metadata
base_model: meta-llama/Meta-Llama-3.1-8B
datasets:
- wikitext
library_name: peft
license: llama3.1
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: wikitext_Meta-Llama-3.1-8B-BNB-NF4_LORA_ADAPTER_64rank
results:
- task:
type: text-generation
name: Causal Language Modeling
dataset:
name: wikitext wikitext-2-raw-v1
type: wikitext
args: wikitext-2-raw-v1
metrics:
- type: accuracy
value: 0.5869990224828935
name: Accuracy
wikitext_Meta-Llama-3.1-8B-BNB-NF4_LORA_ADAPTER_64rank
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the wikitext wikitext-2-raw-v1 dataset. It achieves the following results on the evaluation set:
- Loss: 2.3246
- Accuracy: 0.5870
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3.0
Training results
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.4.0+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3