library_name: transformers
tags:
- robson-criteria-classification
- ner
language:
- es
base_model:
- google-bert/bert-base-multilingual-cased
pipeline_tag: token-classification
Model Card for Model ID
The bert-base-robson-criteria-classification-ner-es is a Named Entity Recognition (NER) model for the Spanish language fine-tuned from the RoBERTa base model.
Model Details
Model Description
In the table below, we have outlined the entities set. Most entities are based on the obstetric variables described in the Robson Implementation Manual Robson Classification: Implementation Manual. However, we have added nine additional entities related to the use of antibiotics, uterotonics, dose, posology, complications, obstetric hemorrhage, the outcome of delivery (whether it was a vaginal birth or a cesarean section), and the personal information within the Electronic Health Records (EHRs).
Clinical entities set
No | Spanish Entity | English Entity | Obsetric variable |
---|---|---|---|
1 | Parto nulípara | Nullipara labor | Parity |
2 | Parto multípara | Multipara labor | |
3 | Cesárea previa (Si) | One or more Cesarean Section | Previous Cesarean Section |
4 | Cesárea previa (No) | None Cesarean Section | |
5 | TDP espontáneo | Spontaneous labor | Onset of labour |
6 | TDP inducido | Induced labor | |
7 | TDP No: cesárea programada | No labor, scheduled Cesarean Section | |
8 | Embarazo único | Singleton pregnancy | Number of fetuses |
9 | Embarazo Múltiple | Multiple pregnancy | |
10 | Edad < 37 semanas | Preterm pregnancy | Gestational age |
11 | Edad ≥ 37 semanas | Term pregnancy | |
12 | Posición cefálica | Cephalic presentation | Fetal lie and presentation |
13 | Posición podálica | Breech presentation | |
14 | Situación transversa | Transverse lie | |
15 | Antibiótico | Antibiotic | |
16 | Complicación | Complication | |
17 | Dosis | Dose | |
18 | Hemorragia Obstétrica | Obstetric Hemorrhage | |
19 | Info personal | Personal Information | |
20 | Posología | Posology | |
21 | Tipo de resolución: parto | Delivery resolution: VB | |
22 | Tipo de resolución: cesarea | Delivery resolution: CS | |
23 | Uterotónico | Uterotonic |
This model detects entities by classifying every token according to the IOB format:
['O', 'B-Antibiótico', 'I-Antibiótico', 'B-Cesárea previa (NO)', 'I-Cesárea previa (NO)', 'B-Cesárea previa (SI)', 'I-Cesárea previa (SI)', 'B-Complicación', 'I-Complicación', 'B-Dosis', 'I-Dosis', 'B-Edad < 37 semanas', 'I-Edad < 37 semanas', 'B-Edad >= 37 semanas', 'I-Edad >= 37 semanas', 'B-Embarazo múltiple', 'I-Embarazo múltiple', 'B-Embarazo único', 'I-Embarazo único', 'B-Hemorragia obstétrica', 'I-Hemorragia obstétrica', 'B-Info personal', 'I-Info personal', 'B-Parto multípara', 'I-Parto multípara', 'B-Parto nulípara', 'I-Parto nulípara', 'B-Posición cefálica', 'I-Posición cefálica', 'B-Posición podálica', 'I-Posición podálica', 'B-Posología', 'I-Posología', 'B-Situación transversa', 'I-Situación transversa', 'B-TDP No: cesárea programada', 'I-TDP No: cesárea programada', 'B-TDP espontáneo', 'I-TDP espontáneo', 'B-TDP inducido', 'I-TDP inducido', 'B-Tipo de resolución: cesárea', 'I-Tipo de resolución: cesárea', 'B-Tipo de resolución: parto', 'I-Tipo de resolución: parto', 'B-Uterotónico', 'I-Uterotónico']
🤝 Author
Created by Orlando Ramos.
This model is part of the organization's efforts LATEiimas.
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]