File size: 7,858 Bytes
47f412e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import os
from PIL import Image
import numpy as np
from tqdm import tqdm
from sklearn.metrics import classification_report
import matplotlib.pyplot as plt
class ChordDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.images = []
self.labels = []
self.class_to_idx = {}
# Get all image files and their corresponding labels
for img_name in os.listdir(root_dir):
if img_name.endswith(('.jpg', '.jpeg', '.png')):
chord = img_name.split('_')[0]
if chord not in self.class_to_idx:
self.class_to_idx[chord] = len(self.class_to_idx)
self.images.append(os.path.join(root_dir, img_name))
self.labels.append(self.class_to_idx[chord])
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = self.images[idx]
image = Image.open(img_path).convert('RGB')
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
class ChordCNN(nn.Module):
def __init__(self, num_classes):
super(ChordCNN, self).__init__()
# Convolutional layers
self.conv_layers = nn.Sequential(
# First conv block
nn.Conv2d(3, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(2),
# Second conv block
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2),
# Third conv block
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2),
# Fourth conv block
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(2),
# Fifth conv block
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2),
)
# Fully connected layers
self.fc_layers = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(512 * 7 * 7, 1024),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(1024, num_classes)
)
def forward(self, x):
x = self.conv_layers(x)
x = x.view(x.size(0), -1)
x = self.fc_layers(x)
return x
def train_epoch(model, train_loader, criterion, optimizer, device):
model.train()
running_loss = 0.0
correct = 0
total = 0
for images, labels in tqdm(train_loader, desc="Training"):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
epoch_loss = running_loss / len(train_loader)
accuracy = 100. * correct / total
return epoch_loss, accuracy
def evaluate(model, data_loader, criterion, device):
model.eval()
running_loss = 0.0
correct = 0
total = 0
all_predictions = []
all_labels = []
with torch.no_grad():
for images, labels in tqdm(data_loader, desc="Evaluating"):
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
all_predictions.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
epoch_loss = running_loss / len(data_loader)
accuracy = 100. * correct / total
return epoch_loss, accuracy, all_predictions, all_labels
def train_and_evaluate():
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Define transformations
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Create datasets
train_dataset = ChordDataset(root_dir='ds/train', transform=transform)
valid_dataset = ChordDataset(root_dir='ds/valid', transform=transform)
test_dataset = ChordDataset(root_dir='ds/test', transform=transform)
# Create dataloaders
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
# Initialize model
num_classes = len(train_dataset.class_to_idx)
model = ChordCNN(num_classes).to(device)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3, factor=0.5)
# Training parameters
num_epochs = 30
best_valid_loss = float('inf')
train_losses = []
valid_losses = []
train_accuracies = []
valid_accuracies = []
# Training loop
for epoch in range(num_epochs):
print(f"\nEpoch {epoch+1}/{num_epochs}")
# Train
train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer, device)
train_losses.append(train_loss)
train_accuracies.append(train_acc)
# Validate
valid_loss, valid_acc, _, _ = evaluate(model, valid_loader, criterion, device)
valid_losses.append(valid_loss)
valid_accuracies.append(valid_acc)
# Print epoch statistics
print(f"Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.2f}%")
print(f"Valid Loss: {valid_loss:.4f} | Valid Acc: {valid_acc:.2f}%")
# Learning rate scheduling
scheduler.step(valid_loss)
# Save best model
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'best_chord_cnn.pth')
# Load best model and evaluate on test set
model.load_state_dict(torch.load('best_chord_cnn.pth'))
test_loss, test_acc, test_predictions, test_labels = evaluate(model, test_loader, criterion, device)
print("\nTest Set Performance:")
print(classification_report(test_labels, test_predictions))
# Plot training history
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(train_losses, label='Train Loss')
plt.plot(valid_losses, label='Valid Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(train_accuracies, label='Train Accuracy')
plt.plot(valid_accuracies, label='Valid Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.legend()
plt.tight_layout()
plt.savefig('training_history.png')
plt.close()
return model, train_dataset.class_to_idx
if __name__ == "__main__":
model, class_mapping = train_and_evaluate() |