File size: 6,515 Bytes
7359e88
 
 
 
ed2c8a0
7359e88
 
 
 
ed2c8a0
 
 
 
 
 
 
 
 
7359e88
 
1e0e726
7359e88
 
 
 
 
 
 
ed2c8a0
 
 
 
 
 
 
 
 
 
 
7359e88
 
 
 
 
ed2c8a0
 
 
 
 
 
 
 
7359e88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
import numpy as np
import random
from PIL import Image
import os

import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, StableDiffusionImg2ImgPipeline
import torch
from huggingface_hub import login

# Get token from Hugging Face Spaces secrets
# This will use the environment variable HF_ACCESS_TOKEN which is the standard in HF Spaces
hf_token = os.environ.get("HF_ACCESS_TOKEN")
if hf_token:
    login(hf_token)
else:
    print("Warning: HF_ACCESS_TOKEN not found in environment. Authentication may fail.")

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-medium"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# For text-to-image
pipe = DiffusionPipeline.from_pretrained(
    model_repo_id, 
    torch_dtype=torch_dtype,
    use_auth_token=True  # This will use the token from login()
)
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
    model_repo_id, 
    subfolder="scheduler", 
    shift=5,
    use_auth_token=True
)
pipe = pipe.to(device)

# For image-to-image
img2img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
    model_repo_id,
    torch_dtype=torch_dtype,
    use_auth_token=True
)
img2img_pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
    model_repo_id, 
    subfolder="scheduler", 
    shift=5,
    use_auth_token=True
)
img2img_pipe = img2img_pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU(duration=65)
def infer(
        prompt,
        negative_prompt="",
        seed=42,
        randomize_seed=False,
        width=1024,
        height=1024,
        guidance_scale=1.5,
        num_inference_steps=8,
        input_image=None,
        strength=0.8,
        progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # Text-to-image if no input image is provided
    if input_image is None:
        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
    # Image-to-image if an input image is provided
    else:
        # Convert to PIL Image if it's a numpy array
        if isinstance(input_image, np.ndarray):
            input_image = Image.fromarray(input_image)

        # Resize image to match requested dimensions
        input_image = input_image.resize((width, height), Image.LANCZOS)

        image = img2img_pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image=input_image,
            strength=strength,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=generator,
        ).images[0]

    return image, seed


examples = [
    "A capybara wearing a suit holding a sign that reads Hello World",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # TensorArt Stable Diffusion 3.5 Large TurboX")
        gr.Markdown(
            "[8-step distilled turbo model](https://huggingface.co/tensorart/stable-diffusion-3.5-large-TurboX)")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        # Add image upload component
        input_image = gr.Image(
            label="Input Image (Optional)",
            type="pil",
            sources=["upload", "clipboard"],
        )

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=1.5,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=8,
                )

            # Add strength parameter for image-to-image
            strength = gr.Slider(
                label="Strength (for image-to-image)",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=0.8,
                info="How much to transform the reference image. 1.0 means complete transformation."
            )

        gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True,
                    cache_mode="lazy")
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            input_image,
            strength,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()