--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - my_csv_dataset3 metrics: - precision - recall - f1 - accuracy model-index: - name: pharma_label_v3.1 results: - task: name: Token Classification type: token-classification dataset: name: my_csv_dataset3 type: my_csv_dataset3 config: discharge split: test args: discharge metrics: - name: Precision type: precision value: 0.9623287671232876 - name: Recall type: recall value: 0.9740034662045061 - name: F1 type: f1 value: 0.9681309216192937 - name: Accuracy type: accuracy value: 0.9890616004605642 --- # pharma_label_v3.1 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the my_csv_dataset3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0671 - Precision: 0.9623 - Recall: 0.9740 - F1: 0.9681 - Accuracy: 0.9891 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.2987 | 100 | 0.5492 | 0.7759 | 0.7140 | 0.7437 | 0.9102 | | No log | 2.5974 | 200 | 0.1522 | 0.9281 | 0.9393 | 0.9337 | 0.9747 | | No log | 3.8961 | 300 | 0.1063 | 0.9332 | 0.9445 | 0.9388 | 0.9793 | | No log | 5.1948 | 400 | 0.0891 | 0.9448 | 0.9497 | 0.9473 | 0.9810 | | 0.375 | 6.4935 | 500 | 0.0879 | 0.9435 | 0.9549 | 0.9492 | 0.9839 | | 0.375 | 7.7922 | 600 | 0.0908 | 0.9485 | 0.9584 | 0.9534 | 0.9822 | | 0.375 | 9.0909 | 700 | 0.0764 | 0.9636 | 0.9636 | 0.9636 | 0.9862 | | 0.375 | 10.3896 | 800 | 0.0819 | 0.9671 | 0.9671 | 0.9671 | 0.9873 | | 0.375 | 11.6883 | 900 | 0.0802 | 0.9686 | 0.9636 | 0.9661 | 0.9873 | | 0.0225 | 12.9870 | 1000 | 0.0602 | 0.9722 | 0.9705 | 0.9714 | 0.9902 | | 0.0225 | 14.2857 | 1100 | 0.0989 | 0.9438 | 0.9601 | 0.9519 | 0.9816 | | 0.0225 | 15.5844 | 1200 | 0.0859 | 0.9538 | 0.9671 | 0.9604 | 0.9839 | | 0.0225 | 16.8831 | 1300 | 0.0781 | 0.9554 | 0.9653 | 0.9603 | 0.9856 | | 0.0225 | 18.1818 | 1400 | 0.0653 | 0.9605 | 0.9705 | 0.9655 | 0.9891 | | 0.0105 | 19.4805 | 1500 | 0.0671 | 0.9623 | 0.9740 | 0.9681 | 0.9891 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1