End of training
Browse files- README.md +17 -4
- all_results.json +13 -0
- eval_results.json +8 -0
- train_results.json +8 -0
- trainer_state.json +2354 -0
- wandb/run-20250214_113805-769lwzm2/files/output.log +158 -0
- wandb/run-20250214_113805-769lwzm2/run-769lwzm2.wandb +2 -2
README.md
CHANGED
@@ -3,20 +3,33 @@ library_name: transformers
|
|
3 |
license: apache-2.0
|
4 |
base_model: openai/whisper-base
|
5 |
tags:
|
|
|
6 |
- generated_from_trainer
|
|
|
|
|
7 |
metrics:
|
8 |
- wer
|
9 |
model-index:
|
10 |
-
- name:
|
11 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
-
#
|
18 |
|
19 |
-
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on
|
20 |
It achieves the following results on the evaluation set:
|
21 |
- Loss: 0.2452
|
22 |
- Wer: 13.8170
|
|
|
3 |
license: apache-2.0
|
4 |
base_model: openai/whisper-base
|
5 |
tags:
|
6 |
+
- whisper-event
|
7 |
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- asierhv/composite_corpus_eu_v2.1
|
10 |
metrics:
|
11 |
- wer
|
12 |
model-index:
|
13 |
+
- name: Whisper Base Basque
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: asierhv/composite_corpus_eu_v2.1
|
20 |
+
type: asierhv/composite_corpus_eu_v2.1
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 13.816958025614658
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
should probably proofread and complete it, then remove this comment. -->
|
29 |
|
30 |
+
# Whisper Base Basque
|
31 |
|
32 |
+
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the asierhv/composite_corpus_eu_v2.1 dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
- Loss: 0.2452
|
35 |
- Wer: 13.8170
|
all_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_loss": 0.24521400034427643,
|
4 |
+
"eval_runtime": 74.5154,
|
5 |
+
"eval_samples_per_second": 28.236,
|
6 |
+
"eval_steps_per_second": 1.771,
|
7 |
+
"eval_wer": 13.816958025614658,
|
8 |
+
"total_flos": 1.660415901696e+19,
|
9 |
+
"train_loss": 0.22206098145246506,
|
10 |
+
"train_runtime": 4270.5513,
|
11 |
+
"train_samples_per_second": 59.945,
|
12 |
+
"train_steps_per_second": 1.873
|
13 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_loss": 0.24521400034427643,
|
4 |
+
"eval_runtime": 74.5154,
|
5 |
+
"eval_samples_per_second": 28.236,
|
6 |
+
"eval_steps_per_second": 1.771,
|
7 |
+
"eval_wer": 13.816958025614658
|
8 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"total_flos": 1.660415901696e+19,
|
4 |
+
"train_loss": 0.22206098145246506,
|
5 |
+
"train_runtime": 4270.5513,
|
6 |
+
"train_samples_per_second": 59.945,
|
7 |
+
"train_steps_per_second": 1.873
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 13.816958025614658,
|
3 |
+
"best_model_checkpoint": "./checkpoint-8000",
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 1000,
|
6 |
+
"global_step": 8000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.003125,
|
13 |
+
"grad_norm": 21.98771095275879,
|
14 |
+
"learning_rate": 8.8e-07,
|
15 |
+
"loss": 3.1382,
|
16 |
+
"step": 25
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.00625,
|
20 |
+
"grad_norm": 11.417325019836426,
|
21 |
+
"learning_rate": 1.8800000000000002e-06,
|
22 |
+
"loss": 2.4524,
|
23 |
+
"step": 50
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.009375,
|
27 |
+
"grad_norm": 9.939048767089844,
|
28 |
+
"learning_rate": 2.88e-06,
|
29 |
+
"loss": 1.6386,
|
30 |
+
"step": 75
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0125,
|
34 |
+
"grad_norm": 8.167191505432129,
|
35 |
+
"learning_rate": 3.88e-06,
|
36 |
+
"loss": 1.26,
|
37 |
+
"step": 100
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.015625,
|
41 |
+
"grad_norm": 7.114121913909912,
|
42 |
+
"learning_rate": 4.880000000000001e-06,
|
43 |
+
"loss": 1.0564,
|
44 |
+
"step": 125
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01875,
|
48 |
+
"grad_norm": 6.8056840896606445,
|
49 |
+
"learning_rate": 5.8800000000000005e-06,
|
50 |
+
"loss": 0.897,
|
51 |
+
"step": 150
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.021875,
|
55 |
+
"grad_norm": 6.363353252410889,
|
56 |
+
"learning_rate": 6.88e-06,
|
57 |
+
"loss": 0.8252,
|
58 |
+
"step": 175
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.025,
|
62 |
+
"grad_norm": 6.622057914733887,
|
63 |
+
"learning_rate": 7.88e-06,
|
64 |
+
"loss": 0.7693,
|
65 |
+
"step": 200
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.028125,
|
69 |
+
"grad_norm": 5.045984745025635,
|
70 |
+
"learning_rate": 8.880000000000001e-06,
|
71 |
+
"loss": 0.6621,
|
72 |
+
"step": 225
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.03125,
|
76 |
+
"grad_norm": 7.978261947631836,
|
77 |
+
"learning_rate": 9.88e-06,
|
78 |
+
"loss": 0.6861,
|
79 |
+
"step": 250
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.034375,
|
83 |
+
"grad_norm": 6.535711288452148,
|
84 |
+
"learning_rate": 1.0880000000000001e-05,
|
85 |
+
"loss": 0.6888,
|
86 |
+
"step": 275
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.0375,
|
90 |
+
"grad_norm": 6.781430721282959,
|
91 |
+
"learning_rate": 1.188e-05,
|
92 |
+
"loss": 0.6648,
|
93 |
+
"step": 300
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.040625,
|
97 |
+
"grad_norm": 5.826904773712158,
|
98 |
+
"learning_rate": 1.2880000000000002e-05,
|
99 |
+
"loss": 0.5983,
|
100 |
+
"step": 325
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.04375,
|
104 |
+
"grad_norm": 5.830564975738525,
|
105 |
+
"learning_rate": 1.3880000000000001e-05,
|
106 |
+
"loss": 0.5272,
|
107 |
+
"step": 350
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.046875,
|
111 |
+
"grad_norm": 5.638543128967285,
|
112 |
+
"learning_rate": 1.4880000000000002e-05,
|
113 |
+
"loss": 0.4479,
|
114 |
+
"step": 375
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.05,
|
118 |
+
"grad_norm": 4.451868057250977,
|
119 |
+
"learning_rate": 1.588e-05,
|
120 |
+
"loss": 0.4341,
|
121 |
+
"step": 400
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.053125,
|
125 |
+
"grad_norm": 4.475216865539551,
|
126 |
+
"learning_rate": 1.688e-05,
|
127 |
+
"loss": 0.3916,
|
128 |
+
"step": 425
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.05625,
|
132 |
+
"grad_norm": 4.683038711547852,
|
133 |
+
"learning_rate": 1.788e-05,
|
134 |
+
"loss": 0.3745,
|
135 |
+
"step": 450
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.059375,
|
139 |
+
"grad_norm": 4.93367862701416,
|
140 |
+
"learning_rate": 1.8880000000000002e-05,
|
141 |
+
"loss": 0.3569,
|
142 |
+
"step": 475
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.0625,
|
146 |
+
"grad_norm": 4.0592041015625,
|
147 |
+
"learning_rate": 1.9880000000000003e-05,
|
148 |
+
"loss": 0.3336,
|
149 |
+
"step": 500
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.065625,
|
153 |
+
"grad_norm": 5.144535064697266,
|
154 |
+
"learning_rate": 1.9941333333333335e-05,
|
155 |
+
"loss": 0.3092,
|
156 |
+
"step": 525
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.06875,
|
160 |
+
"grad_norm": 4.806638717651367,
|
161 |
+
"learning_rate": 1.9874666666666668e-05,
|
162 |
+
"loss": 0.3106,
|
163 |
+
"step": 550
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.071875,
|
167 |
+
"grad_norm": 4.3809638023376465,
|
168 |
+
"learning_rate": 1.9808e-05,
|
169 |
+
"loss": 0.2971,
|
170 |
+
"step": 575
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.075,
|
174 |
+
"grad_norm": 5.35611629486084,
|
175 |
+
"learning_rate": 1.9741333333333334e-05,
|
176 |
+
"loss": 0.2897,
|
177 |
+
"step": 600
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.078125,
|
181 |
+
"grad_norm": 4.62730598449707,
|
182 |
+
"learning_rate": 1.967466666666667e-05,
|
183 |
+
"loss": 0.2607,
|
184 |
+
"step": 625
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.08125,
|
188 |
+
"grad_norm": 3.60905122756958,
|
189 |
+
"learning_rate": 1.9608000000000003e-05,
|
190 |
+
"loss": 0.2765,
|
191 |
+
"step": 650
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.084375,
|
195 |
+
"grad_norm": 3.7476887702941895,
|
196 |
+
"learning_rate": 1.9541333333333336e-05,
|
197 |
+
"loss": 0.2661,
|
198 |
+
"step": 675
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.0875,
|
202 |
+
"grad_norm": 4.03351354598999,
|
203 |
+
"learning_rate": 1.947466666666667e-05,
|
204 |
+
"loss": 0.271,
|
205 |
+
"step": 700
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.090625,
|
209 |
+
"grad_norm": 6.19671106338501,
|
210 |
+
"learning_rate": 1.9408e-05,
|
211 |
+
"loss": 0.3045,
|
212 |
+
"step": 725
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.09375,
|
216 |
+
"grad_norm": 6.079224586486816,
|
217 |
+
"learning_rate": 1.9341333333333334e-05,
|
218 |
+
"loss": 0.4168,
|
219 |
+
"step": 750
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.096875,
|
223 |
+
"grad_norm": 5.619544982910156,
|
224 |
+
"learning_rate": 1.9274666666666667e-05,
|
225 |
+
"loss": 0.4038,
|
226 |
+
"step": 775
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.1,
|
230 |
+
"grad_norm": 5.917449951171875,
|
231 |
+
"learning_rate": 1.9208000000000003e-05,
|
232 |
+
"loss": 0.4418,
|
233 |
+
"step": 800
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.103125,
|
237 |
+
"grad_norm": 3.9295430183410645,
|
238 |
+
"learning_rate": 1.9141333333333333e-05,
|
239 |
+
"loss": 0.3051,
|
240 |
+
"step": 825
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.10625,
|
244 |
+
"grad_norm": 3.26605486869812,
|
245 |
+
"learning_rate": 1.907466666666667e-05,
|
246 |
+
"loss": 0.2447,
|
247 |
+
"step": 850
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.109375,
|
251 |
+
"grad_norm": 4.2773051261901855,
|
252 |
+
"learning_rate": 1.9008e-05,
|
253 |
+
"loss": 0.2316,
|
254 |
+
"step": 875
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.1125,
|
258 |
+
"grad_norm": 5.690479755401611,
|
259 |
+
"learning_rate": 1.8941333333333334e-05,
|
260 |
+
"loss": 0.3193,
|
261 |
+
"step": 900
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.115625,
|
265 |
+
"grad_norm": 5.861849308013916,
|
266 |
+
"learning_rate": 1.8874666666666667e-05,
|
267 |
+
"loss": 0.3742,
|
268 |
+
"step": 925
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.11875,
|
272 |
+
"grad_norm": 5.605452537536621,
|
273 |
+
"learning_rate": 1.8808e-05,
|
274 |
+
"loss": 0.3622,
|
275 |
+
"step": 950
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.121875,
|
279 |
+
"grad_norm": 6.191706657409668,
|
280 |
+
"learning_rate": 1.8741333333333336e-05,
|
281 |
+
"loss": 0.5693,
|
282 |
+
"step": 975
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.125,
|
286 |
+
"grad_norm": 6.441635608673096,
|
287 |
+
"learning_rate": 1.867466666666667e-05,
|
288 |
+
"loss": 0.4951,
|
289 |
+
"step": 1000
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.125,
|
293 |
+
"eval_loss": 0.49006596207618713,
|
294 |
+
"eval_runtime": 77.9711,
|
295 |
+
"eval_samples_per_second": 26.984,
|
296 |
+
"eval_steps_per_second": 1.693,
|
297 |
+
"eval_wer": 27.05431429372721,
|
298 |
+
"step": 1000
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.128125,
|
302 |
+
"grad_norm": 5.985304832458496,
|
303 |
+
"learning_rate": 1.8608000000000002e-05,
|
304 |
+
"loss": 0.4113,
|
305 |
+
"step": 1025
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.13125,
|
309 |
+
"grad_norm": 5.439868450164795,
|
310 |
+
