--- base_model: meta-llama/Meta-Llama-3.1-8B datasets: - wikitext library_name: peft license: llama3.1 metrics: - accuracy tags: - generated_from_trainer model-index: - name: wikitext_Meta-Llama-3.1-8B-BNB-NF4_LORA_ADAPTER_64rank results: - task: type: text-generation name: Causal Language Modeling dataset: name: wikitext wikitext-2-raw-v1 type: wikitext args: wikitext-2-raw-v1 metrics: - type: accuracy value: 0.5869990224828935 name: Accuracy --- # wikitext_Meta-Llama-3.1-8B-BNB-NF4_LORA_ADAPTER_64rank This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the wikitext wikitext-2-raw-v1 dataset. It achieves the following results on the evaluation set: - Loss: 2.3246 - Accuracy: 0.5870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3.0 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.4.0+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3