---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets:
- yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:70280
- loss:CosineSimilarityLoss
widget:
- source_sentence: Data SBH tahun 2012 di Mamuju
sentences:
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Harmonized System November
2013
- SBH 2012 - Mamuju
- IHK di 66 Kota di Indonesia 2013
- source_sentence: Statistik konstruksi tahun 2020
sentences:
- Indeks Ketimpangan Gender 2022
- Angka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Menurut Provinsi, 1971-2020
- Perkembangan Beberapa Indikator Utama sosial-Ekonomi Indonesia Edisi Februari
2016
- source_sentence: Berapa besar inflasi pada bulan Oktober 2008?
sentences:
- Tinjauan Ekonomi Regional Indonesia Berdasarkan Data PDRB 2004-2008 Buku 2
- Statistik Sumber Daya Laut dan Pesisir 2020
- Inflasi September 2008 sebesar 0,97 persen.
- source_sentence: 'Sektor konstruksi Indonesia: data statistik 1990-2013'
sentences:
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Provinsi dan
Lapangan Pekerjaan Utama, 2023
- Direktori Perusahaan Kehutanan 2019
- Sensus Ekonomi 2006 Hasil Pendaftaran Perusahaan Sumatera Selatan
- source_sentence: Perdagangan luar negeri, impor, Oktober 2020
sentences:
- Indikator Ekonomi September 2005
- Statistik Potensi Desa Provinsi DI Yogyakarta 2005
- Indikator Ekonomi November 1999
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic search mini v2 eval
type: allstats-semantic-search-mini-v2-eval
metrics:
- type: pearson_cosine
value: 0.9617082550278393
name: Pearson Cosine
- type: spearman_cosine
value: 0.8518022238549516
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic search mini v2 test
type: allstat-semantic-search-mini-v2-test
metrics:
- type: pearson_cosine
value: 0.9604638064122318
name: Pearson Cosine
- type: spearman_cosine
value: 0.8480797444308495
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [allstats-semantic-search-synthetic-dataset-v2-mini](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [allstats-semantic-search-synthetic-dataset-v2-mini](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini)
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-search-mini-model-v2-2")
# Run inference
sentences = [
'Perdagangan luar negeri, impor, Oktober 2020',
'Indikator Ekonomi November 1999',
'Indikator Ekonomi September 2005',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `allstats-semantic-search-mini-v2-eval` and `allstat-semantic-search-mini-v2-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | allstats-semantic-search-mini-v2-eval | allstat-semantic-search-mini-v2-test |
|:--------------------|:--------------------------------------|:-------------------------------------|
| pearson_cosine | 0.9617 | 0.9605 |
| **spearman_cosine** | **0.8518** | **0.8481** |
## Training Details
### Training Dataset
#### allstats-semantic-search-synthetic-dataset-v2-mini
* Dataset: [allstats-semantic-search-synthetic-dataset-v2-mini](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini) at [8222b01](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini/tree/8222b01e37490603bc838a6368bc2946a6455a7c)
* Size: 70,280 training samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
Statistik perusahaan pembudidaya tanaman kehutanan 2018
| Statistik Perusahaan Pembudidaya Tanaman Kehutanan 2018
| 0.97
|
| Berapa persen pertumbuhan PDB Indonesia pada Triwulan III Tahun 2002?
| Inflasi Bulan November 2002 Sebesar 1,85 %
| 0.0
|
| Perdagangan luar negeri Indonesia, impor 2019, jilid 2
| Pendataan Sapi Potong Sapi Perah (PSPK 2011) Sulawesi Barat
| 0.06
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### allstats-semantic-search-synthetic-dataset-v2-mini
* Dataset: [allstats-semantic-search-synthetic-dataset-v2-mini](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini) at [8222b01](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini/tree/8222b01e37490603bc838a6368bc2946a6455a7c)
* Size: 15,060 evaluation samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | Review PDRB daerah di Pulau Sumatera 2010-2013
| Statistik Pendidikan 2006
| 0.12
|
| Analisis data angkatan kerja Agustus 2021
| Booklet Survei Angkatan Kerja Nasional Agustus 2021
| 0.9
|
| Berapa persen inflasi yang terjadi pada Juli 2015?
| Inflasi pada bulan lain tidak disebutkan
| 0.0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 24
- `warmup_ratio`: 0.1
- `bf16`: True
#### All Hyperparameters