DIMI-embedding-v2 / README.md
AhmedZaky1's picture
Initial commit of fine-tuned GTE model on Arabic triplets
d4a6e4f verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:498670
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
  - source_sentence: كم يبغ عدد السكان في المملكة المتحدة؟
    sentences:
      - هناك العديد من الناس الحاضرين.
      - كم عدد سكان أوكرانيا؟
      - لماذا باراك أوباما غير مؤهل للترشح في انتخابات الرئاسة لعام 2016؟
  - source_sentence: ماذا يجب أن أعرف عن ممارسة الأعمال التجارية في بلدك كرائد أعمال؟
    sentences:
      - >-
        إذا كان بإمكانك العيش في أي مكان في العالم لمدة عام، أين سيكون ذلك
        ولماذا؟
      - ماذا يجب أن أعطي صديقي في عيد الميلاد؟
      - ماذا يجب أن أعرف عن ممارسة الأعمال التجارية في بلدك؟
  - source_sentence: الرجل يرسم
    sentences:
      - رجل يستخدم الطلاء الرذاذ لرسم صورة على الحائط.
      - العرض مقرّر غداً.
      - مساء من الترفيه تحت النجوم هو أساسا جنوب كاليفورنيا.
  - source_sentence: لماذا لا يزال دونالد ترامب "يتجنب" قضية إقرار ضريبة الدخل؟
    sentences:
      - الحديقة لديها بوابة
      - >-
        لماذا لا يبدأ ترامب في قول "الحقيقة" عن طريق الإفصاح عن إقراراته
        الضريبية؟
      - كيف يمكنني التحقق من حسابي على إنستغرام مع علامة زرقاء؟
  - source_sentence: لا أعتقد ذلك
    sentences:
      - رجل واحد في قميص برتقالي يرتدي خوذة بيضاء يركب دراجة.
      - هناك أشخاص يأكلون في مطعم.
      - أخشى لا يا سيدي
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: arabic sts17
          type: arabic-sts17
        metrics:
          - type: pearson_cosine
            value: 0.8112776989727821
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8156442694344616
            name: Spearman Cosine

SentenceTransformer based on Alibaba-NLP/gte-multilingual-base

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-multilingual-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'لا أعتقد ذلك',
    'أخشى لا يا سيدي',
    'رجل واحد في قميص برتقالي يرتدي خوذة بيضاء يركب دراجة.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8113
spearman_cosine 0.8156

Training Details

Training Dataset

Unnamed Dataset

  • Size: 498,670 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 4 tokens
    • mean: 19.59 tokens
    • max: 82 tokens
    • min: 4 tokens
    • mean: 13.98 tokens
    • max: 69 tokens
  • Samples:
    sentence_0 sentence_1
    ولد صغير يرتدي ملابس زرقاء يرتدي حذاء الصبي الصغير يرتدي ملابسه
    كيف يتم بناء كاميرات المراقبة؟ ما هي كاميرا المراقبة؟
    لماذا الطاقة الإجمالية للكون صفر؟ إذا كان إجمالي الطاقة في الكون صفر، فهل يعني ذلك أن هناك طريقة لـ "صنع" المادة/الطاقة من خلال صنع نوع من النظير؟
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            384,
            128
        ],
        "matryoshka_weights": [
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 24
  • per_device_eval_batch_size: 24
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 24
  • per_device_eval_batch_size: 24
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss arabic-sts17_spearman_cosine
0.0481 500 1.6592 -
0.0963 1000 1.177 -
0.1444 1500 1.0053 -
0.1925 2000 0.9125 0.8135
0.2406 2500 0.8212 -
0.2888 3000 0.8204 -
0.3369 3500 0.7696 -
0.3850 4000 0.7501 0.8089
0.4332 4500 0.7118 -
0.4813 5000 0.7073 -
0.5294 5500 0.6772 -
0.5775 6000 0.6637 0.8085
0.6257 6500 0.6507 -
0.6738 7000 0.605 -
0.7219 7500 0.6076 -
0.7700 8000 0.6076 0.8060
0.8182 8500 0.5594 -
0.8663 9000 0.5928 -
0.9144 9500 0.5587 -
0.9626 10000 0.5736 0.8099
1.0 10389 - 0.8122
1.0107 10500 0.555 -
1.0588 11000 0.5233 -
1.1069 11500 0.5216 -
1.1551 12000 0.5176 0.8015
1.2032 12500 0.4865 -
1.2513 13000 0.4907 -
1.2995 13500 0.5079 -
1.3476 14000 0.4991 0.8027
1.3957 14500 0.4834 -
1.4438 15000 0.4626 -
1.4920 15500 0.4442 -
1.5401 16000 0.4768 0.8079
1.5882 16500 0.4459 -
1.6363 17000 0.4409 -
1.6845 17500 0.4434 -
1.7326 18000 0.4264 0.8041
1.7807 18500 0.4341 -
1.8289 19000 0.4143 -
1.8770 19500 0.4304 -
1.9251 20000 0.4314 0.8133
1.9732 20500 0.448 -
2.0 20778 - 0.8116
2.0214 21000 0.3985 -
2.0695 21500 0.3854 -
2.1176 22000 0.3875 0.8095
2.1658 22500 0.4139 -
2.2139 23000 0.3956 -
2.2620 23500 0.3856 -
2.3101 24000 0.3816 0.8110
2.3583 24500 0.3732 -
2.4064 25000 0.3662 -
2.4545 25500 0.3773 -
2.5026 26000 0.3703 0.8058
2.5508 26500 0.3666 -
2.5989 27000 0.369 -
2.6470 27500 0.3612 -
2.6952 28000 0.3444 0.8135
2.7433 28500 0.3667 -
2.7914 29000 0.3707 -
2.8395 29500 0.3698 -
2.8877 30000 0.3658 0.8156

Framework Versions

  • Python: 3.12.7
  • Sentence Transformers: 3.3.1
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.4.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}