orlandxrf's picture
Update README.md
6320042 verified
metadata
library_name: transformers
tags:
  - robson-criteria-classification
  - ner
language:
  - es
base_model:
  - google-bert/bert-base-multilingual-cased
pipeline_tag: token-classification

Model Card for Model ID

The bert-base-robson-criteria-classification-ner-es is a Named Entity Recognition (NER) model for the Spanish language fine-tuned from the RoBERTa base model.

Model Details

Model Description

In the table below, we have outlined the entities set. Most entities are based on the obstetric variables described in the Robson Implementation Manual Robson Classification: Implementation Manual. However, we have added nine additional entities related to the use of antibiotics, uterotonics, dose, posology, complications, obstetric hemorrhage, the outcome of delivery (whether it was a vaginal birth or a cesarean section), and the personal information within the Electronic Health Records (EHRs).

Clinical entities set

No Spanish Entity English Entity Obsetric variable
1Parto nulíparaNullipara laborParity
2Parto multíparaMultipara labor
3Cesárea previa (Si)One or more Cesarean SectionPrevious Cesarean Section
4Cesárea previa (No)None Cesarean Section
5TDP espontáneoSpontaneous laborOnset of labour
6TDP inducidoInduced labor
7TDP No: cesárea programadaNo labor, scheduled Cesarean Section
8Embarazo únicoSingleton pregnancyNumber of fetuses
9Embarazo MúltipleMultiple pregnancy
10Edad < 37 semanasPreterm pregnancyGestational age
11Edad ≥ 37 semanasTerm pregnancy
12Posición cefálicaCephalic presentationFetal lie and presentation
13Posición podálicaBreech presentation
14Situación transversaTransverse lie
15AntibióticoAntibiotic
16ComplicaciónComplication
17DosisDose
18Hemorragia Obstétrica Obstetric Hemorrhage
19Info personalPersonal Information
20PosologíaPosology
21Tipo de resolución: partoDelivery resolution: VB
22Tipo de resolución: cesareaDelivery resolution: CS
23UterotónicoUterotonic

This model detects entities by classifying every token according to the IOB format:

['O', 'B-Antibiótico', 'I-Antibiótico', 'B-Cesárea previa (NO)', 'I-Cesárea previa (NO)', 'B-Cesárea previa (SI)', 'I-Cesárea previa (SI)', 'B-Complicación', 'I-Complicación', 'B-Dosis', 'I-Dosis', 'B-Edad < 37 semanas', 'I-Edad < 37 semanas', 'B-Edad >= 37 semanas', 'I-Edad >= 37 semanas', 'B-Embarazo múltiple', 'I-Embarazo múltiple', 'B-Embarazo único', 'I-Embarazo único', 'B-Hemorragia obstétrica', 'I-Hemorragia obstétrica', 'B-Info personal', 'I-Info personal', 'B-Parto multípara', 'I-Parto multípara', 'B-Parto nulípara', 'I-Parto nulípara', 'B-Posición cefálica', 'I-Posición cefálica', 'B-Posición podálica', 'I-Posición podálica', 'B-Posología', 'I-Posología', 'B-Situación transversa', 'I-Situación transversa', 'B-TDP No: cesárea programada', 'I-TDP No: cesárea programada', 'B-TDP espontáneo', 'I-TDP espontáneo', 'B-TDP inducido', 'I-TDP inducido', 'B-Tipo de resolución: cesárea', 'I-Tipo de resolución: cesárea', 'B-Tipo de resolución: parto', 'I-Tipo de resolución: parto', 'B-Uterotónico', 'I-Uterotónico']

🤝 Author

Created by Orlando Ramos.
This model is part of the organization's efforts LATEiimas.

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]