AhmedZaky1 commited on
Commit
d4a6e4f
·
verified ·
1 Parent(s): 0c9c7b6

Initial commit of fine-tuned GTE model on Arabic triplets

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:498670
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Alibaba-NLP/gte-multilingual-base
11
+ widget:
12
+ - source_sentence: كم يبغ عدد السكان في المملكة المتحدة؟
13
+ sentences:
14
+ - هناك العديد من الناس الحاضرين.
15
+ - كم عدد سكان أوكرانيا؟
16
+ - لماذا باراك أوباما غير مؤهل للترشح في انتخابات الرئاسة لعام 2016؟
17
+ - source_sentence: ماذا يجب أن أعرف عن ممارسة الأعمال التجارية في بلدك كرائد أعمال؟
18
+ sentences:
19
+ - إذا كان بإمكانك العيش في أي مكان في العالم لمدة عام، أين سيكون ذلك ولماذا؟
20
+ - ماذا يجب أن أعطي صديقي في عيد الميلاد؟
21
+ - ماذا يجب أن أعرف عن ممارسة الأعمال التجارية في بلدك؟
22
+ - source_sentence: الرجل يرسم
23
+ sentences:
24
+ - رجل يستخدم الطلاء الرذاذ لرسم صورة على الحائط.
25
+ - العرض مقرّر غداً.
26
+ - مساء من الترفيه تحت النجوم هو أساسا جنوب كاليفورنيا.
27
+ - source_sentence: لماذا لا يزال دونالد ترامب "يتجنب" قضية إقرار ضريبة الدخل؟
28
+ sentences:
29
+ - الحديقة لديها بوابة
30
+ - لماذا لا يبدأ ترامب في قول "الحقيقة" عن طريق الإفصاح عن إقراراته الضريبية؟
31
+ - كيف يمكنني التحقق من حسابي على إنستغرام مع علامة زرقاء؟
32
+ - source_sentence: لا أعتقد ذلك
33
+ sentences:
34
+ - رجل واحد في قميص برتقالي يرتدي خوذة بيضاء يركب دراجة.
35
+ - هناك أشخاص يأكلون في مطعم.
36
+ - أخشى لا يا سيدي
37
+ pipeline_tag: sentence-similarity
38
+ library_name: sentence-transformers
39
+ metrics:
40
+ - pearson_cosine
41
+ - spearman_cosine
42
+ model-index:
43
+ - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
44
+ results:
45
+ - task:
46
+ type: semantic-similarity
47
+ name: Semantic Similarity
48
+ dataset:
49
+ name: arabic sts17
50
+ type: arabic-sts17
51
+ metrics:
52
+ - type: pearson_cosine
53
+ value: 0.8112776989727821
54
+ name: Pearson Cosine
55
+ - type: spearman_cosine
56
+ value: 0.8156442694344616
57
+ name: Spearman Cosine
58
+ ---
59
+
60
+ # SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
61
+
62
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
63
+
64
+ ## Model Details
65
+
66
+ ### Model Description
67
+ - **Model Type:** Sentence Transformer
68
+ - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
69
+ - **Maximum Sequence Length:** 8192 tokens
70
+ - **Output Dimensionality:** 768 dimensions
71
+ - **Similarity Function:** Cosine Similarity
72
+ <!-- - **Training Dataset:** Unknown -->
73
+ <!-- - **Language:** Unknown -->
74
+ <!-- - **License:** Unknown -->
75
+
76
+ ### Model Sources
77
+
78
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
79
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
80
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
81
+
82
+ ### Full Model Architecture
83
+
84
+ ```
85
+ SentenceTransformer(
86
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
87
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
88
+ (2): Normalize()
89
+ )
90
+ ```
91
+
92
+ ## Usage
93
+
94
+ ### Direct Usage (Sentence Transformers)
95
+
96
+ First install the Sentence Transformers library:
97
+
98
+ ```bash
99
+ pip install -U sentence-transformers
100
+ ```
101
+
102
+ Then you can load this model and run inference.