"learning_rate": 1.8541333333333335e-05,
|
311 |
+
"loss": 0.3116,
|
312 |
+
"step": 1050
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.134375,
|
316 |
+
"grad_norm": 3.6065237522125244,
|
317 |
+
"learning_rate": 1.8474666666666668e-05,
|
318 |
+
"loss": 0.223,
|
319 |
+
"step": 1075
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.1375,
|
323 |
+
"grad_norm": 3.4091665744781494,
|
324 |
+
"learning_rate": 1.8408e-05,
|
325 |
+
"loss": 0.1918,
|
326 |
+
"step": 1100
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.140625,
|
330 |
+
"grad_norm": 2.80391001701355,
|
331 |
+
"learning_rate": 1.8341333333333337e-05,
|
332 |
+
"loss": 0.1784,
|
333 |
+
"step": 1125
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.14375,
|
337 |
+
"grad_norm": 3.194566011428833,
|
338 |
+
"learning_rate": 1.8274666666666666e-05,
|
339 |
+
"loss": 0.1988,
|
340 |
+
"step": 1150
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.146875,
|
344 |
+
"grad_norm": 3.294611930847168,
|
345 |
+
"learning_rate": 1.8208000000000003e-05,
|
346 |
+
"loss": 0.2032,
|
347 |
+
"step": 1175
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.15,
|
351 |
+
"grad_norm": 3.653074264526367,
|
352 |
+
"learning_rate": 1.8141333333333335e-05,
|
353 |
+
"loss": 0.1914,
|
354 |
+
"step": 1200
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.153125,
|
358 |
+
"grad_norm": 4.978360176086426,
|
359 |
+
"learning_rate": 1.8074666666666668e-05,
|
360 |
+
"loss": 0.2865,
|
361 |
+
"step": 1225
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.15625,
|
365 |
+
"grad_norm": 5.2725701332092285,
|
366 |
+
"learning_rate": 1.8008e-05,
|
367 |
+
"loss": 0.306,
|
368 |
+
"step": 1250
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.159375,
|
372 |
+
"grad_norm": 5.122636318206787,
|
373 |
+
"learning_rate": 1.7941333333333334e-05,
|
374 |
+
"loss": 0.3283,
|
375 |
+
"step": 1275
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.1625,
|
379 |
+
"grad_norm": 5.599034786224365,
|
380 |
+
"learning_rate": 1.787466666666667e-05,
|
381 |
+
"loss": 0.3472,
|
382 |
+
"step": 1300
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 0.165625,
|
386 |
+
"grad_norm": 5.392984867095947,
|
387 |
+
"learning_rate": 1.7808e-05,
|
388 |
+
"loss": 0.3073,
|
389 |
+
"step": 1325
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.16875,
|
393 |
+
"grad_norm": 4.690824508666992,
|
394 |
+
"learning_rate": 1.7741333333333336e-05,
|
395 |
+
"loss": 0.3096,
|
396 |
+
"step": 1350
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.171875,
|
400 |
+
"grad_norm": 5.487542152404785,
|
401 |
+
"learning_rate": 1.767466666666667e-05,
|
402 |
+
"loss": 0.2872,
|
403 |
+
"step": 1375
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.175,
|
407 |
+
"grad_norm": 5.0103440284729,
|
408 |
+
"learning_rate": 1.7608e-05,
|
409 |
+
"loss": 0.28,
|
410 |
+
"step": 1400
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.178125,
|
414 |
+
"grad_norm": 4.374607563018799,
|
415 |
+
"learning_rate": 1.7541333333333334e-05,
|
416 |
+
"loss": 0.2907,
|
417 |
+
"step": 1425
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.18125,
|
421 |
+
"grad_norm": 3.8199336528778076,
|
422 |
+
"learning_rate": 1.7474666666666667e-05,
|
423 |
+
"loss": 0.2721,
|
424 |
+
"step": 1450
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.184375,
|
428 |
+
"grad_norm": 3.263697862625122,
|
429 |
+
"learning_rate": 1.7408e-05,
|
430 |
+
"loss": 0.2018,
|
431 |
+
"step": 1475
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.1875,
|
435 |
+
"grad_norm": 3.686453104019165,
|
436 |
+
"learning_rate": 1.7341333333333333e-05,
|
437 |
+
"loss": 0.1804,
|
438 |
+
"step": 1500
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.190625,
|
442 |
+
"grad_norm": 3.122502088546753,
|
443 |
+
"learning_rate": 1.727466666666667e-05,
|
444 |
+
"loss": 0.1864,
|
445 |
+
"step": 1525
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.19375,
|
449 |
+
"grad_norm": 3.8203911781311035,
|
450 |
+
"learning_rate": 1.7208000000000002e-05,
|
451 |
+
"loss": 0.1822,
|
452 |
+
"step": 1550
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.196875,
|
456 |
+
"grad_norm": 3.1615259647369385,
|
457 |
+
"learning_rate": 1.7141333333333335e-05,
|
458 |
+
"loss": 0.1607,
|
459 |
+
"step": 1575
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.2,
|
463 |
+
"grad_norm": 3.136589288711548,
|
464 |
+
"learning_rate": 1.7074666666666668e-05,
|
465 |
+
"loss": 0.1681,
|
466 |
+
"step": 1600
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.203125,
|
470 |
+
"grad_norm": 5.022261142730713,
|
471 |
+
"learning_rate": 1.7008000000000004e-05,
|
472 |
+
"loss": 0.2476,
|
473 |
+
"step": 1625
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.20625,
|
477 |
+
"grad_norm": 4.3968377113342285,
|
478 |
+
"learning_rate": 1.6941333333333333e-05,
|
479 |
+
"loss": 0.2578,
|
480 |
+
"step": 1650
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 0.209375,
|
484 |
+
"grad_norm": 5.124329090118408,
|
485 |
+
"learning_rate": 1.687466666666667e-05,
|
486 |
+
"loss": 0.2646,
|
487 |
+
"step": 1675
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.2125,
|
491 |
+
"grad_norm": 3.7056658267974854,
|
492 |
+
"learning_rate": 1.6808000000000002e-05,
|
493 |
+
"loss": 0.251,
|
494 |
+
"step": 1700
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.215625,
|
498 |
+
"grad_norm": 3.477151870727539,
|
499 |
+
"learning_rate": 1.6741333333333335e-05,
|
500 |
+
"loss": 0.1996,
|
501 |
+
"step": 1725
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.21875,
|
505 |
+
"grad_norm": 3.3584837913513184,
|
506 |
+
"learning_rate": 1.6674666666666668e-05,
|
507 |
+
"loss": 0.1939,
|
508 |
+
"step": 1750
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.221875,
|
512 |
+
"grad_norm": 3.136394739151001,
|
513 |
+
"learning_rate": 1.6608e-05,
|
514 |
+
"loss": 0.1664,
|
515 |
+
"step": 1775
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.225,
|
519 |
+
"grad_norm": 2.997995376586914,
|
520 |
+
"learning_rate": 1.6541333333333334e-05,
|
521 |
+
"loss": 0.1731,
|
522 |
+
"step": 1800
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.228125,
|
526 |
+
"grad_norm": 3.235027551651001,
|
527 |
+
"learning_rate": 1.6474666666666667e-05,
|
528 |
+
"loss": 0.1609,
|
529 |
+
"step": 1825
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.23125,
|
533 |
+
"grad_norm": 2.657120704650879,
|
534 |
+
"learning_rate": 1.6408000000000003e-05,
|
535 |
+
"loss": 0.1563,
|
536 |
+
"step": 1850
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.234375,
|
540 |
+
"grad_norm": 3.5700979232788086,
|
541 |
+
"learning_rate": 1.6341333333333336e-05,
|
542 |
+
"loss": 0.1554,
|
543 |
+
"step": 1875
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.2375,
|
547 |
+
"grad_norm": 3.4939069747924805,
|
548 |
+
"learning_rate": 1.627466666666667e-05,
|
549 |
+
"loss": 0.1553,
|
550 |
+
"step": 1900
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.240625,
|
554 |
+
"grad_norm": 2.4021010398864746,
|
555 |
+
"learning_rate": 1.6208e-05,
|
556 |
+
"loss": 0.1494,
|
557 |
+
"step": 1925
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.24375,
|
561 |
+
"grad_norm": 4.335009574890137,
|
562 |
+
"learning_rate": 1.6141333333333334e-05,
|
563 |
+
"loss": 0.2011,
|
564 |
+
"step": 1950
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.246875,
|
568 |
+
"grad_norm": 4.650504112243652,
|
569 |
+
"learning_rate": 1.6074666666666667e-05,
|
570 |
+
"loss": 0.2702,
|
571 |
+
"step": 1975
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.25,
|
575 |
+
"grad_norm": 4.410916328430176,
|
576 |
+
"learning_rate": 1.6008e-05,
|
577 |
+
"loss": 0.2607,
|
578 |
+
"step": 2000
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.25,
|
582 |
+
"eval_loss": 0.3708300292491913,
|
583 |
+
"eval_runtime": 74.5053,
|
584 |
+
"eval_samples_per_second": 28.24,
|
585 |
+
"eval_steps_per_second": 1.772,
|
586 |
+
"eval_wer": 19.865382817612414,
|
587 |
+
"step": 2000
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.253125,
|
591 |
+
"grad_norm": 3.3271749019622803,
|
592 |
+
"learning_rate": 1.5941333333333336e-05,
|
593 |
+
"loss": 0.2175,
|
594 |
+
"step": 2025
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.25625,
|
598 |
+
"grad_norm": 3.365081310272217,
|
599 |
+
"learning_rate": 1.5874666666666666e-05,
|
600 |
+
"loss": 0.1527,
|
601 |
+
"step": 2050
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 0.259375,
|
605 |
+
"grad_norm": 3.701395273208618,
|
606 |
+
"learning_rate": 1.5808000000000002e-05,
|
607 |
+
"loss": 0.1461,
|
608 |
+
"step": 2075
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.2625,
|
612 |
+
"grad_norm": 2.8837661743164062,
|
613 |
+
"learning_rate": 1.5741333333333335e-05,
|
614 |
+
"loss": 0.1507,
|
615 |
+
"step": 2100
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.265625,
|
619 |
+
"grad_norm": 3.2435319423675537,
|
620 |
+
"learning_rate": 1.5674666666666667e-05,
|
621 |
+
"loss": 0.1314,
|
622 |
+
"step": 2125
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 0.26875,
|
626 |
+
"grad_norm": 2.9637367725372314,
|
627 |
+
"learning_rate": 1.5608e-05,
|
628 |
+
"loss": 0.1292,
|
629 |
+
"step": 2150
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.271875,
|
633 |
+
"grad_norm": 3.535871982574463,
|
634 |
+
"learning_rate": 1.5541333333333337e-05,
|
635 |
+
"loss": 0.1332,
|
636 |
+
"step": 2175
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.275,
|
640 |
+
"grad_norm": 3.633970022201538,
|
641 |
+
"learning_rate": 1.547466666666667e-05,
|
642 |
+
"loss": 0.2285,
|
643 |
+
"step": 2200
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.278125,
|
647 |
+
"grad_norm": 4.483553409576416,
|
648 |
+
"learning_rate": 1.5408000000000002e-05,
|
649 |
+
"loss": 0.2325,
|
650 |
+
"step": 2225
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.28125,
|
654 |
+
"grad_norm": 4.577600955963135,
|
655 |
+
"learning_rate": 1.5341333333333335e-05,
|
656 |
+
"loss": 0.256,
|
657 |
+
"step": 2250
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.284375,
|
661 |
+
"grad_norm": 3.32087779045105,
|
662 |
+
"learning_rate": 1.5274666666666668e-05,
|
663 |
+
"loss": 0.1758,
|
664 |
+
"step": 2275
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 0.2875,
|
668 |
+
"grad_norm": 3.1856462955474854,
|
669 |
+
"learning_rate": 1.5208e-05,
|
670 |
+
"loss": 0.1311,
|
671 |
+
"step": 2300
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 0.290625,
|
675 |
+
"grad_norm": 3.373046636581421,
|
676 |
+
"learning_rate": 1.5141333333333335e-05,
|
677 |
+
"loss": 0.1197,
|
678 |
+
"step": 2325
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"epoch": 0.29375,
|
682 |
+
"grad_norm": 3.019298553466797,
|
683 |
+
"learning_rate": 1.5074666666666668e-05,
|
684 |
+
"loss": 0.1243,
|
685 |
+
"step": 2350
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.296875,
|
689 |
+
"grad_norm": 2.5749433040618896,
|
690 |
+
"learning_rate": 1.5008000000000001e-05,
|
691 |
+
"loss": 0.1302,
|
692 |
+
"step": 2375
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.3,
|
696 |
+
"grad_norm": 4.252561092376709,
|
697 |
+
"learning_rate": 1.4941333333333334e-05,
|
698 |
+
"loss": 0.1277,
|
699 |
+
"step": 2400
