from PIL import Image import torch from torchvision import transforms from transformers import AutoModelForImageSegmentation from typing import Dict, List, Any import base64 from io import BytesIO import os device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class EndpointHandler(): def __init__(self, path=""): self.model = AutoModelForImageSegmentation.from_pretrained( 'whlzy/remove_bg_api', trust_remote_code=True, token=os.environ.get("HUGGINGFACE_TOKEN") ) self.model.to(device) self.model.eval() image_size = (1024, 1024) self.transform_image = transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: image = data.pop("inputs", data) image = self.decode_base64_image(image) input_images = self.transform_image(image).unsqueeze(0).to('cuda') with torch.no_grad(): preds = self.model(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image.size) image.putalpha(mask) return image def decode_base64_image(self, image_string): base64_image = base64.b64decode(image_string) buffer = BytesIO(base64_image) image = Image.open(buffer) return image