103
+ ```python
104
+ from sentence_transformers import SentenceTransformer
105
+
106
+ # Download from the 🤗 Hub
107
+ model = SentenceTransformer("sentence_transformers_model_id")
108
+ # Run inference
109
+ sentences = [
110
+ 'لا أعتقد ذلك',
111
+ 'أخشى لا يا سيدي',
112
+ 'رجل واحد في قميص برتقالي يرتدي خوذة بيضاء يركب دراجة.',
113
+ ]
114
+ embeddings = model.encode(sentences)
115
+ print(embeddings.shape)
116
+ # [3, 768]
117
+
118
+ # Get the similarity scores for the embeddings
119
+ similarities = model.similarity(embeddings, embeddings)
120
+ print(similarities.shape)
121
+ # [3, 3]
122
+ ```
123
+
124
+ <!--
125
+ ### Direct Usage (Transformers)
126
+
127
+ <details><summary>Click to see the direct usage in Transformers</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Downstream Usage (Sentence Transformers)
134
+
135
+ You can finetune this model on your own dataset.
136
+
137
+ <details><summary>Click to expand</summary>
138
+
139
+ </details>
140
+ -->
141
+
142
+ <!--
143
+ ### Out-of-Scope Use
144
+
145
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
146
+ -->
147
+
148
+ ## Evaluation
149
+
150
+ ### Metrics
151
+
152
+ #### Semantic Similarity
153
+
154
+ * Dataset: `arabic-sts17`
155
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
156
+
157
+ | Metric | Value |
158
+ |:--------------------|:-----------|
159
+ | pearson_cosine | 0.8113 |
160
+ | **spearman_cosine** | **0.8156** |
161
+
162
+ <!--
163
+ ## Bias, Risks and Limitations
164
+
165
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
166
+ -->
167
+
168
+ <!--
169
+ ### Recommendations
170
+
171
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
172
+ -->
173
+
174
+ ## Training Details
175
+
176
+ ### Training Dataset
177
+
178
+ #### Unnamed Dataset
179
+
180
+
181
+ * Size: 498,670 training samples
182
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
183
+ * Approximate statistics based on the first 1000 samples:
184
+ | | sentence_0 | sentence_1 |
185
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
186
+ | type | string | string |
187
+ | details | <ul><li>min: 4 tokens</li><li>mean: 19.59 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.98 tokens</li><li>max: 69 tokens</li></ul> |
188
+ * Samples:
189
+ | sentence_0 | sentence_1 |
190
+ |:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
191
+ | <code>ولد صغير يرتدي ملابس زرقاء يرتدي حذاء</code> | <code>الصبي الصغير يرتدي ملابسه</code> |
192
+ | <code>كيف يتم بناء كاميرات المراقبة؟</code> | <code>ما هي كاميرا المراقبة؟</code> |
193
+ | <code>لماذا الطاقة الإجمالية للكون صفر؟</code> | <code>إذا كان إجمالي الطاقة في الكون صفر، فهل يعني ذلك أن هناك طريقة لـ "صنع" المادة/الطاقة من خلال صنع نوع من النظير؟</code> |
194
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
195
+ ```json
196
+ {
197
+ "loss": "MultipleNegativesRankingLoss",
198
+ "matryoshka_dims": [
199
+ 768,
200
+ 384,
201
+ 128
202
+ ],
203
+ "matryoshka_weights": [
204
+ 1,
205
+ 1,
206
+ 1
207
+ ],
208
+ "n_dims_per_step": -1
209
+ }
210
+ ```
211
+
212
+ ### Training Hyperparameters
213
+ #### Non-Default Hyperparameters
214
+
215
+ - `eval_strategy`: steps
216
+ - `per_device_train_batch_size`: 24
217
+ - `per_device_eval_batch_size`: 24
218
+ - `fp16`: True
219
+ - `multi_dataset_batch_sampler`: round_robin
220
+
221
