pharma_label_v3.1 / README.md
atatavana's picture
End of training
5e6da8e verified
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - my_csv_dataset3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: pharma_label_v3.1
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: my_csv_dataset3
          type: my_csv_dataset3
          config: discharge
          split: test
          args: discharge
        metrics:
          - name: Precision
            type: precision
            value: 0.9623287671232876
          - name: Recall
            type: recall
            value: 0.9740034662045061
          - name: F1
            type: f1
            value: 0.9681309216192937
          - name: Accuracy
            type: accuracy
            value: 0.9890616004605642

pharma_label_v3.1

This model is a fine-tuned version of microsoft/layoutlmv3-base on the my_csv_dataset3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0671
  • Precision: 0.9623
  • Recall: 0.9740
  • F1: 0.9681
  • Accuracy: 0.9891

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.2987 100 0.5492 0.7759 0.7140 0.7437 0.9102
No log 2.5974 200 0.1522 0.9281 0.9393 0.9337 0.9747
No log 3.8961 300 0.1063 0.9332 0.9445 0.9388 0.9793
No log 5.1948 400 0.0891 0.9448 0.9497 0.9473 0.9810
0.375 6.4935 500 0.0879 0.9435 0.9549 0.9492 0.9839
0.375 7.7922 600 0.0908 0.9485 0.9584 0.9534 0.9822
0.375 9.0909 700 0.0764 0.9636 0.9636 0.9636 0.9862
0.375 10.3896 800 0.0819 0.9671 0.9671 0.9671 0.9873
0.375 11.6883 900 0.0802 0.9686 0.9636 0.9661 0.9873
0.0225 12.9870 1000 0.0602 0.9722 0.9705 0.9714 0.9902
0.0225 14.2857 1100 0.0989 0.9438 0.9601 0.9519 0.9816
0.0225 15.5844 1200 0.0859 0.9538 0.9671 0.9604 0.9839
0.0225 16.8831 1300 0.0781 0.9554 0.9653 0.9603 0.9856
0.0225 18.1818 1400 0.0653 0.9605 0.9705 0.9655 0.9891
0.0105 19.4805 1500 0.0671 0.9623 0.9740 0.9681 0.9891

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1