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.303125,
|
703 |
+
"grad_norm": 2.421847343444824,
|
704 |
+
"learning_rate": 1.4874666666666668e-05,
|
705 |
+
"loss": 0.1352,
|
706 |
+
"step": 2425
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.30625,
|
710 |
+
"grad_norm": 2.247629165649414,
|
711 |
+
"learning_rate": 1.4808e-05,
|
712 |
+
"loss": 0.1286,
|
713 |
+
"step": 2450
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 0.309375,
|
717 |
+
"grad_norm": 2.594142436981201,
|
718 |
+
"learning_rate": 1.4741333333333334e-05,
|
719 |
+
"loss": 0.1355,
|
720 |
+
"step": 2475
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 0.3125,
|
724 |
+
"grad_norm": 3.3857474327087402,
|
725 |
+
"learning_rate": 1.4674666666666669e-05,
|
726 |
+
"loss": 0.1539,
|
727 |
+
"step": 2500
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 0.315625,
|
731 |
+
"grad_norm": 3.906268835067749,
|
732 |
+
"learning_rate": 1.4608000000000001e-05,
|
733 |
+
"loss": 0.2039,
|
734 |
+
"step": 2525
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.31875,
|
738 |
+
"grad_norm": 4.0277204513549805,
|
739 |
+
"learning_rate": 1.4541333333333334e-05,
|
740 |
+
"loss": 0.1978,
|
741 |
+
"step": 2550
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.321875,
|
745 |
+
"grad_norm": 3.9858391284942627,
|
746 |
+
"learning_rate": 1.4474666666666669e-05,
|
747 |
+
"loss": 0.2316,
|
748 |
+
"step": 2575
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 0.325,
|
752 |
+
"grad_norm": 2.84332537651062,
|
753 |
+
"learning_rate": 1.4408000000000002e-05,
|
754 |
+
"loss": 0.1719,
|
755 |
+
"step": 2600
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 0.328125,
|
759 |
+
"grad_norm": 3.294312000274658,
|
760 |
+
"learning_rate": 1.4341333333333334e-05,
|
761 |
+
"loss": 0.1421,
|
762 |
+
"step": 2625
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 0.33125,
|
766 |
+
"grad_norm": 2.738583564758301,
|
767 |
+
"learning_rate": 1.4274666666666667e-05,
|
768 |
+
"loss": 0.1297,
|
769 |
+
"step": 2650
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.334375,
|
773 |
+
"grad_norm": 2.4573464393615723,
|
774 |
+
"learning_rate": 1.4208000000000002e-05,
|
775 |
+
"loss": 0.1223,
|
776 |
+
"step": 2675
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.3375,
|
780 |
+
"grad_norm": 2.678255319595337,
|
781 |
+
"learning_rate": 1.4141333333333333e-05,
|
782 |
+
"loss": 0.1249,
|
783 |
+
"step": 2700
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.340625,
|
787 |
+
"grad_norm": 3.8852200508117676,
|
788 |
+
"learning_rate": 1.4074666666666668e-05,
|
789 |
+
"loss": 0.1456,
|
790 |
+
"step": 2725
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 0.34375,
|
794 |
+
"grad_norm": 3.630040407180786,
|
795 |
+
"learning_rate": 1.4008000000000002e-05,
|
796 |
+
"loss": 0.1466,
|
797 |
+
"step": 2750
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.346875,
|
801 |
+
"grad_norm": 4.463013648986816,
|
802 |
+
"learning_rate": 1.3941333333333333e-05,
|
803 |
+
"loss": 0.2719,
|
804 |
+
"step": 2775
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 0.35,
|
808 |
+
"grad_norm": 4.058387279510498,
|
809 |
+
"learning_rate": 1.3874666666666668e-05,
|
810 |
+
"loss": 0.244,
|
811 |
+
"step": 2800
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 0.353125,
|
815 |
+
"grad_norm": 4.477724552154541,
|
816 |
+
"learning_rate": 1.3808e-05,
|
817 |
+
"loss": 0.2144,
|
818 |
+
"step": 2825
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.35625,
|
822 |
+
"grad_norm": 3.583326578140259,
|
823 |
+
"learning_rate": 1.3741333333333335e-05,
|
824 |
+
"loss": 0.2157,
|
825 |
+
"step": 2850
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.359375,
|
829 |
+
"grad_norm": 3.8221640586853027,
|
830 |
+
"learning_rate": 1.3674666666666668e-05,
|
831 |
+
"loss": 0.2151,
|
832 |
+
"step": 2875
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 0.3625,
|
836 |
+
"grad_norm": 3.6878933906555176,
|
837 |
+
"learning_rate": 1.3608e-05,
|
838 |
+
"loss": 0.2063,
|
839 |
+
"step": 2900
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 0.365625,
|
843 |
+
"grad_norm": 3.0994338989257812,
|
844 |
+
"learning_rate": 1.3541333333333335e-05,
|
845 |
+
"loss": 0.1613,
|
846 |
+
"step": 2925
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"epoch": 0.36875,
|
850 |
+
"grad_norm": 2.727104902267456,
|
851 |
+
"learning_rate": 1.3474666666666667e-05,
|
852 |
+
"loss": 0.1278,
|
853 |
+
"step": 2950
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"epoch": 0.371875,
|
857 |
+
"grad_norm": 3.0303940773010254,
|
858 |
+
"learning_rate": 1.3408000000000001e-05,
|
859 |
+
"loss": 0.1347,
|
860 |
+
"step": 2975
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.375,
|
864 |
+
"grad_norm": 3.6327948570251465,
|
865 |
+
"learning_rate": 1.3341333333333336e-05,
|
866 |
+
"loss": 0.1887,
|
867 |
+
"step": 3000
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.375,
|
871 |
+
"eval_loss": 0.34539544582366943,
|
872 |
+
"eval_runtime": 75.5211,
|
873 |
+
"eval_samples_per_second": 27.86,
|
874 |
+
"eval_steps_per_second": 1.748,
|
875 |
+
"eval_wer": 18.39768159296999,
|
876 |
+
"step": 3000
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"epoch": 0.378125,
|
880 |
+
"grad_norm": 4.803223133087158,
|
881 |
+
"learning_rate": 1.3274666666666667e-05,
|
882 |
+
"loss": 0.2279,
|
883 |
+
"step": 3025
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 0.38125,
|
887 |
+
"grad_norm": 4.9647536277771,
|
888 |
+
"learning_rate": 1.3208000000000001e-05,
|
889 |
+
"loss": 0.2556,
|
890 |
+
"step": 3050
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.384375,
|
894 |
+
"grad_norm": 3.8229358196258545,
|
895 |
+
"learning_rate": 1.3141333333333334e-05,
|
896 |
+
"loss": 0.1795,
|
897 |
+
"step": 3075
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.3875,
|
901 |
+
"grad_norm": 3.2917191982269287,
|
902 |
+
"learning_rate": 1.3074666666666669e-05,
|
903 |
+
"loss": 0.1355,
|
904 |
+
"step": 3100
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 0.390625,
|
908 |
+
"grad_norm": 2.797985076904297,
|
909 |
+
"learning_rate": 1.3008e-05,
|
910 |
+
"loss": 0.1243,
|
911 |
+
"step": 3125
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 0.39375,
|
915 |
+
"grad_norm": 3.5542221069335938,
|
916 |
+
"learning_rate": 1.2941333333333334e-05,
|
917 |
+
"loss": 0.1494,
|
918 |
+
"step": 3150
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 0.396875,
|
922 |
+
"grad_norm": 3.7407355308532715,
|
923 |
+
"learning_rate": 1.2874666666666669e-05,
|
924 |
+
"loss": 0.2271,
|
925 |
+
"step": 3175
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 0.4,
|
929 |
+
"grad_norm": 4.250736713409424,
|
930 |
+
"learning_rate": 1.2808e-05,
|
931 |
+
"loss": 0.2051,
|
932 |
+
"step": 3200
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.403125,
|
936 |
+
"grad_norm": 4.248854160308838,
|
937 |
+
"learning_rate": 1.2741333333333335e-05,
|
938 |
+
"loss": 0.2251,
|
939 |
+
"step": 3225
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.40625,
|
943 |
+
"grad_norm": 3.6842331886291504,
|
944 |
+
"learning_rate": 1.2674666666666669e-05,
|
945 |
+
"loss": 0.1806,
|
946 |
+
"step": 3250
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 0.409375,
|
950 |
+
"grad_norm": 4.215803623199463,
|
951 |
+
"learning_rate": 1.2608e-05,
|
952 |
+
"loss": 0.1938,
|
953 |
+
"step": 3275
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 0.4125,
|
957 |
+
"grad_norm": 2.878873348236084,
|
958 |
+
"learning_rate": 1.2541333333333335e-05,
|
959 |
+
"loss": 0.211,
|
960 |
+
"step": 3300
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 0.415625,
|
964 |
+
"grad_norm": 3.9587783813476562,
|
965 |
+
"learning_rate": 1.2474666666666668e-05,
|
966 |
+
"loss": 0.1601,
|
967 |
+
"step": 3325
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 0.41875,
|
971 |
+
"grad_norm": 3.0218279361724854,
|
972 |
+
"learning_rate": 1.2408e-05,
|
973 |
+
"loss": 0.1236,
|
974 |
+
"step": 3350
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.421875,
|
978 |
+
"grad_norm": 2.6972806453704834,
|
979 |
+
"learning_rate": 1.2341333333333333e-05,
|
980 |
+
"loss": 0.1112,
|
981 |
+
"step": 3375
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.425,
|
985 |
+
"grad_norm": 2.4185972213745117,
|
986 |
+
"learning_rate": 1.2274666666666668e-05,
|
987 |
+
"loss": 0.1212,
|
988 |
+
"step": 3400
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"epoch": 0.428125,
|
992 |
+
"grad_norm": 3.9205973148345947,
|
993 |
+
"learning_rate": 1.2208000000000002e-05,
|
994 |
+
"loss": 0.1225,
|
995 |
+
"step": 3425
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 0.43125,
|
999 |
+
"grad_norm": 2.392932176589966,
|
1000 |
+
"learning_rate": 1.2141333333333334e-05,
|
1001 |
+
"loss": 0.1167,
|
1002 |
+
"step": 3450
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"epoch": 0.434375,
|
1006 |
+
"grad_norm": 4.024794101715088,
|
1007 |
+
"learning_rate": 1.2074666666666668e-05,
|
1008 |
+
"loss": 0.1057,
|
1009 |
+
"step": 3475
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 0.4375,
|
1013 |
+
"grad_norm": 3.367401599884033,
|
1014 |
+
"learning_rate": 1.2008000000000003e-05,
|
1015 |
+
"loss": 0.1309,
|
1016 |
+
"step": 3500
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.440625,
|
1020 |
+
"grad_norm": 2.7556755542755127,
|
1021 |
+
"learning_rate": 1.1941333333333334e-05,
|
1022 |
+
"loss": 0.1235,
|
1023 |
+
"step": 3525
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.44375,
|
1027 |
+
"grad_norm": 3.158759117126465,
|
1028 |
+
"learning_rate": 1.1874666666666668e-05,
|
1029 |
+
"loss": 0.1233,
|
1030 |
+
"step": 3550
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"epoch": 0.446875,
|
1034 |
+
"grad_norm": 4.0478010177612305,
|
1035 |
+
"learning_rate": 1.1808000000000001e-05,
|
1036 |
+
"loss": 0.1892,
|
1037 |
+
"step": 3575
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"epoch": 0.45,
|
1041 |
+
"grad_norm": 3.5508739948272705,
|
1042 |
+
"learning_rate": 1.1741333333333334e-05,
|
1043 |
+
"loss": 0.2186,
|
1044 |
+
"step": 3600
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 0.453125,
|
1048 |
+
"grad_norm": 3.6009671688079834,
|
1049 |
+
"learning_rate": 1.1674666666666667e-05,
|
1050 |
+
"loss": 0.2093,
|
1051 |
+
"step": 3625
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 0.45625,
|
1055 |
+
"grad_norm": 2.172722578048706,
|
1056 |
+
"learning_rate": 1.1608000000000001e-05,
|
1057 |
+
"loss": 0.1282,
|
1058 |
+
"step": 3650
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.459375,
|
1062 |
+
"grad_norm": 2.729567050933838,
|
1063 |
+
"learning_rate": 1.1541333333333332e-05,
|
1064 |
+
"loss": 0.1096,
|
1065 |
+
"step": 3675
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.4625,
|
1069 |
+
"grad_norm": 2.7863428592681885,
|
1070 |
+
"learning_rate": 1.1474666666666667e-05,
|
1071 |
+
"loss": 0.1115,
|
1072 |
+
"step": 3700
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 0.465625,
|
1076 |
+
"grad_norm": 2.7164411544799805,
|
1077 |
+
"learning_rate": 1.1408000000000002e-05,
|
1078 |
+
"loss": 0.1365,
|
1079 |
+
"step": 3725
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"epoch": 0.46875,
|
