File size: 4,453 Bytes
1e21185
59fd3eb
1e21185
 
 
 
 
e7163e4
1e21185
 
fc98b4d
 
 
 
 
 
 
 
da0624f
fc98b4d
 
 
da0624f
fc98b4d
 
 
 
 
 
 
 
 
 
 
995e282
fc98b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
995e282
fc98b4d
 
 
 
 
 
 
995e282
 
fc98b4d
995e282
 
 
 
 
 
 
fc98b4d
 
 
da0624f
59fd3eb
da0624f
fc98b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: cc-by-nc-4.0
language:
- en
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-405B-Instruct
pipeline_tag: text-generation
---

# CALM-405B: The Largest Open-Source Agentic LLM

## 🌟 Model Overview

**CALM-405B** is the **largest open-source Conversational Agentic Language Model (LLM) ever created**. This model sets a new standard in **Conversational AI**, seamlessly integrating both **Task-Oriented Dialogue (TOD) capabilities** and **Language Agent (LA) functionalities**. 
It is designed to **push the boundaries** of open-source agentic LLMs, excelling at **multi-turn dialogue, tool usage, reasoning, and API execution**. It is the **best-performing fully open-source LLM** on the **Berkeley Function Calling Leaderboard V3 (BFCL V3)**, marking a historic leap in open-source AI research.

## Model Sources [TODO]

<!-- Provide the basic links for the model. -->

- **Paper:** [More Information Needed]
- **Repository:** [More Information Needed]


---
## πŸš€ Model Details

- **Model Name:** CALM-405B  
- **Developed by:** Colloboration of UIUC Conversational AI LAB and Oumi 
- **License:** Apache 2.0  
- **Architecture:** Meta-Llama 3.1-405B Instruct
- **Training Data:** CALM-IT
- **Fine-tuning Framework:** [Oumi](https://github.com/oumi-ai/oumi)  
- **Training Hardware:** 8 NVIDIA H100 GPUs  
- **Training Duration:** ~6.5 days  
- **Evaluation Benchmarks:** MultiWOZ 2.4, BFCL V3, API-Bank  
- **Release Date:** February 5, 2025  

---
## πŸ† Why CALM-405B is a Game-Changer

- **🚨 Largest Open-Source Agentic LLM:** A **405B** parameter model that brings state-of-the-art agentic capabilities to the public domain.
- **🎯 Best Open-Source Performance on BFCL V3:** Outperforms leading proprietary models like **GPT-4o, Gemini, and Claude** in function-calling tasks.
- **πŸ” True Zero-Shot Function Calling:** Generalizes to unseen API tasks with **unmatched accuracy**.
- **πŸ€– Multi-Turn Dialogue Mastery:** Excels at long conversations, **task tracking, and complex reasoning**.
- **πŸ›  API Tool Use and Reasoning:** Makes precise API calls, interprets responses, and synthesizes **coherent** multi-step solutions.
- **πŸ“œ Fully Open-Source & Reproducible:** Released under **Apache 2.0**, including model weights, training logs, and datasets.

---
## πŸ“Š Benchmark Performance

TODO: Add BFCL results

---
## πŸ”§ Training Process
### Fine-tuning Stages
1. **TOD Fine-tuning:** Optimized for **dialogue state tracking** (e.g., augmented SNIPS in instruction-tuned format).
2. **Function Calling Fine-tuning:** Trained to generate **highly accurate API calls** from LA datasets.
3. **ReAct-based Fine-tuning:** Enhances multi-turn conversations with structured **thought-action-observation-response reasoning**.

### Training Hyperparameters
- **Base Model:** Meta-Llama 3.1-405B Instruct
- **LoRA Config:** Rank = 16, Scaling Factor = 32
- **Batch Size:** 2
- **Learning Rate:** 1e-4
- **Optimizer:** AdamW (betas = 0.9, 0.999, epsilon = 1e-8)
- **Precision:** q4
- **Warm-up Steps:** 500
- **Gradient Accumulation Steps:** 1

---

## πŸ’‘ How to Use CALM-405B
🚨 It requires 16xH100 NVIDIA GPUs for Inference.

### πŸ— How to Load the Model using HuggingFace
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("uiuc-convai/CALM-8B")
model = AutoModelForCausalLM.from_pretrained("uiuc-convai/CALM-8B")
```

### πŸ›  Example Oumi Inference
CALM-405B likely requires multi-node inference as most single nodes support up to 640GB of GPU VRAM. To run multi-node inference, we recommend [vLLM](https://docs.vllm.ai/en/latest/serving/distributed_serving.html)

### πŸ›  Example Oumi Fine-Tuning
```bash
pip install oumi

# See oumi_train.yaml in this model's /oumi/ directory.
oumi train -c ./oumi_train.yaml
```

More fine-tuning and **community-driven** optimizations are planned to enhance real-world usability.

## License
This model is licensed under [Creative Commons NonCommercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/legalcode).

---
## πŸ“– Citation
If you use **CALM-405B** in your research, please cite:
```
@article{yourpaper2024,
  title={CALM: Conversational Agentic Language Model},
  author={Your Name and Collaborators},
  journal={Your Conference/Journal},
  year={2024}
}
```

For more details, visit [Project Repository](https://github.com/your-repo) or contact **[email protected]**.