: Wraps the function with a decorator that runs all of the pre/post conditions. ### Response: def check(f): """ Wraps the function with a decorator that runs all of the pre/post conditions. """ if hasattr(f, 'wrapped_fn'): return f else: @wraps(f) def decorated(*args, **kwargs): return check_conditions(f, args, kwargs) decorated.wrapped_fn = f return decorated
def upload(self, file_path, timeout=-1): """ Upload an SPP ISO image file or a hotfix file to the appliance. The API supports upload of one hotfix at a time into the system. For the successful upload of a hotfix, ensure its original name and extension are not altered. Args: file_path: Full path to firmware. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: dict: Information about the updated firmware bundle. """ return self._client.upload(file_path, timeout=timeout)
Upload an SPP ISO image file or a hotfix file to the appliance. The API supports upload of one hotfix at a time into the system. For the successful upload of a hotfix, ensure its original name and extension are not altered. Args: file_path: Full path to firmware. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: dict: Information about the updated firmware bundle.
Below is the the instruction that describes the task: ### Input: Upload an SPP ISO image file or a hotfix file to the appliance. The API supports upload of one hotfix at a time into the system. For the successful upload of a hotfix, ensure its original name and extension are not altered. Args: file_path: Full path to firmware. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: dict: Information about the updated firmware bundle. ### Response: def upload(self, file_path, timeout=-1): """ Upload an SPP ISO image file or a hotfix file to the appliance. The API supports upload of one hotfix at a time into the system. For the successful upload of a hotfix, ensure its original name and extension are not altered. Args: file_path: Full path to firmware. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: dict: Information about the updated firmware bundle. """ return self._client.upload(file_path, timeout=timeout)
def _load_wm_map(exclude_auto=None): """Load an ontology map for world models. exclude_auto : None or list[tuple] A list of ontology mappings for which automated mappings should be excluded, e.g. [(HUME, UN)] would result in not using mappings from HUME to UN. """ exclude_auto = [] if not exclude_auto else exclude_auto path_here = os.path.dirname(os.path.abspath(__file__)) ontomap_file = os.path.join(path_here, '../resources/wm_ontomap.tsv') mappings = {} def make_hume_prefix_map(): hume_ont = os.path.join(path_here, '../sources/hume/hume_ontology.rdf') graph = rdflib.Graph() graph.parse(os.path.abspath(hume_ont), format='nt') entry_map = {} for node in graph.all_nodes(): entry = node.split('#')[1] # Handle "event" and other top-level entries if '/' not in entry: entry_map[entry] = None continue parts = entry.split('/') prefix, real_entry = parts[0], '/'.join(parts[1:]) entry_map[real_entry] = prefix return entry_map hume_prefix_map = make_hume_prefix_map() def add_hume_prefix(hume_entry): """We need to do this because the HUME prefixes are missing""" prefix = hume_prefix_map[hume_entry] return '%s/%s' % (prefix, hume_entry) def map_entry(reader, entry): """Remap the readers and entries to match our internal standards.""" if reader == 'eidos': namespace = 'UN' entry = entry.replace(' ', '_') entry_id = entry elif reader == 'BBN': namespace = 'HUME' entry = entry.replace(' ', '_') entry_id = add_hume_prefix(entry) elif reader == 'sofia': namespace = 'SOFIA' # First chop off the Event/Entity prefix parts = entry.split('/')[1:] # Now we split each part by underscore and capitalize # each piece of each part parts = ['_'.join([p.capitalize() for p in part.split('_')]) for part in parts] # Finally we stick the entry back together separated by slashes entry_id = '/'.join(parts) else: return reader, entry return namespace, entry_id with open(ontomap_file, 'r') as fh: for line in fh.readlines(): # Get each entry from the line s, se, t, te, score = line.strip().split('\t') score = float(score) # Map the entries to our internal naming standards s, se = map_entry(s, se) t, te = map_entry(t, te) # Skip automated mappings when they should be excluded if (s, t) not in exclude_auto: # We first do the forward mapping if (s, se, t) in mappings: if mappings[(s, se, t)][1] < score: mappings[(s, se, t)] = ((t, te), score) else: mappings[(s, se, t)] = ((t, te), score) # Then we add the reverse mapping if (t, s) not in exclude_auto: if (t, te, s) in mappings: if mappings[(t, te, s)][1] < score: mappings[(t, te, s)] = ((s, se), score) else: mappings[(t, te, s)] = ((s, se), score) ontomap = [] for s, ts in mappings.items(): ontomap.append(((s[0], s[1]), ts[0], ts[1])) # Now apply the Hume -> Eidos override override_file = os.path.join(path_here, '../resources/wm_ontomap.bbn.tsv') override_mappings = [] with open(override_file, 'r') as fh: for row in fh.readlines(): if 'BBN' not in row: continue # Order is target first, source second _, te, _, se = row.strip().split('\t') # Map the entries to our internal naming standards s = 'HUME' t = 'UN' se = se.replace(' ', '_') te = te.replace(' ', '_') if se.startswith('/'): se = se[1:] override_mappings.append((s, se, t, te)) for s, se, t, te in override_mappings: found = False for idx, ((so, seo), (eo, teo), score) in enumerate(ontomap): if (s, se, t) == (so, seo, eo): # Override when a match is found ontomap[idx] = ((s, se), (t, te), 1.0) found = True if not found: ontomap.append(((s, se), (t, te), 1.0)) return ontomap
Load an ontology map for world models. exclude_auto : None or list[tuple] A list of ontology mappings for which automated mappings should be excluded, e.g. [(HUME, UN)] would result in not using mappings from HUME to UN.
Below is the the instruction that describes the task: ### Input: Load an ontology map for world models. exclude_auto : None or list[tuple] A list of ontology mappings for which automated mappings should be excluded, e.g. [(HUME, UN)] would result in not using mappings from HUME to UN. ### Response: def _load_wm_map(exclude_auto=None): """Load an ontology map for world models. exclude_auto : None or list[tuple] A list of ontology mappings for which automated mappings should be excluded, e.g. [(HUME, UN)] would result in not using mappings from HUME to UN. """ exclude_auto = [] if not exclude_auto else exclude_auto path_here = os.path.dirname(os.path.abspath(__file__)) ontomap_file = os.path.join(path_here, '../resources/wm_ontomap.tsv') mappings = {} def make_hume_prefix_map(): hume_ont = os.path.join(path_here, '../sources/hume/hume_ontology.rdf') graph = rdflib.Graph() graph.parse(os.path.abspath(hume_ont), format='nt') entry_map = {} for node in graph.all_nodes(): entry = node.split('#')[1] # Handle "event" and other top-level entries if '/' not in entry: entry_map[entry] = None continue parts = entry.split('/') prefix, real_entry = parts[0], '/'.join(parts[1:]) entry_map[real_entry] = prefix return entry_map hume_prefix_map = make_hume_prefix_map() def add_hume_prefix(hume_entry): """We need to do this because the HUME prefixes are missing""" prefix = hume_prefix_map[hume_entry] return '%s/%s' % (prefix, hume_entry) def map_entry(reader, entry): """Remap the readers and entries to match our internal standards.""" if reader == 'eidos': namespace = 'UN' entry = entry.replace(' ', '_') entry_id = entry elif reader == 'BBN': namespace = 'HUME' entry = entry.replace(' ', '_') entry_id = add_hume_prefix(entry) elif reader == 'sofia': namespace = 'SOFIA' # First chop off the Event/Entity prefix parts = entry.split('/')[1:] # Now we split each part by underscore and capitalize # each piece of each part parts = ['_'.join([p.capitalize() for p in part.split('_')]) for part in parts] # Finally we stick the entry back together separated by slashes entry_id = '/'.join(parts) else: return reader, entry return namespace, entry_id with open(ontomap_file, 'r') as fh: for line in fh.readlines(): # Get each entry from the line s, se, t, te, score = line.strip().split('\t') score = float(score) # Map the entries to our internal naming standards s, se = map_entry(s, se) t, te = map_entry(t, te) # Skip automated mappings when they should be excluded if (s, t) not in exclude_auto: # We first do the forward mapping if (s, se, t) in mappings: if mappings[(s, se, t)][1] < score: mappings[(s, se, t)] = ((t, te), score) else: mappings[(s, se, t)] = ((t, te), score) # Then we add the reverse mapping if (t, s) not in exclude_auto: if (t, te, s) in mappings: if mappings[(t, te, s)][1] < score: mappings[(t, te, s)] = ((s, se), score) else: mappings[(t, te, s)] = ((s, se), score) ontomap = [] for s, ts in mappings.items(): ontomap.append(((s[0], s[1]), ts[0], ts[1])) # Now apply the Hume -> Eidos override override_file = os.path.join(path_here, '../resources/wm_ontomap.bbn.tsv') override_mappings = [] with open(override_file, 'r') as fh: for row in fh.readlines(): if 'BBN' not in row: continue # Order is target first, source second _, te, _, se = row.strip().split('\t') # Map the entries to our internal naming standards s = 'HUME' t = 'UN' se = se.replace(' ', '_') te = te.replace(' ', '_') if se.startswith('/'): se = se[1:] override_mappings.append((s, se, t, te)) for s, se, t, te in override_mappings: found = False for idx, ((so, seo), (eo, teo), score) in enumerate(ontomap): if (s, se, t) == (so, seo, eo): # Override when a match is found ontomap[idx] = ((s, se), (t, te), 1.0) found = True if not found: ontomap.append(((s, se), (t, te), 1.0)) return ontomap
def unregister_transform(self, node_class, transform, predicate=None): """Unregister the given transform.""" self.transforms[node_class].remove((transform, predicate))
Unregister the given transform.
Below is the the instruction that describes the task: ### Input: Unregister the given transform. ### Response: def unregister_transform(self, node_class, transform, predicate=None): """Unregister the given transform.""" self.transforms[node_class].remove((transform, predicate))
def cwd_filt2(depth): """Return the last depth elements of the current working directory. $HOME is always replaced with '~'. If depth==0, the full path is returned.""" full_cwd = os.getcwdu() cwd = full_cwd.replace(HOME,"~").split(os.sep) if '~' in cwd and len(cwd) == depth+1: depth += 1 drivepart = '' if sys.platform == 'win32' and len(cwd) > depth: drivepart = os.path.splitdrive(full_cwd)[0] out = drivepart + '/'.join(cwd[-depth:]) return out or os.sep
Return the last depth elements of the current working directory. $HOME is always replaced with '~'. If depth==0, the full path is returned.
Below is the the instruction that describes the task: ### Input: Return the last depth elements of the current working directory. $HOME is always replaced with '~'. If depth==0, the full path is returned. ### Response: def cwd_filt2(depth): """Return the last depth elements of the current working directory. $HOME is always replaced with '~'. If depth==0, the full path is returned.""" full_cwd = os.getcwdu() cwd = full_cwd.replace(HOME,"~").split(os.sep) if '~' in cwd and len(cwd) == depth+1: depth += 1 drivepart = '' if sys.platform == 'win32' and len(cwd) > depth: drivepart = os.path.splitdrive(full_cwd)[0] out = drivepart + '/'.join(cwd[-depth:]) return out or os.sep
def cancel(self): """ Cancels an event in Exchange. :: event = service.calendar().get_event(id='KEY HERE') event.cancel() This will send notifications to anyone who has not declined the meeting. """ if not self.id: raise TypeError(u"You can't delete an event that hasn't been created yet.") self.refresh_change_key() self.service.send(soap_request.delete_event(self)) # TODO rsanders high - check return status to make sure it was actually sent return None
Cancels an event in Exchange. :: event = service.calendar().get_event(id='KEY HERE') event.cancel() This will send notifications to anyone who has not declined the meeting.
Below is the the instruction that describes the task: ### Input: Cancels an event in Exchange. :: event = service.calendar().get_event(id='KEY HERE') event.cancel() This will send notifications to anyone who has not declined the meeting. ### Response: def cancel(self): """ Cancels an event in Exchange. :: event = service.calendar().get_event(id='KEY HERE') event.cancel() This will send notifications to anyone who has not declined the meeting. """ if not self.id: raise TypeError(u"You can't delete an event that hasn't been created yet.") self.refresh_change_key() self.service.send(soap_request.delete_event(self)) # TODO rsanders high - check return status to make sure it was actually sent return None
def recovery(self, using=None, **kwargs): """ The indices recovery API provides insight into on-going shard recoveries for the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.recovery`` unchanged. """ return self._get_connection(using).indices.recovery(index=self._name, **kwargs)
The indices recovery API provides insight into on-going shard recoveries for the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.recovery`` unchanged.
Below is the the instruction that describes the task: ### Input: The indices recovery API provides insight into on-going shard recoveries for the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.recovery`` unchanged. ### Response: def recovery(self, using=None, **kwargs): """ The indices recovery API provides insight into on-going shard recoveries for the index. Any additional keyword arguments will be passed to ``Elasticsearch.indices.recovery`` unchanged. """ return self._get_connection(using).indices.recovery(index=self._name, **kwargs)
def getLabelByName(self, name): """Gets a label widget by it component name :param name: name of the AbstractStimulusComponent which this label is named after :type name: str :returns: :class:`DragLabel<sparkle.gui.drag_label.DragLabel>` """ name = name.lower() if name in self.stimLabels: return self.stimLabels[name] else: return None
Gets a label widget by it component name :param name: name of the AbstractStimulusComponent which this label is named after :type name: str :returns: :class:`DragLabel<sparkle.gui.drag_label.DragLabel>`
Below is the the instruction that describes the task: ### Input: Gets a label widget by it component name :param name: name of the AbstractStimulusComponent which this label is named after :type name: str :returns: :class:`DragLabel<sparkle.gui.drag_label.DragLabel>` ### Response: def getLabelByName(self, name): """Gets a label widget by it component name :param name: name of the AbstractStimulusComponent which this label is named after :type name: str :returns: :class:`DragLabel<sparkle.gui.drag_label.DragLabel>` """ name = name.lower() if name in self.stimLabels: return self.stimLabels[name] else: return None
def _gen_doc(cls, summary, full_name, identifier, example_call, doc_str, show_examples): """Generate the documentation docstring for a PlotMethod""" # leave out the first argument example_call = ', '.join(map(str.strip, example_call.split(',')[1:])) ret = docstrings.dedents(""" %s This plotting method adds data arrays and plots them via :class:`%s` plotters To plot a variable in this dataset, type:: >>> ds.psy.plot.%s(%s) %s""" % (summary, full_name, identifier, example_call, doc_str)) if show_examples: ret += '\n\n' + cls._gen_examples(identifier) return ret
Generate the documentation docstring for a PlotMethod
Below is the the instruction that describes the task: ### Input: Generate the documentation docstring for a PlotMethod ### Response: def _gen_doc(cls, summary, full_name, identifier, example_call, doc_str, show_examples): """Generate the documentation docstring for a PlotMethod""" # leave out the first argument example_call = ', '.join(map(str.strip, example_call.split(',')[1:])) ret = docstrings.dedents(""" %s This plotting method adds data arrays and plots them via :class:`%s` plotters To plot a variable in this dataset, type:: >>> ds.psy.plot.%s(%s) %s""" % (summary, full_name, identifier, example_call, doc_str)) if show_examples: ret += '\n\n' + cls._gen_examples(identifier) return ret
def parse_name_altree(record): """Parse NAME structure assuming ALTREE dialect. In ALTREE dialect maiden name (if present) is saved as SURN sub-record and is also appended to family name in parens. Given name is saved in GIVN sub-record. Few examples: No maiden name: 1 NAME John /Smith/ 2 GIVN John With maiden name: 1 NAME Jane /Smith (Ivanova)/ 2 GIVN Jane 2 SURN Ivanova No maiden name 1 NAME Mers /Daimler (-Benz)/ 2 GIVN Mers Because family name can also contain parens it's not enough to parse family name and guess maiden name from it, we also have to check for SURN record. ALTREE also replaces empty names with question mark, we undo that too. :param record: NAME record :return: tuple with 3 or 4 elements, first three elements of tuple are the same as returned from :py:meth:`split_name` method, fourth element (if present) denotes maiden name. """ name_tuple = split_name(record.value) if name_tuple[1] == '?': name_tuple = (name_tuple[0], '', name_tuple[2]) maiden = record.sub_tag_value("SURN") if maiden: # strip "(maiden)" from family name ending = '(' + maiden + ')' surname = name_tuple[1] if surname.endswith(ending): surname = surname[:-len(ending)].rstrip() if surname == '?': surname = '' name_tuple = (name_tuple[0], surname, name_tuple[2], maiden) return name_tuple
Parse NAME structure assuming ALTREE dialect. In ALTREE dialect maiden name (if present) is saved as SURN sub-record and is also appended to family name in parens. Given name is saved in GIVN sub-record. Few examples: No maiden name: 1 NAME John /Smith/ 2 GIVN John With maiden name: 1 NAME Jane /Smith (Ivanova)/ 2 GIVN Jane 2 SURN Ivanova No maiden name 1 NAME Mers /Daimler (-Benz)/ 2 GIVN Mers Because family name can also contain parens it's not enough to parse family name and guess maiden name from it, we also have to check for SURN record. ALTREE also replaces empty names with question mark, we undo that too. :param record: NAME record :return: tuple with 3 or 4 elements, first three elements of tuple are the same as returned from :py:meth:`split_name` method, fourth element (if present) denotes maiden name.
