|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kp20k |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: ED_keyphrase_roberta/ |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: kp20k |
|
type: kp20k |
|
config: generation |
|
split: train[:15%] |
|
args: generation |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.1132 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ED_keyphrase_roberta/ |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the kp20k dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.6070 |
|
- Rouge1: 0.1132 |
|
- Rouge2: 0.0161 |
|
- Rougel: 0.108 |
|
- Rougelsum: 0.1081 |
|
- Gen Len: 10.9056 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 6.2014 | 1.0 | 664 | 5.4438 | 0.0532 | 0.0021 | 0.0525 | 0.0524 | 9.0955 | |
|
| 5.3993 | 2.0 | 1328 | 4.8016 | 0.0958 | 0.0105 | 0.0921 | 0.0921 | 11.524 | |
|
| 4.9398 | 3.0 | 1992 | 4.6499 | 0.1095 | 0.0153 | 0.1049 | 0.1048 | 11.2748 | |
|
| 4.6497 | 4.0 | 2656 | 4.6070 | 0.1132 | 0.0161 | 0.108 | 0.1081 | 10.9056 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cu116 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|