1083 |
+
"grad_norm": 3.918790340423584,
|
1084 |
+
"learning_rate": 1.1341333333333336e-05,
|
1085 |
+
"loss": 0.1759,
|
1086 |
+
"step": 3750
|
1087 |
+
},
|
1088 |
+
{
|
1089 |
+
"epoch": 0.471875,
|
1090 |
+
"grad_norm": 3.520095109939575,
|
1091 |
+
"learning_rate": 1.1274666666666667e-05,
|
1092 |
+
"loss": 0.2138,
|
1093 |
+
"step": 3775
|
1094 |
+
},
|
1095 |
+
{
|
1096 |
+
"epoch": 0.475,
|
1097 |
+
"grad_norm": 4.172083854675293,
|
1098 |
+
"learning_rate": 1.1208000000000002e-05,
|
1099 |
+
"loss": 0.2189,
|
1100 |
+
"step": 3800
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.478125,
|
1104 |
+
"grad_norm": 4.076236724853516,
|
1105 |
+
"learning_rate": 1.1141333333333335e-05,
|
1106 |
+
"loss": 0.2079,
|
1107 |
+
"step": 3825
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.48125,
|
1111 |
+
"grad_norm": 4.950024604797363,
|
1112 |
+
"learning_rate": 1.1074666666666667e-05,
|
1113 |
+
"loss": 0.2233,
|
1114 |
+
"step": 3850
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 0.484375,
|
1118 |
+
"grad_norm": 3.6588923931121826,
|
1119 |
+
"learning_rate": 1.1008e-05,
|
1120 |
+
"loss": 0.2011,
|
1121 |
+
"step": 3875
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 0.4875,
|
1125 |
+
"grad_norm": 2.7259421348571777,
|
1126 |
+
"learning_rate": 1.0941333333333335e-05,
|
1127 |
+
"loss": 0.1419,
|
1128 |
+
"step": 3900
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 0.490625,
|
1132 |
+
"grad_norm": 4.260537147521973,
|
1133 |
+
"learning_rate": 1.0874666666666666e-05,
|
1134 |
+
"loss": 0.1221,
|
1135 |
+
"step": 3925
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"epoch": 0.49375,
|
1139 |
+
"grad_norm": 2.9953160285949707,
|
1140 |
+
"learning_rate": 1.0808e-05,
|
1141 |
+
"loss": 0.1192,
|
1142 |
+
"step": 3950
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.496875,
|
1146 |
+
"grad_norm": 5.537333011627197,
|
1147 |
+
"learning_rate": 1.0741333333333335e-05,
|
1148 |
+
"loss": 0.2057,
|
1149 |
+
"step": 3975
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.5,
|
1153 |
+
"grad_norm": 4.265567302703857,
|
1154 |
+
"learning_rate": 1.0674666666666666e-05,
|
1155 |
+
"loss": 0.2607,
|
1156 |
+
"step": 4000
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 0.5,
|
1160 |
+
"eval_loss": 0.3218025863170624,
|
1161 |
+
"eval_runtime": 75.7693,
|
1162 |
+
"eval_samples_per_second": 27.768,
|
1163 |
+
"eval_steps_per_second": 1.742,
|
1164 |
+
"eval_wer": 16.808450967560997,
|
1165 |
+
"step": 4000
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.503125,
|
1169 |
+
"grad_norm": 2.978968620300293,
|
1170 |
+
"learning_rate": 1.0608e-05,
|
1171 |
+
"loss": 0.1951,
|
1172 |
+
"step": 4025
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.50625,
|
1176 |
+
"grad_norm": 5.042616367340088,
|
1177 |
+
"learning_rate": 1.0541333333333335e-05,
|
1178 |
+
"loss": 0.2567,
|
1179 |
+
"step": 4050
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.509375,
|
1183 |
+
"grad_norm": 4.18173885345459,
|
1184 |
+
"learning_rate": 1.0474666666666668e-05,
|
1185 |
+
"loss": 0.1932,
|
1186 |
+
"step": 4075
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.5125,
|
1190 |
+
"grad_norm": 3.0428967475891113,
|
1191 |
+
"learning_rate": 1.0408000000000001e-05,
|
1192 |
+
"loss": 0.1743,
|
1193 |
+
"step": 4100
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.515625,
|
1197 |
+
"grad_norm": 2.8713204860687256,
|
1198 |
+
"learning_rate": 1.0341333333333334e-05,
|
1199 |
+
"loss": 0.1261,
|
1200 |
+
"step": 4125
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.51875,
|
1204 |
+
"grad_norm": 2.912363052368164,
|
1205 |
+
"learning_rate": 1.0274666666666668e-05,
|
1206 |
+
"loss": 0.1112,
|
1207 |
+
"step": 4150
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.521875,
|
1211 |
+
"grad_norm": 2.445664167404175,
|
1212 |
+
"learning_rate": 1.0208e-05,
|
1213 |
+
"loss": 0.1133,
|
1214 |
+
"step": 4175
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.525,
|
1218 |
+
"grad_norm": 2.2317187786102295,
|
1219 |
+
"learning_rate": 1.0141333333333334e-05,
|
1220 |
+
"loss": 0.106,
|
1221 |
+
"step": 4200
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.528125,
|
1225 |
+
"grad_norm": 2.4223077297210693,
|
1226 |
+
"learning_rate": 1.0074666666666669e-05,
|
1227 |
+
"loss": 0.1142,
|
1228 |
+
"step": 4225
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.53125,
|
1232 |
+
"grad_norm": 2.8847713470458984,
|
1233 |
+
"learning_rate": 1.0008e-05,
|
1234 |
+
"loss": 0.1158,
|
1235 |
+
"step": 4250
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.534375,
|
1239 |
+
"grad_norm": 3.4072630405426025,
|
1240 |
+
"learning_rate": 9.941333333333334e-06,
|
1241 |
+
"loss": 0.1283,
|
1242 |
+
"step": 4275
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.5375,
|
1246 |
+
"grad_norm": 4.455233573913574,
|
1247 |
+
"learning_rate": 9.874666666666669e-06,
|
1248 |
+
"loss": 0.1867,
|
1249 |
+
"step": 4300
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.540625,
|
1253 |
+
"grad_norm": 3.465684175491333,
|
1254 |
+
"learning_rate": 9.808000000000002e-06,
|
1255 |
+
"loss": 0.1681,
|
1256 |
+
"step": 4325
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.54375,
|
1260 |
+
"grad_norm": 3.8950164318084717,
|
1261 |
+
"learning_rate": 9.741333333333334e-06,
|
1262 |
+
"loss": 0.1812,
|
1263 |
+
"step": 4350
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.546875,
|
1267 |
+
"grad_norm": 2.216827630996704,
|
1268 |
+
"learning_rate": 9.674666666666667e-06,
|
1269 |
+
"loss": 0.1069,
|
1270 |
+
"step": 4375
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 0.55,
|
1274 |
+
"grad_norm": 2.3940842151641846,
|
1275 |
+
"learning_rate": 9.608e-06,
|
1276 |
+
"loss": 0.095,
|
1277 |
+
"step": 4400
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.553125,
|
1281 |
+
"grad_norm": 2.4614291191101074,
|
1282 |
+
"learning_rate": 9.541333333333335e-06,
|
1283 |
+
"loss": 0.1019,
|
1284 |
+
"step": 4425
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.55625,
|
1288 |
+
"grad_norm": 2.891763925552368,
|
1289 |
+
"learning_rate": 9.474666666666668e-06,
|
1290 |
+
"loss": 0.12,
|
1291 |
+
"step": 4450
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 0.559375,
|
1295 |
+
"grad_norm": 2.791774272918701,
|
1296 |
+
"learning_rate": 9.408e-06,
|
1297 |
+
"loss": 0.1268,
|
1298 |
+
"step": 4475
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.5625,
|
1302 |
+
"grad_norm": 2.9557909965515137,
|
1303 |
+
"learning_rate": 9.341333333333335e-06,
|
1304 |
+
"loss": 0.1164,
|
1305 |
+
"step": 4500
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.565625,
|
1309 |
+
"grad_norm": 3.381051540374756,
|
1310 |
+
"learning_rate": 9.274666666666668e-06,
|
1311 |
+
"loss": 0.1464,
|
1312 |
+
"step": 4525
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 0.56875,
|
1316 |
+
"grad_norm": 3.789724588394165,
|
1317 |
+
"learning_rate": 9.208e-06,
|
1318 |
+
"loss": 0.1947,
|
1319 |
+
"step": 4550
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.571875,
|
1323 |
+
"grad_norm": 3.7860305309295654,
|
1324 |
+
"learning_rate": 9.141333333333333e-06,
|
1325 |
+
"loss": 0.1897,
|
1326 |
+
"step": 4575
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 0.575,
|
1330 |
+
"grad_norm": 4.125986576080322,
|
1331 |
+
"learning_rate": 9.074666666666668e-06,
|
1332 |
+
"loss": 0.2003,
|
1333 |
+
"step": 4600
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 0.578125,
|
1337 |
+
"grad_norm": 4.029356002807617,
|
1338 |
+
"learning_rate": 9.008e-06,
|
1339 |
+
"loss": 0.2014,
|
1340 |
+
"step": 4625
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.58125,
|
1344 |
+
"grad_norm": 4.662783622741699,
|
1345 |
+
"learning_rate": 8.941333333333334e-06,
|
1346 |
+
"loss": 0.1962,
|
1347 |
+
"step": 4650
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.584375,
|
1351 |
+
"grad_norm": 3.978227138519287,
|
1352 |
+
"learning_rate": 8.874666666666667e-06,
|
1353 |
+
"loss": 0.1693,
|
1354 |
+
"step": 4675
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.5875,
|
1358 |
+
"grad_norm": 2.98833966255188,
|
1359 |
+
"learning_rate": 8.808000000000001e-06,
|
1360 |
+
"loss": 0.1565,
|
1361 |
+
"step": 4700
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.590625,
|
1365 |
+
"grad_norm": 4.219015121459961,
|
1366 |
+
"learning_rate": 8.741333333333334e-06,
|
1367 |
+
"loss": 0.1687,
|
1368 |
+
"step": 4725
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.59375,
|
1372 |
+
"grad_norm": 2.8378167152404785,
|
1373 |
+
"learning_rate": 8.674666666666668e-06,
|
1374 |
+
"loss": 0.1611,
|
1375 |
+
"step": 4750
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 0.596875,
|
1379 |
+
"grad_norm": 2.5076210498809814,
|
1380 |
+
"learning_rate": 8.608000000000001e-06,
|
1381 |
+
"loss": 0.1186,
|
1382 |
+
"step": 4775
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.6,
|
1386 |
+
"grad_norm": 2.2282755374908447,
|
1387 |
+
"learning_rate": 8.541333333333334e-06,
|
1388 |
+
"loss": 0.1267,
|
1389 |
+
"step": 4800
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.603125,
|
1393 |
+
"grad_norm": 3.080812692642212,
|
1394 |
+
"learning_rate": 8.474666666666667e-06,
|
1395 |
+
"loss": 0.1112,
|
1396 |
+
"step": 4825
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 0.60625,
|
1400 |
+
"grad_norm": 3.513218641281128,
|
1401 |
+
"learning_rate": 8.408e-06,
|
1402 |
+
"loss": 0.1326,
|
1403 |
+
"step": 4850
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.609375,
|
1407 |
+
"grad_norm": 3.9359219074249268,
|
1408 |
+
"learning_rate": 8.341333333333334e-06,
|
1409 |
+
"loss": 0.1454,
|
1410 |
+
"step": 4875
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.6125,
|
1414 |
+
"grad_norm": 3.585268259048462,
|
1415 |
+
"learning_rate": 8.274666666666667e-06,
|
1416 |
+
"loss": 0.1583,
|
1417 |
+
"step": 4900
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 0.615625,
|
1421 |
+
"grad_norm": 3.322193145751953,
|
1422 |
+
"learning_rate": 8.208e-06,
|
1423 |
+
"loss": 0.1417,
|
1424 |
+
"step": 4925
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.61875,
|
1428 |
+
"grad_norm": 2.7378623485565186,
|
1429 |
+
"learning_rate": 8.141333333333335e-06,
|
1430 |
+
"loss": 0.1164,
|
1431 |
+
"step": 4950
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.621875,
|
1435 |
+
"grad_norm": 5.096762657165527,
|
1436 |
+
"learning_rate": 8.074666666666667e-06,
|
1437 |
+
"loss": 0.1077,
|
1438 |
+
"step": 4975
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 0.625,
|
1442 |
+
"grad_norm": 3.030876636505127,
|
1443 |
+
"learning_rate": 8.008e-06,
|
1444 |
+
"loss": 0.106,
|
1445 |
+
"step": 5000
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 0.625,
|
1449 |
+
"eval_loss": 0.32894453406333923,
|
1450 |
+
"eval_runtime": 75.4732,
|
1451 |
+
"eval_samples_per_second": 27.877,
|
1452 |
+
"eval_steps_per_second": 1.749,
|
1453 |
+
"eval_wer": 15.780125268766945,
|
1454 |
+
"step": 5000
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.628125,
|
1458 |
+
"grad_norm": 3.1544792652130127,
|
1459 |
+
"learning_rate": 7.941333333333335e-06,
|
1460 |
+
"loss": 0.1599,
|
1461 |
+
"step": 5025
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.63125,
|
1465 |
+
