tomaarsen HF staff commited on
Commit
fb65cd7
·
verified ·
1 Parent(s): ce58f77

Add new CrossEncoder model

Browse files
Files changed (8) hide show
  1. README.md +418 -0
  2. config.json +41 -0
  3. merges.txt +0 -0
  4. model.safetensors +3 -0
  5. special_tokens_map.json +15 -0
  6. tokenizer.json +0 -0
  7. tokenizer_config.json +58 -0
  8. vocab.json +0 -0
README.md ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - cross-encoder
7
+ - generated_from_trainer
8
+ - dataset_size:100000
9
+ - loss:CrossEntropyLoss
10
+ base_model: distilbert/distilroberta-base
11
+ datasets:
12
+ - sentence-transformers/all-nli
13
+ pipeline_tag: text-classification
14
+ library_name: sentence-transformers
15
+ metrics:
16
+ - f1_macro
17
+ - f1_micro
18
+ - f1_weighted
19
+ co2_eq_emissions:
20
+ emissions: 4.04344552694739
21
+ energy_consumed: 0.010402430465877176
22
+ source: codecarbon
23
+ training_type: fine-tuning
24
+ on_cloud: false
25
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
26
+ ram_total_size: 31.777088165283203
27
+ hours_used: 0.037
28
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
29
+ model-index:
30
+ - name: CrossEncoder based on distilbert/distilroberta-base
31
+ results:
32
+ - task:
33
+ type: cross-encoder-classification
34
+ name: Cross Encoder Classification
35
+ dataset:
36
+ name: AllNLI dev
37
+ type: AllNLI-dev
38
+ metrics:
39
+ - type: f1_macro
40
+ value: 0.8572064017289116
41
+ name: F1 Macro
42
+ - type: f1_micro
43
+ value: 0.858
44
+ name: F1 Micro
45
+ - type: f1_weighted
46
+ value: 0.8571688195967522
47
+ name: F1 Weighted
48
+ - task:
49
+ type: cross-encoder-classification
50
+ name: Cross Encoder Classification
51
+ dataset:
52
+ name: AllNLI test
53
+ type: AllNLI-test
54
+ metrics:
55
+ - type: f1_macro
56
+ value: 0.7750916004999927
57
+ name: F1 Macro
58
+ - type: f1_micro
59
+ value: 0.7755392755392755
60
+ name: F1 Micro
61
+ - type: f1_weighted
62
+ value: 0.7759677200472417
63
+ name: F1 Weighted
64
+ ---
65
+
66
+ # CrossEncoder based on distilbert/distilroberta-base
67
+
68
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text pair classification.
69
+
70
+ ## Model Details
71
+
72
+ ### Model Description
73
+ - **Model Type:** Cross Encoder
74
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
75
+ - **Maximum Sequence Length:** 514 tokens
76
+ - **Number of Output Labels:** 3 labels
77
+ - **Training Dataset:**
78
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
79
+ - **Language:** en
80
+ <!-- - **License:** Unknown -->
81
+
82
+ ### Model Sources
83
+
84
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
85
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
86
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
87
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
88
+
89
+ ## Usage
90
+
91
+ ### Direct Usage (Sentence Transformers)
92
+
93
+ First install the Sentence Transformers library:
94
+
95
+ ```bash
96
+ pip install -U sentence-transformers
97
+ ```
98
+
99
+ Then you can load this model and run inference.
100
+ ```python
101
+ from sentence_transformers import CrossEncoder
102
+
103
+ # Download from the 🤗 Hub
104
+ model = CrossEncoder("tomaarsen/reranker-distilroberta-base-nli")
105
+ # Get scores for pairs of texts
106
+ pairs = [
107
+ ['Two women are embracing while holding to go packages.', 'The sisters are hugging goodbye while holding to go packages after just eating lunch.'],
108
+ ['Two women are embracing while holding to go packages.', 'Two woman are holding packages.'],
109
+ ['Two women are embracing while holding to go packages.', 'The men are fighting outside a deli.'],
110
+ ['Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.', 'Two kids in numbered jerseys wash their hands.'],
111
+ ['Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.', 'Two kids at a ballgame wash their hands.'],
112
+ ]
113
+ scores = model.predict(pairs)
114
+ print(scores.shape)
115
+ # (5, 3)
116
+ ```
117
+
118
+ <!--
119
+ ### Direct Usage (Transformers)
120
+
121
+ <details><summary>Click to see the direct usage in Transformers</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Downstream Usage (Sentence Transformers)
128
+
129
+ You can finetune this model on your own dataset.