Below is the the instruction that describes the task: ### Input: Parse NAME structure assuming ALTREE dialect. In ALTREE dialect maiden name (if present) is saved as SURN sub-record and is also appended to family name in parens. Given name is saved in GIVN sub-record. Few examples: No maiden name: 1 NAME John /Smith/ 2 GIVN John With maiden name: 1 NAME Jane /Smith (Ivanova)/ 2 GIVN Jane 2 SURN Ivanova No maiden name 1 NAME Mers /Daimler (-Benz)/ 2 GIVN Mers Because family name can also contain parens it's not enough to parse family name and guess maiden name from it, we also have to check for SURN record. ALTREE also replaces empty names with question mark, we undo that too. :param record: NAME record :return: tuple with 3 or 4 elements, first three elements of tuple are the same as returned from :py:meth:`split_name` method, fourth element (if present) denotes maiden name. ### Response: def parse_name_altree(record): """Parse NAME structure assuming ALTREE dialect. In ALTREE dialect maiden name (if present) is saved as SURN sub-record and is also appended to family name in parens. Given name is saved in GIVN sub-record. Few examples: No maiden name: 1 NAME John /Smith/ 2 GIVN John With maiden name: 1 NAME Jane /Smith (Ivanova)/ 2 GIVN Jane 2 SURN Ivanova No maiden name 1 NAME Mers /Daimler (-Benz)/ 2 GIVN Mers Because family name can also contain parens it's not enough to parse family name and guess maiden name from it, we also have to check for SURN record. ALTREE also replaces empty names with question mark, we undo that too. :param record: NAME record :return: tuple with 3 or 4 elements, first three elements of tuple are the same as returned from :py:meth:`split_name` method, fourth element (if present) denotes maiden name. """ name_tuple = split_name(record.value) if name_tuple[1] == '?': name_tuple = (name_tuple[0], '', name_tuple[2]) maiden = record.sub_tag_value("SURN") if maiden: # strip "(maiden)" from family name ending = '(' + maiden + ')' surname = name_tuple[1] if surname.endswith(ending): surname = surname[:-len(ending)].rstrip() if surname == '?': surname = '' name_tuple = (name_tuple[0], surname, name_tuple[2], maiden) return name_tuple
def _coerce_json_to_collection(self, json_repr): """Use to ensure that a JSON string (if found) is parsed to the equivalent dict in python. If the incoming value is already parsed, do nothing. If a string fails to parse, return None.""" if isinstance(json_repr, dict): collection = json_repr else: try: collection = anyjson.loads(json_repr) except: _LOG.warn('> invalid JSON (failed anyjson parsing)') return None return collection
Use to ensure that a JSON string (if found) is parsed to the equivalent dict in python. If the incoming value is already parsed, do nothing. If a string fails to parse, return None.
Below is the the instruction that describes the task: ### Input: Use to ensure that a JSON string (if found) is parsed to the equivalent dict in python. If the incoming value is already parsed, do nothing. If a string fails to parse, return None. ### Response: def _coerce_json_to_collection(self, json_repr): """Use to ensure that a JSON string (if found) is parsed to the equivalent dict in python. If the incoming value is already parsed, do nothing. If a string fails to parse, return None.""" if isinstance(json_repr, dict): collection = json_repr else: try: collection = anyjson.loads(json_repr) except: _LOG.warn('> invalid JSON (failed anyjson parsing)') return None return collection
def getDirectory(*args): """ Normalizes the getDirectory method between the different Qt wrappers. :return (<str> filename, <bool> accepted) """ result = QtGui.QFileDialog.getDirectory(*args) # PyQt4 returns just a string if type(result) is not tuple: return result, bool(result) # PySide returns a tuple of str, bool else: return result
Normalizes the getDirectory method between the different Qt wrappers. :return (<str> filename, <bool> accepted)
Below is the the instruction that describes the task: ### Input: Normalizes the getDirectory method between the different Qt wrappers. :return (<str> filename, <bool> accepted) ### Response: def getDirectory(*args): """ Normalizes the getDirectory method between the different Qt wrappers. :return (<str> filename, <bool> accepted) """ result = QtGui.QFileDialog.getDirectory(*args) # PyQt4 returns just a string if type(result) is not tuple: return result, bool(result) # PySide returns a tuple of str, bool else: return result
def get_configuration_set_by_id(self, id): '''Finds a configuration set in the component by its ID. @param id The ID of the configuration set to search for. @return The ConfigurationSet object for the set, or None if it was not found. ''' for cs in self.configuration_sets: if cs.id == id: return cs return None
Finds a configuration set in the component by its ID. @param id The ID of the configuration set to search for. @return The ConfigurationSet object for the set, or None if it was not found.
Below is the the instruction that describes the task: ### Input: Finds a configuration set in the component by its ID. @param id The ID of the configuration set to search for. @return The ConfigurationSet object for the set, or None if it was not found. ### Response: def get_configuration_set_by_id(self, id): '''Finds a configuration set in the component by its ID. @param id The ID of the configuration set to search for. @return The ConfigurationSet object for the set, or None if it was not found. ''' for cs in self.configuration_sets: if cs.id == id: return cs return None
def onBatchRejected(self, ledger_id): """ A batch of requests has been rejected, if stateRoot is None, reject the current batch. :param ledger_id: :param stateRoot: state root after the batch was created :return: """ if ledger_id == POOL_LEDGER_ID: if isinstance(self.poolManager, TxnPoolManager): self.get_req_handler(POOL_LEDGER_ID).onBatchRejected() elif self.get_req_handler(ledger_id): self.get_req_handler(ledger_id).onBatchRejected() else: logger.debug('{} did not know how to handle for ledger {}'.format(self, ledger_id)) self.audit_handler.post_batch_rejected(ledger_id) self.execute_hook(NodeHooks.POST_BATCH_REJECTED, ledger_id)
A batch of requests has been rejected, if stateRoot is None, reject the current batch. :param ledger_id: :param stateRoot: state root after the batch was created :return:
Below is the the instruction that describes the task: ### Input: A batch of requests has been rejected, if stateRoot is None, reject the current batch. :param ledger_id: :param stateRoot: state root after the batch was created :return: ### Response: def onBatchRejected(self, ledger_id): """ A batch of requests has been rejected, if stateRoot is None, reject the current batch. :param ledger_id: :param stateRoot: state root after the batch was created :return: """ if ledger_id == POOL_LEDGER_ID: if isinstance(self.poolManager, TxnPoolManager): self.get_req_handler(POOL_LEDGER_ID).onBatchRejected() elif self.get_req_handler(ledger_id): self.get_req_handler(ledger_id).onBatchRejected() else: logger.debug('{} did not know how to handle for ledger {}'.format(self, ledger_id)) self.audit_handler.post_batch_rejected(ledger_id) self.execute_hook(NodeHooks.POST_BATCH_REJECTED, ledger_id)
def getR(self, i=5, j=6): """ return transport matrix element, indexed by i, j, be default, return dispersion value, i.e. getR(5,6) in [m] :param i: row index, with initial index of 1 :param j: col indx, with initial index of 1 :return: transport matrix element """ if self.refresh is True: self.getMatrix() return self.transM[i - 1, j - 1]
return transport matrix element, indexed by i, j, be default, return dispersion value, i.e. getR(5,6) in [m] :param i: row index, with initial index of 1 :param j: col indx, with initial index of 1 :return: transport matrix element
Below is the the instruction that describes the task: ### Input: return transport matrix element, indexed by i, j, be default, return dispersion value, i.e. getR(5,6) in [m] :param i: row index, with initial index of 1 :param j: col indx, with initial index of 1 :return: transport matrix element ### Response: def getR(self, i=5, j=6): """ return transport matrix element, indexed by i, j, be default, return dispersion value, i.e. getR(5,6) in [m] :param i: row index, with initial index of 1 :param j: col indx, with initial index of 1 :return: transport matrix element """ if self.refresh is True: self.getMatrix() return self.transM[i - 1, j - 1]
def dynamic_content_item_variant_delete(self, item_id, id, **kwargs): "https://developer.zendesk.com/rest_api/docs/core/dynamic_content#delete-variant" api_path = "/api/v2/dynamic_content/items/{item_id}/variants/{id}.json" api_path = api_path.format(item_id=item_id, id=id) return self.call(api_path, method="DELETE", **kwargs)
https://developer.zendesk.com/rest_api/docs/core/dynamic_content#delete-variant
Below is the the instruction that describes the task: ### Input: https://developer.zendesk.com/rest_api/docs/core/dynamic_content#delete-variant ### Response: def dynamic_content_item_variant_delete(self, item_id, id, **kwargs): "https://developer.zendesk.com/rest_api/docs/core/dynamic_content#delete-variant" api_path = "/api/v2/dynamic_content/items/{item_id}/variants/{id}.json" api_path = api_path.format(item_id=item_id, id=id) return self.call(api_path, method="DELETE", **kwargs)
def _read_linguas_from_files(env, linguas_files=None): """ Parse `LINGUAS` file and return list of extracted languages """ import SCons.Util import SCons.Environment global _re_comment global _re_lang if not SCons.Util.is_List(linguas_files) \ and not SCons.Util.is_String(linguas_files) \ and not isinstance(linguas_files, SCons.Node.FS.Base) \ and linguas_files: # If, linguas_files==True or such, then read 'LINGUAS' file. linguas_files = ['LINGUAS'] if linguas_files is None: return [] fnodes = env.arg2nodes(linguas_files) linguas = [] for fnode in fnodes: contents = _re_comment.sub("", fnode.get_text_contents()) ls = [l for l in _re_lang.findall(contents) if l] linguas.extend(ls) return linguas
Parse `LINGUAS` file and return list of extracted languages
Below is the the instruction that describes the task: ### Input: Parse `LINGUAS` file and return list of extracted languages ### Response: def _read_linguas_from_files(env, linguas_files=None): """ Parse `LINGUAS` file and return list of extracted languages """ import SCons.Util import SCons.Environment global _re_comment global _re_lang if not SCons.Util.is_List(linguas_files) \ and not SCons.Util.is_String(linguas_files) \ and not isinstance(linguas_files, SCons.Node.FS.Base) \ and linguas_files: # If, linguas_files==True or such, then read 'LINGUAS' file. linguas_files = ['LINGUAS'] if linguas_files is None: return [] fnodes = env.arg2nodes(linguas_files) linguas = [] for fnode in fnodes: contents = _re_comment.sub("", fnode.get_text_contents()) ls = [l for l in _re_lang.findall(contents) if l] linguas.extend(ls) return linguas
def winsorize(x, axis=0, limits=0.01): """ `Winsorize <https://en.wikipedia.org/wiki/Winsorizing>`_ values based on limits """ # operate on copy x = x.copy() if isinstance(x, pd.DataFrame): return x.apply(_winsorize_wrapper, axis=axis, args=(limits, )) else: return pd.Series(_winsorize_wrapper(x, limits).values, index=x.index)
`Winsorize <https://en.wikipedia.org/wiki/Winsorizing>`_ values based on limits
Below is the the instruction that describes the task: ### Input: `Winsorize <https://en.wikipedia.org/wiki/Winsorizing>`_ values based on limits ### Response: def winsorize(x, axis=0, limits=0.01): """ `Winsorize <https://en.wikipedia.org/wiki/Winsorizing>`_ values based on limits """ # operate on copy x = x.copy() if isinstance(x, pd.DataFrame): return x.apply(_winsorize_wrapper, axis=axis, args=(limits, )) else: return pd.Series(_winsorize_wrapper(x, limits).values, index=x.index)
def AFF4Path(self, client_urn): """Returns the AFF4 URN this pathspec will be stored under. Args: client_urn: A ClientURN. Returns: A urn that corresponds to this pathspec. Raises: ValueError: If pathspec is not of the correct type. """ # If the first level is OS and the second level is TSK its probably a mount # point resolution. We map it into the tsk branch. For example if we get: # path: \\\\.\\Volume{1234}\\ # pathtype: OS # mount_point: /c:/ # nested_path { # path: /windows/ # pathtype: TSK # } # We map this to aff4://client_id/fs/tsk/\\\\.\\Volume{1234}\\/windows/ if not self.HasField("pathtype"): raise ValueError("Can't determine AFF4 path without a valid pathtype.") first_component = self[0] dev = first_component.path if first_component.HasField("offset"): # We divide here just to get prettier numbers in the GUI dev += ":{}".format(first_component.offset // 512) if (len(self) > 1 and first_component.pathtype == PathSpec.PathType.OS and self[1].pathtype == PathSpec.PathType.TSK): result = [self.AFF4_PREFIXES[PathSpec.PathType.TSK], dev] # Skip the top level pathspec. start = 1 else: # For now just map the top level prefix based on the first pathtype result = [self.AFF4_PREFIXES[first_component.pathtype]] start = 0 for p in self[start]: component = p.path # The following encode different pathspec properties into the AFF4 path in # such a way that unique files on the client are mapped to unique URNs in # the AFF4 space. Note that this transformation does not need to be # reversible since we always use the PathSpec when accessing files on the # client. if p.HasField("offset"): component += ":{}".format(p.offset // 512) # Support ADS names. if p.HasField("stream_name"): component += ":" + p.stream_name result.append(component) return client_urn.Add("/".join(result))
Returns the AFF4 URN this pathspec will be stored under. Args: client_urn: A ClientURN. Returns: A urn that corresponds to this pathspec. Raises: ValueError: If pathspec is not of the correct type.
Below is the the instruction that describes the task: ### Input: Returns the AFF4 URN this pathspec will be stored under. Args: client_urn: A ClientURN. Returns: A urn that corresponds to this pathspec. Raises: ValueError: If pathspec is not of the correct type. ### Response: def AFF4Path(self, client_urn): """Returns the AFF4 URN this pathspec will be stored under. Args: client_urn: A ClientURN. Returns: A urn that corresponds to this pathspec. Raises: ValueError: If pathspec is not of the correct type. """ # If the first level is OS and the second level is TSK its probably a mount # point resolution. We map it into the tsk branch. For example if we get: # path: \\\\.\\Volume{1234}\\ # pathtype: OS # mount_point: /c:/ # nested_path { # path: /windows/ # pathtype: TSK # } # We map this to aff4://client_id/fs/tsk/\\\\.\\Volume{1234}\\/windows/ if not self.HasField("pathtype"): raise ValueError("Can't determine AFF4 path without a valid pathtype.") first_component = self[0] dev = first_component.path if first_component.HasField("offset"): # We divide here just to get prettier numbers in the GUI dev += ":{}".format(first_component.offset // 512) if (len(self) > 1 and first_component.pathtype == PathSpec.PathType.OS and self[1].pathtype == PathSpec.PathType.TSK): result = [self.AFF4_PREFIXES[PathSpec.PathType.TSK], dev] # Skip the top level pathspec. start = 1 else: # For now just map the top level prefix based on the first pathtype result = [self.AFF4_PREFIXES[first_component.pathtype]] start = 0 for p in self[start]: component = p.path # The following encode different pathspec properties into the AFF4 path in # such a way that unique files on the client are mapped to unique URNs in # the AFF4 space. Note that this transformation does not need to be # reversible since we always use the PathSpec when accessing files on the # client. if p.HasField("offset"): component += ":{}".format(p.offset // 512) # Support ADS names. if p.HasField("stream_name"): component += ":" + p.stream_name result.append(component) return client_urn.Add("/".join(result))
def absent( name, force=False, region=None, key=None, keyid=None, profile=None, remove_lc=False): ''' Ensure the named autoscale group is deleted. name Name of the autoscale group. force Force deletion of autoscale group. remove_lc Delete the launch config as well. region The region to connect to. key Secret key to be used. keyid Access key to be used. profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and keyid. ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} asg = __salt__['boto_asg.get_config'](name, region, key, keyid, profile) if asg is None: ret['result'] = False ret['comment'] = 'Failed to check autoscale group existence.' elif asg: if __opts__['test']: ret['comment'] = 'Autoscale group set to be deleted.' ret['result'] = None if remove_lc: msg = 'Launch configuration {0} is set to be deleted.'.format(asg['launch_config_name']) ret['comment'] = ' '.join([ret['comment'], msg]) return ret deleted = __salt__['boto_asg.delete'](name, force, region, key, keyid, profile) if deleted: if remove_lc: lc_deleted = __salt__['boto_asg.delete_launch_configuration'](asg['launch_config_name'], region, key, keyid, profile) if lc_deleted: if 'launch_config' not in ret['changes']: ret['changes']['launch_config'] = {} ret['changes']['launch_config']['deleted'] = asg['launch_config_name'] else: ret['result'] = False ret['comment'] = ' '.join([ret['comment'], 'Failed to delete launch configuration.']) ret['changes']['old'] = asg ret['changes']['new'] = None ret['comment'] = 'Deleted autoscale group.' else: ret['result'] = False ret['comment'] = 'Failed to delete autoscale group.' else: ret['comment'] = 'Autoscale group does not exist.' return ret
Ensure the named autoscale group is deleted. name Name of the autoscale group. force Force deletion of autoscale group. remove_lc Delete the launch config as well. region The region to connect to. key Secret key to be used. keyid Access key to be used. profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and keyid.
