Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| from PIL import Image | |
| import os | |
| import spaces | |
| from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, StableDiffusionImg2ImgPipeline | |
| import torch | |
| from huggingface_hub import login | |
| # Get token from Hugging Face Spaces secrets | |
| # This will use the environment variable HF_ACCESS_TOKEN which is the standard in HF Spaces | |
| hf_token = os.environ.get("HF_ACCESS_TOKEN") | |
| if hf_token: | |
| login(hf_token) | |
| else: | |
| print("Warning: HF_ACCESS_TOKEN not found in environment. Authentication may fail.") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "stabilityai/stable-diffusion-3.5-medium" | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| # For text-to-image | |
| pipe = DiffusionPipeline.from_pretrained( | |
| model_repo_id, | |
| torch_dtype=torch_dtype, | |
| use_auth_token=True # This will use the token from login() | |
| ) | |
| pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( | |
| model_repo_id, | |
| subfolder="scheduler", | |
| shift=5, | |
| use_auth_token=True | |
| ) | |
| pipe = pipe.to(device) | |
| # For image-to-image | |
| img2img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
| model_repo_id, | |
| torch_dtype=torch_dtype, | |
| use_auth_token=True | |
| ) | |
| img2img_pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( | |
| model_repo_id, | |
| subfolder="scheduler", | |
| shift=5, | |
| use_auth_token=True | |
| ) | |
| img2img_pipe = img2img_pipe.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer( | |
| prompt, | |
| negative_prompt="", | |
| seed=42, | |
| randomize_seed=False, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=1.5, | |
| num_inference_steps=8, | |
| input_image=None, | |
| strength=0.8, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| # Text-to-image if no input image is provided | |
| if input_image is None: | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ).images[0] | |
| # Image-to-image if an input image is provided | |
| else: | |
| # Convert to PIL Image if it's a numpy array | |
| if isinstance(input_image, np.ndarray): | |
| input_image = Image.fromarray(input_image) | |
| # Resize image to match requested dimensions | |
| input_image = input_image.resize((width, height), Image.LANCZOS) | |
| image = img2img_pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=input_image, | |
| strength=strength, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| "A capybara wearing a suit holding a sign that reads Hello World", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # TensorArt Stable Diffusion 3.5 Large TurboX") | |
| gr.Markdown( | |
| "[8-step distilled turbo model](https://huggingface.co/tensorart/stable-diffusion-3.5-large-TurboX)") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| # Add image upload component | |
| input_image = gr.Image( | |
| label="Input Image (Optional)", | |
| type="pil", | |
| sources=["upload", "clipboard"], | |
| ) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=7.5, | |
| step=0.1, | |
| value=1.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=8, | |
| ) | |
| # Add strength parameter for image-to-image | |
| strength = gr.Slider( | |
| label="Strength (for image-to-image)", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.8, | |
| info="How much to transform the reference image. 1.0 means complete transformation." | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, | |
| cache_mode="lazy") | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| input_image, | |
| strength, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |