Nessii013 commited on
Commit
995e282
Β·
verified Β·
1 Parent(s): 0f830f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -7
README.md CHANGED
@@ -32,7 +32,7 @@ It is designed to **push the boundaries** of open-source agentic LLMs, excelling
32
  - **License:** Apache 2.0
33
  - **Architecture:** Meta-Llama 3.1-405B Instruct
34
  - **Training Data:** CALM-IT
35
- - **Fine-tuning Framework:** Oumi
36
  - **Training Hardware:** 8 NVIDIA H100 GPUs
37
  - **Training Duration:** ~6.5 days
38
  - **Evaluation Benchmarks:** MultiWOZ 2.4, BFCL V3, API-Bank
@@ -75,7 +75,7 @@ TODO: Add BFCL results
75
  ## πŸ’‘ How to Use CALM-405B
76
  🚨 It requires 16xH100 NVIDIA GPUs for Inference.
77
 
78
- ### πŸ— How to Load the Model
79
  ```python
80
  from transformers import AutoModelForCausalLM, AutoTokenizer
81
 
@@ -83,12 +83,16 @@ tokenizer = AutoTokenizer.from_pretrained("uiuc-convai/CALM-8B")
83
  model = AutoModelForCausalLM.from_pretrained("uiuc-convai/CALM-8B")
84
  ```
85
 
86
- <!-- TODO -->
87
- ### πŸ›  Example Inference
88
- ```python
89
- TODO
90
- ```
91
 
 
 
 
 
 
 
 
92
 
93
  More fine-tuning and **community-driven** optimizations are planned to enhance real-world usability.
94
 
 
32
  - **License:** Apache 2.0
33
  - **Architecture:** Meta-Llama 3.1-405B Instruct
34
  - **Training Data:** CALM-IT
35
+ - **Fine-tuning Framework:** [Oumi](https://github.com/oumi-ai/oumi)
36
  - **Training Hardware:** 8 NVIDIA H100 GPUs
37
  - **Training Duration:** ~6.5 days
38
  - **Evaluation Benchmarks:** MultiWOZ 2.4, BFCL V3, API-Bank
 
75
  ## πŸ’‘ How to Use CALM-405B
76
  🚨 It requires 16xH100 NVIDIA GPUs for Inference.
77
 
78
+ ### πŸ— How to Load the Model using HuggingFace
79
  ```python
80
  from transformers import AutoModelForCausalLM, AutoTokenizer
81
 
 
83
  model = AutoModelForCausalLM.from_pretrained("uiuc-convai/CALM-8B")
84
  ```
85
 
86
+ ### πŸ›  Example Oumi Inference
87
+ CALM-405B likely requires multi-node inference as most single nodes support up to 640GB of GPU VRAM. To run multi-node inference, we recommend [vLLM](https://docs.vllm.ai/en/latest/serving/distributed_serving.html)
 
 
 
88
 
89
+ ### πŸ›  Example Oumi Fine-Tuning
90
+ ```bash
91
+ pip install oumi
92
+
93
+ # See oumi_train.yaml in this model's /oumi/ directory.
94
+ oumi train -c ./oumi_train.yaml
95
+ ```
96
 
97
  More fine-tuning and **community-driven** optimizations are planned to enhance real-world usability.
98