Below is the the instruction that describes the task: ### Input: Ensure the named autoscale group is deleted. name Name of the autoscale group. force Force deletion of autoscale group. remove_lc Delete the launch config as well. region The region to connect to. key Secret key to be used. keyid Access key to be used. profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and keyid. ### Response: def absent( name, force=False, region=None, key=None, keyid=None, profile=None, remove_lc=False): ''' Ensure the named autoscale group is deleted. name Name of the autoscale group. force Force deletion of autoscale group. remove_lc Delete the launch config as well. region The region to connect to. key Secret key to be used. keyid Access key to be used. profile A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and keyid. ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} asg = __salt__['boto_asg.get_config'](name, region, key, keyid, profile) if asg is None: ret['result'] = False ret['comment'] = 'Failed to check autoscale group existence.' elif asg: if __opts__['test']: ret['comment'] = 'Autoscale group set to be deleted.' ret['result'] = None if remove_lc: msg = 'Launch configuration {0} is set to be deleted.'.format(asg['launch_config_name']) ret['comment'] = ' '.join([ret['comment'], msg]) return ret deleted = __salt__['boto_asg.delete'](name, force, region, key, keyid, profile) if deleted: if remove_lc: lc_deleted = __salt__['boto_asg.delete_launch_configuration'](asg['launch_config_name'], region, key, keyid, profile) if lc_deleted: if 'launch_config' not in ret['changes']: ret['changes']['launch_config'] = {} ret['changes']['launch_config']['deleted'] = asg['launch_config_name'] else: ret['result'] = False ret['comment'] = ' '.join([ret['comment'], 'Failed to delete launch configuration.']) ret['changes']['old'] = asg ret['changes']['new'] = None ret['comment'] = 'Deleted autoscale group.' else: ret['result'] = False ret['comment'] = 'Failed to delete autoscale group.' else: ret['comment'] = 'Autoscale group does not exist.' return ret
def getBody(self, url, method='GET', headers={}, data=None, socket=None): """Make an HTTP request and return the body """ if not 'User-Agent' in headers: headers['User-Agent'] = ['Tensor HTTP checker'] return self.request(url, method, headers, data, socket)
Make an HTTP request and return the body
Below is the the instruction that describes the task: ### Input: Make an HTTP request and return the body ### Response: def getBody(self, url, method='GET', headers={}, data=None, socket=None): """Make an HTTP request and return the body """ if not 'User-Agent' in headers: headers['User-Agent'] = ['Tensor HTTP checker'] return self.request(url, method, headers, data, socket)
def requiv_contact_min(b, component, solve_for=None, **kwargs): """ Create a constraint to determine the critical (at L1) value of requiv at which a constact will underflow. This will only be used for contacts for requiv_min :parameter b: the :class:`phoebe.frontend.bundle.Bundle` :parameter str component: the label of the star in which this constraint should be built :parameter str solve_for: if 'requiv_max' should not be the derived/constrained parameter, provide which other parameter should be derived :returns: lhs (Parameter), rhs (ConstraintParameter), args (list of arguments that were passed to this function) """ hier = b.get_hierarchy() if not len(hier.get_value()): # TODO: change to custom error type to catch in bundle.add_component # TODO: check whether the problem is 0 hierarchies or more than 1 raise NotImplementedError("constraint for requiv_contact_min requires hierarchy") component_ps = _get_system_ps(b, component) parentorbit = hier.get_parent_of(component) parentorbit_ps = _get_system_ps(b, parentorbit) requiv_min = component_ps.get_parameter(qualifier='requiv_min') q = parentorbit_ps.get_parameter(qualifier='q') sma = parentorbit_ps.get_parameter(qualifier='sma') if solve_for in [None, requiv_min]: lhs = requiv_min rhs = roche_requiv_contact_L1(q, sma, hier.get_primary_or_secondary(component, return_ind=True)) else: raise NotImplementedError("requiv_contact_min can only be solved for requiv_min") return lhs, rhs, {'component': component}
Create a constraint to determine the critical (at L1) value of requiv at which a constact will underflow. This will only be used for contacts for requiv_min :parameter b: the :class:`phoebe.frontend.bundle.Bundle` :parameter str component: the label of the star in which this constraint should be built :parameter str solve_for: if 'requiv_max' should not be the derived/constrained parameter, provide which other parameter should be derived :returns: lhs (Parameter), rhs (ConstraintParameter), args (list of arguments that were passed to this function)
Below is the the instruction that describes the task: ### Input: Create a constraint to determine the critical (at L1) value of requiv at which a constact will underflow. This will only be used for contacts for requiv_min :parameter b: the :class:`phoebe.frontend.bundle.Bundle` :parameter str component: the label of the star in which this constraint should be built :parameter str solve_for: if 'requiv_max' should not be the derived/constrained parameter, provide which other parameter should be derived :returns: lhs (Parameter), rhs (ConstraintParameter), args (list of arguments that were passed to this function) ### Response: def requiv_contact_min(b, component, solve_for=None, **kwargs): """ Create a constraint to determine the critical (at L1) value of requiv at which a constact will underflow. This will only be used for contacts for requiv_min :parameter b: the :class:`phoebe.frontend.bundle.Bundle` :parameter str component: the label of the star in which this constraint should be built :parameter str solve_for: if 'requiv_max' should not be the derived/constrained parameter, provide which other parameter should be derived :returns: lhs (Parameter), rhs (ConstraintParameter), args (list of arguments that were passed to this function) """ hier = b.get_hierarchy() if not len(hier.get_value()): # TODO: change to custom error type to catch in bundle.add_component # TODO: check whether the problem is 0 hierarchies or more than 1 raise NotImplementedError("constraint for requiv_contact_min requires hierarchy") component_ps = _get_system_ps(b, component) parentorbit = hier.get_parent_of(component) parentorbit_ps = _get_system_ps(b, parentorbit) requiv_min = component_ps.get_parameter(qualifier='requiv_min') q = parentorbit_ps.get_parameter(qualifier='q') sma = parentorbit_ps.get_parameter(qualifier='sma') if solve_for in [None, requiv_min]: lhs = requiv_min rhs = roche_requiv_contact_L1(q, sma, hier.get_primary_or_secondary(component, return_ind=True)) else: raise NotImplementedError("requiv_contact_min can only be solved for requiv_min") return lhs, rhs, {'component': component}
def authenticate(self): """ Authenticate against the HP Cloud Identity Service. This is the first step in any hpcloud.com session, although this method is automatically called when accessing higher-level methods/attributes. **Examples of Credentials Configuration** - Bare minimum for authentication using HP API keys: .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 access_key_id: MZOFIE9S83FOS248FIE3 secret_access_key: EU859vjksor73gkY378f9gkslbkrabcxwfyW2loo - With multiple *compute* availability zones activated, the region must also be specified (due to current limitations in the OpenStack client libraries): .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 access_key_id: MZOFIE9S83FOS248FIE3 secret_access_key: EU859vjksor73gkY378f9gkslbkrabcxwfyW2loo region_name: az-1.region-a.geo-1 - Using ``username`` and ``password`` is also allowed, but discouraged: .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 username: farley.mowat password: NeverCryW0lf When both API keys and ``username+password`` are specified, the API keys are used. """ log.info("Authenticating to HP Cloud...") creds = self.creds access_key_id = creds.get('access_key_id', '') secret_access_key = creds.get('secret_access_key', '') # prefer api key + secret key, but fallback to username + password if access_key_id and secret_access_key: self.nova_client.client.os_access_key_id = access_key_id self.nova_client.client.os_secret_key = secret_access_key self.nova_client.authenticate()
Authenticate against the HP Cloud Identity Service. This is the first step in any hpcloud.com session, although this method is automatically called when accessing higher-level methods/attributes. **Examples of Credentials Configuration** - Bare minimum for authentication using HP API keys: .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 access_key_id: MZOFIE9S83FOS248FIE3 secret_access_key: EU859vjksor73gkY378f9gkslbkrabcxwfyW2loo - With multiple *compute* availability zones activated, the region must also be specified (due to current limitations in the OpenStack client libraries): .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 access_key_id: MZOFIE9S83FOS248FIE3 secret_access_key: EU859vjksor73gkY378f9gkslbkrabcxwfyW2loo region_name: az-1.region-a.geo-1 - Using ``username`` and ``password`` is also allowed, but discouraged: .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 username: farley.mowat password: NeverCryW0lf When both API keys and ``username+password`` are specified, the API keys are used.
Below is the the instruction that describes the task: ### Input: Authenticate against the HP Cloud Identity Service. This is the first step in any hpcloud.com session, although this method is automatically called when accessing higher-level methods/attributes. **Examples of Credentials Configuration** - Bare minimum for authentication using HP API keys: .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 access_key_id: MZOFIE9S83FOS248FIE3 secret_access_key: EU859vjksor73gkY378f9gkslbkrabcxwfyW2loo - With multiple *compute* availability zones activated, the region must also be specified (due to current limitations in the OpenStack client libraries): .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 access_key_id: MZOFIE9S83FOS248FIE3 secret_access_key: EU859vjksor73gkY378f9gkslbkrabcxwfyW2loo region_name: az-1.region-a.geo-1 - Using ``username`` and ``password`` is also allowed, but discouraged: .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 username: farley.mowat password: NeverCryW0lf When both API keys and ``username+password`` are specified, the API keys are used. ### Response: def authenticate(self): """ Authenticate against the HP Cloud Identity Service. This is the first step in any hpcloud.com session, although this method is automatically called when accessing higher-level methods/attributes. **Examples of Credentials Configuration** - Bare minimum for authentication using HP API keys: .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 access_key_id: MZOFIE9S83FOS248FIE3 secret_access_key: EU859vjksor73gkY378f9gkslbkrabcxwfyW2loo - With multiple *compute* availability zones activated, the region must also be specified (due to current limitations in the OpenStack client libraries): .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 access_key_id: MZOFIE9S83FOS248FIE3 secret_access_key: EU859vjksor73gkY378f9gkslbkrabcxwfyW2loo region_name: az-1.region-a.geo-1 - Using ``username`` and ``password`` is also allowed, but discouraged: .. code-block:: yaml deployer_credentials: hpcloud: auth_url: https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0/ tenant_name: farley.mowat-tenant1 username: farley.mowat password: NeverCryW0lf When both API keys and ``username+password`` are specified, the API keys are used. """ log.info("Authenticating to HP Cloud...") creds = self.creds access_key_id = creds.get('access_key_id', '') secret_access_key = creds.get('secret_access_key', '') # prefer api key + secret key, but fallback to username + password if access_key_id and secret_access_key: self.nova_client.client.os_access_key_id = access_key_id self.nova_client.client.os_secret_key = secret_access_key self.nova_client.authenticate()
def frombed(args): """ %prog frombed bedfile contigfasta readfasta Convert read placement to contig format. This is useful before running BAMBUS. """ from jcvi.formats.fasta import Fasta from jcvi.formats.bed import Bed from jcvi.utils.cbook import fill p = OptionParser(frombed.__doc__) opts, args = p.parse_args(args) if len(args) != 3: sys.exit(not p.print_help()) bedfile, contigfasta, readfasta = args prefix = bedfile.rsplit(".", 1)[0] contigfile = prefix + ".contig" idsfile = prefix + ".ids" contigfasta = Fasta(contigfasta) readfasta = Fasta(readfasta) bed = Bed(bedfile) checksum = "00000000 checksum." fw_ids = open(idsfile, "w") fw = open(contigfile, "w") for ctg, reads in bed.sub_beds(): ctgseq = contigfasta[ctg] ctgline = "##{0} {1} {2} bases, {3}".format(\ ctg, len(reads), len(ctgseq), checksum) print(ctg, file=fw_ids) print(ctgline, file=fw) print(fill(ctgseq.seq), file=fw) for b in reads: read = b.accn strand = b.strand readseq = readfasta[read] rc = " [RC]" if strand == "-" else "" readlen = len(readseq) rstart, rend = 1, readlen if strand == "-": rstart, rend = rend, rstart readrange = "{{{0} {1}}}".format(rstart, rend) conrange = "<{0} {1}>".format(b.start, b.end) readline = "#{0}(0){1} {2} bases, {3} {4} {5}".format(\ read, rc, readlen, checksum, readrange, conrange) print(readline, file=fw) print(fill(readseq.seq), file=fw) logging.debug("Mapped contigs written to `{0}`.".format(contigfile)) logging.debug("Contig IDs written to `{0}`.".format(idsfile))
%prog frombed bedfile contigfasta readfasta Convert read placement to contig format. This is useful before running BAMBUS.
Below is the the instruction that describes the task: ### Input: %prog frombed bedfile contigfasta readfasta Convert read placement to contig format. This is useful before running BAMBUS. ### Response: def frombed(args): """ %prog frombed bedfile contigfasta readfasta Convert read placement to contig format. This is useful before running BAMBUS. """ from jcvi.formats.fasta import Fasta from jcvi.formats.bed import Bed from jcvi.utils.cbook import fill p = OptionParser(frombed.__doc__) opts, args = p.parse_args(args) if len(args) != 3: sys.exit(not p.print_help()) bedfile, contigfasta, readfasta = args prefix = bedfile.rsplit(".", 1)[0] contigfile = prefix + ".contig" idsfile = prefix + ".ids" contigfasta = Fasta(contigfasta) readfasta = Fasta(readfasta) bed = Bed(bedfile) checksum = "00000000 checksum." fw_ids = open(idsfile, "w") fw = open(contigfile, "w") for ctg, reads in bed.sub_beds(): ctgseq = contigfasta[ctg] ctgline = "##{0} {1} {2} bases, {3}".format(\ ctg, len(reads), len(ctgseq), checksum) print(ctg, file=fw_ids) print(ctgline, file=fw) print(fill(ctgseq.seq), file=fw) for b in reads: read = b.accn strand = b.strand readseq = readfasta[read] rc = " [RC]" if strand == "-" else "" readlen = len(readseq) rstart, rend = 1, readlen if strand == "-": rstart, rend = rend, rstart readrange = "{{{0} {1}}}".format(rstart, rend) conrange = "<{0} {1}>".format(b.start, b.end) readline = "#{0}(0){1} {2} bases, {3} {4} {5}".format(\ read, rc, readlen, checksum, readrange, conrange) print(readline, file=fw) print(fill(readseq.seq), file=fw) logging.debug("Mapped contigs written to `{0}`.".format(contigfile)) logging.debug("Contig IDs written to `{0}`.".format(idsfile))
def is_instance_of(self, some_class): """Asserts that val is an instance of the given class.""" try: if not isinstance(self.val, some_class): if hasattr(self.val, '__name__'): t = self.val.__name__ elif hasattr(self.val, '__class__'): t = self.val.__class__.__name__ else: t = 'unknown' self._err('Expected <%s:%s> to be instance of class <%s>, but was not.' % (self.val, t, some_class.__name__)) except TypeError: raise TypeError('given arg must be a class') return self
Asserts that val is an instance of the given class.