+ #### All Hyperparameters
222
+ <details><summary>Click to expand</summary>
223
+
224
+ - `overwrite_output_dir`: False
225
+ - `do_predict`: False
226
+ - `eval_strategy`: steps
227
+ - `prediction_loss_only`: True
228
+ - `per_device_train_batch_size`: 24
229
+ - `per_device_eval_batch_size`: 24
230
+ - `per_gpu_train_batch_size`: None
231
+ - `per_gpu_eval_batch_size`: None
232
+ - `gradient_accumulation_steps`: 1
233
+ - `eval_accumulation_steps`: None
234
+ - `torch_empty_cache_steps`: None
235
+ - `learning_rate`: 5e-05
236
+ - `weight_decay`: 0.0
237
+ - `adam_beta1`: 0.9
238
+ - `adam_beta2`: 0.999
239
+ - `adam_epsilon`: 1e-08
240
+ - `max_grad_norm`: 1
241
+ - `num_train_epochs`: 3
242
+ - `max_steps`: -1
243
+ - `lr_scheduler_type`: linear
244
+ - `lr_scheduler_kwargs`: {}
245
+ - `warmup_ratio`: 0.0
246
+ - `warmup_steps`: 0
247
+ - `log_level`: passive
248
+ - `log_level_replica`: warning
249
+ - `log_on_each_node`: True
250
+ - `logging_nan_inf_filter`: True
251
+ - `save_safetensors`: True
252
+ - `save_on_each_node`: False
253
+ - `save_only_model`: False
254
+ - `restore_callback_states_from_checkpoint`: False
255
+ - `no_cuda`: False
256
+ - `use_cpu`: False
257
+ - `use_mps_device`: False
258
+ - `seed`: 42
259
+ - `data_seed`: None
260
+ - `jit_mode_eval`: False
261
+ - `use_ipex`: False
262
+ - `bf16`: False
263
+ - `fp16`: True
264
+ - `fp16_opt_level`: O1
265
+ - `half_precision_backend`: auto
266
+ - `bf16_full_eval`: False
267
+ - `fp16_full_eval`: False
268
+ - `tf32`: None
269
+ - `local_rank`: 0
270
+ - `ddp_backend`: None
271
+ - `tpu_num_cores`: None
272
+ - `tpu_metrics_debug`: False
273
+ - `debug`: []
274
+ - `dataloader_drop_last`: False
275
+ - `dataloader_num_workers`: 0
276
+ - `dataloader_prefetch_factor`: None
277
+ - `past_index`: -1
278
+ - `disable_tqdm`: False
279
+ - `remove_unused_columns`: True
280
+ - `label_names`: None
281
+ - `load_best_model_at_end`: False
282
+ - `ignore_data_skip`: False
283
+ - `fsdp`: []
284
+ - `fsdp_min_num_params`: 0
285
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
286
+ - `tp_size`: 0
287
+ - `fsdp_transformer_layer_cls_to_wrap`: None
288
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
289
+ - `deepspeed`: None
290
+ - `label_smoothing_factor`: 0.0
291
+ - `optim`: adamw_torch
292
+ - `optim_args`: None
293
+ - `adafactor`: False
294
+ - `group_by_length`: False
295
+ - `length_column_name`: length
296
+ - `ddp_find_unused_parameters`: None
297
+ - `ddp_bucket_cap_mb`: None
298
+ - `ddp_broadcast_buffers`: False
299
+ - `dataloader_pin_memory`: True
300
+ - `dataloader_persistent_workers`: False
301
+ - `skip_memory_metrics`: True
302
+ - `use_legacy_prediction_loop`: False
303
+ - `push_to_hub`: False
304
+ - `resume_from_checkpoint`: None
305
+ - `hub_model_id`: None
306
+ - `hub_strategy`: every_save
307
+ - `hub_private_repo`: None
308
+ - `hub_always_push`: False
309
+ - `gradient_checkpointing`: False
310
+ - `gradient_checkpointing_kwargs`: None
311
+ - `include_inputs_for_metrics`: False
312
+ - `include_for_metrics`: []
313
+ - `eval_do_concat_batches`: True
314
+ - `fp16_backend`: auto
315
+ - `push_to_hub_model_id`: None
316
+ - `push_to_hub_organization`: None
317
+ - `mp_parameters`:
318
+ - `auto_find_batch_size`: False
319
+ - `full_determinism`: False
320
