Model save
Browse files- README.md +79 -0
- generation_config.json +7 -0
- modeling_parallel_gpt2.py +496 -0
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- bleu
|
8 |
+
model-index:
|
9 |
+
- name: parallel-mean-bottleneck-gpt2-medium-wikitext
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# parallel-mean-bottleneck-gpt2-medium-wikitext
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.1859
|
21 |
+
- Accuracy: 0.4194
|
22 |
+
- Perplexity: 24.1889
|
23 |
+
- Bleu: 0.1461
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0001
|
43 |
+
- train_batch_size: 64
|
44 |
+
- eval_batch_size: 64
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 5
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Accuracy | Bleu | Validation Loss | Perplexity |
|
54 |
+
|:-------------:|:------:|:----:|:--------:|:------:|:---------------:|:----------:|
|
55 |
+
| 6.0432 | 0.2806 | 500 | 0.1909 | 0.0378 | 5.9180 | 371.6605 |
|
56 |
+
| 5.0476 | 0.5612 | 1000 | 0.2633 | 0.0612 | 4.8985 | 134.0910 |
|
57 |
+
| 4.3528 | 0.8418 | 1500 | 0.3182 | 0.0834 | 4.2398 | 69.3933 |
|
58 |
+
| 3.9497 | 1.1223 | 2000 | 0.3520 | 0.1054 | 3.8879 | 48.8078 |
|
59 |
+
| 3.7614 | 1.4029 | 2500 | 0.3674 | 0.1207 | 3.7128 | 40.9670 |
|
60 |
+
| 3.6543 | 1.6835 | 3000 | 0.3780 | 0.1310 | 3.5902 | 36.2404 |
|
61 |
+
| 3.5527 | 1.9641 | 3500 | 0.3864 | 0.1337 | 3.5048 | 33.2757 |
|
62 |
+
| 3.4348 | 2.2447 | 4000 | 0.3923 | 0.1361 | 3.4401 | 31.1898 |
|
63 |
+
| 3.3739 | 2.5253 | 4500 | 3.3868 | 0.3974 | 29.5718 | 0.1419 |
|
64 |
+
| 3.3441 | 2.8058 | 5000 | 3.3419 | 0.4020 | 28.2718 | 0.1394 |
|
65 |
+
| 3.2252 | 3.0864 | 5500 | 3.3067 | 0.4057 | 27.2940 | 0.1432 |
|
66 |
+
| 3.2188 | 3.3670 | 6000 | 3.2775 | 0.4088 | 26.5107 | 0.1421 |
|
67 |
+
| 3.1971 | 3.6476 | 6500 | 3.2502 | 0.4115 | 25.7958 | 0.1426 |
|
68 |
+
| 3.1722 | 3.9282 | 7000 | 3.2266 | 0.4143 | 25.1936 | 0.1446 |
|
69 |
+
| 3.1052 | 4.2088 | 7500 | 3.2103 | 0.4163 | 24.7864 | 0.1433 |
|
70 |
+
| 3.0672 | 4.4893 | 8000 | 3.1967 | 0.4180 | 24.4514 | 0.1438 |
|
71 |
+
| 3.0774 | 4.7699 | 8500 | 3.1859 | 0.4194 | 24.1889 | 0.1461 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.49.0
|
77 |
+
- Pytorch 2.6.0+cu124
|
78 |
+
- Datasets 3.3.2
|
79 |
+
- Tokenizers 0.21.0
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 50256,
|
4 |
+
"eos_token_id": 50256,
|
5 |
+
"transformers_version": "4.49.0",
|
6 |
+
"use_cache": false
|
7 |
+
}
|
modeling_parallel_gpt2.py
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""PyTorch OpenAI GPT-2 model modified to support parallel-gpt2, code copied from Huggingface"""
|
3 |
+
|
4 |
+
|
5 |
+
import warnings
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from transformers.modeling_outputs import (
|
13 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
14 |
+
CausalLMOutputWithCrossAttentions
|
15 |
+
)
|
16 |
+
from transformers.generation import GenerationMixin
|
17 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
18 |
+
from src.models.modeling_gpt2 import GPT2PreTrainedModel, GPT2Block
|
19 |
+
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
20 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
21 |
+
|
22 |
+
class ParallelGPT2Config(GPT2Config):
|
23 |
+
model_type = "parallel-gpt2"
|
24 |
+
architectures = ["ParallelGPT2LMHeadModel"]
|
25 |
+
|
26 |
+