Below is the the instruction that describes the task: ### Input: Asserts that val is an instance of the given class. ### Response: def is_instance_of(self, some_class): """Asserts that val is an instance of the given class.""" try: if not isinstance(self.val, some_class): if hasattr(self.val, '__name__'): t = self.val.__name__ elif hasattr(self.val, '__class__'): t = self.val.__class__.__name__ else: t = 'unknown' self._err('Expected <%s:%s> to be instance of class <%s>, but was not.' % (self.val, t, some_class.__name__)) except TypeError: raise TypeError('given arg must be a class') return self
def _set_autobw_threshold_table_summary(self, v, load=False): """ Setter method for autobw_threshold_table_summary, mapped from YANG variable /mpls_state/autobw_threshold_table_summary (container) If this variable is read-only (config: false) in the source YANG file, then _set_autobw_threshold_table_summary is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_autobw_threshold_table_summary() directly. YANG Description: MPLS Auto Bandwidth Threshold TableSummary """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=autobw_threshold_table_summary.autobw_threshold_table_summary, is_container='container', presence=False, yang_name="autobw-threshold-table-summary", rest_name="autobw-threshold-table-summary", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'mpls-autobw-threshold-table-summary', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='container', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """autobw_threshold_table_summary must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=autobw_threshold_table_summary.autobw_threshold_table_summary, is_container='container', presence=False, yang_name="autobw-threshold-table-summary", rest_name="autobw-threshold-table-summary", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'mpls-autobw-threshold-table-summary', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='container', is_config=False)""", }) self.__autobw_threshold_table_summary = t if hasattr(self, '_set'): self._set()
Setter method for autobw_threshold_table_summary, mapped from YANG variable /mpls_state/autobw_threshold_table_summary (container) If this variable is read-only (config: false) in the source YANG file, then _set_autobw_threshold_table_summary is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_autobw_threshold_table_summary() directly. YANG Description: MPLS Auto Bandwidth Threshold TableSummary
Below is the the instruction that describes the task: ### Input: Setter method for autobw_threshold_table_summary, mapped from YANG variable /mpls_state/autobw_threshold_table_summary (container) If this variable is read-only (config: false) in the source YANG file, then _set_autobw_threshold_table_summary is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_autobw_threshold_table_summary() directly. YANG Description: MPLS Auto Bandwidth Threshold TableSummary ### Response: def _set_autobw_threshold_table_summary(self, v, load=False): """ Setter method for autobw_threshold_table_summary, mapped from YANG variable /mpls_state/autobw_threshold_table_summary (container) If this variable is read-only (config: false) in the source YANG file, then _set_autobw_threshold_table_summary is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_autobw_threshold_table_summary() directly. YANG Description: MPLS Auto Bandwidth Threshold TableSummary """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=autobw_threshold_table_summary.autobw_threshold_table_summary, is_container='container', presence=False, yang_name="autobw-threshold-table-summary", rest_name="autobw-threshold-table-summary", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'mpls-autobw-threshold-table-summary', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='container', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """autobw_threshold_table_summary must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=autobw_threshold_table_summary.autobw_threshold_table_summary, is_container='container', presence=False, yang_name="autobw-threshold-table-summary", rest_name="autobw-threshold-table-summary", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'mpls-autobw-threshold-table-summary', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='container', is_config=False)""", }) self.__autobw_threshold_table_summary = t if hasattr(self, '_set'): self._set()
def get_token(self, hash): """ Looks up a token by hash Args: hash (UInt160): The token to look up Returns: SmartContractEvent: A smart contract event with a contract that is an NEP5 Token """ tokens_snapshot = self.db.prefixed_db(NotificationPrefix.PREFIX_TOKEN).snapshot() try: val = tokens_snapshot.get(hash.ToBytes()) if val: event = SmartContractEvent.FromByteArray(val) return event except Exception as e: logger.error("Smart contract event with contract hash %s not found: %s " % (hash.ToString(), e)) return None
Looks up a token by hash Args: hash (UInt160): The token to look up Returns: SmartContractEvent: A smart contract event with a contract that is an NEP5 Token
Below is the the instruction that describes the task: ### Input: Looks up a token by hash Args: hash (UInt160): The token to look up Returns: SmartContractEvent: A smart contract event with a contract that is an NEP5 Token ### Response: def get_token(self, hash): """ Looks up a token by hash Args: hash (UInt160): The token to look up Returns: SmartContractEvent: A smart contract event with a contract that is an NEP5 Token """ tokens_snapshot = self.db.prefixed_db(NotificationPrefix.PREFIX_TOKEN).snapshot() try: val = tokens_snapshot.get(hash.ToBytes()) if val: event = SmartContractEvent.FromByteArray(val) return event except Exception as e: logger.error("Smart contract event with contract hash %s not found: %s " % (hash.ToString(), e)) return None
def _AddEvent(self, event): """Adds an event. Args: event (EventObject): event. """ if hasattr(event, 'event_data_row_identifier'): event_data_identifier = identifiers.SQLTableIdentifier( self._CONTAINER_TYPE_EVENT_DATA, event.event_data_row_identifier) lookup_key = event_data_identifier.CopyToString() event_data_identifier = self._event_data_identifier_mappings[lookup_key] event.SetEventDataIdentifier(event_data_identifier) # TODO: add event identifier mappings for event tags. self._storage_writer.AddEvent(event)
Adds an event. Args: event (EventObject): event.
Below is the the instruction that describes the task: ### Input: Adds an event. Args: event (EventObject): event. ### Response: def _AddEvent(self, event): """Adds an event. Args: event (EventObject): event. """ if hasattr(event, 'event_data_row_identifier'): event_data_identifier = identifiers.SQLTableIdentifier( self._CONTAINER_TYPE_EVENT_DATA, event.event_data_row_identifier) lookup_key = event_data_identifier.CopyToString() event_data_identifier = self._event_data_identifier_mappings[lookup_key] event.SetEventDataIdentifier(event_data_identifier) # TODO: add event identifier mappings for event tags. self._storage_writer.AddEvent(event)
async def traverse(self, func): """ Traverses an async function or generator, yielding each result. This function is private. The class should be used as an iterator instead of using this method. """ # this allows the reference to be stolen async_executor = self if inspect.isasyncgenfunction(func): async for result in func(*async_executor.args): yield result else: yield await func(*async_executor.args)
Traverses an async function or generator, yielding each result. This function is private. The class should be used as an iterator instead of using this method.
Below is the the instruction that describes the task: ### Input: Traverses an async function or generator, yielding each result. This function is private. The class should be used as an iterator instead of using this method. ### Response: async def traverse(self, func): """ Traverses an async function or generator, yielding each result. This function is private. The class should be used as an iterator instead of using this method. """ # this allows the reference to be stolen async_executor = self if inspect.isasyncgenfunction(func): async for result in func(*async_executor.args): yield result else: yield await func(*async_executor.args)
def load_texture(self, texture_version): ''' Expect a texture version number as an integer, load the texture version from /is/ps/shared/data/body/template/texture_coordinates/. Currently there are versions [0, 1, 2, 3] availiable. ''' import numpy as np lowres_tex_template = 's3://bodylabs-korper-assets/is/ps/shared/data/body/template/texture_coordinates/textured_template_low_v%d.obj' % texture_version highres_tex_template = 's3://bodylabs-korper-assets/is/ps/shared/data/body/template/texture_coordinates/textured_template_high_v%d.obj' % texture_version from lace.mesh import Mesh from lace.cache import sc mesh_with_texture = Mesh(filename=sc(lowres_tex_template)) if not np.all(mesh_with_texture.f.shape == self.f.shape): mesh_with_texture = Mesh(filename=sc(highres_tex_template)) self.transfer_texture(mesh_with_texture)
Expect a texture version number as an integer, load the texture version from /is/ps/shared/data/body/template/texture_coordinates/. Currently there are versions [0, 1, 2, 3] availiable.
Below is the the instruction that describes the task: ### Input: Expect a texture version number as an integer, load the texture version from /is/ps/shared/data/body/template/texture_coordinates/. Currently there are versions [0, 1, 2, 3] availiable. ### Response: def load_texture(self, texture_version): ''' Expect a texture version number as an integer, load the texture version from /is/ps/shared/data/body/template/texture_coordinates/. Currently there are versions [0, 1, 2, 3] availiable. ''' import numpy as np lowres_tex_template = 's3://bodylabs-korper-assets/is/ps/shared/data/body/template/texture_coordinates/textured_template_low_v%d.obj' % texture_version highres_tex_template = 's3://bodylabs-korper-assets/is/ps/shared/data/body/template/texture_coordinates/textured_template_high_v%d.obj' % texture_version from lace.mesh import Mesh from lace.cache import sc mesh_with_texture = Mesh(filename=sc(lowres_tex_template)) if not np.all(mesh_with_texture.f.shape == self.f.shape): mesh_with_texture = Mesh(filename=sc(highres_tex_template)) self.transfer_texture(mesh_with_texture)
def list(args): """Lists the jobs in the given database.""" jm = setup(args) jm.list(job_ids=get_ids(args.job_ids), print_array_jobs=args.print_array_jobs, print_dependencies=args.print_dependencies, status=args.status, long=args.long, print_times=args.print_times, ids_only=args.ids_only, names=args.names)
Lists the jobs in the given database.
Below is the the instruction that describes the task: ### Input: Lists the jobs in the given database. ### Response: def list(args): """Lists the jobs in the given database.""" jm = setup(args) jm.list(job_ids=get_ids(args.job_ids), print_array_jobs=args.print_array_jobs, print_dependencies=args.print_dependencies, status=args.status, long=args.long, print_times=args.print_times, ids_only=args.ids_only, names=args.names)
def do_lzop_get(creds, url, path, decrypt, do_retry): """ Get and decompress a URL This streams the content directly to lzop; the compressed version is never stored on disk. """ assert url.endswith('.lzo'), 'Expect an lzop-compressed file' with files.DeleteOnError(path) as decomp_out: key = _uri_to_key(creds, url) with get_download_pipeline(PIPE, decomp_out.f, decrypt) as pl: g = gevent.spawn(write_and_return_error, key, pl.stdin) exc = g.get() if exc is not None: raise exc logger.info( msg='completed download and decompression', detail='Downloaded and decompressed "{url}" to "{path}"' .format(url=url, path=path)) return True
Get and decompress a URL This streams the content directly to lzop; the compressed version is never stored on disk.
Below is the the instruction that describes the task: ### Input: Get and decompress a URL This streams the content directly to lzop; the compressed version is never stored on disk. ### Response: def do_lzop_get(creds, url, path, decrypt, do_retry): """ Get and decompress a URL This streams the content directly to lzop; the compressed version is never stored on disk. """ assert url.endswith('.lzo'), 'Expect an lzop-compressed file' with files.DeleteOnError(path) as decomp_out: key = _uri_to_key(creds, url) with get_download_pipeline(PIPE, decomp_out.f, decrypt) as pl: g = gevent.spawn(write_and_return_error, key, pl.stdin) exc = g.get() if exc is not None: raise exc logger.info( msg='completed download and decompression', detail='Downloaded and decompressed "{url}" to "{path}"' .format(url=url, path=path)) return True
def split_by(self, layer, sep=' '): """Split the text into multiple instances defined by elements of given layer. The spans for layer elements are extracted and feed to :py:meth:`~estnltk.text.Text.split_given_spans` method. Parameters ---------- layer: str String determining the layer that is used to define the start and end positions of resulting splits. sep: str (default: ' ') The separator to use to join texts of multilayer elements. Returns ------- list of Text """ if not self.is_tagged(layer): self.tag(layer) return self.split_given_spans(self.spans(layer), sep=sep)
Split the text into multiple instances defined by elements of given layer. The spans for layer elements are extracted and feed to :py:meth:`~estnltk.text.Text.split_given_spans` method. Parameters ---------- layer: str String determining the layer that is used to define the start and end positions of resulting splits. sep: str (default: ' ') The separator to use to join texts of multilayer elements. Returns ------- list of Text
Below is the the instruction that describes the task: ### Input: Split the text into multiple instances defined by elements of given layer. The spans for layer elements are extracted and feed to :py:meth:`~estnltk.text.Text.split_given_spans` method. Parameters ---------- layer: str String determining the layer that is used to define the start and end positions of resulting splits. sep: str (default: ' ') The separator to use to join texts of multilayer elements. Returns ------- list of Text ### Response: def split_by(self, layer, sep=' '): """Split the text into multiple instances defined by elements of given layer. The spans for layer elements are extracted and feed to :py:meth:`~estnltk.text.Text.split_given_spans` method. Parameters ---------- layer: str String determining the layer that is used to define the start and end positions of resulting splits. sep: str (default: ' ') The separator to use to join texts of multilayer elements. Returns ------- list of Text """ if not self.is_tagged(layer): self.tag(layer) return self.split_given_spans(self.spans(layer), sep=sep)
def locate_profile(profile='default'): """Find the path to the folder associated with a given profile. I.e. find $IPYTHONDIR/profile_whatever. """ from IPython.core.profiledir import ProfileDir, ProfileDirError try: pd = ProfileDir.find_profile_dir_by_name(get_ipython_dir(), profile) except ProfileDirError: # IOError makes more sense when people are expecting a path raise IOError("Couldn't find profile %r" % profile) return pd.location
Find the path to the folder associated with a given profile. I.e. find $IPYTHONDIR/profile_whatever.
Below is the the instruction that describes the task: ### Input: Find the path to the folder associated with a given profile. I.e. find $IPYTHONDIR/profile_whatever. ### Response: def locate_profile(profile='default'): """Find the path to the folder associated with a given profile. I.e. find $IPYTHONDIR/profile_whatever. """ from IPython.core.profiledir import ProfileDir, ProfileDirError try: pd = ProfileDir.find_profile_dir_by_name(get_ipython_dir(), profile) except ProfileDirError: # IOError makes more sense when people are expecting a path raise IOError("Couldn't find profile %r" % profile) return pd.location
def zone_helper(zone): """ Zone finder by name. If zone doesn't exist, create it and return the href :param str zone: name of zone (if href, will be returned as is) :return str href: href of zone """ if zone is None: return None elif isinstance(zone, Zone): return zone.href elif zone.startswith('http'): return zone return Zone.get_or_create(name=zone).href
Zone finder by name. If zone doesn't exist, create it and return the href :param str zone: name of zone (if href, will be returned as is) :return str href: href of zone
Below is the the instruction that describes the task: ### Input: Zone finder by name. If zone doesn't exist, create it and return the href :param str zone: name of zone (if href, will be returned as is) :return str href: href of zone ### Response: def zone_helper(zone): """ Zone finder by name. If zone doesn't exist, create it and return the href :param str zone: name of zone (if href, will be returned as is) :return str href: href of zone """ if zone is None: return None elif isinstance(zone, Zone): return zone.href elif zone.startswith('http'): return zone return Zone.get_or_create(name=zone).href
def stop_scan(self): """Stop to scan.""" try: self.bable.stop_scan(sync=True) except bable_interface.BaBLEException: # If we errored our it is because we were not currently scanning pass self.scanning = False
Stop to scan.
Below is the the instruction that describes the task: ### Input: Stop to scan. ### Response: def stop_scan(self): """Stop to scan.""" try: self.bable.stop_scan(sync=True) except bable_interface.BaBLEException: # If we errored our it is because we were not currently scanning pass self.scanning = False
def build_requirements(docs_path, package_name="yacms"): """ Updates the requirements file with yacms's version number. """ mezz_string = "yacms==" project_path = os.path.join(docs_path, "..") requirements_file = os.path.join(project_path, package_name, "project_template", "requirements.txt") with open(requirements_file, "r") as f: requirements = f.readlines() with open(requirements_file, "w") as f: f.write("yacms==%s\n" % __version__) for requirement in requirements: if requirement.strip() and not requirement.startswith(mezz_string): f.write(requirement)
Updates the requirements file with yacms's version number.
Below is the the instruction that describes the task: ### Input: Updates the requirements file with yacms's version number. ### Response: def build_requirements(docs_path, package_name="yacms"): """ Updates the requirements file with yacms's version number. """ mezz_string = "yacms==" project_path = os.path.join(docs_path, "..") requirements_file = os.path.join(project_path, package_name, "project_template", "requirements.txt") with open(requirements_file, "r") as f: requirements = f.readlines() with open(requirements_file, "w") as f: f.write("yacms==%s\n" % __version__) for requirement in requirements: if requirement.strip() and not requirement.startswith(mezz_string): f.write(requirement)
def forward(self, X): """Forward function. :param X: The input (batch) of the model contains word sequences for lstm, features and feature weights. :type X: For word sequences: a list of torch.Tensor pair (word sequence and word mask) of shape (batch_size, sequence_length). For features: torch.Tensor of shape (batch_size, sparse_feature_size). For feature weights: torch.Tensor of shape (batch_size, sparse_feature_size). :return: The output of LSTM layer. :rtype: torch.Tensor of shape (batch_size, num_classes) """ s = X[:-2] f = X[-2] w = X[-1] batch_size = len(f) # Generate lstm weight indices x_idx = self._cuda( torch.as_tensor(np.arange(1, self.settings["lstm_dim"] + 1)).repeat( batch_size, 1 ) ) outputs = self._cuda(torch.Tensor([])) # Calculate textual features from LSTMs for i in range(len(s)): state_word = self.lstms[0].init_hidden(batch_size) output = self.lstms[0].forward(s[i][0], s[i][1], state_word) outputs = torch.cat((outputs, output), 1) # Concatenate textual features with multi-modal features feaures = torch.cat((x_idx, f), 1) weights = torch.cat((outputs, w), 1) return self.sparse_linear(feaures, weights)
Forward function. :param X: The input (batch) of the model contains word sequences for lstm, features and feature weights. :type X: For word sequences: a list of torch.Tensor pair (word sequence and word mask) of shape (batch_size, sequence_length). For features: torch.Tensor of shape (batch_size, sparse_feature_size). For feature weights: torch.Tensor of shape (batch_size, sparse_feature_size). :return: The output of LSTM layer. :rtype: torch.Tensor of shape (batch_size, num_classes)
Below is the the instruction that describes the task: ### Input: Forward function. :param X: The input (batch) of the model contains word sequences for lstm, features and feature weights. :type X: For word sequences: a list of torch.Tensor pair (word sequence and word mask) of shape (batch_size, sequence_length). For features: torch.Tensor of shape (batch_size, sparse_feature_size). For feature weights: torch.Tensor of shape (batch_size, sparse_feature_size). :return: The output of LSTM layer. :rtype: torch.Tensor of shape (batch_size, num_classes) ### Response: def forward(self, X): """Forward function. :param X: The input (batch) of the model contains word sequences for lstm, features and feature weights. :type X: For word sequences: a list of torch.Tensor pair (word sequence and word mask) of shape (batch_size, sequence_length). For features: torch.Tensor of shape (batch_size, sparse_feature_size). For feature weights: torch.Tensor of shape (batch_size, sparse_feature_size). :return: The output of LSTM layer. :rtype: torch.Tensor of shape (batch_size, num_classes) """ s = X[:-2] f = X[-2] w = X[-1] batch_size = len(f) # Generate lstm weight indices x_idx = self._cuda( torch.as_tensor(np.arange(1, self.settings["lstm_dim"] + 1)).repeat( batch_size, 1 ) ) outputs = self._cuda(torch.Tensor([])) # Calculate textual features from LSTMs for i in range(len(s)): state_word = self.lstms[0].init_hidden(batch_size) output = self.lstms[0].forward(s[i][0], s[i][1], state_word) outputs = torch.cat((outputs, output), 1) # Concatenate textual features with multi-modal features feaures = torch.cat((x_idx, f), 1) weights = torch.cat((outputs, w), 1) return self.sparse_linear(feaures, weights)
def info(self): """ Print header information and other derived information. """ print("\n--- File Info ---") for key, val in self.file_header.items(): if key == 'src_raj': val = val.to_string(unit=u.hour, sep=':') if key == 'src_dej': val = val.to_string(unit=u.deg, sep=':') print("%16s : %32s" % (key, val)) print("\n%16s : %32s" % ("Num ints in file", self.n_ints_in_file)) print("%16s : %32s" % ("File shape", self.file_shape)) print("--- Selection Info ---") print("%16s : %32s" % ("Data selection shape", self.selection_shape)) print("%16s : %32s" % ("Minimum freq (MHz)", self.container.f_start)) print("%16s : %32s" % ("Maximum freq (MHz)", self.container.f_stop))
Print header information and other derived information.
