File size: 2,164 Bytes
a5f089a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
tags:
- generated_from_trainer
datasets:
- kp20k
metrics:
- rouge
model-index:
- name: ED_keyphrase_roberta/
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kp20k
type: kp20k
config: generation
split: train[:15%]
args: generation
metrics:
- name: Rouge1
type: rouge
value: 0.1132
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ED_keyphrase_roberta/
This model is a fine-tuned version of [](https://huggingface.co/) on the kp20k dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6070
- Rouge1: 0.1132
- Rouge2: 0.0161
- Rougel: 0.108
- Rougelsum: 0.1081
- Gen Len: 10.9056
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 6.2014 | 1.0 | 664 | 5.4438 | 0.0532 | 0.0021 | 0.0525 | 0.0524 | 9.0955 |
| 5.3993 | 2.0 | 1328 | 4.8016 | 0.0958 | 0.0105 | 0.0921 | 0.0921 | 11.524 |
| 4.9398 | 3.0 | 1992 | 4.6499 | 0.1095 | 0.0153 | 0.1049 | 0.1048 | 11.2748 |
| 4.6497 | 4.0 | 2656 | 4.6070 | 0.1132 | 0.0161 | 0.108 | 0.1081 | 10.9056 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|