metadata
language:
- en
license: llama2
model-index:
- name: recycled-wizardlm-7b-v2.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 54.95
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 77.85
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 45.79
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.29
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.51
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 12.36
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
Model Card for umd-zhou-lab/recycled-wizardlm-7b-v2.0
This model is trained by fine-tuning llama-2 with recycled WizardLM(70k) data V2.
Model Details
Model Description
- Developed by: UMD Tianyi Zhou Lab
- Model type: An auto-regressive language model based on the transformer architecture
- License: Llama 2 Community License Agreement
- Finetuned from model: meta-llama/Llama-2-7b
Model Sources
- GitHub: Reflection-Tuning
- Paper: Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning
- Data: Coming soon
Uses
The primary use of this model is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
Training
We use the prompt from FastChat:
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am ...</s>......
Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | Warmup Rate |
---|---|---|---|---|---|---|
Recycled Models (7B) | 128 | 2e-5 | 3 | 2048 | 0 | 0.03 |
Performance
The following table provides a comparison between our recycled models (V2) and baseline models on the AlpacaEval Leaderboard and Huggingface Open LLM Leaderboard.
The V2 Recycled Alpaca Data and WizardLM data, and the corresponding paper will be released soon.
AlpacaEval | Avg | ARC | HellaSwag | MMLU | TruthfulQA | Model | |||
---|---|---|---|---|---|---|---|---|---|
Alpaca 7B | 26.46 | 50.21 | 42.65 | 76.91 | 41.73 | 39.55 | / | ||
Recycled Alpaca 7B V2.0 | 79.58 | 56.05 | 54.01 | 78.07 | 46.69 | 45.41 | [hf-Link] | ||
WizardLM 7B | 67.64 | 54.18 | 51.60 | 77.70 | 42.70 | 44.70 | / | ||
Recycled WizardLM 7B V2.0 | 83.48 | 56.79 | 54.78 | 77.86 | 45.63 | 48.91 | [hf-Link] | ||
Citation
Please consider citing our paper if you think our codes, data, or models are useful. Thank you!
@misc{li2023reflectiontuning,
title={Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning},
author={Ming Li and Lichang Chen and Jiuhai Chen and Shwai He and Heng Huang and Jiuxiang Gu and Tianyi Zhou},
year={2023},
eprint={2310.11716},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 51.79 |
AI2 Reasoning Challenge (25-Shot) | 54.95 |
HellaSwag (10-Shot) | 77.85 |
MMLU (5-Shot) | 45.79 |
TruthfulQA (0-shot) | 48.29 |
Winogrande (5-shot) | 71.51 |
GSM8k (5-shot) | 12.36 |