Update README.md
Browse files
README.md
CHANGED
@@ -1,18 +1,120 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
|
11 |
|
12 |
-
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- robson-criteria-classification
|
5 |
+
- ner
|
6 |
+
language:
|
7 |
+
- es
|
8 |
+
base_model:
|
9 |
+
- google-bert/bert-base-multilingual-cased
|
10 |
+
pipeline_tag: token-classification
|
11 |
---
|
12 |
|
13 |
# Model Card for Model ID
|
14 |
+
The **bert-base-robson-criteria-classification-ner-es** is a Named Entity Recognition (NER) model for the Spanish language fine-tuned from the RoBERTa base model.
|
15 |
|
16 |
+
## Model Details
|
|
|
17 |
|
18 |
|
|
|
19 |
|
20 |
### Model Description
|
21 |
|
22 |
+
In the table below, we have outlined the entities set. Most entities are based on the obstetric variables described in the Robson Implementation Manual [Robson Classification: Implementation Manual](https://www.who.int/publications/i/item/9789241513197). However, we have added nine additional entities related to the use of antibiotics, uterotonics, dose, posology, complications, obstetric hemorrhage, the outcome of delivery (whether it was a vaginal birth or a cesarean section), and the personal information within the Electronic Health Records (EHRs).
|
23 |
+
|
24 |
+
|
25 |
+
#### Clinical entities set
|
26 |
+
<table>
|
27 |
+
<thead>
|
28 |
+
<tr>
|
29 |
+
<th>No</th>
|
30 |
+
<th>Spanish Entity</th>
|
31 |
+
<th>English Entity</th>
|
32 |
+
<th>Obsetric variable</th>
|
33 |
+
</tr>
|
34 |
+
</thead>
|
35 |
+
<tbody>
|
36 |
+
<tr>
|
37 |
+
<td>1</td><td>Parto nulípara</td><td>Nullipara labor</td><td rowspan="2">Parity</td>
|
38 |
+
</tr>
|
39 |
+
<tr>
|
40 |
+
<td>2</td><td>Parto multípara</td><td>Multipara labor</td>
|
41 |
+
</tr>
|
42 |
+
<tr>
|
43 |
+
<td>3</td><td>Cesárea previa (Si)</td><td>One or more Cesarean Section</td><td rowspan="2">Previous Cesarean Section</td>
|
44 |
+
</tr>
|
45 |
+
<tr>
|
46 |
+
<td>4</td><td>Cesárea previa (No)</td><td>None Cesarean Section</td>
|
47 |
+
</tr>
|
48 |
+
<tr>
|
49 |
+
<td>5</td><td>TDP espontáneo</td><td>Spontaneous labor</td><td rowspan="3">Onset of labour</td>
|
50 |
+
</tr>
|
51 |
+
<tr>
|
52 |
+
<td>6</td><td>TDP inducido</td><td>Induced labor</td>
|
53 |
+
</tr>
|
54 |
+
<tr>
|
55 |
+
<td>7</td><td>TDP No: cesárea programada</td><td>No labor, scheduled Cesarean Section</td>
|
56 |
+
</tr>
|
57 |
+
<tr>
|
58 |
+
<td>8</td><td>Embarazo único</td><td>Singleton pregnancy</td><td rowspan="2">Number of fetuses</td>
|
59 |
+
</tr>
|
60 |
+
<tr>
|
61 |
+
<td>9</td><td>Embarazo Múltiple</td><td>Multiple pregnancy</td>
|
62 |
+
</tr>
|
63 |
+
<tr>
|
64 |
+
<td>10</td><td>Edad < 37 semanas</td><td>Preterm pregnancy</td><td rowspan="2">Gestational age</td>
|
65 |
+
</tr>
|
66 |
+
<tr>
|
67 |
+
<td>11</td><td>Edad ≥ 37 semanas</td><td>Term pregnancy</td>
|
68 |
+
</tr>
|
69 |
+
<tr>
|
70 |
