metadata
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets:
- yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:70280
- loss:CosineSimilarityLoss
widget:
- source_sentence: Data SBH tahun 2012 di Mamuju
sentences:
- >-
Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Harmonized
System November 2013
- SBH 2012 - Mamuju
- IHK di 66 Kota di Indonesia 2013
- source_sentence: Statistik konstruksi tahun 2020
sentences:
- Indeks Ketimpangan Gender 2022
- >-
Angka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Menurut Provinsi,
1971-2020
- >-
Perkembangan Beberapa Indikator Utama sosial-Ekonomi Indonesia Edisi
Februari 2016
- source_sentence: Berapa besar inflasi pada bulan Oktober 2008?
sentences:
- >-
Tinjauan Ekonomi Regional Indonesia Berdasarkan Data PDRB 2004-2008 Buku
2
- Statistik Sumber Daya Laut dan Pesisir 2020
- Inflasi September 2008 sebesar 0,97 persen.
- source_sentence: 'Sektor konstruksi Indonesia: data statistik 1990-2013'
sentences:
- >-
Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut
Provinsi dan Lapangan Pekerjaan Utama, 2023
- Direktori Perusahaan Kehutanan 2019
- Sensus Ekonomi 2006 Hasil Pendaftaran Perusahaan Sumatera Selatan
- source_sentence: Perdagangan luar negeri, impor, Oktober 2020
sentences:
- Indikator Ekonomi September 2005
- Statistik Potensi Desa Provinsi DI Yogyakarta 2005
- Indikator Ekonomi November 1999
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic search mini v2 eval
type: allstats-semantic-search-mini-v2-eval
metrics:
- type: pearson_cosine
value: 0.9617082550278393
name: Pearson Cosine
- type: spearman_cosine
value: 0.8518022238549516
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic search mini v2 test
type: allstat-semantic-search-mini-v2-test
metrics:
- type: pearson_cosine
value: 0.9604638064122318
name: Pearson Cosine
- type: spearman_cosine
value: 0.8480797444308495
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the allstats-semantic-search-synthetic-dataset-v2-mini dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-search-mini-model-v2-2")
# Run inference
sentences = [
'Perdagangan luar negeri, impor, Oktober 2020',
'Indikator Ekonomi November 1999',
'Indikator Ekonomi September 2005',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-search-mini-v2-eval
andallstat-semantic-search-mini-v2-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstats-semantic-search-mini-v2-eval | allstat-semantic-search-mini-v2-test |
---|---|---|
pearson_cosine | 0.9617 | 0.9605 |
spearman_cosine | 0.8518 | 0.8481 |
Training Details
Training Dataset
allstats-semantic-search-synthetic-dataset-v2-mini
- Dataset: allstats-semantic-search-synthetic-dataset-v2-mini at 8222b01
- Size: 70,280 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 3 tokens
- mean: 10.92 tokens
- max: 50 tokens
- min: 4 tokens
- mean: 14.68 tokens
- max: 59 tokens
- min: 0.0
- mean: 0.52
- max: 1.0
- Samples:
query doc label Statistik perusahaan pembudidaya tanaman kehutanan 2018
Statistik Perusahaan Pembudidaya Tanaman Kehutanan 2018
0.97
Berapa persen pertumbuhan PDB Indonesia pada Triwulan III Tahun 2002?
Inflasi Bulan November 2002 Sebesar 1,85 %
0.0
Perdagangan luar negeri Indonesia, impor 2019, jilid 2
Pendataan Sapi Potong Sapi Perah (PSPK 2011) Sulawesi Barat
0.06
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
allstats-semantic-search-synthetic-dataset-v2-mini
- Dataset: allstats-semantic-search-synthetic-dataset-v2-mini at 8222b01
- Size: 15,060 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 4 tokens
- mean: 10.96 tokens
- max: 48 tokens
- min: 4 tokens
- mean: 14.74 tokens
- max: 70 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
query doc label Review PDRB daerah di Pulau Sumatera 2010-2013
Statistik Pendidikan 2006
0.12
Analisis data angkatan kerja Agustus 2021
Booklet Survei Angkatan Kerja Nasional Agustus 2021
0.9
Berapa persen inflasi yang terjadi pada Juli 2015?