"grad_norm": 3.2215702533721924,
|
1466 |
+
"learning_rate": 7.874666666666668e-06,
|
1467 |
+
"loss": 0.1461,
|
1468 |
+
"step": 5050
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"epoch": 0.634375,
|
1472 |
+
"grad_norm": 3.7183897495269775,
|
1473 |
+
"learning_rate": 7.808e-06,
|
1474 |
+
"loss": 0.2221,
|
1475 |
+
"step": 5075
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 0.6375,
|
1479 |
+
"grad_norm": 3.5974223613739014,
|
1480 |
+
"learning_rate": 7.741333333333333e-06,
|
1481 |
+
"loss": 0.2,
|
1482 |
+
"step": 5100
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 0.640625,
|
1486 |
+
"grad_norm": 3.8318378925323486,
|
1487 |
+
"learning_rate": 7.674666666666666e-06,
|
1488 |
+
"loss": 0.1743,
|
1489 |
+
"step": 5125
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"epoch": 0.64375,
|
1493 |
+
"grad_norm": 4.3595290184021,
|
1494 |
+
"learning_rate": 7.608000000000001e-06,
|
1495 |
+
"loss": 0.174,
|
1496 |
+
"step": 5150
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.646875,
|
1500 |
+
"grad_norm": 2.820388078689575,
|
1501 |
+
"learning_rate": 7.5413333333333335e-06,
|
1502 |
+
"loss": 0.1415,
|
1503 |
+
"step": 5175
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.65,
|
1507 |
+
"grad_norm": 2.1610324382781982,
|
1508 |
+
"learning_rate": 7.474666666666666e-06,
|
1509 |
+
"loss": 0.0955,
|
1510 |
+
"step": 5200
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"epoch": 0.653125,
|
1514 |
+
"grad_norm": 2.079317092895508,
|
1515 |
+
"learning_rate": 7.408000000000001e-06,
|
1516 |
+
"loss": 0.1016,
|
1517 |
+
"step": 5225
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 0.65625,
|
1521 |
+
"grad_norm": 2.3071603775024414,
|
1522 |
+
"learning_rate": 7.341333333333334e-06,
|
1523 |
+
"loss": 0.1042,
|
1524 |
+
"step": 5250
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 0.659375,
|
1528 |
+
"grad_norm": 2.3762526512145996,
|
1529 |
+
"learning_rate": 7.2746666666666674e-06,
|
1530 |
+
"loss": 0.1058,
|
1531 |
+
"step": 5275
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 0.6625,
|
1535 |
+
"grad_norm": 3.6836395263671875,
|
1536 |
+
"learning_rate": 7.208e-06,
|
1537 |
+
"loss": 0.1087,
|
1538 |
+
"step": 5300
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.665625,
|
1542 |
+
"grad_norm": 3.0931732654571533,
|
1543 |
+
"learning_rate": 7.141333333333333e-06,
|
1544 |
+
"loss": 0.1062,
|
1545 |
+
"step": 5325
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.66875,
|
1549 |
+
"grad_norm": 4.019095420837402,
|
1550 |
+
"learning_rate": 7.074666666666668e-06,
|
1551 |
+
"loss": 0.1453,
|
1552 |
+
"step": 5350
|
1553 |
+
},
|
1554 |
+
{
|
1555 |
+
"epoch": 0.671875,
|
1556 |
+
"grad_norm": 3.419175386428833,
|
1557 |
+
"learning_rate": 7.0080000000000005e-06,
|
1558 |
+
"loss": 0.1721,
|
1559 |
+
"step": 5375
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 0.675,
|
1563 |
+
"grad_norm": 3.387830972671509,
|
1564 |
+
"learning_rate": 6.941333333333334e-06,
|
1565 |
+
"loss": 0.1652,
|
1566 |
+
"step": 5400
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 0.678125,
|
1570 |
+
"grad_norm": 3.58986234664917,
|
1571 |
+
"learning_rate": 6.874666666666667e-06,
|
1572 |
+
"loss": 0.1639,
|
1573 |
+
"step": 5425
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 0.68125,
|
1577 |
+
"grad_norm": 4.178884506225586,
|
1578 |
+
"learning_rate": 6.808e-06,
|
1579 |
+
"loss": 0.1533,
|
1580 |
+
"step": 5450
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.684375,
|
1584 |
+
"grad_norm": 3.2337114810943604,
|
1585 |
+
"learning_rate": 6.741333333333334e-06,
|
1586 |
+
"loss": 0.1237,
|
1587 |
+
"step": 5475
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.6875,
|
1591 |
+
"grad_norm": 2.892301321029663,
|
1592 |
+
"learning_rate": 6.674666666666667e-06,
|
1593 |
+
"loss": 0.1215,
|
1594 |
+
"step": 5500
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 0.690625,
|
1598 |
+
"grad_norm": 4.553407669067383,
|
1599 |
+
"learning_rate": 6.608000000000001e-06,
|
1600 |
+
"loss": 0.1537,
|
1601 |
+
"step": 5525
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 0.69375,
|
1605 |
+
"grad_norm": 3.8401100635528564,
|
1606 |
+
"learning_rate": 6.541333333333334e-06,
|
1607 |
+
"loss": 0.1816,
|
1608 |
+
"step": 5550
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 0.696875,
|
1612 |
+
"grad_norm": 2.8084216117858887,
|
1613 |
+
"learning_rate": 6.474666666666667e-06,
|
1614 |
+
"loss": 0.1381,
|
1615 |
+
"step": 5575
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 0.7,
|
1619 |
+
"grad_norm": 2.182170867919922,
|
1620 |
+
"learning_rate": 6.408000000000001e-06,
|
1621 |
+
"loss": 0.0979,
|
1622 |
+
"step": 5600
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.703125,
|
1626 |
+
"grad_norm": 3.2050559520721436,
|
1627 |
+
"learning_rate": 6.341333333333334e-06,
|
1628 |
+
"loss": 0.0822,
|
1629 |
+
"step": 5625
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.70625,
|
1633 |
+
"grad_norm": 2.4150376319885254,
|
1634 |
+
"learning_rate": 6.274666666666667e-06,
|
1635 |
+
"loss": 0.0815,
|
1636 |
+
"step": 5650
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 0.709375,
|
1640 |
+
"grad_norm": 2.0708541870117188,
|
1641 |
+
"learning_rate": 6.2080000000000005e-06,
|
1642 |
+
"loss": 0.0944,
|
1643 |
+
"step": 5675
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 0.7125,
|
1647 |
+
"grad_norm": 2.932088851928711,
|
1648 |
+
"learning_rate": 6.141333333333333e-06,
|
1649 |
+
"loss": 0.1024,
|
1650 |
+
"step": 5700
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 0.715625,
|
1654 |
+
"grad_norm": 2.245450258255005,
|
1655 |
+
"learning_rate": 6.074666666666668e-06,
|
1656 |
+
"loss": 0.101,
|
1657 |
+
"step": 5725
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 0.71875,
|
1661 |
+
"grad_norm": 2.2716262340545654,
|
1662 |
+
"learning_rate": 6.008000000000001e-06,
|
1663 |
+
"loss": 0.1,
|
1664 |
+
"step": 5750
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.721875,
|
1668 |
+
"grad_norm": 2.496361494064331,
|
1669 |
+
"learning_rate": 5.941333333333334e-06,
|
1670 |
+
"loss": 0.0966,
|
1671 |
+
"step": 5775
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.725,
|
1675 |
+
"grad_norm": 3.3539814949035645,
|
1676 |
+
"learning_rate": 5.874666666666667e-06,
|
1677 |
+
"loss": 0.0911,
|
1678 |
+
"step": 5800
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 0.728125,
|
1682 |
+
"grad_norm": 2.1496963500976562,
|
1683 |
+
"learning_rate": 5.808e-06,
|
1684 |
+
"loss": 0.0799,
|
1685 |
+
"step": 5825
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 0.73125,
|
1689 |
+
"grad_norm": 2.5061728954315186,
|
1690 |
+
"learning_rate": 5.741333333333335e-06,
|
1691 |
+
"loss": 0.0877,
|
1692 |
+
"step": 5850
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 0.734375,
|
1696 |
+
"grad_norm": 2.4256293773651123,
|
1697 |
+
"learning_rate": 5.6746666666666675e-06,
|
1698 |
+
"loss": 0.0945,
|
1699 |
+
"step": 5875
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 0.7375,
|
1703 |
+
"grad_norm": 3.3995237350463867,
|
1704 |
+
"learning_rate": 5.608e-06,
|
1705 |
+
"loss": 0.1245,
|
1706 |
+
"step": 5900
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.740625,
|
1710 |
+
"grad_norm": 4.556021213531494,
|
1711 |
+
"learning_rate": 5.541333333333334e-06,
|
1712 |
+
"loss": 0.181,
|
1713 |
+
"step": 5925
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.74375,
|
1717 |
+
"grad_norm": 3.8894693851470947,
|
1718 |
+
"learning_rate": 5.474666666666667e-06,
|
1719 |
+
"loss": 0.1692,
|
1720 |
+
"step": 5950
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 0.746875,
|
1724 |
+
"grad_norm": 3.464264392852783,
|
1725 |
+
"learning_rate": 5.408e-06,
|
1726 |
+
"loss": 0.1457,
|
1727 |
+
"step": 5975
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 0.75,
|
1731 |
+
"grad_norm": 3.351585865020752,
|
1732 |
+
"learning_rate": 5.341333333333334e-06,
|
1733 |
+
"loss": 0.1376,
|
1734 |
+
"step": 6000
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 0.75,
|
1738 |
+
"eval_loss": 0.3052073121070862,
|
1739 |
+
"eval_runtime": 73.9486,
|
1740 |
+
"eval_samples_per_second": 28.452,
|
1741 |
+
"eval_steps_per_second": 1.785,
|
1742 |
+
"eval_wer": 15.02757782555857,
|
1743 |
+
"step": 6000
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.753125,
|
1747 |
+
"grad_norm": 3.405545473098755,
|
1748 |
+
"learning_rate": 5.274666666666667e-06,
|
1749 |
+
"loss": 0.1327,
|
1750 |
+
"step": 6025
|
1751 |
+
},
|
1752 |
+
{
|
1753 |
+
"epoch": 0.75625,
|
1754 |
+
"grad_norm": 2.5915920734405518,
|
1755 |
+
"learning_rate": 5.208000000000001e-06,
|
1756 |
+
"loss": 0.1145,
|
1757 |
+
"step": 6050
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 0.759375,
|
1761 |
+
"grad_norm": 2.2758867740631104,
|
1762 |
+
"learning_rate": 5.141333333333334e-06,
|
1763 |
+
"loss": 0.1053,
|
1764 |
+
"step": 6075
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 0.7625,
|
1768 |
+
"grad_norm": 2.8261423110961914,
|
1769 |
+
"learning_rate": 5.0746666666666665e-06,
|
1770 |
+
"loss": 0.0942,
|
1771 |
+
"step": 6100
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 0.765625,
|
1775 |
+
"grad_norm": 3.362257480621338,
|
1776 |
+
"learning_rate": 5.008000000000001e-06,
|
1777 |
+
"loss": 0.0969,
|
1778 |
+
"step": 6125
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 0.76875,
|
1782 |
+
"grad_norm": 3.890949249267578,
|
1783 |
+
"learning_rate": 4.941333333333334e-06,
|
1784 |
+
"loss": 0.1068,
|
1785 |
+
"step": 6150
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.771875,
|
1789 |
+
"grad_norm": 3.03787899017334,
|
1790 |
+
"learning_rate": 4.874666666666667e-06,
|
1791 |
+
"loss": 0.1094,
|
1792 |
+
"step": 6175
|
1793 |
+
},
|
1794 |
+
{
|
1795 |
+
"epoch": 0.775,
|
1796 |
+
"grad_norm": 2.8833038806915283,
|
1797 |
+
"learning_rate": 4.808e-06,
|
1798 |
+
"loss": 0.1043,
|
1799 |
+
"step": 6200
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 0.778125,
|
1803 |
+
"grad_norm": 3.1083550453186035,
|
1804 |
+
"learning_rate": 4.741333333333334e-06,
|
1805 |
+
"loss": 0.1061,
|
1806 |
+
"step": 6225
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 0.78125,
|
1810 |
+
"grad_norm": 3.4954771995544434,
|
1811 |
+
"learning_rate": 4.674666666666667e-06,
|
1812 |
+
"loss": 0.1013,
|
1813 |
+
"step": 6250
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 0.784375,
|
1817 |
+
"grad_norm": 3.035095691680908,
|
1818 |
+
"learning_rate": 4.608000000000001e-06,
|
1819 |
+
"loss": 0.1119,
|
1820 |
+
"step": 6275
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.7875,
|
1824 |
+
"grad_norm": 3.62898850440979,
|
1825 |
+
"learning_rate": 4.5413333333333334e-06,
|
1826 |
+
"loss": 0.1253,
|
1827 |
+
"step": 6300
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.790625,
|
1831 |
+
"grad_norm": 2.595010280609131,
|
1832 |
+
"learning_rate": 4.474666666666667e-06,
|
1833 |
+
"loss": 0.1681,
|
1834 |
+
"step": 6325
|
1835 |
+
},
|
1836 |
+
{
|
1837 |
+
"epoch": 0.79375,
|
1838 |
+
"grad_norm": 3.7245900630950928,
|
1839 |
+
"learning_rate": 4.408000000000001e-06,
|
1840 |
+
"loss": 0.1501,
|
1841 |
+
"step": 6350
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 0.796875,
|
1845 |
+
