tanoManzo's picture
End of training
529f057 verified
|
raw
history blame
2.91 kB
metadata
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-v2-100m-multi-species
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: >-
      nucleotide-transformer-v2-100m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC
    results: []

nucleotide-transformer-v2-100m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of InstaDeepAI/nucleotide-transformer-v2-100m-multi-species on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6023
  • F1 Score: 0.8516
  • Precision: 0.8469
  • Recall: 0.8565
  • Accuracy: 0.8443
  • Auc: 0.9080
  • Prc: 0.8870

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.5688 0.2103 500 0.4834 0.7745 0.8198 0.7339 0.7770 0.8595 0.8533
0.465 0.4207 1000 0.4150 0.8388 0.8241 0.8540 0.8288 0.8941 0.8918
0.4161 0.6310 1500 0.3880 0.8466 0.7966 0.9032 0.8292 0.9092 0.9071
0.4113 0.8414 2000 0.3799 0.8541 0.8270 0.8831 0.8427 0.9102 0.9056
0.3853 1.0517 2500 0.4211 0.8485 0.7878 0.9194 0.8288 0.9122 0.9052
0.3461 1.2621 3000 0.4359 0.8510 0.8199 0.8847 0.8385 0.9117 0.8991
0.3408 1.4724 3500 0.3996 0.8563 0.8179 0.8984 0.8427 0.9175 0.9079
0.3354 1.6828 4000 0.4692 0.8260 0.8670 0.7887 0.8267 0.9122 0.9031
0.3392 1.8931 4500 0.4410 0.8544 0.7992 0.9177 0.8368 0.9120 0.9078
0.287 2.1035 5000 0.6023 0.8516 0.8469 0.8565 0.8443 0.9080 0.8870

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0