class ParallelGPT2PretrainedModel(GPT2PreTrainedModel):
|
27 |
+
config_class = ParallelGPT2Config
|
28 |
+
|
29 |
+
class ParallelGPT2Model(ParallelGPT2PretrainedModel):
|
30 |
+
_supports_param_buffer_assignment = False
|
31 |
+
|
32 |
+
def __init__(self, config):
|
33 |
+
super().__init__(config)
|
34 |
+
|
35 |
+
self.embed_dim = config.hidden_size
|
36 |
+
|
37 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
38 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
39 |
+
|
40 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
41 |
+
if config.num_hidden_layers % 2 != 0:
|
42 |
+
raise ValueError("Number of hidden layers must be even")
|
43 |
+
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
44 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
45 |
+
self.config.bottleneck_method = getattr(config, "bottleneck_method", "mean")
|
46 |
+
if self.config.bottleneck_method=="concat":
|
47 |
+
self.bottleneck = nn.Linear(2*self.embed_dim, self.embed_dim)
|
48 |
+
|
49 |
+
# Model parallel
|
50 |
+
self.model_parallel = False
|
51 |
+
self.device_map = None
|
52 |
+
self.gradient_checkpointing = False
|
53 |
+
self._attn_implementation = config._attn_implementation
|
54 |
+
|
55 |
+
# Initialize weights and apply final processing
|
56 |
+
self.post_init()
|
57 |
+
|
58 |
+
|
59 |
+
def parallelize(self, device_map=None):
|
60 |
+
# Check validity of device_map
|
61 |
+
warnings.warn(
|
62 |
+
"`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
63 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
64 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
65 |
+
" ...}",
|
66 |
+
FutureWarning,
|
67 |
+
)
|
68 |
+
self.device_map = (
|
69 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
70 |
+
)
|
71 |
+
assert_device_map(self.device_map, len(self.h))
|
72 |
+
self.model_parallel = True
|
73 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
74 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
75 |
+
self.wte = self.wte.to(self.first_device)
|
76 |
+
self.wpe = self.wpe.to(self.first_device)
|
77 |
+
# Load onto devices
|
78 |
+
for k, v in self.device_map.items():
|
79 |
+
for block in v:
|
80 |
+
cuda_device = "cuda:" + str(k)
|
81 |
+
self.h[block] = self.h[block].to(cuda_device)
|
82 |
+
# ln_f to last
|
83 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
84 |
+
|
85 |
+
def deparallelize(self):
|
86 |
+
self.model_parallel = False
|
87 |
+
self.device_map = None
|
88 |
+
self.first_device = "cpu"
|
89 |
+
self.last_device = "cpu"
|
90 |
+
self.wte = self.wte.to("cpu")
|
91 |
+
self.wpe = self.wpe.to("cpu")
|
92 |
+
for index in range(len(self.h)):
|
93 |
+
self.h[index] = self.h[index].to("cpu")
|
94 |
+
self.ln_f = self.ln_f.to("cpu")
|
95 |
+
torch.cuda.empty_cache()
|
96 |
+
|
97 |
+
def get_input_embeddings(self):
|
98 |
+
return self.wte
|
99 |
+
|
100 |
+
def set_input_embeddings(self, new_embeddings):
|
101 |
+
self.wte = new_embeddings
|
102 |
+
|
103 |
+
def _prune_heads(self, heads_to_prune):
|
104 |
+
"""
|
105 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
106 |
+
"""
|
107 |
+
for layer, heads in heads_to_prune.items():
|
108 |
+
self.h[layer].attn.prune_heads(heads)
|
109 |
+
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
input_ids: Optional[torch.LongTensor] = None,
|
114 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
