mohammadmahdinouri commited on
Commit
6747089
Β·
verified Β·
1 Parent(s): 74deb05

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -164
README.md CHANGED
@@ -1,199 +1,116 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
 
 
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
158
 
159
- ### Compute Infrastructure
 
 
 
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
 
 
 
 
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
1
+ # TinyWave Base Speech 2B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ **TinyWave Base Speech 2B** is a compact speech-to-speech generation model distilled from the 7B SPIRIT-LM-Base teacher. It uses HuBERT-based phonetic tokens for efficient, high-quality speech generation and is optimized for **fast inference** on **commodity hardware**.
4
 
5
+ This model focuses on generating semantically coherent speech continuations without expressive modulation (e.g., pitch/style tokens). It is ideal for **low-resource speech agents**, **instruction-following speech bots**, and **embedded systems**.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ > πŸ“– See the [TinyWave paper (arXiv:2506.23670)](https://arxiv.org/abs/2506.23670) and [demo site](https://mohammadmahdinoori.github.io/tinywave-landing/) for more details.
8
 
9
+ ---
10
 
11
+ ## πŸ”§ Usage
12
 
13
+ This model requires **SPIRIT-LM's base speech tokenizer**, which uses HuBERT units without pitch/style tokens.
14
 
15
+ ### 1. Clone SPIRIT-LM and Install Requirements
16
 
17
+ ```bash
18
+ git clone https://github.com/facebookresearch/spiritlm
19
+ cd spiritlm
20
+ pip install -e '.[eval]'
21
+ ````
22
 
23
+ ---
24
 
25
+ ### 2. Load Tokenizer
26
 
27
+ ```python
28
+ from spiritlm.speech_tokenizer import spiritlm_base
29
+ speech_tokenizer = spiritlm_base()
30
+ ```
 
31
 
32
+ ---
33
 
34
+ ### 3. Inference Code (Speech-to-Speech)
35
 
36
+ ```python
37
+ from transformers import LlamaForCausalLM, AutoTokenizer
38
+ import torchaudio
39
+ import torch
40
 
41
+ # Load model and tokenizer
42
+ MODEL_PATH = "tinywave/speech-base-2b"
43
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
44
+ model = LlamaForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
45
 
46
+ # Load base speech tokenizer
47
+ speech_tokenizer = spiritlm_base()
48
 
49
+ def get_inference(audio_path):
50
+ audio, _ = torchaudio.load(audio_path)
51
+ input_values = audio.view(1, 1, -1).to(speech_tokenizer.hubert_model.device).float()
52
+ tokens = speech_tokenizer.encode_string(input_values)
53
+ input_ids = tokenizer(tokens, return_tensors="pt").input_ids.to(model.device)
54
+ output = model.generate(input_ids, max_new_tokens=256, top_p=0.9, temperature=0.9, do_sample=True)
55
+ return tokenizer.decode(output[0])
56
+ ```
57
 
58
+ ---
59
 
60
+ ### 4. Decode to WAV
61
 
62
+ ```python
63
+ import numpy as np
64
+ from scipy.io.wavfile import write
65
 
66
+ def save_array_to_wav_int16(audio_array: np.ndarray, sampling_rate=16000, filename="output.wav"):
67
+ scaled = np.int16(audio_array / np.max(np.abs(audio_array)) * 32767)
68
+ write(filename, sampling_rate, scaled)
69
 
70
+ decoded_audio = speech_tokenizer.decode(generated_output.replace(" ", "").replace("<s>", "").replace("</s>", ""), speaker_id=2)
71
+ save_array_to_wav_int16(decoded_audio, filename="generated.wav")
72
+ ```
73
 
74
+ ---
75
 
76
+ ## πŸ—£οΈ Inference Example
77
 
78
+ ### 🎧 Basic Speech Continuation
79
 
80
+ Input: `simple_prompt.wav`
81
+ Output: Semantically consistent speech continuation without expressive variation.
82
 
83
+ ---
84
 
85
+ ## 🧠 Model Details
86
 
87
+ | Feature | Description |
88
+ | ------------------- | ------------------------------------------------ |
89
+ | Architecture | 2B parameter distilled transformer |
90
+ | Tokenizer | SPIRIT-LM Base (HuBERT phonetic tokens) |
91
+ | Input Type | Discrete HuBERT tokens only (speech-only) |
92
+ | Output Type | Discrete audio tokens |
93
+ | Teacher Model | SPIRIT-LM-Base 7B |
94
+ | Tasks | Speech continuation |
95
+ | Distillation Method | Layer-aligned (hidden states, attention, logits) |
96
 
97
+ ---
98
 
99
+ ## πŸ“Ž Citation
100
 
101
+ ```bibtex
102
+ @article{nouriborji2025tinywave,
103
+ title={Efficient Interleaved Speech Modeling through Knowledge Distillation},
104
+ author={Nouriborji, Mohammadmahdi and Rohanian, Morteza},
105
+ journal={arXiv preprint arXiv:2506.23670},
106
+ year={2025}
107
+ }
108
+ ```
109
 
110
+ ---
111
 
112
+ ## πŸ“‚ Resources
113
 
114
+ * πŸ”— [Project Page](https://mohammadmahdinoori.github.io/tinywave-landing/)
115
+ * πŸ’¬ [Demo Samples](https://mohammadmahdinoori.github.io/tinywave-landing/#samples)
116
+ * 🧠 [Training & Codebase](https://github.com/mohammadmahdinoori/TinyWave)