+ - `torchdynamo`: None
321
+ - `ray_scope`: last
322
+ - `ddp_timeout`: 1800
323
+ - `torch_compile`: False
324
+ - `torch_compile_backend`: None
325
+ - `torch_compile_mode`: None
326
+ - `include_tokens_per_second`: False
327
+ - `include_num_input_tokens_seen`: False
328
+ - `neftune_noise_alpha`: None
329
+ - `optim_target_modules`: None
330
+ - `batch_eval_metrics`: False
331
+ - `eval_on_start`: False
332
+ - `use_liger_kernel`: False
333
+ - `eval_use_gather_object`: False
334
+ - `average_tokens_across_devices`: False
335
+ - `prompts`: None
336
+ - `batch_sampler`: batch_sampler
337
+ - `multi_dataset_batch_sampler`: round_robin
338
+
339
+ </details>
340
+
341
+ ### Training Logs
342
+ | Epoch | Step | Training Loss | arabic-sts17_spearman_cosine |
343
+ |:------:|:-----:|:-------------:|:----------------------------:|
344
+ | 0.0481 | 500 | 1.6592 | - |
345
+ | 0.0963 | 1000 | 1.177 | - |
346
+ | 0.1444 | 1500 | 1.0053 | - |
347
+ | 0.1925 | 2000 | 0.9125 | 0.8135 |
348
+ | 0.2406 | 2500 | 0.8212 | - |
349
+ | 0.2888 | 3000 | 0.8204 | - |
350
+ | 0.3369 | 3500 | 0.7696 | - |
351
+ | 0.3850 | 4000 | 0.7501 | 0.8089 |
352
+ | 0.4332 | 4500 | 0.7118 | - |
353
+ | 0.4813 | 5000 | 0.7073 | - |
354
+ | 0.5294 | 5500 | 0.6772 | - |
355
+ | 0.5775 | 6000 | 0.6637 | 0.8085 |
356
+ | 0.6257 | 6500 | 0.6507 | - |
357
+ | 0.6738 | 7000 | 0.605 | - |
358
+ | 0.7219 | 7500 | 0.6076 | - |
359
+ | 0.7700 | 8000 | 0.6076 | 0.8060 |
360
+ | 0.8182 | 8500 | 0.5594 | - |
361
+ | 0.8663 | 9000 | 0.5928 | - |
362
+ | 0.9144 | 9500 | 0.5587 | - |
363
+ | 0.9626 | 10000 | 0.5736 | 0.8099 |
364
+ | 1.0 | 10389 | - | 0.8122 |
365
+ | 1.0107 | 10500 | 0.555 | - |
366
+ | 1.0588 | 11000 | 0.5233 | - |
367
+ | 1.1069 | 11500 | 0.5216 | - |
368
+ | 1.1551 | 12000 | 0.5176 | 0.8015 |
369
+ | 1.2032 | 12500 | 0.4865 | - |
370
+ | 1.2513 | 13000 | 0.4907 | - |
371
+ | 1.2995 | 13500 | 0.5079 | - |
372
+ | 1.3476 | 14000 | 0.4991 | 0.8027 |
373
+ | 1.3957 | 14500 | 0.4834 | - |
374
+ | 1.4438 | 15000 | 0.4626 | - |
375
+ | 1.4920 | 15500 | 0.4442 | - |
376
+ | 1.5401 | 16000 | 0.4768 | 0.8079 |
377
+ | 1.5882 | 16500 | 0.4459 | - |
378
+ | 1.6363 | 17000 | 0.4409 | - |
379
+ | 1.6845 | 17500 | 0.4434 | - |
380
+ | 1.7326 | 18000 | 0.4264 | 0.8041 |
381
+ | 1.7807 | 18500 | 0.4341 | - |
382
+ | 1.8289 | 19000 | 0.4143 | - |
383
+ | 1.8770 | 19500 | 0.4304 | - |
384
+ | 1.9251 | 20000 | 0.4314 | 0.8133 |
385
+ | 1.9732 | 20500 | 0.448 | - |
386
+ | 2.0 | 20778 | - | 0.8116 |
387
+ | 2.0214 | 21000 | 0.3985 | - |
388
+ | 2.0695 | 21500 | 0.3854 | - |
389
+ | 2.1176 | 22000 | 0.3875 | 0.8095 |
390
+ | 2.1658 | 22500 | 0.4139 | - |
391
+ | 2.2139 | 23000 | 0.3956 | - |
392
+ | 2.2620 | 23500 | 0.3856 | - |
393
+ | 2.3101 | 24000 | 0.3816 | 0.8110 |
394
+ | 2.3583 | 24500 | 0.3732 | - |
395
+ | 2.4064 | 25000 | 0.3662 | - |
396
+ | 2.4545 | 25500 | 0.3773 | - |
397
+ | 2.5026 | 26000 | 0.3703 | 0.8058 |
398
+ | 2.5508 | 26500 | 0.3666 | - |
399
+ | 2.5989 | 27000 | 0.369 | - |
400
+ | 2.6470 | 27500 | 0.3612 | - |
401
+ | 2.6952 | 28000 | 0.3444 | 0.8135 |
402
+ | 2.7433 | 28500 | 0.3667 | - |
403
+ | 2.7914 | 29000 | 0.3707 | - |
404
+ | 2.8395 | 29500 | 0.3698 | - |
405
+ | 2.8877 | 30000 | 0.3658 | 0.8156 |
406
+
407
+
408
+ ### Framework Versions
409
+ - Python: 3.12.7
410
+ - Sentence Transformers: 3.3.1