130
+
131
+ <details><summary>Click to expand</summary>
132
+
133
+ </details>
134
+ -->
135
+
136
+ <!--
137
+ ### Out-of-Scope Use
138
+
139
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
140
+ -->
141
+
142
+ ## Evaluation
143
+
144
+ ### Metrics
145
+
146
+ #### Cross Encoder Classification
147
+
148
+ * Datasets: `AllNLI-dev` and `AllNLI-test`
149
+ * Evaluated with [<code>CrossEncoderClassificationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderClassificationEvaluator)
150
+
151
+ | Metric | AllNLI-dev | AllNLI-test |
152
+ |:-------------|:-----------|:------------|
153
+ | **f1_macro** | **0.8572** | **0.7751** |
154
+ | f1_micro | 0.858 | 0.7755 |
155
+ | f1_weighted | 0.8572 | 0.776 |
156
+
157
+ <!--
158
+ ## Bias, Risks and Limitations
159
+
160
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
161
+ -->
162
+
163
+ <!--
164
+ ### Recommendations
165
+
166
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
167
+ -->
168
+
169
+ ## Training Details
170
+
171
+ ### Training Dataset
172
+
173
+ #### all-nli
174
+
175
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
176
+ * Size: 100,000 training samples
177
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
178
+ * Approximate statistics based on the first 1000 samples:
179
+ | | premise | hypothesis | label |
180
+ |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
181
+ | type | string | string | int |
182
+ | details | <ul><li>min: 23 characters</li><li>mean: 69.54 characters</li><li>max: 227 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 38.26 characters</li><li>max: 131 characters</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
183
+ * Samples:
184
+ | premise | hypothesis | label |
185
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
186
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
187
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
188
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
189
+ * Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
190
+
191
+ ### Evaluation Dataset
192
+
193
+ #### all-nli
194
+
195
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
196
+ * Size: 1,000 evaluation samples
197
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
198
+ * Approximate statistics based on the first 1000 samples:
199
+ | | premise | hypothesis | label |
200
+ |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
201
+ | type | string | string | int |
202
+ | details | <ul><li>min: 16 characters</li><li>mean: 75.01 characters</li><li>max: 229 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 37.66 characters</li><li>max: 116 characters</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
203
+ * Samples:
204
+ | premise | hypothesis | label |
205
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
206
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
207
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
208
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
209
+ * Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
210
+
211
+ ### Training Hyperparameters
212
+ #### Non-Default Hyperparameters
213
+
214
+ - `eval_strategy`: steps
215
+ - `per_device_train_batch_size`: 64
216
+ - `per_device_eval_batch_size`: 64
217
+ - `num_train_epochs`: 1
218
+ - `warmup_ratio`: 0.1
219
+ - `bf16`: True
220
+
221
+ #### All Hyperparameters
222
+ <details><summary>Click to expand</summary>
223
+
224
+ - `overwrite_output_dir`: False
225
+ - `do_predict`: False
226
+ - `eval_strategy`: steps
227
+ - `prediction_loss_only`: True
228
+ - `per_device_train_batch_size`: 64
