orlandxrf commited on
Commit
6320042
·
verified ·
1 Parent(s): 8d40df4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -4
README.md CHANGED
@@ -1,18 +1,120 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
11
 
12
- ## Model Details
13
 
14
  ### Model Description
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - robson-criteria-classification
5
+ - ner
6
+ language:
7
+ - es
8
+ base_model:
9
+ - google-bert/bert-base-multilingual-cased
10
+ pipeline_tag: token-classification
11
  ---
12
 
13
  # Model Card for Model ID
14
+ The **bert-base-robson-criteria-classification-ner-es** is a Named Entity Recognition (NER) model for the Spanish language fine-tuned from the RoBERTa base model.
15
 
16
+ ## Model Details
 
17
 
18
 
 
19
 
20
  ### Model Description
21
 
22
+ In the table below, we have outlined the entities set. Most entities are based on the obstetric variables described in the Robson Implementation Manual [Robson Classification: Implementation Manual](https://www.who.int/publications/i/item/9789241513197). However, we have added nine additional entities related to the use of antibiotics, uterotonics, dose, posology, complications, obstetric hemorrhage, the outcome of delivery (whether it was a vaginal birth or a cesarean section), and the personal information within the Electronic Health Records (EHRs).
23
+
24
+
25
+ #### Clinical entities set
26
+ <table>
27
+ <thead>
28
+ <tr>
29
+ <th>No</th>
30
+ <th>Spanish Entity</th>
31
+ <th>English Entity</th>
32
+ <th>Obsetric variable</th>
33
+ </tr>
34
+ </thead>
35
+ <tbody>
36
+ <tr>
37
+ <td>1</td><td>Parto nulípara</td><td>Nullipara labor</td><td rowspan="2">Parity</td>
38
+ </tr>
39
+ <tr>
40
+ <td>2</td><td>Parto multípara</td><td>Multipara labor</td>
41
+ </tr>
42
+ <tr>
43
+ <td>3</td><td>Cesárea previa (Si)</td><td>One or more Cesarean Section</td><td rowspan="2">Previous Cesarean Section</td>
44
+ </tr>
45
+ <tr>
46
+ <td>4</td><td>Cesárea previa (No)</td><td>None Cesarean Section</td>
47
+ </tr>
48
+ <tr>
49
+ <td>5</td><td>TDP espontáneo</td><td>Spontaneous labor</td><td rowspan="3">Onset of labour</td>
50
+ </tr>
51
+ <tr>
52
+ <td>6</td><td>TDP inducido</td><td>Induced labor</td>
53
+ </tr>
54
+ <tr>
55
+ <td>7</td><td>TDP No: cesárea programada</td><td>No labor, scheduled Cesarean Section</td>
56
+ </tr>
57
+ <tr>
58
+ <td>8</td><td>Embarazo único</td><td>Singleton pregnancy</td><td rowspan="2">Number of fetuses</td>
59
+ </tr>
60
+ <tr>
61
+ <td>9</td><td>Embarazo Múltiple</td><td>Multiple pregnancy</td>
62
+ </tr>
63
+ <tr>
64
+ <td>10</td><td>Edad < 37 semanas</td><td>Preterm pregnancy</td><td rowspan="2">Gestational age</td>
65
+ </tr>
66
+ <tr>
67
+ <td>11</td><td>Edad &ge; 37 semanas</td><td>Term pregnancy</td>
68
+ </tr>
69
+ <tr>
70
+ <td>12</td><td>Posición cefálica</td><td>Cephalic presentation</td><td rowspan="3">Fetal lie and presentation</td>
71
+ </tr>
72
+ <tr>
73
+ <td>13</td><td>Posición podálica</td><td>Breech presentation</td>
74
+ </tr>
75
+ <tr>
76
+ <td>14</td><td>Situación transversa</td><td>Transverse lie</td>
77
+ </tr>
78
+ <tr>
79
+ <td>15</td><td>Antibiótico</td><td>Antibiotic</td><td></td>
80
+ </tr>
81
+ <tr>
82
+ <td>16</td><td>Complicación</td><td>Complication</td><td></td>
83
+ </tr>
84
+ <tr>
85
+ <td>17</td><td>Dosis</td><td>Dose</td><td></td>
86
+ </tr>
87
+ <tr>
88
+ <td>18</td><td>Hemorragia Obstétrica </td><td> Obstetric Hemorrhage</td><td></td>
89
+ </tr>
90
+ <tr>
91
+ <td>19</td><td>Info personal</td><td>Personal Information</td><td></td>
92
+ </tr>
93
+ <tr>
94
+ <td>20</td><td>Posología</td><td>Posology</td><td></td>
95
+ </tr>
96
+ <tr>
97
+ <td>21</td><td>Tipo de resolución: parto</td><td>Delivery resolution: VB</td><td></td>
98
+ </tr>
99
+ <tr>
100
+ <td>22</td><td>Tipo de resolución: cesarea</td><td>Delivery resolution: CS</td><td></td>
101
+ </tr>
102
+ <tr>
103
+ <td>23</td><td>Uterotónico</td><td>Uterotonic</td><td></td>
104
+ </tr>
105
+ </tbody>
106
+ </table>
107
+
108
+ This model detects entities by classifying every token according to the IOB format:
109
+
110
+ ```python
111
+ ['O', 'B-Antibiótico', 'I-Antibiótico', 'B-Cesárea previa (NO)', 'I-Cesárea previa (NO)', 'B-Cesárea previa (SI)', 'I-Cesárea previa (SI)', 'B-Complicación', 'I-Complicación', 'B-Dosis', 'I-Dosis', 'B-Edad < 37 semanas', 'I-Edad < 37 semanas', 'B-Edad >= 37 semanas', 'I-Edad >= 37 semanas', 'B-Embarazo múltiple', 'I-Embarazo múltiple', 'B-Embarazo único', 'I-Embarazo único', 'B-Hemorragia obstétrica', 'I-Hemorragia obstétrica', 'B-Info personal', 'I-Info personal', 'B-Parto multípara', 'I-Parto multípara', 'B-Parto nulípara', 'I-Parto nulípara', 'B-Posición cefálica', 'I-Posición cefálica', 'B-Posición podálica', 'I-Posición podálica', 'B-Posología', 'I-Posología', 'B-Situación transversa', 'I-Situación transversa', 'B-TDP No: cesárea programada', 'I-TDP No: cesárea programada', 'B-TDP espontáneo', 'I-TDP espontáneo', 'B-TDP inducido', 'I-TDP inducido', 'B-Tipo de resolución: cesárea', 'I-Tipo de resolución: cesárea', 'B-Tipo de resolución: parto', 'I-Tipo de resolución: parto', 'B-Uterotónico', 'I-Uterotónico']
112
+ ```
113
+
114
+ ## 🤝 Author
115
+ Created by [Orlando Ramos](https://huggingface.co/orlandxrf).
116
+ This model is part of the organization's efforts [LATEiimas](https://huggingface.co/LATEiimas).
117
+
118
  <!-- Provide a longer summary of what this model is. -->
119
 
120
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.