411
+ - Transformers: 4.51.3
412
+ - PyTorch: 2.6.0+cu124
413
+ - Accelerate: 1.4.0
414
+ - Datasets: 3.3.2
415
+ - Tokenizers: 0.21.1
416
+
417
+ ## Citation
418
+
419
+ ### BibTeX
420
+
421
+ #### Sentence Transformers
422
+ ```bibtex
423
+ @inproceedings{reimers-2019-sentence-bert,
424
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
425
+ author = "Reimers, Nils and Gurevych, Iryna",
426
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
427
+ month = "11",
428
+ year = "2019",
429
+ publisher = "Association for Computational Linguistics",
430
+ url = "https://arxiv.org/abs/1908.10084",
431
+ }
432
+ ```
433
+
434
+ #### MatryoshkaLoss
435
+ ```bibtex
436
+ @misc{kusupati2024matryoshka,
437
+ title={Matryoshka Representation Learning},
438
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
439
+ year={2024},
440
+ eprint={2205.13147},
441
+ archivePrefix={arXiv},
442
+ primaryClass={cs.LG}
443
+ }
444
+ ```
445
+
446
+ #### MultipleNegativesRankingLoss
447
+ ```bibtex
448
+ @misc{henderson2017efficient,
449
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
450
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
451
+ year={2017},
452
+ eprint={1705.00652},
453
+ archivePrefix={arXiv},
454
+ primaryClass={cs.CL}
455
+ }
456
+ ```
457
+
458
+ <!--
459
+ ## Glossary
460
+
461
+ *Clearly define terms in order to be accessible across audiences.*
462
+ -->
463
+
464
+ <!--
465
+ ## Model Card Authors
466
+
467
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
468
+ -->
469
+
470
+ <!--
471
+ ## Model Card Contact
472
+
473
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
474
+ -->
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NewModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
8
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
9
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
10
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
11
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
12
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
13
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
14
+ },
15
+ "classifier_dropout": 0.0,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.1,
18
+ "hidden_size": 768,
19
+ "id2label": {
20
+ "0": "LABEL_0"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0
26
+ },
27
+ "layer_norm_eps": 1e-12,
28
+ "layer_norm_type": "layer_norm",
29
+ "logn_attention_clip1": false,
30
+ "logn_attention_scale": false,
31
+ "max_position_embeddings": 8192,
32
+ "model_type": "new",
33
+ "num_attention_heads": 12,
34
+ "num_hidden_layers": 12,
35
+ "pack_qkv": true,
36
+ "pad_token_id": 1,
37
+ "position_embedding_type": "rope",
38
+ "rope_scaling": {
39
+ "factor": 8.0,
40
+ "type": "ntk"
41
+ },
42
+ "rope_theta": 20000,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.51.3",
45
+ "type_vocab_size": 1,
46
+ "unpad_inputs": false,
47
+ "use_memory_efficient_attention": false,
48
+ "vocab_size": 250048
49
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d94d61f290fef66a8260768459fd614cc9b01968a1b974666a814572483143b
3
+ size 1221487872
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa7a6ad87a7ce8fe196787355f6af7d03aee94d19c54a5eb1392ed18c8ef451a
3
+ size 17082988
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizerFast",
54
+ "unk_token": "<unk>"
55
+ }