|
from PIL import Image |
|
import torch |
|
from torchvision import transforms |
|
from transformers import AutoModelForImageSegmentation |
|
from typing import Dict, List, Any |
|
import base64 |
|
from io import BytesIO |
|
import os |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.model = AutoModelForImageSegmentation.from_pretrained( |
|
'whlzy/remove_bg_api', |
|
trust_remote_code=True, |
|
token=os.environ.get("HUGGINGFACE_TOKEN") |
|
) |
|
self.model.to(device) |
|
self.model.eval() |
|
image_size = (1024, 1024) |
|
self.transform_image = transforms.Compose([ |
|
transforms.Resize(image_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
image = data.pop("inputs", data) |
|
image = self.decode_base64_image(image) |
|
input_images = self.transform_image(image).unsqueeze(0).to('cuda') |
|
with torch.no_grad(): |
|
preds = self.model(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image.size) |
|
image.putalpha(mask) |
|
return image |
|
|
|
def decode_base64_image(self, image_string): |
|
base64_image = base64.b64decode(image_string) |
|
buffer = BytesIO(base64_image) |
|
image = Image.open(buffer) |
|
return image |
|
|