Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,20 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
import spaces
|
7 |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, StableDiffusionImg2ImgPipeline
|
8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model_repo_id = "stabilityai/stable-diffusion-3.5-medium"
|
@@ -16,16 +26,31 @@ else:
|
|
16 |
torch_dtype = torch.float32
|
17 |
|
18 |
# For text-to-image
|
19 |
-
pipe = DiffusionPipeline.from_pretrained(
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
pipe = pipe.to(device)
|
22 |
|
23 |
# For image-to-image
|
24 |
img2img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
25 |
model_repo_id,
|
26 |
-
torch_dtype=torch_dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
-
img2img_pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler", shift=5)
|
29 |
img2img_pipe = img2img_pipe.to(device)
|
30 |
|
31 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
from PIL import Image
|
5 |
+
import os
|
6 |
|
7 |
import spaces
|
8 |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, StableDiffusionImg2ImgPipeline
|
9 |
import torch
|
10 |
+
from huggingface_hub import login
|
11 |
+
|
12 |
+
# Get token from Hugging Face Spaces secrets
|
13 |
+
# This will use the environment variable HF_ACCESS_TOKEN which is the standard in HF Spaces
|
14 |
+
hf_token = os.environ.get("HF_ACCESS_TOKEN")
|
15 |
+
if hf_token:
|
16 |
+
login(hf_token)
|
17 |
+
else:
|
18 |
+
print("Warning: HF_ACCESS_TOKEN not found in environment. Authentication may fail.")
|
19 |
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
model_repo_id = "stabilityai/stable-diffusion-3.5-medium"
|
|
|
26 |
torch_dtype = torch.float32
|
27 |
|
28 |
# For text-to-image
|
29 |
+
pipe = DiffusionPipeline.from_pretrained(
|
30 |
+
model_repo_id,
|
31 |
+
torch_dtype=torch_dtype,
|
32 |
+
use_auth_token=True # This will use the token from login()
|
33 |
+
)
|
34 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
35 |
+
model_repo_id,
|
36 |
+
subfolder="scheduler",
|
37 |
+
shift=5,
|
38 |
+
use_auth_token=True
|
39 |
+
)
|
40 |
pipe = pipe.to(device)
|
41 |
|
42 |
# For image-to-image
|
43 |
img2img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
44 |
model_repo_id,
|
45 |
+
torch_dtype=torch_dtype,
|
46 |
+
use_auth_token=True
|
47 |
+
)
|
48 |
+
img2img_pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
49 |
+
model_repo_id,
|
50 |
+
subfolder="scheduler",
|
51 |
+
shift=5,
|
52 |
+
use_auth_token=True
|
53 |
)
|
|
|
54 |
img2img_pipe = img2img_pipe.to(device)
|
55 |
|
56 |
MAX_SEED = np.iinfo(np.int32).max
|