File size: 1,554 Bytes
f9cfd2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from PIL import Image
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from typing import  Dict, List, Any
import base64
from io import BytesIO
import os

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class EndpointHandler():
    def __init__(self, path=""):
        self.model = AutoModelForImageSegmentation.from_pretrained(
            'whlzy/remove_bg_api', 
            trust_remote_code=True,
            token=os.environ.get("HUGGINGFACE_TOKEN")
        )
        self.model.to(device)
        self.model.eval()
        image_size = (1024, 1024)
        self.transform_image = transforms.Compose([
            transforms.Resize(image_size),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        image = data.pop("inputs", data)
        image = self.decode_base64_image(image)
        input_images = self.transform_image(image).unsqueeze(0).to('cuda')
        with torch.no_grad():
            preds = self.model(input_images)[-1].sigmoid().cpu()
        pred = preds[0].squeeze()
        pred_pil = transforms.ToPILImage()(pred)
        mask = pred_pil.resize(image.size)
        image.putalpha(mask)
        return image

    def decode_base64_image(self, image_string):
        base64_image = base64.b64decode(image_string)
        buffer = BytesIO(base64_image)
        image = Image.open(buffer)
        return image