115 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
116 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
117 |
+
position_ids: Optional[torch.LongTensor] = None,
|
118 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
119 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
120 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
121 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
122 |
+
use_cache: Optional[bool] = None,
|
123 |
+
output_attentions: Optional[bool] = None,
|
124 |
+
output_hidden_states: Optional[bool] = None,
|
125 |
+
return_dict: Optional[bool] = None,
|
126 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
127 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
128 |
+
output_hidden_states = (
|
129 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
130 |
+
)
|
131 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
132 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
133 |
+
|
134 |
+
if input_ids is not None and inputs_embeds is not None:
|
135 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
136 |
+
elif input_ids is not None:
|
137 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
138 |
+
input_shape = input_ids.size()
|
139 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
140 |
+
batch_size = input_ids.shape[0]
|
141 |
+
elif inputs_embeds is not None:
|
142 |
+
input_shape = inputs_embeds.size()[:-1]
|
143 |
+
batch_size = inputs_embeds.shape[0]
|
144 |
+
else:
|
145 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
146 |
+
|
147 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
148 |
+
|
149 |
+
if token_type_ids is not None:
|
150 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
151 |
+
|
152 |
+
if past_key_values is None:
|
153 |
+
past_length = 0
|
154 |
+
past_key_values = tuple([None] * len(self.h))
|
155 |
+
else:
|
156 |
+
past_length = past_key_values[0][0].size(-2)
|
157 |
+
if position_ids is None:
|
158 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
159 |
+
position_ids = position_ids.unsqueeze(0)
|
160 |
+
|
161 |
+
if inputs_embeds is None:
|
162 |
+
inputs_embeds = self.wte(input_ids)
|
163 |
+
position_embeds = self.wpe(position_ids)
|
164 |
+
hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
|
165 |
+
|
166 |
+
# Attention mask.
|
167 |
+
_use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False and head_mask is None
|
168 |
+
attention_mask = attention_mask.view(batch_size, -1) if attention_mask is not None else None
|
169 |
+
if self._attn_implementation == "flash_attention_2":
|
170 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
171 |
+
elif _use_sdpa:
|
172 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
173 |
+
attention_mask=attention_mask,
|
174 |
+
input_shape=(batch_size, input_shape[-1]),
|
175 |
+
inputs_embeds=inputs_embeds,
|
176 |
+
past_key_values_length=past_length,
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
if attention_mask is not None:
|
180 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
181 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
182 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
183 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
184 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
185 |
+
attention_mask = attention_mask[:, None, None, :]