"grad_norm": 2.7315571308135986,
|
1846 |
+
"learning_rate": 4.344e-06,
|
1847 |
+
"loss": 0.1395,
|
1848 |
+
"step": 6375
|
1849 |
+
},
|
1850 |
+
{
|
1851 |
+
"epoch": 0.8,
|
1852 |
+
"grad_norm": 2.3649332523345947,
|
1853 |
+
"learning_rate": 4.277333333333334e-06,
|
1854 |
+
"loss": 0.1111,
|
1855 |
+
"step": 6400
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"epoch": 0.803125,
|
1859 |
+
"grad_norm": 2.491359233856201,
|
1860 |
+
"learning_rate": 4.210666666666667e-06,
|
1861 |
+
"loss": 0.1024,
|
1862 |
+
"step": 6425
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.80625,
|
1866 |
+
"grad_norm": 2.5985302925109863,
|
1867 |
+
"learning_rate": 4.1440000000000005e-06,
|
1868 |
+
"loss": 0.0925,
|
1869 |
+
"step": 6450
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.809375,
|
1873 |
+
"grad_norm": 4.008167266845703,
|
1874 |
+
"learning_rate": 4.077333333333333e-06,
|
1875 |
+
"loss": 0.1385,
|
1876 |
+
"step": 6475
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 0.8125,
|
1880 |
+
"grad_norm": 2.743041753768921,
|
1881 |
+
"learning_rate": 4.010666666666667e-06,
|
1882 |
+
"loss": 0.1289,
|
1883 |
+
"step": 6500
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 0.815625,
|
1887 |
+
"grad_norm": 4.4984893798828125,
|
1888 |
+
"learning_rate": 3.944e-06,
|
1889 |
+
"loss": 0.1709,
|
1890 |
+
"step": 6525
|
1891 |
+
},
|
1892 |
+
{
|
1893 |
+
"epoch": 0.81875,
|
1894 |
+
"grad_norm": 3.432147741317749,
|
1895 |
+
"learning_rate": 3.8773333333333335e-06,
|
1896 |
+
"loss": 0.1563,
|
1897 |
+
"step": 6550
|
1898 |
+
},
|
1899 |
+
{
|
1900 |
+
"epoch": 0.821875,
|
1901 |
+
"grad_norm": 3.6097943782806396,
|
1902 |
+
"learning_rate": 3.810666666666667e-06,
|
1903 |
+
"loss": 0.159,
|
1904 |
+
"step": 6575
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.825,
|
1908 |
+
"grad_norm": 3.096435308456421,
|
1909 |
+
"learning_rate": 3.7440000000000005e-06,
|
1910 |
+
"loss": 0.1444,
|
1911 |
+
"step": 6600
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.828125,
|
1915 |
+
"grad_norm": 3.5198802947998047,
|
1916 |
+
"learning_rate": 3.6773333333333338e-06,
|
1917 |
+
"loss": 0.1493,
|
1918 |
+
"step": 6625
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"epoch": 0.83125,
|
1922 |
+
"grad_norm": 3.3834660053253174,
|
1923 |
+
"learning_rate": 3.6106666666666666e-06,
|
1924 |
+
"loss": 0.1737,
|
1925 |
+
"step": 6650
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 0.834375,
|
1929 |
+
"grad_norm": 3.2613072395324707,
|
1930 |
+
"learning_rate": 3.5440000000000003e-06,
|
1931 |
+
"loss": 0.1408,
|
1932 |
+
"step": 6675
|
1933 |
+
},
|
1934 |
+
{
|
1935 |
+
"epoch": 0.8375,
|
1936 |
+
"grad_norm": 2.618708848953247,
|
1937 |
+
"learning_rate": 3.4773333333333336e-06,
|
1938 |
+
"loss": 0.1427,
|
1939 |
+
"step": 6700
|
1940 |
+
},
|
1941 |
+
{
|
1942 |
+
"epoch": 0.840625,
|
1943 |
+
"grad_norm": 2.236100196838379,
|
1944 |
+
"learning_rate": 3.4106666666666672e-06,
|
1945 |
+
"loss": 0.0976,
|
1946 |
+
"step": 6725
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.84375,
|
1950 |
+
"grad_norm": 2.4650626182556152,
|
1951 |
+
"learning_rate": 3.344e-06,
|
1952 |
+
"loss": 0.0899,
|
1953 |
+
"step": 6750
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.846875,
|
1957 |
+
"grad_norm": 3.514897346496582,
|
1958 |
+
"learning_rate": 3.2773333333333334e-06,
|
1959 |
+
"loss": 0.1099,
|
1960 |
+
"step": 6775
|
1961 |
+
},
|
1962 |
+
{
|
1963 |
+
"epoch": 0.85,
|
1964 |
+
"grad_norm": 3.703801155090332,
|
1965 |
+
"learning_rate": 3.210666666666667e-06,
|
1966 |
+
"loss": 0.1979,
|
1967 |
+
"step": 6800
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 0.853125,
|
1971 |
+
"grad_norm": 4.976568698883057,
|
1972 |
+
"learning_rate": 3.1440000000000003e-06,
|
1973 |
+
"loss": 0.1801,
|
1974 |
+
"step": 6825
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 0.85625,
|
1978 |
+
"grad_norm": 4.201725959777832,
|
1979 |
+
"learning_rate": 3.077333333333334e-06,
|
1980 |
+
"loss": 0.1839,
|
1981 |
+
"step": 6850
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 0.859375,
|
1985 |
+
"grad_norm": 3.662229061126709,
|
1986 |
+
"learning_rate": 3.010666666666667e-06,
|
1987 |
+
"loss": 0.1695,
|
1988 |
+
"step": 6875
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.8625,
|
1992 |
+
"grad_norm": 3.8069918155670166,
|
1993 |
+
"learning_rate": 2.944e-06,
|
1994 |
+
"loss": 0.1615,
|
1995 |
+
"step": 6900
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.865625,
|
1999 |
+
"grad_norm": 3.208935499191284,
|
2000 |
+
"learning_rate": 2.877333333333334e-06,
|
2001 |
+
"loss": 0.1496,
|
2002 |
+
"step": 6925
|
2003 |
+
},
|
2004 |
+
{
|
2005 |
+
"epoch": 0.86875,
|
2006 |
+
"grad_norm": 3.4923043251037598,
|
2007 |
+
"learning_rate": 2.810666666666667e-06,
|
2008 |
+
"loss": 0.147,
|
2009 |
+
"step": 6950
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 0.871875,
|
2013 |
+
"grad_norm": 4.01771354675293,
|
2014 |
+
"learning_rate": 2.744e-06,
|
2015 |
+
"loss": 0.1751,
|
2016 |
+
"step": 6975
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 0.875,
|
2020 |
+
"grad_norm": 4.1294355392456055,
|
2021 |
+
"learning_rate": 2.6773333333333336e-06,
|
2022 |
+
"loss": 0.1733,
|
2023 |
+
"step": 7000
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 0.875,
|
2027 |
+
"eval_loss": 0.3004015386104584,
|
2028 |
+
"eval_runtime": 74.1497,
|
2029 |
+
"eval_samples_per_second": 28.375,
|
2030 |
+
"eval_steps_per_second": 1.78,
|
2031 |
+
"eval_wer": 13.933813218659438,
|
2032 |
+
"step": 7000
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.878125,
|
2036 |
+
"grad_norm": 12.625326156616211,
|
2037 |
+
"learning_rate": 2.616e-06,
|
2038 |
+
"loss": 0.3186,
|
2039 |
+
"step": 7025
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.88125,
|
2043 |
+
"grad_norm": 7.057121753692627,
|
2044 |
+
"learning_rate": 2.5493333333333337e-06,
|
2045 |
+
"loss": 0.5086,
|
2046 |
+
"step": 7050
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.884375,
|
2050 |
+
"grad_norm": 5.440456390380859,
|
2051 |
+
"learning_rate": 2.482666666666667e-06,
|
2052 |
+
"loss": 0.481,
|
2053 |
+
"step": 7075
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.8875,
|
2057 |
+
"grad_norm": 6.303742408752441,
|
2058 |
+
"learning_rate": 2.4160000000000002e-06,
|
2059 |
+
"loss": 0.4034,
|
2060 |
+
"step": 7100
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.890625,
|
2064 |
+
"grad_norm": 3.7720141410827637,
|
2065 |
+
"learning_rate": 2.3493333333333335e-06,
|
2066 |
+
"loss": 0.2274,
|
2067 |
+
"step": 7125
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.89375,
|
2071 |
+
"grad_norm": 4.611368656158447,
|
2072 |
+
"learning_rate": 2.2826666666666668e-06,
|
2073 |
+
"loss": 0.1717,
|
2074 |
+
"step": 7150
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.896875,
|
2078 |
+
"grad_norm": 3.155137777328491,
|
2079 |
+
"learning_rate": 2.216e-06,
|
2080 |
+
"loss": 0.1594,
|
2081 |
+
"step": 7175
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.9,
|
2085 |
+
"grad_norm": 3.6036856174468994,
|
2086 |
+
"learning_rate": 2.1493333333333337e-06,
|
2087 |
+
"loss": 0.1264,
|
2088 |
+
"step": 7200
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.903125,
|
2092 |
+
"grad_norm": 3.040969133377075,
|
2093 |
+
"learning_rate": 2.0826666666666666e-06,
|
2094 |
+
"loss": 0.1198,
|
2095 |
+
"step": 7225
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.90625,
|
2099 |
+
"grad_norm": 2.538546562194824,
|
2100 |
+
"learning_rate": 2.0160000000000003e-06,
|
2101 |
+
"loss": 0.1233,
|
2102 |
+
"step": 7250
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.909375,
|
2106 |
+
"grad_norm": 2.2235965728759766,
|
2107 |
+
"learning_rate": 1.9493333333333335e-06,
|
2108 |
+
"loss": 0.0948,
|
2109 |
+
"step": 7275
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.9125,
|
2113 |
+
"grad_norm": 2.112567663192749,
|
2114 |
+
"learning_rate": 1.8826666666666668e-06,
|
2115 |
+
"loss": 0.0796,
|
2116 |
+
"step": 7300
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.915625,
|
2120 |
+
"grad_norm": 2.5596227645874023,
|
2121 |
+
"learning_rate": 1.8160000000000003e-06,
|
2122 |
+
"loss": 0.0871,
|
2123 |
+
"step": 7325
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.91875,
|
2127 |
+
"grad_norm": 3.282794713973999,
|
2128 |
+
"learning_rate": 1.7493333333333335e-06,
|
2129 |
+
"loss": 0.1154,
|
2130 |
+
"step": 7350
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.921875,
|
2134 |
+
"grad_norm": 3.568565607070923,
|
2135 |
+
"learning_rate": 1.6826666666666668e-06,
|
2136 |
+
"loss": 0.1648,
|
2137 |
+
"step": 7375
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.925,
|
2141 |
+
"grad_norm": 3.731203079223633,
|
2142 |
+
"learning_rate": 1.616e-06,
|
2143 |
+
"loss": 0.132,
|
2144 |
+
"step": 7400
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.928125,
|
2148 |
+
"grad_norm": 2.649831771850586,
|
2149 |
+
"learning_rate": 1.5493333333333335e-06,
|
2150 |
+
"loss": 0.1518,
|
2151 |
+
"step": 7425
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.93125,
|
2155 |
+
"grad_norm": 2.2203938961029053,
|
2156 |
+
"learning_rate": 1.4826666666666666e-06,
|
2157 |
+
"loss": 0.1045,
|
2158 |
+
"step": 7450
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.934375,
|
2162 |
+
"grad_norm": 3.9395177364349365,
|
2163 |
+
"learning_rate": 1.416e-06,
|
2164 |
+
"loss": 0.0957,
|
2165 |
+
"step": 7475
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.9375,
|
2169 |
+
"grad_norm": 3.2605130672454834,
|
2170 |
+
"learning_rate": 1.3493333333333333e-06,
|
2171 |
+
"loss": 0.0901,
|
2172 |
+
"step": 7500
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.940625,
|
2176 |
+
"grad_norm": 4.289961814880371,
|
2177 |
+
"learning_rate": 1.2826666666666668e-06,
|
2178 |
+
"loss": 0.1846,
|
2179 |
+
"step": 7525
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.94375,
|
2183 |
+
"grad_norm": 4.553671836853027,
|
2184 |
+
"learning_rate": 1.216e-06,
|
2185 |
+
"loss": 0.2492,
|
2186 |
+
"step": 7550
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.946875,
|
2190 |
+
"grad_norm": 5.279869079589844,
|
2191 |
+
"learning_rate": 1.1493333333333334e-06,
|
2192 |
+
"loss": 0.2844,
|
2193 |
+
"step": 7575
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.95,
|
2197 |
+
"grad_norm": 2.1614372730255127,
|
2198 |
+
"learning_rate": 1.0826666666666668e-06,
|
2199 |
+
"loss": 0.1715,
|
2200 |
+
"step": 7600
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.953125,
|
2204 |
+
"grad_norm": 2.8423452377319336,
|
2205 |
+
"learning_rate": 1.016e-06,
|
2206 |
+
"loss": 0.1162,
|
2207 |
+
"step": 7625
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.95625,
|
2211 |
+
"grad_norm": 2.077169895172119,
|
2212 |
+
"learning_rate": 9.493333333333334e-07,
|
2213 |
+
"loss": 0.094,
|
2214 |
+
"step": 7650
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.959375,
|
2218 |
+
"grad_norm": 3.680450201034546,
|
2219 |
+
"learning_rate": 8.826666666666666e-07,
|
2220 |
+
"loss": 0.1291,
|
2221 |
+
"step": 7675
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.9625,
|
2225 |
+
"grad_norm": 3.4633026123046875,
|
2226 |
+
"learning_rate": 8.160000000000001e-07,
|
2227 |
+
"loss": 0.1549,
|
