working / README.md
tinybee's picture
update model card README.md
5582037
|
raw
history blame
3.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: working
    results: []

working

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2536
  • Wer: 0.5805
  • Cer: 0.0690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • training_steps: 26000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.0464 1.49 1000 1.5865 0.9968 0.5743
1.2779 2.98 2000 0.4195 0.7539 0.1008
1.0865 4.46 3000 0.3272 0.6791 0.0852
1.0852 5.95 4000 0.3039 0.6409 0.0789
1.0193 7.44 5000 0.3009 0.6442 0.0809
0.9566 8.93 6000 0.2804 0.6182 0.0762
0.9086 10.42 7000 0.2842 0.6336 0.0772
0.9161 11.9 8000 0.2757 0.6044 0.0735
0.8569 13.39 9000 0.2809 0.6052 0.0748
0.8517 14.88 10000 0.2813 0.6166 0.0759
0.8304 16.37 11000 0.2808 0.6044 0.0759
0.8325 17.86 12000 0.2656 0.6060 0.0735
0.7918 19.35 13000 0.2676 0.5930 0.0730
0.8061 20.83 14000 0.2740 0.5890 0.0731
0.7206 22.32 15000 0.2735 0.6141 0.0730
0.7372 23.81 16000 0.2663 0.5857 0.0711
0.7285 25.3 17000 0.2708 0.5841 0.0723
0.6778 26.79 18000 0.2726 0.5825 0.0724
0.7117 28.27 19000 0.2737 0.5898 0.0723
0.6951 29.76 20000 0.2733 0.5890 0.0721
0.6775 31.25 21000 0.2721 0.5865 0.0725
0.666 32.74 22000 0.2733 0.5857 0.0721
0.688 34.23 23000 0.2700 0.5890 0.0718
0.6813 35.71 24000 0.2724 0.5930 0.0717
0.6409 37.2 25000 0.2704 0.5922 0.0714
0.6427 38.69 26000 0.2704 0.5881 0.0713

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0