|
186 |
+
|
187 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
188 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
189 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
190 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
191 |
+
# effectively the same as removing these entirely.
|
192 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
193 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
194 |
+
|
195 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
196 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
197 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
198 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
199 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
200 |
+
if encoder_attention_mask is None:
|
201 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
202 |
+
if _use_sdpa:
|
203 |
+
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
204 |
+
mask=encoder_attention_mask, dtype=inputs_embeds.dtype, tgt_len=input_shape[-1]
|
205 |
+
)
|
206 |
+
elif not self._attn_implementation == "flash_attention_2":
|
207 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
208 |
+
else:
|
209 |
+
encoder_attention_mask = None
|
210 |
+
|
211 |
+
# Prepare head mask if needed
|
212 |
+
# 1.0 in head_mask indicate we keep the head
|
213 |
+
# attention_probs has shape bsz x n_heads x N x N
|
214 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
215 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
216 |
+
|
217 |
+
if token_type_ids is not None:
|
218 |
+
token_type_embeds = self.wte(token_type_ids)
|
219 |
+
hidden_states = hidden_states + token_type_embeds
|
220 |
+
|
221 |
+
hidden_states = self.drop(hidden_states)
|
222 |
+
|
223 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
224 |
+
|
225 |
+
if self.gradient_checkpointing and self.training:
|
226 |
+
if use_cache:
|
227 |
+
logger.warning_once(
|
228 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
229 |
+
)
|
230 |
+
use_cache = False
|
231 |
+
|
232 |
+
presents = () if use_cache else None
|
233 |
+
all_self_attentions_left = () if output_attentions else None
|
234 |
+
all_self_attentions_right = () if output_attentions else None
|
235 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
236 |
+
all_hidden_states = () if output_hidden_states else None
|
237 |
+
for i in range(0, len(self.h), 2):
|
238 |
+
block_left, layer_past_left = self.h[i], past_key_values[i]
|
239 |
+
block_right, layer_past_right = self.h[i+1], past_key_values[i+1]
|
240 |
+
# Model parallel
|
241 |
+
if self.model_parallel:
|
242 |
+
torch.cuda.set_device(hidden_states.device)
|
243 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
244 |
+
if layer_past is not None:
|
245 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
246 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
247 |
+
if attention_mask is not None:
|
248 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
249 |
+
if isinstance(head_mask, torch.Tensor):
|
250 |
+
head_mask = head_mask.to(hidden_states.device)
|
251 |
+
if output_hidden_states:
|
252 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
253 |
+
|
254 |
+
if self.gradient_checkpointing and self.training:
|
255 |
+
outputs_left = self._gradient_checkpointing_func(
|
256 |
+
block_left.__call__,
|
257 |
+
hidden_states,
|
258 |
+
None,
|
259 |
+
attention_mask,
|
260 |
+
head_mask[i],
|
261 |
+
encoder_hidden_states,
|
262 |
+
encoder_attention_mask,
|
263 |
+
use_cache,
|
264 |
+
output_attentions,
|
265 |
+
)
|
266 |
+
outputs_right = self._gradient_checkpointing_func(
|
267 |
+
block_right.__call__,
|
268 |
+
hidden_states,
|
269 |
+
None,
|
270 |
+
attention_mask,
|
271 |
+
head_mask[i+1],
|
272 |
+
encoder_hidden_states,
|
273 |
+
encoder_attention_mask,
|
274 |
+
use_cache,
|
275 |
+
output_attentions,
|
276 |
+
)
|
277 |
+
else:
|
278 |
+
outputs_left = block_left(
|
279 |
+
hidden_states,
|
280 |
+
layer_past=layer_past_left,
|
281 |
+
attention_mask=attention_mask,
|
282 |
+
head_mask=head_mask[i],
|
283 |
+
encoder_hidden_states=encoder_hidden_states,
|
284 |
+
encoder_attention_mask=encoder_attention_mask,
|
285 |
+
use_cache=use_cache,
|
286 |
+
output_attentions=output_attentions,
