File size: 2,909 Bytes
529f057 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-v2-100m-multi-species
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-v2-100m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nucleotide-transformer-v2-100m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-100m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-100m-multi-species) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6023
- F1 Score: 0.8516
- Precision: 0.8469
- Recall: 0.8565
- Accuracy: 0.8443
- Auc: 0.9080
- Prc: 0.8870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.5688 | 0.2103 | 500 | 0.4834 | 0.7745 | 0.8198 | 0.7339 | 0.7770 | 0.8595 | 0.8533 |
| 0.465 | 0.4207 | 1000 | 0.4150 | 0.8388 | 0.8241 | 0.8540 | 0.8288 | 0.8941 | 0.8918 |
| 0.4161 | 0.6310 | 1500 | 0.3880 | 0.8466 | 0.7966 | 0.9032 | 0.8292 | 0.9092 | 0.9071 |
| 0.4113 | 0.8414 | 2000 | 0.3799 | 0.8541 | 0.8270 | 0.8831 | 0.8427 | 0.9102 | 0.9056 |
| 0.3853 | 1.0517 | 2500 | 0.4211 | 0.8485 | 0.7878 | 0.9194 | 0.8288 | 0.9122 | 0.9052 |
| 0.3461 | 1.2621 | 3000 | 0.4359 | 0.8510 | 0.8199 | 0.8847 | 0.8385 | 0.9117 | 0.8991 |
| 0.3408 | 1.4724 | 3500 | 0.3996 | 0.8563 | 0.8179 | 0.8984 | 0.8427 | 0.9175 | 0.9079 |
| 0.3354 | 1.6828 | 4000 | 0.4692 | 0.8260 | 0.8670 | 0.7887 | 0.8267 | 0.9122 | 0.9031 |
| 0.3392 | 1.8931 | 4500 | 0.4410 | 0.8544 | 0.7992 | 0.9177 | 0.8368 | 0.9120 | 0.9078 |
| 0.287 | 2.1035 | 5000 | 0.6023 | 0.8516 | 0.8469 | 0.8565 | 0.8443 | 0.9080 | 0.8870 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0
|