--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - bleu model-index: - name: parallel-mean-bottleneck-gpt2-medium-wikitext results: [] --- # parallel-mean-bottleneck-gpt2-medium-wikitext This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1859 - Accuracy: 0.4194 - Perplexity: 24.1889 - Bleu: 0.1461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | Bleu | Validation Loss | Perplexity | |:-------------:|:------:|:----:|:--------:|:------:|:---------------:|:----------:| | 6.0432 | 0.2806 | 500 | 0.1909 | 0.0378 | 5.9180 | 371.6605 | | 5.0476 | 0.5612 | 1000 | 0.2633 | 0.0612 | 4.8985 | 134.0910 | | 4.3528 | 0.8418 | 1500 | 0.3182 | 0.0834 | 4.2398 | 69.3933 | | 3.9497 | 1.1223 | 2000 | 0.3520 | 0.1054 | 3.8879 | 48.8078 | | 3.7614 | 1.4029 | 2500 | 0.3674 | 0.1207 | 3.7128 | 40.9670 | | 3.6543 | 1.6835 | 3000 | 0.3780 | 0.1310 | 3.5902 | 36.2404 | | 3.5527 | 1.9641 | 3500 | 0.3864 | 0.1337 | 3.5048 | 33.2757 | | 3.4348 | 2.2447 | 4000 | 0.3923 | 0.1361 | 3.4401 | 31.1898 | | 3.3739 | 2.5253 | 4500 | 3.3868 | 0.3974 | 29.5718 | 0.1419 | | 3.3441 | 2.8058 | 5000 | 3.3419 | 0.4020 | 28.2718 | 0.1394 | | 3.2252 | 3.0864 | 5500 | 3.3067 | 0.4057 | 27.2940 | 0.1432 | | 3.2188 | 3.3670 | 6000 | 3.2775 | 0.4088 | 26.5107 | 0.1421 | | 3.1971 | 3.6476 | 6500 | 3.2502 | 0.4115 | 25.7958 | 0.1426 | | 3.1722 | 3.9282 | 7000 | 3.2266 | 0.4143 | 25.1936 | 0.1446 | | 3.1052 | 4.2088 | 7500 | 3.2103 | 0.4163 | 24.7864 | 0.1433 | | 3.0672 | 4.4893 | 8000 | 3.1967 | 0.4180 | 24.4514 | 0.1438 | | 3.0774 | 4.7699 | 8500 | 3.1859 | 0.4194 | 24.1889 | 0.1461 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0