|
---
|
|
language:
|
|
- en
|
|
tags:
|
|
- sentence-transformers
|
|
- cross-encoder
|
|
- generated_from_trainer
|
|
- dataset_size:100000
|
|
- loss:CrossEntropyLoss
|
|
base_model: distilbert/distilroberta-base
|
|
datasets:
|
|
- sentence-transformers/all-nli
|
|
pipeline_tag: text-classification
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- f1_macro
|
|
- f1_micro
|
|
- f1_weighted
|
|
co2_eq_emissions:
|
|
emissions: 4.04344552694739
|
|
energy_consumed: 0.010402430465877176
|
|
source: codecarbon
|
|
training_type: fine-tuning
|
|
on_cloud: false
|
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
ram_total_size: 31.777088165283203
|
|
hours_used: 0.037
|
|
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
|
model-index:
|
|
- name: CrossEncoder based on distilbert/distilroberta-base
|
|
results:
|
|
- task:
|
|
type: cross-encoder-classification
|
|
name: Cross Encoder Classification
|
|
dataset:
|
|
name: AllNLI dev
|
|
type: AllNLI-dev
|
|
metrics:
|
|
- type: f1_macro
|
|
value: 0.8572064017289116
|
|
name: F1 Macro
|
|
- type: f1_micro
|
|
value: 0.858
|
|
name: F1 Micro
|
|
- type: f1_weighted
|
|
value: 0.8571688195967522
|
|
name: F1 Weighted
|
|
- task:
|
|
type: cross-encoder-classification
|
|
name: Cross Encoder Classification
|
|
dataset:
|
|
name: AllNLI test
|
|
type: AllNLI-test
|
|
metrics:
|
|
- type: f1_macro
|
|
value: 0.7750916004999927
|
|
name: F1 Macro
|
|
- type: f1_micro
|
|
value: 0.7755392755392755
|
|
name: F1 Micro
|
|
- type: f1_weighted
|
|
value: 0.7759677200472417
|
|
name: F1 Weighted
|
|
---
|
|
|
|
# CrossEncoder based on distilbert/distilroberta-base
|
|
|
|
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text pair classification.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Cross Encoder
|
|
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
|
|
- **Maximum Sequence Length:** 514 tokens
|
|
- **Number of Output Labels:** 3 labels
|
|
- **Training Dataset:**
|
|
- [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
|
- **Language:** en
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import CrossEncoder
|
|
|
|
# Download from the 🤗 Hub
|
|
model = CrossEncoder("tomaarsen/reranker-distilroberta-base-nli")
|
|
# Get scores for pairs of texts
|
|
pairs = [
|
|
['Two women are embracing while holding to go packages.', 'The sisters are hugging goodbye while holding to go packages after just eating lunch.'],
|
|
['Two women are embracing while holding to go packages.', 'Two woman are holding packages.'],
|
|
['Two women are embracing while holding to go packages.', 'The men are fighting outside a deli.'],
|
|
['Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.', 'Two kids in numbered jerseys wash their hands.'],
|
|
['Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.', 'Two kids at a ballgame wash their hands.'],
|
|
]
|
|
scores = model.predict(pairs)
|
|
print(scores.shape)
|
|
# (5, 3)
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Cross Encoder Classification
|
|
|
|
* Datasets: `AllNLI-dev` and `AllNLI-test`
|
|
* Evaluated with [<code>CrossEncoderClassificationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderClassificationEvaluator)
|
|
|
|
| Metric | AllNLI-dev | AllNLI-test |
|
|
|:-------------|:-----------|:------------|
|
|
| **f1_macro** | **0.8572** | **0.7751** |
|
|
| f1_micro | 0.858 | 0.7755 |
|
|
| f1_weighted | 0.8572 | 0.776 |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### all-nli
|
|
|
|
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
|
* Size: 100,000 training samples
|
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | premise | hypothesis | label |
|
|
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
|
| type | string | string | int |
|
|
| details | <ul><li>min: 23 characters</li><li>mean: 69.54 characters</li><li>max: 227 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 38.26 characters</li><li>max: 131 characters</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
|
|
* Samples:
|
|
| premise | hypothesis | label |
|
|
|:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
|
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
|
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
|
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
|
|
* Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### all-nli
|
|
|
|
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
|
* Size: 1,000 evaluation samples
|
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | premise | hypothesis | label |
|
|
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
|
| type | string | string | int |
|
|
| details | <ul><li>min: 16 characters</li><li>mean: 75.01 characters</li><li>max: 229 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 37.66 characters</li><li>max: 116 characters</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
|
|
* Samples:
|
|
| premise | hypothesis | label |
|
|
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
|
|
| <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
|
|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
|
|
| <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
|
|
* Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `per_device_train_batch_size`: 64
|
|
- `per_device_eval_batch_size`: 64
|
|
- `num_train_epochs`: 1
|
|
- `warmup_ratio`: 0.1
|
|
- `bf16`: True
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 64
|
|
- `per_device_eval_batch_size`: 64
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 5e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 1
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: True
|
|
- `fp16`: False
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: None
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `include_for_metrics`: []
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `average_tokens_across_devices`: False
|
|
- `prompts`: None
|
|
- `batch_sampler`: batch_sampler
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | Validation Loss | AllNLI-dev_f1_macro | AllNLI-test_f1_macro |
|
|
|:------:|:----:|:-------------:|:---------------:|:-------------------:|:--------------------:|
|
|
| -1 | -1 | - | - | 0.1775 | - |
|
|
| 0.0640 | 100 | 1.0464 | - | - | - |
|
|
| 0.1280 | 200 | 0.702 | - | - | - |
|
|
| 0.1919 | 300 | 0.6039 | - | - | - |
|
|
| 0.2559 | 400 | 0.5658 | - | - | - |
|
|
| 0.3199 | 500 | 0.5513 | 0.4792 | 0.7932 | - |
|
|
| 0.3839 | 600 | 0.523 | - | - | - |
|
|
| 0.4479 | 700 | 0.5261 | - | - | - |
|
|
| 0.5118 | 800 | 0.5074 | - | - | - |
|
|
| 0.5758 | 900 | 0.4871 | - | - | - |
|
|
| 0.6398 | 1000 | 0.5078 | 0.3934 | 0.8407 | - |
|
|
| 0.7038 | 1100 | 0.4706 | - | - | - |
|
|
| 0.7678 | 1200 | 0.4725 | - | - | - |
|
|
| 0.8317 | 1300 | 0.4362 | - | - | - |
|
|
| 0.8957 | 1400 | 0.4577 | - | - | - |
|
|
| 0.9597 | 1500 | 0.4415 | 0.3599 | 0.8572 | - |
|
|
| -1 | -1 | - | - | - | 0.7751 |
|
|
|
|
|
|
### Environmental Impact
|
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
|
- **Energy Consumed**: 0.010 kWh
|
|
- **Carbon Emitted**: 0.004 kg of CO2
|
|
- **Hours Used**: 0.037 hours
|
|
|
|
### Training Hardware
|
|
- **On Cloud**: No
|
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
- **RAM Size**: 31.78 GB
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.6
|
|
- Sentence Transformers: 3.5.0.dev0
|
|
- Transformers: 4.49.0
|
|
- PyTorch: 2.6.0+cu124
|
|
- Accelerate: 1.5.1
|
|
- Datasets: 3.3.2
|
|
- Tokenizers: 0.21.0
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |