|
# TinyWave Base Speech 2B |
|
|
|
**TinyWave Base Speech 2B** is a compact speech-to-speech generation model distilled from the 7B SPIRIT-LM-Base teacher. It uses HuBERT-based phonetic tokens for efficient, high-quality speech generation and is optimized for **fast inference** on **commodity hardware**. |
|
|
|
This model focuses on generating semantically coherent speech continuations without expressive modulation (e.g., pitch/style tokens). It is ideal for **low-resource speech agents**, **instruction-following speech bots**, and **embedded systems**. |
|
|
|
> π See the [TinyWave paper (arXiv:2506.23670)](https://arxiv.org/abs/2506.23670) and [demo site](https://mohammadmahdinoori.github.io/tinywave-landing/) for more details. |
|
|
|
--- |
|
|
|
## π§ Usage |
|
|
|
This model requires **SPIRIT-LM's base speech tokenizer**, which uses HuBERT units without pitch/style tokens. |
|
|
|
### 1. Clone SPIRIT-LM and Install Requirements |
|
|
|
```bash |
|
git clone https://github.com/facebookresearch/spiritlm |
|
cd spiritlm |
|
pip install -e '.[eval]' |
|
```` |
|
|
|
--- |
|
|
|
### 2. Load Tokenizer |
|
|
|
```python |
|
from spiritlm.speech_tokenizer import spiritlm_base |
|
speech_tokenizer = spiritlm_base() |
|
``` |
|
|
|
--- |
|
|
|
### 3. Inference Code (Speech-to-Speech) |
|
|
|
```python |
|
from transformers import LlamaForCausalLM, AutoTokenizer |
|
import torchaudio |
|
import torch |
|
|
|
# Load model and tokenizer |
|
MODEL_PATH = "tinywave/speech-base-2b" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) |
|
model = LlamaForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16) |
|
|
|
# Load base speech tokenizer |
|
speech_tokenizer = spiritlm_base() |
|
|
|
def get_inference(audio_path): |
|
audio, _ = torchaudio.load(audio_path) |
|
input_values = audio.view(1, 1, -1).to(speech_tokenizer.hubert_model.device).float() |
|
tokens = speech_tokenizer.encode_string(input_values) |
|
input_ids = tokenizer(tokens, return_tensors="pt").input_ids.to(model.device) |
|
output = model.generate(input_ids, max_new_tokens=256, top_p=0.9, temperature=0.9, do_sample=True) |
|
return tokenizer.decode(output[0]) |
|
``` |
|
|
|
--- |
|
|
|
### 4. Decode to WAV |
|
|
|
```python |
|
import numpy as np |
|
from scipy.io.wavfile import write |
|
|
|
def save_array_to_wav_int16(audio_array: np.ndarray, sampling_rate=16000, filename="output.wav"): |
|
scaled = np.int16(audio_array / np.max(np.abs(audio_array)) * 32767) |
|
write(filename, sampling_rate, scaled) |
|
|
|
decoded_audio = speech_tokenizer.decode(generated_output.replace(" ", "").replace("<s>", "").replace("</s>", ""), speaker_id=2) |
|
save_array_to_wav_int16(decoded_audio, filename="generated.wav") |
|
``` |
|
|
|
--- |
|
|
|
## π£οΈ Inference Example |
|
|
|
### π§ Basic Speech Continuation |
|
|
|
Input: `simple_prompt.wav` |
|
Output: Semantically consistent speech continuation without expressive variation. |
|
|
|
--- |
|
|
|
## π§ Model Details |
|
|
|
| Feature | Description | |
|
| ------------------- | ------------------------------------------------ | |
|
| Architecture | 2B parameter distilled transformer | |
|
| Tokenizer | SPIRIT-LM Base (HuBERT phonetic tokens) | |
|
| Input Type | Discrete HuBERT tokens only (speech-only) | |
|
| Output Type | Discrete audio tokens | |
|
| Teacher Model | SPIRIT-LM-Base 7B | |
|
| Tasks | Speech continuation | |
|
| Distillation Method | Layer-aligned (hidden states, attention, logits) | |
|
|
|
--- |
|
|
|
## π Citation |
|
|
|
```bibtex |
|
@article{nouriborji2025tinywave, |
|
title={Efficient Interleaved Speech Modeling through Knowledge Distillation}, |
|
author={Nouriborji, Mohammadmahdi and Rohanian, Morteza}, |
|
journal={arXiv preprint arXiv:2506.23670}, |
|
year={2025} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
## π Resources |
|
|
|
* π [Project Page](https://mohammadmahdinoori.github.io/tinywave-landing/) |
|
* π¬ [Demo Samples](https://mohammadmahdinoori.github.io/tinywave-landing/#samples) |
|
* π§ [Training & Codebase](https://github.com/mohammadmahdinoori/TinyWave) |
|
|