Upload cnn.py
Browse files
cnn.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import Dataset, DataLoader
|
5 |
+
from torchvision import transforms
|
6 |
+
import os
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
from tqdm import tqdm
|
10 |
+
from sklearn.metrics import classification_report
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
class ChordDataset(Dataset):
|
14 |
+
def __init__(self, root_dir, transform=None):
|
15 |
+
self.root_dir = root_dir
|
16 |
+
self.transform = transform
|
17 |
+
self.images = []
|
18 |
+
self.labels = []
|
19 |
+
self.class_to_idx = {}
|
20 |
+
|
21 |
+
# Get all image files and their corresponding labels
|
22 |
+
for img_name in os.listdir(root_dir):
|
23 |
+
if img_name.endswith(('.jpg', '.jpeg', '.png')):
|
24 |
+
chord = img_name.split('_')[0]
|
25 |
+
if chord not in self.class_to_idx:
|
26 |
+
self.class_to_idx[chord] = len(self.class_to_idx)
|
27 |
+
|
28 |
+
self.images.append(os.path.join(root_dir, img_name))
|
29 |
+
self.labels.append(self.class_to_idx[chord])
|
30 |
+
|
31 |
+
def __len__(self):
|
32 |
+
return len(self.images)
|
33 |
+
|
34 |
+
def __getitem__(self, idx):
|
35 |
+
img_path = self.images[idx]
|
36 |
+
image = Image.open(img_path).convert('RGB')
|
37 |
+
label = self.labels[idx]
|
38 |
+
|
39 |
+
if self.transform:
|
40 |
+
image = self.transform(image)
|
41 |
+
|
42 |
+
return image, label
|
43 |
+
|
44 |
+
class ChordCNN(nn.Module):
|
45 |
+
def __init__(self, num_classes):
|
46 |
+
super(ChordCNN, self).__init__()
|
47 |
+
|
48 |
+
# Convolutional layers
|
49 |
+
self.conv_layers = nn.Sequential(
|
50 |
+
# First conv block
|
51 |
+
nn.Conv2d(3, 32, kernel_size=3, padding=1),
|
52 |
+
nn.BatchNorm2d(32),
|
53 |
+
nn.ReLU(),
|
54 |
+
nn.MaxPool2d(2),
|
55 |
+
|
56 |
+
# Second conv block
|
57 |
+
nn.Conv2d(32, 64, kernel_size=3, padding=1),
|
58 |
+
nn.BatchNorm2d(64),
|
59 |
+
nn.ReLU(),
|
60 |
+
nn.MaxPool2d(2),
|
61 |
+
|
62 |
+
# Third conv block
|
63 |
+
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
64 |
+
nn.BatchNorm2d(128),
|
65 |
+
nn.ReLU(),
|
66 |
+
nn.MaxPool2d(2),
|
67 |
+
|
68 |
+
# Fourth conv block
|
69 |
+
nn.Conv2d(128, 256, kernel_size=3, padding=1),
|
70 |
+
nn.BatchNorm2d(256),
|
71 |
+
nn.ReLU(),
|
72 |
+
nn.MaxPool2d(2),
|
73 |
+
|
74 |
+
# Fifth conv block
|
75 |
+
nn.Conv2d(256, 512, kernel_size=3, padding=1),
|
76 |
+
nn.BatchNorm2d(512),
|
77 |
+
nn.ReLU(),
|
78 |
+
nn.MaxPool2d(2),
|
79 |
+
)
|
80 |
+
|
81 |
+
# Fully connected layers
|
82 |
+
self.fc_layers = nn.Sequential(
|
83 |
+
nn.Dropout(0.5),
|
84 |
+
nn.Linear(512 * 7 * 7, 1024),
|
85 |
+
nn.ReLU(),
|
86 |
+
nn.Dropout(0.5),
|
87 |
+
nn.Linear(1024, num_classes)
|
88 |
+
)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
x = self.conv_layers(x)
|
92 |
+
x = x.view(x.size(0), -1)
|
93 |
+
x = self.fc_layers(x)
|
94 |
+
return x
|
95 |
+
|
96 |
+
def train_epoch(model, train_loader, criterion, optimizer, device):
|
97 |
+
model.train()
|
98 |
+
running_loss = 0.0
|
99 |
+
correct = 0
|
100 |
+
total = 0
|
101 |
+
|
102 |
+
for images, labels in tqdm(train_loader, desc="Training"):
|
103 |
+
images, labels = images.to(device), labels.to(device)
|
104 |
+
|
105 |
+
optimizer.zero_grad()
|
106 |
+
outputs = model(images)
|
107 |
+
loss = criterion(outputs, labels)
|
108 |
+
|
109 |
+
loss.backward()
|
110 |
+
optimizer.step()
|
111 |
+
|
112 |
+
running_loss += loss.item()
|
113 |
+
_, predicted = outputs.max(1)
|
114 |
+
total += labels.size(0)
|
115 |
+
correct += predicted.eq(labels).sum().item()
|
116 |
+
|
117 |
+
epoch_loss = running_loss / len(train_loader)
|
118 |
+
accuracy = 100. * correct / total
|
119 |
+
return epoch_loss, accuracy
|
120 |
+
|
121 |
+
def evaluate(model, data_loader, criterion, device):
|
122 |
+
model.eval()
|
123 |
+
running_loss = 0.0
|
124 |
+
correct = 0
|
125 |
+
total = 0
|
126 |
+
all_predictions = []
|
127 |
+
all_labels = []
|
128 |
+
|
129 |
+
with torch.no_grad():
|
130 |
+
for images, labels in tqdm(data_loader, desc="Evaluating"):
|
131 |
+
images, labels = images.to(device), labels.to(device)
|
132 |
+
outputs = model(images)
|
133 |
+
loss = criterion(outputs, labels)
|
134 |
+
|
135 |
+
running_loss += loss.item()
