File size: 9,651 Bytes
46ed15c
 
6320042
 
 
 
 
 
 
 
46ed15c
 
 
6320042
46ed15c
6320042
46ed15c
 
 
 
 
6320042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46ed15c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
---
library_name: transformers
tags:
- robson-criteria-classification
- ner
language:
- es
base_model:
- google-bert/bert-base-multilingual-cased
pipeline_tag: token-classification
---

# Model Card for Model ID
The **bert-base-robson-criteria-classification-ner-es** is a Named Entity Recognition (NER) model for the Spanish language fine-tuned from the RoBERTa base model.

## Model Details



### Model Description

In the table below, we have outlined the entities set. Most entities are based on the obstetric variables described in the Robson Implementation Manual [Robson Classification: Implementation Manual](https://www.who.int/publications/i/item/9789241513197). However, we have added nine additional entities related to the use of antibiotics, uterotonics, dose, posology, complications, obstetric hemorrhage, the outcome of delivery (whether it was a vaginal birth or a cesarean section), and the personal information within the Electronic Health Records (EHRs).


#### Clinical entities set
<table>
<thead>
<tr>
    <th>No</th>
    <th>Spanish Entity</th>
    <th>English Entity</th>
    <th>Obsetric variable</th>
</tr>
</thead>
<tbody>
<tr>
    <td>1</td><td>Parto nulípara</td><td>Nullipara labor</td><td rowspan="2">Parity</td>
</tr>
<tr>
    <td>2</td><td>Parto multípara</td><td>Multipara labor</td>
</tr>
<tr>
    <td>3</td><td>Cesárea previa (Si)</td><td>One or more Cesarean Section</td><td rowspan="2">Previous Cesarean Section</td>
</tr>
<tr>
    <td>4</td><td>Cesárea previa (No)</td><td>None Cesarean Section</td>
</tr>
<tr>
    <td>5</td><td>TDP espontáneo</td><td>Spontaneous labor</td><td rowspan="3">Onset of labour</td>
</tr>
<tr>
    <td>6</td><td>TDP inducido</td><td>Induced labor</td>
</tr>
<tr>
    <td>7</td><td>TDP No: cesárea programada</td><td>No labor, scheduled Cesarean Section</td>
</tr>
<tr>
    <td>8</td><td>Embarazo único</td><td>Singleton pregnancy</td><td rowspan="2">Number of fetuses</td>
</tr>
<tr>
    <td>9</td><td>Embarazo Múltiple</td><td>Multiple pregnancy</td>    
</tr>
<tr>
    <td>10</td><td>Edad < 37 semanas</td><td>Preterm pregnancy</td><td rowspan="2">Gestational age</td>
</tr>
<tr>
    <td>11</td><td>Edad &ge; 37 semanas</td><td>Term pregnancy</td>
</tr>
<tr>
    <td>12</td><td>Posición cefálica</td><td>Cephalic presentation</td><td rowspan="3">Fetal lie and presentation</td>
</tr>
<tr>
    <td>13</td><td>Posición podálica</td><td>Breech presentation</td>
</tr>
<tr>
    <td>14</td><td>Situación transversa</td><td>Transverse lie</td>
</tr>
<tr>
    <td>15</td><td>Antibiótico</td><td>Antibiotic</td><td></td>
</tr>
<tr>
    <td>16</td><td>Complicación</td><td>Complication</td><td></td>
</tr>
<tr>
    <td>17</td><td>Dosis</td><td>Dose</td><td></td>
</tr>
<tr>
    <td>18</td><td>Hemorragia Obstétrica </td><td> Obstetric Hemorrhage</td><td></td>
</tr>
<tr>
    <td>19</td><td>Info personal</td><td>Personal Information</td><td></td>
</tr>
<tr>
    <td>20</td><td>Posología</td><td>Posology</td><td></td>
</tr>
<tr>
    <td>21</td><td>Tipo de resolución: parto</td><td>Delivery resolution: VB</td><td></td>
</tr>
<tr>
    <td>22</td><td>Tipo de resolución: cesarea</td><td>Delivery resolution: CS</td><td></td>
</tr>
<tr>
    <td>23</td><td>Uterotónico</td><td>Uterotonic</td><td></td>
</tr>
</tbody>
</table>

This model detects entities by classifying every token according to the IOB format:

```python
['O', 'B-Antibiótico', 'I-Antibiótico', 'B-Cesárea previa (NO)', 'I-Cesárea previa (NO)', 'B-Cesárea previa (SI)', 'I-Cesárea previa (SI)', 'B-Complicación', 'I-Complicación', 'B-Dosis', 'I-Dosis', 'B-Edad < 37 semanas', 'I-Edad < 37 semanas', 'B-Edad >= 37 semanas', 'I-Edad >= 37 semanas', 'B-Embarazo múltiple', 'I-Embarazo múltiple', 'B-Embarazo único', 'I-Embarazo único', 'B-Hemorragia obstétrica', 'I-Hemorragia obstétrica', 'B-Info personal', 'I-Info personal', 'B-Parto multípara', 'I-Parto multípara', 'B-Parto nulípara', 'I-Parto nulípara', 'B-Posición cefálica', 'I-Posición cefálica', 'B-Posición podálica', 'I-Posición podálica', 'B-Posología', 'I-Posología', 'B-Situación transversa', 'I-Situación transversa', 'B-TDP No: cesárea programada', 'I-TDP No: cesárea programada', 'B-TDP espontáneo', 'I-TDP espontáneo', 'B-TDP inducido', 'I-TDP inducido', 'B-Tipo de resolución: cesárea', 'I-Tipo de resolución: cesárea', 'B-Tipo de resolución: parto', 'I-Tipo de resolución: parto', 'B-Uterotónico', 'I-Uterotónico']
```

## 🤝 Author
Created by [Orlando Ramos](https://huggingface.co/orlandxrf).  
This model is part of the organization's efforts [LATEiimas](https://huggingface.co/LATEiimas).

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]