|
287 |
+
)
|
288 |
+
outputs_right = block_right(
|
289 |
+
hidden_states,
|
290 |
+
layer_past=layer_past_right,
|
291 |
+
attention_mask=attention_mask,
|
292 |
+
head_mask=head_mask[i+1],
|
293 |
+
encoder_hidden_states=encoder_hidden_states,
|
294 |
+
encoder_attention_mask=encoder_attention_mask,
|
295 |
+
use_cache=use_cache,
|
296 |
+
output_attentions=output_attentions,
|
297 |
+
)
|
298 |
+
if self.config.bottleneck_method=="concat":
|
299 |
+
hidden_states = torch.cat((outputs_left[0], outputs_right[0]), dim=-1)
|
300 |
+
hidden_states = self.bottleneck(hidden_states)
|
301 |
+
elif self.config.bottleneck_method=="add":
|
302 |
+
hidden_states = (outputs_left[0] + outputs_right[0]) ## taking add
|
303 |
+
elif self.config.bottleneck_method=="mean":
|
304 |
+
hidden_states = (outputs_left[0] + outputs_right[0]) / 2 ## taking mean
|
305 |
+
if use_cache is True:
|
306 |
+
presents = presents + (outputs_left[1], outputs_right[1])
|
307 |
+
|
308 |
+
if output_attentions:
|
309 |
+
all_self_attentions_left = all_self_attentions_left + (outputs_left[2 if use_cache else 1],)
|
310 |
+
all_self_attentions_right = all_self_attentions_right + (outputs_right[2 if use_cache else 1],)
|
311 |
+
if self.config.add_cross_attention:
|
312 |
+
all_cross_attentions_left = all_cross_attentions_left + (outputs_left[3 if use_cache else 2],)
|
313 |
+
all_cross_attentions_right = all_cross_attentions_right + (outputs_right[3 if use_cache else 2],)
|
314 |
+
|
315 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
316 |
+
if self.model_parallel:
|
317 |
+
for k, v in self.device_map.items():
|
318 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
319 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
320 |
+
|
321 |
+
hidden_states = self.ln_f(hidden_states)
|
322 |
+
|
323 |
+
hidden_states = hidden_states.view(output_shape)
|
324 |
+
# Add last hidden state
|
325 |
+
if output_hidden_states:
|
326 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
327 |
+
|
328 |
+
if not return_dict:
|
329 |
+
return tuple(
|
330 |
+
v
|
331 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions_left, all_cross_attentions]
|
332 |
+
if v is not None
|
333 |
+
)
|
334 |
+
|
335 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
336 |
+
last_hidden_state=hidden_states,
|
337 |
+
past_key_values=presents,
|
338 |
+
hidden_states=all_hidden_states,
|
339 |
+
attentions=all_self_attentions_left,
|
340 |
+
cross_attentions=all_cross_attentions,
|
341 |
+
)
|
342 |
+
|
343 |
+
|
344 |
+
class ParallelGPT2LMHeadModel(ParallelGPT2PretrainedModel, GenerationMixin):
|
345 |
+
_tied_weights_keys = ["lm_head.weight"]
|
346 |
+
|
347 |
+
def __init__(self, config):
|
348 |
+
super().__init__(config)
|
349 |
+
self.transformer = ParallelGPT2Model(config)
|
350 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
351 |
+
|
352 |
+
# Model parallel
|
353 |
+
self.model_parallel = False
|
354 |
+
self.device_map = None
|
355 |
+
|
356 |
+
# Initialize weights and apply final processing
|
357 |
+
self.post_init()
|
358 |
+
|
359 |
+
def parallelize(self, device_map=None):
|
360 |
+
warnings.warn(
|
361 |
+
"`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
362 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
363 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
364 |
+
" 0, 'transformer.h.1': 1, ...}",
|
365 |
+
FutureWarning,
|
366 |
+
)
|
367 |
+
self.device_map = (
|
368 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
369 |
+
if device_map is None
|
370 |
+
else device_map
|
371 |
+
)
|
372 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
373 |
+
self.transformer.parallelize(self.device_map)
|
374 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
375 |
+
self.model_parallel = True
|
376 |
+
|
377 |
+
def deparallelize(self):
|
378 |
+
self.transformer.deparallelize()
|
379 |
+
self.transformer = self.transformer.to("cpu")
|
380 |
+
self.lm_head = self.lm_head.to("cpu")
|
381 |
+
self.model_parallel = False
|
382 |
+
torch.cuda.empty_cache()
|
383 |
+
|
384 |
+
def get_output_embeddings(self):
|
385 |
+
return self.lm_head
|
386 |
+
|
387 |
+
def set_output_embeddings(self, new_embeddings):
|
388 |
+
