End of training
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- my_csv_dataset3
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: pharma_label_v3.1
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: my_csv_dataset3
|
21 |
+
type: my_csv_dataset3
|
22 |
+
config: discharge
|
23 |
+
split: test
|
24 |
+
args: discharge
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.9623287671232876
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.9740034662045061
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.9681309216192937
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9890616004605642
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# pharma_label_v3.1
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the my_csv_dataset3 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0671
|
48 |
+
- Precision: 0.9623
|
49 |
+
- Recall: 0.9740
|
50 |
+
- F1: 0.9681
|
51 |
+
- Accuracy: 0.9891
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 1e-05
|
71 |
+
- train_batch_size: 2
|
72 |
+
- eval_batch_size: 2
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- training_steps: 1500
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.2987 | 100 | 0.5492 | 0.7759 | 0.7140 | 0.7437 | 0.9102 |
|
83 |
+
| No log | 2.5974 | 200 | 0.1522 | 0.9281 | 0.9393 | 0.9337 | 0.9747 |
|
84 |
+
| No log | 3.8961 | 300 | 0.1063 | 0.9332 | 0.9445 | 0.9388 | 0.9793 |
|
85 |
+
| No log | 5.1948 | 400 | 0.0891 | 0.9448 | 0.9497 | 0.9473 | 0.9810 |
|
86 |
+
| 0.375 | 6.4935 | 500 | 0.0879 | 0.9435 | 0.9549 | 0.9492 | 0.9839 |
|
87 |
+
| 0.375 | 7.7922 | 600 | 0.0908 | 0.9485 | 0.9584 | 0.9534 | 0.9822 |
|
88 |
+
| 0.375 | 9.0909 | 700 | 0.0764 | 0.9636 | 0.9636 | 0.9636 | 0.9862 |
|
89 |
+
| 0.375 | 10.3896 | 800 | 0.0819 | 0.9671 | 0.9671 | 0.9671 | 0.9873 |
|
90 |
+
| 0.375 | 11.6883 | 900 | 0.0802 | 0.9686 | 0.9636 | 0.9661 | 0.9873 |
|
91 |
+
| 0.0225 | 12.9870 | 1000 | 0.0602 | 0.9722 | 0.9705 | 0.9714 | 0.9902 |
|
92 |
+
| 0.0225 | 14.2857 | 1100 | 0.0989 | 0.9438 | 0.9601 | 0.9519 | 0.9816 |
|
93 |
+
| 0.0225 | 15.5844 | 1200 | 0.0859 | 0.9538 | 0.9671 | 0.9604 | 0.9839 |
|
94 |
+
| 0.0225 | 16.8831 | 1300 | 0.0781 | 0.9554 | 0.9653 | 0.9603 | 0.9856 |
|
95 |
+
| 0.0225 | 18.1818 | 1400 | 0.0653 | 0.9605 | 0.9705 | 0.9655 | 0.9891 |
|
96 |
+
| 0.0105 | 19.4805 | 1500 | 0.0671 | 0.9623 | 0.9740 | 0.9681 | 0.9891 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.40.1
|
102 |
+
- Pytorch 2.2.1+cu121
|
103 |
+
- Datasets 2.19.0
|
104 |
+
- Tokenizers 0.19.1
|
runs/May01_21-26-51_2dbbf50fa8a4/events.out.tfevents.1714598826.2dbbf50fa8a4.1499.2
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41498ccbe280be97ab61ca858fed02613d673a669806b587f6882ef4ab3d240f
|
3 |
+
size 13628
|