Inflasi pada bulan lain tidak disebutkan
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 24warmup_ratio
: 0.1bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 24max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-mini-v2-eval_spearman_cosine | allstat-semantic-search-mini-v2-test_spearman_cosine |
---|---|---|---|---|---|
0.4550 | 500 | 0.0643 | 0.0413 | 0.6996 | - |
0.9099 | 1000 | 0.0348 | 0.0280 | 0.7533 | - |
1.3649 | 1500 | 0.0254 | 0.0238 | 0.7737 | - |
1.8198 | 2000 | 0.0223 | 0.0205 | 0.7831 | - |
2.2748 | 2500 | 0.0181 | 0.0197 | 0.7894 | - |
2.7298 | 3000 | 0.0173 | 0.0184 | 0.7876 | - |
3.1847 | 3500 | 0.0152 | 0.0170 | 0.7954 | - |
3.6397 | 4000 | 0.0123 | 0.0175 | 0.7970 | - |
4.0946 | 4500 | 0.0125 | 0.0163 | 0.8118 | - |
4.5496 | 5000 | 0.01 | 0.0161 | 0.8047 | - |
5.0045 | 5500 | 0.0103 | 0.0157 | 0.8126 | - |
5.4595 | 6000 | 0.0079 | 0.0150 | 0.8224 | - |
5.9145 | 6500 | 0.0087 | 0.0156 | 0.8219 | - |
6.3694 | 7000 | 0.0071 | 0.0152 | 0.8145 | - |
6.8244 | 7500 | 0.0068 | 0.0153 | 0.8172 | - |
7.2793 | 8000 | 0.0061 | 0.0147 | 0.8216 | - |
7.7343 | 8500 | 0.0062 | 0.0146 | 0.8267 | - |
8.1893 | 9000 | 0.0055 | 0.0145 | 0.8325 | - |
8.6442 | 9500 | 0.005 | 0.0146 | 0.8335 | - |
9.0992 | 10000 | 0.0052 | 0.0143 | 0.8356 | - |
9.5541 | 10500 | 0.0043 | 0.0144 | 0.8313 | - |
10.0091 | 11000 | 0.0051 | 0.0144 | 0.8362 | - |
10.4641 | 11500 | 0.004 | 0.0145 | 0.8376 | - |
10.9190 | 12000 | 0.0039 | 0.0142 | 0.8331 | - |
11.3740 | 12500 | 0.0034 | 0.0141 | 0.8397 | - |
11.8289 | 13000 | 0.0033 | 0.0140 | 0.8398 | - |
12.2839 | 13500 | 0.0032 | 0.0143 | 0.8411 | - |
12.7389 | 14000 | 0.003 | 0.0141 | 0.8407 | - |
13.1938 | 14500 | 0.0031 | 0.0141 | 0.8379 | - |
13.6488 | 15000 | 0.0026 | 0.0141 | 0.8419 | - |
14.1037 | 15500 | 0.0028 | 0.0141 | 0.8442 | - |
14.5587 | 16000 | 0.0023 | 0.0138 | 0.8455 | - |
15.0136 | 16500 | 0.0025 | 0.0147 | 0.8359 | - |
15.4686 | 17000 | 0.0021 | 0.0141 | 0.8459 | - |
15.9236 | 17500 | 0.0023 | 0.0140 | 0.8433 | - |
16.3785 | 18000 | 0.002 | 0.0139 | 0.8465 | - |
16.8335 | 18500 | 0.002 | 0.0139 | 0.8461 | - |
17.2884 | 19000 | 0.0018 | 0.0139 | 0.8482 | - |
17.7434 | 19500 | 0.0018 | 0.0138 | 0.8477 | - |
18.1984 | 20000 | 0.0017 | 0.0138 | 0.8503 | - |
18.6533 | 20500 | 0.0016 | 0.0136 | 0.8493 | - |
19.1083 | 21000 | 0.0016 | 0.0139 | 0.8501 | - |
19.5632 | 21500 | 0.0015 | 0.0138 | 0.8478 | - |
20.0182 | 22000 | 0.0015 | 0.0139 | 0.8501 | - |
20.4732 | 22500 | 0.0013 | 0.0139 | 0.8508 | - |
20.9281 | 23000 | 0.0015 | 0.0139 | 0.8511 | - |
21.3831 | 23500 | 0.0013 | 0.0139 | 0.8517 | - |
21.8380 | 24000 | 0.0013 | 0.0139 | 0.8512 | - |
22.2930 | 24500 | 0.0012 | 0.0139 | 0.8512 | - |
22.7480 | 25000 | 0.0012 | 0.0138 | 0.8520 | - |
23.2029 | 25500 | 0.0012 | 0.0139 | 0.8520 | - |
23.6579 | 26000 | 0.0011 | 0.0139 | 0.8518 | - |
24.0 | 26376 | - | - | - | 0.8481 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}