self.lm_head = new_embeddings
|
389 |
+
|
390 |
+
def forward(
|
391 |
+
self,
|
392 |
+
input_ids: Optional[torch.LongTensor] = None,
|
393 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
394 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
395 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
396 |
+
position_ids: Optional[torch.LongTensor] = None,
|
397 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
398 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
399 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
400 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
401 |
+
labels: Optional[torch.LongTensor] = None,
|
402 |
+
use_cache: Optional[bool] = None,
|
403 |
+
output_attentions: Optional[bool] = None,
|
404 |
+
output_hidden_states: Optional[bool] = None,
|
405 |
+
return_dict: Optional[bool] = None,
|
406 |
+
**kwargs,
|
407 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
408 |
+
r"""
|
409 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
410 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
411 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
412 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
413 |
+
"""
|
414 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
415 |
+
|
416 |
+
transformer_outputs = self.transformer(
|
417 |
+
input_ids,
|
418 |
+
past_key_values=past_key_values,
|
419 |
+
attention_mask=attention_mask,
|
420 |
+
token_type_ids=token_type_ids,
|
421 |
+
position_ids=position_ids,
|
422 |
+
head_mask=head_mask,
|
423 |
+
inputs_embeds=inputs_embeds,
|
424 |
+
encoder_hidden_states=encoder_hidden_states,
|
425 |
+
encoder_attention_mask=encoder_attention_mask,
|
426 |
+
use_cache=use_cache,
|
427 |
+
output_attentions=output_attentions,
|
428 |
+
output_hidden_states=output_hidden_states,
|
429 |
+
return_dict=return_dict,
|
430 |
+
)
|
431 |
+
hidden_states = transformer_outputs[0]
|
432 |
+
|
433 |
+
# Set device for model parallelism
|
434 |
+
if self.model_parallel:
|
435 |
+
torch.cuda.set_device(self.transformer.first_device)
|
436 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
437 |
+
|
438 |
+
lm_logits = self.lm_head(hidden_states)
|
439 |
+
|
440 |
+
loss = None
|
441 |
+
if labels is not None:
|
442 |
+
# Flatten the tokens
|
443 |
+
loss = self.loss_function(
|
444 |
+
lm_logits,
|
445 |
+
labels,
|
446 |
+
vocab_size=self.config.vocab_size,
|
447 |
+
**kwargs,
|
448 |
+
)
|
449 |
+
|
450 |
+
if not return_dict:
|
451 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
452 |
+
return ((loss,) + output) if loss is not None else output
|
453 |
+
|
454 |
+
return CausalLMOutputWithCrossAttentions(
|
455 |
+
loss=loss,
|
456 |
+
logits=lm_logits,
|
457 |
+
past_key_values=transformer_outputs.past_key_values,
|
458 |
+
hidden_states=transformer_outputs.hidden_states,
|
459 |
+
attentions=transformer_outputs.attentions,
|
460 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
461 |
+
)
|
462 |
+
|
463 |
+
@staticmethod
|
464 |
+
def _reorder_cache(
|
465 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
466 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
467 |
+
"""
|
468 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
469 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
470 |
+
beam_idx at every generation step.
|
471 |
+
"""
|
472 |
+
return tuple(
|
473 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
474 |
+
for layer_past in past_key_values
|
475 |
+
)
|
476 |
+
|
477 |
+
|
478 |
+
|
479 |
+
from transformers import AutoConfig, AutoModel
|
480 |
+
AutoConfig.register("parallel-gpt2", ParallelGPT2Config)
|
481 |
+
AutoModel.register(ParallelGPT2Config, ParallelGPT2LMHeadModel)
|
482 |
+
|
483 |
+
__all__ = [
|
484 |
+
"ParallelGPT2LMHeadModel",
|
485 |
+
"ParallelGPT2Model",
|
486 |
+
"ParallelGPT2Config",
|
487 |
+
]
|
488 |
+
|
489 |
+
|
490 |
+
if __name__ == "__main__":
|
491 |
+
cg = ParallelGPT2Config.from_pretrained("gpt2-medium", architectures=["ParallelGPT2LMHeadModel"])
|
492 |
+
model = ParallelGPT2LMHeadModel(cg)
|
493 |
+
from src.utils.model_utlis import print_trainable_parameters
|
494 |
+
print_trainable_parameters(model)
|
495 |
+
model(torch.randint(0, 10000, (1, 100)))
|
496 |
+
print()
|