speech-base-2b / README.md
mohammadmahdinouri's picture
Update README.md
6747089 verified
# TinyWave Base Speech 2B
**TinyWave Base Speech 2B** is a compact speech-to-speech generation model distilled from the 7B SPIRIT-LM-Base teacher. It uses HuBERT-based phonetic tokens for efficient, high-quality speech generation and is optimized for **fast inference** on **commodity hardware**.
This model focuses on generating semantically coherent speech continuations without expressive modulation (e.g., pitch/style tokens). It is ideal for **low-resource speech agents**, **instruction-following speech bots**, and **embedded systems**.
> πŸ“– See the [TinyWave paper (arXiv:2506.23670)](https://arxiv.org/abs/2506.23670) and [demo site](https://mohammadmahdinoori.github.io/tinywave-landing/) for more details.
---
## πŸ”§ Usage
This model requires **SPIRIT-LM's base speech tokenizer**, which uses HuBERT units without pitch/style tokens.
### 1. Clone SPIRIT-LM and Install Requirements
```bash
git clone https://github.com/facebookresearch/spiritlm
cd spiritlm
pip install -e '.[eval]'
````
---
### 2. Load Tokenizer
```python
from spiritlm.speech_tokenizer import spiritlm_base
speech_tokenizer = spiritlm_base()
```
---
### 3. Inference Code (Speech-to-Speech)
```python
from transformers import LlamaForCausalLM, AutoTokenizer
import torchaudio
import torch
# Load model and tokenizer
MODEL_PATH = "tinywave/speech-base-2b"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = LlamaForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
# Load base speech tokenizer
speech_tokenizer = spiritlm_base()
def get_inference(audio_path):
audio, _ = torchaudio.load(audio_path)
input_values = audio.view(1, 1, -1).to(speech_tokenizer.hubert_model.device).float()
tokens = speech_tokenizer.encode_string(input_values)
input_ids = tokenizer(tokens, return_tensors="pt").input_ids.to(model.device)
output = model.generate(input_ids, max_new_tokens=256, top_p=0.9, temperature=0.9, do_sample=True)
return tokenizer.decode(output[0])
```
---
### 4. Decode to WAV
```python
import numpy as np
from scipy.io.wavfile import write
def save_array_to_wav_int16(audio_array: np.ndarray, sampling_rate=16000, filename="output.wav"):
scaled = np.int16(audio_array / np.max(np.abs(audio_array)) * 32767)
write(filename, sampling_rate, scaled)
decoded_audio = speech_tokenizer.decode(generated_output.replace(" ", "").replace("<s>", "").replace("</s>", ""), speaker_id=2)
save_array_to_wav_int16(decoded_audio, filename="generated.wav")
```
---
## πŸ—£οΈ Inference Example
### 🎧 Basic Speech Continuation
Input: `simple_prompt.wav`
Output: Semantically consistent speech continuation without expressive variation.
---
## 🧠 Model Details
| Feature | Description |
| ------------------- | ------------------------------------------------ |
| Architecture | 2B parameter distilled transformer |
| Tokenizer | SPIRIT-LM Base (HuBERT phonetic tokens) |
| Input Type | Discrete HuBERT tokens only (speech-only) |
| Output Type | Discrete audio tokens |
| Teacher Model | SPIRIT-LM-Base 7B |
| Tasks | Speech continuation |
| Distillation Method | Layer-aligned (hidden states, attention, logits) |
---
## πŸ“Ž Citation
```bibtex
@article{nouriborji2025tinywave,
title={Efficient Interleaved Speech Modeling through Knowledge Distillation},
author={Nouriborji, Mohammadmahdi and Rohanian, Morteza},
journal={arXiv preprint arXiv:2506.23670},
year={2025}
}
```
---
## πŸ“‚ Resources
* πŸ”— [Project Page](https://mohammadmahdinoori.github.io/tinywave-landing/)
* πŸ’¬ [Demo Samples](https://mohammadmahdinoori.github.io/tinywave-landing/#samples)
* 🧠 [Training & Codebase](https://github.com/mohammadmahdinoori/TinyWave)