2228 |
+
"step": 7700
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.965625,
|
2232 |
+
"grad_norm": 3.8427698612213135,
|
2233 |
+
"learning_rate": 7.493333333333335e-07,
|
2234 |
+
"loss": 0.1646,
|
2235 |
+
"step": 7725
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.96875,
|
2239 |
+
"grad_norm": 2.8945538997650146,
|
2240 |
+
"learning_rate": 6.826666666666667e-07,
|
2241 |
+
"loss": 0.1524,
|
2242 |
+
"step": 7750
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.971875,
|
2246 |
+
"grad_norm": 3.424391269683838,
|
2247 |
+
"learning_rate": 6.160000000000001e-07,
|
2248 |
+
"loss": 0.1083,
|
2249 |
+
"step": 7775
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.975,
|
2253 |
+
"grad_norm": 5.2906951904296875,
|
2254 |
+
"learning_rate": 5.493333333333334e-07,
|
2255 |
+
"loss": 0.1327,
|
2256 |
+
"step": 7800
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.978125,
|
2260 |
+
"grad_norm": 6.5452046394348145,
|
2261 |
+
"learning_rate": 4.853333333333333e-07,
|
2262 |
+
"loss": 0.3624,
|
2263 |
+
"step": 7825
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.98125,
|
2267 |
+
"grad_norm": 2.549628496170044,
|
2268 |
+
"learning_rate": 4.186666666666667e-07,
|
2269 |
+
"loss": 0.1518,
|
2270 |
+
"step": 7850
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.984375,
|
2274 |
+
"grad_norm": 2.076683759689331,
|
2275 |
+
"learning_rate": 3.5200000000000003e-07,
|
2276 |
+
"loss": 0.1048,
|
2277 |
+
"step": 7875
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.9875,
|
2281 |
+
"grad_norm": 2.8122971057891846,
|
2282 |
+
"learning_rate": 2.8533333333333335e-07,
|
2283 |
+
"loss": 0.0981,
|
2284 |
+
"step": 7900
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.990625,
|
2288 |
+
"grad_norm": 2.3224234580993652,
|
2289 |
+
"learning_rate": 2.186666666666667e-07,
|
2290 |
+
"loss": 0.1017,
|
2291 |
+
"step": 7925
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.99375,
|
2295 |
+
"grad_norm": 2.10176682472229,
|
2296 |
+
"learning_rate": 1.52e-07,
|
2297 |
+
"loss": 0.0937,
|
2298 |
+
"step": 7950
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.996875,
|
2302 |
+
"grad_norm": 3.3718252182006836,
|
2303 |
+
"learning_rate": 8.533333333333334e-08,
|
2304 |
+
"loss": 0.1,
|
2305 |
+
"step": 7975
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 1.0,
|
2309 |
+
"grad_norm": 4.459543704986572,
|
2310 |
+
"learning_rate": 1.866666666666667e-08,
|
2311 |
+
"loss": 0.1228,
|
2312 |
+
"step": 8000
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 1.0,
|
2316 |
+
"eval_loss": 0.24521400034427643,
|
2317 |
+
"eval_runtime": 75.7252,
|
2318 |
+
"eval_samples_per_second": 27.785,
|
2319 |
+
"eval_steps_per_second": 1.743,
|
2320 |
+
"eval_wer": 13.816958025614658,
|
2321 |
+
"step": 8000
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 1.0,
|
2325 |
+
"step": 8000,
|
2326 |
+
"total_flos": 1.660415901696e+19,
|
2327 |
+
"train_loss": 0.22206098145246506,
|
2328 |
+
"train_runtime": 4270.5513,
|
2329 |
+
"train_samples_per_second": 59.945,
|
2330 |
+
"train_steps_per_second": 1.873
|
2331 |
+
}
|
2332 |
+
],
|
2333 |
+
"logging_steps": 25,
|
2334 |
+
"max_steps": 8000,
|
2335 |
+
"num_input_tokens_seen": 0,
|
2336 |
+
"num_train_epochs": 9223372036854775807,
|
2337 |
+
"save_steps": 1000,
|
2338 |
+
"stateful_callbacks": {
|
2339 |
+
"TrainerControl": {
|
2340 |
+
"args": {
|
2341 |
+
"should_epoch_stop": false,
|
2342 |
+
"should_evaluate": false,
|
2343 |
+
"should_log": false,
|
2344 |
+
"should_save": true,
|
2345 |
+
"should_training_stop": true
|
2346 |
+
},
|
2347 |
+
"attributes": {}
|
2348 |
+
}
|
2349 |
+
},
|
2350 |
+
"total_flos": 1.660415901696e+19,
|
2351 |
+
"train_batch_size": 32,
|
2352 |
+
"trial_name": null,
|
2353 |
+
"trial_params": null
|
2354 |
+
}
|
wandb/run-20250214_113805-769lwzm2/files/output.log
CHANGED
@@ -1553,3 +1553,161 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
1553 |
[INFO|feature_extraction_utils.py:437] 2025-02-14 12:49:32,767 >> Feature extractor saved in ./preprocessor_config.json
|
1554 |
[INFO|modelcard.py:449] 2025-02-14 12:49:32,953 >> Dropping the following result as it does not have all the necessary fields:
|
1555 |
{'task': {'name': 'Automatic Speech Recognition', 'type': 'automatic-speech-recognition'}, 'metrics': [{'name': 'Wer', 'type': 'wer', 'value': 13.816958025614658}]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1553 |
[INFO|feature_extraction_utils.py:437] 2025-02-14 12:49:32,767 >> Feature extractor saved in ./preprocessor_config.json
|
1554 |
[INFO|modelcard.py:449] 2025-02-14 12:49:32,953 >> Dropping the following result as it does not have all the necessary fields:
|
1555 |
{'task': {'name': 'Automatic Speech Recognition', 'type': 'automatic-speech-recognition'}, 'metrics': [{'name': 'Wer', 'type': 'wer', 'value': 13.816958025614658}]}
|
1556 |
+
***** train metrics *****
|
1557 |
+
epoch = 1.0
|
1558 |
+
total_flos = 15463828125GF
|
1559 |
+
train_loss = 0.2221
|
1560 |
+
train_runtime = 1:11:10.55
|
1561 |
+
train_samples_per_second = 59.945
|
1562 |
+
train_steps_per_second = 1.873
|
1563 |
+
02/14/2025 12:49:36 - INFO - __main__ - *** Evaluate ***
|
1564 |
+
[INFO|trainer.py:4176] 2025-02-14 12:49:36,135 >>
|
1565 |
+
***** Running Evaluation *****
|
1566 |
+
[INFO|trainer.py:4180] 2025-02-14 12:49:36,135 >> Num examples: Unknown
|
1567 |
+
[INFO|trainer.py:4181] 2025-02-14 12:49:36,360 >> Batch size = 16
|
1568 |
+
[INFO|trainer_utils.py:837] 2025-02-14 12:49:43,950 >> The following columns in the evaluation set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.
|
1569 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:44,088 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1570 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:44,654 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1571 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:45,564 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1572 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:46,260 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1573 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:46,754 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1574 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:47,308 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1575 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:47,931 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1576 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:48,501 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1577 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:49,141 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1578 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:49,695 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1579 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:50,267 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1580 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:50,914 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1581 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:51,407 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1582 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:51,908 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1583 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:52,450 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1584 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:52,868 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1585 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:53,315 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1586 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:53,848 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1587 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:54,262 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1588 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:54,738 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1589 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:55,208 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1590 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:55,706 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1591 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:56,132 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1592 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:56,581 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1593 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:56,973 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1594 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:57,385 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1595 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:57,843 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1596 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:58,338 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1597 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:58,713 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1598 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:59,132 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1599 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:49:59,574 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1600 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:00,003 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1601 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:00,467 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1602 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:00,862 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1603 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:01,326 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1604 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:01,773 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1605 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:02,167 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1606 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:02,612 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1607 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:03,040 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1608 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:03,649 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1609 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:04,062 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1610 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:04,494 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1611 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:04,870 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1612 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:05,277 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1613 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:05,674 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1614 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:06,139 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1615 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:06,557 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1616 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:06,963 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1617 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:07,474 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1618 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:07,892 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1619 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:08,329 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1620 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:08,757 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1621 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:09,132 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1622 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:09,554 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1623 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:09,970 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1624 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:10,439 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1625 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:10,807 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1626 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:11,197 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1627 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:11,646 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1628 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:12,028 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1629 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:12,475 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1630 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:12,906 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1631 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:13,352 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1632 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:13,772 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1633 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:14,141 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1634 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:14,494 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1635 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:14,909 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1636 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:15,326 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1637 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:15,743 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1638 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:16,168 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1639 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:16,565 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1640 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:17,038 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1641 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:17,466 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1642 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:17,944 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1643 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:18,374 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1644 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:18,821 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1645 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:19,197 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1646 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:19,609 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1647 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:20,038 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1648 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:20,447 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1649 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:20,846 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1650 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:21,237 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1651 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:21,657 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1652 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:22,106 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1653 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:22,560 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1654 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:22,975 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1655 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:23,406 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1656 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:23,899 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1657 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:24,343 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1658 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:24,850 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1659 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:25,273 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1660 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:25,693 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1661 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:26,113 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1662 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:26,516 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1663 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:26,998 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1664 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:27,442 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1665 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:27,869 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1666 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:28,297 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1667 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:28,718 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1668 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:29,158 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1669 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:29,597 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1670 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:30,052 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1671 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:30,469 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1672 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:30,922 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1673 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:31,405 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1674 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:31,834 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1675 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:32,271 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1676 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:32,744 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1677 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:33,154 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1678 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:33,548 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1679 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:33,986 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1680 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:34,429 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1681 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:34,820 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1682 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:35,204 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1683 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:35,605 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1684 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:36,003 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1685 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:36,456 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1686 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:36,919 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1687 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:37,326 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1688 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:37,739 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1689 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:38,165 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1690 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:38,544 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1691 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:38,977 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1692 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:39,392 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1693 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:39,796 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1694 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:40,194 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1695 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:40,597 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1696 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:41,016 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1697 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:41,415 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1698 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:41,838 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1699 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:42,209 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1700 |
+
[INFO|generation_whisper.py:1844] 2025-02-14 12:50:42,555 >> Increase max_length from 225 to 228 since input is conditioned on previous segment.
|
1701 |
+
***** eval metrics *****
|
1702 |
+
epoch = 1.0
|
1703 |
+
eval_loss = 0.2452
|
1704 |
+
eval_runtime = 0:01:14.51
|
1705 |
+
eval_samples_per_second = 28.236
|
1706 |
+
eval_steps_per_second = 1.771
|
1707 |
+
eval_wer = 13.817
|
1708 |
+
[INFO|trainer.py:3860] 2025-02-14 12:50:50,651 >> Saving model checkpoint to ./
|
1709 |
+
[INFO|configuration_utils.py:423] 2025-02-14 12:50:50,652 >> Configuration saved in ./config.json
|
1710 |
+
[INFO|configuration_utils.py:906] 2025-02-14 12:50:50,653 >> Configuration saved in ./generation_config.json
|
1711 |
+
[INFO|modeling_utils.py:3040] 2025-02-14 12:50:51,227 >> Model weights saved in ./model.safetensors
|
1712 |
+
[INFO|feature_extraction_utils.py:437] 2025-02-14 12:50:51,228 >> Feature extractor saved in ./preprocessor_config.json
|
1713 |
+
run-769lwzm2.wandb: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 4.10M/4.10M [00:00<00:00, 5.43MB/s]
|
wandb/run-20250214_113805-769lwzm2/run-769lwzm2.wandb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d98c19965714e6634732bf8bd8b654d2f947be412067708c8249f41aaa7c73d
|
3 |
+
size 4096000
|