whisper-base-eu / README.md
xezpeleta's picture
End of training
7cb6af5 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - asierhv/composite_corpus_eu_v2.1
metrics:
  - wer
model-index:
  - name: Whisper Base Basque
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: asierhv/composite_corpus_eu_v2.1
          type: asierhv/composite_corpus_eu_v2.1
        metrics:
          - name: Wer
            type: wer
            value: 13.816958025614658

Whisper Base Basque

This model is a fine-tuned version of openai/whisper-base on the asierhv/composite_corpus_eu_v2.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2452
  • Wer: 13.8170

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4951 0.125 1000 0.4901 27.0543
0.2607 0.25 2000 0.3708 19.8654
0.1887 0.375 3000 0.3454 18.3977
0.2607 0.5 4000 0.3218 16.8085
0.106 0.625 5000 0.3289 15.7801
0.1376 0.75 6000 0.3052 15.0276
0.1733 0.875 7000 0.3004 13.9338
0.1228 1.0 8000 0.2452 13.8170

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.1.dev0
  • Tokenizers 0.21.0