229
+ - `per_device_eval_batch_size`: 64
230
+ - `per_gpu_train_batch_size`: None
231
+ - `per_gpu_eval_batch_size`: None
232
+ - `gradient_accumulation_steps`: 1
233
+ - `eval_accumulation_steps`: None
234
+ - `torch_empty_cache_steps`: None
235
+ - `learning_rate`: 5e-05
236
+ - `weight_decay`: 0.0
237
+ - `adam_beta1`: 0.9
238
+ - `adam_beta2`: 0.999
239
+ - `adam_epsilon`: 1e-08
240
+ - `max_grad_norm`: 1.0
241
+ - `num_train_epochs`: 1
242
+ - `max_steps`: -1
243
+ - `lr_scheduler_type`: linear
244
+ - `lr_scheduler_kwargs`: {}
245
+ - `warmup_ratio`: 0.1
246
+ - `warmup_steps`: 0
247
+ - `log_level`: passive
248
+ - `log_level_replica`: warning
249
+ - `log_on_each_node`: True
250
+ - `logging_nan_inf_filter`: True
251
+ - `save_safetensors`: True
252
+ - `save_on_each_node`: False
253
+ - `save_only_model`: False
254
+ - `restore_callback_states_from_checkpoint`: False
255
+ - `no_cuda`: False
256
+ - `use_cpu`: False
257
+ - `use_mps_device`: False
258
+ - `seed`: 42
259
+ - `data_seed`: None
260
+ - `jit_mode_eval`: False
261
+ - `use_ipex`: False
262
+ - `bf16`: True
263
+ - `fp16`: False
264
+ - `fp16_opt_level`: O1
265
+ - `half_precision_backend`: auto
266
+ - `bf16_full_eval`: False
267
+ - `fp16_full_eval`: False
268
+ - `tf32`: None
269
+ - `local_rank`: 0
270
+ - `ddp_backend`: None
271
+ - `tpu_num_cores`: None
272
+ - `tpu_metrics_debug`: False
273
+ - `debug`: []
274
+ - `dataloader_drop_last`: False
275
+ - `dataloader_num_workers`: 0
276
+ - `dataloader_prefetch_factor`: None
277
+ - `past_index`: -1
278
+ - `disable_tqdm`: False
279
+ - `remove_unused_columns`: True
280
+ - `label_names`: None
281
+ - `load_best_model_at_end`: False
282
+ - `ignore_data_skip`: False
283
+ - `fsdp`: []
284
+ - `fsdp_min_num_params`: 0
285
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
286
+ - `fsdp_transformer_layer_cls_to_wrap`: None
287
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
288
+ - `deepspeed`: None
289
+ - `label_smoothing_factor`: 0.0
290
+ - `optim`: adamw_torch
291
+ - `optim_args`: None
292
+ - `adafactor`: False
293
+ - `group_by_length`: False
294
+ - `length_column_name`: length
295
+ - `ddp_find_unused_parameters`: None
296
+ - `ddp_bucket_cap_mb`: None
297
+ - `ddp_broadcast_buffers`: False
298
+ - `dataloader_pin_memory`: True
299
+ - `dataloader_persistent_workers`: False
300
+ - `skip_memory_metrics`: True
301
+ - `use_legacy_prediction_loop`: False
302
+ - `push_to_hub`: False
303
+ - `resume_from_checkpoint`: None
304
+ - `hub_model_id`: None
305
+ - `hub_strategy`: every_save
306
+ - `hub_private_repo`: None
307
+ - `hub_always_push`: False
308
+ - `gradient_checkpointing`: False
309
+ - `gradient_checkpointing_kwargs`: None
310
+ - `include_inputs_for_metrics`: False
311
+ - `include_for_metrics`: []
312
+ - `eval_do_concat_batches`: True
313
+ - `fp16_backend`: auto
314
+ - `push_to_hub_model_id`: None
315
+ - `push_to_hub_organization`: None
316
+ - `mp_parameters`:
317
+ - `auto_find_batch_size`: False
318
+ - `full_determinism`: False
319
+ - `torchdynamo`: None
320
+ - `ray_scope`: last
321
+ - `ddp_timeout`: 1800
322
+ - `torch_compile`: False
323
+ - `torch_compile_backend`: None
324
+ - `torch_compile_mode`: None
325
+ - `dispatch_batches`: None
326
+ - `split_batches`: None
327
+ - `include_tokens_per_second`: False
328
+ - `include_num_input_tokens_seen`: False
329
+ - `neftune_noise_alpha`: None
330
+ - `optim_target_modules`: None
331
+ - `batch_eval_metrics`: False
332
+ - `eval_on_start`: False
333
+ - `use_liger_kernel`: False
334
