DIMI-embedding-v2 / README.md
AhmedZaky1's picture
Initial commit of fine-tuned GTE model on Arabic triplets
d4a6e4f verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:498670
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
- source_sentence: كم يبغ عدد السكان في المملكة المتحدة؟
sentences:
- هناك العديد من الناس الحاضرين.
- كم عدد سكان أوكرانيا؟
- لماذا باراك أوباما غير مؤهل للترشح في انتخابات الرئاسة لعام 2016؟
- source_sentence: ماذا يجب أن أعرف عن ممارسة الأعمال التجارية في بلدك كرائد أعمال؟
sentences:
- إذا كان بإمكانك العيش في أي مكان في العالم لمدة عام، أين سيكون ذلك ولماذا؟
- ماذا يجب أن أعطي صديقي في عيد الميلاد؟
- ماذا يجب أن أعرف عن ممارسة الأعمال التجارية في بلدك؟
- source_sentence: الرجل يرسم
sentences:
- رجل يستخدم الطلاء الرذاذ لرسم صورة على الحائط.
- العرض مقرّر غداً.
- مساء من الترفيه تحت النجوم هو أساسا جنوب كاليفورنيا.
- source_sentence: لماذا لا يزال دونالد ترامب "يتجنب" قضية إقرار ضريبة الدخل؟
sentences:
- الحديقة لديها بوابة
- لماذا لا يبدأ ترامب في قول "الحقيقة" عن طريق الإفصاح عن إقراراته الضريبية؟
- كيف يمكنني التحقق من حسابي على إنستغرام مع علامة زرقاء؟
- source_sentence: لا أعتقد ذلك
sentences:
- رجل واحد في قميص برتقالي يرتدي خوذة بيضاء يركب دراجة.
- هناك أشخاص يأكلون في مطعم.
- أخشى لا يا سيدي
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: arabic sts17
type: arabic-sts17
metrics:
- type: pearson_cosine
value: 0.8112776989727821
name: Pearson Cosine
- type: spearman_cosine
value: 0.8156442694344616
name: Spearman Cosine
---
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'لا أعتقد ذلك',
'أخشى لا يا سيدي',
'رجل واحد في قميص برتقالي يرتدي خوذة بيضاء يركب دراجة.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `arabic-sts17`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8113 |
| **spearman_cosine** | **0.8156** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 498,670 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 19.59 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.98 tokens</li><li>max: 69 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
| <code>ولد صغير يرتدي ملابس زرقاء يرتدي حذاء</code> | <code>الصبي الصغير يرتدي ملابسه</code> |
| <code>كيف يتم بناء كاميرات المراقبة؟</code> | <code>ما هي كاميرا المراقبة؟</code> |
| <code>لماذا الطاقة الإجمالية للكون صفر؟</code> | <code>إذا كان إجمالي الطاقة في الكون صفر، فهل يعني ذلك أن هناك طريقة لـ "صنع" المادة/الطاقة من خلال صنع نوع من النظير؟</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
128
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | arabic-sts17_spearman_cosine |
|:------:|:-----:|:-------------:|:----------------------------:|
| 0.0481 | 500 | 1.6592 | - |
| 0.0963 | 1000 | 1.177 | - |
| 0.1444 | 1500 | 1.0053 | - |
| 0.1925 | 2000 | 0.9125 | 0.8135 |
| 0.2406 | 2500 | 0.8212 | - |
| 0.2888 | 3000 | 0.8204 | - |
| 0.3369 | 3500 | 0.7696 | - |
| 0.3850 | 4000 | 0.7501 | 0.8089 |
| 0.4332 | 4500 | 0.7118 | - |
| 0.4813 | 5000 | 0.7073 | - |
| 0.5294 | 5500 | 0.6772 | - |
| 0.5775 | 6000 | 0.6637 | 0.8085 |
| 0.6257 | 6500 | 0.6507 | - |
| 0.6738 | 7000 | 0.605 | - |
| 0.7219 | 7500 | 0.6076 | - |
| 0.7700 | 8000 | 0.6076 | 0.8060 |
| 0.8182 | 8500 | 0.5594 | - |
| 0.8663 | 9000 | 0.5928 | - |
| 0.9144 | 9500 | 0.5587 | - |
| 0.9626 | 10000 | 0.5736 | 0.8099 |
| 1.0 | 10389 | - | 0.8122 |
| 1.0107 | 10500 | 0.555 | - |
| 1.0588 | 11000 | 0.5233 | - |
| 1.1069 | 11500 | 0.5216 | - |
| 1.1551 | 12000 | 0.5176 | 0.8015 |
| 1.2032 | 12500 | 0.4865 | - |
| 1.2513 | 13000 | 0.4907 | - |
| 1.2995 | 13500 | 0.5079 | - |
| 1.3476 | 14000 | 0.4991 | 0.8027 |
| 1.3957 | 14500 | 0.4834 | - |
| 1.4438 | 15000 | 0.4626 | - |
| 1.4920 | 15500 | 0.4442 | - |
| 1.5401 | 16000 | 0.4768 | 0.8079 |
| 1.5882 | 16500 | 0.4459 | - |
| 1.6363 | 17000 | 0.4409 | - |
| 1.6845 | 17500 | 0.4434 | - |
| 1.7326 | 18000 | 0.4264 | 0.8041 |
| 1.7807 | 18500 | 0.4341 | - |
| 1.8289 | 19000 | 0.4143 | - |
| 1.8770 | 19500 | 0.4304 | - |
| 1.9251 | 20000 | 0.4314 | 0.8133 |
| 1.9732 | 20500 | 0.448 | - |
| 2.0 | 20778 | - | 0.8116 |
| 2.0214 | 21000 | 0.3985 | - |
| 2.0695 | 21500 | 0.3854 | - |
| 2.1176 | 22000 | 0.3875 | 0.8095 |
| 2.1658 | 22500 | 0.4139 | - |
| 2.2139 | 23000 | 0.3956 | - |
| 2.2620 | 23500 | 0.3856 | - |
| 2.3101 | 24000 | 0.3816 | 0.8110 |
| 2.3583 | 24500 | 0.3732 | - |
| 2.4064 | 25000 | 0.3662 | - |
| 2.4545 | 25500 | 0.3773 | - |
| 2.5026 | 26000 | 0.3703 | 0.8058 |
| 2.5508 | 26500 | 0.3666 | - |
| 2.5989 | 27000 | 0.369 | - |
| 2.6470 | 27500 | 0.3612 | - |
| 2.6952 | 28000 | 0.3444 | 0.8135 |
| 2.7433 | 28500 | 0.3667 | - |
| 2.7914 | 29000 | 0.3707 | - |
| 2.8395 | 29500 | 0.3698 | - |
| 2.8877 | 30000 | 0.3658 | 0.8156 |
### Framework Versions
- Python: 3.12.7
- Sentence Transformers: 3.3.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->