Below is the the instruction that describes the task: ### Input: Print header information and other derived information. ### Response: def info(self): """ Print header information and other derived information. """ print("\n--- File Info ---") for key, val in self.file_header.items(): if key == 'src_raj': val = val.to_string(unit=u.hour, sep=':') if key == 'src_dej': val = val.to_string(unit=u.deg, sep=':') print("%16s : %32s" % (key, val)) print("\n%16s : %32s" % ("Num ints in file", self.n_ints_in_file)) print("%16s : %32s" % ("File shape", self.file_shape)) print("--- Selection Info ---") print("%16s : %32s" % ("Data selection shape", self.selection_shape)) print("%16s : %32s" % ("Minimum freq (MHz)", self.container.f_start)) print("%16s : %32s" % ("Maximum freq (MHz)", self.container.f_stop))
def get_page_of_iterator(iterator, page_size, page_number): """ Get a page from an interator, handling invalid input from the page number by defaulting to the first page. """ try: page_number = validate_page_number(page_number) except (PageNotAnInteger, EmptyPage): page_number = 1 start = (page_number - 1) * page_size # End 1 more than we need, so that we can see if there's another page end = (page_number * page_size) + 1 skipped_items = list(islice(iterator, start)) items = list(islice(iterator, end)) if len(items) == 0 and page_number != 1: items = skipped_items page_number = 1 has_next = len(items) > page_size items = items[:page_size] return NoCountPage(items, page_number, page_size, has_next)
Get a page from an interator, handling invalid input from the page number by defaulting to the first page.
Below is the the instruction that describes the task: ### Input: Get a page from an interator, handling invalid input from the page number by defaulting to the first page. ### Response: def get_page_of_iterator(iterator, page_size, page_number): """ Get a page from an interator, handling invalid input from the page number by defaulting to the first page. """ try: page_number = validate_page_number(page_number) except (PageNotAnInteger, EmptyPage): page_number = 1 start = (page_number - 1) * page_size # End 1 more than we need, so that we can see if there's another page end = (page_number * page_size) + 1 skipped_items = list(islice(iterator, start)) items = list(islice(iterator, end)) if len(items) == 0 and page_number != 1: items = skipped_items page_number = 1 has_next = len(items) > page_size items = items[:page_size] return NoCountPage(items, page_number, page_size, has_next)
def mm_top1( n_items, data, initial_params=None, alpha=0.0, max_iter=10000, tol=1e-8): """Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given top-1 data (see :ref:`data-top1`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ return _mm(n_items, data, initial_params, alpha, max_iter, tol, _mm_top1)
Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given top-1 data (see :ref:`data-top1`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters.
Below is the the instruction that describes the task: ### Input: Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given top-1 data (see :ref:`data-top1`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. ### Response: def mm_top1( n_items, data, initial_params=None, alpha=0.0, max_iter=10000, tol=1e-8): """Compute the ML estimate of model parameters using the MM algorithm. This function computes the maximum-likelihood (ML) estimate of model parameters given top-1 data (see :ref:`data-top1`), using the minorization-maximization (MM) algorithm [Hun04]_, [CD12]_. If ``alpha > 0``, the function returns the maximum a-posteriori (MAP) estimate under a (peaked) Dirichlet prior. See :ref:`regularization` for details. Parameters ---------- n_items : int Number of distinct items. data : list of lists Top-1 data. initial_params : array_like, optional Parameters used to initialize the iterative procedure. alpha : float, optional Regularization parameter. max_iter : int, optional Maximum number of iterations allowed. tol : float, optional Maximum L1-norm of the difference between successive iterates to declare convergence. Returns ------- params : numpy.ndarray The ML estimate of model parameters. """ return _mm(n_items, data, initial_params, alpha, max_iter, tol, _mm_top1)
def update_issue_remote_link_by_id(self, issue_key, link_id, url, title, global_id=None, relationship=None): """ Update existing Remote Link on Issue :param issue_key: str :param link_id: str :param url: str :param title: str :param global_id: str, OPTIONAL: :param relationship: str, Optional. Default by built-in method: 'Web Link' """ data = {'object': {'url': url, 'title': title}} if global_id: data['globalId'] = global_id if relationship: data['relationship'] = relationship url = 'rest/api/2/issue/{issue_key}/remotelink/{link_id}'.format(issue_key=issue_key, link_id=link_id) return self.put(url, data=data)
Update existing Remote Link on Issue :param issue_key: str :param link_id: str :param url: str :param title: str :param global_id: str, OPTIONAL: :param relationship: str, Optional. Default by built-in method: 'Web Link'
Below is the the instruction that describes the task: ### Input: Update existing Remote Link on Issue :param issue_key: str :param link_id: str :param url: str :param title: str :param global_id: str, OPTIONAL: :param relationship: str, Optional. Default by built-in method: 'Web Link' ### Response: def update_issue_remote_link_by_id(self, issue_key, link_id, url, title, global_id=None, relationship=None): """ Update existing Remote Link on Issue :param issue_key: str :param link_id: str :param url: str :param title: str :param global_id: str, OPTIONAL: :param relationship: str, Optional. Default by built-in method: 'Web Link' """ data = {'object': {'url': url, 'title': title}} if global_id: data['globalId'] = global_id if relationship: data['relationship'] = relationship url = 'rest/api/2/issue/{issue_key}/remotelink/{link_id}'.format(issue_key=issue_key, link_id=link_id) return self.put(url, data=data)
def update_reach_number_data(self): """ Update the reach number data for the namelist based on input files. .. warning:: You need to make sure you set *rapid_connect_file* and *riv_bas_id_file* before running this function. Example: .. code:: python from RAPIDpy import RAPID rapid_manager = RAPID( rapid_connect_file='../rapid-io/input/rapid_connect.csv', riv_bas_id_file='../rapid-io/input/riv_bas_id.csv', ) rapid_manager.update_reach_number_data() Example with forcing data: .. code:: python from RAPIDpy import RAPID rapid_manager = RAPID( rapid_connect_file='../rapid-io/input/rapid_connect.csv', riv_bas_id_file='../rapid-io/input/riv_bas_id.csv', Qfor_file='../rapid-io/input/qfor_file.csv', for_tot_id_file='../rapid-io/input/for_tot_id_file.csv', for_use_id_file='../rapid-io/input/for_use_id_file.csv', ZS_dtF=3*60*60, BS_opt_for=True ) rapid_manager.update_reach_number_data() """ if not self.rapid_connect_file: log("Missing rapid_connect_file. " "Please set before running this function ...", "ERROR") if not self.riv_bas_id_file: log("Missing riv_bas_id_file. " "Please set before running this function ...", "ERROR") # get rapid connect info rapid_connect_table = np.loadtxt(self.rapid_connect_file, ndmin=2, delimiter=",", dtype=int) self.IS_riv_tot = int(rapid_connect_table.shape[0]) self.IS_max_up = int(rapid_connect_table[:, 2].max()) # get riv_bas_id info riv_bas_id_table = np.loadtxt(self.riv_bas_id_file, ndmin=1, delimiter=",", usecols=(0,), dtype=int) self.IS_riv_bas = int(riv_bas_id_table.size) # add the forcing files if not self.for_tot_id_file: self.IS_for_tot = 0 log("Missing for_tot_id_file. Skipping ...", "WARNING") else: # get riv_bas_id info for_tot_id_table = np.loadtxt(self.for_tot_id_file, ndmin=1, delimiter=",", usecols=(0,), dtype=int) self.IS_for_tot = int(for_tot_id_table.size) if not self.for_use_id_file: self.IS_for_use = 0 log("Missing for_use_id_file. Skipping ...", "WARNING") else: # get riv_bas_id info for_use_id_table = np.loadtxt(self.for_use_id_file, ndmin=1, delimiter=",", usecols=(0,), dtype=int) self.IS_for_use = int(for_use_id_table.size)
Update the reach number data for the namelist based on input files. .. warning:: You need to make sure you set *rapid_connect_file* and *riv_bas_id_file* before running this function. Example: .. code:: python from RAPIDpy import RAPID rapid_manager = RAPID( rapid_connect_file='../rapid-io/input/rapid_connect.csv', riv_bas_id_file='../rapid-io/input/riv_bas_id.csv', ) rapid_manager.update_reach_number_data() Example with forcing data: .. code:: python from RAPIDpy import RAPID rapid_manager = RAPID( rapid_connect_file='../rapid-io/input/rapid_connect.csv', riv_bas_id_file='../rapid-io/input/riv_bas_id.csv', Qfor_file='../rapid-io/input/qfor_file.csv', for_tot_id_file='../rapid-io/input/for_tot_id_file.csv', for_use_id_file='../rapid-io/input/for_use_id_file.csv', ZS_dtF=3*60*60, BS_opt_for=True ) rapid_manager.update_reach_number_data()
Below is the the instruction that describes the task: ### Input: Update the reach number data for the namelist based on input files. .. warning:: You need to make sure you set *rapid_connect_file* and *riv_bas_id_file* before running this function. Example: .. code:: python from RAPIDpy import RAPID rapid_manager = RAPID( rapid_connect_file='../rapid-io/input/rapid_connect.csv', riv_bas_id_file='../rapid-io/input/riv_bas_id.csv', ) rapid_manager.update_reach_number_data() Example with forcing data: .. code:: python from RAPIDpy import RAPID rapid_manager = RAPID( rapid_connect_file='../rapid-io/input/rapid_connect.csv', riv_bas_id_file='../rapid-io/input/riv_bas_id.csv', Qfor_file='../rapid-io/input/qfor_file.csv', for_tot_id_file='../rapid-io/input/for_tot_id_file.csv', for_use_id_file='../rapid-io/input/for_use_id_file.csv', ZS_dtF=3*60*60, BS_opt_for=True ) rapid_manager.update_reach_number_data() ### Response: def update_reach_number_data(self): """ Update the reach number data for the namelist based on input files. .. warning:: You need to make sure you set *rapid_connect_file* and *riv_bas_id_file* before running this function. Example: .. code:: python from RAPIDpy import RAPID rapid_manager = RAPID( rapid_connect_file='../rapid-io/input/rapid_connect.csv', riv_bas_id_file='../rapid-io/input/riv_bas_id.csv', ) rapid_manager.update_reach_number_data() Example with forcing data: .. code:: python from RAPIDpy import RAPID rapid_manager = RAPID( rapid_connect_file='../rapid-io/input/rapid_connect.csv', riv_bas_id_file='../rapid-io/input/riv_bas_id.csv', Qfor_file='../rapid-io/input/qfor_file.csv', for_tot_id_file='../rapid-io/input/for_tot_id_file.csv', for_use_id_file='../rapid-io/input/for_use_id_file.csv', ZS_dtF=3*60*60, BS_opt_for=True ) rapid_manager.update_reach_number_data() """ if not self.rapid_connect_file: log("Missing rapid_connect_file. " "Please set before running this function ...", "ERROR") if not self.riv_bas_id_file: log("Missing riv_bas_id_file. " "Please set before running this function ...", "ERROR") # get rapid connect info rapid_connect_table = np.loadtxt(self.rapid_connect_file, ndmin=2, delimiter=",", dtype=int) self.IS_riv_tot = int(rapid_connect_table.shape[0]) self.IS_max_up = int(rapid_connect_table[:, 2].max()) # get riv_bas_id info riv_bas_id_table = np.loadtxt(self.riv_bas_id_file, ndmin=1, delimiter=",", usecols=(0,), dtype=int) self.IS_riv_bas = int(riv_bas_id_table.size) # add the forcing files if not self.for_tot_id_file: self.IS_for_tot = 0 log("Missing for_tot_id_file. Skipping ...", "WARNING") else: # get riv_bas_id info for_tot_id_table = np.loadtxt(self.for_tot_id_file, ndmin=1, delimiter=",", usecols=(0,), dtype=int) self.IS_for_tot = int(for_tot_id_table.size) if not self.for_use_id_file: self.IS_for_use = 0 log("Missing for_use_id_file. Skipping ...", "WARNING") else: # get riv_bas_id info for_use_id_table = np.loadtxt(self.for_use_id_file, ndmin=1, delimiter=",", usecols=(0,), dtype=int) self.IS_for_use = int(for_use_id_table.size)
def expand(self, url): """Expand implementation for Adf.ly Args: url: the URL you want to expand Returns: A string containing the expanded URL Raises: BadAPIResponseException: If the data is malformed or we got a bad status code on API response ShorteningErrorException: If the API Returns an error as response """ url = self.clean_url(url) expand_url = f'{self.api_url}v1/expand' payload = { 'domain': getattr(self, 'domain', 'adf.ly'), 'advert_type': getattr(self, 'type', 'int'), 'group_id': getattr(self, 'group_id', None), 'key': self.api_key, 'user_id': self.user_id, 'url': url, } response = self._post(expand_url, data=payload) if not response.ok: raise BadAPIResponseException(response.content) try: data = response.json() except json.decoder.JSONDecodeError: raise BadAPIResponseException('API response could not be decoded') if data.get('errors'): errors = ','.join(i['msg'] for i in data['errors']) raise ShorteningErrorException(errors) if not data.get('data'): raise BadAPIResponseException(response.content) return data['data'][0]['url']
Expand implementation for Adf.ly Args: url: the URL you want to expand Returns: A string containing the expanded URL Raises: BadAPIResponseException: If the data is malformed or we got a bad status code on API response ShorteningErrorException: If the API Returns an error as response
Below is the the instruction that describes the task: ### Input: Expand implementation for Adf.ly Args: url: the URL you want to expand Returns: A string containing the expanded URL Raises: BadAPIResponseException: If the data is malformed or we got a bad status code on API response ShorteningErrorException: If the API Returns an error as response ### Response: def expand(self, url): """Expand implementation for Adf.ly Args: url: the URL you want to expand Returns: A string containing the expanded URL Raises: BadAPIResponseException: If the data is malformed or we got a bad status code on API response ShorteningErrorException: If the API Returns an error as response """ url = self.clean_url(url) expand_url = f'{self.api_url}v1/expand' payload = { 'domain': getattr(self, 'domain', 'adf.ly'), 'advert_type': getattr(self, 'type', 'int'), 'group_id': getattr(self, 'group_id', None), 'key': self.api_key, 'user_id': self.user_id, 'url': url, } response = self._post(expand_url, data=payload) if not response.ok: raise BadAPIResponseException(response.content) try: data = response.json() except json.decoder.JSONDecodeError: raise BadAPIResponseException('API response could not be decoded') if data.get('errors'): errors = ','.join(i['msg'] for i in data['errors']) raise ShorteningErrorException(errors) if not data.get('data'): raise BadAPIResponseException(response.content) return data['data'][0]['url']
def get_anchor_point(self, anchor_name): """Return an anchor point of the node, if it exists.""" if anchor_name in self._possible_anchors: return TikZNodeAnchor(self.handle, anchor_name) else: try: anchor = int(anchor_name.split('_')[1]) except: anchor = None if anchor is not None: return TikZNodeAnchor(self.handle, str(anchor)) raise ValueError('Invalid anchor name: "{}"'.format(anchor_name))
Return an anchor point of the node, if it exists.