+ - `eval_use_gather_object`: False
335
+ - `average_tokens_across_devices`: False
336
+ - `prompts`: None
337
+ - `batch_sampler`: batch_sampler
338
+ - `multi_dataset_batch_sampler`: proportional
339
+
340
+ </details>
341
+
342
+ ### Training Logs
343
+ | Epoch | Step | Training Loss | Validation Loss | AllNLI-dev_f1_macro | AllNLI-test_f1_macro |
344
+ |:------:|:----:|:-------------:|:---------------:|:-------------------:|:--------------------:|
345
+ | -1 | -1 | - | - | 0.1775 | - |
346
+ | 0.0640 | 100 | 1.0464 | - | - | - |
347
+ | 0.1280 | 200 | 0.702 | - | - | - |
348
+ | 0.1919 | 300 | 0.6039 | - | - | - |
349
+ | 0.2559 | 400 | 0.5658 | - | - | - |
350
+ | 0.3199 | 500 | 0.5513 | 0.4792 | 0.7932 | - |
351
+ | 0.3839 | 600 | 0.523 | - | - | - |
352
+ | 0.4479 | 700 | 0.5261 | - | - | - |
353
+ | 0.5118 | 800 | 0.5074 | - | - | - |
354
+ | 0.5758 | 900 | 0.4871 | - | - | - |
355
+ | 0.6398 | 1000 | 0.5078 | 0.3934 | 0.8407 | - |
356
+ | 0.7038 | 1100 | 0.4706 | - | - | - |
357
+ | 0.7678 | 1200 | 0.4725 | - | - | - |
358
+ | 0.8317 | 1300 | 0.4362 | - | - | - |
359
+ | 0.8957 | 1400 | 0.4577 | - | - | - |
360
+ | 0.9597 | 1500 | 0.4415 | 0.3599 | 0.8572 | - |
361
+ | -1 | -1 | - | - | - | 0.7751 |
362
+
363
+
364
+ ### Environmental Impact
365
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
366
+ - **Energy Consumed**: 0.010 kWh
367
+ - **Carbon Emitted**: 0.004 kg of CO2
368
+ - **Hours Used**: 0.037 hours
369
+
370
+ ### Training Hardware
371
+ - **On Cloud**: No
372
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
373
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
374
+ - **RAM Size**: 31.78 GB
375
+
376
+ ### Framework Versions
377
+ - Python: 3.11.6
378
+ - Sentence Transformers: 3.5.0.dev0
379
+ - Transformers: 4.49.0
380
+ - PyTorch: 2.6.0+cu124
381
+ - Accelerate: 1.5.1
382
+ - Datasets: 3.3.2
383
+ - Tokenizers: 0.21.0
384
+
385
+ ## Citation
386
+
387
+ ### BibTeX
388
+
389
+ #### Sentence Transformers
390
+ ```bibtex
391
+ @inproceedings{reimers-2019-sentence-bert,
392
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
393
+ author = "Reimers, Nils and Gurevych, Iryna",
394
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
395
+ month = "11",
396
+ year = "2019",
397
+ publisher = "Association for Computational Linguistics",
398
+ url = "https://arxiv.org/abs/1908.10084",
399
+ }
400
+ ```
401
+
402
+ <!--
403
+ ## Glossary
404
+
405
+ *Clearly define terms in order to be accessible across audiences.*
406
+ -->
407
+
408
+ <!--
409
+ ## Model Card Authors
410
+
411
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
412
+ -->
413
+
414
+ <!--
415
+ ## Model Card Contact
416
+
417
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
418
+ -->
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "LABEL_0": 0,
22
+ "LABEL_1": 1,
23
+ "LABEL_2": 2
24
+ },
25
+ "layer_norm_eps": 1e-05,
26
+ "max_position_embeddings": 514,
27
+ "model_type": "roberta",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 6,
30
+ "pad_token_id": 1,
31
+ "position_embedding_type": "absolute",
32
+ "sentence_transformers": {
33
+ "activation_fn": "torch.nn.modules.linear.Identity",
34
+ "version": "3.5.0.dev0"
35
+ },
36
+ "torch_dtype": "float32",
37
+ "transformers_version": "4.49.0",
38
+ "type_vocab_size": 1,
39
+ "use_cache": true,
40
+ "vocab_size": 50265
41
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d275e49f7323fd3c5718ee7da0d5e0621b8c599320805c1a2ed7b13d41be53c
3
+ size 328495356
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 514,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff