File size: 6,689 Bytes
50e3436
 
 
1e10471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50e3436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a770ca
50e3436
 
4a770ca
50e3436
 
4a770ca
50e3436
 
 
 
 
 
 
 
 
 
 
 
1e10471
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
language:
- en
license: llama2
model-index:
- name: recycled-wizardlm-7b-v2.0
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 54.95
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 77.85
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 45.79
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 48.29
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 71.51
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 12.36
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
      name: Open LLM Leaderboard
---
# Model Card for umd-zhou-lab/recycled-wizardlm-7b-v2.0

<!-- Provide a quick summary of what the model is/does. -->

This model is trained by fine-tuning llama-2 with recycled WizardLM(70k) data V2.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->


- **Developed by:** UMD Tianyi Zhou Lab
- **Model type:** An auto-regressive language model based on the transformer architecture
- **License:** Llama 2 Community License Agreement
- **Finetuned from model:** [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b)

### Model Sources

<!-- Provide the basic links for the model. -->

- **GitHub:** [Reflection-Tuning](https://github.com/tianyi-lab/Reflection_Tuning)
- **Paper:** [Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning](https://arxiv.org/abs/2310.11716)
- **Data:** Coming soon

## Uses

The primary use of this model is research on large language models and chatbots. 
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.

## Training

We use the prompt from [FastChat](https://github.com/lm-sys/FastChat):

```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am ...</s>......
```

| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | Warmup Rate |
| --- | ---: | ---: | ---: | ---: | ---: | ---: |
| Recycled Models (7B) | 128 | 2e-5 | 3 | 2048 | 0 | 0.03 |

## Performance

The following table provides a comparison between our recycled models (V2) and baseline models on the AlpacaEval Leaderboard and Huggingface Open LLM Leaderboard. <br>

The V2 Recycled Alpaca Data and WizardLM data, and the corresponding paper will be released soon. 

|                          | **AlpacaEval** || **Avg** | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** || **Model**|
|--------------------------|:--------------:|:-:|:-----------:|:-------:|:-------------:|:-------:|:--------------:|:-:|:-:|
| **Alpaca 7B**            | 26.46          || 50.21       | 42.65   | 76.91         | 41.73   | 39.55          ||/|
| **Recycled Alpaca 7B V2.0**   |     79.58      || 56.05 |  54.01  |   78.07      |  46.69  |    45.41       ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-alpaca-7b-v2.0)|
|||||||||||
| **WizardLM 7B**          | 67.64          || 54.18       | 51.60   | 77.70         | 42.70   | 44.70          ||/|
| **Recycled WizardLM 7B V2.0** |     83.48      ||   56.79     |  54.78 |     77.86     |  45.63  |    48.91     ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-wizardlm-7b-v2.0)|
|||||||||


## Citation

Please consider citing our paper if you think our codes, data, or models are useful. Thank you!
```
@misc{li2023reflectiontuning,
      title={Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning}, 
      author={Ming Li and Lichang Chen and Jiuhai Chen and Shwai He and Heng Huang and Jiuxiang Gu and Tianyi Zhou},
      year={2023},
      eprint={2310.11716},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_umd-zhou-lab__recycled-wizardlm-7b-v2.0)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |51.79|
|AI2 Reasoning Challenge (25-Shot)|54.95|
|HellaSwag (10-Shot)              |77.85|
|MMLU (5-Shot)                    |45.79|
|TruthfulQA (0-shot)              |48.29|
|Winogrande (5-shot)              |71.51|
|GSM8k (5-shot)                   |12.36|