yigitkucuk's picture
Upload cnn.py
47f412e verified
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import os
from PIL import Image
import numpy as np
from tqdm import tqdm
from sklearn.metrics import classification_report
import matplotlib.pyplot as plt
class ChordDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.images = []
self.labels = []
self.class_to_idx = {}
# Get all image files and their corresponding labels
for img_name in os.listdir(root_dir):
if img_name.endswith(('.jpg', '.jpeg', '.png')):
chord = img_name.split('_')[0]
if chord not in self.class_to_idx:
self.class_to_idx[chord] = len(self.class_to_idx)
self.images.append(os.path.join(root_dir, img_name))
self.labels.append(self.class_to_idx[chord])
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = self.images[idx]
image = Image.open(img_path).convert('RGB')
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
class ChordCNN(nn.Module):
def __init__(self, num_classes):
super(ChordCNN, self).__init__()
# Convolutional layers
self.conv_layers = nn.Sequential(
# First conv block
nn.Conv2d(3, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(2),
# Second conv block
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2),
# Third conv block
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2),
# Fourth conv block
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(2),
# Fifth conv block
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2),
)
# Fully connected layers
self.fc_layers = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(512 * 7 * 7, 1024),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(1024, num_classes)
)
def forward(self, x):
x = self.conv_layers(x)
x = x.view(x.size(0), -1)
x = self.fc_layers(x)
return x
def train_epoch(model, train_loader, criterion, optimizer, device):
model.train()
running_loss = 0.0
correct = 0
total = 0
for images, labels in tqdm(train_loader, desc="Training"):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
epoch_loss = running_loss / len(train_loader)
accuracy = 100. * correct / total
return epoch_loss, accuracy
def evaluate(model, data_loader, criterion, device):
model.eval()
running_loss = 0.0
correct = 0
total = 0
all_predictions = []
all_labels = []
with torch.no_grad():
for images, labels in tqdm(data_loader, desc="Evaluating"):
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
all_predictions.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
epoch_loss = running_loss / len(data_loader)
accuracy = 100. * correct / total
return epoch_loss, accuracy, all_predictions, all_labels
def train_and_evaluate():
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Define transformations
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Create datasets
train_dataset = ChordDataset(root_dir='ds/train', transform=transform)
valid_dataset = ChordDataset(root_dir='ds/valid', transform=transform)
test_dataset = ChordDataset(root_dir='ds/test', transform=transform)
# Create dataloaders
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
# Initialize model
num_classes = len(train_dataset.class_to_idx)
model = ChordCNN(num_classes).to(device)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3, factor=0.5)
# Training parameters
num_epochs = 30
best_valid_loss = float('inf')
train_losses = []
valid_losses = []
train_accuracies = []
valid_accuracies = []
# Training loop
for epoch in range(num_epochs):
print(f"\nEpoch {epoch+1}/{num_epochs}")
# Train
train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer, device)
train_losses.append(train_loss)
train_accuracies.append(train_acc)
# Validate
valid_loss, valid_acc, _, _ = evaluate(model, valid_loader, criterion, device)
valid_losses.append(valid_loss)
valid_accuracies.append(valid_acc)
# Print epoch statistics
print(f"Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.2f}%")
print(f"Valid Loss: {valid_loss:.4f} | Valid Acc: {valid_acc:.2f}%")
# Learning rate scheduling
scheduler.step(valid_loss)
# Save best model
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'best_chord_cnn.pth')
# Load best model and evaluate on test set
model.load_state_dict(torch.load('best_chord_cnn.pth'))
test_loss, test_acc, test_predictions, test_labels = evaluate(model, test_loader, criterion, device)
print("\nTest Set Performance:")
print(classification_report(test_labels, test_predictions))
# Plot training history
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(train_losses, label='Train Loss')
plt.plot(valid_losses, label='Valid Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(train_accuracies, label='Train Accuracy')
plt.plot(valid_accuracies, label='Valid Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.legend()
plt.tight_layout()
plt.savefig('training_history.png')
plt.close()
return model, train_dataset.class_to_idx
if __name__ == "__main__":
model, class_mapping = train_and_evaluate()