Below is the the instruction that describes the task: ### Input: Return an anchor point of the node, if it exists. ### Response: def get_anchor_point(self, anchor_name): """Return an anchor point of the node, if it exists.""" if anchor_name in self._possible_anchors: return TikZNodeAnchor(self.handle, anchor_name) else: try: anchor = int(anchor_name.split('_')[1]) except: anchor = None if anchor is not None: return TikZNodeAnchor(self.handle, str(anchor)) raise ValueError('Invalid anchor name: "{}"'.format(anchor_name))
def correlation(T, obs1, obs2=None, times=(1), maxtime=None, k=None, ncv=None, return_times=False): r"""Time-correlation for equilibrium experiment. Parameters ---------- T : (M, M) ndarray or scipy.sparse matrix Transition matrix obs1 : (M,) ndarray Observable, represented as vector on state space obs2 : (M,) ndarray (optional) Second observable, for cross-correlations times : array-like of int (optional), default=(1) List of times (in tau) at which to compute correlation maxtime : int, optional, default=None Maximum time step to use. Equivalent to . Alternative to times. k : int (optional) Number of eigenvalues and eigenvectors to use for computation ncv : int (optional) The number of Lanczos vectors generated, `ncv` must be greater than k; it is recommended that ncv > 2*k Returns ------- correlations : ndarray Correlation values at given times times : ndarray, optional time points at which the correlation was computed (if return_times=True) References ---------- .. [1] Noe, F, S Doose, I Daidone, M Loellmann, M Sauer, J D Chodera and J Smith. 2010. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments. PNAS 108 (12): 4822-4827. Notes ----- **Auto-correlation** The auto-correlation of an observable :math:`a(x)` for a system in equilibrium is .. math:: \mathbb{E}_{\mu}[a(x,0)a(x,t)]=\sum_x \mu(x) a(x, 0) a(x, t) :math:`a(x,0)=a(x)` is the observable at time :math:`t=0`. It can be propagated forward in time using the t-step transition matrix :math:`p^{t}(x, y)`. The propagated observable at time :math:`t` is :math:`a(x, t)=\sum_y p^t(x, y)a(y, 0)`. Using the eigenvlaues and eigenvectors of the transition matrix the autocorrelation can be written as .. math:: \mathbb{E}_{\mu}[a(x,0)a(x,t)]=\sum_i \lambda_i^t \langle a, r_i\rangle_{\mu} \langle l_i, a \rangle. **Cross-correlation** The cross-correlation of two observables :math:`a(x)`, :math:`b(x)` is similarly given .. math:: \mathbb{E}_{\mu}[a(x,0)b(x,t)]=\sum_x \mu(x) a(x, 0) b(x, t) Examples -------- >>> import numpy as np >>> from msmtools.analysis import correlation >>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> a = np.array([1.0, 0.0, 0.0]) >>> times = np.array([1, 5, 10, 20]) >>> corr = correlation(T, a, times=times) >>> corr array([ 0.40909091, 0.34081364, 0.28585667, 0.23424263]) """ # check if square matrix and remember size T = _types.ensure_ndarray_or_sparse(T, ndim=2, uniform=True, kind='numeric') n = T.shape[0] obs1 = _types.ensure_ndarray(obs1, ndim=1, size=n, kind='numeric') obs2 = _types.ensure_ndarray_or_None(obs2, ndim=1, size=n, kind='numeric') times = _types.ensure_int_vector(times, require_order=True) # check input # go if _issparse(T): return sparse.fingerprints.correlation(T, obs1, obs2=obs2, times=times, k=k, ncv=ncv) else: return dense.fingerprints.correlation(T, obs1, obs2=obs2, times=times, k=k)
r"""Time-correlation for equilibrium experiment. Parameters ---------- T : (M, M) ndarray or scipy.sparse matrix Transition matrix obs1 : (M,) ndarray Observable, represented as vector on state space obs2 : (M,) ndarray (optional) Second observable, for cross-correlations times : array-like of int (optional), default=(1) List of times (in tau) at which to compute correlation maxtime : int, optional, default=None Maximum time step to use. Equivalent to . Alternative to times. k : int (optional) Number of eigenvalues and eigenvectors to use for computation ncv : int (optional) The number of Lanczos vectors generated, `ncv` must be greater than k; it is recommended that ncv > 2*k Returns ------- correlations : ndarray Correlation values at given times times : ndarray, optional time points at which the correlation was computed (if return_times=True) References ---------- .. [1] Noe, F, S Doose, I Daidone, M Loellmann, M Sauer, J D Chodera and J Smith. 2010. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments. PNAS 108 (12): 4822-4827. Notes ----- **Auto-correlation** The auto-correlation of an observable :math:`a(x)` for a system in equilibrium is .. math:: \mathbb{E}_{\mu}[a(x,0)a(x,t)]=\sum_x \mu(x) a(x, 0) a(x, t) :math:`a(x,0)=a(x)` is the observable at time :math:`t=0`. It can be propagated forward in time using the t-step transition matrix :math:`p^{t}(x, y)`. The propagated observable at time :math:`t` is :math:`a(x, t)=\sum_y p^t(x, y)a(y, 0)`. Using the eigenvlaues and eigenvectors of the transition matrix the autocorrelation can be written as .. math:: \mathbb{E}_{\mu}[a(x,0)a(x,t)]=\sum_i \lambda_i^t \langle a, r_i\rangle_{\mu} \langle l_i, a \rangle. **Cross-correlation** The cross-correlation of two observables :math:`a(x)`, :math:`b(x)` is similarly given .. math:: \mathbb{E}_{\mu}[a(x,0)b(x,t)]=\sum_x \mu(x) a(x, 0) b(x, t) Examples -------- >>> import numpy as np >>> from msmtools.analysis import correlation >>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> a = np.array([1.0, 0.0, 0.0]) >>> times = np.array([1, 5, 10, 20]) >>> corr = correlation(T, a, times=times) >>> corr array([ 0.40909091, 0.34081364, 0.28585667, 0.23424263])
Below is the the instruction that describes the task: ### Input: r"""Time-correlation for equilibrium experiment. Parameters ---------- T : (M, M) ndarray or scipy.sparse matrix Transition matrix obs1 : (M,) ndarray Observable, represented as vector on state space obs2 : (M,) ndarray (optional) Second observable, for cross-correlations times : array-like of int (optional), default=(1) List of times (in tau) at which to compute correlation maxtime : int, optional, default=None Maximum time step to use. Equivalent to . Alternative to times. k : int (optional) Number of eigenvalues and eigenvectors to use for computation ncv : int (optional) The number of Lanczos vectors generated, `ncv` must be greater than k; it is recommended that ncv > 2*k Returns ------- correlations : ndarray Correlation values at given times times : ndarray, optional time points at which the correlation was computed (if return_times=True) References ---------- .. [1] Noe, F, S Doose, I Daidone, M Loellmann, M Sauer, J D Chodera and J Smith. 2010. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments. PNAS 108 (12): 4822-4827. Notes ----- **Auto-correlation** The auto-correlation of an observable :math:`a(x)` for a system in equilibrium is .. math:: \mathbb{E}_{\mu}[a(x,0)a(x,t)]=\sum_x \mu(x) a(x, 0) a(x, t) :math:`a(x,0)=a(x)` is the observable at time :math:`t=0`. It can be propagated forward in time using the t-step transition matrix :math:`p^{t}(x, y)`. The propagated observable at time :math:`t` is :math:`a(x, t)=\sum_y p^t(x, y)a(y, 0)`. Using the eigenvlaues and eigenvectors of the transition matrix the autocorrelation can be written as .. math:: \mathbb{E}_{\mu}[a(x,0)a(x,t)]=\sum_i \lambda_i^t \langle a, r_i\rangle_{\mu} \langle l_i, a \rangle. **Cross-correlation** The cross-correlation of two observables :math:`a(x)`, :math:`b(x)` is similarly given .. math:: \mathbb{E}_{\mu}[a(x,0)b(x,t)]=\sum_x \mu(x) a(x, 0) b(x, t) Examples -------- >>> import numpy as np >>> from msmtools.analysis import correlation >>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> a = np.array([1.0, 0.0, 0.0]) >>> times = np.array([1, 5, 10, 20]) >>> corr = correlation(T, a, times=times) >>> corr array([ 0.40909091, 0.34081364, 0.28585667, 0.23424263]) ### Response: def correlation(T, obs1, obs2=None, times=(1), maxtime=None, k=None, ncv=None, return_times=False): r"""Time-correlation for equilibrium experiment. Parameters ---------- T : (M, M) ndarray or scipy.sparse matrix Transition matrix obs1 : (M,) ndarray Observable, represented as vector on state space obs2 : (M,) ndarray (optional) Second observable, for cross-correlations times : array-like of int (optional), default=(1) List of times (in tau) at which to compute correlation maxtime : int, optional, default=None Maximum time step to use. Equivalent to . Alternative to times. k : int (optional) Number of eigenvalues and eigenvectors to use for computation ncv : int (optional) The number of Lanczos vectors generated, `ncv` must be greater than k; it is recommended that ncv > 2*k Returns ------- correlations : ndarray Correlation values at given times times : ndarray, optional time points at which the correlation was computed (if return_times=True) References ---------- .. [1] Noe, F, S Doose, I Daidone, M Loellmann, M Sauer, J D Chodera and J Smith. 2010. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments. PNAS 108 (12): 4822-4827. Notes ----- **Auto-correlation** The auto-correlation of an observable :math:`a(x)` for a system in equilibrium is .. math:: \mathbb{E}_{\mu}[a(x,0)a(x,t)]=\sum_x \mu(x) a(x, 0) a(x, t) :math:`a(x,0)=a(x)` is the observable at time :math:`t=0`. It can be propagated forward in time using the t-step transition matrix :math:`p^{t}(x, y)`. The propagated observable at time :math:`t` is :math:`a(x, t)=\sum_y p^t(x, y)a(y, 0)`. Using the eigenvlaues and eigenvectors of the transition matrix the autocorrelation can be written as .. math:: \mathbb{E}_{\mu}[a(x,0)a(x,t)]=\sum_i \lambda_i^t \langle a, r_i\rangle_{\mu} \langle l_i, a \rangle. **Cross-correlation** The cross-correlation of two observables :math:`a(x)`, :math:`b(x)` is similarly given .. math:: \mathbb{E}_{\mu}[a(x,0)b(x,t)]=\sum_x \mu(x) a(x, 0) b(x, t) Examples -------- >>> import numpy as np >>> from msmtools.analysis import correlation >>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]]) >>> a = np.array([1.0, 0.0, 0.0]) >>> times = np.array([1, 5, 10, 20]) >>> corr = correlation(T, a, times=times) >>> corr array([ 0.40909091, 0.34081364, 0.28585667, 0.23424263]) """ # check if square matrix and remember size T = _types.ensure_ndarray_or_sparse(T, ndim=2, uniform=True, kind='numeric') n = T.shape[0] obs1 = _types.ensure_ndarray(obs1, ndim=1, size=n, kind='numeric') obs2 = _types.ensure_ndarray_or_None(obs2, ndim=1, size=n, kind='numeric') times = _types.ensure_int_vector(times, require_order=True) # check input # go if _issparse(T): return sparse.fingerprints.correlation(T, obs1, obs2=obs2, times=times, k=k, ncv=ncv) else: return dense.fingerprints.correlation(T, obs1, obs2=obs2, times=times, k=k)
def setup(self, phase, entry_pressure='', pore_volume='', throat_volume=''): r""" Set up the required parameters for the algorithm Parameters ---------- phase : OpenPNM Phase object The phase to be injected into the Network. The Phase must have the capillary entry pressure values for the system. entry_pressure : string The dictionary key to the capillary entry pressure. If none is supplied then the current value is retained. The default is 'throat.capillary_pressure'. pore_volume : string The dictionary key to the pore volume. If none is supplied then the current value is retained. The default is 'pore.volume'. throat_volume : string The dictionary key to the throat volume. If none is supplied then the current value is retained. The default is 'throat.volume'. """ self.settings['phase'] = phase.name if pore_volume: self.settings['pore_volume'] = pore_volume if throat_volume: self.settings['throat_volume'] = throat_volume if entry_pressure: self.settings['entry_pressure'] = entry_pressure # Setup arrays and info self['throat.entry_pressure'] = phase[self.settings['entry_pressure']] # Indices into t_entry giving a sorted list self['throat.sorted'] = sp.argsort(self['throat.entry_pressure'], axis=0) self['throat.order'] = 0 self['throat.order'][self['throat.sorted']] = sp.arange(0, self.Nt) self['throat.invasion_sequence'] = -1 self['pore.invasion_sequence'] = -1 self._tcount = 0
r""" Set up the required parameters for the algorithm Parameters ---------- phase : OpenPNM Phase object The phase to be injected into the Network. The Phase must have the capillary entry pressure values for the system. entry_pressure : string The dictionary key to the capillary entry pressure. If none is supplied then the current value is retained. The default is 'throat.capillary_pressure'. pore_volume : string The dictionary key to the pore volume. If none is supplied then the current value is retained. The default is 'pore.volume'. throat_volume : string The dictionary key to the throat volume. If none is supplied then the current value is retained. The default is 'throat.volume'.
Below is the the instruction that describes the task: ### Input: r""" Set up the required parameters for the algorithm Parameters ---------- phase : OpenPNM Phase object The phase to be injected into the Network. The Phase must have the capillary entry pressure values for the system. entry_pressure : string The dictionary key to the capillary entry pressure. If none is supplied then the current value is retained. The default is 'throat.capillary_pressure'. pore_volume : string The dictionary key to the pore volume. If none is supplied then the current value is retained. The default is 'pore.volume'. throat_volume : string The dictionary key to the throat volume. If none is supplied then the current value is retained. The default is 'throat.volume'. ### Response: def setup(self, phase, entry_pressure='', pore_volume='', throat_volume=''): r""" Set up the required parameters for the algorithm Parameters ---------- phase : OpenPNM Phase object The phase to be injected into the Network. The Phase must have the capillary entry pressure values for the system. entry_pressure : string The dictionary key to the capillary entry pressure. If none is supplied then the current value is retained. The default is 'throat.capillary_pressure'. pore_volume : string The dictionary key to the pore volume. If none is supplied then the current value is retained. The default is 'pore.volume'. throat_volume : string The dictionary key to the throat volume. If none is supplied then the current value is retained. The default is 'throat.volume'. """ self.settings['phase'] = phase.name if pore_volume: self.settings['pore_volume'] = pore_volume if throat_volume: self.settings['throat_volume'] = throat_volume if entry_pressure: self.settings['entry_pressure'] = entry_pressure # Setup arrays and info self['throat.entry_pressure'] = phase[self.settings['entry_pressure']] # Indices into t_entry giving a sorted list self['throat.sorted'] = sp.argsort(self['throat.entry_pressure'], axis=0) self['throat.order'] = 0 self['throat.order'][self['throat.sorted']] = sp.arange(0, self.Nt) self['throat.invasion_sequence'] = -1 self['pore.invasion_sequence'] = -1 self._tcount = 0
def add_metadata(self, metadata_matrix, meta_index_store): ''' Returns a new corpus with a the metadata matrix and index store integrated. :param metadata_matrix: scipy.sparse matrix (# docs, # metadata) :param meta_index_store: IndexStore of metadata values :return: TermDocMatrixWithoutCategories ''' assert isinstance(meta_index_store, IndexStore) assert len(metadata_matrix.shape) == 2 assert metadata_matrix.shape[0] == self.get_num_docs() return self._make_new_term_doc_matrix(new_X=self._X, new_y=None, new_category_idx_store=None, new_y_mask=np.ones(self.get_num_docs()).astype(bool), new_mX=metadata_matrix, new_term_idx_store=self._term_idx_store, new_metadata_idx_store=meta_index_store)
Returns a new corpus with a the metadata matrix and index store integrated. :param metadata_matrix: scipy.sparse matrix (# docs, # metadata) :param meta_index_store: IndexStore of metadata values :return: TermDocMatrixWithoutCategories
Below is the the instruction that describes the task: ### Input: Returns a new corpus with a the metadata matrix and index store integrated. :param metadata_matrix: scipy.sparse matrix (# docs, # metadata) :param meta_index_store: IndexStore of metadata values :return: TermDocMatrixWithoutCategories ### Response: def add_metadata(self, metadata_matrix, meta_index_store): ''' Returns a new corpus with a the metadata matrix and index store integrated. :param metadata_matrix: scipy.sparse matrix (# docs, # metadata) :param meta_index_store: IndexStore of metadata values :return: TermDocMatrixWithoutCategories ''' assert isinstance(meta_index_store, IndexStore) assert len(metadata_matrix.shape) == 2 assert metadata_matrix.shape[0] == self.get_num_docs() return self._make_new_term_doc_matrix(new_X=self._X, new_y=None, new_category_idx_store=None, new_y_mask=np.ones(self.get_num_docs()).astype(bool), new_mX=metadata_matrix, new_term_idx_store=self._term_idx_store, new_metadata_idx_store=meta_index_store)
def permission_set(self, name, func=None): """Define a new permission set (directly, or as a decorator). E.g.:: @authz.permission_set('HTTP') def is_http_perm(perm): return perm.startswith('http.') """ if func is None: return functools.partial(self.predicate, name) self.permission_sets[name] = func return func
Define a new permission set (directly, or as a decorator). E.g.:: @authz.permission_set('HTTP') def is_http_perm(perm): return perm.startswith('http.')
