metadata
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: working
results: []
working
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2536
- Wer: 0.5805
- Cer: 0.0690
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- training_steps: 26000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.0464 | 1.49 | 1000 | 1.5865 | 0.9968 | 0.5743 |
1.2779 | 2.98 | 2000 | 0.4195 | 0.7539 | 0.1008 |
1.0865 | 4.46 | 3000 | 0.3272 | 0.6791 | 0.0852 |
1.0852 | 5.95 | 4000 | 0.3039 | 0.6409 | 0.0789 |
1.0193 | 7.44 | 5000 | 0.3009 | 0.6442 | 0.0809 |
0.9566 | 8.93 | 6000 | 0.2804 | 0.6182 | 0.0762 |
0.9086 | 10.42 | 7000 | 0.2842 | 0.6336 | 0.0772 |
0.9161 | 11.9 | 8000 | 0.2757 | 0.6044 | 0.0735 |
0.8569 | 13.39 | 9000 | 0.2809 | 0.6052 | 0.0748 |
0.8517 | 14.88 | 10000 | 0.2813 | 0.6166 | 0.0759 |
0.8304 | 16.37 | 11000 | 0.2808 | 0.6044 | 0.0759 |
0.8325 | 17.86 | 12000 | 0.2656 | 0.6060 | 0.0735 |
0.7918 | 19.35 | 13000 | 0.2676 | 0.5930 | 0.0730 |
0.8061 | 20.83 | 14000 | 0.2740 | 0.5890 | 0.0731 |
0.7206 | 22.32 | 15000 | 0.2735 | 0.6141 | 0.0730 |
0.7372 | 23.81 | 16000 | 0.2663 | 0.5857 | 0.0711 |
0.7285 | 25.3 | 17000 | 0.2708 | 0.5841 | 0.0723 |
0.6778 | 26.79 | 18000 | 0.2726 | 0.5825 | 0.0724 |
0.7117 | 28.27 | 19000 | 0.2737 | 0.5898 | 0.0723 |
0.6951 | 29.76 | 20000 | 0.2733 | 0.5890 | 0.0721 |
0.6775 | 31.25 | 21000 | 0.2721 | 0.5865 | 0.0725 |
0.666 | 32.74 | 22000 | 0.2733 | 0.5857 | 0.0721 |
0.688 | 34.23 | 23000 | 0.2700 | 0.5890 | 0.0718 |
0.6813 | 35.71 | 24000 | 0.2724 | 0.5930 | 0.0717 |
0.6409 | 37.2 | 25000 | 0.2704 | 0.5922 | 0.0714 |
0.6427 | 38.69 | 26000 | 0.2704 | 0.5881 | 0.0713 |
Framework versions
- Transformers 4.17.0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0