File size: 6,689 Bytes
50e3436 1e10471 50e3436 4a770ca 50e3436 4a770ca 50e3436 4a770ca 50e3436 1e10471 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
language:
- en
license: llama2
model-index:
- name: recycled-wizardlm-7b-v2.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 54.95
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 77.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 45.79
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.29
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 12.36
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/recycled-wizardlm-7b-v2.0
name: Open LLM Leaderboard
---
# Model Card for umd-zhou-lab/recycled-wizardlm-7b-v2.0
<!-- Provide a quick summary of what the model is/does. -->
This model is trained by fine-tuning llama-2 with recycled WizardLM(70k) data V2.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** UMD Tianyi Zhou Lab
- **Model type:** An auto-regressive language model based on the transformer architecture
- **License:** Llama 2 Community License Agreement
- **Finetuned from model:** [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b)
### Model Sources
<!-- Provide the basic links for the model. -->
- **GitHub:** [Reflection-Tuning](https://github.com/tianyi-lab/Reflection_Tuning)
- **Paper:** [Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning](https://arxiv.org/abs/2310.11716)
- **Data:** Coming soon
## Uses
The primary use of this model is research on large language models and chatbots.
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
## Training
We use the prompt from [FastChat](https://github.com/lm-sys/FastChat):
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am ...</s>......
```
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | Warmup Rate |
| --- | ---: | ---: | ---: | ---: | ---: | ---: |
| Recycled Models (7B) | 128 | 2e-5 | 3 | 2048 | 0 | 0.03 |
## Performance
The following table provides a comparison between our recycled models (V2) and baseline models on the AlpacaEval Leaderboard and Huggingface Open LLM Leaderboard. <br>
The V2 Recycled Alpaca Data and WizardLM data, and the corresponding paper will be released soon.
| | **AlpacaEval** || **Avg** | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** || **Model**|
|--------------------------|:--------------:|:-:|:-----------:|:-------:|:-------------:|:-------:|:--------------:|:-:|:-:|
| **Alpaca 7B** | 26.46 || 50.21 | 42.65 | 76.91 | 41.73 | 39.55 ||/|
| **Recycled Alpaca 7B V2.0** | 79.58 || 56.05 | 54.01 | 78.07 | 46.69 | 45.41 ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-alpaca-7b-v2.0)|
|||||||||||
| **WizardLM 7B** | 67.64 || 54.18 | 51.60 | 77.70 | 42.70 | 44.70 ||/|
| **Recycled WizardLM 7B V2.0** | 83.48 || 56.79 | 54.78 | 77.86 | 45.63 | 48.91 ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-wizardlm-7b-v2.0)|
|||||||||
## Citation
Please consider citing our paper if you think our codes, data, or models are useful. Thank you!
```
@misc{li2023reflectiontuning,
title={Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning},
author={Ming Li and Lichang Chen and Jiuhai Chen and Shwai He and Heng Huang and Jiuxiang Gu and Tianyi Zhou},
year={2023},
eprint={2310.11716},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_umd-zhou-lab__recycled-wizardlm-7b-v2.0)
| Metric |Value|
|---------------------------------|----:|
|Avg. |51.79|
|AI2 Reasoning Challenge (25-Shot)|54.95|
|HellaSwag (10-Shot) |77.85|
|MMLU (5-Shot) |45.79|
|TruthfulQA (0-shot) |48.29|
|Winogrande (5-shot) |71.51|
|GSM8k (5-shot) |12.36|
|