+
<td>12</td><td>Posición cefálica</td><td>Cephalic presentation</td><td rowspan="3">Fetal lie and presentation</td>
|
71 |
+
</tr>
|
72 |
+
<tr>
|
73 |
+
<td>13</td><td>Posición podálica</td><td>Breech presentation</td>
|
74 |
+
</tr>
|
75 |
+
<tr>
|
76 |
+
<td>14</td><td>Situación transversa</td><td>Transverse lie</td>
|
77 |
+
</tr>
|
78 |
+
<tr>
|
79 |
+
<td>15</td><td>Antibiótico</td><td>Antibiotic</td><td></td>
|
80 |
+
</tr>
|
81 |
+
<tr>
|
82 |
+
<td>16</td><td>Complicación</td><td>Complication</td><td></td>
|
83 |
+
</tr>
|
84 |
+
<tr>
|
85 |
+
<td>17</td><td>Dosis</td><td>Dose</td><td></td>
|
86 |
+
</tr>
|
87 |
+
<tr>
|
88 |
+
<td>18</td><td>Hemorragia Obstétrica </td><td> Obstetric Hemorrhage</td><td></td>
|
89 |
+
</tr>
|
90 |
+
<tr>
|
91 |
+
<td>19</td><td>Info personal</td><td>Personal Information</td><td></td>
|
92 |
+
</tr>
|
93 |
+
<tr>
|
94 |
+
<td>20</td><td>Posología</td><td>Posology</td><td></td>
|
95 |
+
</tr>
|
96 |
+
<tr>
|
97 |
+
<td>21</td><td>Tipo de resolución: parto</td><td>Delivery resolution: VB</td><td></td>
|
98 |
+
</tr>
|
99 |
+
<tr>
|
100 |
+
<td>22</td><td>Tipo de resolución: cesarea</td><td>Delivery resolution: CS</td><td></td>
|
101 |
+
</tr>
|
102 |
+
<tr>
|
103 |
+
<td>23</td><td>Uterotónico</td><td>Uterotonic</td><td></td>
|
104 |
+
</tr>
|
105 |
+
</tbody>
|
106 |
+
</table>
|
107 |
+
|
108 |
+
This model detects entities by classifying every token according to the IOB format:
|
109 |
+
|
110 |
+
```python
|
111 |
+
['O', 'B-Antibiótico', 'I-Antibiótico', 'B-Cesárea previa (NO)', 'I-Cesárea previa (NO)', 'B-Cesárea previa (SI)', 'I-Cesárea previa (SI)', 'B-Complicación', 'I-Complicación', 'B-Dosis', 'I-Dosis', 'B-Edad < 37 semanas', 'I-Edad < 37 semanas', 'B-Edad >= 37 semanas', 'I-Edad >= 37 semanas', 'B-Embarazo múltiple', 'I-Embarazo múltiple', 'B-Embarazo único', 'I-Embarazo único', 'B-Hemorragia obstétrica', 'I-Hemorragia obstétrica', 'B-Info personal', 'I-Info personal', 'B-Parto multípara', 'I-Parto multípara', 'B-Parto nulípara', 'I-Parto nulípara', 'B-Posición cefálica', 'I-Posición cefálica', 'B-Posición podálica', 'I-Posición podálica', 'B-Posología', 'I-Posología', 'B-Situación transversa', 'I-Situación transversa', 'B-TDP No: cesárea programada', 'I-TDP No: cesárea programada', 'B-TDP espontáneo', 'I-TDP espontáneo', 'B-TDP inducido', 'I-TDP inducido', 'B-Tipo de resolución: cesárea', 'I-Tipo de resolución: cesárea', 'B-Tipo de resolución: parto', 'I-Tipo de resolución: parto', 'B-Uterotónico', 'I-Uterotónico']
|
112 |
+
```
|
113 |
+
|
114 |
+
## 🤝 Author
|
115 |
+
Created by [Orlando Ramos](https://huggingface.co/orlandxrf).
|
116 |
+
This model is part of the organization's efforts [LATEiimas](https://huggingface.co/LATEiimas).
|
117 |
+
|
118 |
<!-- Provide a longer summary of what this model is. -->
|
119 |
|
120 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|