|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:498670 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: Alibaba-NLP/gte-multilingual-base |
|
widget: |
|
- source_sentence: كم يبغ عدد السكان في المملكة المتحدة؟ |
|
sentences: |
|
- هناك العديد من الناس الحاضرين. |
|
- كم عدد سكان أوكرانيا؟ |
|
- لماذا باراك أوباما غير مؤهل للترشح في انتخابات الرئاسة لعام 2016؟ |
|
- source_sentence: ماذا يجب أن أعرف عن ممارسة الأعمال التجارية في بلدك كرائد أعمال؟ |
|
sentences: |
|
- إذا كان بإمكانك العيش في أي مكان في العالم لمدة عام، أين سيكون ذلك ولماذا؟ |
|
- ماذا يجب أن أعطي صديقي في عيد الميلاد؟ |
|
- ماذا يجب أن أعرف عن ممارسة الأعمال التجارية في بلدك؟ |
|
- source_sentence: الرجل يرسم |
|
sentences: |
|
- رجل يستخدم الطلاء الرذاذ لرسم صورة على الحائط. |
|
- العرض مقرّر غداً. |
|
- مساء من الترفيه تحت النجوم هو أساسا جنوب كاليفورنيا. |
|
- source_sentence: لماذا لا يزال دونالد ترامب "يتجنب" قضية إقرار ضريبة الدخل؟ |
|
sentences: |
|
- الحديقة لديها بوابة |
|
- لماذا لا يبدأ ترامب في قول "الحقيقة" عن طريق الإفصاح عن إقراراته الضريبية؟ |
|
- كيف يمكنني التحقق من حسابي على إنستغرام مع علامة زرقاء؟ |
|
- source_sentence: لا أعتقد ذلك |
|
sentences: |
|
- رجل واحد في قميص برتقالي يرتدي خوذة بيضاء يركب دراجة. |
|
- هناك أشخاص يأكلون في مطعم. |
|
- أخشى لا يا سيدي |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: arabic sts17 |
|
type: arabic-sts17 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8112776989727821 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8156442694344616 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'لا أعتقد ذلك', |
|
'أخشى لا يا سيدي', |
|
'رجل واحد في قميص برتقالي يرتدي خوذة بيضاء يركب دراجة.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `arabic-sts17` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8113 | |
|
| **spearman_cosine** | **0.8156** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 498,670 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 19.59 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.98 tokens</li><li>max: 69 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>ولد صغير يرتدي ملابس زرقاء يرتدي حذاء</code> | <code>الصبي الصغير يرتدي ملابسه</code> | |
|
| <code>كيف يتم بناء كاميرات المراقبة؟</code> | <code>ما هي كاميرا المراقبة؟</code> | |
|
| <code>لماذا الطاقة الإجمالية للكون صفر؟</code> | <code>إذا كان إجمالي الطاقة في الكون صفر، فهل يعني ذلك أن هناك طريقة لـ "صنع" المادة/الطاقة من خلال صنع نوع من النظير؟</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
384, |
|
128 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 24 |
|
- `per_device_eval_batch_size`: 24 |
|
- `fp16`: True |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 24 |
|
- `per_device_eval_batch_size`: 24 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | arabic-sts17_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:----------------------------:| |
|
| 0.0481 | 500 | 1.6592 | - | |
|
| 0.0963 | 1000 | 1.177 | - | |
|
| 0.1444 | 1500 | 1.0053 | - | |
|
| 0.1925 | 2000 | 0.9125 | 0.8135 | |
|
| 0.2406 | 2500 | 0.8212 | - | |
|
| 0.2888 | 3000 | 0.8204 | - | |
|
| 0.3369 | 3500 | 0.7696 | - | |
|
| 0.3850 | 4000 | 0.7501 | 0.8089 | |
|
| 0.4332 | 4500 | 0.7118 | - | |
|
| 0.4813 | 5000 | 0.7073 | - | |
|
| 0.5294 | 5500 | 0.6772 | - | |
|
| 0.5775 | 6000 | 0.6637 | 0.8085 | |
|
| 0.6257 | 6500 | 0.6507 | - | |
|
| 0.6738 | 7000 | 0.605 | - | |
|
| 0.7219 | 7500 | 0.6076 | - | |
|
| 0.7700 | 8000 | 0.6076 | 0.8060 | |
|
| 0.8182 | 8500 | 0.5594 | - | |
|
| 0.8663 | 9000 | 0.5928 | - | |
|
| 0.9144 | 9500 | 0.5587 | - | |
|
| 0.9626 | 10000 | 0.5736 | 0.8099 | |
|
| 1.0 | 10389 | - | 0.8122 | |
|
| 1.0107 | 10500 | 0.555 | - | |
|
| 1.0588 | 11000 | 0.5233 | - | |
|
| 1.1069 | 11500 | 0.5216 | - | |
|
| 1.1551 | 12000 | 0.5176 | 0.8015 | |
|
| 1.2032 | 12500 | 0.4865 | - | |
|
| 1.2513 | 13000 | 0.4907 | - | |
|
| 1.2995 | 13500 | 0.5079 | - | |
|
| 1.3476 | 14000 | 0.4991 | 0.8027 | |
|
| 1.3957 | 14500 | 0.4834 | - | |
|
| 1.4438 | 15000 | 0.4626 | - | |
|
| 1.4920 | 15500 | 0.4442 | - | |
|
| 1.5401 | 16000 | 0.4768 | 0.8079 | |
|
| 1.5882 | 16500 | 0.4459 | - | |
|
| 1.6363 | 17000 | 0.4409 | - | |
|
| 1.6845 | 17500 | 0.4434 | - | |
|
| 1.7326 | 18000 | 0.4264 | 0.8041 | |
|
| 1.7807 | 18500 | 0.4341 | - | |
|
| 1.8289 | 19000 | 0.4143 | - | |
|
| 1.8770 | 19500 | 0.4304 | - | |
|
| 1.9251 | 20000 | 0.4314 | 0.8133 | |
|
| 1.9732 | 20500 | 0.448 | - | |
|
| 2.0 | 20778 | - | 0.8116 | |
|
| 2.0214 | 21000 | 0.3985 | - | |
|
| 2.0695 | 21500 | 0.3854 | - | |
|
| 2.1176 | 22000 | 0.3875 | 0.8095 | |
|
| 2.1658 | 22500 | 0.4139 | - | |
|
| 2.2139 | 23000 | 0.3956 | - | |
|
| 2.2620 | 23500 | 0.3856 | - | |
|
| 2.3101 | 24000 | 0.3816 | 0.8110 | |
|
| 2.3583 | 24500 | 0.3732 | - | |
|
| 2.4064 | 25000 | 0.3662 | - | |
|
| 2.4545 | 25500 | 0.3773 | - | |
|
| 2.5026 | 26000 | 0.3703 | 0.8058 | |
|
| 2.5508 | 26500 | 0.3666 | - | |
|
| 2.5989 | 27000 | 0.369 | - | |
|
| 2.6470 | 27500 | 0.3612 | - | |
|
| 2.6952 | 28000 | 0.3444 | 0.8135 | |
|
| 2.7433 | 28500 | 0.3667 | - | |
|
| 2.7914 | 29000 | 0.3707 | - | |
|
| 2.8395 | 29500 | 0.3698 | - | |
|
| 2.8877 | 30000 | 0.3658 | 0.8156 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.12.7 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.51.3 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.4.0 |
|
- Datasets: 3.3.2 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |