shivanandmn's picture
Model save
f5338ca verified
|
raw
history blame
2.94 kB
metadata
library_name: transformers
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - bleu
model-index:
  - name: parallel-mean-bottleneck-gpt2-medium-wikitext
    results: []

parallel-mean-bottleneck-gpt2-medium-wikitext

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1859
  • Accuracy: 0.4194
  • Perplexity: 24.1889
  • Bleu: 0.1461

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Accuracy Bleu Validation Loss Perplexity
6.0432 0.2806 500 0.1909 0.0378 5.9180 371.6605
5.0476 0.5612 1000 0.2633 0.0612 4.8985 134.0910
4.3528 0.8418 1500 0.3182 0.0834 4.2398 69.3933
3.9497 1.1223 2000 0.3520 0.1054 3.8879 48.8078
3.7614 1.4029 2500 0.3674 0.1207 3.7128 40.9670
3.6543 1.6835 3000 0.3780 0.1310 3.5902 36.2404
3.5527 1.9641 3500 0.3864 0.1337 3.5048 33.2757
3.4348 2.2447 4000 0.3923 0.1361 3.4401 31.1898
3.3739 2.5253 4500 3.3868 0.3974 29.5718 0.1419
3.3441 2.8058 5000 3.3419 0.4020 28.2718 0.1394
3.2252 3.0864 5500 3.3067 0.4057 27.2940 0.1432
3.2188 3.3670 6000 3.2775 0.4088 26.5107 0.1421
3.1971 3.6476 6500 3.2502 0.4115 25.7958 0.1426
3.1722 3.9282 7000 3.2266 0.4143 25.1936 0.1446
3.1052 4.2088 7500 3.2103 0.4163 24.7864 0.1433
3.0672 4.4893 8000 3.1967 0.4180 24.4514 0.1438
3.0774 4.7699 8500 3.1859 0.4194 24.1889 0.1461

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0