File size: 2,909 Bytes
529f057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-v2-100m-multi-species
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-v2-100m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nucleotide-transformer-v2-100m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-100m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-100m-multi-species) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6023
- F1 Score: 0.8516
- Precision: 0.8469
- Recall: 0.8565
- Accuracy: 0.8443
- Auc: 0.9080
- Prc: 0.8870

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc    | Prc    |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.5688        | 0.2103 | 500  | 0.4834          | 0.7745   | 0.8198    | 0.7339 | 0.7770   | 0.8595 | 0.8533 |
| 0.465         | 0.4207 | 1000 | 0.4150          | 0.8388   | 0.8241    | 0.8540 | 0.8288   | 0.8941 | 0.8918 |
| 0.4161        | 0.6310 | 1500 | 0.3880          | 0.8466   | 0.7966    | 0.9032 | 0.8292   | 0.9092 | 0.9071 |
| 0.4113        | 0.8414 | 2000 | 0.3799          | 0.8541   | 0.8270    | 0.8831 | 0.8427   | 0.9102 | 0.9056 |
| 0.3853        | 1.0517 | 2500 | 0.4211          | 0.8485   | 0.7878    | 0.9194 | 0.8288   | 0.9122 | 0.9052 |
| 0.3461        | 1.2621 | 3000 | 0.4359          | 0.8510   | 0.8199    | 0.8847 | 0.8385   | 0.9117 | 0.8991 |
| 0.3408        | 1.4724 | 3500 | 0.3996          | 0.8563   | 0.8179    | 0.8984 | 0.8427   | 0.9175 | 0.9079 |
| 0.3354        | 1.6828 | 4000 | 0.4692          | 0.8260   | 0.8670    | 0.7887 | 0.8267   | 0.9122 | 0.9031 |
| 0.3392        | 1.8931 | 4500 | 0.4410          | 0.8544   | 0.7992    | 0.9177 | 0.8368   | 0.9120 | 0.9078 |
| 0.287         | 2.1035 | 5000 | 0.6023          | 0.8516   | 0.8469    | 0.8565 | 0.8443   | 0.9080 | 0.8870 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0