|
136 |
+
_, predicted = outputs.max(1)
|
137 |
+
total += labels.size(0)
|
138 |
+
correct += predicted.eq(labels).sum().item()
|
139 |
+
|
140 |
+
all_predictions.extend(predicted.cpu().numpy())
|
141 |
+
all_labels.extend(labels.cpu().numpy())
|
142 |
+
|
143 |
+
epoch_loss = running_loss / len(data_loader)
|
144 |
+
accuracy = 100. * correct / total
|
145 |
+
return epoch_loss, accuracy, all_predictions, all_labels
|
146 |
+
|
147 |
+
def train_and_evaluate():
|
148 |
+
# Set device
|
149 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
150 |
+
print(f"Using device: {device}")
|
151 |
+
|
152 |
+
# Define transformations
|
153 |
+
transform = transforms.Compose([
|
154 |
+
transforms.Resize((224, 224)),
|
155 |
+
transforms.ToTensor(),
|
156 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
157 |
+
std=[0.229, 0.224, 0.225])
|
158 |
+
])
|
159 |
+
|
160 |
+
# Create datasets
|
161 |
+
train_dataset = ChordDataset(root_dir='ds/train', transform=transform)
|
162 |
+
valid_dataset = ChordDataset(root_dir='ds/valid', transform=transform)
|
163 |
+
test_dataset = ChordDataset(root_dir='ds/test', transform=transform)
|
164 |
+
|
165 |
+
# Create dataloaders
|
166 |
+
batch_size = 32
|
167 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
168 |
+
valid_loader = DataLoader(valid_dataset, batch_size=batch_size)
|
169 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size)
|
170 |
+
|
171 |
+
# Initialize model
|
172 |
+
num_classes = len(train_dataset.class_to_idx)
|
173 |
+
model = ChordCNN(num_classes).to(device)
|
174 |
+
|
175 |
+
# Define loss function and optimizer
|
176 |
+
criterion = nn.CrossEntropyLoss()
|
177 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
178 |
+
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3, factor=0.5)
|
179 |
+
|
180 |
+
# Training parameters
|
181 |
+
num_epochs = 30
|
182 |
+
best_valid_loss = float('inf')
|
183 |
+
train_losses = []
|
184 |
+
valid_losses = []
|
185 |
+
train_accuracies = []
|
186 |
+
valid_accuracies = []
|
187 |
+
|
188 |
+
# Training loop
|
189 |
+
for epoch in range(num_epochs):
|
190 |
+
print(f"\nEpoch {epoch+1}/{num_epochs}")
|
191 |
+
|
192 |
+
# Train
|
193 |
+
train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer, device)
|
194 |
+
train_losses.append(train_loss)
|
195 |
+
train_accuracies.append(train_acc)
|
196 |
+
|
197 |
+
# Validate
|
198 |
+
valid_loss, valid_acc, _, _ = evaluate(model, valid_loader, criterion, device)
|
199 |
+
valid_losses.append(valid_loss)
|
200 |
+
valid_accuracies.append(valid_acc)
|
201 |
+
|
202 |
+
# Print epoch statistics
|
203 |
+
print(f"Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.2f}%")
|
204 |
+
print(f"Valid Loss: {valid_loss:.4f} | Valid Acc: {valid_acc:.2f}%")
|
205 |
+
|
206 |
+
# Learning rate scheduling
|
207 |
+
scheduler.step(valid_loss)
|
208 |
+
|
209 |
+
# Save best model
|
210 |
+
if valid_loss < best_valid_loss:
|
211 |
+
best_valid_loss = valid_loss
|
212 |
+
torch.save(model.state_dict(), 'best_chord_cnn.pth')
|
213 |
+
|
214 |
+
# Load best model and evaluate on test set
|
215 |
+
model.load_state_dict(torch.load('best_chord_cnn.pth'))
|
216 |
+
test_loss, test_acc, test_predictions, test_labels = evaluate(model, test_loader, criterion, device)
|
217 |
+
print("\nTest Set Performance:")
|
218 |
+
print(classification_report(test_labels, test_predictions))
|
219 |
+
|
220 |
+
# Plot training history
|
221 |
+
plt.figure(figsize=(12, 4))
|
222 |
+
|
223 |
+
plt.subplot(1, 2, 1)
|
224 |
+
plt.plot(train_losses, label='Train Loss')
|
225 |
+
plt.plot(valid_losses, label='Valid Loss')
|
226 |
+
plt.xlabel('Epoch')
|
227 |
+
plt.ylabel('Loss')
|
228 |
+
plt.legend()
|
229 |
+
|
230 |
+
plt.subplot(1, 2, 2)
|
231 |
+
plt.plot(train_accuracies, label='Train Accuracy')
|
232 |
+
plt.plot(valid_accuracies, label='Valid Accuracy')
|
233 |
+
plt.xlabel('Epoch')
|
234 |
+
plt.ylabel('Accuracy (%)')
|
235 |
+
plt.legend()
|
236 |
+
|
237 |
+
plt.tight_layout()
|
238 |
+
plt.savefig('training_history.png')
|
239 |
+
plt.close()
|
240 |
+
|
241 |
+
return model, train_dataset.class_to_idx
|
242 |
+
|
243 |
+
if __name__ == "__main__":
|
244 |
+
model, class_mapping = train_and_evaluate()
|