Below is the the instruction that describes the task: ### Input: Define a new permission set (directly, or as a decorator). E.g.:: @authz.permission_set('HTTP') def is_http_perm(perm): return perm.startswith('http.') ### Response: def permission_set(self, name, func=None): """Define a new permission set (directly, or as a decorator). E.g.:: @authz.permission_set('HTTP') def is_http_perm(perm): return perm.startswith('http.') """ if func is None: return functools.partial(self.predicate, name) self.permission_sets[name] = func return func
def clean(self): """ Cleans the data and throws ValidationError on failure """ errors = {} cleaned = {} for name, validator in self.validate_schema.items(): val = getattr(self, name, None) try: cleaned[name] = validator.to_python(val) except formencode.api.Invalid, err: errors[name] = err if errors: raise ValidationError('Invalid data', errors) return cleaned
Cleans the data and throws ValidationError on failure
Below is the the instruction that describes the task: ### Input: Cleans the data and throws ValidationError on failure ### Response: def clean(self): """ Cleans the data and throws ValidationError on failure """ errors = {} cleaned = {} for name, validator in self.validate_schema.items(): val = getattr(self, name, None) try: cleaned[name] = validator.to_python(val) except formencode.api.Invalid, err: errors[name] = err if errors: raise ValidationError('Invalid data', errors) return cleaned
def folderitem(self, obj, item, index): """Service triggered each time an item is iterated in folderitems. The use of this service prevents the extra-loops in child objects. :obj: the instance of the class to be foldered :item: dict containing the properties of the object to be used by the template :index: current index of the item """ # ensure we have an object and not a brain obj = api.get_object(obj) uid = api.get_uid(obj) url = api.get_url(obj) title = api.get_title(obj) # get the category if self.show_categories_enabled(): category = obj.getCategoryTitle() if category not in self.categories: self.categories.append(category) item["category"] = category rr = self.referenceresults.get(uid, {}) item["Title"] = title item["replace"]["Title"] = get_link(url, value=title) item["allow_edit"] = self.get_editable_columns() item["required"] = self.get_required_columns() item["selected"] = rr and True or False item["result"] = rr.get("result", "") item["min"] = rr.get("min", "") item["max"] = rr.get("max", "") # Icons after_icons = "" if obj.getAccredited(): after_icons += get_image( "accredited.png", title=_("Accredited")) if obj.getAttachmentOption() == "r": after_icons += get_image( "attach_reqd.png", title=_("Attachment required")) if obj.getAttachmentOption() == "n": after_icons += get_image( "attach_no.png", title=_("Attachment not permitted")) if after_icons: item["after"]["Title"] = after_icons return item
Service triggered each time an item is iterated in folderitems. The use of this service prevents the extra-loops in child objects. :obj: the instance of the class to be foldered :item: dict containing the properties of the object to be used by the template :index: current index of the item
Below is the the instruction that describes the task: ### Input: Service triggered each time an item is iterated in folderitems. The use of this service prevents the extra-loops in child objects. :obj: the instance of the class to be foldered :item: dict containing the properties of the object to be used by the template :index: current index of the item ### Response: def folderitem(self, obj, item, index): """Service triggered each time an item is iterated in folderitems. The use of this service prevents the extra-loops in child objects. :obj: the instance of the class to be foldered :item: dict containing the properties of the object to be used by the template :index: current index of the item """ # ensure we have an object and not a brain obj = api.get_object(obj) uid = api.get_uid(obj) url = api.get_url(obj) title = api.get_title(obj) # get the category if self.show_categories_enabled(): category = obj.getCategoryTitle() if category not in self.categories: self.categories.append(category) item["category"] = category rr = self.referenceresults.get(uid, {}) item["Title"] = title item["replace"]["Title"] = get_link(url, value=title) item["allow_edit"] = self.get_editable_columns() item["required"] = self.get_required_columns() item["selected"] = rr and True or False item["result"] = rr.get("result", "") item["min"] = rr.get("min", "") item["max"] = rr.get("max", "") # Icons after_icons = "" if obj.getAccredited(): after_icons += get_image( "accredited.png", title=_("Accredited")) if obj.getAttachmentOption() == "r": after_icons += get_image( "attach_reqd.png", title=_("Attachment required")) if obj.getAttachmentOption() == "n": after_icons += get_image( "attach_no.png", title=_("Attachment not permitted")) if after_icons: item["after"]["Title"] = after_icons return item
def inplace_filter(func, sequence): """ Like Python's filter() builtin, but modifies the sequence in place. Example: >>> l = range(10) >>> inplace_filter(lambda x: x > 5, l) >>> l [6, 7, 8, 9] Performance considerations: the function iterates over the sequence, shuffling surviving members down and deleting whatever top part of the sequence is left empty at the end, so sequences whose surviving members are predominantly at the bottom will be processed faster. """ target = 0 for source in xrange(len(sequence)): if func(sequence[source]): sequence[target] = sequence[source] target += 1 del sequence[target:]
Like Python's filter() builtin, but modifies the sequence in place. Example: >>> l = range(10) >>> inplace_filter(lambda x: x > 5, l) >>> l [6, 7, 8, 9] Performance considerations: the function iterates over the sequence, shuffling surviving members down and deleting whatever top part of the sequence is left empty at the end, so sequences whose surviving members are predominantly at the bottom will be processed faster.
Below is the the instruction that describes the task: ### Input: Like Python's filter() builtin, but modifies the sequence in place. Example: >>> l = range(10) >>> inplace_filter(lambda x: x > 5, l) >>> l [6, 7, 8, 9] Performance considerations: the function iterates over the sequence, shuffling surviving members down and deleting whatever top part of the sequence is left empty at the end, so sequences whose surviving members are predominantly at the bottom will be processed faster. ### Response: def inplace_filter(func, sequence): """ Like Python's filter() builtin, but modifies the sequence in place. Example: >>> l = range(10) >>> inplace_filter(lambda x: x > 5, l) >>> l [6, 7, 8, 9] Performance considerations: the function iterates over the sequence, shuffling surviving members down and deleting whatever top part of the sequence is left empty at the end, so sequences whose surviving members are predominantly at the bottom will be processed faster. """ target = 0 for source in xrange(len(sequence)): if func(sequence[source]): sequence[target] = sequence[source] target += 1 del sequence[target:]
def is_all_field_none(self): """ :rtype: bool """ if self._BillingInvoice is not None: return False if self._DraftPayment is not None: return False if self._MasterCardAction is not None: return False if self._Payment is not None: return False if self._PaymentBatch is not None: return False if self._RequestResponse is not None: return False if self._ScheduleInstance is not None: return False if self._TabResultResponse is not None: return False if self._WhitelistResult is not None: return False return True
:rtype: bool
Below is the the instruction that describes the task: ### Input: :rtype: bool ### Response: def is_all_field_none(self): """ :rtype: bool """ if self._BillingInvoice is not None: return False if self._DraftPayment is not None: return False if self._MasterCardAction is not None: return False if self._Payment is not None: return False if self._PaymentBatch is not None: return False if self._RequestResponse is not None: return False if self._ScheduleInstance is not None: return False if self._TabResultResponse is not None: return False if self._WhitelistResult is not None: return False return True
def biclique(self, xmin, xmax, ymin, ymax): """Compute a maximum-sized complete bipartite graph contained in the rectangle defined by ``xmin, xmax, ymin, ymax`` where each chain of qubits is either a vertical line or a horizontal line. INPUTS: xmin,xmax,ymin,ymax: integers defining the bounds of a rectangle where we look for unbroken chains. These ranges include both endpoints. OUTPUT: (A_side, B_side): a tuple of two lists containing lists of qubits. the lists found in ``A_side`` and ``B_side`` are chains of qubits. These lists of qubits are arranged so that >>> [zip(chain,chain[1:]) for chain in A_side] and >>> [zip(chain,chain[1:]) for chain in B_side] are lists of valid couplers. """ Aside = sum((self.maximum_hline_bundle(y, xmin, xmax) for y in range(ymin, ymax + 1)), []) Bside = sum((self.maximum_vline_bundle(x, ymin, ymax) for x in range(xmin, xmax + 1)), []) return Aside, Bside
Compute a maximum-sized complete bipartite graph contained in the rectangle defined by ``xmin, xmax, ymin, ymax`` where each chain of qubits is either a vertical line or a horizontal line. INPUTS: xmin,xmax,ymin,ymax: integers defining the bounds of a rectangle where we look for unbroken chains. These ranges include both endpoints. OUTPUT: (A_side, B_side): a tuple of two lists containing lists of qubits. the lists found in ``A_side`` and ``B_side`` are chains of qubits. These lists of qubits are arranged so that >>> [zip(chain,chain[1:]) for chain in A_side] and >>> [zip(chain,chain[1:]) for chain in B_side] are lists of valid couplers.
Below is the the instruction that describes the task: ### Input: Compute a maximum-sized complete bipartite graph contained in the rectangle defined by ``xmin, xmax, ymin, ymax`` where each chain of qubits is either a vertical line or a horizontal line. INPUTS: xmin,xmax,ymin,ymax: integers defining the bounds of a rectangle where we look for unbroken chains. These ranges include both endpoints. OUTPUT: (A_side, B_side): a tuple of two lists containing lists of qubits. the lists found in ``A_side`` and ``B_side`` are chains of qubits. These lists of qubits are arranged so that >>> [zip(chain,chain[1:]) for chain in A_side] and >>> [zip(chain,chain[1:]) for chain in B_side] are lists of valid couplers. ### Response: def biclique(self, xmin, xmax, ymin, ymax): """Compute a maximum-sized complete bipartite graph contained in the rectangle defined by ``xmin, xmax, ymin, ymax`` where each chain of qubits is either a vertical line or a horizontal line. INPUTS: xmin,xmax,ymin,ymax: integers defining the bounds of a rectangle where we look for unbroken chains. These ranges include both endpoints. OUTPUT: (A_side, B_side): a tuple of two lists containing lists of qubits. the lists found in ``A_side`` and ``B_side`` are chains of qubits. These lists of qubits are arranged so that >>> [zip(chain,chain[1:]) for chain in A_side] and >>> [zip(chain,chain[1:]) for chain in B_side] are lists of valid couplers. """ Aside = sum((self.maximum_hline_bundle(y, xmin, xmax) for y in range(ymin, ymax + 1)), []) Bside = sum((self.maximum_vline_bundle(x, ymin, ymax) for x in range(xmin, xmax + 1)), []) return Aside, Bside
def _make_cmap(colors, position=None, bit=False): ''' _make_cmap takes a list of tuples which contain RGB values. The RGB values may either be in 8-bit [0 to 255] (in which bit must be set to True when called) or arithmetic [0 to 1] (default). _make_cmap returns a cmap with equally spaced colors. Arrange your tuples so that the first color is the lowest value for the colorbar and the last is the highest. position contains values from 0 to 1 to dictate the location of each color. ''' bit_rgb = np.linspace(0,1,256) if position == None: position = np.linspace(0,1,len(colors)) else: if len(position) != len(colors): sys.exit("position length must be the same as colors") elif position[0] != 0 or position[-1] != 1: sys.exit("position must start with 0 and end with 1") palette = [(i, (float(r), float(g), float(b), float(a))) for i, (r, g, b, a) in enumerate(colors)] cmap = Colormap(*palette) return cmap
_make_cmap takes a list of tuples which contain RGB values. The RGB values may either be in 8-bit [0 to 255] (in which bit must be set to True when called) or arithmetic [0 to 1] (default). _make_cmap returns a cmap with equally spaced colors. Arrange your tuples so that the first color is the lowest value for the colorbar and the last is the highest. position contains values from 0 to 1 to dictate the location of each color.
Below is the the instruction that describes the task: ### Input: _make_cmap takes a list of tuples which contain RGB values. The RGB values may either be in 8-bit [0 to 255] (in which bit must be set to True when called) or arithmetic [0 to 1] (default). _make_cmap returns a cmap with equally spaced colors. Arrange your tuples so that the first color is the lowest value for the colorbar and the last is the highest. position contains values from 0 to 1 to dictate the location of each color. ### Response: def _make_cmap(colors, position=None, bit=False): ''' _make_cmap takes a list of tuples which contain RGB values. The RGB values may either be in 8-bit [0 to 255] (in which bit must be set to True when called) or arithmetic [0 to 1] (default). _make_cmap returns a cmap with equally spaced colors. Arrange your tuples so that the first color is the lowest value for the colorbar and the last is the highest. position contains values from 0 to 1 to dictate the location of each color. ''' bit_rgb = np.linspace(0,1,256) if position == None: position = np.linspace(0,1,len(colors)) else: if len(position) != len(colors): sys.exit("position length must be the same as colors") elif position[0] != 0 or position[-1] != 1: sys.exit("position must start with 0 and end with 1") palette = [(i, (float(r), float(g), float(b), float(a))) for i, (r, g, b, a) in enumerate(colors)] cmap = Colormap(*palette) return cmap
def fromOPEndpointURL(cls, op_endpoint_url): """Construct an OP-Identifier OpenIDServiceEndpoint object for a given OP Endpoint URL @param op_endpoint_url: The URL of the endpoint @rtype: OpenIDServiceEndpoint """ service = cls() service.server_url = op_endpoint_url service.type_uris = [OPENID_IDP_2_0_TYPE] return service
Construct an OP-Identifier OpenIDServiceEndpoint object for a given OP Endpoint URL @param op_endpoint_url: The URL of the endpoint @rtype: OpenIDServiceEndpoint
Below is the the instruction that describes the task: ### Input: Construct an OP-Identifier OpenIDServiceEndpoint object for a given OP Endpoint URL @param op_endpoint_url: The URL of the endpoint @rtype: OpenIDServiceEndpoint ### Response: def fromOPEndpointURL(cls, op_endpoint_url): """Construct an OP-Identifier OpenIDServiceEndpoint object for a given OP Endpoint URL @param op_endpoint_url: The URL of the endpoint @rtype: OpenIDServiceEndpoint """ service = cls() service.server_url = op_endpoint_url service.type_uris = [OPENID_IDP_2_0_TYPE] return service
def get_field_mappings(self, field): """Converts ES field mappings to .kibana field mappings""" retdict = {} retdict['indexed'] = False retdict['analyzed'] = False for (key, val) in iteritems(field): if key in self.mappings: if (key == 'type' and (val == "long" or val == "integer" or val == "double" or val == "float")): val = "number" # self.pr_dbg("\t\t\tkey: %s" % key) # self.pr_dbg("\t\t\t\tval: %s" % val) retdict[key] = val if key == 'index' and val != "no": retdict['indexed'] = True # self.pr_dbg("\t\t\tkey: %s" % key) # self.pr_dbg("\t\t\t\tval: %s" % val) if val == "analyzed": retdict['analyzed'] = True return retdict
Converts ES field mappings to .kibana field mappings
Below is the the instruction that describes the task: ### Input: Converts ES field mappings to .kibana field mappings ### Response: def get_field_mappings(self, field): """Converts ES field mappings to .kibana field mappings""" retdict = {} retdict['indexed'] = False retdict['analyzed'] = False for (key, val) in iteritems(field): if key in self.mappings: if (key == 'type' and (val == "long" or val == "integer" or val == "double" or val == "float")): val = "number" # self.pr_dbg("\t\t\tkey: %s" % key) # self.pr_dbg("\t\t\t\tval: %s" % val) retdict[key] = val if key == 'index' and val != "no": retdict['indexed'] = True # self.pr_dbg("\t\t\tkey: %s" % key) # self.pr_dbg("\t\t\t\tval: %s" % val) if val == "analyzed": retdict['analyzed'] = True return retdict
def bind(self, server, net=None, address=None): """Create a network adapter object and bind.""" if _debug: NetworkServiceAccessPoint._debug("bind %r net=%r address=%r", server, net, address) # make sure this hasn't already been called with this network if net in self.adapters: raise RuntimeError("already bound") # create an adapter object, add it to our map adapter = NetworkAdapter(self, net) self.adapters[net] = adapter if _debug: NetworkServiceAccessPoint._debug(" - adapters[%r]: %r", net, adapter) # if the address was given, make it the "local" one if address and not self.local_address: self.local_adapter = adapter self.local_address = address # bind to the server bind(adapter, server)
Create a network adapter object and bind.
