Update README.md
Browse files
README.md
CHANGED
@@ -32,7 +32,7 @@ It is designed to **push the boundaries** of open-source agentic LLMs, excelling
|
|
32 |
- **License:** Apache 2.0
|
33 |
- **Architecture:** Meta-Llama 3.1-405B Instruct
|
34 |
- **Training Data:** CALM-IT
|
35 |
-
- **Fine-tuning Framework:** Oumi
|
36 |
- **Training Hardware:** 8 NVIDIA H100 GPUs
|
37 |
- **Training Duration:** ~6.5 days
|
38 |
- **Evaluation Benchmarks:** MultiWOZ 2.4, BFCL V3, API-Bank
|
@@ -75,7 +75,7 @@ TODO: Add BFCL results
|
|
75 |
## π‘ How to Use CALM-405B
|
76 |
π¨ It requires 16xH100 NVIDIA GPUs for Inference.
|
77 |
|
78 |
-
### π How to Load the Model
|
79 |
```python
|
80 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
81 |
|
@@ -83,12 +83,16 @@ tokenizer = AutoTokenizer.from_pretrained("uiuc-convai/CALM-8B")
|
|
83 |
model = AutoModelForCausalLM.from_pretrained("uiuc-convai/CALM-8B")
|
84 |
```
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
```python
|
89 |
-
TODO
|
90 |
-
```
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
More fine-tuning and **community-driven** optimizations are planned to enhance real-world usability.
|
94 |
|
|
|
32 |
- **License:** Apache 2.0
|
33 |
- **Architecture:** Meta-Llama 3.1-405B Instruct
|
34 |
- **Training Data:** CALM-IT
|
35 |
+
- **Fine-tuning Framework:** [Oumi](https://github.com/oumi-ai/oumi)
|
36 |
- **Training Hardware:** 8 NVIDIA H100 GPUs
|
37 |
- **Training Duration:** ~6.5 days
|
38 |
- **Evaluation Benchmarks:** MultiWOZ 2.4, BFCL V3, API-Bank
|
|
|
75 |
## π‘ How to Use CALM-405B
|
76 |
π¨ It requires 16xH100 NVIDIA GPUs for Inference.
|
77 |
|
78 |
+
### π How to Load the Model using HuggingFace
|
79 |
```python
|
80 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
81 |
|
|
|
83 |
model = AutoModelForCausalLM.from_pretrained("uiuc-convai/CALM-8B")
|
84 |
```
|
85 |
|
86 |
+
### π Example Oumi Inference
|
87 |
+
CALM-405B likely requires multi-node inference as most single nodes support up to 640GB of GPU VRAM. To run multi-node inference, we recommend [vLLM](https://docs.vllm.ai/en/latest/serving/distributed_serving.html)
|
|
|
|
|
|
|
88 |
|
89 |
+
### π Example Oumi Fine-Tuning
|
90 |
+
```bash
|
91 |
+
pip install oumi
|
92 |
+
|
93 |
+
# See oumi_train.yaml in this model's /oumi/ directory.
|
94 |
+
oumi train -c ./oumi_train.yaml
|
95 |
+
```
|
96 |
|
97 |
More fine-tuning and **community-driven** optimizations are planned to enhance real-world usability.
|
98 |
|