tinybee commited on
Commit
5582037
·
1 Parent(s): 40f31d4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -21
README.md CHANGED
@@ -14,9 +14,9 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.2584
18
- - Wer: 0.6024
19
- - Cer: 0.0723
20
 
21
  ## Model description
22
 
@@ -44,30 +44,39 @@ The following hyperparameters were used during training:
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
  - lr_scheduler_warmup_steps: 2000
47
- - training_steps: 70000
48
  - mixed_precision_training: Native AMP
49
 
50
  ### Training results
51
 
52
  | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
53
  |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
54
- | 2.0401 | 1.49 | 1000 | 1.3913 | 0.9911 | 0.4127 |
55
- | 1.2772 | 2.98 | 2000 | 0.4117 | 0.7644 | 0.1036 |
56
- | 1.0861 | 4.46 | 3000 | 0.3281 | 0.6962 | 0.0868 |
57
- | 1.0803 | 5.95 | 4000 | 0.2970 | 0.6645 | 0.0796 |
58
- | 1.0256 | 7.44 | 5000 | 0.2986 | 0.6556 | 0.0820 |
59
- | 0.9536 | 8.93 | 6000 | 0.2873 | 0.6418 | 0.0767 |
60
- | 0.9154 | 10.42 | 7000 | 0.3896 | 0.6450 | 0.0812 |
61
- | 0.9187 | 11.9 | 8000 | 0.2946 | 0.6239 | 0.0771 |
62
- | 0.8693 | 13.39 | 9000 | 0.2655 | 0.6093 | 0.0746 |
63
- | 0.8335 | 14.88 | 10000 | 0.2797 | 0.6052 | 0.0764 |
64
- | 0.8461 | 16.37 | 11000 | 0.2879 | 0.6231 | 0.0766 |
65
- | 0.8363 | 17.86 | 12000 | 0.2616 | 0.6052 | 0.0726 |
66
- | 0.796 | 19.35 | 13000 | 0.2656 | 0.6109 | 0.0740 |
67
- | 0.8136 | 20.83 | 14000 | 0.2773 | 0.6255 | 0.0747 |
68
- | 0.7319 | 22.32 | 15000 | 0.2770 | 0.6214 | 0.0748 |
69
- | 0.7428 | 23.81 | 16000 | 0.2697 | 0.6052 | 0.0746 |
70
- | 0.7264 | 25.3 | 17000 | 0.2716 | 0.5971 | 0.0733 |
 
 
 
 
 
 
 
 
 
71
 
72
 
73
  ### Framework versions
 
14
 
15
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.2536
18
+ - Wer: 0.5805
19
+ - Cer: 0.0690
20
 
21
  ## Model description
22
 
 
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
  - lr_scheduler_warmup_steps: 2000
47
+ - training_steps: 26000
48
  - mixed_precision_training: Native AMP
49
 
50
  ### Training results
51
 
52
  | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
53
  |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
54
+ | 2.0464 | 1.49 | 1000 | 1.5865 | 0.9968 | 0.5743 |
55
+ | 1.2779 | 2.98 | 2000 | 0.4195 | 0.7539 | 0.1008 |
56
+ | 1.0865 | 4.46 | 3000 | 0.3272 | 0.6791 | 0.0852 |
57
+ | 1.0852 | 5.95 | 4000 | 0.3039 | 0.6409 | 0.0789 |
58
+ | 1.0193 | 7.44 | 5000 | 0.3009 | 0.6442 | 0.0809 |
59
+ | 0.9566 | 8.93 | 6000 | 0.2804 | 0.6182 | 0.0762 |
60
+ | 0.9086 | 10.42 | 7000 | 0.2842 | 0.6336 | 0.0772 |
61
+ | 0.9161 | 11.9 | 8000 | 0.2757 | 0.6044 | 0.0735 |
62
+ | 0.8569 | 13.39 | 9000 | 0.2809 | 0.6052 | 0.0748 |
63
+ | 0.8517 | 14.88 | 10000 | 0.2813 | 0.6166 | 0.0759 |
64
+ | 0.8304 | 16.37 | 11000 | 0.2808 | 0.6044 | 0.0759 |
65
+ | 0.8325 | 17.86 | 12000 | 0.2656 | 0.6060 | 0.0735 |
66
+ | 0.7918 | 19.35 | 13000 | 0.2676 | 0.5930 | 0.0730 |
67
+ | 0.8061 | 20.83 | 14000 | 0.2740 | 0.5890 | 0.0731 |
68
+ | 0.7206 | 22.32 | 15000 | 0.2735 | 0.6141 | 0.0730 |
69
+ | 0.7372 | 23.81 | 16000 | 0.2663 | 0.5857 | 0.0711 |
70
+ | 0.7285 | 25.3 | 17000 | 0.2708 | 0.5841 | 0.0723 |
71
+ | 0.6778 | 26.79 | 18000 | 0.2726 | 0.5825 | 0.0724 |
72
+ | 0.7117 | 28.27 | 19000 | 0.2737 | 0.5898 | 0.0723 |
73
+ | 0.6951 | 29.76 | 20000 | 0.2733 | 0.5890 | 0.0721 |
74
+ | 0.6775 | 31.25 | 21000 | 0.2721 | 0.5865 | 0.0725 |
75
+ | 0.666 | 32.74 | 22000 | 0.2733 | 0.5857 | 0.0721 |
76
+ | 0.688 | 34.23 | 23000 | 0.2700 | 0.5890 | 0.0718 |
77
+ | 0.6813 | 35.71 | 24000 | 0.2724 | 0.5930 | 0.0717 |
78
+ | 0.6409 | 37.2 | 25000 | 0.2704 | 0.5922 | 0.0714 |
79
+ | 0.6427 | 38.69 | 26000 | 0.2704 | 0.5881 | 0.0713 |
80
 
81
 
82
  ### Framework versions