Below is the the instruction that describes the task: ### Input: Create a network adapter object and bind. ### Response: def bind(self, server, net=None, address=None): """Create a network adapter object and bind.""" if _debug: NetworkServiceAccessPoint._debug("bind %r net=%r address=%r", server, net, address) # make sure this hasn't already been called with this network if net in self.adapters: raise RuntimeError("already bound") # create an adapter object, add it to our map adapter = NetworkAdapter(self, net) self.adapters[net] = adapter if _debug: NetworkServiceAccessPoint._debug(" - adapters[%r]: %r", net, adapter) # if the address was given, make it the "local" one if address and not self.local_address: self.local_adapter = adapter self.local_address = address # bind to the server bind(adapter, server)
def extract_ast_species(ast): """Extract species from ast.species set of tuples (id, label)""" species_id = "None" species_label = "None" species = [ (species_id, species_label) for (species_id, species_label) in ast.species if species_id ] if len(species) == 1: (species_id, species_label) = species[0] if not species_id: species_id = "None" species_label = "None" log.debug(f"AST Species: {ast.species} Species: {species} SpeciesID: {species_id}") return (species_id, species_label)
Extract species from ast.species set of tuples (id, label)
Below is the the instruction that describes the task: ### Input: Extract species from ast.species set of tuples (id, label) ### Response: def extract_ast_species(ast): """Extract species from ast.species set of tuples (id, label)""" species_id = "None" species_label = "None" species = [ (species_id, species_label) for (species_id, species_label) in ast.species if species_id ] if len(species) == 1: (species_id, species_label) = species[0] if not species_id: species_id = "None" species_label = "None" log.debug(f"AST Species: {ast.species} Species: {species} SpeciesID: {species_id}") return (species_id, species_label)
def accepts(*argtypes, **kwargtypes): """A function decorator to specify argument types of the function. Types may be specified either in the order that they appear in the function or via keyword arguments (just as if you were calling the function). Example usage: | @accepts(Positive0) | def square_root(x): | ... """ theseargtypes = [T.TypeFactory(a) for a in argtypes] thesekwargtypes = {k : T.TypeFactory(a) for k,a in kwargtypes.items()} def _decorator(func): # @accepts decorator f = func.__wrapped__ if hasattr(func, "__wrapped__") else func try: argtypes = inspect.getcallargs(f, *theseargtypes, **thesekwargtypes) argtypes = {k: v if issubclass(type(v), T.Type) else T.Constant(v) for k,v in argtypes.items()} except TypeError: raise E.ArgumentTypeError("Invalid argument specification to @accepts in %s" % func.__qualname__) # Support keyword arguments. Find the name of the **kwargs # parameter (not necessarily "kwargs") and set it to be a # dictionary of unspecified types. kwargname = U.get_func_kwargs_name(func) if kwargname in argtypes.keys(): argtypes[kwargname] = T.KeywordArguments() # Support positional arguments. Find the name of the *args # parameter (not necessarily "args") and set it to be an # unspecified type. posargname = U.get_func_posargs_name(func) if posargname in argtypes.keys(): argtypes[posargname] = T.PositionalArguments() # TODO merge with actual argument names if U.has_fun_prop(func, "argtypes"): raise ValueError("Cannot set argument types twice") U.set_fun_prop(func, "argtypes", argtypes) return _wrap(func) return _decorator
A function decorator to specify argument types of the function. Types may be specified either in the order that they appear in the function or via keyword arguments (just as if you were calling the function). Example usage: | @accepts(Positive0) | def square_root(x): | ...
Below is the the instruction that describes the task: ### Input: A function decorator to specify argument types of the function. Types may be specified either in the order that they appear in the function or via keyword arguments (just as if you were calling the function). Example usage: | @accepts(Positive0) | def square_root(x): | ... ### Response: def accepts(*argtypes, **kwargtypes): """A function decorator to specify argument types of the function. Types may be specified either in the order that they appear in the function or via keyword arguments (just as if you were calling the function). Example usage: | @accepts(Positive0) | def square_root(x): | ... """ theseargtypes = [T.TypeFactory(a) for a in argtypes] thesekwargtypes = {k : T.TypeFactory(a) for k,a in kwargtypes.items()} def _decorator(func): # @accepts decorator f = func.__wrapped__ if hasattr(func, "__wrapped__") else func try: argtypes = inspect.getcallargs(f, *theseargtypes, **thesekwargtypes) argtypes = {k: v if issubclass(type(v), T.Type) else T.Constant(v) for k,v in argtypes.items()} except TypeError: raise E.ArgumentTypeError("Invalid argument specification to @accepts in %s" % func.__qualname__) # Support keyword arguments. Find the name of the **kwargs # parameter (not necessarily "kwargs") and set it to be a # dictionary of unspecified types. kwargname = U.get_func_kwargs_name(func) if kwargname in argtypes.keys(): argtypes[kwargname] = T.KeywordArguments() # Support positional arguments. Find the name of the *args # parameter (not necessarily "args") and set it to be an # unspecified type. posargname = U.get_func_posargs_name(func) if posargname in argtypes.keys(): argtypes[posargname] = T.PositionalArguments() # TODO merge with actual argument names if U.has_fun_prop(func, "argtypes"): raise ValueError("Cannot set argument types twice") U.set_fun_prop(func, "argtypes", argtypes) return _wrap(func) return _decorator
def add_at(self, moment: float, fn_process: Callable, *args: Any, **kwargs: Any) -> 'Process': """ Adds a process to the simulation, which is made to start at the given exact time on the simulated clock. Note that times in the past when compared to the current moment on the simulated clock are forbidden. See method add() for more details. """ delay = moment - self.now() if delay < 0.0: raise ValueError( f"The given moment to start the process ({moment:f}) is in the past (now is {self.now():f})." ) return self.add_in(delay, fn_process, *args, **kwargs)
Adds a process to the simulation, which is made to start at the given exact time on the simulated clock. Note that times in the past when compared to the current moment on the simulated clock are forbidden. See method add() for more details.
Below is the the instruction that describes the task: ### Input: Adds a process to the simulation, which is made to start at the given exact time on the simulated clock. Note that times in the past when compared to the current moment on the simulated clock are forbidden. See method add() for more details. ### Response: def add_at(self, moment: float, fn_process: Callable, *args: Any, **kwargs: Any) -> 'Process': """ Adds a process to the simulation, which is made to start at the given exact time on the simulated clock. Note that times in the past when compared to the current moment on the simulated clock are forbidden. See method add() for more details. """ delay = moment - self.now() if delay < 0.0: raise ValueError( f"The given moment to start the process ({moment:f}) is in the past (now is {self.now():f})." ) return self.add_in(delay, fn_process, *args, **kwargs)
def m2i(self, pkt, s): """ The good thing about safedec is that it may still decode ASN1 even if there is a mismatch between the expected tag (self.ASN1_tag) and the actual tag; the decoded ASN1 object will simply be put into an ASN1_BADTAG object. However, safedec prevents the raising of exceptions needed for ASN1F_optional processing. Thus we use 'flexible_tag', which should be False with ASN1F_optional. Regarding other fields, we might need to know whether encoding went as expected or not. Noticeably, input methods from cert.py expect certain exceptions to be raised. Hence default flexible_tag is False. """ diff_tag, s = BER_tagging_dec(s, hidden_tag=self.ASN1_tag, implicit_tag=self.implicit_tag, explicit_tag=self.explicit_tag, safe=self.flexible_tag) if diff_tag is not None: # this implies that flexible_tag was True if self.implicit_tag is not None: self.implicit_tag = diff_tag elif self.explicit_tag is not None: self.explicit_tag = diff_tag codec = self.ASN1_tag.get_codec(pkt.ASN1_codec) if self.flexible_tag: return codec.safedec(s, context=self.context) else: return codec.dec(s, context=self.context)
The good thing about safedec is that it may still decode ASN1 even if there is a mismatch between the expected tag (self.ASN1_tag) and the actual tag; the decoded ASN1 object will simply be put into an ASN1_BADTAG object. However, safedec prevents the raising of exceptions needed for ASN1F_optional processing. Thus we use 'flexible_tag', which should be False with ASN1F_optional. Regarding other fields, we might need to know whether encoding went as expected or not. Noticeably, input methods from cert.py expect certain exceptions to be raised. Hence default flexible_tag is False.
Below is the the instruction that describes the task: ### Input: The good thing about safedec is that it may still decode ASN1 even if there is a mismatch between the expected tag (self.ASN1_tag) and the actual tag; the decoded ASN1 object will simply be put into an ASN1_BADTAG object. However, safedec prevents the raising of exceptions needed for ASN1F_optional processing. Thus we use 'flexible_tag', which should be False with ASN1F_optional. Regarding other fields, we might need to know whether encoding went as expected or not. Noticeably, input methods from cert.py expect certain exceptions to be raised. Hence default flexible_tag is False. ### Response: def m2i(self, pkt, s): """ The good thing about safedec is that it may still decode ASN1 even if there is a mismatch between the expected tag (self.ASN1_tag) and the actual tag; the decoded ASN1 object will simply be put into an ASN1_BADTAG object. However, safedec prevents the raising of exceptions needed for ASN1F_optional processing. Thus we use 'flexible_tag', which should be False with ASN1F_optional. Regarding other fields, we might need to know whether encoding went as expected or not. Noticeably, input methods from cert.py expect certain exceptions to be raised. Hence default flexible_tag is False. """ diff_tag, s = BER_tagging_dec(s, hidden_tag=self.ASN1_tag, implicit_tag=self.implicit_tag, explicit_tag=self.explicit_tag, safe=self.flexible_tag) if diff_tag is not None: # this implies that flexible_tag was True if self.implicit_tag is not None: self.implicit_tag = diff_tag elif self.explicit_tag is not None: self.explicit_tag = diff_tag codec = self.ASN1_tag.get_codec(pkt.ASN1_codec) if self.flexible_tag: return codec.safedec(s, context=self.context) else: return codec.dec(s, context=self.context)
def regex(pattern, flags: int = 0): """Filter messages that match a given RegEx pattern. Args: pattern (``str``): The RegEx pattern as string, it will be applied to the text of a message. When a pattern matches, all the `Match Objects <https://docs.python.org/3/library/re.html#match-objects>`_ are stored in the *matches* field of the :class:`Message <pyrogram.Message>` itself. flags (``int``, *optional*): RegEx flags. """ def f(_, m): m.matches = [i for i in _.p.finditer(m.text or m.caption or "")] return bool(m.matches) return create("Regex", f, p=re.compile(pattern, flags))
Filter messages that match a given RegEx pattern. Args: pattern (``str``): The RegEx pattern as string, it will be applied to the text of a message. When a pattern matches, all the `Match Objects <https://docs.python.org/3/library/re.html#match-objects>`_ are stored in the *matches* field of the :class:`Message <pyrogram.Message>` itself. flags (``int``, *optional*): RegEx flags.
Below is the the instruction that describes the task: ### Input: Filter messages that match a given RegEx pattern. Args: pattern (``str``): The RegEx pattern as string, it will be applied to the text of a message. When a pattern matches, all the `Match Objects <https://docs.python.org/3/library/re.html#match-objects>`_ are stored in the *matches* field of the :class:`Message <pyrogram.Message>` itself. flags (``int``, *optional*): RegEx flags. ### Response: def regex(pattern, flags: int = 0): """Filter messages that match a given RegEx pattern. Args: pattern (``str``): The RegEx pattern as string, it will be applied to the text of a message. When a pattern matches, all the `Match Objects <https://docs.python.org/3/library/re.html#match-objects>`_ are stored in the *matches* field of the :class:`Message <pyrogram.Message>` itself. flags (``int``, *optional*): RegEx flags. """ def f(_, m): m.matches = [i for i in _.p.finditer(m.text or m.caption or "")] return bool(m.matches) return create("Regex", f, p=re.compile(pattern, flags))
def create_aggregator(self, subordinates): """Creates an aggregator event source, collecting events from multiple sources. This way a single listener can listen for events coming from multiple sources, using a single blocking :py:func:`get_event` on the returned aggregator. in subordinates of type :class:`IEventSource` Subordinate event source this one aggregates. return result of type :class:`IEventSource` Event source aggregating passed sources. """ if not isinstance(subordinates, list): raise TypeError("subordinates can only be an instance of type list") for a in subordinates[:10]: if not isinstance(a, IEventSource): raise TypeError( "array can only contain objects of type IEventSource") result = self._call("createAggregator", in_p=[subordinates]) result = IEventSource(result) return result
Creates an aggregator event source, collecting events from multiple sources. This way a single listener can listen for events coming from multiple sources, using a single blocking :py:func:`get_event` on the returned aggregator. in subordinates of type :class:`IEventSource` Subordinate event source this one aggregates. return result of type :class:`IEventSource` Event source aggregating passed sources.
Below is the the instruction that describes the task: ### Input: Creates an aggregator event source, collecting events from multiple sources. This way a single listener can listen for events coming from multiple sources, using a single blocking :py:func:`get_event` on the returned aggregator. in subordinates of type :class:`IEventSource` Subordinate event source this one aggregates. return result of type :class:`IEventSource` Event source aggregating passed sources. ### Response: def create_aggregator(self, subordinates): """Creates an aggregator event source, collecting events from multiple sources. This way a single listener can listen for events coming from multiple sources, using a single blocking :py:func:`get_event` on the returned aggregator. in subordinates of type :class:`IEventSource` Subordinate event source this one aggregates. return result of type :class:`IEventSource` Event source aggregating passed sources. """ if not isinstance(subordinates, list): raise TypeError("subordinates can only be an instance of type list") for a in subordinates[:10]: if not isinstance(a, IEventSource): raise TypeError( "array can only contain objects of type IEventSource") result = self._call("createAggregator", in_p=[subordinates]) result = IEventSource(result) return result
def write_json(json_obj, filename, mode="w", print_pretty=True): '''write_json will (optionally,pretty print) a json object to file Parameters ========== json_obj: the dict to print to json filename: the output file to write to pretty_print: if True, will use nicer formatting ''' with open(filename, mode) as filey: if print_pretty: filey.writelines(print_json(json_obj)) else: filey.writelines(json.dumps(json_obj)) return filename
write_json will (optionally,pretty print) a json object to file Parameters ========== json_obj: the dict to print to json filename: the output file to write to pretty_print: if True, will use nicer formatting
Below is the the instruction that describes the task: ### Input: write_json will (optionally,pretty print) a json object to file Parameters ========== json_obj: the dict to print to json filename: the output file to write to pretty_print: if True, will use nicer formatting ### Response: def write_json(json_obj, filename, mode="w", print_pretty=True): '''write_json will (optionally,pretty print) a json object to file Parameters ========== json_obj: the dict to print to json filename: the output file to write to pretty_print: if True, will use nicer formatting ''' with open(filename, mode) as filey: if print_pretty: filey.writelines(print_json(json_obj)) else: filey.writelines(json.dumps(json_obj)) return filename
def make_mujoco_env(env_id, seed, reward_scale=1.0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ rank = MPI.COMM_WORLD.Get_rank() myseed = seed + 1000 * rank if seed is not None else None set_global_seeds(myseed) env = gym.make(env_id) logger_path = None if logger.get_dir() is None else os.path.join(logger.get_dir(), str(rank)) env = Monitor(env, logger_path, allow_early_resets=True) env.seed(seed) if reward_scale != 1.0: from baselines.common.retro_wrappers import RewardScaler env = RewardScaler(env, reward_scale) return env
Create a wrapped, monitored gym.Env for MuJoCo.
Below is the the instruction that describes the task: ### Input: Create a wrapped, monitored gym.Env for MuJoCo. ### Response: def make_mujoco_env(env_id, seed, reward_scale=1.0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ rank = MPI.COMM_WORLD.Get_rank() myseed = seed + 1000 * rank if seed is not None else None set_global_seeds(myseed) env = gym.make(env_id) logger_path = None if logger.get_dir() is None else os.path.join(logger.get_dir(), str(rank)) env = Monitor(env, logger_path, allow_early_resets=True) env.seed(seed) if reward_scale != 1.0: from baselines.common.retro_wrappers import RewardScaler env = RewardScaler(env, reward_scale) return env
def is_finished(self): """Returns whether all trials have finished running.""" if self._total_time > self._global_time_limit: logger.warning("Exceeded global time limit {} / {}".format( self._total_time, self._global_time_limit)) return True trials_done = all(trial.is_finished() for trial in self._trials) return trials_done and self._search_alg.is_finished()
Returns whether all trials have finished running.
Below is the the instruction that describes the task: ### Input: Returns whether all trials have finished running. ### Response: def is_finished(self): """Returns whether all trials have finished running.""" if self._total_time > self._global_time_limit: logger.warning("Exceeded global time limit {} / {}".format( self._total_time, self._global_time_limit)) return True trials_done = all(trial.is_finished() for trial in self._trials) return trials_done and self._search_alg.is_finished()